DESIGN AND IMPLEMENTATION OF AN ONTOLOGY EXTRACTION
FRAMEWORK AND A SEMANTIC SEARCH ENGINE OVER JSR-170 COMPLMTI
CONTENT REPOSITORIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GUNES ALUC

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JUNE 2009

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF AN ONTOLOGY EXTRACTION
FRAMEWORK AND A SEMANTIC SEARCH ENGINE OVER JSR-170 COMPLIA NT
CONTENT REPOSITORIES

submitted byGUNES ALUC in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering, Middle East Techical University by,

Prof. Dr. CanarOzgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Muslim Bozyigit
Head of Department;omputer Engineering

Prof. Dr. Asuman Dogac
SupervisorDepartment of Computer Engineering, METU

Assoc. Prof. Dr. Nihan Kesim Cicekli
Co-supervisorpepartment of Computer Engineering, METU

Examining Committee Members:

Prof. Dr.Ismail Hakki Toroslu
Department of Computer Engineering, METU

Prof. Dr. Asuman Dogac
Department of Computer Engineering, METU

Prof. Dr. Ozgir Ulusoy
Department of Computer Engineering, Bilkent University

Assoc. Prof. Dr. Ahmet Cosar
Department of Computer Engineering, METU

Yildiray Kabak
SRDC Ltd.

Date:

| hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | atsdeclare that, as required
by these rules and conduct, | have fully cited and referencedll material and results that

are not original to this work.

Name, Last Name: GNES ALUC

Signature

ABSTRACT

DESIGN AND IMPLEMENTATION OF AN ONTOLOGY EXTRACTION
FRAMEWORK AND A SEMANTIC SEARCH ENGINE OVER JSR-170 COMPLMI
CONTENT REPOSITORIES

Alug, Gines
M.S., Department of Computer Engineering
Supervisor : Prof. Dr. Asuman Dogag¢

Co-Supervisor : Assoc. Prof. Dr. Nihan Kesim Cicekli

June 2009, 117 pages

A Content Management System (CMS) is a software applicdtorcreating, publishing,
editing and managing content. The future step in contenaigement system development is
building intelligence over existing content resources tra heterogeneous in nature. Intel-
ligence collected at the knowledge base can later on be osexxécuting semantic queries.
Expressing the relations among content resources withamgital formalisms is therefore the

key to implementing such semantic features.

In this work, a methodology for the semantic lifting of JSRAlcompliant content reposito-
ries to ontologies is devised. The fact that in the worst J&#e-170 enforces no particular
structural restrictions on the content model poses a teahohallenge both for the initial
build-up and further synchronization of the knowledge baBeaddress this problem, some
recurring structural patterns in JSR-170 compliant cdntepositories are exploited. The
value of the ontology extraction framework is assessedititt@ semantic search mechanism
that is built on top of the extracted ontologies. The workhis thesis is complementary to

the “Interactive Knowledge Stack for small to medium CMBIS providers (IKS)” project

iv

funded by the EC (FP7-ICT-2007-3).

Keywords: Content Management System, ontology extractlama Content Repository, se-

mantic search

0z

JSR-170 UYUMLUICERIK HAVUZLAR! UZERINDE ONTOLOJ CIKARIM ISKELETI
VE ANLAMSAL ARAMA MOTORUNUN TASARIM VE UYGULANMASI

Alug, Gines
Yuksek Lisans, Bilgisayar Muhendisligi Bolimi
Tez Yoneticisi : Prof. Dr. Asuman Dogag¢

Ortak Tez Yoneticisi : Dog¢. Dr. Nihan Kesim Cicekli

Haziran 2009, 117 sayfa

Icerik Yonetim Sistemleri; icerigin olusturulmasayinlanmasi, diizenlenmesi ve yonetilme-
sine olanak saglayan yazilimlardir. Gelecekte hedeflemdou sistemlerin heterojen yapidaki
mevcut icerikten bilgisayar tarafindan islenebilir amisal bilgiyi ¢cikarabilecek dizeye ge-
tirilmesidir. Boylelikle, bilgi tabani kullanilarak aaimsal sorgular yapilabilecektir. Bu ve
benzeri niteliklerin saglanabilmesi icin onceliklgerik kaynaklari arasindaki iliskilerin on-

tolojilerle ifade edilmesi gerekmektedir.

Bu calisma kapsaminda JSR-170 uyumlu icerik havuzlaramlamsal olarak ontolojilere

yukseltiimesini saglayacak metodolojiler gelistmgktedir. Fakat JSR-170 modelinin icerik
yapisi Uzerinde belki de gere@inden fazla sundugu digkngkrek bilgi tabaninin olusturulmasi
gerek senkronizasyonun saglanmasi karsisinda bir ehgglrmaktadir. Bu sorunu ¢dzmek
icin, JSR-170 uyumlu icerik havuzlarinda sik kullanit@irtakim yapisal desenlerden faydala-
nilmistir. Gelistirilen bu ontoloji ¢ikarim iskelefim katma dederi ise ontolojiler Uizerinde
calisan anlamsal arama motoru aracilhigilyla degeiiémdstir. Bu tez calismasi, Avrupa

Komisyonu tarafindan desteklenen “Interactive Knowle8¢gck for small to medium CMS-

Vi

/KMS providers (IKS)” projesini (FP7-ICT-2007-3) tamamiayniteliktedir.

Anahtar Kelimelericerik Yonetim Sistemleri, ontoloji cikarim, JSR-17Zhlamsal arama

Vii

To my dearest sister, Deniz...

viii

ACKNOWLEDGMENTS

| would like to express my sincere gratitude and appreciatmmy supervisor, Prof. Dr.
Asuman Dogag, for her encouragement, guidance and suplbahroughout my graduate
studies as well as during the preparation of this thesis.ulaviike to express my gratitude to

my co-supervisor, Assoc. Prof. Dr. Nihan Kesim Ciceldi; her guidance and support.

| am deeply grateful to Dr. Gokgce Banu Laleci Erturkmenthaut whose guidance and
invaluable contribution, this work could not have been agglished. | am deeply thankful to

Ali Anil Sinaci for his suggestions and continuous suppogireparing the prototype.

| am deeply grateful to my family for their love and supportith@ut them, this work could

not have been completed.

I am highly indebted to my friends, Tuncay Namli, Mustafak¥él, Mehmet Olduz, Yildiray
Kabak and all the other colleagues at the Software Reseaccbavelopment Center, whose

help, stimulating suggestions and encouragement helpeat alktimes in this research.

| would like to thank the Scientific and Technological Resbatouncil of Turkey (TJBITAK)

for providing the financial means to sustain this work.

I would like to thank the “Interactive Knowledge Stack for ainto medium CM&KMS

providers (IKS)” project for providing the necessary mation.

ABSTRACT e e iv
OZ . o s, Vi
DEDICATION e e e e e e e Vi
ACKNOWLEDGMENTS e e e e e e iX
TABLE OF CONTENTS s e e X
LISTOFFIGURES e e e e e e ii i
LISTOF ABBREVIATIONS e e VX
CHAPTERS
1 INTRODUCTION e e e e e 1
2 BACKGROUND ON ENABLING TECHNOLOGIES AND STANDARDS . 4
2.1 Ontology Representation Languages 4
2.1.1 Resource Description Framework (RDF) 4
2.1.2 Resource Description Framework Schema (RDF-S)
2.1.3 Web Ontology Language (OWL) 6
2.2 Knowledge Persistenceand Access
221 Sesame 8
2.2.2 Jena2 9
2.3 Ontology Engineering, 9
24 Overview of Reasoners i 10
25 Full-text and Structural Search 11
2.6 Persistence Issues in Content Management Systems 13
2.6.1 Persistence Mechanisms in Content Management System
-Trends . . . 13
2.6.2 JSR-170 14

TABLE OF CONTENTS

2.6.3 Content Management Interoperability Services (ONB3] 15

2.7 Remarks 16
ONTOLOGY EXTRACTION FROM JSR-170 COMPLIANT CONTENT
REPOSITORIES e e e 17
3.1 Background 17
3.2 Motivation 19
3.2.1 Semantics Implicit in Node Type Definitions 19
3.2.2 Semantics Implicit in the Workspace 23
3.2.3 Implications 24
3.3 Basis for Alignment with External Horizontal and Domé&intologies 26
3.4 Exploitation of Modeling Patterns 28

3.4.1 Mapping Cases for the Construction of Ontology Cksse 30

3.4.2 Mapping Cases for Establishing Relations among ©ntol

ogyClasses 33
3.4.3 Mapping Cases for the Construction of Object and Data
Type Properties 35
3.4.4 Mapping Cases for Instantiating Individuals41
3.4.5 Observations 45
3.5 SUMMANY o e s e e e 45
AHYBRID APPROACH INTEGRATING STRUCTURAL AND FULL-TEXT
SEARCH e 46
4.1 Background 46
4.2 Motivation 49
421 Ontology Look-up for Similar Content 49
422 Ontology Look-up for Related Terms 51

4.2.3 Ontology Look-up for Faceted Browsing of Content . . .53
4.3 Implementation Details of the Hybrid Search Algorithm 54

431 Ooverview 54

4.3.2 Enhancing Full-text Search Results with Related Dmmnts 57

4.3.3 Concept-Driven Retrieval of Results 62
434 Iterative Browsing of Results in Multi-Dimensions . . 63
4.4 Complexity Analysis of the Hybrid Search Approach 66

Xi

4.5 Wrapping itall as a RESTful Service 9 6

4.6 SUMMANY e e e e e e 71
5 EVALUATION OF JCR-TO-ONTO BRIDGE AS AN ENABLER FOR SE-
MANTICSEARCH e 74
5.1 Content RepositoryUsed 75
5.2 The Extracted Ontology 76
5.3 PilotUse CasesforSearch. 78
6 RELATEDWORK e e e 87
6.1 Ontology Extraction from Relational Databases 87
6.2 Approaches Integrating Structural and Full-text Searc 93
6.3 Semantic Web Applications in the News Domain 98
7 CONCLUSIONS AND FUTUREWORK 101
REFERENCES 103
A SAMPLE OWL CONSTRUCTS EXTRACTED FROM NODE TYPE DEF-
INITIONS e 110
FULL XML SCHEMA DECLARATION OF THE SEARCH INTERFACE . 112
C JCR-TO-ONTOBRIDGE MAPPING DEFINITION USED FOR EXTRACT-

ING THEDOMAINONTOLOGY o 117

Xii

FIGURES
Figure 2.1 An RDF graph describing Eric Miller [21] 5
Figure 2.2 The Sesame architecture [20] 8
Figure 2.3 The Jena schema (normalized)[28] 10
Figure 2.4 The JCR API provides a uniform interface overdggantent repositories

[56] . o o o, 14
Figure 3.1 Declaration of various custom nodetypes 19
Figure 3.2 Inheritance hierarchy among built-innode tyjp&$ 22
Figure 3.3 JCR workspace configuration depicting the IPT@&N8ubject Codes . . 23
Figure 3.4 Example workspace configuration with “part-vefioinplications 25
Figure 3.5 Association between the termsinthetagcloud 27
Figure 3.6 Technical illustration of how tags can be anmatatith the WordNet on-

tology e 28
Figure 3.7 Classes described in a hierarchical categmnizpattern 31
Figure 3.8 The XSD for “ConceptBridge” 33
Figure 3.9 The XSD for “SubsumptionBridge” 34
Figure 3.10 Workspace configuration for MappingCase-1 35
Figure 3.11 Workspace configuration for MappingCase-2 36
Figure 3.12 Workspace configuration for Mapping Case-3 37
Figure 3.13 Workspace configuration for Mapping Case-4 38
Figure 3.14 A sample workspace configuration for propertppiiags 39
Figure 3.15 The generated “hasSubject” objectproperty 40
Figure 3.16 The XSD for “PropertyBridge” 41

LIST OF FIGURES

Xiii

Figure 3.17 The XSD for “EnforcedPropertyBridge”
Figure 3.18 A sample workspace configuration for individygexheration

Figure 3.19 The XSD for “InstanceBridge”

Figure 4.1 Metadata of some news articles ina content repgsi
Figure 4.2 Adjusting similarity based on property values..
Figure 4.3 Example illustrating ontology look-up for findirelated terms
Figure 4.4 Extending full-text results with semanticalyated documents
Figure 4.5 Faceted-search facilities of the proposed tydwarch solution
Figure 4.6 The XSD for the “ResourcelList’element

Figure 4.7 The XSD for the “Query” and “Result” elements

Figure 5.1 Concepts associated with the searchresults
Figure 5.2 Utilization of external ontologies in search
Figure 5.3 Faceted-search with a progressive selectiolasées

Figure 5.4 Faceted-search refined with new keywords ancept®ic.

Figure 6.1 Mapping casesinR[66]
Figure 6.2 RDBToOnNto uses various mining techniques fah&urrclassification [94] .
Figure 6.3 Ontology-based indexing in QuizRDF[40]

Figure 6.4 Indices created on content descriptors [40]

XV

51

52

56

64

65

72

83

84

85

86

90

91

97

97

ABOXx

CMIS

CMS

CND

DAML +OIL

DIG

HTTP

IKS

IPTC

IR

JAR

JCR

JSR-170

JSR-283

JTA

OWL

RDBMS

RDF

RDF-S

REST

LIST OF ABBREVIATIONS

Assertional Knowledge

Content Management Interoperability Services

Content Management System

The Compact Namespace and Node Type Definition
DARPA Agent Markup Language Ontology Inference Layer
Description Logic Implementation Group

Hypertext Transfer Protocol

Interactive Knowledge Stack for small to medium CM$SIS providers

International Press Telecommunications Council
Information Retrieval

Java Archive

Java Content Repository

The Content Repository for Java technology API
The Content Repository for Java technology API Version 2.0
The Java Transaction API

The Web Ontology Language

Relational Database Management System
Resource Description Framework

Resource Description Framework Schema

Representational State Transfer

XV

RIA Rich Internet Application

RQL RDF Query Language

SAIL The Storage and Inference Layer
SeRQL Sesame RDF Query Language
SPARQL The SPARQL Protocol and RDF Query Language
SQL Structured Query Language
TBox Terminological Knowledge

URI Uniform Resource Identifiers
w3C The World Wide Web Consortium
XML The Extensible Markup Language
XPATH XML Path Language

XSD XML Schema Definition

XVi

CHAPTER 1

INTRODUCTION

“Content is the feeder mechanism for all business procegsetsalways has been [1].”

Content management is becoming more essential for busmesshe amount of digital con-
tent continues to grow [1]. In 1992, there were just 1,000egam the Web. As of June 2000,
over two billion Web pages were posted on the Internet [2EdRdy, Google has announced

that its index reached the “one trillion” mark [3]!

Content management systems have taken the responsibifitaiage such growing volumes
of enterprise content resources. In this respect, a contanagement system (CMS) is an
integrated environment to manage content acquired fréfardnt data sources. The primary
task of a content management system is to organize contati@rarchy so that user requests
are handled moreficiently. Metadata based search indices are built to he§goaize content

and respond to user queries [4].

The content management lifecycle contains a collectiorteséiive processes that start with
content acquisition and end with the delivery or publishofgcontent [1]. Throughout the
lifecycle, content management systems permit content tmd#eled and edited, search in-
dices to be built, and finally content to be searched for. @ndtner hand, even though
there are ongoingfkorts to integrate semantic features, they are far from ngatie whole
lifecycle semantically enabled. For example, state-efdlt content management systems
support metadata extraction to a degree that facilitatysvdel-based search and content
categorization; yet, enhancements are necessary forlifgtinaent with the domain knowl-
edge. Furthermore, what is commercialized as “semanticiseés merely based on some

ad-hoc technigues such as synonym matching, similaritscbeand “Did you mean this?”

suggestions. However, really, support for structuraldeas well as for faceted-navigation is

desired.

To overcome these limitations, first, we propose to fornauthe structural relations present
in the content repository by ontologies; where, an ontol@ygn explicit specification of
a conceptualization [5]. Even though at an initial stagedhtwlogies represent no further
semantics than what is already implied by the model, theecimhanagement system does
not provide any means for the automated processing of tagae$; hence, semantic lifting
is unavoidable. Furthermore, such formalization provithesbasis for alignment with other

domain and horizontal knowledge.

As the second step, we propose a semantic search mechamisicothbines the full-text
search capabilities of content management systems witkritvrledge accumulated in the
knowledge base. As argued in [6], ontologies represent humawledge explicitly in a form
that is suitable for automated processing and if used in aaatibn with full-text search, then

enhanced semantic search features can be supported.

In this regard, the work in this thesis can be evaluated indingensions; that is, the design
and implementation of both an ontology extraction framdwand a semantic search en-
gine. The suggested solution works on top of JSR-170 contptiantent repositories, where
JSR-170 €ers interface functions to propriety content repositorylementations. The
work is complementary to the “Interactive Knowledge Stamksmall to medium CM&MS
providers (IKS)” project funded by the EC (FP7-ICT-2007-8) summary, our aim is to:

Exploit the power of ontologies that provide machine intetable means to express

and process the semantic information in the CMS content mode

Establish a bridge between the content repository and thelkedge base,

Provide a formal basis for alignment with extra domain krexge,

Seamlessly integrate structural search facilities ingawad-driven interfaces,

Provide support for faceted-navigation of content resesirc

This thesis is organized as follows. First, we discuss thi®mwa enabling technologies: on

the one hand, we have the content repositories and on theta@hd we have the knowledge

2

representation schemes and ontology engineering tool€héapter 3, we outline the vari-
ous issues related to the ontology extraction process,dhieat modeling patterns we have
exploited and finally the mapping schemes in our JCR-to-@mnidge solution. In Chapter
4, the implementation details of our hybrid search mechmardse presented. The power of
the JCR-to-Onto Bridge framework is demonstrated in Chidptegether with the semantic
search features enabled when the proposed hybrid searaiedagexecuted on top of the
learnt ontology. Our discussion then proceeds with a cosgarof our approach with the
related work in this area. Finally, we summarize ofioes and outline the possible future
research directions. It is worth mentioning that chapters &1d 5 can be read on their own;

that is, they have their introduction, body and conclusiectisns.

CHAPTER 2

BACKGROUND ON ENABLING TECHNOLOGIES AND
STANDARDS

2.1 Ontology Representation Languages

As explained in [5], an ontology is an explicit specificatmira conceptualization. Ontologies
describe the set of objects and the relationships among tigscts through a representational
vocabulary that allows knowledge-based programs to mdkesinces. In this respect, various

representational schemes have evolved, whose detailssatessied in the following sections.

2.1.1 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a languageejmresenting information on
the Web [7]. It is a family of World Wide Web Consortium (W3Q3][specifications. Al-

though the primary intention has been to represent metadiatat \Web resources (i.e. title,
author, and modification date of a Web page); the concept Web“resource” can be gener-

alized to account for a more general modeling or representat

The RDF data model consists of subject-predicate-objgmtessions called RDF triples for-
malized as P(S; O); that is, a subject S has a predicate (peqyd P with value O, where
S and P are Uniform Resource Identifiers (URI)s [9] and O iseeit URI or a literal value.
RDF allows subjects and objects to be interchanged alloatimagbject from one triple to play
the role of a subject in another triple [10]. Collectiveliese chain of RDF triples form a
graph of nodes and arcs (Figure 2.1) representing the ssheir properties and property

values [11].

hittp:ihwww w3.orgl2000/10/swap/pimicontact#Person

http:fhwww w2 org/1998/02/22 - rdf-syntax-ns#ty pe

hittpfwww w3, org/People/EM/contacti#ime

ttphweww w3, 0rgl2000010/swap/pimicontact#uliName

Eric Miller

hittp: ftwww w3, orgf200001 Ofswap/pimfcontact#mail box

mailte:em@w3.org

http: ffwww w3, org/2000/10/swap/pimicontact#personal Title

Dr.

Figure 2.1: An RDF graph describing Eric Miller [11]

The value of RDF is in its power to express simple statemédmsitaesources where this in-
formation is intended to be processed by applications.heuamore, RDF provides a common
framework for expressing this information so that it can kehanged between applications

without a loss of meaning [11].

2.1.2 Resource Description Framework Schema (RDF-S)

Apart from being able to make simple statements about reespcommunities also need the
ability to define the vocabulary or equivalently the ternigy they intend to use along with
their statements. The terminology includes class defmstiproperty definitions and interre-
lations among both class and property instances. The RDatvbary Description Language
1.0: RDF Schema provides a mechanism to define such terrgieslfl2]. Interestingly, the
specification itself explains how to use RDF triples to dibscthese RDF vocabularies. As
explicitly stated in [10], the only dierence with “normal” RDF expressions is that in RDF-S

an agreement is made on the semantics and the interpretdibentain terms and statements.

5

Classes It is intuitive to divide the resources into groups callddsses. Classes, too, are
represented as RDF resources. Therefore, it is necessdiffdrentiate between resources
which are RDF-S classes and which are not. The subjectgatedobject triple MotorVehi-
clerdf:type rdfs:Clas$ has the meaning that the resource MotorVehicle is in fadRBir-S
class. Following this, the triplecompanyCardf:type MotorVehiclé describes companyCar
as a member or equivalently an instance of the MotorVehiessc[11]. Please note that in
this example, “rdfs:Class” is a reserved term and has aredgremantics and interpretation.

The class and instance relations are expressed with “nORZAF triples.

Properties The properties of a class are specific characteristicsdgsdribe the members of
the class. In RDF Schema, properties are described usirigDifreclass “rdf:Property”, and

the RDF Schema properties “rdfs:domain”, “rdfs:range”][X2onsider the following triples:

MotorVehicle rdf:type rdfs:Class
VehicleParts rdf:type rdfs:Class
hasPart rdf:type rdf:Property
hasPart rdfs:domain MotorVehicle
hasPart rdfs:range VehicleParts

In this exampleMotorVehicleand VehiclePartsare RDF-S classesiasPartis defined as an
rdf:Property and the domain and range restrictions indicate that the R&Ereents (triples)
using thehasPartproperty have instances bMotorVehicleas subjects and instances\@hi-

clePartsas objects.

In addition to the aforementioned constructs, “rdfs:s@sSOf” and “rdfs:subPropertyOf” are

used to define subsumption relations among classes andiiespesspectively.

2.1.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [13] is a revision of the DARARgent Markup Lan-
guage+ Ontology Inference Layer (DAM&OIL) [14] web ontology language. OWL can
be used to explicitly represent the meaning of terms in voleales and the relationships

between those terms, called ontologies [13], [15]. AltHo®RPF Schema has a similar ob-

6

jective, in most cases, its semantics is inadequate tonperiiseful reasoning tasks. In fact,
OWL has an enhanced syntax for expressing meaning and desiduain Extensible Markup

Language (XML) [16], RDF, and RDF-S. For a full list of constts, please refer to [13].

OWL Lite, OWL DL and OWL Full are respectively the three inasingly expressive sublan-
guages of OWL. OWL Lite is the least expressive of all and durgyo beyond the definition
of classification hierarchies and some simple constraimt sis restricted cardinality con-
straints (i.e. while it supports cardinality constrairit&nly permits cardinality values of O or
1[13].). On the other hand, OWL DL provides maximum expressess provided that com-
putational completeness and decidability can be guardnteaally, OWL Full removes all
computational guarantees to obtain full expressiveness.choice between the three sublan-
guages depends on the extent to which users require thessijaeess provided by each. The
choice between OWL DL and OWL Full also depends on whetheuslees require reasoning

to be computationally complete and decidable or not.

2.2 Knowledge Persistence and Access

We have seen in Section 2.1 that the intuition behind vardkmasvledge representation sche-
mes was to enable the processing of the asserted knowledgepbgations. In this respect,
mechanisms should exist for the storage, querying of aretenting over the statements

made about resources.

A triplestore is a purpose-built database for the storagleraimieval of RDF triples; although
it behaves much like a relational database, it is optimizeetigically for the storage and
retrieval of subject-predicate-object triples. Given sothought, a triplestore may either
provide a generic model to support the storage and retregvaktances of any RDF Schema
or be tailored to support the fast-retrieval of instancea pérticular schema only. The latter

sacrifices support for a generic representation in exchahgerformance.

Following are some of the state-of-the art frameworks ferdtorage, inferencing and query-

ing of RDF triples:

2.2.1 Sesame

Sesame is an open source framework for the storage, quamyithgnferencing of the RDF
data [17]. The overall architecture of Sesame is depicteligure 2.2. Sesame may be used
as a persistence system for RDF and RDF Schema or as a lilbraapplications that need
to access and work with RDF internally [18]. OWL ontologies aimply treated on the level
of RDF graphs [19]. Sesame decouples the access layer fimicthal storage mechanism
chosen (e.g. relational databases, in-memory, filesystieaysord indexers, etc.) by means

of its Storage and Inference Layer (SAIL) [10].

| Client Program |

SAIL APl |

oy

=
=]
o
)

| | Memory | | Native |

RODBMS

Figure 2.2: The Sesame architecture [20]

Sesame enables querying through a declarative query lgagiadled the RDF Query Lan-
guage (RQL) [21] and is currently providing support for thes&me RDF Query Language
(SeRQL) [22]; a query language that has its foundations ih B3 outlined in [21], queries
over RDF documents and RDF schemata may be evaluated inekede of abstraction: syn-
tactic level, structural level and semantic level. Neittier syntactic nor the structural level
information is expressive enough to retrieve facts impjianferred through the RDF-S se-

mantics. In this respect, querying at the semantic levalireg some preprocessing so as to

8

extract the full knowledge that an RDF-S description esatdfQL works towards this goal.

Sesame has support for three basic types of reasoning: tkeSRBema reasoning, “custom
reasoning” and OWLIM [23] reasoning. RDF Schema reasoningksvas follows: Given
a set of RDF anr RDF Schema, Sesame finds the implicit information and é&ddsthe
repository as the facts are being asserted [24]. Howeustrliihited to the RDF-S semantics
and therefore does not support reasoning over user-defiassitive, symmetric or inverse
properties. The “custom reasoning” approach enables RIDEr8a reasoning to be extended
with user-defined inference rules [25]. Finally, OWLIM is pesific Storage and Inference
Layer (SAIL) for Sesame which supports partial reasoningr @WL Description Logic Pro-
grams (OWL DLP) [26].

2.2.2 Jena2

Jena [27] is an open-source Java framework that provideseimory or persistent storage
and an abstraction over RDF graphs [28]. Its rich applicappoogramming interface for
manipulating RDF graphs serves as a toolkit for semantic prelgramming. It provides

additional support for working with RDF-S and OWL represdians.

The choice of storage in Jena may be backed by either a rehtoy an object database.
However, the challenge is to provide storage in #itient and flexible manner. For this
purpose, dierent models have been proposed. The normalized apprasth subjects and
predicates as having URI values whereas for an object thieel® between a URI and a
literal value. Statements, literal values and resourcedharefore stored in separate tables

shown on Figure 2.3.

2.3 Ontology Engineering

Protégé [29] and swoop [30] are among the various ontokmgyineering frameworks de-
signed for creating, editing and debugging ontologies. eHeur discussion will be on the

Protégé framework.

Protégé is based on Java, is extensible, and providegaapldtplay environment that makes

it a flexible base for rapid prototyping and application depeent [29]. Protegé-OWL is

9

Statement Table

Subject Predicate ObjectURI ObjectLiteral

201 202 null 101

201 203 204 null

201 205 101 null

Literals Table Resources Table

Id Value Id URI

101 Jena2 201 mylib:doc

101 The description - a very 202 de:title
long literal that might be 203 de:creator
stored as a blob. 204 hp:JenaTeam

205 dc:description

Figure 2.3: The Jena schema (normalized) [28]

one such developed plug-in that can be used to edit ontaagi®WL, to access description
logic reasoners, and to acquire instances for semanticupdfl]. As discussed in [32],
Protégé-OWL supports the three species of OWL; namelyL@We, OWL-DL and OWL-

Full. With Protegé-OWL, named classes and properties functional, inverse functional,
transitive, symmetric) can be created, classes can be s#sjagit. By connecting to an
external reasoner, it is possible (i) to compute the inteoetology class hierarchy and (ii)
to check whether or not it is possible for the class to haveiastances (i.e. consistency

checking).

2.4 Overview of Reasoners

In their paper titled “Benchmarking OWL Reasoners”, Boclaktclassify reasoners on the
one hand based on the level of complexity and expressivehegsupport and on the other
hand based on their scalability [19]. In this respect theparthat classical description logic
reasoners that implement tableau algorithms are able $sifjidarge, expressive ontologies,
but they often provide limited support for large number aftamces. Conversely, database-
like reasoners are able to handle large amounts of assariamts, but are in principle limited
in terms of the logic they support. In their benchmark, Bothle distinguish between load

and response times to demonstrate strengths and weakoésseseasoners that follow these

10

paradigms. They start out with simple ontologies whose T@erminological knowledge) is
relatively small. In assessing the scalability of the reasothey evaluate these measurements
with respect to dierently scaled ABoxes (assertional knowledge), but congiBox. Their
experiments have been performed on Sesame [18], OWLIM RBDN2 [33], HermiT [34],
RacerPro [35] and finally Pellet [36].

It is stated in [19] that regarding classification, Racer®utperforms other systems in terms
of load and total execution times. If however load time is @fion importance, then HermiT
with its novel hypertableau method performs best in clgsgif ontologies. Lightweight rea-
soning and storage systems such as Sesame and OWLIM arevamitageous over other
reasoners in the expressivity fragments they are spedyfieglored to process. Finally, reso-

lution based systems such as KAON2 are not suitable for TBaganing tasks at all.

When it comes to answering conjunctive queries, Bock etrgueathat KAON2 is the best
system with respect to the overall performance to load aspomd, and that it shows a fa-
vorable scalability even with large ABoxes. Even though dgpressive ontologies Pellet
responds faster than KAON2, KAON2 is much faster in loadind more scalable than Pel-

let.

The reasoning tasks we will utilize in the hybrid search gsotudescribed in Chapter 5 will
mostly be limited to those of TBox reasoning. On the otherdhave cannot really assess
the complexity of the ontologies at this stage, becauseaitiherelies on the content repos-
itory model and the mappings defined (see Chapter 3). Theretio be able to plug-in the
reasoner that best works with the extracted ontology, wereskrict ourselves to those that
have support for the Description Logic Implementation Gr¢{IG) interface [37]. The DIG
interface (often just known as DIG) provides a standardi¥&tl interface to Description
Logic Reasoners. The interface defines a simple protocabalth a concept language and

accompanying operations.

2.5 Full-text and Structural Search

Full-text search is the prevailing paradigm employed byctiretent management system com-
munity. On the other hand, there are ongoifigis to integrate full-text search with structural

search [38], [6], [39], [40] and [41]. In this section, we peat the popular technologies used

11

in both of these approaches; first in full-text search, aed ih structural queries.

Apache Lucene [42] is an open-source full-text search enlfdnary written entirely in Java.
Yet, there are now a number of ports or integrations to othegnamming languages such
as QC++, C#, Ruby, Perl, Python, PHP, etc. Lucene is considered ealabde Information
Retrieval (IR) library. Information retrieval refers toglprocess of searching for documents,
information within documents or metadata about documet8 By providing library func-
tions, Lucene allows such search capabilities to be addeth&r applications. As long as
text can be driven from it, Lucene does not care about theceanfrthe data, its format, or
even its language. The scoring mechanism in Lucene is basttk dterm frequency-inverse
document frequency (tf*idf)” vector product scheme [44ff*idf’ is a weight often used in
information retrieval and text mining. This weight is a &#atal measure used to evaluate

how important a word is to a document in a collection or corpus

Apache SOLR [45] is a full-text search server based on Luc8@®.R provides a Represen-
tational State Transfer (REST)ful [46] Application Progmaing Interface (API) over Hyper-
text Transfer Protocol (HTTP) [47] - Extensible Markup Laage (XML) [16]), and there-
fore, facilitates the development of faceted-search eafitins. Faceted-search is a search
paradigm in which the user is given the option to navigatestrwech space by a progressive

narrowing of choices in multi dimensions [48].

The SPARQL Protocol and RDF Query Language (SPARQL) [49h&s W3C candidate
recommendation query language for RDF [7] and it grants tkarms to query the required
and optional graph patterns along with their conjunctiond disjunctions. As explained
in [50], SPARQL is essentially a graph-matching query laggiwhere the query consists
of three parts: the pattern matching part, solution modifend the output. The pattern
matching part supports union, nesting and filtering of gmesnatches, and the possibility to
choose the data source to be matched by a pattern. The sottidifiers are operators like
projection, distinct, order, limit, andfkset. Finally, the output of a SPARQL query can be of
different types: ygno results, values that match the patterns, new triples fhmse values,
and descriptions of resources. The full formal descripéitumg with a complexity analysis is

provided in [50].

12

2.6 Persistence Issues in Content Management Systems

With the emerging need to organize data in hierarchies tl@ve there has been a shift to-
wards the more flexible content repositories to manage noutighin a content management
system. A content repository is a hierarchical contentestith support for structured and
unstructured content and various features such as fullsesdtch, versioning, transactions,

observation, and more [51].

One such content repository is what is informally known &sJava content repository (JCR).
As argued in [52], hierarchical content repositories amoifad over traditional relational

database management systems (RDBMS) due to their flexibitd support for unstructured
content. Although a relational schema would be more adgaotas for performing queries
involving joins and update operations, it requires thatuthderlying structural associations
among content items be known in advance. Unfortunately,ishmot the case for most CMS
applications where the content is inherently unstructued is enriched as the application
evolves. For a detailed comparison of the content repisitaersus the relational model as

the choice of the persistence layer in a content managemsteins, please refer to [52].

2.6.1 Persistence Mechanisms in Content Management SystemiTrends

As more and more CMS vendors took up on the content repositagel, various imple-
mentations have emerged and each vendor provided its oenfidiog for interacting with the
underlying content repository. On the one extreme, the @dure of ad-hoc content reposi-

tory model implementations could pose some significantrieah problems [53]:

1. Application developers need to work with a numerous nurobad-hoc interfaces,

2. Code portability is hindered,

3. Content becomes isolated in “information silos” wherie &vailable only to the appli-

cations designed to access that specific content repasitory

13

2.6.2 JSR-170

The Content Repository for Java technology API [54] (JSR;Dbr more informally referred
to as the JCR API) is a Java specification produced to overtioenagforementioned technical
difficulties. As depicted on Figure 2.4, it provides access ttettmepositories in a standard

way; independently of the underlying implementation [55].

“) Virtual
& JCR Connectors -

Legacy 000 Legacy CRX: Native
| Repository ' Repository | JCR

Repository

Figure 2.4: The JCR API provides a uniform interface oveatsgcontent repositories [56]

JCR provides a functional view over the content repositdhe content is organized in a tree
structure: the leaves are called properties and the naedeare called nodes. A property is
where the actual data or its associated metadata is stomredheOpther hand; nodes, which
may have other nodes or properties as its children, helpcapipin developers build the de-
sired hierarchy over the content. Each tree has exactly aote but the content repository

may contain multiple trees called workspaces.

JCR enforces the XML Path Language (XPath) syntax [57] ®igiiery language. Given
the context, XPath is definitely a suitable choice; the ttegcture in the JCR workspace is
inherently analogous to that of an XML document. On the otiard, support for only a

subset of the XPath language - a runtime Structured Querguage (SQL) [58] translatable

14

subset - is sfiicient for JISR-170 compliance. As argued in [55], the rafiermsehind this
decision is to ease database-backed implementationgjratten. It is worth noting that as
long as they meet the minimum requirements, repositoriedrae to support the full XPath

syntax or additionally the SQL standard.

The principal idea behind JSR-170 is as follows: If produsts provide a JSR-170 com-
pliant view over their content repositories, then all apgions may traverse the content in a
uniform manner and thus content no longer becomes isolatiefiormation silos. To ease the
uptake of JSR-170, various compliance levels have beenedefi®]. A content repository
can be read-only or write compliant and may choose to impterseme advanced features
such as versioning, queries using SQL [58] or support forJdnea Transaction APl (JTA)

[60]. Apache Jackrabbit [51] is a reference implementatibtihe specification.

The Content Repository for Java Technology API Version 29R-283) [61] is a work-in-
progress towards the extension to JSR-170. Access conanhgement, workspace and
nodetype management and addition of new standardized ypéds &re some of these exten-

sions proposed by the authors of the specification.

2.6.3 Content Management Interoperability Services (CMI$[62]

Even though, JSR-170 and JSR-283 provide a uniform meanscessing content reposito-
ries, these solutions are purely Java based, hence rejimgdbe vendor lock-in problem on a
different scale. In this respect, an OASIS technical commit@ASIS Content Management
Interoperability Services (CMIS) TC” has been formed tol@@anformation sharing across
content management repositories using platform-neutedd $érvices and Web 2.0 interfaces
[62]. The standard will define a domain model and set of bigslito work with one or more

content management repositof@stems.

The technical committee does not aim at producing a spetitficaddressing the full features
a content management repository should implement. In fiafidllows the “least common

denominator” approach; that is, the committee tries toagxtfunctionalities common to all
content repository implementations [63]. JCR on the otlaedhfixes a specific model that in-

evitably would require some tailoring on the ad-hoc contepbsitory to be fully-compliant.
As opposed to the nodes and properties, the domain modebgrddby CMIS defines four

15

types of objects within a repository [63]:

1. Documents represent individual content objects in thesitory.

2. Folders represent organizational containers in whidunents (or other folders) can

be stored. Folder objects are used to organize fileable tsbjec

3. Relationships represent loose relationships betweeaatlgx2 objects (documents or

folders) in the repository.

4. Policies represent administrative policies that maypdmied to objects.

2.7 Remarks

In this chapter we have briefly overviewed the technologasvant to our discussion in the
upcoming chapters of the thesis. On the one hand, we havelseeliferent languages de-
veloped for the representation of knowledge. Furthermeeshave argued that mechanisms
should exist for the storage, querying of and inferencingr dkre knowledge. In this respect,
we have studied the Sesame and the Jena? triple-storesg Aitimthese, we have also ex-
plored the various ontology engineering and reasoningdvemnks. The last but not the least,

we have seen some full-text and structural search mechanism

On the other hand, we have discussed the content manageysegparadigm and have
explored the various content repositories used. We have teee standards, namely; JSR-
170 and CMIS, which have been (or are being) developed fonidgfinterface functions to

access dferent content repositories.

In Chapter 3, our discussion will proceed with the detaila @mework whose role is to ex-
tract semantic information from content repositories. &kieacted ontologies will be aligned
or merged with additional domain or horizontal ontologiesnce enabling even further state-
ments to be inferred through reasoning. Finally, in theofglhg chapter; that is Chapter 4, the
focus will be on the hybrid search mechanism developed thrabines the power of full-text

and structural search and utilizes the extracted ontologlye background.

16

CHAPTER 3

ONTOLOGY EXTRACTION FROM JSR-170 COMPLIANT
CONTENT REPOSITORIES

3.1 Background

As presented in the earlier chapters; although some stejgsde semantically enabled con-
tent management system solutions were taken, there is eofaalholistic approach. For
example, even though synonym matching and similarity $eare some enhancements over
text-based search; content management systems do noefplgit the implied semantics in
the content repository when utilizing these techniquessylmonym matching, the search set
is expanded with synonymous keywords without taking intcoaat the inherent semantic
relations within the repository. On the other hand, wherfgoering similarity search, re-
sources with the same tags are simply assumed to be reletané wne should also exploit

the structural relations among these tags.

To overcome these limitations, we propose to formulate - bams of an ontology extraction
framework - the structural and semantic relations preseatdontent repository. The aim is

threefold:

1. Exploit the power of ontological formalisms that provideahiae interpretable means
to express and process semantic informati&@ven though at an initial stage the ex-
tracted ontologies represent no further semantic infdonahan what is already im-
plied by the content model, the content model itself doeprmtide any means for the
automated processing of the semantic relations. Constguthere is a need for an

ontological representation of the semantics in the comteuel.

17

2. Establish a bridge between the content repository and thevledge baseThe content
repository is in constant growth. Not only the repositorpapulated with new content
resources but also the repository model changes over tinmeselchanges must be
reflected on the knowledge base, that is; both the semaritores and the ontology

individuals should be updated.

3. Provide a formal basis for alignment with extra domain knedfige In most cases
it is desirable to enhance the extracted semantic infoamatiith additional domain
knowledge. In fact, as will be discussed in the followingtgets, the real value of the
ontology extraction framework comes from its promise timet éxtracted ontologies

establish a formal basis for alignment with other domainaizontal ontologies.

In our work, the focus is on the hierarchical rather than éhational content repository model
due to its contemporary popularity among the content managesystem development com-
munity. Besides, techniques for extracting ontologiesnfir@lational schemas have already
been proposed and exploited [64], [65], [66], [67] and [68hereas no such work exists for

the former case.

As JSR-170 or more informally known as the Java Content ReppqJCR) API enables
uniform access to flierent content repository implementations, we will build- dtame-
work on JSR-170 rather than providing a separate implertientior each content repository.
In this chapter, we will explore the possible techniqueseikiracting semantic information
from JSR-170’s hierarchical content structure; where tbdentype definitions, the super-
subordinate relations present in the workspace hierambytlze links among properties and

individual nodes implicitly &fer means to extract some valuable semantic information.

The chapter proceeds as follows: first, we briefly discusst iipee of semantic information
there is to extract from the JSR-170 content repository inddes implicit semantic informa-
tion in the node type definitions and the workspace hieraattogether set up the motivation
behind our ontology extraction framework: “JCR-to-Ontadge”. Next, we discuss how the
extracted ontologies could be aligned or merged with otteepsovide value-added services.
In the proceeding section, we outline the various limitagiof our approach and discuss how
we deal with these challenges. Finally, we explain in dei@iR-to-Onto Bridge mapping

cases with examples.

18

3.2 Motivation

3.2.1 Semantics Implicit in Node Type Definitions

In JSR-170, the node type definitions may be used to imposetstal restrictions on content
resources. Through defining a custom node type, one mayottimercorresponding types of
each child node aridr property for a particular target node. The type of a chddenxmay be
restricted to one of the built-in or custom-defined node $yp@n the other hand, for prop-
erties, the user can choose from a predefined set of buijpiestonly: STRING, BINARY,
DATE, LONG, DOUBLE, BOOLEAN, NAME, PATH, and REFERENCE. Riiding value
constraints or default values for a property is also possiBinally, an inheritance hierarchy

may be defined over custom node types where such relatioissbipressed by the “super-

type” property.

<cul = 'http://www.srdc.com.tr/iks/culture'>
[cul:ImagesType]
-cul:imageURL (STRING) *

[cul:CulturalHeritageltem]

-cul:location (STRING) m

-cul:popularity (STRING) < 'Very Popular', '‘Popular', 'Not Popular'
+cul:images [cul:lmagesType]

[cul:Monument]>cul:CulturalHeritageltem
-cul:yearBuilt (DATE) m

[cul:AncientStructureAndBuilding]>cul:CulturalHeritageltem,mix:referenceable
-cul:type (STRING) m

Figure 3.1: Declaration of various custom node types

Figure 3.1 is a sample declaration of various node typesenGbmpact Namespace and
Node Type Definition (CND) notation [69]. According to theagmple, a nhode of type “cul:-
CulturalHeritageltem” should have a child property namedl:focation” whose value must
be a STRING . A value constraint is defined over the property:popularity”; where, the
only permitted values are the STRINGs: “Very Popular”, “Bigp” and “Not Popular”. A
“cul:CulturalHeritageltem” node may optionally contairchild node of type “cul:Images-

Type” which acts as a bag for the associated image URLSs. lzitaith “cul:Monument” and

19

“cul:AncientStructureAndBuilding” node types inheritein structure from the “cul:Cultural-
Heritageltem” node type and enhance it with additionailaites. A formal explanation of

the syntax and grammar of CND is provided in [69].

From the node and property type declarations for a partidd& repository alone, it is pos-
sible to construct classes, data type properties and in sases, object property definitions.
Later on, the workspace nodes, properties and their valiEsenused to instantiate the indi-

viduals for the generated ontology schemas. The procedurbe& summarized as follows:

1. Each JCR node type definition corresponds to an ontolapscl

2. JCR properties of type STRING, LONG, DOUBLE, BOOLEAN or DRAimply a data

type property construction.

3. In ontological formalisms, the JCR properties of type HAREFERENCE or NAME

can be expressed as object properties.

4. 1t is possible to represent the JCR node type inheritame@rchy as a set of super

clasgsub-class relations among ontology classes.

5. When the content repository is populated with instan¢#secdeclared types and prop-

erties, so can the generated ontologies be.

As outlined above, one could possibly start by constructingplogy classes for each node
type definition. In this case, it is intuitive to create a sapa OWL class for each JCR node
type defined. Although custom naming solutions may be fadldvwa default strategy could be

to name these classes based on their native naming com(it®. by using JCR namespaces

and JCR node type names).

In most cases, property type definitions directly corregigorOWL data type properties. The
simplest case is when the JCR property is of type STRING, LONGUBLE, BOOLEAN
or DATE. In our approach, we choose to define an OWL data typpasty whose domain is
the class generated from the type definition of the parent d@R and whose range points
to one of the built-in OWL data types string, long, doubleplean and dateTime. A more
complex case is when the JCR property has associated vahsgraiats. In this case, it is

possible to use the owl:oneOf construct to define an enustedatatype [70].

20

For JCR properties, whose types are not one of STRING, LON®JBLE, BOOLEAN nor
DATE, a different method has to be applied:

e The underlying semantics for property definitions of typeflHANAME or REFER-
ENCE imply a stronger relation than what can be expressednb@\WL data type
property. In fact, OWL object properties are more suitabletliis purpose. A REF-
ERENCE type is for storing the UUID of a node to which the pmbpegives reference
[55]. In case of a REFERENCE, referential integrity is mainéd by the content repos-
itory. PATH properties serve a similar purpose by pointioghddes in the workspace
through path expressions. However, the repository doesniotce referential integrity.
NAME is a specialized case for PATH, in which the path elent&ciks spatial locators.
For these definitions, we choose to create an OWL object prop#ose domain is the
class generated from the type definition of the parent JCR aod whose range is, in
the least restrictive sense, an “nt:base” class. In JCBRase: is defined as the root node
type from which all node types can be inherited and thereits@©WL representation

may serve as an abstract entity for the aforementioned remggderation.

e For value constraints defined over PATH properties, it fBalilt to predict in advance
whether or not the constraint has any implication on the eaofgghe generated OWL
object property since they are simply regular expressiefiseld over some path values.
However, the value constraint for the REFERENCE properipterpreted as a node
type name. In fact, it restricts the types of nodes to whiehREFERENCE property
may refer. In such a case, our “nt:base” assumption for tmergéed OWL object

property can be restricted to account for the selection.

e The BINARY type implies that the particular JCR property és $toring a document
rather than its metadata. Therefore, there will not be amleddsemantic value in
representing this relation as a data typetype property mabgct property. However,
a link to the actual content resource can be created, whdae wvall be clearer in

Chapter 4.

When it comes to the representation of the JCR node typeiiahee hierarchy, the most
intuitive approach would be to use superclass-subclassiaet in OWL. It is particularly
valid for custom-defined as well as for built-in node typem(iFe 3.2). Therefore, for each

supertype defined, a corresponding superclass relatiaricshe generated. In this respect,

21

multiple supertypes pose no particular problem since OWdwal multiple superclasses to be

defined for a single class.

nt:base

|
| ==-nt:unstructured

|
| --nt:hierarchyNode

I

|=--nt:file

|

| --nt:linkedFile

I
| --nt:folder

--nt:nodeType
--nt:propertyDefinition

--nt:childNodeDefinition

--nt:versionLabels
--nt:version¥*

--nt: frozenNode
--nt:versionedChild

|
|
|
|
|
|
|
|
|
|
|
|
|
|--nt:versionHistory™
|
|
|
|
|
|
|
|
|
| =-=-nt:gquery
|
|

--nt:resource*

Figure 3.2: Inheritance hierarchy among built-in node $yjib]

In Appendix A, some of the ontology constructs used to exptes underlying seman-
tic relations in the node type definition example provided-igure 3.1 are depicted. The
“cul:popularity” property on which some value restrictiowere provided in the node type
definition is expressed as an enumerated data type propEhiy.node type inheritance is
reflected on the ontology with the proper use of the “rdfsdabsOf” predicate. Finally, the
object property “haslmages” has been created for assuogi#tte class generated from the
“cul:CulturalHeritageltem” node type definition with théass generated from the node type

definition of “cul:lmagesType”. The intuition behind thislie clearer in Section 3.2.2.

22

3.2.2 Semantics Implicit in the Workspace

There are cases where the node type definitions aréicisat to extract all the relationships
among content resources. In fact, node types help redtadttucture of a content resource;
however, may fail in fully expressing the hierarchical iloptions embedded in the overall
tree structure. As an example, consider the following JCRsmace configuration presented

on Figure 3.3.

IPTC
Subject
Codes

Arts Culture -
Entertainment @

Disaster
Accident
Transport
Accident
Air Space
Accident

Earthquake

.
T

Film
Festival

name:
film festival

definition:

stories about national and
international motion pictures
festivals, selections, festival
juries, nominations, awards etc.

Figure 3.3: JCR workspace configuration depicting the IPTEW$ISubject Codes

The tree rooted at “IPTC Subject Codes” displays a subsetehterarchy defined in the
“Subject Code” vocabulary [71] of the International Presie€ommunications Council (IPTC)
[72], News Codes taxonomy [73]. Subject Code is a three kystlem for describing content
by a well defined set of terms. Topics of level Subject prodd#escription of the editorial
content of a News at a high level, a SubjectMatter providesszription at a more precise

level and finally a SubjectDetail at a rather specific levdl][7

In Figure 3.3, each JCR node corresponds to a particularepbirc the IPTC News Codes -

Subject Code vocabulary. Furthermore, the JCR nodes acelols by the two JCR proper-

23

ties, namely; “name” and “definition”. The properties are declared to be STRINGS. In this
particular example, the node and property type definitiamagfar as defining the allowed
set of the values (i.e. STRING) and how a Subject Code is iestii.e. a Subject Code
node should have two properties: “name” and “definition”pwéver, what is more valuable
here is that the subject codes are organized in a subsunipécarchy, that is; “Cinema” is

a broader subject than “Film Festival”’; where “Arts, Cuétiand Entertainment” is broader
than both. Such semantic relationships are implicit in tbhekapace hierarchy rather than the

node type definitions.

Semantic relations in the form of subsumption are not thg cahdidates for what is implicit
in the workspace hierarchy. In fact, one could possibly trans “part-whole” or even other
relationships for dierent tree arrangements. A collection of book chaptersrevbach chap-
ter consists of an introduction, several body sections acdnalusion is a typical use case
for the former case. The scenario simply suggests a cotistnusased on a “part-whole”

relationship rather than subsumption.

At this point, one could argue that it is actually the nodeetgefinitions that account for such
structural deductions. However, even when the nodes arstrcily typed, that is; say they
are left as “nt:unstructured”, we should be able to recagiimese structural patterns and so
their implications. As depicted on Figure 3.4, rather tHamrode types, same name siblings

and repeating sub-trees account for the semantics in thisydar configuration.

3.2.3 Implications

Up to now we have seen how node type definitions along with tirkspace hierarchy can be
helpful in extracting ontology classes, properties andsziddals. There are some trivial cases;
such as the JCR properties of type STRING, LONG, DOUBLE, BE&N or DATE, where
simply some data type properties are constructed. The ciisdREFERENCE-, PATH- or
NAME- type JCR properties is more complex; where object prtiggs may be more suitable.
Node type definitions or a particular set of JCR nodes (seer&ig.3) may be valuable in
extracting class definitions. In the former case, the itdwece is explicitly expressed by the
hierarchy within the node types. On the other hand, in theraiase, one has to look at the

parent-child relationships in the JCR nodes. In all casa®esname siblings and repetitions

1 For space considerations the properties for only the “Figstival” JCR node are displayed.

24

digital
library
(nt:unstructured)

same name siblings

book
(nt:unstructured)

' same name siblings

book
(nt:unstructured)

’—'_ same name siblings

title: author:

title: author:

title: title: title: title: title:

repeating sub-tree repeating sub-tree

Figure 3.4: Example workspace configuration with “part-fefiamplications

can be used to formulate other semantic relationships.

As demonstrated in the aforementioned examples, even &scas JCR application is built
with different types of semantic associations hard-coded in itenbreepository’s node type
definitions, taxonomical structures and nodes that shamermm patterns. If the content man-
agement system applications are given the means to expipisémantic information, then
value-added services such as automatic item categonzdiimling related content and dif-
ferent forms of semantic search can be built. The contemisitpy alone does not facilitate
the development of these services; as it does not provideneafaepresentation to interpret
and reason over the semantics implicit in the repositorynggquently, applications have to
deal with this problem internally, and for most of the timeilmpromptu solutions. In this re-

spect, our motivation is to devise an ontology extractiamfework - namely, the JCR-to-Onto
Bridge framework - so as to formally represent the othenirgglicit semantic information

and later on enhance it with additional horizontal or dontaiowledge. The benefits of this

approach can be summarized as follows:

1. Exploit the power of ontological formalisms that provigechine interpretable means

to express and process semantic information
2. Establish a bridge between the content repository ankintwledge base

25

3. Provide a formal basis for alignment with extra domainviealge

3.3 Basis for Alignment with External Horizontal and Domain Ontologies

Before going into the details of JCR-to-Onto Bridge and thegpping schemes, it is worth

illustrating that the ontology extraction framework sepsaubasis for alignment with already

available horizontal and domain ontologies. The valuesddi@atures enabled by JCR-to-
Onto Bridge’s initial representation of the semantics ia tontent repository can further be
improved if the extracted ontologies are augmented witlitiadeél semantic data. Techniques
for semi-automatic merging and alignment of ontologiestei literature [75], and therefore

will not be repeated in this section. On the other hand, ocugas to demonstrate the added-
value of integration of such techniques and what JCR-t@@nidge dfers to facilitate this

integration.

Consider the following JCR tree representation on FigusenBthe association between cer-
tain concepts and tags in one of Flickr [76]'s (a photo slwasite) tag-clouds. As described
by [77], a tag-cloud is a list of the most popular tags, ugudisplayed in alphabetical or-

der, and visually weighted by font size. In a tag-cloud, whemser clicks on a tag, (s)he
obtains an ordered list of tag-described resources, asawalllist of other related tags. In the
example, the individual tags are organized in clusters g/tieg clusters form a hierarchy of

(LT

concepts. For example, “streetart”,

"o

wall”, “stencil”, dmt” etc. are tags associated with the
cluster “grdtiti”, which in turn forms a subset of the more generic clustet™ Furthermore,
we assume that resources available in the other nodes oftttkspace that are not explicitly

shown on Figure 3.5 are associated with these tags.

By (i) lifting each JCR node in the example shown on Figuret8.&n ontology class, (ii)
establishing the inheritance hierarchy among the classkfirzlly (iii) instantiating the JCR
properties (that represent particular tags) as indivielo&the generated classes, it is possible
to formally relate resources tagged with items that belorgay, the same cluster, or speaking
in ontological terms, that are individuals of the same cl&$swever, for some applications
this still turns out to be indticient and a need to enrich these semantic relations with addi
tional knowledge may be necessary. For this particular @i@nthe WordNet ontology [78]

is a possible candidate. As depicted on Figure 3.5, whenedigvith the WordNet ontology,

26

inherited instance & inherited |
hypernym lhypernym
T R P A
direct
hypernym
WordNet Enhancements
JCR Node :

JCR Property

WordNet Relation

: color

_|linherited
" lhypernym

Figure 3.5: Association between the terms in the tag cloud

the tag “color” becomes the hypernyhof the tags “blue”, “black” and “white”. Similary, the
tag “people” - apart from belonging to the same tag clustemow the hypernym of the tags
“girl” and “woman”. The tag “New York” becomes an instancetbé tag “city” and finally,

the tag cluster “art” is inferred as the hypernym of the tagidng”. Now, an application that

uses this information in search may provide a faceted braywsi content or likewise a more

2 In linguistics, a hypernym is a word or phrase whose semaatige includes that of another word, its

hyponym.

27

precise ranking of search results based on similarity. énfdihmer case, all resources tagged
with any of the items in the “painting” cluster would be eclantly related whereas after
the alignment process, resources referring to the hyporofrttse tag “color” (i.e. “blue”,

“black”, “white”, etc.) would be ranked more relevant.

“blue color or pigment; “a visual attribute of
resembling the color thing that results from
of the clear sky in the the light they emit or
daytime” transmit or reflect”

wn:hypernym

wn:WordSense

A

wn:hasSense

(‘ wn:WordSense

A

wn:hasSense

wn:inSynSet

wn:hyponym

‘wn:inSynSet

rdf:type rdf:type

wn:Word

:lexicalForm
colorirf
> color

rdfs:subClassOf

whn:lexicalForm

a

blue Bl

tc:hasTag tc:hasTag

tc:painting

Figure 3.6: Technical illustration of how tags can be anteotavith the WordNet ontology

3.4 Exploitation of Modeling Patterns

The problem with the aforementioned approach is that: iernyde definitions are not fully
exploited by the user community, ii) the flexibility providldoy JCR makes it dicult to
predict in advance what type of relations are to be extraftted the workspace. On the other
hand, the degree of flexibility that the content repositondei provides is limited in practice
by the level of freedom the applications built on top of theasitory can support at run-time.
That is; if every node is defined to be “nt:unstructured”,nthiee applications should have

the capability to resolve the type information of a parcuhode from either its content or

28

structure at run-time. Consequently, even if not explicghcoded in the workspace node
type definitions, some structural patterns, that both thekiwg applications and our ontology

extraction components could exploit, do exist.

Our aim with the JCR-to-Onto Bridge approach is, thereftwalesign a configurable ontol-
ogy extraction framework that makes use of the structurtiepss present in the workspace.
The configuration should be flexible enough to handfeedent workspace arrangements and
hence let the users identify the semantic relations asyfaeepossible. Based on our discus-

sion in sections 3.2 and 3.3, these semantic relations edbant for the construction of;:

ontology classes

relations among ontology classes (e.g. subsumption)

object and data type properties

individuals

When the node type definitions fail in fully describing theseatic structure of the workspace,
it is just a matter of identifying the workspace nodes or prtips that can be used in either
of these constructions. Put in other words, we are tryingeteebbp a scheme by which the
user maps the appropriate set of nodes and properties indtiesspace to dferent ontology

construction processes. To facilitate this process, we Haveloped a Graphical User Inter-
face (GUI) on top of the JCR-to-Onto Bridge framework. Thel@ts the user browse the
whole JCR repository, select a set of nodes and propert§irzadly associate with each set
of selected node or property, a predefined ontology cortairuprocess. Slowly, the user
builds a group of mapping definitions that are used in thelogyoextraction process. In this

regard, our discussion in this section will mainly revolveund the following:

1. the diferent possible workspace arrangements,

2. the native JCR queries in selecting the appropriate sebdéspace nodes and proper-

ties,

3. the various mapping templates (i.e. ConceptBridge, @upsonBridge, Property-
Bridge, EnforcedPropertyBridge and InstanceBridge) esponding to the étierent

constructions outlined earlier.

29

JSR-170 specification enforces the XPath syntax [57] fayuisry language. Given the con-
text, XPath is definitely a suitable choice; the tree stngcinthe JCR workspace is inherently
analogous to that of an XML document. On the other hand, stpoonly a subset of the
XPath language - a runtime SQL translatable subset flicmnt for JISR-170 compliance. As
argued in [55], the rationale behind this decision is to elzdabase-backed implementations’
integration. It is worth noting that as long as they meet tl@imum requirements, reposito-
ries are free to support the full XPath syntax or additignt#ie SQL standard. Therefore, in
this thesis, we will not make a distinction between the SQistatable subset of XPath and
the SQL itself, and illustrate our examples in SQL. A dethieapping between the two is
provided in [55].

A native JCR query, whether XPath or SQL, specifies a set oésad the workspace that

satisfy any of the following constraints [55]:

e Type constraintSpecifies the primary node type of the returned nodes

e Property constraint_imits the returned nodes to those having particular prigehav-

ing particular values

e Path constraintRestricts the returned nodes to a subtree in the workspesmided by

a path expression

The above-described constraints arffisient for the purposes of our mapping scheme. Now,

consider the following cases:

3.4.1 Mapping Cases for the Construction of Ontology Classe

A class description that is not encoded in the node type defiisimay exist in the workspace

in either of the two patterns:

1. Hierarchical Categorizatiom classification hierarchy in the workspace where the nodes

or a subset of the nodes satisfying certain criteria, cpaes to ontology classes (e.g.

Figure 3.3).

2. Flat Categorizationa tree in the workspace where the direct children of the, root

children satisfying certain criteria, correspond to oo¢ classes (e.g. Figure 3.4).

30

In the former case, an example query selecting the nodes tgdmkin a class construction

could be:
SELECT * from nt:baseWHERE jcr:path LIKE ‘/241PTC_SubjectCodegt’
XPath Query: j/icr:root/IPTC_SubjectCodegelement(*, nt:base)

The query would then select all nodes that are either dirdotdirect descendents of the node
named “IPTCSubjectCodes” and would trigger a class construction for each. Egelar
expression “%” in the path constrainfPTC_Subject. Codeg%” accounts for this selection.
The type constraint, that is; “from nt:base” indicates tihat selected nodes could be of any
JCR node typ&

The query works suitably well for the example provided in&g3.3; however, as one would
agree it is not the only arrangement possible. Consider hewdilowing hierarchical cate-

gorization displayed on Figure 3.7 for which the query needse slightly modified:

IPTC
Subject
Codes

Arts Culture Disaster
Entertainment Accident

painting

architecture

sculpture

Figure 3.7: Classes described in a hierarchical categmnizpattern

3 InJSR-170, “nt:base” is defined as the node type from whidbult-in and custom node types are derived.

31

The only diterence between Figure 3.3 and Figure 3.7 is that in the lzds® some nodes do
not communicate ontology class construction. For eachestiopde, a node named “Tags”
has been added to store the list of associated tags withdhiétydar subject. Otherwise, the

hierarchy is nothing but a categorization of the IPTC Newgjé&at Codes.

In this case, the query selecting only the nodes that exthibitlass role would be:
SELECT * from nt:baseWHERE jcr:path LIKE ‘/241PTC_SubjectCodegt’
AND NOT jcr:path LIKE ‘#41PTC_SubjectCodeg/y/Tags’

Up to now, we have seen some examples of hierarchical céatgion. On the other hand, a
typical example for flat categorization is the case that af node having children with dif-
ferent names, where each set of same-name-siblings isaseddstruct a dierent ontology
class. Obviously, in such an example, the structure of thielagy class would be derived
from the structure of the nodes in the same-name-siblinggse&n that the structure remains

constant throughout.

A possible query to be used in the construction of an ontoldggs corresponding to the

“chapter” entity in Figure 3.4 could be:
SELECT * from nt:base
WHERE jcr:path LIKE ‘A4/digital_library/book[%]chapter[%]

In JCR-to-Onto Bridge, the mapping definition that corregfsto a class construction both
for the hierarchical and the flat categorization case is @enteptBridge” shown on Figure

3.8.

The “Query” component conveys the native JCR query thattetbe node to be formalized
as an ontology class. Unless a value is provided for the “€piName” element, the class
is named after the JCR node from which it is extracted. Thesctaay be declared as the
subclass of another; however, in that case, a “Subsumptidgd’ has to be declared. Fi-
nally, object and data type properties, whose domains bedbmclass in question, can be
generated on-the-fly with an appropriate “PropertyBriddetlaration. The details of both

“SubsumptionBridge” and “PropertyBridge” will be presedtin the upcoming sections.

32

<xsd:element nam&'ConceptBridge*
<xsd:complexType
<xsd:sequence
<xsd:element nam&€Query”
type="tns:QueryType”/>
<xsd:element nam&ConceptName”
type="tns:NameType” minOccuks'0” />
<xsd:element ref‘tns:SubsumptionBridge”
minOccurs="“0" maxOccurs=“unbounded/>
<xsd:element ref‘tns:PropertyBridge”
minOccurs="0" maxOccurs=“unbounded”/>
</xsd:sequence
</xsd:complexType
</xsd:element

Figure 3.8: The XSD for “ConceptBridge”

3.4.2 Mapping Cases for Establishing Relations among Ontogy Classes

Either during the ontology class construction processndependently, a class may be as-
serted as the subclass of another. For example, for the¢tiéral categorization case shown
on Figure 3.3, the class formalized from a node should betasisas the subclass of what is
formalized by its parent node. In other words, based on Ei§u8, both Cinema and Fashion
are subclasses of the ontology class AZtdture Entertainment and similarly, Filckrestival

is a subclass of the generated Cinema class.

Suppose we would like the ontology extraction frameworkdseat these subclass relation-
ships as each super class is generated. However, this ppesdem. Let us recall the query

used in selecting these particular nodes that are meantlifdelolup to the ontology classes:
Outer Query:
SELECT * from nt:baseWHERE jcr:path LIKE ‘/241PTC_SubjectCodegt’
XPath Query: jcr:root/IPTC_SubjectCodegelement(*, nt:base)

What is desired is a way to express for each selected node adioather node in the workspace

that represents its subclass (or subclasses). For theyartexample, it would be the chil-

33

dren of the selected node. By writing two independent gaeriene for the selection of the
super class nodes and one for the selection of the subclaissesot possible to achieve the
desired behavior. In fact, one needs to write the second/qatative to the first one, where
the path expression in the second query should be executdtvedo each node selected
by the first. Unfortunately, JCR does not natively suppodhsbehavior. Consequently, the
notion of a query has been extended; in fact, $SELECTRNYH is a reserved keyword in
JCR-to-Onto Bridge that lets the path expression in therayuery be used in that of the

inner.
Inner Query:
SELECT * from nt:baseWHERE jcr:path LIKE ‘$SELECTIONPATH%%'
AND NOT jcr:path LIKE ‘$SELECTIONPATH%%0’

In this example, the outer query selects all descendentheohode IPTCSubjectCodes

whereas the inner query is executed for each node selecttt lputer query and it selects
the direct children of the descendent. If used in an ontoldggs construction process, the
implications would be to create an ontology class for easlceledent of IPTCSubjectCodes

and assert a subclass relationship for each direct chilofréhre descendent node. In JCR-to-
Onto Bridge, the mapping definition that is used for assgrinch subsumption relations
between ontology classes is the “SubsumptionBridge” efémvbose schema is provided on

Figure 3.9.

<xsd:element nam& SubsumptionBridge*
<xsd:complexType
<xsd:sequence
<xsd:element nam&PredicateName”
type="tns:QueryType”/>
<xsd:element name€'SubjectQuery”
type="tns:QueryType” minOccues‘0” />
</xsd:sequence
</xsd:complexType
</xsd:element

Figure 3.9: The XSD for “SubsumptionBridge”

The “SubjectQuery” element conveys the “Outer Query” déscr earlier in this section. It

34

selects the node from which the super class is extractedvetsely, the “PredicateName”
element is built around the “Inner Query”. It selects theawftom which the sub classes are
extracted. It is worth noting that the use of the “Subject@uelement is optional. In case
the “SubsumptionBridge” is declared within a “Conceptied, the query to select the super

class is already available; hence, it should not be repewstbdh the “SubsumptionBridge”.

3.4.3 Mapping Cases for the Construction of Object and Data {pe Properties

The following patterns in the workspace account for the tooton of object or data type

properties:

e Case 1 A node in the repository that is selected for ontology clessstruction (e.qg.
ConceptA) references another node in the repository thir@gCR property of type
REFERENCE, PATH or NAME, where the referenced node is alsecss for ontol-
ogy class construction (e.g. ConceptB). The pattern isctlehion Figure 3.10. It is
worth noting that the JCR property may or may not be the dalestendent of the node

in question; but yet a relative path exists to the property.

extracted ontology

I wn:ConceptA > ‘ wn:ConceptB 1
asProperty

I . |
domain range
|

JCR workspace

JCR Node
name: Concept_A

JCR Property
name: hasProperty !
type: {REFERENCE}|| | - -
{PATH} ||
{NAME}

I
JCR Node
name: Concept_B -

Figure 3.10: Workspace configuration for Mapping Case - 1

35

e Case 2 A node in the repository that is selected for ontology clessstruction (e.g.
ConceptA) has a JCR property of type BINARY, BOOLEAN, DATEDDBLE, LONG
or STRING. The pattern is depicted on Figure 3.11. It is wartling that the JCR
property may or may not be the direct descendent of the nod@estion; but yet a

relative path exists to the property.

extracted ontology
T
wn:ConceptA > Literal
| [A]lvalue

| domain ‘ range |

JCR workspace

JCR Node
T T name: Concept_A

JCR Property

name: P2

type: {BINARY} ||
{BOOLEAN} ||
{DATE} |
{DOUBLE} ||
{LONG} ||
{STRING}

value: propertyValue

Figure 3.11: Workspace configuration for Mapping Case - 2

e Case 3 A node references two other nodes in the repository thral@R properties
of type REFERENCE, PATH or NAME, where the referenced nodessalected for
ontology class construction (e.g. ConceptA and Concegshectively). The pattern
is depicted on Figure 3.12. It is worth noting that the JCRbprties may or may not be
the direct descendents of the node in question; but yet astepzlative path to each

exists.

e Case 4A node in the repository has two JCR properties where oneiiggerty of type
REFERENCE, PATH or NAME and the other BINARY, BOOLEAN, DATBOU-
BLE, LONG or STRING. The node references a second node irefhesitory through

36

extracted ontology

[

domain

hasProperty -

JCR workspace

JCR Node
- {name: Concept_A

name: hasProperty

|

G

|
range

Q"/
[

JCR Node

v

JCR Property

name: P1

type: {REFERENCE} ||
{PATH} |
{NAME}

JCR Property

name: P2

type: {REFERENCE} ||
{PATH} |
{NAME}

JCR Node
name: Concept_B)| -

Figure 3.12: Workspace configuration for Mapping Case - 3

the formerly described JCR property of type REFERENCE, PATIAME, and the

referenced node is selected for ontology class constru¢da. ConceptA). The pat-

tern is depicted on Figure 3.13. It is worth noting that th&® JiLoperties may or may

not be the direct descendents of the node in question; bat separate relative path to

each exists.

37

determines the built-in ontology type to be used for the priyprange.

Case 1 and Case 3 refer to patterns where the straightformeastruction would be that of
an object property. The domain and the range of the objegigptp are explicitly the classes
described by the JCR nodes in context. On the other hand, Zas#Case 4 are more suitable
for the construction of data type properties: The classridust by the JCR node in context

designates the domain of the data type property and the typleuge of the JCR property

Another observation to make is that for Case 1 and Case 2, &atwerqueries are siicient
to locate the nodes and properties accounting for the pryopenstruction. The first query
selects the node (or set of nodes) to be used in setting thaidahthe property. The second

query depends on a relative path expression to select thepdipRrty to be used as the basis

extracted ontology
- .
! wn:ConceptA > Literal
j [Alval ue N C}
|

domain

JCR workspace

|

JCR Node I
name: has[A]Value !

v

I JCR Property JCR I?roperty
name: P1 :\am.e. PBZINAR
- type: {REFERENCE} || ype: gBOOLI;}MU}”
{PATH} || e
(NAVE) (DOUBLE}|| |~~~
‘ {LONG} ||
{STRING}
value: propertyValue

Figure 3.13: Workspace configuration for Mapping Case - 4

for the property construction process; such that the namérantype of the to-be-constructed
ontology property are derived from the name and type of the @®@perty. If the JCR property

is of type REFERENCE, PATH or NAME then an object property éngrated whose range
is determined by the referenced JCR node. On the other Haiheé, JCR property is of type

BINARY, BOOLEAN, DATE, DOUBLE, LONG or STRING then a data tggroperty with

an appropriate built-in type for its range is constructed.

The conditions are somewhatfldirent for Case 3 and Case 4. In fact, a separate JCR node
is used as the basis for the property construction processuating for the need to have

an additional query. The first or the base query selects lgxhetse nodes. The second and
third queries depend on some relative path expressiondect ske two JCR properties to be
used for determining the domain and range of the properpetively. If the JCR property
selected by the third query (i.e. query for selecting thgeus of type REFERENCE, PATH

or NAME then an object property is generated. The compleargrtase, that is; when the
JCR property is of type BINARY, BOOLEAN, DATE, DOUBLE, LONG&TRING, implies

a data type property generation.

38

Consider the example displayed on Figure 3.14 where the aeieses are categorized by
their subject codes. Each JCR node with the name “NewsAttabntains a JCR property
“hasSubject” that is of type PATH. The JCR property refeesna subject code from the tree of
subject code categorizations. As one would notice, this sxample of the pattern described
in Case 1. What is desired is a way to create the object psoparmed “hasSubject” with the
NewsArticle class as its domain and a union of each selectgdct code as its range. Based
on this information, the JCR queries to select the nodes taosed in the object property

construction are as follows:

JCR workspace

JCR Node
ame: NewsArticlg

JCR Node JCR Node JCR Node
ame: NewsArticle pame: NewsAtrticlg IPTC Subj. Codes,

JCR Property
name: hasSubject
type: {PATH}

JCR Property
name: hasSubject
type: {PATH}

JCR Property
name: hasSubject
type: {PATH}

JCR Node JCR Node
Disaster Accident Arts Cul. Ent.

JCR Node JCR Node
Fire Earthquake

JCR Node
Cinema

Figure 3.14: A sample workspace configuration for proper@ppings

Property Domain:

SELECT * from nt:baseWHERE jcr:path LIKE ‘29/NewsArticle’
Predicate basis

SELECT my:hasSubjedfROM nt:base

WHERE jcr:path LIKE ‘$SELECTIONPATH’

The query for locating the property domain selects all noteraed “NewsArticle”, and the
inner query is executed for each selected NewsArticle nodbtain its child property named

“hasSubject”.

39

Figure 3.15 provides a representation of the generatecttopjeperty “hasSubject”. One
important point to mention is that the range of the propestgdt as the union of the classes
“Fire”, “Earthquake” and “Cinema”: the aforementioned gae select multiple nodes from
the workspace, each of which accounting for the constroabiothe same object property.
Consequently, whenever a new class is encountered for ttige 1&f the property, the class is
simply added to the union of possible classes in its range.

domain

extracted ontology range

co:NewsArticle
HasSubject

+

co:Earthquake
+

Figure 3.15: The generated “hasSubject” object property

In JCR-to-Onto Bridge, the mapping definition that corresjsto the object (or data type)

property construction for the first and second cases is thepan Figure 3.16.

The two queries “SubjectQuery” and “PredicateQuery” led@tthe node that is used in set-
ting the domain of the property and (ii) the JCR property fiwhich the name, type and range
of the ontology property is extracted, respectively. Theafisformation” element can be used
for a possible future extension for modifying the value af groperty. Transformations are
currently not handled by the framework. Finally, “Propéntyotation”s convey additional

information about the property to-be-constructed; sudisasansitivity, functionality, etc.

Likewise, the mapping definition that corresponds to theabfor data type) property con-
struction for the third and fourth cases is depicted on Kdgail7. The “PredicateQuery”
element points to the node from which the name of the progergbtained. On the other
hand, “SubjectQuery” and “ObjectQuery” select the two JGRpprties that determine the

domain and range of the ontology property, respectively.

40

<xsd:element nam&PropertyBridge®
<xsd:complexType
<xsd:sequence
<xsd:element nam&'PredicateQuery”
type="tns:QueryType”/>
<xsd:element name“SubjectQuery”
type="tns:QueryType” minOccues‘0” />
<xsd:element ref‘tns:Transformation”
minOccurs="0" />
<xsd:element ref‘tns:PropertyAnnotation”
minOccurs="0" />
</xsd:sequence
</xsd:complexType
</xsd:element

Figure 3.16: The XSD for “PropertyBridge”

<xsd:element name&'EnforcedPropertyBridge>
<xsd:complexType
<xsd:sequence
<xsd:element namé&PredicateQuery” typs“tns:QueryType”/>
<xsd:element nam&SubjectQuery” type“tns:QueryType”/>
<xsd:element nam&ObjectQuery” type-“tns:QueryType”/>
<xsd:element ref“tns:PropertyAnnotation” minOccus0” />
</xsd:sequence
</xsd:complexType
</xsd:element

Figure 3.17: The XSD for “EnforcedPropertyBridge”

3.4.4 Mapping Cases for Instantiating Individuals

Prior to creating the individuals in the extracted ontoldgsg following information has to be

available in the content repository:

1. Names of the individuals to be created

2. Ontology class(es) for the individual

41

3. Optionally, object or data type properties associatel the individual and their values

Names of the individuals to be created

The content nodes in the repository can be used as the baalsdomputations related to the
construction of an individual in the JCR-to-Onto Bridgenfi@vork. As illustrated on Figure
3.18, the node named “B737-800" or equivalently, “C-Skykhd¥2” is a container node for
a particular resource, in this case; information about esraft model. Such container nodes
will be used to derive the name of each individual to be crtaédong with other useful

information.

Ontology classes for the individual

The motivation behind extracting ontology constructs fronde type definitions has already
been discussed in Section 3.2.1. Extracting ontology etaf®m the node type definitions
becomes particularly valuable when it comes to assigniagsels to an individual. Techni-
cally, every JCR node - and so does the base node corresgaiedam ontology individual

- has a primary node type and optionally a set of mixin nodedyprhe extracted ontology
classes from the primary or mixin node type definitions, @di€form the set of classes for

that individual.

Classes inferred from the node types assigned to a base redetahe only candidates for
the classes of that individual. In fact, in many cases the Inasle is directly or indirectly
related to another node in the repository, which - from th&-16&-Onto Bridge’s point of
view - may be a categorization node and therefore an ontataps may have already been
generated for it. In such a case, it is desirable to includegémerated ontology class, too,
in the definition of the classes for the individual. For exéenfpased on Figure 3.18, the
JCR node named “B737-800" is meant to be the base node fodasdunal construction pro-
cess, where the individual is named after the node. The pyimade type for the base node
is “my:aircraftModellnfoType” and JCR-to-Onto Bridge halseady lifted this node type to
an ontology class named “co:AircraftModellnfo”. Therafot'co:AircraftModellnfo” is in-
tuitively a class for the individual “B737-800". Howevehe base JCR node also contains
a property named “instanceOf” that references another irodlee workspace: “Commer-
cialJet”. As you will notice, it belongs to a tree of categation nodes, and consequently

ontology classes have already been generated for the nodes tree. If explicitly stated

42

by the user, the fact that “B737-800" is an individual of tha&ss “co:CommercialJet” should

also be asserted in the knowledge base.

co: Airplanes T T T

\
f\ \
co: PropellerPlane co: AircraftMode }

Info
co: PrivateJet \
co: CommercialJet }
|
co: MilitaryJet |
\
I
JCR workspace :
PrimaryNodeType:
@ my:AircraftModelinfo
Type
R Node

R Node
name: Airplanes (1) € name: B737-800)4——
CR Node ﬁ
name: PropellerPlane
) JCR Property
JCR Property name: P1

R Node name: instanceOf

name: PrivateJet type: {REFERENCE} || JCR Property
{PATH} || name: P
{NAME}

CR Node e
. ®{(_name: CommercialJet (2)
.
name: MilitaryJet
JCR Node

ame: C-Skyhawk 17

R Property
JCR Property —* Samaet

name: instanceOf

e EAR|
{BOOLEAN} || -
{DOUBLE} ||
{LONG} ||

{STRING}
value: PropellerPlane

Figure 3.18: A sample workspace configuration for individyeneration

Object or data type properties associated with the indalidu

4

w

Some other valuable information to extract from the workspe the object or data type
properties of an individual and their values. It is impott@mmote that the base node described
above may contain other JCR properties that accounts fogeheration of new ontology
properties or setting up values for already existing onéshe JCR property matches with
that of an already described ontology property in the cl$sethe individual, then simply
its value is set. On the other hand, for a JCR property thatatane matched with any of
the previously formalized ontology properties a new onaughbe generated. However, one
difficulty with this approach is to determine the domain of thepprty. In most cases, the
JCR-to-Onto Bridge ends up generating some auxiliary ogtotlasses to account for this

challenge.

As a conclusion, it is necessary andistient to locate the base JCR node to be used for
the individual construction stage and optionally a set dR JLoperties that will contribute
to setting up values of the associated properties. Therefao native queries; one for the
selection of the base node and the other, whose path is bledaelative to that of the first,

for selecting the JCR properties wouldisce.

In JCR-to-Onto Bridge, this is formalized by the “InstancelBe” mapping definition whose

schema is displayed on Figure 3.19.

<xsd:element name€InstanceBridge®
<xsd:complexType
<xsd:sequence
<xsd:element nameInstanceName”
type="tns:NameType” minOccuks'0” />
<xsd:element nam&Query” type="tns:QueryType"/>
<xsd:element ref“tns:PropertyBridge”
minOccurs=“0" maxOccurs=“unbounded”/>
</xsd:sequence
</xsd:complexType
</xsd:element

Figure 3.19: The XSD for “InstanceBridge”

The “Query” element contains the query or the path expragsioeach the node representing
the individual. If present, the name of the individual isabed from the element “Instan-

ceName”; otherwise, the individual is named after the JC&rfoom which it is extracted.

44

Finally, the values of the object or data type propertiessate as each “PropertyBridge”

within the “InstanceBridge” is processed.

3.4.5 Observations

It is worth pointing out that although these mapping defoms are used in an initial ontology
extraction phase, they are likely to be valuable when the-tie@nto Bridge is configured to
listen to the events in the content repository. It is merelgdal on the fact that the content
repository is in constant growth and that the changes ingpesitory should be reflected on
the knowledge base. In such a scenario, the query forms dgentp match against whenever
a new event is fired from the content repository. If the paldcupdate matches against any
of the mapping definition, then the construction associaiiflthe query should be replayed,
if necessary. This is currently a work-in-progress and #iaits are beyond the scope of this

thesis.

3.5 Summary

In this chapter, the motivations behind the ontology extoacframework, namely JCR-
to-Onto Bridge have been discussed. JCR-to-Onto Bridge lbeagonsidered as a semi-
automatic tool for extracting ontologies from JSR-170 cbamb content repositories. As
discussed in sections 2.6 and 3.4, though, the flexibilita cbntent repository model - as
opposed to the rigid structure in a relational schema - meikificult to define in advance,
a solid set of heuristics that are guaranteed to work witfedint repository instantiations.
Therefore, in JCR-to-Onto Bridge, ontology extractiorht@ques are combined with a user-
defined mapping strategy to obtain the optimum results. Tdienpial benefits of such an
ontology extraction framework for the content managemgsiiesn community is thoroughly

discussed in [79].

45

CHAPTER 4

A HYBRID APPROACH INTEGRATING STRUCTURAL AND
FULL-TEXT SEARCH

4.1 Background

One of the driving forces behind enhancing the content memagt cycle with semantic
capabilities is to go beyond ranked keyword search. Cuyemtost content management
systems support document retrieval based on full-textdindeand lexical match of terms. A
purely keyword-based search as such has its own limitgttbosigh. On the one hand some
relevant results are omitted, on the other hand irrelewvesnilts are returned; simply because

the meaning of terms is not taken into account.

Consider the case where the user types in the keywords “hdarelyy”, “factories” to retrieve

some news articles related to the illegal production of mleusubstances. However, articles
such as “Cannabis factory found by pofitare omitted because they do not explicitly contain
the term “drug” or its lexical derivations. On the contrazgnnabis is a drug and therefore the
article should have been included in the result set. A kegviiased query that uses lexical

similarities cannot cope with such circumstances.

Now, consider the opposite case. The user executes the gigryhe keywords “drug”,

“collapse”. The following articles appear in the result set

e “China’s anti-malaria medicine producers face marketagsd8: Just three years ago,

a global shortage of the anti-malaria medicine artemisalarmed medics fighting

the killer disease, and spurred scientists who are develagliernative sources of the

1 httpy/news.bbc.co.y®/hi/uk_newgenglangwiltshire/8039171.stm

46

drug..?

e “Arrests after boys’ drug collapsePolice have warned people not to take tablets from

a possible rogue batch of ecstasy after two teenagers weheduo hospital from a

Swansea nightclubs..

e “Donovan embarrassed by drug collaps&ighties pop star Jason Donovan was em-

barrassed after he collapsed from a cocaine seizure duritg Koss’ 21st birthday

party - because he was desperate to be seen as a wild rdcker...

The problem illustrated here is that even though all thréeles contain the keywords “drug”
and “collapse”, the first article is business and financeaedlavhereas the others are related
to an event of being poisoned due to overdose. Therefosenédessary that the search scope
is progressively narrowed based on some input from the Urs#is regard, as stated in [48],
faceted search enables users to navigate a multi-dimexsidarmation space by combining

text search with a progressive narrowing of choices in eatleision.

To overcome these limitations, content management sysseport features such as syn-
onym matching, similarity search and “Did you mean thisjgestions. Synonym matching
is based on the idea of repeating the search process witmgayisoof a particular keyword.
Similarity search deals with removing duplicate or negpliate results or once a particu-
lar content resource is selected, bringing in similar reses1 Finally, “Did you mean this?”

suggestions try to resolve incorrectly typed keywords.

However, even these techniques are not interlinked withddmain semantics available in
the form of ontologies. Ontologies represent human knogédeekplicitly in a form that is

suitable for automated processing and if used in combinatiith full-text search, then a
formal mechanism can be devised that provides enhancechseapabilities [6]. There are
various works addressing this issue, which will be discdigsedetail in Section 6.2. For

convenience, here, we provide a brief summary.

Bast et al. [6] describe a semantic search methodologyitk&inds concepts and individuals

associated with the terms in the documents, and later orthisesas extensions to the original

2 httpy/www.innovations-report.cofntml/reportglife _sciencegeport-100478.html

3 httpy/news.bbc.co.yR/hi/uk_newgwaleg4777812.stm

4 httpy//www.contactmusic.cofnews.nsfarticledonovan%20embarrassed%20by%20drug%20collapse-
_1044537

a7

full-text index. Minack et al. [39] take a somewhaffdrent approach and run full-text search
over RDF annotations; therefore extending structuralckeaapabilities of SPARQL [49]
with those of Lucene [42]. Finally, QuizRDF [40], describiedDavies et al.'s paper, indexes
both the document content and its RDF metadata. It lets #estgrt with some keywords to
find and rank the relevant RDF resources. From these RDFnassyuhe associated concepts
are found and presented to the user. The user now selectseptoprovides some additional

query parameters based on the properties of the concephasédrch scope is narrowed.

As we have seen in Chapter 3, JCR-to-Onto Bridge framewadady formulates the node
type definitions and patterns in the content repository &sagies and, if necessary, enriches
them with additional domain semantics. Inspired by this pnapose to build a hybrid search
mechanism that combines the full-text search capabilitiesgines such as Lucene [42] and
SOLR [45] with the knowledge accumulated in the extractetblogies. Our approach is
different from the work of Bast et al. since it does not rely on ryitj the native full-
text indices to provide semantic search capabilities. Intfe ontology is woven into the
documents by adding artificial words into the corpus. On tterhand, we maintain the
ontologies separately from the textually indexed docusiand combine the search results
at a latter step; hence, exploiting both the asserted anohfiieed structural and semantic
dependencies in the ontology. For a content managemeehsysstenario, we cannot utilize
an approach similar to the one described by Minack et al. ¢®fr; since populating the
ontologies with the full content of a resource is not praatitn this respect, our hybrid search
mechanism complements QuizRDF [40] by providing suppartgigeries around multiple

classes. Our aim is twofold:

1. Seamlessly integrate semantic search facilities inyavked-driven interfacesAs argu-

ed in [6], keyword-based queries are a natural way to captumean knowledge. There-
fore, instead of completely deviating from keyword-drivieterfaces, semantic search
mechanisms have to be built on top of contemporary paradigma consequence, we
should be able to find ontology concepts given a set of keysvandl possibly construct

complex semantic queries around them.

2. Provide support for faceted-browsing of content resesiktust like ontology browsing

is a process that involves first visiting a set of nodes and ifeeatively traversing all

their connected nodes; so is search that utilizes ontdogighe background. We

48

employ this paradigm in our framework and therefore prowdeulti-level, multi-

dimensional interface for browsing search results.

The chapter proceeds as follows: First we discuss how ayigglay a central role in ex-
tending keyword-based search: ontology-lookup can beatduin finding similar content or
related terms and enables us to provide a multi-dimensideel over the content resources.
In the proceeding section, we present the details of ourithydwarch algorithm that com-
bines the power of structural and semantic search with thtteofull-text. The discussion
proceeds with the complexity analysis of the proposed moluRather than providing a com-
plete mathematical analysis for the best, average and wasss, the discussion is restricted
to broadly identifying the parameters that contribute ® ¢bmplexity. The last but not the
least, how the search mechanism is wrapped as a looselyecoRESTful [46] service is

explained.

4.2 Motivation

4.2.1 Ontology Look-up for Similar Content

Within the context of a content management system, an ayobvovides formal means
to represent the relationship between content resourcesallRrom Chapter 3 that during
the lifting process, JCR-to-Onto Bridge represents eacdetd node as an individual in the
ontology. Based on the type definition of that particularenadd other available information
in the workspace, these individuals are associated wittoongore ontology classes. Object
and data type property values of the individuals are set vathes obtained from the child
property nodes of the base node in the content repositangllfzi the unique identifier for the
content node, which in our case is the path expression th tbamode, is stored as a special

data type property of the individual.

Whether or not a semi-automated framework such as JCR-to-®idge is used in ontologi-
cally representing the structure and semantics in a corgpository, as long as a mechanism
exists to locate the corresponding ontology artifacts fpadicular content resource, infor-
mation available in the ontology may be used to retrievelamgiontent resources. The idea

is outlined as follows:

49

1. Either a structural query is executed or a look-up on aipusly generated index con-
taining all ontology resources is performed to locate thikvidual that corresponds to

the content resource with the given unique identifier.

2. Itis likely that the class for the individual and its sugasses contain other individuals
that describe similar content resources. Therefore,imsgiaftom the direct class and
going up to the superclasses, the individuals that belorigetse classes are ranked by

decreasing similarity. The same procedure applies to thelasses.

3. An individual may belong to more than one class. In thaegcd#sis fair enough to
assume that the class with the least number of individudlseisnost prominent one in

determining the similarity among its individuals.

4. Individuals that belong to the same class may further biElell into groups of in-
dividuals that share same or similar property values or armected through object

properties. In that case, their similarity values shoul@djeisted accordingly.

sc:ArtsCultureEntertainment> w
rdf:type
rdfs:subClassOf ‘Spain gallery casts|
doubt on Goya rdftype
. 1 -l
sc:Cinema - rdftype ‘ ‘
Film review: ’ I
rdfs:subClassOf Los Amantes de Film review:
Circulo Polar UetiA=
|}
rdf:type ‘ ‘
“Tarantino up for || 28" Istanbul | [19" Ankara Intl.
top Cannes prize”| Intl. Film Festival | Film Festival

Figure 4.1: Metadata of some news articles in a content repps

Figure 4.1 illustrates a hypothetical ontology that camdaslasses and individuals represent-
ing the metadata about some news articles in a content teposiAssume that we desire
to find content resources that are similar to the news artittedl “28th Istanbul Interna-
tional Film Festival”. Please note that the particular widlial is an instance of the class
“sc:FilmFestival”. Consequently, a place to start lookfiog similar content would be the
individuals of the class “sc:FilmFestival”. On the othemba“sc:Cinema” and “sc:Arts-

CultureEntertainment” are all superclasses of “sc:Filstival’, therefore, their individuals

50

might as well be candidates for relevancy, provided that gimilarity values are lowered.
One important point to mention is that “sc:NewsArticle” istran appropriate selection for

categorization; it simply contains far too many individual

sc:FilmFestival) -
rdf:type ‘

“Tarantino up for 28" Istanbul 19" Ankara Intl.
top Cannes prize” | |Intl. Film Festival| | Film Festival

| | |
: : :)
" ScihasLocation~ — > Turkey
R) _
sc:hasLocation
C .)

Figure 4.2: Adjusting similarity based on property values

Now assume that an object property labeled “sc:hasLocaggists for the ontology class
“sc:NewsArticle”. As depicted on Figure 4.2, values foistbbject property are available for
the individuals that belong to the class “sc:FilmFestivdt’is now possible to fine-tune the
previously calculated similarity values. In this respét8th Ankara International Film Fes-
tival” is a more relevant article to “28th Istanbul Interioaial Film Festival’ than “Tarantino

up for top Cannes prize” is.

In conclusion, once content resources are associatedheithritology individuals, it is possi-
ble to relate these resources based on the structural areh8eigiependencies in the ontology.
These dependencies appear in the form of inclusion by on@ar antology classes, the class
hierarchy and possession of the same property values. Iprtdoeeding sections, we illus-
trate how this information will be valuable in combining ttesults received from a full-text

search engine such as Lucene [42] or SOLR [45].

4.2.2 Ontology Look-up for Related Terms

An ontology could be a valuable resource to look up terms dhatsemantically related to
those provided in a textual query. Such an approach provée toseful in cases where
keyword-based search fails to return otherwise relevastdurees. In this respect, full-text

indexing techniques that work on ontologies have alreadynlmeveloped for some triple

51

stores [39] and ffer means to exploit the methodology described in this sectio

Given a set of keywords, performing an ontology look-up heas diverse practical implica-

tions:

1. A horizontal ontology such as WordNet [80] or dbPedia [84h be used to discover
the names of the semantically related resources. The atigat of keywords is then
expanded with those retrieved from the ontology look-umaly, search proceeds as
purely full-text querying of the indexed documents with thgpanded keyword set as

the new input.

2. A domain ontology, possibly the one extracted by the J&Rito Bridge framework,
is used in the look-up. Rather than using the names of thergarally related resources
in a subsequent full-text search process, the structucedé@mantic dependencies in the

ontology are retrieved to find related content resources.

“Man made and natural “An accident involving “Accidents on roads.” “Accidents involving
events resulting in loss one or more vehicles.” trains.”

of life or injury to living

creatures and/or damage

to inanimate objects

or property.”

sc:DisasterAndAccident

rdfs:subClassOf

sc:TransportAccident

rdfs:subClassOf

I NewsAtrticle21 I NewsAtrticle31

NewsAtrticle01 NewsAtrticle 11

related resources

Figure 4.3: Example illustrating ontology look-up for findirelated terms

As a possible example for case 2, consider Figure 4.3, whaglicts a hypothetical ontol-

ogy that contains some news articles and their annotatidhs. articles are categorized by

52

their IPTC News Subject Codes. Suppose now, that the tegtiel is around the keywords
“train” and “accident”. At this stage, an ontology look-upamnbe performed to find the rel-
evant ontology resources. For this purpose, structuralyggiegines enhanced with full-text
search capabilities such as Lucene-SAIL [39] and LARQ [4d1) be utilized. Now that

the textual annotation for the ontology class “sc:Railwegiflent” contains both of the key-
words “train” and “accident”, “sc:RailwayAccident” is tgined. Based on this information,
we conclude that the content resource “NewsArticle31” meeir search criteria. Further-
more, from the subsumption relations among the depictes$eta we conclude that the indi-
viduals “NewsArticle21”, “NewsArticle11” and “NewsArtie01” also contain references to

the relevant articles, in descending order of similarity.

4.2.3 Ontology Look-up for Faceted Browsing of Content

Until now, the discussion has mainly been on the utilizatodnontologies in improving
keyword-driven methodologies. In this regard, the pobsés for eliminating the weak-
nesses of full-text search were explored. Consequentlyswawhich the result set could
be expanded with semantically related results were idedtififhese improvements have to
do with the completeness of the search mechanism: they aintliede in the result set a
high percentage of all possible documents intended to bievetl by the query. As a side
effect though, they are likely to introduce some false postiteo, that is; documents that are
completely irrelevant to the query context are brought inerEwithout these semantic en-
hancements, full-text search itself is not sound; that ig wifull-text search ranks resources

based on its perception of relevance.

The fact that the accuracy of the results could be improvieskarch proceeds in a faceted
fashion, has been discussed in [48]. The idea is that ingiadrking with just a set of

keywords obtained from the user, the search engine forffexelnt views on the results based
on some parameters communicated in diverse dimensionsibfogontent categories and
keywords, the semantic links between the documents, etaséfuiently, the search scope is

iteratively changed or narrowed until the user is satisfigh the results.

Ontologies play a critical role in enabling such facetedasing of content and even if not

named explicitly, their use has been experimented in variwarks such as [38], [6] and

5 Lucene-SAIL and LARQ work on Sesame and Jena2 triple stesgsectively.

53

[40]. In summary, provided that the content resources ametated with the resources in the
ontology, the search scope can iteratively be changed mwed simply by executing queries
on the ontology and then retrieving the associated resuitse problem is in seamlessly
constructing these queries based on the parameters cocatethby the user. We propose
a somewhat similar solution to [40], but relieve the resirit that queries should revolve
around a single class and enable queries to be written thamnjoltiple ontology classes. The

idea can be outlined as follows:

1. Ontology resources associated with the documents irethdtrset, including classes,
object and data type properties, are retrieved and ranksstlan their relevancy to the

search criteria.

2. As the user selects from multiple ontology classes andigies values for their object

or data type properties, semantic queries are seamlessigdoin the background.

3. Search is repeated with optionally a new set of keywordslaa previously formulated
query. The new result set that is relevant to the keywordseithér expanded, filtered
or pruned according to the restrictions imposed by the qisergtrieved. The whole

process starts over from step 1, until the user is satisfiddtive results.

4.3 Implementation Details of the Hybrid Search Algorithm

4.3.1 Overview

In the preceding section, how ontologies play a central iroemantic search has been dis-
cussed. This section describes the building blocks usdakiimiplementation of the hybrid
search algorithm that combines the power of semantic sear@ntologies with that of the
full-text search on documents. As opposed to some earligks\88], [6], [39], [40] and [41]
that address the same problem, the two processes, thanig;amologies as the basis for the
semantic search and executing purely text-based queriéscaments, are kept separate until
the results are finally merged into a scored set. This wayptineer of the two dierent ap-
proaches can be fully exploited without a loss of genetalitye search mechanism described
in this section is wrapped as a loosely-coupled RESTful Btgyice so as to encourage its

deployment by the content management system developmemhgoity.

54

The input to the algorithm is a set of keywords complemented btructural query part. As
outlined in [6], keywords are an easy way to capture the huimimtion behind search. On
the other hand, structural queries are necessary to filtemowvanted results or reversely to
extend the result set with other relevant resources. $traiadueries are composed of pattern
matching functions and names of ontology constructs amalress. They provide an easy

way of encoding information necessary to locate the desiredlogy resources.

Given a set of keywords and a structural query, the propogkddhsearch algorithm can be

outlined as follows:

1. The set of keywords are used in consulting a full-textaeangine such as Lucene [42]
or SOLR [45] to retrieve the unique identifiers of the relateduments. The unique
identifiers, along with the relevancy scores assigned byulliext search engine, are

stored in “Document Set A” as depicted on Figure 4.4.

2. The unique identifiers in “Document Set A” are used for filgdthe ontology indi-
viduals with which the documents are annotated. Based omge®f flexibility, the
ontology is then traversed to find the semantically relattcbsresources. Traversed
ontology classes are pushed into “Resource Set A”. On ther ¢thnd, the traversed
individuals may indeed be annotations of other documentisarcorpus. In that case,
these documents are assumed to be semantically relatesswith“Document Set A”,

hence “Document Set A” is updated as shown on Figure 4.4.

3. Ontology resources and their textual annotations ariediyx searched based on the
provided set of keywords. The assumption is that the locatedlogy resources may
offer means to find other semantically related documents. Baseddegree of flex-
ibility, the ontology is then traversed and the linked reses in the graph are found.
Traversed ontology classes are pushed into “Resource Se&DB'the other hand, the
traversed individuals may contain references to other mh@cus in the corpus. In that
case, “Document Set B” is constructed with the unique idiensi of these documents

and a relevancy score assigned to them by the algorithm.

4. The structural query is executed on the ontology. Thelogyas then traversed to find
the resources in the graph that are linked to those locatétetyuery. The traversed on-

tology classes are pushed into “Resource Set C”, whereawthaenents corresponding

55

(Step 1)

-
keywords = “swine”, “flu”
SOLR/
Document Set A Lucene Indexed
Documents|

1 {id="TwoMoreCasesOfSwineFlulnUK”,

score=0.78} -
2 {id="SwineFluMappingTheOutbreak”, “Two more cases of ...”

score=0.54} “Swine flu mapping the ...”

(Step 2)

rdfs:subClassOf

ivalent cl »6 tc:Disorder)
rdfs:subClassOf equivalent classes A
{rdf:type rdf:type rdf:type rdf:type
“SwineFluMapping “TwoMoreCases “Eyewitness “RaisingAwareness|
TheOutbreak” OfSwineFlulnUK” | | SurvivingBirdFlu” OfColonDisease”
Document Set A Resource Set A
1 {id="TwoMoreCasesOfSwineFlulnUK”, 1 {label = VirusDiseases, score=0.78}
score=0.78}
2 {id="SwineFluMappingTheOutbreak”, 2 {label = Disease, score=0.54}
score=0.54}
3 {id="RaisingAwarenessOfColon...”, 3 {label = Disorder, score=0.54}
score=0.54}
4 {id="EyewitnessSurvivingBirdFlu”, 4 {label = Health, score=0.27}
score=0.27}

Figure 4.4: Extending full-text results with semanticakyated documents

to the traversed individuals and their relevancy scoresaecemulated in “Document

SetC".

5. “Document Set A”, “Document Set B” and “Document Set C” ammalized and

56

merged based on some pre-configuration. This constituseiatiked set of documents

returned by the search process.

6. “Resource Set A”, “Resource Set B”, and “Resource Set €harmalized and merged
based on some pre-configuration. The merged set constilieanked set of ontology

resources to be used in faceted search.

7. Search is repeated with another set of keywords and awtlcuery formed by a

partial subset of the ontology resources returned in thadoistep.

The output of the algorithm is a list of documents, sortedasagnding order according to
their relevancy scores, and a set of ontology resourcesitbataluable in faceted search and
browsing of the documents. A detailed description of theddlgm, the heuristics used in

assigning the relevancy scores to the documents as wek antblogy resources, and finally

the normalization and merging methodologies are desciibdte subsequent sections.

4.3.2 Enhancing Full-text Search Results with Related Doguents

The first building block of our hybrid search solution expddhe structural and semantic rela-
tions in ontologies to locate content resources that aresgcally related to those provided
as input. Obviously, the assumption is that prior to exeguthe algorithm, a set of unique
identifiers for the documents is retrieved from a full-tegagch engine. In this respect, the

aim is to extend the full-text search result set with pogsither related results.

The problem addressed herein can be reduced to the probléndiofy the ontology nodes
that are reachable in at most a predefined number of stepsédrgiven base node. The
base node is an ontological representation of the docuneenttich we are trying to find
its semantically related kinsmen. However, not every lirik imply a semantic similarity
between a pair of ontologically represented documentsn o, the semantic similarities
between the pair of documents will vary. Therefore, withia scope of this thesis, various
heuristics have been developed so that the traversed cesorgpresent with a high degree
of probability, the documents that are semantically releiad that their similarity scores
are computable. These scores are later on used in combhengsults with those obtained
from other building blocks of the algorithm. Here, we pravithe details of the heuristics

developed in finding and scoring the relevant documents.

57

Pattern matching for finding ontological complements ofudoent resources

The first problem to address is finding the individuals (oriegjently resources) in the ontol-
ogy that semantically represent the set of input documé&wsn though the outlined method-
ology works mainly over the ontologies extracted by the J&#®nto Bridge framework, it

can easily be customized for other solutions.

JCR-to-Onto Bridge formalizes each content item mappet it “Instance Bridge” as an
individual in the ontology. It automatically assigns théiveaeJCR path of the node as the value
of a reserved data type property named “htgpww.srdc.com.fiiks/jcr2ont#path”. Based on
this information, locating the desired individual is a neathf executing a structural query. In
our hybrid search algorithm, we use the Jena framework [28], For executing structural
gueries on the RDF triples, we use LARQ [41]. The structutadrg we use in locating the

ontology individuals is:
PREFIX pf: <httpy/jena.hpl.hp.cofARQ/property#
PREFIX jer2ontzhttpy/www.srdc.com.tliks/jcr2ont#>
SELECT ?dod
?lit pf:textMatch $contentRepositoryPath$.

?doc jcr2ont:path ?lit

At run-time, $contentRepositoryPath$ is replaced by thguenidentifier of the document
whose ontology complement we desire to locate. The queegtsethe subjects of all triples

whose “http//www.srdc.com.fiiks/jcr2ont#path” predicate has the desired value.

Heuristics for finding and scoring similar content

Once the ontological complements of the initial set of doents are found, it is reasonable
to traverse the ontology in search for complements of oteeramtically related documents.
Documents are annotated by individuals in the ontologyretioee we will limit ourselves to
finding the semantically related individuals. Neverthg)eke traversed ontology classes and

properties will prove useful for implementing some facetedwsing features; hence shall be

58

recorded on-the-fly.

Motivated by the observations outlined in Section 4.2.1jnalividual shares a high degree
of similarity with those that belong to the same class. Ondtiver hand, an individual may
belong to multiple classes. In that case, a mechanism issageto rank the classes based on
the strength of classification they provide. Finally, therss have to be fine-tuned based on
the distribution of the individuals in the input set; thatdlasses that possess more individuals
from the input set are likely to contain the individuals thet more relevant. These issues are

addressed by the following heuristics:

e Theindividuals in the input set denoted by Individuajggly, obtain their initial scores
from the scores assigned to their complement documents¥oeumentSehpuy) by

the full-text search engine;
Vind, doc (inde IndividualSefnpuy A doce DocumentSehpuy)
complementOf(ind, doc) score(ind)= f(score(doc)).

“complementOf” is a symmetric relation that implies thatiadividual in the ontology
exists and is identifiable through the unique identifier ef document, and vice versa.
The function f transforms the scores from the scale used é@yulhtext search engine

to a native scale used by the proposed hybrid search algorith

e The score of an individual in IndividualSgpuy is conveyed to each class of the in-
dividual, in an amount that is inverse exponentially préijpoal to the total number
of individuals the class possesses. This condition doesaldtfor classes that have

explicitly been placed in the ignore list. Their scores amgpdy taken as zero;
¥ind, ontClass(ind € IndividualSegnpuy A ontClasss OntologyClasses)
type (ind, ontClass)»

. \ 1
conveyedScore(ind, ontClass) ACT OrEro oriCas

“OntologyClasses” denotes the set containing all of thesga in the ontology. “type”
is a relation that asserts that the individual denoted bfirgs argument has the class
denoted by its second argument. DFACTOR is a constant usedgiiout the hybrid
search algorithm and has a value that is greater than 1. Ofddka binary function that
returns the order of a class within the set of all direct @assf a particular individual,

where the set is sorted in ascending order according to takrtomber of individuals

59

the classes possess. Finally, conveyedScore is a binacjyidarthat determines the

score a class receives from a particular individual.

Suppose that ConcordeCrashFlight4gdadividualSefpuy and score(ConcordeCrash-
Flight4590)= 0.94 for a particular query. Now, assume that NewsArtielaliand Air-
TrafficAccident are the only direct classes of ConcordeCrash#8&p0. Furthermore,
NewsAtrticleltem has a total of 14,568 and AirfiiaAccident 136 individuals. In this
case, rankOf(NewsArticleltem, ConcordeCrashFlight359@; since when sorted in
ascending order based on their total number of individiddsysArticleltem is placed
second in the set of all classes of ConcordeCrashFlight468@sequently; conveyed-

Score(NewsArticleltemd 0.05875, provided that DFACTOR 2.0.

This condition ensures that classes that are least invatvedtegorizing their individ-
uals are assigned low scores. In determining the classearthaot directly involved in
the categorization process, we simply use the individuahtof the class as the basis
for comparison. We assume that among the set of classes oflafdual, the ones
that contain the highest number of individuals are leagtjiko provide any valuable

implications for semantic similarity.

The score of a class is the summation of the scores conveyéd tiyect individuals
in IndividualSegnpuy, divided by the total number of individuals the class possses

There are two direct consequences of this condition:

1. Aclass that contains more individuals from Individuajggy is likely to receive

a higher score,

2. The score that a class receives from its individuals isreatgr than the score of

any of its direct individuals.

After the individuals and their direct classes are scoreid,niow possible to traverse the on-

tology in search for semantically related resources. Theestcontology classes are available

in the set ClassS@kectiyrelatey- FOr €ach ontology class in Class@gicyrelatey the function

computeClosureForOntClasgontClass, flexibilitylndividuals, flexibilityClasseaitialScore,

dFactor)is called, which in turn traverses the related set of ontplogdes and assigns their

scores. Below are the details of the function.

The function “computeClosureForOntClass” takes as argisnan ontology class and its

60

score, two separate flexibility factors that determine hawaiway from the ontology class
search can proceed and the value for DFACTOR, whose pur@ssbden described earlier.

The traversal proceeds as follows:

1. A list of equivalent classes for the given input are retrtk and placed in ClassSet-
(indirectlyRelateyi- 1he score of each class placed in Clasgaglctyrelated 1S ﬁm

xinitialS core

2. The list of all superclasses and subclasses and theiradgui classes are retrieved and
placed in ClassSggirectiyrelatey- The flexibilityClasses factor determines how many
levels up or down from the base class the algorithm is allowerhverse. For instance,
when flexibilityClasses= 1, only the direct superclasses and subclasses of the base
class are retrieved. When flexibilityClasseg, the direct superclasses and their direct
parents as well as the direct subclasses and their dirddtemiare retrieved. The score

of each class placed in Class@gtectiyrelatey IS COmputed agm xinitialS core

Up to now, the algorithm has computed the classes in Clags&@frelatey and its closure
ClassSehdirectiyrelatey; NOWever, it has neither traversed nor scored their indadsl In this
respect, first ClassS@tectiyrelatey aNd ClassS@idirectiyrelatey are merged into ClassSetteq
while the duplicates are eliminated. Afterwards, the diiedividuals of the classes in
ClassSefeiateg, that have been reached by at most flexibilityindividuakspst are placed
into IndividualSet(related) where the score of each classsigned directly to its individu-
als. The set can optionally be expanded with other indiv<lzat are reachable via object
properties. In either case, not all of the individuals infinal IndividualSegelateq Will have
complements in the document corpus. However, from thosehwtid have a complement
in the corpus, the unique identifiers for the documents careteved by accessing the re-
served data type property values of the individuals. At #tep, the algorithm has found
the semantically related documents and has placed themdnrDentSggutpuy. Apart from
establishing the grounds for scoring the individuals, the sets: ClassS@kectyrelatey and
ClassSehdirectiyrelatey Provide means for faceted-browsing of the content ressutbat is;
they enable keyword search to be enhanced with structudab@mantic queries as shall be

discussed in Section 4.3.4.

61

4.3.3 Concept-Driven Retrieval of Results

Using the results obtained from a full-text search enginthaasis for semantic search is
a promising, yet, an incomplete solution. Even though theikics materialized in Section
4.3.2 dfer the ability to extend the result set with semanticallated documents, the initial
set may be incomplete to work with. To overcome thificlilty, we propose various tech-
niques to incorporate also the results of an ontology lgokefore the related documents are
traversed and retrieved. This forms the second buildingkotd our hybrid search solution.

Our case becomes clearer with an example.

As discussed in Section 4.2.2, alignment with the dbPedialagy [81] conveys surprisingly
good results in terms of what additional semantic searctufes.can be supported. Suppose
now, that an ontology extracted from the repository of a nesrgent management system is

aligned with the dbPedia ontology. Consequently, the ¥alg triple becomes accessible:
Subject <httpy/dbpedia.orgresourcgAir _Berlin>
Predicate <httpy//dbpedia.orgpntologyhubairport
Object: <httpy//dbpedia.orgresourcéMunich_Airport>.

The user now executes the query with the keywords: “Munialpdit”. However, the full-
text search engine cannot find a document that explicithtaios these terms. Under these
circumstances, the approach described in Section 4.3 2aiihs it does not have any input
to work with! On the other hand, we have among our ontologgueses an individual whose
URI matches the keywords. “MunicAirport” does not have any complementary document in
the repository; however “AiBerlin”, which is connected via the object property “hulpairt”,
does. To retrieve such resources, a keyword-based lookiupeoregistered ontologies is

necessary.

There are various works that address the problem of futlgearch in ontologies. As men-
tioned earlier, Lucene-SAIL [39] and LARQ [41] are amongsie Once a keyword-based
look-up on the ontology is performed, the returned ontologgses as well as the ontology
individuals could serve as the starting points for the auygltraversal described in Section
4.3.2. The initial scores for these resources can be rettidirectly from the structural query

engine or equivalently can be computed via the string sitylanetrics utilized in [82]. Con-

62

sequently, DocumentSglipuy, IndividualSefelateg and ClassSgtiateq are also populated

for this building block.

4.3.4 lterative Browsing of Results in Multi-Dimensions

The third building block of our hybrid search algorithm isthomponent that facilitates
faceted-search. As outlined in Section 4.2.3, the proposethodology addresses two di-

Verse issues:

1. retrieving the ontology resources that have somehow treeersed for the purpose of

finding the related content,

2. answering structural and semantic queries and using #setine basis for expanding,

filtering or pruning the previously obtained results.

ClassSeteiateg described earlier in Section 4.3.2, contains all the ogtplcasses that are
identified while the semantic relations present in the amfigls are traversed. Along with
the labels and URIs of the classes, these two sets contdindunally the score assigned to
each class. As one would recall, the score is an indicationoaf relevant the class is to
either a set of documents or keywords. In the former casegrit@ogy is used in finding the
semantically related resources to a given set of documkatsate retrieved from a full-text
search engine. In the latter case, the keywords are dirlatked-up from the ontology. In
any case, ClassSglateg grants means to present the key assets (e.g. possible toaten

gories, related terms, the semantic links between the deatgnetc.) useful for constructing
the structural query described in the second approach. Aodstmation of this feature is
provided on Figure 4.5. Here, it is possible to see that Sle§ateqg is directly used in dis-

playing the categories associated with the search reslitts.user may now select multiple

categories to designate the next search direction.

The issue presented in (2) requires more than just strdgueay handling to empower the
desired behavior, that is; to expand, filter or prune thelrest. In this respect, together with
a set of structural queries, the user is asked to providedlleet®on criteria that go along with
them. The following XML Schema Definition (XSD) [83] illustted on Figure 4.6 provides

a more formal description of the expected input:

63

»_| (3 tags (24.079383850097556)

v [_| B3 NewsSubjectCodes (8.62694263458252)
»| |1 Educstion [-26.54535903930664)
[| B3 Health (8.62694263458252)

. v || 5 Diseas= (-15.951748847951426)
The user wishes search to -

revolve around this class. {*] NeurologicalDisease (-26.25950050354004)

»[|23 AIDS (-26.25950050354004)

»| |1 HeartDisease (-26.25950050354004)

Wordnet Resources
‘Wordnet Resources

Did you mean any of the following?

|swine flu

Figure 4.5: Faceted-search facilities of the proposeditiygarch solution

The “ResourceList” element contains 0-unbounded instrmfe’'SelectiveResource” ele-
ments. Each selective resource holds either the URI of acpkat ontology resource or
directly a SPARQL [49] query that selects multiple resoarftem the ontology. An “Opera-
tor” may be defined over the selected resources and the ope@sesses one of the follow-
ing values: “OR”, “NOT.SELECTIVE”, “EXLUDE?". In case an operator is not provided fo

a particular “SelectiveResource” element, the defaulticagon is “OR”.

The intention behind the operators is to solicit how the wgsires the resources to be pro-
cessed along with the results obtained from the other twidibgiblocks of the algorithm (see
sections 4.3.2 and 4.3.3). For convenience, we denote sh#g®btained from the other two
building blocks of the algorithm; namely, Class@gltyrelatey and ClassSeddirectiyrelatedls

by Resourcggeyword-drivery and those answered as a result of the “SelectiveResouresy qu
by Resourcgseiective- Based on this information, the three cases to consider eaumma-

rized as follows:

1. Operator “OR” : ReSoUrcegeyword-drivery aNd RESOUIC@Siectiva are merged. In case

of any duplicates, the scores are added together.

64

<xsd:element nam&ResourceList®
<xsd:complexType
<xsd:sequence
<xsd:element name€'SelectiveResource”
minOccurs="0" maxOccurs=“unbounded®
<xsd:complexType
<xsd:sequence
<xsd:element nam&' Operator” type="tns:OperatorType
minOccurs“0" maxOccurs="1"/>
<xsd:sequence
<xsd:choice minOccues’l” maxOccurs="1" >
<xsd:element nam&'ResourceURI”
type="tns:non.empty.string”/>
<xsd:element nam&' SPARQLQuery”
type="tns:non.empty.string”/>
</xsd:choice
</xsd:sequence
</xsd:sequence
</xsd:complexType
</xsd:element
</xsd:sequence
</xsd:complexType
</xsd:element

<xsd:simpleType nam€OperatorType®
<xsd:restriction basé'xsd:NMTOKEN">
<xsd:enumeration valg¢OR" />
<xsd:enumeration vale¢NOT _SELECTIVE"/>
<xsd:enumeration vale¢EXCLUDE" />
</xsd:restriction
</xsd:simpleType

Figure 4.6: The XSD for the “ResourceList” element

2. Operator “NOT _SELECTIVE” : Resourcegeyword-drivery @and ReSOUrc@siectivy are
again merged; however, in case of any duplicates the sctine oésource in Resources-
(keyword-driver) IS lowered by the amount attributed to the same resource sourRees-
(selectivy- |f the resource does not exist in Resoufig§%ord-drivery, then its score is

subtracted from 0.

65

3. Operator “EXCLUDE” : After Resourcegeyword-driver) - RE€SOUrc@gelectivy iS com-
puted, the scores in the final result set are re-normaliZathciessary, some previously
omitted results in ResourgR§wora-drivey €@ Now be included. Consequently, the re-
sults that the user does not wish to be conveyed are comptatetted and more focus

is given to the classes and their relatives that are not é&dlu

The order of precedence in executing these operations iSLEOE, NOT_SELECTIVE
and OR, respectively. When all of the desired operationsegeeuted, we end up with a
set of ontology classes denoted by Resoysegseg. It is now possible to find and score
the individuals these classes possess and furthermorehinfinial set of associated docu-
ments. These procedures have already been discussed iinrd&ection 4.3.2, and there-
fore will not be presented here. However, as usual, we end itlp the following sets:
DocumentSedutpuy, IndividualSegeiateq, ClassSedirectiyrelatey aNd ClassSe@kdirectiyrelateds
where Resourc@sergegy = ClassSegtirectiyrelatesl U ClassSehdirectiyrelatey- These sets consti-

tute the final results to be displayed to the user.

4.4 Complexity Analysis of the Hybrid Search Approach

In this section we will determine the computational comfiienf our hybrid search algo-
rithm. In doing so, we will follow a bottom-up approach andgtjty the order of complexity
for the innermost functions first; before presenting thddb@building blocks and that of the
algorithm as whole. It is important to point out that ratheaurt providing a complete math-
ematical analysis for the best, average and worst cases,lirestrict our study to broadly
identifying the parameters that contribute to the compyeaf the algorithm. In this respect,

our aim is to outline some possible optimizations as futuoekw

After some internal preprocessing, each of the three Imgjldiocks presented in Section 4.3
call the function: “computeClosureForOntClass(ontCldsxibilitylndividuals, flexibility-
Classes, initialScore, dFactor))”, whose main role is tarrethe ontology resources that are
linked to the given ontology class (i.e. denoted by the “da$€’ argument) with a distance
less than the values provided by filexibilitylndividualsandflexibilityClassegparameters. In
this respect, it is merely a graph traversal problem; wharthe worst case, the whole graph

may need to be visited regardless of the value of “flexiBiligkcept for when flexibilitylndi-

66

viduals=0 and flexibilityClasses0. This is especially true if most of the ontology resources
are gathered around “ontClass”. Consequently, the waisg-complexity of this function is

O(n), where n denotes the number of triples in the ontology.

The function “getPathRelatedResources(searchReseh#ifityIndividuals, flexibilityClass-
es)” makes up the core of the first building block describe8Sention 4.3.2. It simply receives
a list of scored documents and tries to find the semanticalited ones. It starts out by find-
ing the ontological complement of each document (i.e. iiddials with their reserved data
type property set to the unique identifier of the document)s process takes O(r) operations,
where r denotes the number of documents in “searchRestih& assumption is that retriev-
ing the subject of a triple for a given predicate and objeet é®nstant-time operation, as the
triples are pre-indexed in the triple-store. Obviouslycsithe process has to be repeated for
all r documents, the overall complexity becomes O(r). Ommemuted, the function proceeds
to find the closure of these ontology resources. In a naipeoagh, the worst case complexity
becomes On) as the “computeClosureForOntClass” function has to ballexl for every
resource retrieved in the former step. Therefore, the dvasmplexity of the building block
becomes O(r} O(rxn), where r and n denote the size of the input set of documerds a

number of triples in the ontology, respectively.

The second building block described in Section 4.3.3, firss tto locate the set of ontology
resources whose labels and URIs are syntactically sinaltra keywords provided. Without
any prior indexing, it implies that all ontology resources & be iterated and that for each on-
tology resource the string similarity should be computdae Gomplexity of such an approach
is inevitably high, which is O(n) in the worst case. Here natea the number of triples in the
ontology. The function then proceeds with the best matchingesources found, wherg c
is a predetermined number, and computes their closure BgoneputeClosureForOntClass”
function. Therefore, the latter step takes O(n) operatinrike worst case, provided that ¢

kept constant. Finally, the overall complexity of this lirlg block is O(n).

The third building block enables structural and semantierigs to be executed before their
closures are computed. As explained in [50], evaluatinglypattern expressions constructed
by using AND, FILTER and UNION operators is an NP-completgktaOn the other hand,
when restricted to AND and FILTER operators only, the comipyjdoecomes O(Rr|P|), where

n denotes the number of triples in the ontology #tthe complexity of the graph pattern. By

67

allowing only patterns with AND and FILTER operators andtriesng the available choice

to the most g relevant ontology classes, the complexity can be kept withinageable lim-
its (i.e. |P| becomes constant). Of course, now the closure for the antalesources that
match the provided query needs to be computed. We may dtithae an O(x|P|) worst-case
complexity by keeping flexibilitylndividuatsO and flexibilityClasses0, that is; restricting
ourselves to only the ontology resources returned by theygue this case, this procedure
has to be repeated for every “SelectiveResource” elemesatitbed in Section 4.3.4. Again
by imposing an upper bound, say; on the number of “SelectiveResource” elements allowed,

we limit the overall complexity of the building block to OfiP)).

The overall complexity of the proposed hybrid search methamyy, with the aforementioned
optimizations becomes max(O)O(rxn), O(nx|P)). As you would recall, r stands for the
number of documents retrieved from a full-text search emgidenotes the number of triples

in the ontology and finally|P| denotes the complexity of the query(-ies) used.

The value of r could be very large if we try to use all of the doemts retrieved from a full-text

engine as input to the hybrid search algorithm. Whether bsach a naive approach should
be taken is indeed subject to discussion. The intentiomidalsing the full-text search results
as input to the algorithm is to find the semantically relatedunents and possibly a set of
assets valuable for forming the queries. On the other harafaceted-search paradigm, the
user is not really interested in whether or not the searclnengtrieves all of the related

resources at once. In other words, it is more important tletser sees only the documents
that are related to the currently browsed full-text seaeguits. In this respect, the search

results may be processed in chunks in a procedure descisifetaavs:

e Given some keywords, the first set of ggsults are retrieved from the full-text search

engine,

e These results are used as input to the hybrid search alguositidl the related documents

and concepts are retrieved,
e Now, the user has the following options:

1. Finalize search; the document she is looking for is inegitthe set of results
received from the full-text search engine or the relatedudmnts found by the

hybrid search algorithm.

68

2. Ask the retrieval of the next set of gl results from the-felt search engine; a

new set of related documents and concepts will be retrieved.

3. Use the returned concepts as the basis of forming queriekange or narrow

down the search scope.
4. Repeat the search process with a new set of keywords.

5. A combination of (3) and (4).

With such an optimization, r is now bounded by the value usedyf, which is a constant,

and therefore the complexity of the algorithm is determibg (nx|P)).

The second parameter that determines the complexity ofl¢fogitam is n, which indicates
the number of triples in the ontology. As outlined in [84]ntemporary knowledge base sys-
tems are capable of handling more than one million tripleshis regard, the performance of
the proposed hybrid search methodology degrades linesithieanumber of triples asserted in
the persistence layer increases. Therefore, some optiorigahat would not interfere signif-
icantly with the quality of the result set are necessary. flinetion “computeClosureForOnt-
Class” is too generic in the sense that it treats every ogyolesource equally in determining
the nodes that are linked to a particular ontology class.h®@wther hand, it is wise to traverse
the classes of the ontology (i.e. TBox) first, before thedtividuals (i.e. ABox). Based on
the scores assigned to the classes, individuals that baddag scored classes may simply be
ignored, if the total number of traversed resources alrexdgeds a given maximum bound.
One would generally expect the ratio'lé% to be significantly small for large n, therefore;

“computeClosureForOntClass” becomes computationallgageable.

4.5 Wrapping it all as a RESTful Service

The search mechanism described in this section is wrapped@ssely-coupled RESTful
[46] service so as to encourage its use by the content mamsgesystem development com-
munity. The benefit of such an approach is that the commuitysimply deploy it on top
of an existing full-text search engine such as SOLR [45].altt,fthe proposed hybrid search

framework does not contain any bundled full-text indexer.
The only prior configuration necessary to initiate semaséarch is the registration of the

69

domain or horizontal ontologies. The global REST resounaegister an ontology resides at

the following URL.:
“http://localhost:8080PersistencelLayerServjoatologiey’

where the prefix “httgflocalhost:808PersistencelLayerServjtenay vary from machine to
machine. Registration proceeds with an HTTP POST [47] retqoie the provided resource
with two form parameters; namely, “ontologyURI” and “ordglContent”. “ontologyURI” is
a String that represents the base URI of the ontology to bsteegd. “ontologyContent” is the
textual representation of the ontology in RBIML syntax [7]. If the ontology is successfully

registered, it is assigned a unique identifier by the systetpéaced at the following location:
“http://localhost:808PersistencelLayerServjoatologieg<unique-identifies/”

Various HTTP GET, POST and DELETE [47] functions are avddain these ontology re-
sources each providing a high-level ontology browsing aditing feature. The underlying
triple store used is Jena [27]. It has been made database-awahat the ontologies per-
sist even if the service is stopped. For the prototype deeelspecifically in this thesis, we
use MySQL Community Server v5.1 [85]. The technical detaflshis Persistence Layer
framework and the provided REST interface functions willdiscussed at length in the “In-
teractive Knowledge Stack for small to medium CMSIS providers” project deliverable
[86]. Within the scope of this thesis, though, we will idéyntbnly those that are relevant to

our search interface.

An ontology may be deleted by calling the HTTP DELETE operaton the URL (i.e.
“http://localhost:808PersistencelLayerServjomtologieg<unique-identifies/”) where the -
ontology resides. Furthermore, its full textual conteniyrba retrieved, again in RDEKML
syntax, by calling the HTTP GET operation with the “Acceptirameter set to “applica-

tion/rdf+xml”.

As you have noticed, multiple ontologies can be registeoetti¢ Persistence Layer. In such
a case, it is possible to use all registered ontologies avitheal ones as the basis for search.
For a case that requires a look-up on horizontal ontologiek as dbPedia [81], the former
solution would be preferred. The following two URLSs are gupgd with the REST functions

that perform global and local search, respectively:

70

“http://localhost:808(PersistencelLayerServjoatologiegsearclt’
“http://localhost:808(PersistencelLayerServjomtologieg<unique-identifier/searcif’

The HTTP GET operation is called in either of the two URLs with form parameter named
“query”. The response to the operation is of type “applmaml”. The following excerpt
displayed on Figure 4.7 from the XML schema declaration efgbarch interface provides a
brief overview of the input and output structures used. Tillesntax is provided in Appendix

B.

“Query” and “Result” are respectively the input and outpleineents used in the search pro-
cedure. The “Query” element consists of the following parsset of keywords (“Key-
wordList”), a structural query (“StructuralQueryPartdha list of unique identifiers of those
documents obtained from the full-text search engine ("FaxtSearchResultList”). The at-
tributes “flexibilitylndividuals” and “flexibilityClassg’ determine the values to be used for
the “computeClosureForOntClass” function described intiSe 4.3.2. Finally, if the at-
tribute “useSynonymsinOntologyLookup” is set to true,rnthibe ontology look-up process

described in Section 4.3.3 is repeated with the synonymiseogjiven set of keywords.

The “Result” element consists of the set of unique idensffer the relevant documents and
their metadata (“ReturnedDocuments”), the ontology resesito be used for faceted brows-
ing (“ReturnedOntologyResources”) and finally a set of symoous and related terms re-

trieved from WordNet [80] (“ReturnedWordnetResources”).

4.6 Summary

The previous sections discuss the various heuristics s ithree main building blocks of
the hybrid search algorithm. As you would recall, the intemtwas to combine the full-text
search capabilities of engines such as Lucene [42] and S@5Rhith the power provided

by ontologies. In this respect, we mainly had two concerns.

First of all, we did not wish to deviate extremely from keyw@alriven approaches; as argued
in [6], keyword-based queries are a natural and a powerfyltar@apture human knowledge.
Consequently, dierent techniques that could be used to enhance the resaltextiial query

were explored. Our first argument was that ontologies coalldded on an initial set of results

71

<xsd:element nam&'Query”>
<xsd:complexType
<xsd:sequence
<xsd:element ref“tns:KeywordList”
minOccurs=“1" maxOccurs="1"/>
<xsd:element ref“tns:StructuralQueryPart”
minOccurs="1" maxOccurs="1" />
<xsd:element ref‘tns:FullTextSearchResultList”
minOccurs="1" maxOccurs="1" />
</xsd:sequence
<xsd:attribute nameflexibilitylndividuals”
type="xsd:integer” use“optional”/>
<xsd:attribute name‘flexibilityClasses”
type="xsd:integer” use“optional”/>
<xsd:attribute name‘'maxResults”
type="xsd:integer” use“optional”/>
<xsd:attribute name‘useSynonymsinOntologyLookup”
type="xsd:boolean” use“optional’/>
</xsd:complexType
</xsd:element

<xsd:element nam&'Result”™>
<xsd:complexType
<xsd:sequence
<xsd:element ref“tns:ReturnedDocuments”
minOccurs=“1" maxOccurs="1"/>
<xsd:element ref“tns:ReturnedOntologyResources
minOccurs="1" maxOccurs="1" />
<xsd:element ref“tns:ReturnedWordnetResources”
minOccurs="1" maxOccurs="1" />
</xsd:sequence
</xsd:complexType
</xsd:element

Figure 4.7: The XSD for the “Query” and “Result” elements

received from a full-text search engine to find the semalhficalated documents. The details
of this approach were discussed in Section 4.3.2. On the btred, a textual query could

initially be used to perform search on the ontologies, toayhich case, another set of related
documents would be retrieved. The details of this secontbaph were discussed in Section

4.3.3. These techniques aimed to improve the completerid¢iss search algorithm.

72

In trying to extend the result set with possibly related doeuats, we also introduced some
noise. Therefore, our second concern was to eliminate the f@sitives in the search results.
It was argued that providing a faceted-browsing over thaltgsvould solve the problem.

The details of how the results could be expanded, filteredwngd based on a selection of

ontology resources were finally discussed in 4.3.4.

Our approach is dierent from the work of Bast et al. since it does not rely on riyaraj
the native full-text indices to provide semantic searchabidljiies. In [6], the ontology is
woven into the documents by adding artificial words into tbhgpas. On the other hand, we
maintain the ontologies separately from the textually xededocuments and combine the
search results at a latter step; hence, exploiting bothgkerted and the inferred structural
and semantic dependencies in the ontology. For a conterdgearent system scenario, one
cannot utilize an approach similar to the one described hyabk et al. [39] either; since
populating the ontologies with the full content of a reseuis not practical. In this respect,
our hybrid search mechanism complements QuizRDF. Fintiby,clear separation of full-
text and structural search mechanisms until the merging estables input to be processed
in chunks. This is one of the areas that can be exploited tease the performance of the

hybrid search solution. We plan to explore it as part of otureiwork.

73

CHAPTER 5

EVALUATION OF JCR-TO-ONTO BRIDGE AS AN ENABLER
FOR SEMANTIC SEARCH

The motivation behind the JCR-to-Onto Bridge frameworloigacilitate the use of seman-
tic technologies within the context of a content managersgstem. As argued in Chapter
3, JCR-to-Onto Bridge frees the semantics that would otiserlye locked up in the content
repository. The repository itself does not provide the nsdanthe development of semantic
services; as it does not have any reasoning power. Congéquaplications have to deal
with this problem internally, and for most of the time by irmprptu solutions [87]. On the
other hand, JCR-to-Onto Bridge formalizes the semantirimétion in the repository in an
ontology, which may later on be enhanced with additionalzZomtal or domain knowledge.
Inevitably, ontologies represent the knowledge expliditl a form that is suitable for auto-
mated processing [6]; hence enabling such semantic featorige built and integrated with

ease.

To demonstrate the value of the JCR-to-Onto Bridge approaethave developed a hybrid
search methodology that combines the power of semantictsear ontologies with that of
the full-text search on documents. The hybrid search mesmanomplements QuizRDF
[40] by providing more complex faceted-search behavior sungport for extended queries.
It is highly decoupled from a full-text search engine andgbevice can be invoked anytime,

anywhere through various REST operations.

In this chapter, we will demonstrate the power of the JCR3te Bridge framework through
the value-added semantic search features enabled wherofespd hybrid search engine is
executed on top of the ontology extracted from a contentsiepy. The chapter proceeds

as follows: first, the content repository used in the ontplegtraction process is introduced.

74

Next, the ontology that JCR-to-Onto Bridge produces isgame=d. Following that, the search
service is invoked with queries that demonstrate its valdeéed features including faceted-

search.

5.1 Content Repository Used

The content repository used in this experiment is Apachlkrdhbit [51], which is a reference
implementation for the JSR-170 specification [54]. The s#poy is populated with more
than 50 news articles assembled iff@lient categories from the BBC News site (hftmews-
.bbc.co.u). In addition to the news articles, the workspace contaitneeof categorization
nodes whose values are obtained from the IPTC News Codeasfisalty the subject codes
[71]. The three level hierarchy depicted by the subject saslexpressed as a tree hierarchy in
the content repository. Furthermore, an example “taxoriaming namespaced tags [88] is
again represented as a tree of JCR nodes. Each news artadgésl with numerous resources

from this taxonomy.

A node type namely, “news:newsArticle” is registered toaot for the type of all nodes
that contain the news articles. Its supertype is “nt:bageim which all built-in and custom
node types are inherited. Three properties, namely “fitle&tegorizedBy” and “content”,
are defined over each node of type “news:newsArticle”. Theelproperties have the type
declarations STRING, PATH and BINARY, respectively. Tliketof the news article is stored
in the “title” property of the node and the full HTML [89] page its “content” property.
On the other hand, the “categorizedBy” property is usedye geference to a number news

subject category or taxonomy nodes described earlier.

The news articles, with which the content repository is paea, are also added to the local
SOLR [45] server for use during the semantic search proc®8d.R creates indices on the
textual content of these documents. For loading conteot 8®LR, an XML document,

whose structure is outlined below, is sent to the serveutjitan HTTP POST operation:

<add>
<doc>

<field name="id"” >/NewsArticlegGermanShipHijackedByPiratefield>

75

<field name=“text” >
Textual content of the news article.
</field>
</doc>
<doc>

</doc>

</add>

A special Java archive file (jar) has been prepared by the S®@hinunity to ease the invoca-
tion procedure. In this respect, registering the newslastito SOLR can simply be achieved
by the following command-line invocation, where “allDocants.xml” is the filename of the

XML document described just recently:
java -jar post.jar allDocuments.xml

To delete a particular resource, the same library is useihsigiad with a dferent document

The following command-line invocation clears all pre-buildices:
java -Ddataargs -jar post.jar<delete-<query-id:[* TO *] </query>-</delete-”

One important point to mention is that the field named “id’ca$sted with a particular doc-
ument is the native JCR Path expression used to locate tharocesin the repository. As
discussed earlier in Section 4.2.1, the hybrid search ithgoreceives a set of unique identi-
fiers for the retrieved documents from the full-text seanegire. In this respect, we use the

JCR Path as the unique identifiers of the documents we wanR3@Index.

5.2 The Extracted Ontology

The full JCR-to-Onto Bridge mapping definition used for exting the domain ontology
from the content repository is presented in Appendix C. Heeeprovide a brief overview of

the extracted ontology:

1 In this particular example, the document is provided as hmgrmrgument.

76

e All of the built-in and custom node types in the content réjoog are represented as
ontology classes. The native inheritance hierarchy in dmtent repository is reflected

as super-class, sub-class relations (see Section 3.2.1).

e The nodes in the workspace that belong the IPTC News Codegaraation tree and
the “taxonomy” of namespaced tags are all represented adogptclasses. Since
the nodes in question all fit to the “hierarchical patternsSatéed in Section 3.4.1,
the super-class, sub-class relations are set accordirggy.example, “Cancer” and
“NeurologicalDisease” are both subclasses of “Diseasad, “Disease”, in turn, is a

subclass of “Health”.

e For each JCR node of type “news:newsAtrticle”, a class inldial is generated. The
individuals are named after the value of the “title” progdrt the workspace. By de-
fault, all of these individuals belong to at least the presgly generated ontology class
“http://www.srdc.com.tinews#newsArticle”. However, through the value referenced
by the “categorizedBYy” property additional container sks are asserted (see Section
3.4.4).

e The object property “httpiks-project.orgcompanynarmeepositorynamgvorkspace-
name#categorizedBy” is also asserted in the knowledge tieesed on the guidelines

described in Section 3.4.3.

e The data type property “httffvww.srdc.com.tiiks/jcr2ont#path” is a reserved property
used by the hybrid search algorithm to associate the actgaindents indexed by the
external full-text search engine with the individuals ie tnowledge base. The value
of the data type property is set to the native path expressied in the repository to

reach the node.

Once the ontology is extracted by the JCR-to-Onto Bridgds #ligned with a subset of
the MeSH ontology described in [90] by asserting equivadeniccertain classes through the
Protégé-OWL framework. The ontology extracted by the 1G®nto Bridge framework is
loaded on to the search service in a manner described ino8et®. For ease of use, this

process is handled as an event in a custom built Protégéiplu

e

5.3 Pilot Use Cases for Search

Here, we evaluate the value-added features of the propoeit lsearch methodology in the

following dimensions:

1. To what extent keyword-based look-up of concepts enlsasearch results,

2. Given a set of full-text search results, to what extenstraantically related documents

can be retrieved,

3. What faceted-browsing capabilities are provided.

To perform this demonstration, we have implemented a Jagatchat invokes the RESTful
functions described in Section 4.5. On top of the Java ¢liarRich-Internet Application

(RIA) [91] implemented in Flex v.3 [92] is deployed.

Concept look-up may either be used for discovering the fisemantically related terms or

for finding documents through the concepts in the ontology.

Case 1 The simplest case is suggesting related terms by scarnmnigarizontal ontologies
such as WordNet [80] or dbPedia [81]. When queried with thenked “hijack”, the follow-

ing are the top results retrieved from the search service:
PiratesHijackShip@Somalia,Score 118
GermanShipHijackedByPirateScore 77
OperaExaminesScientistsDea8tore 8
SydneyOperaHouseArchitectDiesgore -23
WorldMiddleEastTelAvivOperaDropsPlansForWagrtgepre -23

Most of these documents are directly obtained from thetéxt-search engine. On the other
hand, articles such as “SydneyOperaHouseArchitectDies!’ “&V/orldMiddleEastTelAviv-

OperaDropsPlansForWagner” are present simply becaugatbhsemantically related to one
of the articles that explicitly contain the term “hijack” amely; “OperaExaminesScientists-

Death”.

78

Along with these resources, various synonymous and retatets are also presented to the
user. These terms include, but are not restricted to thewoily: “pirate”, “take over”,
“seize”, “crime”. The user may now double click on any of thésrms, say “seize”, and

repeat the whole search process. In such a case, the netvsetdatcomes:
PiratesSeizeShipEsomalia,Score 73
MaoistRebelsSeizelndianTrai8core 16
PiratesHijackShip@Somalia,Score 1
GermanShipHijackedByPirateScore -32
GunmenSeizeDarfurAidWorker§core -58

It is important to note that some articles that have not beeluded in the former result set

are now available.

Case 2 Another use of concept look-up is for finding the ontologgissles whose labels or

URIs are syntactically similar to the given keywords.

As an example, consider the case when the search servicerisdjwith the term “vinicul-
tural”. The domain ontology that the hybrid search engirestis the background contains the
class “Viniculture”. Even though none of the indexed docotae&an be retrieved by full-text

guerying, the hybrid search engine responds by some quipeising results:
PlantingBeginsOnANewVineyar&core 74
UKFarmsToastRecordWheatCrdpcore -73

The algorithm first traverses the TBox of the ontology to find tlass “Viniculture”, whose
label portrays a high syntactic similarity with the giveryWerd. Consequently, “Planting-
BeginsOnANewVineyard”, which is categorized by the newlsjact code “Viniculture”, is
placed at the top of the list. Finally, the second articledtegorized by the news subject
code “Agriculture”. Since the class label has a lower de@gifegyntactic similarity with the

keyword “vinicultural”, “UKFarmsToastRecordWheatCropas a lower score.

Case 3 A more complex case is a two-level look-up; where first, acdetlated terms are

retrieved from a horizontal ontology such as WordNet [8@] tien the domain ontology used

79

in the background is scanned for the syntactically relatsaepts.

For our particular example, neither the documents nor tineegts in the domain ontology
contain the term “lymphoma”. In fact, when queried with th@ion “useWordNetLookup-

ForSynonyms” disabled, no results are retrieved. On therdthnd, WordNet [80] asserts
that “cancer” is its direct hypernym. Now, a WordNet enaldedry results in the retrieval of

the following classes and documents even when the keywdhghiphoma”.
Classes:
Cancer,Score 60
Health,Score -36
NewsSubjectCode§core -36
DiseaseScore -36
Documents:
MysteryDiseaseKillsHomosexualScore 60
CancerBrakeCouldHaltDiseasggore 60

The only documents that are categorized by the news sulijeet ‘€ancer” are indeed the
two brought by the search service. Here, it is possible totlsaeonce the ontology class
“Cancer” is located, the algorithm traverses - based on dgfireed degree of flexibility - its

super and sub classes.

Up to now, various use cases have been presented that deateribe power of concept
lookup on semantic search. On the other hand, expandingethudt Iset with semantically
related documents is another promising feature of the dyfearch mechanism. For this
purpose, the result set is first populated with the docunrettigved from the full-text search
engine. Later on, the set is expanded with semanticallyae@ldocuments whose similarity is

inferred from the relations in the domain ontology.

Case 4 The simplest case where ontology look-up for similar contéelds to good results
is when the individuals that share a common class are trestesiimilar. Consider that the

search service is experimented with the keywords “swinel“én”.

80

*TwoMoreCasesOfSwineFlulnUK,

Score 200, categories Diseasetags medical
*SwineFluCoupleFearedDying,

Score 200, categories VirusDiseasetags healthcare,

scienceand medicine
*HowToMakeASwineFluVaccine,

Score 191, categories HealthTreatmentiags research
*WhatScientistsKknowAboutSwineFlu,

Score 133,categories Medicine, PrescriptionDrugs$ags research, medical
*LethalSecretsOf1918FluVirus,

Score 15, categories; tags scienceand medicine,

medical, recreationadrugs, research
*EyewitnessSurvivingBirdFlu,

Score 15, categories Disease, Medicine; tags:
SwineFluMappingTheOutbreak,

Score 8, categories VirusDiseasetags medical
DrugFirmsinventingDiseases,

Score 0, categories HealthTreatment, Medicine;

tags recreationaldrugs, research
CancerBrakeCouldHaltDisease,

Score 0, categories HealthTreatment, Cancer;

tags research, sciencendmedicine

81

*LegionnairesDisease,

Score -10, categories Educationjags
*MapPinpointsDiseaseHotspots,

Score -13, categories Disease, Ecosystertags animals
RaisingAwarenessOfColonDisease,

Score -21, categories Disease; tags:
ExSchoolsChiefRevealsDisease

Score -21, categories Diseasetags lifestyle
MuscleDiseaseCareFallsShort

Score -21, categories Diseasetags
LymeDisease

Score -21, categories Educationjtags research

For convenience, the documents retrieved from the full-$earch engine are marked with
an asterisk. The others are retrieved due to their semantiasty. For example, “Can-
cerBrakeCouldHaltDisease” is semantically related toitiaévidual “HowToMakeASwine-
FluVaccine” through the classes “HealthTreatment” andséerch”, and to the individual
“SwineFluCoupleFearedDying” through the class “scieaoelmedicine”. These concepts

are displayed to the user as on Figure 5.1.

Case 5 An improved version of Case 4 is when the individuals tharela common class
- and therefore are assumed to be related - are identifiedghrontology reasoning. The

keywords for this example will be “atopic” and “eczema”:
PyschiatryCanCureSkinDisorde&gore 107,
GeneticCluesToEatingDisordeiS¢ore -88,

The only document that contains these keywords is the deé tRyschiatryCanCureSkinDis-

orders”; and it is categorized by an arbitrary class namexyc¢Riatry Psychology”. One of

82

Related Ontology Classes

v |V B tags (29.2366146087646484) -

f|¥_f| |7 stockphotography (29, 26614608764 6454)

T|1"| =7 science_and_medicine (-2, 16982086 70043295)

v V| 5 research (-21.197216033935547)

v |V 5 MewsSubjectCodes (12, 027078857421875)

v V| B Health (12.037078257421875)

[i-li',] HealthTreatment [(13.037078557421875)

v |V (5 Dizease (-13.053131103515625)

V][] Cancer (-22.972492218017578)

Figure 5.1: Concepts associated with the search results

the indirect subclasses of “Psychiaf®gychology” is “EatingDisorders”. On the other hand,
the second document is categorized by a third class nameahPasorder”. Equivalence
of the two classes “Eatin@isorders” and “EatingDisorder” is inferred through omwigy rea-

soning. Consequently, “GeneticCluesToEatingDisordeesfomes an indirect individual of

“Psychiatry Psychology”; and that is why it is in the result set.

Case 6 The most complex case is when individuals that share the saoperty values, or
equivalently those that are related through some objeqiepties are identified as similar.

Consider the case with the keywords “female” and “chanceéllo
UKsaysMerkelbacksFiscalBoosicore 127
MerkelCffersStateAidForOpecore 66
GermanyAgreesBadBankSchenseore 16
EntertainmentStingScoopsMusicHono8core 8
KylieSweepsAussieMusicAwardScore 8

83

Even though the article “GermanyAgreesBadBankScheme$ doé contain the keywords,

as illustrated on Figure 5.2, the two individuals in the dojy are connected via their object

properties.

rdf:type rdf:type
“UksaysMerkelbacks “GermanyAgreesBad

FiscalBoost” BankScheme”

jerToOnto:externalAnnotation jerToOnto:externalAnnotation
A A
dbp: dbp:
Chancellor_of _Germany Angela_Merkel

A

http://dbpedia.org/property/order

Figure 5.2: Utilization of external ontologies in search

Finally, the real value of the hybrid search solution is gnsitipport for faceted search. As you
would recall, faceted search enables users to navigatetadimknsional information space

by combining text search with a progressive narrowing ofcd®in each dimension [48].

Case 7 The initial set of results received from the search servies be too broad; conse-
quently, they have to be narrowed down to those that areerktata selected set of ontology

resources.

In our example, a query with the keyword “disease” will rettar too many results. However,
as showng on Figure 5.3, with a progressive selection osetaghe user narrows down the

choices to only those categorized by “Cancer” and “NeuricklDisease”.

The set of returned documents now becomes:
MysteryDiseaseKillsHomosexualScore 60
CancerBrakeCouldHaltDiseasgcore 60
MotorNeuroneDiseaseGeneCli&gore -140

84

(22,471262958984375)
¥ || [VirusDisease (-70,5611572265625)
»| | [HeartDisease (-70.5611572265625)

» | [AIDS (-70.5611572265625)

M (] MeurologicalDisease (-70,5611572265625)

» | [Medidine (-33.24626922607422)

W |3 Education (21,871946716308554)

Figure 5.3: Faceted-search with a progressive selectictas$es

Case 8 As opposed to Case 7, the initial set of keywords may beflicgent to retrieve all
related documents; however, the suggested choices pnmgdas to change the search scope

such that omitted results are now included.

Suppose search is initiated with the keyword “viniculturd’ illustrated on Figure 5.4, only
two documents: “PlantingBeginsOnANewVineyard” and “UKa ToastRecordWheatCrop”
are returned. “PlantingBeginsOnANewVineyard” is catéxgmt by the news subject code
“Viniculture” whereas “UKFarmsToastRecordWheatCrop” ‘ByableFarming”. However,

the search service lists the names of the indirectly relelstes, too.

The user explicitly excludes the two classes “NewsSubjed&S”, “Viniculture” and “Arable-
Farming” from the selection list as shown on Figure 5.4. ‘tkmoyBusinessFinance” is in-
cluded, whereas “Agriculture” is set to “not selective”.rthermore, the keyword is changed
from “viniculture” to “wine”. As explained in Section 4.3.4his condition implies that first

the EXLUDE operator will be applied on the classes “News8ci@odes”, “Viniculture”,

85

VD 5 MewsSubjectCodes (-17.461532592773438)

v (W] B Agriculture (33.23324203491211)

» | 03 viniculture (73.78905457060547)
DDD ArableFarming (-37.739440917963875)

Figure 5.4: Faceted-search refined with new keywords ancegis

“ArableFarming”; therefore, results that belong to theagegories will be pruned. Docu-
ments categorized by “Agriculture” will be returned; howevtheir scores will be kept low.
Finally, articles that are categorized by “EconomyBusifr@sance” will be returned together
with those whose text contains the term “wine”. As a resulthd$ iteration, the classes and
the received synonyms will change. The process will coetinntil the user is satisfied with

the results.

86

CHAPTER 6

RELATED WORK

In the preceding chapters, first an ontology extraction éaork from JSR-170 compliant
content repositories has been presented. Then, the implation details of the hybrid search
mechanism that works on the extracted ontologies have Ieeoughly discussed. Finally,
the value of the ontology extraction framework and the hylsearch mechanism combined
has been evaluated from a content management system’'sgboir@w. Consequently, our
discussion in this chapter will mainly revolve around thtepics; that is, ontology extrac-
tion frameworks, enhancements over full-text search aradlyithe use of the semantic web

technologies for content management.

6.1 Ontology Extraction from Relational Databases

Making the semantic relations implicit in the schema of adase available to other semantic
web applications has been a popular research problem. ddbpect, various papers have
been published [64], [65], [66], [67], [68] and some profmyapplications [93], [94] have

been built.

Based on the context, the process described in the aforemedtworks fall into either of the

two categories:
1. Automatically or semi-automatically generating ongiés from the available entity-
relationship model, the database schemas and the instantesdatabase,

2. Defining explicit mappings between the database schech@ants of an existing on-

tology.

87

Although these approaches can be exploited as they argidmeyave their own limitations.
The former approach is particularly valuable in its abitilyautomate the ontology extraction
process. Some works [68] even utilize heuristic rules tosiase the performance. However,
the generated ontologies may be of poor practical signifieda the user community if they
are not properly enhanced with the domain knowledge. Neekss, the process provides an
initial means for semantisizing the database schema as@set gap-bridge between existing

database applications and the semantic web [68].

The latter approach eliminates the need for alignment witthér domain knowledge as it
starts working with domain ontologies already from the hagig. The user simply maps
the views of the source database to terminologies in animgxitirget ontology. The obvious

advantage over (1) is that in the end, an ontology whose Td3gertions describe well the
particular domain and whose A-Box is populated by the irc#ann the database can be
obtained. On the other hand, it assumes that such domailogie® will be readily available

to work with. Furthermore, mappings are defined by hand, admeim (1) the whole process

is automated.
Below we provide a brief summary of some selected work:

VisAVis: “An Approach to an Intermediate Layer between Qogies and Relational Database

Contents”

The motivation behind the VisAVis approach comes from thedn® make information that
is locked in the relational databases on the web, which enaféferred to as the deep web,
be properly retrieved by web search engines [64]. The pegpaslution relies on captur-
ing any combination of datasets from the database and n@ppem onto ontology classes.
Consequently, the work falls into the latter category, fthaexplicit mappings between the
database and an existing ontology are defined. Howeveruthera argue against populating
the ontologies by the data in the database. Therefore, tippingis defined between the
database schema and the T-Box of the ontology, whereas BexAsontains only references
to the database instances. In other words, every class oritlieal ontology is extended with

a special data type property that stores the actual SQL dbatyeturns the mapped dataset.

A prototype implementation; “VisAVisTab”, is provided afeotégé [29] plug-in. After open-

ing the ontology that contains the classes of interest atathleshing the database connection,

88

the graphical user interface lets the users select thealati@sbe used in the mapping process.
The procedure works seamlessly, that is; the user maps osltram possibly multiple tables
in the database to ontology classes, while the correspgr&lidl queries are generated in the
background automatically. Intuitively, VisAVis treatsobarow selected by the SQL query as
an individual of the mapped ontology class when queriesxa@eited on the knowledge base.
However, in that respect, the mapping process may still heidered coarse-grained because

mapping to lower level constructs than ontology classestipassible.

R,0, an Extensible and Semantically Based Database-toemytdapping Language

R,0 is a declarative language to map an existing database tppaomiate ontology imple-
mented in RDF(S) or OWL [66]. The authors consider the worlaasextension to some
similar mapping approaches like D2R MAP [95] and D2R [96]nc®i the work provides a
mapping methodology rather than an ontology extractioméaork, it falls into the same
category as VisAVis. However, ® enables mappings to be defined in a greater depth: cor-
respondences between both the components of the datalieseas¢i.e. tables, columns,
primary and foreign keys, etc.) and those of the ontology€epts, relations, attributes, etc.)
can be captured. Unlike VisAVis though, in®, the ontologies are populated with instances
from the database. In fact, ODEMapster - a reference mammgge for RO - processes

the mapping definitions to populate the ontology with theviidials.

As depicted on Figure 6.1, based on thedient levels of overlap between the domain of the

database and that of the ontology, three mapping cases banddentified by RO:

1. A single database table maps to a single ontology clask this case, the columns
of the table are mapped to the object or data type propertige@lass. For each row
in the table an individual is created where the property emfare also set based on the

aforementioned mapping.

2. A single database table maps to multiple ontology classeEach column of the table
is mapped to the object or data type properties of the saméeraht classes. However,

for each table record, only a single individual per concegdnerated.

3. Asingle database table maps to multiple ontology classesheare multiple instances
per concept may be generatedEach column of the table is mapped to the object or

data type properties of the same offelient classes. For each table record, multiple

89

individuals per concept may be generated.

-’- 1:‘ I < -
Table s — =1 T .
i)] r % Ve e]]
EEEEE R PR = = = e e
= | == Instance Instanceld = | == | = E=
[ET< OB« (= =1 [=I =] =]
I i = ‘ =2 | e e
Case 1 Case 2
[Concept! |
Cone
=] .4% =
T [b
— Table |, T =
I [i] [o
nstance of] [[|] [- nslance|of
Instance1t % % % % % Instance21) (" Instances2) -
] < lDI:I(-- —
|_|I:H—“ e (55 J:%':j“

Figure 6.1: Mapping cases inR [66]

The novelty of RO is in its strength to support mappings even in case of lowasiity be-
tween the database and the target ontology. It is primati/td the fact that dierent views
can be generated on the database by applying any combirgdtjoims, unions, projections
and selections. Furthermore, the language allows conditio be placed on the mapping
definitions so as to control how and when the ontology pomrigakes place. Finally, trans-

formations can be defined that let the data to be modified &éfes individualized.

Migrating data-intensive Web Sites into the Semantic Web

In their paper [65], Stojanovic et al. describe a methodplibgit uses the information in the
relations, attributes, attribute types, primary and fgmekeys and inclusion dependencies of
a relational schema for ontology construction. Some preddfmapping rules are executed
to construct ontology classes, establish the inheritareraithy among the generated classes
and form the ontology properties. Finally, after the datgnation process, the ontology is
populated with instances from the database. The work faiisthe former category, that is;
semi-automatic generation of ontologies from the avadlatdtabase schema. As argued in
[66], it is rather a lifting than a mapping process, therefaituations that require fine-tuned
adjustments will have to be dealt with manually at the “ea#iin, validation and refinement

of the generated ontology” step.

90

The RDBToOnto Tool

RDBToOnto [94] is an automatic ontology extraction framekvthat, like [65], exploits the

structural implications of a database schema. On the otaed,nRDBToOnto uses vari-
ous mining techniques to identify patterns that residei@adrly in the data but not in its
schema [97], hence allowing more accurate ontologies toebgedl. To be more specific,
RDBToOnto allows categorization patterns in the databaseeat to be automatically mined.

In cases where the automatic categorization processdaiss are given the option to manu-

ally control the database attributes to be used in catesjmiz

Database Schema

Ontology Madel

Order Lines Products f Customer fromC usiomer ,m
ProductID LID ArstName, .
= Oirder[[} MName hasltenes
: Calegor
Quantity —“HeeEaly
Supplier
Orders Priee ﬂ._{ name
-
— OrdCTID hasSupplicr wnProduct
OrderDale Sunnli
—iCustomerlD Sppuces F
Supplierld
Customers Name W
—{ CustomerlD City e &
] & % &5
Eaattame Country subClass 00 sub m‘(\if
Address k:_ e —
“Proeducts™ Table W
PIDY Name Supplier| Price| Category
1| Gold Kaviar 12 | 55.30] Seafood
2 | Teatime Biscuitd 7 Confections {b)
3| Smoked Salmon| 10 Seafomd
4 | Tonic Juice 24 Bﬂ'ﬂ;ﬂgﬁ
5 | Pepper Sance 7 Condiments

Figure 6.2: RDBToOnto uses various mining techniques fahér classification [94]

As argued in [97], the fact that “Seafood”, “Beverage” anaidiment” are all subclasses of
“Product” simply has to do with how frequently each item ascin the actual dataset. As
one may notice, this information is not available in the Hate schema; therefore, simply a
flat ontology extraction environment that makes use of theis@ alone would not have been

able to detect such taxonomical implications.

91

Up to now, we have seen how the problem of ontology extradtiom available database
schemas has been dealt with in literature. The problem has dedressed mainly in two
dimensions, that is; either mappings between the dataluésens and parts of an existing
ontology are defined or the target ontology is semi-autarabyi generated from the schema
alone. RO and VisAVis fall into the former category, whereas bothj&tovic et al.'s solution
and the RDBToOnto framework fall into the latter. In@®, a complete mapping language is
described that takes into account th&afient combinations of mapping schemes with condi-
tional operators and transformations:Rpopulates the target ontology based on the mapping
constructs provided as input. On the other hand, VisAVisosles not to populate the ontol-
ogy with actual instances but rather with references to tappad datasets. Stojanovic et
al’s approach is considered as an automatic ontology atidraframework where the target
ontology is constructed from scratch. Predefined heusidt@lp extract the semantic rela-
tions present in the database schema that are later on s@gras ontology building blocks.
Finally, the knowledge engineer is given the ability to refthe generated ontology. The
RDBToOnto framework takes it one step further and minesaimss in the datasets in search

for patterns that are not explicitly described by the schema

To the best of our knowledge, the problem of ontology extoacfrom the JCR model has
not been addressed before. However, the works proposee iirettl of ontology extraction
from relational database schemas have particularly besgiring to our JCR-to-Onto Bridge
framework. Even though content repositories are quifeeidint in structural means from
relational databases, the principal idea of using heasi$ti capture the semantics in a content

repository remains the same.

In that respect, JCR-to-Onto Bridge may be considered amaagomatic tool for extract-
ing ontologies from JSR-170 compliant content repositorids discussed in sections 2.6
and 3.4, though, the flexibility of a content repository mlodas opposed to the rigid struc-
ture in a relational schema - makes iffdiult to define in advance, a solid set of heuristics
that are guaranteed to work withfidirent repository instantiations. Therefore, JCR-to-Onto
Bridge combines both of the aforementioned ontology ektvacand mapping approaches
and provides a scheme by which the user maps patterns ingbsit@y to predefined on-
tology construction processes, along with a set of heasigt extract ontological constructs
from node type definitions. Since JCR-to-Onto Bridge empybrid approach - where the

extraction process can be custom-tailored by applyifiggdint mappings on the repository -

92

the resulting formalisms are more suitable for alignmenbwdditional domain information.

Now the user has full control over the produced ontology gmegd to the case where only
some built-in heuristics are utilized. Finally, the magpitefinitions enable content repos-
itory updates to be processed and be reflected on the getherati@ogies, hence resolving

possible synchronization problems.

6.2 Approaches Integrating Structural and Full-text Search

The idea of using structural queries in combination witl-fet search to provide semantic
search capabilities has been addressed by various woriksrature: [38], [6], [39], [40] and
[41]. Each work difers in the way it deals with the resources it uses for indexhmyindexing
methodology, at which level (i.e. content, ontology, keytat merges the power of full-text
and semantic search and finally the degree of complexityupparts through its structural
queries. However, the process described in the aforenmeatiovorks broadly falls into any

of the following three categories:

1. RDF literals and RDF annotations are indexed so thatdull-search facilities may be

built over structural queries,

2. An ontology look-up is performed to find semantically walet terms to those in the

documents and full-text indices are built on the expandédfgerms,

3. Given a set of keywords, the documents as well as theidamtal annotations are

searched through and presented to the user in a facetedrfashi

Although these approaches can be exploited as they arettioeyave their limitations. The
first approach enhances structural query languages withawer of full-text indexing. As

argued in [39], structural query languages such as SPAR®Ld¥e not always powerful

enough because search is simply based on the traversal mfcéedi graph where the RDF
resources are represented by the graph’s nodes and the RDiEgtes by its edges. Fur-
thermore, nodes and edges are matched based on either tosipley matching techniques
or by using regular expressions, which turns out to be a slograiion. Therefore, works
such as [39] and [41] build full-text indices over the RDF@rand use them in answering

the textually enhanced queries. This approach has the dckthat it simply assumes all

93

information will be available in the form of ontologies. Ometother hand, in the context of
a content management system application, it may be mosadésio store the metadata and
only the reference to the content resource in the ontolagthdt case, queries can only be run
on the indexed metadata rather than the full textual comtetite documents. Consequently,
a document that contains the query term but has not exgliséén annotated with it will not

be retrieved.

Works studied in the second category proposefi@dint methodology in the level at which
full-text and structural search is merged. Prior to exegutéxtual queries, the frequent terms
in the documents are looked-up from the ontologies and laVaat concepts, individuals and
literals are indexed along with the terms in the documenhsgéquently, as illustrated in [6], a
document that refers to “Tony Blair” will be retrieved whemegied with the term “politician”,
provided that an ontology exists which relates the two tenishout a doubt, this approach
eliminates the drawbacks of a purely keyword-based seardbribging in relevant results
that would otherwise have been omitted. On the other hamhastifor arbitrary structural

queries is still limited.

Similar to those in the second one, works that fall into thedltbategory use terms in the doc-
uments as well as their ontological annotations in searantr@ry to [6] though, QuizRDF
[40] enables the users to form some semantic queries, heaeilipg a more focused view
of the search results. As outlined in [40], one limitationtldé methodology proposed in
QuizRDF is that queries can only be made around one classo@iby, a far better solution
would be to incorporate structural and semantic dependsr@enong concepts and properties

in the ontologies when forming the queries.

Before going into the details of how these approaches hage bemplemented within the

scope of this thesis, below we provide a brief summary of ssetected work:

The Sesame LuceneSail: RDF Queries with Full-text Search

Itis argued in [39], that structural search mechanisms $aglport for full-text search. Some
structural query languages like SPARQL [49] support singplimg matching functions; how-
ever, they are observed to have negatiffeas on speed. Therefore, LuceneSAIL aims at
integrating the full-text indexing capabilities into sttural search without a loss in perfor-

mance. The proposed methodology is built as an extensionet&ésame triplestore [10],

94

where Lucene [42] is used as the full-text indexer.

LuceneSAIL exploits “SPARQL extensions” so that native rige can be conveyed in two
parts: textual and structural. When it receives the fullgueuceneSAIL separates the textual
part from its structural complement. The textual query isceed on the virtual properties
built over the literals in the graph. On the other hand, tihecstiral query is executed on the

whole triples. The results are merged in the final step.

Semantic Full-Text Search with ESTER: Scalable, Easy, Fast

In their paper titled “Semantic Full-text Search with ESTERalable, Easy, Fast” [6], Bast
et al. describe a search engine that combines full-texickeaith the powerful semantic

capabilities of ontologies. As argued in [38], the novelfytlee approach is in its speed
and scalability compared to other works that implement dudirid solutions. The reason
is that for semantic search, instead of performing a diretblogy look-up, ESTER uses

the semantically enhanced full-text indices. In other worready at the indexing stage,
the ontologies are woven into the document corpus and threréie semantic relations are

retrievable through keywords.

As described in [6], the relationships between the wordleérdibcuments and concepts in the
ontology are established by the entity recognizer. Theyerdgcognizer adds to the beginning
of each document a set of annotations that describe the dotwuontent. For example, the

following artificial words are added to an article about T@1igir:
0 entity:tony blair
0 person:tony blair
lisa:2
1 politician of:3
2 class:politician
3 country:united kingdom

Intuitively, these set of artificial words provide not onlyet annotations for some specific

terms in the document but also the values of various objedata type properties and even

95

superclasses of the associated entities. Based on thisnation, ESTER is able to answer
semantic queries such as “audience pope person:*” ands:plalitician - is a - person:*” or

even provide joins of both.

Even though such an approach scales well to large corpomaple® queries require all on-
tological facts and relations to be encoded in every singtaithent for icient processing.
Consider now that the ontology contains further informaadout United Kingdom; e.g. that
it is located in Europe. Now, a query that requests all docuseelated to the politicians in
Europe cannot be answered unless multiple joins are pegfibrifirst of all, the entities that
are related to Europe with an object property named “locatédhould be retrieved. Later
on the query has to be repeated for all such entities and shtsdhave to be joined. In case
of multiple joins, there is no clear advantage of represgnthe ontological annotations as

artificial words since the same behavior can be achieveddirontology traversal.

QuizRDF: Search Technology for the Semantic Web

The motivation behind QuizRDF [40] is that only a very smalbmortion of the WWW re-
sources are annotated semantically and therefore it ignai@e to preserve the power of
traditional free text search engines while providing skdacilities that exploit the power of

ontologies.

In QuizRDF, both the content resources and their RDF arinoggre indexed. The indexing
mechanism works as follows: First, the content descripaoesretrieved. QuizRDF obtains
the content descriptors either by performing a full textgsia on the content or by processing
the annotations that are directly related to the resouroeitfin a datatype or object property as
shown in Figure 6.3. Then the ontological index is createat, is; for each content descriptor,
the ontology class it belongs to, the names of its propediasthe RDF resource itself is

indexed as shown in Figure 6.4.

QuizRDF assembles keyword-based search and semanticibgosésontent in a single user
interface. On start-up, a text box and a drop-down menu isgoted. The user enters ar-
bitrary keywords into the text box. QuizRDF returns a listRIDF resources ranked based
on their relevance to the query. The ranking mechanism iedbar a variation of the well-
known “tf.idf” vector product scheme [44]. While presentithe ranked resources to the user,

QuizRDF also computes the classes associated with eaalrcessnd updates the drop-down

96

: subClassOf (isA) rdfs:Resource
— =P tpeOf(instance) rdf:Literal

o
—>» Property 2 ,“&

last_name rdf:Literal

Person

ApM

G
works_in_project

has_skills RDF(S)
I RDF

George Content of

Miller Webh resource

Joined

BT in

1997

Figure 6.3: Ontology-based indexing in QuizRDF [40]

Descriptor Class Property Resource
Miller Emplovee] malta.bt.com/gm/cv
joined Employee %) malta.bt.com/gm/cv
BT Employee 0] malta.bt.com/gm/cv
1990 Employee 0 malta.bt.com/gm/cv
George Employee first name malta.bt.com/gm/cv
Miller Employee last_name malta.bt.com/gm/cv

Figure 6.4: Indices created on content descriptors [40]

list. When the user selects a certain class from the dropadisly the results that are not in-
stances of the selected class are filtered out. Furtherr@QuigRDF allows users to narrow
down the search scope by providing values for the propeofitise displayed classes. How-
ever, queries around multiple classes that require uniomsw@arently not supported. The

authors have identified it as future work.

Even though the hybrid search approach presented in thistbemplement works described
in [38], [6], [39], [40] and [41]; there are someffirences. First of all, [40] assumes that the

97

content resources reside on the RDF graph and thereforedmeed together with their anno-
tations. However, to avoid overcrowded ontologies thataasoner is able to process, it is not
our intention neither with JCR-to-Onto Bridge nor an al&ive ontology extraction scheme
to populate the domain ontology with the document conteng K&ep the metadata in the
domain ontologies, while the documents reside in the comapository. Consequently, our
hybrid search mechanism uses an external full-text seangime and works with the domain
ontologies instead. The results from the ontological aedfl-text search components are
merged at a latter step. In this respect, our approacHterent from [6], too, in that we are
still able to exploit the reasoning power of the knowledgsebahile answering the queries.
As for the concept driven retrieval of results presentetiexan Section 4.3, we strictly ex-
ploit the power provided by the extended structural and séimgueries discussed in [39]
and [41]. Finally, we build our faceted-search interfaca similar way to [40], where search

scope can iteratively be narrowed or extended.

6.3 Semantic Web Applications in the News Domain

The use of the semantic web technologies in the news domaibéden addressed by various
papers [98], [99] and research projects [100]. The domaaitable for such experimentation
as the semantic web technologies can facilitate the maregeaf large volumes of news
documents [98]. Even though the works discussed in thisaseaere domain-specific, the

proposed methodology is applicable to other domains, hemeeof relevance to this thesis.

The works addressed herein attack the problem by: (i) dpiredodomain ontologies that
enable semantic services to be built, (i) implementingodation and information retrieval
tools that use natural language processing or statistietiods to extract metadata from news
articles and finally, (iii) building semantic features op tf existing search paradigms. Below

we discuss the novelty of each approach.

An experience with Semantic Web technologies in the newsastom

In their paper titled “An experience with Semantic Web temlbgies in the news domain”
[98], Fernandez et al. describe the motivation and the mepanethodology behind the
NEWS project [100]. NEWS is an information society techigi¢s project funded by the

European Commission in the sixth framework programme. Atedtin [98], news agencies

98

produce content in the form of news items describing an eWdast of this content is text, but
they also produce multimedia content iffdrent human languages. In this regard, managing
all this heterogeneous information in affiéient manner becomes problematic. Fernandez et
al. propose a framework that automatically annotates obmtéh the concepts in a domain
ontology. The ontology is engineered beforehand, and ieknthe main concepts required
in the news domain. It is a lightweight RDFS [63] ontology awdvides the basic classes,
properties and instances for news item categorization antent annotation. The ontology

resources have labels in multiple languages, too.

Bringing the IPTC News Architecture into the Semantic Web

It is argued in [99] that the abundance offdrent metadata formats in the news production
process leads to interoperability problems. Therefore ptiper discusses how an OWL [13]
ontology for the IPTC News Architecture [72] is designed éinked with other multimedia
metadata standards such as EXIF [101], DIG35 [102] and XMB][1 Initially, an OWL
ontology has been engineered from the IPTC News Architedtamework. Itis argued in the
paper that some preprocessing (i.e. flattening of the XMlcstire, reification of statements,
code resolution, etc.), was necessary. The IPTC News Sutgjdes taxonomy [71] has also
been OWLized. The links with the other multimedia metadttadards have been established
through asserting class or property equivalences. Firthynews documents are annotated

with these ontologies.

The correctness of the engineered ontology infrastrudtasebeen evaluated through a se-
mantic search and browsing interface. A rather interesikagnple demonstrated in the paper
is that when searched with “Lyon”, a photo is retrieved whaseotations do not explicitly
contain the search term. In fact, the caption of the phototimes Juninho Pernambucano,
recognized by SPROUT as a football player, who is later ontified through dbPedia as a

member of the soccer club “Lyon”.

As you would recall, the motivation behind the JCR-to-OntidBe framework is similar

to that of the works described in this section, that is; talifate the use of semantic web
technologies. However, it isflierent in the sense that the scope is not restricted to the news
domain but generalized for all types of content managemsiems. In this respect, JCR-
to-Onto Bridge provides the semi-automated means for &ktgaontologies from JSR-170

compliant content repositories, whereas the domain ogiedoin [98], [99] and [100] are

99

engineered. Furthermore, to demonstrate the value of tiRetdnto Bridge approach,
we have developed a hybrid search methodology that combieegower of structural and
semantic search on ontologies with that of the full-textgle@n documents. The proposed
solution also uses external ontology lookup (i.e. Word€{ and dbPedia [81]), however,

complements [99] with its support for structural and sencameries.

100

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Our discussion in this thesis revolved around an ontologsaetion framework, namely the
JCR-to-Onto Bridge, and a semantic search mechanism utbwof it. In Chapter 3, we

outlined the various issues related to the ontology extmagirocess, the content modeling
patterns we have exploited and finally the mapping schemdkelfollowing chapter, namely
Chapter 4, the algorithmic details of our hybrid search rme@m were presented. Finally,
the power of the JCR-to-Onto Bridge framework was demotestran Chapter 5 through the

value-added semantic search features of the proposedisgarch engine.

The motivation behind the JCR-to-Onto Bridge framework been to facilitate the use of
semantic technologies within the context of a content meamagt system. JCR-to-Onto
Bridge, which may be considered as a semi-automatic toeiacting ontologies from JSR-
170 compliant content repositories, frees the semantatsatbuld otherwise be locked up in
the repository. The framework combines both ontology &tima and mapping approaches;
hence, it works around a set of built-in heuristics and atstirae time provides the freedom

to map patterns in the repository tdf@irent construction processes.

The semantic search engine built on top of the JCR-to-OnidgBrframework combines the
power of structural and semantic search on ontologies i of the full-text search on
documents. It uses an external full-text search engine amksawith the domain ontologies
instead. Our approach isftirent from [6], in that we are still able to exploit the reasgn
power of the knowledge base while answering the queries. hjjbed search mechanism
complements QuizRDF [40] by providing more complex facetedrch behavior and support
for extended queries. Finally, the service can be invoksdirae, anywhere through various

REST operations.

101

The work produced in this thesis is merely an initial atterigptards making the content
management lifecycle semantically enabled if the wholetspm of features is taken into
consideration. First of all, the mapping scheme of the J&Rto Bridge framework cur-
rently does not have support for transformations; that adéa dn the repository is directly
translated into the ontology attributes. Furthermore atipd the knowledge base when the
content repository grows is left as a future challenge. H@amewe argue that the queries
used in the mappings will serve as templates to match agaimshever a new event is fired
from the content repository. As outlined in Section 4.4, liyerid search mechanism may
not be suitable for large ontologies, either. In fact, fartbptimizations such as “processing

in chunks”, “first n results retrieval”, “T-Box traversal'nd inevitably building appropriate

indices on the ontology resources may be necessary.

102

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

REFERENCES

S. McKeever, “Understanding Web content managemertersys evolution, lifecycle
and market,”Industrial Management Data Systemsvol. 103, no. 9, pp. 686-692,
2003.

“E ffective Web Content Management: Empowering the Business\Whkée IT Main-
tains Control,” Ektron, Inc., Amherst, NH, USA, Tech. ReZ001.

J. Alpert, and N. Hajaj, “We knew the web was big..Google Inc, 2008. [On-
line]. Available: http/googleblog.blogspot.cot200807/we-knew-web-was-big.html.
[Accessed: Jun. 6, 2009].

D. M. Le, and L. Lau, “An Open Architecture for Ontologyagbled Content Man-
agement Systems: A Case Study in Managing Learning Objéct©n the Move to
Meaningful Internet Systems: CooplS, DOA, GADA, and ODBABIE42752006, pp.
772-790, 2006.

N. Guarino, R. Poli, Kluwer Academic Publishers, In Br&uibstantial, and T. R. Gru-
ber, “Toward Principles for the Design of Ontologies UsedKaowledge Sharing,in
Formal Ontology in Conceptual Analysis and Knowledge Regmeation, Kluwer Aca-
demic Publishers, in press. Substantial revision of papesgnted at the International
Workshop on Formal Ontology993.

H. Bast, F. M. Suchanek, and |. Weber, “Semantic Full{Tesarch with ESTER: Scal-
able, Easy, Fastjh Proceedings of ICDM Workshop2008, pp. 959-962.

D. Beckett, and B. McBride, “RDEXML Syntax Specification (Revised)yW3C 2004.
[Online]. Available: httpy/www.w3.orgTR/rdf-syntax-grammar [Accessed: Jun. 6,
2009].

“World Wide Web Consortium,W3C 2009. [Online]. Available: httgawww.w3.0rg.
[Accessed: Jun. 6, 2009].

[9] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniformesburce Identifiers (URI):

[10]

[11]

[12]

Generic Syntax,"The Internet Engineering Task Forc&998. [Online]. Available:
httpy/tools.ietf.orghtml/rfc2396. [Accessed: Jun. 6, 2009].

J. Broekstra, A. Kampman, and F. v. Harmelen, “Sesam&eferic Architecture for
Storing and Querying RDF and RDF Schema,Pimceedings of the First International
Semantic Web Conference Sardir2@02, pp. 54-68.

F. Manola, E. Miller, and B. McBride, “RDF PrimefAV3C 2004. [Online]. Available:
httpy/www.w3.orgTR/rdf-primer#rdfmodel. [Accessed: Jun. 6, 2009].

D. Brickley, R.V. Guha, and B. McBride, “RDF VocabulaBescription Language 1.0:
RDF Schema, W3C 2004. [Online]. Available: httgwww.w3.orgTR/rdf-schema
[Accessed: Jun. 6, 2009].

103

[13] D. L. McGuinness, and F. v. Harmelen, “OWL Web Ontologgnguage, W3C 2004.
[Online]. Available: http/www.w3.orgTR/owl-featureg [Accessed: Jun. 6, 2009].

[14] M. Pagels, “DAML: The DARPA Agent Markup Language Honage,” Defense Ad-
vanced Projects Agenc006. [Online]. Available: httgiwww.daml.org. [Accessed:
Jun. 6, 2009].

[15] J. Heflin, “OWL Web Ontology Language: Use Cases and Rements,”"W3C 2004.
[Online]. Available: http/www.w3.orgTR/webont-re¢ffonto-def. [Accessed: Jun. 6,
2009].

[16] L. Quin, “Extensible Markup Language (XML)W3C 2009. [Online]. Available:
httpy//www.w3.orgXML /. [Accessed: Jun. 6, 2009].

[17] “openRDF.org,” 2009. [Online]. Available: htippvww.openrdf.org [Accessed: Jun. 6,
2009].

[18] “The Sesame library,bpenRDF.org[Online]. Available: httpywww.openrdf.orgdoc-
/sesamausergch01.html#d0e69. [Accessed: Jun. 6, 2009].

[19] J. Bock, P. Haase, Q. Ji, and R. Volz, “Benchmarking asdsoners,” imRea2008 -
Workshop on Advancing Reasoning on the Web: ScalabilityCaomdmonsens@008.

[20] “User Guide for Sesame: An Overview of the Sesame Aechitre,” openRDF.org
[Online]. Available: http/www.openrdf.orgdogsesamgaiserguserguide.html#d0el129.
[Accessed: Jun. 6, 2009].

[21] G. Karvounarakis, V. Christophides, D. Plexousakisl &. Alexaki, “Querying Com-
munity Web Portals,” Institute of Computer Science, FORHdraklion, Greece, Tech.
Rep., 2000.

[22] “The SeRQL query language (revision 1.2)genRDF.org[Online]. Available: http//-
www.openrdf.orgdogsesamaisergch06.html. [Accessed: Jun. 6, 2009].

[23] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM - A Pragrtia Semantic Reposi-
tory for OWL,” in Proceedings of Web Information Systems Engineering 20@5nia-
tional Workshops2005, Vol. 3807, pp. 182-192.

[24] “User Guide for Sesame: Repositories and InferentiogenRDF.org[Online]. Avail-
able: http//www.openrdf.orgdogsesamgauserguserguide.html#d0el15. [Accessed:
Jun. 6, 2009].

[25] “User Guide for Sesame: Custom inferencingfienRDF.org [Online]. Available:
httpy/www.openrdf.orgdogsesamgiserguserguide.html#d0e803. [Accessed: Jun. 6,
2009].

[26] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, “Daption logic programs: com-
bining logic programs with description logic,” iRroceedings of the 12th international
conference on World Wide We2003, pp. 48-57.

[27] “Jena - A Semantic Web Framework for Javagurceforge.net[Online]. Available:
httpy/jena.sourceforge.nefAccessed: Jun. 6, 2009].

104

[28] K. Wilkinson, C. Sayers, H. Kuno, and D. ReynoldsfliEient RDF Storage and Re-
trieval in Jena2,” irProceedings of the 1st International Workshop on Semarsgtz asd
Databases2003, pp. 131-151.

[29] Stanford Center for Biomedical Informatics Resear&hrptége,” Stanford University
2009. [Online]. Available: httg/protege.stanford.eduAccessed: Jun. 6, 2009].

[30] “SWOOP: Semantic Web Ontology EditoKzoogle Codg2009. [Online]. Available:
httpy/code.google.cofp/swoop. [Accessed: Jun. 6, 2009].

[31] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Mus@rhe protégé owl plugin:
An open development environment for semantic web applinafi in Proceedings of
Semantic Web - ISWQ004, pp. 229-243.

[32] M. Horridge, H. Knublauch, A. Rector, R. Stevens, andV@oe, “A practical guide
to building OWL ontologies using the Protege-OWL plugin atwlode tools edi-
tion 1.0,” August 2004. [Online]. Available: httfivww.co-ode.orgresourcesutorials-
/ProtegeOWL Tutorial.pdf. [Accessed: Jun. 6, 2009].

[33] “KAONZ2,” 2006. [Online]. Available: httpykaon2.semanticweb.qgtg/Accessed: Jun.
6, 2009].

[34] Information Systems Group, “Hermit OWL Reasoner.” [@a]. Available: http//-
www.hermit-reasoner.com[Accessed: Jun. 6, 2009].

[35] V. Haarslev, R. Moller, and M. Wessel, “Querying the satic web with racer nrgl,”
in Proceedings of the KI-2004 International Workshop on Aggtions of Description
Logics (ADL'04) 2004.

[36] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. KdRellet: A practical OWL-DL
reasoner,Web Semantics: Science, Services and Agents on the Woed\eiglvol. 5,
no. 2, pp. 51-53, June 2007.

[37] “The new DIG interface standard (DIG 2.0),” 2006. [Qw]. Available: http/dl.kr.org-
/dig/interface.html. [Accessed: Jun. 6, 2009].

[38] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber, “Eséflicient search on text, enti-
ties, and relations,” ifProceedings of SIGIR007, pp. 671-678.

[39] E. Minack, L. Sauermann, G. Grimnes, C. Fluit, and J.eBstra, “The Sesame Lucene
Sail: RDF Queries with Full-text Search,” NEPOMUK Consonti, Tech. Rep. 2008-1,
2008.

[40] J. Davies, and R. Weeks, “QuizRDF: search technologytife semantic Web,” ithe
37th Annual Hawaii International Conference on Systemri®es, 2004.

[41] “LARQ - Free Text Indexing for SPARQL sourceforge.ne{Online]. Available: http//-
jena.sourceforge.n&RQ/lucene-arg.html. [Accessed: Jun. 6, 2009].

[42] The Apache Software Foundation, “Apache Lucene,” 2(08line]. Available: httg/-
lucene.apache.gfgvgdocg. [Accessed: Jun. 6, 2009].

[43] E. Hatcher, and O. Gospodnetiajcene in Actior{In Action series). Manning Publica-
tions, December 2004.

105

[44] G. Salton, “Developments in automatic text retriev&8cience vol. 253, pp. 974-979,
1991.

[45] The Apache Software Foundation, “Apache Solr,” 20@nljne]. Available: http/-
lucene.apache.gigplr/. [Accessed: Jun. 6, 2009].

[46] R.T. Fielding, “Architectural Styles and the DesignNétwork-based Software Archi-
tectures,” Ph.D. dissertation, University of Californiiajine, 2000.

[47] R. T. Fielding et al., “Hypertext Transfer Protocol - AF/1.1: Method Definitions,”
W3C [Online]. Available: httgywww.w3.orgProtocol#fc2616rfc2616-sec9.html.
[Accessed: Jun. 6, 2009].

[48] “SIGIR’2006 Workshop on Faceted Search: Call for Rgpation,” Aug. 10, 2006. [On-
line]. Available: http//facetedsearch.googlepages.¢oficcessed: Jun. 6, 2009].

[49] E. Prud’hommeaux, and A. Seaborne, “SPARQL Query Lagegufor RDF,”"W3C
2008. [Online]. Available: httgawww.w3.orgTR/rdf-spargl-query [Accessed: Jun. 6,
2009].

[50] J. Perez, M. Arenas, and C. Gutierrez, “Semantics anehflexity of SPARQL,” in
Proceedings of the 5th International Semantic Web Conéere2006, Vol. 4272006,
pp. 30-43.

[51] The Apache Software Foundation, “Apache Jackrabl@@09. [Online]. Available:
httpy/jackrabbit.apache.ofg[Accessed: Jun. 6, 2009].

[52] B. Chapuis, “JCR or RDBMS? Why, when, how®ay Software AGG2008. [Online].
Available: httpf/dev.day.confmicroslingcontentbloggmairyjcrrdomsreport.html. [Ac-
cessed: Jun. 6, 2009].

[53] S. Patil, “What is Java Content Repository))’Reilly Media, Inc, 2006. [On-
line]. Available: http//www.onjava.conpulyg/onjava200610/04/what-is-java-content-
repository.html. [Accessed: Jun. 6, 2009].

[54] D. Nuescheler, “JSR 170: Content Repository for Jagartelogy API,”Java Commu-
nity Process 2006. [Online]. Available: httg/jcp.orgeryjsr/detail?id=170. [Accessed:
Jun. 6, 2009].

[55] D. Nuescheler et al., “Content Repository API for Jaeghology Specification,” Day
Software AG, Tech. Rep., 2004.

[56] “CRX 1.4.1 Setup Guide,” Day Software AG, Tech. Rep.020

[57] J. Clark, and S. DeRose, “XML Path Language (XPath) iderd.0,” W3C 1999. [On-
line]. Available: http//www.w3.orgTR/xpath. [Accessed: Jun. 6, 2009].

[58] “Information technology - Database languages - SQhbfernational Organization
for Standardization 1999. [Online]. Available: httg/www.iso.orgisg/iso_catalogue-
/cataloguetc/cataloguedetail.htm?csnumbel6196. [Accessed: Jun. 6, 2009].

[59] D. Nuescheler, “What is JGBSR-170ISR-283?." [Online]. Available: htty:
www.slideshare.ngincledintroduction-to-jcr. [Accessed: Jun. 6, 2009].

106

[60] Sun Microsystems, Inc., “Java Transaction APl (JTRDO1. [Online]. Availabe: httg-
java.sun.corflavaegtechnologiegta/. [Accessed: Jun. 6, 2009].

[61] D.Nuescheler, “JSR 283: Content Repository for JavalE¢hnology API Version 2.0,”
Java Community Proces2009. [Online]. Available: httg/jcp.orgeryjsr/detail?id=283.
[Accessed: Jun. 6, 2009].

[62] D. Choy, E. Guresh, A. Brown, and M. McRae, “OASIS Contdianagement
Interoperability Services (CMIS) TC,OASIS 2008. [Online]. Available: http/i-
www.oasis-open.ofgommitteegc_home.php?wgbbrev=cmis#technical. [Accessed:
Jun. 6, 2009].

[63] D. Choy, and E. Guresh, “Content Management Interdpkna Services - Domain
Model Version 0.62a,OASIS CMIS TCTech. Rep. draft, 2009. [Online]. Available:
httpy/www.oasis-open.oygommitteegdownload.phB82774CMIS%20Part%201%20—
%20Domain%20Model%20v0.62a%20with%20ACLs.doc. [Asees Jun. 6, 2009].

[64] N. Konstantinou, D. E. Spanos, M. Chalas, E. Solidakig] N. Mitrou, “VisAVis: An
Approach to an Intermediate Layer between Ontologies aratiBeal Database Con-
tents,” in Proceedings of International CAISE Workshop on Web InféionaSystems
Modeling (WISM) 2006, pp. 1050-1061.

[65] L.Stojanovic, N. Stojanovic, and R. Volz, “Migratingath-intensive Web Sites into the
Semantic Web,” inProceedings of the 2002 ACM symposium on Applied computing
2002, pp. 1100 - 1107.

[66] J. Barrasa, O. Corcho, and A. Gbmez-Pérez, “R20, aerisible and Semantically
Based Database-to-Ontology Mapping Language,” in BusSleifannen, V., Fundulaki,
l. (eds.) SWDB, 2004, vol. 3372.

[67] N. Cullot, R. Ghawi, and K. Yétongnon, “DB20OWL: A Toobf Automatic Database-
to-Ontology Mapping,” inProceedings of the Fifteenth Italian Symposium on Advanced
Database Systems, SEBID07, pp. 491-494.

[68] Z. Xu, S. Zhang, and Y. Dong, “Mapping between RelatioDatabase Schema and
OWL Ontology for Deep Annotation,” ifProceedings of the International Conference
on Web Intelligence2006, pp. 548-552.

[69] “Apache Jackrabbit - Node Type NotatioriThe Apache Software FoundatiofOn-
line]. Available: http//jackrabbit.apache.ofgode-type-notation.html. [Accessed: Jun.
6, 2009].

[70] S. Bechhofer, F. v. Harmelen, J. Hendler, I. Horrocks,LDMcGuinness, P. F. Patel,
and L. A. Stein, “OWL Web Ontology Language Reference: Ematesel datatype,”
W3GC 2004. [Online]. Available: httgiwww.w3.orgTR/owl-ref/#EnumeratedDatatype.
[Accessed: Jun. 6, 2009].

[71] “IPTC News Subject Codes,IPTC, 2008. [Online]. Available: httg/cv.iptc.org-
/newscodesubjectcode [Accessed: Jun. 6, 2009].

[72] “The International Press Telecommunications Coyh¢RTC, 2009. [Online]. Avail-
able: http/www.iptc.orgcmgsite/index.html?channelCH0086. [Accessed: Jun. 6,
2009].

107

[73] “NewsCodes: Metadata Taxonomies for the News IndyistryPTC.
[Online]. Available: http//www.iptc.orgcmgsitg/index.html;jsessionid-
a00DKRfpdvW ?channetCHO0088. [Accessed: Jun. 6, 2009].

[74] “NewsCodes: View any of them...JPTC. [Online]. Available: http/www.iptc.org-
/emgsitgindex.html;jsessionidaO0DKRfpdvW. ?channetCH0103. [Accessed: Jun. 6,
2009].

[75] Y. Kalfoglou, and M. Schorlemmer, “Ontology mappinghet state of the art,The
Knowledge Engineering Reviewol. 18, no. 1, pp. 1-31, 2003.

[76] “flickr,” Yahoo! Inc, 2009. [Online]. Available: httgiwww.flickr.cony. [Accessed: Jun.
6, 2009].

[77] Y. Hassan-Montero, and V. Herrero-Solana, “Improvirag-Clouds as Visual Informa-
tion Retrieval Interfaces,” ilnScit2006: International Conference on Multidiscipliga
Information Sciences and Technologi2606.

[78] “Wordnet in RDFS and OWL, W3C 2004. [Online]. Available: httgawww.w3.0rg-
/200Ysw/BestPractice8VNET/wordnet-sw-20040713.html. [Accessed: Jun. 6, 2009].

[79] A. Dogac, G. B. Laleci, G. Aluc, A. A. Sinaci, W. Behrend®. Delacretaz, and J.
M. Pittet, “A semantically Enriched Persistence Mechanisninteractive Knowledge
Stack”, Accepted foeChallanges Conferenc®ctober 2009.

[80] Cognitive Science Laboratory, Princeton UniversiifordNet: a lexical database for
the English language,” 2006. [Online]. Available: httpordnet.princeton.edu[Ac-
cessed: Jun. 6, 2009].

[81] “DBpedia,” 2009. [Online]. Available: httpydbpedia.org [Accessed: Jun. 6, 2009].

[82] M. Ehrig, and Y. Sure. “foam: Framework for Ontology étiment and Mapping,”
Institut AIFB, Universitat Karlsruhg2005. [Online]. Available: httg/www.aifb.uni-
karlsruhe.daVBS/mehfoany. [Accessed: Jun. 6, 2009].

[83] C. M. Sperberg-McQueen, and H. Thompson, “XML Schem®3C 2000. [Online].
Available: http// www.w3.orgXML /Schema. [Accessed: Jun. 6, 2009].

[84] Y. Guo, Z. Pan, and J. Heflin, “Lubm: A benchmark for owlokvledge base systems,”
Web Semantics: Science, Services and Agents on the WordWéiglvol. 3, no. 2-3,
pp. 158-182.

[85] “MySQL 5.1 Reference Manual Sun Microsystems, Inc2009. [Online]. Available:
httpy/dev.mysgl.condogrefmarns.1/ery. [Accessed: Jun. 6, 2009].

[86] “Semantic CMS Reasoning and Data Persistence Compmh8RDC Ltd., Tech. Rep.,
20009.

[87] “Description of Work: Interactive Knowledge Stack femall to medium CMBMS
providers (IKS),” Salzburg Research Forschungsgeseifseh.b.H. et al., Tech. Rep.,
Seventh Framework Programme, ICT-2007-4.4, Intelligeoht€ént and Semantics,
2008.

108

[88] B. Delacretaz, “CQ5 Content Models: the Tag®ay Software AG2009. [Online].
Available: http//dev.day.commicroslingcontentbloggmairycg5tags.html. [Accessed:
Jun. 6, 2009].

[89] D. Raggett, A. L. Hors, and I. Jacobs, “HTML 4.01 Spedifion,” W3C 1999. [Online].
Available: http//www.w3.orgTR/html40Y. [Accessed: Jun. 6, 2009].

[90] J. S. Nelson, D. Johnston, and B. L. Humphreys, “Refetidps in Medical Subject
Headings,” inRelationships in the Organization of Knowledge.171-184, A. C. Bean,
and R. Green, Ed. New York: Kluwer Academic Publishers; 2001

[91] J. Farrell, and G. Nezlek, “Rich Internet Applicatiombe Next Stage of Application
Development,” ik9th Int. Conference on Information Technology Interfa@897, pp.
413-418.

[92] “Adobe Flex 3,” Adobe Systems IndOnline]. Available: http/www.adobe.com-
/productgflex/?promoidDINEZ. [Accessed: Jun. 6, 2009].

[93] F. Cerbah, “RDBToOnto User Guide, Version 1.2 betaallgom Relational Databases
to Fine-Tuned Populated Ontologies,” TAD08D7.2ajv1.2, 2009.

[94] F. Cerbah, “Learning highly structured semantic réjoes from relational databases,”
in Proceedings of ESW®/0I. 5021 of LNCS, pp. 777-781, 2008.

[95] C. Bizer, “D2R MAP - A DB to RDF Mapping Language,” it?th International World
Wide Web Conferenci#lay 2003.

[96] J. Barrasa, O. Corcho, and A. Gbmez-Pérez, “Fundé¥ind case study of database-
to-ontology mapping,” inSWC2003 Workshop on Semantic Integrati®anibel Island,
Florida, 2003.

[97] F. Cerbah, “Mining the Content of Relational Databased earn Ontologies with
Deeper Taxonomies,” iProceedings of ACM International Conference on Web Intel-
ligence 2008, pp. 553-557.

[98] N. Fernandez et al., “NEWS: Bringing Semantic Web Texbgies into News Agen-
cies,” in Proceedings of the 5th International Semantic Web Conéeyrd®WC 2006,
pp. 778-791.

[99] R. Troncy, “Bringing the IPTC News Architecture intoetlsemantic Web,” ifProceed-
ings of the 7th International Conference on The Semantic A@H8, pp. 483-498.

[100] “NEWS: News Engine Web Serviced)FKI GmbH - Ansgar Bernardi2006. [On-
line]. Available: http//www.dfki.uni-kl.de bernardiNews. [Accessed: Jun. 6, 2009].

[101] Technical Standardization Committee on AV & IT Stoea8ystems and Equipment,
“Exchangeable image file format for digital still camerasgif&ersion 2.2,”Japan Elec-
tronics and Information Technology Industries Associgtip002. [Online]. Available:
httpy/www.digicamsoft.confexif2z2/exif22/html/exif22.htm. [Accessed: Jun. 6, 2009].

[102] “DIG35 Initiative Group,’International Imaging Industry Associatiph999. [Online].
Available: http//www.i3a.orgtechnologiesnetadata [Accessed: Jun. 6, 2009].

[103] “Extensible Metadata Platform (XMP)Adobe Systems In¢Online]. Available:
httpy/www.adobe.conproductgxmp/. [Accessed: Jun. 6, 2009].

109

Appendix A

SAMPLE OWL CONSTRUCTS EXTRACTED FROM NODE
TYPE DEFINITIONS

Object Properties:

<owl:ObjectProperty rdf:about="#hasImages">
<rdfs:domain rdf:resource="#CulturalHeritageItem"/>
<rdfs:range rdf:resource="#Images"/>

</owl:0bjectProperty>

Data Properties:

<owl:DatatypeProperty rdf:about="#location">
<rdfs:domain rdf:resource="#CulturalHeritageItem"/>
<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#popularity">
<rdfs:domain rdf:resource="#CulturalHeritageItem"/>
<rdfs:range>
<rdf:Description>
<rdf:type rdf:resource="&owl;DataRange"/>
<owl:oneOf>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;string">Not Popular</rdf:first>
<rdf:rest>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;string">Popular</rdf:first>
<rdf:rest>

<rdf:Description>

110

<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;string">Very Popular</rdf:first>
<rdf:rest rdf:resource="&rdf;nil"/>
</rdf:Description>
</rdf:rest>
</rdf:Description>
</rdf:rest>
</rdf:Description>
</owl:one0f>
</rdf:Description>
</rdfs:range>

</owl:DatatypeProperty>

Classes:

<owl:Class rdf:about="#AncientStructureAndBuilding">
<rdfs:subClassOf rdf:resource="#CulturalHeritageItem"/>

</owl:Class>

<owl:Class rdf:about="#CulturalHeritageItem">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>
<owl:Class rdf:about="#Images">
<rdfs:subClassOf rdf:resource="&owl;Thing"/>
</owl:Class>
<owl:Class rdf:about="#Monument'>
<rdfs:subClassOf rdf:resource="#CulturalHeritageItem"/>

</owl:Class>

<owl:Class rdf:about="&owl;Thing"/>

111

Appendix B

FULL XML SCHEMA DECLARATION OF THE SEARCH
INTERFACE

<xsd:schema
targetNamespace="search.model.rest.persistence.iks.srdc.com.tr"
attributeFormDefault="qualified"
elementFormDefault="qualified"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:tns="search.model.rest.persistence.iks.srdc.com.tr">

<xsd:element name="Query">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:KeywordList" minOccurs="1" maxOccurs="1" />
<xsd:element ref="tns:StructuralQueryPart" minOccurs="1" maxOccurs="1" />
<xsd:element ref="tns:FullTextSearchResultList" minOccurs="1" maxOccurs="1" />
</xsd:sequence>
<xsd:attribute name="useSynonymsInOntologyLookup" type="xsd:boolean" use="required"/>
<xsd:attribute name="usedbPediaForFindingSimilarContent" type="xsd:boolean" use="required"/>
<xsd:attribute name="flexibilityClasses" type="xsd:integer" use="optional" />
<xsd:attribute name="flexibilityIndividuals" type="xsd:integer" use="optional" />
<xsd:attribute name="maxResults" type="xsd:integer" use="optional" />
</xsd:complexType>

</xsd:element>

<xsd:element name="Result">
<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tns:ReturnedDocuments" minOccurs="1" maxOccurs="1" />

"

<xsd:element ref="tns:ReturnedOntologyResources" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:TopRelatedOntologyResources" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:ReturnedWordnetResources" minOccurs="1" maxOccurs="1" />

<xsd:element ref="tns:ReturnedDBPediaResources" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

112

</xsd:complexType>

</xsd:element>

<xsd:element name="TopRelatedOntologyResources">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:ClassResource" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedDBPediaResources">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:DBPediaResource" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="DBPediaResource">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Property" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />
<xsd:element name="Object" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedWordnetResources">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:WordnetResource" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="WordnetResource">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />
<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedDocuments">

<xsd:complexType>

113

<xsd:sequence>
<xsd:element ref="tns:Document"” minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="Document">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DocumentXPath" type="tns:non_empty_string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="PrimaryType" type="tns:non_empty_string” minOccurs="0"
maxOccurs="1" />
<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />
<xsd:element name="RelatedTo" minOccurs="0" maxOccurs="1" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ClassURI" type="tns:non_empty_string" minOccurs="1"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Metadata" minOccurs="0" maxOccurs="1" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="NameValuePair" minOccurs="1" maxOccurs="unbounded" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string" />
<xsd:element name="Value" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ReturnedOntologyResources'">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:ClassResource" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

114

<xsd:element name="ClassResource">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ClassURI" type="tns:non_empty_string" minOccurs="1" maxOccurs="1" />
<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />
<xsd:element ref="tns:ClassResource" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="StructuralQueryPart'">
<xsd:complexType>
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="SPARQLQuery" type="tns:non_empty_string"/>
<xsd:element ref="tns:ResourceList"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="KeywordList">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Operator" type="tns:OperatorType" minOccurs="0" maxOccurs="1" />
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="tns:KeywordList"/>
<xsd:element name="Keyword" type="tns:non_empty_string"/>
</xsd:choice>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ResourceList">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SelectiveResource" minOccurs="0" maxOccurs="unbounded" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Operator" type="tns:OperatorType" minOccurs="0" maxOccurs="1" />
<xsd:element name="ResourceURI" type="tns:non_empty_string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:complexType>

115

</xsd:element>

<xsd:element name="FullTextSearchResultList">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:FullTextSearchResult" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="FullTextSearchResult">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="DocumentXPath" type="tns:non_empty_string" minOccurs="1"
maxOccurs="1" />
<xsd:element name="Score" type="xsd:float" minOccurs="1" maxOccurs="1" />
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:simpleType name="non_empty_string">
<xsd:restriction base="xsd:string">
<xsd:minLength value="1" />
</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name = "OperatorType'>

<xsd:restriction base = "xsd:NMTOKEN">

<xsd:enumeration value = "EXACT"/>
<xsd:enumeration value = "AND"/>
<xsd:enumeration value = "OR"/>

<xsd:enumeration value = "NOT_SELECTIVE"/>
<xsd:enumeration value = "EXCLUDE"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

116

Appendix C

JCR-TO-ONTO BRIDGE MAPPING DEFINITION USED FOR
EXTRACTING THE DOMAIN ONTOLOGY

<BridgeDefinitions xmlns="model.jcr2ont.persistence.iks.srdc.com.tr">
<ConceptBridge>
<Query>/tags/tags/%</Query>
<SubsumptionBridge>
<PredicateName>child</PredicateName>
</SubsumptionBridge>
<PropertyBridge>
<PredicateName>jcr:title</PredicateName>
</PropertyBridge>
</ConceptBridge>
<ConceptBridge>
<Query>/NewsSubjectCodes/%</Query>
<SubsumptionBridge>
<PredicateName>child</PredicateName>
</SubsumptionBridge>
</ConceptBridge>
<InstanceBridge>
<Query>/NewsArticles/%</Query>
<PropertyBridge>
<PredicateName>categorizedBy</PredicateName>
<PropertyAnnotation>
<Annotation>instanceOf</Annotation>
</PropertyAnnotation>
</PropertyBridge>
<PropertyBridge>
<PredicateName>title</PredicateName>
</PropertyBridge>
</InstanceBridge>

</BridgeDefinitions>

117

