

SEMANTIC INTEROPERABILITY OF THE UNCEFACT CCTS BASED ELECTRONIC
BUSINESS DOCUMENT STANDARDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YILDIRAY KABAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN
COMPUTER ENGINEERING

JULY 2009

Approval of the thesis:

SEMANTIC INTEROPERABILITY OF THE UN /CEFACT CCTS BASED
ELECTRONIC BUSINESS DOCUMENT STANDARDS

submitted byYILDIRAY KABAK in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering , Middle East Technical University by,

Prof. Dr. CanarOzgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Mslim Bozyigit
Head of Department;omputer Engineering

Prof. Dr. Asuman Doga¢
SupervisorDepartment of Computer Engineering, METU

Examining Committee Members:

Prof. Dr.Ismail Hakki Toroslu
Department of Computer Engineering, METU

Prof. Dr. Asuman Doga¢
Department of Computer Engineering, METU

Prof. Dr. Semih Bilgen

Department of Electrical and Electronics Engineering, MET

Prof. Dr. Ozgur Ulusoy
Department of Computer Engineering, Bilkent University

Assoc. Prof. Dr. Nihan Kesim Cicekli
Department of Computer Engineering, METU

Date:

| hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | atsdeclare that, as required
by these rules and conduct, | have fully cited and referencedll material and results that

are not original to this work.

Name, Last Name: YILDIRAY KABAK

Signature

ABSTRACT

SEMANTIC INTEROPERABILITY OF THE UNCEFACT CCTS BASED ELECTRONIC
BUSINESS DOCUMENT STANDARDS

Kabak, Yildiray
M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Asuman Doga¢

July 2009, 156 pages

The interoperability of the electronic documents exchanigeeBusiness applications is an
important problem in industry. Currently, this problem &nkled by the mapping experts
who understand the meaning of every element in the involeedithent schemas and define
the mappings among them which is a very costly and tediousepso In order to improve
electronic document interoperability, the WDNEFACT produced the Core Components Tech-
nical Specification (CCTS) which defines a common structume semantic properties for
document artifacts. However, at present, this documerteabimformation is available only
through text-based search mechanisms and tools. In thEsthiee semantics of CCTS based
business document standards is explicated through a formaghine processable language as
an ontology. In this way, it becomes possible to compute mbaized ontology, which gives
the similarities among document schema ontology classetffefent document standards
through both the semantic properties they share and thensieneguivalences established
through reasoning. However, as expected, the harmonizedogg only helps discovering
the similarities of structurally and semantically equérgl elements. In order to handle the

structurally diferent but semantically similar document artifacts, heigrisiles are developed

iv

describing the possible ways of organizing simple docuradifacts into compound artifacts
as defined in the CCTS methodology. Finally, the equivalemiiscovered among document
schema ontologies are used for the semi-automated gemectiXSLT definitions for the

translation of real-life document instances.

Keywords: Electronic Business Documents, Semantic Iptnability, Ontology, Description

Logics

0z

UN/CEFACT CCTS TABANLI ELEKTRONK IS DOKUMANLARININ ANLAMSAL
BIRLIKTE CALISABILIRLIGI

Kabak, Yildiray
Yiksek Lisans, Bilgisayar Muhendisligi Bolumu

Tez Yoneticisi : Prof. Dr. Asuman Dogag¢

Temmuz 2009, 156 sayfa

E-is uygulamalarinda kullanilan elektronik dokimanldirikte calsbilirligi ©nemli bir prob-
lemdir. Su anda bu problem, dokiman semalarindaki heelbmanin anlamini iyi bilen
eslestirme uzmanlari tarafindan semalar arasinda ehastestirmelerin yapilmasiyla ¢ozul-
mektedir ve bu siire¢ oldukga yorucu ve pahaldir. Etelilkc dokiimanlarin birlikte calisabilir-
ligini artirmak amaciyla UNCEFACT organizasyonu, dokiiman parcaciklarinin ortgksial

ve anlamini tanimlayan, Esas Parcaciklar Teknik Spesiféa’'nu yayinladi. Fakat guni-
mizde bu dokiiman igerik bilgisi sadece metin tabanlgsanekanizmalari ve araglari ile
kullanilabilmektedir. Bu tezde Esas Parcaciklar Tekmpk$fikasyonu tabanli dokiiman stan-
dartlari makine tarafindan islenebilir formal ontolejilile tanimlanmaktadir. Bu sayede
sahip olduklari anlamsal ozellikleri kullanan, muhakeyaedimi ile elde edilmis, farkl stan-
dartlarin dokiiman sema ontoloji siniflari arasindagkileri veren bagdastiriimis ontolojiyi
hesaplamak mumkuindir. Fakat, beklenildigi Uzer@dagtiriimis ontoloji sayesinde sadece
yapisal ve anlamsal olarak esit olan dokiiman elemamtab@nzerlikleri bulunabilmektedir.
Bu ylizden bu tezde, anlamsal olarak benzer ama yapisakd&akli dokiiman parcgaciklarinin

benzerliklerini bulmak igin Esas Pargaciklar Teknik Sifitasyonun’da tanimlanan ve basit

Vi

dokuiman parcaciklarindan bilesik dokiiman parcaciiin olusturulmasinin olasi yollarini
tanimlayan bulusal kurallar gelistirlimistir. Son od&, dokiiman sema ontolojileri arasindaki
belirlenen esitlikler gercek hayatta kullanilan elekik dokiimanlarin ¢evrilmesinde ise yarayan

XSLT tanimlarinin yari otomatik olarak tretilmesinde lenliimaktadir.

Anahtar Kelimeler: EIektronng Dokumanlari, Anlamsal Birlikte Calisabilirlik, Qoloji,

Betimleme Mantigi

Vii

To my family, especially to our new member Tuna...

viii

ACKNOWLEDGMENTS

First of all, | would like to thank my supervisor and my menRyof. Dr. Asuman Dogag for
all her guidance, encouragement and patience. Needleay, twithout her, this work would

never been possible.

| wish to express a lot of thanks to Prof. Dr. Semih Bilgen asgddc. Prof. Dr. Nihan Kesim
Cicekli for their valuable suggestions and commentsughmut the steering meetings of this

study.
Special thanks to SRDC Team (especially to Gokge) for thgdport.
| want to express my gratefulness to Hande for her supporframiship.

Finally, I would like to thank to my family for their infinitenderstanding and | would like to

dedicate this thesis to my nephew Tuna.

TABLE OF CONTENTS

ABSTRACT (Y,
OZ . vi
DEDICATION Vi
ACKNOWLEDGMENTS s s s, IX
TABLE OF CONTENTS e e s s s s, X
LIST OF TABLES s, Xi
LIST OF FIGURES e e s s i xi
CHAPTERS
1 INTRODUCTION s e s s e s 1
2 SURVEY OF THE STATEOF THE ART 6
2.1 RELATED WORK e e 7
2.2 ELECTRONIC DATAINTERCHANGE (EDI) 9

2.3 UNCEFACT CORE COMPONENT TECHNICAL SPECIFICATION

(CCTS) . o oo e e e 10
2.3.1 CORE COMPONENT TYPES ANDDATATYPES ... 11
2.3.2 NAMING CONVENTIONUSED 12
2.3.3 TYPES OF CORE COMPONENTS 13
2.3.4 BUSINESS INFORMATIONENTITY (BIE) 14
2.35 UNCEFACT CORE COMPONENT LIBRARY 15
2.4 UNIVERSAL BUSINESS LANGUAGE 2.0 (UBL) 15
2.41 UBL CUSTOMIZATION AND EXTENSIBILITY 17

2411 CONFORMANT CUSTOMIZATION OF UBL
20 .. 18

24.1.2 COMPATIBLE CUSTOMIZATION OF UBL
20 . 20

2.5

2.6

2.7

2.8
2.9
2.10

2.11

24.1.3 THE USE OF CODELISTS 20

OPEN APPLICATIONS GROUP INTEGRATION SPECIFICATION
(OAGIS) BUSINESS OBJECT DOCUMENTS (BOD) VERSION 9.1 21

251 OAGIS EXTENSIBILITY 23
2511 USERAREAEXTENSIONS 24
2512 OVERLAY EXTENSIONS 24
2.5.1.3 CODE LIST EXTENSIONS 27
GLOBAL STANDARDSONE (GS1) 27
26.1 GS1IXML 28

26.1.1 CUSTOMIZATION AND EXTENSIBILITY 30
2.6.2 THEUSEOFCODELISTS 31

ANALYSIS OF THE ELECTRONIC BUSINESS DOCUMENT STAN-
DARDS 32

271 THE DOCUMENT DESIGN PRINCIPLES

27.11 DOCUMENT ARTIFACTS AND THE USE
OF UN/CEFACT CCTS METHODOLOGY . 33

2.7.1.2 THE USE OF CODELISTS 33
2.7.1.3 THE USE OF NAMESPACES 34
2.7.1.4 NAMING AND DESIGN RULES 34
2.7.15 ANALYSIS OF DOCUMENT DESIGN PRIN-
CIPLES, 35
2.7.2 CUSTOMIZATION AND EXTENSIBILITY 35
2721 ANALYSIS OF CUSTOMIZATION AND EX-
TENSIBILITY 38
2.7.3 COVERAGE OF OTHER LAYERS OF INTEROPERABIL-
ITY 40
2.7.3.1 ANALYSIS OF LAYERS OF INTEROPER-
ABILITY ADDRESSED 41
274 INDUSTRY RELEVANCE 41
DESCRIPTIONLOGICS 43
DESCRIPTION LOGICSREASONERS 45
ONTOLOGY AND WEB ONTOLOGY LANGUAGE-OWL ... 45

ABRIEF INTRODUCTIONTO SPARQL 48

Xi

212 CONCLUSIONS 48

ONTOLOGY BASED SEMANTIC INTEROPERABILITY OF ELECTRONIC
BUSINESS DOCUMENT STANDARDS 52

3.1 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
CONTENTMODELS 55

3.1.1 SPECIFICATION OF THE SEMANTICS EXPOSED BY
THE CCTS FRAMEWORK THROUGHOWL 59

3111 EXPLICATING SEMANTICS THROUGH CORE
DATATYPES(CDT) 59

3.1.1.2 EXPLICATING SEMANTICS THROUGH CON-
TEXT . . . 60

3.1.1.3 EXPLICATING SEMANTICS THROUGH CODE
LISTS 61

3.1.1.4 EXPLICATING SEMANTICS OF CORE COM-
PONENTS 63

3.1.1.5 EXPLICATING SEMANTICS OF BUSINESS
INFORMATION ENTITIES (BIE) 65

3.1.1.6 EXPLICATING THE SEMANTICS OF CCL
ARTIFACTS oo 69

3.2 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
SCHEMAS - GS1UPPER ONTOLOGY 72

3.2.1 EXPLICATING THE SEMANTICS OF GS1 DOCUMENT
SCHEMAS 73

3.3 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
SCHEMAS - UBL UPPER ONTOLOGY 77

3.3.1 EXPLICATING THE SEMANTICS OF UBL DOCUMENT
SCHEMAS 78

3.4 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
SCHEMAS - OAGIS 9.1 UPPER ONTOLOGY 81

3.4.1 EXPLICATING THE SEMANTICS OF OAGIS 9.1 DOC-
UMENT SCHEMAS 82

3.5 HARMONIZING THE ONTOLOGIES OF THE DOCUMENT STAN-
DARDS 88

PROVIDING HEURISTICS TO DISCOVER STRUCTURALLY DIFFER-
ENTDOCUMENT ARTIFACTS e 96

4.1 HEURISTICS TO HELP RESOLVING THE DIFFERENT USAGES
OF CCTSDATATYPES 97

Xii

4.2 A HEURISTIC TO HELP FINDING THE EQUIVALENT BBIES
AT DIFFERENT STRUCTURAL LEVELS 98

4.3 HEURISTICS TO FIND RELATIONSHIPS BETWEEN SEMAN-
TICALLY SIMILAR BUT STRUCTURALLY DIFFERENT DOC-

UMENT ARTIFACTS e 99

4.4 AN EXAMPLE ON THE USE OF THE HARMONIZED ONTOL-
OGY AND THE PROVIDEDHEURISTICS 104
5 AUTOMATED XSLT GENERATION SUPPORT 108

51 AN EXAMPLE: TRANSLATING UBL “ADDRESS.AETAILS" TO
GS1“NAME AND ADDRESS” 109

51.1 OBTAINING THE XPATH EXPRESSIONS FOR UBL
“ADDRESS” ABIE AND FOR ITS BBIESASBIES AU-

TOMATICALLY o 109
51.2 OBTAINING XPath EXPRESSIONS FOR GS1 “NAME-
ANDADDRESS” ABIE AND FORITSBBIES 112
5.1.3 CONSTRUCTING THE XSLT DEFINITIONS 113
5.2 DOCUMENT COMPONENT DISCOVERY SUPPORT 117
521 SPARQLQUERIES 119

522 QUERIES THAT REQUIRE REASONING SUPPORT . . 121

6 SYSTEMARCHITECTURE AND IMPLEMENTATION RESULTS 124
6.1 SYSTEM ARCHITECTURE AND EVALUATION OF THE IM-

PLEMENTATION e 124

6.1.1 THEFRAMEWORK 124

6.1.2 THE DOCUMENT INSTANCE TRANSLATION THROUGH
THEFRAMEWORK, 127

6.2 USE CASE: iSURF INTEROPERABILITY SERVICE UTILITY FOR
COLLABORATIVE PLANNING, FORECASTING AND REPLEN-

ISHMENT 128
6.3 THE IMPLEMENTATION AND PERFORMANCE OF THE SYS-
TEM . . . 132
7 CONCLUSIONS AND THE FUTUREWORK 135
REFERENCES e 137

APPENDICES

A GENERATED XSLTDOCUMENTS 143

Xiii

Al THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LO-
CATION PROFILE INSTANCES FROM GS1 XML TOUBL. . . . 143

A.2 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LO-
CATION PROFILE INSTANCES FROM UBLTO GS1 XML 148

Xiv

LIST OF TABLES

TABLES

Table 2.1 Document Design Principles,

Table 2.2 Customization and Extensibility

Table 3.1 UNCCL - “Structured Address” ABIE Asserted Definition
Table 3.2 UBL “Address” ABIE Asserted Definition-Part1
Table 3.3 UBL “Address” ABIE Asserted Definition-Part2

Table 3.4 UBL “Address” ABIE Asserted Definition-Part3

Table 3.5 The Assertion Related with théfdient Usage of Datatypes

Table 3.6 Inferred EqualitigSubsumptions between YBICL “Structured Address”
and UBL “Address” in the Harmonized Ontology

Table 3.7 GS1 “NameAndAddress” ABIE Asserted Definition

Table 3.8 Inferred EqualitigSubsumptions between YBICL “Structured Address”
and GS1 “NameAndAddress” in the Harmonized Ontology

Table 4.1 The Relationship among the Semantic Propertigs/@fExample Basic

Document Components

Table 4.2 The Relationship among the Semantic PropertiesomExample Associa-

tion Document Components

XV

93

94

95

LIST OF FIGURES

FIGURES

Figure 2.1 The Basic EDI Architecture 9
Figure 2.2 (a) The Basic EDI Message Structure, (b) An Exarfl Message ... 9
Figure 2.3 The EDIMessage Example 10
Figure 2.4 Core ComponentOverview [83] 0. ... 13

Figure 2.5 Examples dBasic Core ComponerfBCC), Aggregate Core Component
(ACC) andAssociation Core Componen(&SCC)[83] 14

Figure 2.6 Customizing aAggregate Core Componett theBusiness Process Con-

text“Trade” e e 15

Figure 2.7 Relationship between Core Components and Bissin®rmation Entities

B3] . o o 16
Figure 2.8 TheUBL Components i 16
Figure 2.9 An Example UBL Document Schema Structure 17
Figure 2.10 Two-phase validation of UBLMessages 18
Figure 2.11 UBL Extension Example ua... 19
Figure 2.12 The Structure of OAGIS Business Object Docur(@@D) 22
Figure 2.13 OAGIS Business Object Document (BOD) assemtayngle 23
Figure 2.14 OAGIS usage of USEFACTCCT 24
Figure 2.15 UserArea Example e 24
Figure 2.16 OAGIS Overlay LayeringExample 25
Figure 2.17 Overlay Extension Example 25
Figure 2.18 Code ListExample e 26
Figure 2.19 The Structure of GS1 XML Structure 28

XVi

Figure 2.20 Attribut@/alue Pair Mechanism to populate extensionarea 1 3
Figure 2.21 Example Country Code Element 31
Figure 2.22 Example Payment Method ListElement 32

Figure 2.23 An Example Comparing Related Parts of OAGIS BADadd GS1 XML

Documents e e e e e e e 36

Figure 2.24 Example XSL Transformations necessary to mapdesm two diferent

Overlayextensions in OAGISBODs 39
Figure 2.25 OWL Constructors i it e e e 47
Figure 2.26 OWL AXIOMS e e e e e e e a7

Figure 3.1 The Upper Ontology for the Semantics Exposed ®{C@TS Framework . 53
Figure 3.2 An Overview of the Upper Ontologies and their Refships 55

Figure 3.3 An Overview of the Upper Ontologies together i Document Schema
ontologies 56

Figure 3.4 The Upper Ontology for the Semantics Exposed &ya81 XML Docu-
ment Standard L 72

Figure 3.5 The Upper Ontology for the Semantics Exposed &yJBL XML Docu-
ment Standard L 77

Figure 3.6 The Upper Ontology for the Semantics Exposed ®@D#GIS XML Doc-
ument Standard 81

Figure 3.7 The Semantic Equivalences among the BBIEs of BHdress, CCL-
Structured Address and GS1-NameAndAddress Discoveredghrthe Harmo-
nized Ontology 88

Figure 4.1 Example structuralfterence 98

Figure 4.2 The Rule for Discovery of two Semantically SimBasic Document Com-

PONENES e e e e 99

Figure 4.3 The Rule for Discovery of two Semantically SimAgsociation Document

Components e e e e e 100

Figure 4.4 The Rule for Discovery of Semantic Similarityvieeén a Basic Document

Component and an Association Document Component 101

XVii

Figure 4.5

The Rule for Discovery of two Aggregate Documeatmponents having

Semantically SimilarContent, 102

Figure 4.6 The Rule for Discovery ofg two Semantically Sanihggregate Document

Components e e e e e 104
Figure 4.7 UBL's Party ABIE and CCL's BuyeParty ABIE 104
Figure 4.8 UBL's Party ABIE and CCL's BuydParty ABIE 106
Figure 6.1 The Overall Framework and the Steps of Documetiéihice Translation . 125
Figure 6.2 iISURFISUEnNtrancePage 129
Figure 6.3 Document ContentModels 129
Figure 6.4 Equalities are loaded to the middlepane 130
Figure 6.5 Find equivalancesitem e 131
Figure 6.6 Discovered Equivalences in the correspondingment trees 131
Figure 6.7 Identitfied XPaths, 132
Figure 6.8 Generated XSLT it i 133

Xviil

LIST OF ACRONYMS

ABIE

ACC

AIAG

ANSI

ASBIE

ASCC

ATG

B2B

BBIE

BBC

BIE

BOD

CBL

CC

CCL

CCT

CCTS

Aggregate Business Information Entity

Aggregate Core Component

Automotive Industry Action Group

American National Standards Institute

Aggregate Business Information Entity

Association Core Component

UN/CEFACT Applied Technology Group

Business-to-Business

Basic Business Information Entity

Basic Core Component

Business Information Entity

Business Object Document

Common Business Library

Core Component

Core Component Library

Core Component Types

Core Components Technical Specification

CEFACT Centre for Trade Facilitation and Electronic Business

XiX

CIDX Chemical Industry Data Exchange

CLRTC OASIS Code List Representation Technical Committee

cXML Commerce XML

EAN European Article Number

ebXML Electronic Business eXtensible Markup Language

ebBP ebXML Business Process

EDI Electronic Data Interchange

EDIFACT Electronic Data Interchange For Administration, Commead Transport

EFT Electronic Funds Transfer

EPC Electronic Product Code

GDD Global Data Dictionary

GDSN Global Data Synchronization Network

GDT Global Data Types

GS1 Global Standards One

HL7 Health Level Seven

HTTP HyperText Transfer Protocol

HTTPS Secured HyperText Transfer Protocol

IATA International Air Transport Association

IEC International Electrotechnical Commission

XX

ISO

ISU

ISURF

ITU

MIME

NDR

OAGI

OAGIS

OASIS

OTA

OWL

PIDX

QDT

RFID

SBDH

SMTP

Implementation Guides

International Organization for Standardization

Interoperability Service Utility

iISURF Project: An Interoperability Service Utility for aborative Supply Chain

Planning across Multiple Domains Supported by RFID Devices

Information Technology

International Telecommunication Union

Multipurpose Internet Mail Extensions

Naming and Design Rules

Open Applications Group, Inc.

Open Applications Group Integration Specification

Organization for the Advancement of Structured Informatgtandards

Open Travel Alliance

Web Ontology Language

Petroleum Industry Data Exchange

Qualified Data Types

Radio Frequency Identification

Standard Business Document Header

Simple Mail Transfer Protocol

XXi

SPARQL RDF Query Language

STAR Standards in Automotive Retail

SWIFT Society for Worldwide Interbank Financial Telecommunigat

UBL Universal Business Language
UBP Universal Business Process
uccC Uniform Commercial Code

uDT Unqualified Data Types

UMM UN/CEFACT Modelling Methodology

UN United Nations

UNECE United Nations Economic Commission for Europe

xCBL XML Common Business Library

XML eXtensible Markup Language

XSD XML Schema

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

XXii

CHAPTER 1

INTRODUCTION

Interoperability is the ability of two or more systems or gmments to exchange information
and to use the information that has been exchanged [31].her etords, interoperability is

said to exist between two applications when one applicateomaccept data (including data
in the form of a service request) from the other and perforentéisk in an appropriate and
satisfactory manner (as judged by the user of the receivistgm) without the need for extra

operator intervention [6].

Business Document interoperability initiatives startethie 1970s before the invention of the
Internet. The first standard developed was the Electronte D#erchange (EDI) framework
[16], where document exchange was realised through diadapeactions using proprietary

networks.

Starting with the late 1990=Xtensible Markup Languad@6] became popular for describing
data exchanged on the Internet. The relative human redgladild the amount of XML

tools available made XML a popular basis for a number of nesudtent standards such
asCommon Business LibraCBL) [7] and Commerce XMI[12]. This progress has been
evolutionary because the later standards used the EDlierper For example, CBL became

XML Common Business Libraf95] after including EDI experience in CBL.

EDI, CBL and xCBL are horizontal industry standards addngsseveral industry domains.
There are also several vertical industry specific standaitihtives such as the ones from
the North American Automotive Industry Action Grof&}, Health Level 7 (HL7) Standards
Development Organizatiof27], the Petroleum Industry Data Exchange (PIDX) committee
[57], the Chemical Industry Data Exchange (CIDX) organizati@j, Open Travel Alliance

[53], andRosettaNet Consortiupel1] to name but a few.

However, having more than one standard does not solve t®perability problem, but car-
ries it to an upper level and the problem becomes providiegrteroperability of electronic
business documents conforming tdfeient standards. Furthermore, the earlier standards
have focused on static messatgEument definitions which were inflexible to adapt tfett

ent requirements that arise according to a given contextiwtduld be a vertical industry, a

country or a specific business process.

The leading #&ort for defining flexible and adaptable business documemtedeom the UMN-
CEFACT Core Components Technical Specificati®3] (also known as ISO 15000-5) in
the early 2000s. UNCEFACT CCTS provides a methodology to identify a set of rblesa
building blocks, calledCore Component® create electronic documenitSore Components
represent the common data elements of everyday businessndats such as “Address”,
“Amount”, or “Line Item”. These reusable building blockseathen assembled into business
documents such as “Order” or “Invoice” by using the CCTS radttogy. Core Components
are defined to be context-independent so that they can latersitricted to dferent contexts
such as a specific industry or a country. M&yre Componentdefined by UNMCEFACT are
available to users from URCEFACT Core Component Librar{82].

After its publication, the CCTS has gained widespread adoyiy the electronic document
standard bodies. THéniversal Business Languag@®BL) [75] is the first implementation of
the CCTS methodology in XML. Some earlier horizontal staddauch as&lobal Standard
One(GS1) XML [25] andOpen Applications Group Integration Specification gJAGIS)
[48], and many vertical industry standards such as CIDX [&] RosettaNet [61] have also
taken up CCTS. However, the existing document standards Wwall-established document
schemas that are already in use and radical schema modifisdath conform to CCTS will
cause backward incompatibility problem. Therefore theglyathe CCTS methodology se-
lectively and more importantly do not always base their doent artifacts on the core com-
ponents defined in the YUSEFACT Core Component Library82]. As a result there are

considerable dierences among the CCTS based standards as detailed in [36].

As a natural consequence of thesfealences, these standards are not interoperable among
themselves. When industries usin¢feiient standards want to exchange data, the mapping ex-
perts and data consultants, who understand the semantiinged each entity in these stan-

dards’ document schemas define the mappings among them Ilgaemh usually as XSLT

[98] rules. This is a very costly and tedious process. Funloee, the current accepted prac-
tice of storing the document artifacts in spreadsheets doefcilitate to develop automated

semantic interoperability support tools.

In order to help with the interoperability of the documentfacts, in this thesis, the CCTS
based business document semantics is explicated. By texipliy”, it is meant that their se-
mantic properties are defined through a formal, machinegssable language as an ontology
and the Web Ontology Language (OWL) [54] is used for this pagy The semantics is ex-
plicated at two levels: At the first level, an upper ontologscribing the CCTS document
content model is specified. The CCTS upper ontology consfatlasses representing CCTS
document artifacts such as tilmta Types the Core Componentand theBusiness Infor-
mation Entitiesand their properties. Furthermore, at this level, the ugmtologies for the
prominent CCTS based standards, namely, GS1 XML, OAGIS ®d1UBL are also devel-
oped. The various equivalence relationships between ésse$ of the CCTS upper ontology
and the CCTS based document standards’ upper ontologieefined. These relationships
are later used to find the similarities among the documeifaiett from diferent document

schemas.

At the next level, the semantics of the document schemasdh s@andard are described
through “document schema ontologies”, which are based ein tlorresponding upper on-

tologies. The dterence between the “document schema ontology” and the fupyelogy”

is that the upper ontology describes the generic entitiagimcument content model, whereas
document schema ontologies describe the actual documéattsras the subclasses of the

classes in the upper ontology.

When these ontologies are harmonized using a DescriptigicEdDL) reasoner, the au-
tomatically computed inferred ontology reveals the impléguivalences and subsumption
relationships between the document artifacts ffedént standards. In other words, the newly
identified ontological relationships show the relationsoamthe semantically similar docu-
ment artifacts, which are in filerent standards. It should be noted that currently the com-
mon practice to find these relationships between the adifasfcdifferent standards is manual.
However, with the approach described in this thesis, thelsgionships are generated auto-

matically.

The harmonized ontology idtective only to discover equivalence of both semanticallg an

structurally similar document artifacts. In other wordse tuse of description logics only
allows finding relations between document artifacts, whsgseantics and structure are simi-
lar. Therefore, for identifying the relations between satitally similar document artifacts,
whose structure is fferent, further heuristics are provided in terms of preéidagic rules.
Note that a DL reasoner by itself cannot process predicafie lmles and a well accepted
practice of using a rule engine is resorted to execute thdiqate logic rules and carry the
results back to the DL reasoner. The results involve dexddtirther class equivalences in the
harmonized ontology. Finally, the similarities discowe@nong the document artifacts are
used to automate the mapping process by generating the X89. in other words, with the
generation of the XSLT documents, the semantic equivateatte conceptual level are con-
verted to syntactical transformation rules, which can b@ieg directly to the XML business

documents exchanged in real life business.

The apporach presented in this thesis is used in IST-2133RF Project [34], where the In-
teroperability Service Utility (ISU) component of the iISBRrchitecture implements my ap-
proach and provides translation between Universal Busibasguage’s [75] and GS1 XML's
[25] electronic business document schemas for Collaber&lanning, Forecasting and Re-

plenishment.

The thesis is organized as follows: First, the related waorkastate-of-the-art survey of elec-
tronic document standards are presented in Chapter 2. Whefahis survey is to identify
the document components semantics, which is used to fincetagons among the similar
document components offtBrent document standards. In this survey, some of the pesrhin
horizontal business document standards, namely, EDIOENACT CCL, UBL 2.0, OAGIS
9.1 and GS1 XML are inspected in detail to identify the semsanthat they give to their
components. This survey chapter also describes ffereinces among the business document
standards in order to help with the development of the XSLdudwents for cross-standard
translation. In the thesis, the semantics is defined thralaglription logics based ontologies
and reasoning is used to identify the relations among thardeat components. Therefore,
in this state-of-the-art chapter, brief information onatgstion logics, ontologies and reason-
ing tools are also provided. In Chapters 3, 4 and 5, the peapasethodology to establish
ontology-based semantic interoperability of electronisibess document standards are de-
scribed in detail based on the findings obtained in Chapt€hapter 3 describes the develop-

ment of the upper and document schema ontologies. In Chéptiee heuristics to discover

semantically similar but structurally fiierent document artifacts are described and Chapter
5 addresses how to automate the XSLT generation proceskeatiscovered equivalences
among the document artifacts. Another benefit of represgrdbcument artifacts through
ontologies is that it facilates querying document comptsieSpreadsheets only allow key-
word based queries. However, the ontology representatiowsathe users to execute more
enhanced queries. In this respect, the document component gupport is also described

in Chapter 5. The overall system architecture, the impleatem results, the performance
of the system and a use case to generate mappings betweenNHSPIXnning documents
[26] and UBL Collaborative Planning, Forecasting and Reiglement documents [76] are
described in Chapter 6. Finally, Chapter 7 presents thedwtork and concludes the thesis.

CHAPTER 2

SURVEY OF THE STATE OF THE ART

The survey chapter is composed of three parts. First, $e2tlbpresents the related work in
the literature. Then, in the second part, some of the pramiinerizontal business document
standards, namely, EDI, USEFACT Core Components Library, UBL 2.0, OAGIS BOD
9.1 and GS1 XML are surveyed in order to identify the semarttiat they provide for their
document components. Section 2.2 summarizes the EDItimitiaSection 2.3 describes the
UN/CEFACT Core Component Technical Specification. Sectionirfrdduces the Universal
Business Language (UBL) 2.0 standard. In Section 2.5, Ogmalidations Group Integration
Specification (OAGIS) 9.1 is presented. Global Standard(@i®l) XML standard is covered
in Section 2.6 after briefly introducing the set of standamagposed by GS1.

In this part of the chapter, in order to identify the struetsemantics of document artifacts, the
surveyed standards are first analyzed based on their dotdesgn principles: the document

design principles involve the document artifacts used mposing the documents, the code
lists used to convey the meaning of the values in the elenagwtthe use of XML namespaces.

Furthermore, since all the document standards surveyebaased on UNXCEFACT CCTS,

how this methodology is used in the design of the documeratissdiscussed.

Then how the standards handle extensibility and custoroizé discussed. It is an important
aspect used in the methodology defined in Chapter 3, bedagsmimapped elements are in-
serted into the appropriate extension areas. The standasitsally handle the customization
and extensibility in two ways: either by introducing an ‘exsion” element into the document
schema or by allowing users to change the document schemean Wh“extension” element
is used, the document schema remains unchanged and thengartany extra information

into this element. When the document schemas are modifiesttmmanodate extensions, the

document interoperability is reduced.

The industry relevance of these standards are also preseyteroviding some major usage
examples in order to show the possible impact of this thédisst of the standards covered

have very wide industry take up.

Another important issue is whether the standards addressthier layers in the interoperabil-
ity stack, namely the communication layer and the businessegs layer. The communication
layer addresses the transport protocol and the messagerhéad. after sending a Purchase
Order message, an Purchase Order Acknowledgement messagbearreceived), The busi-

ness process layer involves the sequencing of the messagethe business processes.

In the second part, Section 2.7 contains an analysis of #eepted standards with respect
to document design principles, customization and extditgilcoverage of other layers of

interoperability and their industry relevance.

Having completed the business document standards survéye ithird part of the chapter,
brief information on enabling technologies are presente&ection 2.8, description logics is
described. In Section 2.9, the description logics reasomer surveyed. After that, in Section
2.10, brief information on ontology and the ontology langes are presented, and Section

2.11 summarizes SPARQL, which is used to discover docunmnponents.

Finally, this chapter is concluded by mentioning currentni@nization €&orts, which are

manual.

2.1 RELATED WORK

Given the large number of electronic business documentatds, conformance to one of
these standards or implementing a combination of them willsolve the interoperability
problem; there will always be some companies usingféeint, incompatible document

standard.

Currently, transforming an electronic business documeamh fone standard format into an-
other is generally achieved by means of Extensible Stytshenguage (XSL) [97] using

schema matching techniques as described in [58], and théiggs is performed manually.

7

To the best of my knowledge, there is no existing work on aatirtransformation among
different UNCEFACT CCTS based document standards. However, in thatliter, there is
work on the use of description logic techniques in electratocument interoperability. In
[101], a Component Ontology specifically for UBL is develdgd®y using the Web Ontology
Language (OWL) to represent the semantics of individualmments and their relationships
within customized schemas. Then this ontology is procetiz@digh description logic rea-
soners for the discovery of similar components and the aatiom of the translation process
among diferent UBL customizations. In this work, the authors focusa®ingle document
standard, which is UBL. The flerent customizations, between which the translation is per
formed, are generated from the same information model. eftwe, the information models
of different customizations do notft#rs much. However, in this work, the mosffitiult chal-
lenge is that the dierent document standards havéatient information models. The only

commonality among them is the use of INEFACT CCTS.

In [3], Semantic Web technologies are used to transform mects between two vertical in-
dustries standards both based on OAGIS: one conformiigandards in Automotive Retail
[68] schemas and the other conformingAatomotive Industry Action Grouj2] schemas.
First, the STAR and AIAG XML Schemas are converted to Web @@ty Language [54].
Then these independently developed ontologies are melgedgh description logic rea-
soners. By using the merged ontology, the STAR documenrdriosts are converted to the
corresponding AIAG documents and vice versa. Like, in [1@1¢ authors focus on a sin-
gle document standard, OAGIS, and both of the document atdeadSTAR and AIAG, are

generated from the same information model.

In [102], a supply chain management ontology, called Or@dASis developed which rep-
resents a common semantic model of supply chain managemkatOnto-SCM is defined
using Ontolingua [47], which is an ontology representatimmguage based on Knowledge
Interchange Format (KIF) [38]. The authors then show howocB1EM can be used for con-
verting document schemas ofi@irent standards. In this work, the authors construct beth th
Onto-SCM ontology itself and the mappings between the dectrstandards to Onto-SCM
manually. Considering the large numbers of elements in teeient schemas and changes
in the versions of the standards make the approach in [1@ppiicable. In the thesis, most

of the equivalences are identified automatically.

2.2 ELECTRONIC DATA INTERCHANGE (EDI)

EDI is developed through two main branches: ANSI X12 and/EINFACT. In the USA,
the American National Standards Institute (ANSI) devetbpdNSI X12 [94] and interna-
tionally EDI is standardised as YUEDIFACT (United Nationglectronic Data Interchange
For Administration, Commerce, and Transport) [85]. Thiodmpth of these initiatives, a
large number of standard electronic documents in plaih-guxote-delimited formats have
been specified for domains like procurement, logistics amehfie. EDIFACT has also been

standardised by the International Standards Organisad80O 9735 [85].

Partner A

Internal EDI Software EDI Software

Syseme— (Y =
*-—>

Figure 2.1: The Basic EDI Architecture

Partner B
Internal
System

The basic EDI architecture is shown in Figure 2.1. The comoations are through the
Value Added Networks (VANSs) which are responsible for rogtistoring and delivering EDI
messages. Special EDI adapters are implemented to irggtfadnternal system of a partner
to the value added network. The particulars of the messageysgnd interaction process are
negotiated between partners in advance. Sometimes a dutrpaidner imposes its standards

on smaller partners.

UNB+UNOA:1+6464:XX+1141:XX+BEN0273"
UNH+000001+ORDERS:2:932:UN’
IMessage IIMessage ”Message I BGM+220+AC6464’ InterChange
Header Header DTM+4:20000305:102'
NAD+BY+6464326::91’
Message Data Data Data Message NAD+SU+1149646:-01"
Header Segment Segment Segment Header - M gel
UNS+D’
LIN+1++PT-1073-R:VP’
Data Data Data QTY+21:1600"
Element Element Element
LIN+1++PT-1073-S:VP’
QTY+21:1200
UNT+13+000001"
UNH
M essagez
UNT
UNZ+1+BEN0273’
(a) (b)

Figure 2.2: (a) The Basic EDI Message Structure, (b) An Exargp| Message

An EDI “interchange” document, as shown in Figure 2.2 (a)ststs of “messages” which are
in turn composed of “data segments”. The segments thenssetwssist of “data elements”.

Figure 2.2 (b) shows an example EDI message.

When the Internet became an established networking emagoh starting with mid 1990s,
there were several updates to the EDI architecture. Fhst,Iriternet protocol for email,
Simple Mail Transfer Protocol (SMTP), and the File Tran$testocol (FTP) came to be used
to transfer EDI documents directly between parties comket the Internet. Later, once the
World Wide Web and its transfer protocol, the Hyper-Textngfer Protocol (HTTP), was

popularised, this became another mechanism for EDI docutraersfer.

UNB+UNOA:1+6464:XX+1141:XX+BEN0273’

UNH-+000001+ORDERS:2:932:UN'
BGM+220+AC6464’ Interchange
DTM+4:20000305:102°
NAD+BY+6464326::91'
NAD+SU+1149646::91°
UNS+D’
LIN+1++PT-1073-R:VP’
QTY+21:1600°
LIN+1++PT-1073-S:VP’
QTY+21:1200°
UNT+13+000001’

UNH

Messagel

Message?

UNT

UNZ+1+BEN0273’

Figure 2.3: The EDI Message Example

2.3 UNCEFACT CORE COMPONENT TECHNICAL SPECIFICATION (CCTS)

UN/CEFACT Core Components Technical Specification (CCTS) fmeeé as Part 8 of the
ebXML (electronic business XML) Framework and is approved30 15000-5 [83].

The essence of ULEFACT CCTS is to design documents from standard, re-usaliléing
blocks, calledCore ComponentsThe aim is to provide interoperability among electronic
business documents by requiring Blisiness Information EntitigBIES) to be related back
to the commorCore Components (CCsA considerable number @dore Componentare
available from thaJN/CEFACT Core Component Library (CCfgr discovery and reuse, and

more will be available as the work progresses.

10

The first step to provide interoperability based®@ore Componentis to represent values in
the components consistently. Hence the starting pointi@design ofCore Componentis
the Core Component Types (CCandData Types (DT,)which are also termed &3ore Data
Types (CDT)

2.3.1 CORE COMPONENT TYPES AND DATA TYPES

Core Component Typ€€CT) constitute the leaf-level type space of \AEFACTCore Com-
ponents They specify the basic information types, such as amoumnar object, code and
date time, and they are built from primitive data types (elgnary, decimal, integer and
string). A CCT is composed of @ontent Componentvhere the actual primitive content
resides, and one or moBupplementary Componentghich further describe th€ore Com-
ponent Types In other words,Supplementary Componertiglp to interpret a value in the

Content Component

For example, the “Code” CCT&ontent Componeris of type string and has a set®tipple-
mentary Componentaich asCode List Agency ldentifievhich is the identifier of the Agency
that maintains the code list a@bde List Agency Nanmwhich is the name of the Agency that

maintains the code list.

On the other handData Typesare based on one of ti@ore Component Typemd further
restrict them. In this respect, CCT’s can be thought of asrattstypes from which more
specializedata Typesare produced. For example, in the current version of th¢gGENFACT
Data Typesthere is aData Type called the “CurrencyCode”. This data type is based on the

“Code” CCT and restricts it as follows:

e Content Component he value in th&Content Componeshould be a three-letter code.

e Code List Identifier The identifier of the code list is ISO 4217.

e Code List Version ldentifierThe version of the code list is 2006-11-21.

The relationship amon@ore Component TypeBata Typesand other types of core compo-

nents is shown in Figure 2.4 [83]. Up to now, WDEFACT has approved 1dore Component

Typesand defined 35 permissiblzata Typesand has undertaken their maintenance. Further-

11

more, theData Typesprovided by UNCEFACT can be used without restrictioridnquali-
fied Data Types (UD7)or further restrictedQualified Data Types (QD7J Yo accommodate
specific business needs. WNEFACT also provides the rules to restrict thata Typeso

Qualified Data Types

2.3.2 NAMING CONVENTION USED

Apart from the structure, CCTS provides a methodology taegfiroperties for the document
components to give them meaning. CCTS assighgect Class Termproperty to every doc-
ument components it defines. The aggregate componentseaieam the same document
component by restricting them toffirent contexts, share the sa@bject Class TermFor
example, th@bject Class TerrfPerson” provides the meaning for all aggregate components
obtained from the “Person” aggregate component by resigiét to a context. ThéDbject
Class Ternfor both the basic components and the association compoisethieObject Class
Termof the component they are defined in. For exampleQhpect Class Terrof the “name”
basic component is “Person” if it is defined in the “Personhpenent or it is the “Product”

if it is defined in the “Product” component.

Furthermore, CCTS defines the names of the basic documemtocamts and the association
document components throudgroperty Termproperty. The aim is that even when these
components are qualified to create other components an@ lreaacenamed, theRroperty
Termremains the same. For example when “ldentification” basmudeent component of
a “Party” aggregate document component is qualified in “@fambntext, its name becomes

“Tax_ldentification”, but itsProperty Termis still “Identification”.

CCTS defines terms that represent the basic document compaared the association doc-
ument components throudRepresentation Terproperty. TheRepresentation Ternier the
basic document components give their core data type. Thésairhen the data type is later
gualified and hence is renamed, it still has the s&apresentation TernfFor example, the
data type of the “Type” basic component of “Document” aggtegcomponent is qualified to
become “DocumentTypeCode”, however Rgpresentation Teris still “Code” stating that
the new qualified data type is derived from “Code” core dapeetyTheRepresentation Term
for the association document components, on the other lggveltheObject Class Ternof

the component it refers to. As an example, the “EmailURI'bagion document component

12

of “Contact” aggregate component refers to “Inter@@mmunication” aggregate component
and theRepresentation Terf this association component is “Communication” statingtt
the “InternetCommunication” component is qualified from the “Communimait compo-

nent.

Another benefit of this way of giving semantics is to provideaming convention that is nec-
essary to consistently name the defined components totddéeithe comparison during the
discovery and analysis process. Furthermore, ambigutiase prevented such as develop-
ing multiple Core Componentwith different names that have the same meaning. This naming
convention is derived from ISO 11179 Part 5 [33]. It has thmegor parts:Object Class Term
Property TermandRepresentation Ternmor example, when th€ore Componeritinvoice.
TaxAmount. Amount” basic component is expressed accorttirthis naming convention,
“Invoice” is the Object Class TerpiTaxAmount” is theProperty Termand “Amount” is the

Representation Term

2.3.3 TYPES OF CORE COMPONENTS

A Core Componenis a reusable building block for creating electronic busindocuments.

There are three types Qfore Components

Cc():r%r[])tc()ar?én Consist of
T —Core Componert

Supplementarjt-n Type (CCT)

l .
Component [~ consist of Reig‘iecﬁzgﬁz on

Data Typa

Defines set of

Y values of

Association Core Basic Core
Component Component

Provides a complex Provides a simple
characteristic of and characteristics of and

is aggregated in Aggregate Core is aggregated in
Component

Figure 2.4: Core Component Overview [83]

e Aggregate Core Component (AC@)distinct real world object with a specific business
meaning such as “Address” or “Purchase Order” is termed &ggregate Core Com-
ponent{ACC). An Aggregate Core Componemas at least one and possibly m8asic

Core Component§BCCs). For example, as shown in Figure 2.5 “Address. Dstail

13

is an Aggregate Core Component (ACE)ntaining severaBasic Core Components

(BCCs)

e A Basic Core Componermtescribes a property of an ACC by usingpata Type For
example, as shown in Figure 2.5, “Address. Details. Strise’Basic Core Compo-
nent (BCC)and is of “Text” Data Type. In other words, thgata Typesare used as

Representation Terntf Basic Core Components

e Sometimes it is necessary to define an association betwegregate Core Compo-
nents. This is realized througkssociation Core Component&s shown in Figure 2.5,
“Person. Details. Residence” is &ssociation Core Compone(ASCC) referencing

the “Address. Details” ACC.

Person.Details

— Name (Text) Official Address— =ASCC
- Birth Date (Date)

k Address.Details - = ACC
- Street (Text)> <

Residence | - post Code (Text) T~ _
- Town (Text). — — + = BCC
— Country (Identifier) -

Figure 2.5: Examples dBasic Core ComponerfBCC), Aggregate Core Compone(ACC)
andAssociation Core Componen&SCC) [83]

2.3.4 BUSINESS INFORMATION ENTITY (BIE)

A Core Componenis designed to be context-independent so that it can latadbpted to
different contexts and reused. Whe@are Componenis restricted to be used in a specific
business context, it become®Basiness Information Entity (BIEBnd given its own unique

name.

The possible business contexts that can be used are defitied Business Process Con-
text; Product Classification Context; Industry Classifioat Context; Geopolitical Context;
Business Process Role Context; Supporting Role Contegter@yCapabilities Contextnd

Official Constraints Context
For example, when th8usiness Process Conteigt specialized to “Purchasing”, and the

14

Geopolitical Contexts set to be “EU”, the “Invoice. Tax. Amount” BCC becomes thie-*

voice. VAT_ Tax. Amount”Basic Business Information Entity (BBIE)

= R il ol K
Payment.Details ACC Payment
Payment.Paid.Amount BCC Paid Amount 0..unbounded
Payment.Received.Date Time BCC Received |Date Time |0..unbounded
Payment.Tax.Amount BCC Tax Amount 0..unbounded Business Process
Payment.Agent.Party ASCC Agent Party 0.1 Context

|—>(Trade)
CEre) B e e el [e

Advance_Payment.Details ABIE |Advance Payment
Advance_Payment.Paid.Amount BBIE Paid Amount 1.1
Advance_Payment.Received.Date Time BBIE Received T?;f 0.1

Figure 2.6: Customizing aAggregate Core Componetd the Business Process Context

“Trade”

Similarly, when anAssociation Core Componeistused in a context, it becoméssociation
Business Information Entity (ASBIEBNd Aggregate Core ComponebecomesAggregate
Business Information Entity (ABIEyor example, in Figure 2.6 an “Advance. Payment. De-
tails” ABIE is created by customizing the “Payment. DetaC to the Business Process
Context‘Trade” as follows: AnObject Class Term Qualifies added as an additional property

and the related BCCs are customized to create the BBIES bictiesy their cardinality.

Figure 2.7 [83] gives the relationship between the typesooé components and the corre-

sponding business information entities.

2.3.5 UNCEFACT CORE COMPONENT LIBRARY

The Core Component Library [82] is the repository for AMEFACT CCTS artifacts. Cur-

rently there are quite a number of UBEFACT artifacts in the Core Component Library.

15

CORE

Core Component

Type (CCT)

A Specifies
Restriction on

Co

As Property
aggregated in

Further
restricts
Data Type -
Defines set of
Y values of
. Is based on
Basic Core -
mponent (BCC)
Association Core 4 Is based on

Component (ASCC)

Aggregate Core
Component (ACC)

$ refers To

I
| Qualifies the

IObject Class of

BUSINESS

Data Type

1 Defines set of
values of

Basic Business Information

Entity (BBIE)

Association
Business
Information
Entity (ASBIE)

—

| refers To

As Property
laggregated in

Aggregate Business
Information Entity (ABIE)

Aggregated in I

Message Assembly

Figure 2.7: Relationship between Core Components and Bssiimformation Entities [83]

2.4 UNIVERSAL BUSINESS LANGUAGE 2.0 (UBL)

The Universal Business Language [75] initiative from OA&t®pts the UNCEFACT Core

Component Technical Specification (CCTS) approach andlaleve set of standard XML

business doc

ument definitions.

Currently, the approved version of UBL is 2.0 [75] and therethirty one XML schemas for

common business documents such as “Order”, “Despatch Adsird “Invoice”. In addition

to the document definitions, UBL 2.0 provides a library of XMthemas (XSDs) [79] for

reusable common data components like “Address”, “ltemd dayment” from which the

documents are constructed. UBL 2.0 reuSese Component TypendData Typedefinitions

.n | Association BIE

Document (ABIE)

— Basic BIE Property

Basic Business
Information Entity (BBIE)

,| Qualified Data Types (QDT)

\\| Unqualified Data Types (UDT)

Property (ASBIE)

Aggregate Business
Information Entity (ABIE)

Figure 2.8: The UBL Components

16

from UN/CEFACT CCTS such as “AmountType”, “CodeType” and “DateTipee”. When
UN/CEFACT CCTSData Typesare imported to UBL type space, they are termed adtine
qualified Data Types (UDT)Additionally, UBL definesQualified Data Types (QDTyhich
are primarily for code lists such &urrencyCodeTyper CountryldentificationCode Typae-

fined for use within UBL.

At the time the UBL initiative had started, USEFACT CCTS had not yet specified core
components. Therefore UBL created its own BIEs based on Gawe®ne’'s XCBL (XML
Common Business Library) 3.0 [95] and the [EDIFACT (EDI for Administration Com-
merce and Trade) dictionary [85]. Hence the UBL vocabulaysists primarily ofAggregate

Business Information Entitig®\ABIES).

Figure 2.8 shows the structure of the UBL Documents. It ghda noted that in addition
to identifying conceptuaBusiness Information EntitigBIEs), UBL uses the CCTS artifacts
such as ABIE, ASBIE and BBIE to compose its document scherfiags is in contrast to

some other standards which use CCTS componentsfiierelit document artifacts of their

own and also name themfiirently.

In UBL, ABIEs are used in two diierent ways: (1) The document ABIEs which represent
UBL Documents such as “Order” and “Invoice” and (2) More for@ined reusable ABIES
such as “Address” and “Party”. As shown in Figure 2.7, an ABIEEomposed of BBIEs
and ASBIEs as in UNXCEFACT CCTS. In UBL 2.0, according to the UBL 2.0 Naming and
Design Rules, this composition is realized througiiie Properties A BBIE has a single
content whose type is specified either wQQialified Data Type$QDT) or Unqualified Data
Types(UDT). Figure 2.9 shows an example UBL 2.0 “Order” document.

Order (Document) —

D (GascBEP) IdentifierType (UDT)

__aSIC rop.

I - PricingCurrencyCode (BBIE) | CurrencyCodeType (QDT))\‘
| PricingCurrencyCode (Basic BIE Prop|

L = /(DateType uDT)) (CodeType (UDT))
IssueDate (Basic BIE Prop.) .
—| IssueTime (Basic BIE Prop.)/ ’ —_yp

— BuyerCustomerParty (ASBIE) I—-l CustomerPartyType (ABIE) |
SellerSupplierParty(ASBIE) I_, SupplierPartyType (ABIE) |

OrderLine (ASBIE) OrderLineType (ABIE) |

Figure 2.9: An Example UBL Document Schema Structure

17

241 UBL CUSTOMIZATION AND EXTENSIBILITY

There are two types of customizations specified in UBL 2.0nf@onant customization and

Compatible customization.

Before going into details of customization, it is worth déising the validation of UBL doc-
uments. UBL 2.0 recommends a two-phase validation teckrégushown in Figure 2.10. In
the first phase, an incoming UBL document is validated ag&iBt. 2.0 XSD schemas (or
customized versions of them). If the instance passes thefiese, in the second phase it is
checked against the rules, which specify additional cairds on the values of the elements
in the instance. Generally, the rules are specified through [27] or Schematron languages
[64]. If the instance passes both of the phases successfuflydelivered to the processing

business application.

UBL 2.0']
Schema:

|
UBL Instance 4| | | | —.
j =

W%/(;”%g?oerma P?E)chsor Business
Application

Figure 2.10: Two-phase validation of UBL Messages

24.1.1 CONFORMANT CUSTOMIZATION OF UBL 2.0

The key idea behind the conformant customization is thatXdhi. instances in the cus-
tomized implementation must also conform to the originahdird UBL 2.0 schemas. There

are four ways of performing conformant customizations:

1. Inserting additional elements through the use of “UBLExiens” element An op-
tional UBLEXxtensionslement appears as the first child of all UBL 2.0 documents
and is used to include non-UBL data elements. For exampee ttould be elements
containing data whose inclusion is mandated by law for oeftasiness documents
in certain regulatory environments)JBLExtensionglement is composed of multiple
UBLEXxtensionelements, each containing a single elemextensionContenof type

“xsd:any” to accommodate the widest possible range of sides. This means that

18

<Order
xmlns="urn:oasis:names:specification:ubl:schema:xsd:Order-2"
xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2"
xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<UBLExtensions xmlns="urn:oasis:names:specification:ubl:schema:xsd:
CommonExtensionComponents-2">
<UBLExtension>
<ExtensionContent>
<OrderExtensions>
<productForm>Granule</productForm>
<bonusPoint>100</bonusPoint>
</OrderExtensions>
</ExtensionContent>
</UBLExtension>

</UBLExtensions>

<cac:BuyerCustomerParty> ... </cac:BuyerCustomerParty>
<cac:SellerSupplierParty> ... </cac:SellerSupplierParty>
<cac:AnticipatedMonetaryTotal> ... </cac:AnticipatedMonetaryTotal>
<cac:0OrderLine> ... </cac:OrderLine>

</Order>

Figure 2.11: UBL Extension Example

any well-formed XML element from any vocabulary can be iteserinto Extension-

Contentelement without modifying the schema.

An example UBL extension is given in Figure 2.11 where the LiERtensions” ele-
ment is inserted into the beginning of the order documemontains a “productForm”
element, which shows the requested form of the ordered ptoeuod a “bonusPoint”
element, which is the bonus amount gained by the buyer upmhasing the ordered

products.

2. Subsetting original UBL 2.0 schemakhere are very many possible elements in a UBL
document. For example, there are about 50,000 possibleeatenm a UBL Order
Document. Most applications will not need all this data. fEfiere, UBL 2.0 allows
users to create subsets of its schemas. Subsets removetmmabimformation entities
that are not necessary to the specific implementation. UBLSEnall Business Subset

[78] is an example of this subsetting mechanism.

19

3. Placing constraints on the value space of information @#iangor putting constraints
among these valuefn a specific implementation of UBL 2.0, there may be addgio
constraints on the value space of information entities.eixample, “The Total Value of
an Order cannot be more than 50,000 USD”. There may also bs allout dependen-
cies between values of the elements, such as “The Shippidgedsl must be the same
as the Billing Address” or "The Start Date must be earliemtllde End Date”. The
former type of requirement can be reflected in the UBL schelyatype restriction;
however, this requires schema modification. On the othed hidre latter type of re-
quirement cannot be represented through XSD schemas. ldowmsers can describe
both of these constraints through Schematron [64] or XSesri®7] and feed these

rules into the second phase of validation as already destrib

4. Customizing the code list€ode list customization is described in Section 2.4.1.3.

2.4.1.2 COMPATIBLE CUSTOMIZATION OF UBL 2.0

Sometimes conformant customization may not bfficgent for a specific implementation.
Users may need to perform more complex modifications sucktasding an ABIE, creating
anew ABIE or creating a new document. To handle these cdmespmpatible customization
approach can be used. In compatible customization, the unsedify an existing UBL 2.0
schema or create a new one by re-using the “largest suitalgigfegation from the UBL li-
brary. When performing compatible customization, the siseed to follow the UBL Naming

and Design Rules [77].

2.4.1.3 THE USE OF CODE LISTS

In UBL 1.0, the standard and the default code list values peeiied directly in the UBL
schemas as XSD enumeration constraints. This allows all UBLinstances to be validated
in a single pass using generic XSD processors. Howeverp#wfication of the default values
directly in the schemas also makes iffidult to modify the code lists to meet customization

requirements.

In UBL 2.0, only three code lists are enumerated in the sckedd TheCurrencyCodeCon-

tentTypefor internationally standardized currency codes, (2) BiraryObjectMimeCode-

20

ContentTypéor MIME encoding identifiers and (3) THgnitCodeContentTyp#®r unit codes.
In fact, these enumerations are specifiedlimqualified Data Typefrom UN/CEFACT and

UBL 2.0 includes them as they are for the attribute values.

The other code lists used in UBL are not enumerated in thensatexpressions. Instead of
enumerating the codes in the XSD schemas, UBL uses a commsernygee calleCodeType
which is an extension of “xsd:normalizedString” for all mlents expressing values from the
code lists. The UBL 2.0 package includes files for every cigte These files are separate
from the provided XSD schemas and they are in a standard forifrading partners can
modify or replace any of these files to meet their businesgiremgents. After this step, they
can convert these files in proprietary format to SchematraoXSi rules. OASIS Code List
Representation Technical Committee [10] provides tootghs purpose. Later these rules

can be fed into the second phase of validation as alreadyidedc

2.5 OPEN APPLICATIONS GROUP INTEGRATION SPECIFICATION (OA GIS)
BUSINESS OBJECT DOCUMENTS (BOD) VERSION 9.1

The Open Applications Group, Inc. (OAGI) [44] is a not-fawefit open standards organiza-
tion that defines electronic document standards c&lesiness Objects DocumerBODS).
Since its first release in 1995, several versions of Openiégns Group Integration Speci-
fication (OAGIS) BODs have been produced, the latest oneglibsnOAGIS BOD version 9.1
[48]. This version is redesigned to be based on th¢@EFACT Core Components Technical

Specification.

TheBusiness Object DocumeiBOD) is based on a pair of concepts called HNminand the
Verh TheVerbidentifies the action to be applied to tNeun Nounis the object or document
such as “PurchaseOrder”, “RequestForQuote”, and “Invdicat is being acted upon. Ex-
amples ofVerbsinclude “Cancel”, “Get”, “Process”, and “Synchronize”. @klerbandNoun
combination provides the name of the BOD. For example, wheérbis “Process” and
theNounis “PurchaseOrder”, the name of the BOD is “ProcessPurcakss”. There are 77
nouns and 12 verbs defined in OAGIS 9.1.

The separation oferb and Nouncomponents increases the reusability of data. For exam-

ple, theNoun “PurchaseOrder” contains all of the information that miglet present in a

21

“PurchaseOrder”. The instantiation of each of the possitdeb and Noun combinations
then further restricts the document to a context. For exajmpla “ProcessPurchaseOrder”
transaction, business partners and line item data mustdvalpd, whereas in a “CancelPur-
chaseOrder” only the order identifier is enough to carry batttansaction. Note that these
constraints do not change the schema of a document. Rdtegptovide the constraint rules
to be applied in the validation of a BOD. Like UBL, OAGIS recorands a two-phase vali-
dation. When an OAGIS document is received, it is first vaédaagainst the corresponding
XML Schema and afterwards against the corresponding SdanenSL rules. Only after
the OAGIS instance document passes this two-phase validigtit delivered to the business

application that processes the document content.

OAGIS provides some recommendations on the usagéedis Verbsmay come in pairs
meaning that the response toerbshould be another specifierb. For example, the response

Verbof “Process” is “Acknowledge”.

Business Object Document (BOD)

Application Area

Fields

Compounds

Verb
Components

Nouns

Data Area

Figure 2.12: The Structure of OAGIS Business Object Docurt@®D)

As shown in Figure 2.12, a BOD is a message structure compafsad ApplicationArea
and aDataArea The ApplicationAreacarries necessary information for transport software
to send the message to the destination such as the sendggrihture of the sender and the
unique identifier of the BOD. The need for tgplicationAreastems from the following:
the application software that creates a BOD may be sepamtethe transport software that
sends the BOD to the destination. Therefore the applicatiftavare creating the BOD should

provide the transport software with the necessary configuranformation to send the BOD.

22

In other words, theApplicationAreacontains the configuration information created by the

application software and conveyed to the transport soétwar

The DataAreacontains a singl&erband multipleNouns A Nounmay be assembled from
ComponentCompoundandField document artifactsComponentare large-grained building
blocks and may in turn consist of oth€omponentsCompoundsandFields. Examples of
Componentinclude: “PurchaseOrder Header”, “Party”, and “AddresSémpoundswhich
are used across all BODs, are a logical groupindriefds (low level elements). Examples
include “Amount”, “Quantity”, “DateTime”, and “Temperatel’. Fieldsare the lowest level
elements used in OAGISomponentand CompoundsFigure 2.13 shows an example BOD

assembly with OAGIS artifacts.

[[[[
|Field] [Component [Field] [Compound| |[Component
, [[

[1 [1
[Field | [Field |[Field] [Field|

[1 1
|Component |Field | |Comp0und| |Fie|d | |Fie|d |

[Field | [Field | [Field | [Field |

Figure 2.13: OAGIS Business Object Document (BOD) assermkdynple

OAGIS implementation of the Core Component Technical Sipation (CCTS) is shown

in Figure 2.14. In OAGIS 9.1, th€ore Component TypesdUnqualified Data Typeare
directly used in the OAGIS Schemas. In other words, all OAGIK3d types are based on
UN/CEFACT Core Component Types$-urthermore, the code lists, such as ISO 54217 Cur-
rency Codes and ISO 5639 Language Codes, recommended MAPNCT are also used as
described in Section 2.5.1.3.

As shown in Figure 2.14, OAGIS incorporates the \GRFACT ABIEs into OAGISCompo-
nentsrather than using them directly. When using these ABIEséir iomponentsOAGIS
appends “ABIEType” stiix to the name of the ABIE in order to identify that it is an ABIE
from UN/CEFACT.

OAGIS Naming and Design Rules (NDR) are based on the versfCBFACT ATG2 Nam-
ing and Design Rules (NDR) [4].

23

OAGIS BODs
OAGIS Nouns, Verbs
OAGIS Components

UN/CCL ABIEs | OAGIS Fields

UN/CCL ACCs

Qulified Datatypes

Unqualified Datatypes |* 1

UN/CEFACT Core |__OAGIS Code Lists
Component Types| UN/CEFACT Code Lists

Figure 2.14: OAGIS usage of USEFACT CCT

2.5.1 OAGIS EXTENSIBILITY

OAGIS provides two mechanisms to extend its specificatitisgrAreaExtensions an®ver-

lay Extensions.

2.5.1.1 USERAREA EXTENSIONS

The UserAreaextensibility provides a means of adding implementatioecH#fr content to
an existing OAGISComponenin an existing OAGIS BOD. When a few simple fields are
needed to complete the information for the exchahigerAreaextensions are used. There is
aUserAreaelement of type “xsd:any” at the end of each OA@S8mponentvhere the users

can insert any valid XML instance without changing the or@iOAGIS schema.

For example, in Turkey, the addresses contain “Mahalladrimftion, which basically specify
a district in a city. In OAGIS, “AddressComponentdoes not have such Eield to carry
“Mahalle” information. This “Mahalle” information can baserted in théJserAreapart of

“Address”Componenin a BOD instance when it is used in Turkey, as shown in Figuté.2

<Address>

<UserArea xmlns:myTrImpl="http://www.myTrImpl.org">
<myTrImpl:Mahalle>EsatOglu<myTrImpl:Mahalle>
</UserArea>

</Address>

Figure 2.15: UserArea Example

24

2.5.1.2 OVERLAY EXTENSIONS

When the users need more complex changes such as creatiameaf BOD or creation of
new aComponentOverlay extension mechanism is used. T@egerlay extensions result in
the creation of new XML Schemas for the BOD in their own sefgan@amespaces. It should

be noted that onlfWounsandComponentsire overlay extensible.

The Overlay extension mechanism adopts a layering approach. New |agadted overlays,
are defined in their own respective namespaces on top of cd@& ®Schemas. Specialized
BODs andComponentsare defined by extending BODs from lower layers /andby com-
posing new BODs from a combination of existing componentgereled components, and
new components. In Figure 2.16, an example for overlays asvshwhere “Automotive”
overlay is created from core OAGIS schemas, whereas “Autts’Ptat is a subdomain of

“Automotive”, is built on “Automotive” and OAGIS core.

Auto Parts

| Automotive |

v

| OAGIS Core |

Figure 2.16: OAGIS Overlay Layering Example

<xs:complexType name="MyInvoiceType">
<xs:complexContent>
<xs:extension base="oa:Invoice">
<XS:sequence>
<xs:element ref="ia:TotalDiscounts" minOccurs="0"/>
<xs:element name="GrandTotal" type="oa:Amount" minOccurs="0"/>
<xs:element name="MyInfo" type="xs:string" minOccurs="0"/>
</Xs:sequence>
</Xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:element name="MyInvoice" type="my:MyInvoiceType"

substitutionGroup="oa:Invoice" />

Figure 2.17: Overlay Extension Example

With Overlayextensions, the users are allowed to create a new BOdus a Component

25

a Compoundor aField, or extend any of the previously defined OAGIS artifacts. &or
ample, a user may extend the “InvoicBbun of OAGIS by adding the following: a new
Componenfor representing total discounts; an exist@gmpoundor grand total and a new
Field for a special purpose. Figure 2.17 shows how these extensi@realized. The user
first creates a newoun called “MylnvoiceType” by extending the “Invoice” provideby
OAGIS. Afterwards, the user inserts the elements mentioriédally, the user defines the
“Mylnvoice” element of type “MylnvoiceType”. Note that “Mywvoice” element is in the
same “xsd:substitutionGroup” as OAGIS “Invoice”, which ams that anywhere the OAGIS
“Invoice” element is included in a model, the “Mylnvoice’eshent can be inserted as well. In
order to preserve interoperability amongfeientOverlay ExtensionsXSLT transformations

are defined to convert an instance document conforming toveray into another.

In the Codelists.xsd:

<xsd:simpleType name="PaymentMethodCodeEnumerationType">

<xsd:restriction base="xsd:normalizedString">
<xsd:enumeration value="Cash"/>
<xsd:enumeration value="Cheque"/>
<xsd:enumeration value="CreditCard"/>
<xsd:enumeration value="DebitCard"/>
<xsd:enumeration value="ElectronicFundsTransfer"/>
<xsd:enumeration value="ProcurementCard"/>
<xsd:enumeration value="BankDraft"/>
<xsd:enumeration value="PurchaseOrder"/>
<xsd:enumeration value="CreditTransfer"/>

</xsd:restriction>

</xsd:simpleType>
<xsd:simpleType name="PaymentMethodCodeContentType">
<xsd:union memberTypes="PaymentMethodCodeEnumerationType xsd:normalizedString"/>
</xsd:simpleType>
In the Fields.xsd:
<xsd:simpleType name="PaymentMethodCodeContentType">

<xsd:restriction base="oacl:PaymentMethodCodeContentType" />

</xsd:simpleType>

Figure 2.18: Code List Example

UserAreaextensions are faster to apply th@werlayextensions. However, they do not pro-

26

vide the same level of control on the schemas astherlayextensions do. This is because
the UserAreaextensions are applied to the OAGIS BOD XML instance docusand not to

the OAGIS BOD schema itself.

2.5.1.3 CODE LIST EXTENSIONS

OAGIS uses and recommends the code lists from/@EFACT, and allows additional val-
ues to be present. This is accomplished as follows: OAGISeefiwo “xsd:simpleType”
for each codedrield: (1) an enumeration type, which lists the codes to be used2nd
“xsd:simpleType” which is a union of that enumeration typel ghe “xsd:normalizedString”.

In other words, with the specification of “xsd:normalized®j” any code can be inserted to
a BOD XML instance without fiecting the validity against the BOD Schema. For example,
as presented in Figure 2.18, the “PaymentMethodCodeCidymai Field is associated with
“oacl:PaymentMethodCodeContentType” which is the unibtiPaymentMethodCodeEnu-
merationType” and “xsd:normalizedString”. The use of “xs@rmalizedString” allows the

users to send codes that are not listed in “PaymentMethcefEladnerationType”.

2.6 GLOBAL STANDARDS ONE (GS1)

Global Standards One (GS1) [23] is a family of standards dimguon diferent aspects of
supply chain integration such as electronic products ¢cqatesluct information synchroniza-
tion and the electronic document standards. GS1 was formedrly 2005 by the European
Article Number [13] and the Uniform Commercial Code [81] anjzations when they joined
together. EAN and UCC were two organizations that heavilytriiouted to the adoption and

proliferation of barcodes.

The part addressing the electronic document interopésalnil this family of standards is
GS1 eCom. In GS1 eCom, there are two distinct categoriesedHer eCom standards that
are based on Electronic Document Interchange (EDI), c&l&dcom [14] and the newer

generation GS1 XML [25] which is defined using XML Schema.

The other standards in GS1 family include the Global DatacBsonization Network [22]
and EPCglobal [20]. The Global Data Synchronization Nekn@DSN) enables product

27

data and location information synchronization so thatitrggartners have consistent item

data in their respective systems.

EPCglobal drives the development of the Electronic Pro@atte (EPC) related with RFID
standards. The specifications are based on the Radio Fglademtification (RFID) research

performed at the MIT AutolD Labs [41].

StandardBusinessDocument

StandardBusiness
DocumentHeader (SBDH)

Message

Transaction (ID)

Command = commandl

Documentl
Document2
Document3

Command = command2

Document4
Document5

Figure 2.19: The Structure of GS1 XML Structure

2.6.1 GS1XML

As shown in Figure 2.19, a GS1 XML document is representeld aitandardBusinessDoc-
ument which contains &tandardBusinessDocumentHead8BDH) and aMessage Stan-
dardBusinessDocumentHeadsibased on the SBDH defined by WUBEFACT [88] and pro-
vides information about the routing and processing of thelXitance document contained
in the GS1 XMLMessageThe SBDH is used for the same purpose as OAGAplication-
Areaelement; that is, it contains the configuration informationthe transport software to

send the message to its destination.
A GS1 XML document includes either a set@dbmmand®r a set ofTransactionswhich in
turn containCommands

¢ Command A Commandnstructs the recipient to perform a particular action,isas

“Add”, “Delete” and “Refresh”, related to the documentshift the command. The use

28

of these commands decreases the number of documents ndddedame document
can be used with @ierent commands. Hence, no separate documents like “Add’Orde
“Change Order” or “Delete Order” are needed; the same “Ordecument can be
sent with a relevant command. In a similar way, several desusican reuse the same

command.

e Transaction A Transactiorprovides the functionality of executing multiple commands
atomically as in relational databases. If one command iarsstction fails, the trans-
action fails causing all other commands in the transactidvetdiscarded applying the

principle of “all or nothing”.

As an example, assume that a sender needs to send a message/alproducts and the first
product is related to the second one. Instead of sending istioa transmissions, the sender
can transmit them together in offeansactionthat contains on€ommangdwhich holds two
Documentgach of which is for a product. If the products are not reldited, the sender can
send them without using thEransactionelement. In other words, the user sends only one

Commandcontaining twoDocuments

GS1 XML is compliant with UNCEFACT CCTS methodology in that GS1 XML uses the
same modelling, design and technical principles. Howewdike UBL or OAGIS, which use
UN/CEFACT artifacts (such &ore Component TypeBata TypesandBusiness Information
Entitieg, GS1 XML does not use UICEFACT CCTS artifacts in their XML Schemas. Yet,
the GS1 core components are submitted as an input f®CBRACT CCTS development.

While developing their e-business standards, GS1 usesldtsalGData Dictionary [24] to
store, reuse and share common components and businestatefjrdand their corresponding

representations in XML. In other words, the GDD is the refoogiof:

e Data components, used to create the GS1 XML standards,op@eebccording to the
UN/CEFACT Core Components Technical Specification (CCTS).

e Business terms and their representation in GS1 XML.

Through GDD, the search of previously defined componentscitithted.

In the GS1 XML documents, some of the components sudhessuremenDocumentStatus

andMontetaryAmoungare common to more than one business document and more than on

29

context. Therefore, these components are included in a @ntibrary as a part of the GDD.

This approach allows reusing the same information constinall business messages.

2.6.1.1 CUSTOMIZATION AND EXTENSIBILITY

In GS1 XML, the following context categories are defined fostomization:

e Business Processontext in which collaboration takes place such as ordevimgeliv-

ery.
e Industry Sectocontext in which the business partners are involved suchitasmmtive.

e Geopolitical context reflecting the geographical factors that influeheehiusiness se-
mantics. This can be either country-specific, for examphy tor France or Sweden,
or limited to certain economic regions, for example, NAFTAEuropean Union, and
finally, it can be applicable everywhere in the world, in whaase the context is defined

as “Global”.

The context information is reflected to the documents thinotigpir namespaces. In other
words, the GS1 information components are assigned to aspa@oe that reflects the context
they are defined in. For example, the namespace for the dodsatinat are used in the Global
Data Synchronization Network (GDSN) is “gdsurn:ean.ucc:gdsn:2”. As another example,
the documents for alignment of trade items in Sweden usetismean.ucc:align:sweden:2”
as their namespace. On the other hand, the schemas in theorolibnary have “eanuce

urn:ean.ucc:2” as their namespace, because they do noghelany specific context.

GS1 XML supports extensibility of its document schemas.rti®ig from release 2.0, there
is an element called “extension” at the end of each businessndent XML schema where
additional context-specific information that are not dedibg GS1 XML can be inserted. This
element is of type “xsd:any”, which allows the users to inaey XML data to the exchanged

instance documents without changing the standard GS1 XMeérse.

Before starting to exchange GS1 XML instances with othetiggreach organization that
requires additional elements in their documents publishes extensions to the “Extended

Attributes” section of the Global Data Dictionary Web sit@hen a sender wishes to send

30

a message to a receiver, the sender first checks whetherdbigerehas an extension by
consulting the GDD Web site. If there is an extension, theleesends the message using
Attribute/Value Pair mechanism. Attribydalue Pair mechanism is a way to populate the
“extension” area of a document. As an example, assumingtligateceiver requires two
additional elements: “packagingWeightValue” and “pacdhkgtiVeightUnitOfMeasure”, the
sender populates the “extension” area as shown in Figuge 2.2

<extension>
<gdsn:attributeValuePairExtension
xsi:schemalocation="urn:ean.ucc:2
../Schemas/AttributeValuePairExtensionProxy.xsd">
<value name="packagingWeightValue">15</value>
<value name="packagingWeightUnitOfMeasure'">kg</value>
</gdsn:attributeValuePairExtension>

</extension>

Figure 2.20: Attribut@/alue Pair Mechanism to populate extension area

<xsd:complexType name="1S03166_1CodeType">
<xsd:sequence>
<xsd:element name="countryISOCode">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="3"/>
<xsd:minLength value="1"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
</xsd:sequence>

</xsd:complexType>

Figure 2.21: Example Country Code Element

2.6.2 THE USE OF CODE LISTS

In GS1 XML, there are two types of code lists, external andrimal. External code lists are
defined and maintained by other standard bodies outside @81 Xhe example external
code lists include the following:

e Country Codes - ISO 3166-1:1997

31

e Country Subdivision Codes - ISO 3166-2:1998

e Currency Codes - ISO 4217:2001

The external code lists are defined as “xsd:string” andioéstt to an appropriate number of
characters. Figure 2.21 shows an example for “countrylSt@Celement which is defined as
type “xsd:string” whose length is three characters. HoweB8&1 XML does not import the

code list values to the GS1 XML Schemas because of copyright@intenance issues. In

other words, they are not enumerated in the GS1 XML Schemas.

The internal code lists are those developed and maintain#invwhe GS1 System. They
are defined as “xsd:enumeration” and imported into the legsinlocument schema that uses
them. Figure 2.22 provides an example internal codingdisphyment method types used in
GS1 XML. It should be noted that all of the possible valuesearemerated in the provided

XML Schemas.

<xsd:simpleType name="PaymentMethodListType">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="BANK_CHEQUE">
</xsd:enumeration>
<xsd:enumeration value="CASH">
</xsd:enumeration>
<xsd:enumeration value="CERTIFIED_CHEQUE">
</xsd:enumeration>
<xsd:enumeration value="CHEQUE">
</xsd:enumeration>
<xsd:enumeration value="CREDIT_CARD">
</xsd:enumeration>
<xsd:enumeration value="LETTER_OF_CREDIT">

</xsd:enumeration>

</xsd:restriction>

</xsd:simpleType>

Figure 2.22: Example Payment Method List Element

32

2.7 ANALYSIS OF THE ELECTRONIC BUSINESS DOCUMENT STANDARDS

In this section, the surveyed electronic document staisdarel analyzed with respect to their
document design principles, how they handle customizatiwhextensibility, their coverage

of the other layers of interoperability and their industejevance.

2.7.1 THE DOCUMENT DESIGN PRINCIPLES

The document design principles involve the document atsfased in composing the doc-
uments, the code lists used to convey the meaning of thes/aube elements and the use
of XML namespaces. Furthermore, since all the documentatds surveyed are based on
UN/CEFACT CCTS, how this methodology is used in the design ofit@iment schemas is

also discussed. Table 2.1 summarizes the document desgipjes.

2.7.1.1 DOCUMENTARTIFACTS AND THE USE OF UN/CEFACT CCTS METHOD-
OLOGY

The document artifacts used in EDI are “Interchange”, “N@gs, “Segment” and “Element”
(Section 2.2). Note that EDI is not based on \ATEFACT CCTS Methodology. UBL 2.0 uses
the CCTS methodology to generate the document artifact. 2J8 currently considers only
the “Business Process” context and identifies Business Information EntitieBIEs) and
bases the type of their artifacts on UNEFACT Unqualified DatatypeandCore Component
Types UN/CEFACT develops its own BIE§ore ComponentandDatatypesand stores them
at the UN Core Component Library (URCL). OAGIS 9.0 uses some of the UBEFACT
ABIEs in their Componentand bases the types of iEelds on UN/CEFACT Unqualified
Datatypes(UDT) and Core Component Typg&CTs). GS1 XML uses the UREFACT
CCTS methodology to generate its own artifacts by using ith& Data Dictionary.

2.7.1.2 THE USE OF CODE LISTS

Code lists are important to uniquely convey the semanticslerhents in electronic docu-

ments such as the country codes, currency codes, and theepaynits. All of the surveyed

33

document standards provide default code lists and allom tiocbe modified an@dr extended

to support local codes.

As shown in Table 2.1, EDI provides codes for structuringhef inessage artifacts (e.g. seg-
ment codes). Furthermore, URDIFACT recommend$SO Country Code, Currency Code,
Numerical Representation of Dates, Times, Periods of &intkJNLOCODE[32]. EDI also

allows implementers to convey their own local or externalesthrough the use of two data

elements, 1131 [86] and 3055 [87].

UN/CEFACT defines five code lists€ountry CodesSubdivision CodesCurrency Codes
BinaryObject Mime CodeandUnit Codes

UBL 2.0 usesCurrency CodesBinaryObject Mime CodesndUnit Codesrom UN/CEFACT
and enumerates them in its schemas to validate attribubesallhe other code lists used in
UBL are not enumerated in the schema expressions. Insteabaferating the codes in the
XSD schemas, UBL uses a common base type c&lledeTypewhich is an extension of
“xsd:normalizedString”, for all elements expressing ealdrom code lists. As described in

Section 2.4.1.3, UBL allows the users to implement their tvza)external codes.

For use of code lists, OAGIS defines two “xsd:simpleType”dach codedrield: (1) an enu-
meration type, which lists the codes to be used and (2) asikagle Type” which is a union of
that enumeration type and the “xsd:normalizedString” gdaimed in Section 2.5.1.3. With

this mechanism, the implementers can use their own/daknal code lists.

In GS1 XML, there are two types of code lists, external andrimal. External code lists are
defined and maintained by other standard bodies outside &1 Khe internal code lists are
those developed and maintained within the GS1 System. Tealefined as “xsd:enumeration”

and imported into the business document schema that useathdascribed in Section 2.6.2.

2.7.1.3 THE USE OF NAMESPACES

Generally, the namespaces in XML are used for avoiding nam#icts. The document stan-
dards make additional use of the namespace mechanismasdolBL achieves categoriza-
tion of documents through namespaces, OAGIS identifiesxiemsions through namespaces

(Section 2.5.1) and GS1 XML gives context to the both origosh@cuments and extended

34

documents through the namespaces as described in Se@itn 2.

2.7.1.4 NAMING AND DESIGN RULES

The naming and design rules specify how to name and strutttarartifacts, how to put re-
lations between the artifacts and how to use data types éoattifacts. UMCCL uses ISO
11179 naming rules, which identify the artifacts @bject Class Property Termand Rep-
resentation Ternmiormat as described in Section 2.3. UBL 2.0 uses UBL 2.0 Ngnaind
Design Rules, which are based on the CCTS terms such as ABEBIERand BBIE. Further-
more, these rules specify how to represent the artifacts asiéd\BIEs, ASBIEs and BBIEs in
XML schemas. For example, for every ABIE, a “xsd:complexd¥ymust be defined and the
name of this complexType must be in upper camel case (UC@)db(UCC capitalizes the
first character of each word and compounds the name such asuAtType”). OAGIS 9.0
applies naming and design rules based on Applied Techndbogup XML Syntax (ATG2)
Naming and Design Rules (NDR) [4]. Note that INEFACT ATG2 NDR are based on UBL
2.0 NDR.

GS1 XML first designs its information model in UML, before atimg the corresponding
XML schemas. GS1 XML uses its own UML to XSD conversion rukegénerate their XML

schemas and to name them.

2.7.1.5 ANALYSIS OF DOCUMENT DESIGN PRINCIPLES

The diferences with respect to document design principles aszathin this section result
in considerable dierences in document instances frorffatient standards. As an example,
in Figure 2.23, the OAGIS 9.0 “AddressBaseType” Componait @S1 XML “NameAn-
dAddressType” document elements are compared. As it is @lea this figure, there are
differences in the element names, the element positions awtusésias well as in the use of

code lists.

35

QAGIS AddressBaseType Component G591 XML NameAndAddress

Commaon Component
:
E)[]' [] NameAndAddressType m

0,00
Different Element
. 2 names and positions| ———1— Uty

AttentionOfflame
tityCode

0,
—i CareOfame 1.
{¢1]

0.

AE

0.1

cauntryCode [] 1503166_1CadeType

— B+ LineOne, tyCod
.ﬂ countyLode
0.1
crossStreet
o correspanding 0.1 5 .
element LneThree | =" m pOBoxhumber
e
0.1

LineFour postalCode

!

0.1
LineFive

provinceCode

—@ EH—{ Buildinghumber 3 state

i

=
- = =
= H = =

0.1
trectAddressO)
C\tySubDiviswonNameél —{ EuwldingNameﬂ stresthddressune
2 2 0.1
0.1 .
CityName streetAddressTwo
0 Streathlame i 0.1

—i CountrySubDivisianCe 01 geoqraphicalCoordinates

0.

v

: — Unit
u
— \9—'\[Diffgrent
Code Lists

L7

Figure 2.23: An Example Comparing Related Parts of OAGIS BiODand GS1 XML Doc-
uments

2.7.2 CUSTOMIZATION AND EXTENSIBILITY

Any document interoperability standard faces two chaksnd-irst, the standard needs to be
extensible to allow definition of information that is not ¢aimed in the standard’s artifacts
because no standard can contain all of the data needed inewdronment. Secondly, to be
able to address a particular constraint in a specific contestiould be possible to customize

the standard’s artifacts according to a context.

Table 2.2 presents a summary of how the standards addresiesi thesis handle customiza-

tion and extensibility. Note that conformant customizasi@re also extensible.

EDI addresses the customization through a subsetting mschdo cover the requirements
of a specific context. The EDI messages are subsetted fiestghrindustry Implementation

Guides (IG), which are then subsetted into trading part@st &nd into departmental IGs.

Extensibility in EDI is dificult because the EDI systems are highly static and inflexibteo-
ducing a new type or changing an existing type of businessrdeat is a complex process.
Such changes require the modification of translation soéiveend must be validated in the

related EDI committees.

In UN/CEFACT CCTS, &ore Componernis designed to be context-independent and is cus-
tomized to one of the eight contexts defined by/GHFACT to become 8usiness Informa-
tion Entity (BIE) The possible business contexts that can be used are defibedBusiness
Process Context; Product Classification Context; Indugfgssification Context; Geopolit-
ical Context; Business Process Role Context; Supporting Bontext; System Capabilities

ContextandQfficial Constraints Context

UN/CEFACT CCTS supports extensibility as follows: if usersruatrfind proper components
in the Core Component Libraryo model their documents, they can create and publish new
core components. In other words, UNEFACT CCTS thrives on extensibility by allowing
users to define core components with possible future hamations and removal of redun-

dancies.

UBL 2.0 allows customization through (UBLExtensionglement, (2) subsetting by remov-
ing optional information entities that are not needed, &@)dp(itting constraints to the ele-

ments as described in Section 2.4.1.1. On the other handst#re can extend the UBL 2.0

37

schemas through the mechanisms described in Section2.4.1.

In OAGIS BODs, there is no formal mechanism to handle usesipeonstraints. However,
the users are free to restrict an already existing BOD as whsly and share it with other

partners.

OAGIS provides two mechanisms to extend its specificatiendesailed in Section 2.5.1:

e UserAreaExtensions:UserAreaextensions provide an optional element within each
OAGIS definedComponenthat may be used by an implementer to carry any nec-
essary additional information. This area is of type “xsgi’amvhich means any valid
XML instance can be inserted in this area without modifyimg ©AGIS standard XML
Schemas (XSDs).

e Overlay Extensions:Overlay extensions allow users to extend an OAGIS BODun
and Componento meet their own needs, even adding new BOZsphs Nounsand
Componentsvhere necessary. It is also possible for users to providdiaaa con-
straints in their own XSL constraints, which may then be &gblo OAGIS document
instances. Th@®verlayextension mechanism is used when the implementers have more

complex customization requirements than a few additiolethents.

Every document in GS1 XML is used in a business context, a&Sh XML, there are three
context categorieBusiness Procestndustry Sectoand Geopolitical contextais described

in Section 2.6.1.1.

GS1 XML supports extensibility of its document schemas.rtig from release 2.0, there
is an element called “extension” at the end of each businessndent XML schema where
additional context-specific information that is not defitgdGS1 XML can be inserted. This
element is of type “xsd:any”, which allows the users to ihaey XML data to the exchanged

instance documents without changing their standard XMLeSth

Before starting to exchange GS1 XML instances with othetiggreach organization that
requires additional elements in their documents publishes extensions to the “Extended
Attributes” section of the Global Data Dictionary (GDD) Weite. When a sender wishes to
send a message to a receiver, the sender first checks wheghrectiver has an extension by

consulting the GDD Web site.

38

QAGIS AddressBaseType Component

[] AddressBaseType

EH
FormatCode
AttentionOfMame

E

CareOfMame
FJl

CitySubDivisionMName >
CityMame
CountrySubDivisionCe 3

CountryCode

PostalCode

i

AddressLine
[#]
(...._.j =

LineOne&I
FJ

LineTwo
[2]

—(----ja-‘—{ BuildingNumberél

BuildingMame

[2]
StreetMame
[]

Linit

OverlayA Extension

(i) ()

1

oa:BuiIdingNumber&|

oa:StreetMame

oa:Floor

oa:PostalCode

oa:CityName

bl

!

OverlayB Extension

(F\ddressBaseType j{-—-—-—-jl——' oa :AttentionOFNameé

oa:Line0ne

N

A
oa:LineTwo
[#]
A
(2

Counky
:J‘

—| oa:CityMame

State
Eal

—1 oa:CountryCode
El

N
p—

—1 oa:PostalCode

Figure 2.24: Example XSL Transformations necessary to reapden two dierentOverlay

extensions in OAGIS BODs

39

2.7.2.1 ANALYSIS OF CUSTOMIZATION AND EXTENSIBILITY

Customization and extensibilityfact how the documents are processed. There are two cases

to be considered:

e In the first case, if the parties use the same document sché&mthe same extensions
and customizations, a two-phase validation at the reagieird is applied: In the first
phase, the incoming document instance is validated aghiestommon XSD schema.
If the document instance passes the first phase, in the spbaiseé it is checked against
the rules, which specify additional domain specific corstsaon the values of the ele-
ments in the instance. Generally, the rules are specifiedidiw XSL [97] or Schema-
tron languages [64]. If the instance passes both of the plrameessfully, it is delivered

to the processing business application.

¢ In the second case, when two enterprises ufferdint customizations or extensions
of the same document schema, the schema changes need to fednt@each other
through manually provided XSL Transformations. For ins@gnFigure 2.24 shows
the XSL Transformations necessary to map between tiferdnt exampleOverlay
extensions in OAGIS BODs. A classification of problems anldittms using XSL

transformations to convert business documents is give@3h [

Once the transformations are applied, the document instgones through the two-

phase validation as described for the first case.

2.7.3 COVERAGE OF OTHER LAYERS OF INTEROPERABILITY

Document interoperability is only one of the layers in theeioperability stack. The other
layers of interoperability include the transport protoebke message header and the business
processes. A detailed survey of Business-to-Business Y B2&actions in general is given
in [40] where a survey of the main techniques, systems, mtsdand standards for B2B

interactions are presented together with a set of criteria$sessing them.

The standards covered in this survey do not enforce anyfgpaensport protocol. How-
ever, some of them recommend certain transport protocdit XAviL recommends the use

of EDIINT AS1 [17] and AS2 [18] transport protocols, whichfole a minimum set of pa-

40

rameters and options to enable sefret@able transport for the exchange of EDI or XML data.
EDIINT-AS1 is based upon SMTP and EDIINT-AS2 is based on HTAMRong them, AS2 is
the transport protocol of choice. However, the exchange®if &ML documents is not lim-
ited to these standards. OAGIS is currently moving in the ®etvice technology direction,

although any technology can be used to transport BODs.

The document standards first analyze the relevant busimesegses or scenarios before de-
ciding on the document components. For example, throughrhbysis of an invoicing busi-
ness process, it may be revealed that a component is ngcéssapresent the “tax amount”
in the invoice. Hence, “Tax Amount” is defined as a componkat tan be discovered and
reused in any business document. However, no formal bisspresess specification is pro-
vided by the standards surveyed in this thesis. Yet, it shwaorentioning that there is work,
called Universal Business Process [80], for defining UBL fdrfcesses through ebBP 2.0

[15]; however, currently it is only informative.

All of the standards (except for UBL and YBICL) provide message header information to
be conveyed to the transport protocol header. The EDIFAC3sage headers are the Inter-
change Control Header Segment, UNB [30] and the X12 InteighaControl Header, ISA
[29]. The Application Areain an OAGIS BOD is used to convey configuration informa-
tion from application software to transport software. GMIXStandardBusinessDocument-
Header(SBDH) carries transport related information from apgiima software to transport

software just as in the case of OAGApplication Area

2.7.3.1 ANALYSIS OF LAYERS OF INTEROPERABILITY ADDRESSED

The surveyed standards do not specify a transport protaggbrovide configuration infor-

mation for the transport protocol message header.

Refraining from specifying other levels of interoperatyilhas the advantage that it allows a
wide variety of implementation techniques to be used andd@novides ease in implemen-
tation. However, the dierences in the implementation techniques may cause irtexitity

problems.

41

2.7.4 INDUSTRY RELEVANCE

EDI, being an early horizontal standard, is being used iesdindustry domains. For exam-
ple, financial and monetary systems lReciety for Worldwide Interbank Financial Telecom-
munication[74] andElectronic Funds Transfdi9] use EDI. Furthermore, all airplane book-
ing and ticketing operations are done over EDIFACT throdgdinternational Air Transport

Associatiorsystem [28].

Contrary to popular belief, electronic business interapity is still achieved heavily through
EDI based messages, and EDI use is growing 3 to 5 percent geary{92]. It seems large
organizations will continue to use EDI for the foreseeabi@iie mostly due to the existing

infrastructure investments.

UN/CEFACT CCTS is gaining widespread adoption by standardanizgtions. As already
mentioned, a number of standardizatidfogs have taken up CCTS Methodology, including
UBL, GS1 XML, OAGIS, CIDX and PIDX in addition to UNCEFACT's own Core Compo-
nent Library (CCL).

The merits of CCTS for improving interoperability have als®en noticed by industry and
governments. For example, the German Government has madaal announcement iden-

tifying CCTS as the future data standard for domedtiaiies [11].

One of the first companies to support JINEFACT CCTS methodology and core components
in their products is SAP [63]. SAP Global Data Types (GDTsjrfahe basis of Business
Objects and Enterprise Services. All leaf elements of tf&&E GDTs are based ddore

Component TypesndData Typeg70, 71].

UBL is being adopted by several communities around the wedgecially in electronic gov-
ernment applications. The U.S. Department of the Navy (D@#¢jgned their XML Naming
and Design Rules around UBL 2.0 NDR.

The first government to use UBL Invoice is Denmark. The use BL Uhvoice is realized
through the “@fentlig Information Online UBL (OIOUBL)” Project and has bemandated
by law for all public-sector businesses [51] in Denmark. QAlls Sweden, the National Fi-
nancial Management Authority recommended UBL Invoice @méted to Sweden, namely,

Svefaktura for all government use [72].

42

Following the success of Danish and Swedish examples,septatives from Denmark, Nor-
way, Sweden, UK, Finland and Iceland have created a NortBeraopean Subset (NES) [43]

for UBL to ensure interoperability among these countries.

In the USA, the Department of Transportation has developdBlabased pilot project for a

demonstration of state-of-the-art electronic commeraer@al-world setting [91].

OAGIS BODs are being used in more than 40 countries and in thare38 industries [49].
The fact that OAGIS allows BODs to be extended by a verticdugtry helps with its ex-
tensive use. The vertical standards based on OAGIS BODsdedhiAG [2], Odette [50],
STAR [68], and Aftermarket [1] in the automotive industryth@r standards bodies focused

on human resources, chemical, and aerospace industriegsaOAGIS BODs.

There are products based on OAGIS BODs such as Oracle Ed3ssBuite [52], where
OAGIS BODs are implemented as Web Services. As another dgartgM WebSphere

Commerce service interfaces are defined using the OAGISagesdructure [62].

GS1 XML is being used in more than twenty countries and in ntloa@ twenty industries
all over the world. GS1 is a business solution partner of mamypanies, including Ora-
cle, Siemens and Philips. The GS1 standards are also leteradSAP business solutions

packages [63].

2.8 DESCRIPTION LOGICS

Description logics (DLs) [5] are a family of knowledge repeatation languages that can be
used to represent the knowledge of an application domainsmugtured way. The name
“description logics” come from, on the one hand, the impartaotions of the application
domain are described through concept “descriptions”, liasie expressions that are built
from atomic concepts and atomic roles; on the other hand,diftex from their predecessors,
such as semantic networks and frames, in that DLs are basadfa@mal and logic-based

semantics.

There are two types of concept descriptions: terminoldgaoa assertional. The termino-
logical descriptions, called the TBox, describe the ratéventions of an application domain

by stating properties of concepts (classes) and roles €ptiep), and relationships between

43

them - it corresponds to the schema in a database settingheOottier hand, the assertional
descriptions, called the ABoX, is used to describe a coadi@lation by stating properties of

individuals - it corresponds to the data in a database gettin

Description logic systems use these descriptions to adicallg organize class descriptions
in a taxonomic hierarchy and automatically classify instminto classes whose definitions
are satisfied by the features of the instance. Specificadlsgription logic reasoners provide
two key capabilities: 1) class subsumption, where a classub&umes another class C2 if its
definition includes a superset of the instances included2in?finstance recognition, where
an instance belongs to a class if the instance’s featuréss(emd role values) satisfy the
definition of the class. Description logic systems also hraeehanisms to detect inconsistent

definitions.

Considering their expressivity, there are a number of Dlet&s. The basic DL iALC,
which stands for “Attributive concept Language with Conmpéts”. ALC includes the fol-
lowing constructors: conjunction, discjunction, negafiexistential restriction and value re-
striction. More expressive DLs are obtained by includinglitinal constructors taALC.
Considering the naming scheme, the addition of the new rarist results in the appending
of a corresponding letter t&LC word. For example, if number restrictions, which is identi-
fied with N letter, is added, the name becomdsCN. However, for expressive DLs, starting
with the basic DLALC would lead to quite long hames. For this reason, the I&isroften
used as an abbreviation for the basic DL consistind\b€ extended with transitive roles.
The letterH represents subroles (role Hierarchigl)epresents nominals (nOminals)ep-
resents inverse roles (Invers@y,represent number restrictions (Number), @depresent
qualified number restrictions (Qualified). For exam@&{lQ DL has the ability to express
role hierarchies, inverse roles and qualified number wigtnis in addition to the constructors

thatALC supports.

One prominent application of DLs is as the formal foundafimnontology languages. Ex-
amples of DL based ontology languages include OIL, DAMRIL and OWL [54], ontology
language standard developed by the W3C Web Ontology WofBnogip.

High quality ontologies are crucial for many applicatioasd their construction, integration,
and evolution greatly depends on the availability of a vadelfined semantics and powerful

reasoning tools. Since DLs provide for both, they are idaatidates for ontology languages.

44

In this thesis, the UNCEFACT based document standards’ schemas are converted/to O
DL ontologies automatically. This helps to run the operaignew subsumption hierarchy
computation, consistency checking and instance clagsifigathat Description Logics pro-
vide on these ontologies through reasoners. The DL operttai is used mostly in this thesis
is new subsumption hierarchy computation. With this openatthe DL reasoner discovers
the implicit relations among the classes, which correspdao@usiness Information Entities

of different standards. And these relations helps to provideoipégability of the standards.

It should be noted that, all the knowledge that the DLs camigeocould easily be represented
by formulae of first-order predicate logic. However, the ma&ason for using DLs rather than
predicate logic is that DLs are carefully tailored such thaly combine interesting means of

expressiveness with decidability of the important reasgmiroblems.

2.9 DESCRIPTION LOGICS REASONERS

Currently, there are the following Description Logics r@aers in the literature: Racer Pro
[56], KAONZ2 [37], Fact+ [21] and Pellet [55]. A survey [39] investigates the ressner
considering their OWL support, correctnesfijaiency, interface capabilities and inference
services. The survey concludes that no system, except Racand KAONZ2, is able to
correctly solve at least those tests which lay within thglege fragment that the tools claim
to support in full. And to some extend KAONZ2 is not applicati@ady since it fails very often
with “out of memory errors” or require significant procegsitime for language constructs,
which are typically in real-world models such as cardiyaléstrictions. Pellet and FaG#

do have some serious bugs which result in incorrect answeesldition to the survey, in the
scope of the thesis, the above mentioned reasoners arégated in terms of theirféciency.
Only Racer Pro could answer to the harmonized ontology witliout of memory error”.

Therefore, in this thesis Racer Pro is used as the Desgariptigics Reasoner.

2.10 ONTOLOGY AND WEB ONTOLOGY LANGUAGE - OWL

Web Ontology Language (OWL) [54] is a semantic markup lageguar publishing and shar-
ing ontologies on the World Wide Webh. OWL builds upon the Rese Description Frame-
work (RDF) [59]. The complementary RDF Vocabulary Desdoipt_anguage, RDF Schema

45

(RDFS) [60] standard describes how to use RDF to describe wib&bularies.

OWL provides three decreasingly expressive sublanguages:

e OWL Full is meant for users who want maximum expressiveness and titactg
freedom of RDF with no computational guarantees. It is @hjikhat any reasoning

software will be able to support complete reasoning for OVLLF

e OWL DL supports those users who want the maximum expressivenekes retain-
ing computational completeness (all conclusions are gieed to be computable) and
decidability (all computations will finish in finite time). \WL DL is so named due to
its correspondence with description logics, which formftirenal foundation of OWL.

The DL corresponding to the OWL DL ontology languag&i4OIN

e OWL Lite supports those users primarily needing a classifinahierarchy and simple

constraints. OWL Lite is equivalent ®HIN(D).

Within the scope of this thesis, only OWL DL constructs aresidered and in the rest of the
document, “OWL" is used to mean “OWL DL” unless otherwisetsth OWL describes the
structure of a domain in terms of classes and propertiesligttaf OWL language constructs

is as follows:

e OWL Lite Constructs:

— RDF Schema Features: Class (Thing, Nothing), rdfs:sulsOiasrdf:Property,

rdfs:subPropertyOf, rdfs:domain, rdfs:range, Individua

— (In)Equality: equivalentClass, equivalentProperty, sAsy diferentFrom, AlID-

ifferent, distinctMember

— Property Characteristics: ObjectProperty, Datatype€typinverseOf, Transi-

tiveProperty, SymmetricProperty, FunctionalPropemygerseFunctionalProperty
— Property Restrictions: Restriction, onProperty, all\éaErom, someValuesFrom

— Restricted Cardinality: minCardinality (only 0 or 1), maxdinality (only O or
1), cardinality (only O or 1)

— Class Intersection: intersectionOf

46

Constructor

DL Syntax

Example

intersectionOf
unionQf
complementOf
oneOf
allValuesFrom
someValuesFrom
hasValus
minCardinality
maxCardinality
inverseOf

G T s T1E;
5 O (11 5.9
!

L] vusic}
YP.C
Jr.C
Ir{z}
(Zznr)
(€nr)

r

Human M Male
Doctor LI Lawyer
—Male

{john, mary}
‘YhasChild.Doctor
JhasChild.Lawyer
JeitizenOf. { USA }
(2 2 hasChild)
(< 1 hasChild)
hasChild™

Figure 2.25: OWL Constructors

— Versioning: versionInfo, priorVersion, backwardCompbWVith, compatibleWith,

DeprecatedClass, DeprecatedProperty,

— Annotation Properties: rdfs:label, rdfs:comment, rafeAlso, rdfs:isDefinedBy,

AnnotationProperty, OntologyProperty

— Datatypes: xsd datatype

¢ OWL DL Constructs::

— Class Axioms: oneOf, dataRange, disjointWith, equivdldsss (applied to class

expressions), rdfs:subClassOf (applied to class expmessi

— Boolean Combinations of Class Expressions: unionOf, cemphtOf, intersec-

tionOf

— Arbitrary Cardinality: minCardinality, maxCardinalityacdinality

— Filler Information: hasValue

Furthermore, in Figures 2.25 and 2.26, how OWL constru@ntsaxioms are described using

DL syntax are shown.

2.11 ABRIEFINTRODUCTION TO SPARQL

SPARQL [66] is a query language for RDF graphs. Itis simibeBtructured Query Language
(SQL) and queries are written against the triples of RDF lgrdhe SPARQL uses the RDF

47

Axiom DL Syntax |Example

subClassOf 1 C Oy Human C Animal M Biped
equivalentClass =049 Man = Human M Male
subProperty0f PRC R hasDaughter C hasChild
equivalentProperty Pi=hB cost = price
digjointWith i C =0y Male C —Female

samels {z1} = {z2} |{Pres_Bush} = {G_W_Bush}
differentFrom Ix1} C —{zo} [{john} C —{peter]
TransitiveProperty P (ransitive role [hasAncestor is a transitive role
FunctionalProperty TLC(<1P) |TLC (<1 hasMother)
InverseFuncticnalProperty| T C(<1P7)|T C (< 1isMotherOf ™)
SymmetricProperty P=P~ is5iblingOf = isSiblingOf

Figure 2.26: OWL Axioms

view of an OWL ontology. Therefore, it does not benefit frone #emantic described in
an OWL ontology very fectively. A recent work, called SPARQL-DL [67], is initiateo
enhance the expressive power of SPARQL for OWL-DL ontolegién SPARQL-DL the
queries are formalized against the class hierarchy of an @VIontology. The initiative is
very new and as it becomes mature, the SPARQL queries mightdrated to SPARQL-DL.
In this thesis, query templates in SPARQL are formulateddtdifate the discovery and reuse

of document components in the Harmonized Ontology.

2.12 CONCLUSIONS

Today, an enterprise’s competitiveness is to a large extetermined by its ability to seam-
lessly interoperate with others, and electronic documemtdgards play an important role in

this.

Although all the document standards surveyed in this tH@gth the exception of EDI) are
based on UNCEFACT CCTS Methodology, their analysis reveals that tlaeeeconsiderable
differences in the resulting document schemas. This is mostiguse the standards like
OAGIS BODs and GS1 XML existed long before WUDEFACT CCTS Methodology was
proposed, and therefore these standards adapted théingxlecument schemas rather than
starting from fresh. However, all of these standards atedsveloping, and their future

versions may become more harmonized.

48

In fact, by observing that the divergent and competing aggnes to electronic document
standardization threatens intersectoral coherence ifiglaeof electronic business, four ma-
jor standard bodies, namely, the International Electiote@l Commission (IEC), the Inter-

national Organization for Standardization (ISO), the iméional Telecommunication Union
(ITU) and the United Nations Economic Commission for Eur@pRECE) signed a “Memo-

randum of Understanding” to specify a framework of cooperaf42]. In the year 2000, they

established a Memorandum of Understanding Meeting GrougBaisiness standards har-
monization. Up to now, OAGIS 9.1, UBL 2.0 and YBICL have achieved a negligible level
of harmonization. However, the harmonization needs to benebed to the upper level arti-
facts such as the BBIEs and the ABIEs. However having manyrdeat standards weakens

interoperability.

Given the large number of electronic business documentlatds, conformance to one of
these standards or implementing a combination of them willsolve the interoperability
problem; there will always be some companies usingfBeint, incompatible document

standards.

Therefore, although the electronic document standardslaleed so far proved to be very
useful for industry and government applications, furth@orés are needed for their harmo-

nization and semantic interoperability, and this is theufoof this thesis.

49

Table 2.1: Document Design Principles

Document | Use of | Use of | Use of| Naming
Artifacts CCTS Codelists names- | and De-
Methodol- paces sign Rules
ogy
EDI Interchange, | Not used UN/EDIFACT Not UN/EDIFAG
Message, recommends used Syntax
Segment, number of code Rules (1ISO
Element lists. Local and 9735) or
external codes X12.5
are also allowed and X12.6
Syntax
rules
UN/- | Uses CCTS Fully based| Defines five| It is | 1ISO 11179-
CCL | based docqion CCTS| code lists:| syntax- | 5
ument Methodol- Country Codes| independent
artifacts ogy Subdivision
such as Corg Codes Cur-
Component rency Codes
Types and BinaryObject
BIEs Mime Codes
andUnit Codes
UBL | Uses CCTS Fully based| Through a com- Mostly | UBL 2.0
2.0 Artifacts on CCTS| mon base type for doc- | Naming
Methodol- called Code-| ument | and Design
ogy Type “xsd:- | catego- | Rules
normalized- rization
String”
OAGIS| BODs, Fields are| Defines two| To iden-| UN/CEFAC]
9.0 Applica- UDT and| “xsd:simple- tify the | ATG2
tion Areas,| CCT based., Type” for each| Overlay | Naming
Nouns, Some Com-| codedField exten- and Design
Verbs, Com-| ponents are sion Rules
ponents, UN/CEFACT ele-
Compounds,| ABIE based ments
Fields
GS1 SBDH, Use the| External Code The GS1
XML | Trans- CCTS Lists; In- | names- | XML's
actions, method- ternal Code| paces UML to
Commands, | ology to | Lists defined| indicate | XSD con-
Documents | generate through *“xsd:-| the doc-| version
its own | enumeration” ument | rules
document context
artifacts

50

Table 2.2: Customization a

nd Extensibility

Customization

| Extensibility

EDI

Subsetting EDI

documentsintroduction of new types o

through context specific Imple- business documents which h

mentation Guidelines.

EDI Committees.

to be validated through relate

i
AsS

o

UN/CCL

Core Components are cu
tomized according
contexts to create BIEs.

s-New components can be pu

to eightlished to the Core Componer

Library.

UBL 2.0

Conformant
through “UBLExtensions” ele-
ment, or subsetting or placin
constraints on the value space

customization Compatible customization b

reusing the largest suitable a
ggregation from the UBL Library

OAGIS 9.0

No formal methodology for

ThroughUser AreaandOverlay

defining user specific customiza-extensions.

tions

GS1 XML

Through the following three
contexts: Business Process, |
dustry sector, Geopolitical

nment at the end of each doc
ment schema.

Through the “extension” elet

51

CHAPTER 3

ONTOLOGY BASED SEMANTIC INTEROPERABILITY OF
ELECTRONIC BUSINESS DOCUMENT STANDARDS

Businesses need to exchange data with their trading partoezxecute transactions. The
partners conforming to the same electronic document stdnchn interoperate. However,
there are very many electronic document standards andidherere is an interoperability
problem among the partners, who conform tffetent standards. As mentioned previously,
UN/CEFACT Core Component Technical Specification (CCTS) isngportant landmark in
providing a framework to achieve electronic business daminnteroperability by defining

the semantic properties of document artifacts.

As already mentioned, a number of standardizatidores have taken up CCTS Methodology,
including UBL, GS1 XML, and OAGIS, in addition to UREFACT’s own Core Component
Library (CCL). These standards are widely used in e-Goventrand e-Business applications

all over the world.

Although all of these standards are CCTS based, they arentesbperable. The analysis
provided in Chapter 2 reveals that there are considerafilereiices in their document design
principles, the use of code lists and the XML namespaces,theyuse the CCTS methodol-
ogy and how they handle extensibility and customizatiorrtHeurmore, the current accepted
practice of storing the document artifacts in spreadsh#ms not facilitate to develop auto-

mated semantic interoperability support tools.

Towards solving the interoperability problem, the appbracthis thesis is basically as fol-

lows.

52

refersTo

subClassOf

| #contains T ¢ ; | Core
L ! v Component

hasDataType

| I
Basic Core || Association || Aggregate A : | Product || Industry :
Component Core Comp. || Core Comp. basedon : Role Business :
hagoCT ! i Process |
hader asoey "SRG "8l T | | Geopolitical ,
v Object Context |< "|__Region || Supporting |!
I
Representation Class | System Role \
| . ..
Term Term usedinContext | | Constraints || Official :
asRT A Component ! Context |
cT SRT - L _______-_____—- !
sOCT hagOCT | Specialized
Basic BIE IAssociation Aggregate to a Context - — — —> subClassOf
(BBIE) BIE (ASBIE) BIE (ABIE) (BIE) ObjectProperty
: T | Tcontains 4 | A
| |

subClassOf |

refersTo

Figure 3.1: The Upper Ontology for the Semantics Exposeth®&yXCTS Framework

1. As already described, the CCTS defines meaning of docucoemponents at various
dimensions starting with the data types used in documefa@s extending to the way
the document artifacts are composed. To be able to relagirttiar document artifacts
of different document content models through the semantic prepehey share with
the CCTS, the CCTS semantics is first explicated using the @rablogy Language
(OWL) and define an upper CCTS ontology as shown in FigureThils upper ontol-
ogy gives the CCTS artifacts as ontology classes togethértheir properties and the
relationships among them. Then the upper ontologies foother CCTS based stan-
dards such as UBL, OAGIS 9.1 and GS1 XML, are defined again psrumtologies
and relate their corresponding classes to the CCTS uppeloggtas shown in Figure

3.2.

2. Atthe lower level, the semantics of document schemas fn@prominent CCTS based
standards are explicated. A document schema ontology &ajmd for each standard
to describe the actual document artifacts as the subclagstessown upper ontology
classes (Figure 3.3). The similarities among documentrsahentology classes of
different document standards are established through botkriensic properties they
share and the semantic equivalences established in the aipodogies. The full OWL

ontology of the semantics described in this section is alsgl at [90].

3. After that some semantics related with th&eatient usages of document data types

53

in different document schemas are explicated to obtain somedi@gieepretations by
means of informal semantics. The intention is to give thesaar the same information

that the humans use in transforming document schemas ietarasther.

4. Then through a Description Logics (DL) reasoner, a Haimezh Ontology is com-
puted. The Harmonized Ontology gives the specified as wele@somputed equality
and subsumption relations among the classes of both the opfmogies and the doc-

ument schema ontologies. The Harmonized Ontology is usaftihree purposes:

¢ It helps to discover equivalence of structurally similacdment artifacts between

two document schemas.

e For translating such document artifacts through autoralfyigenerated XSLT

rules.

e Query templates (SPARQL and Reasoner based queries) anel&bed to fa-
cilitate the discovery and reuse of document componentsyubie Harmonized

Ontology.

5. Finally, further heuristic rules are provided to ideptifie similarities between semanti-
cally similar but structurally dferent document components. The semantic properties
of the CCTS based document artifacts help discovering tbevagnces of structurally
similar and semantically equivalent elements. Howevéedint document standards
use core components infilirent structures. Semantic properties of document arti-
facts are not enough to find the similarity of the structyrdifferent but semantically
equivalent document artifacts; possiblételiences in structures must be provided as
heuristics to enhance the practical uses of the specifiedrst@s. Note that for defin-
ing heuristics to handle structurallyftérent document artifacts, the Description Logic

is not suficient but more general purpose Predicate Logic Rules adedee

This chapter is focused on the definition of the upper and et schema ontologies, and
is organized as follows: Section 3.1 describes how the stesanf CCTS based document
content models are explicated (i.e. how to generate therupgelogies). In Sections 3.2,
3.3 and 3.4 the methodology to explicate the semantics df dacument schema through
document schema ontologies conforming to its own upperlagyds explicated. Section 3.5

presents harmonizing the ontologies of the document stdadin the next chapters (Chapter

54

CCTS Upper Ontology

refersTo

- —— o — —

Product Industry
Role Business
Process

Geopolitical

Region _ || Supporting
Role

Official
Context

— —> subClassoOf
——» ObjectProperty

equivalentClass .- -r--- s e .
[e T

GS1.XML.BBIE | {----~

GS1.XML.ASBIE |1 -+

ComponentRef
GS1.XML.ABIE

-
c
)
o
S
o
£
s}

(&)

UBL.ABIE
refersTo
UBL.ASBIE
UBL.BBIE
refersTo

contains contains contains

OAGIS Upper Ontology| UBL Upper Ontoloq;l GS1 Upper Ontolog

Figure 3.2: An Overview of the Upper Ontologies and theird®ehships

4 and 5), the heuristics to discover semantically similardtructurally diferent document

artifacts and the XSLT support are presented.

3.1 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT CON-
TENT MODELS

The semantics specified by the CCTS approach and given indgireets are explicated ba-

sically as follows:

e The semantics implied by the properties of the document aoemps The semantics
of Core Componentsnplied by their properties as defined by the CCTS are exjglita

as follows:

— Each aggregate document component (ACCs and ABIESs) has@bjectClassTerm
(abbreviated akasOCT object property, whose range is tdject Class Term
class, as shown in Figure 3.1. As already mentioned in Segti®.2, the aggre-

gate components, created from the same core componentthgtieg them to

55

(A) CCTS Upper Ontology (B)

[aBIE | [AsBIE| [BBIE |
Iy 4

equivalentClass |-~ - -----j--c-c-- - Tttt
g a

[T

- UN/CCL Document
- [} w Schema Ontology
& o @
i & < all 1] -
E SR E 2
8 5 2) 8 2 2 Structured_
5 S o 3 = o o Address
Q E 2o o o o 1%} 0
o o [=) 3 =) o) o
contains contains contains
OAGIS Upper Ontolofly UBL Upper Ontolggy GS1 Upper Ontofogy CountryCode
A A LN
OAGIS Document UBL Document GS1Document
Schema Ontology Schema Ontology Schema Ontology
.......... e
Address Address
m Identificatio
PostalCodg
CountryCode)| | L'comirg |

Figure 3.3: An Overview of the Upper Ontologies togethehwtite Document Schema On-

tologies

different contexts, share the safbject Class TermHence, this property con-
tributes to determine similar document artifacts iffetient standards. As an ex-
ample, UNCCL has an aggregate document component called “Structdedess”
and UBL has “Address”. Both of these document components tteysaméb-
ject Class TermHence, this semantic property helps to find the similaritthese
two document components. Note however thatGligect Class Terncannot be
the only semantics that determine the similarity of the doeat components and
different standards may usedfdrentObject Class Termfor the same document
component. For example, tl@bject Class Termef two similar aggregate com-
ponents are “Monetary Total” in UBL and “Monetary Summatiam UN/CCL.
Therefore thdnasOCTproperty is used together with other document properties,

either explicitly defined or inferred, to determine docut@mponent similarity.

56

— Each basic document component (BCCs and BBIES) also has@bjectClassTerm
object property, whose range is tdject Class Ternalass and has laasRepre-
sentationTern{abbreviated akasR7 object property, whose range is tRepre-
sentation Ternclass, as shown in Figure 3.1. As an example/CBL has a basic
document component “Identification”, whoRBepresentation Teris “Identifier”.
Likewise, UBL has a basic document component called “IdientiwhoseRep-
resentation Ternis also “ldentifier”. Hence, this semantic property conités to
find the similarity of these two document components. Agdifierent standards
may use diterentRepresentation Ternmand the similarity of this term alone can-
not determine the similarity of document artifacts. TherefthehasRTproperty

is used together with other document properties.

— Each association document component (ASCCs and ASBIES) hasOCTob-
ject property, whose range is tl@bject Class Terntlass and éhasRTobject
property, whose range is tl@bject Class Ternglass of the aggregate document
component it refers to, as shown in Figure 3.1. As an exanyie/CCL's ag-
gregate document component “SelRarty” has an association document com-
ponent called “Postal”’, whosRepresentation Terns “Address”. On the other
hand, UBL's “Party” aggregate component has an associdiaument compo-
nent called “PostalAddress”, whoBepresentation Teris also “Address”, help-
ing to identify their similarity.

— The Property Termof document components used irffdrent standards show
a wide diversity. For example, UBL uses “Postkaine” whereas UNCCL uses
“Postcode” for the same element (Figure 3.7). Hence, usiagtoperty terms as
semantics does not help the reasoner with its purpose ajwdisag the similar
elements. Therefore, the property terms are not used inei®oning process.
However, when matching document components through tkeiastic proper-
ties, a number of false positives may appear. In my apprabel®roperty Terms
are used to reduce the number of false-positives while pastessing the result
set. In the post-processing, each component in the infeedt set is assigned a
similarity value, which is computed by comparing theioperty Termgexically.
For the computation of the similarity value, the algorithm69] is used. For ex-
ample, the lexical similarity value between “Posiaine” and “Postcode” turns

out to be 0.7. The document components in the inferred restifire presented to

57

a human user together with their similarity value.

e The semantics implied by the Business Information EntiBesiness Information En-
tities (BIEs) are derived fronCore Component$o be used in a certain context and
this semantics is expressed through two OWL object pragertihebasedOnobject
property indicates that th€ore Componenfrom which the BIE is derived and the
usedInContexbbject property indicates the context of the BIE, as showkiguire 3.1.
The BIEs also inherit some of the properties of their cormesimg Core Components
but it should be noted that there is no subclass relatiorasimipng them, since a BIE,
being a restriction of &ore Componento a context, may not inherit all the proper-
ties of thatCore Component The Basic Core Components (BCCs), the Association
Core Components (ASCCs) and the Aggregate Core Comporisdes) are special-
ization of the Core Components and therefore they are defismsdbclasses of the Core
Components (CCs). Likewise, The Basic Business Informakatities (BBIES), the
Association Business Information Entities (ASBIES) and &ggregate Business In-
formation Entities (ABIES) are specialization of the Biesa Information Entities and

therefore they are defined as subclasses of the Businesmaifon Entities (BIES).

e Data type semanticsCCTS provides a fixed set of reusalilere Component Types
(CCT)andData Types (DTjwhich are also termed &ore Data Types (CDTps¥uch as
Amount Identifier, or Measurefor consistent business value representation. Che
Data Typesemantics is explicated through t@ereComponentTypaass. For each of
the 14 CDTs, a corresponding OWL class is created and insadehe subclass of

CoreComponentTypaass.

e The semantics exposed by the contexts, in which documigatesrtare usedCCTS has
established predefined context categories, like geopallitegion, industry or business
process that identify the usage meaning of a documentdartifa explicate this seman-
tics, first an OWL class is created for context concept, dallentextand the context

categories defined by USEFACT are defined as subclasses of@lmmtextclass.

e The semantics exposed by the use of the code Tists code lists are used to convey
the meaning of the values in the elements of the documefacsgi An OWL class for
the code list concept is created and for its classificatieridbntified context categories

are used.

58

e The semantics implied by the structure of the Document Coemnts As already men-
tioned, the aggregate document components are composethef lgasic document
components or association document components. This siessdescribed through
thecontainsOWL object property of an aggregate document componentiwdgaotes
the basic document components and the association docaom@pbnents it contains.
Each association document component has an OWL object nyopadled refersTo

whose range is the aggregate document component it refers.

In the following subsections, more details on the definitddthese mentioned semantics is

described.

3.1.1 SPECIFICATION OF THE SEMANTICS EXPOSED BY THE CCTS FRA ME-
WORK THROUGH OWL

This section specifies how the existing semantics in the CEXagework document artifacts
can be explicated by using OWL constructs so that this séosacén later be used in an
automated manner to discover useful implicit relationstamong the document artifacts of

other CCTS based standards.

3.1.1.1 EXPLICATING SEMANTICS THROUGH CORE DATA TYPES (CDT)

First lets provide some insight on why there is a need to eafdithe data type semantics:
UN/CEFACT CCTS defines 14 CCTs (which are also terme€Cas Data Types (CDT)
When two document artifacts use the same CCT, this can bedened as a hint towards

these artifacts meaning the same thing if their other sempraperties also match.

The Core Component Typgemantics is explicated through t@®reComponentTypelass.
UN/CEFACT CCTS defines 14 CCTs and for each of them, a correspgruifiss is created

and inserted as the subclas€CafreComponentTypas follows:

<owl:Class rdf:ID="CoreComponentType" />
<owl:Class rdf:ID="Amount.Type">
<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>

<owl:Class rdf:ID="BinaryObject.Type">

59

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Code.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Date.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="DateTime.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Identifier.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Indicator.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Measure.Type'">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Numeric.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Quantity.Type'">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Text.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Percent.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType" />

</owl:Class>

3.1.1.2 EXPLICATING SEMANTICS THROUGH CONTEXT

The context in which a document artifact is used gives it taoesemantics. Therefore if two
document arifacts have related contexts and if their otherasitic properties are related, this
gives a hint on their their possible equivalence. There I©®A class for context concept,
calledContextas follows:

<owl:Class rdf:ID="Context" />

The context categories defined by {MNEFACT are defined as subclasse€ohtextclass as
follows:

60

<owl:Class rdf:ID="BusinessProcessContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="GeopoliticalContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="IndustryContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="ProductContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="RoleContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="0OfficialContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="SupportingRoleContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="SystemConstraintsContext" >
<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

For eachiContextsubclass, such as “IndustryContext”, an ontology can beeléfiased on the

taxonomies or classifications already used by the indusitih as Universal Standard Prod-
uct and Service Specification (UNSPSC) [89] or Standardtiatéonal Trade Classification

(SITC) [65].

3.1.1.3 EXPLICATING SEMANTICS THROUGH CODE LISTS

The code lists are important to identify the meaning of a BE@BIE. As an example,
assume that two document standards name a BBRiErdntly. However if BBIES use the
same code list or use code lists for the same purpose, thergdassibility that they are
similar. It should be noted that code lists used for a BCC otBB&an vary according to
context. Therefore, the classification of code lists is @gportant. For the classification

61

categories, the identified context categories can be udeeteTls an OWL class faCodelist
concept, calledCodelL.ist

<owl:Class rdf:ID="CodeList" />

<owl:Class rdf:ID="BusinessProcessCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="GeopoliticalCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="IndustryCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="ProductCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="RoleCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="0fficialCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="SupportingRoleCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="SystemConstraintsCodeList" >
<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

Once theCodelListsubclasses are defined, the specific code lists in use arediefina sub-

class of the related context. Some examples are providedllas$:

<owl:Class rdf:ID="iso-ch.3166.1999" >
<rdfs:subClassOf rdf:resource="#GeopoliticalCodeList"/>

</owl:Class>

<owl:Class rdf:ID="ntis-gov.naics.1997" >
<rdfs:subClassOf rdf:resource="#IndustryCodeList"/>

</owl:Class>
<owl:Class rdf:ID="unspsc-org.unspsc.3-1" >

<rdfs:subClassOf rdf:resource="#ProductCodeList"/>

</owl:Class>

62

3.1.1.4 EXPLICATING SEMANTICS OF CORE COMPONENTS

There are a number of terms giving meaning to the CCs. Whdnserantics is explicated
in an ontology, it may help to find similarities in documentifacts from diferent document
schemas. For example, if two document artifacts have the €rject Class Terirthis may

give a hint on their similarity.

A CCTS Core component is expressed as an OWL class as follows:

<owl:Class rdf:ID="CoreComponent" />

The following OWL classes are defined to represent thesestasiiollows:

<owl:Class rdf:ID="ObjectClassTerm" />

<owl:Class rdf:ID="RepresentationTerm" />

A CCTS Basic Core Component (BCC) is defined as an OWL classe the following
object propertiehasDataTypeghasObjectClassTernhasRepresentationTerrand possible-
CodelLists

<owl:Class rdf:ID="BasicCoreComponent" >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#CoreComponent" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDataType"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#DataType"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#0ObjectClassTerm"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasRepresentationTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#RepresentationTerm"/>

</owl:allValuesFrom>

63

</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#possibleCodeLists"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#CodeList"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

ACCs may contain BCCs and ASCCs, and ACCs only have ObjecsClarms. A CCTS
Aggregate Core Component is defined as an OWL class to hafalthwing object properties

containsandhasObjectClassTermas follows:

<owl:Class rdf:ID="AggregateCoreComponent" >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#CoreComponent" />
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allvaluesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BasicCoreComponent"/>
<owl:Class rdf:about="#AssociationCoreComponent"/>
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#ObjectClassTerm"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

A CCTS Association Core Component is defined as an OWL classmve the following
object propertiesefersTq hasObjectClassTernandhasAssociatedObjectClassTerm

64

<owl:Class rdf:ID="AssociationCoreComponent"” >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#CoreComponent" />
<owl:Restriction>
<owl:onProperty rdf:resource="#refersTo"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#AggregateCoreComponent"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#0ObjectClassTerm"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasAssociatedObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#0ObjectClassTerm" />
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

Note that, as mentioned previously tReoperty Termss not used in the ontology definition
since the usage of property terms show a great degree ohwasand hence do not contribute
to discovering similarities among document artifacts. ldegr, theProperty Termis used to

decrease the number of false-positives.

3.1.1.5 EXPLICATING SEMANTICS OF BUSINESS INFORMATION ENT ITIES (BIE)

The semantics of a BIE is given by the core component from hwitiés derived and the
context it is constrained to. A BIE is expressed as an OWLsdasollows:

<owl:Class rdf:ID="BusinessInformationEntity"/>

The BasicBusinessIinformationEntitjass is based oBasicCoreComponentClassd this is
expressed as follows:

65

<owl:ObjectProperty rdf:ID="basedOn">
<rdfs:domain rdf:resource="#BusinessInformationEntity"/>
<rdfs:range rdf:resource="#CoreComponent" />

</owl:0ObjectProperty

A BIE is a CC used in a context and there is@ml:ObjectPropertycalled usedIinContext
This object property haBusinessinformationEntitglass as its domain ardontextclass as

its range as follows:

<owl:ObjectProperty rdf:ID="usedInContext">
<rdfs:domain rdf:resource="#BusinessInformationEntity"/>
<rdfs:range rdf:resource="#Context"/>

</owl:0ObjectProperty>

Just like aBasicCoreComponetrit is derived from, a BIE has Object Properties for its data
type, naming terms and possible code lists but there is ndasgrelationship among them
since a BIE, being a restriction of a Core Component to a ggnieay not inherit all the

properties of that Core Component.

A CCTSBasicBusinessinformationEntity (BlE)defined as an OWL class to have the follow-
ing object propertiebasDataTypehasObjectClassTernmasRepresentationTerrandpossi-
bleCodeListss follows:

<owl:Class rdf:ID="BasicBusinessInformationEntity" >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#basedOn"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#BasicCoreComponent" />
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDataType"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#DataType"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

66

<owl:Class rdf:about="#0ObjectClassTerm" />
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasRepresentationTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#RepresentationTerm"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#possibleCodeLists"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#CodeList"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

An AssociationBusinessinformationEntiSBIE) is defined as an OWL class to have the
following object propertiesefersTg hasObjectClassTernmasAssociatedObjectClassTerm

<owl:Class rdf:ID="AssociationBusinessInformationEntity" >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#basedOn"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#AssociationCoreComponent"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#refersTo"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#ObjectClassTerm"/>
</owl:allValuesFrom>
</owl:Restriction>

<owl:Restriction>

67

<owl:onProperty rdf:resource="#hasAssociatedObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#ObjectClassTerm"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

An AggregateBusinessinformationEnt{&BIE) is defined as an OWL class to have the fol-
lowing object propertiesontains basedOnandhasObjectClassTerras follows:

<owl:Class rdf:ID="AggregateBusinessInformationEntity" >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allvaluesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BasicBusinessInformationEntity"/>
<owl:Class rdf:about="#AssociationBusinessInformationEntity" />
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#basedOn"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#AggregateCoreComponent"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#0ObjectClassTerm" />
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

68

3.1.1.6 EXPLICATING THE SEMANTICS OF CCL ARTIFACTS

To be able to determine the semantically similar documdifaets at the schema level, the
semantics of each document schema is explicated conforimitgown upper ontology. The
relationships among the document schema ontology classestablished through reasoning

process by using the explicit relationships defined amoegiiper ontology classes.

The semantics of UNCEFACT Core Component Library (CCL) artifacts are expkchton-
forming to the CCTS Upper Ontology defined. The generaticantdlogies from the artifacts
defined in CCL conforming to the CCTS upper ontology as followWo create the ontology
classes corresponding to the CCL artifacts which are gimeM$ Excel spreadsheets, the
CCL spreadsheets are first converted to a custom XML formatsioyg XML Map mecha-
nism of MS Excel. Then, through a piece of software develppgesinecessary OWL classes

conforming to the specified CCTS upper ontology are created this XML file.

An example on how "Structuredddress.Details” artifact of CCL is represented in the Har-
monized Ontology conforming to the CCTS Upper Ontology ifodlews:

<owl:Class rdf:ID="Structured_Address.Details">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allvaluesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Structured_Address.Identification.Identifier"/>

<owl:Class rdf:about="#Structured_Address.Postcode.Code" />

69

<owl:Class rdf:about="#Structured_Address.BuildingName.Text"/>
<owl:Class rdf:about="#Structured_Address.StreetName.Text"/>
<owl:Class rdf:about="#Structured_Address.CityName.Text"/>
<owl:Class rdf:about="#Structured_Address.Country.Identifier"/>
<owl:Class rdf:about="#Structured_Address.CitySub-DivisionName.Text"/>
<owl:Class rdf:about="#Structured_Address.CountryName.Text"/>
<owl:Class rdf:about="#Structured_Address.CountrySub-DivisionName.Text"/>
<owl:Class rdf:about="#Structured_Address.BlockName.Text"/>
<owl:Class rdf:about="#Structured_Address.PlotIdentification.Text"/>
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

The following listing provides an example on how "Strucuirsddress.|dentification.ldentifier”
artifact of CCL is represented in the Harmonized Ontologgfooning to the CCTS Upper
Ontology:

<owl:Class rdf:ID="Structured_Address.Identification.Identifier">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BasicBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasRepresentationTerm"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Identifier"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>

</owl:Restriction>

70

<owl:Restriction>
<owl:onProperty rdf:resource="#hasDataType"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Identifier.Type"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

71

3.2 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT SCHEMA S
- GS1 UPPER ONTOLOGY

equivalentClass

GS1.XML.ABIE
M equivalentClass
GS1.XML.ASBIE

contains

equivalentClass

Figure 3.4: The Upper Ontology for the Semantics ExposedhbyGS1 XML Document

Standard

Figure 3.4 shows the upper ontology for the GS1 XML documésmdard and as shown
in this figure GS1 classes are related with the correspon@i@dS classes by using the

owl:equivalentClasproperty.

A GS1 BBIE is defined as an OWL class nantéf1.XML.BBIEand it is declared equivalent
to the BBIE class defined in CCTS upper ontology as follows:

<owl:Class rdf:ID="GS1.XML.BBIE">
<owl:equivalentClass rdf:resource="#BasicBusinessInformationEntity"/>

</owl:Class>

A GS1 ABIE is defined as an OWL class nam@81.XML.ABIEand it is declared equivalent
to the ABIE class defined in CCTS upper ontology. TdmmtainsObject Property of the
GS1.XML.ABIElass is restricted t&S1.XML.BBIEandGS1.XML.ASBIEs follows:

<owl:Class rdf:ID="GS1.XML.ABIE">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allvaluesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#GS1.XML.BBIE"/>
<owl:Class rdf:about="#GS1.XML.ASBIE" />

</owl:intersectionOf>

72

</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

A GS1 ASBIE is defined as an OWL class nant@81.XML.ASBIE&nNd it is declared equiva-
lent to the ASBIE class defined in CCTS upper ontology. ffersToObject Property of the
GS1.XML.ASBIElass is restricted t6S1.XML.ABIEas follows:

<owl:Class rdf:ID="GS1.XML.ASBIE">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AssociationBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#refersTo"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#GS1.XML.ABIE"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

3.2.1 EXPLICATING THE SEMANTICS OF GS1 DOCUMENT SCHEMAS

GS1 XML defines th®usiness Information Entitesther in “pdf’ Business Message Specifi-
cations or through the Global Data Dictionary (GDD). The GIBR Web accessible registry,
where a component is queried by its name. When the “%” cherégcentered to the search
box, all of the BIEs are returned to the user. Through the bemwonly the entity names and
the component that contains the entity is displayed, homiethe HTML source, the type of
the entity (e.g. ABIE, ASBIE or BBIE), the id of the entity atiie id of the ABIE it belongs
to are also available. In order to create the OWL ontologyasponding to the GS1 XML
artifacts, the HTML code is processed and the created damseinserted to the ontology
as the subclasses. As an example, the HTML code shown in tbevifog fragment is for

“companyNumber” concept.

73

<tr><td width="375" valign="top’ rowspan='7’>companyNumber</td>

<td><a href="javascript:doDisplayDoc(’2.1.0", ’AIDC: GS1 Company Prefix’, ’723’, ’6383’,
"BBIE’)">AIDC: GS1 Company Prefix</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, 'AIDC: Global Location Number’, ’'724’, ’6383’,
"BBIE’)">AIDC: Global Location Number</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0", ’AIDC: Global Service Relation Number’, ’725’,
’6383’, ’BBIE’)">AIDC: Global Service Relation Number</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0°, "AIDC: GlobalReturnableAssetIdentifier’, ’726’,
’6383’, ’BBIE’)">AIDC: GlobalReturnableAssetIdentifier</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, 'AIDC: GlobalIndividualAssetIdentifier’, ’'727’,
’6383’, 'BBIE’)">AIDC: GlobalIndividualAssetIdentifier</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, 'AIDC: Global Document Type Identifier’, ’728’,
’6383’, ’BBIE’)">AIDC: Global Document Type Identifier</td></tr>

As shown in this listing, the “companyNumber” has as its i@88” and it is a BBIE. Fur-

thermore, it exists in components numbered from 723 to 728.

In order to create GS1 XML OWL ontology, the HTML code is prssed and the created

classes are inserted to the ontology as the subclasses @@8iess Information Entity

The following listing provides an example on how “NameAndess.Details” artifact of

GS1is represented conforming to the GS1 Upper Ontology.

<owl:Class rdf:ID="NameAndAddress.Details">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#GS1.XML.ABIE"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm" />
<owl:allValuesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allValuesFrom>

<owl:Class>

74

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#city"/>
<owl:Class rdf:about="#cityCode"/>
<owl:Class rdf:about="#countryCode"/>
<owl:Class rdf:about="#countyCode" />
<owl:Class rdf:about="#crossStreet"/>
<owl:Class rdf:about="#currency"/>
<owl:Class rdf:about="#languageOfTheParty" />
<owl:Class rdf:about="#name"/>
<owl:Class rdf:about="#pOBoxNumber"/>
<owl:Class rdf:about="#postalCode"/>
<owl:Class rdf:about="#provinceCode"/>
<owl:Class rdf:about="#state"/>
<owl:Class rdf:about="#streetAddressOne" />
<owl:Class rdf:about="#streetAddressTwo" />
<owl:Class rdf:about="#geographicalCoordinates" />

</owl:intersectionOf>

</owl:Class>
</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

The following provides an example on how "Address” artifatGS1 is represented conform-

ing to the GS1 Upper Ontology.

<owl:Class rdf:about="#Address">
<rdfs:subClassOf rdf:resource="#0bjectClassTerm"/>
</owl:Class>
<owl:Class rdf:ID="city">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#GS1.XML.BBIE"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

75

<owl:Class rdf:about="#Text"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDataType"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Text.Type"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

76

3.3 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT SCHEMA S
- UBL UPPER ONTOLOGY

equivalentClass

UBL.ABIE
M equivalentClass
UBL.ASBIE

contains

equivalentClass

Figure 3.5: The Upper Ontology for the Semantics ExposechbyldBL XML Document

Standard

Figure 3.5 shows the upper ontology for the UBL documentdsteshand in this figure UBL

classes are related with the corresponding CCTS classesilhy theowl:equivalentClass

property.

A UBL BBIE is defined as an OWL class namedBL.BBIEand it is declared equivalent to
the BBIE class defined in CCTS upper ontology as follows:

<owl:Class rdf:ID="UBL.BBIE">
<owl:equivalentClass rdf:resource="#BasicBusinessInformationEntity"/>

</owl:Class>

A UBL ABIE is defined as an OWL class name@L.ABIEand it is declared equivalent to the
ABIE class defined in CCTS upper ontology. TtwntainsObject Property of th&JBL.ABIE
class is restricted toBL.BBIEandUBL.ASBIEas follows:

<owl:Class rdf:ID="UBL.ABIE">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allvaluesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#UBL.BBIE"/>
<owl:Class rdf:about="#UBL.ASBIE"/>

</owl:intersectionOf>

77

</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

A UBL ASBIE is defined as an OWL class name@L.ASBIEand it is declared equivalent
to the ASBIE class defined in CCTS upper ontology. TéfersToObject Property of the
UBL.ASBIEclass is restricted tdBL.ABIEas follows:

<owl:Class rdf:ID="UBL.ASBIE">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AssociationBusinessInformationEntity" />
<owl:Restriction>
<owl:onProperty rdf:resource="#refersTo"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#UBL.ABIE" />
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

3.3.1 EXPLICATING THE SEMANTICS OF UBL DOCUMENT SCHEMAS

The semantics of UBL artifacts are explicated conformingh UBL Upper Ontology de-
fined. In UBL, the BIEs are provided in MS Excel spreadshedis.create UBL artifacts
ontology conforming to the specified UBL upper ontology, thBL spreadsheets are first
converted to a custom XML format by using XML Map mechanisniM$ Excel. Then, the

necessary OWL classes are created from this XML file and pd@dlin the OWL ontology.

The following fragment provides an example on how "AddrBssails” artifact of UBL is

represented conforming to the UBL Upper Ontology.

<owl:Class rdf:ID="Address.Details">

78

<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#UBL.ABIE"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class
<owl:Class
<owl:Class
<owl:Class
<owl:Class
<owl:Class

<owl:Class

<owl:Class
<owl:Class
<owl:Class
<owl:Class
<owl:Class
<owl:Class

<owl:Class

<owl:Class rdf:

rdf:
rdf:
rdf:
rdf:
rdf:
rdf:
rdf:

rdf:
rdf:
rdf:
rdf:
rdf:
rdf:
rdf:

about="#Address.

about="#Address
about="#Address

about="#Address

about="#Address.
about="#Address.
about="#Address.

about="#Address.
about="#Address.

about="#Address.

about="#Address

about="#Address.

about="#Address

about="#Address

about="#Address.

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Identifier"/>

.AddressTypeCode.Code" />
.AddressFormatCode.Code" />

.Postbox.Text"/>

Floor.Text"/>
Room.Text" />

StreetName.Name" />

CountrySubentity.Text"/>
CountrySubentityCode.Code" />

Region.Text"/>

.District.Text"/>

TimezoneOffset.Text"/>

.AddressLine"/>

.Country"/>

LocationCoordinate" />

79

The below listing provides an example on how “Address.lidient artifact of UBL is repre-

sented conforming to the UBL Upper Ontology.

<owl:Class rdf:ID="Address.Identifier">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#UBL.BBIE"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm" />
<owl:allValuesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasRepresentationTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Identifier"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDataType"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Identifier.Type"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

80

3.4 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT SCHEMA S
- OAGIS 9.1 UPPER ONTOLOGY

equivalentClass

m equivalentClass
ComponentRef

contains

equivalentClass

Figure 3.6: The Upper Ontology for the Semantics ExposedbyIAGIS XML Document
Standard

Although GS1 XML and UBL use the same terminology for docutagtifacts such as ABIE
as the CCTS framework, OAGIS names its document componéfiesehtly. Figure 3.6
shows the upper ontology for the OAGIS 9.1 document stanaladchow OAGIS 9.1 classes
are related with the corresponding CCTS classes by usingvthequivalentClasgproperty.
An OAGIS 9.1Componentorresponds tABIE class in CCTS upper ontologZomponen-
tRefcorresponds té&SBIEandField corresponds t@BIE.

An OAGIS 9.1Field is defined as an OWL class namigigld and it is declared equivalent to
the BBIE class defined in CCTS upper ontology as follows:

<owl:Class rdf:ID="Field">
<owl:equivalentClass rdf:resource="#BasicBusinessInformationEntity"/>

</owl:Class>

An OAGIS 9.1Components defined as an OWL class nam€dmponenand it is declared
equivalent to the ABIE class defined in CCTS upper ontolodye dontainsObject Property

of theComponentlass is restricted tbield andComponentReds follows:

<owl:Class rdf:ID="Component">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allValuesFrom>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

81

<owl:Class rdf:about="#Field"/>
<owl:Class rdf:about="#ComponentRef" />
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

An OAGIS 9.1ComponentRefs defined as an OWL class nam€dmponentRednd it is
declared equivalent to the ASBIE class defined in CCTS uppiiagy. TherefersToObject
Property of the&ComponentReflass is restricted t€omponenas follows:

<owl:Class rdf:ID="ComponentRef">
<owl:equivalentClass rdf:resource="#AssociationBusinessInformationEntity"/>
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#refersTo"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#Component" />
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

3.4.1 EXPLICATING THE SEMANTICS OF OAGIS 9.1 DOCUMENT SCHEM AS

The semantics of OAGIS 9.1 artifacts are explicated conifogrio the OAGIS Upper Ontol-
ogy defined. OAGIS provides the XSD schemas ofdtsnponentandFields (e.g. Compo-
nents.xsd and Fields.xsd) and does not name its comporeusiang to ISO 11179 Part5 .
Therefore a special adapter is developed to generate thd ©ddzument schema ontology
as follows: In OAGIS XSD Schemas, eaClomponents represented with an element decla-
ration and a corresponding type declaration. For examipéeiAddress’"Componenshown

below contains the following element and type declarations

82

<xsd:element name="Address" type="AddressType"/>

<xsd:complexType name="AddressType">
<xsd:complexContent>

<xsd:extension base="AddressBaseType">
<xsd:sequence>

<xsd:element ref="UserArea" minOccurs="0"/>
</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AddressBaseType" abstract="true">

<xsd:annotation>

<xsd:documentation source="http://www.openapplications.org/oagis/9">Address aseType provides

the information about the address or semantic address of an asociated entity.</xsd:documentation>
</xsd:annotation>

<xsd:sequence>

<xsd:element ref="ID" minOccurs="0" maxOccurs="unbounded" />

<xsd:element ref="FormatCode" minOccurs="0"/>

<xsd:element ref="AttentionOfName" minOccurs="0" maxOccurs="unbounded" />

<xsd:element ref="CareOfName" minOccurs="0" maxOccurs="unbounded" />

<xsd:element ref="PostalCode" minOccurs="0"/>

<xsd:element ref="Status" minOccurs="0"/>

<xsd:element ref="Preference" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="languageCode" type="LanguageCodeContentType" use="optional"/>
<xsd:attribute name="type" type="NormalizedStringType"/>

</xsd:complexType>

Furthermore, several components may have the same compkex t

<xsd:element name="BillingAddress" type="AddressType"/>
<xsd:element name="OwnerAddress" type="AddressType"/>

<xsd:element name="RemitLocationPostalAddress" type="AddressType'">

When constructing the OAGIS document schema ontology,doh @lement declaration, one
ontology class is created. An example is shown below, whHereXAGIS “Address.Details”

artifact is represented conforming to the OAGIS 9.1 Uppetology.

<owl:Class rdf:ID="Address.Details">

<owl:equivalentClass>

83

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Component" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allValuesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AddressLine.AddressLine"/>
<owl:Class rdf:about="#AttentionOfName.NameType"/>
<owl:Class rdf:about="#BuildingName.NameType" />
<owl:Class rdf:about="#BuildingNumber.TextType" />
<owl:Class rdf:about="#CareOfName.NameType" />
<owl:Class rdf:about="#CityName.NameType" />
<owl:Class rdf:about="#CitySubDivisionName.NameType" />
<owl:Class rdf:about="#CountryCode.CountryCodeType" />
<owl:Class rdf:about="#PostOfficeBox.TextType"/>
<owl:Class rdf:about="#Preference.Preference"/>
<owl:Class rdf:about="#Status.Status"/>
<owl:Class rdf:about="#StreetName.NameType"/>
<owl:Class rdf:about="#Unit.TextType"/>
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

As shown above, thEomponentAddress.Details” is defined as common component imply-

ing that it is used in the general “Context”. OAGIS does naivie theObject Class Terms

84

for its Components. However a closer investigation revédas the names of the complex
types in OAGIS give the information captured by the ObjecsSITerms of CCTS. Hence,
the complex type names are used as the Object Class Terms@IiSCsktifact and they are

obtained by simply dropping the fix “Type” from the element’s complex type name. For

example, as shown above, the Object Class Term for Ad@esgponents “Address”.

However, some of the OAGISomponentsire defined based on CCL Core Components. In
such cases, the Object Class Terms of the corresponding@oon@onent is used. For exam-
ple, there is &omponentalled “ProjectReference” which is of type “ProjectRefereType”

as follows:

<xsd:element name="ProjectReference" type="ProjectReferenceType"/>

“ProjectReferenceType” is derived from “ProjectBaseTyaerd “ProjectBaseType” is based
on “ProjectABIEType”. Inthis case, the Object Class Term‘RrojectReference” is “Project”

as follows:

<xsd:complexType name="ProjectReferenceType">
<xsd:complexContent>

<xsd:extension base="ProjectBaseType">
<xsd:sequence>

<xsd:element ref="ActivityID" minOccurs="0"/>
<xsd:element ref="UserArea" minOccurs="0"/>
</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ProjectBaseType'">
<xsd:complexContent>
<xsd:extension base="ProjectABIEType" />
</xsd:complexContent>

</xsd:complexType>

In OAGIS, aComponents composed oFields andor ComponentReferencebields are at
the leaf level and they are based on CCTS Core Component .Tyjdethe OAGIS Fields
are defined in “Fields.xsd” document. They are inserted ¢0@AGIS Document Schema

Ontology as follows: In XSDs, eadhield is defined with an element and a corresponding

85

type declaration. The type declaration usually points ® @ore Component Type. For

example, the “PostalCode” field is of type “Code Type”:

<xsd:element name="PostalCode" type="CodeType">

This field is inserted to the ontology as a new class, whichrestiction onField class. An
example on how "PostalCode.CodeType” field of OAGIS 9.1 js@sented conforming to the
OAGIS 9.1 Upper Ontology is shown below. The representagom of this class is “Code”
and the data type of this class is “Code.Type”.

<owl:Class rdf:ID="PostalCode.CodeType">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Field"/>
<owl:Restriction>
<owl:onProperty
rdf:resource="#hasRepresentationTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Code" />
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasDataType"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Code.Type"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

Considering theComponent Referencethey are inserted to the ontology as new classes,
which are restrictions o€ComponentRetlass. For example, the “Preference.Preference”
Component Refereniginserted as shown below. It should be noted that it is useineral

Contextand refers to “Preference.Details” Component.

86

<owl:Class rdf:ID="Preference.Preference">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#ComponentRef" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasObjectClassTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Address"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasRepresentationTerm"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Preference"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Context"/>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#refersTo"/>
<owl:allValuesFrom>
<owl:Class rdf:about="#Preference.Details"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

87

3.5 HARMONIZING THE ONTOLOGIES OF THE DOCUMENT STANDARDS

When a DL reasoner runs through the upper ontologies togetitie the document schema
ontologies defined, the resulting inferred (harmonizedplogy gives the correspondences
between the document artifacts of the CCTS based standahdsestablished relationships
can be directly indicating that the two document artifacts equivalent or in subsumption
relationship. Furthermore, the relationship can be imditterough CCL, that is, the document
artifacts of two diferent standards may both be a superclass (or subclass) of a@fact

and the relationship between them can only be establismedgh CCL.

| UN/CCL - StructuredAddre%s | GS1 - NameAndAddres's
Identifier [identification.Identifier | «——| name.Text |
Postal_Zone.Text [Postcode.Code | «——>»[postalCode.Text |
StreetName.Name [StreetName.Text | €«——| crossStreetText |
CityName.Name | CityName.Text | —[city.Text |
CitySubdivisionName.Namd\J Country Identifier |4_>| countryCode.Code |
CountrySubentity. Text | citySub-DivisionName.Tek#¢———{ countyCode.Text |

AddressFormatCode.Code | BuildingName. Text —>| streetAddressTwo.Text|

|

|

|

|

|

| \

[BlockName.Name CountrySub—DivisionName.TGﬂ:’I state. Text |
[BuildingName.Name [countryName.Text Je provinceCode.Text |
[Plotidentification.Text | BlockName. Text je__ ,[streetAddressOne.Text|
| | .

: e

|

Region.Text Plotldentification. Text [language.Code |
Floor. Text | [pOBoxNumber.Text |
Room.Text | | currency.Code |
[CountrySubentityCode.Code| [InhouseMail. Text | [cityCode Text |
[Additional_StreetName. Text] | TimezoneOffset.Text | [geographicalCoordinatés
[BuildingNumber.Text | District. Text
| Department.Text | AddressTypeCode.Code
[Postbox.Text [Country |
[MarkCare.Text || LocationCoordinate |
[MarkAttention.Text [AddressLine |

Figure 3.7: The Semantic Equivalences among the BBIEs of8Bdress, CCL-Structured
Address and GS1-NameAndAddress Discovered through thedtazed Ontology

In this section, an example is presented on how the comwelatf three document compo-
nents is established in the Harmonized Ontology througibtheeasoning process. In order
to facilitate the description of the reasoning process uséhis example, first the ontology
descriptions are expressed as specified in this documentghrtheir corresponding logical
expressions. Table 3.1 gives the logical expressions sjooraling to “CCL Structured Ad-
dress ABIE” and Tables 3.2, 3.3 and 3.4 give logical exposssicorresponding to “UBL
Address ABIE”.

88

Table 3.1: UNCCL - “Structured Address” ABIE Asserted Definition

1. StructuredAddress.Details = AggregateBusinessinformationEntity AV con-
tains Structuredhddress.ldentification.ldentifier A StructuredAddress.Postcode.Cod
A StructuredAddress.BuildingName.Text A StructuredAddress.StreetName.Text A
StructuredAddress.CityName.Text A StructuredAddress.Country.ldentifier A Struc-
tured Address.CitySub-DivisionName.TextA StructuredAddress.CountryName.TextA Struc-
tured Address.CountrySub-DivisionName.TexA StructuredAddress.BlockName.TextA Struc-
tured Address.Plotldentification. Text ¥ hasObjectClassTerm Address/ usedinContext Context
2.StructuredAddress.BlockName.Text BasicBusinessinformationEntity YV hasDataType Text. Typé
A Y hasObjectClassTerm Address? hasRepresentationTerm Texty usedinContext Context
3.StructuredAddress.BuildingName.Text= BasicBusinessinformationEntityn vV hasDataType
Text.TypeA Y hasObjectClassTerm Address/ hasRepresentationTerm Text/ usedinContext Con-
text

4.StructuredAddress.CityName.Text BasicBusinessInformationEntity Y hasDataType Text. Type
¥ hasObjectClassTerm Address/ hasRepresentationTerm Text/ usedIinContext Context
5.StructuredAddress.CitySub-DivisionName.Text BasicBusinessIinformationEntitya ¥ has-
DataType Text.Typen ¥V hasObjectClassTerm AddressY hasRepresentationTerm TextV used-
InContext Context

6.StructuredAddress.Country.ldentifiex BasicBusinessinformationEntity ¥V hasDataType ldenti-
fier. Type A V¥ hasObjectClassTerm Address¥Y hasRepresentationTerm Identifery usedinContext
Context

7.StructuredAddress.CountryName.Texts BasicBusinessInformationEntityA V¥ hasDataType
Text.Type A ¥ hasObjectClassTerm AddressVY hasRepresentationTerm TextV usedInContext
Context

8.StructuredAddress.CountrySub-DivisionName.Text BasicBusinessinformationEntity vV has-
DataType Text.Typen ¥V hasObjectClassTerm AddressY hasRepresentationTerm Text¥ used-
InContext Context

9.StructuredAddress.ldentification.ldentifie= BasicBusinessInformationEntityn ¥V hasDataType
Identifier. TypeA ¥ hasObjectClassTerm Address¥Y hasRepresentationTerm Identifer¥ usedin-
Context Context

10.StructuredAddress.Plotldentification. Text BasicBusinessinformationEntityn vV hasDataType
Text. Typea Y hasObjectClassTerm Address/ hasRepresentationTerm Text/ usedinContext Con-
text

11.StructuredAddress.Postcode.CogeBasicBusinessinformationEntity V hasDataType Code.Typ
A Y hasObjectClassTerm Address? hasRepresentationTerm Codé¢/ usedIinContext Context
12.StructuredAddress.StreetName.Texts BasicBusinessinformationEntitya vV hasDataType

Text.Type A ¥V hasObjectClassTerm Address ¥ hasRepresentationTerm Text ¥ usedInCon-

D

4%

text Context

89

Table 3.2: UBL “Address” ABIE Asserted Definition - Part 1

13.Address.Details UBL.ABIE A Y contains Address.ldentifiex Address.AddressTypeCode.CoAie
A Address.AddressFormatCode.Code Address.Postbox.TextA Address.Floor.Text A Ad-
dress.Room.TextA Address.StreetName.Nama Address.AdditionalStreetName.NameA Ad-
dress.BlockName.NameA Address.BuildingName.NameA Address.BuildingNumber.Text A
Address.Inhous#ail. Text A Address.Department.Texth Address.MarkAttention.TextA Ad-
dress.MarkCare.TextA Address.Plotldentification.TextA Address.CitySubdivisionName.Namne
A Address.CityName.NameA Address.PostaZone.Text A Address.CountrySubentity. Texia
Address.CountrySubentityCode.Codea Address.Region.TextA Address.District. Text A Ad-
dress.TimezonefBset. TextA Address.AddressLing Address.Country\ Address.LocationCoordinate
A hasObjectClassTerm AddresausedinContext Context
14.Address.AdditionaStreetName.Name UBL.BBIE A ¥ hasDataType Name.TypeV hasObject-
ClassTerm Address V hasRepresentationTerm Namé/ usedIinContext Context
15.Address.AddressFormatCode.CogddJBL.BBIE A V hasDataType Code.Type ¥V hasObject-
ClassTerm Address V hasRepresentationTerm Codé/ usedinContext Context
16.Address.AddressTypeCode.Cogde UBL.BBIE A ¥V hasDataType Code.Typa Y hasObject-
ClassTerm Address V hasRepresentationTerm Codé/ usedinContext Context
17.Address.BlockName.Name UBL.BBIE A ¥V hasDataType Name.Type ¥ hasObjectClassTerm
AddressA Y hasRepresentationTerm Nameé/ usedinContext Context
18.Address.BuildingName.NanzeUBL.BBIE A ¥ hasDataType Name.TypeY hasObjectClassTerm
AddressA VY hasRepresentationTerm Nameé/ usedinContext Context
19.Address.BuildingNumber.Text UBL.BBIE A ¥ hasDataType Text.Type V hasObjectClassTerm
AddressA VY hasRepresentationTerm Texty usedIinContext Context

20.Address.CityName.NameUBL.BBIE A Y hasDataType Name.TypeY hasObjectClassTerm Ad

dressA V hasRepresentationTerm Namé/ usedinContext Context
21.Address.CitySubdivisionName.NaraeUBL.BBIE A V hasDataType Name.Type Y hasObject-
ClassTerm Address V hasRepresentationTerm Namé/ usedIinContext Context
22.Address.CountrySubentity. TextUBL.BBIE A ¥ hasDataType Text.Type Y hasObjectClassTerm
AddressA VY hasRepresentationTerm Texty usedIinContext Context
23.Address.CountrySubentityCode.CoddJBL.BBIE A ¥V hasDataType Code.Type Y hasObject-
ClassTerm Address V hasRepresentationTerm Codé/ usedinContext Context
24.Address.Department. TextUBL.BBIE A ¥V hasDataType Text.Type ¥ hasObjectClassTerm Ad-

dressa V hasRepresentationTerm Texty usedInContext Context

7]

25.Address.District. Text UBL.BBIE A ¥ hasDataType Text. Type ¥ hasObjectClassTerm Addreg
A Y hasRepresentationTerm Text/ usedinContext Context

26.Address.Floor.Text UBL.BBIE A VY hasDataType Text.Type V hasObjectClassTerm Address
¥ hasRepresentationTerm Texty usedinContext Context

27.Address.ldentifier UBL.BBIE A Y hasDataType Identifer. Type Y hasObjectClassTerm Addreg

7]

A Y hasRepresentationTerm Identifel’ usedinContext Context

28.Address.Inhous#ail. Text= UBL.BBIE A Y hasDataType Text. Type YV hasObjectClassTerm Ad

dressA V hasRepresentationTerm Texty usedInContext Context

90

Table 3.3: UBL “Address” ABIE Asserted Definition - Part 2

29.Address.MarkAttention.Text UBL.BBIE A ¥ hasDataType Text.Typs ¥ hasObjectClassTerm
AddressA VY hasRepresentationTerm Texty usedIinContext Context

30.Address.MarkCare.TextUBL.BBIE A Y hasDataType Text. TypeV¥ hasObjectClassTerm Addreg

7]

A Y hasRepresentationTerm Text/ usedinContext Context
31.Address.Plotldentification. TextUBL.BBIE A Y hasDataType Text.Type ¥ hasObjectClassTerm
AddressA VY hasRepresentationTerm Texty usedIinContext Context
32.Address.Postalone.Text= UBL.BBIE A V hasDataType Text.Type ¥ hasObjectClassTerm Ad-
dressa V hasRepresentationTerm Texty usedInContext Context

33.Address.Postbox. Text UBL.BBIE A V hasDataType Text. Type V hasObjectClassTerm Addreg

]

A Y hasRepresentationTerm Text/ usedinContext Context

34.Address.Region.Text UBL.BBIE A V hasDataType Text.Type ¥V hasObjectClassTerm Addreg

7]

A Y hasRepresentationTerm Text/ usedinContext Context

35.Address.Room.Text UBL.BBIE A Y hasDataType Text.Type ¥ hasObjectClassTerm Address
¥ hasRepresentationTerm Texty usedinContext Context
36.Address.StreetName.NareeUBL.BBIE A Y hasDataType Name.Type ¥ hasObjectClassTerm
AddressA Y hasRepresentationTerm Nameé/ usedinContext Context
37.Address.Timezone®et. Text= UBL.BBIE A V hasDataType Text.Type ¥V hasObjectClassTerm

AddressA VY hasRepresentationTerm Texty usedIinContext Context

>

38.Address.AddressLine UBL.ASBIE A ¥ hasObjectClassTerm Address/ hasRepresentationTer
AddressLinea ¥ refersTo AddressLine.Details ¥V usedinContext Context

39.Address.Countrys UBL.ASBIE A ¥ hasObjectClassTerm AddregsY hasRepresentationTerm
CountryA V refersTo Country.Details ¥V usedIinContext Context VY
40.Address.LocationCoordinateUBL.ASBIE A ¥ hasObjectClassTerm Addreas/ hasRepresenta

tionTerm LocationCoordinate V refersTo LocationCoordinate.Details¥ usedIinContext Context
41.AddressLine.Details UBL.ABIE A Y contains AddressLine.Line.Text ¥ hasObjectClassTerm

AddressLinea Y usedInContext Context

42 AddressLine.Line.Text UBL.BBIE A V hasDataType Text.Type ¥ hasObjectClassTerm Ad
dressLineA Y hasRepresentationTerm Texty usedIinContext Context

43.Country.Detailss UBL.ABIE A V contains Country.ldentificationCode.CodeCountry.Namen ¥
hasObjectClassTerm Country¥ usedInContext Context
44.Country.ldentificationCode.CoadeUBL.BBIE A ¥ hasDataType Countryldentificatidbode. Type
A Y hasObjectClassTerm Country¥ hasRepresentationTerm Codé/ usedIinContext Context
45.Country.Name= UBL.BBIE A ¥V hasDataType Name.Type VY hasObjectClassTerm CountryVY
hasRepresentationTerm Namé/ usedInContext Context

46.LocationCoordinate.Details = UBL.ABIE A v contains LocationCoordi-
nate.CoordinateSystemCode.Code LocationCoordinate.LatitudBegrees.Measuren Location-
Coordinate.Latitudéviinutes.MeasureA LocationCoordinate.LatitudeDirectionCode.Code Loca-
tionCoordinate.Longitud®egrees.MeasureA LocationCoordinate.Longitud®linutes.Measure A
LocationCoordinate.LongitudeDirectionCode.Cod& hasObjectClassTerm LocationCoordinaté

usedInContext Context

91

Table 3.4: UBL “Address” ABIE Asserted Definition - Part 3

47 LocationCoordinate.CoordinateSystemCode.God¢éBL.BBIE A ¥V hasDataType Code.Type VY
hasObjectClassTerm LocationCoordinaté hasRepresentationTerm Cod#& usedInContext Context
48.LocationCoordinate.LatitudBegrees.Measure UBL.BBIE A V hasDataType Measure.Type

¥ hasObjectClassTerm LocationCoordinaté/ hasRepresentationTerm Measuré/ usedinContext
Context

49.LocationCoordinate.Latitudglinutes.Measure=s UBL.BBIE A V hasDataType Measure.Type
¥ hasObjectClassTerm LocationCoordinate/ hasRepresentationTerm Measure/ usedinContext
Context

50.LocationCoordinate.LatitudeDirectionCode.CaddJBL.BBIE A ¥V hasDataType LatitudeDirecr
tion_Code.TypeA V hasObjectClassTerm LocationCoordinat&/ hasRepresentationTerm CogeY

usedInContext Context

51.LocationCoordinate.Longitudeegrees.Measure UBL.BBIE A V hasDataType Measure.Type
¥ hasObjectClassTerm LocationCoordinate/ hasRepresentationTerm Measure/ usedinContext
Context

52.LocationCoordinate.Longituddinutes.Measures UBL.BBIE A Y hasDataType Measure.Type
¥ hasObjectClassTerm LocationCoordinaté/ hasRepresentationTerm Measuré/ usedinContext
Context

53.LocationCoordinate.LongitudeDirectionCode.Caed&BL.BBIE A ¥V hasDataType LongitudeDi
rectionCode.TypeA Y hasObjectClassTerm LocationCoordinaté hasRepresentationTerm Code

Y usedInContext Context

Table 3.5: The Assertion Related with théfdient Usage of Datatypes

54 Name.Type=s Text.Type
74.Code.Type= Text. Type= Identifier. Type

The Harmonized Ontology contains the fact that “CCL StrreduAddress ABIE” is a sub-

class of “UBL Address ABIE” giving a much needed corresporage Similarly, Table 3.7

gives the logical expressions corresponding to “GS1 Nand@&ldress ABIE” and Table 3.5

gives one of the additional assertions for data types.

Table 3.8 gives the inferred equalities and subsumptiotiseidarmonized Ontology.

92

Table 3.6: Inferred EqualitigSubsumptions between YBICL “Structured Address” and

UBL “Address” in the Harmonized Ontology

Inferred Relations

The Facts used in Computing the In-

ferred Relations

StructuredAddress.CityName. Text = Ad-
dress.CityName.Name
StructuredAddress.CitySub-DivisionName.Text = Ad-
dress.CitySubdivisionName.
StructuredAddress.StreetName. Text = Ad-
dress.StreetName.Name

StructuredAddress. Identification.ldentifier = Ad-
dress.ldentifier

StructuredAddress.Postcode.Code = Ad-

dress.PostaZone. Text
StructuredAddress.Country.ldentifier Address.|dentifer
StructuredAddress.CountrySub-DivisionName.Text Ad-
dress.CountrySubentity. Text
StructuredAddress.CountryName.Text Address.Region.Tex

StructuredAddress.BlockName.Text = Ad-
dress.BlockName.Name
StructuredAddress.BuildingName. Text = Ad-
dress.BuildingName.Name
StructuredAddress.Plotldentification. Text = Ad-

dress.Plotldentification. Text

Address.Detailss a subclass oBtructuredAddress.Details

Def.4, Def.20, Def.54

Def.5, Def.21, Def.54

Def.12, Def.36, Def.54

Def.9, Def.27

Def.11, Def.32

Def.6, Def.27
Def.8, Def.22

Def.7, Def.34
Def.2, Def.17, Def.54

Def.3, Def.18, Def.54

Def.10, Def.31

Def.13, Def.1 (since Address.Detai

contain more than Structurgdiddress)

93

Table 3.7: GS1 “NameAndAddress” ABIE Asserted Definition

56.NameAndAddress.DetaisGS1.XML.ABIE A YV contains cityA cityCodeA countryCodea coun-
tyCode A crossStreen currencyA languageOfTheParty nameA pOBoxNumberA postalCodea
provinceCoden staten streetAddressOne streetAddressTwe. geographicalCoordinatesV hasOb-
jectClassTerm Address ¥ usedInContext Context

57.city= GS1.XML.BBIE A ¥V hasDataType Text.Type ¥ hasObjectClassTerm Address/ hasRep-
resentationTerm Text V usedInContext Context

58.cityCode= GS1.XML.BBIE A V hasDataType Text.TypeV hasObjectClassTerm AddressY
hasRepresentationTerm Texty usedinContext Context

59.countryCode= GS1.XML.BBIE A ¥ hasDataType Code.TypeV hasObjectClassTerm Addreas
¥ hasRepresentationTerm Codé/ usedIinContext Context

60.countyCode= GS1.XML.BBIE A VY hasDataType Text.TypeV hasObjectClassTerm Addreasy
hasRepresentationTerm Texty usedinContext Context

61.crossStreet GS1.XML.BBIE A ¥ hasDataType Text.TypeY hasObjectClassTerm AddressY
hasRepresentationTerm Texty usedinContext Context

62.currency= GS1.XML.BBIE A ¥V hasDataType Code.Type YV hasObjectClassTerm AddressY
hasRepresentationTerm Codé¢/ usedinContext Context

63.languageOfTheParty GS1.XML.BBIE A ¥ hasDataType Code.TypeV hasObjectClassTerm Ad
dressa Y hasRepresentationTerm Code/ usedinContext Context

64.name= GS1.XML.BBIE A ¥ hasDataType Text. Type¥ hasObjectClassTerm Addres$/ hasRep-
resentationTerm Text V usedInContext Context

65.pOBoxNumbee GS1.XML.BBIE A Y hasDataType Text.TypeY hasObjectClassTerm Address
¥ hasRepresentationTerm Text/ usedInContext Context

66.postalCode= GS1.XML.BBIE A V hasDataType Text.TypeV hasObjectClassTerm AddressY
hasRepresentationTerm Texty usedinContext Context

67.provinceCode= GS1.XML.BBIE A ¥ hasDataType Text.TypeV hasObjectClassTerm Address
¥ hasRepresentationTerm Text/ usedInContext Context

68.state=s GS1.XML.BBIE A VY hasDataType Text.TypeV hasObjectClassTerm Address/ hasRep-
resentationTerm Text ¥ usedInContext Context

69.streetAddressOnreGS1.XML.BBIE A ¥V hasDataType Text. TypeV hasObjectClassTerm Addres
A ¥ hasRepresentationTerm Text/ usedinContext Context

70.streetAddressTwe GS1.XML.BBIE A Y hasDataType Text.TypeV hasObjectClassTerm Addres
A ¥ hasRepresentationTerm Text/ usedinContext Context
71.geographicalCoordinatesGS1.XML.ASBIE A ¥ hasObjectClassTerm Address/ hasRepresen
tationTerm GeographicalCoordinate¥ refersTo GeographicalCoordinates.Detail¢ usedIinContext
Context

72.GeographicalCoordinates.Detads5S1.XML.ABIE A ¥ contains latitude\ longitudeA ¥ hasOb-

jectClassTerm GeographicalCoordinateg usedIinContext Context

94

(7]

(7]

Table 3.8 gives the inferred equalities and subsumptiotiseitHarmonized Ontology.

Table 3.8: Inferred EqualitigSubsumptions between YGICL “Structured Address” and

GS1 “NameAndAddress” in the Harmonized Ontology

Inferred Relations

The Facts used in Computing the In-

ferred Relations

StructuredAddress.CityName.Text city
StructuredAddress.City-SubdivisionName. TextcountyCode
StructuredAddress.StreetName. TextcrossStreet
StructuredAddress.|dentification.ldentifiexr name
StructuredAddress.Postcode.CogepostalCode
StructuredAddress.CountrySubDivisionName. Text
provinceCode

StructuredAddress.Country.ldentifiez countryCode
StructuredAddress.CountrySub-DivisionName. Texstate
StructuredAddress.CountryName.Text streetAddressOne
streetAddressTwo

StructuredAddress.BlockName.Texts streetAddressOne=
streetAddressTwo

StructuredAddress.BuildingName.Text streetAddressOne
streetAddressTwo
StructuredAddress.Plotldentification. Text streetAddressOne
= streetAddressTwo

subclass of Struc-

NameAndAddress.Details is a

tured Address.Details

h

Def.4, Def.57

Def.5, Def.59

Def.12, Def.61

Def.9, Def.64, Def. 55
Def.11, Def.66, Def.55
Def.8, Def.67

Def.6, Def.60, Def. 55

Def.8, Def.68

Def.7, Def.69, Def.70

Def.2, Def.69, Def.70

Def.3, Def.69, Def.70

Def.10, Def.69, Def.70

Def.56, Def.l (since NameAndAdt

dressDetails contain more BBIEs th3

StructuredAddress.Details)

AN

As a summary, Table 3.6 and Table 3.8 give how the equivategen in Figure 3.7 are

computed. Additionally, as shown in Table 3.8, the reasdimovers that “GS1-NameAnd

Address.Details"is a subclass ofUN/CCL-StructuredAddress.Details” and as shown in
Table 3.6, and that “UBL-Address.Detail®’ a subclass ofUN/CCL-StructuredAddress.-
Details” because the “UBL-Address.Details” and the “GSdnridAndAddress.Details” both

contain more elements than the “UDCL-StructuredAddress.Details” document artifact.

95

CHAPTER 4

PROVIDING HEURISTICS TO DISCOVER STRUCTURALLY
DIFFERENT DOCUMENT ARTIFACTS

The semantic properties of the CCTS based document astifestp discovering the equiva-
lences of structurally and semantically similar artifactéowever, diferent document stan-
dards use€Core Componenti different structures. For example, an “Address” component of
one standard may be totallyftiirent than the “Address” of another standard. Semantic-prop
erties of document artifacts are not enough to find the siityilaf the structurally diferent

but semantically equivalent document artifacts. In otherds, DL reasoners discover re-
lations among both semantically and structurally similamponents. However, document
standards generate their components ifiedént structures. For example, in CCL, “Pri-
mary_ldentification. Identifier” BBIE in included directly intoBuyer_Party” ABIE. How-
ever, in UBL, the BBIE used for party identification is in “Bddentification” ABIE, which

is associated to “Party” ABIE through “Party.Partyldetfiion” ASBIE. Therefore, the rea-

soner cannot find the relation between “Party” and “BuyesPar

More specifically, description logics cannot find the rela between these structurally dif-
ferent components. Therefore, heuristics should be peavid find these relations. In my

approach, there are two types of heuristics:

1. Heuristics given in description logics: These heurssice mostly auxiliary in nature
and they are inserted into the upper and document schemiagie®in creation time.
They are for resolving the fierent usages of CCTS Data Types and putting the object
class terms into a hierarchy to help finding the equivalentEBat diferent structural

levels. They are described in Sections 4.1 and 4.2, resp8cti

96

2. Heuristics given in predicate logics: These heuristiesused to find relations between
structurally diferent but semantically similar components and they areritbestin

Section 4.3.

4.1 HEURISTICS TO HELP RESOLVING THE DIFFERENT USAGES OF
CCTS DATATYPES

Different document standards use CCTS Data Typ@asrelntly. For example, “Code.Type”
can be used to specify the datatype of a BBIE in one standatdTaxt. Type” can be used
for the same BBIE in another standard and yet “IdentifiereTyip another standard. This
knowledge in real world is expressed through class equicake as shown below so that not

only the humans but also the reasoner knows about it.

<owl:Class rdf:ID="Code.Type">
<owl:equivalentClass rdf:resource="#Text.Type"/>
<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Name.Type">
<owl:equivalentClass rdf:resource="#Text.Type"/>
<rdfs:subClassOf rdf:resource="#CoreComponentType" />
</owl:Class>
<owl:Class rdf:ID="Identifier.Type">
<owl:equivalentClass rdf:resource="#Text.Type"/>
<rdfs:subClassOf rdf:resource="#CoreComponentType" />

</owl:Class>

Obviously such rules will not be needed if the document stedgluse CCTS methodology in
the same way. But in reality, the existing CCTS based doctistandards have suchfidirent
usages and to discover similar document artifacts fiedint standards, the reasoner needs
this information. It should be noted that such an assertiag produce some false positives,
that is, finding two unrelated document artifacts to be simiHowever, such false positives
are in limited numbers, since many other semantic propedighe document artifacts are
compared to find similarities. The false positives, whety theppen, need to be sorted out
manually. Since my purpose is to develop a support tool fandmns to use rather than a
completely automated process, the human interventiorcesssary to eliminate the remaining

false positives if there are any.

97

4.2 AHEURISTIC TO HELP FINDING THE EQUIVALENT BBIES AT DIF-
FERENT STRUCTURAL LEVELS

A problem in finding the document artifacts with similar infoation content in two dierent
document schemas is that the semantically similar arsifaety appear at structurallyfférent
positions. For example, two semantically equivalent agapes document components, which
belong to diferent document standards, may have their basic documemor@ants, which
are also semantically equivalent, affdrent structural levels as shown in Figure 4.1 (A) and
(B). These cases prevent description logics reasonersstowdr the relationship between
them. The problem is how to inform the reasoner in an autainatgy that such document

components are considered similar.

contains

(A) ! Step 2

Figure 4.1: Example structuralftirence

First, note that a®bject Class Terrm CCTS denotes that a document component belongs to
an abstract class, although not in ontological terms. Ifieaging the semantics of the CCTS,
ontology classes are created for document components andia® them with their corre-
spondingObject Class Ternelasses througbwl:hasOCTproperty. Consider the following

two document components:

e A basic component “BBIE B2” with a®bject Class TerfdCT1 is referred to through
an association component from an aggregate component wi@bgect Class Term

OCT2 in one document schema as shown in Figure 4.1 (A),

e A basic component “BBIE B1”, which is semantically equivaléo “BBIE B2", di-
rectly appears under an aggregate component witdlgact Class TernrOCT2 in an-

other schema as shown in Figure 4.1 (B).

To handle such a structuralffirence, a subsumption relation is established among@meir

ject Class Terntlasess by declaring that OCTL1 is a subclass of OCT2. Thetioteis that

98

; Assume that there are two BBIEs, whose names are namename,
; respectively.

BBIE(name, octy, rty, contexi, dataType) A

BBIE(name, ocb, rtp, contexg, dataType) A

; If their “Object Class Terms” are equal or subclass of edblro

(Vv (oct; = ocb) (oct; is a subclass obch) (och is a subclass obct)) A
; And if their “Representation Terms” are equal or subcldssagh other
(Vv (rty = rtp) (rty is a subclass ofty) (rto is a subclass oft;)) A

; And if their “Contexts” are equal or subclass of each other

(v (context = contexp) (contexi is a subclass ofontexp) (contexp

is a subclass ofontext)) A

; And if their “Data Types” are equal or subclass of each other

(v (dataType = dataType) (dataType is a subclass oflataType)
(dataType is a subclass oflataType))

=

; Then these BBIEs are equal

name = name

Figure 4.2: The Rule for Discovery of two Semantically SaniBasic Document Components

a basic document component semantically similar to “BBIE Byht as well be regarded
as a part of an aggregate component whobgect Class Ternis OCT2 to let the reasoner

discover such equivalences.

Note that once such an assertion is made, then the reasaneratasively trace the associa-

tion components at any depth.

This semantics is extracted when the document schemas @sesped to create the corre-
sponding OWL ontologies through a software developed whiglomatically asserts a sub-
sumption hierarchy among tt@bject Class Termslasses of such document artifacts. In fact,

the harmonized ontology given in [90] already contains @thsrelationships.

4.3 HEURISTICS TO FIND RELATIONSHIPS BETWEEN SEMANTICALLY
SIMILAR BUT STRUCTURALLY DIFFERENT DOCUMENT ARTIFACTS

A very common structural éfierence in semantically similar document artifacts is that a
though some of the semantic properties of a document artidcis the subclass of the
corresponding properties of the document artifact “B”, santher properties of “A” are the

super classes of the corresponding attributes of “B”. Asyample, a document artifact

99

: Assume that there are two ASBIEs, whose names are nantename,
; respectively.

ASBIE(name, oct, rty, context, refersTq) A

ASBIE(name, ocb, rty, contexs, refersTo) A

; If their “Object Class Terms” are equal or subclass of edblro

(Vv (oct; = ocb) (oct; is a subclass obch) (och is a subclass obct)) A
; And if their “Representation Terms” are equal or subcldss o

; each other

(Vv (rty = rtp) (rty is a subclass afty) (rty is a subclass aft;)) A

; And if their “Contexts” are equal or subclass of each other

(v (context = contexp) (contexi is a subclass ofontexp) (contexg

is a subclass ofontexi)) A

; And if they “refesTo” the same ABIE or the referred ABIESs sldss of
; each other

(v (refersTa = refersTo) (refersTq is a subclass ofefersTo) (refersTo
is a subclass afefersTq))

=

; Then these ASBIEs are equal

name = name

Figure 4.3: The Rule for Discovery of two Semantically Samihssociation Document Com-
ponents

A's context may be a subclass of document artifact B’s cdritek the subclass relationship
among their other properties may be in the reverse direchananother example, as shown
in lower part of Figure 4.7, the relations between the vahfe$arty. PostalAddress. Ad-
dress” and “BuyeiParty. Postal. Structuredldress” ASBIEs’ “usedInContext” and “refer-
sTo” properties are in reverse direction. For discoverimgdimilarity of document artifacts,
it is not important if the direction of the subsumption radas among the corresponding se-
mantic properties of the document artifacts is the sametHeravords, when the purpose is
to find out whether these artifacts are similar, it is not imig@at whether the direction of the

subsumption relationship isfiirent among their corresponding attributes.

Furthermore, the heuristics are categorized accordingdotaral diferences that can occur

among dfferent document artifacts as follows:

e Heuristics to Discover Structurally [Ferent Basic Document Components (BBIHEE)
the semantic properties of two basic document componeatgair wise equivalent or
subclasses of each other, these basic document comporentsaidered to be similar.

The rule in Figure 4.2 expresses this heuristics. When thésfires, it establishes an

100

; Assume there are the following artifacts.
ASBIE(name, octy, rt;, contexi, refersTq) A
ABIE(name, ocb, containsSet contexg, bieCoung) A
BBIE(name, oct, rt3, contexg, dataType) A

BBIE(name, oct, rt4, contexy, dataTypeg) A

: If ASBIE name, “refersTo” ABIE name

refersT@ = name A

; And if BBIE name; is in the ContainsSet of ABIE name
name € containsSetA

; And if BBIE ABIE name; is equals to BBIE name
name = name

=

; Then BBIE namgis equals to BBIE namename = name

Figure 4.4: The Rule for Discovery of Semantic Similarityveeen a Basic Document Com-
ponent and an Association Document Component

owl:equivalentClasproperty between these two basic document components.

e Heuristics to Discover Structurally [Jerent Association Document Components (AS-
BIEs) If the semantic properties of two association documentpmrents are pair
wise equivalent or subclasses of one another, these assonaacument components
are considered to be equivalent. The rule given in Figurestates this heuristics and
when this rule fires, it establishes awl.equivalentClasgproperty between these two

association document components.

e Heuristics to Discover Structurally [Ferent Association Document Component (AS-
BIE) and Basic Document Component Pairs (BBIEpnsider two basic document
components, “BBIE B1” and “BBIE B2", which belong to fiérent standards and
whose semantic equivalence is established through thedmézed ontology as indi-
cated in Figure 4.1 Step 1. Assume that “BBIE B1” is in an aggte document compo-
nent “ABIE A1” whose object class term is OCT2 as shown in Fegli1 (B). Assume
further that “BBIE B2” is in an aggregate document compori@BIE A2” as shown
in Figure 4.1 (A). Another aggregate document componentlEAB3” whose object
class term is OCT2, refers to “ABIE A2” through the associatdocument compo-
nent “ASBIE AS” (Figure 4.1 (A)). There is a possibility thée association document
component “ASBIE AS” is semantically equivalent to the lbaskbcument component

“BBIE B1” as shown in Figure 4.1 Step 2.

101

; Assume that there are two ABIEs, whose names are panmnamg
ABIE(name, octy, containsSet contexi, bieCount) A

ABIE(name, ocb, containsSet contexg, bieCoung) A

; If their “Object Class Terms” are equal or subclass of eablro

(v (octy = oct) (octy is a subclass abict) (ock is a subclass obcty)) A
; And if their “ContainsSet” are equal or subclass of eacleoth

(Vv (containsSeat= containsSel (containsSatc containsSel
(containsSetc containsSad) A

; And if their “Contexts” are equal or subclass of each other

(v (context = contexp) (contexi is a subclass ofontexp)

(contexp is a subclass ofontext))

=

; Then these ABIEs are equal.

nameg = name

Figure 4.5: The Rule for Discovery of two Aggregate Docum@amponents having Seman-
tically Similar Content

The rule given in Figure 4.4 states this heuristics and whirule fires, it establishes
an owl:equivalentClasgroperty between the association document component “AS-
BIE AS” and basic document component “BBIE B1”. Note thatetitis equivalence

is established in the harmonized ontology and the reassnexedcuted again it may
establish the equivalence of the aggregate componentsré~gl Step 3) by trigger-
ing theHeuristics to Discover Structurally Ferent Aggregate Document Components
(ABIES)rule.

e Heuristics to Discover Structurally Perent Aggregate Document Components (ABIES)
The structural dferences that can occur in aggregate document componentsage
complex, because each of them may containfieidint number of basic and associa-
tion document components, some of which may be semantiegiliwvalent, some may
not. To be able to better express th&ealent cases that may appear, @entainsSet
of an aggregate document component is defined to be the sétaifiess document
components. Th€ontainsSets in fact the set of document components in the range
of the containsproperty of an aggregate document component. CbhptainsSetsf
two aggregate document components may be equal; may haverautiantersection;
may be in subset relationships or may be disjoint of eachrotlighe ContainsSets
are not disjoint, heuristics are provided to discover tk@irilarity. Note that the other

semantic properties of two aggregate document componeunds e similar for these

102

rules to fire.

— Case 1: The ContainsSets of two aggregate document conmgarerequivalent
or in subset relationshipConsidering all the semantic properties of two aggregate
document components, if each of them is pair wise equivalersubclasses of
one another, and theContainsSetsire the same or subsets of each other, these
aggregate document components are considered to be siffilarule in Figure
4.5 states this heuristics. When this rule fires, it esthbfisanowl:equivalent-

Classproperty between these two aggregate document components.

— Case 2: The ContainsSets of two aggregate document comigdmare a non-
null intersection The semantic properties of two aggregate document conmp®ne
may be equivalent and the@ontainsSetay have a non-null intersection. What
is provided is asimilarityConstantthat the user may set. As an example, if the
user considers that two aggregate document componenténilar svhen 60%
of their document components are similar then he can sedithiéarityConstant
to “0.6”. Hence, when all the semantic properties of two aggte document
components are either pair wise equivalent or subclasseseoénother, and the
document components in theBontainsSesets aresimilarityConstantpercent
equivalent, these aggregate document components aralewtito be similar.
The rule given in Figure 4.6 states this heuristics and whéres, it establishes
anowl.equivalentClasproperty between these two aggregate document compo-

nents.

These rules are defined in predicate logic using JESS Rutgsaftl execute them through
JESS Rule Engine and carry the results back to the harmoniztetbgy. Note that the rules
defined produce further OWL class equivalences in the hamadrontology. After this step,
the DL-Reasoner is executed again to compute the new egaabsumption relations. The
discovered equivalences are presented to the domain exple user for his approval. This

process may be repeated until the user is satisfied with Huewired similarities.

103

; Assume that there are two ABIEs, whose names are panmnamg
ABIE(name, octy, containsSet contexi, bieCount) A

ABIE(name, ocb, containsSet contexg, bieCoung) A

; If BIE name; is in the ContainsSet of ABIE name

name € containsSeatA

; And if BIE name is in the ContainsSet of ABIE name

name € containsSetA

; And if BIE name and BIE namg are equal or subclass of each other
(v (nameg = namaq) (hame is a subclass ahama) (hame is a subclass oiama))
=

; Then increase count by 1

($count= $count+1) A

; And if the similarity between their ContainsSet is grediemn

; similarityConstant then these ABIEs are equal.

(IF (($count/ (bieCouni + bieCount - $count))> $similarityConstant))
THEN nameg = name

Figure 4.6: The Rule for Discovery ofg two Semantically SamAggregate Document Com-
ponents

UBL UN/CCL
[Party.Detail§ ABiE [Buyer_Party Detail} "=
—Party.Partyldentification ASBIE [Buyer_Party.Primary_ldentification.Identifiet—
re\@;l Partyldentification.Details| ABIE P hasoCF—— BBIE
Partyldentification.Identifief BBIE _ -~ i Identifier |« hasRT
T R A vt

-7 Identifier. Type)

| Buyer_Party.Postal.Structured_Addresf———
ASBIE

hasRT

hasOCF

usedInContext/

_-~" _-[Stuctured_Address.Detailg- refersTo

hasR P
- -7 contains
usedInConte Context P
- <+«—>» equals
refersTo Address.Details ——» Object Property

— — - > subClassOf

Figure 4.7: UBL's Party ABIE and CCL's Buydparty ABIE

4.4 AN EXAMPLE ON THE USE OF THE HARMONIZED ONTOLOGY
AND THE PROVIDED HEURISTICS

In this section, a real life example is presented to explaénuse of the harmonized ontology
and the provided heuristics. Consider the two example deatirartifacts given in Figure

104

Table 4.1: The Relationship among the Semantic ProperttiwgodExample Basic Document
Components

“Partyldentification. Identifier’| “Buyer_Party. Pri-
of UBL mary_ldentification.
Identifier” of UN/CCL
Primaryldentification Party “Primaryldentification”

Object Class Termis
a subclass of “Party’
Object Class Termas
described in Section 4.2
Identifier Identifier Both Basic Documen
Components have the
same Representatior

Term

Context Trade “Trade” context class ig
a subclass of th€ontext
top class

Identifier. Type Identifier. Type Both Basic Documen
Components have the
sameData Type

4.7. A human looking at this figure can immediately tell thenifarity between the UBL
“Party.Details” and UNCCL “Buyer_Party.Details”. The aim is to discover such similarities

in an automated way.

Given the two document artifacts in Figure 4.7, the Desicniptogics reasoner first dis-
covers the similarities of the semantic properties of tHefong basic document compo-
nents: the UBL's “Partyldentification.ldentifier” and the\{CCL's “Buyer_Party.Primary-

Identification.ldentifier” as shown in Table 4.1.

Note that the subsumption relationship between “Primamiification” and “Party” classes is
in the opposite direction of the subsumption relationskmeenContextand “Trade”. How-
ever, through the class equivalence asserted to the haretbontology with the execution
of the rule given in Figure 4.2, the Description Logics reasoestablishes the relationship
between the UBL's “Partyldentification.ldentifier” and thé&l/CCL’s “Buyer_Party.Primary-
Identification.ldentifier” as being equivalent. Furthemnahe reasoner using the class equiv-
alence inferred by the rule given in Figure 4.4, establighesfact that the “BuyeParty.-
Primary Identification.ldentifier” is equivalent to the “Party.Bddentification” association

document component.

105

Similarly, for the UBL's “Party.PostaAddress.Address” association document component
and the UNCCL's “Buyer_Party.Postal.Structuredddress” association document compo-
nent, the reasoner establishes the equivalences and thengotion relationships among the

document artifacts as shown in Table 4.2 in the harmonizéolayy.

In Table 4.2, the direction of the subsumption relationsbgiween the UBL “Address.-
Details” and the UNCCL “StructuredAddress.Details” classes is in the opposite direction of
the subsumption relationship between @entextand the “Trade”. However, since the class
equivalence relationship is already asserted to the hdmmwrontology with the execution
of the rule given in Figure 4.3, the Description Logics ressoestablishes the relationship
between the UBL's “Party.Posté@lddress.Address” and the YBICL's “Buyer_Party.Postal.-
StructuredAddress” as being equivalent classes. In Figure 4.7, fosdke of simplicity some
of the basic document components and association docuroentonents, namely, the UBL
“Party.Details” and the URCCL “Buyer_Party.Details” are not shown. When the Description
Logics reasoner considers these extra basic and assodiakoiment components, the equiv-
alence among the semantic properties becomes as shownuire Ei@. In other words, the
set of basic and association document components of the BBLty.Details” is a superset of

document components of YRICL “Buyer_Party.Details”.

The relationships shown in Figure 4.8 together with the iuleigure 4.5 trigger the semantic

equivalence of the UBL “Party.Details” and the UDCL “Buyer_Party.Details” document

artifacts.
UBL CCL
Party.Detailg Buyer_Party. Detai@
hasOC hasOCF—
usedInCont _____ usedInContext
contains»{ BBIE/ASBIE Set |- — — — — = BBIE/ASBIE Set [* contains—

— — — > subClassOf
<+«— equalTo
—> ObjectProperty

Figure 4.8: UBL's Party ABIE and CCL's Buydparty ABIE

106

Table 4.2: The Relationship among the Semantic Properfi¢a Example Association

Document Components

“Party. PostalAddress.
dress” of UBL

Ad-

“Buyer_Party. Postal,
StructuredAddress” of
UN/CCL

Party

Party

Both Association Docu-
ment Components havj
the same Object Class
Term

[¢)

Address

Address

Both Association Docuj
ment Components hay
the sameRepresentatior
Term

[0)

Context

Trade

“Trade” context class ig
a subclass of th€ontext
top class

Address. Details

Structured Address. De-
tails

“Address. Details’is a
subclass of“Structured
Address. Details”

107

CHAPTER 5

AUTOMATED XSLT GENERATION SUPPORT

The harmonized ontology gives the specified as well as theoated equality and subsump-
tion relations among the classes of both the upper ontadagiel the document schema on-
tologies. In order to translate document instances betw#&Bsrent document schemas, this
knowledge should be used to determine the relationshipdsetthe elements in the document
instances. In other words, the equivalences discoverecharied to the data level, where the
document instances are described in XML. The instance teseslation is achieved using
XSLT and the XSLT definitions are generated automaticallyttie identified equivalences

through the following process:

e While constructing the upper ontologies, the relationsveen the ontology classes
and XSD schema elements are identified and the correspoX@ath expressions are

generated.
e To obtain the XSLT definition from a document artifact to drest
— The harmonized ontology classes that correspond to doduargfacts in the
document schemas are matched.

— Then, the XPath expressions for the identified classes areved.

— Finally, XSLT expressions are generated automaticallypnftbese XPath expres-
sions using the equivalences among document artifactewdised through the

harmonized ontology.

The extra elements, for which the methodology cannot dstatite corresponding elements

in the target document schema (either because there is responding element or there is

108

such an element but the methodology is not able to find théebklement) are inserted into
the extension part of the target document schema. The doerparts can further handcraft

the XSLT definitions.

5.1 AN EXAMPLE: TRANSLATING UBL “ADDRESS.dETAILS” TO GS1
“‘“NAME AND ADDRESS”

In this section, the translation process is described tir@n example.

5.1.1 OBTAINING THE XPATH EXPRESSIONS FOR UBL “ADDRESS” ABI E AND
FOR ITS BBIES/ASBIES AUTOMATICALLY

The ABIEs in UBL are represented with “xsd:complexType” diiions in XSDs. The “xsd:-

complexType” of “Address.Details” ABIE is “AddressType’ln the annotation part of the
UBL XSD schemas, the dictionary entry names of the BIEs ae jatovided. As mentioned
previously, the class names for BIEs in the document schentidogies are generated from
the dictionary entry names. Therefore, this informatiodirectly used in constructing the
XPath expressions for UBL ontology classes (i.e. this imfation implicitly describes the
ontology class). In the below fragment, a part of UBL “Addi®goe” XSD declaration is

given.

<xsd:complexType name="AddressType">
<xsd:annotation>
<xsd:documentation>
<ccts:Component>
<ccts:ComponentType>ABIE</ccts:ComponentType>
<ccts:DictionaryEntryName>Address. Details</ccts:DictionaryEntryName>
<ccts:Definition>Information about a structured address.</ccts:Definition>
<ccts:0bjectClass>Address</ccts:0ObjectClass>
</ccts:Component>
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element ref="cbc:ID" minOccurs="0" maxOccurs="1">
<xsd:annotation>
<xsd:documentation>
<ccts:Component>

<ccts:ComponentType>BBIE</ccts:ComponentType>

109

</

</Xs
</xsd:
</xsd:el

<xsd:ele

<ccts:DictionaryEntryName>Address. Identifier</ccts:DictionaryEntryName>
<ccts:Definition>An identifier for a specific address within a

scheme of registered addresses.</ccts:Definition>
<ccts:Cardinality>0..1</ccts:Cardinality>
<ccts:0ObjectClass>Address</ccts:0bjectClass>
<ccts:PropertyTerm>Identifier</ccts:PropertyTerm>
<ccts:RepresentationTerm>Identifier</ccts:RepresentationTerm>
<ccts:DataType>Identifier. Type</ccts:DataType>
<ccts:AlternativeBusinessTerms>DetailsKey</ccts:AlternativeBusinessTerms>
ccts:Component>

d:documentation>

annotation>
ement>
ment ref="LocationCoordinate" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation>

<C

</

</XSs
</xsd:
</xsd:el

cts:Component>

<ccts:ComponentType>ASBIE</ccts:ComponentType>
<ccts:DictionaryEntryName>Address. Location Coordinate</ccts:DictionaryEntryName>
<ccts:Definition>An association to Location Coordinate.</ccts:Definition>
<ccts:Cardinality>0..1</ccts:Cardinality>
<ccts:0ObjectClass>Address</ccts:0bjectClass>

<ccts:PropertyTerm>Location Coordinate</ccts:PropertyTerm>
<ccts:AssociatedObjectClass>Location Coordinate</ccts:AssociatedObjectClass>
ccts:Component>

d:documentation>

annotation>

ement>

</xsd:sequence>

</xsd:complexType>

The XPath language itself refers to XML elements, not to X®Mplex types. Therefore,

when generating the XPath expression for the “AddressilBetaBIE, the XML elements

that refer to the “AddressType” are collected. In UBL XSOw XML elements that refer to

“AddressType” are as follows:

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

<xsd:

element
element
element
element
element
element
element

element

name="RegistrationAddress" type="AddressType"/>
name="PostalAddress" type="AddressType"/>
name="0OriginAddress" type="AddressType"/>
name="JurisdictionRegionAddress" type="AddressType"/>
name="DespatchAddress" type="AddressType"/>
name="DeliveryAddress" type="AddressType"/>
name="ApplicableTerritoryAddress" type="AddressType"/>
name="ApplicableAddress" type="AddressType"/>

110

<xsd:element name="Address" type="AddressType"/>

Hence, the XPath expression for “Address” ABIE is as follows

#Address.Details --> //(Address | ApplicableAddress | ApplicableTerritoryAddress
DeliveryAddress | DespatchAddress | JurisdictionRegionAddress | OriginAddress

PostalAddress | RegistrationAddress)

This XPath expression states that “Address.Details” ogiplclass corresponds to Address,
ApplicableAddress, ApplicableTerritoryAddress, Detiw&ddress, DespatchAddress, Juris-
dictionRegionAddress, OriginAddress, PostalAddressReglstrationAddress XML elements
in a UBL XML document. The//” in the beginning of the XPath expression states that the
element can be at any depth in the XML document. The XPathesgmms given below for
the BBIEs and ASBIEs in the “Address.Details” ABIE are gexted by concatenating the

corresponding XML elements names to the above XPath express

#Address.Identifier --> //(Address | ApplicableAddress | ApplicableTerritoryAddress
DeliveryAddress | DespatchAddress |JurisdictionRegionAddress | OriginAddress

PostalAddress | RegistrationAddress)/ID

#Address.LocationCoordinate --> //(Address | ApplicableAddress
ApplicableTerritoryAddress | DeliveryAddress | DespatchAddress
JurisdictionRegionAddress | OriginAddress | PostalAddress |

RegistrationAddress)/LocationCoordinate

#LocationCoordinate.Details --> //LocationCoordinate (LocationCoordinateType)
#LocationCoordinate.CoordinateSystemCode.Code --> //LocationCoordinate/CoordinateSystemCode
#LocationCoordinate.Latitude_Degrees.Measure --> //LocationCoordinate/LatitudeDegreesMeasure
#LocationCoordinate.Latitude_Minutes.Measure --> //LocationCoordinate/LatitudeMinutesMeasure
#LocationCoordinate.LatitudeDirectionCode.Code --> //LocationCoordinate/LatitudeDirectionCode
#LocationCoordinate.Longitude_Degrees.Measure --> //LocationCoordinate/LongitudeDegreesMeasure
#LocationCoordinate.Longitude_Minutes.Measure --> //LocationCoordinate/LongitudeMinutesMeasure

#LocationCoordinate.LongitudeDirectionCode.Code --> //LocationCoordinate/LongitudeDirectionCode

In the above example, XPath expressions for “AddressLif@buntry” and “LocationCoor-

dinate” ABIEs are also provided for the sake of completeness

111

5.1.2 OBTAINING XPath EXPRESSIONS FOR GS1 “NAMEANDADDRESS” ABIE
AND FOR ITS BBIES

The ABIEs are represented in GS1 XML's XSD schemas throughl:bomplexType” decla-
rations. Furthermore, in GS1 XML, the “xsd:complexType'hmaof an ABIE can be identi-
fied by concatenating “Type” keyword to the ABIE name. Theref the complex type name
of “NameAndAddress” is “NameAndAddressType”. The nexpsteto find the declaration
of this type. In GS1 XML, for all ABIEs there is either a separXSD file (which can be
identified by concatenating “.xsd” extension to the ABIE&me, e.g., “NameAndAddress”
has “NameAndAddress.xsd”) or the ABIE’s “xsd:complexTypleclaration is in the parent
ABIEs XSD file (e.g. “GeographicalCoordinates” ABIE’s decdtion is in “NameAndAd-
dress.xsd”). Therefore, the complex type “NameAndAddigss” is declared in “NameAn-

dAddress.xsd” file, as follows:

<xsd:complexType name="NameAndAddressType">
<xsd:sequence>
<xsd:element name="city">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:maxLength value="35"/>
<xsd:minLength value="1"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="geographicalCoordinates"
type="eanucc:GeographicalCoordinatesType" minOccurs="0">
</xsd:element>
</xsd:sequence>

</xsd:complexType>

As mentioned previously, the XPath language itself ref@bsNIL elements, not to XSD com-
plex types. Therefore, when generating the XPath expmedsiothe “NameAndAddress”
ABIE, the XML elements that refer to the “NameAndAddressdyphould be identified. In
GS1 XSDs, one of the XML elements that refer to “NameAndAddigpe” is “shipToNon-

Commercial” as follows:

<xsd:element name="shipToNonCommercial"” type="eanucc:NameAndAddressType">

</xsd:element>

112

The XPath expression for “NameAndAddress” ABIE is as foow

#NameAndAddress.Details --> //shipToNonCommercial

Furthermore, the XPath expressions for the BBIEs in “Nantddress” can be obtained
by concatenating the corresponding element name to theeak@ath expression. The XPath

expressions for the BBIEs of “NameAndAddress” are as fadiow

#city --> //shipToNonCommercial/city

#cityCode --> //shipToNonCommercial/cityCode

#countryCode --> //shipToNonCommercial/countryCode/countryISOCode
#countyCode --> //shipToNonCommercial/countyCode

#crossStreet --> //shipToNonCommercial/crossStreet

#currency --> //shipToNonCommercial/currency

#languageOfTheParty --> //shipToNonCommercial/languageOfTheParty
#name --> //shipToNonCommercial/name

#pOBoxNumber --> //shipToNonCommercial/pOBoxNumber

#postalCode --> //shipToNonCommercial/postalCode

#provinceCode --> //shipToNonCommercial/provinceCode

#state --> //shipToNonCommercial/state

#streetAddressOne --> //shipToNonCommercial/streetAddressOne
#streetAddressTwo --> //shipToNonCommercial/streetAddressTwo

#geographicalCoordinates --> //shipToNonCommercial/geographicalCoordinates

#GeographicalCoordinates.Details --> //geographicalCoordinates
#latitude --> //geographicalCoordinates/latitude

#longitude --> //geographicalCoordinates/longitude

For the sake of completeness, the XPath expressions of t@gligalCoordinates” are also

provided.

5.1.3 CONSTRUCTING THE XSLT DEFINITIONS

In constructing the XSLT definitions, the generated XPafiressions for the ontology classes

and the semantic equivalences discovered are used.

As an example, Figure 3.7 gives the semantic equivalencesgithe BBIEs shown below:

#Address.Identifier --> #name, #countryCode
#Address.Postal_Zone.Text --> #postalCode

#Address.StreetName.Name --> #crossStreet

113

#Address.
#Address.
#Address.

#Address
#Address
#Address
#Address

CityName.Name --> #city
CitySubdivisionName.Name --> #countyCode

CountrySubentityCode.Code --> #provinceCode, #state

.BlockName.Name --> #streetAddressOne, #streetAddressTwo
.BuildingName.Name--> #streetAddressOne,#streetAddressTwo
.PlotIdentification.Text --> #streetAddressOne, #streetAddressTwo

.Region.Text --> #streetAddressOne, #streetAddressTwo

The XSLT Definition given below is constructed using the gglénces given above and the

generated XPath expressions to convert an UBL “Address'BAiB$tance to GS1 “NameAn-

dAddress” instance.

<xsl:stylesheet>

<xsl:output method="xml" encoding="utf-8" indent="yes" omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:for-

each select="//cac:Address|//cac:ApplicableAddress|

//cac:ApplicableTerritoryAddress|//cac:DeliveryAddress|//cac:DespatchAddress|

//cac:JurisdictionRegionAddress|//cac:0riginAddress|//cac:PostalAddress|

//cac:RegistrationAddress">

<xsl:call-template name="nameAndAddress"/>

</xsl:for-each>

</xsl:template>

<xsl:template name="nameAndAddress">

<xsl:element name="eanucc:shipToNonCommercial">

<xsl:element name="city">

<xsl:value-of select="cbc:CityName"/> </xsl:element>

<xsl:element name="countryCode">

<xsl:element name="countryISOCode">

<xsl:value-of select="cbc:ID"/> </xsl:element>

</xsl:element>

<xsl:element name="countyCode">

<xsl:value-of select="cbc:CitySubdivisionName"/> </xsl:element>

<xsl:element name="crossStreet">

<xsl:value-of select="cbc:StreetName"/> </xsl:element>

<xsl:element name="name">

<xsl:value-of select="cbc:ID"/> </xsl:element>

<xsl:element name="postalCode">

<xsl:value-of select="cbc:PostalZone"/> </xsl:element>

<xsl:element name="provinceCode">

<xsl:value-of select="cbc:CountrySubentityCode"/> </xsl:element>

<xsl:element name="state">

<xsl:value-of select="cbc:CountrySubentityCode"/> </xsl:element>

<xsl:element name="streetAddressOne">

<xsl:value-of select="cbc:BlockName|cbc:BuildingName|cbc:PlotIdentification|cbc:Region"/>

</xsl:element>

114

<xsl:element name="streetAddressTwo">
<xsl:value-of select="cbc:BlockName|cbc:BuildingName|cbc:PlotIdentification|cbc:Region"/>
</xsl:element> </xsl:element> </xsl:template>

</xsl:stylesheet>

Assume that the user has the UBL “Address” instance as fetlow

<cac:Address>

<cbc:ID>UBL1</cbc:ID>
<cbc:AddressTypeCode>UBLAddressTypeCode</cbc:AddressTypeCode>
<cbc:AddressFormatCode>UBLAddressFormatCode</cbc:AddressFormatCode>
<cbc:Postbox>UBLPostbox</cbc:Postbox>

<cbc:Floor>UBL2</cbc:Floor>

<cbc:Room>UBL3</cbc:Room>

<cbc:StreetName>UBLStreetName</cbc:StreetName>
<cbc:AdditionalStreetName>UBLAdditionalStreetName</cbc:AdditionalStreetName>
<cbc:BlockName>UBLBlockName</cbc:BlockName>
<cbc:BuildingName>UBLBuildingName</cbc:BuildingName>
<cbc:BuildingNumber>UBL4</cbc:BuildingNumber>
<cbc:InhouseMail>UBLInhouseMail</cbc:InhouseMail>
<cbc:Department>UBLDepartment</cbc:Department>
<cbc:MarkAttention>UBLMarkAttention</cbc:MarkAttention>
<cbc:MarkCare>UBLMarkCare</cbc:MarkCare>
<cbc:PlotIdentification>UBLPlotIdentification</cbc:PlotIdentification>
<cbc:CitySubdivisionName>UBLCitySubdivisionName</cbc:CitySubdivisionName>
<cbc:CityName>UBLCityName</cbc:CityName>
<cbc:PostalZone>UBLPostalZone</cbc:PostalZone>
<cbc:CountrySubentity>UBLCountrySubentity</cbc:CountrySubentity>
<cbc:CountrySubentityCode>UBLCountrySubentityCode</cbc:CountrySubentityCode>
<cbc:Region>UBLRegion</cbc:Region>

<cbc:District>UBLDistrict</cbc:District>
<cbc:TimezoneOffset>UBLTimezoneOffset</cbc:TimezoneOffset>

<cac:AddressLine>

<cbc:Line>UBLLine</cbc:Line>

</cac:AddressLine>

<cac:Country>
<cbc:IdentificationCode>UBLIdentificationCode</cbc:IdentificationCode>
<cbc:Name>UBLName</cbc: Name>

</cac:Country>

<cac:LocationCoordinate>
<cbc:CoordinateSystemCode>UBLCoordinateSystemCode</cbc:CoordinateSystemCode>
<cbc:LatitudeDegreesMeasure unitCode="04">UBL®.0</cbc:LatitudeDegreesMeasure>
<cbc:LatitudeMinutesMeasure unitCode="04">UBL®.0</cbc:LatitudeMinutesMeasure>
<cbc:LatitudeDirectionCode>UBLLatitudeDirectionCode</cbc:LatitudeDirectionCode>
<cbc:LongitudeDegreesMeasure unitCode="04">UBL®.0</cbc:LongitudeDegreesMeasure>

<cbc:LongitudeMinutesMeasure unitCode="04">UBLO.0</cbc:LongitudeMinutesMeasure>

115

<cbc:LongitudeDirectionCode>UBLLongitudeDirectionCode</cbc:LongitudeDirectionCode>
</cac:LocationCoordinate>

</cac:Address>

After applying the XSLT definitions to the example UBL “Addsg Instance given above, the
GS1 “NameAndAddress” instance in the following fragmendli¢ained.

<eanucc:shipToNonCommercial>

<city>UBLCityName</city>

<countryCode> <countryISOCode>1</countryISOCode>

</countryCode>

<countyCode>UBLCitySubdivisionName</countyCode>
<crossStreet>UBLStreetName</crossStreet>

<name>1</name>

<postalCode>UBLPostalZone</postalCode>
<provinceCode>UBLCountrySubentityCode</provinceCode>
<state>UBLCountrySubentityCode</state>

<streetAddressOne>UBLBlockName UBLBuildingName UBLPlotIdentification UBLRegion</streetAddressOne>
<streetAddressTwo>UBLBlockName UBLBuildingName UBLPlotIdentification UBLRegion</streetAddressTwo>
</eanucc:shipToNonCommercial>

<extension>

<cbc:AddressTypeCode>UBLAddressTypeCode</cbc:AddressTypeCode>
<cbc:AddressFormatCode>UBLAddressFormatCode</cbc:AddressFormatCode>
<cbc:Postbox>UBLPostbox</cbc:Postbox>

<cbc:Floor>UBL2</cbc:Floor>

<cbc:Room>UBL3</cbc:Room>
<cbc:AdditionalStreetName>UBLAdditionalStreetName</cbc:AdditionalStreetName>
<cbc:BuildingNumber>UBL4</cbc:BuildingNumber>
<cbc:InhouseMail>UBLInhouseMail</cbc:InhouseMail>
<cbc:Department>UBLDepartment</cbc:Department>
<cbc:MarkAttention>UBLMarkAttention</cbc:MarkAttention>
<cbc:MarkCare>UBLMarkCare</cbc:MarkCare>
<cbc:CountrySubentity>UBLCountrySubentity</cbc:CountrySubentity>
<cbc:District>UBLDistrict</cbc:District>
<cbc:TimezoneOffset>UBLTimezoneOffset</cbc:TimezoneOffset>

<cac:AddressLine> <cbc:Line>UBLLine</cbc:Line> </cac:AddressLine>
<cac:Country>
<cbc:IdentificationCode>UBLIdentificationCode</cbc:IdentificationCode>
<cbc:Name>UBLName</cbc:Name> </cac:Country>

<cac:LocationCoordinate>
<cbc:CoordinateSystemCode>UBLCoordinateSystemCode</cbc:CoordinateSystemCode>
<cbc:LatitudeDegreesMeasure unitCode="04">UBL®.0</cbc:LatitudeDegreesMeasure>
<cbc:LatitudeMinutesMeasure unitCode="04">UBL®.0</cbc:LatitudeMinutesMeasure>
<cbc:LatitudeDirectionCode>UBLLatitudeDirectionCode</cbc:LatitudeDirectionCode>

<cbc:LongitudeDegreesMeasure unitCode="04">UBL®.0</cbc:LongitudeDegreesMeasure>

116

<cbc:LongitudeMinutesMeasure unitCode="04">UBLO.0</cbc:LongitudeMinutesMeasure>
<cbc:LongitudeDirectionCode>UBLLongitudeDirectionCode</cbc:LongitudeDirectionCode>
</cac:LocationCoordinate>

</extension>

It should be noted that the unmapped elements are inserthd &xtension part of the docu-

ment.

5.2 DOCUMENT COMPONENT DISCOVERY SUPPORT

Document component discovery is very important for theofglihg reasons:

e When creating a new document type say a “Planning DocumésBli, it is necessary
to find the already existing document components in UBL todused. For the docu-
ment artifacts that do not exist in UBL, CCL must be searcbdihtl the corresponding

components.

e Additionally, when a user wants to transform a documenfaattin one standard into
another, if ghe cannot obtain a mapping from the Harmonized Ontolgg may wish

to query the Harmonized Ontology to discover the corresjpgndrtifacts manually.

Currently document artifacts are mostly stored in spreagbtsh Also, there is an initia-
tive, called UNCEFACT Registry Implementation Specification, for stofqgerying CCTS
articfacts. However, all of these mechanisms only suppsytvord-based queries. For exam-
ple, UNNCEFACT Registry Implementation Specification allows theraso query Aggregate
Business Information Entities (ABIE) according to ABIE’ame, definition, business term,
propery term, object class term and the context values,enherABIE used. Keyword-based

gueries fail short in the following respects:

e The users usually may not guess the exact keyword for gugeryin

e It is not possible to query BIEFSCs based on the components they contain although
this type of information is very useful. For intance, a usammt issue a query to return

the ABIEs which contain a “BBIE A”, a “BBIE B” and an “ASBIE C".

117

e Keyword-based queries cannot make use of the class higrafon example, assume
that the user is looking for a Business Information Entityg{Bwhich is related with
USA geopolitical context. If the BIE is related with “Northnderica” context node,

this BIE is not returned to the user.

Furthermore, the implicit semantic relationships prodidy the Harmonized Ontology are
very useful for certain type of queries. For this reasonpib&sible type of queries are identi-
fied and they are formulated either with SPARQL (if the quesgginot necessitate reasoning)

or in OWL.

The Harmonized Ontology can be queried for discovering ti@ichent components and the

following types of queries are identified:

e Keyword Queries: This type of queries returns the user tliesBICs whose name or

description includes a given keyword.

e Type Queries: The type queries allow the users to query/BIEs based on their Data
Types, to query BIEs according to their CCs or to query ASBASECs according to
their sourcgiarget ABIE$ACCs.

e Structural Queries: This type of queries allows the usersetrch for CGBIES ac-
cording to their structure. For example, the user can qu&@Z#BBIES in a given
ACC/ABIE, can query ACCRABIESs that contain a BC@ASCC or BIEASBIE expres-

sion. The expression can be composed of using logical agerAtND, OR or NOT.

e Context Queries: The context queries are used for disauy&iEs, which are used in
a specified context set or set expression (e.g. Return Blidwalne used in context set

S and not used in context set S’)

e EquivalencgSimilarity Queries: Most of the time, the user would like trti@n CC$BIES
similar to a user-defined GBIE. In other words, the user specifies the desired content

and issues this content as a query against the Harmonizedogyt

118

5.2.1 SPARQL QUERIES

For keyword, type and structural queries no further reampisi needed than what is present in
the Harmonized Ontology. Therefore for these three typegiefies it is enough to formulate

them using SPARQL forféciency.

An example Keyword Query is as given below. This query retsethe CCs or BIEs that

contain “address” (Case-insensitive) in their “label” apfnment” elements.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.0rg/2002/07/owl#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

SELECT 7?subject
WHERE
{ ?subject rdfs:label ?label ;
rdfs:comment ?comment .

FILTER (regex(str(?label), ""address", "i") || regex(str(?comment), "“address", "i"))

An example Type Query is as given below. This query retrieBHss (from the Harmo-
nized Ontology) that have “basedOn” property whose rangesisicted to a class whose CCs
can only come from “Price.Details”. In other words, this gueetrieves BIEs derived from
“Price.Details” CC.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX wuo: <http://144.122.230.79/ontology/UpperOnt.owl#>

SELECT ?subject
WHERE

{ ?subject owl:equivalentClass 7?temp4 .

?temp4 owl:intersection0Of ?temp3 .

?temp3 rdf:rest 7temp2 .

?temp2 rdf:rest ?templ .

?templ rdf: first ?temp .

?temp rdf:type owl:Restriction ;
owl:onProperty uo:basedOn ;
owl:allValuesFrom uo:Price.Details

119

An example Structural Query is as given below. This quersieds those ASCCs afat
ASBIEs (from the Harmonized Ontology) that have “referspodperty whose range is re-
stricted to a class whose ACCs @mdABIEs can only come from “Period.Details”. In other
words, this query retrieves ASCCs #odASBIEs that refer to “Period.Details” ACCs and
ABIEs.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX wuo: <http://144.122.230.79/ontology/UpperOnt.owl#>

SELECT ?subject
WHERE

{ ?subject owl:equivalentClass 7?temp

?temp owl:intersection0Of ?temp® .

?temp0® rdf:rest ?templ .

?templ rdf:rest ?temp2 .

?temp2 rdf:rest ?temp3 .

?temp3 rdf: first ?temp4d .

?temp4 owl:allValuesFrom uo:Period.Details
owl:onProperty uo:refersTo ;
rdf:type owl:Restriction .

An example Context query is as given below. This query ne¢seBIEs from the Harmonized
Ontology that have “usedInContext” property whose rangesgicted to a context that whose
values can only come from “Trade”. In other words, this guetyieves BIEs that are used in

“Trade” context.

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX wuo: <http://144.122.230.79/ontology/UpperOnt.owl#>

SELECT 7?subject
WHERE

{ ?subject owl:equivalentClass ?temp

?temp owl:intersection0Of 7?templ .
?templ rdf:rest ?temp2 .
?temp2 rdf:rest ?temp3 .
?temp3 rdf:rest 7temp4 .
?temp4 rdf:rest ?temp5 .

120

?temp5 rdf:first ?temp6 .

?temp6 owl:allValuesFrom uo:Trade ;
owl:onProperty uo:usedInContext
rdf:type owl:Restriction .
}

5.2.2 QUERIES THAT REQUIRE REASONING SUPPORT

Some of the Context and all of the Equivalence type of queegaire reasoning support and
they are formulated as new class expressions in the OWL @ata@nd the result is obtained
by computing the new inferred ontology through the reasoheother words, the reasoner

classifies the newly introduced class and computes itdop&dtips to all the related classes.

For example, assume the user would like to obtain the BIEs imsorth America but not in

Mexico. The query is as follows:

<owl:Class rdf:ID="Query">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#BusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext" />
<owl:allvaluesFrom>
<owl:Class>
<owl:complementOf>
<owl:Class rdf:about="#iso.ch.3166.1999.MX" />
</owl:complementOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext" />
<owl:allValuesFrom>
<owl:Class rdf:about="#iso.ch.3166.1999.North.America"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

121

A DL reasoner computes the new hierarchy and relates théasiohsses (BIES) to the Query
class through subClassOf or equivalentClass construbesclass given below is the result of

the query, as the reasoner puts the Query as the subclagsaéds in the inferred hierarchy.

<owl:Class rdf:ID="AssetExpense_AccountingAccount.Details">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:ID="BusinessInformationEntity"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#usedInContext"/>
<owl:allvaluesFrom>
<owl:Class rdf:about="#iso.ch.3166.1999.US"/>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

Reasoner support is needed to formulate the simifaqtyivalence queries. Assume that a
user would like to obtain an Account ACC which has a Type, Antdype and Identifier.

Such a query is formulated as follows:

<owl:Class rdf:ID="Query">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateCoreComponent" />
<owl:Restriction>
<owl:onProperty rdf:resource="#contains"/>
<owl:allvValuesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AccountingAccount.Identification.Identifier"/>
<owl:Class rdf:about="#AccountingAccount.Type.Code"/>
<owl:Class rdf:about="#AccountingAccount.AmountType.Code" />
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

</owl:equivalentClass>

122

</owl:Class>

The reasoner puts a subclass of relation from the Accoulstiogunt.Details ACC, shown

below, to the Query as the result has more BCCs than the Qla=y.c

<owl:Class rdf:ID="AccountingAccount.Details">
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AggregateCoreComponent" />
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty rdf:ID="contains"/>
</owl:onProperty>
<owl:allValuesFrom>
<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#AccountingAccount.Identification.Identifier"/>
<owl:Class rdf:about="#AccountingAccount.SetTrigger.Code"/>
<owl:Class rdf:about="#AccountingAccount.Type.Code" />
<owl:Class rdf:about="#AccountingAccount.AmountType.Code" />
</owl:intersectionOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
</owl:equivalentClass>

</owl:Class>

123

CHAPTER 6

SYSTEM ARCHITECTURE AND IMPLEMENTATION
RESULTS

In this chapter, the overall system architecture, a use afabe system and the implementa-
tion results are presented. The overall system archied$ipresented in Section 6.1. In Sec-
tion 6.2, a use case to generate mappings between GS1 XMhiRgadocuments [26] and
UBL Collaborative Planning, Forecasting and Replenishtndecuments [76] is described.
Finally, the implementation results and the performancahefiystem is described in Section

6.3.

6.1 SYSTEM ARCHITECTURE AND EVALUATION OF THE IMPLEMEN-
TATION

The overall system framework shown in Figure 6.1 puts tagedil the parts described and

demonstrates how the specified semantics can be used.

6.1.1 THE FRAMEWORK

The framework consists of a harmonized ontology develomedescribed in Sections 3.1,
3.2, 3.3 and 3.4 (The harmonized ontology and how to cortsthie harmonized ontology
is submitted as a specification to the OASIS SET TC [46]); @s#épry to store the XPath
expressions and the XSLT rules; a wrapper to convert the drdimad ontology to the corre-
sponding set of predicate logic facts; additional rulesefquressing the defined heuristics; a

DL reasoner and a predicate logic rule engine. Figure 6.Wslhioe system components:

124

The Framework

Import new facts
to the Ontology

gt

New Equalities/
Relations

71
Run Rule
Engine

6 ¢

Export the
Ontology to
PL Rule Engine

11

HARMONIZED ONTOLOGY
” Upper Ontology IA_\
Q
2 |
- 9
A o
< Document Document Document
o Schema Schema Schema
Ontology Ontology Ontology
1 3
B J XPath F
DL XSLT Ontology-
Reasonel Repository PL Facts
Wrapper 'l
A
i _ 7)| Additional Heuristics
Predicate Logic 2 >—|Predicate Logic Rules
Rule Engine I— TS Facts
C E]
_/V
Document [la'! ysp_owL OWL , The
Schema Converter || *| Framework
2a Ontology 3
1b
XPath 2b XPath
Generator *| Mappings
Display b
XSLT | 13] () Jser 12| XSLT
Tgeth 114 Source
XML < XML
Instance | Transform | |nstance

Figure 6.1: The Overall Framework and the Steps of Docunrestahce Translation

A. Harmonized OntologyThis ontology contains two types of OWL-DL ontologies: (1)
the Upper Ontology and (2) the Document Schema Ontologissnéntioned before,
the Upper Ontology describes the CCTS artifacts, sucBumness Information En-
tities and Core Componentsas generic classes. The Document Schema Ontologies,
on the other hand, describe the BIEs generated by the CCES leéectronic business
document standards. There is a Document Schema Ontologadbr electronic busi-
ness document standard. The Document Schema Ontologielefamed conforming
to the generic classes defined in the Upper Ontology. Thedraaed ontology is ob-
tained by running the DL-Reasoner against the Upper Ongaog Document Schema

125

5b’

Classify
Ontology
through

DL Reasoner

5av

New Equalities/

\F:elations
v10

XSLT
Generator

Ontologies.

B. DL-Reasoner A Description Logic (DL) Reasoner is used to identify theleglence
and subsumption relations in the harmonized ontology. Adxh reasoner, Racer Pro
1.9.2 Beta [56] is used. The discovered similarities amdegdocument artifacts are
then used to generate XSLT definitions for transforming leetwdiferent electronic

business document standards’ XML Instances.

C. Predicate Logic Rule Engine: In some cases, the Desamijbgic is not sfficient to
find relations between document artifacts. Therefore, @se¢hcases, generic heuristics
in the form of Predicate Logic Rules are used. The JESS R@Ef35] is used to ex-
ecute the heuristics to find additional relations among tbeutnent Schema Ontology

classes.

D. Ontology-PL Facts Wrapper: The document artifacts apeesented through OWL
classes and properties in the harmonized ontology and tieeyepresented as facts in
the Predicate Logic Rule Engine. This wrapper converts thd @efinitions to facts
definitions, which are then asserted to the rule engine.rAlfi@ rule engine executes
the rules on the facts, new facts are inferred, which reptesguivalence relationship
among classes. The wrapper converts the newly obtaineddéiaitions back to OWL

class equivalences to be inserted to the harmonized omtolog

E. Additional Heuristics: These heuristics are given tigiothe Predicate Logic Rules to
identify the relations among the document artifacts, wisishnot be identified through

Description Logic.

A number of tools are developed to support this framework:

1. The XSD-OWL Converter: This component converts a CCT@&damcument schema

into Document Schema Ontology as described in Section832nd 3.4.

2. The XPath Generator Tool: The XPath Generator extraetsdlrespondences between
the XSD Schema elements in the document schemas and the @#4eslin the Docu-
ment Schema Ontologies through XPath expressions. Thesessions are then used

to generate the XSLT definitions.

126

3. The XSLT Generator Tool: This component generates theTX@&finitions by us-
ing the XPath definitions and the newly computed equivalesgiesumption relations.
These XSLT definitions are used in the transformation batwe® XML instances

conforming to diferent electronic business document standards.

4. Ontology-PL Facts Wrapper as explained above.

6.1.2 THE DOCUMENT INSTANCE TRANSLATION THROUGH THE FRAME-
WORK

This framework is used to transform a source XML documertaimse to a target XML docu-
ment instance. If the document schema ontologies correéampio these document instances
are already a part of the harmonized ontology, the correipgnXSLT transformations can
directly be generated. If the source, or the target or bothefe document schema ontologies
are not yet a part of the harmonized ontology, first they mesnserted through the following

procedure:

e First the OWL Document Schema Ontology conforming to the OStucture de-
scribed in Sections 3.2, 3.3 and 3.4 are created for the XS&umDent Schemas (2a)
by using the XSD-OWL Converter.

¢ Inthe mean time, the XPath Generator Tool is used to keek tfdbe correspondences

among the XSD elements and OWL classes to generate XPathindapi2b).
e The OWL ontologies are inserted to the harmonized ontol8yy (

e The ontologies are classified with the DL Reasoner and thedw@ized ontology is
computed (5). In this step new equal#tybsumption relations are computed (if there

are any) (5a).

e At the same time, the OWL definitions are converted to Préelicagic facts by using
the Ontology-PL Facts Wrapper Tool and asserted to the &edLogic Rule Engine
(5b).

e The rule engine is executed and new relations are identifid¢acas (7).
e These facts are converted to OWL Definitions through OniglBf Facts Wrapper (8).

127

e The newly generated OWL Definitions are appended to the ha@med ontology and
the DL-Reasoner is executed again to compute new eqgisalitgumption relations (9).
The steps from 5 to 9 are executed repeatedly until the hdamedontology reaches
a certain maturity level (i.e., no further equivalencesamaputed by the DL reasoner

and Predicate Logic Rule Engine).

e The equalitygsubsumption definitions and the XPath Mappings are inputS3aTXGen-

erator to produce XSLT Definitions automatically (11).

e The XSLT Definitions are displayed to the user for furthetiadi(13).

e The XSLTs are used to transform to XML Instances conformindifterent standards

(14).

6.2 USE CASE:iSURF INTEROPERABILITY SERVICE UTILITY FORCO L-
LABORATIVE PLANNING, FORECASTING AND REPLENISHMENT

As mentioned in Section 6.3, this harmonized ontology togetvith the heuristic rules devel-
oped are used within the scope of the ICT-213031-iISURF [8djept to generate mappings
between GS1 XML Planning documents [26] and UBL Collabeeaflanning, Forecasting
and Replenishment documents [76]. The planning documesdd in the iISURF Project
are: “Event”, “Exception Criteria”, “Exception Notificath”, “Forecast”, “Forecast Revi-
sion”, “Performance History”, “Product Activity”, “RethEvent”, “Trade Item Information
Request” and “Trade Item Location Profile”. As a result, 20LX8locuments are generated
by following the approach described in this thesis. The dunis are available at iISURF
Project Web site [99].

The user interface (client) of the iISURF ISU is Web based anigveloped using Adobe Flex.
The entrance page is shown in Figure 6.2. In this page, thresetects the document type to
be mapped, the source standard and the target standaris éxémple, assume that the user
selects the Trade Item Location Profile as the message amahagarther that the user wants

to map from GS1 XML to UBL.

Having selected the document type, in the next step (FigiBe the document models are

presented to the user. On the left pane, the GS1 Trade IteatibodProfile and on the right

128

Ihast/1sLiweb/ v |)JE&*I Zargan

144.122.230.79

Figure 6.2: iISURF ISU Entrance Page

77 - | [Beefmaom

Figure 6.3: Document Content Models

129

-
- @ & [[Eheoitiocahostitsuiwebs ¥7 - | [BRe]zargen P

Waiting For 144.122.230,79

|8

Figure 6.4: Equalities are loaded to the middle pane

pane, the UBL Trade Item Location Profile is presented to . LOn the other hand, in the

middle pane, the discovered equalities will be presentddetaiser.

When the user clicks “Load Equality List” button, the cliesdnnects to the iISURF ISU,

which in turn directs the ISU to run the description logicseaer and Jess rule engine. Upon
receiving the discovered equalities from the reasoner aledengine, the ISU sends them to
the client. The client displays the equalities to the us¢éhémiddle pane as shown in Figure

6.4.

The user can see the elements in the equality in their camnelipg document tree by right
clicking the equality and selecting “Find Equivalence€nit as shown in Figure 6.5. For
example, in Figure 6.6, the GS1 XML's “TimePeriod.LengthrBtion Measure” and UBL's

“Period.Duration.Measure” elements are shown in theiudoent trees.

At this point the user can inspect the equalities and idgntifiether they are right. If a
discovered equality is false-positive, the user can deséfe checkbox right next to the
equality. Furthermore, the user can add new equalities mgubke “Add New Equality”

button. Having completed the examination step, the usekscthe “Generate XPaths” button

130

http:{flocalhast{15Ufweb]

77 - | || zergen

* es1 * uBL.
1 NonGLN_Party] ificaion Deta L i Details V]
2 Electronic_D tDetails | 1 |
3 Partner.Details e Party.Details e
4 Details.| L it Detsils || E
S Partyldentfication Primary Tden 1 P
7 Documentldentfication.MultipleT 1.
% NonGTIN Tradeltemldentificatior 1 1
9 Parnerdentifier.Identifier 1
10 PlanDocument.Planneridentifieat 1 ¥ ‘ &
11 TimePeriod.Length.Duration_peas 1 1%
12 NonGLN_PartyIdentification.Iden 1 “*"J
12 Details s [v]
14 Type.code 1] e ¥
15 i I IssueDate.Date
16 Details 1 Details (V]
17 = T &
5 Ttemproperty Details i:|
18] Flactronic. N =
 Temldentification.Extended_1de ;

o I >

Figure 6.5:

| [| bt focalhost isiweby

Find equivalances item

V7 - [BRe[zargan

* G5t * uBL.
1 NonGin_p = beta 1 Datails ‘Iz‘e
- . . =
S ItemManagemen -Replenis i
4 NonGLN_ i dan] A dentifior, []
= 3 TimaPeriod. De tails = Pariod Details It
6 ContactElectronic_mallText | 1 ContactElectronic_mail.Text ||
S 1 T orderint
. rimary, 1 tderntifier: [2]
3 TradeTtamManagementprofietios 1 T=mManagementProfie.OrderInt oy
10 1 Pe d.Description. Text D
11 Partner.Details e Party.Details. E
12 Contact.Telephone Text 1 ContactTel =
13 Hlectronic_Document.Content_ve ,1"“"2“’““‘"‘3“""”"““"»“5'““’!27
= — e
E : "
15 A TR B
17 Documentidentsfication. Issuebat 1 DocumentReference.lssusDate.D ‘Iz‘
P Details | 1 Details v
19 NenGTIN_] 1 Identifi @

W -

Figure 6.6: Discovered Equivalences in the correspondauyichent trees

131

Ele Edt Yew Hgtory Bookmarks Toos Help

oo €@ A B [esecaostiisuiner 17 - | [-fean 2

| startrrom segining |

Xpaths.

Lofts
| Left

NEREERRE RN EEE S

Rights

®

aaaaaaaaaaaaa

[Transfenting datafram 144,122,230.75.. 4

Figure 6.7: Identitfied XPaths

to proceed with the next step, where the XPaths of the elanmerhe discovered equalities

are presented to the user as shown in Figure 6.7.

After that the user clicks the “Generate XSLT” button to gaite the XSLT definition (Figure
6.8) to be used to map an instance GS1 Trade Item Locatioanicstto UBL Trade Item
Location Instance. It should be noted that the user maydugtit the XSLT with any XSLT
Editor. In Appendix A.1 the generated XSLT document is pnése. Furthermore, in Ap-

pendix A.2 the XSLT document for reverse translation is jfed.

6.3 THE IMPLEMENTATION AND PERFORMANCE OF THE SYSTEM

The current version of the harmonized ontology, availatwenf[90], contains the ontological
representations of:

e All of the CCs and BIEs in UNCCL 07B.

e All of the BIEs in the common library of UBL 2.0.

132

- Higtory Bookmarks Tools Help.

Qﬁgg' C 4 [[5]hemitfocahostfisuinebt

“walting For 144.122.230.79.... F

Figure 6.8: Generated XSLT

e All of the OAGIS 9.1 Common Components and Fields.

o All of the elements in the common library of GS1 XML.

There are about 3400 Named OWL Classes and 11000 Restrizgifinitions in the harmo-

nized ontology.

This harmonized ontology together with the heuristic rudeseloped are used within the
scope of the ICT-213031-iISURF [34] project to generate rimggpbetween GS1 XML Plan-
ning documents [26] and UBL Collaborative Planning, Fostiog and Replenishment docu-

ments [76].

The planning documents used in the iISURF Project are: “Eyvéakception Criteria”, “Ex-

ception Notification”, “Forecast”, “Forecast RevisionRérformance History”, “Product Ac-
tivity”, “Retail Event”, “Trade Item Information Requestind “Trade Item Location Profile”.
The success rate in discovering the document componertsinitlar information content is
88.10% for aggregate document components (ABIEs) and 89188 basic document com-

ponents (BBIES). The rate of false positives is about 10%.

133

Related with performance, an issue that needs to be addrissséether the gain in automa-
tion justifies the resources needed to develop the ont@bgipresentation of the document
schemas. In order to reduce this cost, as already descrléainated tool support is pro-
vided to create OWL definitions of the document schemas. thadilly, by conforming to a
standard ontological representation and hence havingatiocument schema ontologies in
a common pool, the users of the harmonized ontology only teeeckate a document schema
ontology if it is not already in the harmonized ontology arehéfit from all the existing

connections when they do so.

Another issue related with performance is the computaticoenplexity of the reasoning
process involved. On a PC with 2GB RAM, the Racer Pro 1.9.2 Betsoner [56], it takes
about 120 seconds to compute the harmonized ontology. Timeoni&ed ontology will be
re-computed in limited cases:

e When the predicate rule engine is run to generate more dguoiweasses, or,

e When a new document schema is introduced to the system, or,

e When a new CCTS based upper document ontology is introdwuct tsystem

Therefore this performance is considered satisfactory.

134

CHAPTER 7

CONCLUSIONS AND THE FUTURE WORK

Today, an enterprise’s competitiveness is, to a large exdetermined by its ability to seam-
lessly interoperate with others, and the electronic docurs&andards play an important role
in this. However, given the large number of electronic bestndocument standards, con-
formance to one of these standards or implementing a feweoh twill not solve the inter-
operability problem; there will always be some companigagus diterent, incompatible
document standard. Therefore, there is a need for semaoti&to support electronic docu-

ment interoperability.

Semantics is domain specific knowledge and the success ofetredoped tools heavily de-
pends on the amount of domain knowledge available. In tlipeet, UNCEFACT CCTS
has achieved an important milestone and provided the sawafitthe electronic business

documents.

In this thesis, this semantics is explicated and show hovséatifor semi-automated transla-
tion of document schema instances frorffetient standards. Both the success rate in discov-
ering the similarities of document artifacts and the penfance of the system are promising

for industry take-up.

A possible obstacle to industry take-up of the describedhar@ems may stem from theffiir-

ent representations of the same meaning. For example, wkakepresentation may choose
as a subclass, may be represented as an object propertytieargpresentation. When this
happens, harmonizing ffierent ontological representations will become a challefdgere-
fore, we have initiated a standardizatioffioet for the representation of CCTS semantics and
have formed the OASIS “Semantic Support for Electronic Bess Document Interoperabil-

ity (SET)” Technical Committee [45]. In this way, that isMirag a common semantic descrip-

135

tion of the CCTS based document standards, it will be passibtollect all descriptions in a
common pool and when the semantics of a new document schéntieoduced to the pool, it

will benefit from the already existing connections in therhanized ontology. We anticipate
that this initiative will increase the industry take-up betwork. Although the framework

is tested in collaborative planning domain, it is generid @rcan be applied to all domains
having CCTS based document standards. The current stathe bkuristics has achieved
a promising success rate. Once a further insight is gainedlémge number of document

schemas, additional heuristics may be developed as a furtuie

136

REFERENCES

[1] Automotive Aftermarket Industry Association. httfvww.aftermarket.oriHome.asp
(2009).

[2] Automotive Industry Action Group. httpgwww.aiag.org (2009).

[3] N. Anicic, N. lvezic, “Semantic Web Technologies for Erprise Application Integra-
tion”, ComSIS, Computer Science and Information Systentsrhational Journal, Volume
02, Issue 01, June 2005 (2005).

[4] UN/CEFACT Applied Technology Group (ATG) XML Syntax, XML Nargn
and Design Rules, httpwww.uncefactforum.or@\TG/DocumentsATG/Downloadg
XMLNamingAndDesignRulesV2.0.pdf (2009).

[5] Franz Baader, lan Horrocks, Ulrike Sattler, “Chapter 3Desription Logics”,
httpy/www.cs.man.ac.ykhorrockgPublicationgdownload@2007BaHS07a.pdf (2009).

[6] Brown and Reynolds, Strategy for production and maiatee of standards for interop-
erability within and between service departments and dikaithcare domains, CEFNC
251 Health Informatics, CENC 257N00-047.

[7] CBL. Common Business Library, htfixml.coverpages.ofgbl.html (2009).
[8] Chemical Industry Data Exchange, hitpawvw.cidx.org (2009).

[9] Collaborative Planning, Forecasting and Replenishm@@PFR ©) Guidelines ,
httpy//www.vics.org (2009).

[10] CLRTC, The OASIS Code List Representation Technicah@uttee, httpy/www.oasis-
open.orgcommitteegodelist (2009).

[11] Crawford, M. Crawford, Core Components Adoption On ThRise,
https//www.sdn.sap.coyirj/sdnweblogs?blog/pulywlg/5395.

[12] cXML, Commerce XML, http{/cxml.org (2009).

[13] EAN, European Article Number, httffen.wikipedia.orgwiki/EuropeanArticle_Numbey
(2009).

[14] EANCOM, European Article Number Communication,
http;//www.gs1.orgproductssolutionsconeancom (2009).

[15] ebBP, ebXML Business Process, hiffiocs.oasis-open.giehpxml-bp2.0.40S (2009).

[16] EDI, Electronic Data Interchange, hitjen.wikipedia.orgwiki/Electronic Data-
_Interchange (2009).

137

[17] EDIINT-AS1, T. Harding, R. Drummond, C. Shih, MIME-bed Secure Peer-
to-Peer Business Data Interchange over the Internet, RF@5,3%Bept 2002,
httpy//www.ietf.org'rfc/rfc3335.txt (2009).

[18] EDIINT-AS2, D. Moberg, R. Drummond, MIME-Based Secureer-to-Peer Business
Data Interchange Using HTTP, Applicability Statement 2 2ARFC 4130, July 2005,
httpy//www.ietf.org'rfc/rfc4130.txt (2009).

[19] EFT, Electronic Funds Transfer, hitfen.wikipedia.orgwiki/Electronic fundstransfer
(2009).

[20] EPCglobal, Electronic Product Code Global, hitpww.gsl.orgproductssolutions
epcglobal (2009).

[21] FaCT++ Resoner, httglowl.man.ac.ukactplusplug (2009).

[22] GDSN, GSl1 Global Data Synchronisation Network,
httpy/www.gs1.orgproductssolutiongdsn (2009).

[23] GS1, Global Standard One, hfffsww.gs1.org (2009).
[24] Global Standard One, Global Data Dictionary, higrdd.gs1.org(2009).
[25] Global Standard One XML, httfgwww.gsl.orgproductssolutiongconixml/ (2009).

[26] GS1 XML Plan Documents, httfiwww.gsl.orgserviceggsmpkc/econmixml/-
plan.grid.html (2009).

[27] HL7, Health Level 7, httg/www.hl7.org (2009).
[28] IATA, International Air Transport Association, htfpyww.iata.orgindex.htm (2009).

[29] ICH, ANSI ASC X12 |ISA Interchange Control Header Segtnen
httpy//www.rawlinsecconsulting.cofl2tutorialx12syn.html (2009).

[30] ICHS, UNEDIFACT UNB Interchange Header Segment,
httpy//www.unece.orgradéedifacfuntdidd422.s.htm (2009).

[31] Institute of Electrical and Electronics EngineersEEEStandard Computer Dictionary:
A Compilation of IEEE Standard Computer Glossaries, NewkY&®90).

[32] ISO Codes, International Standards Organization €ode
httpy//www.unece.orgefactcodesfortradeodesindex.htm (2009).

[33] ISO/IEC 11179-5: Naming and identification principles,
httpy/standards.iso.ofigtf/PubliclyAvailableStandargs035347I1SO_IEC_11179-
5.2005(E).zip (2009).

[34] 1ST-213031 iSURF, An Interoperability Service Ulitfor Collaborative Sup-
ply Chain Planning across Multiple Domains Supported by RFDevices,
http;//www.srdc.com.tiisurf/ (2009).

[35] Jess: Java Rule Engine, hitherzberg.ca.sandia.gof2009).

[36] Kabak Y., Dogac A. “A Survey and Analysis of Electroniaigness Document Stan-
dards”. Accepted for publication in ACM Computing Surve26@8).

138

[37] KAON2 Resoner, httgkaon2.semanticweb.gr¢2009).
[38] Knowledge Interchange Format (KIF), hifjogic.stanford.edtkif /kif.html (2009).

[39] Thorsten Liebig, “Reasoning with OWL - System Suppard dnsights”, Technical Re-
port, September 2006.

[40] B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. N§WK. EImagarmid, Business-
to-Business Interactions: Issues and Enabling Techredodihe International Journal on
Very Large Data Bases, Vol. 12, No. 1, May 2003.

[41] MIT-AutolD, Auto-ID Labs at MIT, httpf/autoid.mit.edfcs (2009).

[42] MoU, Memorandum of Understanding on electronic businketween IEC, ISO, ITU,
and UNECE, httpy/www.itu.int/ITU-T/e-businegéilesmou.pdf (2009).

[43] NES, UBL Northern European Subset, hitpww.nesubl.eu(2009).
[44] OAGI, Open Applications Group, httfavww.openapplications.ofd2009).

[45] OASIS Semantic Support for Electronic Business Doautnhateroperability (SET) TC,
http;//www.oasis-open.ofgommitteegc_home.php?wabbrewset (2009).

[46] OASIS SET TC Specification, Semantic Representatiofisthe UNCEFACT
CCTS-based Electronic Business Document Artifacts, /tpw.oasis-
open.orgcommitteeglownload.phf2943620080924SemanticRepresentationOfDo-
cumentArtifacts.doc (2008).

[47] Ontolingua, http/ksl.stanford.edisoftwargontolingud (2009).

[48] Open Applications Group Integration Specification ,9.0
http;/www.openapplications.ofdgownloadgoagigloadfrm9.htm (2009).

[49] Open Applications Group (OAGI) at 10 Years: A Look Backda Forward,
http;/webservices.sys-con.cgread47282.htm (2009).

[50] Organisation for Data Exchange by Tele Transmission iBurope,
httpy//www.odette.orghtml/home.htm (2009).

[51] Offentlig Information Online UBL, httg/www.oio.dkdataudvekslingghandet
hoeringefoioubl (2009).

[52] Oracle Corporation, httpwww.oracle.confproductgmiddlewargdocgoracle -
ebsandsoa.pdf (2009). httpywww.oracle.conftechnologyproductgapplicationg
integratiori1147 EBS and SOA.ppt (2009).

[53] OTA, OpenTravel Alliance, httywww.opentravel.org(2009).
[54] Web Ontology Language, htfpwww.w3.0rg20040WL/ (2009).
[55] Pellet Reasoner, httjiclarkparsia.corpellef (2009).

[56] RacerPro: DL Reasoner, hitfwww.racer-systems.cqn2009).

[57] PIDX, Petroleum Industry Data Exchange, hitpww.pidx.org (2009).

139

[58] E. Rahm, P. A. Bernstein “A survey of approaches to aatiicrtschema matching”, The
VLDB Journal, Vol. 10, 2001, pp. 334-350 (2001).

[59] Resource Description Framework (RDF), hipww.w3.orgTR/rdf-concepts (2009).
[60] RDF Schema (RDFS), htippawww.w3.0orgTR/rdf-schema(2009).
[61] RosettaNet. httgywww.rosettanet.oyg(2009).

[62] M. Rowell, The Open Applications Group Integration Sifieation,
httpy//www.ibm.conjideveloperworksml/library/x-oagig (2009).

[63] SAP, SAP - Systemanalyse und Programmentwicklung,/mtww.sap.corfindex.epx
(2009).

[64] Schematron, httywww.ldodds.conpapergschematrormxsltuk.html (2009).
[65] SITC, http//unstats.un.oygnsdcr/registryregcst.asp?&l14 (2009).
[66] SPARQL Query Language for RDF, httfwww.w3.org TR/rdf-spargl-query (2009).

[67] SPARQL-DL Implementation Experience, hifpw.rpi.edywiki/index.phpSpecial:-
Browsg¢SPARQL-DL ImplementationExperience (2009).

[68] Standards for Technology in Automotive Retail, hifpww.starstandard.ofd2009).

[69] Giorgos Stoilos, Giorgos Stamou and Stefanos KolllasString Metric for Ontology
Alignment”, Lecture Notes in Computer Science, Volume 32205.

[70] Stuhec, Gunther Stuhec, How to Solve the Business Stan-
dards Dilemma - The CCTS based Core Data Types,
https//www.sdn.sap.coyirj/sdngg/portalprtrooydocglibrary/uuid/500db5¢9-0e01-
0010-8laa-d73cdd30df9a,

[71] Stuhec2, Gunther Stuhec, How to Solve the Business -Stan
dards Dilemma: The Context Driven Business Exchange,
https;/www.sdn.sap.coffirj/servietprt/portafprtrooydocglibrary/uuida6c5dce6-0701-
0010-45b9-f6caB8c0c6474,

[72] Swedish Invoice, httpwww.svefaktura.9&FTI_BasicInvoice20051130EN/-
SFTI1%20Basic%20Invoicd.Jindex.html (2009).

[73] SWRL: A Semantic Web Rule Language, httwww.w3.orgSubmissiofSWRL/
(2009).

[74] SWIFT, Society for Worldwide Interbank Financial Tetgnmunication,
httpy//www.swift.com (2009).

[75] Universal Business Language, hitpww.oasis-open.ofgommitteesubl/ (2009).

[76] UBL CPFR Documents, httfgwww.oasis-open.ofgommitteegdownload.ph28979-
UBLforCPFR.zip (2008).

[77] UBL NDR, Universal Business Language Naming and De8$tgies, httpy/docs.oasis-
open.orgubl/os-UBL-2.0dogndy/NDR-checklist.pdf (2009).

140

[78] UBL-SBS, Universal Business Language Small Businessibc8mmittee,
httpy//www.oasis-open.ofgommitteegsc. home.php?wgbbrewubl-sbsc (2009).

[79] UBLSchemas, Universal Business Language 2.0 Schentasyp;//docs.oasis-
open.orgubl/os-UBL-2.0 (2009).

[80] UBP, Universal Business Process, Hhifjpcs.oasis-open.oighl/cs-UBL-1.0-SBS-
1.Quniversal-business-process-1.0-epRE®09).

[81] UCC, Uniform Code Council, httwww.uc-council.org (2009).

[82] UN/CCL, United Nations Core Component Library,
httpy//www.unece.orfcefactcodesfortradeincc)CCLO7A.xIs (2009).

[83] UN/CEFACT Core Components Technical Specification,
http//www.unece.orfrefactebxmfCCTS V2-01 Final.pdf (2009).

[84] UN/CEFACT Registry Implementation Specification,
http;//www.unece.orgefactdocumentseg specificvor6.zip (2009).

[85] UN/EDIFACT, United Nations Directories for Electronic Datatdrchange for Ad-
ministration, Commerce and Transport, htfpww.unece.orgradguntdidwelcome.htm
(2009).

[86] UN/EDIFACT 1131, UNEDIFACT 1131 Data Element, Code list identification code,
http;//www.unece.orgradg¢untdidd00atredtred1131.htm (2009).

[87] UN/EDIFACT 3055, UNEDIFACT 3055 Data Element, Code list responsible agency
code, http/www.unece.orgradguntdidd00atredtred3055.htm (2009).

[88] UN/SBDH, UN'CEFACT Standard Business Document Header Technical Sgzeifi,
httpy//www.gs1.orgdocggsmpgxml/sbdhCEFACT_SBDH_TS_version1.3.pdf (2009).

[89] UNSPSC, Product Classification, hffpiww.unspsc.org(2009).

[90] Harmonized Ontology, httppwww.srdc.metu.eduASURFOASIS-SET-
TC/ontologyHarmonizedOntology.owl (2009).

[91] US/DOT, US Department of Transportation UBL Implementatiottp}ywww.oasis-
open.orgcommitteesubl/fag.php (2009).

[92] Ken \Vollmer, B2B Integration Trends, Forrester,
httpy//www.forrester.confResearchibocumentExcerpt0,7211,42735,00.html (2009)

[93] E. Wustner, T. Hotzel, P. Buxmann, Converting Businessuments: A Classification
of Problems and Solutions using XWXSLT, Proc. of the 4th IEEE Intl Workshop on
Advanced Issues of E-Commerce and Web-Based Informatiste®g (WECWIS), 2002.

[94] X12, EDI ANSI X12, http//www.x12.org (2009).
[95] xCBL, XML Common Business Library, httfgwww.xcbl.org (2009).
[96] XML, Extensible Markup Language, htfpwvww.w3.orgXML / (2009).

[97] Extensible Stylesheet Language, hitpww.w3.0rg'Style/’XSL/ (2009).

141

[98] XSL Transformations (XSLT), httywww.w3.orgTR/xslt (2009).
[99] Generated Mappings, httpwww.srdc.com.itisurf/documentdviappings.rar (2009).

[100] Y. Yarimagan, A. Dogac “Semantics Based Customimataf UBL Document
Schemas”, Journal of Distributed and Parallel Databaspenger-Verlag, Volume 22,
Numbers 2-3 December 2007, pp. 107-131 (2007).

[101] Y. Yarimagan, A. Dogac “A Semantic based Solution fog tnteroperability of UBL
Schemas”. IEEE Internet Computing, to appear (2008).

[102] Y. Ye, D. Yang, Z. Jiang, L. Tong “Ontology-based setiamodels for supply chain
management”, The International Journal of Advanced Mariufang Technology, Pub-
lished online, Springer London, May 2007 (2007).

142

APPENDIX A

GENERATED XSLT DOCUMENTS

A.1 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LOCATION
PROFILE INSTANCES FROM GS1 XML TO UBL

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet>
<xsl:namespace-alias stylesheet-prefix="n" result-prefix="#default"/>
<xsl:output method="xml" encoding="UTF-8" indent="yes"/>
<xsl:template match="/n2:documentCommand">
<n:TradeItemLocationProfile>
<xsl:attribute name="xsi:schemalocation">
<xsl:value-of select="’urn:oasis:names:specification:ubl:schema:xsd:TradeItemLocationProfile-2
UBL-TradeItemLocationProfile-2.1.xsd’"/>
</xsl:attribute>
<xsl:variable name="Vvar2_const" select=""""/>
<cbc:ID>
<xsl:value-of select="string($Vvar2_const)"/>
</cbc:ID>
<xsl:for-each select="documentCommandOperand">
<xsl:for-each select="plan:tradeItemLocationProfile">
<xsl:for-each select="@documentStatus">
<xsl:variable name="Vvarl50_documentStatus_string" select="string(.)"/>
<cbc:DocumentStateCode>
<xsl:value-of select="string($Vvar150_documentStatus_string)"/>
</cbc:DocumentStateCode>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="documentCommandOperand">
<xsl:for-each select="plan:tradeItemLocationProfile">
<xsl:for-each select="@creationDateTime">
<xsl:variable name="Vvarl59_creationDateTime_dateTime" select="string(.)"/>
<cbc:IssueDate>

<xsl:value-of select="string(substring-before(

143

string($Vvarl59_creationDateTime_dateTime), 'T’))"/>
</cbc:IssueDate>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="documentCommandOperand">
<xsl:for-each select="plan:tradeItemLocationProfile">
<xsl:for-each select="@creationDateTime">
<xsl:variable name="Vvarl70_creationDateTime_dateTime" select="string(.)"/>
<cbc:IssueTime>
<xsl:value-of select="string(substring-after(
string($Vvarl70_creationDateTime_dateTime), 'T’))"/>
</cbc:IssueTime>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="documentCommandOperand">
<xsl:for-each select="plan:tradeItemLocationProfile">
<xsl:for-each select="profileStatus">
<xsl:variable name="Vvarl81_profileStatus_string" select="string(.)"/>
<cbc:ProfileStatusCode>
<xsl:value-of select="string($Vvarl81_ profileStatus_string)"/>
</cbc:ProfileStatusCode>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="documentCommandOperand">
<xsl:for-each select="plan:tradeItemLocationProfile">
<xsl:for-each select="period">
<cac:Period>
<xsl:for-each select="@beginDate">
<xsl:variable name="Vvar194_beginDate_date" select="string(.)"/>
<cbc:StartDate>
<xsl:value-of select="$Vvarl94_beginDate_date"/>
</cbc:StartDate>
</xsl:for-each>
<xsl:for-each select="@endDate">
<xsl:variable name="Vvarl198_endDate_date" select="string(.)"/>
<cbc:EndDate>
<xsl:value-of select="$Vvar198_endDate_date"/>
</cbc:EndDate>
</xsl:for-each>
</cac:Period>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>

<xsl:for-each select="documentCommandOperand">

144

<xsl:for-each select="plan:tradeItemLocationProfile">
<xsl:for-each select="itemManagementProfile">
<cac:ItemManagementProfile>
<xsl:for-each select="frozenPeriodDays">
<xsl:variable name="Vvar207_frozenPeriodDays_integer"
select="number(.)"/>
<cbc:FrozenPeriodDays>
<xsl:value-of select="number($Vvar207_frozenPeriodDays_integer)"/>
</cbc:FrozenPeriodDays>
</xsl:for-each>
<xsl:for-each select="minimumInventory">
<xsl:variable name="Vvar21ll_minimumInventory_float" select="number(.)"/>
<cbc:MinimumInventoryQuantity>
<xsl:value-of select="number($Vvar21l_minimumInventory_float)"/>
</cbc:MinimumInventoryQuantity>
</xsl:for-each>
<xsl:for-each select="orderQuantityMultiple">
<xsl:variable name="Vvar215_orderQuantityMultiple_float"
select="number(.)"/>
<cbc:MultipleOrderQuantity>
<xsl:value-of select="number($Vvar215_orderQuantityMultiple_float)"/>
</cbc:MultipleOrderQuantity>
</xsl:for-each>
<xsl:for-each select="orderIntervalDays">
<xsl:variable name="Vvar219_orderIntervalDays_integer"
select="number(.)"/>
<cbc:0OrderIntervalDays>
<xsl:value-of select="number($Vvar219_orderIntervalDays_integer)"/>
</cbc:0OrderIntervalDays>
</xsl:for-each>
<xsl:for-each select="replenishmentOwner">
<xsl:variable name="Vvar225_replenishmentOwner_string"
select="string(.)"/>
<cbc:ReplenishmentOwnerDescription>
<xsl:value-of select="$Vvar225_replenishmentOwner_string"/>
</cbc:ReplenishmentOwnerDescription>
</xsl:for-each>
<xsl:for-each select="targetServiceLevel">
<xsl:variable name="Vvar229_targetServiceLevel_decimal"
select="number(.)"/>
<cbc:TargetServicePercent>
<xsl:value-of select="$Vvar229_targetServiceLevel_decimal"/>
</cbc:TargetServicePercent>
</xsl:for-each>
<xsl:for-each select="targetInventory">
<xsl:variable name="Vvar230_targetInventory" select="."/>

<xsl:for-each select="value">

145

<xsl:variable name="Vvar239_value_decimal"” select="number(.)"/>
<cbc:TargetInventoryQuantity>
<xsl:for-each select="$Vvar230_targetInventory/@unitOfMeasure">
<xsl:variable name="Vvar236_unitOfMeasure_string"
select="string(.)"/>
<xsl:attribute name="unitCode">
<xsl:value-of select="string($Vvar236_unitOfMeasure_string)"/>
</xsl:attribute>
</xsl:for-each>
<xsl:value-of select="$Vvar239_value_decimal"/>
</cbc:TargetInventoryQuantity>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="collaborativeTradeItem">
<xsl:for-each select="buyerLocation">
<cac:BuyerCustomerParty>
<cac:Party>
<cac:PartyIdentification>
<xsl:for-each select="gln">
<xsl:variable name="Vvar245_gln_string"
select="string(.)"/>
<cbc:ID>
<xsl:value-of select="string($Vvar245_gln_string)"/>
</cbc:ID>
</xsl:for-each>
</cac:PartyIldentification>
</cac:Party>
</cac:BuyerCustomerParty>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="collaborativeTradeItem">
<xsl:for-each select="sellerLocation">
<cac:SellerSupplierParty>
<cac:Party>
<cac:PartyIdentification>
<xsl:for-each select="gln">
<xsl:variable name="Vvar253_gln_string"
select="string(.)"/>
<cbc:ID>
<xsl:value-of select="string($Vvar253_gln_string)"/>
</cbc:ID>
</xsl:for-each>
</cac:PartyIldentification>
</cac:Party>
</cac:SellerSupplierParty>
</xsl:for-each>

</xsl:for-each>

146

<cac:GoodsItem>
<cbc:ID>
<xsl:value-of select="string(§Vvar2_const)"/>
</cbc:ID>
<cac:Item>
<cac:StandardItemIdentification>
<xsl:for-each select="collaborativeTradeItem">
<xsl:for-each select="product">
<xsl:for-each select="gtin">
<xsl:variable name="Vvar263_gtin_string"
select="string(.)"/>
<cbc:ID>
<xsl:value-of select="string($Vvar263_gtin_string)"/>
</cbc:ID>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</cac:StandardItemIdentification>
</cac:Item>
</cac:GoodsItem>
<cac:ItemLocationQuantity>
<xsl:for-each select="orderinglLeadTimeDays">
<xsl:variable name="Vvar267_orderinglLeadTimeDays_integer"
select="number(.)"/>
<cbc:LeadTimeMeasure>
<xsl:attribute name="unitCode">
<xsl:value-of select="string(’DAY’)"/>
</xsl:attribute>
<xsl:value-of select="
number (§Vvar267_orderingLeadTimeDays_integer)" />
</cbc:LeadTimeMeasure>
</xsl:for-each>
</cac:ItemLocationQuantity>
</cac:ItemManagementProfile>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</n:TradeItemLocationProfile>
</xsl:template>

</xsl:stylesheet>

147

A.2 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LOCATION
PROFILE INSTANCES FROM UBL TO GS1 XML

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet>

"

<xsl:namespace-alias stylesheet-prefix= result-prefix="#default"/>
<xsl:output method="xml" encoding="UTF-8" indent="yes"/>
<xsl:template match="/n2:TradeltemLocationProfile">
<n:documentCommand>

<xsl:attribute name="xsi:schemalocation">

<xsl:value-of select=""urn:ean.ucc:2 TradeItemLocationProfileProxy.xsd’"/>

</xsl:attribute>

non

<xsl:variable name="Vvarl_firstSource" select="."/>

nn

<documentCommandOperand xmlns="">
<plan:tradeItemLocationProfile>
<xsl:for-each select="cbc:IssueDate">
<xsl:variable name="Vvarll4_IssueDate_date" select="string(.)"/>
<xsl:for-each select="$Vvarl_firstSource/cbc:IssueTime">
<xsl:variable name="Vvar118_IssueTime_time" select="string(.)"/>
<xsl:attribute name="creationDateTime">
<xsl:value-of select="string(concat(concat(string
($Vvarl1l4_IssueDate_date), 'T’),
string($Vvar118_IssueTime_time)))"/>
</xsl:attribute>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="cbc:DocumentStateCode">
<xsl:variable name="Vvarl25_DocumentStateCode_normalizedString"
select="string(.)"/>
<xsl:attribute name="documentStatus">
<xsl:value-of select="string($Vvarl25_DocumentStateCode_normalizedString)"/>
</xsl:attribute>
</xsl:for-each>
<xsl:for-each select="cac:Period">
<period>
<xsl:for-each select="cbc:StartDate">
<xsl:variable name="Vvarl34_StartDate_date" select="string(.)"/>
<xsl:attribute name="beginDate">
<xsl:value-of select="$Vvarl34_StartDate_date"/>
</xsl:attribute>
</xsl:for-each>
<xsl:for-each select="cbc:EndDate">
<xsl:variable name="Vvar138_EndDate_date"
select="string(.)"/>
<xsl:attribute name="endDate">

<xsl:value-of select="$Vvar138_EndDate_date"/>

148

</xsl:attribute>
</xsl:for-each>
</period>
</xsl:for-each>
<xsl:for-each select="cbc:ProfileStatusCode">
<xsl:variable name="Vvarl41l_ProfileStatusCode_normalizedString"
select="string(.)"/>
<profileStatus>
<xsl:value-of select="string($Vvarl4l ProfileStatusCode_normalizedString)"/>
</profileStatus>
</xsl:for-each>
<xsl:for-each select="cac:ItemManagementProfile">
<itemManagementProfile>
<xsl:for-each select="cbc:FrozenPeriodDays">
<xsl:variable name="Vvarl48_FrozenPeriodDays_decimal”
select="number(.)"/>
<frozenPeriodDays>
<xsl:value-of select="number($Vvarl48_FrozenPeriodDays_decimal)"/>
</frozenPeriodDays>
</xsl:for-each>
<xsl:for-each select="cbc:MinimumInventoryQuantity">
<xsl:variable name="Vvarl52_MinimumInventoryQuantity_decimal"
select="number(.)"/>
<minimumInventory>
<xsl:value-of select="number($Vvarl52_MinimumInventoryQuantity_decimal)"/>
</minimumInventory>
</xsl:for-each>
<xsl:for-each select="cbc:0OrderIntervalDays">
<xsl:variable name="Vvar156_OrderIntervalDays_decimal"
select="number(.)"/>
<orderIntervalDays>
<xsl:value-of select="number($Vvarl56_OrderIntervalDays_decimal)"/>
</orderIntervalDays>
</xsl:for-each>
<xsl:for-each select="cbc:MultipleOrderQuantity">
<xsl:variable name="Vvar160_MultipleOrderQuantity_decimal"
select="number(.)"/>
<orderQuantityMultiple>
<xsl:value-of select="number($Vvarl60_MultipleOrderQuantity_decimal)"/>
</orderQuantityMultiple>
</xsl:for-each>
<xsl:for-each select="cbc:ReplenishmentOwnerDescription">
<xsl:variable name="Vvarl66_ReplenishmentOwnerDescription_string"
select="string(.)"/>
<replenishmentOwner>
<xsl:value-of select="$Vvarl66_ReplenishmentOwnerDescription_string"/>

</replenishmentOwner>

149

</xsl:for-each>
<targetInventory>
<xsl:for-each select="cbc:TargetInventoryQuantity">
<xsl:for-each select="@unitCode">
<xsl:variable name="Vvarl71_unitCode_token" select="string(.)"/>
<xsl:attribute name="unitOfMeasure">
<xsl:value-of select="string($Vvarl71_unitCode_token)" />
</xsl:attribute>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select="cbc:TargetInventoryQuantity">
<xsl:variable name="Vvarl77_TargetInventoryQuantity_decimal"
select="number(.)"/>
<value>
<xsl:value-of select="$Vvarl77_TargetInventoryQuantity_decimal"/>
</value>
</xsl:for-each>
</targetInventory>
<xsl:for-each select="cbc:TargetServicePercent">
<xsl:variable name="Vvarl81_TargetServicePercent_decimal”
select="number(.)"/>
<targetServicelLevel>
<xsl:value-of select="$Vvarl181_TargetServicePercent_decimal"/>
</targetServiceLevel>
</xsl:for-each>
<collaborativeTradeItem>
<product>
<xsl:for-each select="cac:GoodsItem">
<xsl:for-each select="cac:Item">
<xsl:for-each select="cac:StandardItemIdentification">
<xsl:for-each select="cbc:ID">
<xsl:variable name="Vvar189_ID_normalizedString"
select="string(.)"/>
<gtin>
<xsl:value-of select="string($Vvarl89_ID_normalizedString)"/>
</gtin>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</product>
<xsl:for-each select="cac:BuyerCustomerParty'>
<buyerLocation>
<xsl:for-each select="cac:Party">
<xsl:for-each select="cac:PartyIdentification">
<xsl:for-each select="cbc:ID">

<xsl:variable name="Vvar199_ID_normalizedString"

150

select="string(.)"/>
<gln>
<xsl:value-of select="string($Vvar199_ID_normalizedString)"/>
</gln>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</buyerLocation>
</xsl:for-each>
<xsl:for-each select="cac:SellerSupplierParty">
<sellerLocation>
<xsl:for-each select="cac:Party">
<xsl:for-each select="cac:PartyIdentification">
<xsl:for-each select="cbc:ID">
<xsl:variable name="Vvar209_ID_normalizedString"
select="string(.)"/>
<gln>
<xsl:value-of select="string($Vvar209_ID_normalizedString)"/>
</gln>
</xsl:for-each>
</xsl:for-each>
</xsl:for-each>
</sellerLocation>
</xsl:for-each>
</collaborativeTradeItem>
</itemManagementProfile>
</xsl:for-each>
</plan:tradeItemLocationProfile>
</documentCommandOperand>
</n:documentCommand>
</xsl:template>

</xsl:stylesheet>

151

VITA

PERSONAL INFORMATION

Surname, Name: KABAK, YILDIRAY
Nationality: Turkish (TC)
Date and Place of Birth: 20 March 1979, Adana
Marital Status: Single
Phone: +90 312 210 2076
e-Mail: yildiray@srdc.com.tr
EDUCATION
Degree Institution Year of Graduation
MS METU-Computer Engineering 2003
BS METU-Computer Engineering 2001

High School Ismail Safadzler Anatolian High School, Ankara 1997

WORK EXPERIENCE

Year Place Enrollment

2008-present SRDC, Reseach, Development and Consultadcy Researcher
2001-2008 Software Research and Development Center, METEsedcher
2000-2001 Software Research and Development Center, MET&rt TiPne

Software Developer

FOREIGN LANGUAGES

Advanced English, Intermediate German

PUBLICATIONS

1. Kabak Y., Dogac A., Toroslu I.H. Semantic Interoperapitif the Electronic Business

152

10.

Document Standards submitted for publication to IEEE Taatisns on Knowledge

and Data Engineering (TKDE).

. Kabak Y., Dogac A. A Survey and Analysis of Electronic Bigsis Document Standards

accepted for publication in ACM Computing Surveys. (Sceef@itation Index Core,

Impact Factor: 11.286).

. Kabak Y., Olduz M., Laleci G. B. Namli T., Bicer V., Radic NDogac A. A Semantic

Web Service Based Middleware for the Tourism Industry Boblafter, to appear.

Dogac A., Yildirim A., Kabak Y., Laleci G. B., Ocalan C.,IBh M. Design and Im-
plementation of the elnvoice Interoperability Profile of tRevenue Administration of

Turkey eChallanges Conference, October 2009, Istanbukeyu

. Kabak Y., Dogac A., Ocalan C., Cimen S., Laleci G. B. iISURM&ntic Interoperabil-

ity Service Utility for Collaborative Planning, Forecasdiand Replenishment eChal-

langes Conference, October 2009, Istanbul, Turkey.

. Dogac A., Laleci G. B., Olduz M., Kabak Y., Okcan A., TagyuiAn Interoperability

Service Utility for Collaborative Supply Chain PlanningeBented in 14th International
Conference on Concurrent Enterprising (ICE 2008), Listioriugal.

. Kabak Y., Dogac A., Kose I., Akpinar N., Gurel M., Arslan @zer H., Yurt N., Ozcam

A., Kirici S., Yuksel M., Sabur E. The Use of HL7 CDA in the Naial Health Infor-
mation System (NHIS) of Turkey 9th International HL7 Inteesability Conference
(IHIC) 2008, Crete, Greece, October, 2008 pp. 49-55.

. Kose I., Akpinar N., Gurel M., Arslan Y., Ozer H., Yurt N.,aldak Y., Dogac A.

Turkey’s National Health Information System (NHIS) in theoP. of the eChallanges
Conference, Stockholm, October 2008, pp. 170-177.

. Dogac A., Kabak Y., Namli T., Okcan A., Collaborative Busss Process Support in

eHealth: Integrating IHE Profiles through ebXML Businessdess Specification Lan-
guage IEEE Transactions on Information Technology in Biditiae, Vol.12, No.6,

November 2008, pp. 754-762. (Science Citation Index Conpakt Factor: 1.787).

Dogac A., Namli T., Okcan A., Laleci G., Kabak Y., Eicheltp M. Key Issues of Tech-
nical Interoperability Solutions in eHealth and the RIDBjEct eChallenges Confer-

ence, The Hague, The Netherlands, October 2007

153

11.

12.

13.

14.

15.

16.

17.

18.

Della Valle E., Cerizza D., Celino I., Dogac A., Laleci, Babak Y., Okcan A., Gul-
deren O., Namli T., Bicer V., An eHealth Case Study Book Caajst "Semantic Web
Services: Concepts, Technologies, and Applications”d&tuRudi; Grimm, Stephan;
Abecker, Andreas (Eds.), 2007, Approx. 15 p., 100 illus.rddaver, ISBN: 978-3-
540-70893-3, Due: April 5, 2007, Springer.

Dogac A., Kabak Y., Laleci G., Najmi F., Mattocks C., Bok J., Wallace E. ebXML
Registry Profile for Web Ontology Language (OWL) OASIS ebXREgistry Techni-

cal Committee approved Committee Draft.

Laleci G., Dogac A., Akcay B., Olduz M., Yuksel M., Orhan, Jasyurt I., Sen T.,
Kabak Y., Namli T., Gulderen O., Okcan A. SAPHIRE: A semaitieb service based
Clinical guideline deployment infrastructure exploititde XDS eChallenges Confer-
ence, Barcelona, Spain, October 2006. Published in: Bipdoihe Knowledge Econ-
omy: Issues, Applications, Case Studies, Paul Cunninghairiviriam Cunningham

(Eds), 10S Press, 2006 Amsterdam, ISBN: 1-58603-682-3.

Dogac A., Laleci G., Kirbas S., Kabak Y., Sinir S., Yildkz, Gurcan Y. Artemis: De-
ploying Semantically Enriched Web Services in the Healthddomain Information
Systems Journal (Elsevier), Volume 31, Issues 4-5, Julye2006, pp.321-339 (Sci-

ence Citation Index Core, Impact Factor: 1.827).

Dogac A., Laleci G., Kabak Y., Unal S., Beale T., HeardE¥kjn P., Najmi F., Mat-
tocks C., Webber D., Kernberg M. Exploiting ebXML Registrgr8antic Constructs
for Handling Archetype Metadata in Healthcare Informalicternational Journal of

Metadata, Semantics and Ontologies, Volume 1, No. 1, 2006.

Della Valle E., Cerizza D., Bicer V., Kabak Y., Laleci G.ausen H. The Need for
Semantic Web Service in the eHealth W3C workshop on Framesfor Semantics in

Web Services, 2005.

Bicer V., Laleci G., Dogac A., Kabak Y. Providing Semanititeroperability in the
Healthcare Domain through Ontology Mapping eChalleng@®s20ctober 2005, Ljubl-

jana, Slovenia.

Bicer V., Laleci G., Dogac A., Kabak Y. Artemis Messagekange Framework: Se-

mantic Interoperability of Exchanged Messages in the Heate Domain ACM Sig-

154

19.

20.

21.

22.

23.

24.

25.

26.

mod Record, Vol. 34, No. 3, September 2005 (Science Citdtidex Expanded,
Impact Factor: 1.759).

Dogac A., Kabak Y., Laleci G. C. Mattocks, F. Najmi, J.|Bck Enhancing ebXML
Registries to Make them OWL Aware Distributed and Parallgidbases Journal, Springer-
Verlag, Vol. 18, No. 1, July 2005, pp. 9-36. (Science Citatiodex Expanded, Impact
Factor: 1.785).

Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Tumer SATINE Project: Exploit-
ing Web Services in the Travel Industry eChallenges 200200@4), 27 - 29 October
2004, Vienna, Austria.

Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Kirb&, Gurcan Y. Semantically
Enriched Web Services for Travel Industry ACM Sigmod Reg¢dfdl. 33, No. 3,
September 2004. (Science Citation Index Expanded, ImgatoE 1.759).

Laleci G., Kabak Y., Dogac A., Cingil I., Kirbas S., YildA., Sinir S., Ozdikis O., Oz-
turk O. A Platform for Agent Behavior Desigh and Multi Agentdbestration Agent-
Oriented Software Engineering (AOSE-2004) Workshop, thedlnternational Joint
Conference on Autonomous Agents & Multi-Agent Systems (AA®M2004), New

York City, New York - July 19, 2004 (Science Citation Indexpgaxded, Impact Factor:
01.515).

Dogac A., Kabak Y., Laleci G. Enriching ebXML Registriggh OWL Ontologies for
Efficient Service Discovery 14th International Workshop ondResh Issues on Data

Engineering, Boston, USA , March 28-29, 2004.

Dogac A., Laleci G., Kabak Y. Context Frameworks for AentiiIntelligence eChal-
lenges 2003, October 2003, Bologna, Italy.

Dogac A., Kabak VY., Laleci G. A Semantic-Based Web Ser@domposition Facility
for ebXML Registries 9th International Conference of Cament Enterprising, Espoo,

Finland, June 2003.

Dogac A., Tambag V., Pektas S., Laleci G., Kurt G., Tojsagk<abak Y., "An ebXML
Infrastructure Implementation through UDDI Registriesl &osettaNet PIPs”, ACM
SIGMOD International Conference on Management of Data,isfed Wisconsin, USA,

June 2002.

155

27. Dogac A., Laleci G., Kabak Y., Cingil I. Exploiting Web iS&e Semantics: Tax-
onomies vs. Ontologies IEEE Data Engineering Bulletin,. \2b, No. 4, December

2002, httpl/www.research.microsoft.cgnesearchdlydebulfissues-list.htm

28. Mitkas P., Symeonidis A., Kechagias D., Athanasiaditdleci G., Kurt G., Kabak
Y., Acar A., Dogac A. An Agent Framework for Dynamic Agent Rehing: Agent
Academy e2002: European Commission’s e-Business and k-Avorual Conference,

Czech Republic, October 2002.

29. Dogac A., Cingil 1., Laleci G., Kabak Y. Improving the Fationality of UDDI Reg-
istries through Web Service Semantics 3rd VLDB Workshop eohfologies for E-
Services (TES-02), Hong Kong, China, August 23-24, 2002.

30. Dogac A., Laleci G., Kurt G., Kabak Y., Acar A. A PlatforrorfSemantically Enriched
Mobile Services in Proc. of the First International Confe® on Mobile Business,

Athens, Greece, July 2002.

Number of Citations Received:25 (Based on ISI Web of Science)

156

