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ABSTRACT

INDUCTION AND CONTROL OF LARGE-SCALE GENE REGULATORY NETWORKS

Tan, Mehmet
Ph.D., Department of Computer Engineering
Supervisor: Prof. Dr. Faruk Polat
Co-Supervisor: Prof. Dr. Reda Alhajj

June 2009, 99 pages

Gene regulatory networks model the interactions within the cell and thus it is essential to
understand their structure and to develop some control mechanisms that could effectively deal
with them. This dissertation tackles these two aspects. To handle the first problem, a new
constraint-based modeling algorithm is proposed that can both increase the quality of the out-
put and decrease the computational requirements for learning the structure of gene regulatory
networks by integrating multiple biological data types and applying a special method for dense
nodes in the network. Constraint-based structure learning algorithms generally perform well
on sparse graphs and it is true that sparsity is not uncommon. However, some domains like
gene regulatory networks are characterized by the possibility of having some dense regions in
the underlying graph and the proposed algorithm is capable of dealing with this issue. The
algorithm is based on a well-known structure learning algorithm called the PC algorithm, and
extends it in multiple aspects. Once a network exists, we could address the second problem,
namely control of the regulatory network for various applications where the curse of dimen-
sionality is the main issue. It is possible that hundreds of genes may regulate one biological
activity in an organism and this implies a huge state space even in the case of Boolean models.
The thesis proposes effective methods to find control policies for large-scale networks. The
modeling and control algorithms proposed in this dissertation have been evaluated on both
synthetic and real data sets. The test results demonstrate the efficiency and effectiveness of

the proposed approaches.

Keywords: gene regulatory networks, induction, control
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OZ

BUYUK-OLCEKLI GEN DUZENLEYICI AGLARIN MODELLENMESI VE KONTROLU

Tan, Mehmet
Doktora, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Faruk Polat
Ortak Tez Yoneticisi: Prof. Dr. Reda Alhajj

Haziran 2009, 99 sayfa

Gen diizenleyici aglar hiicre icindeki etkilegimleri modellediginden, yapilarini anlamak ve on-
lar1 verimli bir gekilde kontrol edebilen mekanizmalar gelistirmek ¢ok 6nemlidir. Bu tez, bu
iki yonii ele almaktadir. Tlk problemde, gen diizenleyici aglarmn yapisim 6grenmek icin, cikt:
kalitesini artirirken berimsel gereksinimleri azaltan, birden fazla biyolojik veri tipini birlikte
kullanan ve yogun diigiimler i¢in 6zel bir yontem uygulayan yeni bir kisit-tabanli modelleme
algoritmasi 6nerilmektedir. Kisit-tabanli yap1 6grenme algoritmalari, seyrek cizgeler igin iyi
performans gosterirler ve seyreklik de nadir goriilen bir durum degildir. Bununla beraber,
gen diizenleyici aglar gibi bazi alanlarda, yogun bolgeler iceren cizgelere rastlanabilir ve dner-
ilen algoritma bu durumla baga gikabilir. Algoritma, iyi bilinen bir yapi1 6grenme algoritmasi
olan PC algoritmas: tabanlidir ve onu birden fazla yonde geligtirmektedir. Elimizde bir ag
oldugunda ise, ikinci problem kargimiza gikacaktir; gen diizenleyici aglarin, gesitli uygulamalar
i¢in, temel mesele Olgeklenebilirlik olmak iizere kontrolii. Bir organizmada ytizlerce genin tek
bir biyolojik aktiviteyi diizenlemede rol almasi miimkiindiir ve Boolean modellerde bile bu,
muazzam biiyiikliikte bir durum uzayina kargilik gelir. Bu tez, biiyiik-6lcekli aglara kontrol
planlar1 bulmak i¢in verimli yontemler énermektedir. Bu tezde Onerilen modelleme ve kon-
trol algoritmalar: hem sentetik hem de gercgek veri kiimelerinde test edilmistir. Test sonuclari,

Onerilen yaklagimlarin etkin ve verimli olduklarini gostermektedir.

Anahtar Kelimeler: gen diizenleyici aglar, modelleme, kontrol
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition and Motivation

Protein synthesis is one of the most essential functions taking place within a cell. A large
number of different proteins are produced and consumed inside the cells of living organisms.
This is accomplished by the help of the protein encoders in the cell: the gemes. Number of
genes varies between organisms; thought to be between 20000 and 25000 in humans.

Gene expression is the name given to the process of decoding a gene into a protein, and gene
expression level can be defined as the amount of protein produced from a certain gene at a given
time. Since the amount of a protein in the cell may change the dynamics of the cell, proteins
have to be produced in an organized manner. This organization is performed by the genes
themselves; some proteins called transcription factors bind to some special regions on genes
and initiate or accelerate gene expression. Also there are some protein-protein interactions in
the cell that effect gene expression. All these interactions constitute a complex network that
is called a Gene Regulatory Network (GRN).

There are two important questions about gene expression regulation in the cell:

1. How can we deduce the relationships between genes in the cell? (i.e., which gene regulates

which other gene(s)?)

2. Can we devise an intervention (or control) strategy to modify the behavior of this mech-

anism by means of some external actions?

Determining the relationships between genes is an important issue for biology and medicine.
A GRN model provides the researchers the opportunity to understand the insights of cellular
processes and even to simulate these processes. Drug discovery research can also benefit from
a GRN model in determining new drug targets or the best one for a disease. In addition to
the experiments performed in vivo and in vitro, the relationships between the genes in a living
cell are being determined by in silico studies recently. This is due to recent increase in both
the quality and quantity of the available biological data with the help of new technologies such
as microarrays. But, as expected, this also has some challenges involved, since biological data

have some amount of noise, missing values and a small sample size.



Devising control strategies for GRNs that will effect the evolution of the network is impor-
tant to avoid undesirable gene activity profiles. A control or intervention strategy for a GRN
can be defined as a way to interact with the network in terms of some actions in order to reach
some pre-defined objective(s). These interventions (or actions) are usually defined in terms of
(in)activation of certain types of genes or proteins; the objective is to reach (or avoid) a set of
state(s) (or gene activity profiles) [17, 65, 66]. There are so many different examples for this
type of intervention strategy in biology and medicine; the most well-known ones are some of
the methods that are used to treat certain types of cancer. For instance, Gefitinib is a drug
used in the treatment of a type of lung cancer and inhibits (inactivates) the epidermal growth
factor receptor (EGFR) tyrosine kinase enzyme, which stops uncontrolled cell proliferation of
malignant cells. Without this inactivation of EGFR, the cells may continue to divide beyond
normal limits. This and other targeted therapies that (in)activate certain types of molecules
in malignant cells have recently had a significant impact on the treatment of some types of
cancer [31].

Based on the above questions, there are two problems investigated in this thesis. The first
can be stated as follows : devise a scalable modeling algorithm that, given a set of biological
data, will derive a partially directed or undirected graph that represents the dependencies
(or relationships) between the genes. The methods or algorithms proposed in this context
will be discussed under the title “Gene Regulatory Network Modeling”. To state the second
problem, a few other concepts have to be defined first. For a given dynamic (temporal) model
of a GRN, suppose we want to avoid the model reaching some of the states (or gene activity
profiles); this is called the objective of the control problem. Objective is mapped to a control
problem in terms of a reward function. This is usually defined in terms of some of the genes
in the network [17, 65, 66], such as: avoid gene ACE2 being expressed. We call the gene(s) in
terms of which the objective is defined, the reward gene(s) and the gene(s) that are intervened
by external actions, the control gene(s). Each applied action has a certain cost; for example
Gefitinib has a certain price in the market. Now the second problem can be stated as follows:
given a GRN, an objective, reward gene(s) and control gene(s), devise a policy (or strategy)
to intervene the GRN as effective as possible to reach the objective. The algorithms proposed
in this context will be discussed under the title “Gene Regulatory Network Control”.

For both of these problems, the focus is on scalability in addition to the quality of the
output of the proposed algorithms. Scalability is one of the most important issues in GRN
modeling and control as the number of genes in a genome is much larger than the number of

variables that current modeling and control algorithms can handle.



1.2 Overview of the Proposed Approaches

This section briefly discusses the methods proposed in this dissertation. This overview of the
contributions is divided into modeling and control sections whose details exist in Chapters 3

and 4, respectively.

1.2.1 Gene Regulatory Network Modeling

Gaussian Graphical Modeling is a method recently used in GRN modeling. Based on the
multivariate normality assumption, this class of methods show promising performance on GRN
modeling. The “PC algorithm” is one of the successful algorithms that can be used in this
context. It can be used to derive a graphical model of the genes in a given data set by using
statistical conditional independence tests. The graphical model output by the PC algorithm is
a (partially) directed graph where the nodes are genes and there exists an edge between gene
gi and g; if there is a direct relationship between g; and g;. We can also say that there is an
indirect relationship (or dependency) between the genes if there is a path between them in the
resulting graph.

The power of conditional independence tests depends on the sample size and the number
of elements in the conditioning set which we will name hereafter as order following the naming
in the PC algorithm literature. So as the order increases, the power (probability of making
the right decision) of these tests decreases, in the usual case of a limited sample size. As the
number of genes in gene expression data far exceeds the number of samples, the order in the
PC algorithm can increase to a very large value. In addition to decrease in power, this also
causes the algorithm to consume too much computational resource since there is an exponential
number of subsets to be tested as conditioning sets.

There are two methods proposed in this dissertation to overcome the problems associated
with using the PC algorithm (or other constraint-based structure learning algorithms) in GRN
modeling. The first method is a procedure to integrate multiple types of biological data through
conditional independence tests. This way, the method aims at making better decisions in
the tests by using the evidence coming from more than one source. The idea here is to
adapt the significance level in the tests toward more easily accepting (or rejecting) the null
hypothesis according to the evidence coming from the other source. Two different sources of
information used are the gene expression data and transcription factor binding location data
(ChIP-chip) (see Chapter 2).

There are various structure learning algorithms that perform well for sparse graphs. These
are the graphs where the expected number of connections for the nodes is small. While GRNs
are also thought to be sparse, there also exist some dense nodes (genes). These nodes constitute

a problem for structure learning algorithms due to (again) the exponential number of condi-



tioning sets in the conditional independence tests of the PC algorithm. For this, we proposed
a second method to identify the possible dense genes before executing the modeling algorithm
and treat those nodes differently from others during modeling. This different procedure basi-
cally identifies the connections (or dependencies) by applying a greedy algorithm for the dense

nodes instead of the original exponential one.

1.2.2 Gene Regulatory Network Control

The two frameworks within which control problems have been investigated are Markov Decision
Problems (MDPs) and Factored Markov Decision Problems (FMDPs). Both have different
advantages which may be the reason that they are both widely investigated and used in the
machine learning community. While MDPs are easier to implement and understand, FMDPs
can be used for some of the problems which are practically very hard to attempt with MDPs.

The method proposed in this work for scalability in MDPs considers the observation that
the effects of all genes in a given data set for the control problem are not equal. Let V' be the
set of genes in a given data set and assume the control problem is defined as in Section 1.1.
Given control and reward genes, g. and g,, respectively, we argue that some genes in the set
V' \ {g¢, g} have a negligible effect on the solution of the problem. To estimate those genes, a
score is assigned to each of the genes in V' \ {g., g»}; the smaller the score the more negligible
that gene is. The proposed score is based on the Influence concept discussed in [78]. There
is one important property of this reduction procedure that the irrelevant genes are eliminated
from the given data even before deriving a model from the data. So, consider the steps of the
procedure as: “derive a model from the given data, formulate the control problem as an MDP,
solve the control problem”; this method is useful for the scalability of the employed procedure
as a whole.

A GRN is naturally factorized, i.e., each gene corresponds to a factor in the model. But
to the best of our knowledge, the GRN control problem has not been formalized in an FMDP
framework before. In this work, we defined the problem as an FMDP for the first time. In an
FMDP, the transition probabilities of the network are modeled using factored representations;
by a dynamic Bayesian network for instance. And this usually saves both space and time. But
for some of the problems, FMDPs also require exponential resources. So a reduction method
for FMDPs may also have a significant effect on the requirements. Based on this argument, a
decomposition method that can output good approximate solutions is proposed for FMDPs.
Given an FMDP, this method simply decomposes the dynamic Bayesian network associated
with the transition probabilities into a number of networks without changing the relationships
between reward and control genes. This way, by simplifying the problem but preserving the
“power” of the control gene, the FMDP solver can focus only on important parts of the problem

and this saves significant computational resources.



1.3 Organization of the Thesis

The rest of this dissertation first covers the basic background required to understand the pro-
posed methods. Then the methods are thoroughly described and their power is demonstrated
by a number of experiments. The rest of this section briefly overviews the content of the
remaining chapters.

The next chapter discusses some preliminary concepts required to understand the proposed
methods. In addition to some biological background for interactions of genes in the cell,
microarray technology and existing data types, Chapter 2 also includes basics of graphical
modeling of GRNs, the modeling algorithms used (the PC algorithm and Probabilistic Boolean
networks) and Markov decision problems.

Chapter 3 includes the proposed methods for GRN modeling. First, the method for dense
nodes is introduced; the greedy procedure applied for these nodes and estimating them from
prior knowledge is discussed. Then using prior knowledge in conditional independence tests
by adapting the significance level in these tests is introduced. The related work in this field is
discussed and the gap covered by these methods is explicitly stated in the last two sections of
Chapter 3, respectively.

Chapter 4 gives the details of the reduction algorithms proposed for control. It is divided
into two main sections where the first one discusses the method for the MDP framework and
the second one is about the method proposed for FMDPs. Related work on GRN control is
also included in the chapter. The contributions of the chapter are explicitly stated in the last
section.

Experimental results are reported and discussed in Chapter 5. Naturally, the results for
modeling and control are given in two separate sections and those sections are also divided
into subsections for each experiment. Results for both synthetic and real data sets are given
in this chapter.

Finally, Chapter 6 includes the summary of the thesis and the future research directions

that are planned to be investigated to extend the work discussed.

1.4 Publications

The contributions described in this dissertation have been validated by the experimental study
detailed in Chapter 5. Further, different parts of this dissertation have been published in
reputable conferences and high quality journals covered by Science Citation Index with high

impact factor. Here is a partial list of the already published papers.

e M. Tan, R. Alhajj and F. Polat, “Automated Large-Scale Control of Gene Regulatory
Networks,” IEEE Transactions on Systems, Man, and Cybernetics-B, (forthcoming).



e M. Tan, F. Polat and R. Alhajj, “Large-Scale Approximate Intervention Strategies for
Probabilistic Boolean Networks as Models of Gene Regulation,” Proceedings of IEEFE

Symposium on Bioinformatics and Bioengineering, Oct. 2008.

e M. Tan, M. Alshalalfa, F. Polat and R. Alhajj, “Combining Multiple Types of Biological
Data in Constraint-Based Learning of Gene Regulatory Networks,” Proceedings of IEEE
Symposium on Computational Intelligence in Bioinformatics and Computational Biology,

Sep. 2008.

e M. Tan, F. Polat and R. Alhajj, “Feature Reduction for Gene Regulatory Network Con-
trol,” Proceedings of IEEE Symposium on Bioinformatics and Bioengineering, Oct. 2007.



CHAPTER 2

PRELIMINARIES

This dissertation investigates and proposes novel approaches for gene regulatory network mod-
eling and control. The proposed approaches integrate concepts and techniques from different
areas, including molecular biology, graphical modeling, conditionally dependent and indepen-
dent variables, Bayesian networks, probabilistic Boolean networks and Markov Decision Prob-
lems. All these are covered in this chapter in a step to turn the dissertation into a self contained
document.

To cover the aforementioned topics, this chapter is organized as follows. Section 2.1 covers
the biological background, including the basic molecular components of a cell, the microarray
technology and existing biological data types. Characteristics of the graph modeling techniques
are discussed in Section 2.2. MDPs are presented in Section 2.3. Section 2.4 discusses how the
GRN modeling and control approaches proposed in this thesis benefit from these concepts and

techniques.

2.1 Biological Background

This section briefly covers the basics of biology as required to understand the context of this
thesis. It gives an overview of the cell and its structure. We dig a bit deeper to understand the
molecules (protein, DNA, RNA) in the cell and how they control the cell functions. Then, we
introduce the biology of genes, transcription, and gene expression. The microarray technology
might be considered as a major constituent of the advance in gene expression data analysis.
DNA microarray technology has attracted tremendous interest in both the scientific community
and the industry. The data generated by microarray based experiments has been used for

disease classification and class prediction.

2.1.1 Genes, Proteins and Their Interactions in the Cell

Giving rise to offsprings is essential for all living organisms. Each offspring inherits the prop-

erties of its parent cell or organism. This passing of traits is called heredity and genes are



the basic units in a living cell/organism that are responsible for heredity. A gene is encoded
in nucleic acids in most of the living organisms. This nucleic acid is called deoxyribonucleic
acid (DNA). The other important nucleic acid in the cell is called ribonucleic acid (RNA).

DNA is composed of the long chain of four different bases: adenine (A), cytosine (C),
guanine (G) and thymine (T) where these bases together with a sugar molecule and a phosphate
group are called nucleotides. These nucleotides are the same in all living organisms but their
sequences and amount are different in each organism. DNA exists as a double helix structure
in a cell, where the nucleotides pair up; A pairs with T and G pairs with C.

RNA is the other important nucleic acid in the cell. Instead of a double strand in DNA,
it is composed of a single strand of nucleotides where T is replaced by Uracil (U). There exist
different, types of RNA in a cell; each of these perform a different function. Messenger RNA
(mRNA) is the most important one which “carries” the genetic information from DNA to the
ribosome, the organelle in the cell that produces proteins. The other types of RNA also play
important roles in protein synthesis process and gene regulation, and these are transfer RNA
(tRNA), MicroRNA (miRNA), small nuclear RNA (snRNA) and ribosomal RNA (riRNA).

DNA has all the necessary information for the functioning of a cell, i.e., it includes all the
genes of an organism. Genes correspond to small segments on DNA where each gene encodes
a protein essential for the cell. In addition to this, DNA has long sequences of non-coding
regions as well, corresponding to no known function.

Proteins are one of the most important macromolecules and participate in every kind of
activity in the cell. The basic unit that forms a protein is an amino acid. All proteins are
composed of 20 different types of amino acids. A gene encodes a protein by determining which
of these amino acids will be used for the production of a protein. In addition to the amino acid
sequence, 3D structure of a protein is also important in determining its function in the cell.
Proteins can be classified into two groups based on their function; structural and regulatory.
Structural proteins, as the name implies, have roles in forming the shape of a living organism
and regulatory proteins include enzymes and transcription factors (TFs) that catalyze the
reactions and bind to DNA to control protein synthesis, respectively.

The central dogma of molecular biology states that the information transfer in a cell is
mainly divided into three stages; replication, transcription and translation. Replication is the
stage where DNA duplicates itself for a new offspring of the cell. Transcription is the process of
“copying” the information on DNA to a mRNA. Then, after transcription is completed, mRNA
is translated into a protein by the help of ribosome and some enzymes.

The property of proteins that makes them essential for the cell is their ability to bind to
other molecules. For example they can bind to other proteins forming complex proteins or they
can bind to specific regions on DNA called promoters to control gene expression. A gene is said

to be expressed if it is transcribed into mRNA. TFs are the proteins that bind to promoters



and regulate gene expression. A TF can either be monomeric or be the result of binding of
more than one protein. The interaction between a TF and the promoter region of a gene on
DNA can be named as a gene-protein interaction. All these protein-protein and gene-protein
interactions constitute a large network of interactions and the gene expression is controlled by
this network. This network is usually referred to as a gene regulatory network (GRN) and can
be represented as a graph (See section 2.2) where the nodes are genes/TFs and the edges are

the relationships between them.

2.1.2 Microarray Technology

Microarray is the name of the technology that gave researchers the opportunity to determine
the expression levels of large numbers of genes in parallel. The data produced by a microarray
experiment provides the ability to see a large proportion of the genes in the genome of an
organism. This section discusses the complementary DNA (cDNA) microarray experiments
which is the most widely performed one [96].

Hybridization is the process of binding of two complementary single stranded nucleic acids.
DNA can be produced from mRNA by a process called reverse transcription with the help of
the enzyme, reverse transcriptase. This DNA is called cDNA and it can hybridize to mRNA.
These two concepts form the basis for the cDNA Microarray experiments. The steps of a cDNA

microarray experiment are given in Figure 2.1 and can be enumerated as follows:
1. Target DNA preparation
2. Slide preparation
3. Printing of DNA on chips
4. ¢cDNA preparation and labeling
5. Hybridization
6. Scanning

Microarray chips are constructed by commercial companies by polymerase chain reaction
(PCR) methodology. PCR produces single stranded DNAs to spot on a glass slide. So each spot
contains numerous identical copies of a gene from the organism used. The genes corresponding
to each spot are recorded. Then by reverse transcription, the cDNAs of interest are produced.
cDNA microarray experiments are usually performed to compare two types of conditions of
two different cells where one represent the experimental conditions and other represent the
reference conditions. As shown in Figure 2.1, these can be cancer and normal cells. cDNAs for
both conditions should be labeled by incorporating fluoresecently labeled nucleotides during

reverse transcription. Usually they are labeled with either a red or a green dye, where each
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Figure 2.1: Steps of a microarray experiment (adapted from [94])

color labels either experimental or reference conditions. Then both types of cDNA are put
on the same slide for hybridization with the DNA on the microarray chip. This hybridization
process generally lasts for one night and after this, in addition to hybridized cDNA, there will
also be some amount un-hybridized cDNA on the chip of experimental or reference conditions.
So the chips are washed in this step to remove any remaining unbound cDNAs. Two images
are then produced from the chip by scanning, where one image is for one color and the other
is for the other color. A merged image is also produced from the two images. This image is
further processed by image processing techniques to produce readings for the green and red
labels. The ratio of red to green or vice versa outputs the relative expression level of the genes

in the experimental conditions.

2.1.3 Existing Biological Data Types

In this section, we review a set of data types that are widely used by the bioinformatics

community. This set also includes the biological data types analyzed in this thesis.

10



Gene Expression Data

Gene expression data D*P | obtained usually from microarray experiments, is an m X n matrix

of expression values. fop

entry of this matrix corresponds to the expression value of gene
1 under condition j. There are two types of expression data widely used; time series and
classification (or sometimes referred to as static) data.

Time series data, as the name implies, has the change of expression values of genes over
time. So the microarray experiment is designed to get the measurements of expression over
a number of time steps. This type of data is extensively studied and also introduces some
challenges in both experimental design and analysis [4].

Static or classification data is the snapshot of the expression levels of genes in different
samples. These different samples are usually used to compare two or more different types of

cells; cancer versus normal tissue samples for instance. Unlike the case in time series data,

these are assumed to be independent and identically distributed.

Transcription Factor Binding Data

This type of data is obtained by a technique called genome-wide location analysis [70]. This
method is a combination of modified chromatin immunoprecipitation(ChIP) and DNA mi-
croarray analysis. ChIP method used here provides the ability to detect the binding site of
any protein in vivo [63].

TF binding data D'/, at the end, is in the form of a m x n matrix where m is the number
of genes in the experiment and n is the number of TFs. ijf entry of the data is a p-value
indicating the level of confidence that TF j binds to the promoter region of gene i; the smaller
the p-value, the larger the probability of binding [53]. This type of data is one of most effective

in determining the associations between genes in an organism [6, 34, 53, 105].

Protein-protein Interaction Data

As mentioned before, after synthesis, proteins can form complexes with other proteins for func-
tioning. Protein-protein interaction (PPI) data include physical interactions between proteins
in an organism. A physical interaction here refers to the experimentally verified binding of
two amino acid chains. Such data sets are useful for working on the specific proteins as well
as whole genome interactions [39, 74, 84]. PPI data is usually in the form of a 0-1 matrix DPP
of interactions, where each entry ijp determines whether proteins ¢ and j are experimentally

determined to be interacting.
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2.1.4 Pre-processing Gene Expression Data

Gene expression data may need some pre-processing before mining meaningful knowledge. The
first reason for this is the lack of standardization in the experiments. This not only introduces
differences in readings in the same conditions but also brings some noise to the data. The second
reason is that data have many null entries; i.e., for a given gene some expression values may
not be available. Normalization is the pre-processing method that helps remove the noise and
make the expression values comparable for different experiments. Pre-processing methods also
exist for imputing missing values in gene expression data by changing the original distribution
of data as little as possible. It has also been shown that pre-processing the data has certain
effects on gene network inference [56]. Since some methods work on discrete data rather than
continuous, discretization of gene expression data can also be listed among the pre-processing

steps.

Normalization

Several methods have been proposed for normalization of gene expression data [69, 100]. The
first one is based on the concept of house-keeping genes. These genes are assumed to be always
active at a certain level of expression. So the expression level of these genes is used as a
reference for normalization. The expression levels of other genes are divided by the expression
level of the house-keeping gene in this type of normalization.

The second one is called total intensity based normalization. This method is based on the
assumptions that the mRNA amount for each sample compared is equal and the same number
of labeled molecules hybridizes to the arrays for the samples, where the intensity here refers
to the readings of green or red labeled spots on the slide after processing the final image of
microarray chip. A normalization factor is calculated as the ratio of the sum of red to green
intensities and each intensity value is multiplied by this factor such that the mean ratio of

intensities become 1.

Missing value imputation

Most of the data mining algorithms require complete data. For this reason, several missing
value imputation methods have been proposed for gene expression data [88]. Of several meth-
ods, the method based on the k-nearest neighbor (KNN) algorithm is the most widely used.
The KNN algorithm simply chooses the k other genes that are most similar to the gene that
has a missing value. Then a weighted average of these k genes are imputed as the value of the
gene. The similarity metric used here is very important where Euclidean distance is proposed

in [88].
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Discretization

Discretization is one of the issues in gene expression data processing that still suffers from
general consensus. There are numerous algorithms proposed for discretizing data [57]. The
simplest one divides the interval between minimum and maximum values of a given attribute
into a given number of sections (bins). Each bin is then assigned a different discrete number.
Each expression level is mapped to the corresponding discrete number. The quantization level
(number of discrete bins) becomes important in almost all of the discretization methods, where
2 or 3 is common for gene expression data corresponding to {ON,OFF} and {under-expression,

baseline, over-expression}, respectively [29, 101].

2.2 Graphical Modeling

A graph G is defined as a pair (V, E), where V is a set of nodes and F is a list of (ordered or
unordered) pairs (4, j) to represent that nodes ¢ and j are connected in G. We will use E;; to
denote the edge between ¢ and j. This connection may have many interpretations depending
on the domain. For example, for GRNs considered in this work, the nodes are the genes
and the existence of E;; denotes that the expression level of gene i is in some way related
to the expression level of gene j. Graph G can be undirected, which implicitly means that
Ei; € G = Ej; € G, i.e., direction is not important. On the other hand, a Directed Acyclic
Graph (DAG) is a graph where the edges are directed and the graph does not contain any
cycles. It is also possible for a graph to have both undirected and directed edges; such a graph
is usually called a Partially Directed Acyclic Graph (PDAG), which also does not include any
cycles. In a graph G, two nodes ¢ and j are called adjacent if E;; € E or Ej; € E.

A DAG G and a probability distribution P are said to be faithful to each other if G
denotes all and only the conditional independence relationships in P in the form of what is
called d-separations. To better understand the definition of d-separation, it is necessary to first
introduce the conditional independence relationship and some graph related concepts.

Two variables 7 and j are said to be conditionally independent with respect to a probability

distribution given a set of variables S if and only if:
P(i, j|S) = P(ilS)P(j]5) (2.1)

In this work, we use Ind(i, j|5) to denote the independence relationship expressed in Eq (2.1).
A path P in a DAG G is a set of nodes {i1, 2,43, ...,in }, such that starting at node i; we

can reach node 1i,, by following the sequence of edges E; k=1ton). Ina DAG G, node i

klk+1 (
is called a collider in a path if there are two nonadjacent nodes j and k such that E;; € E and
Ey; € E. In this case, the triplet (4,4, k) is called v-structure (see Figure 2.2). An undirected

path U is said to be blocked by a set of nodes W if any of the following two conditions hold
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Figure 2.2: (j,1,k) v-structure

VieU:
e ; is a collider, and neither ¢ nor its descendants are in W
e i is a non-collider, and it is in W.

Two nodes i and j are said to be d-separated by a set of nodes S if and only if every undirected
path between ¢ and j is blocked by S.

It is possible to have more than one DAG generating the same probability distribution
P [14]; this defines an equivalence class among DAGs with respect to P. The skeleton of
a DAG is the undirected graph obtained by replacing directed edges with undirected ones.
Two DAGs are equivalent if and only if they have the same skeleton and the same set of v-
structures [91]. It is possible to represent such an equivalence class with a PDAG. A PDAG
that completely represents an equivalence class of DAGs is called Complete Partially Directed
Acyclic Graph (CPDAG). The aim of most of the structure learning algorithms is to find such
a CPDAG representing the equivalence class of DAGs faithful to the underlying probability
distribution P.

A Bayesian Network (BN) is a tuple (G, P), where G = (V, E) is a DAG and P is a joint
probability distribution on V. Both G and P satisfy the Markov condition in a BN; all the
variables are independent of their non-descendants given their parents. A BN is said to be
faithful if all and only conditional independence relationships are the ones that are entailed by
Markov condition.

Structure learning algorithms for BNs refer to a set of algorithms that try to find the
DAG component of the BN given some data sampled from a probability distribution. These
algorithms basically fall into two categories. The first category is the search-and-score based
algorithms, which search the space of DAGs (or CPDAGs) for the graph that maximizes a score
function. The other class of algorithms is known as constraint-based algorithms [82]; the latter
algorithms start with a fully connected graph and search for conditional independencies in the
probability distribution, generally by means of statistical conditional independence tests.

In this thesis, we assume that the data are from a multivariate normal distribution. This
assumption has been widely used recently in GRN modeling, e.g., [11, 42, 75, 95], where the
name GGM is given to this modeling framework. Under this assumption, vanishing partial cor-

relations imply conditional independence [52]. Sample partial correlations can be calculated
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from the given data with various methods, including regression, inversion of covariance (cor-
relation) matrix or recursion. Here, we use the method and mathematical notation of Kalisch
et al. [43].

To test conditional independence, Fisher’s z-transformation is applied to a partial correla-
tion. This transformation can be expressed as follows:

. 1 14 pijis
2(i,1S) = 3log <ﬁ) (2.2)

where p; j|s denotes the sample partial correlation of i and j conditional on set S. Then, given
a significance level «, the null-hypothesis Ho(i, j|S) : p;jjs = 0 is rejected against the two
sided alternative hypothesis H (i, j|5) : p; jis # 0 if,

Vn—|S| - 31Z(,§18) > @11 — a/2) (2.3)

where ® is the cumulative distribution function of normal distribution with mean 0 and vari-

ance 1, i.e., N(0,1).

2.2.1 The PC Algorithm

One of the most well-known constraint-based structure learning algorithms is the PC algo-
rithm [82]. The algorithm is composed of two parts; the first part constructs the skeleton
of the graph, and the second part orients the undirected edges in the skeleton. Given in
Algorithm 1 is the process which is usually referred to as the first part of PC algorithm.

The proposed methods in this thesis modify the first part of the PC algorithm. The edge
orientation part does not need any modifications in order to be applied to the results presented
here. If we assume a faithful distribution to a DAG G and a perfect knowledge of conditional
independence relationships, the PC algorithm correctly infers the skeleton of the underlying
DAG G [82]. The worst-case complexity of the PC algorithm is O(p°"¢), where ord,, is the
maximum value of ord (see Algorithm 1) and p is the number of variables. Moreover, given
the above assumptions, if we denote the maximum number of neighbors of a node in G by ¢,

ordm, € {q¢—1,q}; and the algorithm is known to scale well for sparse graphs [43].

2.2.2 Probabilistic Boolean Networks

PBNs are probabilistic extensions of Boolean Networks (BoNs), which were first introduced by
Kauffmann [46]. We will briefly discuss here basic concepts about BoNs and PBNs; the reader
is referred to [46, 78, 79] for further details.

A BoN G(V,F) is defined as a set of nodes V = (x1,x2,...,2,) and a set of Boolean
functions F' = (f1, f2,..., fn). Every node in V has a k-ary (k < n) Boolean function f; that

determines its value. Without loss of generality, f; can be considered as m-ary with some
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Algorithm 1 PC algorithm (first part)
Input: Data D, Set of nodes V', Conditional independence test Ind

Output: Skeleton of the graph G, Separator information Sep
1: Set G to the fully connected undirected graph of V'

2: ord =0

3: repeat

4: repeat

5: Choose new adjacent ordered pair of nodes ¢, j with 7 having at least ord neighbors
6: repeat

7: Choose new set S of nodes adjacent to 4, where |S| = ord

8: if Ind(i, j|S) then

9: Delete edge i, j from G
10: Sep(i,j) =S
11: end if
12: until (edge 7, j is deleted) or (all different sets S of length ord have been tested for

edge i, 7)

13: until all pairs of adjacent nodes have been tested

14: ord = ord + 1
15: until number of neighbors for each node in G is less than ord

16: return G, Sep
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Figure 2.3: Wiring diagram of a BoN.(z1(t+1) = f1(z1(¢), 22(¢)); 22(t+ 1) = fo(x1(t)); x3(t +
1) = fa(wa(t), 23(t)))-

fictitious (unnecessary) variables. A variable z; is fictitious for f if,
f@r, o 2io1, 0,241, s T0) = f(@1, 00, i1, 1, i1, o, Tn) (2.4)

A variable that is not fictitious is called essential. Wiring diagrams are useful in representing
a BoN [3]. Figure 2.3 shows an example wiring diagram.

As can be seen, the dynamics of a BoN is completely deterministic. The only probabilistic
aspect of a BoN is the selection of the initial starting state. If we represent the initial state of
the network with a joint probability distribution D(z) where « € {0,1}", it can be shown that

the dynamics can be modeled by the equation below that resembles a Markov chain;
D =y Dt (2.5)

where 1) is a mapping of the form v : {0,1}2" — {0,1}>".

A BoN represents gene expression by using only two levels: ON and OFF. The expression
level for a gene g; at time step ¢t + 1 is related to the expression level of k; other genes at
time ¢ by a Boolean function, f)(g;,, ..., g ), where genes g;, to g;, are called parents of
gi- So, a BoN is defined by a set of genes V = (g1,...,gn) and a set of Boolean functions
F = (fM, ..., f™). On the other hand, PBNs assign a set of functions to each gene instead
of a single function. At each time step, a function from that set is chosen to determine the
next-step value for a gene. Formally, a PBN is defined by a set of genes V = (¢1,...,9,) and a
set F = (F1,...,F,), where each F; is a set of functions for g;, F; = {f;i)}j:17._.7li. Each fj@
is one of the possible functions to determine the next state of g;, and I; is the number of such
functions. The probability of choosing f]@ in F; to predict the next state of g; is denoted cgi).

Given binary quantized gene expression data, deriving a PBN model requires finding F' and
cgi) for all 4 and j. To do this, a measure of how well a function predicts the value of a gene
is needed. Coefficient Of Determination (COD) [23] is one such measure. COD compares the
prediction performance of a function with the best constant estimator in the absence of other

information. Assume that we are given the parents P; of g; and a function f;i)(Pi) to predict
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gi- The COD ¢} of f;i) is defined as follows:

o
9?:51 E(Qz;fj (PZ)) (26)

J i

where ¢; is the error of the best constant estimate of g; and (g;, f;i)(Pi)) is a probabilistic

error measure [79]. Given ¢’ values, it is straightforward to define c?) [79]:

J l; ;
Zm:l 9271
Best-Fit extension paradigm

For a given set of parent genes P;, f;i) can be derived using various methods. In our work, we
use best-fit extension paradigm of Lihdesméki et al. [51].

Lihdesmaki et al. [51] try to derive a model for the gene regulatory networks by using
Boolean networks. They study on two different aspects of the problem, that are called the
consistency problem and the best-fit extension problem. The consistency problem (or Extension
problem) is concerned with deriving a consistent function that is a Boolean function f from
a class of functions C' that perfectly separate the given true and false examples in the given
data. A partially defined Boolean function pdBf(T, F) is defined by two sets, T and F' that
denote the true and false examples in the given data, respectively. If, for a Boolean function
f, we define the true and false examples as T'(f) = {x € {0,1}" : f(z) = 1} and F(f) =
{zx €{0,1}": f(x) = 0} then formally, consistency problem is simply defined as whether there
exists a consistent extension f for pdBf(T, F) such that T C T(f) and F C F(f). The other
problem that is investigated by the authors is the best-fit extension problem. If we assume we
are given, in addition to a pd Bf (T, F), a set of weights w(x) for all examples x € T'U F then
the best-fit extension problem is to find a Boolean function f that minimizes the error which
is given as,

e(f) =w(TNF(f)) +wFNT(f)) (2.8)

where the weight of a set is defined as the sum of the weights of individual elements of the set.

For a network of n-nodes, the algorithms for solving the consistency problem for n-variable
and k-variable functions are given where 0 < k < n. The algorithms rely on the fact that to
solve the consistency problem, 7" and F' must be disjoint. The algorithm for n-variable and
k-variable functions simply fills an initially empty truth-table according to the given data. An
inconsistency can be detected while filling, which means that there does not exist a solution for
the consistency problem. The same algorithm can be applied also for the k-variable functions
by executing the algorithm for all k-element subsets of variables. Then each undetermined
entry in the table is filled arbitrarily with 0 or 1.

The solution for the best-fit extension problem is also similar. The same problem was

initially shown to be polynomial time solvable using another method by Shmulevich et. al. [80].
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The idea here is to define two 2" dimensional vectors ¢(®) and ¢(!), where each element in the
vectors indexes a possible variable assignment to n variables for negative and positive examples,
respectively. So the i" element corresponds to the weight of the i*" variable assignment (for
example for n—3, the variable assignment {1,1,1} corresponds to the 7" index). Then the

solution is shown to be simply the function f that has the truth-table f; = argmaz; cz(-j ), where
f; denotes the output value for the i*" indexed variable assignment for input variables of f.
Then the authors give an algorithm to find all functions that have error less than a threshold.
The results are given on the cell-cycle data of Spellman et al. [81] where the functions for
a number of genes are identified having error less than 5 for a unit weight assigned to each
variable assignment.

In this work, we use publicly available Matlab implementation of Best-Fit Extension in

PBN-Toolbox!.

2.3 Markov Decision Problems

A MDP is formally defined as a quadruple (S, A, T, R), where S is the set of states, A is the set
of actions, T is the transition probability function such that T'(s, a, s’) denotes the probability
of the next state being s’ given the current state s and action a, and R is the reward function
that represents the objective of the control process. Any MDP is associated with a performance
criterion. The performance criterion we adapt is the infinite horizon total discounted reward
criterion. So the objective is to maximize the total discounted reward: Y, 3'R;(s,a), where
R:(s,a) is the immediate reward of performing action a in state s at time ¢ and § € (0,1) is
the discount factor. In this work, we assume that R; and [ are independent of ¢; so we omit
subscript t after this point.

Solution to an MDP is called a policy, 7; it is a mapping from states in .S to actions in A.
Every 7 defines a value function V™ from S to real numbers. V7 (s) is the total discounted
future reward of choosing an action a according to 7 in state s, and following 7 thereafter. V™

can be found iteratively using the following equation:
Vilii(s) = R(s,m(s)) + B T(s,7(s), &)V () (2.9)

where iteratively applying Eqn 2.9 is called policy evaluation.
Optimal policy 7* is the best policy in terms of the given performance criterion. In our
case, it is the policy that achieves maximum possible infinite horizon discounted future reward.

Value function corresponding to 7* is the optimal value function, V*, which can also be found

Lavailable at: “Probabilistic Boolean Networks, http://personal.systemsbiology.net/ilya/PBN/PBN.htm,

accessed 1-June-2009”
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iteratively using the following Bellman update:

VseS  Vii(s) = maz.[R(s,a)+ BZ T(s,a,s)Vi(s)) (2.10)

Given all components of an MDP, Eqn 2.10 converges to the unique V* as k — oco. From

V*, ©* can be found as:

7 (8) = argmaz,[R(s,a) + 62 T(s,a,s)V*(s')] (2.11)

With arbitrary initialization of V{, the algorithm that uses Eqn 2.10 to find V* is called

value iteration [5]. One simple stopping criterion for value iteration is:

1 —
||vk+1—vk||s%

where || X || = max{|z| : + € X} denotes maximum norm. Eqn 2.12 ensures Vi1 is within €/2

(2.12)

of V* for any state [68].

Another well-known algorithm for solving an MDP is the policy iteration algorithm [68].
Instead of starting with arbitrary V', policy iteration starts with an arbitrary policy =, and
finds V™ using Eqn 2.9. Then for all states s, it searches for an action a that satisfies the

following equation:

V7(s) < R(s,a) + B _T(s,m(s),s)V"(s") (2.13)

If found, it updates 7(s)=a, and repeats the policy evaluation and update steps until conver-
gence criterion is met.
There are several other proposed methods for solving MDPs. We refer the reader to the

books [5, 68] for further details.

2.3.1 Factored MDPs

A FMDP is a representation language for MDPs to exploit the structure of the control problem.
The FMDP framework was first proposed by Boutilier et al. [8]. In most problems, T' can be
represented in terms of a set of state variables, where in our case these variables correspond to
genes.

As representing T for a MDP requires exponential space in the number of variables, FMDP
proposes to represent T for each specific action in the form of a dynamic Bayesian network
(DBN) [21]. A DBN is composed of variables G = (g1, 92, --., gn, 91, 95, ---9,), where the vari-
ables with a prime denote the random variables at the next time step. So, a DBN represents

the relationships between random variables in the current and next time steps. We denote the
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set of primed variables by X’ and non-primed by X, where G = X U X’. Each variable g
has a set of parents P;, where the value of g, depends only on P;. In this work, we assume
that P; C X, and the variables in X do not have any parents, i.e., there are no synchronous
dependencies between variables, all dependencies are between the variables at time step ¢ and
the variables at time step ¢ + 1. This is a common assumption for modeling GRNs using a
DBN.

A DBN associates to each g, and its parents P; a conditional probability distribution (CPD).
A discrete CPD is usually represented as a table. But some space can be gained if CPDs are
represented by decision trees in case they have the same values for different instantiations of
the parents [9].

In addition to CPDs, the structure in V' and 7 can also be exploited to represent them by
decision trees. The idea here is that V' and/or m may depend only on some of the variables
instead of all of them. So, they may be represented by a decision tree as well. Both value trees
and policy trees have internal nodes labeled with the variables themselves and edges labeled
with the values (instantiations) of the variables. Leaf nodes of a value tree have values of
the states corresponding to all states that have the same instantiations of the variables in the
path from the root to the leaf. The same way, leaf nodes of a policy tree have the actions
corresponding to the states that have the same instantiations of the variables in the path from
the root to the leaf. The reader is referred to [9] for details.

Solving FMDP requires modifying these value and policy trees at each iteration. Decision-
Theoretic Regression [9] is one of the methods to modify decision tree representations of value
and policy trees; each iteration results in a new value or policy tree that is closer to the
decision tree representation for V*. Structured value and policy iteration are two algorithms
that use decision-theoretic regression to solve FMDPs [9]. Efficient methods to solve FMDPs
by linear programming are described in [32]. Finally, we use the publicly available FMDP
solver, SPUDD? (“Stochastic Planning using Decision Diagrams”) [37]. Instead of using decision
trees, SPUDD uses algebraic decision diagrams (ADD) [72]. SPUDD package also includes an
approximate FMDP solver, APRICODD (“Approximate Policy Construction using Decision
Diagrams”) [83].

There are two approximation methods in APRICODD that depend on pruning the value
tree. The first one is on keeping the value tree below a fixed size, which is good for solving
FMDPs with limited computational resources. The second one uses ADDs in which the simi-
larly valued leaves of an ADD are merged and such leaves are labeled with a range of values.
This results in a smaller sized ADD called ranged value ADDs. Merging these values depend

on a given error bound such that only the values that are within that error bound are merged.

2available at: “Welcome to SPUDD, http://www.computing.dundee.ac.uk/staff/jessehoey/spudd/, ac-
cessed 1-June-2009”
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At the end, the midpoints of the resulted ranged value ADDs are returned as the value of the
corresponding states. APRICODD also includes variable reordering schemes that can have
significant effects on the resulting ADD size. Further details about SPUDD and APRICODD
can be found in [38].

In terms of GRNs, given PBN model derived from some kind of biological data, actions,
and the objective defined in terms of the reward genes, the PBN control problem can be solved

by the following steps:
1. Convert PBN to DBN

2. For each action a € A, construct DBN, that represents probability distribution T'(s, a, s)

for all s, s’
3. Given reward function R and discount factor 3, define FMDP M

4. Solve M using SPUDD

2.4 Summary

Having defined the concepts, linking the subjects covered in this chapter with the work done
in this thesis would be helpful to better understand the rest of this document.

One of the two problems considered in this work is the scalability in modeling GRNs. Two
modifications for PC algorithm are proposed for scalability and quality of the derived networks.
To evaluate these modifications, two of the discussed data types in Section 2.1.3 were used;
gene expression and TF binding location data. Using the last one, protein-protein interaction
data, is left as a future work. The methods in Section 2.1.4 are used to pre-process expression
data when necessary.

The second problem investigated is the scalability in control of GRNs. We used MDP and
FMDPs as the framework for solving the control problem where PBNs are exploited as the

model for control as a discrete model is necessary to evaluate the control algorithms.
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CHAPTER 3

CONSTRAINT-BASED MODELING OF
GENE REGULATORY NETWORKS

The regulatory mechanisms for gene expression in a cell is very important as they control the
activities related to protein synthesis which is one of the most essential functions for living
organisms. Depending on the evolutionary level of the organism, this regulatory mechanism
can get highly complex. The interaction of the large number of genes (promoters) and proteins
constitute this whole mechanism. An example of such mechanisms which is a component of
the whole GRN of Caenorhabditis elegans is given in Figure 3.1. The network in Figure 3.1 is
composed of the genes involved in the development and function of C. elegans digestive tract;

the reader is referred to [22] for details on the construction of this network.

Figure 3.1: Protein-DNA interaction network of C. elegans (Taken from [22]). Blue diamonds,
circles and triangles represent promoters, interactors and interactors whose promoters are also

used as DNA baits in the experiment, respectively.
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The issue that we want to emphasize here is the complexity of the network in Figure 3.1;
the number of genes and the number of connections. Learning a network of this size and
complexity is hard for current structure learning algorithms. There are methods that can be
used to learn sparse graphs with a large number of nodes (see [43] for example), but some
serious difficulties, both in terms of the quality and computational requirements, arise in case
of nodes with large number of connections. For instance, there are interactors in Figure 3.1
binding 27 promoters which is a large number for structure learning algorithms for graphs of
this size. Therefore, new scalable methods for learning GRNs from biological data are needed.

The amount of biological data available for research is exponentially increasing. However,
GRN modeling still suffers from the problem of small sample size compared to large number of
genes. This problem is sometimes referred to as the “p larger than n” problem, where p refers
to number of genes and n refers to number of samples [11]. The solution investigated for this
problem in this thesis is to incorporate multiple types of biological data. We will name the
information inferred from one type of data as the prior knowledge; there are no constraints on
which one will be the prior knowledge though. This prior knowledge will be used to “adapt”
the modeling algorithm to infer better networks.

In the context of GRN modeling, the prior knowledge can be formulated as a matrix B
of probabilities such that each entry B;; gives the probability of existence of edge E;; [6, 93].
This information might be obtained from various types of data and can be used with expression
data to obtain a better GRN.

Two methods for incorporating B in the PC algorithm by adapting the conditional inde-
pendence test to the given prior knowledge B are described in the following sections. The
first method is a simple but effective procedure to use the prior information on the conditional
independence tests in the PC algorithm. This way, the test “adapts” itself to the given prior
knowledge. This method is described in Section 3.2.

Although the adaptation procedure is successful in incorporating prior knowledge into the
PC algorithm, it may also lead to some problems regarding maximum order in the PC algo-
rithm. It is well-known that with increasing order, the power of a conditional independence
test decreases given small sample size. To be able to solve this problem, the second method is
proposed in Section 3.1 for the type of graphs that we call Partially Dense (PD) graphs. A PD
graph is a graph where some nodes have significantly larger number of connections than oth-
ers. The method interprets the same type of information as above with a different perspective.
The nodes that have a large number of connections are identified from prior knowledge and
these nodes are treated differently. Details of this method are presented in Section 3.1. The
related work is covered in Section 3.3. Finally, Section 3.4 highlights the shortcomings of the
approaches described in the literature and summarizes how they are covered by the proposed

approaches.
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3.1 PC algorithm for PD graphs

The number of conditional independence tests required by the PC algorithm, in the worst-case,
is bounded by p?(p—1)9=1/(q—1)! [82]. So, the algorithm can easily become non-applicable for
high values of g and p. Our experiments depicted that if we know the dense nodes in the graph
in advance, then a variant of the PC algorithm can show a good performance, even for PD

graphs, both in terms of computational requirements and the quality of the resulting graph.

Algorithm 2 PCPD algorithm (first part)
Input: Data D, Set of nodes V', Conditional independence test Ind, Set of dense nodes DN

Output: Skeleton of the graph G, Separator information Sep
1: > Stage 1
2: Set G to the fully connected undirected graph of V'

3:ord=0

4: repeat

5: repeat

6: Choose new adjacent ordered pair of nodes ¢,j with ¢ having at least ord neighbors and
i ¢ DN

T repeat

8: Choose new set S of nodes adjacent to ¢ where |S| = ord

9: if Ind(i,j|S) then

10: Delete edge i,j from G

11: Sep(i,j) =S

12: end if

13: until (edge 7,j is deleted) or (all different sets S of length ord have been tested for edge
i,7)

14: until all pairs of adjacent nodes have been tested

15: ord =ord + 1

16: until number of neighbors for each node in G is less than ord

17: > Stage 2
18: for all i in DN do

19: Choose new j such that i is adjacent to j in G

20: [S,vanished] = gss(D, 1, j,G)

21: if vanished then
22: Delete edge i, j from G
23: Sep(i,j) =S

24: end if
25: end for

26: return G, Sep
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To be able to correctly infer d-separations, for an edge E;;, conditioning set S in the
algorithm should be chosen as a subset from neighbors of either ¢ or j. The PC algorithm does
this by choosing ordered pairs (4, j) during execution. If the number of neighbors for a node is
high (i.e., ¢ is high) then the algorithm tries exponentially increasing number of conditioning
sets S with increasing order. This terribly slows down the algorithm response in the existence
of a dense node. Also, with increasing order, (with limited sample size) the probability of error
in statistical tests for conditional independence increases [82]. So, a possibly incorrect graph
(with limited sample size) is derived in a long time.

One method that has been proposed in various studies to avoid the above problem is to
limit the maximum value of order [20, 58, 95]. Since the nodes in a GRN are generally sparse,
this method may give good results. But, if ¢ is large even for a small number of nodes, we may
still face the same type of problems described above. Another possible approximate solution
method is to use unordered pairs in the algorithm and choose S from the neighbors of the
node that has less number of neighbors. But this also suffers from the same problems if the
underlying graph has more than one node with large number of neighbors.

As a result, we propose a new method for finding the skeleton of the underlying model with
some dense nodes. This method depends on the prior knowledge about these dense nodes and a
greedy search procedure for the separators of the edges of dense nodes. The proposed method,
which we call PC algorithm for Partially-Dense graphs (PCPD), is given in Algorithm 2.

As shown in Algorithm 2, PCPD has two stages. The first stage is similar to the PC
algorithm except that we do not choose edge E;; to test in Line 6 if we know that i is a dense
node. This avoids enumerating exponential number of subsets of neighbors of i.

By skipping some of the tests performed, at the end of Stage 1, some false positive edges
may exist in G; these are the edges that have at least one dense node in one end. But the
number of such edges are not expected to be large because we check edge Ej;; even though
we do not check edge E;;. For such edges for which the algorithm could not find a separator
from the subsets of neighbors of j, the greedy separator search procedure is executed. This

procedure is described in the next section.

3.1.1 Greedy separator search

Greedy separator search (gss) is a search procedure to find a conditioning set S that makes
the two nodes ¢ and j conditionally independent given S. To describe the algorithm we will
call the left-hand side of Equation 2.3 as L(i, j|S). In each iteration, gss adds variable v to
the current conditioning set S where v = argmin,ev L(i, j|S U {v}). This way it searches for
S that satisfies Equation 2.3 for the given i, j pair. It is therefore a greedy procedure, it is not
guaranteed to find the separator, but our experiments show that the procedure is successful in

finding most of the conditional independence relationships. This procedure is very similar to
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a procedure recently proposed by Brown et al [10], where a greedy polynomial version of the

MMPC algorithm [89] is discussed. The procedure is given in Algorithm 3.

Algorithm 3 Greedy Separator Search (gss)
Input: Data D, Node i , Node j, Adjacency Matrix G,

Output: Separator set S for 4,7 (if any), A boolean value indicating conditional independence
vanished
1: Let N be the set of neighbors of i except j in G and L(4, j|S) = v/n — [S] — 3|Z(i, j|9)|
2 8= {)
3: zCur = L(4, j|5)
4: vanished = FALSE
5: repeat
6: Choose k such that k = argmingenL(%,j|S U{k}) and L(i, j|S U{k}) < 2Cur
7 if There is such a k then

8: zCur = L(3,j|S U {k})

9: N =N\ {k}

10: S =SuU{k}

11: if 2Cur < cutof f for a given significance level a then
12: vanished = TRUE

13: end if

14: end if
15: until (vanished = TRUE) or (N = {}) or (there is no such k)

16: return S,vanished

3.1.2 Estimating dense nodes

The prior knowledge on dense nodes can be obtained from various sources such as the regulatory
network databases, like [59]. But, if we have the prior knowledge matrix B described above,
dense nodes can also be estimated by using B.

Given prior knowledge in the form of a matrix B, dense nodes can be estimated from B by
assuming that ¢ and j are connected if B;; is greater than a threshold T'. Then, the following
simple procedure can be used to estimate dense nodes; if the number of connections of a node
i is greater than a fixed value F' (which is specified in the experiments based on some initial
tests), then consider node i as dense. For instance assume 7' = 0.8 and the i*" row of B has k
entries that are larger than 0.8. If £ > I then node ¢ is considered as a dense node, otherwise
it is a regular node. Given B, the procedure described here is executed to estimate the set of

nodes that are dense, and then this set is used as the set of dense nodes in the algorithms that
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require this information.

3.2 Prior knowledge in conditional independence tests

In real life, when we have a prior knowledge that we think is true with high probability, our
decisions are affected by that prior knowledge. For example, if we believe that a proposition P
is true, then when we observe not(P), we first think that it happened by chance, i.e., we need
to have more evidence to be convinced that P is actually false. This is called bias in statistical
terms.

We can map the above argument to conditional independence tests (assuming our bias
about P has actually a high probability of being correct). There can be several such mappings,
which we use here to modify the value of the significance level o in Eq (2.3) depending on
our prior knowledge. So, we increase the value of « (i.e., it is more probable to reject the
null-hypothesis) if B;; > 0.5, where B;; > 0.5 implies that we have a prior belief that the edge
E;; exists in the graph, and the degree of this belief depends on the value of B;;. Similarly,
we decrease the value of « if B;; < 0.5, which means we have a prior belief to some degree
regarding the absence of the edge Ej;, depending on the value of B;;.

Given the prior knowledge B, « is basically updated as oo = g * (1 + 5(B;; — 0.5)), where
B > 0 is a factor that denotes our “trust” on prior knowledge, and «y is the initial value of «.
When ( = 0, the prior knowledge has no effect on the decision, and when § — oo, the output
completely represents the prior knowledge. But, it is obviously meaningless for « to be greater

than 1 or less than 0, so the actual update of « is performed as in Equation 3.1.

0 if ag * (1—}-6(31] —05)) <0
a=<{ 1 if ag * (14 B(Bi; — 0.5)) > 1 (3.1)
ag * (1+ B(B;; —0.5)) otherwise

Dynamically updating the significance level for each test provides a method to take two
different information sources into account while constructing the skeleton of the underlying
graph by using the PC algorithm. As can be seen in the update equation (Eq. 3.1), B;; = 0.5
means no prior knowledge about the existence of the edge E;;. That is surely an advantage
for GRN modeling, since prior knowledge might not be available for all edges.

We name the proposed algorithm as PCPr, where the extension indicates that the algorithm
uses the given prior knowledge in the conditional independence tests as described above. The

significance of this extension is evident by the supporting test results reported in Chapter 5.
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3.3 Related Work

Various methods have been proposed in the literature for modeling GRNs. Generally the
methods apply well-known concepts in machine learning including Bayesian networks [6, 29,
61, 86], (probabilistic) Boolean networks [3, 51, 78, 67|, neural networks [92, 98], Markov
chains [48], differential equations [13, 19], s-systems [87] and hybrid systems [47].

Bayesian networks are used in various studies for gene regulatory network induction. Since
the expression data has a high rate of missing values, BNs are good candidates for modeling
because of the BNs’ ability to handle missing data. But scalability is an issue that deriving
BNs without some restrictions is NP-hard [15]. But the gene regulation is suitable for this
restriction since biological studies show that a gene is regulated by a number of genes that
is generally not larger than 5. In addition to this, the probabilistic nature of gene regulation
makes BNs a remarkable framework for modeling. Besides the studies that are just applications
of the BN learning to gene expression data, there are also some studies where other biological
information are also used in deriving the model [6, 35, 86].

A method is suggested in [6] to combine the gene expression data and transcription fac-
tor binding location data to derive a dynamic Bayesian network that better represents the
regulation. Location data is used as the structure prior and expression data is used as the
likelihood. Location data is reported as a p-value which is inversely related to an edge being
present in the structure. They define p-value corresponding to edge F; in terms of a random
variable P; € [0,1] that is distributed as P\(P; = p|E; € S) = A\e™*?/(1 — e~ *P), where A is
the parameter of exponential distribution. So, if P(E; € S) = (3, then after marginalizing over
A and assuming A € [Ar, Ag], the value of P can be computed as:

P(E; € S|P, =p) =

1 Al Ae P33
Ag—ArL JAL >\ef>‘pﬁ+(1—ef>‘)(1—ﬁ)

(3.2)

Since the integral above can not be solved analytically, they solved it for fixed values of p
and stored the result for later usage. Then the prior for a structure S is given as:
logP(S) = }.p,eslogP(Ej € S|P; =p)+
> mgs logP(Ex & S|Py = p)

When this prior is used, the error is significantly reduced. Also the results on data of

(3.3)

Spellman et al. [81] is given and shows some interesting relationships between genes that can
not be derived without priors.

Tamada et al. [86], describe a way to combine gene expression data and evolutionary in-
formation to derive continuous Bayesian networks from data. The evolutionary information is
given as gene pairs set H4p for two organisms A and B, which are derived using BLAST [41].
BLAST gives gene pairs that seem to be related in two different organisms, where such genes

are called orthologous genes. So the idea is to use this information so that if genes a,b and
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¢,d are in H4p, where a, c is from organism A and b, d is from organism B, and if there is a
regulatory relationship between a and ¢ in A, then it is highly probable that there is a regula-
tory relationship between b and d in B. They give a score based on this idea which is, (Gene
Network Score)
GNS(Ga,Gp) = logP(Xa|Ga)P(XB|GB) (3.4)
P(Hap|Ga,Gp)P(G4)P(Gp)
where X 4(Xg) is the microarray expression data of organism A(B). They start with networks
G 4 and Gp that is found using traditional Bayesian network search algorithms and use these
as their initial networks. Then they continue with a greedy hill-climbing algorithm that in
each step adds or removes an edge from one of the networks so as to increase GNS(G 4,Gpg).
By using only the expression data, in [61], the authors derive a BN from time series expres-
sion data of Spellman et al. [81]. They express the transcription rate of a gene as;

vH
14+~H

g(H : B.7) = (3.5)

where H is concentration of the active regulatory protein, (3 is the maximum transcription rate
that the gene can achieve and + is the ratio of association and disassociation constants of the
regulators to the promoter regions.

From expression data, the transcription rates are derived based on a known regulation

diagram G (which is a Bayesian network) and the parameters h, # that maximize the likelihood:
I(h,0:G,E)=1logP(FE,hl0,G) (3.6)

where h are the values of the unobserved regulator activity levels at different times and 6 is the
vector of other parameters (v, 8, etc.) are calculated. Then the authors describe a structural
EM algorithm [28] that iteratively derives a regulation diagram which uses a Bayesian network

scoring function as;
Nparam
score(G : E) = mazpg(h,0:G,E) — Tlog(T) (3.7)

where Nparam is the number of parameters in the model and 7" is the number of time points.
The algorithm can add regulators to genes and also add new regulators that are not in the
regulator set H.

In [29], discovering the interactions between genes from expression data by using BNs
are investigated. Multinomial (discrete) and linear Gaussian (continuous) Bayesian networks
are derived using sparse candidate algorithm. To understand whether the algorithm derives
reasonable networks, two kinds of features which are the Markov property and order property
(the partial order of nodes in the network) are defined. A confidence value is defined based
on an algorithm that checks in what percentage the above features are observed in m new

networks derived from the perturbed data.

30



Boolean networks are one of the widely studied methods for modeling gene regulatory
networks. Since BoNs are simple to understand and polynomial time deducible for a bounded
indegree from data, they received much attention in this context. Also it was proved that if
indegree of each node is bounded by a constant, then only O(logn) input output pairs are
necessary and sufficient to derive the correct BoN [3]. But since they only work with binary
data, while modeling, information loss seems unavoidable. In gene network modeling, the value
of a node being 1 means that the gene is expressed and being 0 means the gene is not expressed.

In a recent study [67], the authors describe a way to construct PBNs based on the fact that
if we are sampling the data from steady state, to check validity of a designed network we have to
check whether the steady state mass lies in the observed sample states. They give an algorithm
that first selects k attractor sets randomly, then they pick a predictor set for each gene again
randomly and then check for compatibility with the attractor set by using the fact that an
attractor introduces a cycle. Then other entries of the truth table of genes and predictors are
filled randomly and checked for a cycle; if a cycle is found random, filling is performed again.
This algorithm generates a BoN. A PBN is generated from multiple runs of this algorithm and
assignment of a probability of switch of BoNs and a probability of perturbation. An application
of this algorithm to gene expression data is given at the end. They generated 10000 PBNs and
chose the one that minimizes the mean-squared error between data frequency of attractors and
estimated steady-state distribution of each attractor based on the size of the tree corresponding
to an attractor. The results are given as a histogram that shows how close the distribution of
attractor states in data and the time spent in attractor states after running the designed PBN
for a long time.

The paper by Weaver et al. [92] is one of the first attempts to derive the regulatory networks
from expression data. The authors use an approach that they call weight matrices which is
in fact a neural network. They assume the regulatory behavior of genes can be modeled by
a number of linear functions whose input values are expression levels of other genes in the
previous time step. First they describe the details of the model and how to produce expression
data from the model. Given a weight matrix Z and the input u(¢) of expression levels, the

next state of the system is given as:
u(t 4+ 1) = mg(Zu(t)) (3.8)

where ¢ is a normalization function that maps the expression levels to (0-1) interval and m is
the maximum expression levels of genes. A reverse engineering approach is then given based
on the data produced artificially using the above equations and randomly producing Z and
m. The reverse engineering algorithm includes solving algebraic equations that comes from
solving u(t) from w(t+ 1) based on the assumption that the matrix Z will be mostly composed
of zeros. The results are successful in the sense that the reverse engineering approach derives

the original network even in the presence of noise. But the authors give no results on real
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expression data.

Recurrent Neural Networks are used to model gene regulatory networks in [98]. Each gene
is represented as a node and each edge gives the weight of influence of a gene on another.
Instead of backpropagation the authors use Particle Swarm Optimization (PSO) for parameter
learning. PSO is a search method similar in some sense to genetic algorithms (GAs). It is
based on a number of particles (solutions) that are walking on the search space. The particles
are accelerated towards the direction which is a combination of the direction of the previous
best solution of the particle itself and the global best solution of all particles. The quality of
the solution like in GAs is calculated by using a fitness function. Results are given on both an
artificial data set and a real data set. Because of the amount of data the results are better on
the artificial data set. Although some meaningful relationships are captured on the real one,
it is not a suitable method for larger networks.

The work in [48] proposes a method to construct Markov Chains (MCs) to simulate the
behavior of biological gene regulation. They select 10 genes from the set of 587 gene data
set. For each of the 10 genes they select 3 genes from the data by using highest coefficient of
determination value for a target gene. The MC transition probabilities are derived empirically

from the data in the form of:
P(g;*") = P(alg}, g5, g1) (3.9)

where a = {0,—1,1} and 4,5,k are the 3 genes mentioned above, and [ is the target gene.
They perform a simulation of this MC which also includes a probability of perturbation that
changes the expression value of a gene randomly. After the simulations, the authors show that
the states of the MC in the simulation very much resemble the biological data.

In addition to the above mentioned methods, differential equations [13, 19], s-systems [87]
and hybrids of the above methods [47] are also used in modeling. Differential equations typically
model regulation as a set of rate equations of the form dx;/dt = f(x) where z; is the gene we
are trying to model and f is the function that will be searched and x is a set of variables that is
thought to be effecting the expression level of x;. S-systems are a type of power-law formalism
that can be described by a set of non-linear differential equations. But it has a problem that
it requires the estimation of a large number of parameters.

Hybrid methods are the ones that use a mixture of the above methods. Inferring a regulatory
network model by using GAs and neural networks is described in [47]. The IDs of the genes are
considered as the chromosomes of the GA and a single layer neural network is trained for the
fitness function of the GA. The root mean square error of the trained neural network is used as
the fitness function for GA. The best chromosome is chosen as the regulators of gene j. Then
j is increased and the algorithm finds the regulators for all output genes. Finally, the neural
network of the best chromosome for all output genes is used as the predictor for the next time

step. The results are given for 3 different settings. The first one is a randomly generated data
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from a known network; the second is the rate of spinal cord data; and the third is cell cycle
data of Spellman et al. [81].

Besides these, a graphical modeling paradigm, which is generally named as Gaussian Graph-
ical Modeling (GGM) [52], has received considerable attention [11, 20, 42, 58, 71, 75, 95, 97].
In this paradigm, it is assumed that the data constitute a random sample from a multivariate
normal distribution. Generally, the focus here is to compute (or approximate) the covari-
ance matrix in the existence of small number of data samples compared to the large number
of genes. The solutions proposed include approximately computing the covariance matrix
by shrinkage estimators [75] or decomposition [42] and low-order conditional independence
graphs [11, 20, 58, 95]. Graph decomposition techniques were also previously integrated with
GGM and PC algorithm [97]. Recently, an information theoretic approach was proposed for
using low order partial correlations as a measure of conditional independence [71]. Also im-
portance of conditional correlation has recently been studied in reverse engineering regulatory
networks [103].

Due to the small sample sizes of biological data, methods of combining multiple types
of biological data have recently been developed [12, 54, 55, 105]. These studies generally
propose to combine gene expression, TF binding location and TF binding motif data. All the
results show that combining multiple data types lead for better identification of better gene
associations/clusters/networks compared to using a single data type. These studies constitute

supporting evidence for the motivation of the algorithms proposed in this chapter as well.

3.4 The Gap Covered by the Proposed Methods

The algorithms that are discussed above to derive a GRN (and structure learning algorithms
in general) suffer from one or more of the following; scalability, small sample sizes and densely
connected nodes. Constraint-based learning algorithms scale well in general, which makes them
a strong candidate to apply for GRNs. Although there are some previous work to deal with
small sample sizes, to the best of our knowledge, this is the first study that tries to handle
nodes with large number of connections in a structure learning context. The PC algorithm is
known to work well for sparse graphs. But the algorithm may fail to learn a good graph when
either the sample size is small or the underlying graph has some dense nodes. Unfortunately,
biological data and GRNs have both of these properties.

To overcome the above problems and derive GRNs from biological data by using the PC
algorithm, we propose two modifications to the PC algorithm. For the first modification, we
argue that integrating multiple available biological data types in learning a GRN should be
helpful. We integrated TF binding location (ChIP-chip) and microarray gene expression data
through statistical independence tests of the PC algorithm. As depicted in the results, this
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greatly improves the performance in learning. In addition to the PC algorithm, this method
can also be used in other constraint-based structure learning algorithms as well. Also, other
than TF binding location data, any biological data that can be converted into probabilities of
edges being present, can be used as the prior knowledge. For instance, by using TF binding
motif data in the form of position weight matrices one can compute the probability of existance
of a binding region for a given TF on a gene’s promoter regions [50].

The second modification is related to the nodes that have a large number of connections. As
these constitute a problem for most of the learning algorithms, we propose a method to process
them differently from the normal nodes in a graph. This method improves the performance by
preventing the order in the PC algorithm to increase to large numbers that can cause errors,
as a large order decreases the power of statistical independence tests. By identifying dense
nodes from prior information obtained from another type of biological data, the new algorithm
named PCPDPr, outputs a better network than the PC algorithm and has the potential to be

improved further.
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CHAPTER 4

LARGE-SCALE GENE REGULATORY
NETWORK CONTROL

Controlling GRNs is an important and hard problem. As it is the case in all control problems,
curse of dimensionality is the main issue in real applications. It is possible that hundreds of
genes may regulate one biological activity in an organism; for instance a set of approximately
800 genes were previously estimated to be cell-cycle related in budding yeast, Saccharomyces
cerevisiae [81]. As the state space for a GRN will be exponentially large in the number of
genes, number of states for the cell-cycle model of yeast including these genes will be enormous.
Although it may be possible to maintain (learn, keep, etc.) such a model, it is not possible
for most of the current control algorithms to solve a control problem of this size. This is also
evident in the literature that only models of small portions of the genome of a living organism
could be used in control applications. Following the discussion in the previous chapter, as
larger models become available, scalable control algorithms will be necessary for the analysis
of these networks for interventions.

This chapter includes the description of two methods that are aimed at the scalability for
control in GRNs. Given a PBN model, the methods in this chapter try to reduce the model to a
“simpler” PBN model so that the control problem is easier to solve. However, this simplification,
obviously, makes sense if the solution of the reduced problem is a good approximate solution to
the original problem. To achieve this, first, in Section 4.1, we describe the method that can be
named as a feature reduction method which tries to identify and eliminate the genes that are
irrelevant for the control problem. This way, the model (and so the state space) gets smaller
and becomes easier to solve by MDP solvers. But instead of eliminating a gene completely
from the model, some connections of this gene in the model can be removed as well to reach a
simpler model, and the resulting model may be solved more efficiently by a FMDP solver. The
second method which is described in Section 4.2 is built on this idea; simplifying the model by
eliminating edges, instead of genes, in the model. In addition to the proposed methods, this
chapter also includes in Section 4.3 the previous work done in the domain of GRN control. We
close this chapter by explicitly stating the contributions of this chapter and the gap covered
by these algorithms.
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4.1 Scalable Control by Feature Reduction

Feature reduction is the process of finding and excluding from further consideration, features
that are expected to have reasonably negligible or minimal effect on the output quality. In
general, feature reduction or feature selection is performed to improve the performance of some
predictors [33]. The features in the case of gene expression data are the genes, the samples,
or both. Here, we consider feature reduction as decreasing the number of genes. What we
consider as output is the value function found by solving the MDP. This is reasonable as
the value function represents the reward (or cost) associated with a given state by applying
the control policy. In real life, this can give an indication of the cost of treatment (policy).
The speed-up gained by reducing the state space of the MDP is considered as performance

improvement.

Data ’_a’" Model ’LﬁMDP(M) ‘L‘ Policy(r) ‘
A

b Fea‘ture: Flb
v Reduction

Figure 4.1: Finding control policy for the given data
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In the GRN control domain, we observed that some of the genes can be ignored in the
process of finding a control policy for a given data. So, it is essential to estimate the redundancy
in the data before starting the modeling and MDP solving parts. This way, we can effectively
deal with GRNs that have larger number of genes by applying reduction to obtain a smaller
set of genes instead. This is depicted in Figure 4.1, where path (a) is the ordinary path of
solving the control problem and path (b) is the reduction based method proposed to solve the
problem. Function F' that labels the last link along path (b) in Figure 4.1 maps policy 7’ found
for MDP M’ to policy 7 of the larger MDP M. Assume the Model on path (a) has two states
s; and s; which only differ in the value of one gene, say the third gene. For example, for the
binary case let these states be s; = 1001010 and s; = 1001110, for a network of seven genes.
If, in the feature reduction step of path (b), we decide that the third gene is irrelevant, then
s; and s; will be aggregated in Model’, forming a state s, = 100110. To get policy =, after
solving M’, we have to remap the action defined for s, in 7’ to s; and s;. Since we know that
the third gene is redundant, s; and s; are in fact equivalent states. Therefore, F' simply gets
7" and produces 7 by setting 7(s;) = 7(s;) = 7’'(sy), for all s;, s; and sp.

The proposed solution is based on the assumption that the objective is defined in terms of

the expression values of some genes, namely the genes that we want to control. We require
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that the reward function is defined in the form R(s,a, s’) and depends only on the action and
next state. This does not need to be the case in real life, but it also does not overly restrict the
problem because the objective is generally defined in terms of desirable or undesirable states.
Finally, model minimization can also be performed after building the model. However, if we
think of the process as finding a policy for some given data, then feature (or gene) reduction
before modeling saves time in the modeling stage because model building is a time-consuming

task as well.

4.1.1 Selecting the genes to remove

The selection of the gene to remove is based on the following observation: Since the objective
is defined in terms of reward and control genes, all other genes are candidates for removal.
From the set of candidate genes, a subset will be selected based on their estimated relevance

for deriving a control policy.

T(s1,a,8") = V@‘\Tz =T(s2,a,5")
T(s',a,s1) = 7?3\®/;4 =T(s,a,s2)

(a) (b)

Figure 4.2: Aggregation of stochastically bisimilar states s; and s
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Recall that genes to be removed should have the lowest effect on the value function. As
explained above, removing a gene, say ¢g from consideration is equivalent to aggregating the
states that differ only in the value of g. Assume that s’, s1, s2 and s are related in the MDP
as shown in Figure 4.2(a). Both s; and s have to be stochastically bisimilar [30] in order to

be aggregated so that the resulting MDP has the same solution as the original MDP.

Definition 1. [30] Any two states s; and s; in an MDP are said to be stochastically bisimilar
if the following two conditions hold:

I.Ya R(s;,a) = R(sj,a)
II.Va,s'" T(s;,a,s")="T(sj,a,s) .

Stochastic bisimilarity for the states of an MDP is an equivalence relation (see Theorem 4

in [30] for more details). Two stochastically bisimilar states have the same value in the solution
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for an MDP. Under this equivalence relation, stochastically bisimilar states are said to be
equivalent in an MDP; by using this information, the MDP can be reduced to another MDP

with a smaller state space.

Theorem 1. [30] Two stochastically bisimilar states in an MDP are equivalent and can be

aggregated. °
Proof. Follows from Theorem 7 in [30]. O

The aggregation procedure of the two stochastically bisimilar states s; and sy from Fig-
ure 4.2(a) leads to the new state s,4 shown in Figure 4.2(b); it has the same reward function as
s1 and sg, i.e., Va,s' R(Sag,a,s") = R(s1,a,s") = R(s2,a,s’), and the transition probabilities
are as shown in the figure!.

Consider states s; and s; that only differ in the value of g in M (see Figure 4.1). According
to Theorem 1, if the states s; and s; are stochastically bisimilar and there is in M’ a state sqq
as the aggregation of s; and s;, then M’ is the minimized version of M, and hence has the
same solution as M. This may be interpreted as follows, we can find the control policy faster
by locating and removing from the data every gene g for which cases I and IT in Definition 1
hold for the states that only differ in the value of g.

For case I, we will use the assumption in the definition of R(s,a,s’) that it does not depend
on the current state s. Assume we have one reward gene g, that we want to control. The

reward function R(s,a) by definition satisfies:

R(s,a) = ZT(S, a,s')R(s,a,s) (4.1)
S/
and by using our assumption on the reward function, it can be rewritten as:
R(s,a) = Z Z T(s,a, s )R(s,a,s") (4.2)
i€Val(gr) 8'€Sg,=i

where Val(g,) denote the discrete values that g, can take, and S,,=; denote the set of all
states that satisfy g. = i. Notice that R(s,a,s’) is constant for all s’ (where g, = i) and a

given action a (recall the assumption about R(s,a,s’)). This means that case I in Definition 1

holds for two different states s; and s; if,
Vi Z T(si,a,8") = Z T(sj,a,s") (4.3)
S/ESQT:i S/ESQT:i
Eq (4.3) may be interpreted as follows: being in state s; or state s; makes no difference

about the value of g, in §’. If s; and s; differ only in the value of a gene, say g, then

Eq (4.3) holds if the probability of g, taking value i in s’ is independent of the value of g,

! Note that Givan et al. [30] call sqg a block (set of states) rather than a new state, but there is conceptually

no difference for our case.
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ie., Pr(g.(t+1) = klg(t)) = Pr(g.(t + 1) = k), where g(t) denotes the value of g at time
step t. In other words, case I holds if g has no influence on the next state value of g.. Using
similar argument, for case II to hold for states s; and s; that differ only in the value of g, gene
g should have a low effect on determining the next state of any gene. So, we have to check
similar conditions for cases I and II. If we approximate the influence of a gene on a set of genes
as the average influence, both the influence of g on g, and the average influence of g on all

other genes are important.

Influence Score

Given two genes g; and g;, the influence of g; on g; can be estimated by checking to what
degree the equation Pr(g;(t + 1) = k|g:(t)) = Pr(g;(t + 1) = k) is satisfied. We define the

following function to estimate the influence of g; on g;:

Inf(gigi)= Y [Prigi(t+1) = klgi(t)) = Pr(g;(t +1) = k)| (4.4)
keVal(g;)

and we define the average influence of g on a set of genes G as:

Avglnf(9.G) = 2 3 In(g.90) (45)

9gc€G
where |G| is the number of genes in G. The counts for the different values of pairs (g;, g;) in
the data constitute sufficient statistics for Inf(g;, g;).

Note that the function Inf(g;,g;) that gives the influence of gene g; on g; is similar in
nature to the influence concept introduced by Shmulevich et al. [78]. But, Shmulevich et
al. [78] compute this value based on the model (Probabilistic Boolean Network), while we
compute the value of Inf(g;, g;) directly from the data without building a model.

To select a subset from the genes in the data, we assign to each gene what we call Influence
Score (IS), which is based on two sub-scores inspired for the cases in Definition 1. The sub-

score for case I is:

Si(g) = Inf(g,9r) (4.6)

where g, is the reward gene. The sub-score for case IT is:
S11(g) = AvgInf(g, Q) (4.7)

where G includes all genes in the data except g. As a result,

IS(g) = Si(9) + S11(9) (4.8)

Combining all the already introduced concepts, the final reduction method that we call FRGC
(Feature Reduction for GRN Control) is given in Algorithm 4.
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Algorithm 4 FRGC
Input: m x n discrete gene expression data (D) and threshold Th

Output: (m — k) x n reduced gene expression data (D)
number_of genes X number _of samples = size(D)
Genes = {1,...,number_of genes}
IrrelevantGenes = {}
for all g € Genes do

Compute I15(g)
if IS(g) < Th then
IrrelevantGenes = g U IrrelevantGenes
end if
end for
D’ = Remove IrrelevantGenes from D

return D’

FRGC identifies and removes some of the lowest scored gene(s). One point to consider in
the process is the number of lowest scored genes to remove. We use a threshold score Th as
the stopping criteria of the removal; T'h obviously depends on the analyzed expression data.
In this thesis, we rely on domain expert to specify the value of T'h.

Deciding on a value for the threshold is a subjective process which depends on several issues,
like the usage of the results, the degree of accuracy, simplicity of the policy, computational
resources and the objective. A large (small) threshold implies less (more) accurate results and
requires less (more) computational resources. The expected complexity of the resulting policy
can also be important because eliminating some of the genes would generally produce a simpler
policy which is more attractive as the applicability is concerned. The need to take immediate
action for time critical cases may tolerate lower accuracy for simpler policy. All these factors
are good indicators to guide the choice of a threshold value. The process is subjective; it is like
a multi-objective optimization issue because most of the factors and objectives described above
do conflict. So, it is the duty of the domain expert to decide on which factors or objectives
should be considered more important to the specific problem being investigated and hence set
the threshold value accordingly. For instance, a lower threshold value is preferred if sensitivity
is the issue, while a higher threshold value is expected if simplicity is the major concern; most
of the cases it is somewhere in between. Finally, while deciding on the threshold value it is
possible to employ simple procedures such as investigating the sum of IS scores for all genes
and eliminating the genes with smallest scores up to a certain percentage of the sum; however,
a decision on the percentage is necessary and this is again subjective. The problem can be also

considered as determining the number of minimum scored genes to eliminate; this depends on
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the set of genes being investigated by the experimenter. Keeping all these issues in mind and
knowing how subjective the process is, finding a method that minimizes as much as possible
the involvement of the domain expert in a way to automatically determine the threshold value
is a challenging task; once put in action such a method will add much to the value of the
reduction approach proposed in this work, turning it into a more adaptable process.

As described in the experiments section, errors are computed as the percentage difference
between the resulting value function and the approximate value function. How much error is
tolerable highly depends on the problem specification. For instance, if the reward function is
defined as the financial cost of a treatment, then the tolerable error bound can be large com-
pared to the case when the reward function is defined in terms of life expectancy or probability
of survival. For instance, a 10% error would be acceptable as financial cost is concerned, i.e.,
it may be tolerable for some cases. But if the survival of a patient is the concern then 10%
error should not be acceptable unless it is the best available alternative. Therefore, deciding

whether an error bound is tolerable or not is problem dependent.

4.2 Scalable Control by Edge Elimination from Factored
Representations

Control problems can also be solved by using factored representations (see Section 2.3.1). In
GRN domain, this factorization naturally occurs as each gene corresponds to a factor. In this
section, we describe the application of FMDP framework to GRN control problem and propose
a method to reduce the GRN model to a simpler one so that the solution can be found easier.
The genes/nodes in a factored model that have no effect on the reward gene(s) do not exist
in the solution of the control problem [9]. This situation gives rise to the following questions;
What about the genes that have small or negligible effect on the reward genes? Can the
connections of these genes be eliminated from consideration in solving the control problem?
This section discusses the methods proposed based on this idea.

Although factored representations help in solving some of the problems, they still suffer
from the curse of dimensionality in the worst case [9]. Fortunately, in most of these cases we
can still reach a reasonable approximate solution by pruning and/or approximating the value
tree.

Most of the approximate methods prune the constructed trees during the process of solving
FMDP. Another possibility in finding an approximate result is to prune the transition model
before solving the problem. In this section, we elaborate on such a method, but before that

we introduce the concept of edge influence.
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4.2.1 Edge Influence

We start by introducing the basic concepts required to understand edge influence as in Defi-
nition 2. For a PBN, given gene g; and its parent genes P;, Shmulevich et al. [78], formalized
Influence to measure the effect of a parent on g;. Influence of ¢g; on g; is the probability that
the next state value of g; will change when we change the value of g; at the current time step.
To formally define the influence of g; on g;, denoted I;(g;), first we have to define the influence
of a gene with respect to a boolean function f, which is the probability that the output of f
will change if we change g;. Assume that f is defined on the set of input genes P = (g1, ..., gk )-
The influence I;(f) of g; on f is defined as;

IJ(f) = P’f"{f(gl, ~gj—1; Oagj-i-la "’gk) D f(gla ~gj—1, 1agj+1a "7gk)} (49)

where @ stands for exclusive OR. Equation 4.9 depicts the probability that f will output a
different value if g; is toggled while the other input variables are kept unchanged. Also note
that I;(f) =01if g; ¢ P.

Given V, F and cgi) of a PBN, I;(g;) is defined as follows [78]:

lj

Li(gy) = Y L(f)e) (4.10)

k=1
which is the weighted sum of all influences of g; on the set of functions F;. Refer to [79] for
further details of influence concept.

Given a PBN, influence of a gene g; on gene g;, I;(g;), can be interpreted as a measure of
the strength of the link between the two genes. But, I;(g;) will be zero if g; is not among the
parents of g;. However, this does not mean g; has no influence on g;. This becomes more clear
if we consider the PBN in Figure 4.3(a) and its “unrolled” version for g3 in Figure 4.3(b). As
depicted in the “unrolled” PBN, considering the future effects of each gene, it is obvious that
each gene has more to influence than only its children. If there is a path from g; to g; in the
unrolled PBN, then g; at time step ¢ has influence on the value of g; at time step ¢ + k, where
k is the length of the shortest path between ¢; and g; in the unrolled PBN.

Given a node g; as the root, an unrolled PBN is constructed (as a tree) by expanding each
node g at level ¢ with the parents of g at level ¢ — 1 in the given PBN. Nodes are expanded
unless the unique path from the leaf node to g; includes a cycle. For instance, leaf node g3 is
not expanded in Figure 4.3(b) because the path from leaf g3 to the root includes g3 twice. Also
notice that there can be links like g3 — g1 as g1 has itself as the parent in the PBN, and ¢;1’s
at the leaves are not expanded because the two paths g; — g2 — g3 and g1 — g2 — g4 — g3
include g .

Recall that each I;(g;) corresponds to the effect of the value of g; at time step ¢ on the value
of g; at time step ¢t 4+ 1, and assume gy, is one of the parents of g;. When we unroll the PBN

one time step, we will observe the path g, — g; — g;. We know that, based on Markovian
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property, Ix(g;) is independent of I;(g;). Therefore, to compute the influence of gi on g, after
two time steps, we simply multiply Iy (g;) and I;(g;).

Formally, consider a simple path (a path that does not have any cycles) p = ¢i,, iy -+ Gix
between g;, and g;, in an unrolled PBN; if we label each edge E 0 Gin, O the path with
i, (9i,,, ), we can define the influence of g;, on g;, corresponding to path p, denoted Ii(f) (9i,),
as: I (g1) = I11= Lia(9ir.)-

Note that there can be more than one simple path from one gene to another in an unrolled

PBN. Let P be the set of all simple paths from g; to g; in an unrolled PBN. We define all-path

influence of g; on g;, denoted If*)(gj), as:

(4.11)
1 ifi =j

{ S oep IP(gy) i

Figure 4.3(b) shows I;(g;) values as labels on the edges; I2(g3) = 0.5, I3(gs) = 0.25, etc.
From those, we can easily compute Ii(*)(gj) values. To compute Il(*)(gg) for instance, we
consider the two simple paths from g; to g3 in the unrolled PBN, which are p1 = g1 — g2 — g3
and ps = g1 — g2 — g4 — g3. For the first path prl)(gg) =0.2%0.5 = 0.1, and for the second
path, T (g3) = 0.2 % 0.4 % 0.1 = 0.008. So, I.")(g3) = I\"(g3) + I (g5) = 0.1080. The
other 1(*)(g3) values can be computed similarly based on Equation 4.11 and they are given

in Figure 4.3(c).

Definition 2 (Edge Influence). Given three genes g;,g; and g, Edge Influence (EI) of the
edge between g; and g; on gy is defined as: EI; ;(gr) = Ii(gj)IJ(*)(gk).

E1T can also be computed on a set of genes, denoted E1S: EIS; ;(S) = 3" .5 El; j(gr), which

is simply the sum of influences of an edge on all genes in the given set.
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Considering nodes with same label as different nodes, the unrolled PBN corresponds to a
tree. By considering them as the same node and aggregating them, we find a graph; then, path
search in a tree turns into path search in a graph. Computing all paths between two nodes in
a graph is a hard problem. It is NP-complete as it includes the solution of the longest path
problem which is known to be NP-complete [45]. Also, the size of the unrolled PBN tree can
grow exponentially large depending on the structure of PBN and the number of genes. So, it
is better to compute approximate values for £I. One possible method is to prune the unrolled
PBN tree. Also notice that the unrolled PBN tree for a given gene only includes relevant genes
and edges. All nodes in a tree have an influence on the given gene, so the parts of the PBN
that are not related to the solution of the control problem are not expanded and the ET values

for those edges are not computed.

Approximate computation of EJ

Limiting the size of the unrolled PBN up to a certain level can give good results. But a better
method is to prune the unrolled PBN if Ii(*)(gj) is less than a certain threshold T'. As I;(g;)
is actually a probability value, Ii(p ) (g;) for any 4,5 and p monotonically decreases with each
new level in the unrolled PBN. So, when we consider that the edge influence values below T
are not significant then we may stop expanding a node i further down in case EI; j(gx) < T,
where g is the root.

After this approximation, we are ready to construct an approximate algorithm for com-
puting E1 values for a given gene g; which will be the root of the unrolled PBN tree. The
complete process is given in Algorithm 5. It is a recursive algorithm that actually does a lim-
ited depth first traversal of the unrolled PBN tree (in the reverse direction of the arcs shown

in Figure 4.3(b)), and does not expand node 7 for sufficiently small values of Ii(*)(gj).

4.2.2 Edge elimination for approximate solutions of FMDPs

According to Definition 2, the ET value is a measure of how a certain gene is effected by the
changes in values of other genes. In FMDP, the solution includes genes that have some effect
on the reward genes. So, genes that have no effect on the reward genes at any time in the
future can be eliminated from FMDP. However, based on the study described in this section,
we realized that instead of eliminating a gene completely (as done in Section 4.1), removing
some of the unimportant edges from a DBN in FMDP may produce better results.

Given the set of reward genes I" of FMDP, ETS, ;(I') denotes how each relevant edge in the
FMDP influences the set of reward genes. This influence can be very low such that some of
these edges can be neglected from the model. This means that edges with low EIS values can
be eliminated from consideration. So, given a threshold ¢, the edges with the smallest EIS

values whose total E1S do not exceed ¢ are removed. As a final step, reduceFMDP performs
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Algorithm 5 computeE1(g,p, I,gp) (9¢), T, g+, pbn, ET)

Input: gene g, path p = g¢,pi,, .., ps;, path influence 15") (gt), target gene g¢, PBN pbn, initial values
of E1
Output: Vg;, g; reachable from g, Elg, 4.)(gt)
if g € p then
Elyp,, (90) = Elg,, (90) + Lo(ps,) * 1Y) (90)
else
if Elgp,;, (9¢) > T then
for every py € parents(g) in pbn do
EI = computeEI(pg, {p, g}, Iy(pi,) * I (9:), T, g, pbn, EI)
end for
end if
end if

return EJ

a maximum-likelihood learning of the parameters of the DBN using data sampled from the

original model.

Algorithm 6 reduceFMDP(EIS(T),d, M, D)
Input: EIS(I),0,FMDP M,D

Output: FMDP M
M=M

Let S be the sorted set of edges E; ; where EIS; ;(T') # 0
Take the first k& edges, Sk, from S such that 3, EIS;;(T) <4
for all Ei,j € S do

jESK

Remove edge E; ; from DBNs for all actions in M
Learn maximum likelihood parameters of new DBN from data D
end for

return M

The process in Algorithm 6 reduces a given FMDP M, to another possibly sparser FMDP
M by applying the procedure described above. Let n* and 7* denote the optimal policies
for M and M, respectively; #* will depend on fewer number of variables than 7* because of
the absent edges. This means that value trees or policy trees may require less computational

resources to store and modify.
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4.2.3 Estimating ¢

One of the drawbacks of reduceFMDP is that it assumes ¢ as given by an expert. Moreover, it
requires that we sample from the model and use it for maximum likelihood learning of model
parameters of the reduced model. In this section we propose a method to estimate a reasonable
value for 9, denoted J.s¢, and use d.s¢ to reduce an FMDP without sampling from it.

To estimate § we assume that the objective for the FMDP is defined as a propositional
logic clause in terms of some of the genes in the model. Given the set of genes V and a set
T" of reward genes where I' C V, let us denote the objective function as the logical formula,
®(T). So, we say that a gene activity profile s satisfies our objective if ®(I") = 1 for the values
of " in s. Usually, there can be more than one ways of achieving an objective. For instance if
®({A,B}) = AV B for genes A and B then we can try to achieve either A =1or B =1 or
both.

Disjunctive normal form (DNF) is a standardization of logical formulae. It represents the
formula as a disjunctions of conjunctions of literals. Every logical formula can be converted

into DNF. This means that we can represent any ®(T") as;
@(F) =C1VvVCyVC3V..Ck (412)

where each C; is a conjunction of literals that we will call the components of the objective.
Hereafter, we will denote the DNF of ®(I") as & ('), where N stands for normalization. Each
of these C;’s actually correspond to different ways of achieving our objective. Finally, let us
denote the set of genes that exist in the formula C; as v'.

Assume we are given a control problem composed of the PBN model P of a GRN, action
set A, and the objective ®(T"). By using the actions in A we will try to achieve the objective,
ON(I') = C; V Oy V ...Cx. Also remember that each action corresponds to the intervention
of one of the genes in the model. We say that C; is achievable if a given action a for gene g
may satisfy C;. In other words, if there is a path between g and all genes in +* in the unrolled
P then we have a chance to achieve C;. Otherwise, if there is at least one gene in ~* that is
not reachable from g in the unrolled P then action « is not useful to satisfy C;. This defines
a mapping that we call the achievable set of objectives, C, from A to a subset of C;’s, where
C; € Ciff C; is achievable by some action a € A. We will denote the projection of the objective
function to achievable set of objectives as ®(T'), where & (T') = \/ . - Ci-

Since there can be more than one ways of satisfying an objective, simplifying the problem
by decomposing the objective into components may help an FMDP solver to find a reasonable
approximate solution easily. For this, we say that two components C; and C; are separated if
Vg; € 7' and Vg, € 47, there is no path between g; and g; in the GRN model represented as an
undirected graph obtained by converting each edge in the original model (P) to an undirected

edge. If all C; € C are separated from each other we say that C' is maximally separated.
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Based on the mentioned ideas, we constructed an algorithm to determine a reasonable value
for §. The algorithm CT (for choose threshold) is given in Algorithm 7. CT tries to find the
minimum ¢ that achieves maximum separation of components (decompose the objective) while

preserving achievable objectives.

Algorithm 7 CT(EIS(T), M, ®(T"))
Input: EIS(T'),FMDP M, Objective ®(I")
Output: dest

Compute <I>N(F) =C1VvVCyV..Ck

C = achievable set of objectives of M

Compute dmq: — maximum § that preserves C'
Compute dse¢p = minimum § that maximally separates C
Oest = Min(dsep, Omaz)

return est

Computing dsep and 4, in CT should be straight-forward; sort EIS(T') values and elim-
inate edges in ascending order starting from the minimum, until the constraints are violated.
dmaz 1S computed by eliminating edges as long as achievable set of objectives is preserved and
0sep is computed until C' is maximally separated. To be able to make as few modifications as
possible to the original model (so that the solution is a good approximate policy), in the final
step, minimum of ,¢p and dyqae is chosen as deqt.

Given .4 by CT, the reduction procedure is given in Algorithm 8. Note that Algo-
rithm 8 does not require sampling from the original model and also all edges less than §.,; are
eliminated; different from reduceFMDP?. The last step of reduceFMDP2 updates the reward
function R in M. Defining a reward function for a given objective is a relatively subjective
procedure. To the best of our knowledge, there is no well-defined procedure to map a given
objective to a reward function and finding such a mapping is out of the scope of this thesis.
In this thesis, we assume the objective ®(T") is given, and it is mapped to a reward function R
that represents the objective and the cost of actions as “good” as possible. So, if we represent
this mapping as F' where F : ®(T') — R, then by using the same procedure F we can also
map @g(F) to a new reward function; this corresponds to the last step of reduce FMDP2. For
instance, given ®({A, B}) = AV B, a possible reward function can be constructed by assigning
areward of 10 to the states where ®({ A4, B}) is satisfied and 0 to all other states. So the reward
function returns 0 for A = 0, B = 0 and 10 otherwise. Now assume ®Y ({4, B}) = A which

2This difference is not important as § in reduceFMDP can be mapped to the usage in reduceFMDP2 by

choosing ¢ as the maximum EIS of the eliminated edges
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means that the achievable set of objectives is {A}. The reward function for ®~ constructed

by the same procedure above assigns 0 to states where A = 0 and 10 for A = 1.

Algorithm 8 reduce FMDP2(EIS(T), 0¢st, M)
Input: EIS(T"),0est by CT,FMDP M

Output: FMDP M
M=M
for all £;; € S do
if E1S;;(T) < des then

Remove edge F; ; from DBNs for all actions in M
Marginalize out g; from the CPTs of g; for all actions
end if
end for
Update reward function R of M based on C

return M

4.3 Related Work

Generally, control in GRNs is studied on Markovian models [79, 17, 18, 64, 66]. In [79], PBNs
are investigated in terms of perturbations and interventions. Random gene perturbations
in PBNs are introduced. The transition probabilities in the existence of perturbations are
derived. Then intervention that is forcibly changing value of a gene is introduced to PBNs.
According to a goal (for example reaching the state 111) they try to select the best gene to
intervene in terms of the influence concept that is introduced in [78] and first passage times
in Markov Chain theory. Finally they investigate the sensitivity of stationary distributions to
gene perturbations.

One of the first studies of formulating the problem of control in GRNs in an MDP framework
is by Datta et al. [17]. PBNs are used as the model and an MDP is formulated and solved
by dynamic programming in a general setting. A real world example is given at the end
based on gene expression data that constitute a 10-gene network whose objective is to down-
regulate one of the genes. Although the derivations are given for a PBN, the network used in
the example is ternary (so is not a PBN) and derived using the methods in [48]. But since
transition probabilities are important for dynamic programming, ternary valued variables make
no difference other than increasing the search space from 2" to 3".

In an extension of the study described above, the authors give the results of dynamic
programming solution of the case in which the state of the PBN is not known, but a “clue” about

it can be observed in the form of a number of measurable outputs [18]. Results are given on a
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7-gene network in which the control objective is to ensure that a gene (namely WNT5A) is not
up-regulated. Directly controlling the gene (by an inhibitory protein) gives better results than
controlling through another gene that influences WNT5A. Expected costs are decreased and
the probability of being in the desired state is increased with control compared to uncontrolled
case.

The work described in [64] concentrates on finding an optimal policy using dynamic pro-
gramming for a PBN that is constructed using the method of [104].They first derive transition
probabilities T'(s, s’) and T'(s, a, s’) and use this to solve a finite-horizon control problem which
minimizes a cost function. The action is set as toggling a gene’s value. Selecting the control
gene is performed using the influence metric of [78]. They finally give the results of an appli-
cation to melanoma data where the objective is again to have WNT5A gene not up-regulated
and show that the cost is decreased with control.

The infinite-horizon of the problem whose finite-horizon solution was given in [64], is studied
in [66]. The authors use PBNs derived by the method of [67] and transition probabilities for
PBNs derived in [64]. They give the solutions for both discounted costs and average cost per
stage. Results are given on a melanoma application which includes a 7-gene network that has
128 states. Value iteration and policy iteration results are given according to total cost with
control and without control, and according to time spent in desirable and undesirable states
during the application of the current policy.

The problem is also investigated by dividing the finite-horizon into episodes of control and
monitoring that is generally done in treatment of diseases [1]. Again the model is assumed to
be given, and dynamic programming solutions to four different types of problems are studied,
which are finite-control, finite-control finite-monitoring, finite control infinite-monitoring and
infinite control. For a GRN, three kinds of models can be available; M as GRN model, L as
state cost model, and K as state-action cost model. All or some of these models can be available
to us in solving problems of optimal action sequences based on our biological knowledge of the
domain. In this study, solutions depending on the availability of these models and ways of
combination of these models are also discussed including a multi-objective solution.

As opposed to what has been suggested in [17], state costs and state-action costs are in
fact non-additive because they denote different kinds of values. Based on this fact, a multi-
objective solution is suggested in [2]. The solution is general for any number of objectives, but
specifically the solution for state and state-action costs is given.

An approximate solution by reinforcement learning (Q-learning) based on the assumption
of a model simulator is given in [25]. The results are promising for scalability but the authors
report the results only for a 10-gene network to be able to compare to the optimal solutions.
As all biological data incurs some type of noise, the models derived from such data may be

erroneous. Pal et al. [65] investigate the effect of the application of a control policy on a gene
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network whose transition probabilities are different from the one for which the policy is found.
Finally, in real life some constraints may exist in the application for a treatment to a patient.
For instance, a given action may be applied only up to a certain number of times. Deriving a

control policy in the existence of such constraints has been investigated by Faryabi et. al [26].

4.4 The Gap Covered by the Proposed Methods

As already mentioned earlier in this chapter, the main issue in control problems is the
curse of dimensionality. In real problems, such as the GRN control domain, it is hard to reach
a solution by applying the available techniques, especially with MDP representations. All
the proposed methods for finding an intervention strategy in GRN control is based on MDP
representations that are hardly scalable. Because of this, all the applications in the field are
restricted to small networks that have no more than 7 or 8 genes at best. Although these
methods are promising and important for handling the control problem in general, algorithms
that can work for larger networks are needed as a GRN can include genes in the order of
thousands.

My expectation is that the reader has absorbed the different novel aspects of the two types
of algorithms proposed in this chapter to fill this gap. The first algorithm concentrates on
MDP representations, in which a feature (or gene) reduction method is devised for reducing
the given model to another, where the latter have a significantly smaller state space than the
former. This type of reduction provides near-optimal solutions to the otherwise unsolvable
GRN control problems. This reduction is also different from the existing MDP reduction (or
minimization) techniques already described in the literature (see [30] for instance) in the sense
that it is applied before modeling to focus on the components of the network that is essential
for control.

The second proposed method works well for FMDP representations. There are two contri-
butions here; first, it is the first application of FMDP representations to GRN control domain,
second, a new reduction algorithm for a given FMDP representation is proposed for near-
optimal solutions to control problems. This algorithm is very promising to reach the objective
of solving genome-wide control problems.

Although FMDP formalism is more appropriate for domains that are easily factorized like
GRN control, MDP representations are still investigated due to their ease of implementation
and interpretation. This makes both of the methods proposed in this chapter applicable for
the studies in this field. This becomes more convincing by the experimental results reported

in the next chapter.
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CHAPTER 5

EXPERIMENTAL RESULTS

This chapter includes the results of the experiments performed to demonstrate the applicability
of the proposed algorithms. Both synthetic and real data sets are used in the experiments.
Naturally following from the presentation of the algorithms, the results are also given in two
parts; the first part of the results covers the modeling and the second part of the results is
dedicated to the control of GRNs. Each section includes the description of the data sets, results

and discussion.

5.1 Implementation and Execution Environments

The algorithms are mostly implemented in Matlab! (unless otherwise stated). No specific
toolbox dominates the implementation but some functions from the statistics toolbox are used.
Other than that, for tasks like graph construction/drawing and data pre-processing, some
features of R? and Python?® are used.

Most of the experiments are performed on a computer with Intel Core2 2.4 GHz CPU and
3GB of RAM running Linux. For some of the time consuming empirical experiments, an HPC
cluster* is also used. But none of the algorithms here require more than an ordinary desktop

computer.

5.2 Constraint-based Modeling of Gene Regulatory Net-
works

5.2.1 Data sets

In addition to the data constructed from synthetic networks, there are four real data sets used

for the experiments in this section. These are widely investigated data sets in the litetature.

I'The Mathworks - MATLAB and Simulink for Technical Computing, http://www.mathworks.com, accessed

1-June-2009
2The R Project for Statistical Computing, http://www.r-project.org, accessed 1-June-2009
3Python Programming Language, http://www.python.org, accessed 1-June-2009
4High Performance Computing, http://hpc.ceng.metu.edu.tr, accessed 1-June-2009
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The list of these data sets are as follows:

1. The expression data of Spellman et. al. [81]: It is time-series gene expression data

composed of 77 time steps for different phases of the cell cycle and includes 6178 genes.

2. The TF binding location data of Lee et al. [53]: It has binding data for 106 TFs and 6270

genes.

3. The TF binding location data produced by Harbison et al. [34]: It is composed of binding
data for 203 TFs and 6229 genes.

4. Protein concentration data from cytometry experiments by Sachs et al. [73] for Raf

signalling pathway. It is static data composed of 500 samples for each of the 11 genes.

5.2.2 The PCPr algorithm

To evaluate the PCPr algorithm as described in Chapter 3, we performed two different types
of experiments. The experiments differ in the source of data used; synthetic networks or real
biological data. In the experiments with synthetic networks, a sparse synthetic network which
resembles biological networks is constructed. Then we sample from this network and check how
well we build the network from the data. We repeated the experiment for synthetic networks
with different number of nodes and different sample sizes. Prior information matrix is built
from given network by adding some amount of error (noise).

The second type of experiment is the one that involves real biological data. This time,
prior knowledge is constructed from one type of data (TF binding data) and the other type of
data (microarray data) is used in statistical tests by adapting the significance level according
to prior knowledge. Results are verified by constructing a gold standard network from the
literature whenever possible. Methods based on Gene Ontology annotations are used when a
gold standard network is not available or is hard to construct.

There are three evaluation measures that we use in the experiments; precision, recall and
structural hamming distance (SHD). Precision and recall are defined in terms of the number

of true positive (TP), false positive (FP) and false negative (FN) edges. Precision is given as;

TP

TPIFP) High precision along with high recall should be the objective

and recall is ﬁ.
for an algorithm. SHD is a measure to find a distance between two directed graphs where each
operation of edge removal, edge orientation and edge addition is defined to be of distance 1.
SHD is the total number of operations applied on one of the graphs to obtain the second graph.
We will use SHD to evaluate directed graphs, precision and recall for undirected graphs. Since
the skeletons of the graphs (sometimes referred as undirected dependency graphs [20]) are

considered important in the bioinformatics community, we report both undirected and directed

graph evaluations.
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Number of errors

Synthetic networks:

To construct synthetic networks, we used the method described in [43], which is publicly
available in the R-package pcalg. The algorithm in pealg constructs a DAG whose sparseness can
be controlled by a parameter. The synthetic graphs used in these experiments are constructed

based on the following parameters:
e Number of nodes(p): p € {20,40, 60,80, 100}.
e Expected number of connections for each gene(E[N]): 3

A total of 10 graphs are constructed for each p with E[N] set as specified above. As GRNs are
thought to be sparse, we chose E(N) as 3. From each of these 10 graphs, 5 datasets with size
n are generated, where n € {100, 1000, 5000}. The reported results are the averages of these.

The prior information matrix B for the synthetic networks is constructed from the DAG
G constructed by the pcalg. If G;; = 1 (the edge exists in G) then B;; is set to a random real
number in the range [0.5,1]. When G;; = 0, we have B;; € [0,0.5]. After that, a noise term
€;; is added, where ¢;; is a random variable distributed as N(0,0). In the given results, o is
set to 0.1, which means that the error is approximately in the range [—0.25,0.25] with 0.99
probability.

Choosing the value of 5 depends on the noise level ¢;; of prior knowledge. Given a low
noise level (a low standard deviation o of €;; with mean 0), a high value of § can increase the
quality of the output, but a very high value can also bias the output in such a way that it only

represents the prior knowledge. So, the value of § must be chosen carefully.
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Figure 5.1: Change in number of errors with § for a) p =40 b) p = 60
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Figure 5.1 shows the change in the number of errors with the value of  for different values
of 0. The curves plotted in Figure 5.1 are constructed as follows; given a DAG G with p
nodes and E[N] = 3, we constructed matrix B for a given value of o and applied the PCPr
algorithm to a dataset of size 500. We performed 50 such runs, producing a new B each time;
the number of errors are averaged over these 50 runs. This procedure is repeated for a set of o
values. Figure 5.1 shows the results of this procedure for p = 40 and p = 60. If we don’t know
the value of o (which is generally the case), choosing a high value of § is risky. For instance, if
[ is chosen as 35 for p = 60, the number of errors approximately doubles for ¢ = 0.35 compared
to the case when (3 is 0 (see Figure 5.1). So, choosing a value between 15 and 25 decreases the
number of errors in case of small o (low error) and does not increase the number of errors too
much if ¢ is large. In the experiments conducted using the synthetic datasets, since we don’t

assume any prior knowledge of o, we experimentally chose the value of § as 20.

n=100 n=1000 n =5000

Number of errors

0 0 0
20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100
L
Number of variables I FcPr

Figure 5.2: Number of errors in finding the skeleton

Figure 5.2 depicts the total number of errors in the experiments with the synthetic data.
The error is measured as the sum of false positive and false negative edges, the x-axis shows the
number of variables and «ay is set to 0.05. It is obvious from Figure 5.2 that prior knowledge
always changes the result in a positive way, though effects differ. Here, it is important to
emphasize one more time that we could do better by choosing a larger value for (§ if we
assumed a knowledge of o as 0.1.

Gene Regulatory Networks:

In this experiment, we used TF binding data in addition to the microarray data in order to
be able to cope with the problem of small samples in microarray data. Each TF binding data

cell has a p-value which indicates the confidence of the binding of a certain TF to a certain
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gene. The smaller the p-value, the more confident we are about that binding. In this study,
microarray data is the data we used for conditional independence tests; from the TF binding
data we constructed the prior information matrix B to set the significance level. In other
words, binding data will constitute our prior information on the existence of edges between
genes and TFs.

In the experiments, we used the gene expression data of Spellman et al. [81] and the TF
binding data of Lee et al. [53]. Each time sample in the expression data of Spellman et al. is
used as a feature for a gene; it is used in deriving the conditional independence relationships
along with binding data as the prior knowledge in the PC algorithm. Evaluating the results
is performed as searching the literature for evidence of the derived interactions, so we had
to choose a subset of genes to demonstrate the performance of the method. The gene set
chosen to model is the 25-gene set that was previously used in [6]; this choice will also allow
for comparison of the results. The expression data corresponding to this set is extracted
from Spellman et al. and missing values are imputed in microarray data using the k-nearest
neighbors algorithm (KNNImpute [88]) with & = 10. No further processing is performed
for expression data. But, the binding data has to be processed to derive probability values
corresponding to the entries in B. Next, we summarize this process by using the notation
described in [6].

As mentioned before, the TF binding location data is in the form of p-values, which can
be interpreted as indicators of edges being present in the graph. To convert a p-value to a
probability of an edge being present, we follow the method described in [6]. The p-value P;;
of edge E;; is assumed previously to be exponentially distributed given that £;; exists in the
model structure G [76], and uniformly distributed given that E;; does not exist (follows from
the definition of p-value). This means that P(P; = p|E; € G) = Ae /(1 — e™?), where )\ is
a parameter of exponential distribution, and P(P; = p|E; ¢ G) = 1. After this step, applying
Bayes rule and integrating over predefined minimum and maximum values of X\ lead to the

following;:
Bij = P(Eij € G|P;j = p) =

1 A )\ef)‘pﬂij d)\
Ar=Ar JAL Ae P9+ (1—e=2)(1-945)

In Eq (5.1), G is the structure of the model, P;; is the p-value of E;;, which indicates the

(5.1)

confidence of the binding of TF i to gene j, A, and Ay are the chosen lowest and highest
values of A, respectively, and ¥;; = P(E;; € G). In the computations, ¥;; = 0.5, A\r, = 0.1 and
Ag = 10,000 were used as suggested in [6]. The integral is then solved numerically for each
fixed value of p;; [6].

In the chosen set of 25 genes, 10 exist as TFs in the binding data of Lee et al. So, the p-
values are available only for edges connecting these 10 genes to the other genes in the set. Thus,

only for these edges B;; values can be computed from the binding data. After we compute each
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B;; for these edges, the other entries in B are filled with 0.5, indicating no prior knowledge for
those edges. Each entry in B then, indicates the probability of a TF binding to a certain gene.

The connections of genes in a GRN may be affected by the current phase of the cell cycle.
To be able to explain these dependencies, we added a phase variable in the same way as
described in [6]. The phase variable is assumed to be connected to all the other genes and
these connections are assumed to be permanent, i.e., they are not tested like the other edges
in conditional independence tests in the algorithm.

To be able to evaluate the results, we built what is called a “gold standard” network, which
includes the edges that are experimentally verified in the literature. In order to construct
the gold standard network, we used the pathwaystudio tool (available at: “Ariadne Genomics:
Pathway Studio, http://www.ariadnegenomics.com/products/pathway-studio, accessed 1-
June-2009”). This tool takes a set of genes and builds all the direct interactions among the
given genes based on the ResNet database. To the network derived in this way, we also added
the interactions extracted from the BioGrid database [84]. We used this network as our “gold
standard” network. The results are given in Table 5.1, where TP, FP and FN, respectively,

stand for true positives, false positives and false negatives.

Table 5.1: Quality of the derived networks for 25-gene experiment

Algorithm TP FP+FN
PC 5 19 +79 =98
PCPr (8=20) | 16 | 11 +68 =179
PCPr (8=30) | 20 | 11 +64 =75
PCPr (3=40) | 37 | 14 + 47 = 61
DBNpBa 44 | 34 +40 =74

Instead of choosing a fixed 3, this time we give the results corresponding to 3 different values
of 3, namely 20, 30 and 40; these values have been selected based on some initial tests where
we realized that the number of false positives increases after 40. The network derived by PCPr
with § = 40 is also given in Figure 5.3. It is obvious from the results reported in Table 5.1
that PCPr always outputs a better network than PC. This shows the effectiveness of our
procedure in combining multiple types of biological data in this study, i.e., microarray data
and TF binding data. Table 5.1 also includes the results of Bernard et al. [6] for comparison; We
name their algorithm as DBNpg4. Although they derive a different type of network, namely a
dynamic bayesian network, we can compare the results by converting the graph in their results

to an undirected graph. Using the latter undirected graph we compared their output to our
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“gold standard” network®. Precision value of PCPr for 3 = 40 is 0.72 and the precision for the
output of DBNp4 is 0.56. This shows that the existence of each edge in the output of PCPr
is more “reliable”. Recall values for the outputs are very close, 0.44 and 0.52 for PCPr and
DBNg4, respectively. As a result, PCPr outputs a network with a much better precision and
comparable recall values compared to DBNpg4.

Our results also verify the results of Bernard et al. in the sense that the binding data of
Lee et al. is more informative in deriving the GRN than the microarray data of Spellman et

al., at least for the chosen set of genes.

ACE2

@ SWIs CLN1

CDC6 CDC21

Figure 5.3: Output of PCPr with § = 40 and «g = 0.05. Red edges are the ones that have been

verified in the literature, green ones are the novel relationships proposed by the algorithm.

5.2.3 PCPDPr algorithm

The experimental results for the PCPDPr algorithm as described in Section 3.1 are reported

and discussed in this section. We follow the same evaluation strategy applied to the PCPr

5Note that the numbers reported in Table 5.1 are different from the ones reported in [6]; we mapped them
into the scale used by our model because of the different evaluation criteria and different “gold standard”

networks.
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algorithm; we also compare PCPr to PCPDPr.
Synthetic Networks:

Note that the PCPDPr algorithm is proposed for graphs that have some densely connected
nodes; we call such graphs partially-dense (PD) graphs. So synthetic PD graphs have to be
constructed for testing PCPDPr.

To construct synthetic networks that are PD, we used a modified version of the algorithm
in pealg. We modified the algorithm to be able to produce networks that have dense nodes,
i.e., whose expected number of neighbors is larger from the other nodes. We constructed PD
graphs this way and used them for testing the proposed algorithms.

The synthetic graphs used in the experiments are constructed based on the following pa-

rameters:
e Number of nodes (p): p € {100, 300,500}.

e Number of dense nodes (dn) : To the best of our knowledge, determination of the number
of dense nodes for a given genome has not been studied before. Number of genes in a
functional category in a genome scales by following a power-law [90]. This power-law
relationship is given as n. = k* g7, where n. is the number of genes in category ¢, k and
~ are the parameters of the relationship. The key components in the GRN are usually
the transcription factors, each of which regulates several genes and other TFs. As the
TFs can regulate other components (genes), we set the TFs to be the dense nodes in the
GRN. In order to find the number of TFs in the GRN, we found the number of genes that
are related to “Transcriptional regulation” category in both eukaryotes and bacteria [90].
The average is taken because not all the TFs have the same degree of density. Also, since
there are common TFs between eukaryotes and bacteria which are essential for the basic
cellular processes like DNA synthesis and signal transduction, it is more reasonable to
include both eukaryotes and bacteria. So, we set the number of dense nodes by using the
above equation where x = 0.002 and v = 1.5. v is chosen as close to the mean parameter
value of “Transcriptional regulation” category for eukaryotes and bacteria. x = 0.002 is
derived again by using the values in [90]. So for instance the number of dense nodes is

22 for a network with 500 nodes.

e Expected number of edges for each node (E[N]): 3 for sparse nodes and 30 for dense
nodes. 30 is chosen by calculating the average number of connections for some of the

dense genes in different organisms (see Table 5.2).

A total of 10 graphs are constructed for each p with E[N] and dn set as specified above. From
each of these 10 graphs, 5 datasets with sample size n are generated, where n € {100, 250, 500}.
The reported results are the average of these. Notice that the chosen values of n are typical

sample sizes for a microarray experiment.
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The prior information matrix is constructed in the same way as in the experiments for
PCPr described in the previous section. (3 is set as 20 and «y is again set to 0.05.
One important difference from the previous experiments is that this time, not only the

skeleton but the PDAG derived from the second part of the PC algorithm is evaluated as well.
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Figure 5.4: Evaluation results for synthetic experiments. 1: PC, 2: PCPr, 3: PCPDPr. Rows

correspond to a fixed number of nodes (p) and columns correspond to a fixed sample size (n).

Figure 5.4 gives the evaluation results (note that SHD values are normalized to [0, 1]). It
can be easily seen in Figure 5.4 that prior knowledge always improves the result, though effects
differ. Also, the PCPDPr algorithm is always better than PCPr. Notice that as the number
of dense nodes follows a power-law, effect is more apparent for larger sized networks. Rate of
improvement in precision and recall for p = 100 is larger than rate of improvement in SHD. But
for p = 500 for instance, SHD also improves more rapidly. This shows that the improvement
in skeleton is reflected to the edge orientation part as well. So PCPDPr can discover causal
interactions much better than PC and PCPr. Also another important aspect is the consistency
of PCPDPr with increasing sample size. It outputs a better network consistently when the
sample size increases (see the columns in Figure 5.4).

Figure 5.5 gives the execution time in seconds for the algorithms, where it is obvious that

PCPDPr outperforms others for all settings, though it is difficult to reach a conclusion for
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Figure 5.5: Execution time (seconds) for the algorithms. 1: PC, 2: PCPr, 3: PCPDPr.

PCPr and PC. Since the mistakes done by conditional independence tests can both increase
or decrease the computational time required by the algorithms, the execution time depends
greatly on the used network and data. But the gain by PCPDPr is clear; it always requires less
time to complete and sometimes the difference is huge. For instance, for p = 500 and n = 500,

PCPDPr works 41 times faster than PC.

Table 5.2: Some TFs and number of bindings for a) E. Coli, b) B. Subtilis, ¢) S. Cerevisiae

Gene Bindings Gene | Bindings Gene | Bindings
arcA 20 AbrB | 33 Migl 27
crp 72 GerE 20 Msnd | 32
purR 16 codY 15 Skn7 21
fnr 22 CcpA | 44 Stel2 | 72
rpoE_rseABC | 24 TnrA | 26 Tecl 44
ycfC_purB 26 Fur 23 Ume6 | 38
himA 21 PhoP | 19 GIn3 29

(a) (b) ()
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Gene Regulatory Networks:

GRNs are generally thought to be sparse. For example, the average number of connections
in Escherichia Coli transcriptional network is given as 5 in [77]. But, there are also some TFs
that are found to bind on a large number of genes (either as an activator or a repressor). Some of
the TFs that are known to bind to more than 15 genes (by using TF binding data) in Escherichia
coli, Bacillus subtilis and Saccharomyces cerevisiae are given in Table 5.2 [59, 60, 77]. (The
data used for Table 5.3(a) and Table 5.3(c) are available at “Uri Alon’s Molecular Cell Biology
Lab, http://www.weizmann.ac.il/mcb/UriAlon (accessed 1-June-2009)”, and the data used
for Table 5.3(b) is available at “DBTBS, http://dbtbs.hgc. jp (accessed 1-June-2009)”.

Table 5.2 demonstrates and emphasizes that our proposed approach can be applied to
GRNs as well. In this section, the results of applying the proposed algorithms to real gene
expression data are presented. We used the gene expression data of Spellman et al. [81] and
the TF binding data of Lee et al. [53].

The same data set used to test PCPr in 5.2.2 is also used to test PCPDPr. The prior
information matrix, B, is again derived from binding data by the method of Bernard et al. [6].

Dense nodes are found in the same way described in Section 3.1.2. If a gene is estimated
to have more than 5 connections with probability greater than 0.8 in B, then that node is
considered as dense. Based on the data we used, genes that have been found as dense from B
are ACE2, MCM1, NDD1, SWI4, SWI5, SWI6 and CLB2. These dense genes are important,
for transition between phases of the cell cycle. Both SWI5 and ACE2 are TFs that activate
the transcription of genes expressed early in G1 phase in order to promote the transition from
M to G1. The three genes SWI4, SWI6, and MBP1 are DNA binding components of MBF and
SBF, which regulate the late G1 specific transcription, including cyclins and DNA synthesis
genes. The two genes NDD1 and CLB2 play a role in G2/M transition. At this stage of the
cell division, the cell undergoes a huge change in the transcription of genes in order to proceed
to the following phase.

The same “gold standard” network mentioned in Section 5.2.2 is used to evaluate the al-
gorithms. The results are given in Table 5.3. The network derived by PCPDPr with g = 40
is also given in Figure 5.6. It is clear from the results reported in Table 5.3 that PCPDPr
outputs a better network in a shorter time. The results for DBNg4 and PCPr are included
in this table again for the ease of comparison.

As reported in Table 5.3, PCPDPr and PCPr always have higher precisions than both PC
and DBNg4. And PCPDPr with 8 = 40 has a much better precision than DBNg4 with a
comparable recall. Also, we should emphasize here that since we could not obtain the algorithm
but only the results for DBNp 4, we can not report the time for that algorithm. But, the time
elapsed for PCPr and PCPDPr for 8 = 40 shows that PCPDPr outputs a better network in
much shorter time than PCPr.
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Table 5.3: Quality of the derived networks for 25-gene experiment

Algorithm TP FP+FN Time | Precision | Recall
PC 5 199 +79 =98 | 0.37 0.20 0.05
PCPr (8 = 20) 16 | 11 +68 =79 | 0.48 0.59 0.19
PCPr (8 = 30) 20 | 11 +64 =75 0.67 0.64 0.23
PCPr (8 = 40) 37 14 + 47 = 61 4.17 0.72 0.44
PCPDPr (5=20) | 18 | 11 +65 =76 | 0.49 0.62 0.21
PCPDPr (5=30) | 25 | 11 +59=70 | 0.46 0.69 0.29
PCPDPr (5 =40) | 38 | 14 +46 =60 | 0.69 0.73 0.45
DBNpa 44 (34 +40="74 - 0.56 0.52

Again, by considering the result when 8 = 40, we can see that PCPDPr is missing impor-
tant interactions like: SWI6-STB1, SWI6-CLB2, SWI6-MBP1, SWI5-CLB2, ACE2-CLN2, and
ACE2-CDC28. Most of these interactions are also missing in the study of Bernard et al. [6]. It
is also worth mentioning here that all these are not actually protein-protein interactions [84],

where protein-protein interactions should not be expected to be extracted by using the types

of data used here.

True pos.
False pos.

Figure 5.6: Output of PCPDPr with 5 =40 and ay = 0.05

62




In the resulted network shown in Figure 5.6, we observe that we have 14 FP interactions; in
other words, our algorithm predicted 14 interactions which are not discovered yet; 11 of those
interactions are gene-gene interactions and only 3 are between TFs and genes; this indicates
that using TF binding data is useful to decrease FPs. Our algorithm predicted the false positive
relationship between cdc21 and CLB5. The reason for this FP type of relationship is that both
cdc21 and CLB5 are regulated by the same TF, namely MBP1; this indicates that both cdc21
and CLB5 are correlated. Similarly, the edge between CLB2 and CLN2 resulted because both
are regulated by two different TFs which are regulated by NDD1. We also predicted a false
positive relationship between CLN1-CTS1 and CLN1-EGT2. A possible interpretation for
this could be that both CTS1 and EGT2 are regulated indirectly by NDD1 through SWI5;
CLN1 is also regulated by NDD1. Therefore, our algorithm predicted interactions between
CLN1 and both CTS1 and EGT2. These two interactions were also predicted by Bernard et
al.. Two more interactions, namely FKH1-cdc20 and NDD1-cdc20, are worth considering for
further investigation. Both FKH1 and NDD1 are TFs required for G2/M specific transcription;
also c¢dc20 is important in metaphase/anaphase transition in the M-phase of the cell cycle.
This result should be interesting because FKH1 and NDD1 may control the expression of
cdc20 through other genes, which we did not consider in this experiment. PCPDPr has an
additional advantage that supports the need for its development; PCPDPr discovered all the
edges discovered by PCPr, and in addition it discovered a new TP edge, namely CDC6-CLB2,
which is the only difference between the outputs of the two algorithms.

Comparing our TP interactions with those reported by Bernard et al., it can be seen
that there are 30 common interactions. In addition to these, PCPDPr did discover 7 novel
interactions, with respect to Bernard et al., like: ACE2-PCL2, MBP1-CLB5, FKH1-CLB2,
SWI5-PCL2, CDC6-CLB2, SWI6-CDC6 and SWI6-CLB5.

Key TFs based validation

Gene Ontology (GO) is one of the most important ontologies built within the functional bioin-
formatics field [16]. The goal of GO is to provide a structured and controlled vocabulary to
describe gene functions and the process in which the genes are involved.

We validated our results using GO annotations based on the sub-networks derived from
the resulting network shown in Figure 5.6. We grouped the 10 TFs into four groups: G1/S
transition of mitotic cell cycle (SWI4, SWI6 and STB1), G2/M specific transcription in mitotic
cell cycle (FKH1 and NDD1), Interphase of mitotic cell cycle (SWI4, SWI5, SWI6, FKH1,
ACE2, STB1 and NDD1) and DNA replication (MBP1 and MCM1); these TFs will be called
key TFs. We considered all the genes and (non-key) TFs which interact with each group of
key TFs as a sub-network, and we validated the GO annotations for each subnetwork using the

GO Term Finder available at “Gene Ontology Term Finder, http://db.yeastgenome.org/
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cgi-bin/G0/goTermFinder (accessed 1-June-2009)”. This system takes a set of genes and
returns p-values corresponding to GO terms. Each p-value indicates the confidence that the
set of genes share the corresponding GO term. The smaller the p-value is, the more specific is
the GO term shared by the genes.

Here, we propose a new technique which utilizes key TFs to measure and validate the
significance of the interactions between the genes and the TFs of each group. The proposed
approach works as follows. We first find the p-value of the TFs within each group of genes and
the genes/TFs they interact with; we denote this set of genes by S. Then, we find the p-value
of the genes/TFs with whom the key TFs interact, after excluding (from the former TFs) key
TFs that do not interact with each other, i.e., we leave in the former set of TFs all key TFs
that have internal interactions among each other; we denote this set of genes by S’.

To illustrate the proposed validation process, consider the following example set .S of G1/S
group which contains the following TFs/genes (SWI4, SWI6, STB1, CLB2, PCL2, HTA1, cdc6,
MBP1, MCM1, NDD1, CLN2, cdc21, CLB5). The genes/TFs other than the key TFs are the
genes that the key TFs interact with. Set S’ has the following TFs/genes (SWI4, SWI6, CLB2,
PCL2, HTA1, cdc6, MBP1, MCM1, NDD1, CLN2, cdc21, CLB5). We see that SWI4 and
SWI6 are included in the set S’ because SWI4 interacts with SWI6, and SWI6 interacts with
SWI4. We found the p-value for each set of genes S and S’ for the four groups enumerated
above. The p-value in S’ indicates how significant are the interactions among TFs in S. If the
p-value of S’ is very close to the p-value of the corresponding S, then we say that we have
gained most of the information that was in S, and this infers that the interactions within S
are significant. We applied this method to the four groups enumerated above and the results

are summarized in Table 5.4.

Table 5.4: P-values of S and S’ sets for both PCPr and PCPDPr when 8 = 40

Group Set S Set S’
G1/S 939xe™ " | 56xe?
Gao/M 0.00025 >0.01
Interphase 423 x e | 4.23 x e714
DNA Replication | 1.34 x e™° 0.00996

From the results reported in Table 5.4, it can be easily seen that our sub-networks for the
first and fourth groups are strong as they gained all of the interactions in the S set. The other
two groups did not gain enough information from set S as they contain small number of TFs.
Since the sets S and S’ are the same for both PCPr and PCPDPr (because the interactions

are almost the same), we had the same p-values for both algorithms.
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Finally, we want to elaborate more on the applicability of the proposed validation approach.
There are three cases to be considered as the key TFs are concerned. In the first case, there
does not exist any interaction between the key TFs. Consequently, no key TF is expected to
be in set S’. As a result, the p-value of set S’ will be much larger than the p-value of set S;
this indicates that the information in S was not completely gained. This case is what we see
in the DNA Replication group. The second case covers the situation where each key TF is
connected to at least one other key TF. In this case, the p-values of the two sets S and S’ are
the same because S and S’ contain the same set of genes. This case is prominent in group
Interphase. The last case is somehow in between the other two cases, i.e., only some of the key
TFs are connected to each other while each of the remaining key TFs are not connected to any
key TFs. In this case, not all the key TFs in S will be present in S’, and that will cause the
p-value to drop down. Depending on the significance of the eliminated key TFs, the p-value
of S’ will increase. This case is shown in group G;/S in Table 5.4. To sum up, the proposed
approach considers three cases of key TFs connectivity and the information gain depends on

the degree of connectivity.

Empirical analysis of gss

As gss is a greedy procedure, it may not always find the best graph. To be able to see how well
the gss procedure effects the output, we defined two algorithms called gPC and gPCPr, where
gPC (greedy PC) is the same as the PC algorithm except that the separators are searched only
by applying the gss procedure. Like the PC algorithm, no prior knowledge is used. On the
other hand, gPCPr, is the same as gPC except that it uses prior knowledge to update the value
of a (see Section 3.2). We performed some experiments with the same parameters given in
Section 5.2.3. The results are shown in Figure 5.7. gPC and gPCPr demonstrate an acceptable
performance, but never performs better than PCPDPr, as a structure learning algorithm is
said to perform better than another, if it increases both precision and recall. But neither gPC
nor gPCPr shows such a performance, though they are sometimes better than PCPDPr in only
one aspect. Similar results for (normalized) SHD are also available in Figure 5.7.

One important point in these results is the high recall values in gPC and gPCPr. This
shows that as the algorithms do not search for all candidate separators, but only the ones
chosen greedily, sometimes they can not find the separators despite their existence, therefore
the algorithms keep such edges in the graph. This increases TPs and decreases FNs, but also
increases FPs, therefore a larger recall and smaller precision is obtained. There are two types
of errors in gPC and gPCPr. The first type of error is the error resulting from small sample
size and the other type is the error due to greedy steps. As the sample size increases, greedy

step errors become more apparent; precision decreases and recall increases.
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Figure 5.7: gss emprical analysis. 1: PC, 2 : PCPr, 3: PCPDPr, 4 : gPC, 5: gPCPr

5.2.4 Yeast cell-cycle model

To be able to demonstrate the scalability of PCPDPr, an experiment is devised to derive a
large network by using the PCPDPr algorithm. For this experiment, we chose all genes that
have been previously identified as related to the cell cycle [81]. We used the same microarray
data as in the previous experiment and used the location data of Harbison et al. [34]. There
are almost 800 genes that have been previously determined to be cell cycle related [81]. From
these genes, we extracted a set of 763 genes for which both microarray data and location data
are available. Among these 763 genes, only 27 of them are available as TFs in location data,
so only these are used to compute prior information matrix B. A phase variable is then added
as in the previous experiment. It took approximately 84.5 minutes for PCPDPr to output a
network with 1830 edges for 8 = 30 and 87.9 minutes to output a network with 2112 edges for
[ = 40; we used the same other parameters as in the previous experiment.

As it is hard to construct a “gold standard" network for such a large gene set, we use only
the key TFs based validation for this experiment. This is another evidence in support of the
importance of the developed validation approach.

For the analysis, first we have classified the 27 TFs based on their GO annotation. Seven
genes are related to Interphase of mitotic cell cycle, 10 genes are related to the cell cycle
process, 4 genes are related to G1/S transition of mitotic cell cycle, and 4 genes are related to
G2/M specific transcription in mitotic cell cycle. After this, we found the S and S’ sets from
the output graph.
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The results of PCPDPr when § = 30 show that the 7 TFs related to the interphase term
have connections to 40 genes, which have p-value of 0.00022 with respect to interphase of
mitotic cell cycle term. Among those 40 genes, YHP1, SWI4, FKH1, ACE2, CIK1, NDDI,
and KIP2 are the genes most related to the interphase term. The 10 TFs related to cell cycle
terms have 60 genes connected to them; those genes are related to the mitotic cell cycle term
with p-value as 4.77 x 1076, The genes which are connected to the 4 TFs related to G1/S
transition of the mitotic cell cycle were related to the same term with a p-value of 0.00568.
Also, we have seen that CIK1 and KIP2 are among the genes connected to G2/M transition
TFs. These two genes are related to the microtubule motor activity, which is essential for
assembly of the mitotic spindle at the beginning of M phase, with p-value of 0.00463.

Similarly, we have analyzed the genes connected to TF classes when 5 = 40. We have
found that the list of genes which are related to the interphase TFs have a significant p-value
of 2.63 x 10~° with respect to the same term. Also, we have found that the same gene list is
highly related to cycline —dependent protein kinase regulator activity function with p-value of
1.47 x 108, This functional term was not discovered using 3 = 30. Besides, the genes related
to G1/S term showed to be related to the term with p-value of 0.00549.

Moreover, we have analyzed the histone cluster by Spellman [81]. This cluster has 9 genes,
all of them are histone genes; they are related to chromatin assembly and disassembly GO
term with p-value of 1.7 x 10712, We got all the genes with which the 9 histone genes interact
based on our algorithm (17 genes when 3 = 40 and 16 genes when 8 = 30), and study the
GO annotation related to them. For g = 40, we found that 8 out of 9 of the histone genes
are among the 17 genes they bind to. This means that, most of the histone genes are found to
be dependent on each other. The 17 genes are related to chromatin assembly and disassembly
GO term with p-value of 2.35 x 1072, When 3 = 30, we found that 8 out of 9 of the histone
genes were among the 16; these genes have p-value of 1.1 x 10~Y with respect to the chromatin
assembly and disassembly GO term. For both 5 = 30 and § = 40, HHO1 is the gene that was

not included in the 16 or 17 genes, respectively.

5.2.5 Raf Signalling Pathway

To evaluate PCPDPr with a well-known structured network, in this section we report the results
for the Raf signalling pathway. Raf is an important protein for human immune system. Raf is
involved in signalling proliferation of immune system cells. Raf signalling pathway has widely
been studied in the literature, e.g., [24, 73, 93]. So this network has a relatively well-known
structure; currently accepted Raf signalling pathway is shown in Figure 5.8.

From the study by Sachs et al. [73], protein concentration data from cytometry experiments
is available about Raf signalling pathway. Werhli et al. [93] split this data into 5 data sets of 100

samples each in order to better test their inference algorithm. We also follow the same strategy
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Figure 5.8: Raf signalling pathway (taken from [73, 93])

and use these 5 data sets separately and give mean results of these experiments. Here, we are
using the prior data as well, which was used by Werhli et al. [93]. This prior data have been
derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [44].
For each pair (4, j) of genes, the number of pathways where there is an edge between the genes
is divided by the total number of pathways where two genes exist together and B;; is set to
this ratio. If there are no pathways with an edge between the genes, then we set that entry
of matrix B to 0.5, indicating no prior knowledge. The value of g is again set to 30 for this
experiment.

We compared the results of our algorithm to the results of the algorithm by Werhli et al. [93].
Their algorithm is a bayesian network structure learning algorithm by using prior knowledge
and Markov Chain Monte Carlo (MCMC) simulations. The results are shown in Figure 5.9. It
is worth noting that the algorithm by Werhli et al. [93] is named as BNMCMC in the figure.
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(a) (b)
Figure 5.9: Raf Signalling pathway results. a) gives TP counts corresponding to 5 FPs for the
skeleton b) shows SHD between directed graphs.
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In [93], the results are given in terms of the TP counts corresponding to 5 FPs for the
undirected graphs. We also report the results here in the same way for comparability. To
be able to fix the number of FPs, we found the value of o for PC and «g for PCPDPr that
outputs a network with 5 FPs according to the currently accepted Raf pathway in Figure 5.8,
and used that « values in the experiments. Again for BNMCMC we found a threshold that
outputs a network with 5 FPs based on the set of sampled networks by MCMC. The results
in Figure 5.9(a) demonstrates that PCPDPr outputs a more reliable network as the error bars
show the standard deviation of the results for 5 different data sets. The result for directed
graph evaluation is shown in Figure 5.9(b). As can be seen, the performances of PCPDPr and
BNMCMC is almost the same, but we must mention here that, MCMC is a computationally
very expensive procedure and BNMCMC is executed for approximately 2.6 hours on the average
with the parameters suggested by the authors of [93] for each of the 5 data sets, while PCPDPr

outputs these networks in only 0.32 seconds on the average.

5.3 Large-scale Gene Regulatory Network Control

The experimental results for the algorithms proposed for scalable intervention in GRNs are
given in this section. Again, following the presentation of the methods in Chapter 4 they are

given in two separate sections.

5.3.1 Scalable Control by Feature Reduction

This section reports the experimental results for the feature reduction method described in
Section 4.1. For these experiments, we used PBNs [78, 79] as the modeling technique. The
idea in PBNs is to use more than one boolean function for each target gene instead one, used
in Boolean networks (see Section 2.2.2 for details)

The PBN derivation algorithm uses three parameters:

1. The number of regulators that will be chosen for each gene. Biologically, genes are
thought to be regulated by few number of genes [17, 48]. So, among one, two and three
gene-regulator sets, the genes with highest COD values are selected, where the error

measure is the best-fit extension error [51].

2. The number of functions that will be used to model each gene. It is set to 3 based
on some initial test runs that check the model’s ability to predict the next state of the

network given its current state.

3. The probabilities assigned to the functions chosen to model a gene. Probability cg-i) which
is the probability of choosing the j** function for gene 4, is calculated based on COD

values as discussed in Section 2.2.2.
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Perturbation probability [79], say p, is the probability of randomly changing the expression
level of genes in the model. This way, all the states in the model become reachable, and the
underlying Markov Chain corresponding to the PBN becomes ergodic [79]. Ergodicity means
that the steady-state probability of a Markov Chain can be estimated empirically. More details
about this parameter of the PBN can be found in [79]. In our settings for deriving the PBN,
the perturbation probability p is set to 0.01.

There are two types of error measures used in this section. The first error measure is the
percentage difference between the optimal value function of the original model and the value
function of the policy found after feature reduction. In other words, error is the percentage
difference between value functions of the policies found by following paths (a) and (b) in Fig-
ure 4.1. The second measure is the type named as simulation error. This type of error is found
by simulating the model applying the interventions implied by the policy to see how well the
policy does in keeping the model out of the undesirable states.

As the models used are discrete in this section, data are discretized before usage. Interval

discretization with 2 bins is applied as the discretization method when necessary.

Synthetic data

We first evaluated our algorithm on some synthetic data sets generated using the algorithm
proposed in [102], which is based on a regulation matrix A. Matrix A is set such that each
entry a;; of A gives the degree of regulation of gene j on gene 7, and the diagonal of A is 1,
i.e., for all i, a;; = 1. If Y; denotes the system state at time ¢, the next state is generated as
follows:

Yig1 = A(Y; — N)4¢ (5.2)

where N is the threshold that a gene has to be above (or below) in order to affect other genes,
and ¢ is the noise uniformly distributed in a specified range. In the experiments, IV is set as
50 and ¢ is randomly set uniformly in the range [—10, 10].

To generate the data sets, we used the same parameters that are used in [102]. Setting Yj to
random values, we generated 500 samples from each network, where one sample is taken every
5 steps of the simulation. Each a;; is set to be 0.1 or —0.1 representing positive or negative
regulation®, respectively. For example, for the network shown in Figure 5.10(a), as3 = —0.1
and a14 = 0.1. In the figures, arrows denote positive regulation and the lines with a bar denote
negative regulation. Expression levels are assumed to be in the range [—100,100], so in data
generation, if a value goes above (below) these limits, it is set to 100 (—100). Finally, the data
generated by the above simulation is discretized into binary levels (ON and OFF).

In all of the synthetic data experiments, the objective is to down regulate the second gene

6Notice that positive or negative regulation does not mean to always increase or decrease the expression

level of the gene. The net effect depends on the value of the regulator’s expression level and N.
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and the first gene is intervened. For this objective, we assigned a negative reward of —5 to the
states if the expression level of the second gene is 1 (ON), and a reward of 0 otherwise. There
are two actions where one is the intervention of the first gene, whose cost is 1, and the other

is the costless monitoring action.

(a) Network 1 (b) Network 2

Figure 5.10: Synthetic networks

The first set of data is generated from the network shown in Figure 5.10(a) that represents
matrix A in Eq (5.2). As can be seen in Figure 5.10(a), there are two components in the
network connected via gene 3. So, we can expect that a subset of genes, namely {4,5,6,7},
can be ignored in finding a control policy because they seem to be less related to the control

and reward genes, namely 1 and 2.

Table 5.5: Influence Scores of genes in network 1

Gene 3 4 5 6 7 8
Score | 1.004 1.181 0.626 0.923 1.162 1.282

The IS values for all genes are shown in Table 5.5; these values demonstrate that the least
scored genes are 5 and 6. In case Th is given as 1, the set that will be chosen is {5,6}. Table 5.6
shows the errors associated with the different gene subsets; only subsets that have error less
than 10% are listed. From the results reported in Table 5.6, it can be easily seen that {5,6} is
one of the three best subsets.

The second set of synthetic data is generated from the network shown in Figure 5.10(b).

In this network, the expression level of the second gene has to be controlled indirectly. The

71



Table 5.6: Gene subsets with error less than 10% for network 1

Subset Error | Subset Error | Subset  Error

3 2.582 58 2.073 358 2.245
2.073 67 0.203 357 2.245
0.134 68 0.000 356 0.173
0.184 78 0.758 | 5678 0.173
0026 | 678 0173 | 3678 0.173
35 2245 | 578 2245 | 3578 2245
36 0173 | 568 0.000| 3568 0.173
37 2245 | 567 0173 | 3567 0.173
38 3.012 | 378 224535678 0.173
56 0.000 | 368 0.173
57 2245 | 367 0.173

o N O ot

Table 5.7: Influence Scores of genes in network 2

Gene 3 4 5 6 7 8
Score | 2.837 2.502 1.944 2.623 1.534 2.875

Table 5.8: Gene subsets with error less than 10% for network 2

Subset Error | Subset Error | Subset Error
3 3.177 37 1.246 | 367 2.004
5 0.085 56 4812 | 357 0.858
6 3.990 57 0429 | 356 4.235
7 0.287 67 2.004 | 3567 2.004
35 22905 | 567 2.004
36 4985 | 457 9.517
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first gene is connected to the reward gene through genes 4 and 8. This time, a subset of
the genes, namely {3,5,6,7}, is expected to be the candidates for removal. The results are
shown in Table 5.7 and Table 5.8. Genes 5 and 7 have the smallest scores, so they can be the
candidates for removal. And if we check Table 5.8, we see that the best subset is {5} followed
by {7} and {5,7}. This means that if Th is set as 2 for the data derived from this network,
the subset {5, 7} will be chosen for removal; it is the third best subset out of 64 subsets.

Gene expression data

Metastatic Melanoma:

In this section, we report the results of the application of the gene selection algorithm to
the gene expression data produced in a study of metastatic melanoma [7]. The data was also
used in [67] for deriving a PBN model; 7 genes are chosen from the whole data set based on
their ability to predict the states of each other; these genes are pirin, WNT5A, S100P, RET1,
MART1, HADHB and STC2. The objective here is specified as down-regulating WNT5A; and
pirin is used as the control gene, as in [64]. The reward function is set in the same way as in the
synthetic data based experiments. The data is relatively small compared to the synthetic data
sets, it has 31 samples. This can be a disadvantage for the gene selection algorithm because
the information that the data contains is small compared to the synthetic data sets. Since the

authors of [67] were also working on binary data, the samples were discretized to binary levels.

Table 5.9: Influence Scores of genes for melanoma, data

Gene 3 4 5 6 7
Score | 0.775 0.911 0.333 0.526 1.333

The results are given in Table 5.9 and Table 5.10. Although the error rates are large in this
case, there is still one subset, {5} with minimum IS, that we can remove with error less than
2% and with appropriate Th. The high error rates can be due to high degree of connectivity
among the selected genes. This is consistent with the information stated above that the genes
are selected based on their ability to predict each other’s state. Another reason can be the
possible high effects of most of the genes on the reward gene, WNT5A.

Yeast Cell Cycle:

In this section, we report the results of application of our method to a set of well-known
transcription factors of budding yeast (Saccharomyces cerevisiae). These 11 transcription fac-
tors were previously identified to be the important regulators for the yeast cell cycle [99] :
ACE2, FKH1, FKH2, MBP1, MCM1, NDD1, SKN7, STB1, SWI4, SWI5 and SWI6. The

microarray data with 77 time steps that we have used in this experiment was produced by
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Table 5.10: Gene subset errors of genes for melanoma data

Subset  Error | Subset Error | Subset Error

3 20.766 45 12907 | 357 30.179
14.477 37 27822 | 356  31.739
1.856 36 34.248 | 347 16.549
19.223 35 21643 | 346  38.641
39.257 34 20564 | 345 34974
67 42276 | 567 43.796 | 3456 27.966
57 38417 | 467 32570 | 3457 16.549
56 19980 | 457 31461 | 3467 16.549
47 31.238 | 456 27.966 | 3567 35.619
46 19935 | 367 444554567 31.274

~N O Ot

Spellman et al. [81]. Missing values in the data were imputed by using the KNNImpute soft-
ware [88]. Again, before applying our method, we discretized the data set first into binary
levels by interval discretization.

The reward gene is set as SWI4, which is one of the important transcription factors (part
of the SBF complex) that play a role in G1 phase. Control gene is set as ACE2; it is chosen
since the PBN model derived from the data has ACE2 as one of the regulators of SWI47. The
objective is set as down-regulating SWI4 and the reward function is set in the same way as

previously described.

Table 5.11: Influence scores of genes for yeast data

Gene | FKH2 MBP1 MCM1 NDD1 SKN7 STB1 FKH1 SWI5 SWI6
Score | 1.605 0.836 0.610 1.128 1312 0.642 1.489 0.471 1.226

The IS scores of genes are given in Table 5.11. SWI5 is the lowest scored gene with a score
of 0.471. If this gene is eliminated, an error of 1.5% occurs; see Table 5.12 for errors of some
of the subsets. This error is very low and demonstrates the applicability of the method in case
the threshold is chosen as 0.5. The case corresponding to elimination of SWI5 and MCM1
(with a threshold of 0.62 for instance) has an error of 5.4% which can be considered acceptable

for some cases. The computational gain, however, corresponding to this error rate is huge; it

"Note that, to the best of our knowledge, ACE2 and SWI4 have not been identified as regulating each
other. But verification of the model derived by the modeling algorithm we use here, is out of the scope of this

experiment.
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takes 3.32 minutes to solve when SWI5 and MCM1 are eliminated and 12.10 minutes when
SWI5 is eliminated, while it takes 52.25 minutes to solve without any elimination. We discuss

more time complexity below.

Table 5.12: Subset errors of genes for yeast data

Subset  Error Subset Error
FKH2 9.684 FKH1 5.049
MBP1 0.123 SWI5 1.506
MCM1 2.399 SWI6 1.821
NDD1 5.119 SWI5 MCM1 5.409
SKN7 2.062 | SWI5 MCM1 FKH1 9.319
STB1 1.372

Comparison to other methods

The GRN control problem has been previously studied as evident by the available corresponding
literature (see Section 4.3), however scalability and feature reduction issues have not yet been
considered for this problem. As mentioned before, feature reduction can also be performed
after the modeling phase. But due to the computational gain of reduction before modeling,
irrelevant genes are eliminated prior to the modeling phase (see Figure 4.1).

As mentioned before, control genes can be determined by using the influence concept [64, 78]
which is the underlying notion for the Influence Score introduced in this study. The genes can
also be eliminated after the modeling phase on path (a) in Figure 4.1 by using the influence
concept. This feature reduction method eliminates genes with the lowest scores, where the
score is computed as in Equation 4.8 except that instead of the Inf(g;,g;) value, this time,
Influence value from [78] is used. Notice that, this method is different from ours in the step
where it applies; it is a method that can be applied given the model, i.e., it is applied after
the modeling phase. Since the Influence value discussed in [78] is computed based on the PBN
model; we performed a number of experiments to demonstrate how this type of elimination
compares to ours. This will show the effect of elimination before the modeling step.

A structure learning (or modeling) algorithm may output a number of models for a given
data set, where each of these models are equally likely. When this is the case, most of the
modeling algorithms choose one of these models as their output. The number of equally likely
methods gets smaller as the number of samples in the dataset gets larger. The PBN learning
algorithm we use in this work outputs one of the equally likely models by breaking the ties

randomly during the construction. To eliminate the effect of this for a fair comparison, we
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repeated the process of the following the paths 20 times for each data set and reported the
average results, also we sampled the data sets of 1000 steps instead of the previously used 500
for synthetic networks.

A control policy can also be evaluated by simulations; starting from a random initial state,
apply the policy and count the number of undesired state visits. Although comparison of
value functions is more accurate, this type of evaluation provides a kind of weighted difference
between value functions by eliminating the effect of states that are hardly visited. So if the
steady state probability of a state in a model is small then the effect of the value function
difference (if any) for that state will also be small. This type of evaluation also has the
advantage of being faster compared to the value determination, as the value determination for
a given policy requires very long time to execute. So, we chose the number of undesired state
visits in the simulation as the evaluation metric for this experiment with 20 iterations. Each
starting from a random initial state, we performed 5 simulations of 1000 steps and averaged the
number of undesired state visits. The results will be given as average percentages of undesired
state visits in 1000 steps.

For the experiment, we used the same 4 data sets. The control problems are defined in
exactly the same way as before. To be able to make a fair comparison, we chose the threshold
values so that two genes will be eliminated for each of the methods. We will call the method
that is based on choosing the control gene in Pal et al. [64] and Shmulevich et al. [78] as PS
referring to the names of the authors. Note that this time, Path (a) also has a feature reduction

step applied after model generation (i.e. after Model(M) is obtained in Figure 4.1).

Table 5.13: Comparison to PS

FRGC PS
Sim. Error  Time | Sim. Error Time
Network-1 48.35 4.76 50.81 48.27
Network-2 32.30 2.67 36.53 40.60
Metastatic Melanoma 28.05 0.77 21.43 14.15
Yeast Cell Cycle 9.46 305.20 9.12 5772.83

The results are given in Table 5.13. The Sim. Error column gives the simulation errors
defined above. Although PS has the advantage of directly using the model, the results demon-
strate that FFRGC outputs comparable results to P.S, sometimes even better. This shows that
focusing on important parts of the model by eliminating irrelevant genes provides a reliable
model reduction method for control. Only the metastatic melanoma results can be considered

as significantly different, but notice that we force two-gene elimination for comparison here
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instead of the one-gene elimination in Section 5.3.1. The given table also includes the total
time of following Path (a) with PS and Path (b) with FRGC in Figure Figure 4.1. Execution

time results demonstrate the computational gain of FRGC compared to PS.

Time complexity

The complexity of deriving a Boolean network under the best-fit extension paradigm is given
in [51] as O((}).n.m.poly(k)), where n is the number of genes, k is the number of predictors
(regulators) for each gene, m is the number of samples in the data and poly(k) is a polynomial
function of k, which is in most cases equal to k. Deriving a PBN adds an additional cost of
O((Z).nf.n), where nf is the number of functions for each target gene, because, for each gene,
we are choosing nf functions out of (Z) The last two steps in path (a) of Figure 4.1, which are
the construction of the MDP and value iteration, have an equal complexity of O(a.4™) for the
binary case, where a is the number of actions. So, the dominating term in the total complexity
of path (a) is O(4™) for k < n (which is generally the case for GRNs). The complexity
of computing IS(g) is O(n.m), since it depends on all genes other than g and the sufficient
statistics for Inf(g, g;) are collected from the data in one pass. Since we are computing IS for
all genes and removing the [ selected genes in the algorithm, the total complexity of feature
reduction is O(n?.m + l.n.m), assuming no clever data structures in shifting the columns of
a multi-dimensional array. So, the total complexity of both paths in Figure 4.1 is dominated
by the O(4™) term for the binary case. Even if the structured representations that may have
lower average case complexity in terms of n are used in solving the MDP, the feature reduction
algorithm does not dominate the overall complexity, provided that k£ > 2 in PBN modeling,

which is usually the case.

Table 5.14: Elapsed time (in secs.) for the experiments

Network 1 | Network 2 | Metastatic melanoma | Yeast Cell cycle
Path (a) 19.141 19.157 4.329 3135.258
Path (b) 1.125 1.110 1.015 199.362

The main purpose of performing feature reduction is to achieve speed-up in reaching the
policy with tolerable error rate. In this sense, Table 5.14 contains the elapsed time for finding
the policies for each of the data sets used in the experiments. From the results reported
in Table 5.14, it can be easily seen that there is a significant decrease in time. The results here

are also in correlation with the complexity analysis.
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5.3.2 Scalable Control by Edge Elimination from Factored Represen-

tations

This section reports the results for the edge elimination technique proposed for scalability in
control of GRNs. The details of the proposed method are discussed in Section 4.2. There are
two experiments reported in this section. They are based on the Boolean models proposed for

mammalian cell-cycle and human T-cell activation.

Control of mammalian cell-cycle

The first experiment is adapted from a recent study [26]. In this study, a mutation that can
lead to a cancerous state is implemented in the Boolean logic model of the mammalian cell
cycle. The model is relatively small and has 9 genes, where this property encouraged us to use
this model, as this will demonstrate the effect of the proposed method to the optimal solutions
of control problems. This model has been constructed by Faure et al. [27]. In [26] gene p27 is
assumed to be mutated and it is always inactive. This leads to the situation where both CycD
and Rb genes might be inactive (OFF), which in turn leads to unlimited proliferation. The
logical rules of the mutated cell cycle model is given in Table 5.15. The notation is conventional;

X represents logical NOT of X, VV and A represent logical OR and AND operators, respectively.

Table 5.15: Mutated cell cycle model

Product Predictors

CycD  Input
Rb (CyeD N CycE) A CycA N CycB)

E2F (Rb A CycA A CycB)

CycE (E2F A RbD)

CycA (E2F A Rb A Cdc20 A (Cdh1 AUbc)) V (CycA A Rb A Cdc20 A (Cdhl A Ubc))
Cdc20 CycB

Cdhl (CycA A CycB) Vv (Cdc20)

Ubc (Cdhl) v (Cdhl AUbc A (Cdc20 V CycAV CycB))
CycB (Cdc20 A Cdhl)

The relationship given in Table 5.15 is temporal; the value of the Product column at time
step t + 1 is determined by the value of the logical formula given in Predictors column at t.
So the set of formulae given constitute a number of different BoNs corresponding to different
values of the input gene. In the cell cycle model, there is only one input gene so there are
two different BoNs corresponding to C'ycD taking values 0 and 1. From these two BoNs, we
constructed a PBN with each BoN being equally probable at each step of the simulation.
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Given the PBN model of the mammalian cell cycle, the undesirable states are defined as
the states leading to cell cycle without any limitation and these are the ones where CycD are
Rb are both inactive. So the objective function is defined as: ®({CycD, Rb}) = CycD V Rb.
Based on this, we defined the reward function for the FMDP as follows:

10 if a = noop, (CycD, Rb) # (0,0) in s
1 ifa= , (CyeD, Rb) = (0,0) i
R(s,a) = if a = noop, (Cyc ) =(0,0) in s (5.3)
9 if a # noop, (CycD, Rb) # (0,0) in s
0 if a # noop, (CycD, Rb) = (0,0) in s

Equation 5.3 reflects the fact that the cost of each action is 1 and the reward received for
a desirable state is 10. Given the reward function, each of the genes in the model (except the
input gene) is then considered to be the only control gene for a separate experiment. So for
each experiment, the action set is composed of a 'noop’ action and the action that immediately
toggles the value of the control gene. Having defined all components of the FMDP this way,
we solved it using the proposed reduction method. As this model is small enough for optimal
solution, we used SPUDD to solve the FMDP.

The reward function defined in Equation 5.3 is for the FMDPs without reduction. If
the reduction is applied then, as discussed in Section 4.2.3, this reward function is updated
according to the achievable set of objectives and 9.

To be able to evaluate the results, we performed simulations. These simulations correspond
to observing the evolution of the model under the policies computed. Starting from a random
initial state, the simulation is executed for 10,000 steps, and this is repeated 10 times each
starting from a new random state. The average of these 10 runs is reported in the results. A
policy is evaluated according to the number of interventions performed (which gives an idea
about the cost of this policy) and the number of undesirable state visits (which gives an idea
on how “successful” the policy is) throughout the simulation. Without any intervention, the
system stays in undesirable states in 130 out of 10,000 steps on the average. The results are
given in Table 5.16; they also include optimal solutions where the reduction method is not
applied (the column corresponding to ms—p). The column with § = 0.05 gives the results of
reduce FMDP where 0.05 is chosen as the threshold, and the column corresponding to =s,,,
is the one on which the reduction method is applied (reduceFMDP2), where J.5; denotes §
computed by the C'T" algorithm. The last value in Table 5.16 is the time elapsed to solve the
problem. Running times should be interpreted keeping in mind that such a small network is
hardly suitable for the analysis of the computational requirements of the reduction method.
As can be seen in the results, estimating the threshold based on CT is not only is efficient in
terms of time, but also outputs much better policies than reduce FMDP.

The results demonstrate that the policy found after edge elimination by reduce FMDP2 is
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Table 5.16: Cell cycle control, number of undesired states, number of interventions and time

in secs.
Control gene Ts=0 T§=0.05 Toost
(no reduction) (reduce FMDP) (reduce FMDP2)
Rb 92.60, 14.00, 0.26 | 101.20, 14.60, 13.30 91.00, 12.20, 0.59
E2F 106.70, 11.40, 0.33 | 107.30, 36.60, 14.00 110.40, 87.10, 0.21
CycE 96.40, 12.40, 0.37 108.10, 13.10, 13.31 109.90, 14.30, 0.21
CycA 112.20, 9.20, 0.46 | 923.30, 855.50, 12.89 110.80, 4.60, 0.26
Cdc20 86.10, 27.90, 0.34 88.50, 27.40, 13.62 92.10, 28.70, 0.29
Cdhl 89.90, 37.90, 0.27 | 409.80, 366.00, 13.65 | 1068.70, 1035.20, 0.21
Ubc 121.80, 0.50, 0.26 | 433.10, 338.30, 13.15 123.90, 0.00, 0.56
CyB 83.90, 29.30, 0.44 | 81.40, 55.50, 14.27 105.10, 14.80, 0.24

almost as good as the optimal policy for most of the control genes. Only for one control gene
(Cdh1), the policy is not as good. Rb is seen as the most effective one, and this coincides with
the results reported in [26]. For a comparison, the policies corresponding to § = 0 and d.s; are
given in Figure 5.11. Note that after the reduction procedure is applied, a simplified policy is
expected as we simplify the problem. This is clearly seen in Figure 5.11; 75_,, is a “generalized”
version of ms—g. This is also important as simplicity is an issue to determine the applicability

of a policy in clinical practice.

noop intervene_Rb

(a) T§—=0 (b) TSest

Figure 5.11: Policies for control gene Rb for § = 0 and §es¢
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Control of T-cell activation

A similar Boolean pathway to the mammalian cell-cycle for the activation of transcription
factors (TFs) that activate T-cells is given in [49]; this model has 40 genes. So, solving this
problem with MDP formalism requires very large resources as the size of the state space is 240.

T-cells form a type of white blood cells known as lymphocytes. They play an important
role for immunity such that its dysfunction has severe consequences for the organism. T-
cells have the ability to recognize foreign agents and subsequently eliminate them. By their
T-Cell Receptor (TCR) they detect the potentially dangerous agents and then activate (and
proliferate) through a signalling cascade [40].

Chronic lymphocytic leukemia (CLL) is a type of cancer caused by the uncontrolled pro-
liferation of immunologically immature lymphocytes. ZAP-70 is an important gene in the
signalling pathway of T-cell activation [40]. High ZAP-70 expression is thought to be the in-
dicator of T-cell activation and prognosis and overall survival for CLL [36, 62]. Similarly, in
T-cell activation model of Klamt et al. [49], if ZAP-70 is overexpressed (it is always ON), then
the TFs that lead to proliferation of T-cells become always active (ON). So, in the light of
these findings, we introduced a ZAP-70 overexpression mutation to the model given in [49].
ZAP-70 is, therefore, always active (ON) in our mutated model given in Table 5.17 as logical
formulae. This mutation (according to our model) leads to unlimited T-cell proliferation; that
is a cancerous state.

The first three genes in Table 5.17 are the input variables as given in [49], and the last four
are the output TFs which activate T-cells. Having defined the PBN model of T-cell activation
in the same way as the cell cycle model in the previous section, the control problem here is
defined as finding an intervention strategy that avoids the activation of output TFs. So, the
states that we try to avoid are those where AP1, CRE, NFAT and N FkB are all active (ON)

together. The objective function, therefore, is:

®({AP1,CRE,NFAT,NFkB}) = AP1V CRE vV NFAT v NFkB (5.4)

We defined the reward function similarly to cell cycle model as follows:

10 if a = noop, (AP1,CRE,NFAT,NFkB) # (1,1,1,1) in s
1 if a=noop,(AP1,CRE,NFAT,NFkB) = (1,1,1,1) in s
R(s,a) = (5.5)
9 if a # noop, (AP1,CRE,NFAT, NFkB) # (1,1,1,1) in s
0 if a # noop, (AP1,CRE,NFAT,NFkB) = (1,1,1,1) in s

Again, we should mention that the reward function in Equation 5.5 may be updated when
the reduction methods are applied.

Given one of the genes as the control gene and a “noop” action, we tried to find the best
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Table 5.17: Mutated T-cell activation model

Product Predictors

C D45 Input

CD8 Input

TCRIlig Input

Ca I1P3

Calcin Ca

cCbl 1

CREB Rsk

DAG PLCyg(act)

ERK MEK

Fos ERK

Fyn (Lck A CD45) vV (TCRbind A CD45)
Gads LAT

Grb2Sos LAT

IK Kbeta PKCth

1P3 PLCg(act)

JNK SEK

Jun JNK

LAT 1

Lck PAGCsk NCD8 A CD45
kB IK Kbeta

Itk SLPT76

MEK Raf

PAGCsk Fyn V TCRbind
PKCth DAG

PLCg(act) (SLP76 A PLCg(bind)) A (ltk V Rlk)
PLCg(bind) LAT

Raf Ras

Ras Grb2Sos V RasGRPI
RasGRPI PKCth N DAG

RIk Lck

Rsk ERK

SEK PKCth

SLP76 Gads

TC Rbind TCRlig A cCbl

TC Rphos Fyn Vv (TCRbind A Lck)
AP1 Jun A Fos

CRE CREB

NFAT Calcin

NFkB kB
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control gene and intervention strategy using the proposed methods. The problem is too large
to solve exactly with our current computing resources; so for an approximate solution, we
used APRICODD with the size parameter set to 75. To be able to evaluate the policies, we
performed simulations. We applied each policy in 10 simulations each starting from a random
initial state for 10,000 steps and counted the number of undesired states (the states where
all output TFs are ON) and number of interventions during the simulation. The results are
reported in Table 5.18 as average of these 10 simulations; note that not all of the genes are
reported in the table as control genes, rather only those that lead to good policies in terms
of the simulation results. Without any intervention, the system stays in undesirable states in
9,754 steps out of 10,000. Again, we report the results with and without reduction and d.g; is
0 computed by the C'T" algorithm.

Among all other control genes, ERK and M EK are the most effective ones in terms of
both the number of undesired states and the number of interventions. Number of interventions
here is important as it represents the cost associated with the control policy. FRK and M EK
effectively stop activation of four output TFs with relatively low cost. The policies where ERK
is the control gene for § = 0 and §., are given in Figure 5.12. The policy corresponding to
dest 18 again a “simpler” version of the one for 6 = 0. Raf/MEK/ERK pathway has been
shown to be important in the development of leukemia [85]. All genes in this pathway are seen
as the most effective ones in control which coincide with this finding. It is also interesting to
note that the policy found where Raf is the control gene for J.g; is better than for 6 = 0. This
may be due to the fact that we are using an approximate FMDP solver here (APRICODD).
So simplifying the model by the reduction method proposed, leads to focusing on the parts of
the model that are more important for control.

As can be recognized from the results reported in Table 5.18, reduction with the CT
algorithm can provide large computational savings for most of the control genes. For instance,
it takes only 1.05 seconds to find a good policy where Calcin is the control gene, instead of
173.3 seconds with no reduction. For 3 genes, namely DAG, PKCth and PCLg(act), usage
of the reduction method does not help in terms of time, but also does not effect the solution

quality.

5.4 Closing Remarks

There are several data sets and models used for evaluating the proposed algorithms. The data
sets used for modeling are the most widely studied data sets in the field of GRN modeling.
These data sets have become the benchmark data sets for model derivation algorithms. The
time-series gene expression data of Spellman et al. [81] covers a large number of genes of

budding yeast. Most of the studies investigating yeast cell-cycle use this data set. The data
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Table 5.18: T-cell activation control, number of undesired states, number of interventions and

time in seconds

Control gene

T§=0

(no reduction)

T5=0.1

(reduce FMDP)

s

est

(reduce FMDP2)

Ca
Calcin
CREB

DAG
ERK
Fos
K Kbeta
JNK
Jun
lkB
MEK
PKCth
PLCg(act)
Raf
Rsk

20.00, 9648.90, 92.96
9.70, 9608.90, 158.95
9.80, 9604.10, 157.71
3240.60, 3242.20, 211.24
19.60, 4865.30, 263.38
9.70, 9609.10, 156.64
18.10, 9644.30, 87.79
19.80, 9643.30, 89.71
9.80, 9602.90, 155.98
9.90, 9585.70, 160.03
26.00, 4883.40, 121.95
30.40, 4878.10, 126.99
2455.60, 2445.90, 211.46
3244.10, 3251.90, 217.02
20.30, 9630.60, 89.95

18.10, 9638.80, 41.55
9.40, 9601.90, 41.03
8.60, 9605.00, 40.99
3243.40, 3247.40, 41.12
18.70, 4865.30, 41.03
11.40, 9588.20, 40.94
18.80, 9628.40, 40.99
18.70, 9639.40, 41.19
9.30, 9580.50, 41.17
10.40, 9600.30, 41.22
27.10, 4886.20, 41.14
30.30, 4874.70, 41.03
2453.20, 3280.70, 41.32
3249.40, 3249.90, 41.01
18.40, 9658.00, 41.05

20.10, 9773.50, 1.05
10.40, 9742.60, 1.04
10.90, 9742.60, 1.08
3241.70, 3242.90, 212.06
21.60, 4868.60, 35.99
8.80, 9593.20, 1.03
20.10, 9772.70, 1.05
19.30, 9657.10, 32.51
9.70, 9600.10, 1.03
9.90, 9743.70, 1.05
29.6, 4973.60, 27.15
32.40, 4878.70, 128.49
2456.00, 2444.00, 222.43
39.40, 4991.20, 17.14
19.90, 9768.90, 1.05

(a) Ts=0

noop

(b) Tsesr

Figure 5.12: Policies for control gene FRK for § = 0 and 0.
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sets of Lee et al. [53] and Harbison et al. [34] are also two of the most widely used genome-
wide location analysis (ChIP-chip) data sets in the literature. These data sets exhibit the
common characteristics (or challenges) in biological data sets, namely having large number of
genes associated with small number of samples, missing values, some amount of noise and the
requirement for little or a fair number of pre-processing steps for some of the analysis. Unlike
the data by Spellman et al., protein concentration data by Sachs et al. [73] for the Raf pathway
is static; it is one of the largest data sets for the Raf pathway. This diversity in the datasets
utilized demonstrate the ability of the proposed algorithms to work for data sets of different
types.

Compared to the modeling literature, GRN control may be considered in its infancy. There-
fore, there are no data sets that can be classified as benchmarks for testing new methods. Hav-
ing this in mind, for feature reduction in MDPs, again the data by Spellman et al. was used in
addition to the small metestatic melanoma data set that was used in several papers for both
discrete modeling and control. As the algorithms proposed for FMDPs do not require a data
set but a model for testing, two models from two different organisms (yeast and human) were
used. These models have the common property of being Boolean models. Although a Boolean
model is not mandatory, for the ease of presentation and clarity, PBNs were chosen as the
model in FMDP evaluations. This is one of the reasons for using these two models (cell cycle
and T-cell activation models) as the testbed. Another reason is their potential involvement
in the development of undesired situations. Mutations can lead to cancerous states in both
models.

Some further tests can be performed to get more insights about the algorithms. It is possible
to study the effect of the two thresholds for the prior knowledge to determine whether a gene is
dense or not; a gene is considered to be dense if it has more connections than a given number
(first threshold) with a larger probability value than a given probability (second threshold).
Another test could be conducted to study limiting the maximum order for PCPDPr; there are
some suggestions in the literature to determine the maximum value of the order depending on
the sample size [82]. Moreover, the effect of the subjective reward function definition on the
reduction algorithms for MDPs and FMDPs is an interesting aspect to investigate. All of these

are on my agenda for future work.
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CHAPTER 6

CONCLUSIONS

Modeling and control of GRNs is an essential problem that has received the attention of
different research group as evident by the already published literature which has been reviewed
in this dissertation. However, we identified certain gaps within the existing literature and
successfully handled them within the scope of this dissertation. To wrap up this document,
we present in this closing chapter a summary of our findings, the conclusions and the possible

future research directions.

6.1 Summary and Conclusions

This dissertation investigates two important issues about GRNs which could be classified among
the most essential mechanisms in order to conceive the cellular organization. These two issues
are GRN modeling and control, where modeling refers to deriving a representation of the GRN
and control refers to intervening the dynamics of the GRN in a way that alters the possible
future states according to a certain objective.

In general, we concentrated on constraint-based structure learning algorithms for GRN
modeling and especially the PC algorithm. Two modifications have been proposed for the PC
algorithm to learn better networks by integrating multiple data types. This is based on the fact
that most of the biological data types have some amount of noise and not abundant enough
to derive all relationships between the genes. One of the data types (TF binding location -
ChIP-chip) is named as the prior knowledge and is used to “direct” the search for conditional
independencies through adapting the significance level in statistical tests in the PC algorithm.
The data type on which these tests are performed is the microarray gene expression data.
Another information derived from TF binding location data is the set of dense nodes that have
a large number of connections. These nodes are handled in a special way with a greedy search
algorithm to get rid of the exponential burst of the number of statistical tests.

For GRN control, we focused on the reduction algorithms that can be used to eliminate
some of the irrelevant components in the data or model. This is important for scalability
and for reducing the resources (cost) required to tackle the problem. We proposed a method

for MDPs that removes genes at the very beginning of the process starting from the data
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and ending in a policy to control the GRN implied by the data. Those genes are identified
to be negligible for the solution of the control problem. Other than that, for the first time,
GRN control is formulated by using the FMDP framework and a method to simplify the given
FMDP has been devised. The experiments showed that the solution of the simplified FMDP
is a near-optimal policy for the original problem.

Synthetic and real experiments are performed to evaluate the proposed methods. The

results demonstrate the applicability, effectiveness and scalability of the proposed algorithms.

6.2 Future Research Directions

First, we are working on the theoretical error bounds for the greedy separator search proce-
dure. Although some empirical tests have been performed to evaluate the effectiveness of the
method, a theoretical analysis may also be very useful. Second, we want to apply the proposed
algorithms to other types of data and derive other kinds of biological networks, like protein
interaction networks. Protein interaction networks are also known to include dense regions, a
property that makes them a suitable candidate application area. The procedure introduced
to use prior knowledge also allows for the use of prior information in an incremental way. As
we have already computed prior information matrix B from some type of biological data, we
argue that it should be possible that new information obtained from other sources can be
added to this matrix as long as the prior knowledge can be mapped to a probability value. Of
course there should be some constraints and restrictions to be taken into consideration while
expanding B to cover new information sources; in other words, this is not a trivial process and
should be carefully handled in order not to diverse from the main theme of having matrix B.
Such an incremental extension of this work is also to be investigated. Furthermore, incorpo-
rating temporal information available in time-series microarray data into PCPDPr is also on
our agenda. This should bring a new dimension into the problem and still need to be carefully
investigated.

Although the gene elimination algorithm for MDPs is good at finding some less important,
genes, the order relationship among genes in the error rates can not be in general captured
by the score function. To give exact solutions or to be able to give an error bound, the score
must always be directly proportional to the error. Also, a score function that gives the score
of a set of genes instead of a single gene may improve the results because summation of the
scores of genes in a set may not be always proportional to the error of that set. We are also
working on an automated method to determine the threshold value. Solving the constructed
MDP in finite horizon is another extension that is worth further consideration; investigating
the effect of the horizon on the quality of the solution can bring new insights to the problem.

Finally, adapting some other biological information (pathway information for instance) while

87



determining the genes to eliminate is also among our plans.

In the light of the findings in this thesis, we are planning to apply the developed ideas to
a genome-wide control problem. This will test the scalability limits of the algorithms. But
this study should wait until the existence of the genome-wide PBN model of an organism.
Existing models mostly focus on certain biological components. Although the results and
models presented here are not directly applicable to clinical practice yet, genome-wide solution
of a control problem gives the chance to compare the policies found to real treatments, where
this may lead to new insights of the applied clinical treatments and drug discovery research.

There are several types of different FMDPs in terms of the performance criterion and the
length of the horizon. Also there can be constraints on the solution related to the applicability,
such as the number of genes involved in the final factored policy. Finding the best simple policy
depending on a set of genes whose size does not exceed a pre-defined value can be essential for
the applicability of that policy as a treatment in medicine for instance. Investigating the effect
of the reduction method to these other types of FMDPs is another future research direction to
be investigated.

As a closing remark, it is worth emphasizing that this thesis contains the description of
some novel approaches to handle the modeling and control of GRNs. The developed approaches
are very promising as evident by the reported test results, the published related papers, and
the identified future research directions. I do consider my efforts reflected in this dissertation
as a major step in the right direction. The outcome and vision I shaped as a result of this

study will definitely drive my future research for the coming years.
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