

SEMANTIC INTEROPERABILITY OF THE UN/CEFACT CCTS BASED ELECTRONIC
BUSINESS DOCUMENT STANDARDS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

YILDIRAY KABAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

JULY 2009

Approval of the thesis:

SEMANTIC INTEROPERABILITY OF THE UN /CEFACT CCTS BASED

ELECTRONIC BUSINESS DOCUMENT STANDARDS

submitted byYILDIRAY KABAK in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Engineering , Middle East Technical University by,

Prof. Dr. Canan̈Ozgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit
Head of Department,Computer Engineering

Prof. Dr. Asuman Doğaç
Supervisor,Department of Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Department of Computer Engineering, METU

Prof. Dr. Asuman Doğaç
Department of Computer Engineering, METU

Prof. Dr. Semih Bilgen
Department of Electrical and Electronics Engineering, METU

Prof. Dr. Özgür Ulusoy
Department of Computer Engineering, Bilkent University

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Department of Computer Engineering, METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referencedall material and results that
are not original to this work.

Name, Last Name: YILDIRAY KABAK

Signature :

iii

ABSTRACT

SEMANTIC INTEROPERABILITY OF THE UN/CEFACT CCTS BASED ELECTRONIC
BUSINESS DOCUMENT STANDARDS

Kabak, Yıldıray

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Asuman Doğaç

July 2009, 156 pages

The interoperability of the electronic documents exchanged in eBusiness applications is an

important problem in industry. Currently, this problem is handled by the mapping experts

who understand the meaning of every element in the involved document schemas and define

the mappings among them which is a very costly and tedious process. In order to improve

electronic document interoperability, the UN/CEFACT produced the Core Components Tech-

nical Specification (CCTS) which defines a common structure and semantic properties for

document artifacts. However, at present, this document content information is available only

through text-based search mechanisms and tools. In this thesis, the semantics of CCTS based

business document standards is explicated through a formal, machine processable language as

an ontology. In this way, it becomes possible to compute a harmonized ontology, which gives

the similarities among document schema ontology classes ofdifferent document standards

through both the semantic properties they share and the semantic equivalences established

through reasoning. However, as expected, the harmonized ontology only helps discovering

the similarities of structurally and semantically equivalent elements. In order to handle the

structurally different but semantically similar document artifacts, heuristic rules are developed

iv

describing the possible ways of organizing simple documentartifacts into compound artifacts

as defined in the CCTS methodology. Finally, the equivalences discovered among document

schema ontologies are used for the semi-automated generation of XSLT definitions for the

translation of real-life document instances.

Keywords: Electronic Business Documents, Semantic Interoperability, Ontology, Description

Logics

v

ÖZ

UN/CEFACT CCTS TABANLI ELEKTROṄIK İŞ DOKÜMANLARININ ANLAMSAL
BİRLİKTE ÇALIŞAB İL İRLİĞİ

Kabak, Yıldıray

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Asuman Doğaç

Temmuz 2009, 156 sayfa

E-̇Iş uygulamalarında kullanılan elektronik dokümanlarınbirlikte çalışbilirliği önemli bir prob-

lemdir. Şu anda bu problem, doküman şemalarındaki her bir elemanın anlamını iyi bilen

eşleştirme uzmanları tarafından şemalar arasında manuel eşleştirmelerin yapılmasıyla çözül-

mektedir ve bu süreç oldukça yorucu ve pahalıdır. Elektronik dokümanların birlikte çalışabilir-

liğini artırmak amacıyla UN/CEFACT organizasyonu, doküman parçacıklarının ortak yapısını

ve anlamını tanımlayan, Esas Parçacıklar Teknik Spesifikasyonu’nu yayınladı. Fakat günü-

müzde bu doküman içerik bilgisi sadece metin tabanlı sorgu mekanizmaları ve araçları ile

kullanılabilmektedir. Bu tezde Esas Parçacıklar Teknik Spesifikasyonu tabanlı doküman stan-

dartları makine tarafından işlenebilir formal ontolojiler ile tanımlanmaktadır. Bu sayede

sahip oldukları anlamsal özellikleri kullanan, muhakemeyardımı ile elde edilmiş, farklı stan-

dartların doküman şema ontoloji sınıfları arasındaki ilişkileri veren bağdaştırılmış ontolojiyi

hesaplamak mümkündür. Fakat, beklenildiği üzere, bağdaştırılmış ontoloji sayesinde sadece

yapısal ve anlamsal olarak eşit olan doküman elemanlarının benzerlikleri bulunabilmektedir.

Bu yüzden bu tezde, anlamsal olarak benzer ama yapısal olarak farklı doküman parçacıklarının

benzerliklerini bulmak için Esas Parçacıklar Teknik Spesifikasyonun’da tanımlanan ve basit

vi

doküman parçacıklarından bileşik doküman parçacıklarının oluşturulmasının olası yollarını

tanımlayan buluşal kurallar geliştirlimiştir. Son olarak, doküman şema ontolojileri arasındaki

belirlenen eşitlikler gerçek hayatta kullanılan elektronik dokümanların çevrilmesinde işe yarayan

XSLT tanımlarının yarı otomatik olarak üretilmesinde kullanılmaktadır.

Anahtar Kelimeler: Elektronik̇Iş Dokümanları, Anlamsal Birlikte Çalışabilirlik, Ontoloji,

Betimleme Mantığı

vii

To my family, especially to our new member Tuna...

viii

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor and my mentorProf. Dr. Asuman Doğaç for

all her guidance, encouragement and patience. Needless to say, without her, this work would

never been possible.

I wish to express a lot of thanks to Prof. Dr. Semih Bilgen and Assoc. Prof. Dr. Nihan Kesim

Çiçekli for their valuable suggestions and comments throughout the steering meetings of this

study.

Special thanks to SRDC Team (especially to Gökçe) for their support.

I want to express my gratefulness to Hande for her support andfriendship.

Finally, I would like to thank to my family for their infinite understanding and I would like to

dedicate this thesis to my nephew Tuna.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

2 SURVEY OF THE STATE OF THE ART 6

2.1 RELATED WORK . 7

2.2 ELECTRONIC DATA INTERCHANGE (EDI) 9

2.3 UN/CEFACT CORE COMPONENT TECHNICAL SPECIFICATION
(CCTS) . 10

2.3.1 CORE COMPONENT TYPES AND DATA TYPES . . . 11

2.3.2 NAMING CONVENTION USED 12

2.3.3 TYPES OF CORE COMPONENTS 13

2.3.4 BUSINESS INFORMATION ENTITY (BIE) 14

2.3.5 UN/CEFACT CORE COMPONENT LIBRARY 15

2.4 UNIVERSAL BUSINESS LANGUAGE 2.0 (UBL) 15

2.4.1 UBL CUSTOMIZATION AND EXTENSIBILITY 17

2.4.1.1 CONFORMANT CUSTOMIZATION OF UBL
2.0 . 18

2.4.1.2 COMPATIBLE CUSTOMIZATION OF UBL
2.0 . 20

x

2.4.1.3 THE USE OF CODE LISTS 20

2.5 OPEN APPLICATIONS GROUP INTEGRATION SPECIFICATION
(OAGIS) BUSINESS OBJECT DOCUMENTS (BOD) VERSION 9.1 21

2.5.1 OAGIS EXTENSIBILITY 23

2.5.1.1 USERAREA EXTENSIONS 24

2.5.1.2 OVERLAY EXTENSIONS 24

2.5.1.3 CODE LIST EXTENSIONS 27

2.6 GLOBAL STANDARDS ONE (GS1) 27

2.6.1 GS1 XML . 28

2.6.1.1 CUSTOMIZATION AND EXTENSIBILITY 30

2.6.2 THE USE OF CODE LISTS 31

2.7 ANALYSIS OF THE ELECTRONIC BUSINESS DOCUMENT STAN-
DARDS . 32

2.7.1 THE DOCUMENT DESIGN PRINCIPLES 33

2.7.1.1 DOCUMENT ARTIFACTS AND THE USE
OF UN/CEFACT CCTS METHODOLOGY . 33

2.7.1.2 THE USE OF CODE LISTS 33

2.7.1.3 THE USE OF NAMESPACES 34

2.7.1.4 NAMING AND DESIGN RULES 34

2.7.1.5 ANALYSIS OF DOCUMENT DESIGN PRIN-
CIPLES . 35

2.7.2 CUSTOMIZATION AND EXTENSIBILITY 35

2.7.2.1 ANALYSIS OF CUSTOMIZATION AND EX-
TENSIBILITY 38

2.7.3 COVERAGE OF OTHER LAYERS OF INTEROPERABIL-
ITY . 40

2.7.3.1 ANALYSIS OF LAYERS OF INTEROPER-
ABILITY ADDRESSED 41

2.7.4 INDUSTRY RELEVANCE 41

2.8 DESCRIPTION LOGICS . 43

2.9 DESCRIPTION LOGICS REASONERS 45

2.10 ONTOLOGY AND WEB ONTOLOGY LANGUAGE - OWL . . . 45

2.11 A BRIEF INTRODUCTION TO SPARQL 48

xi

2.12 CONCLUSIONS . 48

3 ONTOLOGY BASED SEMANTIC INTEROPERABILITY OF ELECTRONIC
BUSINESS DOCUMENT STANDARDS 52

3.1 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
CONTENT MODELS . 55

3.1.1 SPECIFICATION OF THE SEMANTICS EXPOSED BY
THE CCTS FRAMEWORK THROUGH OWL 59

3.1.1.1 EXPLICATING SEMANTICS THROUGH CORE
DATA TYPES (CDT) 59

3.1.1.2 EXPLICATING SEMANTICS THROUGH CON-
TEXT . 60

3.1.1.3 EXPLICATING SEMANTICS THROUGH CODE
LISTS . 61

3.1.1.4 EXPLICATING SEMANTICS OF CORE COM-
PONENTS 63

3.1.1.5 EXPLICATING SEMANTICS OF BUSINESS
INFORMATION ENTITIES (BIE) 65

3.1.1.6 EXPLICATING THE SEMANTICS OF CCL
ARTIFACTS 69

3.2 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
SCHEMAS - GS1 UPPER ONTOLOGY 72

3.2.1 EXPLICATING THE SEMANTICS OF GS1 DOCUMENT
SCHEMAS . 73

3.3 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
SCHEMAS - UBL UPPER ONTOLOGY 77

3.3.1 EXPLICATING THE SEMANTICS OF UBL DOCUMENT
SCHEMAS . 78

3.4 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT
SCHEMAS - OAGIS 9.1 UPPER ONTOLOGY 81

3.4.1 EXPLICATING THE SEMANTICS OF OAGIS 9.1 DOC-
UMENT SCHEMAS . 82

3.5 HARMONIZING THE ONTOLOGIES OF THE DOCUMENT STAN-
DARDS . 88

4 PROVIDING HEURISTICS TO DISCOVER STRUCTURALLY DIFFER-
ENT DOCUMENT ARTIFACTS . 96

4.1 HEURISTICS TO HELP RESOLVING THE DIFFERENT USAGES
OF CCTS DATA TYPES . 97

xii

4.2 A HEURISTIC TO HELP FINDING THE EQUIVALENT BBIES
AT DIFFERENT STRUCTURAL LEVELS 98

4.3 HEURISTICS TO FIND RELATIONSHIPS BETWEEN SEMAN-
TICALLY SIMILAR BUT STRUCTURALLY DIFFERENT DOC-
UMENT ARTIFACTS . 99

4.4 AN EXAMPLE ON THE USE OF THE HARMONIZED ONTOL-
OGY AND THE PROVIDED HEURISTICS 104

5 AUTOMATED XSLT GENERATION SUPPORT 108

5.1 AN EXAMPLE: TRANSLATING UBL “ADDRESS.dETAILS” TO
GS1 “NAME AND ADDRESS” 109

5.1.1 OBTAINING THE XPATH EXPRESSIONS FOR UBL
“ADDRESS” ABIE AND FOR ITS BBIES/ASBIES AU-
TOMATICALLY . 109

5.1.2 OBTAINING XPath EXPRESSIONS FOR GS1 “NAME-
ANDADDRESS” ABIE AND FOR ITS BBIES 112

5.1.3 CONSTRUCTING THE XSLT DEFINITIONS 113

5.2 DOCUMENT COMPONENT DISCOVERY SUPPORT 117

5.2.1 SPARQL QUERIES . 119

5.2.2 QUERIES THAT REQUIRE REASONING SUPPORT . . 121

6 SYSTEM ARCHITECTURE AND IMPLEMENTATION RESULTS 124

6.1 SYSTEM ARCHITECTURE AND EVALUATION OF THE IM-
PLEMENTATION . 124

6.1.1 THE FRAMEWORK . 124

6.1.2 THE DOCUMENT INSTANCE TRANSLATION THROUGH
THE FRAMEWORK . 127

6.2 USE CASE: iSURF INTEROPERABILITY SERVICE UTILITY FOR
COLLABORATIVEPLANNING, FORECASTING AND REPLEN-
ISHMENT . 128

6.3 THE IMPLEMENTATION AND PERFORMANCE OF THE SYS-
TEM . 132

7 CONCLUSIONS AND THE FUTURE WORK 135

REFERENCES . 137

APPENDICES

A GENERATED XSLT DOCUMENTS . 143

xiii

A.1 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LO-
CATION PROFILE INSTANCES FROM GS1 XML TO UBL 143

A.2 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LO-
CATION PROFILE INSTANCES FROM UBL TO GS1 XML 148

VITA . 151

xiv

LIST OF TABLES

TABLES

Table 2.1 Document Design Principles 50

Table 2.2 Customization and Extensibility 51

Table 3.1 UN/CCL - “Structured Address” ABIE Asserted Definition 89

Table 3.2 UBL “Address” ABIE Asserted Definition - Part 1 90

Table 3.3 UBL “Address” ABIE Asserted Definition - Part 2 91

Table 3.4 UBL “Address” ABIE Asserted Definition - Part 3 92

Table 3.5 The Assertion Related with the different Usage of Datatypes 92

Table 3.6 Inferred Equalities/Subsumptions between UN/CCL “Structured Address”

and UBL “Address” in the Harmonized Ontology 93

Table 3.7 GS1 “NameAndAddress” ABIE Asserted Definition 94

Table 3.8 Inferred Equalities/Subsumptions between UN/CCL “Structured Address”

and GS1 “NameAndAddress” in the Harmonized Ontology 95

Table 4.1 The Relationship among the Semantic Properties oftwo Example Basic

Document Components . 105

Table 4.2 The Relationship among the Semantic Properties oftwo Example Associa-

tion Document Components .107

xv

LIST OF FIGURES

FIGURES

Figure 2.1 The Basic EDI Architecture 9

Figure 2.2 (a) The Basic EDI Message Structure, (b) An Example EDI Message . . . 9

Figure 2.3 The EDI Message Example 10

Figure 2.4 Core Component Overview [83] 13

Figure 2.5 Examples ofBasic Core Component(BCC), Aggregate Core Component

(ACC) andAssociation Core Components(ASCC) [83] 14

Figure 2.6 Customizing anAggregate Core Componentto theBusiness Process Con-

text“Trade” . 15

Figure 2.7 Relationship between Core Components and Business Information Entities

[83] . 16

Figure 2.8 The UBL Components .. . 16

Figure 2.9 An Example UBL Document Schema Structure 17

Figure 2.10 Two-phase validation of UBL Messages 18

Figure 2.11 UBL Extension Example 19

Figure 2.12 The Structure of OAGIS Business Object Document(BOD) 22

Figure 2.13 OAGIS Business Object Document (BOD) assembly example 23

Figure 2.14 OAGIS usage of UN/CEFACT CCT . 24

Figure 2.15 UserArea Example 24

Figure 2.16 OAGIS Overlay Layering Example 25

Figure 2.17 Overlay Extension Example 25

Figure 2.18 Code List Example 26

Figure 2.19 The Structure of GS1 XML Structure 28

xvi

Figure 2.20 Attribute/Value Pair Mechanism to populate extension area 31

Figure 2.21 Example Country Code Element 31

Figure 2.22 Example Payment Method List Element 32

Figure 2.23 An Example Comparing Related Parts of OAGIS BOD 9.0 and GS1 XML

Documents . 36

Figure 2.24 Example XSL Transformations necessary to map between two different

Overlayextensions in OAGIS BODs . 39

Figure 2.25 OWL Constructors 47

Figure 2.26 OWL Axioms .47

Figure 3.1 The Upper Ontology for the Semantics Exposed by the CCTS Framework . 53

Figure 3.2 An Overview of the Upper Ontologies and their Relationships 55

Figure 3.3 An Overview of the Upper Ontologies together withthe Document Schema

Ontologies . 56

Figure 3.4 The Upper Ontology for the Semantics Exposed by the GS1 XML Docu-

ment Standard . 72

Figure 3.5 The Upper Ontology for the Semantics Exposed by the UBL XML Docu-

ment Standard . 77

Figure 3.6 The Upper Ontology for the Semantics Exposed by the OAGIS XML Doc-

ument Standard . 81

Figure 3.7 The Semantic Equivalences among the BBIEs of UBL-Address, CCL-

Structured Address and GS1-NameAndAddress Discovered through the Harmo-

nized Ontology . 88

Figure 4.1 Example structural difference . 98

Figure 4.2 The Rule for Discovery of two Semantically Similar Basic Document Com-

ponents . 99

Figure 4.3 The Rule for Discovery of two Semantically Similar Association Document

Components . 100

Figure 4.4 The Rule for Discovery of Semantic Similarity between a Basic Document

Component and an Association Document Component 101

xvii

Figure 4.5 The Rule for Discovery of two Aggregate Document Components having

Semantically Similar Content 102

Figure 4.6 The Rule for Discovery ofg two Semantically Similar Aggregate Document

Components . 104

Figure 4.7 UBL’s Party ABIE and CCL’s BuyerParty ABIE 104

Figure 4.8 UBL’s Party ABIE and CCL’s BuyerParty ABIE 106

Figure 6.1 The Overall Framework and the Steps of Document Instance Translation . 125

Figure 6.2 iSURF ISU Entrance Page 129

Figure 6.3 Document Content Models 129

Figure 6.4 Equalities are loaded to the middle pane 130

Figure 6.5 Find equivalances item 131

Figure 6.6 Discovered Equivalences in the corresponding document trees 131

Figure 6.7 Identitfied XPaths 132

Figure 6.8 Generated XSLT .. . 133

xviii

LIST OF ACRONYMS

ABIE Aggregate Business Information Entity

ACC Aggregate Core Component

AiAG Automotive Industry Action Group

ANSI American National Standards Institute

ASBIE Aggregate Business Information Entity

ASCC Association Core Component

ATG UN/CEFACT Applied Technology Group

B2B Business-to-Business

BBIE Basic Business Information Entity

BBC Basic Core Component

BIE Business Information Entity

BOD Business Object Document

CBL Common Business Library

CC Core Component

CCL Core Component Library

CCT Core Component Types

CCTS Core Components Technical Specification

CEFACT Centre for Trade Facilitation and Electronic Business

xix

CIDX Chemical Industry Data Exchange

CLR TC OASIS Code List Representation Technical Committee

cXML Commerce XML

EAN European Article Number

ebXML Electronic Business eXtensible Markup Language

ebBP ebXML Business Process

EDI Electronic Data Interchange

EDIFACT Electronic Data Interchange For Administration, Commerceand Transport

EFT Electronic Funds Transfer

EPC Electronic Product Code

GDD Global Data Dictionary

GDSN Global Data Synchronization Network

GDT Global Data Types

GS1 Global Standards One

HL7 Health Level Seven

HTTP HyperText Transfer Protocol

HTTPS Secured HyperText Transfer Protocol

IATA International Air Transport Association

IEC International Electrotechnical Commission

xx

IG Implementation Guides

ISO International Organization for Standardization

ISU Interoperability Service Utility

iSURF iSURF Project: An Interoperability Service Utility for Collaborative Supply Chain

Planning across Multiple Domains Supported by RFID Devices

IT Information Technology

ITU International Telecommunication Union

MIME Multipurpose Internet Mail Extensions

NDR Naming and Design Rules

OAGI Open Applications Group, Inc.

OAGIS Open Applications Group Integration Specification

OASIS Organization for the Advancement of Structured Information Standards

OTA Open Travel Alliance

OWL Web Ontology Language

PIDX Petroleum Industry Data Exchange

QDT Qualified Data Types

RFID Radio Frequency Identification

SBDH Standard Business Document Header

SMTP Simple Mail Transfer Protocol

xxi

SPARQL RDF Query Language

STAR Standards in Automotive Retail

SWIFT Society for Worldwide Interbank Financial Telecommunication

UBL Universal Business Language

UBP Universal Business Process

UCC Uniform Commercial Code

UDT Unqualified Data Types

UMM UN/CEFACT Modelling Methodology

UN United Nations

UNECE United Nations Economic Commission for Europe

xCBL XML Common Business Library

XML eXtensible Markup Language

XSD XML Schema

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

xxii

CHAPTER 1

INTRODUCTION

Interoperability is the ability of two or more systems or components to exchange information

and to use the information that has been exchanged [31]. In other words, interoperability is

said to exist between two applications when one applicationcan accept data (including data

in the form of a service request) from the other and perform the task in an appropriate and

satisfactory manner (as judged by the user of the receiving system) without the need for extra

operator intervention [6].

Business Document interoperability initiatives started in the 1970s before the invention of the

Internet. The first standard developed was the Electronic Data Interchange (EDI) framework

[16], where document exchange was realised through dialup connections using proprietary

networks.

Starting with the late 1990seXtensible Markup Language[96] became popular for describing

data exchanged on the Internet. The relative human readability and the amount of XML

tools available made XML a popular basis for a number of new document standards such

asCommon Business Library(CBL) [7] and Commerce XML[12]. This progress has been

evolutionary because the later standards used the EDI experience. For example, CBL became

XML Common Business Library[95] after including EDI experience in CBL.

EDI, CBL and xCBL are horizontal industry standards addressing several industry domains.

There are also several vertical industry specific standard initiatives such as the ones from

theNorth American Automotive Industry Action Group[2], Health Level 7 (HL7) Standards

Development Organization[27], the Petroleum Industry Data Exchange (PIDX) committee

[57], theChemical Industry Data Exchange (CIDX) organization[8], Open Travel Alliance

[53], andRosettaNet Consortium[61] to name but a few.

1

However, having more than one standard does not solve the interoperability problem, but car-

ries it to an upper level and the problem becomes providing the interoperability of electronic

business documents conforming to different standards. Furthermore, the earlier standards

have focused on static message/document definitions which were inflexible to adapt to differ-

ent requirements that arise according to a given context which could be a vertical industry, a

country or a specific business process.

The leading effort for defining flexible and adaptable business documents came from the UN/-

CEFACT Core Components Technical Specification[83] (also known as ISO 15000-5) in

the early 2000s. UN/CEFACT CCTS provides a methodology to identify a set of reusable

building blocks, calledCore Componentsto create electronic documents.Core Components

represent the common data elements of everyday business documents such as “Address”,

“Amount”, or “Line Item”. These reusable building blocks are then assembled into business

documents such as “Order” or “Invoice” by using the CCTS methodology.Core Components

are defined to be context-independent so that they can later be restricted to different contexts

such as a specific industry or a country. ManyCore Componentsdefined by UN/CEFACT are

available to users from UN/CEFACTCore Component Library[82].

After its publication, the CCTS has gained widespread adoption by the electronic document

standard bodies. TheUniversal Business Language(UBL) [75] is the first implementation of

the CCTS methodology in XML. Some earlier horizontal standards such asGlobal Standard

One(GS1) XML [25] andOpen Applications Group Integration Specification 9.1(OAGIS)

[48], and many vertical industry standards such as CIDX [8] and RosettaNet [61] have also

taken up CCTS. However, the existing document standards have well-established document

schemas that are already in use and radical schema modifications to conform to CCTS will

cause backward incompatibility problem. Therefore they apply the CCTS methodology se-

lectively and more importantly do not always base their document artifacts on the core com-

ponents defined in the UN/CEFACT Core Component Library[82]. As a result there are

considerable differences among the CCTS based standards as detailed in [36].

As a natural consequence of these differences, these standards are not interoperable among

themselves. When industries using different standards want to exchange data, the mapping ex-

perts and data consultants, who understand the semantic meaning of each entity in these stan-

dards’ document schemas define the mappings among them manually and usually as XSLT

2

[98] rules. This is a very costly and tedious process. Furthermore, the current accepted prac-

tice of storing the document artifacts in spreadsheets doesnot facilitate to develop automated

semantic interoperability support tools.

In order to help with the interoperability of the document artifacts, in this thesis, the CCTS

based business document semantics is explicated. By “explicating”, it is meant that their se-

mantic properties are defined through a formal, machine processable language as an ontology

and the Web Ontology Language (OWL) [54] is used for this purpose. The semantics is ex-

plicated at two levels: At the first level, an upper ontology describing the CCTS document

content model is specified. The CCTS upper ontology consistsof classes representing CCTS

document artifacts such as theData Types, the Core Componentsand theBusiness Infor-

mation Entitiesand their properties. Furthermore, at this level, the upperontologies for the

prominent CCTS based standards, namely, GS1 XML, OAGIS 9.1 and UBL are also devel-

oped. The various equivalence relationships between the classes of the CCTS upper ontology

and the CCTS based document standards’ upper ontologies aredefined. These relationships

are later used to find the similarities among the document artifacts from different document

schemas.

At the next level, the semantics of the document schemas in each standard are described

through “document schema ontologies”, which are based on their corresponding upper on-

tologies. The difference between the “document schema ontology” and the “upper ontology”

is that the upper ontology describes the generic entities ina document content model, whereas

document schema ontologies describe the actual document artifacts as the subclasses of the

classes in the upper ontology.

When these ontologies are harmonized using a Description Logics (DL) reasoner, the au-

tomatically computed inferred ontology reveals the implicit equivalences and subsumption

relationships between the document artifacts in different standards. In other words, the newly

identified ontological relationships show the relations among the semantically similar docu-

ment artifacts, which are in different standards. It should be noted that currently the com-

mon practice to find these relationships between the artifacts of different standards is manual.

However, with the approach described in this thesis, these relationships are generated auto-

matically.

The harmonized ontology is effective only to discover equivalence of both semantically and

3

structurally similar document artifacts. In other words, the use of description logics only

allows finding relations between document artifacts, whosesemantics and structure are simi-

lar. Therefore, for identifying the relations between semantically similar document artifacts,

whose structure is different, further heuristics are provided in terms of predicate logic rules.

Note that a DL reasoner by itself cannot process predicate logic rules and a well accepted

practice of using a rule engine is resorted to execute the predicate logic rules and carry the

results back to the DL reasoner. The results involve declaring further class equivalences in the

harmonized ontology. Finally, the similarities discovered among the document artifacts are

used to automate the mapping process by generating the XSLT rules. In other words, with the

generation of the XSLT documents, the semantic equivalences at the conceptual level are con-

verted to syntactical transformation rules, which can be applied directly to the XML business

documents exchanged in real life business.

The apporach presented in this thesis is used in IST-213031 iSURF Project [34], where the In-

teroperability Service Utility (ISU) component of the iSURF Architecture implements my ap-

proach and provides translation between Universal Business Language’s [75] and GS1 XML’s

[25] electronic business document schemas for Collaborative Planning, Forecasting and Re-

plenishment.

The thesis is organized as follows: First, the related work and a state-of-the-art survey of elec-

tronic document standards are presented in Chapter 2. The aim of this survey is to identify

the document components semantics, which is used to find the relations among the similar

document components of different document standards. In this survey, some of the prominent

horizontal business document standards, namely, EDI, UN/CEFACT CCL, UBL 2.0, OAGIS

9.1 and GS1 XML are inspected in detail to identify the semantics that they give to their

components. This survey chapter also describes the differences among the business document

standards in order to help with the development of the XSLT documents for cross-standard

translation. In the thesis, the semantics is defined throughdescription logics based ontologies

and reasoning is used to identify the relations among the document components. Therefore,

in this state-of-the-art chapter, brief information on description logics, ontologies and reason-

ing tools are also provided. In Chapters 3, 4 and 5, the proposed methodology to establish

ontology-based semantic interoperability of electronic business document standards are de-

scribed in detail based on the findings obtained in Chapter 2.Chapter 3 describes the develop-

ment of the upper and document schema ontologies. In Chapter4, the heuristics to discover

4

semantically similar but structurally different document artifacts are described and Chapter

5 addresses how to automate the XSLT generation process for the discovered equivalences

among the document artifacts. Another benefit of representing document artifacts through

ontologies is that it facilates querying document components. Spreadsheets only allow key-

word based queries. However, the ontology representation allows the users to execute more

enhanced queries. In this respect, the document component query support is also described

in Chapter 5. The overall system architecture, the implementation results, the performance

of the system and a use case to generate mappings between GS1 XML Planning documents

[26] and UBL Collaborative Planning, Forecasting and Replenishment documents [76] are

described in Chapter 6. Finally, Chapter 7 presents the future work and concludes the thesis.

5

CHAPTER 2

SURVEY OF THE STATE OF THE ART

The survey chapter is composed of three parts. First, Section 2.1 presents the related work in

the literature. Then, in the second part, some of the prominent horizontal business document

standards, namely, EDI, UN/CEFACT Core Components Library, UBL 2.0, OAGIS BOD

9.1 and GS1 XML are surveyed in order to identify the semantics that they provide for their

document components. Section 2.2 summarizes the EDI initiative. Section 2.3 describes the

UN/CEFACT Core Component Technical Specification. Section 2.4introduces the Universal

Business Language (UBL) 2.0 standard. In Section 2.5, Open Applications Group Integration

Specification (OAGIS) 9.1 is presented. Global Standard One(GS1) XML standard is covered

in Section 2.6 after briefly introducing the set of standardsproposed by GS1.

In this part of the chapter, in order to identify the structure semantics of document artifacts, the

surveyed standards are first analyzed based on their document design principles: the document

design principles involve the document artifacts used in composing the documents, the code

lists used to convey the meaning of the values in the elementsand the use of XML namespaces.

Furthermore, since all the document standards surveyed arebased on UN/CEFACT CCTS,

how this methodology is used in the design of the documents isalso discussed.

Then how the standards handle extensibility and customization is discussed. It is an important

aspect used in the methodology defined in Chapter 3, because the unmapped elements are in-

serted into the appropriate extension areas. The standardsbasically handle the customization

and extensibility in two ways: either by introducing an “extension” element into the document

schema or by allowing users to change the document schema. When an “extension” element

is used, the document schema remains unchanged and the user can put any extra information

into this element. When the document schemas are modified to accommodate extensions, the

6

document interoperability is reduced.

The industry relevance of these standards are also presented by providing some major usage

examples in order to show the possible impact of this thesis.Most of the standards covered

have very wide industry take up.

Another important issue is whether the standards address the other layers in the interoperabil-

ity stack, namely the communication layer and the business process layer. The communication

layer addresses the transport protocol and the message header. (e.g. after sending a Purchase

Order message, an Purchase Order Acknowledgement message must be received), The busi-

ness process layer involves the sequencing of the messages,and the business processes.

In the second part, Section 2.7 contains an analysis of the presented standards with respect

to document design principles, customization and extensibility, coverage of other layers of

interoperability and their industry relevance.

Having completed the business document standards survey, in the third part of the chapter,

brief information on enabling technologies are presented.In Section 2.8, description logics is

described. In Section 2.9, the description logics reasoners are surveyed. After that, in Section

2.10, brief information on ontology and the ontology languages are presented, and Section

2.11 summarizes SPARQL, which is used to discover document components.

Finally, this chapter is concluded by mentioning current harmonization efforts, which are

manual.

2.1 RELATED WORK

Given the large number of electronic business document standards, conformance to one of

these standards or implementing a combination of them will not solve the interoperability

problem; there will always be some companies using a different, incompatible document

standard.

Currently, transforming an electronic business document from one standard format into an-

other is generally achieved by means of Extensible Stylesheet Language (XSL) [97] using

schema matching techniques as described in [58], and this process is performed manually.

7

To the best of my knowledge, there is no existing work on automatic transformation among

different UN/CEFACT CCTS based document standards. However, in the literature, there is

work on the use of description logic techniques in electronic document interoperability. In

[101], a Component Ontology specifically for UBL is developed by using the Web Ontology

Language (OWL) to represent the semantics of individual components and their relationships

within customized schemas. Then this ontology is processedthrough description logic rea-

soners for the discovery of similar components and the automation of the translation process

among different UBL customizations. In this work, the authors focus ona single document

standard, which is UBL. The different customizations, between which the translation is per-

formed, are generated from the same information model. Therefore, the information models

of different customizations do not differs much. However, in this work, the most difficult chal-

lenge is that the different document standards have different information models. The only

commonality among them is the use of UN/CEFACT CCTS.

In [3], Semantic Web technologies are used to transform documents between two vertical in-

dustries standards both based on OAGIS: one conforming toStandards in Automotive Retail

[68] schemas and the other conforming toAutomotive Industry Action Group[2] schemas.

First, the STAR and AiAG XML Schemas are converted to Web Ontology Language [54].

Then these independently developed ontologies are merged through description logic rea-

soners. By using the merged ontology, the STAR document instances are converted to the

corresponding AiAG documents and vice versa. Like, in [101], the authors focus on a sin-

gle document standard, OAGIS, and both of the document standards, STAR and AiAG, are

generated from the same information model.

In [102], a supply chain management ontology, called Onto-SCM, is developed which rep-

resents a common semantic model of supply chain management.The Onto-SCM is defined

using Ontolingua [47], which is an ontology representationlanguage based on Knowledge

Interchange Format (KIF) [38]. The authors then show how Onto-SCM can be used for con-

verting document schemas of different standards. In this work, the authors construct both the

Onto-SCM ontology itself and the mappings between the document standards to Onto-SCM

manually. Considering the large numbers of elements in the document schemas and changes

in the versions of the standards make the approach in [102] inapplicable. In the thesis, most

of the equivalences are identified automatically.

8

2.2 ELECTRONIC DATA INTERCHANGE (EDI)

EDI is developed through two main branches: ANSI X12 and UN/EDIFACT. In the USA,

the American National Standards Institute (ANSI) developed ANSI X12 [94] and interna-

tionally EDI is standardised as UN/EDIFACT (United Nations/Electronic Data Interchange

For Administration, Commerce, and Transport) [85]. Through both of these initiatives, a

large number of standard electronic documents in plain-text, quote-delimited formats have

been specified for domains like procurement, logistics and finance. EDIFACT has also been

standardised by the International Standards Organisationas ISO 9735 [85].

Partner A
Internal
System VAN

Partner B
Internal
System

EDI Software EDI Software

Figure 2.1: The Basic EDI Architecture

The basic EDI architecture is shown in Figure 2.1. The communications are through the

Value Added Networks (VANs) which are responsible for routing, storing and delivering EDI

messages. Special EDI adapters are implemented to interface the internal system of a partner

to the value added network. The particulars of the message syntax and interaction process are

negotiated between partners in advance. Sometimes a dominant partner imposes its standards

on smaller partners.

Interchange

Message Message Message

Element
Data

Element
Data

Element
Data

Data
Segment

Data
Segment

Data
Segment

UNH+000001+ORDERS:2:932:UN’

NAD+BY+6464326::91’

NAD+SU+1149646::91’

UNS+D’

LIN+1++PT−1073−R:VP’

QTY+21:1600’

LIN+1++PT−1073−S:VP’

QTY+21:1200’

UNT+13+000001’

BGM+220+AC6464’

DTM+4:20000305:102’

UNH

...

UNT

UNB+UNOA:1+6464:XX+1141:XX+BEN0273’

Message1

Message2

Interchange

UNZ+1+BEN0273’

I’change

Header

I’change

Header

Message
Header

Message
Header

(b)(a)

Figure 2.2: (a) The Basic EDI Message Structure, (b) An Example EDI Message

9

An EDI “interchange” document, as shown in Figure 2.2 (a) consists of “messages” which are

in turn composed of “data segments”. The segments themselves consist of “data elements”.

Figure 2.2 (b) shows an example EDI message.

When the Internet became an established networking environment starting with mid 1990s,

there were several updates to the EDI architecture. First, the Internet protocol for email,

Simple Mail Transfer Protocol (SMTP), and the File TransferProtocol (FTP) came to be used

to transfer EDI documents directly between parties connected to the Internet. Later, once the

World Wide Web and its transfer protocol, the Hyper-Text Transfer Protocol (HTTP), was

popularised, this became another mechanism for EDI document transfer.

UNH+000001+ORDERS:2:932:UN’

NAD+BY+6464326::91’

NAD+SU+1149646::91’

UNS+D’

LIN+1++PT−1073−R:VP’

QTY+21:1600’

LIN+1++PT−1073−S:VP’

QTY+21:1200’

UNT+13+000001’

BGM+220+AC6464’

DTM+4:20000305:102’

UNH

...

UNT

UNB+UNOA:1+6464:XX+1141:XX+BEN0273’

Message1

Message2

Interchange

UNZ+1+BEN0273’

Figure 2.3: The EDI Message Example

2.3 UN/CEFACT CORE COMPONENT TECHNICAL SPECIFICATION (CCTS)

UN/CEFACT Core Components Technical Specification (CCTS) is defined as Part 8 of the

ebXML (electronic business XML) Framework and is approved as ISO 15000-5 [83].

The essence of UN/CEFACT CCTS is to design documents from standard, re-usablebuilding

blocks, calledCore Components. The aim is to provide interoperability among electronic

business documents by requiring allBusiness Information Entities(BIEs) to be related back

to the commonCore Components (CCs). A considerable number ofCore Componentsare

available from theUN/CEFACT Core Component Library (CCL)for discovery and reuse, and

more will be available as the work progresses.

10

The first step to provide interoperability based onCore Componentsis to represent values in

the components consistently. Hence the starting point for the design ofCore Componentsis

theCore Component Types (CCT)andData Types (DT), which are also termed asCore Data

Types (CDT).

2.3.1 CORE COMPONENT TYPES AND DATA TYPES

Core Component Types(CCT) constitute the leaf-level type space of UN/CEFACTCore Com-

ponents. They specify the basic information types, such as amount, binary object, code and

date time, and they are built from primitive data types (e.g.binary, decimal, integer and

string). A CCT is composed of aContent Component, where the actual primitive content

resides, and one or moreSupplementary Components, which further describe theCore Com-

ponent Types. In other words,Supplementary Componentshelp to interpret a value in the

Content Component.

For example, the “Code” CCT’sContent Componentis of type string and has a set ofSupple-

mentary Componentssuch asCode List Agency Identifierwhich is the identifier of the Agency

that maintains the code list andCode List Agency Namewhich is the name of the Agency that

maintains the code list.

On the other hand,Data Typesare based on one of theCore Component Typesand further

restrict them. In this respect, CCT’s can be thought of as abstract types from which more

specializedData Typesare produced. For example, in the current version of the UN/CEFACT

Data Types, there is aData Type, called the “CurrencyCode”. This data type is based on the

“Code” CCT and restricts it as follows:

• Content Component: The value in theContent Componentshould be a three-letter code.

• Code List Identifier: The identifier of the code list is ISO 4217.

• Code List Version Identifier: The version of the code list is 2006-11-21.

The relationship amongCore Component Types, Data Typesand other types of core compo-

nents is shown in Figure 2.4 [83]. Up to now, UN/CEFACT has approved 14Core Component

Typesand defined 35 permissibleData Types, and has undertaken their maintenance. Further-

11

more, theData Typesprovided by UN/CEFACT can be used without restrictions (Unquali-

fied Data Types (UDT)) or further restricted (Qualified Data Types (QDT)) to accommodate

specific business needs. UN/CEFACT also provides the rules to restrict theData Typesto

Qualified Data Types.

2.3.2 NAMING CONVENTION USED

Apart from the structure, CCTS provides a methodology to define properties for the document

components to give them meaning. CCTS assignsObject Class Termproperty to every doc-

ument components it defines. The aggregate components, created from the same document

component by restricting them to different contexts, share the sameObject Class Term. For

example, theObject Class Term“Person” provides the meaning for all aggregate components

obtained from the “Person” aggregate component by restricting it to a context. TheObject

Class Termfor both the basic components and the association components is theObject Class

Termof the component they are defined in. For example, theObject Class Termof the “name”

basic component is “Person” if it is defined in the “Person” component or it is the “Product”

if it is defined in the “Product” component.

Furthermore, CCTS defines the names of the basic document components and the association

document components throughProperty Termproperty. The aim is that even when these

components are qualified to create other components and hence are renamed, theirProperty

Term remains the same. For example when “Identification” basic document component of

a “Party” aggregate document component is qualified in “Trade” context, its name becomes

“Tax Identification”, but itsProperty Termis still “Identification”.

CCTS defines terms that represent the basic document components and the association doc-

ument components throughRepresentation Termproperty. TheRepresentation Termsfor the

basic document components give their core data type. The aimis when the data type is later

qualified and hence is renamed, it still has the sameRepresentation Term. For example, the

data type of the “Type” basic component of “Document” aggregate component is qualified to

become “DocumentTypeCode”, however itsRepresentation Termis still “Code” stating that

the new qualified data type is derived from “Code” core data type. TheRepresentation Term

for the association document components, on the other hand,give theObject Class Termof

the component it refers to. As an example, the “EmailURI” association document component

12

of “Contact” aggregate component refers to “InternetCommunication” aggregate component

and theRepresentation Termof this association component is “Communication” stating that

the “InternetCommunication” component is qualified from the “Communication” compo-

nent.

Another benefit of this way of giving semantics is to provide anaming convention that is nec-

essary to consistently name the defined components to facilitate the comparison during the

discovery and analysis process. Furthermore, ambiguitiescan be prevented such as develop-

ing multipleCore Componentswith different names that have the same meaning. This naming

convention is derived from ISO 11179 Part 5 [33]. It has threemajor parts:Object Class Term,

Property TermandRepresentation Term. For example, when theCore Component“Invoice.

TaxAmount. Amount” basic component is expressed accordingto this naming convention,

“Invoice” is theObject Class Term, “TaxAmount” is theProperty Termand “Amount” is the

Representation Term.

2.3.3 TYPES OF CORE COMPONENTS

A Core Componentis a reusable building block for creating electronic business documents.

There are three types ofCore Components:

Supplementary
Component

Component
Content

Aggregate Core
Component

Association Core
Component Component

Basic Core

Core Component
Type (CCT)

Defines set of
values of

Specifies
Restrictions on

Data Type

characteristic of and
is aggregated in

Provides a complex Provides a simple
characteristics of and

is aggregated in

Consist of

Consist of

1..n

1

Figure 2.4: Core Component Overview [83]

• Aggregate Core Component (ACC): A distinct real world object with a specific business

meaning such as “Address” or “Purchase Order” is termed as anAggregate Core Com-

ponent(ACC). AnAggregate Core Componenthas at least one and possibly moreBasic

Core Components(BCCs). For example, as shown in Figure 2.5 “Address. Details”

13

is an Aggregate Core Component (ACC)containing severalBasic Core Components

(BCCs).

• A Basic Core Componentdescribes a property of an ACC by using aData Type. For

example, as shown in Figure 2.5, “Address. Details. Street”is a Basic Core Compo-

nent (BCC)and is of “Text” Data Type. In other words, theData Typesare used as

Representation Termsof Basic Core Components.

• Sometimes it is necessary to define an association between Aggregate Core Compo-

nents. This is realized throughAssociation Core Components. As shown in Figure 2.5,

“Person. Details. Residence” is anAssociation Core Component(ASCC) referencing

the “Address. Details” ACC.

Person.Details
− Name (Text)
− Birth Date (Date)

Address.Details
− Street (Text)
− Post Code (Text)
− Town (Text)
− Country (Identifier)

Official Address

Residence

ACC

ASCC

BCC

Figure 2.5: Examples ofBasic Core Component(BCC), Aggregate Core Component(ACC)

andAssociation Core Components(ASCC) [83]

2.3.4 BUSINESS INFORMATION ENTITY (BIE)

A Core Componentis designed to be context-independent so that it can later beadapted to

different contexts and reused. When aCore Componentis restricted to be used in a specific

business context, it becomes aBusiness Information Entity (BIE)and given its own unique

name.

The possible business contexts that can be used are defined tobe: Business Process Con-

text; Product Classification Context; Industry Classification Context; Geopolitical Context;

Business Process Role Context; Supporting Role Context; System Capabilities Contextand

Official Constraints Context.

For example, when theBusiness Process Contextis specialized to “Purchasing”, and the

14

Geopolitical Contextis set to be “EU”, the “Invoice. Tax. Amount” BCC becomes the “In-

voice. VAT Tax. Amount”Basic Business Information Entity (BBIE).

Entry Name
Dictionary Object Class

Term
Property
Term

Representation
Term

Payment.Tax.Amount

Payment.Received.Date Time

Payment.Agent.Party

Payment.Paid.Amount

Payment.Details

...

ACC

BCC

BCC

...

BCC

ASCC

Type

Payment

Paid

Received

Tax

Agent

Amount

Date Time

Amount

Party

Cardinality

0..unbounded

0..unbounded

0..unbounded

0..1 Context
Business Process

Trade

Object Class
Term QualifierEntry Name

Dictionary Object Class
Term

Property
Term

Representation
Term

Advance_Payment.Details

Advance_Payment.Paid.Amount

ABIE

BBIE

BBIE

Advance

Type

Payment

Date
Time

AmountPaid

Received

Cardinality

Advance_Payment.Received.Date Time

1..1

0..1

Figure 2.6: Customizing anAggregate Core Componentto the Business Process Context

“Trade”

Similarly, when anAssociation Core Componentis used in a context, it becomesAssociation

Business Information Entity (ASBIE)and Aggregate Core ComponentbecomesAggregate

Business Information Entity (ABIE). For example, in Figure 2.6 an “Advance. Payment. De-

tails” ABIE is created by customizing the “Payment. Details” ACC to theBusiness Process

Context“Trade” as follows: AnObject Class Term Qualifieris added as an additional property

and the related BCCs are customized to create the BBIEs by restricting their cardinality.

Figure 2.7 [83] gives the relationship between the types of core components and the corre-

sponding business information entities.

2.3.5 UN/CEFACT CORE COMPONENT LIBRARY

The Core Component Library [82] is the repository for UN/CEFACT CCTS artifacts. Cur-

rently there are quite a number of UN/CEFACT artifacts in the Core Component Library.

15

Core Component
Type (CCT)

Data Type

Restriction on
Specifies

Component (BCC)
Basic Core

Defines set of
values of

Component (ASCC)
Association Core

aggregated in
As Property

Component (ACC)
Aggregate Core

Data Type

Basic Business Information
Entity (BBIE)

Association
Business

Information
Entity (ASBIE)

Information Entity (ABIE)
Aggregate Business

Message Assembly

Defines set of
values of

restricts
Further

Is based on

Is based on

Object Class of
Qualifies the

aggregated in
As Property

refers To
refers To

CORE BUSINESS

Aggregated in

Figure 2.7: Relationship between Core Components and Business Information Entities [83]

2.4 UNIVERSAL BUSINESS LANGUAGE 2.0 (UBL)

The Universal Business Language [75] initiative from OASISadopts the UN/CEFACT Core

Component Technical Specification (CCTS) approach and develops a set of standard XML

business document definitions.

Currently, the approved version of UBL is 2.0 [75] and there are thirty one XML schemas for

common business documents such as “Order”, “Despatch Advice” and “Invoice”. In addition

to the document definitions, UBL 2.0 provides a library of XMLschemas (XSDs) [79] for

reusable common data components like “Address”, “Item”, and “Payment” from which the

documents are constructed. UBL 2.0 reusesCore Component TypeandData Typedefinitions

Document (ABIE)

Basic BIE Property

Association BIE
Property (ASBIE)

Aggregate Business
Information Entity (ABIE)

Basic Business
Information Entity (BBIE)

Qualified Data Types (QDT)

Unqualified Data Types (UDT)

0..n

0..n

Figure 2.8: The UBL Components

16

from UN/CEFACT CCTS such as “AmountType”, “CodeType” and “DateTimeType”. When

UN/CEFACT CCTSData Typesare imported to UBL type space, they are termed as theUn-

qualified Data Types (UDT). Additionally, UBL definesQualified Data Types (QDT)which

are primarily for code lists such asCurrencyCodeTypeor CountryIdentificationCodeTypede-

fined for use within UBL.

At the time the UBL initiative had started, UN/CEFACT CCTS had not yet specified core

components. Therefore UBL created its own BIEs based on CommerceOne’s xCBL (XML

Common Business Library) 3.0 [95] and the UN/EDIFACT (EDI for Administration Com-

merce and Trade) dictionary [85]. Hence the UBL vocabulary consists primarily ofAggregate

Business Information Entities(ABIEs).

Figure 2.8 shows the structure of the UBL Documents. It should be noted that in addition

to identifying conceptualBusiness Information Entities(BIEs), UBL uses the CCTS artifacts

such as ABIE, ASBIE and BBIE to compose its document schemas.This is in contrast to

some other standards which use CCTS components in different document artifacts of their

own and also name them differently.

In UBL, ABIEs are used in two different ways: (1) The document ABIEs which represent

UBL Documents such as “Order” and “Invoice” and (2) More fine-grained reusable ABIEs

such as “Address” and “Party”. As shown in Figure 2.7, an ABIEis composed of BBIEs

and ASBIEs as in UN/CEFACT CCTS. In UBL 2.0, according to the UBL 2.0 Naming and

Design Rules, this composition is realized throughBIE Properties. A BBIE has a single

content whose type is specified either withQualified Data Types(QDT) or Unqualified Data

Types(UDT). Figure 2.9 shows an example UBL 2.0 “Order” document.

Order (Document)

BuyerCustomerParty (ASBIE)

SellerSupplierParty(ASBIE)
...

OrderLine (ASBIE)

CustomerPartyType (ABIE)

SupplierPartyType (ABIE)

OrderLineType (ABIE)

ID (Basic BIE Prop.)

PricingCurrencyCode (Basic BIE Prop.)

IssueDate (Basic BIE Prop.)

IssueTime (Basic BIE Prop.)

ID (BBIE)

IssueDate (BBIE)

IssueTime (BBIE)

IdentifierType (UDT)

PricingCurrencyCode (BBIE) CurrencyCodeType (QDT)

CodeType (UDT)DateType (UDT)

TimeType (UDT)

Figure 2.9: An Example UBL Document Schema Structure

17

2.4.1 UBL CUSTOMIZATION AND EXTENSIBILITY

There are two types of customizations specified in UBL 2.0: Conformant customization and

Compatible customization.

Before going into details of customization, it is worth describing the validation of UBL doc-

uments. UBL 2.0 recommends a two-phase validation technique as shown in Figure 2.10. In

the first phase, an incoming UBL document is validated against UBL 2.0 XSD schemas (or

customized versions of them). If the instance passes the first phase, in the second phase it is

checked against the rules, which specify additional constraints on the values of the elements

in the instance. Generally, the rules are specified through XSL [97] or Schematron languages

[64]. If the instance passes both of the phases successfully, it is delivered to the processing

business application.

Application
Business

Rules

UBL Instance

UBL 2.0

Schemas

W3C Schema
Validator

XSLT
Processor

Figure 2.10: Two-phase validation of UBL Messages

2.4.1.1 CONFORMANT CUSTOMIZATION OF UBL 2.0

The key idea behind the conformant customization is that theXML instances in the cus-

tomized implementation must also conform to the original standard UBL 2.0 schemas. There

are four ways of performing conformant customizations:

1. Inserting additional elements through the use of “UBLExtensions” element: An op-

tional UBLExtensionselement appears as the first child of all UBL 2.0 documents

and is used to include non-UBL data elements. For example, there could be elements

containing data whose inclusion is mandated by law for certain business documents

in certain regulatory environments.UBLExtensionselement is composed of multiple

UBLExtensionelements, each containing a single elementExtensionContentof type

“xsd:any” to accommodate the widest possible range of extensions. This means that

18

<Order

xmlns="urn:oasis:names:specification:ubl:schema:xsd:Order-2"

xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateComponents-2"

xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicComponents-2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<UBLExtensions xmlns="urn:oasis:names:specification:ubl:schema:xsd:

CommonExtensionComponents-2">

<UBLExtension>

<ExtensionContent>

<OrderExtensions>

<productForm>Granule</productForm>

<bonusPoint>100</bonusPoint>

</OrderExtensions>

</ExtensionContent>

</UBLExtension>

</UBLExtensions>

...

<cac:BuyerCustomerParty> ... </cac:BuyerCustomerParty>

<cac:SellerSupplierParty> ... </cac:SellerSupplierParty>

<cac:AnticipatedMonetaryTotal> ... </cac:AnticipatedMonetaryTotal>

<cac:OrderLine> ... </cac:OrderLine>

</Order>

Figure 2.11: UBL Extension Example

any well-formed XML element from any vocabulary can be inserted intoExtension-

Contentelement without modifying the schema.

An example UBL extension is given in Figure 2.11 where the “UBLExtensions” ele-

ment is inserted into the beginning of the order document. Itcontains a “productForm”

element, which shows the requested form of the ordered product, and a “bonusPoint”

element, which is the bonus amount gained by the buyer upon purchasing the ordered

products.

2. Subsetting original UBL 2.0 schemas: There are very many possible elements in a UBL

document. For example, there are about 50,000 possible elements in a UBL Order

Document. Most applications will not need all this data. Therefore, UBL 2.0 allows

users to create subsets of its schemas. Subsets remove any optional information entities

that are not necessary to the specific implementation. UBL 2.0 Small Business Subset

[78] is an example of this subsetting mechanism.

19

3. Placing constraints on the value space of information entities and/or putting constraints

among these values: In a specific implementation of UBL 2.0, there may be additional

constraints on the value space of information entities. Forexample, “The Total Value of

an Order cannot be more than 50,000 USD”. There may also be rules about dependen-

cies between values of the elements, such as “The Shipping Address must be the same

as the Billing Address” or ”The Start Date must be earlier than the End Date”. The

former type of requirement can be reflected in the UBL schemasby type restriction;

however, this requires schema modification. On the other hand, the latter type of re-

quirement cannot be represented through XSD schemas. However, users can describe

both of these constraints through Schematron [64] or XSL rules [97] and feed these

rules into the second phase of validation as already described.

4. Customizing the code lists: Code list customization is described in Section 2.4.1.3.

2.4.1.2 COMPATIBLE CUSTOMIZATION OF UBL 2.0

Sometimes conformant customization may not be sufficient for a specific implementation.

Users may need to perform more complex modifications such as extending an ABIE, creating

a new ABIE or creating a new document. To handle these cases, the compatible customization

approach can be used. In compatible customization, the users modify an existing UBL 2.0

schema or create a new one by re-using the “largest suitable”aggregation from the UBL li-

brary. When performing compatible customization, the users need to follow the UBL Naming

and Design Rules [77].

2.4.1.3 THE USE OF CODE LISTS

In UBL 1.0, the standard and the default code list values are specified directly in the UBL

schemas as XSD enumeration constraints. This allows all UBL1.0 instances to be validated

in a single pass using generic XSD processors. However, the specification of the default values

directly in the schemas also makes it difficult to modify the code lists to meet customization

requirements.

In UBL 2.0, only three code lists are enumerated in the schemas: (1) TheCurrencyCodeCon-

tentTypefor internationally standardized currency codes, (2) TheBinaryObjectMimeCode-

20

ContentTypefor MIME encoding identifiers and (3) TheUnitCodeContentTypefor unit codes.

In fact, these enumerations are specified inUnqualified Data Typesfrom UN/CEFACT and

UBL 2.0 includes them as they are for the attribute values.

The other code lists used in UBL are not enumerated in the schema expressions. Instead of

enumerating the codes in the XSD schemas, UBL uses a common base type calledCodeType,

which is an extension of “xsd:normalizedString” for all elements expressing values from the

code lists. The UBL 2.0 package includes files for every code list. These files are separate

from the provided XSD schemas and they are in a standard format. Trading partners can

modify or replace any of these files to meet their business requirements. After this step, they

can convert these files in proprietary format to Schematron or XSL rules. OASIS Code List

Representation Technical Committee [10] provides tools for this purpose. Later these rules

can be fed into the second phase of validation as already described.

2.5 OPEN APPLICATIONS GROUP INTEGRATION SPECIFICATION (OA GIS)

BUSINESS OBJECT DOCUMENTS (BOD) VERSION 9.1

The Open Applications Group, Inc. (OAGi) [44] is a not-for-profit open standards organiza-

tion that defines electronic document standards calledBusiness Objects Documents(BODs).

Since its first release in 1995, several versions of Open Applications Group Integration Speci-

fication (OAGIS) BODs have been produced, the latest one being the OAGIS BOD version 9.1

[48]. This version is redesigned to be based on the UN/CEFACT Core Components Technical

Specification.

TheBusiness Object Document(BOD) is based on a pair of concepts called theNounand the

Verb. TheVerbidentifies the action to be applied to theNoun. Nounis the object or document

such as “PurchaseOrder”, “RequestForQuote”, and “Invoice” that is being acted upon. Ex-

amples ofVerbsinclude “Cancel”, “Get”, “Process”, and “Synchronize”. TheVerbandNoun

combination provides the name of the BOD. For example, when the Verb is “Process” and

theNounis “PurchaseOrder”, the name of the BOD is “ProcessPurchaseOrder”. There are 77

nouns and 12 verbs defined in OAGIS 9.1.

The separation ofVerb andNouncomponents increases the reusability of data. For exam-

ple, theNoun “PurchaseOrder” contains all of the information that mightbe present in a

21

“PurchaseOrder”. The instantiation of each of the possibleVerb and Noun combinations

then further restricts the document to a context. For example, in a “ProcessPurchaseOrder”

transaction, business partners and line item data must be provided, whereas in a “CancelPur-

chaseOrder” only the order identifier is enough to carry out the transaction. Note that these

constraints do not change the schema of a document. Rather, they provide the constraint rules

to be applied in the validation of a BOD. Like UBL, OAGIS recommends a two-phase vali-

dation. When an OAGIS document is received, it is first validated against the corresponding

XML Schema and afterwards against the corresponding Schematron/XSL rules. Only after

the OAGIS instance document passes this two-phase validation is it delivered to the business

application that processes the document content.

OAGIS provides some recommendations on the usage ofVerbs. Verbsmay come in pairs

meaning that the response to aVerbshould be another specificVerb. For example, the response

Verbof “Process” is “Acknowledge”.

Fields

Compounds

Application Area

Components

Nouns

Verb

Data Area

Business Object Document (BOD)

Figure 2.12: The Structure of OAGIS Business Object Document (BOD)

As shown in Figure 2.12, a BOD is a message structure composedof an ApplicationArea

and aDataArea. The ApplicationAreacarries necessary information for transport software

to send the message to the destination such as the sender, thesignature of the sender and the

unique identifier of the BOD. The need for theApplicationAreastems from the following:

the application software that creates a BOD may be separate from the transport software that

sends the BOD to the destination. Therefore the applicationsoftware creating the BOD should

provide the transport software with the necessary configuration information to send the BOD.

22

In other words, theApplicationAreacontains the configuration information created by the

application software and conveyed to the transport software.

TheDataAreacontains a singleVerband multipleNouns. A Nounmay be assembled from

Component, Compound, andField document artifacts.Componentsare large-grained building

blocks and may in turn consist of otherComponents, Compounds, andFields. Examples of

Componentsinclude: “PurchaseOrder Header”, “Party”, and “Address”.Compounds, which

are used across all BODs, are a logical grouping ofFields (low level elements). Examples

include “Amount”, “Quantity”, “DateTime”, and “Temperature”. Fieldsare the lowest level

elements used in OAGISComponentsandCompounds. Figure 2.13 shows an example BOD

assembly with OAGIS artifacts.

Component Field Compound

FieldFieldField Field

Component Compound

Field Field

ComponentField Compound

Field Field Field Field

Field

Noun

Component

Figure 2.13: OAGIS Business Object Document (BOD) assemblyexample

OAGIS implementation of the Core Component Technical Specification (CCTS) is shown

in Figure 2.14. In OAGIS 9.1, theCore Component TypesandUnqualified Data Typesare

directly used in the OAGIS Schemas. In other words, all OAGISField types are based on

UN/CEFACTCore Component Types. Furthermore, the code lists, such as ISO 54217 Cur-

rency Codes and ISO 5639 Language Codes, recommended by UN/CEFACT are also used as

described in Section 2.5.1.3.

As shown in Figure 2.14, OAGIS incorporates the UN/CEFACT ABIEs into OAGISCompo-

nentsrather than using them directly. When using these ABIEs in their Components, OAGIS

appends “ABIEType” suffix to the name of the ABIE in order to identify that it is an ABIE

from UN/CEFACT.

OAGIS Naming and Design Rules (NDR) are based on the version UN/CEFACT ATG2 Nam-

ing and Design Rules (NDR) [4].

23

OAGIS BODs
OAGIS Nouns, Verbs

OAGIS Fields
OAGIS Components

UN/CCL ABIEs
UN/CCL ACCs

Qulified Datatypes
Unqualified Datatypes

OAGIS Code Lists
UN/CEFACT Code ListsComponent Types

UN/CEFACT Core

Figure 2.14: OAGIS usage of UN/CEFACT CCT

2.5.1 OAGIS EXTENSIBILITY

OAGIS provides two mechanisms to extend its specifications:UserAreaExtensions andOver-

lay Extensions.

2.5.1.1 USERAREA EXTENSIONS

The UserAreaextensibility provides a means of adding implementation specific content to

an existing OAGISComponentin an existing OAGIS BOD. When a few simple fields are

needed to complete the information for the exchange,UserAreaextensions are used. There is

aUserAreaelement of type “xsd:any” at the end of each OAGISComponentwhere the users

can insert any valid XML instance without changing the original OAGIS schema.

For example, in Turkey, the addresses contain “Mahalle” information, which basically specify

a district in a city. In OAGIS, “Address”Componentdoes not have such aField to carry

“Mahalle” information. This “Mahalle” information can be inserted in theUserAreapart of

“Address”Componentin a BOD instance when it is used in Turkey, as shown in Figure 2.15.

<Address>

....

<UserArea xmlns:myTrImpl="http://www.myTrImpl.org">

<myTrImpl:Mahalle>EsatOglu<myTrImpl:Mahalle>

</UserArea>

</Address>

Figure 2.15: UserArea Example

24

2.5.1.2 OVERLAY EXTENSIONS

When the users need more complex changes such as creation of anew BOD or creation of

new aComponent, Overlayextension mechanism is used. TheOverlayextensions result in

the creation of new XML Schemas for the BOD in their own separate namespaces. It should

be noted that onlyNounsandComponentsare overlay extensible.

TheOverlayextension mechanism adopts a layering approach. New layers, called overlays,

are defined in their own respective namespaces on top of core OAGIS Schemas. Specialized

BODs andComponentsare defined by extending BODs from lower layers and/or by com-

posing new BODs from a combination of existing components, extended components, and

new components. In Figure 2.16, an example for overlays is shown where “Automotive”

overlay is created from core OAGIS schemas, whereas “Auto Parts” that is a subdomain of

“Automotive”, is built on “Automotive” and OAGIS core.

Auto Parts

OAGIS Core

Automotive

Figure 2.16: OAGIS Overlay Layering Example

<xs:complexType name="MyInvoiceType">

<xs:complexContent>

<xs:extension base="oa:Invoice">

<xs:sequence>

<xs:element ref="ia:TotalDiscounts" minOccurs="0"/>

<xs:element name="GrandTotal" type="oa:Amount" minOccurs="0"/>

<xs:element name="MyInfo" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="MyInvoice" type="my:MyInvoiceType"

substitutionGroup="oa:Invoice"/>

Figure 2.17: Overlay Extension Example

With Overlayextensions, the users are allowed to create a new BOD, aNoun, aComponent,

25

a Compoundor a Field, or extend any of the previously defined OAGIS artifacts. Forex-

ample, a user may extend the “Invoice”Noun of OAGIS by adding the following: a new

Componentfor representing total discounts; an existingCompoundfor grand total and a new

Field for a special purpose. Figure 2.17 shows how these extensions are realized. The user

first creates a newNoun called “MyInvoiceType” by extending the “Invoice” provided by

OAGIS. Afterwards, the user inserts the elements mentioned. Finally, the user defines the

“MyInvoice” element of type “MyInvoiceType”. Note that “MyInvoice” element is in the

same “xsd:substitutionGroup” as OAGIS “Invoice”, which means that anywhere the OAGIS

“Invoice” element is included in a model, the “MyInvoice” element can be inserted as well. In

order to preserve interoperability among differentOverlay Extensions, XSLT transformations

are defined to convert an instance document conforming to an overlay into another.

In the CodeLists.xsd:

<xsd:simpleType name="PaymentMethodCodeEnumerationType">

<xsd:restriction base="xsd:normalizedString">

<xsd:enumeration value="Cash"/>

<xsd:enumeration value="Cheque"/>

<xsd:enumeration value="CreditCard"/>

<xsd:enumeration value="DebitCard"/>

<xsd:enumeration value="ElectronicFundsTransfer"/>

<xsd:enumeration value="ProcurementCard"/>

<xsd:enumeration value="BankDraft"/>

<xsd:enumeration value="PurchaseOrder"/>

<xsd:enumeration value="CreditTransfer"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="PaymentMethodCodeContentType">

<xsd:union memberTypes="PaymentMethodCodeEnumerationType xsd:normalizedString"/>

</xsd:simpleType>

In the Fields.xsd:

<xsd:simpleType name="PaymentMethodCodeContentType">

<xsd:restriction base="oacl:PaymentMethodCodeContentType"/>

</xsd:simpleType>

Figure 2.18: Code List Example

UserAreaextensions are faster to apply thanOverlayextensions. However, they do not pro-

26

vide the same level of control on the schemas as theOverlayextensions do. This is because

theUserAreaextensions are applied to the OAGIS BOD XML instance documents and not to

the OAGIS BOD schema itself.

2.5.1.3 CODE LIST EXTENSIONS

OAGIS uses and recommends the code lists from UN/CEFACT, and allows additional val-

ues to be present. This is accomplished as follows: OAGIS defines two “xsd:simpleType”

for each codedField: (1) an enumeration type, which lists the codes to be used and(2) a

“xsd:simpleType” which is a union of that enumeration type and the “xsd:normalizedString”.

In other words, with the specification of “xsd:normalizedString” any code can be inserted to

a BOD XML instance without affecting the validity against the BOD Schema. For example,

as presented in Figure 2.18, the “PaymentMethodCodeContentType” Field is associated with

“oacl:PaymentMethodCodeContentType” which is the union of “PaymentMethodCodeEnu-

merationType” and “xsd:normalizedString”. The use of “xsd:normalizedString” allows the

users to send codes that are not listed in “PaymentMethodCodeEnumerationType”.

2.6 GLOBAL STANDARDS ONE (GS1)

Global Standards One (GS1) [23] is a family of standards focusing on different aspects of

supply chain integration such as electronic products codes, product information synchroniza-

tion and the electronic document standards. GS1 was formed in early 2005 by the European

Article Number [13] and the Uniform Commercial Code [81] organizations when they joined

together. EAN and UCC were two organizations that heavily contributed to the adoption and

proliferation of barcodes.

The part addressing the electronic document interoperability in this family of standards is

GS1 eCom. In GS1 eCom, there are two distinct categories: theearlier eCom standards that

are based on Electronic Document Interchange (EDI), calledEANcom [14] and the newer

generation GS1 XML [25] which is defined using XML Schema.

The other standards in GS1 family include the Global Data Synchronization Network [22]

and EPCglobal [20]. The Global Data Synchronization Network (GDSN) enables product

27

data and location information synchronization so that trading partners have consistent item

data in their respective systems.

EPCglobal drives the development of the Electronic ProductCode (EPC) related with RFID

standards. The specifications are based on the Radio Frequency Identification (RFID) research

performed at the MIT AutoID Labs [41].

Document1

Document2

Document3

Document4

Document5

StandardBusiness
DocumentHeader (SBDH)

Command = command1

Command = command2

Transaction (ID)

Message

StandardBusinessDocument

Figure 2.19: The Structure of GS1 XML Structure

2.6.1 GS1 XML

As shown in Figure 2.19, a GS1 XML document is represented with aStandardBusinessDoc-

ument, which contains aStandardBusinessDocumentHeader(SBDH) and aMessage. Stan-

dardBusinessDocumentHeaderis based on the SBDH defined by UN/CEFACT [88] and pro-

vides information about the routing and processing of the XML instance document contained

in the GS1 XMLMessage. The SBDH is used for the same purpose as OAGIS’sApplication-

Area element; that is, it contains the configuration informationfor the transport software to

send the message to its destination.

A GS1 XML document includes either a set ofCommandsor a set ofTransactionswhich in

turn containCommands:

• Command: A Commandinstructs the recipient to perform a particular action, such as

“Add”, “Delete” and “Refresh”, related to the documents within the command. The use

28

of these commands decreases the number of documents needed.The same document

can be used with different commands. Hence, no separate documents like “Add Order”,

“Change Order” or “Delete Order” are needed; the same “Order” document can be

sent with a relevant command. In a similar way, several documents can reuse the same

command.

• Transaction: A Transactionprovides the functionality of executing multiple commands

atomically as in relational databases. If one command in a transaction fails, the trans-

action fails causing all other commands in the transaction to be discarded applying the

principle of “all or nothing”.

As an example, assume that a sender needs to send a message about two products and the first

product is related to the second one. Instead of sending two distinct transmissions, the sender

can transmit them together in oneTransactionthat contains oneCommand, which holds two

Documentseach of which is for a product. If the products are not relatedthen, the sender can

send them without using theTransactionelement. In other words, the user sends only one

Commandcontaining twoDocuments.

GS1 XML is compliant with UN/CEFACT CCTS methodology in that GS1 XML uses the

same modelling, design and technical principles. However,unlike UBL or OAGIS, which use

UN/CEFACT artifacts (such asCore Component Types, Data TypesandBusiness Information

Entities), GS1 XML does not use UN/CEFACT CCTS artifacts in their XML Schemas. Yet,

the GS1 core components are submitted as an input to UN/CEFACT CCTS development.

While developing their e-business standards, GS1 uses its Global Data Dictionary [24] to

store, reuse and share common components and business definitions, and their corresponding

representations in XML. In other words, the GDD is the repository of:

• Data components, used to create the GS1 XML standards, developed according to the

UN/CEFACT Core Components Technical Specification (CCTS).

• Business terms and their representation in GS1 XML.

Through GDD, the search of previously defined components is facilitated.

In the GS1 XML documents, some of the components such asMeasurement, DocumentStatus

andMontetaryAmountare common to more than one business document and more than one

29

context. Therefore, these components are included in a common library as a part of the GDD.

This approach allows reusing the same information constructs in all business messages.

2.6.1.1 CUSTOMIZATION AND EXTENSIBILITY

In GS1 XML, the following context categories are defined for customization:

• Business Processcontext in which collaboration takes place such as orderingor deliv-

ery.

• Industry Sectorcontext in which the business partners are involved such as automotive.

• Geopoliticalcontext reflecting the geographical factors that influence the business se-

mantics. This can be either country-specific, for example, only for France or Sweden,

or limited to certain economic regions, for example, NAFTA or European Union, and

finally, it can be applicable everywhere in the world, in which case the context is defined

as “Global”.

The context information is reflected to the documents through their namespaces. In other

words, the GS1 information components are assigned to a namespace that reflects the context

they are defined in. For example, the namespace for the documents that are used in the Global

Data Synchronization Network (GDSN) is “gdsn=urn:ean.ucc:gdsn:2”. As another example,

the documents for alignment of trade items in Sweden use “sw=urn:ean.ucc:align:sweden:2”

as their namespace. On the other hand, the schemas in the common library have “eanucc=

urn:ean.ucc:2” as their namespace, because they do not belong to any specific context.

GS1 XML supports extensibility of its document schemas. Starting from release 2.0, there

is an element called “extension” at the end of each business document XML schema where

additional context-specific information that are not defined by GS1 XML can be inserted. This

element is of type “xsd:any”, which allows the users to insert any XML data to the exchanged

instance documents without changing the standard GS1 XML schema.

Before starting to exchange GS1 XML instances with other parties, each organization that

requires additional elements in their documents publishestheir extensions to the “Extended

Attributes” section of the Global Data Dictionary Web site.When a sender wishes to send

30

a message to a receiver, the sender first checks whether the receiver has an extension by

consulting the GDD Web site. If there is an extension, the sender sends the message using

Attribute/Value Pair mechanism. Attribute/Value Pair mechanism is a way to populate the

“extension” area of a document. As an example, assuming thatthe receiver requires two

additional elements: “packagingWeightValue” and “packagingWeightUnitOfMeasure”, the

sender populates the “extension” area as shown in Figure 2.20.

<extension>

<gdsn:attributeValuePairExtension

xsi:schemaLocation="urn:ean.ucc:2

../Schemas/AttributeValuePairExtensionProxy.xsd">

<value name="packagingWeightValue">15</value>

<value name="packagingWeightUnitOfMeasure">kg</value>

</gdsn:attributeValuePairExtension>

</extension>

Figure 2.20: Attribute/Value Pair Mechanism to populate extension area

<xsd:complexType name="ISO3166_1CodeType">

<xsd:sequence>

<xsd:element name="countryISOCode">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="3"/>

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

Figure 2.21: Example Country Code Element

2.6.2 THE USE OF CODE LISTS

In GS1 XML, there are two types of code lists, external and internal. External code lists are

defined and maintained by other standard bodies outside GS1 XML. The example external

code lists include the following:

• Country Codes - ISO 3166-1:1997

31

• Country Subdivision Codes - ISO 3166-2:1998

• Currency Codes - ISO 4217:2001

The external code lists are defined as “xsd:string” and restricted to an appropriate number of

characters. Figure 2.21 shows an example for “countryISOCode” element which is defined as

type “xsd:string” whose length is three characters. However, GS1 XML does not import the

code list values to the GS1 XML Schemas because of copyright and maintenance issues. In

other words, they are not enumerated in the GS1 XML Schemas.

The internal code lists are those developed and maintained within the GS1 System. They

are defined as “xsd:enumeration” and imported into the business document schema that uses

them. Figure 2.22 provides an example internal coding list for payment method types used in

GS1 XML. It should be noted that all of the possible values areenumerated in the provided

XML Schemas.

<xsd:simpleType name="PaymentMethodListType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="BANK_CHEQUE">

</xsd:enumeration>

<xsd:enumeration value="CASH">

</xsd:enumeration>

<xsd:enumeration value="CERTIFIED_CHEQUE">

</xsd:enumeration>

<xsd:enumeration value="CHEQUE">

</xsd:enumeration>

<xsd:enumeration value="CREDIT_CARD">

</xsd:enumeration>

<xsd:enumeration value="LETTER_OF_CREDIT">

</xsd:enumeration>

...

</xsd:restriction>

</xsd:simpleType>

Figure 2.22: Example Payment Method List Element

32

2.7 ANALYSIS OF THE ELECTRONIC BUSINESS DOCUMENT STANDARDS

In this section, the surveyed electronic document standards are analyzed with respect to their

document design principles, how they handle customizationand extensibility, their coverage

of the other layers of interoperability and their industry relevance.

2.7.1 THE DOCUMENT DESIGN PRINCIPLES

The document design principles involve the document artifacts used in composing the doc-

uments, the code lists used to convey the meaning of the values in the elements and the use

of XML namespaces. Furthermore, since all the document standards surveyed are based on

UN/CEFACT CCTS, how this methodology is used in the design of thedocument schemas is

also discussed. Table 2.1 summarizes the document design principles.

2.7.1.1 DOCUMENT ARTIFACTS AND THE USE OF UN /CEFACT CCTS METHOD-

OLOGY

The document artifacts used in EDI are “Interchange”, “Message”, “Segment” and “Element”

(Section 2.2). Note that EDI is not based on UN/CEFACT CCTS Methodology. UBL 2.0 uses

the CCTS methodology to generate the document artifacts. UBL 2.0 currently considers only

the “Business Process” context and identifies theBusiness Information Entities(BIEs) and

bases the type of their artifacts on UN/CEFACTUnqualified DatatypesandCore Component

Types. UN/CEFACT develops its own BIEs,Core ComponentsandDatatypesand stores them

at the UN Core Component Library (UN/CCL). OAGIS 9.0 uses some of the UN/CEFACT

ABIEs in their Componentsand bases the types of itsFields on UN/CEFACT Unqualified

Datatypes(UDT) and Core Component Types(CCTs). GS1 XML uses the UN/CEFACT

CCTS methodology to generate its own artifacts by using its Global Data Dictionary.

2.7.1.2 THE USE OF CODE LISTS

Code lists are important to uniquely convey the semantics ofelements in electronic docu-

ments such as the country codes, currency codes, and the payment units. All of the surveyed

33

document standards provide default code lists and allow them to be modified and/or extended

to support local codes.

As shown in Table 2.1, EDI provides codes for structuring of the message artifacts (e.g. seg-

ment codes). Furthermore, UN/EDIFACT recommendsISO Country Code, Currency Code,

Numerical Representation of Dates, Times, Periods of TimeandUN/LOCODE[32]. EDI also

allows implementers to convey their own local or external codes through the use of two data

elements, 1131 [86] and 3055 [87].

UN/CEFACT defines five code lists:Country Codes, Subdivision Codes, Currency Codes,

BinaryObject Mime CodesandUnit Codes.

UBL 2.0 usesCurrency Codes, BinaryObject Mime CodesandUnit Codesfrom UN/CEFACT

and enumerates them in its schemas to validate attribute values. The other code lists used in

UBL are not enumerated in the schema expressions. Instead ofenumerating the codes in the

XSD schemas, UBL uses a common base type calledCodeType, which is an extension of

“xsd:normalizedString”, for all elements expressing values from code lists. As described in

Section 2.4.1.3, UBL allows the users to implement their ownlocal/external codes.

For use of code lists, OAGIS defines two “xsd:simpleType” foreach codedField: (1) an enu-

meration type, which lists the codes to be used and (2) a “xsd:simpleType” which is a union of

that enumeration type and the “xsd:normalizedString” as explained in Section 2.5.1.3. With

this mechanism, the implementers can use their own local/external code lists.

In GS1 XML, there are two types of code lists, external and internal. External code lists are

defined and maintained by other standard bodies outside GS1 XML. The internal code lists are

those developed and maintained within the GS1 System. They are defined as “xsd:enumeration”

and imported into the business document schema that use themas described in Section 2.6.2.

2.7.1.3 THE USE OF NAMESPACES

Generally, the namespaces in XML are used for avoiding name conflicts. The document stan-

dards make additional use of the namespace mechanism as follows: UBL achieves categoriza-

tion of documents through namespaces, OAGIS identifies the extensions through namespaces

(Section 2.5.1) and GS1 XML gives context to the both original documents and extended

34

documents through the namespaces as described in Section 2.6.1.

2.7.1.4 NAMING AND DESIGN RULES

The naming and design rules specify how to name and structurethe artifacts, how to put re-

lations between the artifacts and how to use data types for the artifacts. UN/CCL uses ISO

11179 naming rules, which identify the artifacts inObject Class, Property TermandRep-

resentation Termformat as described in Section 2.3. UBL 2.0 uses UBL 2.0 Naming and

Design Rules, which are based on the CCTS terms such as ABIE, ASBIE and BBIE. Further-

more, these rules specify how to represent the artifacts such as ABIEs, ASBIEs and BBIEs in

XML schemas. For example, for every ABIE, a “xsd:complexType” must be defined and the

name of this complexType must be in upper camel case (UCC) format (UCC capitalizes the

first character of each word and compounds the name such as “AccountType”). OAGIS 9.0

applies naming and design rules based on Applied TechnologyGroup XML Syntax (ATG2)

Naming and Design Rules (NDR) [4]. Note that UN/CEFACT ATG2 NDR are based on UBL

2.0 NDR.

GS1 XML first designs its information model in UML, before creating the corresponding

XML schemas. GS1 XML uses its own UML to XSD conversion rules to generate their XML

schemas and to name them.

2.7.1.5 ANALYSIS OF DOCUMENT DESIGN PRINCIPLES

The differences with respect to document design principles as analyzed in this section result

in considerable differences in document instances from different standards. As an example,

in Figure 2.23, the OAGIS 9.0 “AddressBaseType” Component and GS1 XML “NameAn-

dAddressType” document elements are compared. As it is clear from this figure, there are

differences in the element names, the element positions and structures as well as in the use of

code lists.

35

Figure 2.23: An Example Comparing Related Parts of OAGIS BOD9.0 and GS1 XML Doc-
uments

36

2.7.2 CUSTOMIZATION AND EXTENSIBILITY

Any document interoperability standard faces two challenges. First, the standard needs to be

extensible to allow definition of information that is not contained in the standard’s artifacts

because no standard can contain all of the data needed in every environment. Secondly, to be

able to address a particular constraint in a specific context, it should be possible to customize

the standard’s artifacts according to a context.

Table 2.2 presents a summary of how the standards addressed in this thesis handle customiza-

tion and extensibility. Note that conformant customizations are also extensible.

EDI addresses the customization through a subsetting mechanism to cover the requirements

of a specific context. The EDI messages are subsetted first through industry Implementation

Guides (IG), which are then subsetted into trading partner IGs, and into departmental IGs.

Extensibility in EDI is difficult because the EDI systems are highly static and inflexible: intro-

ducing a new type or changing an existing type of business document is a complex process.

Such changes require the modification of translation software and must be validated in the

related EDI committees.

In UN/CEFACT CCTS, aCore Componentis designed to be context-independent and is cus-

tomized to one of the eight contexts defined by UN/CEFACT to become aBusiness Informa-

tion Entity (BIE). The possible business contexts that can be used are defined to be:Business

Process Context; Product Classification Context; IndustryClassification Context; Geopolit-

ical Context; Business Process Role Context; Supporting Role Context; System Capabilities

ContextandOfficial Constraints Context.

UN/CEFACT CCTS supports extensibility as follows: if users cannot find proper components

in the Core Component Libraryto model their documents, they can create and publish new

core components. In other words, UN/CEFACT CCTS thrives on extensibility by allowing

users to define core components with possible future harmonizations and removal of redun-

dancies.

UBL 2.0 allows customization through (1)UBLExtensionselement, (2) subsetting by remov-

ing optional information entities that are not needed, and (3) putting constraints to the ele-

ments as described in Section 2.4.1.1. On the other hand, theusers can extend the UBL 2.0

37

schemas through the mechanisms described in Section 2.4.1.2.

In OAGIS BODs, there is no formal mechanism to handle user specific constraints. However,

the users are free to restrict an already existing BOD as theywish and share it with other

partners.

OAGIS provides two mechanisms to extend its specifications as detailed in Section 2.5.1:

• UserAreaExtensions:UserAreaextensions provide an optional element within each

OAGIS definedComponentthat may be used by an implementer to carry any nec-

essary additional information. This area is of type “xsd:any”, which means any valid

XML instance can be inserted in this area without modifying the OAGIS standard XML

Schemas (XSDs).

• OverlayExtensions:Overlayextensions allow users to extend an OAGIS BOD,Noun

andComponentto meet their own needs, even adding new BODs,Verbs, Nounsand

Componentswhere necessary. It is also possible for users to provide additional con-

straints in their own XSL constraints, which may then be applied to OAGIS document

instances. TheOverlayextension mechanism is used when the implementers have more

complex customization requirements than a few additional elements.

Every document in GS1 XML is used in a business context, and inGS1 XML, there are three

context categories:Business Process, Industry SectorandGeopolitical contextsas described

in Section 2.6.1.1.

GS1 XML supports extensibility of its document schemas. Starting from release 2.0, there

is an element called “extension” at the end of each business document XML schema where

additional context-specific information that is not definedby GS1 XML can be inserted. This

element is of type “xsd:any”, which allows the users to insert any XML data to the exchanged

instance documents without changing their standard XML Schema.

Before starting to exchange GS1 XML instances with other parties, each organization that

requires additional elements in their documents publishestheir extensions to the “Extended

Attributes” section of the Global Data Dictionary (GDD) Website. When a sender wishes to

send a message to a receiver, the sender first checks whether the receiver has an extension by

consulting the GDD Web site.

38

Figure 2.24: Example XSL Transformations necessary to map between two differentOverlay
extensions in OAGIS BODs

39

2.7.2.1 ANALYSIS OF CUSTOMIZATION AND EXTENSIBILITY

Customization and extensibility affect how the documents are processed. There are two cases

to be considered:

• In the first case, if the parties use the same document schema with the same extensions

and customizations, a two-phase validation at the receiving end is applied: In the first

phase, the incoming document instance is validated againstthe common XSD schema.

If the document instance passes the first phase, in the secondphase it is checked against

the rules, which specify additional domain specific constraints on the values of the ele-

ments in the instance. Generally, the rules are specified through XSL [97] or Schema-

tron languages [64]. If the instance passes both of the phases successfully, it is delivered

to the processing business application.

• In the second case, when two enterprises use different customizations or extensions

of the same document schema, the schema changes need to be mapped to each other

through manually provided XSL Transformations. For instance, Figure 2.24 shows

the XSL Transformations necessary to map between two different exampleOverlay

extensions in OAGIS BODs. A classification of problems and solutions using XSL

transformations to convert business documents is given in [93].

Once the transformations are applied, the document instance goes through the two-

phase validation as described for the first case.

2.7.3 COVERAGE OF OTHER LAYERS OF INTEROPERABILITY

Document interoperability is only one of the layers in the interoperability stack. The other

layers of interoperability include the transport protocol, the message header and the business

processes. A detailed survey of Business-to-Business (B2B) interactions in general is given

in [40] where a survey of the main techniques, systems, products, and standards for B2B

interactions are presented together with a set of criteria for assessing them.

The standards covered in this survey do not enforce any specific transport protocol. How-

ever, some of them recommend certain transport protocols: GS1 XML recommends the use

of EDIINT AS1 [17] and AS2 [18] transport protocols, which define a minimum set of pa-

40

rameters and options to enable secure/reliable transport for the exchange of EDI or XML data.

EDIINT-AS1 is based upon SMTP and EDIINT-AS2 is based on HTTP. Among them, AS2 is

the transport protocol of choice. However, the exchange of GS1 XML documents is not lim-

ited to these standards. OAGIS is currently moving in the WebService technology direction,

although any technology can be used to transport BODs.

The document standards first analyze the relevant business processes or scenarios before de-

ciding on the document components. For example, through theanalysis of an invoicing busi-

ness process, it may be revealed that a component is necessary to represent the “tax amount”

in the invoice. Hence, “Tax Amount” is defined as a component that can be discovered and

reused in any business document. However, no formal business process specification is pro-

vided by the standards surveyed in this thesis. Yet, it s worth mentioning that there is work,

called Universal Business Process [80], for defining UBL 1.0processes through ebBP 2.0

[15]; however, currently it is only informative.

All of the standards (except for UBL and UN/CCL) provide message header information to

be conveyed to the transport protocol header. The EDIFACT message headers are the Inter-

change Control Header Segment, UNB [30] and the X12 Interchange Control Header, ISA

[29]. The Application Areain an OAGIS BOD is used to convey configuration informa-

tion from application software to transport software. GS1 XML StandardBusinessDocument-

Header(SBDH) carries transport related information from application software to transport

software just as in the case of OAGISApplication Area.

2.7.3.1 ANALYSIS OF LAYERS OF INTEROPERABILITY ADDRESSED

The surveyed standards do not specify a transport protocol but provide configuration infor-

mation for the transport protocol message header.

Refraining from specifying other levels of interoperability has the advantage that it allows a

wide variety of implementation techniques to be used and hence provides ease in implemen-

tation. However, the differences in the implementation techniques may cause interoperability

problems.

41

2.7.4 INDUSTRY RELEVANCE

EDI, being an early horizontal standard, is being used in several industry domains. For exam-

ple, financial and monetary systems likeSociety for Worldwide Interbank Financial Telecom-

munication[74] andElectronic Funds Transfer[19] use EDI. Furthermore, all airplane book-

ing and ticketing operations are done over EDIFACT through theInternational Air Transport

Associationsystem [28].

Contrary to popular belief, electronic business interoperability is still achieved heavily through

EDI based messages, and EDI use is growing 3 to 5 percent everyyear [92]. It seems large

organizations will continue to use EDI for the foreseeable future mostly due to the existing

infrastructure investments.

UN/CEFACT CCTS is gaining widespread adoption by standards organizations. As already

mentioned, a number of standardization efforts have taken up CCTS Methodology, including

UBL, GS1 XML, OAGIS, CIDX and PIDX in addition to UN/CEFACT’s own Core Compo-

nent Library (CCL).

The merits of CCTS for improving interoperability have alsobeen noticed by industry and

governments. For example, the German Government has made a formal announcement iden-

tifying CCTS as the future data standard for domestic affairs [11].

One of the first companies to support UN/CEFACT CCTS methodology and core components

in their products is SAP [63]. SAP Global Data Types (GDTs) form the basis of Business

Objects and Enterprise Services. All leaf elements of theseSAP GDTs are based onCore

Component TypesandData Types[70, 71].

UBL is being adopted by several communities around the world, especially in electronic gov-

ernment applications. The U.S. Department of the Navy (DON)designed their XML Naming

and Design Rules around UBL 2.0 NDR.

The first government to use UBL Invoice is Denmark. The use of UBL Invoice is realized

through the “Offentlig Information Online UBL (OIOUBL)” Project and has been mandated

by law for all public-sector businesses [51] in Denmark. Also in Sweden, the National Fi-

nancial Management Authority recommended UBL Invoice customized to Sweden, namely,

Svefaktura for all government use [72].

42

Following the success of Danish and Swedish examples, representatives from Denmark, Nor-

way, Sweden, UK, Finland and Iceland have created a NorthernEuropean Subset (NES) [43]

for UBL to ensure interoperability among these countries.

In the USA, the Department of Transportation has developed aUBL based pilot project for a

demonstration of state-of-the-art electronic commerce ina real-world setting [91].

OAGIS BODs are being used in more than 40 countries and in morethan 38 industries [49].

The fact that OAGIS allows BODs to be extended by a vertical industry helps with its ex-

tensive use. The vertical standards based on OAGIS BODs include AiAG [2], Odette [50],

STAR [68], and Aftermarket [1] in the automotive industry. Other standards bodies focused

on human resources, chemical, and aerospace industries also use OAGIS BODs.

There are products based on OAGIS BODs such as Oracle E-Business Suite [52], where

OAGIS BODs are implemented as Web Services. As another example, IBM WebSphere

Commerce service interfaces are defined using the OAGIS message structure [62].

GS1 XML is being used in more than twenty countries and in morethan twenty industries

all over the world. GS1 is a business solution partner of manycompanies, including Ora-

cle, Siemens and Philips. The GS1 standards are also leveraged in SAP business solutions

packages [63].

2.8 DESCRIPTION LOGICS

Description logics (DLs) [5] are a family of knowledge representation languages that can be

used to represent the knowledge of an application domain in astructured way. The name

“description logics” come from, on the one hand, the important notions of the application

domain are described through concept “descriptions”, which are expressions that are built

from atomic concepts and atomic roles; on the other hand, DLsdiffer from their predecessors,

such as semantic networks and frames, in that DLs are based ona formal and logic-based

semantics.

There are two types of concept descriptions: terminological and assertional. The termino-

logical descriptions, called the TBox, describe the relevant notions of an application domain

by stating properties of concepts (classes) and roles (properties), and relationships between

43

them - it corresponds to the schema in a database setting. On the other hand, the assertional

descriptions, called the ABox, is used to describe a concrete situation by stating properties of

individuals - it corresponds to the data in a database setting.

Description logic systems use these descriptions to automatically organize class descriptions

in a taxonomic hierarchy and automatically classify instances into classes whose definitions

are satisfied by the features of the instance. Specifically, description logic reasoners provide

two key capabilities: 1) class subsumption, where a class C1subsumes another class C2 if its

definition includes a superset of the instances included in C2; 2) instance recognition, where

an instance belongs to a class if the instance’s features (roles and role values) satisfy the

definition of the class. Description logic systems also havemechanisms to detect inconsistent

definitions.

Considering their expressivity, there are a number of DL varieties. The basic DL isALC,

which stands for “Attributive concept Language with Complements”. ALC includes the fol-

lowing constructors: conjunction, discjunction, negation, existential restriction and value re-

striction. More expressive DLs are obtained by including additional constructors toALC.

Considering the naming scheme, the addition of the new constructor results in the appending

of a corresponding letter toALC word. For example, if number restrictions, which is identi-

fied with N letter, is added, the name becomesALCN. However, for expressive DLs, starting

with the basic DLALC would lead to quite long names. For this reason, the letterS is often

used as an abbreviation for the basic DL consisting ofALC extended with transitive roles.

The letterH represents subroles (role Hierarchies),O represents nominals (nOminals),I rep-

resents inverse roles (Inverse),N represent number restrictions (Number), andQ represent

qualified number restrictions (Qualified). For example,SHIQ DL has the ability to express

role hierarchies, inverse roles and qualified number restrictions in addition to the constructors

thatALCsupports.

One prominent application of DLs is as the formal foundationfor ontology languages. Ex-

amples of DL based ontology languages include OIL, DAML+OIL and OWL [54], ontology

language standard developed by the W3C Web Ontology WorkingGroup.

High quality ontologies are crucial for many applications,and their construction, integration,

and evolution greatly depends on the availability of a well-defined semantics and powerful

reasoning tools. Since DLs provide for both, they are ideal candidates for ontology languages.

44

In this thesis, the UN/CEFACT based document standards’ schemas are converted to OWL

DL ontologies automatically. This helps to run the operations (new subsumption hierarchy

computation, consistency checking and instance classification) that Description Logics pro-

vide on these ontologies through reasoners. The DL operation that is used mostly in this thesis

is new subsumption hierarchy computation. With this operation, the DL reasoner discovers

the implicit relations among the classes, which corresponds toBusiness Information Entities

of different standards. And these relations helps to provide interoperability of the standards.

It should be noted that, all the knowledge that the DLs can provide could easily be represented

by formulae of first-order predicate logic. However, the main reason for using DLs rather than

predicate logic is that DLs are carefully tailored such thatthey combine interesting means of

expressiveness with decidability of the important reasoning problems.

2.9 DESCRIPTION LOGICS REASONERS

Currently, there are the following Description Logics reasoners in the literature: Racer Pro

[56], KAON2 [37], Fact++ [21] and Pellet [55]. A survey [39] investigates the resoners

considering their OWL support, correctness, efficiency, interface capabilities and inference

services. The survey concludes that no system, except RacerPro and KAON2, is able to

correctly solve at least those tests which lay within the language fragment that the tools claim

to support in full. And to some extend KAON2 is not application ready since it fails very often

with “out of memory errors” or require significant processing time for language constructs,

which are typically in real-world models such as cardinality restrictions. Pellet and FaCT++

do have some serious bugs which result in incorrect answers.In addition to the survey, in the

scope of the thesis, the above mentioned reasoners are investigated in terms of their efficiency.

Only Racer Pro could answer to the harmonized ontology without “out of memory error”.

Therefore, in this thesis Racer Pro is used as the Description Logics Reasoner.

2.10 ONTOLOGY AND WEB ONTOLOGY LANGUAGE - OWL

Web Ontology Language (OWL) [54] is a semantic markup language for publishing and shar-

ing ontologies on the World Wide Web. OWL builds upon the Resource Description Frame-

work (RDF) [59]. The complementary RDF Vocabulary Description Language, RDF Schema

45

(RDFS) [60] standard describes how to use RDF to describe RDFvocabularies.

OWL provides three decreasingly expressive sublanguages:

• OWL Full is meant for users who want maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees. It is unlikely that any reasoning

software will be able to support complete reasoning for OWL Full.

• OWL DL supports those users who want the maximum expressiveness while retain-

ing computational completeness (all conclusions are guaranteed to be computable) and

decidability (all computations will finish in finite time). OWL DL is so named due to

its correspondence with description logics, which form theformal foundation of OWL.

The DL corresponding to the OWL DL ontology language isSHOIN.

• OWL Lite supports those users primarily needing a classification hierarchy and simple

constraints. OWL Lite is equivalent toSHIN(D).

Within the scope of this thesis, only OWL DL constructs are considered and in the rest of the

document, “OWL” is used to mean “OWL DL” unless otherwise stated. OWL describes the

structure of a domain in terms of classes and properties. Thelist of OWL language constructs

is as follows:

• OWL Lite Constructs:

– RDF Schema Features: Class (Thing, Nothing), rdfs:subClassOf, rdf:Property,

rdfs:subPropertyOf, rdfs:domain, rdfs:range, Individual

– (In)Equality: equivalentClass, equivalentProperty, sameAs, differentFrom, AllD-

ifferent, distinctMember

– Property Characteristics: ObjectProperty, DatatypeProperty, inverseOf, Transi-

tiveProperty, SymmetricProperty, FunctionalProperty, InverseFunctionalProperty

– Property Restrictions: Restriction, onProperty, allValuesFrom, someValuesFrom

– Restricted Cardinality: minCardinality (only 0 or 1), maxCardinality (only 0 or

1), cardinality (only 0 or 1)

– Class Intersection: intersectionOf

46

Figure 2.25: OWL Constructors

– Versioning: versionInfo, priorVersion, backwardCompatibleWith, compatibleWith,

DeprecatedClass, DeprecatedProperty,

– Annotation Properties: rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,

AnnotationProperty, OntologyProperty

– Datatypes: xsd datatype

• OWL DL Constructs::

– Class Axioms: oneOf, dataRange, disjointWith, equivalentClass (applied to class

expressions), rdfs:subClassOf (applied to class expressions)

– Boolean Combinations of Class Expressions: unionOf, complementOf, intersec-

tionOf

– Arbitrary Cardinality: minCardinality, maxCardinality cardinality

– Filler Information: hasValue

Furthermore, in Figures 2.25 and 2.26, how OWL constructorsand axioms are described using

DL syntax are shown.

2.11 A BRIEF INTRODUCTION TO SPARQL

SPARQL [66] is a query language for RDF graphs. It is similar to Structured Query Language

(SQL) and queries are written against the triples of RDF graph. The SPARQL uses the RDF

47

Figure 2.26: OWL Axioms

view of an OWL ontology. Therefore, it does not benefit from the semantic described in

an OWL ontology very effectively. A recent work, called SPARQL-DL [67], is initiated to

enhance the expressive power of SPARQL for OWL-DL ontologies. In SPARQL-DL the

queries are formalized against the class hierarchy of an OWL-DL ontology. The initiative is

very new and as it becomes mature, the SPARQL queries might bemigrated to SPARQL-DL.

In this thesis, query templates in SPARQL are formulated to facilitate the discovery and reuse

of document components in the Harmonized Ontology.

2.12 CONCLUSIONS

Today, an enterprise’s competitiveness is to a large extentdetermined by its ability to seam-

lessly interoperate with others, and electronic document standards play an important role in

this.

Although all the document standards surveyed in this thesis(with the exception of EDI) are

based on UN/CEFACT CCTS Methodology, their analysis reveals that thereare considerable

differences in the resulting document schemas. This is mostly because the standards like

OAGIS BODs and GS1 XML existed long before UN/CEFACT CCTS Methodology was

proposed, and therefore these standards adapted their existing document schemas rather than

starting from fresh. However, all of these standards are still developing, and their future

versions may become more harmonized.

48

In fact, by observing that the divergent and competing approaches to electronic document

standardization threatens intersectoral coherence in thefield of electronic business, four ma-

jor standard bodies, namely, the International Electrotechnical Commission (IEC), the Inter-

national Organization for Standardization (ISO), the International Telecommunication Union

(ITU) and the United Nations Economic Commission for Europe(UNECE) signed a “Memo-

randum of Understanding” to specify a framework of cooperation [42]. In the year 2000, they

established a Memorandum of Understanding Meeting Group for eBusiness standards har-

monization. Up to now, OAGIS 9.1, UBL 2.0 and UN/CCL have achieved a negligible level

of harmonization. However, the harmonization needs to be extended to the upper level arti-

facts such as the BBIEs and the ABIEs. However having many document standards weakens

interoperability.

Given the large number of electronic business document standards, conformance to one of

these standards or implementing a combination of them will not solve the interoperability

problem; there will always be some companies using a different, incompatible document

standards.

Therefore, although the electronic document standards developed so far proved to be very

useful for industry and government applications, further efforts are needed for their harmo-

nization and semantic interoperability, and this is the focus of this thesis.

49

Table 2.1: Document Design Principles

Document
Artifacts

Use of
CCTS
Methodol-
ogy

Use of
Codelists

Use of
names-
paces

Naming
and De-
sign Rules

EDI Interchange,
Message,
Segment,
Element

Not used UN/EDIFACT
recommends a
number of code
lists. Local and
external codes
are also allowed

Not
used

UN/EDIFACT
Syntax
Rules (ISO
9735) or
X12.5
and X12.6
Syntax
rules

UN/-
CCL

Uses CCTS
based doc-
ument
artifacts
such as Core
Component
Types and
BIEs

Fully based
on CCTS
Methodol-
ogy

Defines five
code lists:
Country Codes,
Subdivision
Codes, Cur-
rency Codes,
BinaryObject
Mime Codes
andUnit Codes

It is
syntax-
independent

ISO 11179-
5

UBL
2.0

Uses CCTS
Artifacts

Fully based
on CCTS
Methodol-
ogy

Through a com-
mon base type
called Code-
Type “xsd:-
normalized-
String”

Mostly
for doc-
ument
catego-
rization

UBL 2.0
Naming
and Design
Rules

OAGIS
9.0

BODs,
Applica-
tion Areas,
Nouns,
Verbs, Com-
ponents,
Compounds,
Fields

Fields are
UDT and
CCT based.
Some Com-
ponents are
UN/CEFACT
ABIE based

Defines two
“xsd:simple-
Type” for each
codedField

To iden-
tify the
Overlay
exten-
sion
ele-
ments

UN/CEFACT
ATG2
Naming
and Design
Rules

GS1
XML

SBDH,
Trans-
actions,
Commands,
Documents

Use the
CCTS
method-
ology to
generate
its own
document
artifacts

External Code
Lists; In-
ternal Code
Lists defined
through “xsd:-
enumeration”

The
names-
paces
indicate
the doc-
ument
context

GS1
XML’s
UML to
XSD con-
version
rules

50

Table 2.2: Customization and Extensibility

Customization Extensibility

EDI Subsetting EDI documents
through context specific Imple-
mentation Guidelines.

Introduction of new types of
business documents which has
to be validated through related
EDI Committees.

UN/CCL Core Components are cus-
tomized according to eight
contexts to create BIEs.

New components can be pub-
lished to the Core Component
Library.

UBL 2.0 Conformant customization
through “UBLExtensions” ele-
ment, or subsetting or placing
constraints on the value space.

Compatible customization by
reusing the largest suitable ag-
gregation from the UBL Library.

OAGIS 9.0 No formal methodology for
defining user specific customiza-
tions

ThroughUser AreaandOverlay
extensions.

GS1 XML Through the following three
contexts: Business Process, In-
dustry sector, Geopolitical

Through the “extension” ele-
ment at the end of each docu-
ment schema.

51

CHAPTER 3

ONTOLOGY BASED SEMANTIC INTEROPERABILITY OF

ELECTRONIC BUSINESS DOCUMENT STANDARDS

Businesses need to exchange data with their trading partners to execute transactions. The

partners conforming to the same electronic document standard can interoperate. However,

there are very many electronic document standards and therefore there is an interoperability

problem among the partners, who conform to different standards. As mentioned previously,

UN/CEFACT Core Component Technical Specification (CCTS) is an important landmark in

providing a framework to achieve electronic business document interoperability by defining

the semantic properties of document artifacts.

As already mentioned, a number of standardization efforts have taken up CCTS Methodology,

including UBL, GS1 XML, and OAGIS, in addition to UN/CEFACT’s own Core Component

Library (CCL). These standards are widely used in e-Government and e-Business applications

all over the world.

Although all of these standards are CCTS based, they are not interoperable. The analysis

provided in Chapter 2 reveals that there are considerable differences in their document design

principles, the use of code lists and the XML namespaces, howthey use the CCTS methodol-

ogy and how they handle extensibility and customization. Furthermore, the current accepted

practice of storing the document artifacts in spreadsheetsdoes not facilitate to develop auto-

mated semantic interoperability support tools.

Towards solving the interoperability problem, the apporach in this thesis is basically as fol-

lows.

52

Association

Core Comp.

Aggregate

Core Comp.

Basic Core

Component

Object

Class

Term

Representation
Term

Basic BIE

(BBIE)

Association

BIE (ASBIE)

Aggregate

BIE (ABIE)

Core

Component

Component

Specialized

to a Context

(BIE)

Product Industry

Role Business
Process

Geopolitical
Region Supporting

Role

Constraints
System

Official
Context

subClassOf

ObjectProperty

CodeList Context

possibleCodeLists

hasDataType

subClassOf

subClassOf

contains

contains

hasRT

hasRT

refersTo

refersTo

usedInContext

basedOn
hasOCT

hasOCT

hasOCT

hasOCT
hasOCT

hasRT

hasRT
CoreDataType

hasOCT

Figure 3.1: The Upper Ontology for the Semantics Exposed by the CCTS Framework

1. As already described, the CCTS defines meaning of documentcomponents at various

dimensions starting with the data types used in document artifacts extending to the way

the document artifacts are composed. To be able to relate thesimilar document artifacts

of different document content models through the semantic properties they share with

the CCTS, the CCTS semantics is first explicated using the WebOntology Language

(OWL) and define an upper CCTS ontology as shown in Figure 3.1.This upper ontol-

ogy gives the CCTS artifacts as ontology classes together with their properties and the

relationships among them. Then the upper ontologies for theother CCTS based stan-

dards such as UBL, OAGIS 9.1 and GS1 XML, are defined again as upper ontologies

and relate their corresponding classes to the CCTS upper ontology as shown in Figure

3.2.

2. At the lower level, the semantics of document schemas fromthe prominent CCTS based

standards are explicated. A document schema ontology is developed for each standard

to describe the actual document artifacts as the subclassesof its own upper ontology

classes (Figure 3.3). The similarities among document schema ontology classes of

different document standards are established through both the semantic properties they

share and the semantic equivalences established in the upper ontologies. The full OWL

ontology of the semantics described in this section is available at [90].

3. After that some semantics related with the different usages of document data types

53

in different document schemas are explicated to obtain some desired interpretations by

means of informal semantics. The intention is to give the reasoner the same information

that the humans use in transforming document schemas into one another.

4. Then through a Description Logics (DL) reasoner, a Harmonized Ontology is com-

puted. The Harmonized Ontology gives the specified as well asthe computed equality

and subsumption relations among the classes of both the upper ontologies and the doc-

ument schema ontologies. The Harmonized Ontology is usefulfor three purposes:

• It helps to discover equivalence of structurally similar document artifacts between

two document schemas.

• For translating such document artifacts through automatically generated XSLT

rules.

• Query templates (SPARQL and Reasoner based queries) are formulated to fa-

cilitate the discovery and reuse of document components using the Harmonized

Ontology.

5. Finally, further heuristic rules are provided to identify the similarities between semanti-

cally similar but structurally different document components. The semantic properties

of the CCTS based document artifacts help discovering the equivalences of structurally

similar and semantically equivalent elements. However different document standards

use core components in different structures. Semantic properties of document arti-

facts are not enough to find the similarity of the structurally different but semantically

equivalent document artifacts; possible differences in structures must be provided as

heuristics to enhance the practical uses of the specified semantics. Note that for defin-

ing heuristics to handle structurally different document artifacts, the Description Logic

is not sufficient but more general purpose Predicate Logic Rules are needed.

This chapter is focused on the definition of the upper and document schema ontologies, and

is organized as follows: Section 3.1 describes how the semantics of CCTS based document

content models are explicated (i.e. how to generate the upper ontologies). In Sections 3.2,

3.3 and 3.4 the methodology to explicate the semantics of each document schema through

document schema ontologies conforming to its own upper ontology is explicated. Section 3.5

presents harmonizing the ontologies of the document standards. In the next chapters (Chapter

54

re
fe

rs
T

o

C
om

po
ne

nt
R

ef

F
ie

ld

C
om

po
ne

nt

contains

G
S

1.
X

M
L.

B
B

IE

G
S

1.
X

M
L.

A
S

B
IE

G
S

1.
X

M
L.

A
B

IE

re
fe

rs
T

o

contains
re

fe
rs

T
o

U
B

L.
A

B
IE

U
B

L.
A

S
B

IE

U
B

L.
B

B
IE

contains

ABIE ASBIE BBIE

CodeList

Product Industry

Role Business
Process

Geopolitical
Region Supporting

Role

Constraints
System

Official
Context

subClassOf

ObjectProperty

Context

Representation
Term

BCC ASCC ACC

ABIEASBIEBBIE
contains

subClassOf

hasDataType

possibleCodeLists hasOCT
hasRT

hasRT
hasOCT hasOCThasRT

hasRT hasOCT
usedInContext

basedOn

subClassOf

Term
ObjectClass

CC

BIE

DataType

contains

refersTo

refersTo

OAGIS Upper Ontology UBL Upper Ontology GS1 Upper Ontology

equivalentClass

CCTS Upper Ontology

Figure 3.2: An Overview of the Upper Ontologies and their Relationships

4 and 5), the heuristics to discover semantically similar but structurally different document

artifacts and the XSLT support are presented.

3.1 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT CON-

TENT MODELS

The semantics specified by the CCTS approach and given in spreadsheets are explicated ba-

sically as follows:

• The semantics implied by the properties of the document components: The semantics

of Core Componentsimplied by their properties as defined by the CCTS are explicated

as follows:

– Each aggregate document component (ACCs and ABIEs) has ahasObjectClassTerm

(abbreviated ashasOCT) object property, whose range is theObject Class Term

class, as shown in Figure 3.1. As already mentioned in Section 2.3.2, the aggre-

gate components, created from the same core component by restricting them to

55

re
fe

rs
T

o

C
om

po
ne

nt
R

ef

F
ie

ld

C
om

po
ne

nt

contains

G
S

1.
X

M
L.

B
B

IE

G
S

1.
X

M
L.

A
S

B
IE

G
S

1.
X

M
L.

A
B

IE

re
fe

rs
T

o

contains

re
fe

rs
T

o

U
B

L.
A

B
IE

U
B

L.
A

S
B

IE

U
B

L.
B

B
IE

contains

ABIE ASBIE BBIE

Address

ID

PostalCode

CountryCode

OAGIS

.....

Document
Schema Ontology

.....

Address

Identification

Country

Postbox

.....

.....

UBL Document
Schema Ontology

NameAnd_
Address

name

postalCode

countryCode
.....

.....

GS1 Document
Schema Ontology

Structured_
Address

Identification

Postcode

CountryCode
.....

UN/CCL

.....

 Document
Schema Ontology

Association

Core Comp.

Aggregate

Core Comp.

Basic Core

Component

Object

Class

Term

Representation

Term

Basic BIE

(BBIE)

Association

BIE (ASBIE)

Aggregate

BIE (ABIE)

Core

Component

Component

Specialized

to a Context

(BIE)

Product Industry

Role Business

Process
Geopolitical

Region Supporting

Role

Constraints

System

Official

Context

subClassOf

ObjectProperty

CodeList Context

OAGIS Upper Ontology UBL Upper Ontology GS1 Upper Ontology

equivalentClass

CCTS Upper Ontology
(A)

(B)

possibleCodeLists

hasDataType

subClassOf

subClassOf

contains

contains

hasRT

hasRT

refersTo

refersTo

usedInContext

basedOn
hasOCT

hasOCT

hasOCT

hasOCT
hasOCT

hasOCT
hasRT

hasRT
CoreDataType

Figure 3.3: An Overview of the Upper Ontologies together with the Document Schema On-

tologies

different contexts, share the sameObject Class Term. Hence, this property con-

tributes to determine similar document artifacts in different standards. As an ex-

ample, UN/CCL has an aggregate document component called “StructuredAddress”

and UBL has “Address”. Both of these document components have the sameOb-

ject Class Term. Hence, this semantic property helps to find the similarity of these

two document components. Note however that theObject Class Termcannot be

the only semantics that determine the similarity of the document components and

different standards may use differentObject Class Termsfor the same document

component. For example, theObject Class Termsof two similar aggregate com-

ponents are “Monetary Total” in UBL and “Monetary Summation” in UN /CCL.

Therefore thehasOCTproperty is used together with other document properties,

either explicitly defined or inferred, to determine document component similarity.

56

– Each basic document component (BCCs and BBIEs) also has ahasObjectClassTerm

object property, whose range is theObject Class Termclass and has ahasRepre-

sentationTerm(abbreviated ashasRT) object property, whose range is theRepre-

sentation Termclass, as shown in Figure 3.1. As an example, UN/CCL has a basic

document component “Identification”, whoseRepresentation Termis “Identifier”.

Likewise, UBL has a basic document component called “Identifier” whoseRep-

resentation Termis also “Identifier”. Hence, this semantic property contributes to

find the similarity of these two document components. Again,different standards

may use differentRepresentation Termsand the similarity of this term alone can-

not determine the similarity of document artifacts. Therefore thehasRTproperty

is used together with other document properties.

– Each association document component (ASCCs and ASBIEs) hasa hasOCTob-

ject property, whose range is theObject Class Termclass and ahasRTobject

property, whose range is theObject Class Termclass of the aggregate document

component it refers to, as shown in Figure 3.1. As an example,UN/CCL’s ag-

gregate document component “SellerParty” has an association document com-

ponent called “Postal”, whoseRepresentation Termis “Address”. On the other

hand, UBL’s “Party” aggregate component has an associationdocument compo-

nent called “PostalAddress”, whoseRepresentation Termis also “Address”, help-

ing to identify their similarity.

– The Property Termsof document components used in different standards show

a wide diversity. For example, UBL uses “PostalZone” whereas UN/CCL uses

“Postcode” for the same element (Figure 3.7). Hence, using the property terms as

semantics does not help the reasoner with its purpose of discovering the similar

elements. Therefore, the property terms are not used in the reasoning process.

However, when matching document components through their semantic proper-

ties, a number of false positives may appear. In my approach,theProperty Terms

are used to reduce the number of false-positives while post-processing the result

set. In the post-processing, each component in the inferredresult set is assigned a

similarity value, which is computed by comparing theirProperty Termslexically.

For the computation of the similarity value, the algorithm in [69] is used. For ex-

ample, the lexical similarity value between “PostalZone” and “Postcode” turns

out to be 0.7. The document components in the inferred resultset are presented to

57

a human user together with their similarity value.

• The semantics implied by the Business Information Entities: Business Information En-

tities (BIEs) are derived fromCore Componentsto be used in a certain context and

this semantics is expressed through two OWL object properties: thebasedOnobject

property indicates that theCore Componentfrom which the BIE is derived and the

usedInContextobject property indicates the context of the BIE, as shown inFigure 3.1.

The BIEs also inherit some of the properties of their correspondingCore Components,

but it should be noted that there is no subclass relationshipamong them, since a BIE,

being a restriction of aCore Componentto a context, may not inherit all the proper-

ties of thatCore Component. The Basic Core Components (BCCs), the Association

Core Components (ASCCs) and the Aggregate Core Components (ACCs) are special-

ization of the Core Components and therefore they are definedas subclasses of the Core

Components (CCs). Likewise, The Basic Business Information Entities (BBIEs), the

Association Business Information Entities (ASBIEs) and the Aggregate Business In-

formation Entities (ABIEs) are specialization of the Business Information Entities and

therefore they are defined as subclasses of the Business Information Entities (BIEs).

• Data type semantics: CCTS provides a fixed set of reusableCore Component Types

(CCT)andData Types (DT)(which are also termed asCore Data Types (CDTs)) such as

Amount, Identifier, or Measurefor consistent business value representation. TheCore

Data Typesemantics is explicated through theCoreComponentTypeclass. For each of

the 14 CDTs, a corresponding OWL class is created and inserted as the subclass of

CoreComponentTypeclass.

• The semantics exposed by the contexts, in which document artifacts are used: CCTS has

established predefined context categories, like geopolitical region, industry or business

process that identify the usage meaning of a document artifact. To explicate this seman-

tics, first an OWL class is created for context concept, called Contextand the context

categories defined by UN/CEFACT are defined as subclasses of theContextclass.

• The semantics exposed by the use of the code lists: The code lists are used to convey

the meaning of the values in the elements of the document artifacts. An OWL class for

the code list concept is created and for its classification the identified context categories

are used.

58

• The semantics implied by the structure of the Document Components: As already men-

tioned, the aggregate document components are composed of either basic document

components or association document components. This semantics is described through

thecontainsOWL object property of an aggregate document component which denotes

the basic document components and the association documentcomponents it contains.

Each association document component has an OWL object property called refersTo

whose range is the aggregate document component it refers.

In the following subsections, more details on the definitionof these mentioned semantics is

described.

3.1.1 SPECIFICATION OF THE SEMANTICS EXPOSED BY THE CCTS FRA ME-

WORK THROUGH OWL

This section specifies how the existing semantics in the CCTSFramework document artifacts

can be explicated by using OWL constructs so that this semantics can later be used in an

automated manner to discover useful implicit relationships among the document artifacts of

other CCTS based standards.

3.1.1.1 EXPLICATING SEMANTICS THROUGH CORE DATA TYPES (CDT)

First lets provide some insight on why there is a need to explicate the data type semantics:

UN/CEFACT CCTS defines 14 CCTs (which are also termed asCore Data Types (CDT).

When two document artifacts use the same CCT, this can be considered as a hint towards

these artifacts meaning the same thing if their other semantic properties also match.

The Core Component Typesemantics is explicated through theCoreComponentTypeclass.

UN/CEFACT CCTS defines 14 CCTs and for each of them, a corresponding class is created

and inserted as the subclass ofCoreComponentTypeas follows:

<owl:Class rdf:ID="CoreComponentType" />

<owl:Class rdf:ID="Amount.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="BinaryObject.Type">

59

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Code.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Date.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="DateTime.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Identifier.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Indicator.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Measure.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Numeric.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Quantity.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Text.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Percent.Type">

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

....

3.1.1.2 EXPLICATING SEMANTICS THROUGH CONTEXT

The context in which a document artifact is used gives it a certain semantics. Therefore if two
document arifacts have related contexts and if their other semantic properties are related, this
gives a hint on their their possible equivalence. There is anOWL class for context concept,
calledContextas follows:

<owl:Class rdf:ID="Context" />

The context categories defined by UN/CEFACT are defined as subclasses ofContextclass as
follows:

60

<owl:Class rdf:ID="BusinessProcessContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="GeopoliticalContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="IndustryContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="ProductContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="RoleContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="OfficialContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="SupportingRoleContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

<owl:Class rdf:ID="SystemConstraintsContext" >

<rdfs:subClassOf rdf:resource="#Context"/>

</owl:Class>

For eachContextsubclass, such as “IndustryContext”, an ontology can be defined based on the

taxonomies or classifications already used by the industry such as Universal Standard Prod-

uct and Service Specification (UNSPSC) [89] or Standard International Trade Classification

(SITC) [65].

3.1.1.3 EXPLICATING SEMANTICS THROUGH CODE LISTS

The code lists are important to identify the meaning of a BCC or BBIE. As an example,
assume that two document standards name a BBIE differently. However if BBIEs use the
same code list or use code lists for the same purpose, there isa possibility that they are
similar. It should be noted that code lists used for a BCC or BBIE can vary according to
context. Therefore, the classification of code lists is alsoimportant. For the classification

61

categories, the identified context categories can be used. There is an OWL class forCodelist
concept, calledCodeList:

<owl:Class rdf:ID="CodeList" />

<owl:Class rdf:ID="BusinessProcessCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="GeopoliticalCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="IndustryCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="ProductCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="RoleCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="OfficialCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="SupportingRoleCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

<owl:Class rdf:ID="SystemConstraintsCodeList" >

<rdfs:subClassOf rdf:resource="#CodeList"/>

</owl:Class>

Once theCodeListsubclasses are defined, the specific code lists in use are defined as a sub-

class of the related context. Some examples are provided as follows:

<owl:Class rdf:ID="iso-ch.3166.1999" >

<rdfs:subClassOf rdf:resource="#GeopoliticalCodeList"/>

</owl:Class>

<owl:Class rdf:ID="ntis-gov.naics.1997" >

<rdfs:subClassOf rdf:resource="#IndustryCodeList"/>

</owl:Class>

<owl:Class rdf:ID="unspsc-org.unspsc.3-1" >

<rdfs:subClassOf rdf:resource="#ProductCodeList"/>

</owl:Class>

62

3.1.1.4 EXPLICATING SEMANTICS OF CORE COMPONENTS

There are a number of terms giving meaning to the CCs. When such semantics is explicated

in an ontology, it may help to find similarities in document artifacts from different document

schemas. For example, if two document artifacts have the same Object Class Term, this may

give a hint on their similarity.

A CCTS Core component is expressed as an OWL class as follows:

<owl:Class rdf:ID="CoreComponent"/>

The following OWL classes are defined to represent these terms as follows:

<owl:Class rdf:ID="ObjectClassTerm" />

<owl:Class rdf:ID="RepresentationTerm" />

A CCTS Basic Core Component (BCC) is defined as an OWL class to have the following

object propertieshasDataType, hasObjectClassTerm, hasRepresentationTerm, andpossible-

CodeLists:

<owl:Class rdf:ID="BasicCoreComponent" >

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#CoreComponent"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataType"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#DataType"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#RepresentationTerm"/>

</owl:allValuesFrom>

63

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#possibleCodeLists"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#CodeList"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

ACCs may contain BCCs and ASCCs, and ACCs only have Object Class Terms. A CCTS

Aggregate Core Component is defined as an OWL class to have thefollowing object properties

containsandhasObjectClassTermas follows:

<owl:Class rdf:ID="AggregateCoreComponent" >

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#CoreComponent"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BasicCoreComponent"/>

<owl:Class rdf:about="#AssociationCoreComponent"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

A CCTS Association Core Component is defined as an OWL class tohave the following
object propertiesrefersTo, hasObjectClassTerm, andhasAssociatedObjectClassTerm:

64

<owl:Class rdf:ID="AssociationCoreComponent" >

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#CoreComponent"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#refersTo"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#AggregateCoreComponent"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAssociatedObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Note that, as mentioned previously theProperty Termsis not used in the ontology definition

since the usage of property terms show a great degree of variances and hence do not contribute

to discovering similarities among document artifacts. However, theProperty Termis used to

decrease the number of false-positives.

3.1.1.5 EXPLICATING SEMANTICS OF BUSINESS INFORMATION ENT ITIES (BIE)

The semantics of a BIE is given by the core component from which it is derived and the

context it is constrained to. A BIE is expressed as an OWL class as follows:

<owl:Class rdf:ID="BusinessInformationEntity"/>

TheBasicBusinessInformationEntityclass is based onBasicCoreComponentClassand this is
expressed as follows:

65

<owl:ObjectProperty rdf:ID="basedOn">

<rdfs:domain rdf:resource="#BusinessInformationEntity"/>

<rdfs:range rdf:resource="#CoreComponent"/>

</owl:ObjectProperty

A BIE is a CC used in a context and there is anowl:ObjectPropertycalledusedInContext.

This object property hasBusinessInformationEntityclass as its domain andContextclass as

its range as follows:

<owl:ObjectProperty rdf:ID="usedInContext">

<rdfs:domain rdf:resource="#BusinessInformationEntity"/>

<rdfs:range rdf:resource="#Context"/>

</owl:ObjectProperty>

Just like aBasicCoreComponentit is derived from, a BIE has Object Properties for its data

type, naming terms and possible code lists but there is no subclass relationship among them

since a BIE, being a restriction of a Core Component to a context, may not inherit all the

properties of that Core Component.

A CCTSBasicBusinessInformationEntity (BIE)is defined as an OWL class to have the follow-
ing object propertieshasDataType, hasObjectClassTerm, hasRepresentationTerm, andpossi-
bleCodeListsas follows:

<owl:Class rdf:ID="BasicBusinessInformationEntity" >

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#basedOn"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#BasicCoreComponent"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataType"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#DataType"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

66

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#RepresentationTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#possibleCodeLists"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#CodeList"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

An AssociationBusinessInformationEntity(ASBIE) is defined as an OWL class to have the
following object propertiesrefersTo, hasObjectClassTerm, hasAssociatedObjectClassTerm:

<owl:Class rdf:ID="AssociationBusinessInformationEntity" >

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#basedOn"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#AssociationCoreComponent"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#refersTo"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

67

<owl:onProperty rdf:resource="#hasAssociatedObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

An AggregateBusinessInformationEntity(ABIE) is defined as an OWL class to have the fol-
lowing object propertiescontains, basedOn, andhasObjectClassTermas follows:

<owl:Class rdf:ID="AggregateBusinessInformationEntity" >

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BasicBusinessInformationEntity"/>

<owl:Class rdf:about="#AssociationBusinessInformationEntity"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#basedOn"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#AggregateCoreComponent"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#ObjectClassTerm"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

68

3.1.1.6 EXPLICATING THE SEMANTICS OF CCL ARTIFACTS

To be able to determine the semantically similar document artifacts at the schema level, the

semantics of each document schema is explicated conformingto its own upper ontology. The

relationships among the document schema ontology classes are established through reasoning

process by using the explicit relationships defined among the upper ontology classes.

The semantics of UN/CEFACT Core Component Library (CCL) artifacts are explicated con-

forming to the CCTS Upper Ontology defined. The generation ofontologies from the artifacts

defined in CCL conforming to the CCTS upper ontology as follows: To create the ontology

classes corresponding to the CCL artifacts which are given in MS Excel spreadsheets, the

CCL spreadsheets are first converted to a custom XML format byusing XML Map mecha-

nism of MS Excel. Then, through a piece of software developed, the necessary OWL classes

conforming to the specified CCTS upper ontology are created from this XML file.

An example on how ”StructuredAddress.Details” artifact of CCL is represented in the Har-
monized Ontology conforming to the CCTS Upper Ontology is asfollows:

<owl:Class rdf:ID="Structured_Address.Details">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Structured_Address.Identification.Identifier"/>

<owl:Class rdf:about="#Structured_Address.Postcode.Code"/>

69

<owl:Class rdf:about="#Structured_Address.BuildingName.Text"/>

<owl:Class rdf:about="#Structured_Address.StreetName.Text"/>

<owl:Class rdf:about="#Structured_Address.CityName.Text"/>

<owl:Class rdf:about="#Structured_Address.Country.Identifier"/>

<owl:Class rdf:about="#Structured_Address.CitySub-DivisionName.Text"/>

<owl:Class rdf:about="#Structured_Address.CountryName.Text"/>

<owl:Class rdf:about="#Structured_Address.CountrySub-DivisionName.Text"/>

<owl:Class rdf:about="#Structured_Address.BlockName.Text"/>

<owl:Class rdf:about="#Structured_Address.PlotIdentification.Text"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

The following listing provides an example on how ”Structured Address.Identification.Identifier”

artifact of CCL is represented in the Harmonized Ontology conforming to the CCTS Upper

Ontology:

<owl:Class rdf:ID="Structured_Address.Identification.Identifier">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BasicBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Identifier"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

70

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataType"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Identifier.Type"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

71

3.2 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT SCHEMA S

- GS1 UPPER ONTOLOGY

GS1.XML.BBIE

GS1.XML.ASBIE

GS1.XML.ABIE

refersTo

co
n

ta
in

s

equivalentClass

equivalentClass

equivalentClass

BBIE

ASBIE

ABIE

Figure 3.4: The Upper Ontology for the Semantics Exposed by the GS1 XML Document

Standard

Figure 3.4 shows the upper ontology for the GS1 XML document standard and as shown

in this figure GS1 classes are related with the correspondingCCTS classes by using the

owl:equivalentClassproperty.

A GS1 BBIE is defined as an OWL class namedGS1.XML.BBIEand it is declared equivalent

to the BBIE class defined in CCTS upper ontology as follows:

<owl:Class rdf:ID="GS1.XML.BBIE">

<owl:equivalentClass rdf:resource="#BasicBusinessInformationEntity"/>

</owl:Class>

A GS1 ABIE is defined as an OWL class namedGS1.XML.ABIEand it is declared equivalent

to the ABIE class defined in CCTS upper ontology. ThecontainsObject Property of the

GS1.XML.ABIEclass is restricted toGS1.XML.BBIEandGS1.XML.ASBIEas follows:

<owl:Class rdf:ID="GS1.XML.ABIE">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#GS1.XML.BBIE"/>

<owl:Class rdf:about="#GS1.XML.ASBIE"/>

</owl:intersectionOf>

72

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

A GS1 ASBIE is defined as an OWL class namedGS1.XML.ASBIEand it is declared equiva-

lent to the ASBIE class defined in CCTS upper ontology. TherefersToObject Property of the

GS1.XML.ASBIEclass is restricted toGS1.XML.ABIEas follows:

<owl:Class rdf:ID="GS1.XML.ASBIE">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AssociationBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#refersTo"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#GS1.XML.ABIE"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

3.2.1 EXPLICATING THE SEMANTICS OF GS1 DOCUMENT SCHEMAS

GS1 XML defines theBusiness Information Entiteseither in “pdf” Business Message Specifi-

cations or through the Global Data Dictionary (GDD). The GDDis a Web accessible registry,

where a component is queried by its name. When the “%” character is entered to the search

box, all of the BIEs are returned to the user. Through the browser, only the entity names and

the component that contains the entity is displayed, however in the HTML source, the type of

the entity (e.g. ABIE, ASBIE or BBIE), the id of the entity andthe id of the ABIE it belongs

to are also available. In order to create the OWL ontology corresponding to the GS1 XML

artifacts, the HTML code is processed and the created classes are inserted to the ontology

as the subclasses. As an example, the HTML code shown in the following fragment is for

“companyNumber” concept.

73

<tr><td width=’375’ valign=’top’ rowspan=’7’>companyNumber</td>

<td><a href="javascript:doDisplayDoc(’2.1.0’, ’AIDC: GS1 Company Prefix’, ’723’, ’6383’,

’BBIE’)">AIDC: GS1 Company Prefix</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, ’AIDC: Global Location Number’, ’724’, ’6383’,

’BBIE’)">AIDC: Global Location Number</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, ’AIDC: Global Service Relation Number’, ’725’,

’6383’, ’BBIE’)">AIDC: Global Service Relation Number</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, ’AIDC: GlobalReturnableAssetIdentifier’, ’726’,

’6383’, ’BBIE’)">AIDC: GlobalReturnableAssetIdentifier</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, ’AIDC: GlobalIndividualAssetIdentifier’, ’727’,

’6383’, ’BBIE’)">AIDC: GlobalIndividualAssetIdentifier</td></tr>

<td><a href="javascript:doDisplayDoc(’2.1.0’, ’AIDC: Global Document Type Identifier’, ’728’,

’6383’, ’BBIE’)">AIDC: Global Document Type Identifier</td></tr>

As shown in this listing, the “companyNumber” has as its id “6383” and it is a BBIE. Fur-

thermore, it exists in components numbered from 723 to 728.

In order to create GS1 XML OWL ontology, the HTML code is processed and the created

classes are inserted to the ontology as the subclasses of GS1Business Information Entity.

The following listing provides an example on how “NameAndAddress.Details” artifact of

GS1 is represented conforming to the GS1 Upper Ontology.

<owl:Class rdf:ID="NameAndAddress.Details">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#GS1.XML.ABIE"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

74

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#city"/>

<owl:Class rdf:about="#cityCode"/>

<owl:Class rdf:about="#countryCode"/>

<owl:Class rdf:about="#countyCode"/>

<owl:Class rdf:about="#crossStreet"/>

<owl:Class rdf:about="#currency"/>

<owl:Class rdf:about="#languageOfTheParty"/>

<owl:Class rdf:about="#name"/>

<owl:Class rdf:about="#pOBoxNumber"/>

<owl:Class rdf:about="#postalCode"/>

<owl:Class rdf:about="#provinceCode"/>

<owl:Class rdf:about="#state"/>

<owl:Class rdf:about="#streetAddressOne"/>

<owl:Class rdf:about="#streetAddressTwo"/>

<owl:Class rdf:about="#geographicalCoordinates"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

The following provides an example on how ”Address” artifactof GS1 is represented conform-

ing to the GS1 Upper Ontology.

<owl:Class rdf:about="#Address">

<rdfs:subClassOf rdf:resource="#ObjectClassTerm"/>

</owl:Class>

<owl:Class rdf:ID="city">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#GS1.XML.BBIE"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

75

<owl:Class rdf:about="#Text"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataType"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Text.Type"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

76

3.3 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT SCHEMA S

- UBL UPPER ONTOLOGY

refersTo

co
n

ta
in

s

equivalentClass

equivalentClass

equivalentClass

BBIE

ASBIE

ABIEUBL.ABIE

UBL.ASBIE

UBL.BBIE

Figure 3.5: The Upper Ontology for the Semantics Exposed by the UBL XML Document

Standard

Figure 3.5 shows the upper ontology for the UBL document standard and in this figure UBL

classes are related with the corresponding CCTS classes by using theowl:equivalentClass

property.

A UBL BBIE is defined as an OWL class namedUBL.BBIEand it is declared equivalent to

the BBIE class defined in CCTS upper ontology as follows:

<owl:Class rdf:ID="UBL.BBIE">

<owl:equivalentClass rdf:resource="#BasicBusinessInformationEntity"/>

</owl:Class>

A UBL ABIE is defined as an OWL class namedUBL.ABIEand it is declared equivalent to the

ABIE class defined in CCTS upper ontology. ThecontainsObject Property of theUBL.ABIE

class is restricted toUBL.BBIEandUBL.ASBIEas follows:

<owl:Class rdf:ID="UBL.ABIE">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#UBL.BBIE"/>

<owl:Class rdf:about="#UBL.ASBIE"/>

</owl:intersectionOf>

77

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

A UBL ASBIE is defined as an OWL class namedUBL.ASBIEand it is declared equivalent

to the ASBIE class defined in CCTS upper ontology. TherefersToObject Property of the

UBL.ASBIEclass is restricted toUBL.ABIEas follows:

<owl:Class rdf:ID="UBL.ASBIE">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AssociationBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#refersTo"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#UBL.ABIE"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

3.3.1 EXPLICATING THE SEMANTICS OF UBL DOCUMENT SCHEMAS

The semantics of UBL artifacts are explicated conforming tothe UBL Upper Ontology de-

fined. In UBL, the BIEs are provided in MS Excel spreadsheets.To create UBL artifacts

ontology conforming to the specified UBL upper ontology, theUBL spreadsheets are first

converted to a custom XML format by using XML Map mechanism ofMS Excel. Then, the

necessary OWL classes are created from this XML file and populated in the OWL ontology.

The following fragment provides an example on how ”Address.Details” artifact of UBL is

represented conforming to the UBL Upper Ontology.

<owl:Class rdf:ID="Address.Details">

78

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#UBL.ABIE"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Address.Identifier"/>

<owl:Class rdf:about="#Address.AddressTypeCode.Code"/>

<owl:Class rdf:about="#Address.AddressFormatCode.Code"/>

<owl:Class rdf:about="#Address.Postbox.Text"/>

<owl:Class rdf:about="#Address.Floor.Text"/>

<owl:Class rdf:about="#Address.Room.Text"/>

<owl:Class rdf:about="#Address.StreetName.Name"/>

....

<owl:Class rdf:about="#Address.CountrySubentity.Text"/>

<owl:Class rdf:about="#Address.CountrySubentityCode.Code"/>

<owl:Class rdf:about="#Address.Region.Text"/>

<owl:Class rdf:about="#Address.District.Text"/>

<owl:Class rdf:about="#Address.TimezoneOffset.Text"/>

<owl:Class rdf:about="#Address.AddressLine"/>

<owl:Class rdf:about="#Address.Country"/>

<owl:Class rdf:about="#Address.LocationCoordinate"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

79

The below listing provides an example on how “Address.Identifier” artifact of UBL is repre-

sented conforming to the UBL Upper Ontology.

<owl:Class rdf:ID="Address.Identifier">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#UBL.BBIE"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Identifier"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataType"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Identifier.Type"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

80

3.4 EXPLICATING THE SEMANTICS OF CCTS BASED DOCUMENT SCHEMA S

- OAGIS 9.1 UPPER ONTOLOGY

refersTo

co
n

ta
in

s

equivalentClass

equivalentClass

equivalentClass

BBIE

ASBIE

ABIE

ComponentRef

Field

Component

Figure 3.6: The Upper Ontology for the Semantics Exposed by the OAGIS XML Document

Standard

Although GS1 XML and UBL use the same terminology for document artifacts such as ABIE

as the CCTS framework, OAGIS names its document components differently. Figure 3.6

shows the upper ontology for the OAGIS 9.1 document standardand how OAGIS 9.1 classes

are related with the corresponding CCTS classes by using theowl:equivalentClassproperty.

An OAGIS 9.1Componentcorresponds toABIE class in CCTS upper ontology;Componen-

tRefcorresponds toASBIEandField corresponds toBBIE.

An OAGIS 9.1Field is defined as an OWL class namedField and it is declared equivalent to
the BBIE class defined in CCTS upper ontology as follows:

<owl:Class rdf:ID="Field">

<owl:equivalentClass rdf:resource="#BasicBusinessInformationEntity"/>

</owl:Class>

An OAGIS 9.1Componentis defined as an OWL class namedComponentand it is declared

equivalent to the ABIE class defined in CCTS upper ontology. ThecontainsObject Property

of theComponentclass is restricted toField andComponentRefas follows:

<owl:Class rdf:ID="Component">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

81

<owl:Class rdf:about="#Field"/>

<owl:Class rdf:about="#ComponentRef"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

An OAGIS 9.1ComponentRefis defined as an OWL class namedComponentRefand it is
declared equivalent to the ASBIE class defined in CCTS upper ontology. TherefersToObject
Property of theComponentRefclass is restricted toComponentas follows:

<owl:Class rdf:ID="ComponentRef">

<owl:equivalentClass rdf:resource="#AssociationBusinessInformationEntity"/>

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateBusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#refersTo"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Component"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

3.4.1 EXPLICATING THE SEMANTICS OF OAGIS 9.1 DOCUMENT SCHEM AS

The semantics of OAGIS 9.1 artifacts are explicated conforming to the OAGIS Upper Ontol-

ogy defined. OAGIS provides the XSD schemas of itsComponentsandFields (e.g. Compo-

nents.xsd and Fields.xsd) and does not name its components according to ISO 11179 Part 5 .

Therefore a special adapter is developed to generate the OAGIS document schema ontology

as follows: In OAGIS XSD Schemas, eachComponentis represented with an element decla-

ration and a corresponding type declaration. For example, the “Address”Componentshown

below contains the following element and type declarations.

82

<xsd:element name="Address" type="AddressType"/>

<xsd:complexType name="AddressType">

<xsd:complexContent>

<xsd:extension base="AddressBaseType">

<xsd:sequence>

<xsd:element ref="UserArea" minOccurs="0"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="AddressBaseType" abstract="true">

<xsd:annotation>

<xsd:documentation source="http://www.openapplications.org/oagis/9">Address aseType provides

the information about the address or semantic address of an asociated entity.</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref="ID" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="FormatCode" minOccurs="0"/>

<xsd:element ref="AttentionOfName" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element ref="CareOfName" minOccurs="0" maxOccurs="unbounded"/>

..

<xsd:element ref="PostalCode" minOccurs="0"/>

<xsd:element ref="Status" minOccurs="0"/>

<xsd:element ref="Preference" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="languageCode" type="LanguageCodeContentType" use="optional"/>

<xsd:attribute name="type" type="NormalizedStringType"/>

</xsd:complexType>

Furthermore, several components may have the same complex type:

<xsd:element name="BillingAddress" type="AddressType"/>

<xsd:element name="OwnerAddress" type="AddressType"/>

<xsd:element name="RemitLocationPostalAddress" type="AddressType">

When constructing the OAGIS document schema ontology, for each element declaration, one

ontology class is created. An example is shown below, where the OAGIS “Address.Details”

artifact is represented conforming to the OAGIS 9.1 Upper Ontology.

<owl:Class rdf:ID="Address.Details">

<owl:equivalentClass>

83

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Component"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AddressLine.AddressLine"/>

<owl:Class rdf:about="#AttentionOfName.NameType"/>

<owl:Class rdf:about="#BuildingName.NameType"/>

<owl:Class rdf:about="#BuildingNumber.TextType"/>

<owl:Class rdf:about="#CareOfName.NameType"/>

<owl:Class rdf:about="#CityName.NameType"/>

<owl:Class rdf:about="#CitySubDivisionName.NameType"/>

<owl:Class rdf:about="#CountryCode.CountryCodeType"/>

.....

<owl:Class rdf:about="#PostOfficeBox.TextType"/>

<owl:Class rdf:about="#Preference.Preference"/>

<owl:Class rdf:about="#Status.Status"/>

<owl:Class rdf:about="#StreetName.NameType"/>

<owl:Class rdf:about="#Unit.TextType"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

As shown above, theComponent“Address.Details” is defined as common component imply-

ing that it is used in the general “Context”. OAGIS does not provide theObject Class Terms

84

for its Components. However a closer investigation revealsthat the names of the complex

types in OAGIS give the information captured by the Object Class Terms of CCTS. Hence,

the complex type names are used as the Object Class Terms of OAGIS artifact and they are

obtained by simply dropping the suffix “Type” from the element’s complex type name. For

example, as shown above, the Object Class Term for AddressComponentis “Address”.

However, some of the OAGISComponentsare defined based on CCL Core Components. In

such cases, the Object Class Terms of the corresponding CoreComponent is used. For exam-

ple, there is aComponentcalled “ProjectReference” which is of type “ProjectReferenceType”

as follows:

<xsd:element name="ProjectReference" type="ProjectReferenceType"/>

“ProjectReferenceType” is derived from “ProjectBaseType” and “ProjectBaseType” is based

on “ProjectABIEType”. In this case, the Object Class Term for “ProjectReference” is “Project”

as follows:

<xsd:complexType name="ProjectReferenceType">

<xsd:complexContent>

<xsd:extension base="ProjectBaseType">

<xsd:sequence>

<xsd:element ref="ActivityID" minOccurs="0"/>

<xsd:element ref="UserArea" minOccurs="0"/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="ProjectBaseType">

<xsd:complexContent>

<xsd:extension base="ProjectABIEType"/>

</xsd:complexContent>

</xsd:complexType>

In OAGIS, aComponentis composed ofFields and/or ComponentReferences. Fields are at

the leaf level and they are based on CCTS Core Component Types. All the OAGIS Fields

are defined in “Fields.xsd” document. They are inserted to the OAGIS Document Schema

Ontology as follows: In XSDs, eachField is defined with an element and a corresponding

85

type declaration. The type declaration usually points to the Core Component Type. For

example, the “PostalCode” field is of type “Code Type”:

<xsd:element name="PostalCode" type="CodeType">

This field is inserted to the ontology as a new class, which is arestriction onField class. An

example on how ”PostalCode.CodeType” field of OAGIS 9.1 is represented conforming to the

OAGIS 9.1 Upper Ontology is shown below. The representationterm of this class is “Code”

and the data type of this class is “Code.Type”.

<owl:Class rdf:ID="PostalCode.CodeType">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Field"/>

<owl:Restriction>

<owl:onProperty

rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Code"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasDataType"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Code.Type"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Considering theComponent References, they are inserted to the ontology as new classes,

which are restrictions ofComponentRefclass. For example, the “Preference.Preference”

Component Referenceis inserted as shown below. It should be noted that it is used in general

Contextand refers to “Preference.Details” Component.

86

<owl:Class rdf:ID="Preference.Preference">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#ComponentRef"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasObjectClassTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Address"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasRepresentationTerm"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Preference"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Context"/>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#refersTo"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#Preference.Details"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

87

3.5 HARMONIZING THE ONTOLOGIES OF THE DOCUMENT STANDARDS

When a DL reasoner runs through the upper ontologies together with the document schema

ontologies defined, the resulting inferred (harmonized) ontology gives the correspondences

between the document artifacts of the CCTS based standards.The established relationships

can be directly indicating that the two document artifacts are equivalent or in subsumption

relationship. Furthermore, the relationship can be indirect through CCL, that is, the document

artifacts of two different standards may both be a superclass (or subclass) of a CCL artifact

and the relationship between them can only be established through CCL.

StreetName.Text

CityName.Text

Country.Identifier

BlockName.Text

crossStreet.Text

city.Text

Postcode.Code

Identification.Identifier

postalCode.Text

name.Text

BuildingName.Text

TimezoneOffset.Text

LocationCoordinateMarkCare.Text

InhouseMail.Text

countryCode.Code

countyCode.Text

CountrySub−DivisionName.Text

CountryName.Text provinceCode.Text

streetAddressOne.Text

state.Text

language.Code

cityCode.Text

pOBoxNumber.Text

PlotIdentification.Text

streetAddressTwo.Text

Identifier

Postal_Zone.Text

StreetName.Name

CitySubdivisionName.Name

BlockName.Name

BuildingName.Name

Room.Text

CountrySubentityCode.Code

Additional_StreetName.Text

BuildingNumber.Text

AddressFormatCode.Code

Country

District.Text

PlotIdentification.Text

AddressTypeCode.CodeDepartment.Text

MarkAttention.Text

currency.Code

geographicalCoordinates

AddressLine

Postbox.Text

Floor.Text

Region.Text

UN/CCL − StructuredAddress GS1 − NameAndAddressUBL − Address

CountrySubentity.Text

CityName.Name

CitySub−DivisionName.Text

Figure 3.7: The Semantic Equivalences among the BBIEs of UBL-Address, CCL-Structured

Address and GS1-NameAndAddress Discovered through the Harmonized Ontology

In this section, an example is presented on how the correlation of three document compo-

nents is established in the Harmonized Ontology through theDL reasoning process. In order

to facilitate the description of the reasoning process usedin this example, first the ontology

descriptions are expressed as specified in this document through their corresponding logical

expressions. Table 3.1 gives the logical expressions corresponding to “CCL Structured Ad-

dress ABIE” and Tables 3.2, 3.3 and 3.4 give logical expressions corresponding to “UBL

Address ABIE”.

88

Table 3.1: UN/CCL - “Structured Address” ABIE Asserted Definition

1. StructuredAddress.Details ≡ AggregateBusinessInformationEntity ∧ ∀ con-

tains StructuredAddress.Identification.Identifier ∧ StructuredAddress.Postcode.Code

∧ StructuredAddress.BuildingName.Text ∧ StructuredAddress.StreetName.Text ∧

StructuredAddress.CityName.Text ∧ StructuredAddress.Country.Identifier ∧ Struc-

tured Address.CitySub-DivisionName.Text∧ StructuredAddress.CountryName.Text∧ Struc-

tured Address.CountrySub-DivisionName.Text∧ StructuredAddress.BlockName.Text∧ Struc-

tured Address.PlotIdentification.Text∧ ∀ hasObjectClassTerm Address∧ ∀ usedInContext Context

2.StructuredAddress.BlockName.Text≡ BasicBusinessInformationEntity∧ ∀ hasDataType Text.Type

∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

3.StructuredAddress.BuildingName.Text≡ BasicBusinessInformationEntity∧ ∀ hasDataType

Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Con-

text

4.StructuredAddress.CityName.Text≡ BasicBusinessInformationEntity∧ ∀ hasDataType Text.Type∧

∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

5.StructuredAddress.CitySub-DivisionName.Text≡ BasicBusinessInformationEntity∧ ∀ has-

DataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ used-

InContext Context

6.StructuredAddress.Country.Identifier≡ BasicBusinessInformationEntity∧ ∀ hasDataType Identi-

fier.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Identifer∧ ∀ usedInContext

Context

7.StructuredAddress.CountryName.Text≡ BasicBusinessInformationEntity∧ ∀ hasDataType

Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext

Context

8.StructuredAddress.CountrySub-DivisionName.Text≡ BasicBusinessInformationEntity∧ ∀ has-

DataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ used-

InContext Context

9.StructuredAddress.Identification.Identifier≡ BasicBusinessInformationEntity∧ ∀ hasDataType

Identifier.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Identifer∧ ∀ usedIn-

Context Context

10.StructuredAddress.PlotIdentification.Text≡ BasicBusinessInformationEntity∧ ∀ hasDataType

Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Con-

text

11.StructuredAddress.Postcode.Code≡ BasicBusinessInformationEntity∧ ∀ hasDataType Code.Type

∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

12.StructuredAddress.StreetName.Text≡ BasicBusinessInformationEntity∧ ∀ hasDataType

Text.Type ∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInCon-

text Context

89

Table 3.2: UBL “Address” ABIE Asserted Definition - Part 1

13.Address.Details≡ UBL.ABIE ∧ ∀ contains Address.Identifier∧ Address.AddressTypeCode.Code

∧ Address.AddressFormatCode.Code∧ Address.Postbox.Text∧ Address.Floor.Text ∧ Ad-

dress.Room.Text∧ Address.StreetName.Name∧ Address.AdditionalStreetName.Name∧ Ad-

dress.BlockName.Name∧ Address.BuildingName.Name∧ Address.BuildingNumber.Text∧

Address.InhouseMail.Text ∧ Address.Department.Text∧ Address.MarkAttention.Text∧ Ad-

dress.MarkCare.Text∧ Address.PlotIdentification.Text∧ Address.CitySubdivisionName.Name

∧ Address.CityName.Name∧ Address.PostalZone.Text ∧ Address.CountrySubentity.Text∧

Address.CountrySubentityCode.Code∧ Address.Region.Text∧ Address.District.Text ∧ Ad-

dress.TimezoneOffset.Text∧ Address.AddressLine∧ Address.Country∧ Address.LocationCoordinate

∧ hasObjectClassTerm Address∧ usedInContext Context

14.Address.AdditionalStreetName.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObject-

ClassTerm Address∧ ∀ hasRepresentationTerm Name∧ ∀ usedInContext Context

15.Address.AddressFormatCode.Code≡ UBL.BBIE ∧ ∀ hasDataType Code.Type∧ ∀ hasObject-

ClassTerm Address∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

16.Address.AddressTypeCode.Code≡ UBL.BBIE ∧ ∀ hasDataType Code.Type∧ ∀ hasObject-

ClassTerm Address∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

17.Address.BlockName.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Name∧ ∀ usedInContext Context

18.Address.BuildingName.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Name∧ ∀ usedInContext Context

19.Address.BuildingNumber.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

20.Address.CityName.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObjectClassTerm Ad-

dress∧ ∀ hasRepresentationTerm Name∧ ∀ usedInContext Context

21.Address.CitySubdivisionName.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObject-

ClassTerm Address∧ ∀ hasRepresentationTerm Name∧ ∀ usedInContext Context

22.Address.CountrySubentity.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

23.Address.CountrySubentityCode.Code≡ UBL.BBIE ∧ ∀ hasDataType Code.Type∧ ∀ hasObject-

ClassTerm Address∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

24.Address.Department.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Ad-

dress∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

25.Address.District.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

26.Address.Floor.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧

∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

27.Address.Identifier≡ UBL.BBIE ∧ ∀ hasDataType Identifer.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Identifer∧ ∀ usedInContext Context

28.Address.InhouseMail.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Ad-

dress∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

90

Table 3.3: UBL “Address” ABIE Asserted Definition - Part 2

29.Address.MarkAttention.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

30.Address.MarkCare.Text≡UBL.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

31.Address.PlotIdentification.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

32.Address.PostalZone.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Ad-

dress∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

33.Address.Postbox.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

34.Address.Region.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

35.Address.Room.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧

∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

36.Address.StreetName.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Name∧ ∀ usedInContext Context

37.Address.TimezoneOffset.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm

Address∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

38.Address.AddressLine≡ UBL.ASBIE∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm

AddressLine∧ ∀ refersTo AddressLine.Details∧ ∀ usedInContext Context

39.Address.Country≡ UBL.ASBIE ∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresentationTerm

Country∧ ∀ refersTo Country.Details∧ ∀ usedInContext Context∧ ∀

40.Address.LocationCoordinate≡ UBL.ASBIE ∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresenta-

tionTerm LocationCoordinate∧ ∀ refersTo LocationCoordinate.Details∧ ∀ usedInContext Context

41.AddressLine.Details≡ UBL.ABIE ∧ ∀ contains AddressLine.Line.Text∧ ∀ hasObjectClassTerm

AddressLine∧ ∀ usedInContext Context

42.AddressLine.Line.Text≡ UBL.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Ad-

dressLine∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

43.Country.Details≡ UBL.ABIE ∧ ∀ contains Country.IdentificationCode.Code∧ Country.Name∧ ∀

hasObjectClassTerm Country∧ ∀ usedInContext Context

44.Country.IdentificationCode.Code≡ UBL.BBIE ∧ ∀ hasDataType CountryIdentificationCode.Type

∧ ∀ hasObjectClassTerm Country∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

45.Country.Name≡ UBL.BBIE ∧ ∀ hasDataType Name.Type∧ ∀ hasObjectClassTerm Country∧ ∀

hasRepresentationTerm Name∧ ∀ usedInContext Context

46.LocationCoordinate.Details ≡ UBL.ABIE ∧ ∀ contains LocationCoordi-

nate.CoordinateSystemCode.Code∧ LocationCoordinate.LatitudeDegrees.Measure∧ Location-

Coordinate.LatitudeMinutes.Measure∧ LocationCoordinate.LatitudeDirectionCode.Code∧ Loca-

tionCoordinate.LongitudeDegrees.Measure∧ LocationCoordinate.LongitudeMinutes.Measure∧

LocationCoordinate.LongitudeDirectionCode.Code∧ ∀ hasObjectClassTerm LocationCoordinate∧ ∀

usedInContext Context

91

Table 3.4: UBL “Address” ABIE Asserted Definition - Part 3

47.LocationCoordinate.CoordinateSystemCode.Code≡ UBL.BBIE ∧ ∀ hasDataType Code.Type∧ ∀

hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

48.LocationCoordinate.LatitudeDegrees.Measure≡ UBL.BBIE ∧ ∀ hasDataType Measure.Type∧

∀ hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Measure∧ ∀ usedInContext

Context

49.LocationCoordinate.LatitudeMinutes.Measure≡ UBL.BBIE ∧ ∀ hasDataType Measure.Type∧

∀ hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Measure∧ ∀ usedInContext

Context

50.LocationCoordinate.LatitudeDirectionCode.Code≡ UBL.BBIE ∧ ∀ hasDataType LatitudeDirec-

tion Code.Type∧ ∀ hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Code∧ ∀

usedInContext Context

51.LocationCoordinate.LongitudeDegrees.Measure≡ UBL.BBIE ∧ ∀ hasDataType Measure.Type∧

∀ hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Measure∧ ∀ usedInContext

Context

52.LocationCoordinate.LongitudeMinutes.Measure≡ UBL.BBIE ∧ ∀ hasDataType Measure.Type∧

∀ hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Measure∧ ∀ usedInContext

Context

53.LocationCoordinate.LongitudeDirectionCode.Code≡ UBL.BBIE ∧ ∀ hasDataType LongitudeDi-

rection Code.Type∧ ∀ hasObjectClassTerm LocationCoordinate∧ ∀ hasRepresentationTerm Code∧

∀ usedInContext Context

Table 3.5: The Assertion Related with the different Usage of Datatypes

54.Name.Type≡ Text.Type
74.Code.Type≡ Text.Type≡ Identifier.Type

The Harmonized Ontology contains the fact that “CCL Structured Address ABIE” is a sub-

class of “UBL Address ABIE” giving a much needed correspondence. Similarly, Table 3.7

gives the logical expressions corresponding to “GS1 NameAndAddress ABIE” and Table 3.5

gives one of the additional assertions for data types.

Table 3.8 gives the inferred equalities and subsumptions inthe Harmonized Ontology.

92

Table 3.6: Inferred Equalities/Subsumptions between UN/CCL “Structured Address” and

UBL “Address” in the Harmonized Ontology

Inferred Relations The Facts used in Computing the In-

ferred Relations

StructuredAddress.CityName.Text ≡ Ad-

dress.CityName.Name

Def.4, Def.20, Def.54

StructuredAddress.CitySub-DivisionName.Text ≡ Ad-

dress.CitySubdivisionName.

Def.5, Def.21, Def.54

StructuredAddress.StreetName.Text ≡ Ad-

dress.StreetName.Name

Def.12, Def.36, Def.54

StructuredAddress.Identification.Identifier ≡ Ad-

dress.Identifier

Def.9, Def.27

StructuredAddress.Postcode.Code ≡ Ad-

dress.PostalZone.Text

Def.11, Def.32

StructuredAddress.Country.Identifier≡ Address.Identifer Def.6, Def.27

StructuredAddress.CountrySub-DivisionName.Text≡ Ad-

dress.CountrySubentity.Text

Def.8, Def.22

StructuredAddress.CountryName.Text≡ Address.Region.Text Def.7, Def.34

StructuredAddress.BlockName.Text ≡ Ad-

dress.BlockName.Name

Def.2, Def.17, Def.54

StructuredAddress.BuildingName.Text ≡ Ad-

dress.BuildingName.Name

Def.3, Def.18, Def.54

StructuredAddress.PlotIdentification.Text ≡ Ad-

dress.PlotIdentification.Text

Def.10, Def.31

Address.Detailsis a subclass ofStructuredAddress.Details Def.13, Def.1 (since Address.Details

contain more than StructuredAddress)

93

Table 3.7: GS1 “NameAndAddress” ABIE Asserted Definition

56.NameAndAddress.Details≡ GS1.XML.ABIE∧ ∀ contains city∧ cityCode∧ countryCode∧ coun-

tyCode∧ crossStreet∧ currency∧ languageOfTheParty∧ name∧ pOBoxNumber∧ postalCode∧

provinceCode∧ state∧ streetAddressOne∧ streetAddressTwo∧ geographicalCoordinates∧ ∀ hasOb-

jectClassTerm Address∧ ∀ usedInContext Context

57.city≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRep-

resentationTerm Text∧ ∀ usedInContext Context

58.cityCode≡ GS1.XML.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀

hasRepresentationTerm Text∧ ∀ usedInContext Context

59.countryCode≡ GS1.XML.BBIE∧ ∀ hasDataType Code.Type∧ ∀ hasObjectClassTerm Address∧

∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

60.countyCode≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀

hasRepresentationTerm Text∧ ∀ usedInContext Context

61.crossStreet≡ GS1.XML.BBIE ∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀

hasRepresentationTerm Text∧ ∀ usedInContext Context

62.currency≡ GS1.XML.BBIE ∧ ∀ hasDataType Code.Type∧ ∀ hasObjectClassTerm Address∧ ∀

hasRepresentationTerm Code∧ ∀ usedInContext Context

63.languageOfTheParty≡ GS1.XML.BBIE∧ ∀ hasDataType Code.Type∧ ∀ hasObjectClassTerm Ad-

dress∧ ∀ hasRepresentationTerm Code∧ ∀ usedInContext Context

64.name≡GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRep-

resentationTerm Text∧ ∀ usedInContext Context

65.pOBoxNumber≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧

∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

66.postalCode≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀

hasRepresentationTerm Text∧ ∀ usedInContext Context

67.provinceCode≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧

∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

68.state≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address∧ ∀ hasRep-

resentationTerm Text∧ ∀ usedInContext Context

69.streetAddressOne≡ GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

70.streetAddressTwo≡GS1.XML.BBIE∧ ∀ hasDataType Text.Type∧ ∀ hasObjectClassTerm Address

∧ ∀ hasRepresentationTerm Text∧ ∀ usedInContext Context

71.geographicalCoordinates≡ GS1.XML.ASBIE∧ ∀ hasObjectClassTerm Address∧ ∀ hasRepresen-

tationTerm GeographicalCoordinates∧ ∀ refersTo GeographicalCoordinates.Details∧ ∀ usedInContext

Context

72.GeographicalCoordinates.Details≡ GS1.XML.ABIE ∧ ∀ contains latitude∧ longitude∧ ∀ hasOb-

jectClassTerm GeographicalCoordinates∧ ∀ usedInContext Context

94

Table 3.8 gives the inferred equalities and subsumptions inthe Harmonized Ontology.

Table 3.8: Inferred Equalities/Subsumptions between UN/CCL “Structured Address” and

GS1 “NameAndAddress” in the Harmonized Ontology

Inferred Relations The Facts used in Computing the In-

ferred Relations

StructuredAddress.CityName.Text≡ city Def.4, Def.57

StructuredAddress.City-SubdivisionName.Text≡ countyCode Def.5, Def.59

StructuredAddress.StreetName.Text≡ crossStreet Def.12, Def.61

StructuredAddress.Identification.Identifier≡ name Def.9, Def.64, Def. 55

StructuredAddress.Postcode.Code≡ postalCode Def.11, Def.66, Def.55

StructuredAddress.CountrySubDivisionName.Text ≡

provinceCode

Def.8, Def.67

StructuredAddress.Country.Identifier≡ countryCode Def.6, Def.60, Def. 55

StructuredAddress.CountrySub-DivisionName.Text≡ state Def.8, Def.68

StructuredAddress.CountryName.Text≡ streetAddressOne≡

streetAddressTwo

Def.7, Def.69, Def.70

StructuredAddress.BlockName.Text≡ streetAddressOne≡

streetAddressTwo

Def.2, Def.69, Def.70

StructuredAddress.BuildingName.Text≡ streetAddressOne≡

streetAddressTwo

Def.3, Def.69, Def.70

StructuredAddress.PlotIdentification.Text≡ streetAddressOne

≡ streetAddressTwo

Def.10, Def.69, Def.70

NameAndAddress.Details is a subclass of Struc-

tured Address.Details

Def.56, Def.1 (since NameAndAd-

dressDetails contain more BBIEs than

StructuredAddress.Details)

As a summary, Table 3.6 and Table 3.8 give how the equivalences given in Figure 3.7 are

computed. Additionally, as shown in Table 3.8, the reasonerdiscovers that “GS1-NameAnd

Address.Details”is a subclass of“UN /CCL-StructuredAddress.Details” and as shown in

Table 3.6, and that “UBL-Address.Details”is a subclass of“UN /CCL-StructuredAddress.-

Details” because the “UBL-Address.Details” and the “GS1-NameAndAddress.Details” both

contain more elements than the “UN/CCL-StructuredAddress.Details” document artifact.

95

CHAPTER 4

PROVIDING HEURISTICS TO DISCOVER STRUCTURALLY

DIFFERENT DOCUMENT ARTIFACTS

The semantic properties of the CCTS based document artifacts help discovering the equiva-

lences of structurally and semantically similar artifacts. However, different document stan-

dards useCore Componentsin different structures. For example, an “Address” component of

one standard may be totally different than the “Address” of another standard. Semantic prop-

erties of document artifacts are not enough to find the similarity of the structurally different

but semantically equivalent document artifacts. In other words, DL reasoners discover re-

lations among both semantically and structurally similar components. However, document

standards generate their components in different structures. For example, in CCL, “Pri-

mary Identification. Identifier” BBIE in included directly into “Buyer Party” ABIE. How-

ever, in UBL, the BBIE used for party identification is in “PartyIdentification” ABIE, which

is associated to “Party” ABIE through “Party.PartyIdentification” ASBIE. Therefore, the rea-

soner cannot find the relation between “Party” and “BuyerParty”.

More specifically, description logics cannot find the relations between these structurally dif-

ferent components. Therefore, heuristics should be provided to find these relations. In my

approach, there are two types of heuristics:

1. Heuristics given in description logics: These heuristics are mostly auxiliary in nature

and they are inserted into the upper and document schema ontologies in creation time.

They are for resolving the different usages of CCTS Data Types and putting the object

class terms into a hierarchy to help finding the equivalent BBIEs at different structural

levels. They are described in Sections 4.1 and 4.2, respectively.

96

2. Heuristics given in predicate logics: These heuristics are used to find relations between

structurally different but semantically similar components and they are described in

Section 4.3.

4.1 HEURISTICS TO HELP RESOLVING THE DIFFERENT USAGES OF

CCTS DATA TYPES

Different document standards use CCTS Data Types differently. For example, “Code.Type”

can be used to specify the datatype of a BBIE in one standard and “Text.Type” can be used

for the same BBIE in another standard and yet “Identifier.Type” in another standard. This

knowledge in real world is expressed through class equivalences as shown below so that not

only the humans but also the reasoner knows about it.

<owl:Class rdf:ID="Code.Type">

<owl:equivalentClass rdf:resource="#Text.Type"/>

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Name.Type">

<owl:equivalentClass rdf:resource="#Text.Type"/>

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

<owl:Class rdf:ID="Identifier.Type">

<owl:equivalentClass rdf:resource="#Text.Type"/>

<rdfs:subClassOf rdf:resource="#CoreComponentType"/>

</owl:Class>

Obviously such rules will not be needed if the document standards use CCTS methodology in

the same way. But in reality, the existing CCTS based document standards have such different

usages and to discover similar document artifacts in different standards, the reasoner needs

this information. It should be noted that such an assertion may produce some false positives,

that is, finding two unrelated document artifacts to be similar. However, such false positives

are in limited numbers, since many other semantic properties of the document artifacts are

compared to find similarities. The false positives, when they happen, need to be sorted out

manually. Since my purpose is to develop a support tool for humans to use rather than a

completely automated process, the human intervention is necessary to eliminate the remaining

false positives if there are any.

97

4.2 A HEURISTIC TO HELP FINDING THE EQUIVALENT BBIES AT DIF-

FERENT STRUCTURAL LEVELS

A problem in finding the document artifacts with similar information content in two different

document schemas is that the semantically similar artifacts may appear at structurally different

positions. For example, two semantically equivalent aggregate document components, which

belong to different document standards, may have their basic document components, which

are also semantically equivalent, at different structural levels as shown in Figure 4.1 (A) and

(B). These cases prevent description logics reasoners to discover the relationship between

them. The problem is how to inform the reasoner in an automated way that such document

components are considered similar.

OCT1OCT2 OCT2

contains

ASBIE AS ABIE A2

BBIE B2

ABIE A1

BBIE B1

contains

refersTo

hasOCT

hasOCT

hasOCT

contains

ABIE A3

Step 1
Step 2

Step 3

(A) (B)

Figure 4.1: Example structural difference

First, note that anObject Class Termin CCTS denotes that a document component belongs to

an abstract class, although not in ontological terms. In explicating the semantics of the CCTS,

ontology classes are created for document components and associate them with their corre-

spondingObject Class Termclasses throughowl:hasOCTproperty. Consider the following

two document components:

• A basic component “BBIE B2” with anObject Class TermOCT1 is referred to through

an association component from an aggregate component with an Object Class Term

OCT2 in one document schema as shown in Figure 4.1 (A),

• A basic component “BBIE B1”, which is semantically equivalent to “BBIE B2”, di-

rectly appears under an aggregate component with anObject Class TermOCT2 in an-

other schema as shown in Figure 4.1 (B).

To handle such a structural difference, a subsumption relation is established among theirOb-

ject Class Termclasess by declaring that OCT1 is a subclass of OCT2. The intention is that

98

; Assume that there are two BBIEs, whose names are name1 and name2,
; respectively.
BBIE(name1, oct1, rt1, context1, dataType1) ∧
BBIE(name2, oct2, rt2, context2, dataType2) ∧
; If their “Object Class Terms” are equal or subclass of each other
(∨ (oct1 ≡ oct2) (oct1 is a subclass ofoct2) (oct2 is a subclass ofoct1)) ∧
; And if their “Representation Terms” are equal or subclass of each other
(∨ (rt1 ≡ rt2) (rt1 is a subclass ofrt2) (rt2 is a subclass ofrt1)) ∧
; And if their “Contexts” are equal or subclass of each other
(∨ (context1 ≡ context2) (context1 is a subclass ofcontext2) (context2
is a subclass ofcontext1)) ∧
; And if their “Data Types” are equal or subclass of each other
(∨ (dataType1 ≡ dataType2) (dataType1 is a subclass ofdataType2)
(dataType2 is a subclass ofdataType1))
⇒

; Then these BBIEs are equal
name1 ≡ name2

Figure 4.2: The Rule for Discovery of two Semantically Similar Basic Document Components

a basic document component semantically similar to “BBIE B2” might as well be regarded

as a part of an aggregate component whoseObject Class Termis OCT2 to let the reasoner

discover such equivalences.

Note that once such an assertion is made, then the reasoner can recursively trace the associa-

tion components at any depth.

This semantics is extracted when the document schemas are processed to create the corre-

sponding OWL ontologies through a software developed whichautomatically asserts a sub-

sumption hierarchy among theObject Class Termclasses of such document artifacts. In fact,

the harmonized ontology given in [90] already contains all such relationships.

4.3 HEURISTICS TO FIND RELATIONSHIPS BETWEEN SEMANTICALLY

SIMILAR BUT STRUCTURALLY DIFFERENT DOCUMENT ARTIFACTS

A very common structural difference in semantically similar document artifacts is that al-

though some of the semantic properties of a document artifact “A” is the subclass of the

corresponding properties of the document artifact “B”, some other properties of “A” are the

super classes of the corresponding attributes of “B”. As an example, a document artifact

99

; Assume that there are two ASBIEs, whose names are name1 and name1,
; respectively.
ASBIE(name1, oct1, rt1, context1, refersTo1) ∧
ASBIE(name2, oct2, rt2, context2, refersTo2) ∧
; If their “Object Class Terms” are equal or subclass of each other
(∨ (oct1 ≡ oct2) (oct1 is a subclass ofoct2) (oct2 is a subclass ofoct1)) ∧
; And if their “Representation Terms” are equal or subclass of
; each other
(∨ (rt1 ≡ rt2) (rt1 is a subclass ofrt2) (rt2 is a subclass ofrt1)) ∧
; And if their “Contexts” are equal or subclass of each other
(∨ (context1 ≡ context2) (context1 is a subclass ofcontext2) (context2
is a subclass ofcontext1)) ∧
; And if they “refesTo” the same ABIE or the referred ABIEs subclass of
; each other
(∨ (refersTo1 ≡ refersTo2) (refersTo1 is a subclass ofrefersTo2) (refersTo2
is a subclass ofrefersTo1))
⇒

; Then these ASBIEs are equal
name1 ≡ name2

Figure 4.3: The Rule for Discovery of two Semantically Similar Association Document Com-
ponents

A’s context may be a subclass of document artifact B’s context but the subclass relationship

among their other properties may be in the reverse direction. As another example, as shown

in lower part of Figure 4.7, the relations between the valuesof “Party. PostalAddress. Ad-

dress” and “BuyerParty. Postal. StructuredAdress” ASBIEs’ “usedInContext” and “refer-

sTo” properties are in reverse direction. For discovering the similarity of document artifacts,

it is not important if the direction of the subsumption relations among the corresponding se-

mantic properties of the document artifacts is the same. In other words, when the purpose is

to find out whether these artifacts are similar, it is not important whether the direction of the

subsumption relationship is different among their corresponding attributes.

Furthermore, the heuristics are categorized according to structural differences that can occur

among different document artifacts as follows:

• Heuristics to Discover Structurally Different Basic Document Components (BBIEs): If

the semantic properties of two basic document components are pair wise equivalent or

subclasses of each other, these basic document components are considered to be similar.

The rule in Figure 4.2 expresses this heuristics. When this rule fires, it establishes an

100

; Assume there are the following artifacts.
ASBIE(name1, oct1, rt1, context1, refersTo1) ∧
ABIE(name2, oct2, containsSet2, context2, bieCount2) ∧
BBIE(name3, oct3, rt3, context3, dataType3) ∧
BBIE(name4, oct4, rt4, context4, dataType4) ∧
; If ASBIE name1, “refersTo” ABIE name2
refersTo1 ≡ name2 ∧
; And if BBIE name3 is in the ContainsSet of ABIE name2

name3 ∈ containsSet2 ∧

; And if BBIE ABIE name3 is equals to BBIE name4
name3 ≡ name4
⇒

; Then BBIE name4 is equals to BBIE name1 name4 ≡ name1

Figure 4.4: The Rule for Discovery of Semantic Similarity between a Basic Document Com-
ponent and an Association Document Component

owl:equivalentClassproperty between these two basic document components.

• Heuristics to Discover Structurally Different Association Document Components (AS-

BIEs): If the semantic properties of two association document components are pair

wise equivalent or subclasses of one another, these association document components

are considered to be equivalent. The rule given in Figure 4.3states this heuristics and

when this rule fires, it establishes anowl:equivalentClassproperty between these two

association document components.

• Heuristics to Discover Structurally Different Association Document Component (AS-

BIE) and Basic Document Component Pairs (BBIE): Consider two basic document

components, “BBIE B1” and “BBIE B2”, which belong to different standards and

whose semantic equivalence is established through the harmonized ontology as indi-

cated in Figure 4.1 Step 1. Assume that “BBIE B1” is in an aggregate document compo-

nent “ABIE A1” whose object class term is OCT2 as shown in Figure 4.1 (B). Assume

further that “BBIE B2” is in an aggregate document component“ABIE A2” as shown

in Figure 4.1 (A). Another aggregate document component “ABIE A3” whose object

class term is OCT2, refers to “ABIE A2” through the association document compo-

nent “ASBIE AS” (Figure 4.1 (A)). There is a possibility thatthe association document

component “ASBIE AS” is semantically equivalent to the basic document component

“BBIE B1” as shown in Figure 4.1 Step 2.

101

; Assume that there are two ABIEs, whose names are name1 and name2
ABIE(name1, oct1, containsSet1, context1, bieCount1) ∧
ABIE(name2, oct2, containsSet2, context2, bieCount2) ∧
; If their “Object Class Terms” are equal or subclass of each other
(∨ (oct1 ≡ oct2) (oct1 is a subclass ofoct2) (oct2 is a subclass ofoct1)) ∧
; And if their “ContainsSet” are equal or subclass of each other
(∨ (containsSet1 ≡ containsSet2) (containsSet1 ⊂ containsSet2)
(containsSet2 ⊂ containsSet1)) ∧
; And if their “Contexts” are equal or subclass of each other
(∨ (context1 ≡ context2) (context1 is a subclass ofcontext2)
(context2 is a subclass ofcontext1))
⇒

; Then these ABIEs are equal.
name1 ≡ name2

Figure 4.5: The Rule for Discovery of two Aggregate DocumentComponents having Seman-
tically Similar Content

The rule given in Figure 4.4 states this heuristics and when this rule fires, it establishes

an owl:equivalentClassproperty between the association document component “AS-

BIE AS” and basic document component “BBIE B1”. Note that once this equivalence

is established in the harmonized ontology and the reasoner is executed again it may

establish the equivalence of the aggregate components (Figure 4.1 Step 3) by trigger-

ing theHeuristics to Discover Structurally Different Aggregate Document Components

(ABIEs)rule.

• Heuristics to Discover Structurally Different Aggregate Document Components (ABIEs):

The structural differences that can occur in aggregate document components aremore

complex, because each of them may contain a different number of basic and associa-

tion document components, some of which may be semanticallyequivalent, some may

not. To be able to better express the different cases that may appear, theContainsSet

of an aggregate document component is defined to be the set of all of its document

components. TheContainsSetis in fact the set of document components in the range

of the containsproperty of an aggregate document component. TheContainsSetsof

two aggregate document components may be equal; may have a non-null intersection;

may be in subset relationships or may be disjoint of each other. If the ContainsSets

are not disjoint, heuristics are provided to discover theirsimilarity. Note that the other

semantic properties of two aggregate document components must be similar for these

102

rules to fire.

– Case 1: The ContainsSets of two aggregate document components are equivalent

or in subset relationship: Considering all the semantic properties of two aggregate

document components, if each of them is pair wise equivalentor subclasses of

one another, and theirContainsSetsare the same or subsets of each other, these

aggregate document components are considered to be similar. The rule in Figure

4.5 states this heuristics. When this rule fires, it establishes anowl:equivalent-

Classproperty between these two aggregate document components.

– Case 2: The ContainsSets of two aggregate document components have a non-

null intersection: The semantic properties of two aggregate document components

may be equivalent and theirContainsSetmay have a non-null intersection. What

is provided is asimilarityConstantthat the user may set. As an example, if the

user considers that two aggregate document components are similar when 60%

of their document components are similar then he can set thesimilarityConstant

to “0.6”. Hence, when all the semantic properties of two aggregate document

components are either pair wise equivalent or subclasses ofone another, and the

document components in theirContainsSetsets aresimilarityConstantpercent

equivalent, these aggregate document components are considered to be similar.

The rule given in Figure 4.6 states this heuristics and when it fires, it establishes

anowl:equivalentClassproperty between these two aggregate document compo-

nents.

These rules are defined in predicate logic using JESS Rules [35] and execute them through

JESS Rule Engine and carry the results back to the harmonizedontology. Note that the rules

defined produce further OWL class equivalences in the harmonized ontology. After this step,

the DL-Reasoner is executed again to compute the new equality/subsumption relations. The

discovered equivalences are presented to the domain expertor the user for his approval. This

process may be repeated until the user is satisfied with the discovered similarities.

103

; Assume that there are two ABIEs, whose names are name1 and name2
ABIE(name1, oct1, containsSet1, context1, bieCount1) ∧
ABIE(name2, oct2, containsSet2, context2, bieCount2) ∧
; If BIE name3 is in the ContainsSet of ABIE name1

name3 ∈ containsSet1 ∧

; And if BIE name4 is in the ContainsSet of ABIE name2

name4 ∈ containsSet2 ∧

; And if BIE name3 and BIE name4 are equal or subclass of each other
(∨ (name3 ≡ name4) (name3 is a subclass ofname4) (name3 is a subclass ofname4))
⇒

; Then increase count by 1
($count= $count+1) ∧
; And if the similarity between their ContainsSet is greaterthen
; similarityConstant then these ABIEs are equal.
(IF (($count/ (bieCount1 + bieCount2 - $count))> $similarityConstant))
THEN name1 ≡ name2

Figure 4.6: The Rule for Discovery ofg two Semantically Similar Aggregate Document Com-
ponents

Party.Details

Party.PartyIdentification

PartyIdentification.Details

PartyIdentification.Identifier

Identification
Primary

Identifier

Party.Postal_Addres.Address

Party

Address

Context

Address.Details

Context

Identifier.Type

equals

contains

Object Property

subClassOf

Buyer_Party.Details

Buyer_Party.Primary_Identification.Identifier

Party

Identifier

Trade

Identifier.Type

Buyer_Party.Postal.Structured_Address

Party

Address

Trade

Structured_Address.Details

ABIE

ASBIE

BBIE

ABIE

ABIE

BBIE

ASBIE

ASBIE
usedInContext

hasRT

hasOCT

refersTo

hasDT

hasOCT

hasRT

usedInContext

refersTo

UBL UN/CCL

hasOCT

hasRT

hasDT

usedInContext

hasOCT

hasRT

usedInContext

refersTo

Figure 4.7: UBL’s Party ABIE and CCL’s BuyerParty ABIE

4.4 AN EXAMPLE ON THE USE OF THE HARMONIZED ONTOLOGY

AND THE PROVIDED HEURISTICS

In this section, a real life example is presented to explain the use of the harmonized ontology

and the provided heuristics. Consider the two example document artifacts given in Figure

104

Table 4.1: The Relationship among the Semantic Properties of two Example Basic Document
Components

“PartyIdentification. Identifier”
of UBL

“Buyer Party. Pri-
mary Identification.
Identifier” of UN/CCL

PrimaryIdentification Party “PrimaryIdentification”
Object Class Term is
a subclass of “Party”
Object Class Term as
described in Section 4.2

Identifier Identifier Both Basic Document
Components have the
same Representation
Term

Context Trade “Trade” context class is
a subclass of theContext
top class

Identifier.Type Identifier.Type Both Basic Document
Components have the
sameData Type

4.7. A human looking at this figure can immediately tell the similarity between the UBL

“Party.Details” and UN/CCL “Buyer Party.Details”. The aim is to discover such similarities

in an automated way.

Given the two document artifacts in Figure 4.7, the Description Logics reasoner first dis-

covers the similarities of the semantic properties of the following basic document compo-

nents: the UBL’s “PartyIdentification.Identifier” and the UN/CCL’s “Buyer Party.Primary-

Identification.Identifier” as shown in Table 4.1.

Note that the subsumption relationship between “PrimaryIdentification” and “Party” classes is

in the opposite direction of the subsumption relationship betweenContextand “Trade”. How-

ever, through the class equivalence asserted to the harmonized ontology with the execution

of the rule given in Figure 4.2, the Description Logics reasoner establishes the relationship

between the UBL’s “PartyIdentification.Identifier” and theUN/CCL’s “Buyer Party.Primary-

Identification.Identifier” as being equivalent. Furthermore, the reasoner using the class equiv-

alence inferred by the rule given in Figure 4.4, establishesthe fact that the “BuyerParty.-

Primary Identification.Identifier” is equivalent to the “Party.PartyIdentification” association

document component.

105

Similarly, for the UBL’s “Party.PostalAddress.Address” association document component

and the UN/CCL’s “Buyer Party.Postal.StructuredAddress” association document compo-

nent, the reasoner establishes the equivalences and the subsumption relationships among the

document artifacts as shown in Table 4.2 in the harmonized ontology.

In Table 4.2, the direction of the subsumption relationshipbetween the UBL “Address.-

Details” and the UN/CCL “StructuredAddress.Details” classes is in the opposite direction of

the subsumption relationship between theContextand the “Trade”. However, since the class

equivalence relationship is already asserted to the harmonized ontology with the execution

of the rule given in Figure 4.3, the Description Logics reasoner establishes the relationship

between the UBL’s “Party.PostalAddress.Address” and the UN/CCL’s “Buyer Party.Postal.-

StructuredAddress” as being equivalent classes. In Figure 4.7, for thesake of simplicity some

of the basic document components and association document components, namely, the UBL

“Party.Details” and the UN/CCL “Buyer Party.Details” are not shown. When the Description

Logics reasoner considers these extra basic and association document components, the equiv-

alence among the semantic properties becomes as shown in Figure 4.8. In other words, the

set of basic and association document components of the UBL “Party.Details” is a superset of

document components of UN/CCL “Buyer Party.Details”.

The relationships shown in Figure 4.8 together with the rulein Figure 4.5 trigger the semantic

equivalence of the UBL “Party.Details” and the UN/CCL “Buyer Party.Details” document

artifacts.

Party.Details

Context

Party

BBIE/ASBIE Set

Party

Trade

BBIE/ASBIE Set

Buyer_Party.Details

hasOCT

contains

usedInContext

CCL

hasOCT

contains

usedInContext

UBL

equalTo
subClassOf

ObjectProperty

Figure 4.8: UBL’s Party ABIE and CCL’s BuyerParty ABIE

106

Table 4.2: The Relationship among the Semantic Properties of two Example Association
Document Components

“Party. PostalAddress. Ad-
dress” of UBL

“Buyer Party. Postal.
StructuredAddress” of
UN/CCL

Party Party Both Association Docu-
ment Components have
the same Object Class
Term

Address Address Both Association Docu-
ment Components have
the sameRepresentation
Term

Context Trade “Trade” context class is
a subclass of theContext
top class

Address. Details Structured Address. De-
tails

“Address. Details” is a
subclass of“Structured
Address. Details”

107

CHAPTER 5

AUTOMATED XSLT GENERATION SUPPORT

The harmonized ontology gives the specified as well as the computed equality and subsump-

tion relations among the classes of both the upper ontologies and the document schema on-

tologies. In order to translate document instances betweendifferent document schemas, this

knowledge should be used to determine the relationship between the elements in the document

instances. In other words, the equivalences discovered arecarried to the data level, where the

document instances are described in XML. The instance leveltranslation is achieved using

XSLT and the XSLT definitions are generated automatically for the identified equivalences

through the following process:

• While constructing the upper ontologies, the relations between the ontology classes

and XSD schema elements are identified and the correspondingXPath expressions are

generated.

• To obtain the XSLT definition from a document artifact to another:

– The harmonized ontology classes that correspond to document artifacts in the

document schemas are matched.

– Then, the XPath expressions for the identified classes are retrieved.

– Finally, XSLT expressions are generated automatically from these XPath expres-

sions using the equivalences among document artifacts discovered through the

harmonized ontology.

The extra elements, for which the methodology cannot establish the corresponding elements

in the target document schema (either because there is no corresponding element or there is

108

such an element but the methodology is not able to find the related element) are inserted into

the extension part of the target document schema. The domainexperts can further handcraft

the XSLT definitions.

5.1 AN EXAMPLE: TRANSLATING UBL “ADDRESS.dETAILS” TO GS1

“NAME AND ADDRESS”

In this section, the translation process is described through an example.

5.1.1 OBTAINING THE XPATH EXPRESSIONS FOR UBL “ADDRESS” ABI E AND

FOR ITS BBIES/ASBIES AUTOMATICALLY

The ABIEs in UBL are represented with “xsd:complexType” definitions in XSDs. The “xsd:-

complexType” of “Address.Details” ABIE is “AddressType”.In the annotation part of the

UBL XSD schemas, the dictionary entry names of the BIEs are also provided. As mentioned

previously, the class names for BIEs in the document schema ontologies are generated from

the dictionary entry names. Therefore, this information isdirectly used in constructing the

XPath expressions for UBL ontology classes (i.e. this information implicitly describes the

ontology class). In the below fragment, a part of UBL “AddressType” XSD declaration is

given.

<xsd:complexType name="AddressType">

<xsd:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>ABIE</ccts:ComponentType>

<ccts:DictionaryEntryName>Address. Details</ccts:DictionaryEntryName>

<ccts:Definition>Information about a structured address.</ccts:Definition>

<ccts:ObjectClass>Address</ccts:ObjectClass>

</ccts:Component>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element ref="cbc:ID" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>BBIE</ccts:ComponentType>

109

<ccts:DictionaryEntryName>Address. Identifier</ccts:DictionaryEntryName>

<ccts:Definition>An identifier for a specific address within a

scheme of registered addresses.</ccts:Definition>

<ccts:Cardinality>0..1</ccts:Cardinality>

<ccts:ObjectClass>Address</ccts:ObjectClass>

<ccts:PropertyTerm>Identifier</ccts:PropertyTerm>

<ccts:RepresentationTerm>Identifier</ccts:RepresentationTerm>

<ccts:DataType>Identifier. Type</ccts:DataType>

<ccts:AlternativeBusinessTerms>DetailsKey</ccts:AlternativeBusinessTerms>

</ccts:Component>

</xsd:documentation>

</xsd:annotation>

</xsd:element>

...

<xsd:element ref="LocationCoordinate" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>ASBIE</ccts:ComponentType>

<ccts:DictionaryEntryName>Address. Location Coordinate</ccts:DictionaryEntryName>

<ccts:Definition>An association to Location Coordinate.</ccts:Definition>

<ccts:Cardinality>0..1</ccts:Cardinality>

<ccts:ObjectClass>Address</ccts:ObjectClass>

<ccts:PropertyTerm>Location Coordinate</ccts:PropertyTerm>

<ccts:AssociatedObjectClass>Location Coordinate</ccts:AssociatedObjectClass>

</ccts:Component>

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

The XPath language itself refers to XML elements, not to XSD complex types. Therefore,

when generating the XPath expression for the “Address.Details” ABIE, the XML elements

that refer to the “AddressType” are collected. In UBL XSDs, the XML elements that refer to

“AddressType” are as follows:

<xsd:element name="RegistrationAddress" type="AddressType"/>

<xsd:element name="PostalAddress" type="AddressType"/>

<xsd:element name="OriginAddress" type="AddressType"/>

<xsd:element name="JurisdictionRegionAddress" type="AddressType"/>

<xsd:element name="DespatchAddress" type="AddressType"/>

<xsd:element name="DeliveryAddress" type="AddressType"/>

<xsd:element name="ApplicableTerritoryAddress" type="AddressType"/>

<xsd:element name="ApplicableAddress" type="AddressType"/>

110

<xsd:element name="Address" type="AddressType"/>

Hence, the XPath expression for “Address” ABIE is as follows:

#Address.Details --> //(Address | ApplicableAddress | ApplicableTerritoryAddress |

DeliveryAddress | DespatchAddress | JurisdictionRegionAddress | OriginAddress |

PostalAddress | RegistrationAddress)

This XPath expression states that “Address.Details” ontology class corresponds to Address,

ApplicableAddress, ApplicableTerritoryAddress, DeliveryAddress, DespatchAddress, Juris-

dictionRegionAddress, OriginAddress, PostalAddress andRegistrationAddress XML elements

in a UBL XML document. The “//” in the beginning of the XPath expression states that the

element can be at any depth in the XML document. The XPath expressions given below for

the BBIEs and ASBIEs in the “Address.Details” ABIE are generated by concatenating the

corresponding XML elements names to the above XPath expression.

#Address.Identifier --> //(Address | ApplicableAddress | ApplicableTerritoryAddress |

DeliveryAddress | DespatchAddress |JurisdictionRegionAddress | OriginAddress |

PostalAddress | RegistrationAddress)/ID

...

#Address.LocationCoordinate --> //(Address | ApplicableAddress |

ApplicableTerritoryAddress | DeliveryAddress | DespatchAddress |

JurisdictionRegionAddress | OriginAddress | PostalAddress |

RegistrationAddress)/LocationCoordinate

...

#LocationCoordinate.Details --> //LocationCoordinate (LocationCoordinateType)

#LocationCoordinate.CoordinateSystemCode.Code --> //LocationCoordinate/CoordinateSystemCode

#LocationCoordinate.Latitude_Degrees.Measure --> //LocationCoordinate/LatitudeDegreesMeasure

#LocationCoordinate.Latitude_Minutes.Measure --> //LocationCoordinate/LatitudeMinutesMeasure

#LocationCoordinate.LatitudeDirectionCode.Code --> //LocationCoordinate/LatitudeDirectionCode

#LocationCoordinate.Longitude_Degrees.Measure --> //LocationCoordinate/LongitudeDegreesMeasure

#LocationCoordinate.Longitude_Minutes.Measure --> //LocationCoordinate/LongitudeMinutesMeasure

#LocationCoordinate.LongitudeDirectionCode.Code --> //LocationCoordinate/LongitudeDirectionCode

In the above example, XPath expressions for “AddressLine”,“Country” and “LocationCoor-

dinate” ABIEs are also provided for the sake of completeness.

111

5.1.2 OBTAINING XPath EXPRESSIONS FOR GS1 “NAMEANDADDRESS” ABIE

AND FOR ITS BBIES

The ABIEs are represented in GS1 XML’s XSD schemas through “xsd:complexType” decla-

rations. Furthermore, in GS1 XML, the “xsd:complexType” name of an ABIE can be identi-

fied by concatenating “Type” keyword to the ABIE name. Therefore, the complex type name

of “NameAndAddress” is “NameAndAddressType”. The next step is to find the declaration

of this type. In GS1 XML, for all ABIEs there is either a separate XSD file (which can be

identified by concatenating “.xsd” extension to the ABIE’s name, e.g., “NameAndAddress”

has “NameAndAddress.xsd”) or the ABIE’s “xsd:complexType” declaration is in the parent

ABIEs XSD file (e.g. “GeographicalCoordinates” ABIE’s declaration is in “NameAndAd-

dress.xsd”). Therefore, the complex type “NameAndAddressType” is declared in “NameAn-

dAddress.xsd” file, as follows:

<xsd:complexType name="NameAndAddressType">

<xsd:sequence>

<xsd:element name="city">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:maxLength value="35"/>

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

..

<xsd:element name="geographicalCoordinates"

type="eanucc:GeographicalCoordinatesType" minOccurs="0">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

As mentioned previously, the XPath language itself refers to XML elements, not to XSD com-

plex types. Therefore, when generating the XPath expression for the “NameAndAddress”

ABIE, the XML elements that refer to the “NameAndAddressType” should be identified. In

GS1 XSDs, one of the XML elements that refer to “NameAndAddressType” is “shipToNon-

Commercial” as follows:

<xsd:element name="shipToNonCommercial" type="eanucc:NameAndAddressType">

</xsd:element>

112

The XPath expression for “NameAndAddress” ABIE is as follows:

#NameAndAddress.Details --> //shipToNonCommercial

Furthermore, the XPath expressions for the BBIEs in “NameAndAddress” can be obtained

by concatenating the corresponding element name to the above XPath expression. The XPath

expressions for the BBIEs of “NameAndAddress” are as follows:

#city --> //shipToNonCommercial/city

#cityCode --> //shipToNonCommercial/cityCode

#countryCode --> //shipToNonCommercial/countryCode/countryISOCode

#countyCode --> //shipToNonCommercial/countyCode

#crossStreet --> //shipToNonCommercial/crossStreet

#currency --> //shipToNonCommercial/currency

#languageOfTheParty --> //shipToNonCommercial/languageOfTheParty

#name --> //shipToNonCommercial/name

#pOBoxNumber --> //shipToNonCommercial/pOBoxNumber

#postalCode --> //shipToNonCommercial/postalCode

#provinceCode --> //shipToNonCommercial/provinceCode

#state --> //shipToNonCommercial/state

#streetAddressOne --> //shipToNonCommercial/streetAddressOne

#streetAddressTwo --> //shipToNonCommercial/streetAddressTwo

#geographicalCoordinates --> //shipToNonCommercial/geographicalCoordinates

#GeographicalCoordinates.Details --> //geographicalCoordinates

#latitude --> //geographicalCoordinates/latitude

#longitude --> //geographicalCoordinates/longitude

For the sake of completeness, the XPath expressions of “GeographicalCoordinates” are also

provided.

5.1.3 CONSTRUCTING THE XSLT DEFINITIONS

In constructing the XSLT definitions, the generated XPath expressions for the ontology classes

and the semantic equivalences discovered are used.

As an example, Figure 3.7 gives the semantic equivalences among the BBIEs shown below:

#Address.Identifier --> #name, #countryCode

#Address.Postal_Zone.Text --> #postalCode

#Address.StreetName.Name --> #crossStreet

113

#Address.CityName.Name --> #city

#Address.CitySubdivisionName.Name --> #countyCode

#Address.CountrySubentityCode.Code --> #provinceCode, #state

#Address.BlockName.Name --> #streetAddressOne, #streetAddressTwo

#Address.BuildingName.Name--> #streetAddressOne,#streetAddressTwo

#Address.PlotIdentification.Text --> #streetAddressOne, #streetAddressTwo

#Address.Region.Text --> #streetAddressOne, #streetAddressTwo

The XSLT Definition given below is constructed using the equivalences given above and the

generated XPath expressions to convert an UBL “Address” ABIE instance to GS1 “NameAn-

dAddress” instance.

<xsl:stylesheet>

<xsl:output method="xml" encoding="utf-8" indent="yes" omit-xml-declaration="yes"/>

<xsl:template match="/">

<xsl:for-each select="//cac:Address|//cac:ApplicableAddress|

//cac:ApplicableTerritoryAddress|//cac:DeliveryAddress|//cac:DespatchAddress|

//cac:JurisdictionRegionAddress|//cac:OriginAddress|//cac:PostalAddress|

//cac:RegistrationAddress">

<xsl:call-template name="nameAndAddress"/>

</xsl:for-each>

</xsl:template>

<xsl:template name="nameAndAddress">

<xsl:element name="eanucc:shipToNonCommercial">

<xsl:element name="city">

<xsl:value-of select="cbc:CityName"/> </xsl:element>

<xsl:element name="countryCode">

<xsl:element name="countryISOCode">

<xsl:value-of select="cbc:ID"/> </xsl:element>

</xsl:element>

<xsl:element name="countyCode">

<xsl:value-of select="cbc:CitySubdivisionName"/> </xsl:element>

<xsl:element name="crossStreet">

<xsl:value-of select="cbc:StreetName"/> </xsl:element>

<xsl:element name="name">

<xsl:value-of select="cbc:ID"/> </xsl:element>

<xsl:element name="postalCode">

<xsl:value-of select="cbc:PostalZone"/> </xsl:element>

<xsl:element name="provinceCode">

<xsl:value-of select="cbc:CountrySubentityCode"/> </xsl:element>

<xsl:element name="state">

<xsl:value-of select="cbc:CountrySubentityCode"/> </xsl:element>

<xsl:element name="streetAddressOne">

<xsl:value-of select="cbc:BlockName|cbc:BuildingName|cbc:PlotIdentification|cbc:Region"/>

</xsl:element>

114

<xsl:element name="streetAddressTwo">

<xsl:value-of select="cbc:BlockName|cbc:BuildingName|cbc:PlotIdentification|cbc:Region"/>

</xsl:element> </xsl:element> </xsl:template>

</xsl:stylesheet>

Assume that the user has the UBL “Address” instance as follows:

<cac:Address>

<cbc:ID>UBL1</cbc:ID>

<cbc:AddressTypeCode>UBLAddressTypeCode</cbc:AddressTypeCode>

<cbc:AddressFormatCode>UBLAddressFormatCode</cbc:AddressFormatCode>

<cbc:Postbox>UBLPostbox</cbc:Postbox>

<cbc:Floor>UBL2</cbc:Floor>

<cbc:Room>UBL3</cbc:Room>

<cbc:StreetName>UBLStreetName</cbc:StreetName>

<cbc:AdditionalStreetName>UBLAdditionalStreetName</cbc:AdditionalStreetName>

<cbc:BlockName>UBLBlockName</cbc:BlockName>

<cbc:BuildingName>UBLBuildingName</cbc:BuildingName>

<cbc:BuildingNumber>UBL4</cbc:BuildingNumber>

<cbc:InhouseMail>UBLInhouseMail</cbc:InhouseMail>

<cbc:Department>UBLDepartment</cbc:Department>

<cbc:MarkAttention>UBLMarkAttention</cbc:MarkAttention>

<cbc:MarkCare>UBLMarkCare</cbc:MarkCare>

<cbc:PlotIdentification>UBLPlotIdentification</cbc:PlotIdentification>

<cbc:CitySubdivisionName>UBLCitySubdivisionName</cbc:CitySubdivisionName>

<cbc:CityName>UBLCityName</cbc:CityName>

<cbc:PostalZone>UBLPostalZone</cbc:PostalZone>

<cbc:CountrySubentity>UBLCountrySubentity</cbc:CountrySubentity>

<cbc:CountrySubentityCode>UBLCountrySubentityCode</cbc:CountrySubentityCode>

<cbc:Region>UBLRegion</cbc:Region>

<cbc:District>UBLDistrict</cbc:District>

<cbc:TimezoneOffset>UBLTimezoneOffset</cbc:TimezoneOffset>

<cac:AddressLine>

<cbc:Line>UBLLine</cbc:Line>

</cac:AddressLine>

<cac:Country>

<cbc:IdentificationCode>UBLIdentificationCode</cbc:IdentificationCode>

<cbc:Name>UBLName</cbc:Name>

</cac:Country>

<cac:LocationCoordinate>

<cbc:CoordinateSystemCode>UBLCoordinateSystemCode</cbc:CoordinateSystemCode>

<cbc:LatitudeDegreesMeasure unitCode="04">UBL0.0</cbc:LatitudeDegreesMeasure>

<cbc:LatitudeMinutesMeasure unitCode="04">UBL0.0</cbc:LatitudeMinutesMeasure>

<cbc:LatitudeDirectionCode>UBLLatitudeDirectionCode</cbc:LatitudeDirectionCode>

<cbc:LongitudeDegreesMeasure unitCode="04">UBL0.0</cbc:LongitudeDegreesMeasure>

<cbc:LongitudeMinutesMeasure unitCode="04">UBL0.0</cbc:LongitudeMinutesMeasure>

115

<cbc:LongitudeDirectionCode>UBLLongitudeDirectionCode</cbc:LongitudeDirectionCode>

</cac:LocationCoordinate>

</cac:Address>

After applying the XSLT definitions to the example UBL “Address” Instance given above, the

GS1 “NameAndAddress” instance in the following fragment isobtained.

<eanucc:shipToNonCommercial>

<city>UBLCityName</city>

<countryCode> <countryISOCode>1</countryISOCode>

</countryCode>

<countyCode>UBLCitySubdivisionName</countyCode>

<crossStreet>UBLStreetName</crossStreet>

<name>1</name>

<postalCode>UBLPostalZone</postalCode>

<provinceCode>UBLCountrySubentityCode</provinceCode>

<state>UBLCountrySubentityCode</state>

<streetAddressOne>UBLBlockName UBLBuildingName UBLPlotIdentification UBLRegion</streetAddressOne>

<streetAddressTwo>UBLBlockName UBLBuildingName UBLPlotIdentification UBLRegion</streetAddressTwo>

</eanucc:shipToNonCommercial>

<extension>

<cbc:AddressTypeCode>UBLAddressTypeCode</cbc:AddressTypeCode>

<cbc:AddressFormatCode>UBLAddressFormatCode</cbc:AddressFormatCode>

<cbc:Postbox>UBLPostbox</cbc:Postbox>

<cbc:Floor>UBL2</cbc:Floor>

<cbc:Room>UBL3</cbc:Room>

<cbc:AdditionalStreetName>UBLAdditionalStreetName</cbc:AdditionalStreetName>

<cbc:BuildingNumber>UBL4</cbc:BuildingNumber>

<cbc:InhouseMail>UBLInhouseMail</cbc:InhouseMail>

<cbc:Department>UBLDepartment</cbc:Department>

<cbc:MarkAttention>UBLMarkAttention</cbc:MarkAttention>

<cbc:MarkCare>UBLMarkCare</cbc:MarkCare>

<cbc:CountrySubentity>UBLCountrySubentity</cbc:CountrySubentity>

<cbc:District>UBLDistrict</cbc:District>

<cbc:TimezoneOffset>UBLTimezoneOffset</cbc:TimezoneOffset>

<cac:AddressLine> <cbc:Line>UBLLine</cbc:Line> </cac:AddressLine>

<cac:Country>

<cbc:IdentificationCode>UBLIdentificationCode</cbc:IdentificationCode>

<cbc:Name>UBLName</cbc:Name> </cac:Country>

<cac:LocationCoordinate>

<cbc:CoordinateSystemCode>UBLCoordinateSystemCode</cbc:CoordinateSystemCode>

<cbc:LatitudeDegreesMeasure unitCode="04">UBL0.0</cbc:LatitudeDegreesMeasure>

<cbc:LatitudeMinutesMeasure unitCode="04">UBL0.0</cbc:LatitudeMinutesMeasure>

<cbc:LatitudeDirectionCode>UBLLatitudeDirectionCode</cbc:LatitudeDirectionCode>

<cbc:LongitudeDegreesMeasure unitCode="04">UBL0.0</cbc:LongitudeDegreesMeasure>

116

<cbc:LongitudeMinutesMeasure unitCode="04">UBL0.0</cbc:LongitudeMinutesMeasure>

<cbc:LongitudeDirectionCode>UBLLongitudeDirectionCode</cbc:LongitudeDirectionCode>

</cac:LocationCoordinate>

</extension>

It should be noted that the unmapped elements are inserted tothe extension part of the docu-

ment.

5.2 DOCUMENT COMPONENT DISCOVERY SUPPORT

Document component discovery is very important for the following reasons:

• When creating a new document type say a “Planning Document inUBL”, it is necessary

to find the already existing document components in UBL to be reused. For the docu-

ment artifacts that do not exist in UBL, CCL must be searched to find the corresponding

components.

• Additionally, when a user wants to transform a document artifact in one standard into

another, if s/he cannot obtain a mapping from the Harmonized Ontology, s/he may wish

to query the Harmonized Ontology to discover the corresponding artifacts manually.

Currently document artifacts are mostly stored in spread sheets. Also, there is an initia-

tive, called UN/CEFACT Registry Implementation Specification, for storing/querying CCTS

articfacts. However, all of these mechanisms only support keyword-based queries. For exam-

ple, UN/CEFACT Registry Implementation Specification allows the users to query Aggregate

Business Information Entities (ABIE) according to ABIE’s name, definition, business term,

propery term, object class term and the context values, where the ABIE used. Keyword-based

queries fail short in the following respects:

• The users usually may not guess the exact keyword for querying.

• It is not possible to query BIEs/CCs based on the components they contain although

this type of information is very useful. For intance, a user cannot issue a query to return

the ABIEs which contain a “BBIE A”, a “BBIE B” and an “ASBIE C”.

117

• Keyword-based queries cannot make use of the class hierarchy. For example, assume

that the user is looking for a Business Information Entity (BIE) which is related with

USA geopolitical context. If the BIE is related with “North America” context node,

this BIE is not returned to the user.

Furthermore, the implicit semantic relationships provided by the Harmonized Ontology are

very useful for certain type of queries. For this reason, thepossible type of queries are identi-

fied and they are formulated either with SPARQL (if the query does not necessitate reasoning)

or in OWL.

The Harmonized Ontology can be queried for discovering the document components and the

following types of queries are identified:

• Keyword Queries: This type of queries returns the user the BIEs/CCs whose name or

description includes a given keyword.

• Type Queries: The type queries allow the users to query BIEs/CCs based on their Data

Types, to query BIEs according to their CCs or to query ASBIEs/ASCCs according to

their source/target ABIEs/ACCs.

• Structural Queries: This type of queries allows the users tosearch for CCs/BIEs ac-

cording to their structure. For example, the user can query BCCs/BBIEs in a given

ACC/ABIE, can query ACCs/ABIEs that contain a BCC/ASCC or BIE/ASBIE expres-

sion. The expression can be composed of using logical operators AND, OR or NOT.

• Context Queries: The context queries are used for discovering BIEs, which are used in

a specified context set or set expression (e.g. Return BIEs which are used in context set

S and not used in context set S’)

• Equivalence/Similarity Queries: Most of the time, the user would like to obtain CCs/BIEs

similar to a user-defined CC/BIE. In other words, the user specifies the desired content

and issues this content as a query against the Harmonized Ontology.

118

5.2.1 SPARQL QUERIES

For keyword, type and structural queries no further reasoning is needed than what is present in

the Harmonized Ontology. Therefore for these three types ofqueries it is enough to formulate

them using SPARQL for efficiency.

An example Keyword Query is as given below. This query retrieves the CCs or BIEs that

contain “address” (Case-insensitive) in their “label” or “comment” elements.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?subject

WHERE

{ ?subject rdfs:label ?label ;

rdfs:comment ?comment .

FILTER (regex(str(?label), "ˆaddress", "i") || regex(str(?comment), "ˆaddress", "i"))

}

An example Type Query is as given below. This query retrievesBIEs (from the Harmo-

nized Ontology) that have “basedOn” property whose range isrestricted to a class whose CCs

can only come from “Price.Details”. In other words, this query retrieves BIEs derived from

“Price.Details” CC.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX uo: <http://144.122.230.79/ontology/UpperOnt.owl#>

SELECT ?subject

WHERE

{ ?subject owl:equivalentClass ?temp4 .

?temp4 owl:intersectionOf ?temp3 .

?temp3 rdf:rest ?temp2 .

?temp2 rdf:rest ?temp1 .

?temp1 rdf:first ?temp .

?temp rdf:type owl:Restriction ;

owl:onProperty uo:basedOn ;

owl:allValuesFrom uo:Price.Details .

}

119

An example Structural Query is as given below. This query retrieves those ASCCs and/or

ASBIEs (from the Harmonized Ontology) that have “refersTo”property whose range is re-

stricted to a class whose ACCs and/or ABIEs can only come from “Period.Details”. In other

words, this query retrieves ASCCs and/or ASBIEs that refer to “Period.Details” ACCs and

ABIEs.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX uo: <http://144.122.230.79/ontology/UpperOnt.owl#>

SELECT ?subject

WHERE

{ ?subject owl:equivalentClass ?temp .

?temp owl:intersectionOf ?temp0 .

?temp0 rdf:rest ?temp1 .

?temp1 rdf:rest ?temp2 .

?temp2 rdf:rest ?temp3 .

?temp3 rdf:first ?temp4 .

?temp4 owl:allValuesFrom uo:Period.Details ;

owl:onProperty uo:refersTo ;

rdf:type owl:Restriction .

}

An example Context query is as given below. This query retrieves BIEs from the Harmonized

Ontology that have “usedInContext” property whose range isrestricted to a context that whose

values can only come from “Trade”. In other words, this queryretrieves BIEs that are used in

“Trade” context.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX uo: <http://144.122.230.79/ontology/UpperOnt.owl#>

SELECT ?subject

WHERE

{ ?subject owl:equivalentClass ?temp .

?temp owl:intersectionOf ?temp1 .

?temp1 rdf:rest ?temp2 .

?temp2 rdf:rest ?temp3 .

?temp3 rdf:rest ?temp4 .

?temp4 rdf:rest ?temp5 .

120

?temp5 rdf:first ?temp6 .

?temp6 owl:allValuesFrom uo:Trade ;

owl:onProperty uo:usedInContext ;

rdf:type owl:Restriction .

}

5.2.2 QUERIES THAT REQUIRE REASONING SUPPORT

Some of the Context and all of the Equivalence type of queriesrequire reasoning support and

they are formulated as new class expressions in the OWL Ontology and the result is obtained

by computing the new inferred ontology through the reasoner. In other words, the reasoner

classifies the newly introduced class and computes its relationships to all the related classes.

For example, assume the user would like to obtain the BIEs used in North America but not in

Mexico. The query is as follows:

<owl:Class rdf:ID="Query">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#BusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext" />

<owl:allValuesFrom>

<owl:Class>

<owl:complementOf>

<owl:Class rdf:about="#iso.ch.3166.1999.MX"/>

</owl:complementOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext" />

<owl:allValuesFrom>

<owl:Class rdf:about="#iso.ch.3166.1999.North.America"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

121

A DL reasoner computes the new hierarchy and relates the similar classes (BIEs) to the Query

class through subClassOf or equivalentClass constructs. The class given below is the result of

the query, as the reasoner puts the Query as the subclass of the class in the inferred hierarchy.

<owl:Class rdf:ID="AssetExpense_AccountingAccount.Details">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:ID="BusinessInformationEntity"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#usedInContext"/>

<owl:allValuesFrom>

<owl:Class rdf:about="#iso.ch.3166.1999.US"/>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

Reasoner support is needed to formulate the similarity/equivalence queries. Assume that a

user would like to obtain an Account ACC which has a Type, AmountType and Identifier.

Such a query is formulated as follows:

<owl:Class rdf:ID="Query">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateCoreComponent"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#contains"/>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AccountingAccount.Identification.Identifier"/>

<owl:Class rdf:about="#AccountingAccount.Type.Code"/>

<owl:Class rdf:about="#AccountingAccount.AmountType.Code"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

122

</owl:Class>

The reasoner puts a subclass of relation from the AccountingAccount.Details ACC, shown

below, to the Query as the result has more BCCs than the Query class.

<owl:Class rdf:ID="AccountingAccount.Details">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AggregateCoreComponent"/>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="contains"/>

</owl:onProperty>

<owl:allValuesFrom>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#AccountingAccount.Identification.Identifier"/>

<owl:Class rdf:about="#AccountingAccount.SetTrigger.Code"/>

<owl:Class rdf:about="#AccountingAccount.Type.Code"/>

<owl:Class rdf:about="#AccountingAccount.AmountType.Code"/>

</owl:intersectionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

123

CHAPTER 6

SYSTEM ARCHITECTURE AND IMPLEMENTATION

RESULTS

In this chapter, the overall system architecture, a use caseof the system and the implementa-

tion results are presented. The overall system architecture is presented in Section 6.1. In Sec-

tion 6.2, a use case to generate mappings between GS1 XML Planning documents [26] and

UBL Collaborative Planning, Forecasting and Replenishment documents [76] is described.

Finally, the implementation results and the performance ofthe system is described in Section

6.3.

6.1 SYSTEM ARCHITECTURE AND EVALUATION OF THE IMPLEMEN-

TATION

The overall system framework shown in Figure 6.1 puts together all the parts described and

demonstrates how the specified semantics can be used.

6.1.1 THE FRAMEWORK

The framework consists of a harmonized ontology developed as described in Sections 3.1,

3.2, 3.3 and 3.4 (The harmonized ontology and how to construct this harmonized ontology

is submitted as a specification to the OASIS SET TC [46]); a repository to store the XPath

expressions and the XSLT rules; a wrapper to convert the harmonized ontology to the corre-

sponding set of predicate logic facts; additional rules forexpressing the defined heuristics; a

DL reasoner and a predicate logic rule engine. Figure 6.1 shows the system components:

124

Ontology
OWL

 Ontology
through

Classify

DL Reasoner

Ontology to
Export the

PL Rule Engine

Display
to User

XSLT

Generator

Run Rule
Engine

to the Ontology
Import new factsO

nt
ol

og
ie

s

D
L

Predicate Logic
Rule Engine

Schema
Ontology

Document
Schema

Ontology

Document
Schema

Ontology

Document

Upper Ontology

DL
Reasoner

A

1a

1b
2a

2b

3 4

9

7

6

8

10

111213

14
Transform

Schema
Document

XPath
Mappings

XSLT XSLT

New Equalities/
Relations

New Equalities/
Relations

Target
XML

Instance

Source
XML

Instance

HARMONIZED ONTOLOGY

Additional Heuristics

Predicate Logic Rules
Facts

XPath
XSLT

Repository

5a

5b

XPath
Generator

XSD−OWL
Converter

The Framework

Wrapper
PL Facts

Ontology−
DB F

EC

The
Framework

Figure 6.1: The Overall Framework and the Steps of Document Instance Translation

A. Harmonized Ontology: This ontology contains two types of OWL-DL ontologies: (1)

the Upper Ontology and (2) the Document Schema Ontologies. As mentioned before,

the Upper Ontology describes the CCTS artifacts, such asBusiness Information En-

tities andCore Components, as generic classes. The Document Schema Ontologies,

on the other hand, describe the BIEs generated by the CCTS based electronic business

document standards. There is a Document Schema Ontology foreach electronic busi-

ness document standard. The Document Schema Ontologies aredefined conforming

to the generic classes defined in the Upper Ontology. The harmonized ontology is ob-

tained by running the DL-Reasoner against the Upper Ontology and Document Schema

125

Ontologies.

B. DL-Reasoner: A Description Logic (DL) Reasoner is used to identify the equivalence

and subsumption relations in the harmonized ontology. As the DL reasoner, Racer Pro

1.9.2 Beta [56] is used. The discovered similarities among the document artifacts are

then used to generate XSLT definitions for transforming between different electronic

business document standards’ XML Instances.

C. Predicate Logic Rule Engine: In some cases, the Description Logic is not sufficient to

find relations between document artifacts. Therefore, in these cases, generic heuristics

in the form of Predicate Logic Rules are used. The JESS Rule Engine [35] is used to ex-

ecute the heuristics to find additional relations among the Document Schema Ontology

classes.

D. Ontology-PL Facts Wrapper: The document artifacts are represented through OWL

classes and properties in the harmonized ontology and they are represented as facts in

the Predicate Logic Rule Engine. This wrapper converts the OWL definitions to facts

definitions, which are then asserted to the rule engine. After the rule engine executes

the rules on the facts, new facts are inferred, which represent equivalence relationship

among classes. The wrapper converts the newly obtained factdefinitions back to OWL

class equivalences to be inserted to the harmonized ontology.

E. Additional Heuristics: These heuristics are given through the Predicate Logic Rules to

identify the relations among the document artifacts, whichcannot be identified through

Description Logic.

A number of tools are developed to support this framework:

1. The XSD-OWL Converter: This component converts a CCTS based document schema

into Document Schema Ontology as described in Sections 3.2,3.3 and 3.4.

2. The XPath Generator Tool: The XPath Generator extracts the correspondences between

the XSD Schema elements in the document schemas and the OWL classes in the Docu-

ment Schema Ontologies through XPath expressions. These expressions are then used

to generate the XSLT definitions.

126

3. The XSLT Generator Tool: This component generates the XSLT definitions by us-

ing the XPath definitions and the newly computed equivalence/ subsumption relations.

These XSLT definitions are used in the transformation between two XML instances

conforming to different electronic business document standards.

4. Ontology-PL Facts Wrapper as explained above.

6.1.2 THE DOCUMENT INSTANCE TRANSLATION THROUGH THE FRAME-

WORK

This framework is used to transform a source XML document instance to a target XML docu-

ment instance. If the document schema ontologies corresponding to these document instances

are already a part of the harmonized ontology, the corresponding XSLT transformations can

directly be generated. If the source, or the target or both ofthese document schema ontologies

are not yet a part of the harmonized ontology, first they must be inserted through the following

procedure:

• First the OWL Document Schema Ontology conforming to the OWLstructure de-

scribed in Sections 3.2, 3.3 and 3.4 are created for the XSD Document Schemas (2a)

by using the XSD-OWL Converter.

• In the mean time, the XPath Generator Tool is used to keep track of the correspondences

among the XSD elements and OWL classes to generate XPath Mappings (2b).

• The OWL ontologies are inserted to the harmonized ontology (3).

• The ontologies are classified with the DL Reasoner and the harmonized ontology is

computed (5). In this step new equality/subsumption relations are computed (if there

are any) (5a).

• At the same time, the OWL definitions are converted to Predicate Logic facts by using

the Ontology-PL Facts Wrapper Tool and asserted to the Predicate Logic Rule Engine

(5b).

• The rule engine is executed and new relations are identified as facts (7).

• These facts are converted to OWL Definitions through Ontology-PL Facts Wrapper (8).

127

• The newly generated OWL Definitions are appended to the harmonized ontology and

the DL-Reasoner is executed again to compute new equality/subsumption relations (9).

The steps from 5 to 9 are executed repeatedly until the harmonized ontology reaches

a certain maturity level (i.e., no further equivalences arecomputed by the DL reasoner

and Predicate Logic Rule Engine).

• The equality/subsumption definitions and the XPath Mappings are input to XSLT Gen-

erator to produce XSLT Definitions automatically (11).

• The XSLT Definitions are displayed to the user for further editing (13).

• The XSLTs are used to transform to XML Instances conforming to different standards

(14).

6.2 USE CASE: iSURF INTEROPERABILITY SERVICE UTILITY FOR CO L-

LABORATIVE PLANNING, FORECASTING AND REPLENISHMENT

As mentioned in Section 6.3, this harmonized ontology together with the heuristic rules devel-

oped are used within the scope of the ICT-213031-iSURF [34] project to generate mappings

between GS1 XML Planning documents [26] and UBL Collaborative Planning, Forecasting

and Replenishment documents [76]. The planning documents used in the iSURF Project

are: “Event”, “Exception Criteria”, “Exception Notification”, “Forecast”, “Forecast Revi-

sion”, “Performance History”, “Product Activity”, “Retail Event”, “Trade Item Information

Request” and “Trade Item Location Profile”. As a result, 20 XSLT documents are generated

by following the approach described in this thesis. The documents are available at iSURF

Project Web site [99].

The user interface (client) of the iSURF ISU is Web based and is developed using Adobe Flex.

The entrance page is shown in Figure 6.2. In this page, the user selects the document type to

be mapped, the source standard and the target standard. In this example, assume that the user

selects the Trade Item Location Profile as the message and assume further that the user wants

to map from GS1 XML to UBL.

Having selected the document type, in the next step (Figure 6.3), the document models are

presented to the user. On the left pane, the GS1 Trade Item Location Profile and on the right

128

Figure 6.2: iSURF ISU Entrance Page

Figure 6.3: Document Content Models

129

Figure 6.4: Equalities are loaded to the middle pane

pane, the UBL Trade Item Location Profile is presented to the user. On the other hand, in the

middle pane, the discovered equalities will be presented tothe user.

When the user clicks “Load Equality List” button, the clientconnects to the iSURF ISU,

which in turn directs the ISU to run the description logic reasoner and Jess rule engine. Upon

receiving the discovered equalities from the reasoner and rule engine, the ISU sends them to

the client. The client displays the equalities to the user inthe middle pane as shown in Figure

6.4.

The user can see the elements in the equality in their corresponding document tree by right

clicking the equality and selecting “Find Equivalences” item as shown in Figure 6.5. For

example, in Figure 6.6, the GS1 XML’s “TimePeriod.Length.Duration Measure” and UBL’s

“Period.Duration.Measure” elements are shown in their document trees.

At this point the user can inspect the equalities and identify whether they are right. If a

discovered equality is false-positive, the user can deselect the checkbox right next to the

equality. Furthermore, the user can add new equalities by using the “Add New Equality”

button. Having completed the examination step, the user clicks the “Generate XPaths” button

130

Figure 6.5: Find equivalances item

Figure 6.6: Discovered Equivalences in the corresponding document trees

131

Figure 6.7: Identitfied XPaths

to proceed with the next step, where the XPaths of the elements in the discovered equalities

are presented to the user as shown in Figure 6.7.

After that the user clicks the “Generate XSLT” button to generate the XSLT definition (Figure

6.8) to be used to map an instance GS1 Trade Item Location instance to UBL Trade Item

Location Instance. It should be noted that the user may further edit the XSLT with any XSLT

Editor. In Appendix A.1 the generated XSLT document is presented. Furthermore, in Ap-

pendix A.2 the XSLT document for reverse translation is provided.

6.3 THE IMPLEMENTATION AND PERFORMANCE OF THE SYSTEM

The current version of the harmonized ontology, available from [90], contains the ontological

representations of:

• All of the CCs and BIEs in UN/CCL 07B.

• All of the BIEs in the common library of UBL 2.0.

132

Figure 6.8: Generated XSLT

• All of the OAGIS 9.1 Common Components and Fields.

• All of the elements in the common library of GS1 XML.

There are about 3400 Named OWL Classes and 11000 RestrictionDefinitions in the harmo-

nized ontology.

This harmonized ontology together with the heuristic rulesdeveloped are used within the

scope of the ICT-213031-iSURF [34] project to generate mappings between GS1 XML Plan-

ning documents [26] and UBL Collaborative Planning, Forecasting and Replenishment docu-

ments [76].

The planning documents used in the iSURF Project are: “Event”, “Exception Criteria”, “Ex-

ception Notification”, “Forecast”, “Forecast Revision”, “Performance History”, “Product Ac-

tivity”, “Retail Event”, “Trade Item Information Request”and “Trade Item Location Profile”.

The success rate in discovering the document components with similar information content is

88.10% for aggregate document components (ABIEs) and 89.33% for basic document com-

ponents (BBIEs). The rate of false positives is about 10%.

133

Related with performance, an issue that needs to be addressed is whether the gain in automa-

tion justifies the resources needed to develop the ontological representation of the document

schemas. In order to reduce this cost, as already described,automated tool support is pro-

vided to create OWL definitions of the document schemas. Additionally, by conforming to a

standard ontological representation and hence having all the document schema ontologies in

a common pool, the users of the harmonized ontology only needto create a document schema

ontology if it is not already in the harmonized ontology and benefit from all the existing

connections when they do so.

Another issue related with performance is the computational complexity of the reasoning

process involved. On a PC with 2GB RAM, the Racer Pro 1.9.2 Beta reasoner [56], it takes

about 120 seconds to compute the harmonized ontology. The harmonized ontology will be

re-computed in limited cases:

• When the predicate rule engine is run to generate more equivalent classes, or,

• When a new document schema is introduced to the system, or,

• When a new CCTS based upper document ontology is introduced to the system

Therefore this performance is considered satisfactory.

134

CHAPTER 7

CONCLUSIONS AND THE FUTURE WORK

Today, an enterprise’s competitiveness is, to a large extent, determined by its ability to seam-

lessly interoperate with others, and the electronic document standards play an important role

in this. However, given the large number of electronic business document standards, con-

formance to one of these standards or implementing a few of them will not solve the inter-

operability problem; there will always be some companies using a different, incompatible

document standard. Therefore, there is a need for semantic tools to support electronic docu-

ment interoperability.

Semantics is domain specific knowledge and the success of thedeveloped tools heavily de-

pends on the amount of domain knowledge available. In this respect, UN/CEFACT CCTS

has achieved an important milestone and provided the semantics of the electronic business

documents.

In this thesis, this semantics is explicated and show how to use it for semi-automated transla-

tion of document schema instances from different standards. Both the success rate in discov-

ering the similarities of document artifacts and the performance of the system are promising

for industry take-up.

A possible obstacle to industry take-up of the described mechanisms may stem from the differ-

ent representations of the same meaning. For example, what one representation may choose

as a subclass, may be represented as an object property in another representation. When this

happens, harmonizing different ontological representations will become a challenge. There-

fore, we have initiated a standardization effort for the representation of CCTS semantics and

have formed the OASIS “Semantic Support for Electronic Business Document Interoperabil-

ity (SET)” Technical Committee [45]. In this way, that is, having a common semantic descrip-

135

tion of the CCTS based document standards, it will be possible to collect all descriptions in a

common pool and when the semantics of a new document schema isintroduced to the pool, it

will benefit from the already existing connections in the harmonized ontology. We anticipate

that this initiative will increase the industry take-up of the work. Although the framework

is tested in collaborative planning domain, it is generic and it can be applied to all domains

having CCTS based document standards. The current status ofthe heuristics has achieved

a promising success rate. Once a further insight is gained toa large number of document

schemas, additional heuristics may be developed as a futurework.

136

REFERENCES

[1] Automotive Aftermarket Industry Association. http://www.aftermarket.org/Home.asp
(2009).

[2] Automotive Industry Action Group. http://www.aiag.org/ (2009).

[3] N. Anicic, N. Ivezic, “Semantic Web Technologies for Enterprise Application Integra-
tion”, ComSIS, Computer Science and Information Systems, International Journal, Volume
02 , Issue 01, June 2005 (2005).

[4] UN/CEFACT Applied Technology Group (ATG) XML Syntax, XML Naming
and Design Rules, http://www.uncefactforum.org/ATG/Documents/ATG/Downloads/-
XMLNamingAndDesignRulesV2.0.pdf (2009).

[5] Franz Baader, Ian Horrocks, Ulrike Sattler, “Chapter 3:Desription Logics”,
http://www.cs.man.ac.uk/ horrocks/Publications/download/2007/BaHS07a.pdf (2009).

[6] Brown and Reynolds, Strategy for production and maintenance of standards for interop-
erability within and between service departments and otherhealthcare domains, CEN/TC
251 Health Informatics, CEN/TC 251/N00-047.

[7] CBL. Common Business Library, http://xml.coverpages.org/cbl.html (2009).

[8] Chemical Industry Data Exchange, http://www.cidx.org/ (2009).

[9] Collaborative Planning, Forecasting and Replenishment (CPFR c©) Guidelines ,
http://www.vics.org/ (2009).

[10] CLR TC, The OASIS Code List Representation Technical Committee, http://www.oasis-
open.org/committees/codelist (2009).

[11] Crawford, M. Crawford, Core Components Adoption On TheRise,
https://www.sdn.sap.com/irj /sdn/weblogs?blog=/pub/wlg/5395.

[12] cXML, Commerce XML, http://cxml.org/ (2009).

[13] EAN, European Article Number, http://en.wikipedia.org/wiki /EuropeanArticle Number/
(2009).

[14] EANCOM, European Article Number Communication,
http://www.gs1.org/productssolutions/ecom/eancom/ (2009).

[15] ebBP, ebXML Business Process, http://docs.oasis-open.org/ebxml-bp/2.0.4/OS/ (2009).

[16] EDI, Electronic Data Interchange, http://en.wikipedia.org/wiki /Electronic Data-
Interchange (2009).

137

[17] EDIINT-AS1, T. Harding, R. Drummond, C. Shih, MIME-based Secure Peer-
to-Peer Business Data Interchange over the Internet, RFC 3335, Sept 2002,
http://www.ietf.org/rfc/rfc3335.txt (2009).

[18] EDIINT-AS2, D. Moberg, R. Drummond, MIME-Based SecurePeer-to-Peer Business
Data Interchange Using HTTP, Applicability Statement 2 (AS2), RFC 4130, July 2005,
http://www.ietf.org/rfc/rfc4130.txt (2009).

[19] EFT, Electronic Funds Transfer, http://en.wikipedia.org/wiki /Electronic funds transfer
(2009).

[20] EPCglobal, Electronic Product Code Global, http://www.gs1.org/productssolutions/-
epcglobal/ (2009).

[21] FaCT++ Resoner, http://owl.man.ac.uk/factplusplus/ (2009).

[22] GDSN, GS1 Global Data Synchronisation Network,
http://www.gs1.org/productssolutions/gdsn/ (2009).

[23] GS1, Global Standard One, http://www.gs1.org/ (2009).

[24] Global Standard One, Global Data Dictionary, http://gdd.gs1.org/ (2009).

[25] Global Standard One XML, http://www.gs1.org/productssolutions/ecom/xml/ (2009).

[26] GS1 XML Plan Documents, http://www.gs1.org/services/gsmp/kc/ecom/xml/-
plan grid.html (2009).

[27] HL7, Health Level 7, http://www.hl7.org/ (2009).

[28] IATA, International Air Transport Association, http://www.iata.org/index.htm (2009).

[29] ICH, ANSI ASC X12 ISA Interchange Control Header Segment,
http://www.rawlinsecconsulting.com/x12tutorial/x12syn.html (2009).

[30] ICHS, UN/EDIFACT UNB Interchange Header Segment,
http://www.unece.org/trade/edifact/untdid/d422 s.htm (2009).

[31] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary:
A Compilation of IEEE Standard Computer Glossaries, New York (1990).

[32] ISO Codes, International Standards Organization Codes,
http://www.unece.org/cefact/codesfortrade/codesindex.htm (2009).

[33] ISO/IEC 11179-5: Naming and identification principles,
http://standards.iso.org/ittf /PubliclyAvailableStandards/c035347ISO IEC 11179-
5 2005(E).zip (2009).

[34] IST-213031 iSURF, An Interoperability Service Utility for Collaborative Sup-
ply Chain Planning across Multiple Domains Supported by RFID Devices,
http://www.srdc.com.tr/isurf/ (2009).

[35] Jess: Java Rule Engine, http://herzberg.ca.sandia.gov/ (2009).

[36] Kabak Y., Dogac A. “A Survey and Analysis of Electronic Business Document Stan-
dards”. Accepted for publication in ACM Computing Surveys (2008).

138

[37] KAON2 Resoner, http://kaon2.semanticweb.org/ (2009).

[38] Knowledge Interchange Format (KIF), http://logic.stanford.edu/kif /kif.html (2009).

[39] Thorsten Liebig, “Reasoning with OWL - System Support and Insights”, Technical Re-
port, September 2006.

[40] B. Medjahed, B. Benatallah, A. Bouguettaya, A.H.H. Ngu, A.K. Elmagarmid, Business-
to-Business Interactions: Issues and Enabling Technologies, The International Journal on
Very Large Data Bases, Vol. 12, No. 1, May 2003.

[41] MIT-AutoID, Auto-ID Labs at MIT, http://autoid.mit.edu/cs/ (2009).

[42] MoU, Memorandum of Understanding on electronic business between IEC, ISO, ITU,
and UN/ECE, http://www.itu.int/ITU-T/e-business/files/mou.pdf (2009).

[43] NES, UBL Northern European Subset, http://www.nesubl.eu/ (2009).

[44] OAGi, Open Applications Group, http://www.openapplications.org/ (2009).

[45] OASIS Semantic Support for Electronic Business Document Interoperability (SET) TC,
http://www.oasis-open.org/committees/tc home.php?wgabbrev=set (2009).

[46] OASIS SET TC Specification, Semantic Representations of the UN/CEFACT
CCTS-based Electronic Business Document Artifacts, http://www.oasis-
open.org/committees/download.php/29436/20080924SemanticRepresentationOfDo-
cumentArtifacts.doc (2008).

[47] Ontolingua, http://ksl.stanford.edu/software/ontolingua/ (2009).

[48] Open Applications Group Integration Specification 9.0,
http://www.openapplications.org/downloads/oagis/loadfrm9.htm (2009).

[49] Open Applications Group (OAGi) at 10 Years: A Look Back and Forward,
http://webservices.sys-con.com/read/47282.htm (2009).

[50] Organisation for Data Exchange by Tele Transmission inEurope,
http://www.odette.org/html/home.htm (2009).

[51] Offentlig Information Online UBL, http://www.oio.dk/dataudveksling/ehandel/-
hoeringer/oioubl (2009).

[52] Oracle Corporation, http://www.oracle.com/products/middleware/docs/oracle -
ebsand soa.pdf (2009). http://www.oracle.com/technology/products/applications/-
integration/1147 EBS and SOA.ppt (2009).

[53] OTA, OpenTravel Alliance, http://www.opentravel.org/ (2009).

[54] Web Ontology Language, http://www.w3.org/2004/OWL/ (2009).

[55] Pellet Reasoner, http://clarkparsia.com/pellet/ (2009).

[56] RacerPro: DL Reasoner, http://www.racer-systems.com/ (2009).

[57] PIDX, Petroleum Industry Data Exchange, http://www.pidx.org/ (2009).

139

[58] E. Rahm, P. A. Bernstein “A survey of approaches to automatic schema matching”, The
VLDB Journal, Vol. 10, 2001, pp. 334-350 (2001).

[59] Resource Description Framework (RDF), http://www.w3.org/TR/rdf-concepts/ (2009).

[60] RDF Schema (RDFS), http://www.w3.org/TR/rdf-schema/ (2009).

[61] RosettaNet. http://www.rosettanet.org/ (2009).

[62] M. Rowell, The Open Applications Group Integration Specification,
http://www.ibm.com/developerworks/xml/library/x-oagis/ (2009).

[63] SAP, SAP - Systemanalyse und Programmentwicklung, http://www.sap.com/index.epx
(2009).

[64] Schematron, http://www.ldodds.com/papers/schematronxsltuk.html (2009).

[65] SITC, http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=14 (2009).

[66] SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query/ (2009).

[67] SPARQL-DL Implementation Experience, http://tw.rpi.edu/wiki /index.php/Special:-
Browse/SPARQL-DL ImplementationExperience (2009).

[68] Standards for Technology in Automotive Retail, http://www.starstandard.org/ (2009).

[69] Giorgos Stoilos, Giorgos Stamou and Stefanos Kollias,“A String Metric for Ontology
Alignment”, Lecture Notes in Computer Science, Volume 3729/2005.

[70] Stuhec, Gunther Stuhec, How to Solve the Business Stan-
dards Dilemma - The CCTS based Core Data Types,
https://www.sdn.sap.com/irj /sdn/go/portal/prtroot/docs/library/uuid/500db5c9-0e01-
0010-81aa-d73cdd30df9a,

[71] Stuhec2, Gunther Stuhec, How to Solve the Business Stan-
dards Dilemma: The Context Driven Business Exchange,
https://www.sdn.sap.com/irj /servlet/prt/portal/prtroot/docs/library/uuid/a6c5dce6-0701-
0010-45b9-f6ca8c0c6474,

[72] Swedish Invoice, http://www.svefaktura.se/SFTI Basic Invoice20051130EN/-
SFTI%20Basic%20Invoice1.0/index.html (2009).

[73] SWRL: A Semantic Web Rule Language, http://www.w3.org/Submission/SWRL/
(2009).

[74] SWIFT, Society for Worldwide Interbank Financial Telecommunication,
http://www.swift.com/ (2009).

[75] Universal Business Language, http://www.oasis-open.org/committees/ubl/ (2009).

[76] UBL CPFR Documents, http://www.oasis-open.org/committees/download.php/28979/-
UBLforCPFR.zip (2008).

[77] UBL NDR, Universal Business Language Naming and DesignRules, http://docs.oasis-
open.org/ubl/os-UBL-2.0/doc/ndr/NDR-checklist.pdf (2009).

140

[78] UBL-SBS, Universal Business Language Small Business Subcommittee,
http://www.oasis-open.org/committees/sc home.php?wgabbrev=ubl-sbsc (2009).

[79] UBLSchemas, Universal Business Language 2.0 Schemas,http://docs.oasis-
open.org/ubl/os-UBL-2.0/ (2009).

[80] UBP, Universal Business Process, http://docs.oasis-open.org/ubl/cs-UBL-1.0-SBS-
1.0/universal-business-process-1.0-ebBP/ (2009).

[81] UCC, Uniform Code Council, http://www.uc-council.org/ (2009).

[82] UN/CCL, United Nations Core Component Library,
http://www.unece.org/cefact/codesfortrade/unccl/CCL07A.xls (2009).

[83] UN/CEFACT Core Components Technical Specification,
http://www.unece.org/cefact/ebxml/CCTS V2-01 Final.pdf (2009).

[84] UN/CEFACT Registry Implementation Specification,
http://www.unece.org/cefact/documents/reg specificvor6.zip (2009).

[85] UN/EDIFACT, United Nations Directories for Electronic Data Interchange for Ad-
ministration, Commerce and Transport, http://www.unece.org/trade/untdid/welcome.htm
(2009).

[86] UN/EDIFACT 1131, UN/EDIFACT 1131 Data Element, Code list identification code,
http://www.unece.org/trade/untdid/d00a/tred/tred1131.htm (2009).

[87] UN/EDIFACT 3055, UN/EDIFACT 3055 Data Element, Code list responsible agency
code, http://www.unece.org/trade/untdid/d00a/tred/tred3055.htm (2009).

[88] UN/SBDH, UN/CEFACT Standard Business Document Header Technical Specification,
http://www.gs1.org/docs/gsmp/xml/sbdh/CEFACT SBDH TS version1.3.pdf (2009).

[89] UNSPSC, Product Classification, http://www.unspsc.org/ (2009).

[90] Harmonized Ontology, http://www.srdc.metu.edu.tr/iSURF/OASIS-SET-
TC/ontology/HarmonizedOntology.owl (2009).

[91] US/DOT, US Department of Transportation UBL Implementation, http://www.oasis-
open.org/committees/ubl/faq.php (2009).

[92] Ken Vollmer, B2B Integration Trends, Forrester,
http://www.forrester.com/Research/Document/Excerpt/0,7211,42735,00.html (2009)

[93] E. Wustner, T. Hotzel, P. Buxmann, Converting BusinessDocuments: A Classification
of Problems and Solutions using XML/XSLT, Proc. of the 4th IEEE Intl Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems (WECWIS), 2002.

[94] X12, EDI ANSI X12, http://www.x12.org/ (2009).

[95] xCBL, XML Common Business Library, http://www.xcbl.org/ (2009).

[96] XML, Extensible Markup Language, http://www.w3.org/XML / (2009).

[97] Extensible Stylesheet Language, http://www.w3.org/Style/XSL/ (2009).

141

[98] XSL Transformations (XSLT), http://www.w3.org/TR/xslt (2009).

[99] Generated Mappings, http://www.srdc.com.tr/isurf/documents/Mappings.rar (2009).

[100] Y. Yarimagan, A. Dogac “Semantics Based Customization of UBL Document
Schemas”, Journal of Distributed and Parallel Databases, Springer-Verlag, Volume 22,
Numbers 2-3/ December 2007, pp. 107-131 (2007).

[101] Y. Yarimagan, A. Dogac “A Semantic based Solution for the Interoperability of UBL
Schemas”. IEEE Internet Computing, to appear (2008).

[102] Y. Ye, D. Yang, Z. Jiang, L. Tong “Ontology-based semantic models for supply chain
management”, The International Journal of Advanced Manufacturing Technology, Pub-
lished online, Springer London, May 2007 (2007).

142

APPENDIX A

GENERATED XSLT DOCUMENTS

A.1 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LOCATION

PROFILE INSTANCES FROM GS1 XML TO UBL

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet>

<xsl:namespace-alias stylesheet-prefix="n" result-prefix="#default"/>

<xsl:output method="xml" encoding="UTF-8" indent="yes"/>

<xsl:template match="/n2:documentCommand">

<n:TradeItemLocationProfile>

<xsl:attribute name="xsi:schemaLocation">

<xsl:value-of select="’urn:oasis:names:specification:ubl:schema:xsd:TradeItemLocationProfile-2

UBL-TradeItemLocationProfile-2.1.xsd’"/>

</xsl:attribute>

<xsl:variable name="Vvar2_const" select="’’"/>

<cbc:ID>

<xsl:value-of select="string($Vvar2_const)"/>

</cbc:ID>

<xsl:for-each select="documentCommandOperand">

<xsl:for-each select="plan:tradeItemLocationProfile">

<xsl:for-each select="@documentStatus">

<xsl:variable name="Vvar150_documentStatus_string" select="string(.)"/>

<cbc:DocumentStateCode>

<xsl:value-of select="string($Vvar150_documentStatus_string)"/>

</cbc:DocumentStateCode>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="documentCommandOperand">

<xsl:for-each select="plan:tradeItemLocationProfile">

<xsl:for-each select="@creationDateTime">

<xsl:variable name="Vvar159_creationDateTime_dateTime" select="string(.)"/>

<cbc:IssueDate>

<xsl:value-of select="string(substring-before(

143

string($Vvar159_creationDateTime_dateTime), ’T’))"/>

</cbc:IssueDate>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="documentCommandOperand">

<xsl:for-each select="plan:tradeItemLocationProfile">

<xsl:for-each select="@creationDateTime">

<xsl:variable name="Vvar170_creationDateTime_dateTime" select="string(.)"/>

<cbc:IssueTime>

<xsl:value-of select="string(substring-after(

string($Vvar170_creationDateTime_dateTime), ’T’))"/>

</cbc:IssueTime>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="documentCommandOperand">

<xsl:for-each select="plan:tradeItemLocationProfile">

<xsl:for-each select="profileStatus">

<xsl:variable name="Vvar181_profileStatus_string" select="string(.)"/>

<cbc:ProfileStatusCode>

<xsl:value-of select="string($Vvar181_profileStatus_string)"/>

</cbc:ProfileStatusCode>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="documentCommandOperand">

<xsl:for-each select="plan:tradeItemLocationProfile">

<xsl:for-each select="period">

<cac:Period>

<xsl:for-each select="@beginDate">

<xsl:variable name="Vvar194_beginDate_date" select="string(.)"/>

<cbc:StartDate>

<xsl:value-of select="$Vvar194_beginDate_date"/>

</cbc:StartDate>

</xsl:for-each>

<xsl:for-each select="@endDate">

<xsl:variable name="Vvar198_endDate_date" select="string(.)"/>

<cbc:EndDate>

<xsl:value-of select="$Vvar198_endDate_date"/>

</cbc:EndDate>

</xsl:for-each>

</cac:Period>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="documentCommandOperand">

144

<xsl:for-each select="plan:tradeItemLocationProfile">

<xsl:for-each select="itemManagementProfile">

<cac:ItemManagementProfile>

<xsl:for-each select="frozenPeriodDays">

<xsl:variable name="Vvar207_frozenPeriodDays_integer"

select="number(.)"/>

<cbc:FrozenPeriodDays>

<xsl:value-of select="number($Vvar207_frozenPeriodDays_integer)"/>

</cbc:FrozenPeriodDays>

</xsl:for-each>

<xsl:for-each select="minimumInventory">

<xsl:variable name="Vvar211_minimumInventory_float" select="number(.)"/>

<cbc:MinimumInventoryQuantity>

<xsl:value-of select="number($Vvar211_minimumInventory_float)"/>

</cbc:MinimumInventoryQuantity>

</xsl:for-each>

<xsl:for-each select="orderQuantityMultiple">

<xsl:variable name="Vvar215_orderQuantityMultiple_float"

select="number(.)"/>

<cbc:MultipleOrderQuantity>

<xsl:value-of select="number($Vvar215_orderQuantityMultiple_float)"/>

</cbc:MultipleOrderQuantity>

</xsl:for-each>

<xsl:for-each select="orderIntervalDays">

<xsl:variable name="Vvar219_orderIntervalDays_integer"

select="number(.)"/>

<cbc:OrderIntervalDays>

<xsl:value-of select="number($Vvar219_orderIntervalDays_integer)"/>

</cbc:OrderIntervalDays>

</xsl:for-each>

<xsl:for-each select="replenishmentOwner">

<xsl:variable name="Vvar225_replenishmentOwner_string"

select="string(.)"/>

<cbc:ReplenishmentOwnerDescription>

<xsl:value-of select="$Vvar225_replenishmentOwner_string"/>

</cbc:ReplenishmentOwnerDescription>

</xsl:for-each>

<xsl:for-each select="targetServiceLevel">

<xsl:variable name="Vvar229_targetServiceLevel_decimal"

select="number(.)"/>

<cbc:TargetServicePercent>

<xsl:value-of select="$Vvar229_targetServiceLevel_decimal"/>

</cbc:TargetServicePercent>

</xsl:for-each>

<xsl:for-each select="targetInventory">

<xsl:variable name="Vvar230_targetInventory" select="."/>

<xsl:for-each select="value">

145

<xsl:variable name="Vvar239_value_decimal" select="number(.)"/>

<cbc:TargetInventoryQuantity>

<xsl:for-each select="$Vvar230_targetInventory/@unitOfMeasure">

<xsl:variable name="Vvar236_unitOfMeasure_string"

select="string(.)"/>

<xsl:attribute name="unitCode">

<xsl:value-of select="string($Vvar236_unitOfMeasure_string)"/>

</xsl:attribute>

</xsl:for-each>

<xsl:value-of select="$Vvar239_value_decimal"/>

</cbc:TargetInventoryQuantity>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="collaborativeTradeItem">

<xsl:for-each select="buyerLocation">

<cac:BuyerCustomerParty>

<cac:Party>

<cac:PartyIdentification>

<xsl:for-each select="gln">

<xsl:variable name="Vvar245_gln_string"

select="string(.)"/>

<cbc:ID>

<xsl:value-of select="string($Vvar245_gln_string)"/>

</cbc:ID>

</xsl:for-each>

</cac:PartyIdentification>

</cac:Party>

</cac:BuyerCustomerParty>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="collaborativeTradeItem">

<xsl:for-each select="sellerLocation">

<cac:SellerSupplierParty>

<cac:Party>

<cac:PartyIdentification>

<xsl:for-each select="gln">

<xsl:variable name="Vvar253_gln_string"

select="string(.)"/>

<cbc:ID>

<xsl:value-of select="string($Vvar253_gln_string)"/>

</cbc:ID>

</xsl:for-each>

</cac:PartyIdentification>

</cac:Party>

</cac:SellerSupplierParty>

</xsl:for-each>

</xsl:for-each>

146

<cac:GoodsItem>

<cbc:ID>

<xsl:value-of select="string($Vvar2_const)"/>

</cbc:ID>

<cac:Item>

<cac:StandardItemIdentification>

<xsl:for-each select="collaborativeTradeItem">

<xsl:for-each select="product">

<xsl:for-each select="gtin">

<xsl:variable name="Vvar263_gtin_string"

select="string(.)"/>

<cbc:ID>

<xsl:value-of select="string($Vvar263_gtin_string)"/>

</cbc:ID>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</cac:StandardItemIdentification>

</cac:Item>

</cac:GoodsItem>

<cac:ItemLocationQuantity>

<xsl:for-each select="orderingLeadTimeDays">

<xsl:variable name="Vvar267_orderingLeadTimeDays_integer"

select="number(.)"/>

<cbc:LeadTimeMeasure>

<xsl:attribute name="unitCode">

<xsl:value-of select="string(’DAY’)"/>

</xsl:attribute>

<xsl:value-of select="

number($Vvar267_orderingLeadTimeDays_integer)"/>

</cbc:LeadTimeMeasure>

</xsl:for-each>

</cac:ItemLocationQuantity>

</cac:ItemManagementProfile>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</n:TradeItemLocationProfile>

</xsl:template>

</xsl:stylesheet>

147

A.2 THE XSLT FILE FOR TRANSLATING THE TRADE ITEM LOCATION

PROFILE INSTANCES FROM UBL TO GS1 XML

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet>

<xsl:namespace-alias stylesheet-prefix="n" result-prefix="#default"/>

<xsl:output method="xml" encoding="UTF-8" indent="yes"/>

<xsl:template match="/n2:TradeItemLocationProfile">

<n:documentCommand>

<xsl:attribute name="xsi:schemaLocation">

<xsl:value-of select="’urn:ean.ucc:2 TradeItemLocationProfileProxy.xsd’"/>

</xsl:attribute>

<xsl:variable name="Vvar1_firstSource" select="."/>

<documentCommandOperand xmlns="">

<plan:tradeItemLocationProfile>

<xsl:for-each select="cbc:IssueDate">

<xsl:variable name="Vvar114_IssueDate_date" select="string(.)"/>

<xsl:for-each select="$Vvar1_firstSource/cbc:IssueTime">

<xsl:variable name="Vvar118_IssueTime_time" select="string(.)"/>

<xsl:attribute name="creationDateTime">

<xsl:value-of select="string(concat(concat(string

($Vvar114_IssueDate_date), ’T’),

string($Vvar118_IssueTime_time)))"/>

</xsl:attribute>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="cbc:DocumentStateCode">

<xsl:variable name="Vvar125_DocumentStateCode_normalizedString"

select="string(.)"/>

<xsl:attribute name="documentStatus">

<xsl:value-of select="string($Vvar125_DocumentStateCode_normalizedString)"/>

</xsl:attribute>

</xsl:for-each>

<xsl:for-each select="cac:Period">

<period>

<xsl:for-each select="cbc:StartDate">

<xsl:variable name="Vvar134_StartDate_date" select="string(.)"/>

<xsl:attribute name="beginDate">

<xsl:value-of select="$Vvar134_StartDate_date"/>

</xsl:attribute>

</xsl:for-each>

<xsl:for-each select="cbc:EndDate">

<xsl:variable name="Vvar138_EndDate_date"

select="string(.)"/>

<xsl:attribute name="endDate">

<xsl:value-of select="$Vvar138_EndDate_date"/>

148

</xsl:attribute>

</xsl:for-each>

</period>

</xsl:for-each>

<xsl:for-each select="cbc:ProfileStatusCode">

<xsl:variable name="Vvar141_ProfileStatusCode_normalizedString"

select="string(.)"/>

<profileStatus>

<xsl:value-of select="string($Vvar141_ProfileStatusCode_normalizedString)"/>

</profileStatus>

</xsl:for-each>

<xsl:for-each select="cac:ItemManagementProfile">

<itemManagementProfile>

<xsl:for-each select="cbc:FrozenPeriodDays">

<xsl:variable name="Vvar148_FrozenPeriodDays_decimal"

select="number(.)"/>

<frozenPeriodDays>

<xsl:value-of select="number($Vvar148_FrozenPeriodDays_decimal)"/>

</frozenPeriodDays>

</xsl:for-each>

<xsl:for-each select="cbc:MinimumInventoryQuantity">

<xsl:variable name="Vvar152_MinimumInventoryQuantity_decimal"

select="number(.)"/>

<minimumInventory>

<xsl:value-of select="number($Vvar152_MinimumInventoryQuantity_decimal)"/>

</minimumInventory>

</xsl:for-each>

<xsl:for-each select="cbc:OrderIntervalDays">

<xsl:variable name="Vvar156_OrderIntervalDays_decimal"

select="number(.)"/>

<orderIntervalDays>

<xsl:value-of select="number($Vvar156_OrderIntervalDays_decimal)"/>

</orderIntervalDays>

</xsl:for-each>

<xsl:for-each select="cbc:MultipleOrderQuantity">

<xsl:variable name="Vvar160_MultipleOrderQuantity_decimal"

select="number(.)"/>

<orderQuantityMultiple>

<xsl:value-of select="number($Vvar160_MultipleOrderQuantity_decimal)"/>

</orderQuantityMultiple>

</xsl:for-each>

<xsl:for-each select="cbc:ReplenishmentOwnerDescription">

<xsl:variable name="Vvar166_ReplenishmentOwnerDescription_string"

select="string(.)"/>

<replenishmentOwner>

<xsl:value-of select="$Vvar166_ReplenishmentOwnerDescription_string"/>

</replenishmentOwner>

149

</xsl:for-each>

<targetInventory>

<xsl:for-each select="cbc:TargetInventoryQuantity">

<xsl:for-each select="@unitCode">

<xsl:variable name="Vvar171_unitCode_token" select="string(.)"/>

<xsl:attribute name="unitOfMeasure">

<xsl:value-of select="string($Vvar171_unitCode_token)"/>

</xsl:attribute>

</xsl:for-each>

</xsl:for-each>

<xsl:for-each select="cbc:TargetInventoryQuantity">

<xsl:variable name="Vvar177_TargetInventoryQuantity_decimal"

select="number(.)"/>

<value>

<xsl:value-of select="$Vvar177_TargetInventoryQuantity_decimal"/>

</value>

</xsl:for-each>

</targetInventory>

<xsl:for-each select="cbc:TargetServicePercent">

<xsl:variable name="Vvar181_TargetServicePercent_decimal"

select="number(.)"/>

<targetServiceLevel>

<xsl:value-of select="$Vvar181_TargetServicePercent_decimal"/>

</targetServiceLevel>

</xsl:for-each>

<collaborativeTradeItem>

<product>

<xsl:for-each select="cac:GoodsItem">

<xsl:for-each select="cac:Item">

<xsl:for-each select="cac:StandardItemIdentification">

<xsl:for-each select="cbc:ID">

<xsl:variable name="Vvar189_ID_normalizedString"

select="string(.)"/>

<gtin>

<xsl:value-of select="string($Vvar189_ID_normalizedString)"/>

</gtin>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</product>

<xsl:for-each select="cac:BuyerCustomerParty">

<buyerLocation>

<xsl:for-each select="cac:Party">

<xsl:for-each select="cac:PartyIdentification">

<xsl:for-each select="cbc:ID">

<xsl:variable name="Vvar199_ID_normalizedString"

150

select="string(.)"/>

<gln>

<xsl:value-of select="string($Vvar199_ID_normalizedString)"/>

</gln>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</buyerLocation>

</xsl:for-each>

<xsl:for-each select="cac:SellerSupplierParty">

<sellerLocation>

<xsl:for-each select="cac:Party">

<xsl:for-each select="cac:PartyIdentification">

<xsl:for-each select="cbc:ID">

<xsl:variable name="Vvar209_ID_normalizedString"

select="string(.)"/>

<gln>

<xsl:value-of select="string($Vvar209_ID_normalizedString)"/>

</gln>

</xsl:for-each>

</xsl:for-each>

</xsl:for-each>

</sellerLocation>

</xsl:for-each>

</collaborativeTradeItem>

</itemManagementProfile>

</xsl:for-each>

</plan:tradeItemLocationProfile>

</documentCommandOperand>

</n:documentCommand>

</xsl:template>

</xsl:stylesheet>

151

VITA

PERSONAL INFORMATION

Surname, Name: KABAK, YILDIRAY

Nationality: Turkish (TC)

Date and Place of Birth: 20 March 1979, Adana

Marital Status: Single

Phone: +90 312 210 2076

e-Mail: yildiray@srdc.com.tr

EDUCATION

Degree Institution Year of Graduation

MS METU-Computer Engineering 2003

BS METU-Computer Engineering 2001

High School İsmail SafaÖzler Anatolian High School, Ankara 1997

WORK EXPERIENCE

Year Place Enrollment

2008-present SRDC, Reseach, Development and Consultancy Ltd. Researcher

2001-2008 Software Research and Development Center, METU Researcher

2000-2001 Software Research and Development Center, METU Part Time

Software Developer

FOREIGN LANGUAGES

Advanced English, Intermediate German

PUBLICATIONS

1. Kabak Y., Dogac A., Toroslu I.H. Semantic Interoperability of the Electronic Business

152

Document Standards submitted for publication to IEEE Transactions on Knowledge

and Data Engineering (TKDE).

2. Kabak Y., Dogac A. A Survey and Analysis of Electronic Business Document Standards

accepted for publication in ACM Computing Surveys. (Science Citation Index Core,

Impact Factor: 11.286).

3. Kabak Y., Olduz M., Laleci G. B. Namli T., Bicer V., Radic N., Dogac A. A Semantic

Web Service Based Middleware for the Tourism Industry Book Chapter, to appear.

4. Dogac A., Yildirim A., Kabak Y., Laleci G. B., Ocalan C., Bilen M. Design and Im-

plementation of the eInvoice Interoperability Profile of the Revenue Administration of

Turkey eChallanges Conference, October 2009, Istanbul, Turkey.

5. Kabak Y., Dogac A., Ocalan C., Cimen S., Laleci G. B. iSURF Semantic Interoperabil-

ity Service Utility for Collaborative Planning, Forecasting and Replenishment eChal-

langes Conference, October 2009, Istanbul, Turkey.

6. Dogac A., Laleci G. B., Olduz M., Kabak Y., Okcan A., Tasyurt I. An Interoperability

Service Utility for Collaborative Supply Chain Planning Presented in 14th International

Conference on Concurrent Enterprising (ICE 2008), Lisbon,Portugal.

7. Kabak Y., Dogac A., Kose I., Akpinar N., Gurel M., Arslan Y., Ozer H., Yurt N., Ozcam

A., Kirici S., Yuksel M., Sabur E. The Use of HL7 CDA in the National Health Infor-

mation System (NHIS) of Turkey 9th International HL7 Interoperability Conference

(IHIC) 2008, Crete, Greece, October, 2008 pp. 49-55.

8. Kose I., Akpinar N., Gurel M., Arslan Y., Ozer H., Yurt N., Kabak Y., Dogac A.

Turkey’s National Health Information System (NHIS) in the Proc. of the eChallanges

Conference, Stockholm, October 2008, pp. 170-177.

9. Dogac A., Kabak Y., Namli T., Okcan A., Collaborative Business Process Support in

eHealth: Integrating IHE Profiles through ebXML Business Process Specification Lan-

guage IEEE Transactions on Information Technology in Biomedicine, Vol.12, No.6,

November 2008, pp. 754-762. (Science Citation Index Core, Impact Factor: 1.787).

10. Dogac A., Namli T., Okcan A., Laleci G., Kabak Y., Eichelberg M. Key Issues of Tech-

nical Interoperability Solutions in eHealth and the RIDE Project eChallenges Confer-

ence, The Hague, The Netherlands, October 2007

153

11. Della Valle E., Cerizza D., Celino I., Dogac A., Laleci G., Kabak Y., Okcan A., Gul-

deren O., Namli T., Bicer V. , An eHealth Case Study Book Chapter in ”Semantic Web

Services: Concepts, Technologies, and Applications”, Studer, Rudi; Grimm, Stephan;

Abecker, Andreas (Eds.), 2007, Approx. 15 p., 100 illus., Hardcover, ISBN: 978-3-

540-70893-3, Due: April 5, 2007, Springer.

12. Dogac A., Kabak Y., Laleci G., Najmi F., Mattocks C., Pollock J., Wallace E. ebXML

Registry Profile for Web Ontology Language (OWL) OASIS ebXMLRegistry Techni-

cal Committee approved Committee Draft.

13. Laleci G., Dogac A., Akcay B., Olduz M., Yuksel M., Orhan U., Tasyurt I., Sen T.,

Kabak Y., Namli T., Gulderen O., Okcan A. SAPHIRE: A semanticWeb service based

Clinical guideline deployment infrastructure exploitingIHE XDS eChallenges Confer-

ence, Barcelona, Spain, October 2006. Published in: Exploiting the Knowledge Econ-

omy: Issues, Applications, Case Studies, Paul Cunningham and Miriam Cunningham

(Eds), IOS Press, 2006 Amsterdam, ISBN: 1-58603-682-3.

14. Dogac A., Laleci G., Kirbas S., Kabak Y., Sinir S., YildizA., Gurcan Y. Artemis: De-

ploying Semantically Enriched Web Services in the Healthcare Domain Information

Systems Journal (Elsevier), Volume 31, Issues 4-5, June-July 2006, pp.321-339 (Sci-

ence Citation Index Core, Impact Factor: 1.827).

15. Dogac A., Laleci G., Kabak Y., Unal S., Beale T., Heard S.,Elkin P., Najmi F., Mat-

tocks C., Webber D., Kernberg M. Exploiting ebXML Registry Semantic Constructs

for Handling Archetype Metadata in Healthcare InformaticsInternational Journal of

Metadata, Semantics and Ontologies, Volume 1, No. 1, 2006.

16. Della Valle E., Cerizza D., Bicer V., Kabak Y., Laleci G.,Lausen H. The Need for

Semantic Web Service in the eHealth W3C workshop on Frameworks for Semantics in

Web Services, 2005.

17. Bicer V., Laleci G., Dogac A., Kabak Y. Providing Semantic Interoperability in the

Healthcare Domain through Ontology Mapping eChallenges 2005, October 2005, Ljubl-

jana, Slovenia.

18. Bicer V., Laleci G., Dogac A., Kabak Y. Artemis Message Exchange Framework: Se-

mantic Interoperability of Exchanged Messages in the Healthcare Domain ACM Sig-

154

mod Record, Vol. 34, No. 3, September 2005 (Science CitationIndex Expanded,

Impact Factor: 1.759).

19. Dogac A., Kabak Y., Laleci G. C. Mattocks, F. Najmi, J. Pollock Enhancing ebXML

Registries to Make them OWL Aware Distributed and Parallel Databases Journal, Springer-

Verlag, Vol. 18, No. 1, July 2005, pp. 9-36. (Science Citation Index Expanded, Impact

Factor: 1.785).

20. Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., Tumer A. SATINE Project: Exploit-

ing Web Services in the Travel Industry eChallenges 2004 (e-2004), 27 - 29 October

2004, Vienna, Austria.

21. Dogac A., Kabak Y., Laleci G., Sinir S., Yildiz A., KirbasS., Gurcan Y. Semantically

Enriched Web Services for Travel Industry ACM Sigmod Record, Vol. 33, No. 3,

September 2004. (Science Citation Index Expanded, Impact Factor: 1.759).

22. Laleci G., Kabak Y., Dogac A., Cingil I., Kirbas S., Yildiz A., Sinir S., Ozdikis O., Oz-

turk O. A Platform for Agent Behavior Design and Multi Agent Orchestration Agent-

Oriented Software Engineering (AOSE-2004) Workshop, the Third International Joint

Conference on Autonomous Agents & Multi-Agent Systems (AAMAS 2004), New

York City, New York - July 19, 2004 (Science Citation Index Expanded, Impact Factor:

01.515).

23. Dogac A., Kabak Y., Laleci G. Enriching ebXML Registrieswith OWL Ontologies for

Efficient Service Discovery 14th International Workshop on Research Issues on Data

Engineering, Boston, USA , March 28-29, 2004.

24. Dogac A., Laleci G., Kabak Y. Context Frameworks for Ambient Intelligence eChal-

lenges 2003, October 2003, Bologna, Italy.

25. Dogac A., Kabak Y., Laleci G. A Semantic-Based Web Service Composition Facility

for ebXML Registries 9th International Conference of Concurrent Enterprising, Espoo,

Finland, June 2003.

26. Dogac A., Tambag Y., Pektas S., Laleci G., Kurt G., ToprakS., Kabak Y., ”An ebXML

Infrastructure Implementation through UDDI Registries and RosettaNet PIPs”, ACM

SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA,

June 2002.

155

27. Dogac A., Laleci G., Kabak Y., Cingil I. Exploiting Web Service Semantics: Tax-

onomies vs. Ontologies IEEE Data Engineering Bulletin, Vol. 25, No. 4, December

2002, http://www.research.microsoft.com/research/db/debull/issues-list.htm

28. Mitkas P., Symeonidis A., Kechagias D., Athanasiadis I., Laleci G., Kurt G., Kabak

Y., Acar A., Dogac A. An Agent Framework for Dynamic Agent Retraining: Agent

Academy e2002: European Commission’s e-Business and e-Work Annual Conference,

Czech Republic, October 2002.

29. Dogac A., Cingil I., Laleci G., Kabak Y. Improving the Functionality of UDDI Reg-

istries through Web Service Semantics 3rd VLDB Workshop on Technologies for E-

Services (TES-02), Hong Kong, China, August 23-24, 2002.

30. Dogac A., Laleci G., Kurt G., Kabak Y., Acar A. A Platform for Semantically Enriched

Mobile Services in Proc. of the First International Conference on Mobile Business,

Athens, Greece, July 2002.

Number of Citations Received:25 (Based on ISI Web of Science)

156

