
A CONFORMANCE AND INTEROPERABILITY TEST SUITE FOR TURKEY’SNHIS
AND AN INTERACTIVE TEST CONTROL AND MONITORING ENVIRONMENT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

AL İ ANIL SINACI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2009

Approval of the thesis:

A CONFORMANCE AND INTEROPERABILITY TEST SUITE FOR TURKEY’S NHIS

AND AN INTERACTIVE TEST CONTROL AND MONITORING ENVIRONMENT

submitted byAL İ ANIL SINACI in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering , Middle East Technical University by,

Prof. Dr. Canan̈Ozgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyig̃it
Head of Department,Computer Engineering

Prof. Dr. Asuman Dog̃aç
Supervisor,Department of Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Coşar
Co-supervisor,Department of Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Department of Computer Engineering, METU

Prof. Dr. Asuman Dog̃aç
Department of Computer Engineering, METU

Prof. Dr. Özgür Ulusoy
Department of Computer Engineering, Bilkent University

Assoc. Prof. Dr. Ahmet Coşar
Department of Computer Engineering, METU

Yıldıray Kabak
SRDC Ltd.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referencedall material and results that
are not original to this work.

Name, Last Name: AL̇I ANIL SINACI

Signature :

iii

ABSTRACT

A CONFORMANCE AND INTEROPERABILITY TEST SUITE FOR TURKEY’SNHIS
AND AN INTERACTIVE TEST CONTROL AND MONITORING ENVIRONMENT

Sınacı, Ali Anıl

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Asuman Dog̃aç

Co-Supervisor : Assoc. Prof. Dr. Ahmet Coşar

June 2009, 118 pages

Conformance to standards and interoperability is a major challenge of today’s applications

in all domains. Several standards have been developed and some are still under development

to address the various layers in the interoperability stack. Conformance and interoperability

testing involves checking whether the applications conform to the standards so that they can

interoperate with other conformant systems. Only through testing, correct information ex-

change among applications can be guaranteed. National Health Information System (NHIS)

of Turkey aims to provide a nation-wide infrastructure for sharing Electronic Health Records

(EHRs). In order to guarantee the interoperability, the Ministry of Health (MoH), Turkey, de-

veloped an Implementation/Integration/Interoperability Profile based on HL7 standards. Test-

BATN - Testing Business Process, Application, Transport and Network Layers - is a domain

and standards independent set of tools which can be used to test all of the layers of the in-

teroperability stack, namely, the Communication Layer, Document Content Layer and the

Business Process Layer.

In this thesis, the requirements for conformance and interoperability testing of the NHIS are

iv

analyzed, a testing approach is designated, test cases for several NHIS services are developed

and deployed, and a test execution control and monitoring environment within TestBATN is

designed and implemented through the identified testing requirements. The work presented

in this thesis is part of the TestBATN system supported by theTÜBİTAK TEYDEB Project

No: 7070191 in addition by the Ministry of Health, Turkey.

Keywords: conformance testing, interoperability testing, National Health Information System

of Turkey, test suites, automated human-driven testing

v

ÖZ

TÜRKİYE ULUSAL SAĞLIK B İLGİ SİSTEMİ’N İN UYGUNLUK VE B İRLİKTE
İŞLERLİK TESTLEṘI VE İNTERAKTİF TEST KONTROL VEİZLEME ORTAMI

Sınacı, Ali Anıl

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Asuman Dog̃aç

Ortak Tez Yöneticisi : Doç. Dr. Ahmet Coşar

Haziran 2009, 118 sayfa

Standartlara uygunluk ve birlikte işlerlik, günümüz uygulamaları için büyük önem taşımakta-

dır. Birlikte işlerlik katmanlarının farklı bölümleriiçin geliştirilen birçok standart bulunur.

Uygunluk ve birlikte işlerlik testleri, standartlara uygunluğun ve standartlara uygun uygula-

maların birlikte çalışıp çalışamadıklarının testlerini içerir. Uygulamalar arasındaki iletişimin

doğruluğu ancak test vasıtasıyla garanti edilebilir. T¨urkiye’nin Ulusal Sağlık Bilgi Sistemi

(USBS), Elektronik Sağlık Kayıtları’nın ulusal ölçekte paylaşılmasını amaçlayan bir altyapı

sunar. Bu altyapı çerçevesinde geliştirilmekte olan uygulamaların birlikte işlerliğini sağlamak

amacıyla, T.C. Sağlık Bakanlığı HL7 standartlarına dayalı bir geliştirme/entegrasyon/birlikte

işlerlik profili oluşturmuştur. TestBATN, uygulamaların tanım kümelerinden ve kullanılan

standartlardan bağımsız olarak çalışan, birlikte işlerlik katmanlarının tümünü - Haberleşme

Katmanı, DokümaṅIçerik Katmanı vėIş Süreci Katmanı - test etme yetisine sahip bir sistem-

ler bütünüdür.

Bu tez çalışmasında, USBS kapsamındaki uygulamaların uygunluk ve birlikte işlerlik testleri

için gereksinim analizi yapılarak bir test metodolojisi geliştirilmiştir. Belirlenen metodoloji

vi

üzerinden birçok USBS servisi için test senaryoları geliştirilmiş ve TestBATN dahilinde bir

test kontrol ve izleme ortamı tasarlanmış ve hayata geçirilmiştir. Sunulan altyapı ve geliştirilen

test senaryoları, USBS’deki uygulamaların uygunluk ve birlikte işlerlik testlerinde kullanılmış

ve ulusal çaptaki entegrasyona büyük katkı sağlamıştır. Bu çalışma T̈UBİTAK - TEYDEB,

1507 kapsamındaki B.02.1.TBT.0.06.02.162.01 Sayılı ve “Birlikte İşlerlik StandartlarınıṅIn-

ternet Tabanlı Test Altyapısı-7070191” başlıklı proje dahilinde geliştirilen TestBATN siste-

minin parçasıdır.

Anahtar Kelimeler: uygunluk testleri, birlikte işlerliktestleri, Türkiye Ulusal Sağlık Bilgi

Sistemi, Sağlık-Net, etkileşimli test kümeleri

vii

To my family

viii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to my supervisor, Prof. Dr.

Asuman Doğaç for her encouragement, guidance and supportthroughout this study.

I would also like to express gratitude to my co-supervisor, Assoc. Prof. Dr. Ahmet Coşar for

his guidance and support during my study.

I am deeply grateful to my family for their love and support. Without them, this work could

not have been completed.

I am deeply grateful to Tuncay Namlı without whose invaluable guidance and contribution,

this work could not have been accomplished. I am also deeply thankful to Güneş Aluç for his

suggestions and continuous support in the development of the testcases. I am highly indebted

to my friends, Gökçe Banu Laleci Ertürkmen, Mustafa Yüksel, Yiğit Boyar, Atasay Gökkaya

and all the other colleagues at the Software Research and Development Center, whose help,

stimulating suggestions and encouragement helped me at alltimes in this research.

I would like to thank the Scientific and Technological Research Council of Turkey (T̈UBİTAK)

for providing the financial means throughout this study.

Finally, my special thanks go to my friends Andaç, Birkal, Ferhat, Goncagül, Hasan Şevki,

Özgehan, Şerife and Zülfükar for their help, support andcheerful presence through the course

of this study. Thanks for giving me a shoulder to lean on whenever I need.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND ON ENABLING TECHNOLOGIES AND STANDARDS . 7

2.1 Materials Used In Testing . 7

2.2 Enabling Technologies . 9

2.3 Base Standards and Specifications16

2.3.1 Health Level Seven (HL7) 16

2.3.2 HL7 Clinical Document Architecture (CDA) 23

2.4 National Health Information System of Turkey (NHIS) 25

2.5 TestBATN . 36

2.5.1 Main Concepts and Testing Approach 38

2.5.2 Conformance Testing . 40

2.5.3 Interoperability Testing 41

2.5.4 Scenario Based Testing 42

2.5.5 Modular Approach . 44

3 NHIS TEST SCENARIOS . 48

x

3.1 Testing Requirements . 50

3.2 Testing Approach . 52

3.3 Test Case Development . 54

4 TestBATN CONTROL AND MONITORING ENVIRONMENT 69

4.1 General Architecture . 72

4.2 Test Driving Protocol . 77

4.2.1 Initiation and Termination of SUT Sessions, and Monitor-
ing the Already Running Testcase Instances 78

4.2.2 Test Execution . 84

5 RELATED WORK . 107

6 CONCLUSION AND FUTURE WORK . 111

REFERENCES . 114

xi

LIST OF FIGURES

FIGURES

Figure 1.1 TestBATN Architecture within the scope of NHIS 4

Figure 2.1 Evolution of the Web 11

Figure 2.2 MXML & ActionScript sample from a Flex application 14

Figure 2.3 Cairngorm micro-architecture [43] 15

Figure 2.4 RIM back-bone classes 18

Figure 2.5 RIM classes in action 19

Figure 2.6 Message Structure Generation in HL7 Version 3 20

Figure 2.7 Relation between WS-* standards [54] 22

Figure 2.8 Major components of a CDA document 25

Figure 2.9 Sağlık-Net as of May 2009 26

Figure 2.10 Minimum Health Data Sets in the NHDD 28

Figure 2.11 The Examination Transmission Schema from the NHDD 30

Figure 2.12 The Beginning of the Examination Transmission Schema 31

Figure 2.13 An Example First-level Section for the Examination TS 31

Figure 2.14 An Example Second-level Section for the Examination TS 32

Figure 2.15 Mapping NHDD Concepts to HL7 v3 CDA R2 33

Figure 2.16 Example Transmission Wrapper and Control Act Wrapper from the NHIS . 33

Figure 2.17 Interaction Diagram of NHIS HL7 Web Services 35

Figure 2.18 Overall Architecture of the TestBATN Framework[69] 37

Figure 2.19 TestBATN Conformance Testing Setup 39

Figure 2.20 TestBATN Interoperability Testing Setup 42

Figure 2.21 Reusability for Adaptors 46

xii

Figure 2.22 Plug-in an Adaptor to a Modular TDL Instruction 46

Figure 3.1 Testing Achitecture 53

Figure 3.2 Test Suite - Test Case structure in TestBATN 54

Figure 3.3 Test Suite definition of Examination 56

Figure 3.4 ReceiveMessage portion of the basic testcase forexamination 58

Figure 3.5 Usage of XSD Adaptor 58

Figure 3.6 Verification Step for Username - Token Conformance 59

Figure 3.7 Preliminary Data Definition within TDL 60

Figure 3.8 Diagnosis section inside an Examination transmission 61

Figure 3.9 Usage of SKRS Validator in TDL 62

Figure 3.10 A Schematron Rule to test a Business Rule 63

Figure 3.11 Schematron Adaptor used in TDL 64

Figure 3.12 Semantic Test Scenario Example 67

Figure 3.13 A Portion of an Update Message 68

Figure 4.1 TestBATN Control and Monitoring Environment Mainpage 70

Figure 4.2 General Architecture of the Environment 72

Figure 4.3 TestBATN Database ER Diagram 73

Figure 4.4 Interaction between the TestBATN Web Services and Database 74

Figure 4.5 registerNewUser, checkCredentials, updateUserInfo 75

Figure 4.6 getTestSuites, getTestCases, getTestCaseParties, getTestResults, getTest-

CaseReport . 76

Figure 4.7 getAllUsers, queryTestStatisticsForCompany,queryTestResultsForCompany,

queryTestResultsForTestSuite 77

Figure 4.8 Management of the Session 78

Figure 4.9 Already Running Testcase Instances 79

Figure 4.10 Model of InitiateSession 79

Figure 4.11 Model of RequestRunningTestCaseInstances 80

Figure 4.12 Model of AddRunningTestCaseInstance 81

xiii

Figure 4.13 Model of UpdateRunningTestCaseInstance 82

Figure 4.14 Model of RemoveRunningTestCaseInstance 83

Figure 4.15 Model of TerminateSession 84

Figure 4.16 Testcase Selection and Execution 84

Figure 4.17 Execution of a Testcase 85

Figure 4.18 Model of LoadTestCase 86

Figure 4.19 Model of TestCaseDescription 86

Figure 4.20 Handling Configuration 87

Figure 4.21 Model of HandleConfiguration 88

Figure 4.22 Model of HandleConfigurationResponse 89

Figure 4.23 Handling Preliminary Data 90

Figure 4.24 Model of HandlePreliminaryTestData 91

Figure 4.25 Model of FilledInPreliminaryData 92

Figure 4.26 Model of UpdatePreliminaryTestData 93

Figure 4.27 Test Steps View 94

Figure 4.28 Model of SendTestSteps 95

Figure 4.29 Model of StartTest 96

Figure 4.30 At the time of test execution 97

Figure 4.31 Teststep Status Changes 98

Figure 4.32 Teststep Report 99

Figure 4.33 Model of UpdateTestStatus - I 99

Figure 4.34 Model of UpdateTestStatus - II 100

Figure 4.35 Model of AskTestData 101

Figure 4.36 Model of AskTestDataResponse 101

Figure 4.37 Model of FinishTest 102

Figure 4.38 Model of TestCaseProcessingFinished 103

Figure 4.39 Restart of a Testcase 104

Figure 4.40 Model of RestartTestCase 104

Figure 4.41 Model of ReleaseTestCasePorts 105

xiv

Figure 4.42 Model of GUIInteractionError 106

xv

LIST OF ABBREVIATIONS

AUT Actor Under Test

CDA Clinical Document Architecture

EHR Electronic Health Record

ETSI European Telecommunications Standards Institute

eTSL OASIS Event Driven Test Scripting Language

FMIS Family Medicine Information System

HCRS Health Coding Reference Server

HIS Hospital Information System

HL7 Health Level Seven

MERNIS Central Demographics Management System of Turkey

MHDS Minimum Health Data Set

MoH Ministry of Health, Turkey

NHDD National Health Data Dictionary

NHIS National Health Information System of Turkey

OID Object Identifier

RIA Rich Internet Application

RIM Reference Information Model

SSL Secure Sockets Layer

SUT System Under Test

TDL Test Description Language

xvi

TestBATN Testing Business Process, Application, Transport and Network Layers

TTCN Testing and Test Control Notation

XML eXtensible Markup Language

XPATH XML Path Language

XSD XML Schema Definition

xvii

CHAPTER 1

INTRODUCTION

Today, eBusiness applications are widely adopted by the actors of several industry domains,

governments and the public sector. These intensive relationships between the different appli-

cations belonging to a wide range of domains require standardization in the Communication

Layer, Document Content Layer and the Business Process Layers, which together form the

so-called interoperability stack. In the context of the different implementations of the interop-

erability stack by several different applications, it is still cumbersome to reach interoperability

of the solutions and to achieve conformance to standards addressing the different layers of the

stack. Therefore, the need for advanced testing methodologies and practices which cover

relevant set of standards and specifications is increasing continuously.

Standardized protocols and services, and the applicationsdeveloped through the protocols can

be formally tested in two related but different ways. One way goes through the conformance

testing. Conformance testing depicts whether an application correctly implements a particular

standardized protocol or not. In other words, the testing ofthe conformance shows whether

or not a single implementation of the protocol meets the conformance requirements specified

for that protocol.

When a software instance includes an implementation of a universally standardized protocol,

it becomes possible to specify the test criteria and procedures with a quality comparable to

that of the protocol standards themselves. The protocols may set some rules on several layers

of the interoperability stack and these rules are formally defined through some formal doc-

umentation. XML Schemas may restrict the structure of the content, business profiles may

specify the choreography of the exchanged messages among the parties etc. Therefore, these

formal restrictions form a basis for the testing applicability on that of the softwares which

1

implemented the protocols.

Interoperability is the ability of two or more systems or components to exchange information

and to use the information that has been exchanged [1]. More specifically, interoperability is

said to exist between two applications when one applicationcan accept data (including data

in the form of a service request) from the other and perform the task in an appropriate and

satisfactory manner (as judged by the user of the receiving system) without the need for extra

operator intervention [2].

The purpose of the interoperability testing is to prove thatend-to-end functionality between, at

least, two communicating systems is as by required by the standard or a number of standards

on which those systems are based. However, one should keep inmind that interoperability

tests are applied at the end-points and on the functional interfaces of the applications, that is,

interoperability testing can only specify functional behavior. [3].

In the scope of this thesis, we analyzed the conformance and interoperability testing require-

ments of National Health Information System (NHIS) [4] through the Implementation/Integra-

tion/Interoperability Profile [5] which is published by Ministryof Health (MoH), Turkey.

NHIS provides 25 HL7 [6] based Web services for the use of Family Medicine Information

Systems (FMISs) and Hospital Information Systems (HISs). Throughout the thesis, a compre-

hensive testing methodology is designated and several testsuites and testcases are developed

through the methodology and registered to the TestBATN framework to enable the confor-

mance and interoperability testing of NHIS. Furthermore, to realize the testing process, the

TestBATN Control and Monitoring Environment is designed and implemented.

Health Level Seven (HL7) [6] is a not-for-profit ANSI [7] accredited Standards Developing

Organization. The main purpose of HL7 is to provide standards for the exchange of clinical

and administrative data between healthcare systems. HL7 provides standards for interoper-

ability that improve care delivery, optimize workflow, reduce ambiguity and enhance knowl-

edge transfer among all stakeholders, including healthcare providers, government agencies,

the vendor community, fellow SDOs and patients.

HL7 Clinical Document Architecture (CDA) [8], previously called Patient Record Architec-

ture (PRA), is a document markup standard that specifies the structure and semantics of a

clinical document (such as a discharge summary or progress note) for the purpose of ex-

2

change. A clinical document includes clinical observations and services about care events. A

valid CDA document is encoded in Extensible Markup Language(XML) [9] and conforms to

the CDA Schema which is derived from the CDA Hierarchical Description based on the XML

Implementable Technology Specification.

Sağlık-NET is an integrated, secure, fast and extensible information and communication plat-

form that aims to increase the efficiency and quality of the health services in Turkey by col-

lecting the health care related information from the healthcare institutes through the defined

standards and specifications.

National Health Information System of Turkey (NHIS) [4], which is developed under Sağlık-

NET, is based on sharing a functional database which is accessible by authorized people and

institutions with defined access rights that covers all the citizens’ health records from the

birth and throughout his/her life on a spine of communication network with high bandwidth

throughout the entire country and using the technologies reaching telemedicine applications

in professional practice [10].

All of the software systems running in the medical institutes in Turkey, the FMISs and HISs,

are obliged to have the ability to transfer EHRs, called “Transmission Schema” instances to

the NHIS servers at the Ministry of Health (MoH) premises. Inorder to guarantee the in-

teroperability, the MoH, published an Implementation/Integration/Interoperability Profile [5]

for FMIS and HIS vendors. The Integration Profile and its reference specifications present all

the restrictions and requirements for vendors to update or develop the necessary components

within their FMISs and HISs for a successful integration. However, without an extensive and

effective testing process this is a difficult job for those vendors. Furthermore, only through

testing, correct information exchange among these eHealthapplications can be guaranteed

and the products can be certified.

Conformance and interoperability testing are both important and useful to the testing of the

applications within NHIS. Conformance testing of the FMISsand HISs can show that those

implementations comply with the requirements of the protocols and specifications asserted in

the Integration Profile of MoH.

In the scope of this thesis, a testing methodology is devisedwhich adopts a “step-by-step”

approach from the basic and simple testcases to the complex ones. Basic testcases include

3

test steps which require the minimum level of assertions according to the Integration Profile.

That is, the FMISs and HISs can apply the basic conformance testcases successfully if they

meet the minimum set of functionalities dictated by the related service’s specifications.

TestBATN Infrastructure

TestBATN

Database

TestBATN

Web Services

TestBATN

Server

NHIS Clients

Detailed

Test

Reports

Test Execution

Platform – Web

based Graphical

User Interface /

TLS

User Account Services

View Old Reports

Test Scenario Selection

NHIS Client

System Administrator

Running Test

Scenario Instances

F
ir
e

w
a
ll

TestBATN

Communication Ports

Test ScenarIos

<XML>

Load()

Messaging

Standards

A õz Di Sa!lõ!õ T.S.

Bebek Çocuk "zlem T.S.

Muayene T.S.

Systems Under Test

NHIS Web Services

NHIS Client

TestBATN Kullanıcı Web ArayüzüTestBATN Kullanıcı Web Arayüzü
TestBATN Kullanıcı Web ArayüzüTestBATN Kullanıcı Web Arayüzü
Test BATN Graphical User InterfaceTest BATN Graphical User Interface

Figure 1.1: TestBATN Architecture within the scope of NHIS

As presented in Figure 1.1, several testcases are developedthrough the designated testing

methodology and registered to the TestBATN framework. The developed testcases are pub-

lished to the FMIS and HIS vendors to enable the online testing of their products. Testcases

are developed in the scripting language, Test Description Language (TDL), of TestBATN and

published to the online use of the clients through the TestBATN Control and Monitoring En-

vironment, which is also a part of this thesis.

TestBATN is a software framework which proposes a design andan execution environment

and applies a specific testing approach for dynamic, configurable and automated execution of

4

conformance and interoperability testing against B2B standards, profiles or specifications.

TestBATN is a comprehensive and integrated system consisting of several components. The

TestBATN Engine is the system which interprets and executesthe testcase definitions, which

are scripted in the Test Description Language (TDL), and manages the whole process. The

TestBATN Control and Monitoring Environment is the interface between the engine and the

Human Test Driver to provide real time monitoring on the testexecution, some control on the

scenario and reporting of the test results. The Human Test Driver, while monitoring the test

execution with TestBATN Control and Monitoring Environment, manages the SUT according

to the instructions shown on the Graphical User Interfaces (GUIs).

TestBATN Control and Monitoring Environment is designed and implemented as Adobe Flex

based Rich Internet Application (RIA) through the scope of this thesis to enable the online and

high speed testing capabilities within the testing of NHIS.The environment also implements

a Test Driving Protocol on the TCP [11] level to interact withthe TestBATN Engine enabling

the high speed, instant communication.

Since June, 2008, the developed testcases are in the online use of the FMIS and HIS vendors,

up to 70 companies with nearly 340 users, on “http://www.srdc.com.tr/testbatn”. Since then,

nearly 20.000 testcase executions are recorded. Apart fromthe online use of the developed

testcases through TestBATN; MoH, Turkey organized two well-attended integration work-

shops. First one of the workshops is organized in Çeşme,İzmir during June, 29 - July, 5 2008.

Nearly 130 FMIS/HIS developers from 50 vendor companies attended to Çeşmeworkshop

and tested their client applications successfully with thedeveloped testcases registered to the

TestBATN framework.

The testcases within the TestBATN framework are also used inthe second integration work-

shop, which is held in Ankara during December 19 - 21, 2008. 133 attendees from 64 vendor

companies were there to test their FMIS/HIS implementations.

The work presented in this thesis is supported by the TÜBİTAK TEYDEB Project No: 7070191

in addition by the Ministry of Health, Turkey.

In the rest of the thesis, Chapter 2 gives detailed information about the background technolo-

gies, standards and specifications. Particular segments ofNHIS and TestBATN framework,

the development strategies and enabling technologies are presented in Chapter 2. Chapter 3

5

discusses the testing methodology adopted in the testing ofNHIS. Developed testcases and

example scenarios with the detailed explanations are provided also in Chapter 3. Chapter 4

elaborates the design and implementation issues of TestBATN Control and Monitoring Envi-

ronment. The chapter also gives detailed description of theTest Driving Protocol constructs.

Chapter 5 presents the related work in the testing context. Finally, Chapter 6 concludes the

thesis and discusses the ideas about the future work.

6

CHAPTER 2

BACKGROUND ON ENABLING TECHNOLOGIES AND

STANDARDS

2.1 Materials Used In Testing

Testing process that is being introduced in this thesis derives benefit from several XML [9]

based materials/technologies. Since National Health Information System ofTurkey adopts

XML based standards and TestBATN also uses XML based technologies and languages, the

testing approach of this thesis also follows the means of XMLbased technologies.

XML Schema Definition - XSD

An XML schema is a description of a type of XML documents, typically expressed in terms

of constraints on the structure and content of documents of that type, above and beyond the

basic syntax constraints imposed by XML itself. There are a number of different languages

available for specifying an XML schema. XML Schema Definition [13] is one of those XML

schema languages which provides a means for defining the structure, content and semantics

of XML documents. An XSD schema dictates a set of rules to describe the structure of the

XML documents. An XML document is said to be ‘valid’ according to the XSD schema,

when the XML document conforms the rules dictated by that XSDschema. Those valid

XML documents are called as instances of the schema.

XSD schemas include a set of components, namely the definitions of elements and attributes

of the elements. The elements can be nested and ordered within each other. XSD schema

allows definition of restrictions on the child elements of each element and their attributes.

The data types for elements and attributes are also set through the XSD schemas. More-

7

over, default and fixed values of the elements and attributescan be defined through schema

definitions.

XSD version 1.1 is currently under development by the XML Schema Working Group under

the World Wide Web Consortium (W3C) [14].

XML Path Language - XPATH

XML Path Language, XPath, [15] is a query language for selecting parts of an XML docu-

ment. The primary purpose of XPath is to address the nodes inside an XML document. In

addition to its primary purpose, it also provides basic facilities for manipulation of primitive

data types such as strings, numbers and booleans. XPath usesa compact, non-XML syntax to

facilitate use of XPath within URIs and XML attribute values.

The query methodology adopted by XPath, relies on the tree structure of the XML documents

as well as atomic values such as integers, strings, and booleans, and sequences that may

contain both references to nodes in an XML document and atomic values. That is, XPath

operates on the abstract, logical structure of an XML document, rather than its surface syntax.

In this way, the XML document is processed as a tree of nodes. There are different types of

nodes such as, element nodes, attribute nodes and text nodes. XPath accesses these nodes

with the result of its evaluation.

XPath is based on expressions which can be constructed from keywords, symbols and operands.

XPath enables the nested definition of expressions. The result of an XPath expression consists

of a selection of nodes from the input XML documents without the duplicates and additional

evaluation specific parameters.

There exist two versions of XPath, XPath 1.0 and XPath 2.0. Both of them are Recom-

mendation by W3C. XPath 2.0 provides more powerful constructs than XPath 1.0, however,

currently; XPath 1.0 is more widely accepted in the community.

The Schematron

The Schematron [16] [17] is an XML Schema language which defines the structure, content

and semantics of XML documents by making well-defined assertions about patterns found

in XML documents. The main difference of Schematron from the other schema definition

languages is its basis on the tree patterns residing in the XML document model instead of

8

the grammars. From another perspective, Schematron is a rule based validation language

over the XML documents. Namely, a Schematron file includes a set of XPath-based rules,

which correspond to the assertions, to test the presence and/or absence of patterns in XML

tree models.

The Schematron is comparatively stronger in the structuralvalidation of the instance docu-

ments because of its rule-based system. It checks the patterns existing in the XML documents’

tree models against the rules asserted through the Schematron language. This process includes

XSL Transformations [18] one after another. Schematron also enable the error messages ex-

pressed in natural language which will come up during the validation phase. This makes error

detection much easier than the cryptic error codes. On the other hand, Schematron has weak-

nesses against the other schema definition languages. Due toits rule-based nature, it can be

very complex to specify the basic structure and content definition with a set of rules. There-

fore, combining the use of the Schematron with another schema definition language, such as

XSD, induces a good solution.

The Schematron is an ISO (the International Organization for Standardization) [19] standard.

It has been standardized to become part of ISO/IEC ISO/IEC 19757 - Document Schema

Definition Languages (DSDL) - Part 3: Rule-based validation- Schematron.

2.2 Enabling Technologies

Testing process requires use of specific software to test theoperations of the client programs

and utilities automatically. TestBATN constitutes a testing system behaving as an application

server. NHIS clients need to communicate with TestBATN engine for the testing of their

application programs. Enabling this through the Internet,based on Rich Internet Application

technologies, is the main purpose of the testing approach ofthis thesis.

Rich Internet Applications (RIAs)

Rich Internet Applications (RIAs) are web applications, accessible through web browsers,

which are carrying characteristics of the regular desktop applications. To describe the benefits

of Rich Internet Applications, understanding the early internet applications plays an important

role. As the computers started to be interconnected, World Wide Web came up and static

9

web pages evolved within the well-known client-server architectures. In these very early

systems, the clients interact with the server through HTTP [20] and HTML [21]. The primary

technology in creating Internet applications is HTTP, which is simple, ubiquitous, requires no

special tools. The clients send HTTP requests to the application servers and the servers return

static HTML pages to the clients in this model. This early static model is mostly concerned

with the presentation. Since there is no dynamism and interactivity, the only process is the

rendering of the HTML data and to present it to the user looking at the browser.

Dynamic web pages showed up since the static client-server model did not satisfy the chang-

ing user and system requirements. Several server side scripting languages and web frame-

works evolved and enabled the dynamic creation of web pages.The examples of server-side

scripting languages are PHP [22], ASP.NET [23], JSP [24], ColdFusion [25] and other lan-

guages. The dynamism of this model is also based on the HTTP and HTML technologies

with synchronous communication over TCP [11]. The application server creates dynamic

HTML pages upon the request coming from the clients. Dynamiccreation of the web pages

has brought interactivity in the interaction with the end-users. On the other hand, client-side

scripting has also evolved to enhance the interactivity at the presentation level on the user

web browsers. Client-side scripting languages like JavaScript [26] or ActionScript [27] are

frequently used to orchestrate media types (sound, animations, changing text, etc.) of the

presentation.

The Internet age evolves very fast and this evolution pushesthe Internet users to demand more

sophisticated and increasingly interactive web sites. Synchronous client-server model within

an “ask-response” manner, relies on the server for processing, requires refreshment of content

pages and communication through HTTP - HTML bundle at each user request. This, results

in a lot of redundant data being transferred, increasing wait times for clients, and giving a

start and stop feel within the web pages due to their multi-page interfaces. With the very

successful increases in the speed of modern computers and increasing accessibility to broad-

band internet services, users are demanding more from web-based applications. Therefore, to

meet the today’s Internet users’ requirements, there is a need for more efficient and effective

communication methodologies between the user browsers andapplication servers. Further-

more, friendlier and more esthetic graphical interfaces are needed to satisfy the users than the

HTML whose main purpose is just the presentation of data rather than the development of

rich interfaces.

10

���������	
���

����������

��	
���
���������

	�
�������

�

���������

�
���
��������

�
������������

���������	
���

��	
���
���������

	�
�������

����������

�����������������������������������
���������������������������
����������������� ���
�����
����������

!�����������"�����

�����#���������!���������

Figure 2.1: Evolution of the Web

The outcomes of the today’s web application development efforts through the light of the

limitations of the traditional client-server model are theRich Internet Applications and several

associated tools and frameworks. Briefly, Rich Internet Applications provide rich graphical

constructs for friendlier user interfaces and adopts asynchronous methods enable real time

data communication and dynamic rendering. As seen in Figure2.1, with the evolution to

richer clients, several communication alternatives have been approached and the graphical

presentation layer induced richer and friendlier interfaces to the end-users. Resulting web

applications give the feel of a desktop-like application tothe user. A desktop application

works with the information sources residing at databases and the file system at the back-end.

A RIA can be seen as a desktop application working with remotedatabases and file systems,

overcoming the limitations of the Internet communication with asynchronous and dynamic

techniques. Consequently, RIAs can be seen at the intersection of Desktop Applications, Web

Applications and Communication Technologies.

RIAs differ in their development and deployment processes. This, leads to a distinct catego-

rization among the RIA based applications [28]. The first category includes the RIAs served

as embedded solutions or standalone applications launchedfrom the browser. This, the first

11

type of RIAs category, is also referred as the “sandbox” approach. An example of the em-

bedded practice is the Adobe Flex [29] technology. Adobe Flex enables the creation of Flash

[30] based RIAs running inside the engines plugged-in to thebrowsers. The resulting Flash

application is embedded inside the HTML documents. Java WebStart [31] constitutes an

example of the stand-alone practice of RIAs with the use of Java Network Launch Protocol

(JNLP) [32]. JavaFX [33] is another example of the sandbox approach from the Java side.

The sandbox approach enables a stable and easy development environment like the traditional

programming environments, because the execution of the webapplication is handled inside a

run-time at the client side and the data communication may occur within several alternatives

like in a desktop environment. Presence of such run-times asplug-ins to the browsers also

guarantees the multi-platform execution of the application as long as the plug-in of the web

browser is capable of running the RIA.

RIAs developed with the use of Ajax [34] technologies constitute to the script based type of

the RIA development and deployment categories. Using Cascading Style Sheet (CSS) [35]

in combination with HTML to enrich the rendering of the pageson the screen and adoption

of asynchronous communication methods available in JavaScript also realized RIA environ-

ments in some manner. This second type, script based RIA category mainly suffers from com-

patibility problems since there exist remarkable divergences among the different browsers,

and their different versions of the same browser, in the implementation ofJavaScript, DOM

[36] and CSS processing. Although this type of RIA development requires no additional soft-

ware installation and special run-time environment, it is aseamlessly more difficult process to

proceed the development while keeping the compatibility issues in mind throughout the while

process.

The third type of RIA category is browser-based. Mozilla XUL[37] is the example of this

type of RIA development category. It provides an XML based language to create feature-rich,

cross-platform client applications. Even though it exhibits a rich functionality options, strict

dependence on the browser type limits this type of RIAs widespread use.

Apart from the categorization of RIAs, all development approaches target to the same pur-

pose. The client should be capable of doing more job than justrendering pages. It should

able to perform complex computations, send and retrieve data in the background, even at the

TCP level, asynchronously upon the user requests, operate on sections of the screen and ben-

12

efit from the complex use of the multimedia technologies. Theclients in a RIA need to be

independent from the server applications to which they are connected to.

Adobe Flex

Adobe Flex is a cross-platform, open source framework for the development and deployment

of rich internet applications that run identically in all major browsers and operating systems

which are available today. Flex can be seen as an evolution ofthe earlier Flash development

frameworks. Therefore, Flex applications run on the Flash run-times, those are the Flash

Players [38], of the browsers. Flash Player itself is a virtual machine capable of running Flash

files. This is the reason behind the well-known compatibility advantage of Flex applications.

Flex applications are the compilation of an XML-based user interface markup language,

called as MXML, and an object oriented language called ActionScript directly into Flash

SWF [39] binaries. MXML provides powerful constructs to create rich graphical user inter-

faces, manage the layout properties and dynamic facilitiesof the interface components. It can

be seen as a tag library with support of several components which can be used in a web user

interface. Apart from the user interfacing and presentation capabilities, MXML can also be

used to realize complex business logic operations, data management and application behav-

iors. However, as presented in Figure 2.2, the tendency is touse MXML in combination with

ActionScript to create RIAs.

ActionScript is an object oriented programming language torealize the application behavior

and logic for those are familiar with object oriented way of programming. It is primarily

used to develop Flex applications; however it is originallya scripting language based on

ECMAScript [40] and has a usage on a number of other development environments.

Flex provides a data binding mechanism which makes easy to implement the Model-View-

Controller pattern. Flex data binding works as mapping the value of one property of an object

to a property of another object. The data needed for the application logic is kept in the model

and parts of the data are bonded to the view components at the presentation layer. Upon the

user or business triggers, the controller updates the data stored in the model and, throughout

the Flex data binding mechanism; the presentation layer is automatically updated without

additional programming efforts.

Flex supports a wide range of technologies at data services layer to enable the various com-

13

<mx:VBox width="100%" horizontalAlign="center">

<view:HeaderView width="40%" />

<mx:Spacer height="20" />

<mx:ApplicationControlBar width="50%" paddingBottom="10">

<mx:VBox width="100%">

<mx:ComboBox width="75%" id="cmbOntologies" />

<mx:HBox width="100%">

<mx:TextInput id="txtSearch" width="100%" />

<mx:Button label="Search" click="search()"/>

</mx:HBox>

</mx:VBox>

</mx:ApplicationControlBar>

</mx:VBox>

<mx:Script>

<![CDATA[

import mx.collections.ArrayCollection;

private function search():void {

}

]]>

</mx:Script>

Figure 2.2: MXML & ActionScript sample from a Flex application

munication approaches between the clients and the application servers. It provides a rich

messaging infrastructure to realize data-rich Flex applications. It enables communications

through simple HTTP calls, SOAP [41] Web Service calls, low-level socket interactions and

other various efficient built-in supports for the communication with Java based application

servers. Furthermore, Flex framework exposes application-level services, including history

management, layout management, cursor management, exception handling, internationaliza-

tion, logging, and other types of services.

The Cairngorm Micro-architecture

Cairngorm [42] is lightweight micro-architecture to ease the development and maintenance

of Flex based RIAs. Cairngorm provides a starting point for the technical architectures of the

applications that will be built through Flex. It can be seen as a collection of small software de-

sign patterns which contribute to the adoption of the Model-View-Controller model approach

inside the RIAs.

Figure 2.3 presents an explanation of the Cairngorm micro-architecture. Basically, it ad-

dresses three important points in the RIA development through Flex:

• Handling user gestures on the client: User gestures are generally represented as events

14

M
o

d
e

l
V

ie
w

ModelLocator

C
o

n
tr

o
ll

e
r

Cairngorm Event

Fro
ntC

ontro
lle

r

Array of

Contact VOs

Name – email@email.com

Name – email@email.com

Name – email@email.com

Name – email@email.com

Name – email@email.com

Name – email@email.com

Steven – cairn@gorm.com

Name – email@email.com

Name – email@email.com

ContactVO

Event and Data Payload are

passed together to Front Controller

Value Object

CMD

CMD

CMD

Form data is stored in a

Contact Value Object

ContactVO is data payload

for this Cairngorm Event

The Front Controller enlists

the appropriate command

A
p

p
li

c
a
ti

o
n

T

ie
r

S
e

rv
ic

e

ServiceLocator

S
e

rv
ic

e

S
e

rv
ic

e

S
e

rv
ic

e

S
e

rv
ic

e

S
e

rv
ic

e

Business

Delegate

Command updates Model

S
e

rv
ic

e

IIS
S

e
rv

e
r

J
2

E
E

S
e
rv

e
r

L
in

u
x

S
e
rv

e
rResponse is sent back

to Business Delegate

Business Delegate relays

response back to command

Command delegates task

Business Delegate enlists the application-tier service and passes

references of the Command’s onResult and onFault handlers

FDS/AMF, SOAP, XML-RPC, AMFPHP or XML:80

My Contacts

List of Contacts

EventBroadcaster

Data binding

updates view

Cairngorm 2.0 Microarchitecture – Basic Server RPC

Add a Contact:

Add Contact

Click

Steven

cairn@gorm.com

The EventBroadcaster

dispatches this event to

the front controller

Model Object Model Object

Figure 2.3: Cairngorm micro-architecture [43]

specific to the Cairngorm micro-architecture. These eventsare carried through a con-

troller to the appropriate commander to realize the desiredaction. The commander

manages the data residing in the model of the application andthis is the only way to

interact with the model. By this way, the model is kept consistent and stable and only

edited through the special Cairngorm events.

• Encapsulating business logic and server interaction: The communication backend of the

RIA with the application server is abstracted and encapsulated inside a service locator.

By this means, the data service approach is integrated through well-defined interfaces.

Since, Flex provides several approaches to communicate with application servers; any

change in the data service capsule is done independent of theother modules and layers

of the RIA.

• Managing state on the client and representing this state to the user interface: Binding -

mechanism that comes built-in within Flex enables the automatic updates on the presen-

tation views when the corresponding sources residing in themodel get updated. Thus,

15

while keeping the state information in the data model, it canbe easily reflected to the

user interface throughout the application.

2.3 Base Standards and Specifications

National Health Information System (NHIS) of Turkey provides a nation-wide infrastructure

for efficient sharing of electronic health records. Detailed information on NHIS is given in the

following sections. Since NHIS is implemented based on HL7 standards and profiles, first,

these standards and specifications are explained.

2.3.1 Health Level Seven (HL7)

Health Level Seven (HL7) [6] is a not-for-profit ANSI [7] accredited Standards Developing

Organization. The main purpose of HL7 is to provide standards for the exchange of clinical

and administrative data between healthcare systems. HL7 provides standards for interoper-

ability that improve care delivery, optimize workflow, reduce ambiguity and enhance knowl-

edge transfer among all stakeholders, including healthcare providers, government agencies,

the vendor community, fellow SDOs and patients.

“Level Seven” refers to the highest level of the International Organization for Standardization

(ISO) [19] communications model for Open Systems Interconnection (OSI) [44]; the applica-

tion level. At the application level of the reference level,in a logical sense, the data exchange

between the applications, the timing of the interchange andthe communication of certain

errors due to the data interchange are addressed.

HL7 defines message structures and trigger events to enable the exchange of the messages. A

trigger event causes the transfer of messages between the application systems, that is, when

an event occurs in an HL7 compliant system, an HL7 message is sent to other HL7 compliant

systems including the necessary data required by the receipants.

Although HL7 Version 2.x is the most widely implemented healthcare informatics standard in

the world, it has several interoperability problems. Theseproblems led the HL7 organization

to develop a more definitive version almost from scratch, namely the HL7 Version 3.

16

Version 3 addresses the issues arising from the optional fields by using a well-defined method-

ology [45] based on a reference information model. Using rigorous analytic and message

building techniques and incorporating more trigger eventsand message formats with very

little optionality, HL7’s primary goal for Version 3 is to offer a standard that is definite and

testable, and provide the ability to certify vendors’ conformance. Version 3 uses an object-

oriented development methodology and a Reference Information Model (RIM) [46] to create

messages. The RIM is an essential part of the HL7 Version 3 development methodology, as it

provides an explicit representation of the semantic and lexical connections that exist between

the information carried in the fields of HL7 messages.

Reference Information Model (RIM)

An information model is a structured specification of the information within a specific domain

of interest. It expresses the classes of information required and the properties of those classes,

including attributes, relationships, constraints, and states.

The Reference Information Model (RIM) [46] is the cornerstone of the HL7 Version 3 de-

velopment process. An object model created as part of the Version 3 methodology, the RIM

is a large pictorial representation of the clinical data andidentifies the life cycle of events

that a message or groups of related messages will carry. It isa shared model between all the

domains and as such is the model from which all domains createtheir messages.

The RIM is comprised of six ”back-bone” classes as shown in Figure 2.4. Every happening

documented in the healthcare domain is represented by the Act class. Physical things and be-

ings that take part in healthcare are represented by the Entity class. The Role class establishes

the roles that entities play as they participate in healthcare acts. The Participation class defines

the context for an Act by defining the relationship between Act and Role classes. The ActRe-

lationship class defines the relationship between two instances of the Act class. Similarly, the

RoleLink defines the relationship between two instances of the Role class.

The Act, Entity and Role classes are further specialized to subclasses. In the HL7 representa-

tion, a new subclass is added to the RIM only when new attributes or associations are needed

which are not available in the super classes.

A specialized concept which needs no further attributes or associations is represented by

assigning a unique code in the controlling vocabulary to specific attributes. Therefore, these

17

Figure 2.4: RIM back-bone classes

three classes include the following coded attributes, which serve to further define the concept

being modeled:

• classCode(in Act, Entity and Role) represents the exact class or concept intended,

whether or not that class is represented as a class in the RIM hierarchy.

• moodCode(in Act) further delineates the Act instance as an occurrence, intent, goal,

etc.

• determinerCode(in Entity) distinguishes whether the class represents an instance or a

kind of Entity.

• code (in Act, Entity and Role) provides for further classification within a particular

classCode value, such as a particular type of observation within the Observation class.

It should be noted that code should be consistent with the classCode.

The other three RIM back-bone classes - Participation, ActRelationship and RoleLink - are

not represented by generalization-specialization hierarchies. Nevertheless, these classes rep-

resent a variety of concepts, such as different forms of participation or different kinds of

18

relationships between acts. These distinctions are represented by atypeCodeattribute that

is asserted for each of these classes. For example, the “author” concept which describes the

party that originates the Act can be derived by assigning the“AUT” to the Participation class

of the RIM.

An example application of these RIM classes with the rough adaptation of Pregnant Obser-

vation Minimum Health Data Set from the National Health DataDictionary of Turkey [47] is

represented in Figure 2.5. In this example, the main Act class is the “Pregnant Observation”

which has three participations as the subject, performer and observer. “Pregnant Observation”

may be the cause for a “Procedure”. Moreover, there is a “direct authority over” relationship

between the performer and observer doctors.

Figure 2.5: RIM classes in action

Message Development Framework (MDF)

HL7 Message Development Framework (MDF) [45] provides a methodology for developing

HL7 messages for HL7 Version 3.x. It is a reference manual that describes each step of mes-

sage construction, how to use the tools that support this process, and the concepts involved.

MDF is used by members of HL7 Working Group.

In HL7 Version 3, RIM is the source of all message contents. Figure 2.6 shows how message

structures are defined based on the RIM and the MDF.

19

Figure 2.6: Message Structure Generation in HL7 Version 3

HL7 also provides an XML Implementable Technology Specification [48] to express HMD

in XML Schema Definitions (XSD) [13]. HL7 defines several message structures in various

domains including account and billing, blood bank, clinical genomics, claims and reimburse-

ment, laboratory etc. In addition, HL7 also specifies Clinical Document Architecture which

describes the structure and semantics of clinical documents exchanged between healthcare

providers.

Refinement, Constraint and Localization

The HL7 methodology uses the Reference Information Model (RIM) and the HL7-specified

Vocabulary Domains [49], and the Version 3 Data Type Specification [50] as its starting point.

It then establishes the rules for refining these base standards to arrive at the information struc-

tures that specify Message Types and equivalent structuresin Version 3.

The Refinement, Constraint and Localization [51] specification addresses:

• the “rules” and processes for refining the standard as described in the Message De-

velopment Framework (the process leading from RIM to HMD andXSD respectively)

through constraint and extension, including which standard artifacts are subject to con-

straint or extension

20

• the definition of constraint and localization profiles

• the criteria for establishing a conformance statement

A profile is a set of information which is used to document system requirements or capa-

bilities from an information exchange perspective. The documentation is expressed in terms

of constraints, extensions, or other alterations to a referenced standard or base profile. The

categories of profiles in HL7 include annotation, constraint, implementable, conformance,

localization and conflicting profiles. All of these profiles require the documentation of the

formal constraints, extensions and annotations that are applied through the message develop-

ment process.

To guarantee interoperability, only the authorized HL7 Technical Committees can start the

refinement process from the RIM and apply the mentioned constraints while the implementers

of HL7 are recommended to start from the HMD although R-MIM isallowed as well.

Transport Specifications

Until Version 3, HL7 did never deal with OSI layers under the application layer; however

starting with Version 3, HL7 has shown interest in the transport layer of the OSI layers. The

HL7 Message Transport Specifications [52] provide details as to the usage of a variety of

communication transports for the exchange of HL7 based content, messages and documents.

Currently HL7 v3 recommends three transport mechanisms to exchange HL7 messages:

1. ebXML Messaging Profile [53]

2. Web Services Profile [54]

3. TCP/IP based Minimum Lower Layer Profile (MLLP) [55]

These Transport Specifications are not to be confused with the content of Transmission Infras-

tructure. Transmission infrastructure describes the information model, messages and interac-

tions related to the assembly of an HL7 v3 composite message.The Transport Specifications

address moving the message payload (the HL7 v3 composite message and/or HL7 v2 com-

posite message) from sender to receiver. These transports are all capable of moving HL7 v3

composite messages and may also support moving HL7 v2 and CDAcomposite messages.

21

In NHIS, HL7 Web Services Profile is used for the transportation. Therefore, this thesis is

strongly related with the HL7 Web Services Profile.

HL7 Web Services Profile

Web Services are a way for applications to expose software services using standard inter-

operable protocols, regardless of the platform on which they are implemented. Advanced

Web Services Protocols (WS-* Protocols) are built on top of the foundation for Web Services

constituted by XML, SOAP and WSDL [56] to express additionalfunctionalities. These are

specifications that are developed with the intention of broad adoption and interoperability and

focus on security, reliability, transactions, description, discovery and other capabilities.

Figure 2.7: Relation between WS-* standards [54]

Figure 2.7 shows the architecture and the relation between the different WS-* protocols [57].

At the bottom of the stack, different network transports provide connectivity between appli-

cations and service consumers and providers. The rest of theWS-* specifications are largely

independent from the specific network transport chosen.

The profile sets some rules about the invocation of the web services deployed by the profile

roles, the usage patterns of the WS-* standards on these deployments and other specifications

to support an interoperable communication. One of the ruleswhich is set by the profile is as

follows:

22

“HL7 documents are transported in the SOAP Body, under a single element, which is the

top-level element of the original HL7 XML message. Both SOAP1.1 and SOAP 1.2 [41]

are allowed as format for the Envelope. The top-level element of the HL7 message must be

embedded as the only child of the soap:Body element.”

One of the most important aspects of the Web Services Profile is the use of WS-Security re-

lated patterns over the messages. This profile says that‘ ‘Unless otherwise noted, the guidance

provided in this profile, and the individual WS-* security specifications must be followed in

addition to the HL7-specific guidance” . However, this profile does not provide complete

guidance on every aspect of Web services security. For example, it does not address how to

find and use a certificate authority, manage X.509 certificates, manage trust relationships, deal

with delegation scenarios, or use transport-level security.

The first requirement of the profile dictates the authentication and authorization processes.

According to the profile all parties must be authenticated ina secure message exchange. WS-

Security set provides a number of mechanisms for authenticating and authorizing the mes-

sage senders based on the security tokens attached to each message. There are a variety of

different security token types including Username Tokens, binary security tokens (e.g., X.509

certificates, Kerberos tickets, etc.), XML-based securitytokens (e.g., SAML, REL, etc.), and

generated security context tokens. All of these token typesmay be used for authentication

and authorization purposes. Messages that do not contain orreference at least one security

token cannot be authenticated, authorized, or secured withsignatures and encryption. [54]

Since NHIS services adopt the HL7 Web Services profile, it is amust for the FMISs and HISs

to use the WS-UsernameToken Profile, which is the selected authentication and authorization

framework within NHIS. The testing approach of this thesis implements mechanisms to test

the convenient usage of WS-UsernameToke constructs insidethe “Transmission Schema”

instances.

2.3.2 HL7 Clinical Document Architecture (CDA)

HL7 Clinical Document Architecture (CDA), previously called Patient Record Architecture

(PRA), is a document markup standard that specifies the structure and semantics of a clin-

ical document (such as a discharge summary or progress note)for the purpose of exchange

23

[8]. A clinical document includes clinical observations and services about care events. A

valid CDA document is encoded in Extensible Markup Language(XML) and conforms to the

CDA Schema which is derived from the CDA Hierarchical Description based on the XML

Implementable Technology Specification. The CDA Hierarchical Description is derived from

the CDA R-MIM through the process shown in Figure 2.6. In other words, HL7 RIM is the

source of the structure and semantics of a CDA document.

So far, HL7 has released two versions of CDA. The CDA Release One (CDA R1) is the first

specification derived from the HL7 RIM. It became an ANSI approved HL7 Standard in 2000.

The CDA Release Two (CDA R2) became an ANSI-approved HL7 Standard in 2005 [58]. In

this thesis, CDA R2 is referred whenever the term CDA is used.

A CDA document has two main parts, the header and the body. In the CDA R1, only the

header part is derived from the RIM. In the CDA R2, in additionto the header part, the

clinical content in the document body is also derived from the RIM. Therefore the CDA R2

model enables the formal representation of clinical statements through CDA Entry classes.

A CDA header defines the context of the document by providing information on authentica-

tion, the encounter, the patient, and the involved providers whereas the CDA body includes

the clinical report. The body part can be either an unstructured blob or a structured hierarchy

which involves one or more section components. Within a section, narrative blocks and CDA

entries are defined. Machine-processable clinical statements are represented by these CDA

entries whereas the narrative blocks are human readable forms of these clinical statements.

Figure 2.8 [8] depicts the major components of a CDA document.

The “ClinicalDocument” is the root element of the document.The header is located between

the<ClinicalDocument> and the<structuredBody> tags. There exist sections in the ”struc-

turedBody” element. Each section can contain a single narrative block located in the “text”

element. A narrative block is the human readable portion of the section when rendered with

an appropriate stylesheet. Sections also contain CDA entries which are used to represent

structured content. CDA entries are machine-processable portions of the sections.

24

<ClinicalDocument>

... CDA Header ...

<structuredBody>

<section>

<text>...</text>

<observation>...</observation>

<substanceAdministration>

<supply>...</supply>

</substanceAdministration>

<observation>

<externalObservation>...

</externalObservation>

</observation>

</section>

<section>

<section>...</section>

</section>

</structuredBody>

</ClinicalDocument>

Figure 2.8: Major components of a CDA document

2.4 National Health Information System of Turkey (NHIS)

Turkey’s National Health Information System (NHIS) Project [4] was initiated on January 30,

2003 with the participation of representatives from governmental institutions, non-government-

al organizations, universities and the private sector under the coordination of Ministry of

Health in order to establish cooperation among the sectors and national health information

system’s infrastructure.

NHIS is based on sharing a functional database which is accessible by authorized people and

institutions with defined access rights that covers all the citizens’ records from the birth and

throughout his/her life on a spine of communication network with high bandwidth throughout

the entire country and using the technologies reaching telemedicine applications in profes-

sional practice.

Based on the pre-defined goals of NHIS, several achievementshave been done which are

summarized in the following sections. More information is available in our publications [59]

and [58].

Săglık-Net: The National Health Network

Sağlık-Net is the conversion of the existing LAN-WAN into atrue health network platform

providing linkages, services and data repositories (e.g. minimum data sets of Electronic

25

Healthcare Records) to all authorized parties in the healthsector. This National Health Plat-

form should be recognized, respected and trusted as the secure national platform for every-

thing that is Health Information, either systems or services or both.

Sağlık-Net is operational now and it is still being developed. The NHIS is built upon Sağlık-

Net and as of May 2009, the progress is as presented in Figure 2.9.

State

Hospitals

Family

Physicians

Clinics

Private

Hospitals

University

Hospitals

Pharmacies

Laboratories

Telemedicine

Legacy System

Digital Security e-

Signature

National Health

Data Dictionary

Decision Support

Systems

Health Code

Reference Server

MoH Network

Management

Figure 2.9: Sağlık-Net as of May 2009

As shown in Figure 2.9, the National Health Data Dictionary (Ulusal Sağlık Veri Sözlüğü,

USVS) [47], the Health Coding Reference Server (Sağlık Kodlama Referans Sunucusu, SKRS)

[60], legacy systems (e.g. Personnel, Financing, Health Statistics) and some network manage-

ment components are already connected to the Sağlık-Net. Telemedicine applications and the

more comprehensive digital security mechanisms on top of the current Web Services Security

module are under development to be connected.

On November 17, 2008, the organizations that are ready to send information to the servers

located at the Ministry of Health premises have started to send the HL7 CDA messages. The

software companies, developing Family Medicine Information Systems (FMIS) and Hospi-

tal Information Systems (HIS) in Turkey have to comply with the standards developed by

the Ministry of Health. In this way, interoperability amongNHIS servers and various Hos-

26

pital/Laboratory/Clinic/etc. information systems are provided. The Electronic Healthcare

Records are based on HL7 Clinical Document Architecture (CDA) and use the National

Health Data Dictionary, and the relevant coding systems. Asof January 15, 2009, that is

the official date published by the Ministry of Health of Turkey, the care organizations have

started to send the real data to the servers. Currently, nearly all of the state hospitals of

Turkey are successfully sending the daily messages to the NHIS servers. University hospitals

and primary care institutions are continuously boosting uptheir integration capabilities with

Sağlık-Net. Electronic Health Records of Turkish citizens are now being populated on the

NHIS servers. As statistical information, on March, 2009, on the average 100.000 - 150.000

messages arrived to the NHIS servers, on the daily basis, from all the connected institutions.

80 percent of this incoming data is formed of examination data set.

In the following sections, the major components of the Sağlık-Net, some of which are above-

mentioned, are described.

The Health Coding Reference Server (HCRS)

In order to provide common coding/classification systems that are available to all healthcare

players, MoH Department of Information Processing developed the Health Coding Reference

Server (HCRS) [60] which encapsulates all the international and national coding systems used

in Turkey within a publicly accessible server.

Some of the coding systems available from HCRS are ICD-10 [61], Drugs, ATC (Anatomic,

Therapeutic, and Chemical Classification System), Associations, Clinics, Specializations, Ca-

reers, Health Application Instructions, Supplies, Vaccines, Baby Monitoring Calendar, Preg-

nant Monitoring Calendar, Child Monitoring Schedule and Parameters.

The concept of Health Coding Reference Server (HCRS) is similar to the “vocabulary domain

/ value set” mechanism of HL7 v3. All the software companies doing business for Turkish

health market are obliged to use the HCRS in their software and to design their products for

fast adaptation to the latest updates in the HCRS, latest in 7days from the date of update.

The National Health Data Dictionary (NHDD)

The National Health Data Dictionary (NHDD) [47] is developed to enable the parties to share

the same meaning of data, and use them for the same purpose. The data whose definition

27

and format determined within the NHDD establishes a reference for the information systems

used at health institutions. Thus, the content interoperability among different applications is

provided through the NHDD.

NHDD is composed of data sets and data elements conforming toISO/IEC 11179-4 Standard

[62]. Currently, there are 46 Minimum Health Data Sets and 261 data elements.

The data groups used for data collection are called Minimum Health Data Set (MHDS) and are

formed from the NHDD as shown in Figure 2.10. In other words, MHDSs define the data sets

which emerge at the time of presenting a certain service, forexample, Infant Monitoring Data

Set or Pregnant Monitoring Data Set. Some example MHDS are “Citizen/Foreigner Registra-

tion MHDS”, “Medical Examination MHDS”, “Prescription MHDS”, “Pregnant Monitoring

MHDS”, “Cancer MHDS” and “Inpatient MHDS”.

Figure 2.10: Minimum Health Data Sets in the NHDD

The data elements within the Minimum Health Data Sets are mostly coded with coding

systems and all these coding systems are available at the Health Coding Reference Server

(HCRS). If a data element is defined in the National Health Data Dictionary as coded or clas-

sified, then the related coding/classification system is given both within the definition of the

data element and in the “HCRS System Code” field. There are twopossibilities for a coded

element: either the value is gathered from a coding system such as ICD-10, healthcare insti-

28

tutions, specialties, etc. or the value is of parametric kind such as gender, or marital status.

The Healthcare Professional Registry

Ministry of Health is authorized to provide the work licenses to the physicians in Turkey. The

diploma/specialty information of the medical professionals is recorded together with their

Turkish citizenship numbers in the Doctor Data Bank (DDB) [63].

The Doctor Data Bank, that is, the Healthcare Professional Registry serves two purposes: The

first one is that most of the payment providers control the health service and the prescriptions

according to the physicians’ specialty. For example, when arule indicates that only the physi-

cians with a certain specialty can prescribe certain medicines, it becomes possible to check

whether the doctor who has signed the prescription has the required specialty.

Data Collection and Sharing in the National Health Information System

The National Health Data Dictionary, the Minimum Health Data Sets and the Health Cod-

ing Reference Server provide the information space used in the messages to be exchanged

between the peripheral systems and National Health Information System. It should be noted

that these data sets do not have a wire format and the most important decision to be taken

at such nation-wide projects is whether to use a standard format. Most of the time, stan-

dards do not cover all of the identified information requirements in a project; therefore, the

implementers choose to develop their own proprietary format instead of a standard format.

However, this decreases interoperability. In the NationalHealth Information System, HL7 v3

is selected because of the following reasons:

• HL7 is the most widely used electronic healthcare standard.Although, National Health

Information System is to be used locally in Turkey, when it comes to communicate with

other countries, the systems should be ready.

• After the completion of the NHIS, all of the medical information systems used in the

nation-wide healthcare institutes should be adapted to communicate with the NHIS.

Being based on a widely-used standard will facilitate the interoperability to a large

extent.

• HL7 v3 provides mechanisms to extend the messages accordingto the requirements of

a project.

29

• Specifically, the version 3 of the HL7 standard is selected rather than HL7 v2.x because

of optionality problems of v2.x. Additionally, HL7 v3 is a standard whose conformance

can be tested. In other words, it becomes possible to test thesoftware clients running

on the peripheral medical institutes that provide data to the NHIS servers. This is not

possible in the 2.x versions of HL7.

Development of the Transmission Schemas

In the current version of the NHIS, the Transmission Schema instances are regarded as HL7

v3 messages and localized according to the Turkey’s HL7 Profile [5].

A “Transmission Schema” contains a main Minimum Health DataSet (from which the trans-

mission schema is named after) and a set of auxiliary MHDSs that helps the interpretation

of the main MHDS. An example transmission schema for “Examination” defined in the Na-

tional Health Data Dictionary is shown in Figure 2.11 where the “Examination” data set is

sent together with the “Newborn Registration” or “Citizen/Foreigner Registration” data sets.

Furthermore, “Patient Admission” and “Patient Discharge”data sets are also required. If there

are any “Test Result” data sets or “Prescription” data sets,they are also sent along with the

“Examination” data set.

Figure 2.11: The Examination Transmission Schema from the NHDD

It should be noted that there is no specific HL7 v3 Domain for all of the Transmission

Schemas. For example, there is no HL7 Domain that is suitablefor “Pregnant Psychoso-

cial Observation” or “Communicable Disease Probable Case Notification”. Therefore, the

CDA, which provides a generic mechanism to identify the contents of electronic healthcare

30

documents, is selected as the document format.

<examination classCode="DOCCLIN" moodCode="EVN">

<id root="2.16.840.1.113883.3.129.2.1.3" extension="11333439-08ab-42c5-ec2d-17064c153456" />

<code code="MUAYENE" codeSystem="2.16.840.1.113883.3.129.2.2.1" codeSystemName="Döküman Tipi"

codeSystemVersion="1.0" displayName="Muayene MSVS (Vatandaş/Yabancı)" />

Figure 2.12: The Beginning of the Examination TransmissionSchema

Each “Transmission Schema” is wrapped with a root element named after the main data set

in the transmission. For example, as shown in Figure 2.12, the root tag of the “Examination

Transmission Schema” is<examination>. In this example, the document type (“Doküman

Tipi” in Turkish) is “Examination” (“MUAYENE” in Turkish) and this code is obtained from

the DocumentType-CS Code System whose object identifier (OID) is “2.16.840.1.113883.3.-

129.2.2.1”.

<examinationDataset classCode="DOCSECT" moodCode="EVN">

<id root="2.16.840.1.113883.3.129.2.1.4" extension="4e7e0004-8e9e-44d2-9a9e-099d071e646a" />

<code code="MUAYENE" codeSystem="2.16.840.1.113883.3.129.2.2.2" codeSystemName="Veriseti"

codeSystemVersion="1.0" displayName="Muayene Veriseti" />

Figure 2.13: An Example First-level Section for the Examination TS

The “Data Sets” in the “Transmission Schemas” correspond tothe first-level “Sections” in the

CDA. The name of the opening tag of the “Data Set” is obtained by concatenating the name

of the dataset with the “Dataset” keyword. The “code” of a “Data Set” is retrieved from the

DataSet-CS Code System. For instance, in the example given in Figure 2.13, the opening tag

is <examinationDataset> and the code is specified as “Examination” (“MUAYENE”). This

code is obtained from the DataSet-CS (“Veriseti”) Code System whose object identifier (OID)

is “2.16.840.1.113883.3.129.2.2.2”.

The data sections that wrap the NHDD data elements are represented by nesting new “section”

elements in the data set’s “section” elements. The opening tag of a data section is obtained

by concatenating the data element’s name with the “section”keyword. For example, the

diagnosis (“TANI” in Turkish) data element is introduced tothe examination data set with the

<diagnosisSection> XML element as shown in Figure 2.14.

31

<examinationDataset classCode="DOCSECT" moodCode="EVN">

<id root="2.16.840.1.113883.3.129.2.1.4" extension="4e7e0004-8e9e-44d2-9a9e-099d071e646a" />

<code code="MUAYENE" codeSystem="2.16.840.1.113883.3.129.2.2.2" codeSystemName="Veriseti"

codeSystemVersion="1.0" displayName="Muayene Veriseti" />

...

<diagnosisSection classCode="DOCSECT" moodCode="EVN">

<id root="2.16.840.1.113883.3.129.2.1.5"

extension="6c4b1e87-c4f4-42b0-aaeb-05e23a77ed5a" />

<code code="TANI" codeSystem="2.16.840.1.113883.3.129.2.2.3" codeSystemName="Veri Kismi"

codeSystemVersion="1.0" displayName="Tani Versinin Oldugu Bolum" />

<text>Hastada vaskuler bagirsak bozuklugu teshis edilmistir.</text>

<component typeCode="COMP" contextConductionInd="true">

<diagnosis moodCode="EVN" classCode="OBS">

...

<value code="K55" codeSystem="2.16.840.1.113883.6.3" codeSystemName="ICD-10"

codeSystemVersion="1.0" displayName="BARSAGIN VASKULER BOZUKLUKLARI" />

</diagnosis>

</component>

</diagnosisSection>

...

Figure 2.14: An Example Second-level Section for the Examination TS

As shown in Figure 2.14, the values for the data elements are given with CDA Entry classes

such as Observation or Procedure and they are associated to the related “section” element

through the “component” element.

Figure 2.15 summarizes the relationships between the artifacts of NHDD, the “Transmis-

sion Schemas” and the HL7 CDA R2. Once this mapping is defined,the constraints im-

plied through these mappings are reflected to the schemas by modifying the CDA Level One

schema.

This mapping also briefly summarizes the changes that are applied to the original HL7 CDA

R2 schema.

Development of the Communication Infrastructure

A “Transmission Schema” instance constitutes a message’s payload. In other words, “Trans-

mission Schema” instances should be encapsulated in messages. For this purpose, “HL7

Transmission and Control Act Wrapper” is used. Example Transmission Wrapper and Con-

trol Act Wrapper can be found in Figure 2.16.

HL7 Version 3 provides three transport specifications - ebXML, Web Services and MLLP -

for the exchange of HL7 based content, messages and documents. Among them, Web Ser-

vices Profile is the most promising, as it is based on widely-used Web Services Technology.

32

Figure 2.15: Mapping NHDD Concepts to HL7 v3 CDA R2

<MCCI_IN000001TR01 xmlns="urn:hl7-org:v3">

<id root="2.16.840.1.113883.3.129.2.1.2" extension="5b50d046-b567-4fba-a365-60c220c9fae1" />

<creationTime value="20080402102643" />

<responseModeCode code="Q" />

<interactionId root="2.16.840.1.113883.3.129.2.1.1" extension="MCCI_IN000001TR01" />

<processingCode code="P" />

<processingModeCode code="T" />

<acceptAckCode code="AL" />

<receiver typeCode="RCV">

<device classCode="DEV" determinerCode="INSTANCE">

<id root="2.16.840.1.113883.3.129.1.1.5" extension="USBS" />

</device>

</receiver>

<sender typeCode="SND">

<device classCode="DEV" determinerCode="INSTANCE">

<id root="2.16.840.1.113883.3.129.1.1.5" extension="SRDC-Deneme" />

</device>

</sender>

<controlActEvent classCode="CACT" moodCode="EVN">

<subject typeCode="SUBJ">

<!-- CDA based Transmission Schema instance -->

<examination classCode="DOCCLIN" moodCode="EVN">

...

Figure 2.16: Example Transmission Wrapper and Control Act Wrapper from the NHIS

33

Therefore, in the National Health Information System implementation, Web Services Profile

is used for the communication infrastructure. The Basic Profile and the Security Profile of

Web Service Profile have been implemented. For security, WS-Security Username Token

Profile [64] over Secure Sockets Layer (SSL) is used.

Details of NHIS Web Services

In the current version of the NHIS implementation there are 25 HL7 Web Services. These are:

“15-49 Age Female Observation”, “Mouth and Teeth Examination”, “Vaccine Notification”,

“Infant Nutrition”, “Infant Observation”, “Infant Psychosocial Observation”, “Communicable

Disease Definite Case Notification”, “Communicable DiseaseProbable Case Notification”,

“Diabetes”, “Dialysis Notification”, “Dialysis Observation”, “Birth Notification”, “Pregnant

Observation”, “Pregnancy Termination”, “Pregnant Psychosocial Observation”, “Patient De-

mographics Notification”, “Cancer”, “Puerperal Observation”, “Examination”, “Death No-

tification”, “Test Result”, “Citizen/Foreigner Registration”, “Stateless Person Registration”,

“Newborn Registration” and “Inpatient”.

Almost for each HL7 Web Service there are four operations; namely “Insertion”, “Update”,

“Deletion” and “Query” operations. All of these individualoperations are synchronous but

overall, the NHIS behaves asynchronously. The clients, which are the vendor applications

deployed at healthcare organizations’ premises, send their “Transmission Schema” instances

through the insertion operation. This operation performs only syntax validation against the

related schema and responds with an acknowledgement about the result of the validation. If

the invocation of the first operation is successful, then themessage is stored at the NHIS

servers for detailed processing. This detailed processinginvolves the semantic validation of

the content of the message, which is briefly described in the following “Validation of the

Transmission Schema Instances” section. Then, at any time,the client invokes the query

operation to query the semantic validation result by using the previously sent document’s

Universally Unique Identifier (UUID) [65]. If the detailed content processing of the document

is successful, a positive acknowledgement is received fromthe query operation; otherwise, the

errors encountered in the semantic validation phase are reported to the user. The clients are

also able to update and delete the previously inserted documents with the help of update and

delete operations. The UML Interaction Diagram of NHIS HL7 Web Services in Figure 2.17

shows these interactions and the application roles used in Turkey.

34

Figure 2.17: Interaction Diagram of NHIS HL7 Web Services

Apart from the HL7 Web Services, there are 16 more Web Services that neither the services

nor their content conform to HL7 or any other eHealth standard. These are native synchronous

Web Services usually developed for some risky communicablediseases. “Malaria Notifica-

tion” and “Tuberculosis Notification” are two such examples. They have Web-based forms

on the MoH central servers as well and it is expected that healthcare professionals will send

these comparably rare observations through these forms. Currently, these 16 non-HL7 Web

Services are not in use because they are not deployed on the NHIS servers. These services

have faced with significant semantic and syntactic changes.Therefore, new implementations

and deployments of these services are in progress. In a near future, these services are being

planned to be deployed on the NHIS servers.

Validation of the Transmission Schema Instances

A two phase validation technique is applied for the validation of the incoming messages to

the NHIS. In the first phase, which is called syntax validation phase, an incoming document

instance is validated against the related XML Schema Definition (XSD) of the “Transmission

Schema” by the greeting operations; namely the insertion and update operations. If success-

35

ful, the message is conveyed to the second phase which is called the semantic validation

phase.

The semantic validation phase checks the values in the data elements and the relationships

between them. The semantic constraints are categorized into five classes:

1. MERNIS Central Demographics Management System: In Turkey, every citizen has a

unique identifier and these identifiers are maintained in a system called MERNIS (Cen-

tral Demographics Management System) [66]. The patient identifiers in the messages

should be validated against this system.

2. Doctor Data Bank (DDB): The identifiers of the healthcare professionals that appear in

the messages should be validated against this DDB.

3. Value formats: Values of some data elements should obey some specific formats. As an

example, HL7 date can be of the form YYYYMMDD.

4. Coded elements: The coded elements should have values from the Health Coding Ref-

erence Server (HCRS).

5. Business rules: There are some rules among the message elements such as the examina-

tion end date should be later than the examination begin date. There are more complex

clinical business rules as well. These rules are defined and documented [67] in collab-

oration with the healthcare professionals and the administrative staff of the healthcare

organizations.

2.5 TestBATN

TestBATN is a software framework which proposes a design andan execution environment

and applies a specific testing approach for dynamic, configurable and automated execution

of conformance and interoperability testing against B2B standards, profiles or specifications.

TestBATN is an abbreviation for “Testing Business Process,Application, Transport and Net-

work Layers”. That is, it enables an interoperability test platform to test all the layers of the

interoperability stack.

The work of this thesis is done under the TestBATN project. This thesis engages an important

36

role within the TestBATN framework by realizing a Test Execution and Monitoring Environ-

ment. TestBATN project is supported by the Scientific and Technological Research Council

of Turkey (TÜBİTAK) [68]. In this section of the thesis, introductory information about the

TestBATN framework is presented. The part of TestBATN whichdirectly corresponds to this

thesis is described in detail in Chapter 4, as TestBATN CONTROL AND MONITORING

ENVIRONMENT.

This work has also enabled the testing of the National HealthInformation System (NHIS) of

Turkey by providing the Test Execution and Monitoring Environment to the software produc-

ers in the health arena of Turkey. Therefore, first, the requirements of the testing process of

NHIS are identified and the test scenarios are developed within the Test Description Language

of TestBATN. According to the requirements of the developedtest scenarios, the Test Con-

trol and Monitoring Environment within TestBATN oriented to the expected implementation.

In Chapter 3, as NHIS TEST SCENARIOS, the testing approach and the test scenarios are

presented in detail.

Load TestCases

control

Test Design GUI
Database

Test Framework
Load Test Constructs

Store Test Case

Packaging

1. SOAP Adaptor

2. ebMS adaptor

3. ...

Transport

2. TCP Adaptor

3. ...

1. HTTP Adaptor

Messaging Interface

5. ...

Evaluation Interface
1. XML Schema Validator
2. Schematron Verifier
3. XPATH Verifier
4. HL7 v2 Validation Service

Test Management
GUI

Evaluation
Reports

Send Message

Listen Message

SUT
Party 2

Send Message

Receive Message

SUT
Party 1

SUT Administrator

control

Test Engine
Test Case

Configuration

Preliminary Test Data

TestAssertion

ReceiveMessage

TestAssertion

Exit

Reporting

RequestTestData

SendMessage

ListenMessage

When FalseWhen True

Figure 2.18: Overall Architecture of the TestBATN Framework [69]

Figure 2.18 presents the overall architecture of the TestBATN framework. In the following

subsections, some details of the overall picture are described.

TestBATN framework consists of the following features:

• An XML based computer interpretable test language (TestBATN Test Description Lan-

guage) allowing dynamic set up and automated execution of test cases.

37

• A Test Execution Model defining the meaning of the behavioraland operational seman-

tics of each Test Description Language (TDL) instruction inan unambiguous way.

• A set of interfaces (TestBATN Module Interfaces) which enables development and inte-

gration of pluggable modules supporting different protocols, formats or methodologies

and dynamic capabilities to make these modules utilized in execution of the specific

TestBATN TDL instructions.

• A Web-based Test Control and Monitoring Environment which enables the users to

monitor and drive the execution of test cases. (Chapter 4)

• A Test Design and Framework Management Environment enabling responsible orga-

nizations to develop, deploy and maintain test cases, supplementary materials for any

B2B (Business-to-Business) standard, specification or profile.

With the above features, TestBATN framework can be used as

i a conformance test platform where vendors can test their systems’ conformity remotely

over the Web

ii an interoperability test platform where vendors can testthe interoperability of their

products against each other remotely over the Web, or in a testing event (e.g. ETSI

Plugtests [70], IHE Connectathons [71])

iii a means of testing for the certification of products against a B2B standard or profile.

2.5.1 Main Concepts and Testing Approach

TestBATN framework aims at integrated testing covering alllayers of interoperability stack;

business process layer, document layer and communication layer. Rather than partial testing,

that is testing each layer independently with specific toolsand integrating the results, Test-

BATN has an integrated testing approach which tests the restrictions on these three layers of

interoperability stack jointly within a test scenario.

Figure 2.19 illustrates the main concepts of the framework and setup for conformance testing.

A Test Scenario is the abstraction for the complete description of the participating entities

38

and the steps required to achieve a specific test purpose; testing the systems against the con-

formance or interoperability requirements of a part of a standard or a profile. The TestBATN

framework follows the business process terminology and calls the participating systems of the

test scenario as parties.

SUT

Test Case

Test Driver

(SUT Controller)

TestBATN EngineTestBATN Control&Monitoring

Environment
Test Reports

Means of Communication

�������� ��	
����

�����
 ����� ����

AUT

Playing the Role

SA

SA

SA

Simulated Actors

Actor Under Test

Test Scenario

Playing the Roles

by the test scripts in

the test case

Figure 2.19: TestBATN Conformance Testing Setup

Generally,Test Parties are the corresponding abstraction of the framework for the actors

specified in the business process in the base standard. In theTestBATN framework, Test

Parties can be in two types; simulated or Actor Under Test (AUT). The parties, which are

specified as AUT, are the entry points for Systems Under Test (SUTs) to participate to the test

execution. The simulated parties are the actors that residein the business process or message

choreography specified in base specification, but that are not intended to be tested in the test

scenario. They are simulated by the framework by means of test scripts to achieve the test

purpose.

The Test Steps mentioned in the Test Scenario description are the abstraction for actions or

instructions that will be performed on the Test Framework orSUT side to execute the test case.

The backbone for these steps is the message choreography specified within the Test Scenario

(or derived from the base specification conformance or interoperability criteria). Other steps

are the instructions for the Human Test Drivers controllingthe SUTs and validation steps that

39

will contribute to the test verdict.

As previously mentioned, Test Scenario is the abstraction and it should be interpreted as the

sequence or flow of actions in Test Designer’s mind to achievethe test purpose. In order to

automate the test execution, this description is defined in TestBATN machine processable lan-

guage; TestBATN TDL. By following the conformance and interoperability testing literature

terminology, this definition which corresponds to a test scenario is called a Test Case.

2.5.2 Conformance Testing

Standardized protocols and services, and the applicationsdeveloped through the protocols can

be formally tested in two related but different ways. One way goes through the conformance

testing. Conformance testing depicts whether an application correctly implements a particular

standardized protocol or not. In other words, the testing ofthe conformance shows whether

or not a single implementation of the protocol meets the conformance requirements specified

for that protocol.

When a software instance includes an implementation of a universally standardized protocol,

it becomes possible to specify the test criteria and procedures with a quality comparable to

that of the protocol standards themselves. The protocols may set some rules on several layers

of the interoperability stack and these rules are formally defined through some formal doc-

umentation. XML Schemas may restrict the structure of the content, business profiles may

rule on the choreography of the exchanged messages among theparties etc. Therefore, these

formal restrictions form a basis for the testing applicability on that of the softwares which

implemented the protocols.

Figure 2.19 shows basic details and setup for conformance testing. During the test execution,

two entities; TestBATN Engine and TestBATN Execution and Monitoring Environment take

role in the framework side. TheTestBATN Engine is the system which interprets and executes

the Test Case definition, which is scripted in the Test Description Language, and manages

the whole process. The TestBATN Control and Monitoring Environment (Chapter 4) is the

interface between the engine and the Human Test Driver to provide real time monitoring on

the test execution, some control on the scenario and reporting of the test results. TheHuman

Test Driver, while monitoring the test execution with TestBATN Controland Monitoring

40

Environment, manages the SUT according to the instructionsshown on the Graphical User

Interfaces (GUIs).

The purpose of conformance testing is to determine conformance of a single implementation

against a particular standard. Therefore, in the setup shown in Figure 2.19, there is only one

SUT playing the role of the Actor Under Test (AUT) specified inthe conformance test case.

The TestBATN Engine on the other hand can simulate several parties according to the business

process specified in the base standard or testing purpose of the test scenario. The Means of

Communication is the physical setting that enables communication among systems, can be

internet, local network or any other instrument.

In any given instance of testing, there will be a test report which includes the final test verdict,

intermediate test verdicts for each step, and detailed reports showing the logs and errors for

each step. In fact, the reports and the verdicts for each stepare shown to the Human Test

Driver in run time without waiting the end of the test case. The interface between the Test-

BATN engine and the TestBATN Control and Monitoring Environment realizes this run-time

monitoring facility. In addition, a presentation model is defined in the framework and used

to present the test scenario to the Human Test Drivers in a better way. Detailed descriptions

on the reports will be discussed in Chapter 3 while concentrating on the application of the

developed test scenarios in real-life.

2.5.3 Interoperability Testing

Interoperability is the ability of two or more systems or components to exchange information

and to use the information that has been exchanged [1]. More specifically, interoperability is

said to exist between two applications when one applicationcan accept data (including data

in the form of a service request) from the other and perform the task in an appropriate and

satisfactory manner (as judged by the user of the receiving system) without the need for extra

operator intervention [2].

The purpose of the interoperability testing is to prove thatend-to-end functionality between, at

least, two communicating systems is as by required by the standard or a number of standards

on which those systems are based. However, one should keep onmind that interoprerability

tests are applied at the end-points and on the functional interfaces of the applications which,

41

that is, interoperability testing can only specify functional behavior. It cannot explicitly cause

or test protocol error behavior [3].

SUT

���� ����
���� ���	��
��� �
�� �
�����

�������� �������������� ������� �!"��������� ��#����$��� ���� %�&
�� �
Means of Communication

'()*+,'- ./01(23/4
56)*(1 789(/ '()*

AUT

Playing the Role

SA

SA

SA��:;����<=>�
��=>�
� ��<������ Playing the Roles

Figure 2.20: TestBATN Interoperability Testing Setup

Figure 2.20 illustrates the interoperability testing setup of the TestBATN when there are two

Systems Under Test (SUTs). The situation is similar when there are more than two SUTs.

There is not too much difference between the conformance and interoperability testing in

the testing process. Since the purpose of interoperabilitytesting is to check the end-to-end

functionality between two or more communicating systems, usually there is no simulated

actor. However, interoperability test scenarios including simulated actors can be designed for

more complex test purposes. Generally, in interoperability test scenarios, the aim is to listen

to the messaging between SUTs. The TestBATN framework achieves this by its specific

instructions for listening by setting up itself as a proxy. The monitoring and reporting process

is the same as in the conformance testing setup.

2.5.4 Scenario Based Testing

It is already mentioned that TestBATN framework approach for both conformance and inter-

operability testing is integrated testing based on a scenario and the backbone for this scenario

is the identified actors and messaging choreography among them. On this scenario skeleton,

test designers set further test steps to check conformance or interoperability requirements of

the base standard regarding the business documents, other details on business process, and

42

communication protocols. However, more information on thebusiness collaboration will be

needed in order to execute the test scenario. Current approaches provide this information in

the narrative test case descriptions before test case executions. Then the test cases are con-

figured in design time accordingly to check these further scenario requirements. TestBATN

framework proposes a new approach, scenario based testing which provides mechanisms to

set and check these scenario restrictions in the test case definitions.

In the scenario based testing approach, a real life scenarioregarding the backbone business

process is presented to the Human Test Drivers and they are expected to operate the SUTs

according to this scenario. For instance, assume that you need to test a standard which de-

fines the rules for the messaging interaction between healthcare institutions for the sharing

of an EHR record for the examination data. The following textcan be a part of the scenario

requirements:

“A patient whose name isJohn Doevisits doctor Maryin 2008-10-13. The main diagnosis

identified after the examination is Liver Cancer...”

In this scenario fragment, the underlined words should be the values of some element in the

message if this scenario happens in real life. Since the basespecification and standard tells

where these values should be located in the message (for example with an XSD Schema),

for real conformance and interoperability, the application should have the ability to use the

information given in real life and generate the message or resulting document correctly with

this information. Therefore, in addition to syntactic testing, the semantics of the message

should also be tested by scenario based testing.

Scenario based testing is useful but not effective much when all the scenario requirements are

provided in design time where the test scripts are configuredaccording to these requirements.

In order to make the test scenarios dynamic, configurable andeasy to maintain, the TestBATN

framework provides a mechanism to present the scenario in structured way like a template.

In this way, designation of actual scenario requirements will be delayed until run-time. In

TestBATN framework, this phase is integrated in automated test case execution as preliminary

phase. When the requirements are specified in test executiontime, the test scripts in the

test case definition are also configured automatically. The TestBATN framework provides

following three mechanisms for the completion of the scenario template:

43

• An element in the template can be specified in design time by the test designer

• An element in the template can be specified by one of the Human Test Drivers in run-

time

• An element in the template can be specified by a special application which can generate

randomized values

The Scenario Based Testing approach of the TestBATN framework facilitates test cases which

not only guarantee that the application can send some conformant messages, but also guaran-

tee that in any real life scenario the application sends the conformant and semantically correct

message. Scenario based testing approach is more importantfor certification, better interop-

erability (semantic interoperability) and to ensure accurate data. In other words, by using this

approach, it is possible to test if the information in the generated content, that is messages or

documents, accurately represents the intentional semantics of the users of the application.

2.5.5 Modular Approach

One of the objectives for TestBATN framework is being a generic testing framework and

supporting any B2B standard, specification or protocol for conformance and interoperability

tests. Current B2B standards specify a variety of communication protocols, content format

or choreographies. In order to support all of those and perform automated conformance or

interoperability tests against them, the TestBATN framework is designed as an adaptable and

modular software framework. The aim is to leave the dirty jobrequired for testing process to

adaptors coded by some programming language. Such adaptorscan be developed more easily

to perform those jobs. Utilizing specific adaptors to supplement the automated testing process

is not new and followed by other test beds or approaches [72].However, in those approaches,

testing adaptors are prepared for specific testing events orspecific test cases, and there is no

standard methodology to integrate them into the test frameworks.

The TestBATN framework defines interfaces and a standard methodology for the integration

of different adaptors into the framework to enhance the reusability of the adaptors among test

cases designed for different domains or standards. The approach of TestBATN framework is

defining a common standard interface for specific functionalities that need to support differ-

44

ent protocols, formats, or technologies in testing processor which may facilitate reusability

among different test cases from different B2B standards or profiles.

The TestBATN framework defines the following interfaces which will be used in the testing

of NHIS.

• Messaging Interface

– Transport/Communication Adaptor Interface: The interface facilitates pluggable

adaptors which will be used to receive, send or listen to messages by different

protocols like TCP [11], HTTP [20], SMTP [73], etc.

– Packaging Adaptor Interface: The interface facilitates pluggable adaptors which

will be used to pack or unpack messages according to higher layer messaging

protocols like SOAP [41], ebMS [74], etc.

• Test Adaptor Interface

– Validation Adaptor Interface: The interface facilitates pluggable adaptors which

will be used to validate a content according a schema and which generate a ver-

dict and structured test report for the performed validation. e.g. XML Schema

Validator, Schematron Validator

– Verification Adaptor Interface: The interface facilitates pluggable adaptors which

are used to perform complex tests on any content and which generate a verdict and

structured test report for the performed tests. e.g. XPATH [15] Verifier, Regular

Expression Verifier, other special purpose test tools

• Value Initiator Adaptor Interface : The interface facilitates pluggable adaptors which

will be used to generate or choose random values from a specific value list. These initi-

ated values are used in run-time message content and scenario requirement generation.

• Function Library Interface : The interface facilitates definition and implementation

of functions which will be used in TestBATN TDL expressions as auxiliary data pro-

cessing entities. These functions are similar to XPATH functions used in XPATH ex-

pressions.

• Data Model Interface: This is the interface to define specific data models for the

content formats that are not XML based. TestBATN framework internally transforms

45

them into Object model and enables expressions and other TDLinstruction to run over

this data.

���� � �����	
����� � �����	
�����
 �����	
�
����������������� ���� !"#$%$&!�$"���� !"#$'(")� !"

*+�$,���� !" ��-� .	��/
0������.	��*$' #$')12$" 3�� 04� ���� 5���

��� � 6����5
0��	
�� .�5�� 30��7.� 	4�
Figure 2.21: Reusability for Adaptors

Modular TDL

Instruction

89:;<=> ?@<A>B:CA DEFGHIJ KHIGHIJLMFNOPHQRIOMF

8 ST;A D 89:;<=>
LUMMJV WHOIRXYVZ[RGIMQSA\<]A\^_@A>

]A\C>^;<=>`CaAb: B=>?@<A>B:CA D
89:;<=>]A\C>^;<=>

[VJcQOXVJ OFJIRFcV MN[VJcQOXVJ
GQMdO[V OFGHI GRQReJfXOF[MHIGHIfGQMdO[V cMFNOPHQRIOMF GRQReJ

Figure 2.22: Plug-in an Adaptor to a Modular TDL Instruction

Figure 2.21 illustrates the approach of TestBATN frameworkto enhance reusability for test

components or tools. According to the needs for a standard ordomain, adaptor developers

develop adaptors implementing the corresponding interfaces defined in the framework. They

46

also write descriptors for their adaptors which describe the main functionality, its input, out-

put and configuration parameters in a structured XML format.When the descriptor and the

implementation for the adaptor are deployed into the framework, the adaptor is ready to be

used in test case definition process and execution of those test cases.

The Figure 2.22 shows how the Test Designer plugs in a specificadaptor for a TestBATN

Test Description Language (TDL) instruction. By considering the test scenario, he chooses

the suitable adaptor from the registry of adaptors of that type and mention the ID of the

adaptor in the instruction to make the TestBATN engine to usethe adaptor while executing

the instruction. Then he provides values for input, output and configuration parameters for

the adaptor.

47

CHAPTER 3

NHIS TEST SCENARIOS

Two important inputs to this thesis are introduced in the preceding chapter as National Health

Information System (NHIS) of Turkey and the TestBATN Framework. The target outcome of

this work is enabling the conformance and interoperabilitytesting of the applications devel-

oped within NHIS through TestBATN framework. This chapter focuses on the test scenarios

which are developed in the scope of this thesis. The test scenarios are registered to the Test-

BATN through test suite definitions and published to the Family Medicine Information Sys-

tem (FMIS) and Hospital Information System (HIS) vendors taking part in the health sector

of Turkey.

The current version of the NHIS provides 25 HL7 based web services, each of which is

specialized to a specific Minimum Health Data Set Transmission as described in [58]. NHIS

also published 16 native web services which are not HL7 based. The testing process of this

thesis does not deal with those non-HL7 Web services. The services in question are the 25

HL7 Web services.

All of the software systems running in the medical institutes in Turkey, the FMISs and HISs,

are obliged to have the ability to transfer EHRs, called “Transmission Schema” instances

to the NHIS servers at the Ministry of Health (MoH) premises.In order to guarantee the

interoperability, the MoH, published an Implementation/Integration/Interoperability Profile

[5] for FMIS and HIS vendors. This profile holds a very important role in the development of

the NHIS test scenarios because the standars to be used in theinteroperability stack, the code

values to be used and several semantic rules are defined through this profile. The profile is

based on the following standards and specifications which are described in detail in Chapter

2:

48

• For transport protocol, HL7 Web Services Profile [54] is used. For security WS-

Security Username Token [64] over SSL is required for conformance.

• The “Transmission Schemas” are HL7 CDA R2 [8] conformant EHRs and each HL7

CDA section is a Minimum Health Data Set (MHDS) [75] which is formed from the

data elements specified in National Health Data Dictionary (NHDD) [47].

• Health Coding Reference Server (HCRS) [60] serves all coding systems in use in

Turkey which is used in the data elements within the Minimum Health Data Sets. For

some specific data elements, some other coding systems, likeICD-10 coding system

[61], are specified for use.

• For each Transmission Schema and Minimum Health Data Set, several semantic Busi-

ness Rules are defined to provide consistency among the values used in the data ele-

ments.

• In Turkey, every citizen has a unique identifier and these identifiers are maintained in a

system called MERNIS (Central Demographics Management System) [66]. The patient

id numbers in the messages are required to exist and be consistent with this system.

• In Turkey, every physician is registered to a system called Doctor Data Bank [63]. The

id numbers of the doctors in the messages should exist in thissystem.

The Integration Profile and its reference specifications present all the restrictions and require-

ments for vendors to update or develop the necessary components within their FMISs and

HISs for a successful integration. However, without an extensive and effective testing process

this is a difficult job for those vendors. Furthermore, only through testing, correct informa-

tion exchange among these eHealth applications can be guaranteed and the products can be

certified. Conformance and interoperability testing are both important and useful to the test-

ing of the applications whithin NHIS. Conformance testing of the FMISs and HISs can show

that those implementations comply with the requirements ofthe protocols and specifications

asserted in the Integration Profile of MoH. However, only testing the conformance of the

applications does not guarantee that those implementations will interoperate with each other.

49

3.1 Testing Requirements

After analyzing the Integration Profile and the eHealth market in Turkey in terms of FMIS and

HIS products, the requirements to enable the testing of the systems have been settled [12].

Basic Conformance Testing

The first step in the testing process is to test the ability of the HIS and FMIS systems to send

valid “Transmission Schemas” in terms of syntactic and structural constraints. Only after pro-

cessing a structurally valid message, the applications cango further analysis and processing

of the message. Furthermore, since the integration profile sets a number of protocols to be

used within each other, the syntactic validation should also be done in a logically consistent

order.

The following tests are required to assure the syntactic correctness of the messages:

i Checking the ability of the systems to send HL7 Web ServicesProfile conformant

SOAP (Web Service) messages

ii Checking the ability of the systems to send WS-Security Username Token Profile con-

formant SOAP (Web Service) message

iii Checking the ability of the systems to use the username and the password assigned to it

correctly in the corresponding SOAP header, as specified in the WS-Security Username

Token Profile.

iv Syntactic validation of “Transmission Schema” instances sent by the systems against

their corresponding XML schemas

v Checking if the code systems and the codes used in the “Transmission Schema” in-

stances are valid. That is, checking whether the code systemis one of the code systems

specified in the integration profile and whether the code value is valid according to the

corresponding code system

Functionality /Semantic Testing

Basic conformance testing guarantees the conformance of the “Transmission Schema” in-

stances sent by a FMIS or HIS to the specified standards and specifications, and hence it

50

partially guarantees the MoH NHIS servers to accept the transmission and store its content

to their database. However, it does not ensure that the information in the transmissions ac-

curately represent the intentional semantics of the FMIS orHIS users (e.g. doctors, family

practitioners).

For example, a data element in the “Medical Examination MHDS” is called “Incident Type”

which should contain values such as “Normal”, “Emergency”,or “Industrial Accident”. For

this data element, the following tests should be performed in order to guarantee the semanti-

cally valid transmissions:

i Checking whether the system (FMIS/HIS) is capable of sending different values for the

related field. This constitutes to testing whether the system provides all possible code

values to its user for selection

ii Checking whether the system (FMIS/HIS) accurately packs the value selected by the

user into the transmission

iii Checking whether the system (FMIS/HIS) has the ability to render this value to its users

The testing requirements identified up to this point necessitate scenario based testing where

vendors are given with a set of test scenarios and are requested to use their products’ user

interfaces to construct a transmission which is conformantwith the given scenarios.

Interoperability Testing

Testing the conformance of applications to produce and consume the correct “Transmission

Schemas” is necessary but not sufficient in deciding whether a FMIS or a HIS can properly

be integrated into Turkey’s NHIS. It is necessary to ensure that the selected options, bindings,

and deployment settings of the implementations are compatible across partners [76].

Interoperability testing also enables the testing of the implementation of the NHIS server ap-

plications in the terms of the standards and specifications settled in the Integration Profile.

However, in this case, testing of the NHIS server applications can only be done through the

syntactic checks of the responses generated by the NHIS servers. That is, semantic and func-

tionality checks of the NHIS server applications fall beyond the scope of the interoperability

testing in the context of this thesis.

51

3.2 Testing Approach

The development and application of the test cases adopts a “step-by-step” approach from

the basic and simple test cases to the complex ones. According to the National Health Data

Dictionary (NHDD) [47] published by the Ministry of Health,Turkey, by means of the Inte-

gration Profile, a “Transmission Schema” contains a main Minimum Health Data Set and a

set of auxiliary MHDSs that helps the interpretation of the main MHDS. Furthermore, as pre-

viously presented in Figure 2.11 which provides an example schematic representation of the

Examination Transmission Schema, inside the “Transmission Schema” some of the MHDSs

are required while some of them are optional. These are specified through the corresponding

XSD Schemas.

Considering the mentioned facts, several test cases are developed through the adopted testing

approach of this thesis to realize the testing of FMISs and HISs. Figure 3.1 shows the graph-

ical representation of the testing methodology used in thisthesis. The testing tool, which

is actually the set of tools within TestBATN, simulates the corresponding NHIS service ac-

cording to the definition stated inside the developed testcases. The clients configure their

applications to send the service messages; those are the “Transmission Schema” instances, to

the assigned proxy ports of TestBATN. According to the adopted testing approach, the test-

cases developed for the use of NHIS clients, start with the basic conformance tests which

include the minimum requirements to send a valid “Transmission Schema” message. And

the testcases proceed to more complicated semantic and functional scenarios to test different

abilities of the FMISs and HISs.

According to a “Tranmission Schema”, one application can send structurally valid messages

while meeting the minimum requirements set by the “Transmission Schema”. For example,

in the examination “Transmission Schema”, Test Result Datasets and Prescription Datasets

are represented as with “if available” tag at Figure 2.11. From this definition, a “Tranmis-

sion Schema” instance message including only the required data sets forms a valid message

with the minimum requirements. Therefore, basic test casesare developed to verdict on the

messages without considering the additional constraints other than the ones specified in the

schemas.

The additional constraints can be asserted to test the applications’ abilities on sending mes-

52

Internet

11011010

� ��������	
���
����
 �����

������
<patient>

<id> </id>

<given> </given>

<family> </family>

</patient>

�����������
WS SOAP

Examination

Service

Simulator

A Testcase for

the

Examination

Service

A A TTeAA Tatiiooooonnnn oooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnn ooooonnnnnnnnnnnnnnnnnnn !"#$ %&'(&)*
Figure 3.1: Testing Achitecture

sages with non-required, optional MHDSs. For example, occurance of a Prescription Dataset

can be enforced through the test case definitions. Afterwards, business and semantic rules

can be applied through that optional MHDS inside the “Transmission Schema” instance. This

approach constitutes the development of customized basic test scenarios.

Up to now, a FMIS or HIS can be tested through the syntactic andstructural checks in addition

with the customized basic test scenarios. However, one aspect remains missing. How can we

be sure about the interpretation of the data sent within the message? That is, we also need to

be sure about the meaning of the data sent at the correct places in the message. An application

may send structurally valid messages with meaningless datainside. For example, examination

information of the patients from a hospital may be sent to theNHIS servers always with the

same diagnosis elements or patient admission elements etc.Therefore, semantically enriched

test cases are developed to ensure the semantic correctnessof the FMISs and HISs.

As mentioned earlier, NHIS provides 25 HL7 web services for the transfer of EHRs from

the healthcare institutions to the MoH servers. All of theseservices include insert operations

which is the main subject to be tested. Apart from the insert operations most of the Web ser-

vices also include update delete and query operations. Update operation is used to update a

previously sent “Transmission Schema” instance and the delete operation is used to remove it

53

from the main server’s databases. The query operation is used to query the processing status

of the previously sent message. As mention earlier in section 2.4, NHIS exhibits an asyn-

chronous behavior in total. For each message sent to the 25 HL7 services, a query operation

is needed to check whether the message is accepted (if it is valid in syntax and semantics) by

the server or not. Furthermore, when a message is accepted bythe server, the client applica-

tions (FMISs and HISs) have only one chance to query the successful status of the message.

Within the scope of this thesis, testcases for the query, update and delete operations of the

available services are also developed.

3.3 Test Case Development

TestBATN provides a well-defined mechanism to register the test case scripts developed with

Test Description Language (TDL). Test cases, which specifythe test steps through TDL, are

each defined in a separate file with an assigned unique identifier in its context and put into a

test suite by providing its identifier inside the test suite as shown in Figure 3.2. A single test

case definition can only be registered into only one test suite.

Test Suite

Test Case 1

Test Case 2

Test Case 3

...

Test Case 1

Scenario flow

defined with TDL

constructs

Test Case 2

Scenario Flow

Test Case 3

Scenario Flow

Figure 3.2: Test Suite - Test Case structure in TestBATN

Test suites are the containers for the test case definitions.Figure 3.3 presents the test suite

definition of the Examination “Transmission Schema”. It hasa metadata field to indicate the

title, version, maintainer, location and data of publish status and a short description about

the test suite. Then, the definition of global variables showup which are accessible globally

54

from all test cases registered into the test suite. Afterwards, the test cases in that test suite are

defined in order between the “TestCaseRefID” tags. The identifiers of the test case definitions

are put inside these tags. The identifiers of the test cases should be unique in the context of

the testsuite.

Within the scope of this thesis, all required testcases and related development such as Schema-

tron [16] rules and XPATH [15] expressions to check the messages against the business rules

are developed for several NHIS services, such as the Examination service which constitutes

the Examination Test Suite. To enable the testing of the remaining HL7 services, these test-

cases and related definitions are extended and registered tothe TestBATN framework as shown

in Figure 1.1.

In the context of Examination test suite the following test cases are developed:

• MuayeneTemelTestSenaryosu: The basic conformance testcase whichtests the mini-

mal set of requirements to send a valid examination “Transmission Schema” instance.

• MuayeneTemelTestSenaryosuRecete, MuayeneTemelTestSenaryosuTetkikSonuc: -

The customized basic conformance testcases which test the optional Prescription and

Test Result Dataset fields, in addition to the tests done through the basic conformance

testcase, inside an examination message respectively. Since through the basic confor-

mance testcases, it is possible to send valid messages without these optional fields;

customized versions of basic conformance testcases are highly required to enable the

testing of the optional fields.

• MuayeneHastaCikisMSVSAnlamsalTestSenaryosu, MuayeneHastaKabulMSVSAnla-

msalTestSenaryosu, MuayeneMuayeneMSVSAnlamsalTestSenaryosu, MuayeneRe-

ceteMSVSAnlamsalTestSenaryosu, MuayeneTetkikSonucuMSVSAnlamsalTestSenar-

yosu: The functional and semantic testcases which test the functional capabilities of the

client applications. Each semantic/functional testcase definition is specialized for the

MHDSs which together form the examination “Transmission Schema”. By this means,

semantic functionality detections are done for each MHDS separately inside a “Trans-

mission Schema” instance.

• MuayeneTemelBirlikteIslerlikTestSenaryosu: The interoperability testcase which re-

55

<TestSuite xmlns="model.testsuite.testframework.srdc.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

id="Muayene_TestSuite">

<MetaData>

<Title>Saglik Bakanligi - Muayene Veri Akışı Testleri</Title>

<Version>0.1</Version>

<Maintainer>SRDC Team</Maintainer>

<Location>Ankara,Turkey</Location>

<PublishDate>24/03/2008</PublishDate>

<Status>DRAFT</Status>

<Description>Muayene MSVS Bildirimi Uyumluluk Testleri</Description>

</MetaData>

<Variables>

</Variables>

<TestCaseRefID>

Muayene_HastaCikisMSVSAnlamsalTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_HastaKabulMSVSAnlamsalTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_MuayeneMSVSAnlamsalTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_ReceteMSVSAnlamsalTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_TetkikSonucuMSVSAnlamsalTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_SorgulamaServisiTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_TemelBirlikteIslerlikTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_TemelTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_TemelTestSenaryosu_Recete

</TestCaseRefID>

<TestCaseRefID>

Muayene_TemelTestSenaryosu_TetkikSonuc

</TestCaseRefID>

<TestCaseRefID>

Muayene_IptalServisiTestSenaryosu

</TestCaseRefID>

<TestCaseRefID>

Muayene_GuncellemeServisiTestSenaryosu

</TestCaseRefID>

</TestSuite>

Figure 3.3: Test Suite definition of Examination

quires the participation of the NHIS server and a FMIS/HIS application. The interop-

eration capabilities of the two systems are tested in the context of the choreography

of the messages exchanged between the parties. The developed interoperability test-

case makes TestBATN behave as a proxy between the communicating parties, listen the

56

exchanged messages and apply the necessary tests on them.

• MuayeneGuncellemeServisiTestSenaryosu: The update method of theexamination

service is simulated and the messages are tested against thecorresponding update rules.

• MuayeneIptalServisiTestSenaryosu: The delete method of the examination service is

simulated and the messages are tested against the corresponding deletion rules.

• MuayeneSorgulamaServisiTestSenaryosu: The query method of the examination ser-

vice is simulated.

The developed testcases formed a basis for the development of testcases for all Web services

published by NHIS.

In the following, descriptions of the test steps in each testscenario category are analyzed

in detail by going over example testcase definitions. Complete testcase definitions with the

corresponding Schematron definitions are presented in “http://www.srdc.metu.edu.tr/ anil/-

MOH Muayene.zip”.

Basic Conformance Testcases

For each “Transmission Schema”, a basic conformance testcase is written to test the con-

formance of FMISs and HISs to the requirements defined in the Integration Profile for the

corresponding transmission. The following test steps describe these scenarios and the corre-

sponding TestBATN framework functionalities used to execute them.

SOAP Message Conformance

The first step is the messaging step where the Systems Under Test (SUTs), the FMISs and

HISs, are requested to send a transmission to the specified TestBATN Engine ports (Test-

BATN proxy ports as shown in Figure 1.1). By using the TestBATN messaging capability

to receive the message from the client application with the “ReceiveMessage” and choosing

the “SOAP Message Adaptor” (the adaptor approach in the TestBATN is describen in section

2.5) for this messaging step the scenario is configured to accept only valid SOAP messages.

To handle the transportation, HTTP adaptor is used in the transport level to indicate the ac-

ception of the SOAP messages transported through HTTP. “SOAP Message Adaptor” and the

“HTTP Message Adaptor” exist in the TestBATN framework as built-in adaptors, named as

“SOAPReceiver” and “HTTPReceiver” respectively.

57

Figure 3.4: ReceiveMessage portion of the basic testcase for examination

Figure 3.4 shows the “ReceiveMessage” part from the examination basic testcase definition.

After the arrival of the message to the TetBATN proxy ports, they are processed through the

indicated adaptors and kept in the pointed variables.

Syntactic Validation of “Transmission Schemas”

This step is configured to use the built-in validation adaptor, “XSD Validation Adaptor”. Re-

quired inputs for this adaptor are the XML Schema of the corresponding transmission and the

“Tranmission Schema” instance, that is the EHR message, received from the SUT (FMIS or

HIS) in the SOAP Body.

Figure 3.5: Usage of XSD Adaptor

Figure 3.5 illustrates the usage of the “XSD Validation Adaptor” inside the “ValidateCon-

tent” construct. It gets the XML Schema of the examination service by the “schemaLoca-

tion” attribute and the other input, the message sent by the SUT is passed inside the variable

“$MSVSbildirimi”. The adaptor checks the syntax of the message according to the provided

XSD schema and outputs the result and the report of the validation process.

WS-Security Username - Token Profile Conformance

58

The “SOAP Message Adaptor” partitions the message into three fragments; HTTP Headers,

the SOAP header and the SOAP body, and TestBATN framework allows the test designer to

use these fragments independently in the proceding test steps by keeping them in the variables.

WS-Security Username - Token Profile and further restrictions defined in the Integration Pro-

file regulate the usage of “UsernameToken” header in the SOAPHeader. In order to test these

restrictions, semantic validation steps of the TestBATN framework are used. Each semantic

validation step is actually the evaluation of an XPATH expression (corresponding to a single

restriction) over TestBATN built-in “XPATH Validation Adaptor”. For example, an XPATH

expression is written to test whether the message includes asingle “Username” element in

“UsernameToken” header element. Figure 3.6 illustrates a validation step with XPATH ex-

pressions to check the existence of wsse:Password element in wsse:UsernameToken security

header.

Figure 3.6: Verification Step for Username - Token Conformance

Testing the conformance of a SOAP message to the WS-Sercurity Username - Token Profile

includes the checking of the wsse:Username and wsse:Password elements inside the header

of the SOAP message. The test checks whether these elements exist on the right place of the

SOAP header or not.

Username and Password Validation

The TestBATN user-interaction ability through TestBATN Control and Monitoring Environ-

ment (Chapter 4) enables the test designer to obtain some preliminary information from the

59

SUT administrator before test execution. Preliminary datais requested from the SUT admin-

istrator by defining the appropriate “PreliminaryData” instances through TDL.

Figure 3.7: Preliminary Data Definition within TDL

Figure 3.7 illustrates the definitions of two preliminary data for the use in the Username and

Password Validation. By means of this construct, before thetestcase execution starts, the

system will request two pieces of information as preliminary data from the user. This data

will be kept in the variables “KullaniciAdi” and “Sifre” indicating username and password

infomation which will be used in the SOAP Header through the WS-Security Username-

Token Profile. That is, the SUT administrator tells the system which username and password

information he or she will embed into the examination message that his or her system will

send to the TestBATN framework in the proceding test steps. After obtaining the username

and password information by processing the SOAP header, twosemantic validation steps with

XPATH Validation, the username and password provided in preliminary steps are compared

with the values given in the “UsernameToken” field of the message. This test is used for

checking the ability of the SUT to use the username and password information correctly by

means of the marshalling of the message.

Validation of Coding Schemes and Codes

Health Coding Reference Server (HCRS) maintains all codingsystems and codes in use in

Turkey. As mentioned in section 2.4 and also at the beginningof this chapter, this coding

information is available to the field through several Web services published within HCRS.

All messages coming from the FMISs and HISs include parts to be represented with these

well-defined coding systems and the code values. Figure 3.8 shows the diagnosis section of

an Examination transmission. There is a “code” and a “value”field inside the “diagnosis”

element. In the figure, these values together indicate that the patient in the subject of this

60

transmission has “K55” as “ANATANI”. The software systems need a mechanism to extract

the semantics from these indications. Coding schemes and corresponding values exist for this

reason. Inside the code system pointed with “2.16.840.1.113883.3.129.2.2.6”, “ANATANI”

has a meaning and HCRS provides this meaning to all its clients through the Web services.

Similarly, the value of “ANATANI” is indicated with “K55”. This value also has a meaning

in the coding scheme pointed with “2.16.840.1.113883.6.3”. It actually means “BARSĂGIN

VASKÜLER BOZUKLUKLARI”.

Figure 3.8: Diagnosis section inside an Examination transmission

In order to validate the codes and code systems used in a transmission, the SKRS Validator

adaptor is used. The SKRS Validator examines all data elements with coded value type from

the transmission and calls the HCRS services to validate these code values and the corre-

sponding code systems.

Figure 3.9 illustrates the usage of the SKRS validation phase in the definition of examination

basic conformance testcase. “Assign” construct enables the processing of the XPATH expres-

sion to extract all “code” and “codeSystem” values from a transmission instance and assign

these values to a variable, named “hl7CodeElementList”. All testing steps are dictated inside

the “TestAssertion” construct of Test Description Language (TDL). Since SKRS adaptor is

registered as a verification adaptor to the TestBATN adaptorsystem, it is executed through

“VerifyContent” constructs.

SKRS adaptor has two versions, namely “SKRSALLValidator” and “SKRSValidator”. “SKRS-

Validator” examines all the code values and corresponding codeSystems passed inside the

variable “hl7CodeElementList”. On the other side, there exist further restrictions on the trans-

missions defined in the Integration Profile. For instance, all messages arriving to the HL7 Web

61

Figure 3.9: Usage of SKRS Validator in TDL

services must have a field to identify the organization that is the owner of that message. Each

healthcare organization in Turkey has a unique identifier, and these identifiers are embedded

inside the messages. The validity of these identifiers should also be tested. “SKRSValidator”

version of the adaptor takes a coding scheme and a code value as inputs and checks whether

the value is valid within the scope of the provided coding scheme by communicating with the

HCRS Web services.

Validation Against Business Rules

As mentioned earlier, for each transmission schema and MHDS, several business rules are

defined to provide consistency among the values used in the data elements. An example of a

Business Rule defined for the examination transmission schema is as follows:

“The ending time of the examination must be earlier than or equal to the discharge time of the

patient indicated inside the discharge dataset”

Schematron definitions are used in specifying the business rules defined for the local con-

straints. For each transmission and for each MHDS in the transmission, the schematron rules

of the corresponding business rules for that transmission or MHDS are defined. Figure 3.10

presents a scehmatron rule used in the testing of the business rule given above. The reporting

mechanism of the schematron rules realize a good combination with the reporting mechanism

of TestBATN framework. Through the TestBATN Control and Monitoring Environment these

62

reports are presented to the SUT users.

Figure 3.10: A Schematron Rule to test a Business Rule

To execute the developed schematron rules for each transmission schema and each MHDS

inside the transmissions, “schematronadaptor” is used. “schematronadaptor” is another ver-

ification adaptor that comes built-in with TestBATN. Figure3.11 illustrates the portion of

the examination basic conformance testcase definition. Each set of schematron rules, cor-

responding to the business rules provided for the transmission and for each MHDS inside

the transmission locally, are embedded inside the testcasedefinitions with “VerifyContent”

construct of TDL inside a “TestAssertion”.

Interoperability Testcases

Basic conformance test scenarios cover the most of the testing steps. However, only testing

the FMISs’ and HISs’ conformances to the Integration Profiledoes not guarantee that these

applications will successfully interoperate with the NHISserver. For this reason, interop-

erability test scenarios are also needed to enable the comprehensive testing. The developed

interoperability testcase for the examination transmission is presented inside the bundle in

“http://www.srdc.metu.edu.tr/ anil/MOH Muayene.zip”.

The approach of the interoperability testcases are as follows:

• According to the testcase definition, TestBATN functions asa proxy between the SUTs

(FMISs and HISs) and the MoH NHIS Server. The “Transmission Schema” instances

63

Figure 3.11: Schematron Adaptor used in TDL

produced by the sender application are forwarded directly to the MoH Server by the

TestBATN framework. Similarly, the transmission responses produced by the MoH

Server are intercepted and then forwarded to the SUTs.

• The framework internally stores all intercepted messages for further testing. Syntactic

and semantic validations of Communication, Document and Business Process layers

are performed as done in the basic conformance testcases.

• According to the developed testcase, TestBATN framework generates its own transmis-

sion response based on the profile constraints described in the MHDS. TDL enables the

usage of the constructs [69] necessary to emulate the desired application behaviour.

• As the final step, the transmission responses of the MoH Server are validated against the

ones generated internally by the TestBATN framework. At this stage, any inconsistency

is an indication of the MoH Server’s noncompliance with the profiles and in such a case,

convenient test reports are generated.

Semantic Testcases

64

The TestBATN framework enables run-time customization of the scenario templates by means

of its interaction capabilities with the SUT administrators (administrators of the FMISs, HISs

and the MoH Servers). The TestBATN Test Description Language (TDL) supports user-

interaction schemes to be defined either by its PreliminaryTestData or RequestTestData el-

ement constructs [69]. In this manner, three different user-interaction schemes have been

developed and used in the NHIS tests.

i Prior to scenario execution, the user is requested to fix thevalues for various test para-

meters:

Some of the testcases involve certain parameters to be fixed before the execution of

the testcase by the SUT user. The TestBATN framework uses theconstructs called

preliminary test variables for this purpose. For example, the healthcare institution and

the author of the CDA document engaged in the “Transmission Schema” instance may

need to be fixed in advance so that later on, the framework can use this information to

perform various semantic tests such as

• the interface’s ability to properly place this informationinto the related parts of

the “Transmission Schema” instance,

• the FMIS’s or HIS’s compliance with the NHIS business rules.There is no limita-

tion as to how preliminary test variables can be used within atest scenario, thanks

to the capabilities of the TestBATN Test Description Language [69].

ii Proir to testcase execution, the scenario designer fixes some parameter values to test S-

UTs ability to work in a certain mode of operation and with thegiven control paramet-

ers:

In contrast to the approach followed in (i), this time, the test designer imposes certain

restrictions on how the SUT user should control its application behavior. The main

objective behind this user-interaction scheme is to verifythat the developed FMIS or

the HIS is able to run in different modes of operation and that the application fulfills

the requirements specific to that mode of operation. As an example, consider the case

where the doctor fills out a detailed report regarding the referral of a patient to another

healthcare institute. In this case, checking that the client application processes the user

input and it places the correct ICD-10 code [61] is one such test alternative for such a

scenario.

65

iii During the execution of the testcases, the user is requested to provide feedback on the

observed application behaviour:

It is required to obtain feedback from the user during the testcase execution for the

purpose of assessing the SUT’s rendering capabilities. Therefore, the semantic testcases

include the “ask” operation to ask a question to the SUT user at the time of the testcase

execution. For example, the test semantic testcases may include a step; asking the

admittance date/time of the patient in subject of the message that the SUT has received

from the TestBATN proxy ports as a response of its activity.

Any HIS or FMIS can send valid messages to the NHIS services aslong as the message is

valid according to the syntactic and business rules declared in the Integration Profile. How-

ever, an important issue remains unchecked; the semantic/functional capabilities of the client

applications are not tested. The quality of the message content cannot be assured only through

the conformance and interoperability tests. For example, aHIS may create an instance of a

valid message and send that message by only changing small portions of it. That is, we can

never be sure whether the client application is capable of sending the correct values which

are indicated by the users of it. A physician may want to send an examination “Transmission

Schema” instance after examining the patient by writing some prescription. The physician

may set several parameters about the prescription such as dose quantitiy, the name of the

medication, period value and etc. We want to be sure that the underlying client application is

capable of correctly setting the values of these parametersinside the message instance to be

sent to the NHIS servers.

Figure 3.12 illustrates the mechanism of a semantic testcase. In the given portion, the testcase

definition requests some fixed values from the SUT. This illustration constitutes an example

of the semantic testcase capabilities of TestBATN described above as “Prior to testcase ex-

ecution, the scenario designer fixes some parameter values to test SUTs ability to work in a

certain mode of operation and with the given control parameters”. According to the scenario

requirements presented in Figure 3.12, the SUT must send a message which includes a pre-

scription part and inside that part the medication must be “aspirin” with some additional fixed

constraints. The corresponding fields are represented inside the message in Figure 3.12. As a

result, by changing these fixed requirements with this mechanism, or adopting other seman-

tic mechanisms available inside TestBATN, the client applications can be tested in a more

66

Figure 3.12: Semantic Test Scenario Example

comprehensive way.

Semantic and functional testing capabilities make TestBATN a good platform for the certifi-

cation of applications developed within NHIS. Indeed, these kind of tests form the basis of

the testing of the applications for certification purposes for any standard or standard group in

any domain.

Testcases for Query/Update/Delete

NHIS published 25 HL7-based Web services. In the previous sections, the developed testcases

target to the “Transmission Schema” instances for the “insert” operation of these services.

However, the published Web services also contain “query”, “update” and “delete” operations.

In the scope of this thesis, the testcases for “query”, “update” and “delete” methods of the

Web services in question are also developed and registered to the TestBATN framework.

Each “Transmission Schema” instance to be sent to any service of NHIS must include a

unique Clinical Document Identifier. “Insert” method accepts the messages and registers

to the NHIS databases with the assigned identifier by the FMISs and HISs. The uniqueness

of these identifiers comes from the “Universal Unique Indefier” concept that guarantees to

67

generate unique identifiers at the time of generation independent from the hosting machine,

operating system etc. The remaining three methods of the service use the previously sent

identifiers for the corresponding messages.

Figure 3.13: A Portion of an Update Message

For example, Figure 3.13 shows the related part of an update message to be sent to the exam-

ination service of NHIS. The update messages include a part named with “replacementOf”

indicating that the message in question is going to update the message which is previously

sent with the identifier which is indicated with the highlighted part in Figure 3.13.

Testcases for “query”, “update” and “delete” operations require an “insert” message which is

sent previously. Since TestBATN only simulates the NHIS services, it does not maintain any

database for the previously sent messages by the clients. Therefore, the developed testcases

for these methods first request a valid message from the SUT tobehave it as a message inser-

tion prior to the intended operation, afterwards, request the query, update or delete message

according to the executed testcase.

68

CHAPTER 4

TestBATN CONTROL AND MONITORING ENVIRONMENT

TestBATN is a set of tools enabling the comprehensive testing of all layers in the interoper-

ability stack. To enable the testing of National Health Information System (NHIS) of Turkey,

several testcases are developed in the scope of this thesis as described in the previous chapter.

TestBATN Control and Monitoring Environment realizes a Webbased graphical user inter-

face and associated tools to enable the testing of the FamilyMedicine Information Systems

(FMISs) and Hospital Information Systems (HISs), online.

Being Web based holds importance at this point from two different perspectives. First, a

System Under Test (SUT) administrator does not desire to install software programs to test

the conformance of the implementation. That is, for each standard and/or protocol available

in the interoperability stack, the application developersmay need to install different software

tools, and compatibility issues arise with these several oftools.

On the other hand, interoperability tests imply a step-forward importance than on the comfor-

mance tests as described in Chapter 2. And, interoperation of a number of systems requires

those systems to get together and send/receive messages to/from each other. Today, there are

organizations in several sectors to bring these systems together “physically” within a series

of workshops and test the interoperability capabilities ofthese systems. IHE [77] Connec-

tathon [71] is a testing event to enable the healthcare IT industry’s large-scale interoperability

testing. In these events, vendors come together with their systems and test their abilities to

interoperate with other vendor systems exist in the workshop event.

TestBATN framework overcomes this physical restriction byproviding the TestBATN Con-

trol and Monitoring Environment as a Rich Internet Application (RIA). Software vendors can

easily go online through TestBATN and test their interopration capabilities through the inter-

69

operability testcases deployed under the TestBATN framework. The environment provides a

Flex [29] based RIA that can run in any major browser with a Flash Player [38] plugin. The

RIA makes use of the SOAP Web services technology to communicate with the TestBATN

database for retrieval of the testsuite and testcase definitions in addition to the user account,

test reports and statistical processing operations. Furthermore, in a testing environment to en-

able the online communication, reporting and status information facilities, there is a need for

fast communication architecture between the Systems UnderTest (SUTs) and the TestBATN

server, and between the multiple clients in an interoperability testcase. TestBATN Control and

Monitoring Environment introduces its own XML [9] based protocol on the TCP [11] level to

realize this high speed communication.

Figure 4.1: TestBATN Control and Monitoring Environment Mainpage

Figure 4.1 shows the main page of the RIA interface of the TestBATN Control and Monitoring

Environment when any SUT administrator goes online.

Through the TestBATN Control and Monitoring Environment SUT administrators can do the

following operations online and in high speed like on a desktop environment by deriving

benefit from the capabilities of RIA facilities:

70

• login to the online framework and manage their account information.

• list the testsuites and corresponding testcases registered at the TestBATN database.

• filter the testsuites according to the application domain. For the testing of NHIS, the

users select “HL7” domain. Then the testsuites registered for the testing of application

in the “HL7” arena related to NHIS are listed on the testsuites field.

• filter the testcases according to the parent testsuite. Whena user selects a testsuite, the

related testcases are listed accordingly.

• retrieve the running testcase instances on the TestBATN framework. When a user se-

lects a testcase on the mainpage, the running instances of that testcase are listed on

the page. The purpose of this facility is to enable the interoperability testing of several

systems through the registered interoperability testcases.

• join to any running testcase instance if the suitable party is not occupied and the joining

is available.

• execute a testcase. This creates a new running instance of that testcase definition inside

the TestBATN framework.

• enter the required information to handle the configuration management inside the frame-

work for maintaining the required proxy ports etc.

• enter and view the preliminary information if defined through the selected testcase def-

inition.

• view the steps of the testcase definition.

• start the execution of the testcase and monitor all the events online at the occurrence

time with the help of the test driving protocol which is detailed in section 4.2.

• view and manage the questions asked according to the testcase definition with the “Ask-

TestData” construct of the TestBATN Test Description Language.

• stop the execution of the testcase at any time.

• view the reports for each test step separately just after thereports arrive to the RIA

interface through the test driving protocol.

71

4.1 General Architecture

Figure 4.2 presents the general architecture of the TestBATN Control and Monitoring Envi-

ronment through the Test Driving Protocol perspective. TestBATN core framework has the

convenient implementation of the protocol. The other end ofthe protocol is implemented in

Flex as a Rich Internet Application. The RIA handles the operations which require high speed

communication through the Test Driving Protocol and the remaining ones which are directly

related with the retrieval of data from the TestBATN Database through the TestBATN Web

Services.

System Under Test (SUT)

Administrator

TestBATN – Test Engine

Test Driving

Protocol

Interface

Evaluation

Module

Messaging

Module

Test Reporting

Module

Testcase information

Network configuration

management

Preliminary data fields and

values

Test execution start/finish

commands

Test step starting and

ending information

Test step reports

Final report

....

Figure 4.2: General Architecture of the Environment

RIA Implementation

The Web interface part of the TestBATN Control and Monitoring Environment is implemented

in Adobe Flex. Flex provides rich constructs to create friendlier and interactive graphical user

interfaces (GUI). Since the Flex outputs are Flash executables, namely SWF [39] files, ev-

ery major browser including a Flash Player plugin can execute the GUI of the environment.

Indeed, since Flash is a run-time environment with several features such as exception han-

dling, socket communication facilities; the GUI does the most of the processing job. That is,

the processing is mostly done on the browsers of the clients,thus the core of the TestBATN

framework does not deal with heavy processing operations.

72

Throughout the implementation process, the Cairngorm [42]micro-architecture is adopted as

a set of design patterns. For each construct inside the Test Driving Protocol, convenient data

structures are created and maintained separately from the presentation and controller layers

as the Cairngorm micro-architecture advices. The data model of the whole application is

maintained through the singleton pattern as a singleton class.

testcase

PK tcid

testcase_id

description

reference_uri

FK1 tsidref

testsuite

PK tsid

title

description

version

location

publish_date

status

reference_uri

testsuite_id

users

PK userid

username

password

name

surname

country

city

email

skypeid

phone

fax

address

session_id

locked

company

tableid

networkip

role

testcasereports

PK tcinstance

completion_time

result

report

testcaseparties

PK partyid

FK1 tcidref

party_name

roles testresults

PK resultid

FK1 useridref

FK2 tcidref

FK3 partyidref

FK4 tcinstanceref

Figure 4.3: TestBATN Database ER Diagram

Binding mechanism of Flex is heavily used to realize the Cairngorm design paths, to bind the

data structures inside the model to the presentation constructs such as text fields, checkboxes

etc. By this means, when any change occurs in any data elementresiding inside the model, the

corresponding presentation element is updated automatically through the binding mechanisms

73

built in Flex.

The communication operations are handled through another singleton class as named under

business operations. The operations related with the retrieval of the testsuite/testcase data,

user information and previously executed testcase results/reports are done through the Test-

BATN Web services as described below. On the other side, someoperations need speed in the

context of the conformance and interoperability testing atthe monitoring phase mostly. These

operations are also described in detail in the Test Driving Protocol section.

TestBATN Database

TestBATN Web services are invoked mainly for direct interaction with the TestBATN Database.

Figure 4.3 shows the Entitiy-Relationship diagram of the database. The relations of the

database are designed to meet the requirements of the service functions serving to the Test-

BATN Control and Monitoring Environment.

TestBATN Web Services

The communication with the TestBATN server is done through the TestBATN Web Services

for the following operations as shown in Figure 4.4

TestBATN

Database

Test Suites

Test Cases

User Information

S
e

rv
ic

e
F

u
n

c
ti
o

n
s

T
e

s
tB

A
T

N
 W

e
b

 S
e

rv
ic

e
s

D
a

ta
b

a
s
e

C
o

n
n

e
c
to

r

Test Results

Test Reports

Figure 4.4: Interaction between the TestBATN Web Services and Database

• registerNewUser: Allows the registration of new users to the TestBATN framework.

Only registered users are allowed to go online through the TestBATN Control and Mon-

itoring Environment.

• checkCredentials: This service is invoked to check the username-password information

of the SUT administrators to go online.

74

• updateUserInfo: The logged in users are able to update their account information

through this service.

Figure 4.5: registerNewUser, checkCredentials, updateUserInfo

• getTestSuites: When the SUT administrator goes online, this method is invoked to

retrieve the testsuites registered to the system.

• getTestcases: This is invoked just after the “getTestSuites” operation to retrieve the all

registered testcases.

• getTestcaseParties: All testcase definitions include a number of parties to be actored

when the testcase is executed. In the NHIS case, the FMIS/HIS administrators select

the “USBSIstemci” actor to indicate that they are the clients of NHIS at the testcase

in execution. This service retrieves the party informationfor each testcase to present

to the SUT administrator for enabling the selection of the appropriate role before the

execution of the testcase.

• getTestResults: SUT administrators are able to see their previously executed test results.

This service provides the required functionality to enablethis facility.

• getTestCaseReport: SUT administrators are able to retrieve their previously executed

testcases’ reports through the invocation of this method.

75

Figure 4.6: getTestSuites, getTestCases, getTestCaseParties, getTestResults, getTestCaseRe-
port

• getAllUsers: This is an administrative method which is invoked when an a TestBATN

administrator wants to see the all registered users.

• queryTestStatisticsForCompany: This method is invoked to retrieve statistical informa-

tion on the testcase executions of the registered SUTs.

• queryTestResultsForTestSuite: Another statistics purposed method to retrieve testre-

sults in the context of successes and failures for each testsuite.

76

Figure 4.7: getAllUsers, queryTestStatisticsForCompany, queryTestResultsForCompany,
queryTestResultsForTestSuite

4.2 Test Driving Protocol

TestBATN Control and Monitoring Environment implements a Test Driving Protocol at the

TCP level through direct socket communication to enable execution and management of test-

cases, monitoring of the test steps through the execution and additional administrative oper-

ations. The protocol is XML based and has an XSD Schema which is described in detail in

this section.

The capabilities provided by the Test Driving Protocol can be grouped under three categories

which are described in the following subsections.

77

4.2.1 Initiation and Termination of SUT Sessions, and Monitoring the Already Run-

ning Testcase Instances

SUT administrator goes online to the main page of the TestBATN Control and Monitoring

RIA through the appropriate web service calls. When the login operation is successful, the

Test Driving Protocol starts functioning by initiating a session on the TestBATN server appli-

cation. Figure 4.8 illustrates the sequence of the related message chroeography throughout

the session management.

Figure 4.8: Management of the Session

Figure 4.9 shows the snapshot from the TestBATN Control and Monitoring Environment.

As seen from the figure, when the user selects the “MuayeneTestSuite”, the testcases defined

in examination testsuite are listed as “Filtered TestCases”. If the user selects the “MuayeneTe-

melBirlikteIslerlikTestSenaryosu”, which is the basic interoperability testcase for the NHIS

examination service, the already running instances of thattestcase are listed below, at the sec-

78

Figure 4.9: Already Running Testcase Instances

tion “Existing Instances of MuayeneTemelBirlikteIslerlikTestSenaryosu”. The interactions

which enable these capabilities, which take part in the choreography, are described in detail

in the following subsections.

Interaction: InitiateSession

Description:

Notifies the TestBATN server when a SUT administrator goes online. All remain-

ing interaction is handled over this obtained session. Thismessage is the handshake

portion of the choreography. The Authenticator field insidethe message is hand-

shaked by the both sides and is sent inside all other messagesexchanged between

them.

Figure 4.10: Model of InitiateSession

Sender Responsibilities:

TestBATN Control and Monitoring RIA verifies the credentials of the user before

sending this message.

Receiver Responsibilities:

79

TestBATN server cross-checks the session related information sent through this

message with the internal mechanisms for security reasons.

Repeatability:

No; it cannot be repeated until the session is terminated.

Interaction: RequestRunningTestCaseInstances

Description:

Before the execution of any testcase, when a user clicks on a testcase definition all

the running instances of that testcase are listed on the mainpage. This message

indicates the request that the SUT administrator wants to see the running instances

of the testcase.

Sender Responsibilities:

TestBATN Control and Monitoring RIA sends this message to the server upon to

the user’s appropriate action in the testcase selection.

Receiver Responsibilities:

TestBATN server provides the running instances of the testcase with “Ad-

dTestCaseInstance” response when it receives this message. Until another

“RequestTestCaseInstances” message arrives to the server, it continuously up-

dates (with “AddRunningTestCaseInstance”, “UpdateRunningTestCaseInstance”

and “RemoveRunningTestCaseInstance” messages) the RIA when any change oc-

curs about the running instances of the testcase which is requested lastly by the

RIA.

Repeatability:

Yes; it can be sent to the TestBATN server at each user request.

Figure 4.11: Model of RequestRunningTestCaseInstances

Interaction: AddRunningTestCaseInstance

80

Description:

This message construct is used after the RIA sends “RequestRunningTestCaseIn-

stances” message to the TestBATN server. The server sends “AddRunningTetCase-

Instance” message to the RIA if any instance of the testcase indicated by the lastly

sent “RequestRunningTestCaseInstance” message is created by any other SUT ad-

ministrator online in the TestBATN framework.

Sender Responsibilities:

TestBATN server prepares the content of the message, which is the information

about the running instance of the testcase, and sends to the RIA client.

Receiver Responsibilities:

The RIA, that is the GUI running in the browser of the SUT administrator, updates

the presentation of the related parts when any “AddRunningTestCaseInstance” mes-

sage arrives.

Repeatability:

Yes. This message can be sent from the TestBATN server to the RIA when any

testcase instance is started execution.

Figure 4.12: Model of AddRunningTestCaseInstance

Interaction: UpdateRunningTestCaseInstance

Description:

81

After the realization of the interaction, “RequestRunningTestCaseInstances”, the

TestBATN server sends this message to the RIA when any changeoccurs on the

testcase execution instace which was previously sent to theRIA client by the “Ad-

dRunningTestCaseInstance” message. For example, if a new SUT attends to a run-

ning testcase instance by occupying a testcase party, this change is sent to the RIA

clients who previously sent “RequestRunningTestCaseInstances” to the TestBATN

Server about the testcase in question.

Sender Responsibilities:

TestBATN server sends this message to the corresponding RIAclients when any

change occurs on the executing testcase instances.

Receiver Responsibilities:

The RIA updates the corresponding GUI part when receives this message.

Repeatability:

Yes; the server sends this message for each change on the executing testcase in-

stance.

Figure 4.13: Model of UpdateRunningTestCaseInstance

Interaction: RemoveRunningTestCaseInstance

Description:

82

This message is sent from the TestBATN server to the RIA clients when any test-

case execution terminates. The server sends the message to the RIA clients who

previously sent “RequestRunningTetCaseInstances” for a testcase definition.

Sender Responsibilities:

When a testcase ends up, the server sends this message to the RIA clients who

previously sent “RequestRunningTestCaseInstances” message for that testcase.

Receiver Responsibilities:

The RIA updates the necessary parts of the GUI upon receptionof this message.

Repeatability:

Yes; when any running testcase instance terminates, the message is sent to the cor-

responding RIA clients. Creation of this message is agnostic to the reason behind

the termination of the testcase.

Figure 4.14: Model of RemoveRunningTestCaseInstance

Interaction: TerminateSession

Description:

This message is sent from the RIA client to the TestBATN server when the SUT

administrator wants to logout. It can be seen as the oppositeof the “InitiateSession”

message for dropping the handshake between the both sides.

Sender Responsibilities:

Test Control and Monitoring Environment must send the message through the RIA

client to the TestBATN server for each logout process.

Receiver Responsibilities:

The server clears the session information from the internalsystem and handles the

configuration parameters of the user and the testcases executed by that user.

83

Repeatability:

No.

Figure 4.15: Model of TerminateSession

4.2.2 Test Execution

SUT administrator selects the testcase party to actor through the testcase after selecting the

testcase from the “Filtered Testcases” section as shown in Figure 4.16. Afterwards, the user

clicks on the “Execute” button to proceed to start the testcase execution.

Figure 4.16: Testcase Selection and Execution

According to the underlying Test Driving Protocol, when theuser clicks on the “Execute” but-

ton, the RIA sends “LoadTestCase” interaction message to the TestBATN server. Figure 4.17

presents the messaging choreography between the TestBATN Control and Monitoring Envi-

ronment RIA and the TestBATN server starting from loading a testcase and ending with the

start of the execution of the testcase. In the following sections, the steps of this chorepgrahy

are described and the intermediate interactions are explained in detail.

Interaction: LoadTestCase

Description:

84

Figure 4.17: Execution of a Testcase

This message is sent from the RIA to the TestBATN server to load a testcase to be

executed.

Sender Responsibilities:

RIA sends this message to the server when the SUT administrator selects the test-

case and presses the “Execute” button from the GUI.

Receiver Responsibilities:

TestBATN server loads the specified testcase to the memory and sends the descrip-

tion of the testcase and the configuration information to theRIA.

Repeatability:

No. It cannot be repeated until the RIA sends the “ReleaseTestCasePorts” message.

Upon receiving a “LoadTestCase” message, the server sends the description of the loaded

testcase, “TestCaseDescription”, to the RIA client. The RIA pops up a new window and

shows the description of the testcase to the SUT administrator. This description includes the

testing steps of the loaded testcase and their brief explanations.

85

Figure 4.18: Model of LoadTestCase

Interaction: TestCaseDescription

Description:

TestBATN server sends the description of the testcase to be executed to the RIA.

Figure 4.19: Model of TestCaseDescription

Sender Responsibilities:

TestBATN server should prepare the testcase for the execution, assign a unique

identifier to the execution instance and send this information to the RIA.

Receiver Responsibilities:

86

RIA should present the description to the SUT administrator. The SUT adminis-

trators not only see the steps of the testcase but also learn the details and rules that

they must apply into their messages. This process increasesthe awareness of the

FMIS/HIS developers about the standards and specifications dictated through the

Integration Profile.

Repeatability:

No.

Right after sending the “TestCaseDescription”, the serversends “HandleConfiguration” to the

RIA to configure the network related details between the parties of the testcase.

Figure 4.20: Handling Configuration

TestBATN Control and Monitoring Environment RIA lists the “HandleConfiguration” infor-

mation defined inside the testcase. RIA presents this information in a user-friendly GUI

window to the SUT administrator as shown in Figure 4.20. For each communication that

87

will occur through the testcase execution, there must be a configuration handling part defined

inside the testcase definition. This configuration includesthe management of the IP (Internet

Protocol) addresses and the port numbers of the parties taking role through the testcase. That

is, in Figure 4.20, the SUT administrator only enters its IP address information as the Initiat-

ing Party because, for that case, the SUT administrator plays the “USBSIstemci” role which

is the NHIS client. The Responding Party is the NHIS simulation, which is the TestBATN

server. The port number of the TestBATN is important since the SUT administrator must con-

figure its software to send the “Transmission Schema” instance to the specified port number

on the IP address of the TestBATN server, the Responding Party.

Interaction: HandleConfiguration

Description:

For all communication lines defined in the testcase, there must be corresponding

configuration information. TestBATN server asks this configuration information

from the SUT administrator by means of this interaction.

Figure 4.21: Model of HandleConfiguration

Sender Responsibilities:

88

TestBATN server should manage the configuration data for each testcase party sep-

arately and ask the required data from the SUT administrators through TestBATN

Control and Monitoring RIA.

Receiver Responsibilities:

RIA should present this information to the SUT administrator and ask for the related

data fields conveniently. Upon user’s answers, RIA should prepare the “HandleCon-

figurationResponse” message to be sent to the TestBATN server.

Repeatability:

No.

SUT administrator fills in all the configuration related information and clicks on the “Send”

button. RIA prepares and sends a “HandleConfigurationResponse” message to the TestBATN

server.

Interaction: HandleConfigurationResponse

Description:

This is the response of “HandleConfiguration” message including the filled in data

by the SUT administrator.

Figure 4.22: Model of HandleConfigurationResponse

89

Sender Responsibilities:

RIA must fill the corresponding fields of the message with the gathered information

from the SUT administrator.

Receiver Responsibilities:

TestBATN server finalizes the configuration of the testcase after receiving this mes-

sage from all participating parties of the testcase.

Repeatability:

No.

TestBATN server executes the testcase one step forward after collecting all configuration in-

formation from the related parties of the testcase. This step is the handling of the preliminary

data if defined inside the testcase. If there is no defined preliminary data, the server sends the

“SendTestSteps” message directly and the RIA behaves accordingly.

As shown in Figure 4.23, RIA maintains a list of the preliminary data sent within the “Han-

dlePreliminaryTestData” interaction.

Figure 4.23: Handling Preliminary Data

Through the GUI, the user enters or views the preliminary test data information settled in

the testcase definition. After the SUT administrator fills inthe requested information through

“HandlePreliminaryTestData” interaction, RIA sends thisinformation to the TestBATN server

with the “FilledInPreliminaryData” interaction.

Interaction: HandlePreliminaryTestData

90

Description:

This interaction exists to enable the semantic and functional testcases describe in

Chapter 3.

Sender Responsibilities:

TestBATN server processes the preliminary data fields defined inside the testcase

and creates the necessary structures.

Receiver Responsibilities:

RIA lists the preliminary data fields to the user and enables afriendly GUI to make

the SUT administrator correctly fill the requested information. As a response to this

message, RIA should prepare the corresponding “FilledInPreliminaryData” mes-

sage and send to the server.

Repeatability:

No.

Figure 4.24: Model of HandlePreliminaryTestData

Interaction: FilledInPreliminaryData

Description:

This is the response of the “HandlePreliminaryTestData” interaction.

91

Sender Responsibilities:

RIA must correctly prepare and set the corresponding data fields inside message

upon the SUT administrator inputs.

Receiver Responsibilities:

TestBATN server maintains a pool for the preliminary information collected from

the parties of the testcase. If any “UpdatePreliminaryTestData” interaction is re-

quired to notify a user, the server should prepare the message and send it to the

corresponding party/parties.

Repeatability:

No.

Figure 4.25: Model of FilledInPreliminaryData

In some testcase definitions, the test designer may create a test scenario in which the parties

exchange information at the preliminary test data phase. For example, a one party may need

information throughout the testcase execution which will be asked from another party. When

the responder sends the information with “FilledInPreliminaryData” to the TestBATN server,

the server checks whether any party is waiting for the retrieved preliminary data or not. If there

exist a party, “UpdatePreliminaryTestData” interaction is used to notify the SUT administrator

92

for the updated value of the preliminary data field.

Interaction: UpdatePreliminaryTestData

Description:

Testcases defined among multiple parties may need exchange of preliminary infor-

mation between the parties. When a party sends “FilledInPreliminaryData” to the

server, it is sent to the waiting party, if exist, with this message.

Sender Responsibilities:

TestBATN server must wait for the completion of all “FilledInPreliminaryData”

interaction and assignments of all the preliminary data variables.

Receiver Responsibilities:

RIA must present the user any update on the preliminary information upon the

reception of this message.

Repeatability:

No.

Figure 4.26: Model of UpdatePreliminaryTestData

As presented in Figure 4.17, after receiving all “FilledInPreliminaryData” interaction mes-

93

sages from the attending parties of the testcase, TestBATN server sends “UpdatePreliminary-

TestData” to the parties, if there is any party waiting for. Afterwards, the server sends the

details of the test steps of the testcase to the attending parties.

Figure 4.27 shows the snapshot of the GUI at after the “SendTestSteps” interaction is com-

pleted from the server to the RIA. SUT administrator can see the details of each test step,

the test assertions which will be processed throughout the testcase execution and other details

about the testcase.

Figure 4.27: Test Steps View

Interaction: SendTestSteps

Description:

After the completion of the configuration management prior to the testcase execu-

tion, TestBATN server becomes ready to execute the scenarioand sends this mes-

sage to the RIA client to inform the SUT administrators aboutthe details of the test

steps.

Sender Responsibilities:

TestBATN server constructs the test steps through a convenient structure to be pre-

sented to the SUT administrator by the TestBATN Control and Monitoring RIA.

94

Receiver Responsibilities:

TestBATN Control and Monitoring RIA processes the receivedtest steps and

presents to the user as shown in Figure 4.27.

Repeatability:

No. For each testcase execution, this message is sent to eachRIA client only once.

Figure 4.28: Model of SendTestSteps

TestBATN server sends the test steps to all parties of the testcase. Now, everthing is ready

to start the execution of the testcase. To start this process, the parties of the testcase must all

agree on the “StartTest” interaction. That is, all parties must send the “StartTest” message to

the TestBATN server.

Interaction: StartTest

Description:

SUT administrator clicks on the “Start Test” button as shownin Figure 4.27. Test-

BATN Control and Monitoring RIA prepares and sends this message to the Test-

BATN server.

95

Sender Responsibilities:

RIA must send the message to the server upon user request by clicking on “Start

Test” button.

Receiver Responsibilities:

TestBATN server waits for the “StartTest” message from all the parties of the test-

case to start the execution of the testcase.

Repeatability:

No. A testcase can only be started once.

Figure 4.29: Model of StartTest

TestBATN server starts processing on the teststeps of the testcase one by one because all

parties of the testcase agreed on the “StartTest”. Figure 4.30 shows the message choreog-

raphy between the TestBATN server and TestBATN Control and Monitoring RIA just after

the “StartTest” interaction until the testcase terminatestotally with “ReleaseTestCasePorts”

interaction.

When the server completes the execution of a teststep, it sends the result and the report of

that teststep to the SUT administrators through TestBATN Control and Monitoring RIA. This

notification is done through “UpdateTestStatus” interaction. RIA presents the changes on the

status and results of the teststeps to the SUT administrator. Figure 4.31 shows the snapshot

of the environment at the time of testcase execution. The server processes each teststep and

sends the result to the RIA client immediately. Since the underlying Test Driving Protocol

functions in high speed, SUT administrator sees the changesinstantly on the GUI.

“UpdateTestStatus” interaction not only carries the result and status information about the

96

Figure 4.30: At the time of test execution

teststep, but informs the SUT administrator about the report of the execution of that teststep.

As presented in Figure 4.32, TestBATN Control and Monitoring RIA presents the test step

reports to the SUT administrator when clicked on the corresponding button appearing on the

teststep status view section. For example, the report in thefigure says that execution of the

corresponding teststep has ended up with “FAIL” result. Thevalidation adaptor which has

created the report is the “xpathadaptor” adaptor. The reported error is about the Username -

Token profile usage inside the SOAP header. The password fieldof the token does not match

with the previously provided value through preliminary data handling.

Interaction: UpdateTestStatus

Description:

After the execution of each teststep, TestBATN server sendsthis message to the

RIA clients to update the status, result and report of the corresponding teststep on

the GUI of SUT administrators.

Sender Responsibilities:

97

Figure 4.31: Teststep Status Changes

TestBATN server must monitor the execution of the teststepsand send this message

to all attending testcase parties when the processing of each teststep ends.

Receiver Responsibilities:

TestBATN Control and Monitoring RIA is responsible for updating the correspond-

ing view components to notify the SUT administrator about the changes.

Repeatability:

Yes. For each update on each teststep, this message is created and sent to the RIA

clients.

Semantic and functional testing capabilities of TestBATN include a mechanism to ask some

questions to the SUT administrator at the time of execution of the testcase. These questions

are asked through the “AskTestData” interaction and the answers of the SUT administrator

are carried back to the server through “AskTestDataResponse” interaction.

Interaction: AskTestData

Description:

98

Figure 4.32: Teststep Report

Figure 4.33: Model of UpdateTestStatus - I

99

Figure 4.34: Model of UpdateTestStatus - II

If defined in the testcase, this message is created and sent from the TestBATN server

to the RIA to ask the questions indicated in the testcase to the SUT administrator.

Sender Responsibilities:

TestBATN server must create and send this message to the corresponding user’s

RIA when encounters an “AskTestData” construct of Test Description Language.

Receiver Responsibilities:

TestBATN Control and Monitoring RIA pops up a window to ask the questions and

gather the responses from the SUT administrator.

Repeatability:

Yes. Throughout the testcase definition, for each “AskTestData” construct of TDL,

this message is sent to the corresponding RIA client.

Interaction: AskTestDataResponse

Description:

This is the reponse of “AskTestData” returned from the RIA tothe TestBATN server.

Sender Responsibilities:

TestBATN Control and Monitoring RIA should correctly set the fields inside the

message according to the SUT administrator’s answers.

100

Figure 4.35: Model of AskTestData

Receiver Responsibilities:

TestBATN server runs the asserted operations on the responses of the SUT admin-

istrator as settled through the testcase definition.

Repeatability:

No. This message can only be sent as a response of “AskTestData” interaction.

If “AskTestData” repeats, “AskTestDataResponse” messagealso repeats as a re-

sponse.

Figure 4.36: Model of AskTestDataResponse

101

SUT administrator has a chance to stop the execution of the testcase and quit to the main page

of the TestBATN Control and Monitoring GUI at any time. This operation is handled through

the “FinishTest” interaction which is sent from the RIA to the TestBATN server when the

SUT administrator clicks on the “Terminate Test” button.

Interaction: FinishTest

Description:

This message indicates that SUT administrator wants to quitthe execution of the

testcase.

Sender Responsibilities:

RIA must send this message to the TestBATN server when the SUTadministrator

clicks on “Terminate Test” or “Log out” button.

Receiver Responsibilities:

TestBATN server processes this message and informs the other parties of the test-

case about the termination of the execution through the “TestCaseProcessingFin-

ished” interaction. If any of the parties of the testcase terminates the testcase, it

terminates for all of the parties.

Repeatability:

No.

Figure 4.37: Model of FinishTest

Interaction: TestCaseProcessingFinished

Description:

102

This message is sent from the TestBATN server to the RIA clients who are executing

the testcase in question at that time to to inform them about the termination of the

testcase.

Sender Responsibilities:

TestBATN server sends this message to the testcase parties when the tetscase fin-

ishes normally by executing all teststeps or one of the parties terminates the execu-

tion of the testcase in the interoperability tests.

Receiver Responsibilities:

RIA notifies the user by popping up an information window about the termination

and the final report of the testcase.

Repeatability:

No. This message is sent only once to the RIA client to indicate the termination of

the execution.

Figure 4.38: Model of TestCaseProcessingFinished

After the execution of a testcase terminates, the SUT administrators are informed with this

event and the TestBATN Control and Monitoring RIA behaves accordingly by updating the

views of the user as seen in Figure 4.39. When the user clicks on the “Restart” button, RIA

sends the “RestartTestCase” message to the TestBATN serverto restart the execution of the

testcase with the already configured parameters. The GUI returns to the preliminary data

handling state to enable the SUT administrator to change theentered values. If the SUT ad-

ministrator wants to go back to main page to select another testcase or do any other operation,

“Go Back” button is clicked. With this user event, RIA sends the “ReleaseTestCasePorts”

message to the TestBATN server.

Interaction: RestartTestCase

Description:

103

Figure 4.39: Restart of a Testcase

With this message, RIA realizes the re-execution of the lastly executed testcase with

the same configuration parameters.

Sender Responsibilities:

TestBATN Control and Monitoring RIA must give the choice of restarting the test-

case to the SUT administrator as shown in 4.39.

Receiver Responsibilities:

TestBATN server must keep the configuration information of the testcase even if it

is terminated until the “ReleaseTestCasePorts” message isreceived from the RIA.

Repeatability:

Yes. A testcase execution can be repeated with the same configuration parameters

as much as requested by the SUT administrator.

Figure 4.40: Model of RestartTestCase

Interaction: ReleaseTestCasePorts

Description:

104

When the SUT administrator does not want to re-execute the testcase, he/she clicks

on “Go Back” button as shown in Figure 4.39. This message, then, is sent to the

TestBATN server to reset the configuration parameters of thelastly executed test-

case by the user to free the occupied ports and other intermediates.

Sender Responsibilities:

TestBATN Control and Monitoring RIA must provide the choiceof going back to

the main page of the environment to the SUT administrator.

Receiver Responsibilities:

TestBATN server deletes the configuration information of the testcase and releases

the occupied ports.

Repeatability:

No.

Figure 4.41: Model of ReleaseTestCasePorts

During the interaction between TestBATN server and TestBATN Control and Monitoring En-

vironment, if any internal error occurs in the TestBATN server it is reported to the RIA clients

through the “GUIInteractionError” interaction.

Interaction: GUIInteractionError

Description:

This message is sent from the TestBATN server to RIA clients of all parties of the

testcase in case of an internal error.

Sender Responsibilities:

Errors occurred inside the TestBATN server are caught and sent to the RIA clients

with convenient reports.

Receiver Responsibilities:

105

Figure 4.42: Model of GUIInteractionError

TestBATN Control and Monitoring RIA is responsible to handle the presentation

issues when this message is received. The error report is shown to the user and the

state of the view is arranged according to the termination issues.

Repeatability:

Yes. At each time any error occurs, this message is sent from the server to the

clients.

106

CHAPTER 5

RELATED WORK

While e-business scenarios are widely adopted by the users in industry, governments and the

public sector, it is still cumbersome for them to reach interoperability of eBusiness solutions

and to achieve conformance with standards specifications. Therefore, the need for advanced

testing methodologies and practices which cover relevant set of standards is increasing con-

tinuously.

There are a number of research, development and even standardization efforts on testing

methodologies, test tools, languages and frameworks.

Testing and Test Control Notation (TTCN) [72] is one of the first and most successful work

on test automation published by the European Telecommunications Standards Institute (ETSI)

[78]. The latest version, TTCN-3 is a computationally complete and internationally standard-

ized programming language for expressing test cases for conformance and interoperability

testing in the telecommunication domain.

Telecommunication networks use many heterogenic protocols between multiple system nodes,

with dedicated configuration and application data. Ensuring the interoperability of the com-

ponents within such systems, across different vendor platforms and countries require testing

the network components accurately. For this purpose, ETSI has developed methodologies for:

• conformance testing for checking the compliance of isolated components of the telecom-

munication networks, to the protocol standards

• interoperability testing to verify the ability of network components from different ven-

dors to operate in real conditions

107

ETSI provides a number of publicly available TTCN-3 test suites such as Digital Mobile

Radio (DMR), digital Public Mobile Radio (dDMR), Dynamic Host Configuration Protocol

(DHCPv6), IPv6, IP Multimedia Subsystem (IMS), Voice Over IP with the Session Initiation

Protocol (SIP), and the upcoming WiMax test suite.

Since the telecommunications domain is concerned with the low level issues by nature, TTCN

test suites and testing methodologies also focuses on the low level details of the communica-

tion. As a result, it does not fully represent the business processes that mostly the concern of

the high level standards such as the ones used in NHIS. Furthermore, TTCN does not provide

any interactive, human-driven test framework. The test suites are static and for each test sce-

nario and for each client to be tested, specialized code fragments are needed to be developed

prior to the test scenario executions.

OASIS IIC ebXML Test Framework [79] is a test framework enabling conformance and inter-

operability testing for ebXML specifications. The framework includes an architecture design

based on components that can be combined and distributed in different ways, to accommodate

different test harnesses. It also includes an extensible test scripting language for coding test

suites in an executable way. In other words, it describes a test bed architecture and its software

components as well as how these can be combined to create a test harness for various types

of testing [69].

OASIS IIC ebXML Test Framework is totally based on ebXML messaging; therefore, it fo-

cuses on its Message Service Handler (MSH) implementationsinstead of application testing.

Although the specification says that the framework has support for external plug-ins, it would

not be possible to test NHIS services through this frameworknot only due to the need of

those external plugins which enable the processing of HL7 based messages through the Web

services profile but also the lack of an interactive, human-driven test control and monitoring

environment.

OASIS Event Driven Test Scripting Language (eTSL) [80], which is currently a work in

progress, improves OASIS IIC ebXML Test Framework by addressing the different layers

of the interoperability stack, namely, the messaging infrastructure, the messaging choreogra-

phies and the business document standards. eTSL is a model and language for eBusiness/

eGovernment test suites, with a particular focus on communication events, versatile usage

for the Quality Assurance testing phase as well as the monitoring of deployed systems, and

108

extensible design to leverage specialized validation processors as well as XML tools such as

XPath [15], XSLT [18] and XQuery [81].

NIST B2B Testbed [82] project includes a sample implementation of OASIS IIC ebXML Test

Framework v1.1. NIST B2B Testbed is initiated by the National Institute of Standards and

Technology [83] to develop software tools which can be used to test current B2B standards or

technologies and enhance the capabilities for on-demand demonstration of conformance and

interoperability [84].

TestBATN is a superior testing framework than the OASIS and ETSI frameworks with the

added value of the TestBATN Control and Monitoring Environment, presented in Chapter

4, which enables the human-driven test cases. Indeed, in theTestBATN framework an ex-

tended version of the event notion of eTSL is provided which helps capture the requirements

of the test scenarios encountered in the testing of NHIS. These requirements include inter-

action with the users of a System Under Test (SUT), using external evaluation services, and

allowing human validation during test execution. Furthermore, preliminary test steps such

as configuration management and test data initialization have been included in the test execu-

tion of TestBATN. This functionality is critical in the sense that it allows the test framework to

adapt itself to the requirements of the applications under test, rather than the opposite. Finally,

the TestBATN framework provides an extensible and layered platform for design, execution

and life cycle management of the test scenarios to handle thedynamically evolving testing

requirements through the TestBATN Control and Monitoring Environment.

There are also some eHealth specific tools for the conformance testing. HL7 Message Maker

[85] is an initiative administered by HL7 together with NIST[83] to automatically and dy-

namically generate test messages for eHealth applications. The data used to populate the mes-

sages is drawn from a number of sources including the NIST developed database of HL7 data

items, HL7 tables, user tables, and external tables. This initiative focuses on the document

content layer within the interoperability stack. Testing of NHIS requires the test assertions

through the whole layers of the interoperability stack since the Integration Profile includes

several standards and specifications targeting to the different layers of the stack.

IHE provides a detailed implementation and testing processto promote the adoption of stand-

ards-based interoperability by vendors and users of healthcare information systems. The

process is named as Connect-a-thon, a weeklong interoperability-testing event. Managing

109

a Connect-a-thon is a human labor intensive task. Most of themessaging is conducted by

the humans such as checking message contents or applicationbehaviours. Connect-a-thons

require the physical aggregation of the software components and the administrators of those

softwares for a week through a set of workshops. However, theTestBATN framework pro-

vides the TestBATN Control and Monitoring Environment for the automated execution of the

test cases. Therefore, testing of NHIS would be a very complex operation through several

Connect-a-thon organizations.

110

CHAPTER 6

CONCLUSION AND FUTURE WORK

The final outcome of this thesis enabled the conformance and interoperability testing of the

applications developed within the National Health Information System (NHIS) of Turkey.

Nearly all of the Family Medicine Information System (FMIS)and Hospital Information

System (HIS) vendors somehow tested their implementationsthrough TestBATN with the

testcases developed in the scope of this thesis.

Specifications, standards and the Implementation/Integration/Interoperability Profile of the

Ministry of Health (MoH), Turkey, are analyzed and the requirements to enable the testing

of the system are put on the map. According to the identified testing requirements, a test-

ing methodology is designated which follows a test procedure ranging from the basic con-

formance tests to the complex semantic and functional tests. In respect to the designated

testing methodology, several testcases; such as basic conformance testcases, customized con-

formance testcases, interoperability testcases, and testcases for the query, update and delete

methods of the NHIS services and a number of semantic testcases for the NHIS services in

question are developed and registered to the TestBATN framework.

Considering the testing requirements of NHIS, TestBATN Control and Monitoring Environ-

ment is designed and implemented within the scope of this thesis. The environment realized

a human-driven testing infrastructure. Developing a Rich Internet Application as the Graphi-

cal User Interface to the FMIS/HIS administrators and implementing a Test Driving Protocol

provided a comprehensive, user-friendly, simple and high speed control and monitoring envi-

ronment for the TestBATN users.

As mentioned earlier, NHIS servers located at the MoH premises has been accepting “Trans-

mission Schema” instances since November, 2008. As of January 15, 2009, all healthcare

111

institutes have to send the actual, real patient EHR data to NHIS servers with the announce-

ment of governmental regulations.

Currently, nearly all of the state hospitals of Turkey are able to successfully send the daily

EHR messages, which are the “Transmission Schema” instances to the NHIS servers. Uni-

versity hospitals and primary care institutions are continuously boosting up their integration

capabilities with Sağlık-Net.

Up to 70 companies with nearly 340 users have been testing their systems through the devel-

oped testcases through “http://www.srdc.com.tr/testbatn” since June, 2008 as mentioned ear-

lier in the thesis. Since then, approximately 20.000 testcase executions are recorded. Not only

the developed testcases through TestBATN was availbale online, but also two well-attended

integration workshops were organized in Turkey. The first one was in Çeşme,̇Izmir during

June, 29 and July, 5, 2008. This workshop has provided various opportunities to nearly 130

FMIS/HIS developers from 50 vendor companies about testing theirapplications successfully

with the developed testcases. The second workshop was held in Ankara during December 19

- 21, 2008. 133 attendees from 64 vendor companies were thereto test their implementations.

Together with the continuous online use of the developed testcases through TestBATN and

the integration workshops organized by the MoH, in which thedeveloped testcases through

TestBATN were also used, increased the integration capabilities of the FMISs and HISs de-

veloped for NHIS. The feedbacks coming from the vendor companies, the statistics of the

ongoing integration and the representatives of the Ministry of Health confirm the contribution

of the TestBATN framework and the comprehensive testcases to the integration skills of the

client applications. Furthermore, the testcases and the user-friendly, high speed TestBATN

Control and Monitoring Environment increased the awareness of the software companies, es-

pecially in the health sector of Turkey, in the international standards, their use in real life

etc. This process has also revealed the importance of the adoption of international standards

within such integration efforts, like NHIS.

The work presented in this thesis is supported by the TÜBİTAK TEYDEB Project No: 7070191

in addition by the Ministry of Health, Turkey.

NHIS is collecting the Electronic Health Records (EHR) to the central servers located at the

MoH premises, currently. The use of this data is for statistical purposes for now. However,

112

the ongoing process is going towards the integration of the hospitals within each other. That

is, in the near future, the goal is to enable the sharing of theEHRs among the hospitals

instead of only collecting to the center. This process requires further profiles and business

models and more intensive interoperability capabilities.TestBATN can easily be used in the

testing of these interoperability capabilities of the FMISs and HISs. New testcases for the

interoperability scenarios can be developed and online useof the TestBATN framework can

enable the joint test executions without requiring the software applications’ coming together

“physically”.

Furthermore, TestBATN can be used to certify the client applications within NHIS to assure

their conformance and interoperability skills and enable amore intact and accurate integra-

tion.

113

REFERENCES

[1] IEEE Dictionary, Institute of Electrical and Electronics Engineers. IEEE Standard Com-
puter Dictionary: A Compilation of IEEE Standard Computer Glossaries, New York,
1990.

[2] Brown and Reynolds, “Strategy for production and maintenance of standards for in-
teroperability within and between service departments andother healthcare domains”,
CEN/TC 251 Health Informatics, CEN/TC 251/N00-047.

[3] ETSI EG 202 237, Methods For Testing and Specification. http://portal.etsi.org/mbs/-
Referenced%20Documents/eg 202 237.pdf, last visited on June 2009.

[4] e-Transformation in Health. Department of InformationProcessing, Min-
istry of Health, Turkey. http://www.saglik.gov.tr/EN/Tempdosyalar/533 e-
transformationinhealth07.pdf, last visited on June 2009.

[5] Ulusal Sağlık Bilgi Sistemi/Sağlık-NET Entegrasyonu ilėIlgili Genelge 2008/18. http://-
www.saglik.gov.tr/TR/MevzuatGoster.aspx?F6E10F889 2433CFF1A9547B61DAFFE-
2A56515916B329A1F1, last visited on June 2009.

[6] Health Level 7. http://www.hl7.org/, last visited on June 2009.

[7] American National Standards Institute (ANSI). http://www.ansi.org/, last visited on June
2009.

[8] Clinical Document Architecture (CDA), Release 2. http://www.hl7.org/v3ballot/html/-
infrastructure/cda/cda.htm, last visited on June 2009.

[9] Extensible Markup Language (XML). http://www.w3.org/XML /, last visited on June
2009.

[10] Mustafa Yuksel, Sharing Electronic Healthcare Records Across Country Borders, Mas-
ter’s thesis, Middle East Technical University, Department of Computer Engineering,
Ankara, Turkey, 2008.

[11] Transmission Control Protocol (TCP). http://www.faqs.org/rfcs/rfc793.html, last visited
on June 2009.

[12] Namli T., Aluc G., Sinaci A., Kose I., Akpinar N., Gurel M., Arslan Y., Ozer H., Yurt
N., Kirici S., Sabur E., Ozcam A., Dogac A. Testing the Conformance and Interoperabil-
ity of NHIS to Turkey’s HL7 Profile 9th International HL7 Interoperability Conference
(IHIC) 2008, Crete, Greece, October, 2008, pp. 63-68.

[13] XML Schema Definition (XSD). http://www.w3.org/XML /Schema, last visited on June
2009.

[14] World Wide Web Consortium. http://www.w3.org/, last visited on June 2009.

114

[15] XML Path Language (XPath). http://www.w3.org/TR/xpath, last visited on June 2009.

[16] The Schematron. http://xml.ascc.net/resource/schematron/, last visited on June 2009.

[17] The Schematron. http://www.schematron.com, last visited on June 2009.

[18] XSL Transformations (XSLT). http://www.w3.org/TR/xslt, last visited on June 2009.

[19] International Organization for Standardization. http://www.iso.org, last visited on June
2009.

[20] HyperText Transfer Protocol (HTTP). http://www.w3.org/Protocols/, last visited on June
2009.

[21] HyperText Markup Language (HTML). http://www.w3.org/TR/REC-html40/, last vis-
ited on June 2009.

[22] PHP. http://www.php.net/, last visited on June 2009.

[23] ASP.NET White Papers. http://www.asp.net/Learn/whitepapers/, last visited on June
2009.

[24] Java Server Pages Technology - White Paper. http://java.sun.com/products/jsp/-
whitepaper.html, last visited on June 2009.

[25] ColdFusion Datasheets and White Papers. http://www.adobe.com/products/coldfusion/-
whitepapers/, last visited on June 2009.

[26] JavaScript on Wikipedia. http://en.wikipedia.org/wiki /JavaScript, last visited on June
2009.

[27] ActionScript on Wikipedia. http://en.wikipedia.org/wiki /ActionScript, last visited on
June 2009.

[28] Farrell, Jason. “Rich Internet Applications: The NextStage of Application
Development”. Online. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&-
arnumber=4283806&isnumber=4283720

[29] Adobe Flex. http://www.adobe.com/devnet/flex/, last visited on June 2009.

[30] Adobe Flash. http://www.adobe.com/products/flash/, last visited on June 2009.

[31] Java Web Start. http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp,
last visited on June 2009.

[32] Java Network Launch Protocol (JNLP). http://jcp.org/en/jsr/detail?id=056, last visited
on June 2009.

[33] JavaFX. http://javafx.com/, last visited on June 2009.

[34] Ajax. http://www.ajax.org/, last visited on June 2009.

[35] Cascading Style Sheets (CSS). http://www.w3.org/Style/CSS/, last visited on June 2009.

[36] Document Object Model (DOM). http://www.w3.org/DOM/, last visited on June 2009.

115

[37] XML User Interface Language (XUL). http://www.mozilla.org/projects/xul/, last visited
on June 2009.

[38] Adobe Flash Player. http://www.adobe.com/products/flashplayer/, last visited on June
2009.

[39] SWF. http://www.adobe.com/devnet/swf/, last visited on June 2009.

[40] ECMAScript. http://www.ecma-international.org/publications/standards/Ecma-
357.htm, last visited on June 2009.

[41] Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap/, last visited on
June 2009.

[42] Cairngorm White Paper. http://www.adobe.com/devnet/flex/articles/-
introducingcairngorm/introducing cairngorm.pdf, last visited on June 2009.

[43] Cairngorm Micro-architecture Diagram. http://www.cairngormdocs.org/-
cairngormDiagram/cairngorm2rpc.swf, last visited on June 2009.

[44] H. Zimmermann. OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications. COM-28: 425-432,
1980.

[45] HL7 Message Development Framework, Version 3.3, December 1999. http://-
www.hl7.org/Library/MDF99/MDF99doc.zip, last visited on June 2009.

[46] HL7 Reference Information Model. http://www.hl7.org/v3ballot/html/infrastructure/-
rim/rim.htm, last visited on June 2009.

[47] The National Health Data Dictionary (NHDD) of Turkey. http://-
www.sagliknet.saglik.gov.tr/portal pages/notlogin/bilisimciler/docs/-
usvssozluk 1.1.rar, last visited on June 2009.

[48] HL7 Hierarchical Message Description (HMD). http://www.hl7.org/v3ballot/html/help/-
v3guide/v3guide.htm#v3ghmd, last visited on June 2009.

[49] HL7 Vocabulary. http://www.hl7.org/v3ballot/html/infrastructure/vocabulary/-
vocabulary.htm, last visited on June 2009.

[50] HL7 Data Types - Abstract Specification. http://www.hl7.org/v3ballot/html/-
infrastructure/datatypes/datatypes.htm, last visited on June 2009.

[51] HL7 Refinement, Constraint and Localization, Release 2. http://www.hl7.org/v3ballot/-
html/infrastructure/conformance/conformance.htm, last visited on June 2009.

[52] HL7 Version 3 Standard: Transport Specifications Overview. http://www.hl7.org/-
v3ballot2008may/html/infrastructure/transport/transport-intro.htm, last visited on June
2009.

[53] HL7 Version 3 Standard: Transport Specification - ebXML, Release 2. http://-
www.hl7.org/v3ballot/html/infrastructure/transport/transport-ebxml.htm, last visited on
June 2009.

116

[54] HL7 Version 3 Standard: Transport Specification - Web Services Profile, Release 2.
http://www.hl7.org/v3ballot/html/infrastructure/transport/transport-wsprofiles.htm, last
visited on June 2009.

[55] Transport Specification: Minimal Lower Layer Message Transport Protocol
(MLLP), Release 2. http://www.hl7.org/v3ballot/html/infrastructure/transport/transport-
mllp.htm, last visited on June 2009.

[56] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl, last visited
on June 2009.

[57] List of Web service specifications on Wikipedia. http://en.wikipedia.org/wiki /-
List of Web servicespecifications, last visited on June 2009.

[58] Kabak Y., Dogac A., Kose I., Akpinar N., Gurel M., ArslanY., Ozer H., Yurt N., Ozcam
A., Kirici S., Yuksel M., Sabur E. The Use of HL7 CDA in the National Health In-
formation System (NHIS) of Turkey. 9th International HL7 Interoperability Conference
(IHIC) 2008, Crete, Greece, October 2008.

[59] Kose I., Akpinar N., Gurel M., Arslan Y., Ozer H., Yurt N., Kabak Y., Yuksel M., Do-
gac A. Turkey’s National Health Information System (NHIS).In the Proceedings of the
eChallanges Conference, Stockholm, October 2008.

[60] The Health Coding Reference Server 2. http://sbu.saglik.gov.tr/SKRS2%5FListesi/, last
visited on June 2009.

[61] International Statistical Classification of Diseasesand Related Health Problems, 10th
Revision (ICD-10), Second Edition. Technical Report, World Health Organization,
Geneva, Switzerland. http://www.who.int/whosis/icd10/, last visited on June 2009.

[62] Information technology – Metadata registries (MDR) – Part 4: Formulation of data def-
initions, (ISO/IEC 11179-4).

[63] Doctor Data Bank. http://sbu.saglik.gov.tr/drBank/, last visited on June 2009.

[64] Web Services Security: SOAP Message Security 1.1 (WS-Security 2004). OASIS
Standard Specification. http://www.oasis-open.org/committees/download.php/16790/-
wss-v1.1-spec-os-SOAPMessageSecurity.pdf, last visited on June 2009.

[65] Generation and registration of Universally Unique Identifiers (UUIDs) and their
use as ASN.1 Object Identifier components. Open Systems Interconnection, Inter-
national Telecommunication Union. http://www.itu.int/ITU-T/studygroups/com17/oid/-
X.667-E.pdf, last visited on June 2009.

[66] MERNIS, Central Demographics Management System. http://www.nvi.gov.tr/-
Hakkimizda/Projeler,MernisGenel.html?pageindex=4, last visited on June 2009.

[67] Saglik-Net Business Rules. Ministry of Health. http://www.sagliknet.saglik.gov.tr/-
portal pages/notlogin/bilisimciler/docs/SaglikNET is Kurallari BRMS.pdf, last visited
on June 2009.

[68] Scientific and Technological Research Council of Turkey (TÜBİTAK), TEYDEB
Project No: 7070191.

117

[69] Namli T., Aluc G., Dogac A. An Interoperability Test Framework for HL7 based Sys-
tems IEEE Transactions on Information Technology in Biomedicine Vol.13, No.3, May
2009, pp. 389-399.

[70] ETSI Plugtests. http://www.etsi.org/WebSite/OurServices/plugtests/home.aspx, last vis-
ited on June 2009.

[71] Connectathon Fact Sheet. http://www.ihe.net/Connectathon/upload/-
NA 2008 ConnectathonFactSheet1.pdf, last visited on June 2009.

[72] ETSI TTCN-3. http://www.ttcn-3.org/StandardSuite.htm, last visited on June 2009.

[73] Simple Mail Transfer Protocol (SMTP). http://www.ietf.org/rfc/rfc0821.txt, last visited
on June 2009.

[74] OASIS ebXML Message Service Specification (ebMS). http://www.oasis-open.org/-
committees/ebxml-msg/documents/ebMS v2 0.pdf, last visited on June 2009.

[75] Minimum Health Data Sets (MHDS). http://www.sagliknet.saglik.gov.tr/portal pages/-
notlogin/bilisimciler/docs/msvs semalari.rar, last visited on June 2009.

[76] The ebXML Test Framework and the Challenges of B2B Testing. http://-
ebxmltesting.nist.gov/xmleurope/xmleurope.html, last visited on June 2009.

[77] Integrating the Healthcare Enterprise (IHE). http://www.ihe.net/, last visited on June
2009.

[78] Europen Telecommunications Standard Institute (ETSI). http://www.etsi.net/WebSite/-
homepage.aspx, last visited on June 2009.

[79] OASIS ebXML Test Framework v1.0. http://www.oasis-open.org/committees/-
download.php/10896/IIC ebXMLTestFrameworkv1.1 10 11 04 final draft.zip, last
visited on June 2009.

[80] Event-driven Test Scripting Language (eTSL), OASIS ebXML Implementation Interop-
erability and Conformance (IIC) TC, Working Draft 0.85. http://www.oasis-open.org/-
committees/download.php/26036/eTSL-draft-085.pdf, last visited on June 2009.

[81] XML Query Language (XQuery). http://www.w3.org/TR/xquery/, last visited on June
2009.

[82] NIST Manufacturing Business to Business (B2B) Interoperability Testbed. http://-
www.mel.nist.gov/msid/b2btestbed/, last visited on June 2009.

[83] National Institute of Standards and Technology (NIST). http://www.nist.gov/, last vis-
ited on June 2009.

[84] B. Kulvatunyou, N. Ivezic, M. Martin, A. T. Jones, A BusinesstoBusiness Interoperabil-
ity Testbed: An Overview, ACM International Conference Proceeding Series; Vol. 50,
Proceedings of the 5th international conference on Electronic commerce, 2003.

[85] HL7 Message Maker. http://www.itl.nist.gov/div897/ctg/messagemaker/, last visited on
June 2009.

118

