
USER DIRECTED VIEW SYNTHESIS
ON

OMAP PROCESSORS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MÜRSEL YILDIZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

JUNE 2009

Approval of the thesis:

USER DIRECTED VIEW SYNTHESIS
ON OMAP PROCESSORS

submitted by MÜRSEL YILDIZ in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics
Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences __________

Prof. Dr. İsmet Erkmen
Head of Department, Electrical and Electronics Engineering ______

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Engineering Dept., METU ______

Examining Committee Members

Prof. Dr. Hasan Cengiz Güran
Electrical and Electronics Engineering Dept., METU __________

Prof. Dr. Gözde Bozdağı Akar
Electrical and Electronics Engineering Dept., METU __________

Assist. Prof. İlkay Ulusoy
Electrical and Electronics Engineering Dept., METU __________

Assist. Prof. Çağatay Candan
Electrical and Electronics Engineering Dept., METU __________

Dr.-Ing. Klaus Schmidt
Universitaet Erlangen-Nürnberg __________

Date: 29.06.2009

iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully
cited and referenced all material and results that are not original to this
work.

Name, Last Name : Mürsel YILDIZ
Signature :

iv

ABSTRACT

USER DIRECTED VIEW SYNTHESIS
ON OMAP PROCESSORS

Yıldız, Mürsel

 M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

June 2009, 117 pages

In this thesis, real time image rendering for handheld devices is studied

according to user’s view point choice and using image frames with

corresponding depth maps obtained from 2 different cameras, of which

positions on coordinate system is known. User’s view point choice is

restricted to the area between right, and left cameras. Occlusion handling

methods for image rendering systems is explored and discussed together

with frame enhancement techniques. Median filtering is studied for

multicolor image frames and post processing methods are discussed for

image enhancement at the end of rendering algorithm. In this thesis,

OMAP3530 microprocessor is used as the main processor which processes

suggested rendering algorithm with occlusion handling and frame

enhancement. Proposed algorithms are implemented on DSP core and ARM

cores of OMAP3530 separately and their performances are evaluated

through experiments. Embedded Linux (Kernel-2.6.22) is run as the

operating system for applications. Driver usage together with devices for

Linux embedded operating system is explored and studied. 3 boards are used

for the realization of proposed system. OMAP35x EVM board from Mistral

v

Solutions Company is used for processor utilization, high resolution LCD

utilization, system monitoring, user interface and communication purposes.

Two daughter cards are designed for user view point determination. First

daughter card handles communication process with EVM board and

calculates view point according to input from second daughter card with

single axis response GYRO sensor (ADIS16060). Spartan®-3A DSP FPGA

family is utilized in this system for view point determination. DSP slices that

are hardly present inside gate arrays of this FPGA family are utilized and

their performance is studied. Asynchronous memory interface, i2c bus

interface, SPI interface are studied and implemented on FPGA.

Keywords: Real time view synthesis, intermediate view reconstruction

vi

ÖZ

OMAP İŞLEMCİLERİ ÜZERİNDE KULLANICI KONTROLLÜ
 GÖRÜNTÜ SENTEZLEME

Yıldız, Mürsel

 Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Haziran 2009, 117 sayfa

Bu tezde, koordinat düzleminde yerleri belirlenmiş 2 ayrı kameradan alınan

görüntü dizisi ve derinlik haritaları kullanılarak, kullanıcının seçtiği izleme

noktasına göre, taşınır cihazlar için görüntü üretimi incelenmiştir.

Kullanıcının izleme noktası seçimi sağ ve sol kameraların aralarında kalan

bölgeyle sınırlıdır. Görüntü üretim sistemleri için oklüzyon bölgeleriyle başa

çıkma metotları, görüntü karelerinin iyileştirilmesi için önerilen tekniklerle

birlikte araştırılmıştır ve tartışılmıştır. Çok renkli görüntüler için Median

filtreleme araştırılmıştır ve görüntü üretim algoritmasından sonra görüntünün

iyileştirilmesi için algoritma sonrası işleme yöntemleri tartışılmıştır. Bu

tezde, OMAP3530 mikro işlemcisi önerilen görüntü üretim algoritmasıyla

birlikte oklüzyon bölgeleriyle başa çıkma ve görüntü karelerinin

iyileştirilmesi işlemlerini yapan ana işlemci olarak kullanılmıştır. Önerilen

algoritmalar OMAP3530 işlemcisinin DSP koru ve ARM korları üzerinde

ayrı ayrı uygulanmıştır ve bu korların performansları deneyler sonucunda

değerlendirilmiştir. Uygulama için gömülü Linux (Kernel-2.6.22) işletim

sistemi olarak koşturulmuştur. Linux gömülü işletim sistemi için aygıt ve

sürücü kullanımı araştırılmıştır ve çalışılmıştır. Önerilen sistemin

gerçeklenmesi adına 3 kart kullanılmıştır. İşlemci kullanımı, yüksek

vii

çözünürlüklü LCD kullanımı, sistem gözlenmesi, kullanıcı ara yüzü ve

iletişim amaçlarına yönelik Mistral Solutions şirketinden OMAP35x EVM

devre kartı kullanılmıştır. Kullanıcının izleme noktası belirlemesi adına iki

kız kart tasarımı yapılmıştır. Birinci kız kart EVM devre kartıyla iletişim

işlemlerini gerçekleştirir ve tek eksene duyarlı GYRO (ADIS16060) sensorlu

ikinci kız kartından gelen girdiye göre izleme noktası hesabını yapar.

Sistemde Spartan®-3A DSP FPGA ailesinden görüntü izleme noktası

belirlenmesi için yararlanılmıştır. Bu FPGA ailesinin kapı dizileri içinde

gömülü bulunan DSP blokları kullanılmıştır ve performansları üzerine

çalışılmıştır. Asenkron bellek ara yüzü, i2c veri hattı, SPI ara yüzü üzerine

çalışılmıştır ve FPGA üzerine uygulanmıştır.

Anahtar kelimeler: Gerçek zamanlı görüntü sentezleme, ara görüntü

oluşturulması

viii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Prof. Dr. Gözde Bozdağı Akar, for

her understanding, guidance and sincerity. I regard that it would be a great

chance and opportunity for a student to work with her. I am very grateful for

her motivation and broad vision, which leaded progress of my research

immensely.

I would like to thank my family, especially to my father Mustafa Yıldız and

my mother Vahide Yıldız for their love and support. I believe that hard

research progress goes on fifty percent morale strength and fifty percent

technical skills. I got exactly fifty percent morale support from my parents.

Without their support, it would never be possible for me to write an

acknowledgement page for a thesis.

Special thanks to Mehmet Uçak, Volkan Serter, Salih Alper Engin and

Recep Ali Yıldırım for their helpful tips on engineering issues, friendship

and assistance. It is unforgettable for anyone who needs a helpful hand when

he is stuck on a problem.

ix

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGEMENTS ..viii

TABLE OF CONTENTS.. ix

TABLE OF FIGURES .. xi

CHAPTERS

1. INTRODUCTION.. 1

1.1 Literature Review.. 2
1.2 Scope of the Thesis ... 4
1.3 Outline of the Thesis ... 5

2. OMAP3530 PROCESSOR .. 7

OMAP3530 Processor General Overview ... 7
2.1 ARM Core... 9
2.2 IVA2.2 Subsystem .. 12
2.2.1 IVA2.2 Subsystem Integration... 14
2.3 Inter-processors (DSP – ARM Cores) Communication........................ 17

3. INTERMEDIATE VIEW RECONSTRUCTION 19

3.1 Intermediate View Reconstruction.. 19
3.2 Previous Work... 20
3.3 Pinhole Camera Model.. 20
3.3.1 Pinhole Camera Geometry .. 22
3.4 Intermediate View Reconstruction Algorithm.................................. 25
3.4.1 Algorithm Outline ... 28

4. OCCLUSION HANDLING... 35

4.1 Literature Review.. 35
4.2 Fast Occlusion Handling Algorithm ... 39
4.2.1 Algorithm Outline ... 45

5. FRAME ENHANCEMENT .. 55

5.1 Median Filtering.. 55
5.1.1 Literature Review.. 57
5.1.2 Hilbert’s Space-Filling Curves.. 63

x

5.1.3 Proposed Median Filter ... 65
5.2 Post Processing ... 71
5.2.1 Proposed Algorithm Outline ... 75

6. SYSTEM DESCRIPTION... 81

6.1 System Architecture .. 81
6.1 Hardware Architecture .. 83
6.1.1 EVM Board ... 83
6.1.2 Daughter Cards (EVM Expansion Board) 85
6.2 SOFTWARE ARCHITECTURE.. 90
6.2.1 Image Formation Algorithm ... 90
6.2.2 Intermediate View Reconstruction.. 92
6.2.3 Occlusion Handling... 93
6.2.4 Frame Enhancement.. 94
6.2.5 View Point Determination .. 95
6.3 PERFORMANCE of ALGORITHMS on OMAP Cores................ 101

7. CONCLUSION.. 103

7.1 Discussion and Future Work... 104

REFERENCES... 107

APPENDIX.A..111

xi

TABLE OF FIGURES

 FIGURES

Figure 2.1: Generalized block scheme of OMAP3530 9

Figure 2.2: 13 Stage pipeline of ARM architecture .. 10

Figure 2.3: Co-processor pipeline structure .. 11

Figure 2.4: Pipeline based algorithm instruction representation....................... 12

Figure 2.5: IVA2.2 Subsystem block diagram.. 13

Figure 2.6: Pipeline based DSP core algorithm instruction structure 14

Figure 2.7: ARM controlled IVA subsystem boot .. 16

Figure 2.8: Mailbox – interrupt mechanism block diagram.............................. 17

Figure 2.9: General architecture of codec engine operation 18

Figure 3.1: Image formation through pinhole camera 21

Figure 3.2: Pinhole camera geometry ... 22

Figure 3.3: 3D point projection on image plane ... 23

Figure 3.4: Camera positions and virtual camera orbit 26

Figure 3.5: Two frames with corresponding depth maps from camera 6 27

Figure 3.6: Two frames with corresponding depth maps from camera 4 28

Figure 3.7: 3D point determination using camera coordinate system............... 30

Figure 3.8: Mapping 3D scene point on second image plane 32

Figure 3.9: Original input frame from camera 5 ... 33

Figure 3.10: 5th camera frame reconstruction output from camera 4................ 33

Figure 3.11: 5th camera frame reconstruction output from camera 6................ 34

Figure 4.1: Occlusion region corresponding to different camera position........ 36

Figure 4.2: Efficient view-dependent image-based rendering with projective

texture-mapping example.. 38

Figure 4.3: Occlusion problem after 3D image warping [21]........................... 40

Figure 4.4: Occlusion region filling process [21] ... 40

Figure 4.5: Virtual camera position between real cameras 41

xii

Figure 4.6: Basic flowchart for two processor system occlusion filling

algorithm ... 42

Figure 4.7: Basic flowchart for multi-processor system, efficient occlusion

filling algorithm .. 44

Figure 4.8: Occlusion map corresponding to camera 6 frame with respect to

camera 5 virtual position... 46

Figure 4.9: Back projection of occlusion region pixels 47

Figure 4.10: Reconstructed camera 5 from camera 6 and 4.............................. 49

Figure 4.11: Arbitrarily drawn real scene top view .. 51

Figure 4.12: Edge image of camera 4 depth map in vertical direction 52

Figure 4.13: Vertical difference of edge images for camera 6 depth map and

camera 4 depth map in +x dirrection .. 53

Figure 5.1: Median filter process .. 56

Figure 5.2: Representation of two vectors in 2D .. 60

Figure 5.3: Parallel processing Median filter structure in FPGA...................... 61

Figure 5.4: Transformation of RGB into space filling curves 62

Figure 5.5: Filtering based on transformation from ZN to Z 63

Figure 5.6: First, second and third order 2D SFC... 64

Figure 5.7: Impulse noise removal from input sequence 67

Figure 5.8: Modified window shape examples ... 68

Figure 5.9: 3x3 window shape median filter output ... 69

Figure 5.10: Modified window shape median filter output 69

Figure 5.11: Modified median filter output .. 70

Figure 5.12: Pixel count in original frame from camera 4................................ 72

Figure 5.13: Pixel count in original frame from camera 6................................ 73

Figure 5.14: Background pixel observation through dehiscence region........... 74

Figure 5.15: Edge image in +x direction of camera 6 depth map..................... 76

Figure 5.16: Abruptly drawn top view of ballet scene...................................... 77

Figure 5.17: Background purification with the suggested algorithm................ 79

Figure 5.18: Closer look to purified background pixels on object.................... 80

xiii

Figure 6.1: System hardware setup ... 82

Figure 6.2: EVM functional block diagram .. 84

Figure 6.3: EVM board top view .. 85

Figure 6.4: Functional block diagram of daughter cards 86

Figure 6.5: Front view of main daughter card... 86

Figure 6.6: Back view of main daughter card ... 87

Figure 6.7: Front view of gyro card .. 87

Figure 6.8: Rate sensitive axis of gyro sensor .. 89

Figure 6.9: Mapping true color to RGB565 from RGB888.............................. 92

Figure 6.10: Object dehiscence representation ... 94

Figure 6.11: Timing diagram for SPI data read .. 96

Figure 6.12: Timing diagram for SPI device control .. 96

Figure 6.13: Gyro controlled virtual camera orbit .. 98

Figure 6.14: I2C port communication timing diagram 99

Figure 6.15: Touch-screen controlled virtual camera orbit............................. 101

Figure A.1: Gyro-read process flow chart... 112

Figure A.2: Virtual point detection flow chart based on look-up table 113

Figure A.3: Virtual point detection flow chart based on LED positions 114

Figure A.4: I2C communication protocol part 1... 115

Figure A.5: I2C communication protocol part 2... 116

Figure A.6: I2C communication protocol part 3... 117

1

CHAPTER 1

INTRODUCTION

Utilization of 3D display systems with extraction, transmission or display

techniques have been a popular research area for recent years. Due to wide

variety of 3D system applications ranging from entertainment to

cartography, requirement of robust solutions for such systems is becoming

more important.

In recent years, there has been growing interest in applications for hand-held

devices, especially for the ones with graphical accelerators and video display

capabilities. Among these entertainment devices, 3D display system

inclusion and free-view point video application capability are very new to

the industry. It is foreseen that such entertainment devices will be gaining

more interest day by day. This fact stems from two reasons. Firstly, there is a

magnificent opportunity for algorithm developers in the market, because

general processor units of hand-held devices are developed considerably,

which in turn gives rise to development of applications. Secondly, researches

on image processing techniques on view synthesis and rendering are

extended.

Intermediate view reconstruction depends on 3D geometry of filmed scenes

and is required for 3D video applications as a basic step. Second step of 3D

display systems is directly related with screen characteristic or necessity of

2

stereoscopic eyeglasses. For example, auto-stereoscopic displays are

categorized into two main groups, namely two-view and multi-view auto-

stereoscopic displays, which presents more than one image from different

angle at a time for both eyes [1]. Intermediate view reconstruction

algorithms provide these images for display system so that users can

perceive 3D sense, which is the reason why these algorithms are important

for 3D display systems.

Although processors for hand-held devices are very powerful for many

operations on signaling techniques, it is inevitable for algorithm builder to

research and test many suggested algorithms in intermediate image

reconstruction, in order to build a real time operating video application.

Parallel processing units are very powerful and preferable for image

reconstruction. Nowadays, many leading companies in FPGA technology,

provide parallel processing units with additional DSP slices for signal

processing purposes, however, due to high cost of these units; it is not

always possible to design hardware with an FPGA peripheral for hand-held

devices.

In this thesis, intermediate view reconstruction algorithm for hand-held

devices with gyroscope sensor and touch-screen capabilities is studied. Our

aim is to provide a free view point video application for which view point

changes with the rotation of the device from left to right or vice versa, by

user. Furthermore, frame enhancement techniques against deformation due

to rendering algorithms are discussed in details.

1.1 Literature Review

Nowadays, free-view point video rendering systems are becoming very

popular to the industry. Many researchers have been developing 3D based

3

intermediate view reconstruction or image-based rendering techniques for

changing view points.

Ince et al. [2] proposed an image-based view interpolation algorithm based

on usage of 4 input images taken from different view points. Proposed

algorithm consists of three steps. Firstly, all pixels in the input image are

classified in terms of their visibility for the new view point. Using different

image inputs, disparity for each pixel is calculated in the second phase,

depending on the first phase output. Finally, each pixel color is calculated

adaptively at the final step from image pairs that are selected by their

visibility labels. Experimental results for this algorithm shows improvement

on occlusion region handling. However, this algorithm should be

implemented on systems with parallel processing capabilities because many

middle step images are constructed for algorithm not only from a single

image but from 4 images. Moreover, high speed memory usage is required

for this system.

Debevec et al. [3] suggested an image-based intermediate view

reconstruction technique with occlusion handling. They basically filled

occlusion hole-filling problem using polygon view maps, which are basically

depending on connectivity between each pixels at vertex positions. Firstly,

they set up a linked list showing connectivity between vertexes, secondly

they computed average color according to linked list and finally they

assigned remaining invisible pixels with the closest visible pixel. Their

method gives successful results for images having almost smooth depth

maps, i.e. images in which objects are far away from camera. However,

occlusion regions reveal themselves clearly for scenes in which objects are

closer to cameras.

4

In [27], a fast view synthesis method that generates multiple intermediate

views in real time for a 3D display system, using predetermined camera

geometry and depth map of each image frame which is very similar to

theoretical approach for intermediate view reconstruction method discussed

in this thesis. Very fast view synthesis method is suggested by processing

each frame in blocks entirely in parallel by many multiprocessors

simultaneously, under the control of a CPU. They suggested specialized

processor architecture of which experimental environment consists of a dual

core CPU with 1.86 GHz speed, 2048 MB RAM, 1.62 GHz GPU of 16

multiprocessors having 128 cores in total. All of these processor units are

devoted to realization of the algorithm, which in fact gives rise to the need of

another processor unit having an operating system for the realization of any

other task for the device. Moreover, the system consists of many high speed

processors, which in turn brings about high costs for the device, too much

PCB space for production and very high power requirement not only for

handheld devices but also for any other display system.

In [1], view point is detected by tracking the position of single observer and

virtual camera view is rendered according to eye position of observer. The

system is implemented on a home PC and tracking operation is done by a

webcam connected to the PC. However, this system is proposed for a single

user, and system is suggested with an additional webcam for eye tracking.

This system would not show high performance for handheld devices because

user’s head and eyes are almost stable while watching video from handheld

devices.

1.2 Scope of the Thesis

This thesis deals with the application of real time view synthesis system for

hand-held devices. This system aims to provide free-view point video for

5

user, who determines view point by gyro sensor, touch-screen or keypad.

Application is examined on OMAP3530 microprocessor, both using ARM

processor and DSP processor separately. Linux (Kernel-2.6.22) is used as the

operating system for application.

OMAP35x EVM (evaluation module) is used with designed two daughter

cards. First daughter card consists of FPGA, DSP and expansion connectors

for future work. Second daughter card is devoted for gyroscope and directly

connected to first daughter card. Gyro sensor applications are researched and

implemented on FPGA.

Main blocks of system are defined as intermediate view reconstruction

block, frame enhancement block and view point detection block by 3

methods namely, touch-screen, keypad and gyro sensor. Each of these main

blocks was examined by different approaches for real time operation.

1.3 Outline of the Thesis

This thesis is composed of 7 main chapters. In chapter 2, main processor of

system, i.e., double core processor OMAP3530 is introduced briefly. Each

core of processor is described with general aspects, and interconnection of

processors and boot process of DSP core are summarized.

Chapter 3 of thesis is devoted to intermediate view reconstruction algorithm

and optimization tips for algorithm in order to achieve a real time operating

system. Background information about camera model used is described in

details.

Detailed information on occlusion handling problem is given in chapter 4.

Previous works on occlusion handling is discussed, compared and

6

contrasted. A new fast algorithm for this problem is suggested and explained

in details.

In chapter 5, frame enhancement techniques for image deformation after

occlusion handling and intermediate view reconstruction algorithm is

described in details. Background information on Median filters is given.

Previous works on median filters are compared and contrasted. Furthermore,

a new algorithm is suggested for dehiscence of objects after intermediate

view reconstruction.

In chapter 6, proposed system is described in general aspects. Hardware

design and main blocks of software are described. Two daughter cards

designed for this thesis are introduced with main blocks.

Finally, chapter 7 summarizes the thesis and gives concluding remarks.

Moreover, future work for this thesis is described in detail.

7

CHAPTER 2

OMAP3530 PROCESSOR

In this chapter, very brief information on the OMAP3530 processor is given.

This chapter is devoted to the main core and co-processors included in this

microprocessor. The peripherals and processor architectures are related with

the algorithms used in this thesis. In order for the reader to understand only

the general aspects of the architecture, superficial information is provided.

This chapter consists of two main sections of which the first section

describes the ARM core while the second part describes the DSP core.

OMAP3530 Processor General Overview

OMAP3530 is a high-performance, applications processor based on

OMAP™ 3 architecture provided by Texas Instruments for 2008, which is

designed to provide video, image and graphics processing [11]. This

processor is offered for streaming video, 2D/3D mobile gaming, video

conferencing, high-resolution still image, Video capture in 2.5G wireless

terminals, 3G wireless terminals, and rich multimedia-featured handsets, and

high-performance personal digital assistants (PDAs) [11].

In [11], general subsystems of the device are summarized as:

• Microprocessor unit (MPU) subsystem based on the ARM Cortex™-

A8 microprocessor.

8

• IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core

• SGX subsystem for 2D and 3D graphics acceleration to support display

and gaming effects (3530only)

• Camera image signal processor (ISP) that supports multiple formats

and interfacing options connected to a wide variety of image sensors

• Display subsystem with a wide variety of features for multiple

concurrent image manipulation, and a programmable interface supporting a

wide variety of displays. The display subsystem also supports NTSC/PAL

video out.

• Level 3 (L3) and level 4 (L4) interconnects that provide high-

bandwidth data transfers for multiple initiators to the internal and external

memory controllers and to on-chip peripherals

In this thesis, OMAP3530 processor is explored not only by the application

of image warping algorithm but also by using its peripherals widely. This

processor is a double core processor, namely 600-MHz ARM Cortex™-A8

core with NEON™ SIMD coprocessor as the general purpose main

processor unit of the system and advanced very-long-instruction-word

(VLIW) – TMS320C64x+™ DSP core [11]. This processor is low power IC

that is suggested by TI (Texas Instruments) especially for hand-held devices,

gaming consoles, video and image processing, and communication devices.

In figure – 2.1, generalized block scheme of processor is given [11].

9

Figure 2.1: Generalized block scheme of OMAP3530

This processor supports high level operating systems such as: WINDOWS

CE, SYMBIAN OS, LINUX and PALM OS [11]. In this thesis, Linux

(Kernel-2.6.22) is used as the embedded operating system.

2.1 ARM Core

ARM Cortex8 core is claimed to be the pioneer core in including new

technologies that are available in ARMv7 architecture [12]. “New

technologies seen for the first time include NEON™ for media and signal

10

processing and Jazelle® RCT for acceleration of runtime compilers, such as

just-in-time, dynamic or ahead-of-time compilers” [12]. Moreover

TrustZone® technology stands for security and Thumb®-2 technologies for

code density while the VFPv3 floating point architecture [12].

NEON media and signal processing technology is targeted for audio, video

processing and 3D graphics, which can handle both integer and single

precision floating-point values, and includes support for unaligned data

accesses and easy loading of interleaved data stored in structure form [12].

This core architecture includes 13-stage pipeline. In figure – 2.2, this

pipeline stages are illustrated [12].

Figure 2.2: 13 Stage pipeline of ARM architecture

In this so called 13 stage pipeline, F0 is devoted for address prediction stage

in order to minimize branch miss-prediction. At the end of this pipeline

11

order, Neon coprocessor pipeline starts. The NEON media engine has its

own 10 stage pipeline. All miss-predicts and exceptions are resolved in the

ARM integer unit, once an instruction has been issued to the NEON media

engine it is completed as it cannot generate exceptions [12]. This type of

architecture makes algorithms implemented to be much faster without

software developer consideration. In figure – 2.3, coprocessor pipeline is

illustrated [12].

Figure 2.3: Co-processor pipeline structure

While considering algorithm software design, this pipeline architecture was

taken into consideration in order not to make instructions wait for another.

Warping algorithms were implemented in a for loop, which in turn bring

about change of instructions possibility inside for loops without

considerations. In figure – 2.4, this concept is summarized. In chapter 3,

detailed information is given for algorithms that are implemented.

12

Figure 2.4: Pipeline based algorithm instruction representation

Considering proper initialization of critical variables at the start point of for

loop, change of instruction queue does not change output. Therefore these

instruction sets are aligned in such a way that all instructions are independent

of each other in each 13 stage pipeline.

2.2 IVA2.2 Subsystem

This subsystem consists of TMS320C64x+™ DSP core, enhanced direct

memory access controllers (EDMA) and video hardware accelerators [11]. In

figure – 2.5, block diagram of this subsystem is given [13].

13

Figure 2.5: IVA2.2 Subsystem block diagram

Considering figure – 2.1, in which block diagram of OMAP3530 is shown,

this subsystem can reach other subsystems through L3 interconnect.

This DSP core is based on 32 bit fixed point algorithms. This information is

critical for image warping algorithm especially for occlusion handling

problems in which not only fixed point but also floating point operations are

implemented. Once fixed point signal processing algorithms are

implemented, this subsystem is very powerful and operates faster than ARM

core. This is based on capability of 8 instructions/cycle and 8 execution units

of eight 8 x 8 or 16 x 16 multiply and accumulate (MAC) per cycle, eight

slave asynchronous die (SAD) per cycle, eight interpolations (a + b + 1) >>1

14

per cycle and two (32-bit x 32-bit > 64-bit) multiply operations per cycle

[13].

Similar to ARM core, DSP core architecture is based on pipeline operation.

While exploring DSP performance for considered algorithms, because of

capability of 8 instructions per cycle and pipeline architecture, DSP core

algorithms were implemented in such a way that each instructions are

independent from each other (each pipeline stage is independent) and

variables are chosen for 8 successive pixels (8 instructions per cycle).

Figure 2.6: Pipeline based DSP core algorithm instruction structure

2.2.1 IVA2.2 Subsystem Integration

Once an application program is written, it is not possible to reach directly

DSP core as if it is a driver for the ARM core, i.e, user can not reach DSP

core anytime he desires before subsystem integration. IVA2.2 subsystem

should be booted before the application program reaches to DSP core. Once

DSP core boots its application code, it waits for a reset signal from ARM

core in order to start execution.

15

In this thesis, two methods for booting and reaching DSP core were

explored. The first one is the boot model under control of ARM core and

second one is autonomous boot model [13].

2.2.2 IVA2.2 Boot

2.2.2.1 ARM Controlled Boot Operation

 In this methodology, ARM core can initialize DSP at any instant. Once boot

code of DSP is ready on any part of SDRAM memory, which may also be

installed at anytime user desires by Ethernet connection, ARM core can reset

DSP core and by controlling boot registers and their controller registers, DSP

starts to boot its application code from the predefined and controlled

memory space. In figure – 2.7, this process is depicted by algorithmic state

machine graph [13].

16

Figure 2.7: ARM controlled IVA subsystem boot

2.2.2.2 Autonomous Boot Model

At the instant of an OFF-to-ACTIVE transition (under MPU control or upon

interrupt wakeup), the IVA2.2 subsystem is released from reset [13]. “After

hardware configuration of values for C64x + Mega module generic

parameters, the IVA2.2 starts fetching from the address 0x00000000 in

ROM. The IVA2.2 must follow the (non-exhaustive) boot process”[13]. This

method can be used for direct DSP core performance exploration.

17

2.3 Inter-processors (DSP – ARM Cores) Communication

On-chip cores of the processor communicate through a queued mailbox –

interrupt mechanism [14]. In figure – 2.8, block diagram of this mechanism

is given [14].

Figure 2.8: Mailbox – interrupt mechanism block diagram

There are two mailbox message queues for microprocessor unit (MPU) and

imaging video and audio accelerator (IVA2.2) communications in which 32

bit message width is used and consists of message FIFO depths [14].

In this thesis, codec base communication between DSP core and ARM core

is performed, which indeed bases on message box communication that is

handled by codec engine. The application code calls the Codec Engine APIs

18

that are provided by DVSDK code support tool chain [15]. Inside Codec

Engine, the video, image, speech or audio (VISA) applications use stubs and

skeletons while accessing the core engine and the actual codecs, and this

operation can be local or remote [15]. In figure – 2.9, general architecture of

engine operation together with application is depicted [15].

Figure 2.9: General architecture of codec engine operation

Performing applications with provided codec’s provide user with reaching

DSP anytime needed. However, user should decide on inter-processor

communication algorithms more once he tries to operate DSP and ARM core

together in parallel. At instants when DSP and ARM cores together try to

reach some critical memory locations or use peripherals, drivers can result in

unpredictable problems.

19

CHAPTER 3

INTERMEDIATE VIEW RECONSTRUCTION

In this chapter, basic intermediate view reconstruction techniques for

multiple calibrated camera inputs with depth maps is provided, moreover,

basic tips for intermediate view reconstruction technique are suggested for

further optimization of rendering algorithms in order to achieve real time

operation.

This chapter mainly consists of three main parts. Firstly, previous work on

intermediate view reconstruction is discussed, secondly camera model used

in rendering algorithm is cleared and finally detailed information on

suggested algorithm is presented.

3.1 Intermediate View Reconstruction

In the presence of stereoscopic views, construction of virtual camera views

using calibrated camera inputs is called intermediate view reconstruction [1].

Calibrated camera inputs are used together with predetermined depth maps

for input frames in order to construct intermediate virtual views. Calibrated

camera inputs are defined to be images for which camera calibration

parameters, namely interior and exterior parameters are known [1].

20

3.2 Previous Work

Image-based rendering methods and techniques are widely used for

construction of virtual scenes in three dimensional applications by using

depth information for each input scene or warping more than one two-

dimensional image [16]. There exist many different approaches to image-

based rendering methods which are mainly discriminated according to usage

of depth image for scenes.

Mainly two problems arises when using images for image-based modeling

and rendering primitives, namely simplification of modeling techniques for

complex scenes and improvement of rendering speed [16]. These methods

require extra detailed and complex pre-processing and extra time for scene

structure for rendering, which in turn brings about loss of time and extra

processing power. Such methods are preferable for parallel processing units

such as FPGAs or CPLDs.

 In this thesis, an altered version of intermediate view reconstruction

techniques based on 3D geometric model of scene represented by depth

image, is proposed. Pin-hole camera model is used for realization of the

algorithm.

3.3 Pinhole Camera Model

Camera models are used in order to relate 3D world coordinate system with

2D image coordinate system [1]. This relation is represented by:

 x = P X

21

where x represents 2D pixel position, P represents camera matrix and X

represents 3D coordinate of sampled point in space.

In this thesis, finite projective camera model which is also known to be

pinhole camera model is used. It is assumed that light enters through an

infinitesimal hole which results in a formation of inverted image on the

image plane as depicted in figure-3.1 [17].

Figure 3.1: Image formation through pinhole camera

As can be noticed from figure-3.1, size of the object projected on image

plane depends on actual size of the object and its distance from camera

center. This is the reason why pinhole camera is known as perspective

projection camera model.

22

3.3.1 Pinhole Camera Geometry

Images are projected on image plane with an inverted shape for pinhole

camera as mentioned before. In order to simplify calculations, pinhole

camera geometry is modeled as shown in figure-3.2.

Figure 3.2: Pinhole camera geometry

C is denoted to be camera center with respect to world coordinate system. X

is known point on real 3D world whereas x is pixel position on image plane.

The line passing through camera center point C in the direction

perpendicular to image plane is called principal axis and intersection of

principal axis with image plane is called principal point [18]. For the

simplicity of calculations, it is assumed that camera center sits at origin at

23

start point. Later, rotation and translation of points with respect to world’s

coordinate system is considered.

In [1], intrinsic parameters of the pinhole camera which constitute camera

calibration matrix are given to be:

• Focal length f,

• Principal point, (u0, v0)

• Aspect ratio, a

• Skew, s

Considering figure-3.3, it is shown that a 3D point in (X, Y, Z) is projected

on image plane using similarities of triangles [18].

Figure 3.3: 3D point projection on image plane

24

Therefore first formation on point x = [f.X/Z f.X/Z]T. Considering principal

point affect on translation of point x by u0 and v0, one can formulate new

point x as:

 x = [(f.X/Z+ u0) (f.X/Z+v0)]T

When angle (β) between optical axes on image plane is not a right angle,

skew parameter is added to the formulated x point as [1]:

 x = [(f.(X/Z) – f.cot(β).Y/Z + u0) (f/sin(β).Y/Z+v0)]T

Aspect ratio gives information on relation between width and height of

camera pixels. Aspect ratio is the ratio between these two quantities. If

aspect ratio αx / αy is different from unity, then as a scaling factor between

pixel dimensions and camera focal length, one can express άx= f / αx and άy

= f / αy [1]. Finally, the transformation can be modeled as [1]:

Extrinsic parameters are changeable and depend on coordinate system

adjustment between camera center and real world coordinate system, which

are operations of translation and rotation between two coordinate systems.

Considering that X denotes 3D real point coordinates according to world’s

coordinate system, pixel position x is reformulated as:

 x = K [R | t] X

25

where K matrix denotes intrinsic parameters of the camera and in this

algorithm, R matrix and t vector are given as rotation matrix and translation

vector respectively.

3.4 Intermediate View Reconstruction Algorithm

In this thesis, intermediate view reconstruction based on 3D warping

algorithms is implemented. For the realization of algorithm, 3D video

colored frames and their corresponding depth map images are used. An input

frame sequences are obtained from Microsoft research group Sing Bing

Kang, which provides 100 frames and their corresponding depth maps for a

ballet sequence [19].

Intermediate view reconstruction algorithm is applied on two camera frame

sequence namely camera 6 and camera 4. Any point inside region between

camera 6 and camera 4 is considered to be a potential virtual camera

position. A smooth transition within this region is provided when user

changes virtual camera position. Figure-3.4 resembles corresponding region

and camera positions together with virtual camera orbit.

26

Figure 3.4: Camera positions and virtual camera orbit

Figure-3.5 and figure-3.6 shows two simultaneously taken frames for two

different cameras and their corresponding depth maps as an example.

27

Figure 3.5: Two frames with corresponding depth maps from camera 6

28

Figure 3.6: Two frames with corresponding depth maps from camera 4

3.4.1 Algorithm Outline

Considering that desired virtual camera position is determined by user in

advance, intermediate view reconstruction algorithm is consists of 3 main

steps:

1. Decode depth map pixel value in order to obtain real distance of

corresponding point in space.

2. Using pixel position on image plane, distance from camera center and

real camera position in 3D space determine 3D points.

29

3. Using camera intrinsic parameters and virtual camera position, project

3D points on to virtual camera image plane.

It can be observed from figure-3.5 and figure-3.6 depth maps, that nearby

points are shown brighter with respect to the points that are far away from

real camera center. This gives primary information for algorithm builder,

about point positions and their depth value. This monochromatic image

contains pixels ranging from 0 to 255 which do not directly give distance

information from camera center. Realistic distances normalized for camera

intrinsic parameters are calculated by [19]:

 Distance = 1 / ((Pixel / 255)*0.0161 + 0.0077)

This formula contains division terms. It was observed that divisions and

floating point multiplications inside given formula slow down processing

speed considerably. Therefore as an optimization tip, rather than using this

formula inside algorithm loop, a look up table is initially constructed and

used during algorithm loop.

After determination of realistic depth value, using base camera position

information from translation matrix provided, it is possible to obtain 3D

point corresponding to each pixel.

30

Figure 3.7: 3D point determination using camera coordinate system

Using line equation;

Moreover, obviously (x’, y’, f) and (A, B, C) points are on the same line.

(A, B, C) is unknown while (x’, y’, f) is known. Therefore it is sensible to

consider for the first equation that:

31

where M is a constant depending on real depth value that is previously

determined by initially constructed depth look-up table, which speeds up the

process inevitably. Obviously, M is calculated by known D, kx, ky and kz,

which in turn gives the possibility for algorithm builder to calculate x, y and

z coordinates of considered point namely A, B, C.

Given kx, ky and kz equations, it is clear that these constants depend on

rendering sequence for each pixel on the image, in other words, once

rendering sequence is fixed, it is clear that square sum of the given constants

are known in advance, which gives opportunity to algorithm builder to use

another look-up table.

Such an algorithm speeds up intermediate view reconstruction considerably.

Moreover, rather than dealing with square operations, it is sensible to

construct look-up tables after taking square roots.

Finally, as depicted on figure-3.8, 3D scene point is mapped of second image

plane after rotating and translating point according to virtual camera center

and by using intrinsic parameters of virtual camera.

32

Figure 3.8: Mapping 3D scene point on second image plane

Without optimization in algorithm, an arbitrary intermediate view is

constructed in 2 seconds without dealing with occlusion regions by ARM

core, in 3 seconds by DSP core. After optimization, 18 frame/sec rate is

achieved by ARM core while 12 frame/sec rate is achieved by DSP core.

In figure-3.9 original frame for camera 5 is given. In figure-3.10, constructed

intermediate views from camera 4 and in figure-3.11 constructed

intermediate view for camera 5 from camera 6 are given. These outputs are

constructed without occlusion region handling which is explained in chapter-

4 in details.

33

Figure 3.9: Original input frame from camera 5

Figure 3.10: 5th camera frame reconstruction output from camera 4

34

Figure 3.11: 5th camera frame reconstruction output from camera 6

35

CHAPTER 4

OCCLUSION HANDLING

In this chapter, basic occlusion region filling methods are explained and a

new faster algorithm for occlusion handling is documented for real time

video systems.

In this chapter, performance of suggested algorithm is explored using

Microsoft research group ballet sequence of camera 6 frame 0, camera 4

frame 0 and camera 5 frame 0 [19].

This chapter is mainly composed of two main sections. Firstly, previous

work on occlusion region filling algorithms is discussed with general

aspects. In the second section, newly suggested fast algorithm on occlusion

region handling is discussed.

4.1 Literature Review

Occlusion area is defined as the area appearing in one of input images while

disappearing from the other camera inputs due to depth image intensity

differences resulted by scene structure [2]. This problem is illustrated in

figure-4.1 [2].

36

Figure 4.1: Occlusion region corresponding to different camera
position

In figure-4.1.a, two real camera positions and one virtual camera position is

illustrated. In this example virtual image generation for camera position Cj is

examined. Area B is an occlusion region for camera L and area A is an

occlusion region for camera R. For virtual camera J however, both of the

given areas are visible partially, due to depth differences resembled in

figure-4.1.c.

3D models are mostly generated manually by 3D artists using 3D modeling

programs in gaming and animation technology [20]. However this is not

always possible for 3D real scenes. For example, live broadcasting would

not give possibility for 3D artists to operate such modeling programs.

If few input images are available for free-view point videos, occlusions pose

an important challenging phase for image warping [2]. Therefore, algorithm

builder should pay significant attention on disparity estimation and view

interpolation, when occlusions exist. Many algorithms are suggested for this

significant issue in image-based rendering systems. According to a newly

37

proposed algorithm in [2], construction of a new view point image consists

of three main steps for which 4 input images are used for construction [2]:

• All pixels in the input image are classified in terms of their visibility

for the new view point.

• Using different image inputs, disparity for each pixel is calculated in

the second phase, depending on the first phase output.

• Each pixel color is calculated adaptively at the final step from image

pairs that are selected by their visibility labels.

This algorithm is useful for parallel processing systems and for systems

where memory space is not a restricted issue. That is because for an image

warping operation with occlusion regions are filled, there exists many steps

and four synchronized input frames are required.

In [3], three basic steps are offered for hole-filling problem using polygon

view maps, which basically depend on connectivity between each pixels at

vertex positions. These steps are summarized as follows:

1. Set up a linked list representing connectivity of pixel to each other

which in turn gives possibility to reach all neighboring pixels for each one.

2. Using so-called linked list, compute average color of neighboring

pixels and assign it to the ones which are invisible for virtual image.

3. If there still exist invisible pixels, assign each of their vertices the

colors of closest polygon which are visible for virtual image.

This method gives successful results in filling holes for images having

smooth depth maps and for scenes in which objects are far away from

camera position. In figure-4.2, an example for this algorithm is given [3].

Occlusion regions are filled with the suggested algorithm. Occlusion regions

38

are difficult to be noticed for the given image in which averaging is possible

for polygons. These polygons are obviously very close to each other which

in turn results in smooth transitions between hole edges.

Figure 4.2: Efficient view-dependent image-based rendering with projective
texture-mapping example

For hand-held devices, users would like to see regions which are invisible

for the present free-view point. It would be attractive for the user to see

39

change in view-point angle; moreover it would also be an exciting

experience for the user to have knowledge of invisible regions by changing

virtual camera position and its angle. Therefore, occlusion regions should be

filled by exact scene view using second camera input rather than averaging

nearby pixels.

Although, there exist many virtual image rendering techniques up to now,

few of them handle occlusions accurately [2]. In this thesis a new algorithm

is proposed for occlusion region handling. This algorithm is suggested to be

performed for real time free-view point and multi-view 3D systems.

4.2 Fast Occlusion Handling Algorithm

It would be convenient to consider filling occluded regions by the help of

second camera for those systems, where parallel processing is available.

Regions that are invisible to one of input images are usually visible for the

other input image, depending on objects of scene and their distance from

camera positions. In other words, depending on 3D scene, some of the

regions may be invisible for both of real camera positions.

3D image warping operation can expose specific areas to be shaded where

according to reference frame; there exists no information [21]. This problem

is illustrated in figure-4.3.

40

Figure 4.3: Occlusion problem after 3D image warping [21]

It is possible to fill considered occlusion areas by the help of additional

synchronized frames from different view points. This process is represented

in figure-4.4.

Figure 4.4: Occlusion region filling process [21]

41

In this example, it is possible to realize that some of occlusion regions are

invisible for both of camera positions which resulted in hole regions in the

output image. In this thesis, in order to decrease probability of such cases,

restricted area for Virtual camera position is used between two real camera

positions as depicted in figure-4.5.

Figure 4.5: Virtual camera position between real cameras

Considering a hardware system with two processors having independent

memory access simultaneously, while rendering an image frame from base

camera by the general purpose processor, co-processor may render

synchronized image frame from second camera, for occluded regions. This

basic algorithm can be best implemented on FPGAs, where parallel

processing can be best realized.

After detecting occlusion regions during warping algorithm, all pixels lying

on occluded regions would be filled one by one according to co-processor

synchronized image output. This basic occlusion region detection algorithm

is realized by assigning a specific character for each pixel position on the

output image, depending on whether or not, there exists a hole on the pixel

42

position. In figure-4.6, a very basic flowchart of this simple algorithm is

given.

Figure 4.6: Basic flowchart for two processor system occlusion

filling algorithm

43

This algorithm is interpreted to be inefficient even for considered multi-

processor or FPGA based signaling systems. Power consumption would be

doubled while running more than one processor at a time doing same amount

of multiplications and additions for each frame. Moreover, second processor

may not be devoted to any other task during warping algorithms. Rather than

applying rendering algorithm for all pixels one by one by the co-processor,

considering only pixels that are candidates to be used while filling occluded

regions would definitely decrease amount of multiplications, divisions and

additions for co-processor, reducing power consumption and giving the

opportunity for software developer to devote co-processor to any other task

until main processor finishes its rendering algorithm.

This re-configured algorithm would also be efficient for single processor

systems without a doubt. In figure-4.7, basic representation of this algorithm

is given for multiprocessor systems.

44

Figure 4.7: Basic flowchart for multi-processor system, efficient
occlusion filling algorithm

Disadvantage of this new re-configured basic algorithm is the detection of

pixels which would be used while filling occluded regions and which are

not. This would in turn bring about an additional decision process for each

pixel, whether the pixel would be one of those that fill occluded regions, or

not.

45

4.2.1 Algorithm Outline

For a given virtual camera position that is determined by user, considering

camera-6 input frame as the base camera input and camera-4 input frame to

be auxiliary frame for hole filling, this algorithm can be outlined in 4 steps

for single-core system as follows:

1. Apply image-based warping algorithm for input frame of camera-6 as

described in chapter-3, while saving a character array of warped positions

with ‘1’ indicating non-occlusion pixel, and ‘0’ indicating occlusion region

pixel.

2. Determine pixel positions that are candidates for filling occlusion

regions, using camera-4 input frame depth map.

3. Apply image-based algorithm taking additional rotation matrix into

consideration for camera-6 position care, for these candidate pixels.

4. Check each element of warped position holding array and fill occlusion

regions with the corresponding to specific positions of camera-4 occlusion

filling pixels.

4.2.1.1 Image-Based Warping Algorithm

Detailed explanation for this algorithm is given in chapter-3.

4.2.1.2 Occlusion Region Determination

Considering N x M image frames to be rendered for a single processor

system, while applying rendering algorithm for each frame of base camera,

an array of N * M character elements is assigned holding ‘1’ for non-

occluded pixels and ‘0’ for occluded regions, which at the end of algorithm,

basically shows occlusion regions. In figure-4.8, occluded and non-occluded

46

map for camera-6 frame 0 is given to be an example determined occluded

regions for generated camera-5 frame 0. Note that occlusions are resembled

by black regions.

Figure 4.8: Occlusion map corresponding to camera 6 frame with respect to
camera 5 virtual position

Having determined occluded pixel positions, it is not possible to find

corresponding pixel values on camera 4 synchronized frame using reverse

action. This is because there is only the knowledge of f5 (fifth camera focal

length), f4 (fourth camera focal length) and x (pixel position that is

determined from camera 6 occluded region array). It is possible to determine

equation of the line that connects camera 5 center with the point x on image

plane 5. However, without depth information of possible projecting point P,

it is not possible to determine exact location of pixel from camera 4 that

would map to point x. There are infinitely many points on 3D coordinate

47

system which would be projected on image plane 4. As can be seen from

figure-4.9, P1 and P2 are two of these points.

Figure 4.9: Back projection of occlusion region pixels

Considering x point of coordinates (x, y, f5), line equation is:

Where,

 kx = (x - X5) ;

 ky = (y - Y5) ;

 kz = (f5 - Z5) ;

48

Rather than trying to determine occlusion region filling pixels using the map

array that is created while applying warping algorithm on camera 6 frame, it

would be sensible and efficient to determine these pixels and their

corresponding projected positions from camera 4 input frame. In this newly

proposed method, occlusions of warped image from camera 6 and

corresponding filling pixels of camera 4 are determined using camera 4

depth map alone. This will bring about additional, however, fast process, in

which software developer can determine these pixels.

4.2.1.3 Occlusion Region Filling Pixel Determination Method

In figure-4.10, generated camera five output from camera four and camera
six is shown.

49

Figure 4.10: Reconstructed camera 5 from camera 6 and 4

Occlusion regions for the generated output of camera 6 are filled by loading

corresponding pixels of generated output of camera 4 directly.

Considering camera 4 frame 0 depth map, scanning column by column from

left to right, it is possible to understand starting and finishing pixel positions

50

for occlusion region. This algorithm can be realized using camera 4 depth

map alone. Moreover it is easier and faster to determine starting pixel

location by camera 4 depth map and finishing pixel location by camera 6

depth map.

Considering about abruptly drawn top view of 3D scene in figure-4.11, it is

obvious that R1 and R2 regions can not be viewed by camera 6. Although

R1 and R2 regions are seen by camera 4, it will be unnecessary to determine

where pixels in R1 regions are projected according to camera 5, because R1

region is not in the sight of camera 5 and these pixels will be unseen at the

end of rendering algorithm.

R2 resembles the occlusion regions according to camera 6. In this algorithm,

Ps (starting pixel of occlusion region filling candidates) and Pf (finishing

pixel of occlusion region filling candidates) are determined for each row on

image frame from camera 4 and corresponding pixels are rendered using

camera 4 input in order to fill holes that will occur at the end of rendering

algorithm for camera 6.

51

Figure 4.11: Arbitrarily drawn real scene top view

4.2.1.3.1 Determination of Ps

After applying simple edge detection algorithms in horizontal +x direction to

depth map of camera 4 frame, it is possible to determine exact location of Pe

as shown in figure-4.12. For each row, using a threshold value, after

determining Pe pixel location, it is possible to determine Ps location using

rendering algorithm which is explained in chapter-3 in details. Defining

Warp4-5 transformation as the mapping of pixel position from camera 4 to

camera 5;

Ps5 = Warp4-5{ Pe4 }

52

It is unnecessary to map pixels lying on R1 region that are visible to camera

4 but invisible to camera 5. This is due to make process faster for real-time

video systems. Similarly it is necessary to determine Pf4 pixel position in

order to give stop order for rendering process from camera 4.

Figure 4.12: Edge image of camera 4 depth map in vertical direction

4.2.1.3.2 Determination of Pf

This time, after applying simple edge detection algorithms in horizontal +x

direction to depth map of camera 6 frame, it is straightforward to determine

exact location of Pf for each row.

In this algorithm, it is not possible to directly pass location of Pf6 as the

finishing pixel of camera 4 occlusion filling candidate pixels. This is due to

rotation matrix consideration. Pf does not directly map to its corresponding

pixel for camera 4 frame. This time it is necessary to map corresponding Pf6

53

pixel to camera 4 frame. Considering rotation matrices of camera 6 and

camera 4, outline of this algorithm patch is:

1. Determine Pf6 using edge image of camera 6 depth map

2. Calculate relative inverse rotation matrix for camera 6 and camera 4

by,

 Reverse_Rotation = inv(Rotation_6) * Rotation_4

3. Find corresponding pixel location for Pf4 using Reverse_Rotation

matrix;

 Pf4 = Warp6-4{ Pf6, Reverse_Rotation matrix, Camera Coordinates }

In figure-4.13, simple edge image of camera 6 depth map is shown. Edge

image of camera 6 is drawn over edge image of camera 4 in order to depict

coordinate system differences of both camera depth maps.

Figure 4.13: Vertical difference of edge images for camera 6 depth map and
camera 4 depth map in +x dirrection

54

It is possible for algorithm developer to consider using look-up tables for this

algorithm. An array of finishing pixel values that are depending on depth

difference between background and object ahead and camera position value

can be pre-stored at the initialization phase in order to make algorithm much

faster by not dealing with rotation matrix multiplications and translation

matrix summation.

55

CHAPTER 5

FRAME ENHANCEMENT

In this chapter, enhancement of algorithm output frames using basic median

filtering techniques and a newly proposed method is discussed.

In this chapter, performance of suggested algorithm is explored using

Microsoft research group ballet sequence of camera 6 frame 0, camera 4

frame 0 and camera 5 frame 0 [19].

This chapter is mainly composed of two sections. In the first part, different

median filtering techniques are discussed. In the second part, a new solution

is suggested for separation and spread of pixels belonging to same object.

5.1 Median Filtering

Nonlinear image processing techniques have been developed in the last

decades, having the advantage of minimizing distortions of informative

characteristics [22]. Median filtering technique is one of these non-linear

image processing techniques that are widely used for salt and pepper noise

removal.

56

Median filtering techniques are based on the assumption of presence of salt

and peeper type of impulse noise [23]. Considering median filtering process

through input signal, each time a sample patch of input signal is examined

for each pixel position and its neighboring pixels in order to determine

whether the pixel belongs to input signal. Main idea lying behind median

filtering is the sort operations of pixels inside considered sample and

choosing the median pixel as output for that sample. The aim is to remove a

pixel if it is not a representative of signal, i.e., representing noisy part.

In figure-5.1, an example of median filtering process is depicted [23].

Figure 5.1: Median filter process

57

In this example original image is corrupted with 25% impulse noise and then

filtered by switching median filtering technique [23].

In this thesis, basic median filtering techniques are examined and an

improved fast median filtering algorithm is proposed.

5.1.1 Literature Review

Although morphological filters are very successful for filtering

monochromatic images, their applications for vector-valued images impose

difficulties and problems because of necessity for value-ordering step while

implementing them [22]. Each pixel has only one chromatic value generally

lying between 0 and 255 for monochromatic images, which gives the ease of

sorting operations within pre-defined range. Unfortunately, vector-valued

pixels are not easy to be sorted. This is because algorithm developer can not

directly sort images over sets of Mathematical Morphology operators for

multi-variate images because of angle and module information for each pixel

and there exist requirement of high computational techniques involving

correlation consideration between each vector components [22].

The main challenging problem in median filtering for each pixel having

RGB information is to find a way of fast sorting algorithm for real time

image processing systems. Moreover, it is not very surprising to wait for

unsorted input data because there exists no ”natural” and unambiguous order

in the data before processing [24]. There exist mainly three popular median

filtering methods, depending on sorting algorithms [24]. Considering given

{x1, x2, x3, … xN} be a set of N=s2 vectors within the sliding window W, the

considered median filter types are:

58

1. Vector Median Filter: This algorithm basically depends on distance

between each vector. Output of filter is the vector that has smallest total

distance to any other vector inside window.

2. Basic Directional Filter: This algorithm depends basically on the

angle measurement between each vector in the considered window W.

Output of filter is the vector that has smallest total angle between any other

vector inside window.

3. Directional Distance Filter: This algorithm depends basically on

combination of both directional filter and vector median filter techniques,

i.e., angle between vectors and distance together. Output of filter is the

vector that has smallest total angle and distance to any other vector inside

window.

59

Any of these methods can easily guarantee correct and robust sorting

operation. Unfortunately, it is not possible to apply any of these algorithms

for real time imaging systems unless parallel processing is available. This is

because of calculation complexity especially for angle detection, which

involves arccosine function, square root operations, multiplications and

additions within each window. It is suggested to use a look up table for

arccosine function; however square root operations should be performed,

because it is not always possible for a system to waste a memory space in

ranges of mega bytes.

In figure-5.2, V1 and V2 are presented in 2D.

60

Figure 5.2: Representation of two vectors in 2D

Gerasimos et al. proposed an adaptive circuitry that detects the existence of

impulse noise in an window and applies the median filter to that potion of

samples when necessary [25]. This algorithm prevents blurring of the image

while processing and provides the algorithm developer with integrity of edge

and detail information preservation [25]. In order to minimize computational

time, proposed digital hardware structure is performed with fully pipeline-

architecture with parallel processing which was implemented in FPGA [25].

Structure of the proposed filter is shown in figure-5.3 [25].

61

Figure 5.3: Parallel processing Median filter structure in FPGA

Obviously such a system requires definitely parallel processing in order not

to grab CPU for a long time while firstly doing region detection where

impulse noise appears and secondly applying median filter. The proposed

method also requires care about synchronization for real time processing.

This is due to reason that amount of impulse noise is not fixed for all image

frames, which would result in different time periods for each frame.

Another efficient method suggested by E. Stringa, A.Teschioni,

C.S.Regazzoni is to perform a transformation before sort operation, based on

the concept of space filling curves from multi-valued sets into scalar sets

[22]. A pre-processed transformation from vector pixels into scalars give

opportunity to algorithm developer in order to preserve module information,

62

which is represented by an appropriate norm, which additionally take into

consideration of angle information [22]. The transformation is based on

space filling curves an example of which is represented in figure-5.4 [22].

Figure 5.4: Transformation of RGB into space filling curves

This method consists of two steps. In the first step, a vector to scalar

transformation is performed. After this operation, morphological operation

such as erosion, dilation or median filtering can be performed as if the

transformed image is a single valued gray-level image. The problem is to

define a function that performs one-to-one map from Z to ZN after

morphological operation is performed, in order to return vectorial domain.

This method is summarized in figure-5.5

63

Figure 5.5: Filtering based on transformation from ZN to Z

Note that given pre-transformation, filter and inverse transformation can be

considered as nonlinear extra operations, causing additional sorting

operations, and controlling nearby pixels. Moreover additional memory

space is required in order to form a look-up table for forward and backward

transformation. Although this algorithm has negligible drawbacks, it can still

be applied because better solution can be implemented with scalar sort

operations rather than vectorial computations.

5.1.2 Hilbert’s Space-Filling Curves

In this thesis, median filtering is applied for frame enhancement after a

transformation from vectorial-space to scalar numbers. Modified version of

Hilbert space filling curves is applied before sort operations.

Hilbert’s space-filling curves start from first order filling curves; the order

increases as vector dimensions and vector scale increases. Figure-5.6 shows

first, second and third order 2D SFC (Space-filling curvers), respectively

[26].

64

Figure 5.6: First, second and third order 2D SFC

Figure-5.6.a shows a transformation of <0,0> 0, <0,1> 1, <1,0> 2,

<1,1> 3. Similarly, figure-5.6.b shows a transformation of <0,0,0> 0,

<0,0,1> 1 …….. <1,1,1> 15.

This process can be continued to infinity, which guarantees a unique infinite

sequence of nested squares which for which there exist unique representation

[26].

In practice for many applications, algorithm developers need higher order

curves which imposes requirement of some algorithmic procedures for the

mapping which, given coordinates, produces the ordinal number and vice

versa [26].

In chapter-6, transformation from vectorial space to scalar space is explained

for image formation algorithm. This algorithm is required not only for

display utilities of OMAP3530 processor but also for utilization of a

transformation from 3D vector-space to scalar-space. After the image

65

formation for display units of processor, modified median filtering algorithm

is implemented.

5.1.3 Proposed Median Filter

In this thesis, considering frame rate requirements for real-time video

system, basic median filtering techniques are reformed in the sense of

windowing shape and sorting algorithm.

i) Sorting Algorithm

Sorting algorithms require basic additions and subtractions in N2 levels for N

numbers. This in turn brings about loss of time and slower frame rates.

Rather than using a sort operation for each pixel inside a window, checking

difference between each pixel and the pixel sitting in the middle of window

is considered to be more sufficient which requires subtractions in N-1 levels

for N numbers.

A new concept on median filtering is proposed in this thesis. This new

algorithm will basically depend on signing pixels which are considered to

belong to noisy part rather than input signal. In this basic algorithm, similar

to median filtering; a non-linear operation on image is performed, a 3 sample

window is used.

Initially a threshold value is chosen. If the center pixel inside the window is

greater or less than other pixels by threshold value, it is replaced by the left

pixel. An example is given below:

x = [2 80 6 5 3 5 90 6]

y[1] = improved_med [2 2 80] = 2 // no signed pixel

66

y[2] = improved_med [2 80 6] = 2 // 80 is signed and replaced by

left pixel

y[3] = improved_med [2 6 3] = 6 // no signed pixel

y[4] = improved_med [6 5 3] = 5 // no signed pixel

y[5] = improved_med [5 3 5] = 3 // no signed pixel

y[6] = improved_med [3 5 90] = 5 // no signed pixel

y[7] = improved_med [5 90 6] = 5 // 90 is signed and replaced by

left pixel

y[6] = improved_med [5 6 6] = 6 // no signed pixel

Finally, output of this non-linear filter is given to be:

y = [2 2 6 5 3 5 5 6]

Obviously elements 80 and 90 are far away from the sequence that are

signed as impulse noise and these elements are removed with the element

sitting on the left of noise element. For smoothness, averaging left and right

pixel can be considered which would result in an output of:

y = [2, 4, 6, 5, 3, 5, 5.5, 6]

In figure-5.7, removal of impulse noise from input sequence is represented.

67

Figure 5.7: Impulse noise removal from input sequence

ii) Window Shape

Rather than using an NxN window, in order to accelerate algorithm basic

3x3 window shape is modified as shown in figure-5.8.

68

Figure 5.8: Modified window shape examples

In figure-5.8.a, basic 4x3 median filter window is depicted. This window is

firstly modified by removing pixels on the corners so that speed of modified

sorting algorithm is doubled in the sense of noise check, as shown in figure-

5.8.b. This modified window type is not good for images that involve cross-

lines.

Figure-5.8.c depicts second modified median window which is not suggested

for the images that involve straight-lines.

In figure-5.9, using median filter with window size of 3x3, impulse noise is

eliminated. Edges are smoothed and details of image are not clear after

applying given median filter.

69

Figure 5.9: 3x3 window shape median filter output

In figure-5.10, using suggested window shape, with window size of 3,

impulse noise is eliminated by classical median filtering technique. Edges

are not smoothed and details of image are much clearer after applying given

median filter.

Figure 5.10: Modified window shape median filter output

70

In figure-5.11, using suggested window shape and modified sorting

algorithm, with window size of 3, impulse noise is eliminate. Edges are not

smoothed.

Figure 5.11: Modified median filter output

As inferred from figure-5.9, figure-5.10 and figure-5.11, best solution in

impulse noise removal is to use basic median filtering. However, considering

processing time for both of suggested modified median filtering techniques,

it was observed that these two methods are much faster than 3x3 window

size median filter. Moreover, edges are not smoothed.

SNR (signal-to-noise ratio) is a measure for quality of reconstructed image at

the end of algorithm, which depends on a basic idea of computing a single

number that reflects output signal quality [30]. Although this traditional

concept tells more on output quality, it is not directly equal to human eye

subjective perception [30]. It is better to use PSNR (peak signal-to-noise

ratio) in db for measuring quality of constructed images.

71

Given A(i,j) as the NxN source image and a(i,j) as the NxN output image,

firstly MSE (mean squared error) is calculated as:

Finally, calculating RMSE as square root of MSE, PSNR is given to be:

PSNR for basic median filter is 72,377 db, for modified window shaped

median filter is 66,850 db and for modified sorting algorithm is 53,007 db.

5.2 Post Processing

After application of rendering algorithm for a fixed virtual camera position,

it is observed that there occur region dehiscence on the objects that are near

to base camera. Such opening on the objects gives rise to visibility of

background through the object that is near to base camera. Moreover, once

virtual camera position gets far away from base camera, such openings and

as a result deformations on images increase.

This problem occurs due to insufficient pixel amount that represent parts of

objects on image relative to camera position and angle, in other words,

points, which are overlapped by neighboring points in real world according

to base camera position, are the main reason of pixel deficiency. Considering

72

objects on a scene, according to camera position and relative orientation of

objects with real camera, it is possible to observe that amount of pixels are

increased as expected, which is depicted in figure-5.12 and figure-5.13.

Figure 5.12: Pixel count in original frame from camera 4

73

Figure 5.13: Pixel count in original frame from camera 6

As seen in figure-5.12 and figure-5.13, camera 6 object pixel number is less

than the one for camera 4 for which object view angle is closer to right

angle. When these pixels are rendered with image-based rendering

algorithm, there occur holes between neighboring pixels which are filled by

background pixels as expected.

74

Figure 5.14: Background pixel observation through dehiscence region

As observed from figure-5.14, there exists dehiscence on ballet object in the

scene. Through those regions, it is possible to see spread of background

pixels which become more disturbing on video sequences once those frames

are played on a screen.

Object dehiscence problem after warping algorithm results in spread of

background pixels among nearby object image because of change in camera

view angle with respect to object. This problem is observed more evidently

for virtual view points far away from base camera. In this section of frame

enhancement chapter, a new robust algorithm for object dehiscence problem

is proposed.

75

5.2.1 Proposed Algorithm Outline

In this algorithm, the aim is detecting regions on background that are

possibly overlapped with object image patches after image-based rendering

algorithm. After detecting these regions, they will either be ignored in order

not to give rise for spread of background pixels on object image patches, or

their rendered regions will be deleted and re-rendering is done only for

nearby object.

For a given virtual camera position, that is on the right of base camera and

determined by user, considering camera-6 input frame as the base camera

input and camera-4 input frame to be auxiliary frame for occlusion region

filling, this algorithm can be outlined in 4 steps as follows:

1. Apply image-based warping algorithm for input frame of camera-6 as

described in chapter-3.

2. Determine start point of regions on the background that will be

overlapped by objects near to the base camera, using camera-6 input frame

and edge image of its depth map.

3. If pixel scan is from left to right, delete all warped pixels from

overlapped background pixels, else if pixel scan is from right to left, jump to

the starting pixel of overlapping region.

4. Continue image-based warping algorithm.

5.2.1.1 Overlapped Background Region Determination

Overlapped background region is mainly determined using edge image of

depth map for base camera frame in +x direction and input frame.

76

Considering camera 6 frame 0 depth map, scanning column by column from

left to right, it is possible to understand starting and finishing pixel positions

for background regions that are possibly going to be overlapped with an

object image that is near to the base camera.

Edge image for camera input frame 0 depth map is given in figure-5.15. This

edge image is obtained simply by detecting positions of discontinuities from

left to right.

Figure 5.15: Edge image in +x direction of camera 6 depth map

Considering about abruptly drawn top view of 3D scene in figure-5.16, it is

clear that R1 region is visible for real base camera center C6 and virtual

camera center C5. Left of the object is visible for base camera until Pf.

Although R2 region is visible to camera 6, it is going to be overlapped by the

77

object in front of virtual camera center C5 after application of warping

algorithm.

Figure 5.16: Abruptly drawn top view of ballet scene

Because the number of pixels belonging to object is limited with respect to

base camera in comparison with virtual camera position, holes between

neighboring pixels are going to be filled by background pixel, e.g. Pb is seen

by C5 although it should be overlapped by object. This is the reason why

algorithm developer should mark background pixels that should not be

rendered in order to prevent object dehiscence.

78

i) Pixel Scan from Left to Right

If rendering algorithm is applied by scanning rows from left to right, it is not

possible to determine exact position of Ps in advance. Rendering algorithm is

applied and discontinuities on depth map with an initially determined

threshold value are checked simultaneously. At the instant of discontinuity

detection, which refers to Pd position, rendered pixel for Pd is determined on

the output which maps exactly to the same point of Ps. Specific output

position belonging to Ps is marked. Similarly pixel before Pd which is

exactly Pf is rechecked and its rendered position on output image is marked.

Finally, output row between two marked positions is deleted.

ii) Pixel Scan from Right to Left

If rendering algorithm is applied by scanning rows from right to left, it is

possible to determine exact position of Ps in advance. Rendering algorithm is

applied and discontinuities on depth map with an initially determined

threshold value are checked simultaneously. At the instant of discontinuity

detection, which refers to Pd position, rendered pixel for Pd is determined on

the output. Starting from this point, algorithm differs with the one for pixel

scan from left to right.

Continuing rendering algorithm with pixel Pf, it is clear that rendered pixel

position will have greater +x value with respect to Pd, therefore pixels

outputs are ignored until rendered output position has smaller +x value with

respect to Pd, which is the next pixel on the left of Ps.

79

In this thesis, pixel scan form left to right algorithm is applied. In figure-

5.17, ignored background pixels are clearly shown at the output of rendering

algorithm.

Figure 5.17: Background purification with the suggested algorithm

A closer look for given image is shown in figure-5.18.

80

Figure 5.18: Closer look to purified background pixels on object

81

CHAPTER 6

SYSTEM DESCRIPTION

In this chapter, detailed information on system, its components and

hardware/software architecture is given. Main board, its algorithmic flow

charts, daughter board and algorithmic flow charts are introduced. Finally

performance analysis of suggested algorithms on OMAP cores is given.

6.1 System Architecture

In this thesis, OMAP3530 Evaluation Module Board (EVM) is used as the

main processor board for realization of algorithm and exploring capabilities

of double core processor OMAP3530. An additional daughter card is

designed for control of view angle by GYRO sensor. Data flow between

main board and daughter card is done through board-to-board connectors

provided by EVM board. In figure-6.1, system hardware setup is shown.

82

Figure 6.1: System hardware setup

A computer is used for monitoring, controlling embedded operating system

and starting applications. Linux (Kernel-2.6.22) is used as the embedded

operating system and applications are developed by OMAP35x_SDK_1.0.2

(arm tool-chain) together with DVSDK_3_00_00_29 provided by Texas

Instruments. Operating system is Linux UBUNTU.

83

6.1 Hardware Architecture

In this thesis, one main board of OMAP35x Evaluation Module and two

designed daughter cards are used. EVM board is used for realization of

algorithm and used as main processing unit. First daughter card is designed

for view point calculation in order to interrupt main board and transmit view

point once user changes it either by touch-screen, keyboard or gyro sensor.

Second daughter card consists of gyro sensor independent from first

daughter card.

In this thesis, single Z-axis (yaw rate) response gyro sensor is used. In order

to sense angular movement of system in correct direction, this card is

designed independently from first daughter card and kept perpendicular to

EVM board and first daughter card. If 3-axis response gyro sensor was used,

this perpendicular position requirement would no longer be necessary.

In this chapter, detailed information on system boards is given.

6.1.1 EVM Board

This board is developed by Mistral Solutions for exploring and developing

both DSP and ARM applications on OMAP35x processors. Processor on the

board is monitored and controlled by Hyper Terminal. In figure-6.2, EVM

functional block diagram is given [4].

84

Figure 6.2: EVM functional block diagram

In figure-6.3, EVM board top view is shown [4].

85

Figure 6.3: EVM board top view

6.1.2 Daughter Cards (EVM Expansion Board)

In this chapter two daughter cards are explained in details. For simplicity,

both of daughter cards are interpreted together in total.

This board is developed and designed for exploring GYRO sensors, FPGA

(SPARTAN family with DSP slices) and developing applications together

with OMAP3530 processor. In figure-6.4, functional block diagram of this

card is given.

86

Figure 6.4: Functional block diagram of daughter cards

Figure-6.5, shows front view of main daughter card.

Figure 6.5: Front view of main daughter card

Figure-6.6, shows back view of main daughter card.

87

Figure 6.6: Back view of main daughter card

Figure-6.7, shows front view of gyro daughter card.

Figure 6.7: Front view of gyro card

88

6.1.2.1 FPGA

SPARTAN-3A family FPGA having 84 Extreme DSP slices is used. These

DSP slices perform multiply and accumulate (MAC) operations for camera

position detection algorithm according to GYRO sensor input. This IC

communicates through 120 pin main board-to-board connector with

OMAP3530 once camera position changes and provides new position

information for main warping algorithm. System mode selection is done

according to keypad input. It performs communication with computer for

system monitoring by Hyper Terminal for debug operations.

This IC has 4 blocks of I/O pins, voltage level of which are controlled by

voltage inputs of I/O blocks. OMAP communication block is driven with

1.8V while other three blocks are driven by 3.3V.

6.1.2.2 DSP

In this design, TMS320VC5509A Fixed-Point is used. This IC is used as the

communication processor of daughter card. It is used mainly for necessary

debugging operations and performs input / output operations between

computer and daughter card.

6.1.2.3 GYRO

This sensor is a complete angular rate digital gyroscope with 14-bit

resolution from ANALOG devices. Through SPI port, this IC provides

access to the rate sensor, an internal temperature sensor, and two external

analog signals (using internal ADC). The digital data available at the SPI

port is proportional to the angular rate about the axis that is normal to the top

surface of the package. Therefore second daughter card is designed for this

89

IC in order to keep this IC perpendicular to main board. This IC operates on

the principle of a resonator gyroscope. There are two poly-silicon sensing

structures containing a dither frame that is electro statically driven to

resonance. This generates the necessary velocity element to produce a

coriolis force while rotating. At both of the outer extremes of each frame,

orthogonal to the dither motion, are movable fingers that are placed between

fixed pickoff fingers to form a capacitive pickoff structure that senses

coriolis motion. Figure-6.8 shows rate sensitive axis.

Figure 6.8: Rate sensitive axis of gyro sensor

6.1.2.4 SRAMs

There are 3 1Mb SRAMs on daughter card for possible image storage and

debug operations.

6.1.2.5 Boot Sector Flash ROM

This parallel interface memory IC holds boot code of DSP.

6.1.2.6 Serial Flash Memory

This serial interface memory IC holds boot code of FPGA.

90

6.2 SOFTWARE ARCHITECTURE

This chapter gives detailed information on block algorithms that are used for

realization of the thesis.

FPGAs are generally not present inside hardware block of a hand-held

device. This is the reason why application software runs mostly on

OMAP3530 processor. Software architecture of the system is mainly

consisted of 5 algorithm blocks namely:

1. Image formation Home PC

2. Intermediate view reconstruction OMAP

3. Occlusion Handling OMAP

4. Frame Enhancement

i. Median filtering OMAP

ii. Object Dehiscence Removal OMAP

5. View point determination

i. Gyro FPGA

ii. Key-pad OMAP

iii. Touch-screen OMAP

6.2.1 Image Formation Algorithm

EVM board Linux provides with the following features [5]:

• LCD display interface at VGA resolution (480*640)

• TV display interface at NTSC resolutions on Video Pipelines (only S-

Video out is supported, composite out is not supported)

• DVI digital interface at 720P and 480P resolution.

• Graphics pipeline and two video pipelines. Graphics pipeline is

supported through fb-dev and video pipelines through V4L2

91

• Supported color formats: On OSD (Graphics pipeline): RGB565,

RGB444, and RGB888. On Video pipelines: YUV422 interleaved, RGB565,

RGB888, RGB565X

• Configuration of parameters such as height and width of display

screen, bits-per-pixel etc.

• Destination and source color-keying on Video pipelines through V4L2

• Setting up of OSD and Video pipeline destinations (TV or LCD)

through sysfs

• Buffer management through memory mapped and user pointer buffer

exchange for application usage (memory mapped)

• Rotation - 0, 90, 180 and 270 degrees on LCD and TV output

• Mirroring (except for RGB888)

• LCD backlight control through sysfs interface

• ARGB pixel format on Video2 pipeline and RGBA format on graphics

pipeline and global alpha blending

Such features provide user with various applications on image processing,

different display opportunities and memory saving.

There exist many standards for RGB (red green blue) pixel data scaling from

RGB332 to RGB88 of which numbers for standard correspond to the number

of bits for each color components of each pixel [6]. These numbers are

aligned respectively, i.e., considering RGB565; it is a 16-bit pixel standard

having 5 bits for red, 6 bits for green and 5 bits for blue.

Increment in the number of bits per pixel gives rise to increase in color depth

and levels of blending exponentially, therefore greater number of bits per

pixel increases the color depth and quality, however, this will in turn results

in a need of greater amount of space in the memory for storage of each frame

in a video stream [6]. Moreover, considering the fact that true color can also

92

be represented after blending primary colors from each pixel as represented

in figure-6.9, it is sensible to convert RGB888 pixel format to RGB565 [6].

Figure 6.9: Mapping true color to RGB565 from RGB888

In this thesis RGB888 24 bit bitmap files are firstly converted to RGB565 16

bit file format, which is default configuration of display driver. Aim is to

save memory and consider each pixel by only one “short” variable, which is

due to algorithms used for frame enhancement. In chapter-5, this

requirement is explained in details.

6.2.2 Intermediate View Reconstruction

This part of software constitutes main step in realization of user-defined

view point video display algorithm. This algorithm is implemented on

OMAP3530 microprocessor. Intermediate views according to a user defined

view points are constructed using base camera input frames and their

corresponding depth maps.

93

Using same algorithm, another intermediate view is constructed using

second camera input frames and their corresponding depth maps. This is due

to fill occlusion regions that are occurred at regions visible to virtual camera

position but invisible to base camera.

In order to achieve a real time operating display system, this algorithm is

optimized. Detailed information on optimization tips is given in chapter-3.

6.2.3 Occlusion Handling

Occlusion handling algorithm is the step applied after intermediate view

reconstruction algorithm on second camera input frames.

Although some regions are visible for base camera view point, they can be

invisible for virtual camera. Intermediate view reconstruction algorithm

handles this problem, because invisible regions are overlapped by objects

that are nearer to virtual camera position. However, once a region on

background is invisible for base camera but visible for virtual camera

position, occlusion handling algorithm is applied on second camera input

frames in order to grab additional information of such kind of regions on

image.

Occlusion handling algorithms are applied when needed. Application of

intermediate view reconstruction for second camera input frames is

unnecessary. On the contrary, this algorithm detects regions on second

camera input images that are invisible for base camera but necessary for

virtual camera position. This is due to speed up software blocks in order to

construct a real time operating display system.

94

6.2.4 Frame Enhancement

These algorithms are based on mainly two stages at the end of intermediate

view reconstruction operation. Due to impulse noise occurred at the end of

intermediate view reconstruction algorithms, dealing with such problems is

explored in details and Median filtering is proposed in the first stage of

frame enhancement algorithms. Many proposed median filtering techniques

are compared and contrasted. In chapter-5 detailed information on median

filtering is given.

Due to lack of pixel amounts on objects that are near to the base camera,

after view construction method, separation and spread of pixels belonging

same column and having same depth values is observed. This resulted in a

mixed form of objects that are near to base camera with background pixels.

In figure-6.10, these kinds of conditions are represented.

Figure 6.10: Object dehiscence representation

95

In the second stage of frame enhancement algorithms, background pixel

removal from such kind of outputs is discussed in details.

6.2.5 View Point Determination

In this thesis, 3 different methods are used for view point calculation. Inputs

for the determination algorithm basically state algorithm type. Different

types of inputs for algorithm block are used for pleasure of users. Moreover,

variation of view point determination algorithm makes this application

program integrate to various hand-held devices, having gyro sensors,

touchpad LCD screens or keypad.

6.2.5.1 Gyro Sensor Algorithm

This algorithm is based on calculation of view point relative to an initially

assigned position by considering angular rate once user flips-flops the

system. Algorithm is performed in FPGA. High speed multiplications,

divisions, additions and subtractions are performed by DSP slices that are

hardly implemented inside FPGA. Availability of 84 DSP slices became the

reason of Spartan XC3SD1800A FPGA family choice [7].

Gyro sensor (ADIS16060) is a yaw rate gyroscope with an integrated serial

peripheral interface, which features an externally selectable bandwidth

response and scalable dynamic range [8]. The SPI port provides access to the

rate sensor, which provides information on angular rate about Z-axis that is

normal to the top surface of package [8]. It is possible to increase angular

rate measurement range by adding external resistor to the system, which is

inversely proportional to the rate range [8]. In this thesis default rate range is

used.

96

In this algorithm, an SPI driver is implemented inside FPGA in parallel,

which continuously provides control and rate data information to the main

algorithm block inside FPGA. In figure-6.11, timing diagram for angle rate

information read cycle is given [8].

Figure 6.11: Timing diagram for SPI data read

MSEL1 is the data select pin of IC, where SCLK is the transfer clock and

DOUT is the available angular rate information. In figure – 6.12, control

operation cycle is given [8].

Figure 6.12: Timing diagram for SPI device control

97

Data provided by the sensor is in an offset-binary format, meaning that the

ideal output for a zero rate condition is “8192” codes [8]. If the sensitivity is

equal to +0.0122°/sec/LSB which is default sensitivity rate, considering a

rate of +10°/sec as an example, results in a change of 820 in the output, of

which digital rate output is “9012” [8]. Similarly, once an offset error of -

20°/sec is introduced, the output is reduced by 1639 codes, resulting in a

digital rate output of 6552 codes as expected [8].

Angular rate information is read continuously by the SPI driver implemented

on FPGA. Considering mechanical boundaries of system movement by a

user, there is almost no limitations on data transfer and algorithm

performance.

Once rate information is available, FPGA calculates new view point

continuously once rate is not reversed. This is due to the fact that system

continues its movement with a constant angular velocity. Therefore, in this

algorithm once new rate information is read, the algorithm assumes

continues movement with the given rate until a reverse direction rate is

acquired. In figure-6.13, this system is represented [9].

98

Figure 6.13: Gyro controlled virtual camera orbit

Considering θ to be angular displacement;

where natural units of θ is in radians [10]. Considering Z – axis to be the

direction about which rigid system rotates;

where natural units of w is in radians / seconds [10]. Finally angular rate,

(angular acceleration) is given to be;

99

where natural units of α is in radians / seconds2 [10]. This algorithm has

angular rate information for distinct time periods. Assuming 0 radian point at

start instant, this algorithm basically determines change in position for

distinct periods of time and finally giving an output of new position by

adding previous position.

In general, many companies and driver developers prefer EMIF (external

memory interface) communication between FPGAs and processors. This is

due to high frequency data interchange considerations. However, in this

thesis, i2c communication protocol is preferred because there is no need for

huge data exchange. At the instants when main processor ask for view point

information, FPGA sends new position data with the given timing diagram in

figure-6.14 below [11].

Figure 6.14: I2C port communication timing diagram

100

Detailed information on processes running on FPGA is given in appendix.

6.2.5.2 Keypad Algorithm

EVM module supports 3x5 keypad as one of the user interface. In this thesis,

this feature is used for view point calculation. Once user press left shift key,

view point is changed to the left smoothly until user releases the button and

once user insists on pressing left shift button, view point is changed until left

end is reached. Similarly, pressing right shift key changes view point to the

right smoothly until right end is reached.

6.2.5.3 Touch Screen Algorithm

EVM module supports touch-screen with 4 wire touch-screen controller of

TSC2046, which is interfaced with main processor OMAP through McBSP

port (multi-channel buffered serial port) [4]. Using touch-screen drivers

provided by Linux-2.26 embedded operating system, it is possible to read

touch-screen information.

In this thesis, this feature is used for view point update. Once user touches

the screen, view point is changed to the left end firstly and than backward

until the right end is reached and finally comes to the initial point. Changes

in view point occur smoothly. This process is depicted in figure-6.15.

101

Figure 6.15: Touch-screen controlled virtual camera orbit

6.3 PERFORMANCE of ALGORITHMS on OMAP Cores

In this chapter, performance analysis of algorithms on OMAP cores is

performed.. Algorithms were applied on OMAP3530 processor using both

cores ARM and DSP separately. Both of the cores are not used

simultaneously due to memory collision problem. Both cores perform

memory read and write on same bus which causes a need of additional

application that controls memory reaches from cores, in kernel space. Such

applications are directly related to transferring one or more whole blocks

into cache memories by block drivers and devices [29]. In this thesis,

character drivers and devices which implements input and output flows are

explored [28].

102

Algorithm performances for occlusion handling and intermediate view

reconstruction are given in table-6.1.

Core

Algorithm

Fps

Occlusion

included?

Arm only Floating point,

No OcH, FrE

2 / 2 ~ 1

Yes

Dsp only Floating point,

No algorithm

0.66 / 2 ~

0.33

Yes

Dsp only Fixed point,

No OcH, FrE

12 No

Arm only Fixed point,

No OcH, FrE

18 No

Arm only Fixed + floating p.

No OcH, FrE

7,2 – 7,5 Yes

Arm only Fixed + floating p.

With OcH, FrE

11,5 - 12 Yes

 OcH : Occlusion handling algorithm

 FrE : Frame enhancement algorithm

 Table 6.1: Core performance table

Although, using two cameras requires concern of Rotation matrix as

described in chapter-3, using suggested algorithm resulted in a very efficient

method for image warping.

Considering algorithm complexity as basic performance measure for the

system; given an N x M input frames, suggested algorithm complexity is in

the order of N x M2.

103

CHAPTER 7

CONCLUSION

In this thesis, view rendering system for hand-held devices with gyro sensors

and touch-screen peripheral, is proposed and implemented. The system is

applied on OMAP35x EVM board with touch-screen LCD. Two daughter

boards are designed and used together with EVM board for gyro sensor

application and future work.

First extension board is designed for calculation of view point for

intermediate view reconstruction continuously, in order to provide users with

view opportunity from different angles and positions. This extension card is

consisted of SPARTAN family FPGA with DSP slices for calculation

purposes, TMS320VC5509A fixed point DSP for control of the system and

additional calculation unit for future purposes, Ethernet controller for

communication purposes, SRAMs for memory blocks, touchpad for user

interface, LEDs for debugging and UART console for monitoring and

controlling purposes. This extension board is designed for future work.

Second extension board is designed as a daughter card for first extension

board. This board is consisted of only gyroscope sensor. ADIS16060 from

Analog devices is used as single axis response. This additional board is

designed in order to align Z-axis perpendicular to EVM board for user

104

pleasure. This card is connected with an extension connector to first daughter

card perpendicularly. This problem can be solved by using 3-axis response

gyroscope.

Software architecture of the system is mainly consisted of 5 algorithm blocks

as image formation, intermediate view reconstruction, occlusion handling,

frame enhancement, and view point determination. Image formation block is

implemented on UBUNTU Linux operating system and a pre-processing is

done on image frames in order to save memory and consider each pixel by

only one “short” variable, which is due to algorithms used for frame

enhancement. Intermediate view reconstruction algorithm is optimized for

real time video system purpose. Optimization steps are cleared and

successfully examined on designed hardware. Occlusion regions are filled

successfully by the proposed fast occlusion handling algorithm block after

construction of intermediate view. Frame enhancement block is applied as

two stages of which first stage is devoted for removal of impulse noise

occurred at the end of view reconstruction and second stage is devoted for

removal of background pixels that are spread over objects near to camera.

Finally view point determination block is realized by 3 methods using gyro

sensor, keypad and touch screen facility of EVM board.

7.1 Discussion and Future Work

In this thesis, 256x340 image frames are used for robust intermediate view

reconstruction implementation for which view point is arbitrarily determined

by user. Up to 12 frames/second are reached which is a very satisfactory

result for hand-held devices.

105

This application is a very entertaining activity as observed after realization

of algorithms and watching ballet sequence with depth maps provided by

Microsoft research group Sing Bing Kang [19].

These two facts, i.e. using 256x340 image frames and being tied to a

research group for video sequences with depth maps, are assumed to be

handicaps of proposed method. Although very satisfactory and robust

solutions are provided and implemented successfully for hand-held devices,

results would not be very pleasant when our methods were applied for a

high-definition image frames. This is due to the fact that processor speed

would not be sufficient. Moreover it is not always possible to find video

frame sequences with corresponding depth maps for two calibrated cameras.

Nowadays, extracting 3D screen structure from an amount of available 2D

image content is very popular and a considerable amount of progresses has

been made on this issue [18]. Therefore, it is possible to extract depth maps

from at least 2 synchronized cameras in order to construct a virtual camera

scene. As a result, first handicap can be solved for a mechanically tied and

fixed 2 camera system in order to obtain both depth maps and their

corresponding image frames. However, this would in turn bring about

additional processing blocks for computational system.

Parallel processing is an obligatory solution not only for real time rendering

systems of higher resolution image frames but also for additional processing

blocks detecting 3D screen information. Moreover, synchronization problem

for camera input frames can also be solved by controlling cameras in

parallel. And it is an inevitable fact that parallel processing is best realized

on FPGAs or CPLDs.

106

As a future work, our first aim is implementing all software blocks in

SPARTAN family FPGA with DSP slices and using either OMAP3530 or

TMS320VC5509A fixed point DSP only as a display unit. This is the main

reason why first extension card includes additional blocks.

Secondly, we are aiming to construct a fixed and mechanically tied 2 camera

system in order to obtain high resolution synchronized image frames. After

an intensive research and experiments on 3D screen structure extraction from

2 calibrated images, our aim is to implement suggested algorithms on FPGA

on first daughter card. Finally, binding these blocks together on parallel

processing unit will provide us with an intermediate view reconstruction

system for high resolution real time display systems.

107

REFERENCES

[1] Y. Bediz, “Automatic Eye Tracking and Intermediate View

Reconstruction for 3D Imaging Systems”, MSc Thesis, Middle East

Technical University, Ankara, Sept. 2006

[2] S. Ince and J. Konrad, "Occlusion-aware view interpolation",

EURASIP J. Image and Video Process., vol. 2008, Article ID 803231, 15

pages, 2008, doi:10.1155/2008/803231

[3] Paul E. Debevec, George Borshukov, and Yizhou Yu, “Efficient

View-Dependent Image-Based Rendering with Projective Texture-

Mapping”, 9th Eurographics Rendering Workshop, Vienna, Austria, June

1998.

[4] “OMAP35x Evaluation Module Hardware User Guide”, Mistral

Solutions Pvt. Ltd., Rev. 1.2 May 2008

[5] “OMAP35x EVM Linux PSP User Guide 1.0.2”, Texas

Instruments Incorporated, Published 06 OCT 2008

[6] Juan Gonzales, Neal Frager, Ryan Link, "Digital Video Using

DaVinci SoC", Texas Instruments, SPRAAN0 - June 2007

[7] "Spartan-3A DSP FPGA Family: Data Sheet", XILINX, DS610 -

June2, 2008

[8] "Wide Bandwidth Yaw Rate Gyroscope with SPI (ADIS16060)",

ANALOG DEVICES, 2008

108

[9] Wikimedia,

http://upload.wikimedia.org/wikipedia/commons/f/fd/Multicamera.PNG,

visited 1 April 2009

[10] D. Smith, "Physics I for Engineers Lecture Notes Chapter 9",

Embry-Riddle Aeronautical University, Prescott, 2009

[11] "OMAP3530/25 Applications Processor", Texas Instruments,

SPRS507B-February-2008-Revised July 2008

[12] "Architecture and Implementation of the ARM® Cortex™-A8

Microprocessor", ARM Ltd., October 2005

[13] Texas Instruments OMAP™ Family of Products, "OMAP35x

Applications Processor IVA2.2 Subsystem Technical Reference Manual",

Texas Instruments, September 2008

[14] Texas Instruments OMAP™ Family of Products, " OMAP35xx

Applications Processor Interprocessor Communication (IPC) Module

Technical Reference Manual", Texas Instruments, February 2008

[15] Texas Instruments OMAP™ Family of Products, “Codec Engine

Application Developer User's Guide Technical Reference Manual”,

SPRUE67D - September 2007

[16] Xiaoying Li , Baoquan Liu , Enhua Wu, “Double projective

cylindrical texture mapping on FPGA”, Proceedings of the 2006 ACM

international conference on Virtual reality continuum and its applications,

June 14-April 17, 2006, Hong Kong, China

109

[17] A. A. Alatan, “METU EE701 Lecture Notes”, Middle East

Technical University, Ankara, 2005

[18] E.Vural, "Robust Extraction of Sparse 3D Points from Image

Sequences", MSc Thesis, Middle East Technical University, Ankara, Sept.

2008

[19] Microsoft Research,

http://research.microsoft.com/vision/InteractiveVisualMediaGroup/3Dvideo

Download/, visited 2 September 2008

[20] Ying-Chieh Chen, Chun-Fa Chang, Zong-Nan Shen, Yong-Min

Chen and Hong-Long Chou, “Image-Based Model Acquisition and

Interactive Rendering for Building 3D Digital Archives”, Proceedings of

2005 International Conference on Digital Archives Technologies (ICDAT

2005).

[21] William R. Mark , Leonard McMillan , Gary Bishop, “Post-

rendering 3D warping”, Proceedings of the 1997 symposium on Interactive

3D graphics, p.7-ff., April 27-30, 1997, Providence, Rhode Island, United

States

[22] E. Stringa, A.Teschioni, C.S.Regazzoni , "A classical

morphological approach to color image filtering based on space filling

curves", IEEE Non Linear Signal and Image Processing Conference,

NSIP99, Antalya, Turkey, June1999, pp.351-354.

[23] R. Pandey, “An Improved Switching Median Filter for Uniformly

Distributed Impulse Noise Removal”, Proceedings of World Academy of

110

Science, Engineering and Technology Volume 28, April 2008, ISSN 2070-

3740

[24] E. Dinet, F. Robert-Inacio, “Color Median Filtering: a Spatially

Adaptive Filter”, Proceedings of Image and Vision Computing New

Zealand, 2007, pp. 71–76, Hamilton, New Zealand, December 2007

[25] Gerasimos Louverdis, Ioannis Andreadis and Antonios Gasteratos,

"A New Content Based Median Filter", 12th European Signal Processing

Conference (EUSIPCO 2004), 6-10 September 2004, Vienna, Austria, pp

1337-1340

[26] K Lawder and P J H King, “Using Space-filling Curves for Multi-

dimensional Indexing”, School of Computer Science and Information

Systems, Mar. 2001, 16 pages

[27] Hong-Chang Shin, Yong-Jin Kim, Hanhoon Park, and Jong-Il Park,

"Fast View Synthesis using GPU for 3D Display", IEEE Transactions on

Consumer Electronics, Vol. 54, No. 4, NOVEMBER 2008

[28] Michael Opdenacker, Thomas Petazonni, “Embedded Linux Kernel

and Driver Development”, Free Electrons, 3 January 2009

[29] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman,

“LINUX DEVICE DRIVERS”, O’Reilly Media, Inc., Third Edition, pp. 6-7,

USA, February 2005

[30] Regents of University of California, Berkeley

http://bmrc.berkeley.edu/courseware/cs294/fall97/assignment/psnr.html,

visited 21 June 2009

111

APPENDIX A

FPGA PROCESSES FLOW CHARTS

FPGA algorithm basically consists of 3 main parts, namely, gyro-read process,

low-pass filter and virtual point detection algorithm and i2c communication

with OMAP3530 processor.

i) Gyro - Read Flow Chart

112

Figure A.1: Gyro-read process flow chart

113

ii) Virtual Point Detection Flow Charts

Figure A.2: Virtual point detection flow chart based on look-up table

114

A second method of virtual point detection based on LED position is given in
figure-A.3

 Figure A.3: Virtual point detection flow chart based on LED positions

115

iii) I2C Communication with OMAP3530

Figure A.4: I2C communication protocol part 1

116

Figure A.5: I2C communication protocol part 2

117

Figure A.6: I2C communication protocol part 3

