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ABSTRACT 
 

 

SLIDING MODE CONTROL OF 
LINEARLY ACTUATED NONLINEAR SYSTEMS 

 

 

Durmaz, Burak 

                       Ms.C., Department of Mechanical Engineering 

                       Supervisor : Prof. Dr. M. Kemal Özgören 

                       Co-Supervisor : Assoc. Prof. Dr. Metin U. Salamcı 

 

     June 2009, 123 pages 

 

This study covers the sliding mode control design for a class of nonlinear 

systems, where the control input affects the state of the system linearly as 

described by . The main streamline of the study is 

the sliding surface design for the system. Since there is no systematic way of 

designing sliding surfaces for nonlinear systems, a moving sliding surface is 

designed such that its parameters are determined in an adaptive manner to cope 

with the nonlinearities of the system. This adaptive manner includes only the 

automatic adaptation of the sliding surface by determining its parameters by 

means of solving the State Dependent Riccati Equations (SDRE) online during 

the control process. The two methods developed in this study: SDRE combined 

sliding control and the pure SDRE with bias terms are applied to a longitudinal 

model of a generic hypersonic air vehicle to compare the results.  

( ) ( ) ( )= + +x A x x B x u d x&
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ÖZ 
 

 

 

DOĞRUSAL EYLETİMLİ DOĞRUSAL OLMAYAN SİSTEMLERİN  
KAYAN KİPLİ KONTROLU 

 

Durmaz, Burak 

 Yüksek Lisans, Makina Mühendisliği Bölümü 

          Tez Yöneticisi          : Prof. Dr. M. Kemal Özgören 

       Ortak Tez Yöneticisi: Doç. Dr. Metin U. Salamcı 

 

        Haziran 2009, 123 sayfa 

 

Bu çalışma, durum değişkenleri kontrol girdilerince doğrusal olarak etkilenen 

doğrusal olmayan sistemler için kayan kipli kontrolcu tasarımını 

kapsamaktadır. Böyle bir sistem, ( ) ( ) ( )= + +x A x x B x u d x&  biçiminde 

tanımlanabilir. Çalışmanın ana hattını, sistem için kayma yüzeyinin 

tasarlanması oluşturmaktadır. Doğrusal olmayan sistemler için sistematik bir 

kayma yüzeyi tasarlama yöntemi bulunmadığından bu çalışmada hareketli 

fakat parametreleri sistemin doğrusal olmayan özelliklerini etkisizleştirmek 

üzere sürekli uyarlanan bir kayma yüzeyi tasarlanmıştır. Buradaki uyarlama 

biçimi, kayma yüzeyi parametrelerinin Durum Bağımlı Riccati 

Denklemleri’nin (DBRD) kontrol süreci sırasında an be an çözülerek 

hesaplanmasını ve bu hesaplamalar kullanılarak yüzeyin otomatik olarak 

uyarlanmasını kapsamaktadır. Bu çalışmada geliştirilen iki yöntem: DBRD ile 

birleştirilmiş kayan kipli kontrolcü ve bias terimler içeren DBRD kontrol 

tasarımı hipersonik bir hava aracının boylamsal modeline uygulanmıştır. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
 

1.1 Sliding Mode Control 
 

Variable Structure Control Systems (VSCS) evolved from the pioneering work 

of Emel’yanov and Barbashin in the early 1960s in Russia. The ideas did not 

appear outside of Russia until the mid 1970s when a book by Itkis and a survey 

paper by Utkin [1] are published in English. VSCS concepts have subsequently 

been utilised in the design of robust regulators, model-reference systems, 

adaptive schemes, tracking systems, state observers and fault detection 

schemes. The ideas have successfully been applied to problems as diverse as 

automatic flight control, control of electric motors, chemical processes, 

helicopter stability augmentation systems, space systems and robots. [2]  

 

VSCS, as the name suggests, are a class of systems whereby the ‘control law’ 

is deliberately changed during the control process according to some defined 

rules which depend on the state of the system. Based on the concept of VSCS, 

the aim is to design a controller which will be sought to force the system states 

to reach, and subsequently remain on, a predefined surface within the state 

space.  
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The state space behaviour of the system is described as an ideal sliding motion 

when its state is confined to the surface. The advantages of obtaining such a 

motion are twofold: firstly, there is a reduction in the order of the dynamics 

which simplifies the controller design; secondly the sliding motion is 

insensitive to the matched uncertainties, which are the parameter variations 

and/or unknown inputs that occur in the same channels with the control inputs. 

This insensitivity at least against the matched uncertainties makes the 

methodology an attractive one for designing robust controllers for uncertain 

systems.  

 

Model imprecision may come from actual uncertainty about the plant (e.g., 

unknown plant parameters), or from the purposeful choice of a simplified 

representation of the system’s dynamics. Modelling inaccuracies can be 

classified into two major kinds: structured (or parametric) uncertainties and 

unstructured uncertainties (or unmodelled dynamics). The first kind 

corresponds to inaccuracies in the terms actually included in the model, while 

the second kind corresponds to the neglected higher order terms in the dynamic 

model. 

 

Modelling inaccuracies can have strong adverse effects on nonlinear control 

systems. One of the most important approaches to dealing with model 

uncertainty is robust control. The typical structure of a robust controller is 

composed of a nominal part, similar to an ordinary feedback control law, and 

additional terms aimed at dealing with model uncertainty. Sliding Mode 

Control (SMC) technique is one of the important robust control approaches. 

For the class of systems to which it applies, SMC design provides a systematic 

approach to the problem of maintaining stability and consistent performance in 

the face of modelling imprecision.  
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Many different techniques have been developed for years to design sliding 

mode controllers. But the baselines of all different design techniques are very 

similar and consist of two main steps: 

 

• Design the sliding (switching) surface in the state space so that the 

reduced-order sliding motion satisfies the specifications imposed by the 

designer,  

 

• Determine the control law such that the trajectories of the closed-loop 

motion are directed towards the sliding surface and tried to be kept on 

the surface thereafter.  

 

Discontinuity occurs due to the difference between the out-of-surface and 

surface-bound control laws. It can be avoided by replacing the sudden 

discontinuous switching between the two control laws with a rapid but 

continuous and gradual transition, such as using some kind of a saturation 

function instead of the sign function.  
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1.2 Literature Survey 

 

As mentioned in Chapter 1.1, SMC design techniques are mainly developed 

after 1970s. Then, many studies have been done for the use of SMC technique 

both for linear and non-linear systems. Basically, research on SMC has 

recently developed in two main areas. The first is static SMC based on the 

works of DeCarlo et al. [3], Utkin [4] and Luk’yanov and Dodds [5]. The 

second approach is dynamic SMC which is based on differential (input-output) 

I-O systems, one of which is the work of Sira-Ramirez [6].  

 

SMC is generally robust with respect to some kinds of uncertainties and 

modelling inaccuracies. For linear systems, the robustness property is well 

established. Robustness results also exist for particular types of non-linear 

systems. A general framework for the design of nonlinear sliding mode 

controllers based on the action of a one-parameter subgroup of 

diffeomorphisms on the sliding surface is represented in [7]. 

 

In most SMC schemes, the control laws usually utilise full-state feedback. In 

practice, this is not always possible, since the system states are not available or 

are expensive to measure. In case of so called immeasurable states, observer-

based sliding mode controllers have been designed as studied in [8] by means 

of constructing an observer to estimate the unavailable states and then 

synthesising a SMC law based on the estimated states. 

 

In addition to this, chattering phenomenon takes much more attraction in recent 

studies since it is thought that chattering is the only remaining obstacle in SMC 

design technique. Many design methods are proposed to overcome the effects 

of chattering. 
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There are many review papers on SMC. A recent one is prepared by K. David 

Young, Vadim I. Utkin and Ümit Özgüner in 1999 [9] which is a guide to 

summarise the basic design solutions and emphasise the effect of chattering 

phenomenon. 

 

One of the recent trends on the SMC research is to combine the other control 

system design techniques with SMC. Within this context, the addition of 

adaptation capability to classical SMC may be considered as the combination 

of adaptive control and SMC. Furthermore, the addition of adaptation 

capability, named after as “Adaptive Sliding Mode Control (ASMC)”, makes 

the sliding more sensible if it is thought that SMC is a subset of VSCS. 

 

Some studies, which have been addressing the problem of designing adaptive 

sliding mode controllers for specific systems, can be found in the literature. In 

[10], adaptive sliding mode controller is designed for a hypersonic air vehicle 

model. In the study, firstly, the non-linear model of the hypersonic air vehicle 

is linearised by the application of input-output linearisation method. After that, 

two decoupled sliding surfaces are chosen based on the error dynamics. Errors 

are defined as the difference between the current velocity, altitude and the 

steady state (desired) values of the velocity and altitude respectively. Lastly, 

the sliding control design is accomplished by choosing control inputs such that 

the sliding conditions imply that the distance to the sliding surface decreases 

along all system trajectories are satisfied. Furthermore, the sliding condition 

makes the sliding surface an invariant set, i.e., once the system trajectories 

reach the surface, it will remain on it for the rest of the time. In addition, for 

any initial condition, the sliding surface is reached in a finite time.  
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In the work of Xu, H., et al [10], the sliding mode controller is combined with 

an on-line parameter estimator forming an adaptive sliding mode controller as 

well. The adaptive laws used to adapt the parameter estimations have been 

derived using the Lyapunov synthesis approach. The SMC alone and combined 

with the addition of an adaptive law (ASMC) techniques are simulated then 

accordingly under the presence of parametric uncertainty to see the advantages 

of the second method over the first one. As expected, a significant 

improvement in controller performance is observed. It is seen that the level of 

the control effort in the adaptive case is significantly smaller. 
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1.3 Scope of the Thesis Study 

 

The main contribution of this study can be considered to be the addition of an 

adaptive manner to the SMC design for a state dependent and linearly actuated 

non-linear system. This is a contribution to the area of ASMC (Adaptive SMC) 

design, which is an attractive area for the researchers since it combines the 

power of SMC against uncertainties and disturbances with the ability of 

adapting the controller while the system is changing. 

 

The technique used in [10] to design an ASMC for the hypersonic air vehicle 

model is explained in section 1.2. In this study, on the other hand, a different 

methodology has been developed to design the adaptive sliding mode 

controller for the same model used in [10]. First of all, the system is not 

linearised to design the sliding mode controller, in other words, the non-

linearity of the original system is kept during the controller design phase. 

Secondly, the adaptation manner is added directly to SMC by means of 

adapting the slope of the sliding surface as well as its offset from the origin of 

the state space in accordance with the changes in the system state. 

 

To make this adaptation, the so-called State Dependent Riccati Equations 

(SDRE) are solved while the state variables of the system are changing. Then 

the corresponding sliding surface slope and sliding surface offset are 

determined based on these calculations. 

 

This technique not only turns the sliding mode controller to an adaptive one but 

it also allows to determine the slope and offset of the sliding surface optimally 

depending on the specified weighting matrices of a selected performance 

index.  
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The method can be outlined as follows (although a detailed explanation is 

given in section 2.2); 

 

The system (represented by the state space formulation) is divided into two 

subsystems by using a state variable transformation such that all the control 

inputs are collected in the second subsystem while there remains no control 

input in the first subsystem, which is also called the reduced order system. 

Considering the first subsystem, the sliding surface is defined as a hyper 

surface in the state space based on two parameters: the sliding surface slope 

and the sliding surface offset. In this work, these parameters are determined 

optimally as functions of the state variables using the SDRE technique. The 

second subsystem, on the other hand, is used to determine the control inputs. 

The control inputs are determined to consist of two parts: the first part (known 

as the nominal control) is responsible of keeping the system state on the sliding 

surface and the second part (known as the switching control) is responsible of 

driving the system state toward the sliding surface whenever it is away from it.  
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CHAPTER 2 
 
 

THEORETICAL BACKGROUND 
 
 
 

2.1 Introduction to SMC Design Technique 
 

Following three sections are mainly tailored from [11] to give brief information 

about the two main steps of the sliding mode control design. 

 

2.1.1 Sliding Surfaces 

 

This section analyses the Variable Structure Control (VSC) as a high-speed 

switched feedback control leading up to a sliding mode. For instance, each 

feedback path gains are switched between two values according to a rule that 

depends on the value of the system state at each instant. The purpose of the 

switching control law is to drive the state trajectory of the system onto a pre-

specified (user-chosen) surface in the state space and to maintain the state 

trajectory on this surface for the subsequent time interval. This surface is called 

a switching surface. When the state trajectory is “above” the surface, the 

feedback controller uses one gain and a different gain if the state trajectory is 

“below” the surface. This surface defines the rule for a proper switching. This 

surface is also called a sliding surface (sliding manifold). [16] 

 

 

 



 

Ideally, once intercepted, the switched control maintains the state trajectory on 

the surface forever and the state of the system slides on the surface toward the 

stable equilibrium point. The most important part is to design a switched 

control that drives the system state to the switching surface and keep it on the 

surface upon interception. A Lyapunov approach is used to carry out this task. 

 

The Lyapunov method is usually used to determine the stability properties of 

an equilibrium point without solving the state equation. Let  be a 

continuously differentiable scalar function defined in a domain D that contains 

the origin. A function  is said to be positive definite if V  and 

 for 

( )V x

(0) = 0(x)V

(x) > 0V 0≠x . It is said to be negative definite if  and  

for 

(0) = 0V (xV ) < 0

0≠x . The Lyapunov method is to assure that the derivative of a properly 

defined positive definite function of the system state is negative definite. The 

function has a negative value when the function itself has a positive value and 

vice versa. Thus, the stability of the system is assured about the origin of the 

state space. 

 

Lyapunov method, which was explained briefly above, is used to design the 

sliding mode controller. A candidate Lyapunov function, that characterises the 

motion of the system state to the sliding surface, is defined. For each chosen 

switched control structure, the “gains” are chosen such that the derivative of 

this Lyapunov function is negative definite, thus ensuring motion of the system 

state to the surface. After appropriate design of the sliding surface, a switched 

controller is designed so that the system state trajectories point towards the 

surface such that the state is driven to the this surface. Once system states reach 

to the sliding surface, they remain on it. This kind of controllers results in 

discontinuous closed-loop systems. [16] 
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The main concepts and notations of sliding mode control are presented first for 

systems with a single control input, which allow us to develop intuition about 

the basic aspects. 

 

Let a single input nonlinear system be defined as 

 

( ) ( )( ) ( )( ) ( )( )  t ,   t ,ny t f t b t u t= +x x                                        (2.1) 

 

Here,  is the state vector, ( )tx ( )u t  is the control input and  is the output 

of interest. 

( )y t

 

The superscript (n) on ( )y t  shows the order of differentiation and Eq. (2.1) 

implies that the explicit relationship between ( )y t  and ( )u t  can be established 

only after taking the nth derivative of ( )y t . ( ),f tx  and ( ), txb  are generally 

nonlinear functions of x  and . The function t ( ),f tx  is not exactly known, but 

the extent of the imprecision in ( ),f t

dx

x  is upper bounded by a known and 

continuous function of  and t . Similarly, the control gain  is not 

exactly known, but it is of known sign and its uncertainty is bounded by known 

and continuous functions of  and t .  The control problem is to get the state  

to track a specific time-varying state  in the presence of model imprecision 

in 

x ( ,b tx )

)

x x

( ,f tx  and . A time varying surface  ( ,b x )t ( )tΩ  is defined in the state 

space  by equating the variable ( )nR ( ),s tx , defined below, to zero. 

 

( ); ( + ) (n-1ds t δ y t
dt

=x % )                   (2.2) 
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Here, δ  is a strictly positive constant, ( ) ( ) ( )
d

y t y t y t= −%

d (x

 and 

. The problem of tracking the n-dimensional vector  can 

in effect be replaced by a stabilisation problem in .  

d( ) ( )x x x% ( )t t= − t )t

s

 

The sliding surface  is defined by Ω ( , ) 0s t =x

1)n-

 and the system’s behaviour on 

the surface  is called sliding mode or sliding regime. From (2.2) it is seen 

that the expression of  contains  

Ω

s (y% . So, by differentiating  only once, the 

input u  to appears for the subsequent manipulations.  

s

 

Furthermore, the bounds on  can be directly translated into bounds on the 

tracking error vector x , and therefore the scalar  represents a true measure of 

the tracking performance. The corresponding transformations of performance 

measures assuming 

s

%

(0y

s

) 0=%  is: 

 
( )0,  ( )   0,  ( ) (2 )

0,......, -1

i it s t t y t

i n

φ δ ε∀ ≥ ≤ ⇒ ∀ ≥ ≤

=

%
   (2.3) 

 

where 1/ n-ε φ δ= . In this way, an nth order tracking problem can be replaced 

by a 1st order stabilisation problem. The simplified, 1st order problem of 

keeping the scalar  at zero can now be achieved by choosing the control law 

 of (2.1) such that outside of 

s

u ( )tΩ  

 

21 -
2

d s s
dt

η≤                     (2.4) 

 

where η  is a strictly positive constant.  
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Condition (2.4) states that the squared “distance” to the surface, as measured 

by , decreases along all the system trajectories.  2s

 

Thus, it constrains trajectories to point towards the surface . In particular, 

once on the surface, the system trajectories remain on the surface. In other 

words, satisfying the sliding condition makes the surface an invariant set (a set 

for which any trajectory starting from an initial condition within the set 

remains in the set for all times). Furthermore (2.4) also implies that some 

disturbances or dynamic uncertainties can be tolerated while still keeping the 

surface an invariant set. 

( )tΩ

 

 

 

 

 

 
 

Figure 2.1 Graphical interpretation of equations (2.2) and (2.4) (n=2) 
(Resource: Slotine and Li 1991, [11]) 
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Finally, satisfying (2.4) guarantees that if condition ( ) (d 0 0=x x ) is not exactly 

verified, i.e., if  is actually off (  = 0)tx ( )d = 0tx , the surface  will be 

reached in a finite time smaller than 

( )tΩ

(  = 0) /s t η . Assume for instance that 

, and let  be the time required to hit the surface . ( ) = 0 0ts > reacht 0s =

 

Integrating (2.4) between t = 0 and  leads to reacht

 

0 (  = 0) = (  = ) (  = 0)   ( 0)reach reachs t s t t s t tη− − ≤ − −                                   (2.5) 

 

which implies that 

 

 (  = 0) / reach t s t η≤                     (2.6) 

 

The similar result starting with ( )= 0  < 0s t  can be obtained as 

 

 (  = 0)  / reach t s t η≤           (2.7) 

 

For initial condition, the state trajectory reaches the sliding surface in a finite 

time smaller than (  = 0)  / s t η , and then slides on the surface towards ( )d tx  

exponentially, with a time-constant equal to 1 λ . 

 

In summary, the idea is to use a well-behaved function of the tracking error, , 

according to (2.2), and then select the feedback control law  in (2.1) such that 

 remains a Lyapunov-like function of the closed-loop system, despite the 

presence of model imprecision and of disturbances. 

s

u
2s
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2.1.2 Controller Design 

 

The controller design procedure consists of two steps. First, one selects the 

feedback control law u as to verify sliding condition (2.4). However, the 

control law has to be discontinuous across ( )tΩ  in order to cope with the 

modelling imprecision and the disturbances. It is inapplicable to implement the 

associated control switching, since this result with chattering. Chattering is 

undesirable in practice, since it involves high control activity and may excite 

high frequency dynamics neglected in the course of modelling. Therefore, in 

the second step, an optimal trade-off between control bandwidth and tracking 

precision is accomplished by means of smoothing the discontinuous control 

law u in a suitable manner. [16] 

 

As an example, consider a simple second order system described by 

 

( ) = ( ) ( )x t f x,t u t  + &&          (2.8) 

 

where ( )f x,t 

( )

 is generally nonlinear and/or time/state varying and is estimated 

as f̂ x,t ( )u t ,  is the control input, and ( )x t  is the state to be controlled so that 

it follows a desired trajectory ( )dx t . The estimation error in ( )f x,t  is 

assumed to be bounded by some known function , so that = ( )F F x,t

 

ˆ ( ) ( )   ( )f x,t f x,t F x,t− ≤          (2.9) 

 

Let the distance to the sliding surface be defined according to (2.2). That is, 
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( ) = + ( ) = ( ) +  ( )ds t x t x t x t
dt

γ γ⎛ ⎞
⎜ ⎟
⎝ ⎠

&% % %                 (2.10) 

 

Differentiation of  yields ( )s t

 

( ) = ( ) ( ) +  ( )ds t x t x t x tγ− && && && %                  (2.11)  

 

Substituting Equation (2.8) in Equation (2.11),  becomes,  ( )s t&

 

( )( ) = ( )+ ( ) + γ ( )ds t f x,t u t x t x t− && && %                 (2.12)  

 

The approximate control ( )û t  to achieve  is ( ) = 0s t&

 

( ) ˆˆ  = ( )  ( ) ( ) du t x t x t f  x, tγ− −&&& %                 (2.13) 

 

( )ˆ  u t is the nominal control or the sliding-phase control, which would keep 

the system state on the sliding surface if ( )f x,t  and ˆ ( ) f  x, t  were equal. 

 

On the other hand, if ( ) 0s t ≠ , i.e. if the system state is not on the sliding 

surface, it can be forced to be zero according to the following condition 

deduced from the Lyapunov's second stability theorem. 

 

21 ( ( )) ( ) ( ) ( )
2

d s t s t s t s t
dt

η= ≤ −&                 (2.14)  

 

This condition can be satisfied by the following control input, 
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( ) ( ) ( ) ( )ˆ =  sgn s tu t u t k x,t ⎡ ⎤− ⎣ ⎦                                        (2.15)  

 

With this control, Inequality (2.14) becomes 

 

ˆ( )[ ( , ) ( ) ( , )sgn( ( )) ( )] ( )ds t f x t u t k x t s t x x t s tγ η+ − − + ≤ −&&& %                         (2.16) 

 

Let Eq. (2.13) be substituted. Then, 

 

ˆ( )[ ( , ) ( , )] [ ( , ) ] ( )s t f x t f x t k x t s tη− ≤ −                                                       (2.17) 

 

In the worst case, 

 

ˆ( , ) ( , ) ( , )sgn[ ( )]f x t f x t F x t s t− =                                                                (2.18) 

 

Then,  

 

[ ( , ) ( , )] ( ) 0k x t F x t s tη− − ≥                                                                       (2.19) 

 

Hence, by choosing  large enough, such as ( , )k x t

 

( ) ( ), ,k x t F x t η> +                   (2.20) 

 

the satisfaction of condition (2.14) can be ensured. 

 

The preceding simple example shows the main advantages of transforming the 

original tracking problem into a simple 1st order stabilisation problem for the 

variable s.  
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In the first-order systems, the intuitive feedback control strategy “if the error is 

negative, push on to the positive direction; if the error is positive, push on to 

the negative direction” works. The same statement is not true in a general 

higher-order system. 

 

Now consider the second order system described by, 

 

( ) = ( ) + ( ) ( )x t f x, t b x,t u t&&                  (2.21)  

 

where  is bounded as ( )b x,t

 

( ) ( ) ( )0 <  <  < maxminb x,t b x,t b x,t                            (2.22) 

 

The control gain  and its bound can be time varying or state dependent. 

Since the control input enters multiplicatively in the dynamics, the geometric 

mean of the lower and upper bound of the gain is a reasonable estimate: 

(b x,t)

 

( ) ( ) ( )ˆ =    min maxb x,t b x,t b x,t                  (2.23) 

 

Bounds can then be written in the form 

 

ˆ
-1 b

b
β β≤ ≤                                                               (2.24) 

where  ( )1/2
max min/  b bβ =

 

Since the control law will be designed to be robust to the bounded 

multiplicative uncertainty, β  is called the margin of the design. 
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It can be proved that the control law 

 

( ) ( ) ( ) ( ) ( ){ }1ˆ ˆ = x,t [  sgn ]u t b u t k x,t s t− −                                      (2.25) 

 

with     

 

( ) ( ) ( ) ( ) ( )ˆ (  + ) + 1      k x,t x,t F x,t x,t u tβ η β≥ ⎡ ⎤⎣ ⎦−                         (2.26) 

 

satisfies the condition (2.14), or sliding condition.  

 

The control law for a higher order system can be derived based on a similar 

approach. 
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2.1.3 Summary 

 

By courtesy of its robustness properties, sliding mode controller provides good 

performance for the following two cases which can be defined as two major 

design difficulties encountered in the design of a control algorithm: 

 

1.   The system is nonlinear with time-varying parameters and uncertainties; 

2.  The performance of the system depends strongly on the knowledge of the 

disturbances; 

 

For the class of systems to which it applies, sliding mode controller design 

provides a systematic approach to the problem of maintaining stability and 

consistent performance in the face of modelling imprecision. The main 

advantage of sliding mode control is that the system’s response remains 

insensitive to some kinds of model uncertainties and disturbances. 

 

A generic hypersonic air vehicle model is used in this thesis as a case study 

example to observe the performance of the proposed sliding mode controller. 

The problem can be summarised as to design a nonlinear and time-varying 

control system for tracking velocity and altitude commands under the presence 

of disturbance for this hypersonic air vehicle. Hypersonic air vehicles are 

sensitive to changes in flight condition as well as physical and aerodynamic 

parameters due to their design and flight conditions of high altitudes and Mach 

numbers. For example, at cruise flight at an altitude of 110,000 ft and Mach 15, 

a 1-deg increase in the angle of attack produces a relatively large load factor. 

Furthermore, it is difficult to measure or estimate the atmospheric properties 

and aerodynamic characteristics at high flight altitudes.  
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As a result; modelling inaccuracies can result and can have strong adverse 

effects on the performance of the air vehicle’s control systems. Therefore, 

employing a kind of robust control has been the main technique used for 

hypersonic flight control. [10]  

 

The sliding mode control, which is one of the most important robust control 

techniques, provides a systematic approach to the problem of maintaining 

stability and consistent performance in the face of modelling imprecision. The 

main advantage of sliding mode control is that the system’s response remains 

insensitive to model uncertainties and disturbances. On the other hand, the 

sliding mode control requires a trade-off between robustness properties against 

model uncertainties and disturbances and control system performances. It is 

meant that the sliding mode control has drawbacks like large control effort 

necessity and chattering in the face of model uncertainties and disturbances. 

The performance of the sliding mode controller can be increased and these 

drawbacks can be eliminated by combining the sliding mode controller with an 

adaptive scheme. [10] 

 
 



 

2.2 SMC Design Methodology Used in This Study 

 

SMC design for nonlinear systems has been studied by various researchers [3, 

7, 11, 18, 23]. It is well-known that there is no straight forward method to 

design sliding surface for nonlinear systems since ensuring the stability of 

sliding motion requires special assessment for the nonlinear system under 

consideration. Therefore, sliding surface design for nonlinear systems is still an 

active research field in SMC theory. 

 

In this thesis, a relatively systematic method is proposed to design sliding 

surface for nonlinear systems given by the following expression. 

 

( ) ( )= +x A x x B x u&                   (2.27) 

 

where  and  are the state and control vectors and n∈ℜx m∈ℜu ( ) n n×∈ℜA x  

and  are nonlinear State Dependent Coefficient (SDC) matrices. 

Equation (2.27) is a special representation of the nonlinear dynamics described 

by the following equation, 

( )∈ℜB x n m×

 

( ) ( )= +x a x B x u&                   (2.28) 

 

where  and  is obtained by using the so-called SDC 

parameterisation [15]. 

( ) ( )=a x A x x ( )A x

 

The nonlinear dynamics given by (2.27) is studied by various authors in order 

to design optimal controllers.  
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One of the recent approaches to the optimal controller design for the nonlinear 

system is the so-called State Dependent Riccati Equations (SDRE) method [15, 

28, 38, 39]. The basic idea in SDRE is to extend classical Linear Quadratic 

Regulator (LQR) method to the nonlinear system equations. As seen in (2.27), 

the nonlinear system equation is an extension of = +x Ax Bu&  type Linear Time 

Invariant (LTI) system which is well studied in terms of both optimal and state-

feedback controls in the literature. Therefore by extending the control theory 

for LTI systems to (2.27), it may be possible to design similar type of 

controllers for the nonlinear system. 

 

One of the problems of SDRE based control design for nonlinear systems is to 

ensure the system stability. Unfortunately, there are no global stability results 

seen in the literature. Nevertheless, local asymptotical stability of SDRE based 

optimal control for the nonlinear system given by (2.27) is proved by different 

authors. For the sake of completeness, the local stability result of [15] is given 

below without its proof. 

 

Theorem 1 

Assume that the SDC parameterisation is chosen such that col ( ){ } 1∈A x �  in 

the neighbourhood  about the origin that the pair Ω { }( ),A x ( )B x is pointwise 

stabilisable in the linear sense for all ∈Ωx . Then the SDRE nonlinear 

regulator produces a closed-loop solution which is locally asymptotically stable 

[15]. 

 

Another problem in the SDRE based controller design is to accomplish the 

SDC parameterisation since the parameterisation is not unique. However, one 

of the most important factors in the parameterisation process is to assure the 

pointwise controllability in the local region.  
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The details of SDRE theory and simulation results together with some real 

applications can be found in [15, 28, 38, 39]. 

 

As can be seen in equation (2.27), there is no uncertain dynamics or 

disturbance effects in the nonlinear expressions. Although it is possible to use 

the idea of SDRE in order to design SMC for (2.27), the disturbance (or 

modelling uncertainty) term is included into the nonlinear dynamics to 

emphasise the disturbance rejection capability of the SMC. With this approach, 

SMC is combined with SDRE which enables one to design SMC for a class of 

nonlinear systems in a relatively systematic manner. Besides, by using State 

Dependent parameters in sliding surface definition, the SMC can adapt the 

controller against the nonlinearities and disturbances of the system which may 

be regarded as an Adaptive Sliding Mode Control (ASMC). The method is 

given in the following section. 

   



 

2.2.1 SMC Combined with SDRE (Adaptive Sliding Mode Control) 

 

The system to be controlled with this methodology is described as follows.  

 

( ) ( ) ( )= + + +x A x x B x u f(x) d x&                 (2.29) 

 

where  and  are the state and control vectors. Here,  is 

a nonlinear vector which includes the terms remained after SDC 

parameterisation and/or the constant terms of the state dependent disturbance 

vector. As for d(x), it is the state-dependent disturbance vector. 

n∈ℜx m∈ℜu n∈ℜf(x)

 

SDRE control design method is based on freezing the nonlinear dynamics at 

the given operating point and designing the controller at that operating point. In 

other words, pointwise controller design is accomplished and control 

parameters are updated at each operating point. Therefore, linear control design 

techniques (which are updated at each operating point) can be used for the 

nonlinear system. 

 

SMC design for LTI systems are studied thoroughly in the literature (see [2] 

and [4] for more details). In this study, the SMC design method for LTI 

systems is used and is extended to the nonlinear dynamics. As in the case of 

SDRE based controller design, the nonlinear system is frozen at each operating 

point and pointwise SMC is designed for each LTI dynamics. In order to 

design SMC for the LTI system, the system is transformed so that it can be 

separated into two parts such that one of the parts is in the so-called reduced 

order form in which the control inputs are absent. The transformed system is to 

be represented by an equation such as, 
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z= + + +z z zz A z B u f d&                   (2.30) 

 

where 
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z z

z z
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                   (2.31) 

 

and [ ]2 21 2=B B B 2  is non-singular. In the expanded form, the equation 

becomes, 
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& ⎦
                      (2.32) 

 

The required transformation described above can be achieved by the following 

equation 

 

=z Tx                    (2.33) 

 

where  is the new state vector and  is the state transformation matrix which 

is assumed to be non-singular. 

z T

 

The state transformation matrix  is not unique and there are different 

methods to obtain it. One of the methods to find the transformation matrix is 

the use of “QR decomposition” technique.  

T

 

 

 

 



 

The QR decomposition (also called the QR factorisation) of a matrix is a 

decomposition of the matrix into an orthonormal (or unitary) matrix Q and a right 

triangular matrix R as indicated below. 

 

A = QR                     (2.34) 

 

There are several methods for finding the QR decomposition, such as by means 

of the Gram–Schmidt process, Householder transformations, or Givens 

rotations. Each has a number of advantages and disadvantages. In this study, 

the special command of MATLAB, “qr” is used. It is used as described below. 

 

[Tr : Temp] = qr(B)  

 

Here Temp stands for a temporarily constructed matrix while Tr stands for the 

matrix constructed for the transformation. This produces an upper triangular 

matrix Temp of the same dimension as  and a unitary matrix  so that 

= × Te . For sparse matrices, Tr is often nearly full. If  is an 

B Tr

B Tr mp B m n×  

matrix, then Tr is m × m and Temp is m × n. 

 

In the next step, Tr  matrix is inverted first and its rows are re-ordered to reach 

the final state transformation matrix T such that 

 

z =B TB                                                                          (2.35) 

 

As a case study, consider the nonlinear dynamics of a hypersonic air vehicle 

model which is used in Chapter 3. The state and control vectors are, 
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eu
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δ
β

⎡ ⎤ ⎡ ⎤
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u                   (2.37) 

 

Here, the state variables are the percentage change in the velocity relative to its 

initial value, the flight path angle, the percentage change in the altitude relative 

to its initial value, the angle of attack and the pitch rate. On the other hand, the 

control inputs, u1 and u2 are the elevator deflection and the throttle setting. 

 

As the first and third system state variables, the percentage changes of the 

velocity and altitude are used to make all the state variables have comparable 

orders of magnitudes. Otherwise, the difference between the orders of 

magnitude of the first and third system state variables and the remaining ones 

happens to be very large and this leads to some difficulties in numerical 

computing. These percentage changes are defined as follows; 

 

0 1

0 1

= =   1
V V x xV x

V x
− −

⇒% % 10

0

                             (2.38) 

 

( )1 10 1

therefore,

1  x x + x= %

                                           (2.39) 

 

and, 
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01 1 1x x x= && %                    (2.40) 

  

0 3
3

0 3

= =h h x xh x
h x
− −

⇒% % 30

0

                                                              (2.41)

     

therefore, 

 

( )3 30 31  x x x= + %                   (2.42) 

 

and, 

 

3 3 30x x x= && %                    (2.43) 

 

where  and 0V 10x  are the initial values of the velocity and  and 0h 30x  are the 

initial values of the altitude. 

 

The term  in (2.29) gets added to the system differential equation as a 

result of the new definition of the first and third system state variables in the 

form of percentages. This term is taken into account as a known disturbance 

and it is compensated by the designed controller.   

( )f x

 

The derivation of the state transformation matrix is shown below for the B  

matrix used in the simulations of this study. 

 

 

 

 

 

 

 



 

[ ] [ ]

12

22

5 5 5 2

42

51 52

0
0
0 0 x
0

x x

b
b

b
b b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B Tr Temp                                                (2.44) 

 

0
0
0 0
0 0
0 0

a
b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Temp                   (2.45) 

 

where a and b are the values obtained by the QR decomposition. 

 

Note that, 
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By simply re-ordering the elements of 1−Tr , the final state transformation 

matrix can be obtained such that the desired form is achieved as shown 

below, 

T
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In other words, this state transformation matrix is used to obtain the reduced 

order forms of the system matrices , ,  and . The derivation of 

these matrices is explained in the following part. By assuming a time varying 

and/or a state dependent state transformation such as 

zA zB zF zD

 

=z Tx                    (2.48) 

 

and its derivative, 

 

( )= + = + + = + + + +z Tx Tx TAx TBu Tx TA T x TBu Tf Td& & && &             (2.49) 

 

the new state equation is obtained as, 
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z

)

= + + +z z zz A z B u f d&                  (2.50) 

 

Dimensions of the vector and matrix variables are given here to prevent any 

misunderstanding. 
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Here n is the number of state variables and m is the number of control inputs. 

 

As a useful reminder,  is the disturbance input to the reduced order system 

(i.e. the first subsystem without the control inputs) while  is the disturbance 

input to the second subsystem with the control inputs. Similarly,  is the 

additional known input to the reduced order system and  is the additional 

known input to the second subsystem. It is to be noted that,  is not taken 

into account in the controller design because there is no control input in the 

first part of the system. It is expected that this disturbance input is compensated 

by the disturbance rejection capability of the sliding mode controller. 

1zd

2zd

2zf

1zf

1zd

 

The first part of the new state equations is 

 

1 11 1 12 2z z= + + +1z 1zz A z A z f d&                     (2.51) 

 

The above part is called as the "indirectly controlled subsystem” since there is 

no control term.  

 

On the other hand, all the control effort is lumped into the second part, which is 

called as the "directly controlled subsystem". The state equation of this 

subsystem is, 
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22 21 1 22 2 2 2z z= + + + +z zz A z A z B u f d&                                                 (2.52) 

 

The control effort is transmitted to the indirectly controlled first subsystem 

through the state vector   of the directly controlled subsystem.  2z

 

 

 



 

This transmission is realised by treating  as if it is the control input to the 

first subsystem. As such, it is formulated most typically according to the state 

variable feedback control law so that 

2z
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1

m

in 

)

2 2= −z h Cz                    (2.53) 

 

Here,  is the bias term added for the purpose of disturbance rejection and C  

is the feedback gain matrix. Note that Eq. (2.53) defines a surface Ω  (i.e. a 

 dimensional manifold) in the n dimensional state space of the whole 

system. This surface is called the sliding surface. The deviation σ  of the state 

vector from the sliding surface is expressed as,  

2h

mn −

 

2 1( ) = + − 2σ z z Cz h                              (2.54) 

 

Using the surface-related terminology,  is considered as the slope of the 

sliding surface and h is considered as the offset of the sliding surface from the 

origin of the state space. 2h  ter  is deliberately added to the classical sliding 

surface equation in order to suppress the effects of 1zf  and 1zd  (2.51) as 

much as possible. 

C

2  

 

When the system state is on the sliding surface, i.e. when 

, Eq. (2.51) becomes; 2 1( ) 0= + − =2σ z z Cz h

 

1 11 12 1 12 2( ) (z z z= − + + +1z 1zz A A C z A h f d&                (2.55) 

 

 

 

 

 



 

Here,  and  must be determined in such a way that the closed-loop system 

represented by Eq. (2.55) is asymptotically stable with a sufficiently fast 

convergence and  approaches the desired vector  with a tolerable error.   

C 2h

1z 1dz

 

After the sliding surface is determined as described above, the next stage of 

controller design is to determine the actual control vector u so that the state of 

the system is forced toward the sliding surface. In other words, u must be 

determined so that σ is driven to zero and kept so despite the disturbances. This 

purpose can be achieved by using the second stability theorem of Lyapunov as 

described below.   

 

Let T1
2

=V σ σ  be defined as the Lyapunov function. Then, the following 

condition must be satisfied to force  to be zero. σ

 
T 0= <V σ σ& &                     (2.56) 

 

This condition leads to the sliding mode controller (SMC) through the 

following stages.  

 

Recalling  from equation (2.54), its derivative is written as ( )σ z

 

2 1 1( ) = + + − 2σ z z Cz Cz h& && & &                                                                            (2.57)  

 

21 1 22 2 2 2 2 11 1 12 2 1 1( ) ( )z z z z= + + + + + + + + + −z z 1z zσ z A z A z B u f d C A z A z f d Cz h& && 2

                                                                                                                     (2.58) 
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By using the condition that T 0<σ σ& ; SMC can be obtained as follows being 

composed of two different controllers, i.e. as nom sw= +u u u . 

 

(i) The nominal control: 

 
1

nom 2 21 1 22 2 2 11 1 12 2 1( )z z z z
− ⎡ ⎤= − + + + + + + −⎣ ⎦z 1zu B A z A z f C A z A z f Cz h& &

2    (2.59) 

 

As noticed, the disturbances  and  are assumed to be zero in obtaining 

the nominal control.  

1zd 2zd

  

(ii) The switching control: 

 

11
sw 2

2

sgn( )
sgn( )

σ
σ

− ⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
u B K                  (2.60) 

 

This control constituent is added in order to deal with the disturbances  and 

. Its derivation is explained below. 

1zd

2zd

 

When equation (2.59) is substituted, Inequality (2.56) becomes, 

 

[ ]T T
2 sw 2 1 0= + +z zσ σ σ B u d Cd& <                                                                (2.61) 

 

or, 

 

[ ]T T
2 sw 2 1 0+ +z zσ B u σ d Cd <                                                                     (2.62) 

 

Let, 
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eq 2 1 sw 2 sw and  ′= + =z zd d Cd u B u                                                           (2.63) 

 

Then, 

 

T T
sw eq 0′ + <σ u σ d                                               (2.64) 

 

or, 
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<1 sw1 2 sw2 1 eq1 2 eq2 0u u d dσ σ σ σ′ ′+ + +                                                             (2.65) 

 

Assume that, 

 

eq1 1 eq2 2 and d D d< D<                                               (2.66) 

 

In the worst case, 

 

eq1 1 1 eq2 2 2sgn( ) and  sgn( )d D d Dσ σ= =                                                    (2.67) 

 

Then, 

 

1 sw1 2 sw2 1 1 2 2 0u u D Dσ σ σ σ′ ′+ + + <                                              (2.68) 

 

This condition can be satisfied by letting, 

 

sw1 1 1 1sgn( )u k D σ′ = −                    (2.69) 

 

 

 



 

and 

 

sw2 2 2 2sgn( )u k D σ′ = −                  (2.70) 

 

Such that, 

 

1 21 and  1k k> >                    (2.71) 

 

Hence,  can be obtained as, swu

 

11 1
sw 2 sw 2

2

sgn( )
sgn( )

σ
σ

− − ⎡ ⎤′= = − ⎢
⎣ ⎦

u B u B K ⎥

⎥

2

⎥

                                                             (2.72) 

 

where, 

 

1 1

2 2

0
0

k D
k D

⎡ ⎤
= ⎢
⎣ ⎦

K                    (2.73) 

 

As a summary, SMC can be obtained as the sum of the following two control 

constituents.  

 
1

nom 2 21 1 22 2 2 11 1 12 2 1( )z z z z
− ⎡ ⎤= − + + + + + + −⎣ ⎦z 1zu B A z A z f C A z A z f Cz h& &    (2.74) 

 

11
sw 2

2

sgn( )
sgn( )

σ
σ

− ⎡ ⎤
= − ⎢

⎣ ⎦
u B K                                                                               (2.75) 
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In other words, 

 

nom sw= +u u u                                                                                               (2.76) 

 

Here  is a matrix of tuning parameters for adjusting how fast the system 

state will reach the sliding surface and how successfully the controller rejects 

the disturbances. In other words,  has two functions: disturbance rejection 

function and forcing function on the state to drive it toward the sliding surface. 

Its first function is explained above during the derivation. Its second function 

can be explained as follows.  

K

K

 

 If K  has small elements, reaching to the sliding surface is slow, but the 

chattering amplitude and frequency are also small. 

 

 If K  has large elements, reaching to the sliding surface is fast, but the 

chattering amplitude and frequency are also large. 

 

Here, chattering is defined as the in-and-out oscillation of the system state 

about the sliding surface. This phenomenon arises due to the conflict between 

the distracting effect of the disturbances and the restoring effect of the 

switching parts of the control inputs. 

 

As a summary, the larger the elements of K are, the more effective its two 

functions become, but on the other hand, the more severely the chattering 

phenomenon occurs. Figure 2.2 shows the effect of on the chattering 

phenomenon. The “k” value in the figure is the amplitude of the chattering and 

it is directly proportional to the elements of the selected K .  

K
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t

 

Figure 2.2 Effect of K on the Chattering Phenomenon 

 

 

Figure 2.3 is given to explain the characteristic behaviour of the sliding mode 

controller which is composed of two sub-controllers. The first part is defined as 

the reaching phase and this is the part where the switching control is active and 

forces the system states towards the sliding surface. The second part is defined 

as the sliding phase and this is the part where the nominal control is active and 

keeps the system states on the sliding surface. 
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u

Reaching Phase

t

Sliding Phase

  

Figure 2.3 Typical SMC Input 
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2.2.1.1 Determination of Sliding Surface Parameters 

 

At first, sliding surface equation is defined, 2 1( ) = + − 2σ z z Cz h

2h

, and then the 

sliding mode controller is designed based on this definition. But the parameters 

of the sliding surface equation: sliding surface slope matrix, C  and the offset 

of sliding surface from the state space origin,  are still not known.  

 

There are different methods for determining the slope and the offset of the 

sliding surface but in this study, they are determined by solving the State 

Dependent Riccati Equations (SDRE) so that they become adaptive to the 

nonlinearities of the system. By this methodology, the problem of sliding 

surface determination is reduced to a Linear Quadratic Regulator (LQR) 

problem including bias terms. 

 

In other words, the slope (C) and the offset (h2) of the sliding surface are 

determined so as to minimise the following cost functional. 

 

( ) ( ) ( ) ( )( )T T
1 1 11 1 1 2 2 22 2 2

1 dt
2

st

J
∞

= − − + − −∫ z r Q z r z r Q z r              (2.77) 

 

Here,  represents the steady state values at the desired position for the 

reduced order system while  represents the steady state values at the desired 

position for the second subsystem.  and  are properly specified 

weighting matrices which may be functions of the state variables if desired. 

The desired final values of the state variables are expressed in more detail as 

follows. 

1r

2r

11Q 22Q
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⇒

1 11

2 12
1

3 13
2

4 21

5 22

d

d

d

d

d

x r
x r
x r
x r
x r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

d

r
Tx T

r
                                                                   (2.78) 

 

11

1 12

13

   and,   
r
r
r

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

r                   (2.79) 

 

21
2

22

r
r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

r                                                                  (2.79) 

 

where  includes the steady state values for the system state variables. dx

 

In the general multivariable case, the SDRE nonlinear feedback solution and its 

associated state and costate trajectories satisfy the first necessary condition for 

optimality ( 2 0∂ ∂ =H z ) of the nonlinear optimal regulator problem (2.77). 

Additionally, if  , ,  and  along with their gradients are 

bounded in a neighborhood about the origin, under asymptotic stability, as the 

state is driven to zero, the second ecessary condition for optimality 

(

11zA 12zA 11Q 22Q

1z

1 = −∂ 1∂λ H z& ) asymptotically satisfied at a quadratic rate. [28] 

 

where H represents the Hamiltonian function and defined by, 

 

( ) ( ) ( ) ( )T T T
1 1 11 1 1 2 2 22 2 2 1 1

1 1 ( )
2 2

= − − + − − +H z r Q z r z r Q z r λ z&                 (2.81)  

 

 

 



 

And the costate vector,  be expressed as,  1λ
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11 1 1= Φ +Ψλ z                                  (2.82)  

 

1 11 1 12 2

Notice that, 

 z z= + + 1zz A z A z f&
                                                                            (2.83) 

Then, H becomes 

 

( ) ( ) ( ) ( )T T T
1 1 11 1 1 2 2 22 2 2 1 11 1 12 2

1 1 ( )
2 2 z z= − − + − − + + + 1zH z r Q z r z r Q z r λ A z A z f

                                                                                                                     (2.84) 

 

By taking the relevant partial derivatives, the following equations are obtained. 

 

2 0∂ ∂ =H z                               (2.85) 

 

( ) T
2 22 2 2 12 1 0z∂ ∂ = − + =H z Q z r A λ                                                           (2.86)  

 

1 = ∂ ∂z H λ& 1

⎤⎦

                                                                                                 (2.87)  

 
1 T

1 11 1 12 2 22 12 1z z z
−⎡= + − +⎣ 1zz A z A r Q A λ f&                                                    (2.88) 

 

1 = −∂ ∂λ H z&
1                                                                                               (2.89)  

 

( ) T
1 11 1 1 11z= − − −λ Q z r A λ&

1                                                                          (2.90) 

 

 



 

By using the equation (2.86), the control structure can be expressed as follows, 

 
1 T

2 2 22 12 1z
−= −z r Q A λ                                                                                   (2.91)  

 

Finally equation (2.53), equation (2.90) and equation (2.91) can be combined 

as, 

 
1 T 1 T

2 2 22 12 1 1 22 12 1 1z z
− −= − Φ − Ψ = − + 2z r Q A z Q A Cz h               (2.92) 

 

Hence, the slope  and offset of the sliding surface  can be defined as 

follows. 

C 2h

 
1 T

22 12 1z
−= ΦC Q A                                             (2.93)  
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1

1

1 T
2 22 12z

−= − Ψ2h r Q A                                                                                  (2.94) 

 

Then, 

 

1 1 1 1 1 1 1 1 1= Φ +Ψ ⇒ =Φ +Φ +Ψλ z λ z z& && &                    (2.95)  

 

The final equation is derived by combining Equations (2.90) and (2.95). That 

is, 

 

( ) T
1 11 1 1 11 1 1 1 1 1z= − − − = Φ +Φ +Ψλ Q z r A λ z z& && & 1                                            (2.96) 

 

This equation implies that 

 

 

 



 

( ) ( )
[ ]( )

T
11 1 1 11 1 1 1

1 T
1 1 1 11 1 12 2 12 22 12 1 1 1 1

z

z z z z
−

− − − Φ +Ψ

= Φ +Φ + − Φ +Ψ + +Ψ1z

Q z r A z

z A z A r A Q A z f &&
          (2.97)  

 

By equating the coefficients of , the following two equations can be 

obtained; 

1z
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1 T
z

Ψ

T
11 11 1 1 1 1 11 1 12 22 12 1z z z

−− − Φ = Φ +Φ −Φ ΦQ A z A A Q A&                                 (2.98)  

 
T 1 T

11 1 11 1 1 12 2 1 12 22 12 1 1 1 1z z z z
−− Ψ = Φ −Φ Ψ +Φ +1zQ r A A r A Q A λ f &                 (2.99) 

 

The above equations are solved for the steady state conditions by taking the 

derivatives equal to zero.  

 

The first equation leads simply to the following algebraic matrix Riccati 

equation, 

 
T 1 T

1 11 11 1 1 12 22 12 1 11 0z z z z
−Φ + Φ −Φ Φ + =A A A Q A Q                                      (2.100)  

 

This equation is solved for 1Φ .  

 

The steady state form of the second equation is 

 
T 1

11 1 11 1 1 12 2 1 12 22 12 1 1z z z z
−− Ψ = Φ −Φ Ψ +Φ 1zQ r A A r A Q A fT                          (2.101) 

 

This equation can be rearranged as  

 

 

 

 



 

( ) ( )T 1 T
11 1 12 22 12 1 11 1 1 12 2z z z z

−− + Φ Ψ = − + Φ + 1zA A Q A Q r A r f

]

                     (2.102) 

 

1Hence,  is found as follows.Ψ  

 

( ) [( )1T 1 T
1 11 1 12 22 12 11 1 1 12 2z z z z

−−Ψ = − +Φ − +Φ + 1zA A Q A Q r A r f                 (2.103) 

 

Since  and  are known, the slope and the offset of the sliding surface can 

be determined as shown below. 

1Φ 1Ψ

 
1 T

22 12 1z
−= ΦC Q A                 (2.104) 

 
1 T

2 22 12z
−= − Ψ2h r Q A 1                                                                                (2.105) 

 

The sliding mode controller is designed with a moving sliding surface such that 

its parameters, sliding surface slope and the offset of sliding surface, are 

determined in an adaptive manner and optimally selected for the given 

weighting matrix, . In other words, sliding surface slope  and the offset of 

sliding surface  are determined and sliding mode controller can be derived 

using the equations (2.74), (2.75) and (2.76). 

Q C

2h

 

The use of “sign” function may yields numerical errors as a result of the 

insufficient integration time step selection during numerical calculations. 

Furthermore, because of the discontinuity across the sliding surfaces, the 

preceding control law may result in control chattering. As a practical matter, 

chattering is undesirable because it involves high frequency switched control 

action and may excite high frequency dynamics neglected in the modelling. 
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Therefore, to minimise these drawbacks, tangent hyperbolic function is used 

instead of sign function in the case study simulations. Thus, the following form 

is used in the case study simulations. 
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⎥
1 11

sw 2
2 2

tanh( )
tanh( )

c
c

σ
σ

− ⎡ ⎤
= − ⎢

⎣ ⎦
u B K                                                                        (2.106) 

 

where c1 and c2 are the parameters used to adjust the slope of the tangent 

hyperbolic function. 



 

2.2.2 Pure SDRE Method 

 

After the system dynamics is expressed in the form given by Equation (2.29), 

instead of designing a sliding mode controller, an ordinary feedback controller 

may also be designed. This controller is considered here for the sake of 

comparison with the SDRE-based SMC. Proposed SDRE-based SMC can also 

be compared different cases such as the SMC designed for the model linearised 

about the initial and/or final conditions or the SMC designed with constant 

sliding surface parameters i.e., the sliding surface slope and the offset of 

sliding surface. The reason why pure SDRE method, which the derivation is 

explained below, is selected as a comparision criteria for the proposed SDRE-

based SMC is that; it is obvious that proposed SDRE-based SMC have much 

more better performances compared with the above two cases. But it is not as 

easy to say the same for the pure SDRE method without doing a case study.  

 

The gain and the bias term of this feedback controller can again be determined 

by means of solving the State Dependent Riccati Equations. This means that 

the parameters of the ordinary feedback controller are also adapted in the same 

manner with those of the sliding mode controller.  

 

In order to design this controller, the cost functional is taken as 

 

( ) ( )T T
d d

0

1 dt
2

J
∞

⎡= − − +⎣∫ x x Q x x u Ru% % % % ⎤⎦

b

                                                   (2.107) 

 

The control input can be expressed as 

 

= − +u Gx%                                                                     (2.108) 
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Here,  represents the gain of the feedback controller while b  represents the 

bias term. 

G

 

Hamiltonian is defined as  

 

( ) ( )T T T
d d 1

1 1 ( )
2 2

= − − + +H x x Q x x u Ru λ x&% % % % %                                            (2.109) 

 

Note that,  

 

( ) ( ) ( ) ( )= + + +x A x x B x u f x d x&% % % % % %                                                                 (2.110) 

 

The unknown disturbance term  is not taken into account in the design of 

this controller. So, 

( )d x%

 

( ) ( ) [ ]T T T
d d 1

1 1 ( ) ( ) ( )
2 2

= − − + + + +H x x Q x x u Ru λ A x x B x u f x% % % % % % % %             (2.111) 

 

However, as may be recalled,  was taken into account with the estimated 

upper bounds of its components in designing the switching control of SMC. 

( )d x%

 

By taking the relevant partial derivatives, the following equations are obtained. 

 

0∂ ∂ =H u                             (2.112) 

 
T

1 0∂ ∂ = + =H u Ru B λ                                                                             (2.113)  

 
1 T

1
−= −u R B λ                  (2.114) 
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1= ∂ ∂x H λ&%                                                                                                 (2.115)  

 
1 T

1 ( )−⎡ ⎤= + − +⎣ ⎦x Ax B R B λ f x&% % %                                                                    (2.116) 

 

1 = −∂ ∂λ H x& %&

1

1

1

                                                                                             (2.117)  

 

( ) T
1 d= − − −λ Q x x A λ& % %                                                                              (2.118) 

 

Let costate vector be expressed as in (2.82),  

 

1 1= Φ +Ψλ x%       

 

The derivative of the costate vector is as follows, 

 

1 1 1= Φ +Φ +Ψλ x x& & && % %                                                                                  (2.119)

  

Then the equations (2.117) and (2.119) are combined as 

 

( ) ( ) ( )T 1
1 d 1 1 1 1 1 ( )−⎡ ⎤= − − − Φ +Ψ = Φ +Φ + − + +Ψ⎣ ⎦λ Q x x A x x Ax B R B λ f x& &&% % % % % %T

1

1 T
1

 

                  (2.120) 

 

By equating the coefficients of the , the following two equations are 

obtained. 

x%

 
T

1 1 1 1
−− − Φ = Φ +Φ −Φ ΦQ A A BR B&                                                      (2.121)  
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( )T 1 T
d 1 1 1 1

−− Ψ = −Φ Ψ +Φ +ΨQx A BR B f x &% 1%                                             (2.122) 

 

The above equations are solved for the steady state conditions by taking the 

derivatives equal to zero. The first equation leads simply to the following 

algebraic matrix Riccati equation, 

 
T 1 T

1 1 1 1 0−Φ + Φ −Φ Φ + =A A BR B Q                                                          (2.123)  

 

This equation is solved for 1Φ .  

 

The steady state form of the second equation is 

 

( )T 1 T
d 1 1 1 1

−− Ψ = −Φ Ψ +ΦQx A BR B f x% %                                                     (2.124)  

 

This equation can be solved for Ψ1 as 

 

( ) ( )( )1T 1 T
1 1 d 1

−−Ψ = − +Φ − +ΦA BR B Qx f x% %                                             (2.125) 

 

Since  and  are known, the gain of the feedback controller and the bias 

term can be determined by combining the equations (2.108) and (2.114) so 

that, 

1Φ 1Ψ

 
1 T

1
−= ΦG R B                             (2.126) 

 
1 T

1
−= − Ψb R B                                                                                            (2.127) 
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CHAPTER 3 
 
 

APPLICATION OF THE DESIGNED CONTROLLER  

TO A HYPERSONIC AIR VEHICLE MODEL 
 
 
 
 
This section includes the application of the proposed adaptive SMC to the 

generic hypersonic vehicle model which was also studied in the main reference 

article [10] and the result of the case study simulations. This case study 

example is used mainly for comparison purposes with an alternative adaptive 

SMC applied to the same vehicle in [10]. The units used in the case study 

simulations are kept same with the ones in [10] during plotting phase to allow 

us to compare the results.  



 

3.1 Mathematical Model of the Hypersonic Air Vehicle 
 
The model which was also studied in the main reference article [10] is used in 

this thesis study. 

 

3.1.1 Nomenclature  

 
 

A  

 

Speed of Sound, m/s (ft/s)  

 

DC   
 

Drag Coefficient  

 

LC   
 

Lift Coefficient  

 

( )MC q  

 

Moment Coefficient due to Pitch Rate  

 

( )MC α   
 

Moment Coefficient due to Angle of Attack  

 

( )M eC δ  
 

Moment Coefficient due to Elevator Deflection  

 

TC   
 

Thrust Coefficient  

 

C  

 

Reference Length, 24.4 m (80 ft)  

 

D  

 

Drag, N (lbf)  

 
h  

 

Altitude, m (ft)  

yyI   

 

Moment of Inertia, 9.5 x10
6
 kg-m

2
 (7x10

6
 slug-ft

2
) 
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L  

 

 

Lift, N (lbf) 

 

M  

 

Mach Number  

 

yyM   
 

Pitching Moment, N.m (lbf-ft)  

 

m  

 

Mass, 136818 kg (9375 slugs)  

 

q  

 

Pitch Rate, rad/s  

 

ER   
 

Radius of the Earth, 6371400 m (20903500 ft)  

 
r  

 
Radial Distance from Earth’s center, m (ft)  

 
S  

 

Reference Area, 335 m
2
 (3603 ft

2
)

 
 

 
T  

 

Thrust, N (lbf) 

 
V  

 

Velocity, m/s (ft/s)  

 
α  

 

Angle of Attack, rad  

 
β  

 

Throttle Setting  

 
γ  

 

Flight-Path Angle, rad  

 
eδ   

 

Elevator Deflection, rad  

 
μ  

 

Gravitational Constant , 3.94 x10
14

 m
3 
/s

2
 (1.39x10

16
 ft

3 
/s

2
) 

 
ρ  

 

Density of Air, 0.013 kg/m
3
 (

 
0.24325x10

-4
 slugs/ft

3 
) 
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3.1.2 Differential Equations of the System 

 
 
A simplified version of the model used in [12] and [15] has been presented in 

[10]. The model describing the longitudinal dynamics of a generic hypersonic 

air vehicle has been simplified by making appropriate modifications for the 

trimmed cruise condition (M=15, V=4,590 m/s (15,060 ft/s), h=33,528 m 

(110,000 ft), γ=0 deg, and q=0 deg/s). The equations of motions derived for 

this vehicle include an inverse-square-law gravitational model, and the 

centripetal acceleration for the nonrotating Earth. 

 

 

 
Figure 3.1 Free Body Diagram of a Simplified Hypersonic Air Vehicle 

(Resource: Adaptive Predictive Expert Control, [14]) 
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The equations of motion for the hypersonic air vehicle model are given below: 

 

      
                 (3.1) 
      
               
                                                                  (3.2) 
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                                                      (3.3) 
        
                                                      (3.4) 
                                                     
 

                                                                  (3.5) 
 

( )

2

2

cos sin

cos+ sin

sin

2

yy yy

T DV
m r

V rL T
mV Vr

h V

a q

q M / I

α μ γ

μ γαγ

γ

γ

−
= −

−
= −

=

= −

=

&

&

&

&

&

 
where 
 

 
         
       (3.6)
 
     
                                                  (3.7) 
 

    
                                      (3.8) 

 
     
 
                                                  (3.9) 

 
              
                                    (3.10) 

 

[

2

e

1
2

1
2

1
2

1 ( )+ ( )+
2

+

2
L

D

2
T

2
yy M M M

E

L V SC

D V SC

T V SC

]M V Sc C C C (q)

r h R

ρ

ρ

ρ

ρ α δ

=

=

=

=

=

0.6203LC α=                                                                                               (3.11)  
 

20.6450 +0.0043378 +0.003772DC α α=                                                     (3.12) 
 
 
 



 
0.02576 ,  ( <1)
0.02240 0.00336 ,  ( >1)TC

β β
β β

⎧
= ⎨ +⎩

                                                             (3.13) 
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2( ) 0.035 +0.036617 +5.3261×10MC α α α= −                                            (3.14) 
 
 

( ) 2( ) ( 6.796 +0.3015 0.2289)MC q c 2V q α α= − −                                      (3.15) 
 
 

(e e( )M eC c )δ δ α= −                                                                                     (3.16) 
 
 
where it is assumed that ce remains constant as 0.0292ec = .  
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

3.2 Sliding Mode Control Design for the Hypersonic Air Vehicle Model 

 
 
The hypersonic air vehicle can be modelled as follows. 

 

=x a(x) + B(x)u&                   (3.17) 

 

where 

 

1

2

3

4

5

x V
x
x h
x
x q

γ

α

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

x

&&

& &

&& &

& &

& &

  and,                                                                                   (3.18)  

 

1 e

2

u
u

δ
β

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
u                                                                                             (3.19) 

 

By rearranging the differential equations of the system, it is seen that 

 

{ }( )

( )

2
2

2

2

2

2

2

2

sin
(0.6450 +0.0043378 +0.003772)

2 ( )

cos
0.6203

2 ( + )

sin

( + )cos
0.6203

2 ( + )

( 0.
2

( )

+

1 2
4 4

3

21
4

1 3 e

1 2

1 3 e 21
4

1 3 e

1

e

1 3 e

5

yy

Sx x
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However, the state equation of the system that is going to be controlled with 

this methodology should be in the following form: 

 

( ) ( ) ( )= + +x A x x B x u d x&                  (3.22) 

 

In this study, the required form is obtained as follows for the hypersonic air 

vehicle. 

 

( ) ( ) ( ) ( )= + + +x A x x B x u f x d x&% % % % %                            (3.23) 
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By rearranging the differential equations of the system, the following set of 

equations can be obtained, 

 

 

 59



 

( )

11 12

14 12

1 2
1 1 22

2 3

2 2
1 1

4 4

sin0.003772 +
2 ( + )

+ 0.6450 +0.0043378 + 0.02576cos
2 2

e
a a

a b

Sx xx x x
m x x R

Sx Sx
4 2x x x

m m

ρ μ

ρ ρ

⎛ ⎞
− −⎡ ⎤ ⎜ ⎟⎣ ⎦

⎝ ⎠

⎛ ⎞ ⎛− ⎡ ⎤⎡ ⎤⎜ ⎟ ⎜⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝

⎣ ⎦
⎝ ⎠ ⎝

⎠
=
14444244443 1442443

144444424444443 1444442444443

&

u
⎞
⎟
⎠

            (3.25) 

 

{ }

( )

24
21

22

2
1 3 2 1

2 12 2
1 3

1
4 2

+ cos
+ 0.6203

( + ) 2

+ 0.02576sin
2

e

e
a

a

b

x x R x Sx
4x x x

x x R m

Sx x u
m

μ ρ

ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤− ⎛ ⎞⎣ ⎦− ⎡ ⎤⎜ ⎣ ⎦ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

=
1444244431444442444443

14444244443

&

            (3.26) 

 

32

2
3 1

2

sin

a

x
2x x x

x
⎛ ⎞
⎜ ⎟
⎝ ⎠

=
14243

&                   (3.27) 

 

{ }

( )

44
41

42

2
1 3 2 1

54 12 2
1 3

1
4 2

x + cos
+ 0.6203 +

( + ) 2

+ 0.02576sin
2

e

e
a

a

b

x R x Sx
4x x x

x x R m

Sx x u
m

μ ρ

ρ

⎡ ⎤ ⎛ ⎞⎣ ⎦ ⎡
⎛ ⎞
⎜ ⎟
⎜ ⎟

⎤⎜ ⎣ ⎦ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤⎜ ⎟⎦ ⎠

⎠

⎣⎝

⎝

−
−

−

=
1444244431444442444443

1444442444443

& x

             (3.28) 

 

 

 

 

 

 

 

 

 60



 

51

54

-61
5 1

51 1
4 4

1

5.3261e
2

+ 0.035 + + 6.796 +0.3015
2 4

0.03661

+ 0.228
4

7

yy

a

2 2

yy yy

a

2

y

e

y

c

c c

Sxx x
I

Sx Sx x
4x x x

I I
c

cSx
I

ρ

ρ ρ

ρ

⎡ ⎤⎣ ⎦

⎛ ⎞⎧ ⎫ ⎧⎪ ⎪ ⎪⎜

⎛ ⎞
⎜ ⎟⎜

⎟⎡ ⎤ ⎡⎨ ⎬ ⎨⎣ ⎦ ⎣⎜ ⎟

⎟
⎝ ⎠

⎪ ⎪ ⎪⎩ ⎭ ⎩⎝ ⎠
−

=

− −

−

14444244443

144444444444444424444444444444443

&

⎫⎪⎤⎬⎦
⎪⎭

55 51

1
5 2

a

9 +
2

2

yy
e

b

cSxx u
I

cρ⎛ ⎞
⎜ ⎟⎜

⎛ ⎞
⎡ ⎤ ⎜ ⎡ ⎤ ⎟⎣ ⎦ ⎣ ⎦⎜ ⎟

⎝
⎟

⎝ ⎠⎠14444244443 1442443

                    (3.29) 

 

The arrangements made above in order to obtain the state dependent 

coefficients are of course not unique. Here, the arrangement is preferred to be 

such that the system state variables which are physically changing in a 

relatively fast manner such as the angle of attack, the flight path angle and the 

pitch rate are factored out as linear multipliers of the state dependent 

coefficients  (i, j = 1 to 5).  ija

  

One of the factors that the performance of the controller over the domain of 

interest is state dependent coefficient (SDC) matrix . In the multivariable 

case, the SDC parameterisation is not unique and there is no systematic way to 

express  as . By definition, the pair 

( )A x

( )a x ( )A x x { }( ), (A x B )x  is a controllable 

(stabilisable) parameterisation of the nonlinear system in a region  if Ω

{ }( ),A x

∈Ωx

( )B x  is pointwise controllable (stabilisable) in the linear sense for all 

. This definition is used to guarantee that the SDRE nonlinear regulator 

produces a closed-loop solution which is locally asymptotically stable [15]. 
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In this case study, the pointwise controllability of the pair { }( ), ( )A x B x is 

checked at each time increment during simulations. A special simulation is 

performed to observe the pointwise controllability for the whole simulation 

duration and it is seen that pointwise controllability criteria is satisfied.  

 

As a summary, the following state-space representation is obtained. 
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                                   (3.30) 

 

Here, the state variables are the percentage change in the velocity relative to its 

initial condition, the flight path angle, the percentage change in the altitude 

relative to its initial condition, the angle of attack and the pitch rate.  

 

Percentage changes of the velocity and altitude are used as the first and third 

state variables in order to make all the state variables have comparable orders 

of magnitude.  

 

Otherwise, the difference between the order of the first and third system state 

variables and the remaining ones lead to computational difficulties. These 

percentage changes are defined as follows.  

 

0 1
1

0 1

 V V x xV x
V x
− −

= ⇒ =% % 10

0

                                                                       (3.31) 

 

 

 

 62



 

therefore,  
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)  (1 10 11x x x= + %                                                                                            (3.32) 

 

and, 

 

1 1 10x x x= && %                                                                                                      (3.33) 

 

0 3
3

0 3

x   h - h x - xh
h x

= ⇒ =% % 30

0

                                                                          (3.34) 

 

therefore, 

 

( )3 30 31  x x x= + %                              (3.35) 

 

and, 

 

3 3 30x x x= && %                                                       (3.36) 

 

As the next step, the change in first and third system state variables in terms of 

percentage change relative to their initial conditions are reflected to the above 

state space representation in Eqn. (3.30). The following equations are obtained, 

 

1 11 1 12 2 14 4 12 2
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10 10

; x a x +a x +a x +b ux
x x
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&&%                                                         (3.37) 

 

(1 10 11 )  x x x= + %                                                                                            (3.38) 
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)  (3 30 31x x x= + %                                                                                            (3.39) 
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2 21 1 24 4 22 2;      x a x a x b u= + +&                                                                        (3.42) 

 

(1 10 11 )  x x x= + %                                              (3.43) 

 

( )3 30 31  x x x= + %                              (3.44) 

 

( )2 21 10 1 24 4 221 2x a x x a x b u= + + +⎡ ⎤⎣ ⎦& %                 (3.45) 

 

( )2 21 10 21 10 1 24 4 22 2x a x a x x a x b u= + + +& %                                                           (3.46) 
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4 41 1 44 4 5 42 2;       x a x a x x b u= + + +&                                                                (3.48) 

 

 

 

 



 

( )1 10 11  x x x= + %                                                                                            (3.49) 

 

( )3 30 31  x x x= + %                                                                                           (3.50) 

 

( )4 41 10 1 44 4 5 42 21x a x x a x x b u= + + + +⎡ ⎤⎣ ⎦& %                                                        (3.51) 

 

( )4 41 10 41 10 1 24 4 5 42 2x a x a x x a x x b u= + + + +& %                 (3.52) 

 

                              (3.53) 

 

 

5 51 1 54 4 55 5 51 1;    x a x a x a x b u= + + +&

( )1 10 11  x x x= + %                              (3.54) 

 

( )3 30 31  x x x= + %                   (3.55) 

 

( )5 51 10 1 54 4 55 5 51 11x a x x a x a x b u= + + + +⎡ ⎤⎣ ⎦& %                             (3.56) 

 

( )5 51 10 51 10 1 54 4 55 5 51 1x a x a x x a x a x b u= + + + +& %                            (3.57) 

 

ere, the state dependent coefficients i, j = 1 to 5) are also re-calculated H ija  (

with the change of ( ) ( )1  and 1  1 10 1 30 33x x x x x x= + = +% % but the same notation is 

used to prevent amb

 

iguity. As an example, 

11
1 0.003772

2
Sx
m

ρa = − ⎡ ⎤⎣ ⎦                                                                             (3.58) 
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nd, a
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o the new  coefficient is determined as follows, S  11a
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he updated state space representation is as follows, T
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 should be noted that the term , appears in the updated system state 

ew d

astly, the state dependent disturbance is added to the system. Disturbance is 

 

It ( )f x%

representation as a result of this n efinition of the first and third system 

state variables.  

 

L

assumed as the wind effect which affects the related aerodynamic coefficients 

by changing the angle of attack of the aircraft relative to the wind. It is 

assumed that the disturbance effect is additive and affects only the angle of 

attack dependent aerodynamic coefficients: LC , DC  and MC (a) .  

 

 



 

 67

he additional disturbance terms are given below, T

 

C w0.6203ΔLw α=                                              (3.62) 

 

               (3.63) 

 
6              (3.64) 

 

here, 

2
w w0.6450Δ +0.0043378Δ +0.003772D w α α=C

2 -
w w(α) 0.035Δ +0.036617Δ +5.3261×10

wM α α= −   C

w

 

Δ wα  is the additional angle of attack and equal to the difference between the 

aircraft angle of attack α  and the angle of attack relative to the wind wα . wα  

is the result of the comb ation of the aircraft speed and wind speed whin ile α  is 

the aircraft angle of attack measured when there is no wind. 

  

Additional angle of attack term is defined as a fluctuating signal around its 

non-zero mean value. The expression is as following, 
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Δ w1  0.25°α = −                    (3.66) 

 

( ) ( )( )w2Δ = 0.025° sin +sin 3 +sin 5t t tα ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦                (3.67) 
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he expression in (3.65) is carefully selected to guarantee that harmonics and 

ift and Drag forces and pitching moment are affected by the addition of these 

T

repeated terms are avoided. In other words, by injecting the irrational numbers 

into the sine functions, a mimicking random signal is generated for the 

computer simulations. 

 

L

coefficients. Since, 
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he constant parts of the additional disturbance terms occurred as a result of 

 

T

the new lift and drag forces and pitching moment are embedded inside the 

system matrix ( )A x%  and ( )f x%  to guarantee that they can be compensated by 

the sliding mode control The fluctuating parts on the other hand are 

represented by the addition ( )d x%  matrix to the state space representations. 

( )d x%  is given below, 

ler. 
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                     (3.71) 

o, the final state space form of the system can be shown as, 

%                           (3.72) 
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3.3 Computer Simulations for the Designed Controllers 

 

To evaluate the performance of the designed controllers, system simulations 

have been accomplished by using MATLAB® (The MathWorks Inc., 2004) 

software. To create the simulations, some functions and scripts are built which 

use the system non-linear equations. These functions and scripts use the SMC 

design methodology described in section 2.2. The system is first transformed to 

the necessary state space form and then transformed to the so-called reduced 

order form. Sliding surface slope and the sliding surface offset parameters are 

determined by solving the SDRE’s for the selected weighting matrices Q11 and 

Q22 at each change in system state variables as a next step. Before plotting the 

results, SMC is created as the sum of two components. Finally, “state 

variables”, “control inputs”, “deviation from the sliding surface”, “sliding 

surface slope”, “the sliding surface offset” and “disturbance variations” are 

plotted to evaluate the system performance. The notations “s” and “sec” are all 

used in this chapter to represent the time unit “second”. 

 

The differential equation inside the function is solved by modified version of 

the MATLAB®‘s (The MathWorks Inc., 2004) special function “ode5” 

numerically. The modification allowed us to calculate the derivatives of 

transformation matrix, sliding surface slope and the sliding surface offset 

which are necessary for SMC design. 

 

The MATLAB® (The MathWorks Inc., 2004) scripts and functions developed 

in this study are given in Appendices; Appendix A, Appendix B, Appendix C, 

Appendix D, Appendix E. A brief user manual can also be found in Appendix 

F.  

 

 



 

It is required that the system to track 100 ft/s step velocity command and 2000 

ft step altitude command together. In the simulations, the elements of control 

gain matrix K are selected as -0.002 and -0.0004 for first and second control 

inputs respectively.  

 

Although it is possible to select different weighting matrices in the cost 

function (even state dependent weighting matrices), as a case study, the 

following weighting matrices are used in the simulations. 

 

11 22
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⎢ ⎥
⎢ ⎥⎣ ⎦

Q Q                               (3.74) 

 

These weighting matrices are chosen from a set of simulation results in which 

stability of the closed loop system is assured. 

 

To have a comparison, the pure SDRE technique is applied alone first and then 

the SMC method combined with SDRE is simulated. In both simulations, all 

the initial and desired state and control values are taken to be the same. The 

main difference between two methods is the design methodology of the 

controller. In the first one, simple feedback controller is applied, but the gains 

are still determined online during the control process according to the solutions 

of the SDRE’s. In the second method, a sliding mode controller is designed for 

the same model which is capable of adapting the sliding surface online during 

the control process based on the solutions of the SDRE’s. 

The simulations have been performed for the nominal model and for the model 

under the presence of disturbances for both techniques.  
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While plotting the state variables, the first variable (velocity) and third state 

variable (altitude) are represented in terms of variations to see the ability of 

tracking the steps commands accurately.  The other terms are kept as they are; 

in other words, they are represented in terms of real state variables and control 

inputs. The constants are given in section 3.1.1 and there is no need to repeat 

them here. Results of the computer simulations (for the designed controller 

with the initial and final conditions given below are presented in sections 3.3.1 

and 3.3.2: 

 

 

Simulations for 100 ft/s Velocity and 2000 ft Altitude Step Commands 

without Disturbance: 

            Initial           Final (Desired) 

Velocity                      4590 m (15060 ft/s)         4620 m (15160 ft/s) 

Flight Path Angle (deg)       0                               0 

Altitude (ft)           33528 m (110000 ft/s)         34137 m (112000 ft/s) 

Angle of Attack (deg)          1.79           1.7530 

Pitch Rate (deg/s)          0                                  0 

 

Elevator Deflection (deg)    -                      -0.3914 

Throttle Setting           -                       0.1751 

 

 

 

 

 

 

 

 

 

 



 74

 

Simulations for 100 ft/s Velocity and 2000 ft Altitude Step Commands 

Disturbance: 

       Initial           Final (Desired) 

Velocity                      4590 m (15060 ft/s)         4620 m (15160 ft/s) 

Flight Path Angle (deg)       0                               0 

Altitude (ft)           33528 m (110000 ft/s)         34137 m (112000 ft/s) 

Angle of Attack (deg)          1.79           2.000 

Pitch Rate (deg/s)          0                                  0 

 

Elevator Deflection (deg)    -                      -0.1153 

Throttle Setting           -                       0. 3292 

 



 75

 

3.3.1 Simulations for the Case 1: Without Disturbance  

 
This section includes the results of the simulations performed for the nominal 

model, i.e. without any disturbances effect, both for the pure SDRE method 

and SDRE based SMC (ASMC) method. For comparison purposes, the results 

for each state variable and control input obtained by two different methods are 

given together.  

 

The system state variables velocity, flight path angle, altitude, angle of attack 

and pitch rate are presented in Figures 3.2 to 3.6 respectively while the control 

inputs, elevator deflection and throttle setting are presented in Figure 3.7 and 

Figure 3.8. 

 

Figures 3.9 to Figure 3.13 are given to show the variation of the parameters 

specific to SMC method such as the sigma function, sliding surface slope and 

the offset of sliding surface from the state space origin. The variation of the 

sigma function defined in Equation (2.54) is presented Figure 3.9; the offset of 

sliding surface from the state space origin is presented in Figure 3.10, the 

components of the sliding surface slope are given in Figure 3.11, Figure 3.12 

and Figure 3.13. 

 

Finally, the components of the disturbance or in other words the components of 

the state dependent disturbance vector are presented in Figure 3.14, Figure 3.15 

and Figure 3.16. The delta angle of attack which is resulted from the wind 

effect and defined in Equation (3.65) is also presented in Figure 3.16. 
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        Pure SDRE (LQR) Method                         SDRE-based SMC Method 

 
 

Figure 3.2 Velocity Change 
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Figure 3.3 Flight Path Angle 
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Figure 3.4 Altitude Change 
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Figure 3.5 Angle of Attack 
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Figure 3.6 Pitch Rate 
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Figure 3.7 Elevator Deflection 
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Figure 3.8 Throttle Setting 
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Figure 3.9 Variation of the Sigma Function – Deviation from Sliding Surface 
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Figure 3.10 First and Second Sliding Surface Offset 
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Figure 3.11 First and Second Components of the Sliding Surface Slope 
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Figure 3.12 Third and Fourth Components of the Sliding Surface Slope 
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Figure 3.13 Fifth and Sixth Components of the Sliding Surface Slope 
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Figure 3.14 First and Second Components of the Disturbance 
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Figure 3.15 Third and Fourth Components of the Disturbance 
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Figure 3.16 Fifth Component of the Disturbance and Delta Angle of Attack 
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3.3.2 Simulations for the Case 2: With Disturbance 

 
This section includes the results of the simulations performed for the model 

under the presence of disturbance, both for the pure SDRE method and SDRE 

based SMC (ASMC) method. For comparison purposes, the results for each 

state variable and control input obtained by two different methods are given 

together.  

 

The system state variables velocity, flight path angle, altitude, angle of attack 

and pitch rate are presented in Figures 3.17 to 3.21 respectively while the 

control inputs, elevator deflection and throttle setting are presented in Figure 

3.22 and Figure 3.23. 

 

Figures 3.24 to Figure 3.28 are given to show the variation of the parameters 

specific to SMC method such as the sigma function, sliding surface slope and 

the offset of sliding surface from the state space origin. The variation of the 

sigma function defined in Equation (2.54) is presented Figure 3.24; the offset 

of sliding surface from the state space origin is presented in Figure 3.25, the 

components of the sliding surface slope are given in Figure 3.26, Figure 3.27 

and Figure 3.28. 

 

Finally, the components of the transformed disturbance or in other words the 

components of the transformed state dependent disturbance vector are 

presented in Figure 3.29, Figure 3.30 and Figure 3.31. The delta angle of attack 

which is resulted from the wind effect and defined in Equation (3.65) is also 

presented in Figure 3.31. 
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Figure 3.17 Velocity Change 
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Figure 3.18 Flight Path Angle 
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Figure 3.19 Altitude Change 
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Figure 3.20 Angle of Attack 
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Figure 3.21 Pitch Rate 
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Figure 3.22 Elevator Deflection 
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Figure 3.23 Throttle Setting 
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Figure 3.24 Variation of the Sigma Function – Deviation from Sliding Surface 
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Figure 3.25 First and Second Sliding Surface Offset 
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Figure 3.26 First and Second Components of the Sliding Surface Slope 
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Figure 3.27 Third and Fourth Components of the Sliding Surface Slope 
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Figure 3.28 Fifth and Sixth Components of the Sliding Surface Slope 
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Figure 3.29 First and Second Components of the Transformed Disturbance 
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Figure 3.30 Third and Fourth Components of the Transformed Disturbance 
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                   Fifth Component             Delta Angle of Attack 
 

 
Figure 3.31 Fifth Component of the Transformed Disturbance and Delta Angle 

of Attack 
 
 

 

As it can be seen from above figures, simulations have been performed for four 

cases;  

 

• Pure SDRE (LQR) method applied alone for the nominal model,  

• Pure SDRE (LQR) method applied for the model under the presence of 

disturbance, 

• SDRE (LQR) method combined with SMC technique for the nominal 

model,  

• SDRE (LQR) method combined with SMC technique for the model 

under the presence of disturbance. 

 

It is possible to tune the reaching time to sliding surface, i.e., time needed to 

reach the steady state conditions and control system performance (values of 

system state variables and control inputs) by changing the values of K, Q11 and 

Q22.  
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The proper K is to be selected such that the sliding surface is reached in a 

minimum time and disturbance rejection is maintained simultaneously without 

destroying the system stability. On the other hand, appropriate Q11 and Q22 

matrices should be selected to provide both optimal control effort and feasible 

controlled system response. For instance, the physical limitations in the state 

variables such as Angle of Attack and the physical limitations in the control 

inputs such as the elevator deflection have to be respected. These are the 

challenging goals of the controller design. 

  

Another point is the effect of using MATLAB® (The MathWorks Inc., 2004) 

“ode” function. The use of this function very often leads to some perturbations 

on the system response. One way to handle this problem is to select the 

integration time step smaller to prevent any numerical error. However, using 

smaller integration time step increases the simulation time. 

 

It is noted that the relation between integration time step and chattering 

frequency should be carefully analyzed such that chattering frequency can be 

caught by integration time step. Since incorrect selection of integration time 

step may result with erroneous simulation results. In this study, by trial and 

error method, it is observed that the selected integration time step is sufficient 

enough to catch the chattering frequency. Here are four examples from case 

study simulation results which are performed by the use “sign” function to 

emphasise the effects of incorrect integration time step selection on chattering 

frequency and results consequently. Control inputs in the case study, elevator 

deflection and throttle setting are presented for four different integration time 

step selections. The integration time step is 0.1 for the result presented in 

Figure 3.32, 0.01 for the result presented in Figure 3.33, 0.001 for the result 

presented in Figure 3.34 and 0.5 for the result presented in Figure 3.35.  

 

 

 



 

It is concluded that the chattering cannot be observed correctly for the cases 

given in Figure 3.32 and Figure3.35 while it can be observed correctly for the 

cases given in Figure 3.33 and Figure 3.34. Therefore, the values 0.01 and 0.01 

are determined as good candidates for the integration time step selection.  

 

However, the required time for the simulation increases significantly if the 

integration time step is selected 0.001 instead of 0.01 and a few numerical 

errors are observed as seen in Figure 3.34. In summary, 0.01 is selected as an 

integration time step value for the case study simulations given in section 3.3.1 

and 3.3.2. 
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   Elevator Deflection      Throttle Setting 

 

 

Figure 3.32 Control Inputs for Integration Time Step is 0.1 
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Figure 3.33 Control Inputs for Integration Time Step is 0.01 
 

 

 

 

  
 

   Elevator Deflection      Throttle Setting 

 

 

Figure 3.34 Control Inputs for Integration Time Step is 0.001 
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Figure 3.35 Control Inputs for Integration Time Step is 0.5 
 

 

 

 

 

The sliding surface slope and the offset of sliding surface from the state space 

origin are changing with the variations in system state variables and become 

constant after system state variables had reached their steady state values as 

expected. This showed that the sliding surface slope and the offset of sliding 

surface from the state space origin have been adapted for the changes in system 

state variables (adaptive manner) and the determination of sliding surface slope 

is optimally selected for the given Q11 and Q22 matrices (optimality manner). 

 

As a summary, proposed SMC is capable of leading the non-linear system up 

to its desired equilibrium points even under the presence of disturbance. 
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CHAPTER  
 
 

4. CONCLUSIONS 
 
 
 

4.1 Summary 
 
 
The aim of this thesis study is to design a sliding mode controller for a linearly 

actuated non-linear system. A longitudinal model of a generic hypersonic air 

vehicle is used to show the performance of the proposed controller. The 

problem can be summarised as tracking the velocity and altitude commands via 

controlling the deflection of the elevator and thrust by means of a throttle 

setting both for the nominal model and for the model under the presence of 

disturbance.   

 

In the first part of the study, brief information about the general SMC design 

principles and detailed description of the SMC design methodology proposed 

in this study are given. Then the hypersonic air vehicle model which was 

studied previously in some papers and the differential equations of the system 

are presented. In the next chapter, the proposed SMC is derived for this 

hypersonic air vehicle model based on the principles explained in section 2.2. 

Finally, simulations are performed on MATLAB® for four cases to observe the 

controller performance. 
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4.2 Major Conclusions 
 

The main contribution of this study is to design sliding mode control for a non-

linear system by means of solving SDRE’s online during the control process 

and designing the sliding surface correspondingly. This approach both adds an 

adaptive manner to the classical SMC while combining it with the optimal 

sliding surface parameter selection. 

 

Adaptive manner includes only the automatic adaptation of the sliding surface 

by determining the sliding surface slop and the offset of sliding surface from 

the state space while system state variables are changing.  

 

The method developed in this thesis study is applied to a non-linear flight 

dynamics which was studied in [10] as well. In [10], another adaptive sliding 

mode control design approach is suggested. This method is based on the Input-

Output linearization technique which requires additional computations. 

Nonetheless, linearization is made over the nominal model while the original 

system is still non-linear. This means that the system that was worked on 

through the controller design phase includes certain amount of approximations 

beyond linearization. 

 

On the other hand, in this study, a different approach to the SMC is presented 

which is combined with SDRE. First of all, the system is not linearised to 

design the sliding mode controller, in other words, the non-linearity of the 

original system is kept during the controller design phase. Secondly the method 

computes the required control in a systematic way since it uses the well-known 

linear quadratic regulator (LQR) algorithms which are available in many 

existing software. 

 

 

 



 99

 

Not only the practical property of the suggested method in this study, but also 

the simulation results have some positive features compared to the results of 

[10]. For instance, in [10], only either velocity or altitude commands are given 

while in this study, both velocity and altitude commands are given to the same 

plant and these commands are tracked successfully. 

 

In addition to the above features, the methodology proposed in this study 

includes some features which can be assumed as relatively new or in other 

words, which are not common in the literature such as the combining the 

SDRE technique with the SMC approach and adding the adaptable sliding 

surface offset term to the definition of the sliding surface. 

 

It is obviously seen from figures that the combined control methodology 

(ASMC or SMC combined with SDRE) had a basic advantage on the 

simulations made for nominal model and for the case under the presence of 

disturbance when compared with the SDRE method. There is a relatively large 

control effort need for the first method when the performances are compared 

for both cases. It is a natural outcome of the SMC design technique since SMC 

is expected to be robust against the disturbances in the input channel (matched 

disturbances) while SDRE based controller must suppress both matched and 

unmatched disturbances.  

 

The second reason of this improvement in controller performance is the use of 

ASMC instead of classic SMC since pure SMC presents drawbacks that 

include large control authority requirements and chattering. However, the 

control gains cannot be chosen arbitrary large due to practical considerations 

such as reaching control surface deflection limits.  
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Furthermore, control chattering is undesirable in practice because it involves 

high control activity and may excite high-frequency un-modelled dynamics. 

These drawbacks are addressed by the addition of adaptation capability to 

SMC. 
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4.3 Recommendations for Future Work 
 

As an extension of this thesis study, performance of the proposed ASMC 

(SDRE combined SMC) can be compared with,  

 

- the SMC designed for the model linearised about the initial and/or final 

conditions, 

 

- the SMC designed with constant sliding surface parameters, i.e. sliding 

surface slope and the offset of sliding surface from the state space, 

 

- the pure SDRE method proposed in this study for the cases when there 

is disturbance with non-zero mean values, 

 

- the pure SDRE method proposed in this study when there are variations 

in the parameters. 
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APPENDIX A 
 
 
 
MAIN SCRIPT 
 

 

clc;clear; 

tic 

global t_inc k tspan xd ud 

  

epsilonbig=1e-6; 

epsilonsml=1e-9; 

     

xd=[15160; 

    0; 

    112000; 

    2.00042687579048*pi/180; 

    0]; 

  

ud=[-0.11534710655337*pi/180;0.32921240198018]; 

  

x0(1)=15060; 

x0(2)=(0+epsilonsml)*pi/180; 

x0(3)=110000; 

x0(4)=1.79*pi/180; 

x0(5)=(0+epsilonsml)*pi/180; 
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x0(1)=(0)/(15060); 

x0(3)=(0)/(110000); 

xd(1)=(100)/(15060); 

xd(3)=(2000)/(110000); 

  

format long; 

xtilde=x0; 

  

 

t_start=0;        % Starting time 

t_final=60;       % Final time 

t_inc=1e-2;       % Time increment value 

tspan=[t_start:t_inc:t_final]; 

  

k=[-0.002 -0.0004];  

k=diag(k);% factor that maintains the sliding direction is shifted to zero 

  

  

%-------------------------------------------------------------------------% 

% ODE Solver 

%-------------------------------------------------------------------------% 

display('Solution is running'); 

[x,Ucon,sigma,KY,h2,d2]=ode5x(@control,tspan,xtilde); 

        result(1).x1=(15060*(x(:,1)+1))-15060; 

        result(1).x2=180/pi*(x(:,2)); 

        result(1).x3=(110000*(x(:,3)+1))-110000; 

        result(1).x4=180/pi*(x(:,4)); 

        result(1).x5=180/pi*(x(:,5)); 

        result(1).U1=180/pi*(Ucon(1,:)); 

        result(1).U2=(Ucon(2,:)); 

        result(1).sigma1=sigma(1,:); 

        result(1).sigma2=sigma(2,:); 
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        hh2=cell2mat(h2); 

        result(1).h21=hh2(1,:); 

        result(1).h22=hh2(2,:);   

        dd2=cell2mat(d2); 

        result(1).d21=dd2(1,:); 

        result(1).d22=dd2(2,:);   

        result(1).time=tspan; 

  

% C hesaplama ve plot 

for i=1:6 

  

    for j=1:length(KY) 

        C(i,j)=KY{j}(i); 

    end 

    figure(i+13); plot (tspan,C(i,:)),xlabel('time, sn'),ylabel({'Slope ', i}); grid on; 

end 

  

%% 

         

figure (1); plot (result(1).time,result(1).x1),xlabel('time, sn'),ylabel('Velocity 

change(ft/sec)'); grid on; 

figure (2); plot (result(1).time,result(1).x2),xlabel('time, sn'),ylabel('Flight Path 

Angle(deg)'); grid on; 

figure (3); plot (result(1).time,result(1).x3),xlabel('time, sn'),ylabel('Altitude 

change(ft)'); grid on; 

figure (4); plot (result(1).time,result(1).x4),xlabel('time, sn'),ylabel('Angle of 

Attack(deg)'); grid on; 

figure (5); plot (result(1).time,result(1).x5),xlabel('time, sn'),ylabel('Pitch 

Rate(deg/sec)'); grid on; 

figure (6); plot (result(1).time,result(1).U1),xlabel('time, sn'),ylabel('Elevator 

Deflection(deg)'); grid on; 
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figure (7); plot (result(1).time,result(1).U2),xlabel('time, sn'),ylabel('Throttle Setting'); 

grid on; 

figure (8); plot (result(1).time,result(1).sigma1),xlabel('time, sn'),ylabel('First Sliding 

Surface'); grid on; 

figure (9); plot (result(1).time,result(1).sigma2),xlabel('time, sn'),ylabel('Second 

Sliding Surface'); grid on; 

figure (10); plot (result(1).time,result(1).h21),xlabel('time, sn'),ylabel('First Sliding 

Surface Offset'); grid on; 

figure (11); plot (result(1).time,result(1).h22),xlabel('time, sn'),ylabel('Second Sliding 

Surface Offset'); grid on; 

figure (12); plot (result(1).time,result(1).d21),xlabel('time, sn'),ylabel('First 

Component of the Disturbance'); grid on; 

figure (13); plot (result(1).time,result(1).d22),xlabel('time, sn'),ylabel('Second 

Component of the Disturbance'); grid on; 

  

toc 

display('Process Finished.'); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 111

 
 
 

APPENDIX B 

 
FUNCTION FOR DESIGNING CONTROLLER 
 
 
 
function [phitildedot,Ucon,sigma,C,Tr,h2,d2]=control(t,phitilde,Cp,Tp,h2p) 

  

global t_inc xd ud 

  

    epsilonbig=1e-6; 

    epsilonsml=1e-9; 

  

phid=xd; 

  

  

%% Transformation of the system to Canonical Form 

  

[A,B,F,D] = sistem(phitilde); 

  

Tr=T_find(A,B); 

  

    if (t==0) 

        Told=Tr; 

    else 

        Told=Tp; 

    end 

  

Tp=Told; 

 Tdot=(Tr-Told)/t_inc; 
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[Tr,Abar11,Abar12,Abar21,Abar22,Bbar2]=T_find(A,B,Tdot); 

  

contr=ctrb(Abar11,Abar12); 

  
% rank(contr); 

% if(rank(contr)==length(Abar11)) display('Controllable System'); 

%       

% else display('System is Uncontrollable !!!!!!!!!!!!!!!!!'); 

% end 

  

% ranks=rank(sym(contr)); 

% if(ranks==length(Abar11)) display('Controllable System'); 

%       

% else display('System is Uncontrollable !!!!!!!!!!!!!!!!!'); 

% end 

 

%% Determination of Sliding Surface Slope and the Offset of the Sliding Surface 

%% Surface 

  

[C h2]=c_find(Abar11,Abar12,phitilde,F,Tr); 

  

    if (t==0) 

        Cold=C; 

        h2old=h2; 

    else 

        Cold=Cp; 

        h2old=h2p; 

    end 

  

% Cp=Cold; 

% h2p=h2old; 
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Cdot=(C-Cold)/t_inc;  % Time derivative of C matrix Cdot = d(T)/dt 

h2dot=(h2-h2old)/t_inc; 

  

 

%% Sliding Mode Control Design 

  

z=Tr*phitilde; 

f=Tr*F; 

f1=f(1:3,1); 

f2=f(4:5,1); 

z1=z(1:3,1); 

z2=z(4:5,1); 

sigma=C*z1+z2-h2; 

  

 

%% Disturbance Injection 

  

Im=-0.25*pi/180; 

If=0.025*pi/180*(sin(t)+sin((3^0.5)*t)+sin((5^0.5)*t))/3; 

  

D(1)=D(1)*((2*0.645*Im*If)+(0.645*If^2)+(0.0043378*If)); 

 

D(2)=D(2)*(0.6203*If); 

D(5)=D(5)*((-0.035)*2*Im*If-(0.035*If^2)+0.036617*If); 

  

  

%% Relation between SMC Gain and Disturbance  

  

g=Tr*D; 

d1=g(1:3,1); 

d2=g(4:5,1); 
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% Equivalent Control 

  

ueq=-inv(Bbar2)*(Cdot*z1+C*(Abar11*z1+Abar12*z2+f1)+... 

    (Abar21*z1+Abar22*z2+f2)-h2dot); 

  

 % High Frequency control signal 

  

global k; 

uhf=inv(Bbar2)*k*tanh(1000*sigma);...smooth; 

  

Ucon=ueq+uhf; 

  

%% Physical Limitations on Control Inputs 

  

if Ucon(2,:)<0; 

    Ucon(2,:)=0; 

end 

  

if Ucon(2,:)>1; 

    Ucon(2,:)=1; 

end 

  

if (180/pi*Ucon(1,:))>1; 

    Ucon(1,:)=1*pi/180; 

end 

  

 %% Differential Equation 

  

phitildedot=A*phitilde+B*Ucon+F+D;         
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APPENDIX C 

 
 
FUNCTION FOR CONSTRUCTING SYSTEM AND CONTROL 
MATRICES 
 
 
 
function [A,B,F,D]=sistem(x0) 

%%-------------------------------------------------------------------------- 

% This function is to describe the dynamics of the system without an unbalanced 

% mass. The only external effect is gravity. 

% dx/dt = A(x)*x + B(x,u)*u + F; 

% global  

  

epsilonsml=1e-9; 

  

%% Initialisation of the matrices. 

%-------------------------------------------------------------------------- 

A=zeros(5,5); 

B=zeros(5,2); 

F=zeros(5,1); 

  

% --------------------------------- 

% p ve ne degerlerinin belirlenmesi 

% --------------------------------- 

    p=0; 

    n=0.02576; 

% % --------------------------------- 

  

Im=-0.25*pi/180; 
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%%%%%%%%%% 

V=15060*(1+x0(1)); 

gamma=x0(2); 

h=110000*(1+x0(3)); 

alpha=x0(4); 

q=x0(5); 

%%%%%%%%%% 

  

m=9375; 

Iyy=7*10^6; 

S=3603; 

cbar=80; 

ce=0.0292; 

mu=1.39*10^16; 

RE=20903500; 

ro=0.24325*1e-4; 

  

r=h+RE; 

  

 a11=-(15060)*(1/15060)*(((ro*V*S/(m))*0.003772)); 

a12=-(1/15060)*(mu*sin(gamma)/(r^2*(gamma+epsilonsml))); 

a14=-(1/15060)*((ro*V^2*S/(2*m))*(0.6450*alpha+0.0043378)); 

b12=(1/15060)*(((ro*V^2*S/(2*m))*n*cos(alpha))); 

% 

a21=-(15060)*(((mu-V^2*r)*cos(gamma))/(V^2*r^2)); 

a24=((ro*V*S/(2*m))*0.6203); 

b22=((ro*V*S/(2*m))*n*sin(alpha)); 

  

a32=(1/110000)*(V*(sin(gamma)/(gamma+epsilonsml))); 

  

a41=(15060)*(((mu-V^2*r)*cos(gamma))/(V^2*r^2)); 

a44=-((ro*V*S/(2*m))*0.6203); 
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a45=1; 

b42=-((ro*V*S/(2*m))*n*sin(alpha)); 

a51=(15060)*((ro*V*S)*cbar*(5.3261*10^-6)/Iyy); 

a54=(0.5*(ro*V^2*S)*cbar*(-ce-

0.035*alpha+0.036617)/Iyy)+(0.25*(ro*V*S*q)*(cbar^2)*(-

6.796*alpha+0.3015)/Iyy); 

a55=(0.25*(ro*V*S)*(cbar^2)*(-0.2289)/Iyy); 

 

b51=(0.5*(ro*V^2*S)*cbar*ce/Iyy); 

  

f1=(-(((ro*V*S/(m))*0.003772)))-

(1/15060)*(((ro*V^2*S/(2*m))*(0.645*Im^2+0.0043378*Im))); 

f2=(-(15060)*(((mu-

V^2*r)*cos(gamma))/(V^2*r^2)))+(ro*V*S/(2*m))*(0.6203*Im); 

f3=0; 

f4=(15060)*((((mu-V^2*r)*cos(gamma))/(V^2*r^2))); 

f5=((15060)*((ro*V*S)*cbar*(5.3261*10^-6)/Iyy))+((0.5*(ro*V^2*S*cbar)*(-

0.035*Im^2+0.036617*Im)/Iyy)); 

  

  

d1=-(1/15060)*(ro*V^2*S/(2*m)); 

d2=(ro*V*S/(2*m)); 

d3=0; 

d4=0; 

d5=(0.5*(ro*V^2*S*cbar/Iyy)); 

  

  

%%%%%%%%%%%% 

A=[a11 a12 0 a14 0;a21 0 0 a24 0;0 a32 0 0 0;a41 0 0 a44 a45;a51 0 0 a54 a55]; 

B=[0 b12;0 b22;0 0;0 b42;b51 0]; 

F=[f1;f2;f3;f4;f5]; 

D=[d1;d2;d3;d4;d5]; 
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APPENDIX D 

 
 
FUNCTION FOR TRANSFORMING THE SYSTEM TO  
CANONICAL FORM 
 
 
 
function [Tr,varargout]=T_find(A,B,varargin) 

% Transformation matrix for suitable canonical form. [0;B2] 

%        Burak DURMAZ 

  

  

%--------------------------------------------------------------------------% 

% Establish the size of the input distribution matrix 

%--------------------------------------------------------------------------% 

[nn,mm]=size(B); 

  

%--------------------------------------------------------------------------% 

% Perform QR decomposition on the input distribution matrix 

%--------------------------------------------------------------------------% 

[Tr temp]=qr(B); 

Tr=Tr'; 

Tr=[Tr(mm+1:nn,:);Tr(1:mm,:)]; 

  

 if (nargout>1) 

    if(nargin>3)  

        Tdot=varargin{1}; 

    else 

        Tdot=zeros(nn); 

    end 
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%--------------------------------------------------------------------------% 

% Obtain (Areg,Breg); regular form description 

%--------------------------------------------------------------------------% 

  

Areg=Tr*A*Tr'+Tdot*Tr'; 

Breg=Tr*B; 

 

%--------------------------------------------------------------------------% 

% Obtain matrix sub-blocks for sliding mode controller design 

%--------------------------------------------------------------------------% 

  

A11 = Areg(1:nn-mm,1:nn-mm); 

A12 = Areg(1:nn-mm,nn-mm+1:nn); 

A21 = Areg(nn-mm+1:nn,1:nn-mm); 

A22 = Areg(nn-mm+1:nn,nn-mm+1:nn); 

B2 = Breg(nn-mm+1:nn,1:mm); 

  

  

varargout{1}=A11; 

varargout{2}=A12; 

varargout{3}=A21; 

varargout{4}=A22; 

varargout{5}=B2; 

  

end 
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APPENDIX E 
 
 
FUNCTION FOR SLIDING SURFACE SLOPE DETERMINATION 
 
 
 
function [S,varargout]=c_find(A11,A12,phitilde,F,Tr,varargin) 

% Sliding Hyperplane Design with LQR method. 

%        Burak DURMAZ 

  

global t_inc xd ud 

  

L=zeros(5,2); 

[nn,mm]=size(L); 

  

Q=diag([10 1 1 0.2 1])*1e2*3; 

Qt=Tr*Q*Tr'; 

  

Q11 = Qt(1:nn-mm,1:nn-mm); 

Q12 = Qt(1:nn-mm,nn-mm+1:nn); 

Q21 = Qt(nn-mm+1:nn,1:nn-mm); 

Q22 = Qt(nn-mm+1:nn,nn-mm+1:nn); 

  

% Form reduced order system description and associated weighting matrix 

Qhat=Q11;...-Q12*inv(Q22)*Q21; 

Ahat=A11;...-A12*inv(Q22)*Q21; 

  

A=Ahat; 

B=A12; 

Q=Qhat; 

R=Q22; 
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% Solve the LQR problem 

[K,S,E]=lqr(A,B,Q,R); 

  

 

z=Tr*phitilde; 

f=Tr*F; 

r=Tr*xd; 

f1=f(1:3,1); 

f2=f(4:5,1); 

z1=z(1:3,1); 

z2=z(4:5,1); 

r1=r(1:3,1); 

r2=r(4:5,1); 

  

G=B*inv(R)*B'; 

psi=inv(-A'+S*G)*((-Q*r1)+S*(f1+B*r2)); 

slope=inv(R)*(B')*S; 

h2=r2-inv(R)*(B')*psi; 

  

% Obtain the switching function matrix in terms of the original coordinates 

S=slope; 

varargout{1}=h2; 
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APPENDIX F 
 
 
BRIEF USER MANUAL 

 
 
 
The “Mainscript” is the main baseline of this study’s software coding as it can 

be understood from its name. It is enough for the user to run this program to 

see all the results. Since all other functions are automatically called by this 

main script. The initial and desired values which are related with system state 

variables and control inputs can be adjusted in main script also. Additional, the 

gain of the sliding mode controller, k and simulation time adjustments have 

been changed in main script. 

 

To adjust the weighting matrices Q and R, user can set the Q11 for adjusting Q 

and Q22 for adjusting R in function “c_find” given in E.   
 

System matrices f and B are constructed in function “sistem” given in C. and all the 

constant system parameters are also embedded inside this function. 

 

The function “T_find” given in D. is used to transform the system in to the 

canonical form in order to design the SMC via the proposed method. 

 

The most important function is called “control”, given in B. and it determines 

the SMC with the help of other functions. 
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