
DESIGN AND IMPLEMENTATION OF AN ONTOLOGY EXTRACTION
FRAMEWORK AND A SEMANTIC SEARCH ENGINE OVER JSR-170 COMPLIANT

CONTENT REPOSITORIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÜNEŞ ALUÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

JUNE 2009

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF AN ONTOLOGY EXTRACTION

FRAMEWORK AND A SEMANTIC SEARCH ENGINE OVER JSR-170 COMPLIA NT

CONTENT REPOSITORIES

submitted byGÜNEŞ ALUÇ in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering, Middle East Technical University by,

Prof. Dr. Canan̈Ozgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyig̃it
Head of Department,Computer Engineering

Prof. Dr. Asuman Dog̃aç
Supervisor,Department of Computer Engineering, METU

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Co-supervisor,Department of Computer Engineering, METU

Examining Committee Members:

Prof. Dr. İsmail Hakkı Toroslu
Department of Computer Engineering, METU

Prof. Dr. Asuman Dog̃aç
Department of Computer Engineering, METU

Prof. Dr. Özgür Ulusoy
Department of Computer Engineering, Bilkent University

Assoc. Prof. Dr. Ahmet Coşar
Department of Computer Engineering, METU

Yıldıray Kabak
SRDC Ltd.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referencedall material and results that
are not original to this work.

Name, Last Name: G̈UNEŞ ALUÇ

Signature :

iii

ABSTRACT

DESIGN AND IMPLEMENTATION OF AN ONTOLOGY EXTRACTION
FRAMEWORK AND A SEMANTIC SEARCH ENGINE OVER JSR-170 COMPLIANT

CONTENT REPOSITORIES

Aluç, Güneş

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Asuman Dog̃aç

Co-Supervisor : Assoc. Prof. Dr. Nihan Kesim Çiçekli

June 2009, 117 pages

A Content Management System (CMS) is a software applicationfor creating, publishing,

editing and managing content. The future step in content management system development is

building intelligence over existing content resources that are heterogeneous in nature. Intel-

ligence collected at the knowledge base can later on be used for executing semantic queries.

Expressing the relations among content resources with ontological formalisms is therefore the

key to implementing such semantic features.

In this work, a methodology for the semantic lifting of JSR-170 compliant content reposito-

ries to ontologies is devised. The fact that in the worst caseJSR-170 enforces no particular

structural restrictions on the content model poses a technical challenge both for the initial

build-up and further synchronization of the knowledge base. To address this problem, some

recurring structural patterns in JSR-170 compliant content repositories are exploited. The

value of the ontology extraction framework is assessed through a semantic search mechanism

that is built on top of the extracted ontologies. The work in this thesis is complementary to

the “Interactive Knowledge Stack for small to medium CMS/KMS providers (IKS)” project

iv

funded by the EC (FP7-ICT-2007-3).

Keywords: Content Management System, ontology extraction, Java Content Repository, se-

mantic search

v

ÖZ

JSR-170 UYUMLUİÇERİK HAVUZLARI ÜZERİNDE ONTOLOJ̇I ÇIKARIM İSKELETİ
VE ANLAMSAL ARAMA MOTORUNUN TASARIM VE UYGULANMASI

Aluç, Güneş

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Asuman Dog̃aç

Ortak Tez Yöneticisi : Doç. Dr. Nihan Kesim Çiçekli

Haziran 2009, 117 sayfa

İçerik Yönetim Sistemleri; içerig̃in oluşturulması,yayınlanması, düzenlenmesi ve yönetilme-

sine olanak sag̃layan yazılımlardır. Gelecekte hedeflenenise bu sistemlerin heterojen yapıdaki

mevcut içerikten bilgisayar tarafından işlenebilir anlamsal bilgiyi çıkarabilecek düzeye ge-

tirilmesidir. Böylelikle, bilgi tabanı kullanılarak anlamsal sorgular yapılabilecektir. Bu ve

benzeri niteliklerin sag̃lanabilmesi için öncelikle ic¸erik kaynakları arasındaki ilişkilerin on-

tolojilerle ifade edilmesi gerekmektedir.

Bu çalışma kapsamında JSR-170 uyumlu içerik havuzlarının anlamsal olarak ontolojilere

yükseltilmesini sag̃layacak metodolojiler geliştirilmektedir. Fakat JSR-170 modelinin içerik

yapısı üzerinde belki de gereg̃inden fazla sundug̃u esneklik, gerek bilgi tabanının oluşturulması

gerek senkronizasyonun sag̃lanması karşısında bir engeloluşturmaktadır. Bu sorunu çözmek

için, JSR-170 uyumlu içerik havuzlarında sık kullanılanbirtakım yapısal desenlerden faydala-

nılmıştır. Geliştirilen bu ontoloji çıkarım iskeletinin katma deg̃eri ise ontolojiler üzerinde

çalışan anlamsal arama motoru aracılıg̃ıyla deg̃erlendirilmiştir. Bu tez çalışması, Avrupa

Komisyonu tarafından desteklenen “Interactive KnowledgeStack for small to medium CMS-

vi

/KMS providers (IKS)” projesini (FP7-ICT-2007-3) tamamlayıcı niteliktedir.

Anahtar Kelimeler:̇Içerik Yönetim Sistemleri, ontoloji çıkarım, JSR-170,anlamsal arama

vii

To my dearest sister, Deniz...

viii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and appreciation to my supervisor, Prof. Dr.

Asuman Dog̃aç, for her encouragement, guidance and support all throughout my graduate

studies as well as during the preparation of this thesis. I would like to express my gratitude to

my co-supervisor, Assoc. Prof. Dr. Nihan Kesim Çiçekli, for her guidance and support.

I am deeply grateful to Dr. Gökçe Banu Laleci Ertürkmen, without whose guidance and

invaluable contribution, this work could not have been accomplished. I am deeply thankful to

Ali Anıl Sınacı for his suggestions and continuous support in preparing the prototype.

I am deeply grateful to my family for their love and support. Without them, this work could

not have been completed.

I am highly indebted to my friends, Tuncay Namlı, Mustafa Yüksel, Mehmet Olduz, Yıldıray

Kabak and all the other colleagues at the Software Research and Development Center, whose

help, stimulating suggestions and encouragement helped meat all times in this research.

I would like to thank the Scientific and Technological Research Council of Turkey (T̈UBİTAK)

for providing the financial means to sustain this work.

I would like to thank the “Interactive Knowledge Stack for small to medium CMS/KMS

providers (IKS)” project for providing the necessary motivation.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND ON ENABLING TECHNOLOGIES AND STANDARDS . 4

2.1 Ontology Representation Languages4

2.1.1 Resource Description Framework (RDF) 4

2.1.2 Resource Description Framework Schema (RDF-S) 5

2.1.3 Web Ontology Language (OWL) 6

2.2 Knowledge Persistence and Access 7

2.2.1 Sesame . 8

2.2.2 Jena2 . 9

2.3 Ontology Engineering . 9

2.4 Overview of Reasoners . 10

2.5 Full-text and Structural Search .11

2.6 Persistence Issues in Content Management Systems 13

2.6.1 Persistence Mechanisms in Content Management Systems
- Trends . 13

2.6.2 JSR-170 . 14

x

2.6.3 Content Management Interoperability Services (CMIS) [62] 15

2.7 Remarks . 16

3 ONTOLOGY EXTRACTION FROM JSR-170 COMPLIANT CONTENT
REPOSITORIES . 17

3.1 Background . 17

3.2 Motivation . 19

3.2.1 Semantics Implicit in Node Type Definitions 19

3.2.2 Semantics Implicit in the Workspace 23

3.2.3 Implications . 24

3.3 Basis for Alignment with External Horizontal and DomainOntologies 26

3.4 Exploitation of Modeling Patterns 28

3.4.1 Mapping Cases for the Construction of Ontology Classes . 30

3.4.2 Mapping Cases for Establishing Relations among Ontol-
ogy Classes . 33

3.4.3 Mapping Cases for the Construction of Object and Data
Type Properties . 35

3.4.4 Mapping Cases for Instantiating Individuals 41

3.4.5 Observations . 45

3.5 Summary . 45

4 A HYBRID APPROACH INTEGRATING STRUCTURAL AND FULL-TEXT
SEARCH . 46

4.1 Background . 46

4.2 Motivation . 49

4.2.1 Ontology Look-up for Similar Content 49

4.2.2 Ontology Look-up for Related Terms 51

4.2.3 Ontology Look-up for Faceted Browsing of Content53

4.3 Implementation Details of the Hybrid Search Algorithm 54

4.3.1 Overview . 54

4.3.2 Enhancing Full-text Search Results with Related Documents 57

4.3.3 Concept-Driven Retrieval of Results 62

4.3.4 Iterative Browsing of Results in Multi-Dimensions 63

4.4 Complexity Analysis of the Hybrid Search Approach 66

xi

4.5 Wrapping it all as a RESTful Service 69

4.6 Summary . 71

5 EVALUATION OF JCR-TO-ONTO BRIDGE AS AN ENABLER FOR SE-
MANTIC SEARCH . 74

5.1 Content Repository Used . 75

5.2 The Extracted Ontology . 76

5.3 Pilot Use Cases for Search . 78

6 RELATED WORK . 87

6.1 Ontology Extraction from Relational Databases 87

6.2 Approaches Integrating Structural and Full-text Search 93

6.3 Semantic Web Applications in the News Domain 98

7 CONCLUSIONS AND FUTURE WORK 101

REFERENCES . 103

A SAMPLE OWL CONSTRUCTS EXTRACTED FROM NODE TYPE DEF-
INITIONS . 110

B FULL XML SCHEMA DECLARATION OF THE SEARCH INTERFACE . 112

C JCR-TO-ONTO BRIDGE MAPPING DEFINITION USED FOR EXTRACT-
ING THE DOMAIN ONTOLOGY . 117

xii

LIST OF FIGURES

FIGURES

Figure 2.1 An RDF graph describing Eric Miller [11] 5

Figure 2.2 The Sesame architecture [20] 8

Figure 2.3 The Jena schema (normalized) [28] 10

Figure 2.4 The JCR API provides a uniform interface over legacy content repositories

[56] . 14

Figure 3.1 Declaration of various custom node types 19

Figure 3.2 Inheritance hierarchy among built-in node types[55] 22

Figure 3.3 JCR workspace configuration depicting the IPTC News Subject Codes . . 23

Figure 3.4 Example workspace configuration with “part-whole” implications 25

Figure 3.5 Association between the terms in the tag cloud 27

Figure 3.6 Technical illustration of how tags can be annotated with the WordNet on-

tology . 28

Figure 3.7 Classes described in a hierarchical categorization pattern 31

Figure 3.8 The XSD for “ConceptBridge” 33

Figure 3.9 The XSD for “SubsumptionBridge” 34

Figure 3.10 Workspace configuration for Mapping Case - 1 35

Figure 3.11 Workspace configuration for Mapping Case - 2 36

Figure 3.12 Workspace configuration for Mapping Case - 3 37

Figure 3.13 Workspace configuration for Mapping Case - 4 38

Figure 3.14 A sample workspace configuration for property mappings 39

Figure 3.15 The generated “hasSubject” object property 40

Figure 3.16 The XSD for “PropertyBridge” 41

xiii

Figure 3.17 The XSD for “EnforcedPropertyBridge” 41

Figure 3.18 A sample workspace configuration for individualgeneration 43

Figure 3.19 The XSD for “InstanceBridge” 44

Figure 4.1 Metadata of some news articles in a content repository 50

Figure 4.2 Adjusting similarity based on property values 51

Figure 4.3 Example illustrating ontology look-up for finding related terms 52

Figure 4.4 Extending full-text results with semantically related documents 56

Figure 4.5 Faceted-search facilities of the proposed hybrid search solution 64

Figure 4.6 The XSD for the “ResourceList” element 65

Figure 4.7 The XSD for the “Query” and “Result” elements 72

Figure 5.1 Concepts associated with the search results 83

Figure 5.2 Utilization of external ontologies in search 84

Figure 5.3 Faceted-search with a progressive selection of classes 85

Figure 5.4 Faceted-search refined with new keywords and concepts 86

Figure 6.1 Mapping cases in R2O [66] . 90

Figure 6.2 RDBToOnto uses various mining techniques for further classification [94] . 91

Figure 6.3 Ontology-based indexing in QuizRDF [40] 97

Figure 6.4 Indices created on content descriptors [40] 97

xiv

LIST OF ABBREVIATIONS

ABox Assertional Knowledge

CMIS Content Management Interoperability Services

CMS Content Management System

CND The Compact Namespace and Node Type Definition

DAML +OIL DARPA Agent Markup Language+ Ontology Inference Layer

DIG Description Logic Implementation Group

HTTP Hypertext Transfer Protocol

IKS Interactive Knowledge Stack for small to medium CMS/KMS providers

IPTC International Press Telecommunications Council

IR Information Retrieval

JAR Java Archive

JCR Java Content Repository

JSR-170 The Content Repository for Java technology API

JSR-283 The Content Repository for Java technology API Version 2.0

JTA The Java Transaction API

OWL The Web Ontology Language

RDBMS Relational Database Management System

RDF Resource Description Framework

RDF-S Resource Description Framework Schema

REST Representational State Transfer

xv

RIA Rich Internet Application

RQL RDF Query Language

SAIL The Storage and Inference Layer

SeRQL Sesame RDF Query Language

SPARQL The SPARQL Protocol and RDF Query Language

SQL Structured Query Language

TBox Terminological Knowledge

URI Uniform Resource Identifiers

W3C The World Wide Web Consortium

XML The Extensible Markup Language

XPATH XML Path Language

XSD XML Schema Definition

xvi

CHAPTER 1

INTRODUCTION

“Content is the feeder mechanism for all business processes. And always has been [1].”

Content management is becoming more essential for businesses as the amount of digital con-

tent continues to grow [1]. In 1992, there were just 1,000 pages on the Web. As of June 2000,

over two billion Web pages were posted on the Internet [2]. Recently, Google has announced

that its index reached the “one trillion” mark [3]!

Content management systems have taken the responsibility to manage such growing volumes

of enterprise content resources. In this respect, a contentmanagement system (CMS) is an

integrated environment to manage content acquired from different data sources. The primary

task of a content management system is to organize content ina hierarchy so that user requests

are handled more efficiently. Metadata based search indices are built to help categorize content

and respond to user queries [4].

The content management lifecycle contains a collection of iterative processes that start with

content acquisition and end with the delivery or publishingof content [1]. Throughout the

lifecycle, content management systems permit content to bemodeled and edited, search in-

dices to be built, and finally content to be searched for. On the other hand, even though

there are ongoing efforts to integrate semantic features, they are far from making the whole

lifecycle semantically enabled. For example, state-of-the-art content management systems

support metadata extraction to a degree that facilitates keyword-based search and content

categorization; yet, enhancements are necessary for full alignment with the domain knowl-

edge. Furthermore, what is commercialized as “semantic search” is merely based on some

ad-hoc techniques such as synonym matching, similarity search and “Did you mean this?”

1

suggestions. However, really, support for structural search as well as for faceted-navigation is

desired.

To overcome these limitations, first, we propose to formulate the structural relations present

in the content repository by ontologies; where, an ontologyis an explicit specification of

a conceptualization [5]. Even though at an initial stage theontologies represent no further

semantics than what is already implied by the model, the content management system does

not provide any means for the automated processing of the relations; hence, semantic lifting

is unavoidable. Furthermore, such formalization providesthe basis for alignment with other

domain and horizontal knowledge.

As the second step, we propose a semantic search mechanism that combines the full-text

search capabilities of content management systems with theknowledge accumulated in the

knowledge base. As argued in [6], ontologies represent human knowledge explicitly in a form

that is suitable for automated processing and if used in combination with full-text search, then

enhanced semantic search features can be supported.

In this regard, the work in this thesis can be evaluated in twodimensions; that is, the design

and implementation of both an ontology extraction framework and a semantic search en-

gine. The suggested solution works on top of JSR-170 compliant content repositories, where

JSR-170 offers interface functions to propriety content repository implementations. The

work is complementary to the “Interactive Knowledge Stack for small to medium CMS/KMS

providers (IKS)” project funded by the EC (FP7-ICT-2007-3). In summary, our aim is to:

• Exploit the power of ontologies that provide machine interpretable means to express

and process the semantic information in the CMS content model,

• Establish a bridge between the content repository and the knowledge base,

• Provide a formal basis for alignment with extra domain knowledge,

• Seamlessly integrate structural search facilities into keyword-driven interfaces,

• Provide support for faceted-navigation of content resources.

This thesis is organized as follows. First, we discuss the various enabling technologies: on

the one hand, we have the content repositories and on the other hand we have the knowledge

2

representation schemes and ontology engineering tools. InChapter 3, we outline the vari-

ous issues related to the ontology extraction process, the content modeling patterns we have

exploited and finally the mapping schemes in our JCR-to-OntoBridge solution. In Chapter

4, the implementation details of our hybrid search mechanism are presented. The power of

the JCR-to-Onto Bridge framework is demonstrated in Chapter 5 together with the semantic

search features enabled when the proposed hybrid search engine is executed on top of the

learnt ontology. Our discussion then proceeds with a comparison of our approach with the

related work in this area. Finally, we summarize our efforts and outline the possible future

research directions. It is worth mentioning that chapters 3, 4 and 5 can be read on their own;

that is, they have their introduction, body and conclusion sections.

3

CHAPTER 2

BACKGROUND ON ENABLING TECHNOLOGIES AND

STANDARDS

2.1 Ontology Representation Languages

As explained in [5], an ontology is an explicit specificationof a conceptualization. Ontologies

describe the set of objects and the relationships among these objects through a representational

vocabulary that allows knowledge-based programs to make inferences. In this respect, various

representational schemes have evolved, whose details are discussed in the following sections.

2.1.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a language for representing information on

the Web [7]. It is a family of World Wide Web Consortium (W3C) [8] specifications. Al-

though the primary intention has been to represent metadataabout Web resources (i.e. title,

author, and modification date of a Web page); the concept of a “Web resource” can be gener-

alized to account for a more general modeling or representation.

The RDF data model consists of subject-predicate-object expressions called RDF triples for-

malized as P(S; O); that is, a subject S has a predicate (or property) P with value O, where

S and P are Uniform Resource Identifiers (URI)s [9] and O is either a URI or a literal value.

RDF allows subjects and objects to be interchanged allowingan object from one triple to play

the role of a subject in another triple [10]. Collectively, these chain of RDF triples form a

graph of nodes and arcs (Figure 2.1) representing the resources, their properties and property

values [11].

4

Figure 2.1: An RDF graph describing Eric Miller [11]

The value of RDF is in its power to express simple statements about resources where this in-

formation is intended to be processed by applications. Furthermore, RDF provides a common

framework for expressing this information so that it can be exchanged between applications

without a loss of meaning [11].

2.1.2 Resource Description Framework Schema (RDF-S)

Apart from being able to make simple statements about resources, communities also need the

ability to define the vocabulary or equivalently the terminology they intend to use along with

their statements. The terminology includes class definitions, property definitions and interre-

lations among both class and property instances. The RDF Vocabulary Description Language

1.0: RDF Schema provides a mechanism to define such terminologies [12]. Interestingly, the

specification itself explains how to use RDF triples to describe these RDF vocabularies. As

explicitly stated in [10], the only difference with “normal” RDF expressions is that in RDF-S

an agreement is made on the semantics and the interpretationof certain terms and statements.

5

Classes: It is intuitive to divide the resources into groups called classes. Classes, too, are

represented as RDF resources. Therefore, it is necessary todifferentiate between resources

which are RDF-S classes and which are not. The subject-predicate-object triple “MotorVehi-

cle rdf:type rdfs:Class” has the meaning that the resource MotorVehicle is in fact anRDF-S

class. Following this, the triple “companyCarrdf:type MotorVehicle” describes companyCar

as a member or equivalently an instance of the MotorVehicle class [11]. Please note that in

this example, “rdfs:Class” is a reserved term and has an agreed semantics and interpretation.

The class and instance relations are expressed with “normal” RDF triples.

Properties: The properties of a class are specific characteristics thatdescribe the members of

the class. In RDF Schema, properties are described using theRDF class “rdf:Property”, and

the RDF Schema properties “rdfs:domain”, “rdfs:range” [11]. Consider the following triples:

MotorVehicle rdf:type rdfs:Class

VehicleParts rdf:type rdfs:Class

hasPart rdf:type rdf:Property

hasPart rdfs:domain MotorVehicle

hasPart rdfs:range VehicleParts

In this example,MotorVehicleandVehiclePartsare RDF-S classes.hasPartis defined as an

rdf:Propertyand the domain and range restrictions indicate that the RDF statements (triples)

using thehasPartproperty have instances ofMotorVehicleas subjects and instances ofVehi-

clePartsas objects.

In addition to the aforementioned constructs, “rdfs:subClassOf” and “rdfs:subPropertyOf” are

used to define subsumption relations among classes and properties, respectively.

2.1.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [13] is a revision of the DARPA Agent Markup Lan-

guage+ Ontology Inference Layer (DAML+OIL) [14] web ontology language. OWL can

be used to explicitly represent the meaning of terms in vocabularies and the relationships

between those terms, called ontologies [13], [15]. Although RDF Schema has a similar ob-

6

jective, in most cases, its semantics is inadequate to perform useful reasoning tasks. In fact,

OWL has an enhanced syntax for expressing meaning and semantics than Extensible Markup

Language (XML) [16], RDF, and RDF-S. For a full list of constructs, please refer to [13].

OWL Lite, OWL DL and OWL Full are respectively the three increasingly expressive sublan-

guages of OWL. OWL Lite is the least expressive of all and doesnot go beyond the definition

of classification hierarchies and some simple constraints such as restricted cardinality con-

straints (i.e. while it supports cardinality constraints,it only permits cardinality values of 0 or

1 [13].). On the other hand, OWL DL provides maximum expressiveness provided that com-

putational completeness and decidability can be guaranteed. Finally, OWL Full removes all

computational guarantees to obtain full expressiveness. The choice between the three sublan-

guages depends on the extent to which users require the expressiveness provided by each. The

choice between OWL DL and OWL Full also depends on whether theusers require reasoning

to be computationally complete and decidable or not.

2.2 Knowledge Persistence and Access

We have seen in Section 2.1 that the intuition behind variousknowledge representation sche-

mes was to enable the processing of the asserted knowledge byapplications. In this respect,

mechanisms should exist for the storage, querying of and inferencing over the statements

made about resources.

A triplestore is a purpose-built database for the storage and retrieval of RDF triples; although

it behaves much like a relational database, it is optimized specifically for the storage and

retrieval of subject-predicate-object triples. Given some thought, a triplestore may either

provide a generic model to support the storage and retrievalof instances of any RDF Schema

or be tailored to support the fast-retrieval of instances ofa particular schema only. The latter

sacrifices support for a generic representation in exchangeof performance.

Following are some of the state-of-the art frameworks for the storage, inferencing and query-

ing of RDF triples:

7

2.2.1 Sesame

Sesame is an open source framework for the storage, queryingand inferencing of the RDF

data [17]. The overall architecture of Sesame is depicted onFigure 2.2. Sesame may be used

as a persistence system for RDF and RDF Schema or as a library for applications that need

to access and work with RDF internally [18]. OWL ontologies are simply treated on the level

of RDF graphs [19]. Sesame decouples the access layer from the actual storage mechanism

chosen (e.g. relational databases, in-memory, filesystems, keyword indexers, etc.) by means

of its Storage and Inference Layer (SAIL) [10].

Figure 2.2: The Sesame architecture [20]

Sesame enables querying through a declarative query language called the RDF Query Lan-

guage (RQL) [21] and is currently providing support for the Sesame RDF Query Language

(SeRQL) [22]; a query language that has its foundations in RQL. As outlined in [21], queries

over RDF documents and RDF schemata may be evaluated in threelevels of abstraction: syn-

tactic level, structural level and semantic level. Neitherthe syntactic nor the structural level

information is expressive enough to retrieve facts implicitly inferred through the RDF-S se-

mantics. In this respect, querying at the semantic level requires some preprocessing so as to

8

extract the full knowledge that an RDF-S description entails. RQL works towards this goal.

Sesame has support for three basic types of reasoning: the RDF Schema reasoning, “custom

reasoning” and OWLIM [23] reasoning. RDF Schema reasoning works as follows: Given

a set of RDF and/or RDF Schema, Sesame finds the implicit information and addsit to the

repository as the facts are being asserted [24]. However, itis limited to the RDF-S semantics

and therefore does not support reasoning over user-defined transitive, symmetric or inverse

properties. The “custom reasoning” approach enables RDF Schema reasoning to be extended

with user-defined inference rules [25]. Finally, OWLIM is a specific Storage and Inference

Layer (SAIL) for Sesame which supports partial reasoning over OWL Description Logic Pro-

grams (OWL DLP) [26].

2.2.2 Jena2

Jena [27] is an open-source Java framework that provides in-memory or persistent storage

and an abstraction over RDF graphs [28]. Its rich application programming interface for

manipulating RDF graphs serves as a toolkit for semantic webprogramming. It provides

additional support for working with RDF-S and OWL representations.

The choice of storage in Jena may be backed by either a relational or an object database.

However, the challenge is to provide storage in an efficient and flexible manner. For this

purpose, different models have been proposed. The normalized approach treats subjects and

predicates as having URI values whereas for an object the choice is between a URI and a

literal value. Statements, literal values and resources are therefore stored in separate tables

shown on Figure 2.3.

2.3 Ontology Engineering

Protégé [29] and swoop [30] are among the various ontologyengineering frameworks de-

signed for creating, editing and debugging ontologies. Here, our discussion will be on the

Protégé framework.

Protégé is based on Java, is extensible, and provides a plug-and-play environment that makes

it a flexible base for rapid prototyping and application development [29]. Protégé-OWL is

9

Figure 2.3: The Jena schema (normalized) [28]

one such developed plug-in that can be used to edit ontologies in OWL, to access description

logic reasoners, and to acquire instances for semantic markup [31]. As discussed in [32],

Protégé-OWL supports the three species of OWL; namely, OWL-Lite, OWL-DL and OWL-

Full. With Protégé-OWL, named classes and properties (i.e. functional, inverse functional,

transitive, symmetric) can be created, classes can be set asdisjoint. By connecting to an

external reasoner, it is possible (i) to compute the inferred ontology class hierarchy and (ii)

to check whether or not it is possible for the class to have anyinstances (i.e. consistency

checking).

2.4 Overview of Reasoners

In their paper titled “Benchmarking OWL Reasoners”, Bock etal. classify reasoners on the

one hand based on the level of complexity and expressivenessthey support and on the other

hand based on their scalability [19]. In this respect they argue that classical description logic

reasoners that implement tableau algorithms are able to classify large, expressive ontologies,

but they often provide limited support for large number of instances. Conversely, database-

like reasoners are able to handle large amounts of assertional facts, but are in principle limited

in terms of the logic they support. In their benchmark, Bock et al. distinguish between load

and response times to demonstrate strengths and weaknessesof the reasoners that follow these

10

paradigms. They start out with simple ontologies whose TBox(terminological knowledge) is

relatively small. In assessing the scalability of the reasoner, they evaluate these measurements

with respect to differently scaled ABoxes (assertional knowledge), but constant TBox. Their

experiments have been performed on Sesame [18], OWLIM [23],KAON2 [33], HermiT [34],

RacerPro [35] and finally Pellet [36].

It is stated in [19] that regarding classification, RacerProoutperforms other systems in terms

of load and total execution times. If however load time is of minor importance, then HermiT

with its novel hypertableau method performs best in classifying ontologies. Lightweight rea-

soning and storage systems such as Sesame and OWLIM are not advantageous over other

reasoners in the expressivity fragments they are specifically tailored to process. Finally, reso-

lution based systems such as KAON2 are not suitable for TBox reasoning tasks at all.

When it comes to answering conjunctive queries, Bock et al. argue that KAON2 is the best

system with respect to the overall performance to load and respond, and that it shows a fa-

vorable scalability even with large ABoxes. Even though forexpressive ontologies Pellet

responds faster than KAON2, KAON2 is much faster in loading and more scalable than Pel-

let.

The reasoning tasks we will utilize in the hybrid search solution described in Chapter 5 will

mostly be limited to those of TBox reasoning. On the other hand, we cannot really assess

the complexity of the ontologies at this stage, because it heavily relies on the content repos-

itory model and the mappings defined (see Chapter 3). Therefore, to be able to plug-in the

reasoner that best works with the extracted ontology, we will restrict ourselves to those that

have support for the Description Logic Implementation Group (DIG) interface [37]. The DIG

interface (often just known as DIG) provides a standardizedXML interface to Description

Logic Reasoners. The interface defines a simple protocol along with a concept language and

accompanying operations.

2.5 Full-text and Structural Search

Full-text search is the prevailing paradigm employed by thecontent management system com-

munity. On the other hand, there are ongoing efforts to integrate full-text search with structural

search [38], [6], [39], [40] and [41]. In this section, we present the popular technologies used

11

in both of these approaches; first in full-text search, and then in structural queries.

Apache Lucene [42] is an open-source full-text search engine library written entirely in Java.

Yet, there are now a number of ports or integrations to other programming languages such

as C/C++, C#, Ruby, Perl, Python, PHP, etc. Lucene is considered as a scalable Information

Retrieval (IR) library. Information retrieval refers to the process of searching for documents,

information within documents or metadata about documents [43]. By providing library func-

tions, Lucene allows such search capabilities to be added toother applications. As long as

text can be driven from it, Lucene does not care about the source of the data, its format, or

even its language. The scoring mechanism in Lucene is based on the “term frequency-inverse

document frequency (tf*idf)” vector product scheme [44]. “tf*idf” is a weight often used in

information retrieval and text mining. This weight is a statistical measure used to evaluate

how important a word is to a document in a collection or corpus.

Apache SOLR [45] is a full-text search server based on Lucene. SOLR provides a Represen-

tational State Transfer (REST)ful [46] Application Programming Interface (API) over Hyper-

text Transfer Protocol (HTTP) [47] - Extensible Markup Language (XML) [16]), and there-

fore, facilitates the development of faceted-search applications. Faceted-search is a search

paradigm in which the user is given the option to navigate thesearch space by a progressive

narrowing of choices in multi dimensions [48].

The SPARQL Protocol and RDF Query Language (SPARQL) [49] is the W3C candidate

recommendation query language for RDF [7] and it grants the means to query the required

and optional graph patterns along with their conjunctions and disjunctions. As explained

in [50], SPARQL is essentially a graph-matching query language where the query consists

of three parts: the pattern matching part, solution modifiers and the output. The pattern

matching part supports union, nesting and filtering of possible matches, and the possibility to

choose the data source to be matched by a pattern. The solution modifiers are operators like

projection, distinct, order, limit, and offset. Finally, the output of a SPARQL query can be of

different types: yes/no results, values that match the patterns, new triples fromthese values,

and descriptions of resources. The full formal descriptionalong with a complexity analysis is

provided in [50].

12

2.6 Persistence Issues in Content Management Systems

With the emerging need to organize data in hierarchies that evolve; there has been a shift to-

wards the more flexible content repositories to manage content within a content management

system. A content repository is a hierarchical content store with support for structured and

unstructured content and various features such as full textsearch, versioning, transactions,

observation, and more [51].

One such content repository is what is informally known as the Java content repository (JCR).

As argued in [52], hierarchical content repositories are favored over traditional relational

database management systems (RDBMS) due to their flexibility and support for unstructured

content. Although a relational schema would be more advantageous for performing queries

involving joins and update operations, it requires that theunderlying structural associations

among content items be known in advance. Unfortunately, this is not the case for most CMS

applications where the content is inherently unstructuredand is enriched as the application

evolves. For a detailed comparison of the content repositories versus the relational model as

the choice of the persistence layer in a content management system, please refer to [52].

2.6.1 Persistence Mechanisms in Content Management Systems - Trends

As more and more CMS vendors took up on the content repositorymodel, various imple-

mentations have emerged and each vendor provided its own interface for interacting with the

underlying content repository. On the one extreme, the abundance of ad-hoc content reposi-

tory model implementations could pose some significant technical problems [53]:

1. Application developers need to work with a numerous number of ad-hoc interfaces,

2. Code portability is hindered,

3. Content becomes isolated in “information silos” where itis available only to the appli-

cations designed to access that specific content repository.

13

2.6.2 JSR-170

The Content Repository for Java technology API [54] (JSR-170, or more informally referred

to as the JCR API) is a Java specification produced to overcomethe aforementioned technical

difficulties. As depicted on Figure 2.4, it provides access to content repositories in a standard

way; independently of the underlying implementation [55].

Figure 2.4: The JCR API provides a uniform interface over legacy content repositories [56]

JCR provides a functional view over the content repository.The content is organized in a tree

structure: the leaves are called properties and the non-leaves are called nodes. A property is

where the actual data or its associated metadata is stored. On the other hand; nodes, which

may have other nodes or properties as its children, help application developers build the de-

sired hierarchy over the content. Each tree has exactly one root; but the content repository

may contain multiple trees called workspaces.

JCR enforces the XML Path Language (XPath) syntax [57] for its query language. Given

the context, XPath is definitely a suitable choice; the tree structure in the JCR workspace is

inherently analogous to that of an XML document. On the otherhand, support for only a

subset of the XPath language - a runtime Structured Query Language (SQL) [58] translatable

14

subset - is sufficient for JSR-170 compliance. As argued in [55], the rationale behind this

decision is to ease database-backed implementations’ integration. It is worth noting that as

long as they meet the minimum requirements, repositories are free to support the full XPath

syntax or additionally the SQL standard.

The principal idea behind JSR-170 is as follows: If productsnow provide a JSR-170 com-

pliant view over their content repositories, then all applications may traverse the content in a

uniform manner and thus content no longer becomes isolated in information silos. To ease the

uptake of JSR-170, various compliance levels have been defined [59]. A content repository

can be read-only or write compliant and may choose to implement some advanced features

such as versioning, queries using SQL [58] or support for theJava Transaction API (JTA)

[60]. Apache Jackrabbit [51] is a reference implementationof the specification.

The Content Repository for Java Technology API Version 2.0 (JSR-283) [61] is a work-in-

progress towards the extension to JSR-170. Access control management, workspace and

nodetype management and addition of new standardized node types are some of these exten-

sions proposed by the authors of the specification.

2.6.3 Content Management Interoperability Services (CMIS) [62]

Even though, JSR-170 and JSR-283 provide a uniform means of accessing content reposito-

ries, these solutions are purely Java based, hence reproducing the vendor lock-in problem on a

different scale. In this respect, an OASIS technical committee:“OASIS Content Management

Interoperability Services (CMIS) TC” has been formed to enable information sharing across

content management repositories using platform-neutral Web services and Web 2.0 interfaces

[62]. The standard will define a domain model and set of bindings to work with one or more

content management repositories/systems.

The technical committee does not aim at producing a specification addressing the full features

a content management repository should implement. In fact,it follows the “least common

denominator” approach; that is, the committee tries to extract functionalities common to all

content repository implementations [63]. JCR on the other hand, fixes a specific model that in-

evitably would require some tailoring on the ad-hoc contentrepository to be fully-compliant.

As opposed to the nodes and properties, the domain model proposed by CMIS defines four

15

types of objects within a repository [63]:

1. Documents represent individual content objects in the repository.

2. Folders represent organizational containers in which documents (or other folders) can

be stored. Folder objects are used to organize fileable objects.

3. Relationships represent loose relationships between exactly 2 objects (documents or

folders) in the repository.

4. Policies represent administrative policies that may be applied to objects.

2.7 Remarks

In this chapter we have briefly overviewed the technologies relevant to our discussion in the

upcoming chapters of the thesis. On the one hand, we have seenthe different languages de-

veloped for the representation of knowledge. Furthermore,we have argued that mechanisms

should exist for the storage, querying of and inferencing over the knowledge. In this respect,

we have studied the Sesame and the Jena2 triple-stores. Along with these, we have also ex-

plored the various ontology engineering and reasoning frameworks. The last but not the least,

we have seen some full-text and structural search mechanisms.

On the other hand, we have discussed the content management system paradigm and have

explored the various content repositories used. We have seen two standards, namely; JSR-

170 and CMIS, which have been (or are being) developed for defining interface functions to

access different content repositories.

In Chapter 3, our discussion will proceed with the details ofa framework whose role is to ex-

tract semantic information from content repositories. Theextracted ontologies will be aligned

or merged with additional domain or horizontal ontologies;hence enabling even further state-

ments to be inferred through reasoning. Finally, in the following chapter; that is Chapter 4, the

focus will be on the hybrid search mechanism developed that combines the power of full-text

and structural search and utilizes the extracted ontology in the background.

16

CHAPTER 3

ONTOLOGY EXTRACTION FROM JSR-170 COMPLIANT

CONTENT REPOSITORIES

3.1 Background

As presented in the earlier chapters; although some steps towards semantically enabled con-

tent management system solutions were taken, there is a lackof a holistic approach. For

example, even though synonym matching and similarity search are some enhancements over

text-based search; content management systems do not fullyexploit the implied semantics in

the content repository when utilizing these techniques. Insynonym matching, the search set

is expanded with synonymous keywords without taking into account the inherent semantic

relations within the repository. On the other hand, when performing similarity search, re-

sources with the same tags are simply assumed to be relevant where one should also exploit

the structural relations among these tags.

To overcome these limitations, we propose to formulate - by means of an ontology extraction

framework - the structural and semantic relations present in a content repository. The aim is

threefold:

1. Exploit the power of ontological formalisms that provide machine interpretable means

to express and process semantic information: Even though at an initial stage the ex-

tracted ontologies represent no further semantic information than what is already im-

plied by the content model, the content model itself does notprovide any means for the

automated processing of the semantic relations. Consequently, there is a need for an

ontological representation of the semantics in the contentmodel.

17

2. Establish a bridge between the content repository and the knowledge base: The content

repository is in constant growth. Not only the repository ispopulated with new content

resources but also the repository model changes over time. These changes must be

reflected on the knowledge base, that is; both the semantic relations and the ontology

individuals should be updated.

3. Provide a formal basis for alignment with extra domain knowledge: In most cases

it is desirable to enhance the extracted semantic information with additional domain

knowledge. In fact, as will be discussed in the following sections, the real value of the

ontology extraction framework comes from its promise that the extracted ontologies

establish a formal basis for alignment with other domain or horizontal ontologies.

In our work, the focus is on the hierarchical rather than the relational content repository model

due to its contemporary popularity among the content management system development com-

munity. Besides, techniques for extracting ontologies from relational schemas have already

been proposed and exploited [64], [65], [66], [67] and [68],whereas no such work exists for

the former case.

As JSR-170 or more informally known as the Java Content Repository (JCR) API enables

uniform access to different content repository implementations, we will build our frame-

work on JSR-170 rather than providing a separate implementation for each content repository.

In this chapter, we will explore the possible techniques forextracting semantic information

from JSR-170’s hierarchical content structure; where the node type definitions, the super-

subordinate relations present in the workspace hierarchy and the links among properties and

individual nodes implicitly offer means to extract some valuable semantic information.

The chapter proceeds as follows: first, we briefly discuss what type of semantic information

there is to extract from the JSR-170 content repository model. The implicit semantic informa-

tion in the node type definitions and the workspace hierarchyaltogether set up the motivation

behind our ontology extraction framework: “JCR-to-Onto Bridge”. Next, we discuss how the

extracted ontologies could be aligned or merged with othersto provide value-added services.

In the proceeding section, we outline the various limitations of our approach and discuss how

we deal with these challenges. Finally, we explain in detailJCR-to-Onto Bridge mapping

cases with examples.

18

3.2 Motivation

3.2.1 Semantics Implicit in Node Type Definitions

In JSR-170, the node type definitions may be used to impose structural restrictions on content

resources. Through defining a custom node type, one may control the corresponding types of

each child node and/or property for a particular target node. The type of a child node may be

restricted to one of the built-in or custom-defined node types. On the other hand, for prop-

erties, the user can choose from a predefined set of built-in types only: STRING, BINARY,

DATE, LONG, DOUBLE, BOOLEAN, NAME, PATH, and REFERENCE. Providing value

constraints or default values for a property is also possible. Finally, an inheritance hierarchy

may be defined over custom node types where such relationshipis expressed by the “super-

type” property.

Figure 3.1: Declaration of various custom node types

Figure 3.1 is a sample declaration of various node types in the Compact Namespace and

Node Type Definition (CND) notation [69]. According to the example, a node of type “cul:-

CulturalHeritageItem” should have a child property named “cul:location” whose value must

be a STRING . A value constraint is defined over the property “cul:popularity”; where, the

only permitted values are the STRINGs: “Very Popular”, “Popular” and “Not Popular”. A

“cul:CulturalHeritageItem” node may optionally contain achild node of type “cul:Images-

Type” which acts as a bag for the associated image URLs. Finally, both “cul:Monument” and

19

“cul:AncientStructureAndBuilding” node types inherit their structure from the “cul:Cultural-

HeritageItem” node type and enhance it with additional attributes. A formal explanation of

the syntax and grammar of CND is provided in [69].

From the node and property type declarations for a particular JCR repository alone, it is pos-

sible to construct classes, data type properties and in somecases, object property definitions.

Later on, the workspace nodes, properties and their values will be used to instantiate the indi-

viduals for the generated ontology schemas. The procedure can be summarized as follows:

1. Each JCR node type definition corresponds to an ontology class.

2. JCR properties of type STRING, LONG, DOUBLE, BOOLEAN or DATE imply a data

type property construction.

3. In ontological formalisms, the JCR properties of type PATH, REFERENCE or NAME

can be expressed as object properties.

4. It is possible to represent the JCR node type inheritance hierarchy as a set of super

class/sub-class relations among ontology classes.

5. When the content repository is populated with instances of the declared types and prop-

erties, so can the generated ontologies be.

As outlined above, one could possibly start by constructingontology classes for each node

type definition. In this case, it is intuitive to create a separate OWL class for each JCR node

type defined. Although custom naming solutions may be followed, a default strategy could be

to name these classes based on their native naming conventions (i.e. by using JCR namespaces

and JCR node type names).

In most cases, property type definitions directly correspond to OWL data type properties. The

simplest case is when the JCR property is of type STRING, LONG, DOUBLE, BOOLEAN

or DATE. In our approach, we choose to define an OWL data type property whose domain is

the class generated from the type definition of the parent JCRnode and whose range points

to one of the built-in OWL data types string, long, double, boolean and dateTime. A more

complex case is when the JCR property has associated value constraints. In this case, it is

possible to use the owl:oneOf construct to define an enumerated datatype [70].

20

For JCR properties, whose types are not one of STRING, LONG, DOUBLE, BOOLEAN nor

DATE, a different method has to be applied:

• The underlying semantics for property definitions of type PATH, NAME or REFER-

ENCE imply a stronger relation than what can be expressed by an OWL data type

property. In fact, OWL object properties are more suitable for this purpose. A REF-

ERENCE type is for storing the UUID of a node to which the property gives reference

[55]. In case of a REFERENCE, referential integrity is maintained by the content repos-

itory. PATH properties serve a similar purpose by pointing to nodes in the workspace

through path expressions. However, the repository does notenforce referential integrity.

NAME is a specialized case for PATH, in which the path elementlacks spatial locators.

For these definitions, we choose to create an OWL object property whose domain is the

class generated from the type definition of the parent JCR node and whose range is, in

the least restrictive sense, an “nt:base” class. In JCR, nt:base is defined as the root node

type from which all node types can be inherited and therefore, its OWL representation

may serve as an abstract entity for the aforementioned rangeconsideration.

• For value constraints defined over PATH properties, it is difficult to predict in advance

whether or not the constraint has any implication on the range of the generated OWL

object property since they are simply regular expressions defined over some path values.

However, the value constraint for the REFERENCE property isinterpreted as a node

type name. In fact, it restricts the types of nodes to which the REFERENCE property

may refer. In such a case, our “nt:base” assumption for the generated OWL object

property can be restricted to account for the selection.

• The BINARY type implies that the particular JCR property is for storing a document

rather than its metadata. Therefore, there will not be any added semantic value in

representing this relation as a data typetype property nor an object property. However,

a link to the actual content resource can be created, whose value will be clearer in

Chapter 4.

When it comes to the representation of the JCR node type inheritance hierarchy, the most

intuitive approach would be to use superclass-subclass relations in OWL. It is particularly

valid for custom-defined as well as for built-in node types (Figure 3.2). Therefore, for each

supertype defined, a corresponding superclass relation should be generated. In this respect,

21

multiple supertypes pose no particular problem since OWL allows multiple superclasses to be

defined for a single class.

Figure 3.2: Inheritance hierarchy among built-in node types [55]

In Appendix A, some of the ontology constructs used to express the underlying seman-

tic relations in the node type definition example provided inFigure 3.1 are depicted. The

“cul:popularity” property on which some value restrictions were provided in the node type

definition is expressed as an enumerated data type property.The node type inheritance is

reflected on the ontology with the proper use of the “rdfs:subClassOf” predicate. Finally, the

object property “hasImages” has been created for associating the class generated from the

“cul:CulturalHeritageItem” node type definition with the class generated from the node type

definition of “cul:ImagesType”. The intuition behind this will be clearer in Section 3.2.2.

22

3.2.2 Semantics Implicit in the Workspace

There are cases where the node type definitions are insufficient to extract all the relationships

among content resources. In fact, node types help restrict the structure of a content resource;

however, may fail in fully expressing the hierarchical implications embedded in the overall

tree structure. As an example, consider the following JCR workspace configuration presented

on Figure 3.3.

Figure 3.3: JCR workspace configuration depicting the IPTC News Subject Codes

The tree rooted at “IPTC Subject Codes” displays a subset of the hierarchy defined in the

“Subject Code” vocabulary [71] of the International Press Telecommunications Council (IPTC)

[72], News Codes taxonomy [73]. Subject Code is a three levelsystem for describing content

by a well defined set of terms. Topics of level Subject providea description of the editorial

content of a News at a high level, a SubjectMatter provides a description at a more precise

level and finally a SubjectDetail at a rather specific level [74].

In Figure 3.3, each JCR node corresponds to a particular concept in the IPTC News Codes -

Subject Code vocabulary. Furthermore, the JCR nodes are described by the two JCR proper-

23

ties, namely; “name” and “definition”1. The properties are declared to be STRINGs. In this

particular example, the node and property type definitions go as far as defining the allowed

set of the values (i.e. STRING) and how a Subject Code is described (i.e. a Subject Code

node should have two properties: “name” and “definition”). However, what is more valuable

here is that the subject codes are organized in a subsumptionhierarchy, that is; “Cinema” is

a broader subject than “Film Festival”; where “Arts, Culture and Entertainment” is broader

than both. Such semantic relationships are implicit in the workspace hierarchy rather than the

node type definitions.

Semantic relations in the form of subsumption are not the only candidates for what is implicit

in the workspace hierarchy. In fact, one could possibly construct “part-whole” or even other

relationships for different tree arrangements. A collection of book chapters; where each chap-

ter consists of an introduction, several body sections and aconclusion is a typical use case

for the former case. The scenario simply suggests a construction based on a “part-whole”

relationship rather than subsumption.

At this point, one could argue that it is actually the node type definitions that account for such

structural deductions. However, even when the nodes are notstrictly typed, that is; say they

are left as “nt:unstructured”, we should be able to recognize these structural patterns and so

their implications. As depicted on Figure 3.4, rather than the node types, same name siblings

and repeating sub-trees account for the semantics in this particular configuration.

3.2.3 Implications

Up to now we have seen how node type definitions along with the workspace hierarchy can be

helpful in extracting ontology classes, properties and individuals. There are some trivial cases;

such as the JCR properties of type STRING, LONG, DOUBLE, BOOLEAN or DATE, where

simply some data type properties are constructed. The case with REFERENCE-, PATH- or

NAME- type JCR properties is more complex; where object properties may be more suitable.

Node type definitions or a particular set of JCR nodes (see Figure 3.3) may be valuable in

extracting class definitions. In the former case, the inheritance is explicitly expressed by the

hierarchy within the node types. On the other hand, in the latter case, one has to look at the

parent-child relationships in the JCR nodes. In all cases, same name siblings and repetitions

1 For space considerations the properties for only the “Film Festival” JCR node are displayed.

24

Figure 3.4: Example workspace configuration with “part-whole” implications

can be used to formulate other semantic relationships.

As demonstrated in the aforementioned examples, even a small-scale JCR application is built

with different types of semantic associations hard-coded in its content repository’s node type

definitions, taxonomical structures and nodes that share common patterns. If the content man-

agement system applications are given the means to exploit this semantic information, then

value-added services such as automatic item categorization, finding related content and dif-

ferent forms of semantic search can be built. The content repository alone does not facilitate

the development of these services; as it does not provide a formal representation to interpret

and reason over the semantics implicit in the repository. Consequently, applications have to

deal with this problem internally, and for most of the time byimpromptu solutions. In this re-

spect, our motivation is to devise an ontology extraction framework - namely, the JCR-to-Onto

Bridge framework - so as to formally represent the otherwiseimplicit semantic information

and later on enhance it with additional horizontal or domainknowledge. The benefits of this

approach can be summarized as follows:

1. Exploit the power of ontological formalisms that providemachine interpretable means

to express and process semantic information

2. Establish a bridge between the content repository and theknowledge base

25

3. Provide a formal basis for alignment with extra domain knowledge

3.3 Basis for Alignment with External Horizontal and Domain Ontologies

Before going into the details of JCR-to-Onto Bridge and the mapping schemes, it is worth

illustrating that the ontology extraction framework sets up a basis for alignment with already

available horizontal and domain ontologies. The value-added features enabled by JCR-to-

Onto Bridge’s initial representation of the semantics in the content repository can further be

improved if the extracted ontologies are augmented with additional semantic data. Techniques

for semi-automatic merging and alignment of ontologies exist in literature [75], and therefore

will not be repeated in this section. On the other hand, our focus is to demonstrate the added-

value of integration of such techniques and what JCR-to-Onto Bridge offers to facilitate this

integration.

Consider the following JCR tree representation on Figure 3.5 of the association between cer-

tain concepts and tags in one of Flickr [76]’s (a photo sharing site) tag-clouds. As described

by [77], a tag-cloud is a list of the most popular tags, usually displayed in alphabetical or-

der, and visually weighted by font size. In a tag-cloud, whena user clicks on a tag, (s)he

obtains an ordered list of tag-described resources, as wellas a list of other related tags. In the

example, the individual tags are organized in clusters where the clusters form a hierarchy of

concepts. For example, “streetart”, “wall”, “stencil”, “paint” etc. are tags associated with the

cluster “graffiti”, which in turn forms a subset of the more generic cluster “art”. Furthermore,

we assume that resources available in the other nodes of the workspace that are not explicitly

shown on Figure 3.5 are associated with these tags.

By (i) lifting each JCR node in the example shown on Figure 3.5to an ontology class, (ii)

establishing the inheritance hierarchy among the classes and finally (iii) instantiating the JCR

properties (that represent particular tags) as individuals of the generated classes, it is possible

to formally relate resources tagged with items that belong to say, the same cluster, or speaking

in ontological terms, that are individuals of the same class. However, for some applications

this still turns out to be insufficient and a need to enrich these semantic relations with addi-

tional knowledge may be necessary. For this particular example, the WordNet ontology [78]

is a possible candidate. As depicted on Figure 3.5, when aligned with the WordNet ontology,

26

Figure 3.5: Association between the terms in the tag cloud

the tag “color” becomes the hypernym2 of the tags “blue”, “black” and “white”. Similary, the

tag “people” - apart from belonging to the same tag cluster - is now the hypernym of the tags

“girl” and “woman”. The tag “New York” becomes an instance ofthe tag “city” and finally,

the tag cluster “art” is inferred as the hypernym of the tag “drawing”. Now, an application that

uses this information in search may provide a faceted browsing of content or likewise a more

2 In linguistics, a hypernym is a word or phrase whose semanticrange includes that of another word, its
hyponym.

27

precise ranking of search results based on similarity. In the former case, all resources tagged

with any of the items in the “painting” cluster would be equivalently related whereas after

the alignment process, resources referring to the hyponymsof the tag “color” (i.e. “blue”,

“black”, “white”, etc.) would be ranked more relevant.

Figure 3.6: Technical illustration of how tags can be annotated with the WordNet ontology

3.4 Exploitation of Modeling Patterns

The problem with the aforementioned approach is that: i) node type definitions are not fully

exploited by the user community, ii) the flexibility provided by JCR makes it difficult to

predict in advance what type of relations are to be extractedfrom the workspace. On the other

hand, the degree of flexibility that the content repository model provides is limited in practice

by the level of freedom the applications built on top of the repository can support at run-time.

That is; if every node is defined to be “nt:unstructured”, then the applications should have

the capability to resolve the type information of a particular node from either its content or

28

structure at run-time. Consequently, even if not explicitly encoded in the workspace node

type definitions, some structural patterns, that both the working applications and our ontology

extraction components could exploit, do exist.

Our aim with the JCR-to-Onto Bridge approach is, therefore,to design a configurable ontol-

ogy extraction framework that makes use of the structural patterns present in the workspace.

The configuration should be flexible enough to handle different workspace arrangements and

hence let the users identify the semantic relations as freely as possible. Based on our discus-

sion in sections 3.2 and 3.3, these semantic relations will account for the construction of:

• ontology classes

• relations among ontology classes (e.g. subsumption)

• object and data type properties

• individuals

When the node type definitions fail in fully describing the semantic structure of the workspace,

it is just a matter of identifying the workspace nodes or properties that can be used in either

of these constructions. Put in other words, we are trying to develop a scheme by which the

user maps the appropriate set of nodes and properties in the workspace to different ontology

construction processes. To facilitate this process, we have developed a Graphical User Inter-

face (GUI) on top of the JCR-to-Onto Bridge framework. The GUI lets the user browse the

whole JCR repository, select a set of nodes and properties and finally associate with each set

of selected node or property, a predefined ontology construction process. Slowly, the user

builds a group of mapping definitions that are used in the ontology extraction process. In this

regard, our discussion in this section will mainly revolve around the following:

1. the different possible workspace arrangements,

2. the native JCR queries in selecting the appropriate set ofworkspace nodes and proper-

ties,

3. the various mapping templates (i.e. ConceptBridge, SubsumptionBridge, Property-

Bridge, EnforcedPropertyBridge and InstanceBridge) corresponding to the different

constructions outlined earlier.

29

JSR-170 specification enforces the XPath syntax [57] for itsquery language. Given the con-

text, XPath is definitely a suitable choice; the tree structure in the JCR workspace is inherently

analogous to that of an XML document. On the other hand, support for only a subset of the

XPath language - a runtime SQL translatable subset - is sufficient for JSR-170 compliance. As

argued in [55], the rationale behind this decision is to easedatabase-backed implementations’

integration. It is worth noting that as long as they meet the minimum requirements, reposito-

ries are free to support the full XPath syntax or additionally the SQL standard. Therefore, in

this thesis, we will not make a distinction between the SQL translatable subset of XPath and

the SQL itself, and illustrate our examples in SQL. A detailed mapping between the two is

provided in [55].

A native JCR query, whether XPath or SQL, specifies a set of nodes in the workspace that

satisfy any of the following constraints [55]:

• Type constraint: Specifies the primary node type of the returned nodes

• Property constraint: Limits the returned nodes to those having particular properties hav-

ing particular values

• Path constraint: Restricts the returned nodes to a subtree in the workspace described by

a path expression

The above-described constraints are sufficient for the purposes of our mapping scheme. Now,

consider the following cases:

3.4.1 Mapping Cases for the Construction of Ontology Classes

A class description that is not encoded in the node type definitions may exist in the workspace

in either of the two patterns:

1. Hierarchical Categorization: a classification hierarchy in the workspace where the nodes,

or a subset of the nodes satisfying certain criteria, correspond to ontology classes (e.g.

Figure 3.3).

2. Flat Categorization: a tree in the workspace where the direct children of the root, or

children satisfying certain criteria, correspond to ontology classes (e.g. Figure 3.4).

30

In the former case, an example query selecting the nodes to beused in a class construction

could be:

SELECT * from nt:baseWHERE jcr:path LIKE ‘ /%/IPTC SubjectCodes/%’

XPath Query: /jcr:root//IPTC SubjectCodes//element(*, nt:base)

The query would then select all nodes that are either direct or indirect descendents of the node

named “IPTCSubjectCodes” and would trigger a class construction for each. The regular

expression “%” in the path constraint “//IPTC Subject Codes/%” accounts for this selection.

The type constraint, that is; “from nt:base” indicates thatthe selected nodes could be of any

JCR node type3.

The query works suitably well for the example provided in Figure 3.3; however, as one would

agree it is not the only arrangement possible. Consider now the following hierarchical cate-

gorization displayed on Figure 3.7 for which the query needsto be slightly modified:

Figure 3.7: Classes described in a hierarchical categorization pattern

3 In JSR-170, “nt:base” is defined as the node type from which all built-in and custom node types are derived.

31

The only difference between Figure 3.3 and Figure 3.7 is that in the lattercase some nodes do

not communicate ontology class construction. For each subject code, a node named “Tags”

has been added to store the list of associated tags with that particular subject. Otherwise, the

hierarchy is nothing but a categorization of the IPTC News Subject Codes.

In this case, the query selecting only the nodes that exhibitthe class role would be:

SELECT * from nt:baseWHERE jcr:path LIKE ‘ /%/IPTC SubjectCodes/%’

AND NOT jcr:path LIKE ‘/%/IPTC SubjectCodes/%/Tags’

Up to now, we have seen some examples of hierarchical categorization. On the other hand, a

typical example for flat categorization is the case that of a root node having children with dif-

ferent names, where each set of same-name-siblings is used to construct a different ontology

class. Obviously, in such an example, the structure of the ontology class would be derived

from the structure of the nodes in the same-name-sibling set, given that the structure remains

constant throughout.

A possible query to be used in the construction of an ontologyclass corresponding to the

“chapter” entity in Figure 3.4 could be:

SELECT * from nt:base

WHERE jcr:path LIKE ‘ /%/digital library/book[%]/chapter[%]’

In JCR-to-Onto Bridge, the mapping definition that corresponds to a class construction both

for the hierarchical and the flat categorization case is the “ConceptBridge” shown on Figure

3.8.

The “Query” component conveys the native JCR query that selects the node to be formalized

as an ontology class. Unless a value is provided for the “ConceptName” element, the class

is named after the JCR node from which it is extracted. The class may be declared as the

subclass of another; however, in that case, a “SubsumptionBridge” has to be declared. Fi-

nally, object and data type properties, whose domains become the class in question, can be

generated on-the-fly with an appropriate “PropertyBridge”declaration. The details of both

“SubsumptionBridge” and “PropertyBridge” will be presented in the upcoming sections.

32

<xsd:element name=“ConceptBridge”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“Query”

type=“tns:QueryType”/>
<xsd:element name=“ConceptName”

type=“tns:NameType” minOccurs=“0” />
<xsd:element ref=“tns:SubsumptionBridge”

minOccurs=“0” maxOccurs=“unbounded”/>
<xsd:element ref=“tns:PropertyBridge”

minOccurs=“0” maxOccurs=“unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Figure 3.8: The XSD for “ConceptBridge”

3.4.2 Mapping Cases for Establishing Relations among Ontology Classes

Either during the ontology class construction process, or independently, a class may be as-

serted as the subclass of another. For example, for the hierarchical categorization case shown

on Figure 3.3, the class formalized from a node should be asserted as the subclass of what is

formalized by its parent node. In other words, based on Figure 3.3, both Cinema and Fashion

are subclasses of the ontology class ArtsCulture Entertainment and similarly, FilmFestival

is a subclass of the generated Cinema class.

Suppose we would like the ontology extraction framework to assert these subclass relation-

ships as each super class is generated. However, this poses aproblem. Let us recall the query

used in selecting these particular nodes that are meant to belifted up to the ontology classes:

Outer Query:

SELECT * from nt:baseWHERE jcr:path LIKE ‘ /%/IPTC SubjectCodes/%’

XPath Query: /jcr:root//IPTC SubjectCodes//element(*, nt:base)

What is desired is a way to express for each selected node above, another node in the workspace

that represents its subclass (or subclasses). For the particular example, it would be the chil-

33

dren of the selected node. By writing two independent queries - one for the selection of the

super class nodes and one for the selection of the subclasses- it is not possible to achieve the

desired behavior. In fact, one needs to write the second query relative to the first one, where

the path expression in the second query should be executed relative to each node selected

by the first. Unfortunately, JCR does not natively support such behavior. Consequently, the

notion of a query has been extended; in fact, $SELECTIONPATH is a reserved keyword in

JCR-to-Onto Bridge that lets the path expression in the outer query be used in that of the

inner.

Inner Query :

SELECT * from nt:baseWHERE jcr:path LIKE ‘$SELECTIONPATH/%’

AND NOT jcr:path LIKE ‘$SELECTIONPATH/%/%’

In this example, the outer query selects all descendents of the node IPTCSubjectCodes

whereas the inner query is executed for each node selected bythe outer query and it selects

the direct children of the descendent. If used in an ontologyclass construction process, the

implications would be to create an ontology class for each descendent of IPTCSubjectCodes

and assert a subclass relationship for each direct childrenof the descendent node. In JCR-to-

Onto Bridge, the mapping definition that is used for asserting such subsumption relations

between ontology classes is the “SubsumptionBridge” element whose schema is provided on

Figure 3.9.

<xsd:element name=“SubsumptionBridge”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“PredicateName”

type=“tns:QueryType”/>
<xsd:element name=“SubjectQuery”

type=“tns:QueryType” minOccurs=“0” />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Figure 3.9: The XSD for “SubsumptionBridge”

The “SubjectQuery” element conveys the “Outer Query” described earlier in this section. It

34

selects the node from which the super class is extracted. Conversely, the “PredicateName”

element is built around the “Inner Query”. It selects the nodes from which the sub classes are

extracted. It is worth noting that the use of the “SubjectQuery” element is optional. In case

the “SubsumptionBridge” is declared within a “ConceptBridge”, the query to select the super

class is already available; hence, it should not be repeatedwithin the “SubsumptionBridge”.

3.4.3 Mapping Cases for the Construction of Object and Data Type Properties

The following patterns in the workspace account for the construction of object or data type

properties:

• Case 1: A node in the repository that is selected for ontology classconstruction (e.g.

ConceptA) references another node in the repository through a JCR property of type

REFERENCE, PATH or NAME, where the referenced node is also selected for ontol-

ogy class construction (e.g. ConceptB). The pattern is depicted on Figure 3.10. It is

worth noting that the JCR property may or may not be the directdescendent of the node

in question; but yet a relative path exists to the property.

Figure 3.10: Workspace configuration for Mapping Case - 1

35

• Case 2: A node in the repository that is selected for ontology classconstruction (e.g.

ConceptA) has a JCR property of type BINARY, BOOLEAN, DATE, DOUBLE, LONG

or STRING. The pattern is depicted on Figure 3.11. It is worthnoting that the JCR

property may or may not be the direct descendent of the node inquestion; but yet a

relative path exists to the property.

Figure 3.11: Workspace configuration for Mapping Case - 2

• Case 3: A node references two other nodes in the repository throughJCR properties

of type REFERENCE, PATH or NAME, where the referenced nodes are selected for

ontology class construction (e.g. ConceptA and ConceptB, respectively). The pattern

is depicted on Figure 3.12. It is worth noting that the JCR properties may or may not be

the direct descendents of the node in question; but yet a separate relative path to each

exists.

• Case 4: A node in the repository has two JCR properties where one is aproperty of type

REFERENCE, PATH or NAME and the other BINARY, BOOLEAN, DATE,DOU-

BLE, LONG or STRING. The node references a second node in the repository through

36

Figure 3.12: Workspace configuration for Mapping Case - 3

the formerly described JCR property of type REFERENCE, PATHor NAME, and the

referenced node is selected for ontology class construction (e.g. ConceptA). The pat-

tern is depicted on Figure 3.13. It is worth noting that the JCR properties may or may

not be the direct descendents of the node in question; but yeta separate relative path to

each exists.

Case 1 and Case 3 refer to patterns where the straightforwardconstruction would be that of

an object property. The domain and the range of the object property are explicitly the classes

described by the JCR nodes in context. On the other hand, Case2 and Case 4 are more suitable

for the construction of data type properties: The class described by the JCR node in context

designates the domain of the data type property and the type attribute of the JCR property

determines the built-in ontology type to be used for the property range.

Another observation to make is that for Case 1 and Case 2, two native queries are sufficient

to locate the nodes and properties accounting for the property construction. The first query

selects the node (or set of nodes) to be used in setting the domain of the property. The second

query depends on a relative path expression to select the JCRproperty to be used as the basis

37

Figure 3.13: Workspace configuration for Mapping Case - 4

for the property construction process; such that the name and the type of the to-be-constructed

ontology property are derived from the name and type of the JCR property. If the JCR property

is of type REFERENCE, PATH or NAME then an object property is generated whose range

is determined by the referenced JCR node. On the other hand, if the JCR property is of type

BINARY, BOOLEAN, DATE, DOUBLE, LONG or STRING then a data type property with

an appropriate built-in type for its range is constructed.

The conditions are somewhat different for Case 3 and Case 4. In fact, a separate JCR node

is used as the basis for the property construction process; accounting for the need to have

an additional query. The first or the base query selects exactly these nodes. The second and

third queries depend on some relative path expressions to select the two JCR properties to be

used for determining the domain and range of the property, respectively. If the JCR property

selected by the third query (i.e. query for selecting the range) is of type REFERENCE, PATH

or NAME then an object property is generated. The complementary case, that is; when the

JCR property is of type BINARY, BOOLEAN, DATE, DOUBLE, LONG or STRING, implies

a data type property generation.

38

Consider the example displayed on Figure 3.14 where the newsarticles are categorized by

their subject codes. Each JCR node with the name “NewsArticle” contains a JCR property

“hasSubject” that is of type PATH. The JCR property references a subject code from the tree of

subject code categorizations. As one would notice, this is an example of the pattern described

in Case 1. What is desired is a way to create the object property named “hasSubject” with the

NewsArticle class as its domain and a union of each selected subject code as its range. Based

on this information, the JCR queries to select the nodes to beused in the object property

construction are as follows:

Figure 3.14: A sample workspace configuration for property mappings

Property Domain:

SELECT * from nt:baseWHERE jcr:path LIKE ‘/%/NewsArticle’

Predicate basis:

SELECT my:hasSubjectFROM nt:base

WHERE jcr:path LIKE ‘$SELECTIONPATH’

The query for locating the property domain selects all nodesnamed “NewsArticle”, and the

inner query is executed for each selected NewsArticle node to obtain its child property named

“hasSubject”.

39

Figure 3.15 provides a representation of the generated object property “hasSubject”. One

important point to mention is that the range of the property is set as the union of the classes

“Fire”, “Earthquake” and “Cinema”: the aforementioned queries select multiple nodes from

the workspace, each of which accounting for the construction of the same object property.

Consequently, whenever a new class is encountered for the range of the property, the class is

simply added to the union of possible classes in its range.

Figure 3.15: The generated “hasSubject” object property

In JCR-to-Onto Bridge, the mapping definition that corresponds to the object (or data type)

property construction for the first and second cases is depicted on Figure 3.16.

The two queries “SubjectQuery” and “PredicateQuery” locate (i) the node that is used in set-

ting the domain of the property and (ii) the JCR property fromwhich the name, type and range

of the ontology property is extracted, respectively. The “Transformation” element can be used

for a possible future extension for modifying the value of the property. Transformations are

currently not handled by the framework. Finally, “PropertyAnnotation”s convey additional

information about the property to-be-constructed; such asits transitivity, functionality, etc.

Likewise, the mapping definition that corresponds to the object (or data type) property con-

struction for the third and fourth cases is depicted on Figure 3.17. The “PredicateQuery”

element points to the node from which the name of the propertyis obtained. On the other

hand, “SubjectQuery” and “ObjectQuery” select the two JCR properties that determine the

domain and range of the ontology property, respectively.

40

<xsd:element name=“PropertyBridge”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“PredicateQuery”

type=“tns:QueryType”/>
<xsd:element name= “SubjectQuery”

type=“tns:QueryType” minOccurs=“0” />
<xsd:element ref=“tns:Transformation”

minOccurs=“0” />
<xsd:element ref=“tns:PropertyAnnotation”

minOccurs=“0” />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Figure 3.16: The XSD for “PropertyBridge”

<xsd:element name=“EnforcedPropertyBridge”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“PredicateQuery” type=“tns:QueryType”/>
<xsd:element name=“SubjectQuery” type=“tns:QueryType”/>
<xsd:element name=“ObjectQuery” type=“tns:QueryType”/>
<xsd:element ref=“tns:PropertyAnnotation” minOccurs=“0” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Figure 3.17: The XSD for “EnforcedPropertyBridge”

3.4.4 Mapping Cases for Instantiating Individuals

Prior to creating the individuals in the extracted ontology, the following information has to be

available in the content repository:

1. Names of the individuals to be created

2. Ontology class(es) for the individual

41

3. Optionally, object or data type properties associated with the individual and their values

Names of the individuals to be created:

The content nodes in the repository can be used as the basis for all computations related to the

construction of an individual in the JCR-to-Onto Bridge framework. As illustrated on Figure

3.18, the node named “B737-800” or equivalently, “C-Skyhawk 172” is a container node for

a particular resource, in this case; information about an aircraft model. Such container nodes

will be used to derive the name of each individual to be created, along with other useful

information.

Ontology classes for the individual:

The motivation behind extracting ontology constructs fromnode type definitions has already

been discussed in Section 3.2.1. Extracting ontology classes from the node type definitions

becomes particularly valuable when it comes to assigning classes to an individual. Techni-

cally, every JCR node - and so does the base node corresponding to an ontology individual

- has a primary node type and optionally a set of mixin node types. The extracted ontology

classes from the primary or mixin node type definitions, indeed, form the set of classes for

that individual.

Classes inferred from the node types assigned to a base node are not the only candidates for

the classes of that individual. In fact, in many cases the base node is directly or indirectly

related to another node in the repository, which - from the JCR-to-Onto Bridge’s point of

view - may be a categorization node and therefore an ontologyclass may have already been

generated for it. In such a case, it is desirable to include the generated ontology class, too,

in the definition of the classes for the individual. For example, based on Figure 3.18, the

JCR node named “B737-800” is meant to be the base node for an individual construction pro-

cess, where the individual is named after the node. The primary node type for the base node

is “my:aircraftModelInfoType” and JCR-to-Onto Bridge hasalready lifted this node type to

an ontology class named “co:AircraftModelInfo”. Therefore, “co:AircraftModelInfo” is in-

tuitively a class for the individual “B737-800”. However, the base JCR node also contains

a property named “instanceOf” that references another nodein the workspace: “Commer-

cialJet”. As you will notice, it belongs to a tree of categorization nodes, and consequently

ontology classes have already been generated for the nodes in the tree. If explicitly stated

42

by the user, the fact that “B737-800” is an individual of the class “co:CommercialJet” should

also be asserted in the knowledge base.

Figure 3.18: A sample workspace configuration for individual generation

Object or data type properties associated with the individual:

43

Some other valuable information to extract from the workspace is the object or data type

properties of an individual and their values. It is important to note that the base node described

above may contain other JCR properties that accounts for thegeneration of new ontology

properties or setting up values for already existing ones. If the JCR property matches with

that of an already described ontology property in the classes for the individual, then simply

its value is set. On the other hand, for a JCR property that cannot be matched with any of

the previously formalized ontology properties a new one should be generated. However, one

difficulty with this approach is to determine the domain of the property. In most cases, the

JCR-to-Onto Bridge ends up generating some auxiliary ontology classes to account for this

challenge.

As a conclusion, it is necessary and sufficient to locate the base JCR node to be used for

the individual construction stage and optionally a set of JCR properties that will contribute

to setting up values of the associated properties. Therefore, two native queries; one for the

selection of the base node and the other, whose path is described relative to that of the first,

for selecting the JCR properties would suffice.

In JCR-to-Onto Bridge, this is formalized by the “InstanceBridge” mapping definition whose

schema is displayed on Figure 3.19.

<xsd:element name=“InstanceBridge”>
<xsd:complexType>

<xsd:sequence>
<xsd:element name=“InstanceName”

type=“tns:NameType” minOccurs=“0” />
<xsd:element name=“Query” type=“tns:QueryType”/>
<xsd:element ref=“tns:PropertyBridge”

minOccurs=“0” maxOccurs=“unbounded”/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Figure 3.19: The XSD for “InstanceBridge”

The “Query” element contains the query or the path expression to reach the node representing

the individual. If present, the name of the individual is obtained from the element “Instan-

ceName”; otherwise, the individual is named after the JCR node from which it is extracted.

44

Finally, the values of the object or data type properties areset, as each “PropertyBridge”

within the “InstanceBridge” is processed.

3.4.5 Observations

It is worth pointing out that although these mapping definitions are used in an initial ontology

extraction phase, they are likely to be valuable when the JCR-to-Onto Bridge is configured to

listen to the events in the content repository. It is merely based on the fact that the content

repository is in constant growth and that the changes in the repository should be reflected on

the knowledge base. In such a scenario, the query forms a template to match against whenever

a new event is fired from the content repository. If the particular update matches against any

of the mapping definition, then the construction associatedwith the query should be replayed,

if necessary. This is currently a work-in-progress and the details are beyond the scope of this

thesis.

3.5 Summary

In this chapter, the motivations behind the ontology extraction framework, namely JCR-

to-Onto Bridge have been discussed. JCR-to-Onto Bridge maybe considered as a semi-

automatic tool for extracting ontologies from JSR-170 compliant content repositories. As

discussed in sections 2.6 and 3.4, though, the flexibility ofa content repository model - as

opposed to the rigid structure in a relational schema - makesit difficult to define in advance,

a solid set of heuristics that are guaranteed to work with different repository instantiations.

Therefore, in JCR-to-Onto Bridge, ontology extraction techniques are combined with a user-

defined mapping strategy to obtain the optimum results. The potential benefits of such an

ontology extraction framework for the content management system community is thoroughly

discussed in [79].

45

CHAPTER 4

A HYBRID APPROACH INTEGRATING STRUCTURAL AND

FULL-TEXT SEARCH

4.1 Background

One of the driving forces behind enhancing the content management cycle with semantic

capabilities is to go beyond ranked keyword search. Currently, most content management

systems support document retrieval based on full-text indexing and lexical match of terms. A

purely keyword-based search as such has its own limitations, though. On the one hand some

relevant results are omitted, on the other hand irrelevant results are returned; simply because

the meaning of terms is not taken into account.

Consider the case where the user types in the keywords “home”, “drug”, “factories” to retrieve

some news articles related to the illegal production of abusive substances. However, articles

such as “Cannabis factory found by police1” are omitted because they do not explicitly contain

the term “drug” or its lexical derivations. On the contrary,cannabis is a drug and therefore the

article should have been included in the result set. A keyword-based query that uses lexical

similarities cannot cope with such circumstances.

Now, consider the opposite case. The user executes the querywith the keywords “drug”,

“collapse”. The following articles appear in the result set:

• “China’s anti-malaria medicine producers face market collapse”: Just three years ago,

a global shortage of the anti-malaria medicine artemisininalarmed medics fighting

the killer disease, and spurred scientists who are developing alternative sources of the

1 http://news.bbc.co.uk/2/hi/uk news/england/wiltshire/8039171.stm

46

drug...2

• “Arrests after boys’ drug collapse”: Police have warned people not to take tablets from

a possible rogue batch of ecstasy after two teenagers were rushed to hospital from a

Swansea nightclub...3

• “Donovan embarrassed by drug collapse”: Eighties pop star Jason Donovan was em-

barrassed after he collapsed from a cocaine seizure during Kate Moss’ 21st birthday

party - because he was desperate to be seen as a wild rocker...4

The problem illustrated here is that even though all three articles contain the keywords “drug”

and “collapse”, the first article is business and finance related whereas the others are related

to an event of being poisoned due to overdose. Therefore, it is necessary that the search scope

is progressively narrowed based on some input from the user.In this regard, as stated in [48],

faceted search enables users to navigate a multi-dimensional information space by combining

text search with a progressive narrowing of choices in each dimension.

To overcome these limitations, content management systemssupport features such as syn-

onym matching, similarity search and “Did you mean this?” suggestions. Synonym matching

is based on the idea of repeating the search process with synonyms of a particular keyword.

Similarity search deals with removing duplicate or near-duplicate results or once a particu-

lar content resource is selected, bringing in similar resources. Finally, “Did you mean this?”

suggestions try to resolve incorrectly typed keywords.

However, even these techniques are not interlinked with thedomain semantics available in

the form of ontologies. Ontologies represent human knowledge explicitly in a form that is

suitable for automated processing and if used in combination with full-text search, then a

formal mechanism can be devised that provides enhanced search capabilities [6]. There are

various works addressing this issue, which will be discussed in detail in Section 6.2. For

convenience, here, we provide a brief summary.

Bast et al. [6] describe a semantic search methodology, thatfirst finds concepts and individuals

associated with the terms in the documents, and later on usesthem as extensions to the original

2 http://www.innovations-report.com/html/reports/life sciences/report-100478.html
3 http://news.bbc.co.uk/2/hi/uk news/wales/4777812.stm
4 http://www.contactmusic.com/news.nsf/article/donovan%20embarrassed%20by%20drug%20collapse-

1044537

47

full-text index. Minack et al. [39] take a somewhat different approach and run full-text search

over RDF annotations; therefore extending structural search capabilities of SPARQL [49]

with those of Lucene [42]. Finally, QuizRDF [40], describedin Davies et al.’s paper, indexes

both the document content and its RDF metadata. It lets the user start with some keywords to

find and rank the relevant RDF resources. From these RDF resources, the associated concepts

are found and presented to the user. The user now selects a concept, provides some additional

query parameters based on the properties of the concept and the search scope is narrowed.

As we have seen in Chapter 3, JCR-to-Onto Bridge framework already formulates the node

type definitions and patterns in the content repository as ontologies and, if necessary, enriches

them with additional domain semantics. Inspired by this, wepropose to build a hybrid search

mechanism that combines the full-text search capabilitiesof engines such as Lucene [42] and

SOLR [45] with the knowledge accumulated in the extracted ontologies. Our approach is

different from the work of Bast et al. since it does not rely on modifying the native full-

text indices to provide semantic search capabilities. In [6], the ontology is woven into the

documents by adding artificial words into the corpus. On the other hand, we maintain the

ontologies separately from the textually indexed documents and combine the search results

at a latter step; hence, exploiting both the asserted and theinferred structural and semantic

dependencies in the ontology. For a content management system scenario, we cannot utilize

an approach similar to the one described by Minack et al. [39]either; since populating the

ontologies with the full content of a resource is not practical. In this respect, our hybrid search

mechanism complements QuizRDF [40] by providing support for queries around multiple

classes. Our aim is twofold:

1. Seamlessly integrate semantic search facilities into keyword-driven interfaces: As argu-

ed in [6], keyword-based queries are a natural way to capturehuman knowledge. There-

fore, instead of completely deviating from keyword-driveninterfaces, semantic search

mechanisms have to be built on top of contemporary paradigms. As a consequence, we

should be able to find ontology concepts given a set of keywords and possibly construct

complex semantic queries around them.

2. Provide support for faceted-browsing of content resources: Just like ontology browsing

is a process that involves first visiting a set of nodes and then iteratively traversing all

their connected nodes; so is search that utilizes ontologies in the background. We

48

employ this paradigm in our framework and therefore providea multi-level, multi-

dimensional interface for browsing search results.

The chapter proceeds as follows: First we discuss how ontologies play a central role in ex-

tending keyword-based search: ontology-lookup can be valuable in finding similar content or

related terms and enables us to provide a multi-dimensionalview over the content resources.

In the proceeding section, we present the details of our hybrid search algorithm that com-

bines the power of structural and semantic search with that of the full-text. The discussion

proceeds with the complexity analysis of the proposed solution. Rather than providing a com-

plete mathematical analysis for the best, average and worstcases, the discussion is restricted

to broadly identifying the parameters that contribute to the complexity. The last but not the

least, how the search mechanism is wrapped as a loosely-coupled RESTful [46] service is

explained.

4.2 Motivation

4.2.1 Ontology Look-up for Similar Content

Within the context of a content management system, an ontology provides formal means

to represent the relationship between content resources. Recall from Chapter 3 that during

the lifting process, JCR-to-Onto Bridge represents each content node as an individual in the

ontology. Based on the type definition of that particular node and other available information

in the workspace, these individuals are associated with oneor more ontology classes. Object

and data type property values of the individuals are set withvalues obtained from the child

property nodes of the base node in the content repository. Finally, the unique identifier for the

content node, which in our case is the path expression to reach the node, is stored as a special

data type property of the individual.

Whether or not a semi-automated framework such as JCR-to-Onto Bridge is used in ontologi-

cally representing the structure and semantics in a contentrepository, as long as a mechanism

exists to locate the corresponding ontology artifacts for aparticular content resource, infor-

mation available in the ontology may be used to retrieve similar content resources. The idea

is outlined as follows:

49

1. Either a structural query is executed or a look-up on a previously generated index con-

taining all ontology resources is performed to locate the individual that corresponds to

the content resource with the given unique identifier.

2. It is likely that the class for the individual and its superclasses contain other individuals

that describe similar content resources. Therefore, starting from the direct class and

going up to the superclasses, the individuals that belong tothese classes are ranked by

decreasing similarity. The same procedure applies to the subclasses.

3. An individual may belong to more than one class. In that case, it is fair enough to

assume that the class with the least number of individuals isthe most prominent one in

determining the similarity among its individuals.

4. Individuals that belong to the same class may further be divided into groups of in-

dividuals that share same or similar property values or are connected through object

properties. In that case, their similarity values should beadjusted accordingly.

Figure 4.1: Metadata of some news articles in a content repository

Figure 4.1 illustrates a hypothetical ontology that contains classes and individuals represent-

ing the metadata about some news articles in a content repository. Assume that we desire

to find content resources that are similar to the news articletitled “28th Istanbul Interna-

tional Film Festival”. Please note that the particular individual is an instance of the class

“sc:FilmFestival”. Consequently, a place to start lookingfor similar content would be the

individuals of the class “sc:FilmFestival”. On the other hand, “sc:Cinema” and “sc:Arts-

CultureEntertainment” are all superclasses of “sc:FilmFestival”, therefore, their individuals

50

might as well be candidates for relevancy, provided that their similarity values are lowered.

One important point to mention is that “sc:NewsArticle” is not an appropriate selection for

categorization; it simply contains far too many individuals.

Figure 4.2: Adjusting similarity based on property values

Now assume that an object property labeled “sc:hasLocation” exists for the ontology class

“sc:NewsArticle”. As depicted on Figure 4.2, values for this object property are available for

the individuals that belong to the class “sc:FilmFestival”. It is now possible to fine-tune the

previously calculated similarity values. In this respect,“19th Ankara International Film Fes-

tival” is a more relevant article to “28th Istanbul International Film Festival” than “Tarantino

up for top Cannes prize” is.

In conclusion, once content resources are associated with the ontology individuals, it is possi-

ble to relate these resources based on the structural and semantic dependencies in the ontology.

These dependencies appear in the form of inclusion by one or more ontology classes, the class

hierarchy and possession of the same property values. In theproceeding sections, we illus-

trate how this information will be valuable in combining theresults received from a full-text

search engine such as Lucene [42] or SOLR [45].

4.2.2 Ontology Look-up for Related Terms

An ontology could be a valuable resource to look up terms thatare semantically related to

those provided in a textual query. Such an approach proves tobe useful in cases where

keyword-based search fails to return otherwise relevant resources. In this respect, full-text

indexing techniques that work on ontologies have already been developed for some triple

51

stores [39] and offer means to exploit the methodology described in this section.

Given a set of keywords, performing an ontology look-up has two diverse practical implica-

tions:

1. A horizontal ontology such as WordNet [80] or dbPedia [81]can be used to discover

the names of the semantically related resources. The original set of keywords is then

expanded with those retrieved from the ontology look-up. Finally, search proceeds as

purely full-text querying of the indexed documents with theexpanded keyword set as

the new input.

2. A domain ontology, possibly the one extracted by the JCR-to-Onto Bridge framework,

is used in the look-up. Rather than using the names of the semantically related resources

in a subsequent full-text search process, the structural and semantic dependencies in the

ontology are retrieved to find related content resources.

Figure 4.3: Example illustrating ontology look-up for finding related terms

As a possible example for case 2, consider Figure 4.3, which depicts a hypothetical ontol-

ogy that contains some news articles and their annotations.The articles are categorized by

52

their IPTC News Subject Codes. Suppose now, that the textualquery is around the keywords

“train” and “accident”. At this stage, an ontology look-up may be performed to find the rel-

evant ontology resources. For this purpose, structural query engines enhanced with full-text

search capabilities such as Lucene-SAIL [39] and LARQ [41] can be utilized5. Now that

the textual annotation for the ontology class “sc:RailwayAccident” contains both of the key-

words “train” and “accident”, “sc:RailwayAccident” is returned. Based on this information,

we conclude that the content resource “NewsArticle31” meets our search criteria. Further-

more, from the subsumption relations among the depicted classes, we conclude that the indi-

viduals “NewsArticle21”, “NewsArticle11” and “NewsArticle01” also contain references to

the relevant articles, in descending order of similarity.

4.2.3 Ontology Look-up for Faceted Browsing of Content

Until now, the discussion has mainly been on the utilizationof ontologies in improving

keyword-driven methodologies. In this regard, the possibilities for eliminating the weak-

nesses of full-text search were explored. Consequently, ways in which the result set could

be expanded with semantically related results were identified. These improvements have to

do with the completeness of the search mechanism: they aim toinclude in the result set a

high percentage of all possible documents intended to be retrieved by the query. As a side

effect though, they are likely to introduce some false positives, too, that is; documents that are

completely irrelevant to the query context are brought in. Even without these semantic en-

hancements, full-text search itself is not sound; that is why a full-text search ranks resources

based on its perception of relevance.

The fact that the accuracy of the results could be improved, if search proceeds in a faceted

fashion, has been discussed in [48]. The idea is that insteadof working with just a set of

keywords obtained from the user, the search engine forms different views on the results based

on some parameters communicated in diverse dimensions: possible content categories and

keywords, the semantic links between the documents, etc. Consequently, the search scope is

iteratively changed or narrowed until the user is satisfied with the results.

Ontologies play a critical role in enabling such faceted browsing of content and even if not

named explicitly, their use has been experimented in various works such as [38], [6] and

5 Lucene-SAIL and LARQ work on Sesame and Jena2 triple stores respectively.

53

[40]. In summary, provided that the content resources are annotated with the resources in the

ontology, the search scope can iteratively be changed or narrowed simply by executing queries

on the ontology and then retrieving the associated results.The problem is in seamlessly

constructing these queries based on the parameters communicated by the user. We propose

a somewhat similar solution to [40], but relieve the restriction that queries should revolve

around a single class and enable queries to be written that join multiple ontology classes. The

idea can be outlined as follows:

1. Ontology resources associated with the documents in the result set, including classes,

object and data type properties, are retrieved and ranked based on their relevancy to the

search criteria.

2. As the user selects from multiple ontology classes and provides values for their object

or data type properties, semantic queries are seamlessly formed in the background.

3. Search is repeated with optionally a new set of keywords and the previously formulated

query. The new result set that is relevant to the keywords andeither expanded, filtered

or pruned according to the restrictions imposed by the queryis retrieved. The whole

process starts over from step 1, until the user is satisfied with the results.

4.3 Implementation Details of the Hybrid Search Algorithm

4.3.1 Overview

In the preceding section, how ontologies play a central rolein semantic search has been dis-

cussed. This section describes the building blocks used in the implementation of the hybrid

search algorithm that combines the power of semantic searchon ontologies with that of the

full-text search on documents. As opposed to some earlier works [38], [6], [39], [40] and [41]

that address the same problem, the two processes, that is; using ontologies as the basis for the

semantic search and executing purely text-based queries ondocuments, are kept separate until

the results are finally merged into a scored set. This way, thepower of the two different ap-

proaches can be fully exploited without a loss of generality. The search mechanism described

in this section is wrapped as a loosely-coupled RESTful [46]service so as to encourage its

deployment by the content management system development community.

54

The input to the algorithm is a set of keywords complemented by a structural query part. As

outlined in [6], keywords are an easy way to capture the humanintention behind search. On

the other hand, structural queries are necessary to filter-out unwanted results or reversely to

extend the result set with other relevant resources. Structural queries are composed of pattern

matching functions and names of ontology constructs and resources. They provide an easy

way of encoding information necessary to locate the desiredontology resources.

Given a set of keywords and a structural query, the proposed hybrid search algorithm can be

outlined as follows:

1. The set of keywords are used in consulting a full-text search engine such as Lucene [42]

or SOLR [45] to retrieve the unique identifiers of the relateddocuments. The unique

identifiers, along with the relevancy scores assigned by thefull-text search engine, are

stored in “Document Set A” as depicted on Figure 4.4.

2. The unique identifiers in “Document Set A” are used for finding the ontology indi-

viduals with which the documents are annotated. Based on a degree of flexibility, the

ontology is then traversed to find the semantically related set of resources. Traversed

ontology classes are pushed into “Resource Set A”. On the other hand, the traversed

individuals may indeed be annotations of other documents inthe corpus. In that case,

these documents are assumed to be semantically related to those in “Document Set A”,

hence “Document Set A” is updated as shown on Figure 4.4.

3. Ontology resources and their textual annotations are lexically searched based on the

provided set of keywords. The assumption is that the locatedontology resources may

offer means to find other semantically related documents. Basedon a degree of flex-

ibility, the ontology is then traversed and the linked resources in the graph are found.

Traversed ontology classes are pushed into “Resource Set B”. On the other hand, the

traversed individuals may contain references to other documents in the corpus. In that

case, “Document Set B” is constructed with the unique identifiers of these documents

and a relevancy score assigned to them by the algorithm.

4. The structural query is executed on the ontology. The ontology is then traversed to find

the resources in the graph that are linked to those located bythe query. The traversed on-

tology classes are pushed into “Resource Set C”, whereas thedocuments corresponding

55

Figure 4.4: Extending full-text results with semanticallyrelated documents

to the traversed individuals and their relevancy scores areaccumulated in “Document

Set C”.

5. “Document Set A”, “Document Set B” and “Document Set C” arenormalized and

56

merged based on some pre-configuration. This constitutes the ranked set of documents

returned by the search process.

6. “Resource Set A”, “Resource Set B”, and “Resource Set C” are normalized and merged

based on some pre-configuration. The merged set constitutesthe ranked set of ontology

resources to be used in faceted search.

7. Search is repeated with another set of keywords and a structural query formed by a

partial subset of the ontology resources returned in the former step.

The output of the algorithm is a list of documents, sorted in descending order according to

their relevancy scores, and a set of ontology resources thatare valuable in faceted search and

browsing of the documents. A detailed description of the algorithm, the heuristics used in

assigning the relevancy scores to the documents as well as the ontology resources, and finally

the normalization and merging methodologies are describedin the subsequent sections.

4.3.2 Enhancing Full-text Search Results with Related Documents

The first building block of our hybrid search solution exploits the structural and semantic rela-

tions in ontologies to locate content resources that are semantically related to those provided

as input. Obviously, the assumption is that prior to executing the algorithm, a set of unique

identifiers for the documents is retrieved from a full-text search engine. In this respect, the

aim is to extend the full-text search result set with possibly other related results.

The problem addressed herein can be reduced to the problem offinding the ontology nodes

that are reachable in at most a predefined number of steps froma given base node. The

base node is an ontological representation of the document for which we are trying to find

its semantically related kinsmen. However, not every link will imply a semantic similarity

between a pair of ontologically represented documents. Even if so, the semantic similarities

between the pair of documents will vary. Therefore, within the scope of this thesis, various

heuristics have been developed so that the traversed resources represent with a high degree

of probability, the documents that are semantically related and that their similarity scores

are computable. These scores are later on used in combining the results with those obtained

from other building blocks of the algorithm. Here, we provide the details of the heuristics

developed in finding and scoring the relevant documents.

57

Pattern matching for finding ontological complements of document resources:

The first problem to address is finding the individuals (or equivalently resources) in the ontol-

ogy that semantically represent the set of input documents.Even though the outlined method-

ology works mainly over the ontologies extracted by the JCR-to-Onto Bridge framework, it

can easily be customized for other solutions.

JCR-to-Onto Bridge formalizes each content item mapped with an “Instance Bridge” as an

individual in the ontology. It automatically assigns the native JCR path of the node as the value

of a reserved data type property named “http://www.srdc.com.tr/iks/jcr2ont#path”. Based on

this information, locating the desired individual is a matter of executing a structural query. In

our hybrid search algorithm, we use the Jena framework [27],[28]. For executing structural

queries on the RDF triples, we use LARQ [41]. The structural query we use in locating the

ontology individuals is:

PREFIX pf:<http://jena.hpl.hp.com/ARQ/property#>

PREFIX jcr2ont:<http://www.srdc.com.tr/iks/jcr2ont#>

SELECT ?doc{

?lit pf:textMatch $contentRepositoryPath$.

?doc jcr2ont:path ?lit

}

At run-time, $contentRepositoryPath$ is replaced by the unique identifier of the document

whose ontology complement we desire to locate. The query selects the subjects of all triples

whose “http://www.srdc.com.tr/iks/jcr2ont#path” predicate has the desired value.

Heuristics for finding and scoring similar content:

Once the ontological complements of the initial set of documents are found, it is reasonable

to traverse the ontology in search for complements of other semantically related documents.

Documents are annotated by individuals in the ontology; therefore we will limit ourselves to

finding the semantically related individuals. Nevertheless, the traversed ontology classes and

properties will prove useful for implementing some faceted-browsing features; hence shall be

58

recorded on-the-fly.

Motivated by the observations outlined in Section 4.2.1, anindividual shares a high degree

of similarity with those that belong to the same class. On theother hand, an individual may

belong to multiple classes. In that case, a mechanism is necessary to rank the classes based on

the strength of classification they provide. Finally, the scores have to be fine-tuned based on

the distribution of the individuals in the input set; that is, classes that possess more individuals

from the input set are likely to contain the individuals thatare more relevant. These issues are

addressed by the following heuristics:

• The individuals in the input set denoted by IndividualSet(input) , obtain their initial scores

from the scores assigned to their complement documents (i.e. DocumentSet(input)) by

the full-text search engine;

∀ind, doc (ind∈ IndividualSet(input) ∧ doc∈ DocumentSet(input))

complementOf(ind, doc)→ score(ind)= f(score(doc)).

“complementOf” is a symmetric relation that implies that anindividual in the ontology

exists and is identifiable through the unique identifier of the document, and vice versa.

The function f transforms the scores from the scale used by the full-text search engine

to a native scale used by the proposed hybrid search algorithm.

• The score of an individual in IndividualSet(input) is conveyed to each class of the in-

dividual, in an amount that is inverse exponentially proportional to the total number

of individuals the class possesses. This condition does nothold for classes that have

explicitly been placed in the ignore list. Their scores are simply taken as zero;

∀ind, ontClass(ind ∈ IndividualSet(input) ∧ ontClass∈ OntologyClasses)

type (ind, ontClass)→

conveyedScore(ind, ontClass)∝ 1
DFACTORrankO f(ontClass,ind)2

.

“OntologyClasses” denotes the set containing all of the classes in the ontology. “type”

is a relation that asserts that the individual denoted by itsfirst argument has the class

denoted by its second argument. DFACTOR is a constant used throughout the hybrid

search algorithm and has a value that is greater than 1. “rankOf” is a binary function that

returns the order of a class within the set of all direct classes of a particular individual,

where the set is sorted in ascending order according to the total number of individuals

59

the classes possess. Finally, conveyedScore is a binary function that determines the

score a class receives from a particular individual.

Suppose that ConcordeCrashFlight4590∈ IndividualSet(input) and score(ConcordeCrash-

Flight4590)= 0.94 for a particular query. Now, assume that NewsArticleItem and Air-

TrafficAccident are the only direct classes of ConcordeCrashFlight4590. Furthermore,

NewsArticleItem has a total of 14,568 and AirTrafficAccident 136 individuals. In this

case, rankOf(NewsArticleItem, ConcordeCrashFlight4590) = 2; since when sorted in

ascending order based on their total number of individuals,NewsArticleItem is placed

second in the set of all classes of ConcordeCrashFlight4590. Consequently; conveyed-

Score(NewsArticleItem)∝ 0.05875, provided that DFACTOR= 2.0.

This condition ensures that classes that are least involvedin categorizing their individ-

uals are assigned low scores. In determining the classes that are not directly involved in

the categorization process, we simply use the individual count of the class as the basis

for comparison. We assume that among the set of classes of an individual, the ones

that contain the highest number of individuals are least likely to provide any valuable

implications for semantic similarity.

• The score of a class is the summation of the scores conveyed byits direct individuals

in IndividualSet(input) , divided by the total number of individuals the class possesses.

There are two direct consequences of this condition:

1. A class that contains more individuals from IndividualSet(input) is likely to receive

a higher score,

2. The score that a class receives from its individuals is no greater than the score of

any of its direct individuals.

After the individuals and their direct classes are scored, it is now possible to traverse the on-

tology in search for semantically related resources. The scored ontology classes are available

in the set ClassSet(directlyRelated) . For each ontology class in ClassSet(directlyRelated) the function

computeClosureForOntClass(ontClass, flexibilityIndividuals, flexibilityClasses, initialScore,

dFactor) is called, which in turn traverses the related set of ontology nodes and assigns their

scores. Below are the details of the function.

The function “computeClosureForOntClass” takes as arguments an ontology class and its

60

score, two separate flexibility factors that determine how far away from the ontology class

search can proceed and the value for DFACTOR, whose purpose has been described earlier.

The traversal proceeds as follows:

1. A list of equivalent classes for the given input are retrieved and placed in ClassSet-

(indirectlyRelated) . The score of each class placed in ClassSet(indirectlyRelated) is 1
dFactor

×initialS core.

2. The list of all superclasses and subclasses and their equivalent classes are retrieved and

placed in ClassSet(indirectlyRelated) . The flexibilityClasses factor determines how many

levels up or down from the base class the algorithm is allowedto traverse. For instance,

when flexibilityClasses= 1, only the direct superclasses and subclasses of the base

class are retrieved. When flexibilityClasses= 2, the direct superclasses and their direct

parents as well as the direct subclasses and their direct children are retrieved. The score

of each class placed in ClassSet(indirectlyRelated) is computed as 1
dFactordistance×initialS core

Up to now, the algorithm has computed the classes in ClassSet(directlyRelated) and its closure

ClassSet(indirectlyRelated) ; however, it has neither traversed nor scored their individuals. In this

respect, first ClassSet(directlyRelated) and ClassSet(indirectlyRelated) are merged into ClassSet(related)

while the duplicates are eliminated. Afterwards, the direct individuals of the classes in

ClassSet(related), that have been reached by at most flexibilityIndividuals steps, are placed

into IndividualSet(related) where the score of each class is assigned directly to its individu-

als. The set can optionally be expanded with other individuals that are reachable via object

properties. In either case, not all of the individuals in thefinal IndividualSet(related) will have

complements in the document corpus. However, from those which do have a complement

in the corpus, the unique identifiers for the documents can beretrieved by accessing the re-

served data type property values of the individuals. At thisstep, the algorithm has found

the semantically related documents and has placed them in DocumentSet(output) . Apart from

establishing the grounds for scoring the individuals, the two sets: ClassSet(directlyRelated) and

ClassSet(indirectlyRelated) provide means for faceted-browsing of the content resources, that is;

they enable keyword search to be enhanced with structural and semantic queries as shall be

discussed in Section 4.3.4.

61

4.3.3 Concept-Driven Retrieval of Results

Using the results obtained from a full-text search engine asthe basis for semantic search is

a promising, yet, an incomplete solution. Even though the heuristics materialized in Section

4.3.2 offer the ability to extend the result set with semantically related documents, the initial

set may be incomplete to work with. To overcome this difficulty, we propose various tech-

niques to incorporate also the results of an ontology look-up before the related documents are

traversed and retrieved. This forms the second building block of our hybrid search solution.

Our case becomes clearer with an example.

As discussed in Section 4.2.2, alignment with the dbPedia ontology [81] conveys surprisingly

good results in terms of what additional semantic search features can be supported. Suppose

now, that an ontology extracted from the repository of a newscontent management system is

aligned with the dbPedia ontology. Consequently, the following triple becomes accessible:

Subject: <http://dbpedia.org/resource/Air Berlin>

Predicate: <http://dbpedia.org/ontology/hubairport>

Object: <http://dbpedia.org/resource/Munich Airport>.

The user now executes the query with the keywords: “Munich Airport”. However, the full-

text search engine cannot find a document that explicitly contains these terms. Under these

circumstances, the approach described in Section 4.3.2 will fail as it does not have any input

to work with! On the other hand, we have among our ontology resources an individual whose

URI matches the keywords. “MunichAirport” does not have any complementary document in

the repository; however “AirBerlin”, which is connected via the object property “hubairport”,

does. To retrieve such resources, a keyword-based look-up on the registered ontologies is

necessary.

There are various works that address the problem of full-text search in ontologies. As men-

tioned earlier, Lucene-SAIL [39] and LARQ [41] are among these. Once a keyword-based

look-up on the ontology is performed, the returned ontologyclasses as well as the ontology

individuals could serve as the starting points for the ontology traversal described in Section

4.3.2. The initial scores for these resources can be retrieved directly from the structural query

engine or equivalently can be computed via the string similarity metrics utilized in [82]. Con-

62

sequently, DocumentSet(output) , IndividualSet(related) and ClassSet(related) are also populated

for this building block.

4.3.4 Iterative Browsing of Results in Multi-Dimensions

The third building block of our hybrid search algorithm is the component that facilitates

faceted-search. As outlined in Section 4.2.3, the proposedmethodology addresses two di-

verse issues:

1. retrieving the ontology resources that have somehow beentraversed for the purpose of

finding the related content,

2. answering structural and semantic queries and using themas the basis for expanding,

filtering or pruning the previously obtained results.

ClassSet(related) described earlier in Section 4.3.2, contains all the ontology classes that are

identified while the semantic relations present in the ontologies are traversed. Along with

the labels and URIs of the classes, these two sets contain individually the score assigned to

each class. As one would recall, the score is an indication ofhow relevant the class is to

either a set of documents or keywords. In the former case, theontology is used in finding the

semantically related resources to a given set of documents that are retrieved from a full-text

search engine. In the latter case, the keywords are directlylooked-up from the ontology. In

any case, ClassSet(related) grants means to present the key assets (e.g. possible content cate-

gories, related terms, the semantic links between the documents, etc.) useful for constructing

the structural query described in the second approach. A demonstration of this feature is

provided on Figure 4.5. Here, it is possible to see that ClassSet(related) is directly used in dis-

playing the categories associated with the search results.The user may now select multiple

categories to designate the next search direction.

The issue presented in (2) requires more than just structural query handling to empower the

desired behavior, that is; to expand, filter or prune the result set. In this respect, together with

a set of structural queries, the user is asked to provide the selection criteria that go along with

them. The following XML Schema Definition (XSD) [83] illustrated on Figure 4.6 provides

a more formal description of the expected input:

63

Figure 4.5: Faceted-search facilities of the proposed hybrid search solution

The “ResourceList” element contains 0-unbounded instances of “SelectiveResource” ele-

ments. Each selective resource holds either the URI of a particular ontology resource or

directly a SPARQL [49] query that selects multiple resources from the ontology. An “Opera-

tor” may be defined over the selected resources and the operator possesses one of the follow-

ing values: “OR”, “NOTSELECTIVE”, “EXLUDE”. In case an operator is not provided for

a particular “SelectiveResource” element, the default implication is “OR”.

The intention behind the operators is to solicit how the userdesires the resources to be pro-

cessed along with the results obtained from the other two building blocks of the algorithm (see

sections 4.3.2 and 4.3.3). For convenience, we denote the results obtained from the other two

building blocks of the algorithm; namely, ClassSet(directlyRelated) and ClassSet(indirectlyRelated) ,

by Resources(keyword−driven) and those answered as a result of the “SelectiveResource” query

by Resources(selective) . Based on this information, the three cases to consider can be summa-

rized as follows:

1. Operator “OR” : Resources(keyword−driven) and Resources(selective) are merged. In case

of any duplicates, the scores are added together.

64

<xsd:element name=“ResourceList”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=“SelectiveResource”

minOccurs=“0” maxOccurs=“unbounded”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=“Operator” type=“tns:OperatorType”

minOccurs=“0” maxOccurs=“1” />
<xsd:sequence>
<xsd:choice minOccurs=“1” maxOccurs=“1”>
<xsd:element name=“ResourceURI”

type=“tns:non empty string”/>
<xsd:element name=“SPARQLQuery”

type=“tns:non empty string”/>
</xsd:choice>
</xsd:sequence>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<xsd:simpleType name=“OperatorType”>
<xsd:restriction base=“xsd:NMTOKEN”>
<xsd:enumeration value=“OR” />
<xsd:enumeration value=“NOT SELECTIVE”/>
<xsd:enumeration value=“EXCLUDE” />

</xsd:restriction>
</xsd:simpleType>

Figure 4.6: The XSD for the “ResourceList” element

2. Operator “NOT SELECTIVE” : Resources(keyword−driven) and Resources(selective) are

again merged; however, in case of any duplicates the score ofthe resource in Resources-

(keyword−driven) is lowered by the amount attributed to the same resource in Resources-

(selective) . If the resource does not exist in Resources(keyword−driven) , then its score is

subtracted from 0.

65

3. Operator “EXCLUDE” : After Resources(keyword−driven) - Resources(selective) is com-

puted, the scores in the final result set are re-normalized. If necessary, some previously

omitted results in Resources(keyword−driven) can now be included. Consequently, the re-

sults that the user does not wish to be conveyed are completely omitted and more focus

is given to the classes and their relatives that are not excluded.

The order of precedence in executing these operations is EXCLUDE, NOT SELECTIVE

and OR, respectively. When all of the desired operations areexecuted, we end up with a

set of ontology classes denoted by Resources(merged) . It is now possible to find and score

the individuals these classes possess and furthermore find the final set of associated docu-

ments. These procedures have already been discussed in detail in Section 4.3.2, and there-

fore will not be presented here. However, as usual, we end up with the following sets:

DocumentSet(output) , IndividualSet(related) , ClassSet(directlyRelated) and ClassSet(indirectlyRelated) ,

where Resources(merged) = ClassSet(directlyRelated) ∪ ClassSet(indirectlyRelated) . These sets consti-

tute the final results to be displayed to the user.

4.4 Complexity Analysis of the Hybrid Search Approach

In this section we will determine the computational complexity of our hybrid search algo-

rithm. In doing so, we will follow a bottom-up approach and justify the order of complexity

for the innermost functions first; before presenting those of the building blocks and that of the

algorithm as whole. It is important to point out that rather than providing a complete math-

ematical analysis for the best, average and worst cases, we will restrict our study to broadly

identifying the parameters that contribute to the complexity of the algorithm. In this respect,

our aim is to outline some possible optimizations as future work.

After some internal preprocessing, each of the three building blocks presented in Section 4.3

call the function: “computeClosureForOntClass(ontClass, flexibilityIndividuals, flexibility-

Classes, initialScore, dFactor))”, whose main role is to return the ontology resources that are

linked to the given ontology class (i.e. denoted by the “ontClass” argument) with a distance

less than the values provided by theflexibilityIndividualsandflexibilityClassesparameters. In

this respect, it is merely a graph traversal problem; where,in the worst case, the whole graph

may need to be visited regardless of the value of “flexibility”, except for when flexibilityIndi-

66

viduals=0 and flexibilityClasses=0. This is especially true if most of the ontology resources

are gathered around “ontClass”. Consequently, the worst-case complexity of this function is

O(n), where n denotes the number of triples in the ontology.

The function “getPathRelatedResources(searchResults, flexibilityIndividuals, flexibilityClass-

es)” makes up the core of the first building block described inSection 4.3.2. It simply receives

a list of scored documents and tries to find the semantically related ones. It starts out by find-

ing the ontological complement of each document (i.e. individuals with their reserved data

type property set to the unique identifier of the document). This process takes O(r) operations,

where r denotes the number of documents in “searchResults”.The assumption is that retriev-

ing the subject of a triple for a given predicate and object isa constant-time operation, as the

triples are pre-indexed in the triple-store. Obviously, since the process has to be repeated for

all r documents, the overall complexity becomes O(r). Once computed, the function proceeds

to find the closure of these ontology resources. In a naı̈ve approach, the worst case complexity

becomes O(r×n) as the “computeClosureForOntClass” function has to be recalled for every

resource retrieved in the former step. Therefore, the overall complexity of the building block

becomes O(r)+ O(r×n), where r and n denote the size of the input set of documents and

number of triples in the ontology, respectively.

The second building block described in Section 4.3.3, first tries to locate the set of ontology

resources whose labels and URIs are syntactically similar to the keywords provided. Without

any prior indexing, it implies that all ontology resources are to be iterated and that for each on-

tology resource the string similarity should be computed. The complexity of such an approach

is inevitably high, which is O(n) in the worst case. Here n denotes the number of triples in the

ontology. The function then proceeds with the best matchingc1 resources found, where c1

is a predetermined number, and computes their closure by the“computeClosureForOntClass”

function. Therefore, the latter step takes O(n) operationsin the worst case, provided that c1

kept constant. Finally, the overall complexity of this building block is O(n).

The third building block enables structural and semantic queries to be executed before their

closures are computed. As explained in [50], evaluating graph pattern expressions constructed

by using AND, FILTER and UNION operators is an NP-complete task. On the other hand,

when restricted to AND and FILTER operators only, the complexity becomes O(n×|P|), where

n denotes the number of triples in the ontology and|P| the complexity of the graph pattern. By

67

allowing only patterns with AND and FILTER operators and restricting the available choice

to the most c2 relevant ontology classes, the complexity can be kept within manageable lim-

its (i.e. |P| becomes constant). Of course, now the closure for the ontology resources that

match the provided query needs to be computed. We may still achieve an O(n×|P|) worst-case

complexity by keeping flexibilityIndividuals=0 and flexibilityClasses=0, that is; restricting

ourselves to only the ontology resources returned by the query. In this case, this procedure

has to be repeated for every “SelectiveResource” element described in Section 4.3.4. Again

by imposing an upper bound, say c3, on the number of “SelectiveResource” elements allowed,

we limit the overall complexity of the building block to O(n×|P|).

The overall complexity of the proposed hybrid search methodology, with the aforementioned

optimizations becomes max(O(r)+ O(r×n), O(n×|P|)). As you would recall, r stands for the

number of documents retrieved from a full-text search engine, n denotes the number of triples

in the ontology and finally,|P| denotes the complexity of the query(-ies) used.

The value of r could be very large if we try to use all of the documents retrieved from a full-text

engine as input to the hybrid search algorithm. Whether or not such a naı̈ve approach should

be taken is indeed subject to discussion. The intention behind using the full-text search results

as input to the algorithm is to find the semantically related documents and possibly a set of

assets valuable for forming the queries. On the other hand, in a faceted-search paradigm, the

user is not really interested in whether or not the search engine retrieves all of the related

resources at once. In other words, it is more important that the user sees only the documents

that are related to the currently browsed full-text search results. In this respect, the search

results may be processed in chunks in a procedure described as follows:

• Given some keywords, the first set of q1 results are retrieved from the full-text search

engine,

• These results are used as input to the hybrid search algorithm and the related documents

and concepts are retrieved,

• Now, the user has the following options:

1. Finalize search; the document she is looking for is in either the set of results

received from the full-text search engine or the related documents found by the

hybrid search algorithm.

68

2. Ask the retrieval of the next set of q1 results from the full-text search engine; a

new set of related documents and concepts will be retrieved.

3. Use the returned concepts as the basis of forming queries to change or narrow

down the search scope.

4. Repeat the search process with a new set of keywords.

5. A combination of (3) and (4).

With such an optimization, r is now bounded by the value used for q1, which is a constant,

and therefore the complexity of the algorithm is determinedby O(n×|P|).

The second parameter that determines the complexity of the algorithm is n, which indicates

the number of triples in the ontology. As outlined in [84], contemporary knowledge base sys-

tems are capable of handling more than one million triples. In this regard, the performance of

the proposed hybrid search methodology degrades linearly as the number of triples asserted in

the persistence layer increases. Therefore, some optimizations that would not interfere signif-

icantly with the quality of the result set are necessary. Thefunction “computeClosureForOnt-

Class” is too generic in the sense that it treats every ontology resource equally in determining

the nodes that are linked to a particular ontology class. On the other hand, it is wise to traverse

the classes of the ontology (i.e. TBox) first, before their individuals (i.e. ABox). Based on

the scores assigned to the classes, individuals that belongto low scored classes may simply be

ignored, if the total number of traversed resources alreadyexceeds a given maximum bound.

One would generally expect the ratio of|T Box|
|ABox| to be significantly small for large n, therefore;

“computeClosureForOntClass” becomes computationally manageable.

4.5 Wrapping it all as a RESTful Service

The search mechanism described in this section is wrapped asa loosely-coupled RESTful

[46] service so as to encourage its use by the content management system development com-

munity. The benefit of such an approach is that the community can simply deploy it on top

of an existing full-text search engine such as SOLR [45]. In fact, the proposed hybrid search

framework does not contain any bundled full-text indexer.

The only prior configuration necessary to initiate semanticsearch is the registration of the

69

domain or horizontal ontologies. The global REST resource to register an ontology resides at

the following URL:

“http://localhost:8080/PersistenceLayerService/ontologies/”

where the prefix “http://localhost:8080/PersistenceLayerService/” may vary from machine to

machine. Registration proceeds with an HTTP POST [47] request on the provided resource

with two form parameters; namely, “ontologyURI” and “ontologyContent”. “ontologyURI” is

a String that represents the base URI of the ontology to be registered. “ontologyContent” is the

textual representation of the ontology in RDF/XML syntax [7]. If the ontology is successfully

registered, it is assigned a unique identifier by the system and placed at the following location:

“http://localhost:8080/PersistenceLayerService/ontologies/<unique-identifier>/”

Various HTTP GET, POST and DELETE [47] functions are available on these ontology re-

sources each providing a high-level ontology browsing and editing feature. The underlying

triple store used is Jena [27]. It has been made database-aware so that the ontologies per-

sist even if the service is stopped. For the prototype developed specifically in this thesis, we

use MySQL Community Server v5.1 [85]. The technical detailsof this Persistence Layer

framework and the provided REST interface functions will bediscussed at length in the “In-

teractive Knowledge Stack for small to medium CMS/KMS providers” project deliverable

[86]. Within the scope of this thesis, though, we will identify only those that are relevant to

our search interface.

An ontology may be deleted by calling the HTTP DELETE operation on the URL (i.e.

“http://localhost:8080/PersistenceLayerService/ontologies/<unique-identifier>/”) where the -

ontology resides. Furthermore, its full textual content may be retrieved, again in RDF/XML

syntax, by calling the HTTP GET operation with the “Accept” parameter set to “applica-

tion/rdf+xml”.

As you have noticed, multiple ontologies can be registered to the Persistence Layer. In such

a case, it is possible to use all registered ontologies or individual ones as the basis for search.

For a case that requires a look-up on horizontal ontologies such as dbPedia [81], the former

solution would be preferred. The following two URLs are equipped with the REST functions

that perform global and local search, respectively:

70

“http://localhost:8080/PersistenceLayerService/ontologies/search/”

“http://localhost:8080/PersistenceLayerService/ontologies/<unique-identifier>/search/”

The HTTP GET operation is called in either of the two URLs withthe form parameter named

“query”. The response to the operation is of type “application/xml”. The following excerpt

displayed on Figure 4.7 from the XML schema declaration of the search interface provides a

brief overview of the input and output structures used. The full syntax is provided in Appendix

B.

“Query” and “Result” are respectively the input and output elements used in the search pro-

cedure. The “Query” element consists of the following parts: a set of keywords (“Key-

wordList”), a structural query (“StructuralQueryPart”) and a list of unique identifiers of those

documents obtained from the full-text search engine (“FullTextSearchResultList”). The at-

tributes “flexibilityIndividuals” and “flexibilityClasses” determine the values to be used for

the “computeClosureForOntClass” function described in Section 4.3.2. Finally, if the at-

tribute “useSynonymsInOntologyLookup” is set to true, then the ontology look-up process

described in Section 4.3.3 is repeated with the synonyms of the given set of keywords.

The “Result” element consists of the set of unique identifiers for the relevant documents and

their metadata (“ReturnedDocuments”), the ontology resources to be used for faceted brows-

ing (“ReturnedOntologyResources”) and finally a set of synonymous and related terms re-

trieved from WordNet [80] (“ReturnedWordnetResources”).

4.6 Summary

The previous sections discuss the various heuristics used in the three main building blocks of

the hybrid search algorithm. As you would recall, the intention was to combine the full-text

search capabilities of engines such as Lucene [42] and SOLR [45] with the power provided

by ontologies. In this respect, we mainly had two concerns.

First of all, we did not wish to deviate extremely from keyword-driven approaches; as argued

in [6], keyword-based queries are a natural and a powerful way to capture human knowledge.

Consequently, different techniques that could be used to enhance the results ofa textual query

were explored. Our first argument was that ontologies could be used on an initial set of results

71

<xsd:element name=“Query”>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=“tns:KeywordList”

minOccurs=“1” maxOccurs=“1” />
<xsd:element ref=“tns:StructuralQueryPart”

minOccurs=“1” maxOccurs=“1” />
<xsd:element ref=“tns:FullTextSearchResultList”

minOccurs=“1” maxOccurs=“1” />
</xsd:sequence>
<xsd:attribute name=“flexibilityIndividuals”

type=“xsd:integer” use=“optional”/>
<xsd:attribute name=“flexibilityClasses”

type=“xsd:integer” use=“optional”/>
<xsd:attribute name=“maxResults”

type=“xsd:integer” use=“optional”/>
<xsd:attribute name=“useSynonymsInOntologyLookup”

type=“xsd:boolean” use=“optional”/>
</xsd:complexType>

</xsd:element>

<xsd:element name=“Result”>
<xsd:complexType>

<xsd:sequence>
<xsd:element ref=“tns:ReturnedDocuments”

minOccurs=“1” maxOccurs=“1” />
<xsd:element ref=“tns:ReturnedOntologyResources”

minOccurs=“1” maxOccurs=“1” />
<xsd:element ref=“tns:ReturnedWordnetResources”

minOccurs=“1” maxOccurs=“1” />
</xsd:sequence>

</xsd:complexType>
</xsd:element>

Figure 4.7: The XSD for the “Query” and “Result” elements

received from a full-text search engine to find the semantically related documents. The details

of this approach were discussed in Section 4.3.2. On the other hand, a textual query could

initially be used to perform search on the ontologies, too, in which case, another set of related

documents would be retrieved. The details of this second approach were discussed in Section

4.3.3. These techniques aimed to improve the completeness of the search algorithm.

72

In trying to extend the result set with possibly related documents, we also introduced some

noise. Therefore, our second concern was to eliminate the false positives in the search results.

It was argued that providing a faceted-browsing over the results would solve the problem.

The details of how the results could be expanded, filtered or pruned based on a selection of

ontology resources were finally discussed in 4.3.4.

Our approach is different from the work of Bast et al. since it does not rely on modifying

the native full-text indices to provide semantic search capabilities. In [6], the ontology is

woven into the documents by adding artificial words into the corpus. On the other hand, we

maintain the ontologies separately from the textually indexed documents and combine the

search results at a latter step; hence, exploiting both the asserted and the inferred structural

and semantic dependencies in the ontology. For a content management system scenario, one

cannot utilize an approach similar to the one described by Minack et al. [39] either; since

populating the ontologies with the full content of a resource is not practical. In this respect,

our hybrid search mechanism complements QuizRDF. Finally,the clear separation of full-

text and structural search mechanisms until the merging step enables input to be processed

in chunks. This is one of the areas that can be exploited to increase the performance of the

hybrid search solution. We plan to explore it as part of our future work.

73

CHAPTER 5

EVALUATION OF JCR-TO-ONTO BRIDGE AS AN ENABLER

FOR SEMANTIC SEARCH

The motivation behind the JCR-to-Onto Bridge framework is to facilitate the use of seman-

tic technologies within the context of a content managementsystem. As argued in Chapter

3, JCR-to-Onto Bridge frees the semantics that would otherwise be locked up in the content

repository. The repository itself does not provide the means for the development of semantic

services; as it does not have any reasoning power. Consequently, applications have to deal

with this problem internally, and for most of the time by impromptu solutions [87]. On the

other hand, JCR-to-Onto Bridge formalizes the semantic information in the repository in an

ontology, which may later on be enhanced with additional horizontal or domain knowledge.

Inevitably, ontologies represent the knowledge explicitly in a form that is suitable for auto-

mated processing [6]; hence enabling such semantic features to be built and integrated with

ease.

To demonstrate the value of the JCR-to-Onto Bridge approach, we have developed a hybrid

search methodology that combines the power of semantic search on ontologies with that of

the full-text search on documents. The hybrid search mechanism complements QuizRDF

[40] by providing more complex faceted-search behavior andsupport for extended queries.

It is highly decoupled from a full-text search engine and theservice can be invoked anytime,

anywhere through various REST operations.

In this chapter, we will demonstrate the power of the JCR-to-Onto Bridge framework through

the value-added semantic search features enabled when the proposed hybrid search engine is

executed on top of the ontology extracted from a content repository. The chapter proceeds

as follows: first, the content repository used in the ontology extraction process is introduced.

74

Next, the ontology that JCR-to-Onto Bridge produces is presented. Following that, the search

service is invoked with queries that demonstrate its value-added features including faceted-

search.

5.1 Content Repository Used

The content repository used in this experiment is Apache Jackrabbit [51], which is a reference

implementation for the JSR-170 specification [54]. The repository is populated with more

than 50 news articles assembled in different categories from the BBC News site (http://news-

.bbc.co.uk/). In addition to the news articles, the workspace contains atree of categorization

nodes whose values are obtained from the IPTC News Codes, specifically the subject codes

[71]. The three level hierarchy depicted by the subject codes is expressed as a tree hierarchy in

the content repository. Furthermore, an example “taxonomy” using namespaced tags [88] is

again represented as a tree of JCR nodes. Each news article istagged with numerous resources

from this taxonomy.

A node type namely, “news:newsArticle” is registered to account for the type of all nodes

that contain the news articles. Its supertype is “nt:base”,from which all built-in and custom

node types are inherited. Three properties, namely “title”, “categorizedBy” and “content”,

are defined over each node of type “news:newsArticle”. The three properties have the type

declarations STRING, PATH and BINARY, respectively. The title of the news article is stored

in the “title” property of the node and the full HTML [89] pagein its “content” property.

On the other hand, the “categorizedBy” property is used to give reference to a number news

subject category or taxonomy nodes described earlier.

The news articles, with which the content repository is populated, are also added to the local

SOLR [45] server for use during the semantic search process.SOLR creates indices on the

textual content of these documents. For loading content into SOLR, an XML document,

whose structure is outlined below, is sent to the server through an HTTP POST operation:

<add>

<doc>

<field name=“id” >/NewsArticles/GermanShipHijackedByPirates</field>

75

<field name=“text”>

Textual content of the news article.

</field>

</doc>

<doc>

</doc>

...

</add>

A special Java archive file (jar) has been prepared by the SOLRcommunity to ease the invoca-

tion procedure. In this respect, registering the news articles to SOLR can simply be achieved

by the following command-line invocation, where “allDocuments.xml” is the filename of the

XML document described just recently:

java -jar post.jar allDocuments.xml

To delete a particular resource, the same library is used butinstead with a different document1.

The following command-line invocation clears all pre-built indices:

java -Ddata=args -jar post.jar “<delete><query>id:[* TO *] </query></delete>”

One important point to mention is that the field named “id” associated with a particular doc-

ument is the native JCR Path expression used to locate the resource in the repository. As

discussed earlier in Section 4.2.1, the hybrid search algorithm receives a set of unique identi-

fiers for the retrieved documents from the full-text search engine. In this respect, we use the

JCR Path as the unique identifiers of the documents we want SOLR to index.

5.2 The Extracted Ontology

The full JCR-to-Onto Bridge mapping definition used for extracting the domain ontology

from the content repository is presented in Appendix C. Here, we provide a brief overview of

the extracted ontology:

1 In this particular example, the document is provided as an inline argument.

76

• All of the built-in and custom node types in the content repository are represented as

ontology classes. The native inheritance hierarchy in the content repository is reflected

as super-class, sub-class relations (see Section 3.2.1).

• The nodes in the workspace that belong the IPTC News Codes categorization tree and

the “taxonomy” of namespaced tags are all represented as ontology classes. Since

the nodes in question all fit to the “hierarchical pattern” described in Section 3.4.1,

the super-class, sub-class relations are set accordingly.For example, “Cancer” and

“NeurologicalDisease” are both subclasses of “Disease”, and “Disease”, in turn, is a

subclass of “Health”.

• For each JCR node of type “news:newsArticle”, a class individual is generated. The

individuals are named after the value of the “title” property in the workspace. By de-

fault, all of these individuals belong to at least the previously generated ontology class

“http://www.srdc.com.tr/news#newsArticle”. However, through the value referenced

by the “categorizedBy” property additional container classes are asserted (see Section

3.4.4).

• The object property “http://iks-project.org/companyname/repositoryname/workspace-

name#categorizedBy” is also asserted in the knowledge basebased on the guidelines

described in Section 3.4.3.

• The data type property “http://www.srdc.com.tr/iks/jcr2ont#path” is a reserved property

used by the hybrid search algorithm to associate the actual documents indexed by the

external full-text search engine with the individuals in the knowledge base. The value

of the data type property is set to the native path expressionused in the repository to

reach the node.

Once the ontology is extracted by the JCR-to-Onto Bridge, itis aligned with a subset of

the MeSH ontology described in [90] by asserting equivalence of certain classes through the

Protégé-OWL framework. The ontology extracted by the JCR-to-Onto Bridge framework is

loaded on to the search service in a manner described in Section 4.5. For ease of use, this

process is handled as an event in a custom built Protégé plug-in.

77

5.3 Pilot Use Cases for Search

Here, we evaluate the value-added features of the proposed hybrid search methodology in the

following dimensions:

1. To what extent keyword-based look-up of concepts enhances search results,

2. Given a set of full-text search results, to what extent thesemantically related documents

can be retrieved,

3. What faceted-browsing capabilities are provided.

To perform this demonstration, we have implemented a Java client that invokes the RESTful

functions described in Section 4.5. On top of the Java client, a Rich-Internet Application

(RIA) [91] implemented in Flex v.3 [92] is deployed.

Concept look-up may either be used for discovering the list of semantically related terms or

for finding documents through the concepts in the ontology.

Case 1: The simplest case is suggesting related terms by scanning the horizontal ontologies

such as WordNet [80] or dbPedia [81]. When queried with the keyword “hijack”, the follow-

ing are the top results retrieved from the search service:

PiratesHijackShipOffSomalia,Score: 118

GermanShipHijackedByPirates,Score: 77

OperaExaminesScientistsDeath,Score: 8

SydneyOperaHouseArchitectDies,Score: -23

WorldMiddleEastTelAvivOperaDropsPlansForWagner,Score: -23

Most of these documents are directly obtained from the full-text search engine. On the other

hand, articles such as “SydneyOperaHouseArchitectDies” and “WorldMiddleEastTelAviv-

OperaDropsPlansForWagner” are present simply because they are semantically related to one

of the articles that explicitly contain the term “hijack” , namely; “OperaExaminesScientists-

Death”.

78

Along with these resources, various synonymous and relatedterms are also presented to the

user. These terms include, but are not restricted to the following: “pirate”, “take over”,

“seize”, “crime”. The user may now double click on any of these terms, say “seize”, and

repeat the whole search process. In such a case, the new result set becomes:

PiratesSeizeShipOffSomalia,Score: 73

MaoistRebelsSeizeIndianTrain,Score: 16

PiratesHijackShipOffSomalia,Score: 1

GermanShipHijackedByPirates,Score: -32

GunmenSeizeDarfurAidWorkers,Score: -58

It is important to note that some articles that have not been included in the former result set

are now available.

Case 2: Another use of concept look-up is for finding the ontology classes whose labels or

URIs are syntactically similar to the given keywords.

As an example, consider the case when the search service is queried with the term “vinicul-

tural”. The domain ontology that the hybrid search engine uses in the background contains the

class “Viniculture”. Even though none of the indexed documents can be retrieved by full-text

querying, the hybrid search engine responds by some quite surprising results:

PlantingBeginsOnANewVineyard,Score: 74

UKFarmsToastRecordWheatCrop,Score: -73

The algorithm first traverses the TBox of the ontology to find the class “Viniculture”, whose

label portrays a high syntactic similarity with the given keyword. Consequently, “Planting-

BeginsOnANewVineyard”, which is categorized by the news subject code “Viniculture”, is

placed at the top of the list. Finally, the second article is categorized by the news subject

code “Agriculture”. Since the class label has a lower degreeof syntactic similarity with the

keyword “vinicultural”, “UKFarmsToastRecordWheatCrop”has a lower score.

Case 3: A more complex case is a two-level look-up; where first, a setof related terms are

retrieved from a horizontal ontology such as WordNet [80] and then the domain ontology used

79

in the background is scanned for the syntactically related concepts.

For our particular example, neither the documents nor the concepts in the domain ontology

contain the term “lymphoma”. In fact, when queried with the option “useWordNetLookup-

ForSynonyms” disabled, no results are retrieved. On the other hand, WordNet [80] asserts

that “cancer” is its direct hypernym. Now, a WordNet enabledquery results in the retrieval of

the following classes and documents even when the keyword is“lymphoma”.

Classes:

Cancer,Score: 60

Health,Score: -36

NewsSubjectCodes,Score: -36

Disease:Score: -36

Documents:

MysteryDiseaseKillsHomosexuals,Score: 60

CancerBrakeCouldHaltDisease,Score: 60

The only documents that are categorized by the news subject code “Cancer” are indeed the

two brought by the search service. Here, it is possible to seethat once the ontology class

“Cancer” is located, the algorithm traverses - based on a predefined degree of flexibility - its

super and sub classes.

Up to now, various use cases have been presented that demonstrate the power of concept

lookup on semantic search. On the other hand, expanding the result set with semantically

related documents is another promising feature of the hybrid search mechanism. For this

purpose, the result set is first populated with the documentsretrieved from the full-text search

engine. Later on, the set is expanded with semantically related documents whose similarity is

inferred from the relations in the domain ontology.

Case 4: The simplest case where ontology look-up for similar content yields to good results

is when the individuals that share a common class are treatedas similar. Consider that the

search service is experimented with the keywords “swine” and “flu”.

80

*TwoMoreCasesOfSwineFluInUK,

Score: 200,categories: Disease;tags: medical

*SwineFluCoupleFearedDying,

Score: 200,categories: VirusDisease;tags: healthcare,

scienceand medicine

*HowToMakeASwineFluVaccine,

Score: 191,categories: HealthTreatment;tags: research

*WhatScientistsKnowAboutSwineFlu,

Score: 133,categories: Medicine, PrescriptionDrugs;tags: research, medical

*LethalSecretsOf1918FluVirus,

Score: 15,categories:; tags: scienceand medicine,

medical, recreationaldrugs, research

*EyewitnessSurvivingBirdFlu,

Score: 15,categories: Disease, Medicine; tags:

SwineFluMappingTheOutbreak,

Score: 8, categories: VirusDisease;tags: medical

DrugFirmsInventingDiseases,

Score: 0, categories: HealthTreatment, Medicine;

tags: recreationaldrugs, research

CancerBrakeCouldHaltDisease,

Score: 0, categories: HealthTreatment, Cancer;

tags: research, scienceand medicine

81

*LegionnairesDisease,

Score: -10,categories: Education;tags:

*MapPinpointsDiseaseHotspots,

Score: -13,categories: Disease, Ecosystem;tags: animals

RaisingAwarenessOfColonDisease,

Score: -21,categories: Disease; tags:

ExSchoolsChiefRevealsDisease

Score: -21,categories: Disease;tags: lifestyle

MuscleDiseaseCareFallsShort

Score: -21,categories: Disease;tags:

LymeDisease

Score: -21,categories: Education;tags: research

For convenience, the documents retrieved from the full-text search engine are marked with

an asterisk. The others are retrieved due to their semantic similarity. For example, “Can-

cerBrakeCouldHaltDisease” is semantically related to theindividual “HowToMakeASwine-

FluVaccine” through the classes “HealthTreatment” and “research”, and to the individual

“SwineFluCoupleFearedDying” through the class “scienceand medicine”. These concepts

are displayed to the user as on Figure 5.1.

Case 5: An improved version of Case 4 is when the individuals that share a common class

- and therefore are assumed to be related - are identified through ontology reasoning. The

keywords for this example will be “atopic” and “eczema”:

PyschiatryCanCureSkinDisorders,Score: 107,

GeneticCluesToEatingDisorders,Score: -88,

The only document that contains these keywords is the one titled “PyschiatryCanCureSkinDis-

orders”; and it is categorized by an arbitrary class named “PsychiatryPsychology”. One of

82

Figure 5.1: Concepts associated with the search results

the indirect subclasses of “PsychiatryPsychology” is “EatingDisorders”. On the other hand,

the second document is categorized by a third class named “EatingDisorder”. Equivalence

of the two classes “EatingDisorders” and “EatingDisorder” is inferred through ontology rea-

soning. Consequently, “GeneticCluesToEatingDisorders”becomes an indirect individual of

“PsychiatryPsychology”; and that is why it is in the result set.

Case 6: The most complex case is when individuals that share the same property values, or

equivalently those that are related through some object properties are identified as similar.

Consider the case with the keywords “female” and “chancellor”:

UKsaysMerkelbacksFiscalBoost,Score: 127

MerkelOffersStateAidForOpel,Score: 66

GermanyAgreesBadBankScheme,Score: 16

EntertainmentStingScoopsMusicHonour,Score: 8

KylieSweepsAussieMusicAwards,Score: 8

83

Even though the article “GermanyAgreesBadBankScheme” does not contain the keywords,

as illustrated on Figure 5.2, the two individuals in the ontology are connected via their object

properties.

Figure 5.2: Utilization of external ontologies in search

Finally, the real value of the hybrid search solution is in its support for faceted search. As you

would recall, faceted search enables users to navigate a multi-dimensional information space

by combining text search with a progressive narrowing of choices in each dimension [48].

Case 7: The initial set of results received from the search servicemay be too broad; conse-

quently, they have to be narrowed down to those that are related to a selected set of ontology

resources.

In our example, a query with the keyword “disease” will return far too many results. However,

as showng on Figure 5.3, with a progressive selection of classes, the user narrows down the

choices to only those categorized by “Cancer” and “NeurologicalDisease”.

The set of returned documents now becomes:

MysteryDiseaseKillsHomosexuals,Score: 60

CancerBrakeCouldHaltDisease,Score: 60

MotorNeuroneDiseaseGeneClue,Score: -140

84

Figure 5.3: Faceted-search with a progressive selection ofclasses

Case 8: As opposed to Case 7, the initial set of keywords may be insufficient to retrieve all

related documents; however, the suggested choices providemeans to change the search scope

such that omitted results are now included.

Suppose search is initiated with the keyword “viniculture”. As illustrated on Figure 5.4, only

two documents: “PlantingBeginsOnANewVineyard” and “UKFarmsToastRecordWheatCrop”

are returned. “PlantingBeginsOnANewVineyard” is categorized by the news subject code

“Viniculture” whereas “UKFarmsToastRecordWheatCrop” by“ArableFarming”. However,

the search service lists the names of the indirectly relatedclasses, too.

The user explicitly excludes the two classes “NewsSubjectCodes”, “Viniculture” and “Arable-

Farming” from the selection list as shown on Figure 5.4. “EconomyBusinessFinance” is in-

cluded, whereas “Agriculture” is set to “not selective”. Furthermore, the keyword is changed

from “viniculture” to “wine”. As explained in Section 4.3.4, this condition implies that first

the EXLUDE operator will be applied on the classes “NewsSubjectCodes”, “Viniculture”,

85

Figure 5.4: Faceted-search refined with new keywords and concepts

“ArableFarming”; therefore, results that belong to these categories will be pruned. Docu-

ments categorized by “Agriculture” will be returned; however, their scores will be kept low.

Finally, articles that are categorized by “EconomyBusinessFinance” will be returned together

with those whose text contains the term “wine”. As a result ofthis iteration, the classes and

the received synonyms will change. The process will continue until the user is satisfied with

the results.

86

CHAPTER 6

RELATED WORK

In the preceding chapters, first an ontology extraction framework from JSR-170 compliant

content repositories has been presented. Then, the implementation details of the hybrid search

mechanism that works on the extracted ontologies have been thoroughly discussed. Finally,

the value of the ontology extraction framework and the hybrid search mechanism combined

has been evaluated from a content management system’s pointof view. Consequently, our

discussion in this chapter will mainly revolve around threetopics; that is, ontology extrac-

tion frameworks, enhancements over full-text search and finally the use of the semantic web

technologies for content management.

6.1 Ontology Extraction from Relational Databases

Making the semantic relations implicit in the schema of a database available to other semantic

web applications has been a popular research problem. In this respect, various papers have

been published [64], [65], [66], [67], [68] and some prototype applications [93], [94] have

been built.

Based on the context, the process described in the aforementioned works fall into either of the

two categories:

1. Automatically or semi-automatically generating ontologies from the available entity-

relationship model, the database schemas and the instancesin the database,

2. Defining explicit mappings between the database schema and parts of an existing on-

tology.

87

Although these approaches can be exploited as they are; they, too, have their own limitations.

The former approach is particularly valuable in its abilityto automate the ontology extraction

process. Some works [68] even utilize heuristic rules to increase the performance. However,

the generated ontologies may be of poor practical significance to the user community if they

are not properly enhanced with the domain knowledge. Nevertheless, the process provides an

initial means for semantisizing the database schema and acts as a gap-bridge between existing

database applications and the semantic web [68].

The latter approach eliminates the need for alignment with further domain knowledge as it

starts working with domain ontologies already from the beginning. The user simply maps

the views of the source database to terminologies in an existing target ontology. The obvious

advantage over (1) is that in the end, an ontology whose T-Boxassertions describe well the

particular domain and whose A-Box is populated by the instances in the database can be

obtained. On the other hand, it assumes that such domain ontologies will be readily available

to work with. Furthermore, mappings are defined by hand, whereas in (1) the whole process

is automated.

Below we provide a brief summary of some selected work:

VisAVis: “An Approach to an Intermediate Layer between Ontologies and Relational Database

Contents”

The motivation behind the VisAVis approach comes from the need to make information that

is locked in the relational databases on the web, which is often referred to as the deep web,

be properly retrieved by web search engines [64]. The proposed solution relies on captur-

ing any combination of datasets from the database and mapping them onto ontology classes.

Consequently, the work falls into the latter category, thatis; explicit mappings between the

database and an existing ontology are defined. However, the authors argue against populating

the ontologies by the data in the database. Therefore, the mapping is defined between the

database schema and the T-Box of the ontology, whereas the A-Box contains only references

to the database instances. In other words, every class in theoriginal ontology is extended with

a special data type property that stores the actual SQL querythat returns the mapped dataset.

A prototype implementation; “VisAVisTab”, is provided as aProtégé [29] plug-in. After open-

ing the ontology that contains the classes of interest and establishing the database connection,

88

the graphical user interface lets the users select the datasets to be used in the mapping process.

The procedure works seamlessly, that is; the user maps columns from possibly multiple tables

in the database to ontology classes, while the corresponding SQL queries are generated in the

background automatically. Intuitively, VisAVis treats each row selected by the SQL query as

an individual of the mapped ontology class when queries are executed on the knowledge base.

However, in that respect, the mapping process may still be considered coarse-grained because

mapping to lower level constructs than ontology classes is not possible.

R2O, an Extensible and Semantically Based Database-to-ontology Mapping Language

R2O is a declarative language to map an existing database to an appropriate ontology imple-

mented in RDF(S) or OWL [66]. The authors consider the work asan extension to some

similar mapping approaches like D2R MAP [95] and D2R [96]. Since the work provides a

mapping methodology rather than an ontology extraction framework, it falls into the same

category as VisAVis. However, R2O enables mappings to be defined in a greater depth: cor-

respondences between both the components of the database schema (i.e. tables, columns,

primary and foreign keys, etc.) and those of the ontology (concepts, relations, attributes, etc.)

can be captured. Unlike VisAVis though, in R2O, the ontologies are populated with instances

from the database. In fact, ODEMapster - a reference mappingengine for R2O - processes

the mapping definitions to populate the ontology with the individuals.

As depicted on Figure 6.1, based on the different levels of overlap between the domain of the

database and that of the ontology, three mapping cases have been identified by R2O:

1. A single database table maps to a single ontology class: In this case, the columns

of the table are mapped to the object or data type properties of the class. For each row

in the table an individual is created where the property values are also set based on the

aforementioned mapping.

2. A single database table maps to multiple ontology classes: Each column of the table

is mapped to the object or data type properties of the same or different classes. However,

for each table record, only a single individual per concept is generated.

3. A single database table maps to multiple ontology classes, where multiple instances

per concept may be generated: Each column of the table is mapped to the object or

data type properties of the same or different classes. For each table record, multiple

89

individuals per concept may be generated.

Figure 6.1: Mapping cases in R2O [66]

The novelty of R2O is in its strength to support mappings even in case of low similarity be-

tween the database and the target ontology. It is primarily due to the fact that different views

can be generated on the database by applying any combinationof joins, unions, projections

and selections. Furthermore, the language allows conditions to be placed on the mapping

definitions so as to control how and when the ontology population takes place. Finally, trans-

formations can be defined that let the data to be modified before it is individualized.

Migrating data-intensive Web Sites into the Semantic Web

In their paper [65], Stojanovic et al. describe a methodology that uses the information in the

relations, attributes, attribute types, primary and foreign keys and inclusion dependencies of

a relational schema for ontology construction. Some predefined mapping rules are executed

to construct ontology classes, establish the inheritance hierarchy among the generated classes

and form the ontology properties. Finally, after the data migration process, the ontology is

populated with instances from the database. The work falls into the former category, that is;

semi-automatic generation of ontologies from the available database schema. As argued in

[66], it is rather a lifting than a mapping process, therefore, situations that require fine-tuned

adjustments will have to be dealt with manually at the “evaluation, validation and refinement

of the generated ontology” step.

90

The RDBToOnto Tool

RDBToOnto [94] is an automatic ontology extraction framework that, like [65], exploits the

structural implications of a database schema. On the other hand, RDBToOnto uses vari-

ous mining techniques to identify patterns that reside particularly in the data but not in its

schema [97], hence allowing more accurate ontologies to be derived. To be more specific,

RDBToOnto allows categorization patterns in the database content to be automatically mined.

In cases where the automatic categorization process fails,users are given the option to manu-

ally control the database attributes to be used in categorization.

Figure 6.2: RDBToOnto uses various mining techniques for further classification [94]

As argued in [97], the fact that “Seafood”, “Beverage” and “Condiment” are all subclasses of

“Product” simply has to do with how frequently each item occurs in the actual dataset. As

one may notice, this information is not available in the database schema; therefore, simply a

flat ontology extraction environment that makes use of the schema alone would not have been

able to detect such taxonomical implications.

91

Up to now, we have seen how the problem of ontology extractionfrom available database

schemas has been dealt with in literature. The problem has been addressed mainly in two

dimensions, that is; either mappings between the database schema and parts of an existing

ontology are defined or the target ontology is semi-automatically generated from the schema

alone. R2O and VisAVis fall into the former category, whereas both Stojanovic et al.’s solution

and the RDBToOnto framework fall into the latter. In R2O, a complete mapping language is

described that takes into account the different combinations of mapping schemes with condi-

tional operators and transformations. R2O populates the target ontology based on the mapping

constructs provided as input. On the other hand, VisAVis chooses not to populate the ontol-

ogy with actual instances but rather with references to the mapped datasets. Stojanovic et

al.’s approach is considered as an automatic ontology extraction framework where the target

ontology is constructed from scratch. Predefined heuristics help extract the semantic rela-

tions present in the database schema that are later on expressed as ontology building blocks.

Finally, the knowledge engineer is given the ability to refine the generated ontology. The

RDBToOnto framework takes it one step further and mines instances in the datasets in search

for patterns that are not explicitly described by the schema.

To the best of our knowledge, the problem of ontology extraction from the JCR model has

not been addressed before. However, the works proposed in the field of ontology extraction

from relational database schemas have particularly been inspiring to our JCR-to-Onto Bridge

framework. Even though content repositories are quite different in structural means from

relational databases, the principal idea of using heuristics to capture the semantics in a content

repository remains the same.

In that respect, JCR-to-Onto Bridge may be considered as a semi-automatic tool for extract-

ing ontologies from JSR-170 compliant content repositories. As discussed in sections 2.6

and 3.4, though, the flexibility of a content repository model - as opposed to the rigid struc-

ture in a relational schema - makes it difficult to define in advance, a solid set of heuristics

that are guaranteed to work with different repository instantiations. Therefore, JCR-to-Onto

Bridge combines both of the aforementioned ontology extraction and mapping approaches

and provides a scheme by which the user maps patterns in the repository to predefined on-

tology construction processes, along with a set of heuristics to extract ontological constructs

from node type definitions. Since JCR-to-Onto Bridge employs a hybrid approach - where the

extraction process can be custom-tailored by applying different mappings on the repository -

92

the resulting formalisms are more suitable for alignment with additional domain information.

Now the user has full control over the produced ontology as opposed to the case where only

some built-in heuristics are utilized. Finally, the mapping definitions enable content repos-

itory updates to be processed and be reflected on the generated ontologies, hence resolving

possible synchronization problems.

6.2 Approaches Integrating Structural and Full-text Search

The idea of using structural queries in combination with full-text search to provide semantic

search capabilities has been addressed by various works in literature: [38], [6], [39], [40] and

[41]. Each work differs in the way it deals with the resources it uses for indexing, the indexing

methodology, at which level (i.e. content, ontology, keyword) it merges the power of full-text

and semantic search and finally the degree of complexity its supports through its structural

queries. However, the process described in the aforementioned works broadly falls into any

of the following three categories:

1. RDF literals and RDF annotations are indexed so that full-text search facilities may be

built over structural queries,

2. An ontology look-up is performed to find semantically relevant terms to those in the

documents and full-text indices are built on the expanded set of terms,

3. Given a set of keywords, the documents as well as their ontological annotations are

searched through and presented to the user in a faceted fashion.

Although these approaches can be exploited as they are; they, too, have their limitations. The

first approach enhances structural query languages with thepower of full-text indexing. As

argued in [39], structural query languages such as SPARQL [49] are not always powerful

enough because search is simply based on the traversal of a directed graph where the RDF

resources are represented by the graph’s nodes and the RDF predicates by its edges. Fur-

thermore, nodes and edges are matched based on either complete string matching techniques

or by using regular expressions, which turns out to be a slow operation. Therefore, works

such as [39] and [41] build full-text indices over the RDF graph and use them in answering

the textually enhanced queries. This approach has the drawback that it simply assumes all

93

information will be available in the form of ontologies. On the other hand, in the context of

a content management system application, it may be most desirable to store the metadata and

only the reference to the content resource in the ontology. In that case, queries can only be run

on the indexed metadata rather than the full textual contentof the documents. Consequently,

a document that contains the query term but has not explicitly been annotated with it will not

be retrieved.

Works studied in the second category propose a different methodology in the level at which

full-text and structural search is merged. Prior to executing textual queries, the frequent terms

in the documents are looked-up from the ontologies and all relevant concepts, individuals and

literals are indexed along with the terms in the document. Consequently, as illustrated in [6], a

document that refers to “Tony Blair” will be retrieved when queried with the term “politician”,

provided that an ontology exists which relates the two terms. Without a doubt, this approach

eliminates the drawbacks of a purely keyword-based search by bringing in relevant results

that would otherwise have been omitted. On the other hand, support for arbitrary structural

queries is still limited.

Similar to those in the second one, works that fall into the third category use terms in the doc-

uments as well as their ontological annotations in search. Contrary to [6] though, QuizRDF

[40] enables the users to form some semantic queries, hence providing a more focused view

of the search results. As outlined in [40], one limitation ofthe methodology proposed in

QuizRDF is that queries can only be made around one class. Obviously, a far better solution

would be to incorporate structural and semantic dependencies among concepts and properties

in the ontologies when forming the queries.

Before going into the details of how these approaches have been complemented within the

scope of this thesis, below we provide a brief summary of someselected work:

The Sesame LuceneSail: RDF Queries with Full-text Search

It is argued in [39], that structural search mechanisms lacksupport for full-text search. Some

structural query languages like SPARQL [49] support simplestring matching functions; how-

ever, they are observed to have negative effects on speed. Therefore, LuceneSAIL aims at

integrating the full-text indexing capabilities into structural search without a loss in perfor-

mance. The proposed methodology is built as an extension to the Sesame triplestore [10],

94

where Lucene [42] is used as the full-text indexer.

LuceneSAIL exploits “SPARQL extensions” so that native queries can be conveyed in two

parts: textual and structural. When it receives the full query, LuceneSAIL separates the textual

part from its structural complement. The textual query is executed on the virtual properties

built over the literals in the graph. On the other hand, the structural query is executed on the

whole triples. The results are merged in the final step.

Semantic Full-Text Search with ESTER: Scalable, Easy, Fast

In their paper titled “Semantic Full-text Search with ESTER: Scalable, Easy, Fast” [6], Bast

et al. describe a search engine that combines full-text search with the powerful semantic

capabilities of ontologies. As argued in [38], the novelty of the approach is in its speed

and scalability compared to other works that implement suchhybrid solutions. The reason

is that for semantic search, instead of performing a direct ontology look-up, ESTER uses

the semantically enhanced full-text indices. In other words, already at the indexing stage,

the ontologies are woven into the document corpus and therefore the semantic relations are

retrievable through keywords.

As described in [6], the relationships between the words in the documents and concepts in the

ontology are established by the entity recognizer. The entity recognizer adds to the beginning

of each document a set of annotations that describe the document content. For example, the

following artificial words are added to an article about TonyBlair:

0 entity:tony blair

0 person:tony blair

1 is a:2

1 politician of:3

2 class:politician

3 country:united kingdom

Intuitively, these set of artificial words provide not only the annotations for some specific

terms in the document but also the values of various object ordata type properties and even

95

superclasses of the associated entities. Based on this information, ESTER is able to answer

semantic queries such as “audience pope person:*” and “class:politician - is a - person:*” or

even provide joins of both.

Even though such an approach scales well to large corpora, complex queries require all on-

tological facts and relations to be encoded in every single document for efficient processing.

Consider now that the ontology contains further information about United Kingdom; e.g. that

it is located in Europe. Now, a query that requests all documents related to the politicians in

Europe cannot be answered unless multiple joins are performed. First of all, the entities that

are related to Europe with an object property named “locatedin” should be retrieved. Later

on the query has to be repeated for all such entities and the results have to be joined. In case

of multiple joins, there is no clear advantage of representing the ontological annotations as

artificial words since the same behavior can be achieved through ontology traversal.

QuizRDF: Search Technology for the Semantic Web

The motivation behind QuizRDF [40] is that only a very small proportion of the WWW re-

sources are annotated semantically and therefore it is preferable to preserve the power of

traditional free text search engines while providing search facilities that exploit the power of

ontologies.

In QuizRDF, both the content resources and their RDF annotations are indexed. The indexing

mechanism works as follows: First, the content descriptorsare retrieved. QuizRDF obtains

the content descriptors either by performing a full text analysis on the content or by processing

the annotations that are directly related to the resource through a datatype or object property as

shown in Figure 6.3. Then the ontological index is created, that is; for each content descriptor,

the ontology class it belongs to, the names of its propertiesand the RDF resource itself is

indexed as shown in Figure 6.4.

QuizRDF assembles keyword-based search and semantic browsing of content in a single user

interface. On start-up, a text box and a drop-down menu is presented. The user enters ar-

bitrary keywords into the text box. QuizRDF returns a list ofRDF resources ranked based

on their relevance to the query. The ranking mechanism is based on a variation of the well-

known “tf.idf” vector product scheme [44]. While presenting the ranked resources to the user,

QuizRDF also computes the classes associated with each resource and updates the drop-down

96

Figure 6.3: Ontology-based indexing in QuizRDF [40]

Figure 6.4: Indices created on content descriptors [40]

list. When the user selects a certain class from the drop-down list, the results that are not in-

stances of the selected class are filtered out. Furthermore,QuizRDF allows users to narrow

down the search scope by providing values for the propertiesof the displayed classes. How-

ever, queries around multiple classes that require unions are currently not supported. The

authors have identified it as future work.

Even though the hybrid search approach presented in this thesis complement works described

in [38], [6], [39], [40] and [41]; there are some differences. First of all, [40] assumes that the

97

content resources reside on the RDF graph and therefore are indexed together with their anno-

tations. However, to avoid overcrowded ontologies that no reasoner is able to process, it is not

our intention neither with JCR-to-Onto Bridge nor an alternative ontology extraction scheme

to populate the domain ontology with the document content. We keep the metadata in the

domain ontologies, while the documents reside in the content repository. Consequently, our

hybrid search mechanism uses an external full-text search engine and works with the domain

ontologies instead. The results from the ontological and the full-text search components are

merged at a latter step. In this respect, our approach is different from [6], too, in that we are

still able to exploit the reasoning power of the knowledge base while answering the queries.

As for the concept driven retrieval of results presented earlier in Section 4.3, we strictly ex-

ploit the power provided by the extended structural and semantic queries discussed in [39]

and [41]. Finally, we build our faceted-search interface ina similar way to [40], where search

scope can iteratively be narrowed or extended.

6.3 Semantic Web Applications in the News Domain

The use of the semantic web technologies in the news domain has been addressed by various

papers [98], [99] and research projects [100]. The domain issuitable for such experimentation

as the semantic web technologies can facilitate the management of large volumes of news

documents [98]. Even though the works discussed in this section are domain-specific, the

proposed methodology is applicable to other domains, hence; are of relevance to this thesis.

The works addressed herein attack the problem by: (i) developing domain ontologies that

enable semantic services to be built, (ii) implementing annotation and information retrieval

tools that use natural language processing or statistical methods to extract metadata from news

articles and finally, (iii) building semantic features on top of existing search paradigms. Below

we discuss the novelty of each approach.

An experience with Semantic Web technologies in the news domain

In their paper titled “An experience with Semantic Web technologies in the news domain”

[98], Fernandez et al. describe the motivation and the proposed methodology behind the

NEWS project [100]. NEWS is an information society technologies project funded by the

European Commission in the sixth framework programme. As stated in [98], news agencies

98

produce content in the form of news items describing an event. Most of this content is text, but

they also produce multimedia content in different human languages. In this regard, managing

all this heterogeneous information in an efficient manner becomes problematic. Fernandez et

al. propose a framework that automatically annotates content with the concepts in a domain

ontology. The ontology is engineered beforehand, and it covers the main concepts required

in the news domain. It is a lightweight RDFS [63] ontology andprovides the basic classes,

properties and instances for news item categorization and content annotation. The ontology

resources have labels in multiple languages, too.

Bringing the IPTC News Architecture into the Semantic Web

It is argued in [99] that the abundance of different metadata formats in the news production

process leads to interoperability problems. Therefore, the paper discusses how an OWL [13]

ontology for the IPTC News Architecture [72] is designed andlinked with other multimedia

metadata standards such as EXIF [101], DIG35 [102] and XMP [103]. Initially, an OWL

ontology has been engineered from the IPTC News Architecture framework. It is argued in the

paper that some preprocessing (i.e. flattening of the XML structure, reification of statements,

code resolution, etc.), was necessary. The IPTC News Subject codes taxonomy [71] has also

been OWLized. The links with the other multimedia metadata standards have been established

through asserting class or property equivalences. Finally, the news documents are annotated

with these ontologies.

The correctness of the engineered ontology infrastructurehas been evaluated through a se-

mantic search and browsing interface. A rather interestingexample demonstrated in the paper

is that when searched with “Lyon”, a photo is retrieved whoseannotations do not explicitly

contain the search term. In fact, the caption of the photo mentions Juninho Pernambucano,

recognized by SPROUT as a football player, who is later on identified through dbPedia as a

member of the soccer club “Lyon”.

As you would recall, the motivation behind the JCR-to-Onto Bridge framework is similar

to that of the works described in this section, that is; to facilitate the use of semantic web

technologies. However, it is different in the sense that the scope is not restricted to the news

domain but generalized for all types of content management systems. In this respect, JCR-

to-Onto Bridge provides the semi-automated means for extracting ontologies from JSR-170

compliant content repositories, whereas the domain ontologies in [98], [99] and [100] are

99

engineered. Furthermore, to demonstrate the value of the JCR-to-Onto Bridge approach,

we have developed a hybrid search methodology that combinesthe power of structural and

semantic search on ontologies with that of the full-text search on documents. The proposed

solution also uses external ontology lookup (i.e. WordNet [80] and dbPedia [81]), however,

complements [99] with its support for structural and semantic queries.

100

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Our discussion in this thesis revolved around an ontology extraction framework, namely the

JCR-to-Onto Bridge, and a semantic search mechanism built on top of it. In Chapter 3, we

outlined the various issues related to the ontology extraction process, the content modeling

patterns we have exploited and finally the mapping schemes. In the following chapter, namely

Chapter 4, the algorithmic details of our hybrid search mechanism were presented. Finally,

the power of the JCR-to-Onto Bridge framework was demonstrated in Chapter 5 through the

value-added semantic search features of the proposed hybrid search engine.

The motivation behind the JCR-to-Onto Bridge framework hasbeen to facilitate the use of

semantic technologies within the context of a content management system. JCR-to-Onto

Bridge, which may be considered as a semi-automatic tool forextracting ontologies from JSR-

170 compliant content repositories, frees the semantics that would otherwise be locked up in

the repository. The framework combines both ontology extraction and mapping approaches;

hence, it works around a set of built-in heuristics and at thesame time provides the freedom

to map patterns in the repository to different construction processes.

The semantic search engine built on top of the JCR-to-Onto Bridge framework combines the

power of structural and semantic search on ontologies with that of the full-text search on

documents. It uses an external full-text search engine and works with the domain ontologies

instead. Our approach is different from [6], in that we are still able to exploit the reasoning

power of the knowledge base while answering the queries. Thehybrid search mechanism

complements QuizRDF [40] by providing more complex faceted-search behavior and support

for extended queries. Finally, the service can be invoked anytime, anywhere through various

REST operations.

101

The work produced in this thesis is merely an initial attempttowards making the content

management lifecycle semantically enabled if the whole spectrum of features is taken into

consideration. First of all, the mapping scheme of the JCR-to-Onto Bridge framework cur-

rently does not have support for transformations; that is, data in the repository is directly

translated into the ontology attributes. Furthermore, updating the knowledge base when the

content repository grows is left as a future challenge. However, we argue that the queries

used in the mappings will serve as templates to match againstwhenever a new event is fired

from the content repository. As outlined in Section 4.4, thehybrid search mechanism may

not be suitable for large ontologies, either. In fact, further optimizations such as “processing

in chunks”, “first n results retrieval”, “T-Box traversal” and inevitably building appropriate

indices on the ontology resources may be necessary.

102

REFERENCES

[1] S. McKeever, “Understanding Web content management systems: evolution, lifecycle
and market,”Industrial Management& Data Systems, vol. 103, no. 9, pp. 686-692,
2003.

[2] “Effective Web Content Management: Empowering the Business User While IT Main-
tains Control,” Ektron, Inc., Amherst, NH, USA, Tech. Rep.,2001.

[3] J. Alpert, and N. Hajaj, “We knew the web was big...,”Google Inc., 2008. [On-
line]. Available: http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.
[Accessed: Jun. 6, 2009].

[4] D. M. Le, and L. Lau, “An Open Architecture for Ontology-Enabled Content Man-
agement Systems: A Case Study in Managing Learning Objects,” in On the Move to
Meaningful Internet Systems: CoopIS, DOA, GADA, and ODBASE, Vol. 4275/2006, pp.
772-790, 2006.

[5] N. Guarino, R. Poli, Kluwer Academic Publishers, In Press Substantial, and T. R. Gru-
ber, “Toward Principles for the Design of Ontologies Used for Knowledge Sharing,”in
Formal Ontology in Conceptual Analysis and Knowledge Representation, Kluwer Aca-
demic Publishers, in press. Substantial revision of paper presented at the International
Workshop on Formal Ontology, 1993.

[6] H. Bast, F. M. Suchanek, and I. Weber, “Semantic Full-Text Search with ESTER: Scal-
able, Easy, Fast,”in Proceedings of ICDM Workshops, 2008, pp. 959-962.

[7] D. Beckett, and B. McBride, “RDF/XML Syntax Specification (Revised),”W3C, 2004.
[Online]. Available: http://www.w3.org/TR/rdf-syntax-grammar/. [Accessed: Jun. 6,
2009].

[8] “World Wide Web Consortium,”W3C, 2009. [Online]. Available: http://www.w3.org/.
[Accessed: Jun. 6, 2009].

[9] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifiers (URI):
Generic Syntax,”The Internet Engineering Task Force, 1998. [Online]. Available:
http://tools.ietf.org/html/rfc2396. [Accessed: Jun. 6, 2009].

[10] J. Broekstra, A. Kampman, and F. v. Harmelen, “Sesame: AGeneric Architecture for
Storing and Querying RDF and RDF Schema,” inProceedings of the First International
Semantic Web Conference Sardinia, 2002, pp. 54-68.

[11] F. Manola, E. Miller, and B. McBride, “RDF Primer,”W3C, 2004. [Online]. Available:
http://www.w3.org/TR/rdf-primer/#rdfmodel. [Accessed: Jun. 6, 2009].

[12] D. Brickley, R.V. Guha, and B. McBride, “RDF VocabularyDescription Language 1.0:
RDF Schema,”W3C, 2004. [Online]. Available: http://www.w3.org/TR/rdf-schema/.
[Accessed: Jun. 6, 2009].

103

[13] D. L. McGuinness, and F. v. Harmelen, “OWL Web Ontology Language,”W3C, 2004.
[Online]. Available: http://www.w3.org/TR/owl-features/. [Accessed: Jun. 6, 2009].

[14] M. Pagels, “DAML: The DARPA Agent Markup Language Homepage,” Defense Ad-
vanced Projects Agency, 2006. [Online]. Available: http://www.daml.org/. [Accessed:
Jun. 6, 2009].

[15] J. Heflin, “OWL Web Ontology Language: Use Cases and Requirements,”W3C, 2004.
[Online]. Available: http://www.w3.org/TR/webont-req/#onto-def. [Accessed: Jun. 6,
2009].

[16] L. Quin, “Extensible Markup Language (XML),”W3C, 2009. [Online]. Available:
http://www.w3.org/XML /. [Accessed: Jun. 6, 2009].

[17] “openRDF.org,” 2009. [Online]. Available: http://www.openrdf.org/. [Accessed: Jun. 6,
2009].

[18] “The Sesame library,”openRDF.org. [Online]. Available: http://www.openrdf.org/doc-
/sesame/users/ch01.html#d0e69. [Accessed: Jun. 6, 2009].

[19] J. Bock, P. Haase, Q. Ji, and R. Volz, “Benchmarking owl reasoners,” inARea2008 -
Workshop on Advancing Reasoning on the Web: Scalability andCommonsense, 2008.

[20] “User Guide for Sesame: An Overview of the Sesame Architecture,” openRDF.org,
[Online]. Available: http://www.openrdf.org/doc/sesame/users/userguide.html#d0e129.
[Accessed: Jun. 6, 2009].

[21] G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki, “Querying Com-
munity Web Portals,” Institute of Computer Science, FORTH,Heraklion, Greece, Tech.
Rep., 2000.

[22] “The SeRQL query language (revision 1.2),”openRDF.org. [Online]. Available: http://-
www.openrdf.org/doc/sesame/users/ch06.html. [Accessed: Jun. 6, 2009].

[23] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM - A Pragmatic Semantic Reposi-
tory for OWL,” in Proceedings of Web Information Systems Engineering 2005 Interna-
tional Workshops, 2005, Vol. 3807, pp. 182-192.

[24] “User Guide for Sesame: Repositories and Inferencing,” openRDF.org, [Online]. Avail-
able: http://www.openrdf.org/doc/sesame/users/userguide.html#d0e115. [Accessed:
Jun. 6, 2009].

[25] “User Guide for Sesame: Custom inferencing,”openRDF.org, [Online]. Available:
http://www.openrdf.org/doc/sesame/users/userguide.html#d0e803. [Accessed: Jun. 6,
2009].

[26] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Description logic programs: com-
bining logic programs with description logic,” inProceedings of the 12th international
conference on World Wide Web, 2003, pp. 48-57.

[27] “Jena - A Semantic Web Framework for Java,”sourceforge.net. [Online]. Available:
http://jena.sourceforge.net/. [Accessed: Jun. 6, 2009].

104

[28] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds, “Efficient RDF Storage and Re-
trieval in Jena2,” inProceedings of the 1st International Workshop on Semantic Web and
Databases, 2003, pp. 131-151.

[29] Stanford Center for Biomedical Informatics Research,“Protégé,”Stanford University,
2009. [Online]. Available: http://protege.stanford.edu/. [Accessed: Jun. 6, 2009].

[30] “SWOOP: Semantic Web Ontology Editor,”Google Code, 2009. [Online]. Available:
http://code.google.com/p/swoop/. [Accessed: Jun. 6, 2009].

[31] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen,“The protégé owl plugin:
An open development environment for semantic web applications,” in Proceedings of
Semantic Web - ISWC, 2004, pp. 229-243.

[32] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C.Wroe, “A practical guide
to building OWL ontologies using the Protege-OWL plugin andco-ode tools edi-
tion 1.0,” August 2004. [Online]. Available: http://www.co-ode.org/resources/tutorials-
/ProtegeOWLTutorial.pdf. [Accessed: Jun. 6, 2009].

[33] “KAON2,” 2006. [Online]. Available: http://kaon2.semanticweb.org/. [Accessed: Jun.
6, 2009].

[34] Information Systems Group, “Hermit OWL Reasoner.” [Online]. Available: http://-
www.hermit-reasoner.com/. [Accessed: Jun. 6, 2009].

[35] V. Haarslev, R. Moller, and M. Wessel, “Querying the semantic web with racer+ nrql,”
in Proceedings of the KI-2004 International Workshop on Applications of Description
Logics (ADL‘04), 2004.

[36] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A practical OWL-DL
reasoner,”Web Semantics: Science, Services and Agents on the World Wide Web, vol. 5,
no. 2, pp. 51-53, June 2007.

[37] “The new DIG interface standard (DIG 2.0),” 2006. [Online]. Available: http://dl.kr.org-
/dig/interface.html. [Accessed: Jun. 6, 2009].

[38] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber, “Ester:efficient search on text, enti-
ties, and relations,” inProceedings of SIGIR, 2007, pp. 671-678.

[39] E. Minack, L. Sauermann, G. Grimnes, C. Fluit, and J. Broekstra, “The Sesame Lucene
Sail: RDF Queries with Full-text Search,” NEPOMUK Consortium, Tech. Rep. 2008-1,
2008.

[40] J. Davies, and R. Weeks, “QuizRDF: search technology for the semantic Web,” inthe
37th Annual Hawaii International Conference on System Sciences, 2004.

[41] “LARQ - Free Text Indexing for SPARQL,”sourceforge.net. [Online]. Available: http://-
jena.sourceforge.net/ARQ/lucene-arq.html. [Accessed: Jun. 6, 2009].

[42] The Apache Software Foundation, “Apache Lucene,” 2009. [Online]. Available: http://-
lucene.apache.org/java/docs/. [Accessed: Jun. 6, 2009].

[43] E. Hatcher, and O. Gospodnetic,Lucene in Action(In Action series). Manning Publica-
tions, December 2004.

105

[44] G. Salton, “Developments in automatic text retrieval,” Science, vol. 253, pp. 974-979,
1991.

[45] The Apache Software Foundation, “Apache Solr,” 2009. [Online]. Available: http://-
lucene.apache.org/solr/. [Accessed: Jun. 6, 2009].

[46] R. T. Fielding, “Architectural Styles and the Design ofNetwork-based Software Archi-
tectures,” Ph.D. dissertation, University of California,Irvine, 2000.

[47] R. T. Fielding et al., “Hypertext Transfer Protocol - HTTP/1.1: Method Definitions,”
W3C. [Online]. Available: http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.
[Accessed: Jun. 6, 2009].

[48] “SIGIR’2006 Workshop on Faceted Search: Call for Participation,” Aug. 10, 2006. [On-
line]. Available: http://facetedsearch.googlepages.com/. [Accessed: Jun. 6, 2009].

[49] E. Prud’hommeaux, and A. Seaborne, “SPARQL Query Language for RDF,”W3C,
2008. [Online]. Available: http://www.w3.org/TR/rdf-sparql-query/. [Accessed: Jun. 6,
2009].

[50] J. Perez, M. Arenas, and C. Gutierrez, “Semantics and Complexity of SPARQL,” in
Proceedings of the 5th International Semantic Web Conference, 2006, Vol. 4273/2006,
pp. 30-43.

[51] The Apache Software Foundation, “Apache Jackrabbit,”2009. [Online]. Available:
http://jackrabbit.apache.org/. [Accessed: Jun. 6, 2009].

[52] B. Chapuis, “JCR or RDBMS? Why, when, how?,”Day Software AG, 2008. [Online].
Available: http://dev.day.com/microsling/content/blogs/main/jcrrdbmsreport.html. [Ac-
cessed: Jun. 6, 2009].

[53] S. Patil, “What is Java Content Repository,”O’Reilly Media, Inc., 2006. [On-
line]. Available: http://www.onjava.com/pub/a/onjava/2006/10/04/what-is-java-content-
repository.html. [Accessed: Jun. 6, 2009].

[54] D. Nuescheler, “JSR 170: Content Repository for Java technology API,”Java Commu-
nity Process, 2006. [Online]. Available: http://jcp.org/en/jsr/detail?id=170. [Accessed:
Jun. 6, 2009].

[55] D. Nuescheler et al., “Content Repository API for Java Technology Specification,” Day
Software AG, Tech. Rep., 2004.

[56] “CRX 1.4.1 Setup Guide,” Day Software AG, Tech. Rep., 2009.

[57] J. Clark, and S. DeRose, “XML Path Language (XPath) Version 1.0,” W3C, 1999. [On-
line]. Available: http://www.w3.org/TR/xpath. [Accessed: Jun. 6, 2009].

[58] “Information technology - Database languages - SQL,”International Organization
for Standardization, 1999. [Online]. Available: http://www.iso.org/iso/iso catalogue-
/cataloguetc/cataloguedetail.htm?csnumber=26196. [Accessed: Jun. 6, 2009].

[59] D. Nuescheler, “What is JCR/JSR-170/JSR-283?.” [Online]. Available: http://-
www.slideshare.net/uncled/introduction-to-jcr. [Accessed: Jun. 6, 2009].

106

[60] Sun Microsystems, Inc., “Java Transaction API (JTA),”2001. [Online]. Availabe: http://-
java.sun.com/javaee/technologies/jta/. [Accessed: Jun. 6, 2009].

[61] D. Nuescheler, “JSR 283: Content Repository for JavaTMTechnology API Version 2.0,”
Java Community Process, 2009. [Online]. Available: http://jcp.org/en/jsr/detail?id=283.
[Accessed: Jun. 6, 2009].

[62] D. Choy, E. Guresh, A. Brown, and M. McRae, “OASIS Content Management
Interoperability Services (CMIS) TC,”OASIS, 2008. [Online]. Available: http://-
www.oasis-open.org/committees/tc home.php?wgabbrev=cmis#technical. [Accessed:
Jun. 6, 2009].

[63] D. Choy, and E. Guresh, “Content Management Interoperability Services - Domain
Model Version 0.62a,”OASIS CMIS TC, Tech. Rep. draft, 2009. [Online]. Available:
http://www.oasis-open.org/committees/download.php/32774/CMIS%20Part%20I%20–
%20Domain%20Model%20v0.62a%20with%20ACLs.doc. [Accessed: Jun. 6, 2009].

[64] N. Konstantinou, D. E. Spanos, M. Chalas, E. Solidakis,and N. Mitrou, “VisAVis: An
Approach to an Intermediate Layer between Ontologies and Relational Database Con-
tents,” in Proceedings of International CAiSE Workshop on Web Information Systems
Modeling (WISM), 2006, pp. 1050-1061.

[65] L.Stojanovic, N. Stojanovic, and R. Volz, “Migrating data-intensive Web Sites into the
Semantic Web,” inProceedings of the 2002 ACM symposium on Applied computing,
2002, pp. 1100 - 1107.

[66] J. Barrasa, O. Corcho, and A. Gómez-Pérez, “R2O, an Extensible and Semantically
Based Database-to-Ontology Mapping Language,” in Bussler, C., Tannen, V., Fundulaki,
I. (eds.) SWDB, 2004, vol. 3372.

[67] N. Cullot, R. Ghawi, and K. Yétongnon, “DB2OWL: A Tool for Automatic Database-
to-Ontology Mapping,” inProceedings of the Fifteenth Italian Symposium on Advanced
Database Systems, SEBD, 2007, pp. 491-494.

[68] Z. Xu, S. Zhang, and Y. Dong, “Mapping between Relational Database Schema and
OWL Ontology for Deep Annotation,” inProceedings of the International Conference
on Web Intelligence, 2006, pp. 548-552.

[69] “Apache Jackrabbit - Node Type Notation,”The Apache Software Foundation. [On-
line]. Available: http://jackrabbit.apache.org/node-type-notation.html. [Accessed: Jun.
6, 2009].

[70] S. Bechhofer, F. v. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel,
and L. A. Stein, “OWL Web Ontology Language Reference: Enumerated datatype,”
W3C, 2004. [Online]. Available: http://www.w3.org/TR/owl-ref/#EnumeratedDatatype.
[Accessed: Jun. 6, 2009].

[71] “IPTC News Subject Codes,”IPTC, 2008. [Online]. Available: http://cv.iptc.org-
/newscodes/subjectcode/. [Accessed: Jun. 6, 2009].

[72] “The International Press Telecommunications Council,” IPTC, 2009. [Online]. Avail-
able: http://www.iptc.org/cms/site/index.html?channel=CH0086. [Accessed: Jun. 6,
2009].

107

[73] “NewsCodes: Metadata Taxonomies for the News Industry,” IPTC.
[Online]. Available: http://www.iptc.org/cms/site/index.html;jsessionid=-
a00DKRfpdvW?channel=CH0088. [Accessed: Jun. 6, 2009].

[74] “NewsCodes: View any of them...,”IPTC. [Online]. Available: http://www.iptc.org-
/cms/site/index.html;jsessionid=a00DKRfpdvW?channel=CH0103. [Accessed: Jun. 6,
2009].

[75] Y. Kalfoglou, and M. Schorlemmer, “Ontology mapping: the state of the art,”The
Knowledge Engineering Review, vol. 18, no. 1, pp. 1-31, 2003.

[76] “flickr,” Yahoo! Inc., 2009. [Online]. Available: http://www.flickr.com/. [Accessed: Jun.
6, 2009].

[77] Y. Hassan-Montero, and V. Herrero-Solana, “ImprovingTag-Clouds as Visual Informa-
tion Retrieval Interfaces,” inInScit2006: International Conference on Multidisciplinary
Information Sciences and Technologies, 2006.

[78] “Wordnet in RDFS and OWL,”W3C, 2004. [Online]. Available: http://www.w3.org-
/2001/sw/BestPractices/WNET/wordnet-sw-20040713.html. [Accessed: Jun. 6, 2009].

[79] A. Dogac, G. B. Laleci, G. Aluc, A. A. Sinaci, W. Behrendt, B. Delacretaz, and J.
M. Pittet, “A semantically Enriched Persistence Mechanismfor Interactive Knowledge
Stack”, Accepted foreChallanges Conference, October 2009.

[80] Cognitive Science Laboratory, Princeton University,“WordNet: a lexical database for
the English language,” 2006. [Online]. Available: http://wordnet.princeton.edu/. [Ac-
cessed: Jun. 6, 2009].

[81] “DBpedia,” 2009. [Online]. Available: http://dbpedia.org/. [Accessed: Jun. 6, 2009].

[82] M. Ehrig, and Y. Sure. “foam: Framework for Ontology Alignment and Mapping,”
Institut AIFB, Universität Karlsruhe, 2005. [Online]. Available: http://www.aifb.uni-
karlsruhe.de/WBS/meh/foam/. [Accessed: Jun. 6, 2009].

[83] C. M. Sperberg-McQueen, and H. Thompson, “XML Schema,”W3C, 2000. [Online].
Available: http://www.w3.org/XML /Schema. [Accessed: Jun. 6, 2009].

[84] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owl knowledge base systems,”
Web Semantics: Science, Services and Agents on the World Wide Web, vol. 3, no. 2-3,
pp. 158-182.

[85] “MySQL 5.1 Reference Manual,”Sun Microsystems, Inc., 2009. [Online]. Available:
http://dev.mysql.com/doc/refman/5.1/en/. [Accessed: Jun. 6, 2009].

[86] “Semantic CMS Reasoning and Data Persistence Components,” SRDC Ltd., Tech. Rep.,
2009.

[87] “Description of Work: Interactive Knowledge Stack forsmall to medium CMS/KMS
providers (IKS),” Salzburg Research Forschungsgesellschaft m.b.H. et al., Tech. Rep.,
Seventh Framework Programme, ICT-2007-4.4, Intelligent Content and Semantics,
2008.

108

[88] B. Delacretaz, “CQ5 Content Models: the Tags,”Day Software AG, 2009. [Online].
Available: http://dev.day.com/microsling/content/blogs/main/cq5tags.html. [Accessed:
Jun. 6, 2009].

[89] D. Raggett, A. L. Hors, and I. Jacobs, “HTML 4.01 Specification,” W3C, 1999. [Online].
Available: http://www.w3.org/TR/html401/. [Accessed: Jun. 6, 2009].

[90] J. S. Nelson, D. Johnston, and B. L. Humphreys, “Relationships in Medical Subject
Headings,” inRelationships in the Organization of Knowledge, pp.171-184, A. C. Bean,
and R. Green, Ed. New York: Kluwer Academic Publishers; 2001.

[91] J. Farrell, and G. Nezlek, “Rich Internet ApplicationsThe Next Stage of Application
Development,” in29th Int. Conference on Information Technology Interfaces, 2007, pp.
413-418.

[92] “Adobe Flex 3,” Adobe Systems Inc.[Online]. Available: http://www.adobe.com-
/products/flex/?promoid=DINEZ. [Accessed: Jun. 6, 2009].

[93] F. Cerbah, “RDBToOnto User Guide, Version 1.2 beta, beta From Relational Databases
to Fine-Tuned Populated Ontologies,” TAO/2008/D7.2a1/v1.2, 2009.

[94] F. Cerbah, “Learning highly structured semantic repositories from relational databases,”
in Proceedings of ESWC, Vol. 5021 of LNCS, pp. 777-781, 2008.

[95] C. Bizer, “D2R MAP - A DB to RDF Mapping Language,” in12th International World
Wide Web Conference, May 2003.

[96] J. Barrasa, O. Corcho, and A. Gómez-Pérez, “Fund Finder: A case study of database-
to-ontology mapping,” inISWC2003 Workshop on Semantic Integration, Sanibel Island,
Florida, 2003.

[97] F. Cerbah, “Mining the Content of Relational Databasesto Learn Ontologies with
Deeper Taxonomies,” inProceedings of ACM International Conference on Web Intel-
ligence, 2008, pp. 553-557.

[98] N. Fernandez et al., “NEWS: Bringing Semantic Web Technologies into News Agen-
cies,” in Proceedings of the 5th International Semantic Web Conference, ISWC 2006,
pp. 778-791.

[99] R. Troncy, “Bringing the IPTC News Architecture into the Semantic Web,” inProceed-
ings of the 7th International Conference on The Semantic Web, 2008, pp. 483-498.

[100] “NEWS: News Engine Web Services,”DFKI GmbH - Ansgar Bernardi, 2006. [On-
line]. Available: http://www.dfki.uni-kl.de/ bernardi/News/. [Accessed: Jun. 6, 2009].

[101] Technical Standardization Committee on AV & IT Storage Systems and Equipment,
“Exchangeable image file format for digital still cameras: Exif Version 2.2,”Japan Elec-
tronics and Information Technology Industries Association, 2002. [Online]. Available:
http://www.digicamsoft.com/exif22/exif22/html/exif22.htm. [Accessed: Jun. 6, 2009].

[102] “DIG35 Initiative Group,”International Imaging Industry Association, 1999. [Online].
Available: http://www.i3a.org/technologies/metadata/. [Accessed: Jun. 6, 2009].

[103] “Extensible Metadata Platform (XMP),”Adobe Systems Inc.[Online]. Available:
http://www.adobe.com/products/xmp/. [Accessed: Jun. 6, 2009].

109

Appendix A

SAMPLE OWL CONSTRUCTS EXTRACTED FROM NODE

TYPE DEFINITIONS

Object Properties:

<owl:ObjectProperty rdf:about="#hasImages">

<rdfs:domain rdf:resource="#CulturalHeritageItem"/>

<rdfs:range rdf:resource="#Images"/>

</owl:ObjectProperty>

Data Properties:

...

...

<owl:DatatypeProperty rdf:about="#location">

<rdfs:domain rdf:resource="#CulturalHeritageItem"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#popularity">

<rdfs:domain rdf:resource="#CulturalHeritageItem"/>

<rdfs:range>

<rdf:Description>

<rdf:type rdf:resource="&owl;DataRange"/>

<owl:oneOf>

<rdf:Description>

<rdf:type rdf:resource="&rdf;List"/>

<rdf:first rdf:datatype="&xsd;string">Not Popular</rdf:first>

<rdf:rest>

<rdf:Description>

<rdf:type rdf:resource="&rdf;List"/>

<rdf:first rdf:datatype="&xsd;string">Popular</rdf:first>

<rdf:rest>

<rdf:Description>

110

<rdf:type rdf:resource="&rdf;List"/>

<rdf:first rdf:datatype="&xsd;string">Very Popular</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:Description>

</rdf:rest>

</rdf:Description>

</rdf:rest>

</rdf:Description>

</owl:oneOf>

</rdf:Description>

</rdfs:range>

</owl:DatatypeProperty>

...

...

Classes:

<owl:Class rdf:about="#AncientStructureAndBuilding">

<rdfs:subClassOf rdf:resource="#CulturalHeritageItem"/>

</owl:Class>

<owl:Class rdf:about="#CulturalHeritageItem">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Images">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="#Monument">

<rdfs:subClassOf rdf:resource="#CulturalHeritageItem"/>

</owl:Class>

<owl:Class rdf:about="&owl;Thing"/>

111

Appendix B

FULL XML SCHEMA DECLARATION OF THE SEARCH

INTERFACE

<xsd:schema

targetNamespace="search.model.rest.persistence.iks.srdc.com.tr"

attributeFormDefault="qualified"

elementFormDefault="qualified"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="search.model.rest.persistence.iks.srdc.com.tr">

<xsd:element name="Query">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:KeywordList" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:StructuralQueryPart" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:FullTextSearchResultList" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

<xsd:attribute name="useSynonymsInOntologyLookup" type="xsd:boolean" use="required"/>

<xsd:attribute name="usedbPediaForFindingSimilarContent" type="xsd:boolean" use="required"/>

<xsd:attribute name="flexibilityClasses" type="xsd:integer" use="optional" />

<xsd:attribute name="flexibilityIndividuals" type="xsd:integer" use="optional" />

<xsd:attribute name="maxResults" type="xsd:integer" use="optional" />

</xsd:complexType>

</xsd:element>

<xsd:element name="Result">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:ReturnedDocuments" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:ReturnedOntologyResources" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:TopRelatedOntologyResources" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:ReturnedWordnetResources" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:ReturnedDBPediaResources" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

112

</xsd:complexType>

</xsd:element>

<xsd:element name="TopRelatedOntologyResources">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:ClassResource" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedDBPediaResources">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:DBPediaResource" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="DBPediaResource">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Property" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />

<xsd:element name="Object" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedWordnetResources">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:WordnetResource" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="WordnetResource">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />

<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedDocuments">

<xsd:complexType>

113

<xsd:sequence>

<xsd:element ref="tns:Document" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Document">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="DocumentXPath" type="tns:non_empty_string" minOccurs="1"

maxOccurs="1" />

<xsd:element name="PrimaryType" type="tns:non_empty_string" minOccurs="0"

maxOccurs="1" />

<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />

<xsd:element name="RelatedTo" minOccurs="0" maxOccurs="1" >

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ClassURI" type="tns:non_empty_string" minOccurs="1"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Metadata" minOccurs="0" maxOccurs="1" >

<xsd:complexType>

<xsd:sequence>

<xsd:element name="NameValuePair" minOccurs="1" maxOccurs="unbounded" >

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="xsd:string" />

<xsd:element name="Value" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedOntologyResources">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:ClassResource" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

114

<xsd:element name="ClassResource">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ClassURI" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />

<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:ClassResource" minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="StructuralQueryPart">

<xsd:complexType>

<xsd:sequence>

<xsd:choice minOccurs="0" maxOccurs="1">

<xsd:element name="SPARQLQuery" type="tns:non_empty_string"/>

<xsd:element ref="tns:ResourceList"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="KeywordList">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Operator" type="tns:OperatorType" minOccurs="0" maxOccurs="1" />

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element ref="tns:KeywordList"/>

<xsd:element name="Keyword" type="tns:non_empty_string"/>

</xsd:choice>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ResourceList">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="SelectiveResource" minOccurs="0" maxOccurs="unbounded" >

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Operator" type="tns:OperatorType" minOccurs="0" maxOccurs="1" />

<xsd:element name="ResourceURI" type="tns:non_empty_string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

115

</xsd:element>

<xsd:element name="FullTextSearchResultList">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:FullTextSearchResult" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="FullTextSearchResult">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="DocumentXPath" type="tns:non_empty_string" minOccurs="1"

maxOccurs="1" />

<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:simpleType name="non_empty_string">

<xsd:restriction base="xsd:string">

<xsd:minLength value="1" />

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name = "OperatorType">

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "EXACT"/>

<xsd:enumeration value = "AND"/>

<xsd:enumeration value = "OR"/>

<xsd:enumeration value = "NOT_SELECTIVE"/>

<xsd:enumeration value = "EXCLUDE"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

116

Appendix C

JCR-TO-ONTO BRIDGE MAPPING DEFINITION USED FOR

EXTRACTING THE DOMAIN ONTOLOGY

<BridgeDefinitions xmlns="model.jcr2ont.persistence.iks.srdc.com.tr">

<ConceptBridge>

<Query>/tags/tags/%</Query>

<SubsumptionBridge>

<PredicateName>child</PredicateName>

</SubsumptionBridge>

<PropertyBridge>

<PredicateName>jcr:title</PredicateName>

</PropertyBridge>

</ConceptBridge>

<ConceptBridge>

<Query>/NewsSubjectCodes/%</Query>

<SubsumptionBridge>

<PredicateName>child</PredicateName>

</SubsumptionBridge>

</ConceptBridge>

<InstanceBridge>

<Query>/NewsArticles/%</Query>

<PropertyBridge>

<PredicateName>categorizedBy</PredicateName>

<PropertyAnnotation>

<Annotation>instanceOf</Annotation>

</PropertyAnnotation>

</PropertyBridge>

<PropertyBridge>

<PredicateName>title</PredicateName>

</PropertyBridge>

</InstanceBridge>

</BridgeDefinitions>

117

