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ABSTRACT
INDUCTION AND CONTROL OF LARGE-SCALE GENE REGULATORY NETWORKSTan, MehmetPh.D., Department of Computer EngineeringSupervisor: Prof. Dr. Faruk PolatCo-Supervisor: Prof. Dr. Reda AlhajjJune 2009, 99 pagesGene regulatory networks model the intera
tions within the 
ell and thus it is essential tounderstand their stru
ture and to develop some 
ontrol me
hanisms that 
ould e�e
tively dealwith them. This dissertation ta
kles these two aspe
ts. To handle the �rst problem, a new
onstraint-based modeling algorithm is proposed that 
an both in
rease the quality of the out-put and de
rease the 
omputational requirements for learning the stru
ture of gene regulatorynetworks by integrating multiple biologi
al data types and applying a spe
ial method for densenodes in the network. Constraint-based stru
ture learning algorithms generally perform wellon sparse graphs and it is true that sparsity is not un
ommon. However, some domains likegene regulatory networks are 
hara
terized by the possibility of having some dense regions inthe underlying graph and the proposed algorithm is 
apable of dealing with this issue. Thealgorithm is based on a well-known stru
ture learning algorithm 
alled the PC algorithm, andextends it in multiple aspe
ts. On
e a network exists, we 
ould address the se
ond problem,namely 
ontrol of the regulatory network for various appli
ations where the 
urse of dimen-sionality is the main issue. It is possible that hundreds of genes may regulate one biologi
ala
tivity in an organism and this implies a huge state spa
e even in the 
ase of Boolean models.The thesis proposes e�e
tive methods to �nd 
ontrol poli
ies for large-s
ale networks. Themodeling and 
ontrol algorithms proposed in this dissertation have been evaluated on bothsyntheti
 and real data sets. The test results demonstrate the e�
ien
y and e�e
tiveness ofthe proposed approa
hes.Keywords: gene regulatory networks, indu
tion, 
ontrol
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ÖZ
BÜYÜK-ÖLÇEKL� GEN DÜZENLEY�C� A�LARIN MODELLENMES� VE KONTROLÜTan, MehmetDoktora, Bilgisayar Mühendisli§i BölümüTez Yöneti
isi: Prof. Dr. Faruk PolatOrtak Tez Yöneti
isi: Prof. Dr. Reda AlhajjHaziran 2009, 99 sayfaGen düzenleyi
i a§lar hü
re içindeki etkile³imleri modelledi§inden, yap�lar�n� anlamak ve on-lar� verimli bir ³ekilde kontrol edebilen mekanizmalar geli³tirmek çok önemlidir. Bu tez, buiki yönü ele almaktad�r. �lk problemde, gen düzenleyi
i a§lar�n yap�s�n� ö§renmek için, ç�kt�kalitesini art�r�rken berimsel gereksinimleri azaltan, birden fazla biyolojik veri tipini birliktekullanan ve yo§un dü§ümler için özel bir yöntem uygulayan yeni bir k�s�t-tabanl� modellemealgoritmas� önerilmektedir. K�s�t-tabanl� yap� ö§renme algoritmalar�, seyrek çizgeler için iyiperformans gösterirler ve seyreklik de nadir görülen bir durum de§ildir. Bununla beraber,gen düzenleyi
i a§lar gibi baz� alanlarda, yo§un bölgeler içeren çizgelere rastlanabilir ve öner-ilen algoritma bu durumla ba³a ç�kabilir. Algoritma, iyi bilinen bir yap� ö§renme algoritmas�olan PC algoritmas� tabanl�d�r ve onu birden fazla yönde geli³tirmektedir. Elimizde bir a§oldu§unda ise, ikin
i problem kar³�m�za ç�ka
akt�r; gen düzenleyi
i a§lar�n, çe³itli uygulamalariçin, temel mesele ölçeklenebilirlik olmak üzere kontrolü. Bir organizmada yüzler
e genin tekbir biyolojik aktiviteyi düzenlemede rol almas� mümkündür ve Boolean modellerde bile bu,muazzam büyüklükte bir durum uzay�na kar³�l�k gelir. Bu tez, büyük-ölçekli a§lara kontrolplanlar� bulmak için verimli yöntemler önermektedir. Bu tezde önerilen modelleme ve kon-trol algoritmalar� hem sentetik hem de gerçek veri kümelerinde test edilmi³tir. Test sonuçlar�,önerilen yakla³�mlar�n etkin ve verimli olduklar�n� göstermektedir.Anahtar Kelimeler: gen düzenleyi
i a§lar, modelleme, kontrol
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CHAPTER 1INTRODUCTION
1.1 Problem De�nition and MotivationProtein synthesis is one of the most essential fun
tions taking pla
e within a 
ell. A largenumber of di�erent proteins are produ
ed and 
onsumed inside the 
ells of living organisms.This is a

omplished by the help of the protein en
oders in the 
ell: the genes. Number ofgenes varies between organisms; thought to be between 20000 and 25000 in humans.Gene expression is the name given to the pro
ess of de
oding a gene into a protein, and geneexpression level 
an be de�ned as the amount of protein produ
ed from a 
ertain gene at a giventime. Sin
e the amount of a protein in the 
ell may 
hange the dynami
s of the 
ell, proteinshave to be produ
ed in an organized manner. This organization is performed by the genesthemselves; some proteins 
alled trans
ription fa
tors bind to some spe
ial regions on genesand initiate or a

elerate gene expression. Also there are some protein-protein intera
tions inthe 
ell that e�e
t gene expression. All these intera
tions 
onstitute a 
omplex network thatis 
alled a Gene Regulatory Network (GRN).There are two important questions about gene expression regulation in the 
ell:1. How 
an we dedu
e the relationships between genes in the 
ell? (i.e., whi
h gene regulateswhi
h other gene(s)?)2. Can we devise an intervention (or 
ontrol) strategy to modify the behavior of this me
h-anism by means of some external a
tions?Determining the relationships between genes is an important issue for biology and medi
ine.A GRN model provides the resear
hers the opportunity to understand the insights of 
ellularpro
esses and even to simulate these pro
esses. Drug dis
overy resear
h 
an also bene�t froma GRN model in determining new drug targets or the best one for a disease. In addition tothe experiments performed in vivo and in vitro, the relationships between the genes in a living
ell are being determined by in sili
o studies re
ently. This is due to re
ent in
rease in boththe quality and quantity of the available biologi
al data with the help of new te
hnologies su
has mi
roarrays. But, as expe
ted, this also has some 
hallenges involved, sin
e biologi
al datahave some amount of noise, missing values and a small sample size.1



Devising 
ontrol strategies for GRNs that will e�e
t the evolution of the network is impor-tant to avoid undesirable gene a
tivity pro�les. A 
ontrol or intervention strategy for a GRN
an be de�ned as a way to intera
t with the network in terms of some a
tions in order to rea
hsome pre-de�ned obje
tive(s). These interventions (or a
tions) are usually de�ned in terms of(in)a
tivation of 
ertain types of genes or proteins; the obje
tive is to rea
h (or avoid) a set ofstate(s) (or gene a
tivity pro�les) [17, 65, 66℄. There are so many di�erent examples for thistype of intervention strategy in biology and medi
ine; the most well-known ones are some ofthe methods that are used to treat 
ertain types of 
an
er. For instan
e, Ge�tinib is a drugused in the treatment of a type of lung 
an
er and inhibits (ina
tivates) the epidermal growthfa
tor re
eptor (EGFR) tyrosine kinase enzyme, whi
h stops un
ontrolled 
ell proliferation ofmalignant 
ells. Without this ina
tivation of EGFR, the 
ells may 
ontinue to divide beyondnormal limits. This and other targeted therapies that (in)a
tivate 
ertain types of mole
ulesin malignant 
ells have re
ently had a signi�
ant impa
t on the treatment of some types of
an
er [31℄.Based on the above questions, there are two problems investigated in this thesis. The �rst
an be stated as follows : devise a s
alable modeling algorithm that, given a set of biologi
aldata, will derive a partially dire
ted or undire
ted graph that represents the dependen
ies(or relationships) between the genes. The methods or algorithms proposed in this 
ontextwill be dis
ussed under the title �Gene Regulatory Network Modeling�. To state the se
ondproblem, a few other 
on
epts have to be de�ned �rst. For a given dynami
 (temporal) modelof a GRN, suppose we want to avoid the model rea
hing some of the states (or gene a
tivitypro�les); this is 
alled the obje
tive of the 
ontrol problem. Obje
tive is mapped to a 
ontrolproblem in terms of a reward fun
tion. This is usually de�ned in terms of some of the genesin the network [17, 65, 66℄, su
h as: avoid gene ACE2 being expressed. We 
all the gene(s) interms of whi
h the obje
tive is de�ned, the reward gene(s) and the gene(s) that are intervenedby external a
tions, the 
ontrol gene(s). Ea
h applied a
tion has a 
ertain 
ost; for exampleGe�tinib has a 
ertain pri
e in the market. Now the se
ond problem 
an be stated as follows:given a GRN, an obje
tive, reward gene(s) and 
ontrol gene(s), devise a poli
y (or strategy)to intervene the GRN as e�e
tive as possible to rea
h the obje
tive. The algorithms proposedin this 
ontext will be dis
ussed under the title �Gene Regulatory Network Control�.For both of these problems, the fo
us is on s
alability in addition to the quality of theoutput of the proposed algorithms. S
alability is one of the most important issues in GRNmodeling and 
ontrol as the number of genes in a genome is mu
h larger than the number ofvariables that 
urrent modeling and 
ontrol algorithms 
an handle.
2



1.2 Overview of the Proposed Approa
hesThis se
tion brie�y dis
usses the methods proposed in this dissertation. This overview of the
ontributions is divided into modeling and 
ontrol se
tions whose details exist in Chapters 3and 4, respe
tively.1.2.1 Gene Regulatory Network ModelingGaussian Graphi
al Modeling is a method re
ently used in GRN modeling. Based on themultivariate normality assumption, this 
lass of methods show promising performan
e on GRNmodeling. The �PC algorithm� is one of the su

essful algorithms that 
an be used in this
ontext. It 
an be used to derive a graphi
al model of the genes in a given data set by usingstatisti
al 
onditional independen
e tests. The graphi
al model output by the PC algorithm isa (partially) dire
ted graph where the nodes are genes and there exists an edge between gene
gi and gj if there is a dire
t relationship between gi and gj . We 
an also say that there is anindire
t relationship (or dependen
y) between the genes if there is a path between them in theresulting graph.The power of 
onditional independen
e tests depends on the sample size and the numberof elements in the 
onditioning set whi
h we will name hereafter as order following the namingin the PC algorithm literature. So as the order in
reases, the power (probability of makingthe right de
ision) of these tests de
reases, in the usual 
ase of a limited sample size. As thenumber of genes in gene expression data far ex
eeds the number of samples, the order in thePC algorithm 
an in
rease to a very large value. In addition to de
rease in power, this also
auses the algorithm to 
onsume too mu
h 
omputational resour
e sin
e there is an exponentialnumber of subsets to be tested as 
onditioning sets.There are two methods proposed in this dissertation to over
ome the problems asso
iatedwith using the PC algorithm (or other 
onstraint-based stru
ture learning algorithms) in GRNmodeling. The �rst method is a pro
edure to integrate multiple types of biologi
al data through
onditional independen
e tests. This way, the method aims at making better de
isions inthe tests by using the eviden
e 
oming from more than one sour
e. The idea here is toadapt the signi�
an
e level in the tests toward more easily a

epting (or reje
ting) the nullhypothesis a

ording to the eviden
e 
oming from the other sour
e. Two di�erent sour
es ofinformation used are the gene expression data and trans
ription fa
tor binding lo
ation data(ChIP-
hip) (see Chapter 2).There are various stru
ture learning algorithms that perform well for sparse graphs. Theseare the graphs where the expe
ted number of 
onne
tions for the nodes is small. While GRNsare also thought to be sparse, there also exist some dense nodes (genes). These nodes 
onstitutea problem for stru
ture learning algorithms due to (again) the exponential number of 
ondi-3



tioning sets in the 
onditional independen
e tests of the PC algorithm. For this, we proposeda se
ond method to identify the possible dense genes before exe
uting the modeling algorithmand treat those nodes di�erently from others during modeling. This di�erent pro
edure basi-
ally identi�es the 
onne
tions (or dependen
ies) by applying a greedy algorithm for the densenodes instead of the original exponential one.1.2.2 Gene Regulatory Network ControlThe two frameworks within whi
h 
ontrol problems have been investigated are Markov De
isionProblems (MDPs) and Fa
tored Markov De
ision Problems (FMDPs). Both have di�erentadvantages whi
h may be the reason that they are both widely investigated and used in thema
hine learning 
ommunity. While MDPs are easier to implement and understand, FMDPs
an be used for some of the problems whi
h are pra
ti
ally very hard to attempt with MDPs.The method proposed in this work for s
alability in MDPs 
onsiders the observation thatthe e�e
ts of all genes in a given data set for the 
ontrol problem are not equal. Let V be theset of genes in a given data set and assume the 
ontrol problem is de�ned as in Se
tion 1.1.Given 
ontrol and reward genes, gc and gr, respe
tively, we argue that some genes in the set
V \ {gc, gr} have a negligible e�e
t on the solution of the problem. To estimate those genes, as
ore is assigned to ea
h of the genes in V \ {gc, gr}; the smaller the s
ore the more negligiblethat gene is. The proposed s
ore is based on the In�uen
e 
on
ept dis
ussed in [78℄. Thereis one important property of this redu
tion pro
edure that the irrelevant genes are eliminatedfrom the given data even before deriving a model from the data. So, 
onsider the steps of thepro
edure as: �derive a model from the given data, formulate the 
ontrol problem as an MDP,solve the 
ontrol problem�; this method is useful for the s
alability of the employed pro
edureas a whole.A GRN is naturally fa
torized, i.e., ea
h gene 
orresponds to a fa
tor in the model. Butto the best of our knowledge, the GRN 
ontrol problem has not been formalized in an FMDPframework before. In this work, we de�ned the problem as an FMDP for the �rst time. In anFMDP, the transition probabilities of the network are modeled using fa
tored representations;by a dynami
 Bayesian network for instan
e. And this usually saves both spa
e and time. Butfor some of the problems, FMDPs also require exponential resour
es. So a redu
tion methodfor FMDPs may also have a signi�
ant e�e
t on the requirements. Based on this argument, ade
omposition method that 
an output good approximate solutions is proposed for FMDPs.Given an FMDP, this method simply de
omposes the dynami
 Bayesian network asso
iatedwith the transition probabilities into a number of networks without 
hanging the relationshipsbetween reward and 
ontrol genes. This way, by simplifying the problem but preserving the�power� of the 
ontrol gene, the FMDP solver 
an fo
us only on important parts of the problemand this saves signi�
ant 
omputational resour
es.4



1.3 Organization of the ThesisThe rest of this dissertation �rst 
overs the basi
 ba
kground required to understand the pro-posed methods. Then the methods are thoroughly des
ribed and their power is demonstratedby a number of experiments. The rest of this se
tion brie�y overviews the 
ontent of theremaining 
hapters.The next 
hapter dis
usses some preliminary 
on
epts required to understand the proposedmethods. In addition to some biologi
al ba
kground for intera
tions of genes in the 
ell,mi
roarray te
hnology and existing data types, Chapter 2 also in
ludes basi
s of graphi
almodeling of GRNs, the modeling algorithms used (the PC algorithm and Probabilisti
 Booleannetworks) and Markov de
ision problems.Chapter 3 in
ludes the proposed methods for GRN modeling. First, the method for densenodes is introdu
ed; the greedy pro
edure applied for these nodes and estimating them fromprior knowledge is dis
ussed. Then using prior knowledge in 
onditional independen
e testsby adapting the signi�
an
e level in these tests is introdu
ed. The related work in this �eld isdis
ussed and the gap 
overed by these methods is expli
itly stated in the last two se
tions ofChapter 3, respe
tively.Chapter 4 gives the details of the redu
tion algorithms proposed for 
ontrol. It is dividedinto two main se
tions where the �rst one dis
usses the method for the MDP framework andthe se
ond one is about the method proposed for FMDPs. Related work on GRN 
ontrol isalso in
luded in the 
hapter. The 
ontributions of the 
hapter are expli
itly stated in the lastse
tion.Experimental results are reported and dis
ussed in Chapter 5. Naturally, the results formodeling and 
ontrol are given in two separate se
tions and those se
tions are also dividedinto subse
tions for ea
h experiment. Results for both syntheti
 and real data sets are givenin this 
hapter.Finally, Chapter 6 in
ludes the summary of the thesis and the future resear
h dire
tionsthat are planned to be investigated to extend the work dis
ussed.1.4 Publi
ationsThe 
ontributions des
ribed in this dissertation have been validated by the experimental studydetailed in Chapter 5. Further, di�erent parts of this dissertation have been published inreputable 
onferen
es and high quality journals 
overed by S
ien
e Citation Index with highimpa
t fa
tor. Here is a partial list of the already published papers.
• M. Tan, R. Alhajj and F. Polat, �Automated Large-S
ale Control of Gene RegulatoryNetworks,� IEEE Transa
tions on Systems, Man, and Cyberneti
s-B, (forth
oming).5



• M. Tan, F. Polat and R. Alhajj, �Large-S
ale Approximate Intervention Strategies forProbabilisti
 Boolean Networks as Models of Gene Regulation,� Pro
eedings of IEEESymposium on Bioinformati
s and Bioengineering, O
t. 2008.
• M. Tan, M. Alshalalfa, F. Polat and R. Alhajj, �Combining Multiple Types of Biologi
alData in Constraint-Based Learning of Gene Regulatory Networks,� Pro
eedings of IEEESymposium on Computational Intelligen
e in Bioinformati
s and Computational Biology,Sep. 2008.
• M. Tan, F. Polat and R. Alhajj, �Feature Redu
tion for Gene Regulatory Network Con-trol,� Pro
eedings of IEEE Symposium on Bioinformati
s and Bioengineering, O
t. 2007.
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CHAPTER 2PRELIMINARIES
This dissertation investigates and proposes novel approa
hes for gene regulatory network mod-eling and 
ontrol. The proposed approa
hes integrate 
on
epts and te
hniques from di�erentareas, in
luding mole
ular biology, graphi
al modeling, 
onditionally dependent and indepen-dent variables, Bayesian networks, probabilisti
 Boolean networks and Markov De
ision Prob-lems. All these are 
overed in this 
hapter in a step to turn the dissertation into a self 
ontaineddo
ument.To 
over the aforementioned topi
s, this 
hapter is organized as follows. Se
tion 2.1 
oversthe biologi
al ba
kground, in
luding the basi
 mole
ular 
omponents of a 
ell, the mi
roarrayte
hnology and existing biologi
al data types. Chara
teristi
s of the graph modeling te
hniquesare dis
ussed in Se
tion 2.2. MDPs are presented in Se
tion 2.3. Se
tion 2.4 dis
usses how theGRN modeling and 
ontrol approa
hes proposed in this thesis bene�t from these 
on
epts andte
hniques.2.1 Biologi
al Ba
kgroundThis se
tion brie�y 
overs the basi
s of biology as required to understand the 
ontext of thisthesis. It gives an overview of the 
ell and its stru
ture. We dig a bit deeper to understand themole
ules (protein, DNA, RNA) in the 
ell and how they 
ontrol the 
ell fun
tions. Then, weintrodu
e the biology of genes, trans
ription, and gene expression. The mi
roarray te
hnologymight be 
onsidered as a major 
onstituent of the advan
e in gene expression data analysis.DNA mi
roarray te
hnology has attra
ted tremendous interest in both the s
ienti�
 
ommunityand the industry. The data generated by mi
roarray based experiments has been used fordisease 
lassi�
ation and 
lass predi
tion.2.1.1 Genes, Proteins and Their Intera
tions in the CellGiving rise to o�springs is essential for all living organisms. Ea
h o�spring inherits the prop-erties of its parent 
ell or organism. This passing of traits is 
alled heredity and genes are7



the basi
 units in a living 
ell/organism that are responsible for heredity. A gene is en
odedin nu
lei
 a
ids in most of the living organisms. This nu
lei
 a
id is 
alled deoxyribonu
lei
a
id (DNA). The other important nu
lei
 a
id in the 
ell is 
alled ribonu
lei
 a
id (RNA).DNA is 
omposed of the long 
hain of four di�erent bases: adenine (A), 
ytosine (C),guanine (G) and thymine (T) where these bases together with a sugar mole
ule and a phosphategroup are 
alled nu
leotides. These nu
leotides are the same in all living organisms but theirsequen
es and amount are di�erent in ea
h organism. DNA exists as a double helix stru
turein a 
ell, where the nu
leotides pair up; A pairs with T and G pairs with C.RNA is the other important nu
lei
 a
id in the 
ell. Instead of a double strand in DNA,it is 
omposed of a single strand of nu
leotides where T is repla
ed by Ura
il (U). There existdi�erent types of RNA in a 
ell; ea
h of these perform a di�erent fun
tion. Messenger RNA(mRNA) is the most important one whi
h �
arries� the geneti
 information from DNA to theribosome, the organelle in the 
ell that produ
es proteins. The other types of RNA also playimportant roles in protein synthesis pro
ess and gene regulation, and these are transfer RNA(tRNA), Mi
roRNA (miRNA), small nu
lear RNA (snRNA) and ribosomal RNA (riRNA).DNA has all the ne
essary information for the fun
tioning of a 
ell, i.e., it in
ludes all thegenes of an organism. Genes 
orrespond to small segments on DNA where ea
h gene en
odesa protein essential for the 
ell. In addition to this, DNA has long sequen
es of non-
odingregions as well, 
orresponding to no known fun
tion.Proteins are one of the most important ma
romole
ules and parti
ipate in every kind ofa
tivity in the 
ell. The basi
 unit that forms a protein is an amino a
id. All proteins are
omposed of 20 di�erent types of amino a
ids. A gene en
odes a protein by determining whi
hof these amino a
ids will be used for the produ
tion of a protein. In addition to the amino a
idsequen
e, 3D stru
ture of a protein is also important in determining its fun
tion in the 
ell.Proteins 
an be 
lassi�ed into two groups based on their fun
tion; stru
tural and regulatory.Stru
tural proteins, as the name implies, have roles in forming the shape of a living organismand regulatory proteins in
lude enzymes and trans
ription fa
tors (TFs) that 
atalyze therea
tions and bind to DNA to 
ontrol protein synthesis, respe
tively.The 
entral dogma of mole
ular biology states that the information transfer in a 
ell ismainly divided into three stages; repli
ation, trans
ription and translation. Repli
ation is thestage where DNA dupli
ates itself for a new o�spring of the 
ell. Trans
ription is the pro
ess of�
opying� the information on DNA to a mRNA. Then, after trans
ription is 
ompleted, mRNAis translated into a protein by the help of ribosome and some enzymes.The property of proteins that makes them essential for the 
ell is their ability to bind toother mole
ules. For example they 
an bind to other proteins forming 
omplex proteins or they
an bind to spe
i�
 regions on DNA 
alled promoters to 
ontrol gene expression. A gene is saidto be expressed if it is trans
ribed into mRNA. TFs are the proteins that bind to promoters8



and regulate gene expression. A TF 
an either be monomeri
 or be the result of binding ofmore than one protein. The intera
tion between a TF and the promoter region of a gene onDNA 
an be named as a gene-protein intera
tion. All these protein-protein and gene-proteinintera
tions 
onstitute a large network of intera
tions and the gene expression is 
ontrolled bythis network. This network is usually referred to as a gene regulatory network (GRN) and 
anbe represented as a graph (See se
tion 2.2) where the nodes are genes/TFs and the edges arethe relationships between them.2.1.2 Mi
roarray Te
hnologyMi
roarray is the name of the te
hnology that gave resear
hers the opportunity to determinethe expression levels of large numbers of genes in parallel. The data produ
ed by a mi
roarrayexperiment provides the ability to see a large proportion of the genes in the genome of anorganism. This se
tion dis
usses the 
omplementary DNA (
DNA) mi
roarray experimentswhi
h is the most widely performed one [96℄.Hybridization is the pro
ess of binding of two 
omplementary single stranded nu
lei
 a
ids.DNA 
an be produ
ed from mRNA by a pro
ess 
alled reverse trans
ription with the help ofthe enzyme, reverse trans
riptase. This DNA is 
alled 
DNA and it 
an hybridize to mRNA.These two 
on
epts form the basis for the 
DNA Mi
roarray experiments. The steps of a 
DNAmi
roarray experiment are given in Figure 2.1 and 
an be enumerated as follows:1. Target DNA preparation2. Slide preparation3. Printing of DNA on 
hips4. 
DNA preparation and labeling5. Hybridization6. S
anningMi
roarray 
hips are 
onstru
ted by 
ommer
ial 
ompanies by polymerase 
hain rea
tion(PCR) methodology. PCR produ
es single stranded DNAs to spot on a glass slide. So ea
h spot
ontains numerous identi
al 
opies of a gene from the organism used. The genes 
orrespondingto ea
h spot are re
orded. Then by reverse trans
ription, the 
DNAs of interest are produ
ed.
DNA mi
roarray experiments are usually performed to 
ompare two types of 
onditions oftwo di�erent 
ells where one represent the experimental 
onditions and other represent thereferen
e 
onditions. As shown in Figure 2.1, these 
an be 
an
er and normal 
ells. 
DNAs forboth 
onditions should be labeled by in
orporating �uorese
ently labeled nu
leotides duringreverse trans
ription. Usually they are labeled with either a red or a green dye, where ea
h9



Figure 2.1: Steps of a mi
roarray experiment (adapted from [94℄)
olor labels either experimental or referen
e 
onditions. Then both types of 
DNA are puton the same slide for hybridization with the DNA on the mi
roarray 
hip. This hybridizationpro
ess generally lasts for one night and after this, in addition to hybridized 
DNA, there willalso be some amount un-hybridized 
DNA on the 
hip of experimental or referen
e 
onditions.So the 
hips are washed in this step to remove any remaining unbound 
DNAs. Two imagesare then produ
ed from the 
hip by s
anning, where one image is for one 
olor and the otheris for the other 
olor. A merged image is also produ
ed from the two images. This image isfurther pro
essed by image pro
essing te
hniques to produ
e readings for the green and redlabels. The ratio of red to green or vi
e versa outputs the relative expression level of the genesin the experimental 
onditions.2.1.3 Existing Biologi
al Data TypesIn this se
tion, we review a set of data types that are widely used by the bioinformati
s
ommunity. This set also in
ludes the biologi
al data types analyzed in this thesis.
10



Gene Expression DataGene expression data Dexp, obtained usually from mi
roarray experiments, is an m×n matrixof expression values. Dexp
ij entry of this matrix 
orresponds to the expression value of gene

i under 
ondition j. There are two types of expression data widely used; time series and
lassi�
ation (or sometimes referred to as stati
) data.Time series data, as the name implies, has the 
hange of expression values of genes overtime. So the mi
roarray experiment is designed to get the measurements of expression overa number of time steps. This type of data is extensively studied and also introdu
es some
hallenges in both experimental design and analysis [4℄.Stati
 or 
lassi�
ation data is the snapshot of the expression levels of genes in di�erentsamples. These di�erent samples are usually used to 
ompare two or more di�erent types of
ells; 
an
er versus normal tissue samples for instan
e. Unlike the 
ase in time series data,these are assumed to be independent and identi
ally distributed.Trans
ription Fa
tor Binding DataThis type of data is obtained by a te
hnique 
alled genome-wide lo
ation analysis [70℄. Thismethod is a 
ombination of modi�ed 
hromatin immunopre
ipitation(ChIP) and DNA mi-
roarray analysis. ChIP method used here provides the ability to dete
t the binding site ofany protein in vivo [63℄.TF binding data Dtf , at the end, is in the form of a m× n matrix where m is the numberof genes in the experiment and n is the number of TFs. Dtf
ij entry of the data is a p-valueindi
ating the level of 
on�den
e that TF j binds to the promoter region of gene i; the smallerthe p-value, the larger the probability of binding [53℄. This type of data is one of most e�e
tivein determining the asso
iations between genes in an organism [6, 34, 53, 105℄.Protein-protein Intera
tion DataAs mentioned before, after synthesis, proteins 
an form 
omplexes with other proteins for fun
-tioning. Protein-protein intera
tion (PPI) data in
lude physi
al intera
tions between proteinsin an organism. A physi
al intera
tion here refers to the experimentally veri�ed binding oftwo amino a
id 
hains. Su
h data sets are useful for working on the spe
i�
 proteins as wellas whole genome intera
tions [39, 74, 84℄. PPI data is usually in the form of a 0-1 matrix Dppof intera
tions, where ea
h entry Dpp

ij determines whether proteins i and j are experimentallydetermined to be intera
ting.
11



2.1.4 Pre-pro
essing Gene Expression DataGene expression data may need some pre-pro
essing before mining meaningful knowledge. The�rst reason for this is the la
k of standardization in the experiments. This not only introdu
esdi�eren
es in readings in the same 
onditions but also brings some noise to the data. The se
ondreason is that data have many null entries; i.e., for a given gene some expression values maynot be available. Normalization is the pre-pro
essing method that helps remove the noise andmake the expression values 
omparable for di�erent experiments. Pre-pro
essing methods alsoexist for imputing missing values in gene expression data by 
hanging the original distributionof data as little as possible. It has also been shown that pre-pro
essing the data has 
ertaine�e
ts on gene network inferen
e [56℄. Sin
e some methods work on dis
rete data rather than
ontinuous, dis
retization of gene expression data 
an also be listed among the pre-pro
essingsteps.NormalizationSeveral methods have been proposed for normalization of gene expression data [69, 100℄. The�rst one is based on the 
on
ept of house-keeping genes. These genes are assumed to be alwaysa
tive at a 
ertain level of expression. So the expression level of these genes is used as areferen
e for normalization. The expression levels of other genes are divided by the expressionlevel of the house-keeping gene in this type of normalization.The se
ond one is 
alled total intensity based normalization. This method is based on theassumptions that the mRNA amount for ea
h sample 
ompared is equal and the same numberof labeled mole
ules hybridizes to the arrays for the samples, where the intensity here refersto the readings of green or red labeled spots on the slide after pro
essing the �nal image ofmi
roarray 
hip. A normalization fa
tor is 
al
ulated as the ratio of the sum of red to greenintensities and ea
h intensity value is multiplied by this fa
tor su
h that the mean ratio ofintensities be
ome 1.Missing value imputationMost of the data mining algorithms require 
omplete data. For this reason, several missingvalue imputation methods have been proposed for gene expression data [88℄. Of several meth-ods, the method based on the k-nearest neighbor (KNN) algorithm is the most widely used.The KNN algorithm simply 
hooses the k other genes that are most similar to the gene thathas a missing value. Then a weighted average of these k genes are imputed as the value of thegene. The similarity metri
 used here is very important where Eu
lidean distan
e is proposedin [88℄.
12



Dis
retizationDis
retization is one of the issues in gene expression data pro
essing that still su�ers fromgeneral 
onsensus. There are numerous algorithms proposed for dis
retizing data [57℄. Thesimplest one divides the interval between minimum and maximum values of a given attributeinto a given number of se
tions (bins). Ea
h bin is then assigned a di�erent dis
rete number.Ea
h expression level is mapped to the 
orresponding dis
rete number. The quantization level(number of dis
rete bins) be
omes important in almost all of the dis
retization methods, where2 or 3 is 
ommon for gene expression data 
orresponding to {ON,OFF} and {under-expression,baseline, over-expression}, respe
tively [29, 101℄.2.2 Graphi
al ModelingA graph G is de�ned as a pair (V,E), where V is a set of nodes and E is a list of (ordered orunordered) pairs (i, j) to represent that nodes i and j are 
onne
ted in G. We will use Eij todenote the edge between i and j. This 
onne
tion may have many interpretations dependingon the domain. For example, for GRNs 
onsidered in this work, the nodes are the genesand the existen
e of Eij denotes that the expression level of gene i is in some way relatedto the expression level of gene j. Graph G 
an be undire
ted, whi
h impli
itly means that
Eij ∈ G ⇒ Eji ∈ G, i.e., dire
tion is not important. On the other hand, a Dire
ted A
y
li
Graph (DAG) is a graph where the edges are dire
ted and the graph does not 
ontain any
y
les. It is also possible for a graph to have both undire
ted and dire
ted edges; su
h a graphis usually 
alled a Partially Dire
ted A
y
li
 Graph (PDAG), whi
h also does not in
lude any
y
les. In a graph G, two nodes i and j are 
alled adja
ent if Eij ∈ E or Eji ∈ E.A DAG G and a probability distribution P are said to be faithful to ea
h other if Gdenotes all and only the 
onditional independen
e relationships in P in the form of what is
alled d-separations. To better understand the de�nition of d-separation, it is ne
essary to �rstintrodu
e the 
onditional independen
e relationship and some graph related 
on
epts.Two variables i and j are said to be 
onditionally independent with respe
t to a probabilitydistribution given a set of variables S if and only if:

P (i, j|S) = P (i|S)P (j|S) (2.1)In this work, we use Ind(i, j|S) to denote the independen
e relationship expressed in Eq (2.1).A path P in a DAG G is a set of nodes {i1, i2, i3, ..., in}, su
h that starting at node i1 we
an rea
h node in by following the sequen
e of edges Eikik+1
(k = 1 to n). In a DAG G, node iis 
alled a 
ollider in a path if there are two nonadja
ent nodes j and k su
h that Eji ∈ E and

Eki ∈ E. In this 
ase, the triplet (j, i, k) is 
alled v-stru
ture (see Figure 2.2). An undire
tedpath U is said to be blo
ked by a set of nodes W if any of the following two 
onditions hold13



i

kj

Figure 2.2: (j, i, k) v-stru
ture
∀i ∈ U :

• i is a 
ollider, and neither i nor its des
endants are in W
• i is a non-
ollider, and it is in W .Two nodes i and j are said to be d-separated by a set of nodes S if and only if every undire
tedpath between i and j is blo
ked by S.It is possible to have more than one DAG generating the same probability distribution

P [14℄; this de�nes an equivalen
e 
lass among DAGs with respe
t to P . The skeleton ofa DAG is the undire
ted graph obtained by repla
ing dire
ted edges with undire
ted ones.Two DAGs are equivalent if and only if they have the same skeleton and the same set of v-stru
tures [91℄. It is possible to represent su
h an equivalen
e 
lass with a PDAG. A PDAGthat 
ompletely represents an equivalen
e 
lass of DAGs is 
alled Complete Partially Dire
tedA
y
li
 Graph (CPDAG). The aim of most of the stru
ture learning algorithms is to �nd su
ha CPDAG representing the equivalen
e 
lass of DAGs faithful to the underlying probabilitydistribution P .A Bayesian Network (BN) is a tuple (G,P ), where G = (V,E) is a DAG and P is a jointprobability distribution on V . Both G and P satisfy the Markov 
ondition in a BN; all thevariables are independent of their non-des
endants given their parents. A BN is said to befaithful if all and only 
onditional independen
e relationships are the ones that are entailed byMarkov 
ondition.Stru
ture learning algorithms for BNs refer to a set of algorithms that try to �nd theDAG 
omponent of the BN given some data sampled from a probability distribution. Thesealgorithms basi
ally fall into two 
ategories. The �rst 
ategory is the sear
h-and-s
ore basedalgorithms, whi
h sear
h the spa
e of DAGs (or CPDAGs) for the graph that maximizes a s
orefun
tion. The other 
lass of algorithms is known as 
onstraint-based algorithms [82℄; the latteralgorithms start with a fully 
onne
ted graph and sear
h for 
onditional independen
ies in theprobability distribution, generally by means of statisti
al 
onditional independen
e tests.In this thesis, we assume that the data are from a multivariate normal distribution. Thisassumption has been widely used re
ently in GRN modeling, e.g., [11, 42, 75, 95℄, where thename GGM is given to this modeling framework. Under this assumption, vanishing partial 
or-relations imply 
onditional independen
e [52℄. Sample partial 
orrelations 
an be 
al
ulated14



from the given data with various methods, in
luding regression, inversion of 
ovarian
e (
or-relation) matrix or re
ursion. Here, we use the method and mathemati
al notation of Kalis
het al. [43℄.To test 
onditional independen
e, Fisher's z-transformation is applied to a partial 
orrela-tion. This transformation 
an be expressed as follows:
Z(i, j|S) =

1

2
log

(

1 + ρ̂i,j|S

1 − ρ̂i,j|S

) (2.2)where ρ̂i,j|S denotes the sample partial 
orrelation of i and j 
onditional on set S. Then, givena signi�
an
e level α, the null-hypothesis H0(i, j|S) : ρi,j|S = 0 is reje
ted against the twosided alternative hypothesis H1(i, j|S) : ρi,j|S 6= 0 if,
√

n− |S| − 3|Z(i, j|S)| > Φ−1(1 − α/2) (2.3)where Φ is the 
umulative distribution fun
tion of normal distribution with mean 0 and vari-an
e 1, i.e., N(0, 1).2.2.1 The PC AlgorithmOne of the most well-known 
onstraint-based stru
ture learning algorithms is the PC algo-rithm [82℄. The algorithm is 
omposed of two parts; the �rst part 
onstru
ts the skeletonof the graph, and the se
ond part orients the undire
ted edges in the skeleton. Given inAlgorithm 1 is the pro
ess whi
h is usually referred to as the �rst part of PC algorithm.The proposed methods in this thesis modify the �rst part of the PC algorithm. The edgeorientation part does not need any modi�
ations in order to be applied to the results presentedhere. If we assume a faithful distribution to a DAG G and a perfe
t knowledge of 
onditionalindependen
e relationships, the PC algorithm 
orre
tly infers the skeleton of the underlyingDAG G [82℄. The worst-
ase 
omplexity of the PC algorithm is O(pordm), where ordm is themaximum value of ord (see Algorithm 1) and p is the number of variables. Moreover, giventhe above assumptions, if we denote the maximum number of neighbors of a node in G by q,
ordm ∈ {q − 1, q}; and the algorithm is known to s
ale well for sparse graphs [43℄.2.2.2 Probabilisti
 Boolean NetworksPBNs are probabilisti
 extensions of Boolean Networks (BoNs), whi
h were �rst introdu
ed byKau�mann [46℄. We will brie�y dis
uss here basi
 
on
epts about BoNs and PBNs; the readeris referred to [46, 78, 79℄ for further details.A BoN G(V, F ) is de�ned as a set of nodes V = (x1, x2, ..., xn) and a set of Booleanfun
tions F = (f1, f2, ..., fn). Every node in V has a k-ary (k ≤ n) Boolean fun
tion fi thatdetermines its value. Without loss of generality, fi 
an be 
onsidered as n-ary with some15



Algorithm 1 PC algorithm (�rst part)Input: Data D, Set of nodes V , Conditional independen
e test IndOutput: Skeleton of the graph G, Separator information Sep1: Set G to the fully 
onne
ted undire
ted graph of V2: ord = 03: repeat4: repeat5: Choose new adja
ent ordered pair of nodes i, j with i having at least ord neighbors6: repeat7: Choose new set S of nodes adja
ent to i, where |S| = ord8: if Ind(i, j|S) then9: Delete edge i, j from G10: Sep(i, j) = S11: end if12: until (edge i, j is deleted) or (all di�erent sets S of length ord have been tested foredge i, j)13: until all pairs of adja
ent nodes have been tested14: ord = ord + 115: until number of neighbors for ea
h node in G is less than ord16: return G,Sep
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t

t + 1

x1
x2 x3

x3
x2x1Figure 2.3: Wiring diagram of a BoN.(x1(t+1) = f1(x1(t), x2(t));x2(t+1) = f2(x1(t));x3(t+

1) = f3(x1(t), x3(t))).�
titious (unne
essary) variables. A variable xi is �
titious for f if,
f(x1, ..., xi−1, 0, xi+1, ..., xn) = f(x1, ..., xi−1, 1, xi+1, ..., xn) (2.4)A variable that is not �
titious is 
alled essential. Wiring diagrams are useful in representinga BoN [3℄. Figure 2.3 shows an example wiring diagram.As 
an be seen, the dynami
s of a BoN is 
ompletely deterministi
. The only probabilisti
aspe
t of a BoN is the sele
tion of the initial starting state. If we represent the initial state ofthe network with a joint probability distribution D(x) where x ∈ {0, 1}n, it 
an be shown thatthe dynami
s 
an be modeled by the equation below that resembles a Markov 
hain;

Dt+1 = ψDt (2.5)where ψ is a mapping of the form ψ : {0, 1}2n

→ {0, 1}2n.A BoN represents gene expression by using only two levels: ON and OFF. The expressionlevel for a gene gi at time step t + 1 is related to the expression level of ki other genes attime t by a Boolean fun
tion, f (i)(gi1 , ..., gik
), where genes gi1 to gik

are 
alled parents of
gi. So, a BoN is de�ned by a set of genes V = (g1, ..., gn) and a set of Boolean fun
tions
F = (f (1), ..., f (n)). On the other hand, PBNs assign a set of fun
tions to ea
h gene insteadof a single fun
tion. At ea
h time step, a fun
tion from that set is 
hosen to determine thenext-step value for a gene. Formally, a PBN is de�ned by a set of genes V = (g1, ..., gn) and aset F = (F1, ..., Fn), where ea
h Fi is a set of fun
tions for gi, Fi = {f

(i)
j }j=1,...,li. Ea
h f (i)

jis one of the possible fun
tions to determine the next state of gi, and li is the number of su
hfun
tions. The probability of 
hoosing f (i)
j in Fi to predi
t the next state of gi is denoted c(i)j .Given binary quantized gene expression data, deriving a PBN model requires �nding F and

c
(i)
j for all i and j. To do this, a measure of how well a fun
tion predi
ts the value of a geneis needed. Coe�
ient Of Determination (COD) [23℄ is one su
h measure. COD 
ompares thepredi
tion performan
e of a fun
tion with the best 
onstant estimator in the absen
e of otherinformation. Assume that we are given the parents Pi of gi and a fun
tion f (i)

j (Pi) to predi
t17



gi. The COD θi
j of f (i)

j is de�ned as follows:
θi

j =
εi − ε(gi, f

(i)
j (Pi))

εi
(2.6)where εi is the error of the best 
onstant estimate of gi and ε(gi, f

(i)
j (Pi)) is a probabilisti
error measure [79℄. Given θi

j values, it is straightforward to de�ne c(i)j [79℄:
c
(i)
j =

θi
j

∑li
m=1 θ

i
m

(2.7)Best-Fit extension paradigmFor a given set of parent genes Pi, f (i)
j 
an be derived using various methods. In our work, weuse best-�t extension paradigm of Lähdesmäki et al. [51℄.Lähdesmäki et al. [51℄ try to derive a model for the gene regulatory networks by usingBoolean networks. They study on two di�erent aspe
ts of the problem, that are 
alled the
onsisten
y problem and the best-�t extension problem. The 
onsisten
y problem (or Extensionproblem) is 
on
erned with deriving a 
onsistent fun
tion that is a Boolean fun
tion f froma 
lass of fun
tions C that perfe
tly separate the given true and false examples in the givendata. A partially de�ned Boolean fun
tion pdBf(T, F ) is de�ned by two sets, T and F thatdenote the true and false examples in the given data, respe
tively. If, for a Boolean fun
tion

f , we de�ne the true and false examples as T (f) = {x ∈ {0, 1}n : f(x) = 1} and F (f) =

{x ∈ {0, 1}n : f(x) = 0} then formally, 
onsisten
y problem is simply de�ned as whether thereexists a 
onsistent extension f for pdBf(T, F ) su
h that T ⊆ T (f) and F ⊆ F (f). The otherproblem that is investigated by the authors is the best-�t extension problem. If we assume weare given, in addition to a pdBf(T, F ), a set of weights w(x) for all examples x ∈ T ∪ F thenthe best-�t extension problem is to �nd a Boolean fun
tion f that minimizes the error whi
his given as,
ε(f) = w(T ∩ F (f)) + w(F ∩ T (f)) (2.8)where the weight of a set is de�ned as the sum of the weights of individual elements of the set.For a network of n-nodes, the algorithms for solving the 
onsisten
y problem for n-variableand k-variable fun
tions are given where 0 ≤ k ≤ n. The algorithms rely on the fa
t that tosolve the 
onsisten
y problem, T and F must be disjoint. The algorithm for n-variable and

k-variable fun
tions simply �lls an initially empty truth-table a

ording to the given data. Anin
onsisten
y 
an be dete
ted while �lling, whi
h means that there does not exist a solution forthe 
onsisten
y problem. The same algorithm 
an be applied also for the k-variable fun
tionsby exe
uting the algorithm for all k-element subsets of variables. Then ea
h undeterminedentry in the table is �lled arbitrarily with 0 or 1.The solution for the best-�t extension problem is also similar. The same problem wasinitially shown to be polynomial time solvable using another method by Shmulevi
h et. al. [80℄.18



The idea here is to de�ne two 2n dimensional ve
tors c(0) and c(1), where ea
h element in theve
tors indexes a possible variable assignment to n variables for negative and positive examples,respe
tively. So the ith element 
orresponds to the weight of the ith variable assignment (forexample for n=3, the variable assignment {1, 1, 1} 
orresponds to the 7th index). Then thesolution is shown to be simply the fun
tion f that has the truth-table fi = argmaxjc
(j)
i , wherefi denotes the output value for the ith indexed variable assignment for input variables of f .Then the authors give an algorithm to �nd all fun
tions that have error less than a threshold.The results are given on the 
ell-
y
le data of Spellman et al. [81℄ where the fun
tions fora number of genes are identi�ed having error less than 5 for a unit weight assigned to ea
hvariable assignment.In this work, we use publi
ly available Matlab implementation of Best-Fit Extension inPBN-Toolbox1.2.3 Markov De
ision ProblemsA MDP is formally de�ned as a quadruple (S,A, T,R), where S is the set of states, A is the setof a
tions, T is the transition probability fun
tion su
h that T (s, a, s′) denotes the probabilityof the next state being s′ given the 
urrent state s and a
tion a, and R is the reward fun
tionthat represents the obje
tive of the 
ontrol pro
ess. Any MDP is asso
iated with a performan
e
riterion. The performan
e 
riterion we adapt is the in�nite horizon total dis
ounted reward
riterion. So the obje
tive is to maximize the total dis
ounted reward: ∑

t β
tRt(s, a), where

Rt(s, a) is the immediate reward of performing a
tion a in state s at time t and β ∈ (0, 1) isthe dis
ount fa
tor. In this work, we assume that Rt and β are independent of t; so we omitsubs
ript t after this point.Solution to an MDP is 
alled a poli
y, π; it is a mapping from states in S to a
tions in A.Every π de�nes a value fun
tion V π from S to real numbers. V π(s) is the total dis
ountedfuture reward of 
hoosing an a
tion a a

ording to π in state s, and following π thereafter. V π
an be found iteratively using the following equation:
V π

k+1(s) = R(s, π(s)) + β
∑

s′

T (s, π(s), s′)V π
k (s′) (2.9)where iteratively applying Eqn 2.9 is 
alled poli
y evaluation.Optimal poli
y π∗ is the best poli
y in terms of the given performan
e 
riterion. In our
ase, it is the poli
y that a
hieves maximum possible in�nite horizon dis
ounted future reward.Value fun
tion 
orresponding to π∗ is the optimal value fun
tion, V ∗, whi
h 
an also be found1available at: �Probabilisti
 Boolean Networks, http://personal.systemsbiology.net/ilya/PBN/PBN.htm,a

essed 1-June-2009� 19



iteratively using the following Bellman update:
∀s ∈ S V ∗

k+1(s) = maxa[R(s, a) + β
∑

s′

T (s, a, s′)V ∗
k (s′)] (2.10)Given all 
omponents of an MDP, Eqn 2.10 
onverges to the unique V ∗ as k → ∞. From

V ∗, π∗ 
an be found as:
π∗(s) = argmaxa[R(s, a) + β

∑

s′

T (s, a, s′)V ∗(s′)] (2.11)With arbitrary initialization of V0, the algorithm that uses Eqn 2.10 to �nd V ∗ is 
alledvalue iteration [5℄. One simple stopping 
riterion for value iteration is:
||Vk+1 − Vk|| ≤

ǫ(1 − β)

2β
(2.12)where ||X || = max{|x| : x ∈ X} denotes maximum norm. Eqn 2.12 ensures Vk+1 is within ǫ/2of V ∗ for any state [68℄.Another well-known algorithm for solving an MDP is the poli
y iteration algorithm [68℄.Instead of starting with arbitrary V , poli
y iteration starts with an arbitrary poli
y π, and�nds V π using Eqn 2.9. Then for all states s, it sear
hes for an a
tion a that satis�es thefollowing equation:

V π(s) < R(s, a) + β
∑

s′

T (s, π(s), s′)V π(s′) (2.13)If found, it updates π(s)=a, and repeats the poli
y evaluation and update steps until 
onver-gen
e 
riterion is met.There are several other proposed methods for solving MDPs. We refer the reader to thebooks [5, 68℄ for further details.2.3.1 Fa
tored MDPsA FMDP is a representation language for MDPs to exploit the stru
ture of the 
ontrol problem.The FMDP framework was �rst proposed by Boutilier et al. [8℄. In most problems, T 
an berepresented in terms of a set of state variables, where in our 
ase these variables 
orrespond togenes.As representing T for a MDP requires exponential spa
e in the number of variables, FMDPproposes to represent T for ea
h spe
i�
 a
tion in the form of a dynami
 Bayesian network(DBN) [21℄. A DBN is 
omposed of variables G = (g1, g2, ..., gn, g
′
1, g

′
2, ...g

′
n), where the vari-ables with a prime denote the random variables at the next time step. So, a DBN representsthe relationships between random variables in the 
urrent and next time steps. We denote the20



set of primed variables by X ′ and non-primed by X , where G = X ∪ X ′. Ea
h variable g′ihas a set of parents Pi, where the value of g′i depends only on Pi. In this work, we assumethat Pi ⊂ X , and the variables in X do not have any parents, i.e., there are no syn
hronousdependen
ies between variables, all dependen
ies are between the variables at time step t andthe variables at time step t + 1. This is a 
ommon assumption for modeling GRNs using aDBN.A DBN asso
iates to ea
h g′i and its parents Pi a 
onditional probability distribution (CPD).A dis
rete CPD is usually represented as a table. But some spa
e 
an be gained if CPDs arerepresented by de
ision trees in 
ase they have the same values for di�erent instantiations ofthe parents [9℄.In addition to CPDs, the stru
ture in V and π 
an also be exploited to represent them byde
ision trees. The idea here is that V and/or π may depend only on some of the variablesinstead of all of them. So, they may be represented by a de
ision tree as well. Both value treesand poli
y trees have internal nodes labeled with the variables themselves and edges labeledwith the values (instantiations) of the variables. Leaf nodes of a value tree have values ofthe states 
orresponding to all states that have the same instantiations of the variables in thepath from the root to the leaf. The same way, leaf nodes of a poli
y tree have the a
tions
orresponding to the states that have the same instantiations of the variables in the path fromthe root to the leaf. The reader is referred to [9℄ for details.Solving FMDP requires modifying these value and poli
y trees at ea
h iteration. De
ision-Theoreti
 Regression [9℄ is one of the methods to modify de
ision tree representations of valueand poli
y trees; ea
h iteration results in a new value or poli
y tree that is 
loser to thede
ision tree representation for V ∗. Stru
tured value and poli
y iteration are two algorithmsthat use de
ision-theoreti
 regression to solve FMDPs [9℄. E�
ient methods to solve FMDPsby linear programming are des
ribed in [32℄. Finally, we use the publi
ly available FMDPsolver, SPUDD2 (�Sto
hasti
 Planning using De
ision Diagrams�) [37℄. Instead of using de
isiontrees, SPUDD uses algebrai
 de
ision diagrams (ADD) [72℄. SPUDD pa
kage also in
ludes anapproximate FMDP solver, APRICODD (�Approximate Poli
y Constru
tion using De
isionDiagrams�) [83℄.There are two approximation methods in APRICODD that depend on pruning the valuetree. The �rst one is on keeping the value tree below a �xed size, whi
h is good for solvingFMDPs with limited 
omputational resour
es. The se
ond one uses ADDs in whi
h the simi-larly valued leaves of an ADD are merged and su
h leaves are labeled with a range of values.This results in a smaller sized ADD 
alled ranged value ADDs. Merging these values dependon a given error bound su
h that only the values that are within that error bound are merged.2available at: �Wel
ome to SPUDD, http://www.
omputing.dundee.a
.uk/staff/jessehoey/spudd/, a
-
essed 1-June-2009� 21



At the end, the midpoints of the resulted ranged value ADDs are returned as the value of the
orresponding states. APRICODD also in
ludes variable reordering s
hemes that 
an havesigni�
ant e�e
ts on the resulting ADD size. Further details about SPUDD and APRICODD
an be found in [38℄.In terms of GRNs, given PBN model derived from some kind of biologi
al data, a
tions,and the obje
tive de�ned in terms of the reward genes, the PBN 
ontrol problem 
an be solvedby the following steps:1. Convert PBN to DBN2. For ea
h a
tion a ∈ A, 
onstru
tDBNa that represents probability distribution T (s, a, s′)for all s, s′3. Given reward fun
tion R and dis
ount fa
tor β, de�ne FMDP M4. Solve M using SPUDD2.4 SummaryHaving de�ned the 
on
epts, linking the subje
ts 
overed in this 
hapter with the work donein this thesis would be helpful to better understand the rest of this do
ument.One of the two problems 
onsidered in this work is the s
alability in modeling GRNs. Twomodi�
ations for PC algorithm are proposed for s
alability and quality of the derived networks.To evaluate these modi�
ations, two of the dis
ussed data types in Se
tion 2.1.3 were used;gene expression and TF binding lo
ation data. Using the last one, protein-protein intera
tiondata, is left as a future work. The methods in Se
tion 2.1.4 are used to pre-pro
ess expressiondata when ne
essary.The se
ond problem investigated is the s
alability in 
ontrol of GRNs. We used MDP andFMDPs as the framework for solving the 
ontrol problem where PBNs are exploited as themodel for 
ontrol as a dis
rete model is ne
essary to evaluate the 
ontrol algorithms.
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CHAPTER 3CONSTRAINT-BASED MODELING OFGENE REGULATORY NETWORKS
The regulatory me
hanisms for gene expression in a 
ell is very important as they 
ontrol thea
tivities related to protein synthesis whi
h is one of the most essential fun
tions for livingorganisms. Depending on the evolutionary level of the organism, this regulatory me
hanism
an get highly 
omplex. The intera
tion of the large number of genes (promoters) and proteins
onstitute this whole me
hanism. An example of su
h me
hanisms whi
h is a 
omponent ofthe whole GRN of Caenorhabditis elegans is given in Figure 3.1. The network in Figure 3.1 is
omposed of the genes involved in the development and fun
tion of C. elegans digestive tra
t;the reader is referred to [22℄ for details on the 
onstru
tion of this network.

Figure 3.1: Protein-DNA intera
tion network of C. elegans (Taken from [22℄). Blue diamonds,
ir
les and triangles represent promoters, intera
tors and intera
tors whose promoters are alsoused as DNA baits in the experiment, respe
tively.23



The issue that we want to emphasize here is the 
omplexity of the network in Figure 3.1;the number of genes and the number of 
onne
tions. Learning a network of this size and
omplexity is hard for 
urrent stru
ture learning algorithms. There are methods that 
an beused to learn sparse graphs with a large number of nodes (see [43℄ for example), but someserious di�
ulties, both in terms of the quality and 
omputational requirements, arise in 
aseof nodes with large number of 
onne
tions. For instan
e, there are intera
tors in Figure 3.1binding 27 promoters whi
h is a large number for stru
ture learning algorithms for graphs ofthis size. Therefore, new s
alable methods for learning GRNs from biologi
al data are needed.The amount of biologi
al data available for resear
h is exponentially in
reasing. However,GRN modeling still su�ers from the problem of small sample size 
ompared to large number ofgenes. This problem is sometimes referred to as the �p larger than n� problem, where p refersto number of genes and n refers to number of samples [11℄. The solution investigated for thisproblem in this thesis is to in
orporate multiple types of biologi
al data. We will name theinformation inferred from one type of data as the prior knowledge; there are no 
onstraints onwhi
h one will be the prior knowledge though. This prior knowledge will be used to �adapt�the modeling algorithm to infer better networks.In the 
ontext of GRN modeling, the prior knowledge 
an be formulated as a matrix Bof probabilities su
h that ea
h entry Bij gives the probability of existen
e of edge Eij [6, 93℄.This information might be obtained from various types of data and 
an be used with expressiondata to obtain a better GRN.Two methods for in
orporating B in the PC algorithm by adapting the 
onditional inde-penden
e test to the given prior knowledge B are des
ribed in the following se
tions. The�rst method is a simple but e�e
tive pro
edure to use the prior information on the 
onditionalindependen
e tests in the PC algorithm. This way, the test �adapts� itself to the given priorknowledge. This method is des
ribed in Se
tion 3.2.Although the adaptation pro
edure is su

essful in in
orporating prior knowledge into thePC algorithm, it may also lead to some problems regarding maximum order in the PC algo-rithm. It is well-known that with in
reasing order, the power of a 
onditional independen
etest de
reases given small sample size. To be able to solve this problem, the se
ond method isproposed in Se
tion 3.1 for the type of graphs that we 
all Partially Dense (PD) graphs. A PDgraph is a graph where some nodes have signi�
antly larger number of 
onne
tions than oth-ers. The method interprets the same type of information as above with a di�erent perspe
tive.The nodes that have a large number of 
onne
tions are identi�ed from prior knowledge andthese nodes are treated di�erently. Details of this method are presented in Se
tion 3.1. Therelated work is 
overed in Se
tion 3.3. Finally, Se
tion 3.4 highlights the short
omings of theapproa
hes des
ribed in the literature and summarizes how they are 
overed by the proposedapproa
hes. 24



3.1 PC algorithm for PD graphsThe number of 
onditional independen
e tests required by the PC algorithm, in the worst-
ase,is bounded by p2(p−1)q−1/(q−1)! [82℄. So, the algorithm 
an easily be
ome non-appli
able forhigh values of q and p. Our experiments depi
ted that if we know the dense nodes in the graphin advan
e, then a variant of the PC algorithm 
an show a good performan
e, even for PDgraphs, both in terms of 
omputational requirements and the quality of the resulting graph.Algorithm 2 PCPD algorithm (�rst part)Input: Data D, Set of nodes V , Conditional independen
e test Ind, Set of dense nodes DNOutput: Skeleton of the graph G, Separator information Sep1: ⊲ Stage 12: Set G to the fully 
onne
ted undire
ted graph of V3: ord = 04: repeat5: repeat6: Choose new adja
ent ordered pair of nodes i, j with i having at least ord neighbors and
i /∈ DN7: repeat8: Choose new set S of nodes adja
ent to i where |S| = ord9: if Ind(i, j|S) then10: Delete edge i, j from G11: Sep(i, j) = S12: end if13: until (edge i, j is deleted) or (all di�erent sets S of length ord have been tested for edge
i, j)14: until all pairs of adja
ent nodes have been tested15: ord = ord + 116: until number of neighbors for ea
h node in G is less than ord17: ⊲ Stage 218: for all i in DN do19: Choose new j su
h that i is adja
ent to j in G20: [S, vanished] = gss(D, i, j, G)21: if vanished then22: Delete edge i, j from G23: Sep(i, j) = S24: end if25: end for26: return G, Sep 25



To be able to 
orre
tly infer d-separations, for an edge Eij , 
onditioning set S in thealgorithm should be 
hosen as a subset from neighbors of either i or j. The PC algorithm doesthis by 
hoosing ordered pairs (i, j) during exe
ution. If the number of neighbors for a node ishigh (i.e., q is high) then the algorithm tries exponentially in
reasing number of 
onditioningsets S with in
reasing order. This terribly slows down the algorithm response in the existen
eof a dense node. Also, with in
reasing order, (with limited sample size) the probability of errorin statisti
al tests for 
onditional independen
e in
reases [82℄. So, a possibly in
orre
t graph(with limited sample size) is derived in a long time.One method that has been proposed in various studies to avoid the above problem is tolimit the maximum value of order [20, 58, 95℄. Sin
e the nodes in a GRN are generally sparse,this method may give good results. But, if q is large even for a small number of nodes, we maystill fa
e the same type of problems des
ribed above. Another possible approximate solutionmethod is to use unordered pairs in the algorithm and 
hoose S from the neighbors of thenode that has less number of neighbors. But this also su�ers from the same problems if theunderlying graph has more than one node with large number of neighbors.As a result, we propose a new method for �nding the skeleton of the underlying model withsome dense nodes. This method depends on the prior knowledge about these dense nodes and agreedy sear
h pro
edure for the separators of the edges of dense nodes. The proposed method,whi
h we 
all PC algorithm for Partially-Dense graphs (PCPD), is given in Algorithm 2.As shown in Algorithm 2, PCPD has two stages. The �rst stage is similar to the PCalgorithm ex
ept that we do not 
hoose edge Eij to test in Line 6 if we know that i is a densenode. This avoids enumerating exponential number of subsets of neighbors of i.By skipping some of the tests performed, at the end of Stage 1, some false positive edgesmay exist in G; these are the edges that have at least one dense node in one end. But thenumber of su
h edges are not expe
ted to be large be
ause we 
he
k edge Eji even thoughwe do not 
he
k edge Eij . For su
h edges for whi
h the algorithm 
ould not �nd a separatorfrom the subsets of neighbors of j, the greedy separator sear
h pro
edure is exe
uted. Thispro
edure is des
ribed in the next se
tion.3.1.1 Greedy separator sear
hGreedy separator sear
h (gss) is a sear
h pro
edure to �nd a 
onditioning set S that makesthe two nodes i and j 
onditionally independent given S. To des
ribe the algorithm we will
all the left-hand side of Equation 2.3 as L(i, j|S). In ea
h iteration, gss adds variable v tothe 
urrent 
onditioning set S where v = argminv∈V L(i, j|S ∪ {v}). This way it sear
hes for
S that satis�es Equation 2.3 for the given i, j pair. It is therefore a greedy pro
edure, it is notguaranteed to �nd the separator, but our experiments show that the pro
edure is su

essful in�nding most of the 
onditional independen
e relationships. This pro
edure is very similar to26



a pro
edure re
ently proposed by Brown et al [10℄, where a greedy polynomial version of theMMPC algorithm [89℄ is dis
ussed. The pro
edure is given in Algorithm 3.Algorithm 3 Greedy Separator Sear
h (gss)Input: Data D, Node i , Node j, Adja
en
y Matrix G,Output: Separator set S for i, j (if any), A boolean value indi
ating 
onditional independen
e
vanished1: Let N be the set of neighbors of i ex
ept j in G and L(i, j|S) =

p

n − |S| − 3|Z(i, j|S)|2: S = {}3: zCur = L(i, j|S)4: vanished = FALSE5: repeat6: Choose k su
h that k = argmink∈NL(i, j|S ∪ {k}) and L(i, j|S ∪ {k}) < zCur7: if There is su
h a k then8: zCur = L(i, j|S ∪ {k})9: N = N \ {k}10: S = S ∪ {k}11: if zCur ≤ cutoff for a given signi�
an
e level α then12: vanished = TRUE13: end if14: end if15: until (vanished = TRUE) or (N = {}) or (there is no su
h k)16: return S, vanished

3.1.2 Estimating dense nodesThe prior knowledge on dense nodes 
an be obtained from various sour
es su
h as the regulatorynetwork databases, like [59℄. But, if we have the prior knowledge matrix B des
ribed above,dense nodes 
an also be estimated by using B.Given prior knowledge in the form of a matrix B, dense nodes 
an be estimated from B byassuming that i and j are 
onne
ted if Bij is greater than a threshold T . Then, the followingsimple pro
edure 
an be used to estimate dense nodes; if the number of 
onne
tions of a node
i is greater than a �xed value F (whi
h is spe
i�ed in the experiments based on some initialtests), then 
onsider node i as dense. For instan
e assume T = 0.8 and the ith row of B has kentries that are larger than 0.8. If k > F then node i is 
onsidered as a dense node, otherwiseit is a regular node. Given B, the pro
edure des
ribed here is exe
uted to estimate the set ofnodes that are dense, and then this set is used as the set of dense nodes in the algorithms that27



require this information.3.2 Prior knowledge in 
onditional independen
e testsIn real life, when we have a prior knowledge that we think is true with high probability, ourde
isions are a�e
ted by that prior knowledge. For example, if we believe that a proposition Pis true, then when we observe not(P ), we �rst think that it happened by 
han
e, i.e., we needto have more eviden
e to be 
onvin
ed that P is a
tually false. This is 
alled bias in statisti
alterms.We 
an map the above argument to 
onditional independen
e tests (assuming our biasabout P has a
tually a high probability of being 
orre
t). There 
an be several su
h mappings,whi
h we use here to modify the value of the signi�
an
e level α in Eq (2.3) depending onour prior knowledge. So, we in
rease the value of α (i.e., it is more probable to reje
t thenull-hypothesis) if Bij > 0.5, where Bij > 0.5 implies that we have a prior belief that the edge
Eij exists in the graph, and the degree of this belief depends on the value of Bij . Similarly,we de
rease the value of α if Bij < 0.5, whi
h means we have a prior belief to some degreeregarding the absen
e of the edge Eij , depending on the value of Bij .Given the prior knowledge B, α is basi
ally updated as α = α0 ∗ (1 + β(Bij − 0.5)), where
β ≥ 0 is a fa
tor that denotes our �trust� on prior knowledge, and α0 is the initial value of α.When β = 0, the prior knowledge has no e�e
t on the de
ision, and when β → ∞, the output
ompletely represents the prior knowledge. But, it is obviously meaningless for α to be greaterthan 1 or less than 0, so the a
tual update of α is performed as in Equation 3.1.

α =



















0 if α0 ∗ (1 + β(Bij − 0.5)) < 0

1 if α0 ∗ (1 + β(Bij − 0.5)) > 1

α0 ∗ (1 + β(Bij − 0.5)) otherwise (3.1)Dynami
ally updating the signi�
an
e level for ea
h test provides a method to take twodi�erent information sour
es into a

ount while 
onstru
ting the skeleton of the underlyinggraph by using the PC algorithm. As 
an be seen in the update equation (Eq. 3.1), Bij = 0.5means no prior knowledge about the existen
e of the edge Eij . That is surely an advantagefor GRN modeling, sin
e prior knowledge might not be available for all edges.We name the proposed algorithm as PCPr, where the extension indi
ates that the algorithmuses the given prior knowledge in the 
onditional independen
e tests as des
ribed above. Thesigni�
an
e of this extension is evident by the supporting test results reported in Chapter 5.
28



3.3 Related WorkVarious methods have been proposed in the literature for modeling GRNs. Generally themethods apply well-known 
on
epts in ma
hine learning in
luding Bayesian networks [6, 29,61, 86℄, (probabilisti
) Boolean networks [3, 51, 78, 67℄, neural networks [92, 98℄, Markov
hains [48℄, di�erential equations [13, 19℄, s-systems [87℄ and hybrid systems [47℄.Bayesian networks are used in various studies for gene regulatory network indu
tion. Sin
ethe expression data has a high rate of missing values, BNs are good 
andidates for modelingbe
ause of the BNs' ability to handle missing data. But s
alability is an issue that derivingBNs without some restri
tions is NP-hard [15℄. But the gene regulation is suitable for thisrestri
tion sin
e biologi
al studies show that a gene is regulated by a number of genes thatis generally not larger than 5. In addition to this, the probabilisti
 nature of gene regulationmakes BNs a remarkable framework for modeling. Besides the studies that are just appli
ationsof the BN learning to gene expression data, there are also some studies where other biologi
alinformation are also used in deriving the model [6, 35, 86℄.A method is suggested in [6℄ to 
ombine the gene expression data and trans
ription fa
-tor binding lo
ation data to derive a dynami
 Bayesian network that better represents theregulation. Lo
ation data is used as the stru
ture prior and expression data is used as thelikelihood. Lo
ation data is reported as a p-value whi
h is inversely related to an edge beingpresent in the stru
ture. They de�ne p-value 
orresponding to edge Ei in terms of a randomvariable Pi ∈ [0, 1] that is distributed as Pλ(Pi = p|Ei ∈ S) = λe−λp/(1 − e−λp), where λ isthe parameter of exponential distribution. So, if P (Ei ∈ S) = β, then after marginalizing over
λ and assuming λ ∈ [λL, λH ], the value of P 
an be 
omputed as:

P (Ei ∈ S|Pi = p) =

1
λH−λL

∫ λH

λL

λe−λpβ
λe−λpβ+(1−e−λ)(1−β)

(3.2)Sin
e the integral above 
an not be solved analyti
ally, they solved it for �xed values of pand stored the result for later usage. Then the prior for a stru
ture S is given as:
logP (S) =

∑

Ej∈S logP (Ej ∈ S|Pj = p)+
∑

Ek /∈S logP (Ek /∈ S|Pk = p)
(3.3)When this prior is used, the error is signi�
antly redu
ed. Also the results on data ofSpellman et al. [81℄ is given and shows some interesting relationships between genes that 
annot be derived without priors.Tamada et al. [86℄, des
ribe a way to 
ombine gene expression data and evolutionary in-formation to derive 
ontinuous Bayesian networks from data. The evolutionary information isgiven as gene pairs set HAB for two organisms A and B, whi
h are derived using BLAST [41℄.BLAST gives gene pairs that seem to be related in two di�erent organisms, where su
h genesare 
alled orthologous genes. So the idea is to use this information so that if genes a, b and29



c, d are in HAB, where a, c is from organism A and b, d is from organism B, and if there is aregulatory relationship between a and c in A, then it is highly probable that there is a regula-tory relationship between b and d in B. They give a s
ore based on this idea whi
h is, (GeneNetwork S
ore)
GNS(GA, GB) = logP (XA|GA)P (XB|GB)

P (HAB|GA, GB)P (GA)P (GB)
(3.4)where XA(XB) is the mi
roarray expression data of organism A(B). They start with networks

GA and GB that is found using traditional Bayesian network sear
h algorithms and use theseas their initial networks. Then they 
ontinue with a greedy hill-
limbing algorithm that inea
h step adds or removes an edge from one of the networks so as to in
rease GNS(GA, GB).By using only the expression data, in [61℄, the authors derive a BN from time series expres-sion data of Spellman et al. [81℄. They express the trans
ription rate of a gene as;
g(H : β, γ) = β

γH

1 + γH
(3.5)where H is 
on
entration of the a
tive regulatory protein, β is the maximum trans
ription ratethat the gene 
an a
hieve and γ is the ratio of asso
iation and disasso
iation 
onstants of theregulators to the promoter regions.From expression data, the trans
ription rates are derived based on a known regulationdiagram G (whi
h is a Bayesian network) and the parameters h, θ that maximize the likelihood:

l(h, θ : G,E) = logP (E, h|θ,G) (3.6)where h are the values of the unobserved regulator a
tivity levels at di�erent times and θ is theve
tor of other parameters (γ, β, etc.) are 
al
ulated. Then the authors des
ribe a stru
turalEM algorithm [28℄ that iteratively derives a regulation diagram whi
h uses a Bayesian networks
oring fun
tion as;
score(G : E) = maxh,θ(h, θ : G,E) −

Nparam

2
log(T ) (3.7)where Nparam is the number of parameters in the model and T is the number of time points.The algorithm 
an add regulators to genes and also add new regulators that are not in theregulator set H .In [29℄, dis
overing the intera
tions between genes from expression data by using BNsare investigated. Multinomial (dis
rete) and linear Gaussian (
ontinuous) Bayesian networksare derived using sparse 
andidate algorithm. To understand whether the algorithm derivesreasonable networks, two kinds of features whi
h are the Markov property and order property(the partial order of nodes in the network) are de�ned. A 
on�den
e value is de�ned basedon an algorithm that 
he
ks in what per
entage the above features are observed in m newnetworks derived from the perturbed data. 30



Boolean networks are one of the widely studied methods for modeling gene regulatorynetworks. Sin
e BoNs are simple to understand and polynomial time dedu
ible for a boundedindegree from data, they re
eived mu
h attention in this 
ontext. Also it was proved that ifindegree of ea
h node is bounded by a 
onstant, then only O(logn) input output pairs arene
essary and su�
ient to derive the 
orre
t BoN [3℄. But sin
e they only work with binarydata, while modeling, information loss seems unavoidable. In gene network modeling, the valueof a node being 1 means that the gene is expressed and being 0 means the gene is not expressed.In a re
ent study [67℄, the authors des
ribe a way to 
onstru
t PBNs based on the fa
t thatif we are sampling the data from steady state, to 
he
k validity of a designed network we have to
he
k whether the steady state mass lies in the observed sample states. They give an algorithmthat �rst sele
ts k attra
tor sets randomly, then they pi
k a predi
tor set for ea
h gene againrandomly and then 
he
k for 
ompatibility with the attra
tor set by using the fa
t that anattra
tor introdu
es a 
y
le. Then other entries of the truth table of genes and predi
tors are�lled randomly and 
he
ked for a 
y
le; if a 
y
le is found random, �lling is performed again.This algorithm generates a BoN. A PBN is generated from multiple runs of this algorithm andassignment of a probability of swit
h of BoNs and a probability of perturbation. An appli
ationof this algorithm to gene expression data is given at the end. They generated 10000 PBNs and
hose the one that minimizes the mean-squared error between data frequen
y of attra
tors andestimated steady-state distribution of ea
h attra
tor based on the size of the tree 
orrespondingto an attra
tor. The results are given as a histogram that shows how 
lose the distribution ofattra
tor states in data and the time spent in attra
tor states after running the designed PBNfor a long time.The paper by Weaver et al. [92℄ is one of the �rst attempts to derive the regulatory networksfrom expression data. The authors use an approa
h that they 
all weight matri
es whi
h isin fa
t a neural network. They assume the regulatory behavior of genes 
an be modeled bya number of linear fun
tions whose input values are expression levels of other genes in theprevious time step. First they des
ribe the details of the model and how to produ
e expressiondata from the model. Given a weight matrix Z and the input u(t) of expression levels, thenext state of the system is given as:
u(t+ 1) = mg(Zu(t)) (3.8)where g is a normalization fun
tion that maps the expression levels to (0-1) interval and m isthe maximum expression levels of genes. A reverse engineering approa
h is then given basedon the data produ
ed arti�
ially using the above equations and randomly produ
ing Z and

m. The reverse engineering algorithm in
ludes solving algebrai
 equations that 
omes fromsolving u(t) from u(t+1) based on the assumption that the matrix Z will be mostly 
omposedof zeros. The results are su

essful in the sense that the reverse engineering approa
h derivesthe original network even in the presen
e of noise. But the authors give no results on real31



expression data.Re
urrent Neural Networks are used to model gene regulatory networks in [98℄. Ea
h geneis represented as a node and ea
h edge gives the weight of in�uen
e of a gene on another.Instead of ba
kpropagation the authors use Parti
le Swarm Optimization (PSO) for parameterlearning. PSO is a sear
h method similar in some sense to geneti
 algorithms (GAs). It isbased on a number of parti
les (solutions) that are walking on the sear
h spa
e. The parti
lesare a

elerated towards the dire
tion whi
h is a 
ombination of the dire
tion of the previousbest solution of the parti
le itself and the global best solution of all parti
les. The quality ofthe solution like in GAs is 
al
ulated by using a �tness fun
tion. Results are given on both anarti�
ial data set and a real data set. Be
ause of the amount of data the results are better onthe arti�
ial data set. Although some meaningful relationships are 
aptured on the real one,it is not a suitable method for larger networks.The work in [48℄ proposes a method to 
onstru
t Markov Chains (MCs) to simulate thebehavior of biologi
al gene regulation. They sele
t 10 genes from the set of 587 gene dataset. For ea
h of the 10 genes they sele
t 3 genes from the data by using highest 
oe�
ient ofdetermination value for a target gene. The MC transition probabilities are derived empiri
allyfrom the data in the form of:
P (gt+1

l ) = P (a|gt
i , g

t
j , g

t
k) (3.9)where a = {0,−1, 1} and i, j, k are the 3 genes mentioned above, and l is the target gene.They perform a simulation of this MC whi
h also in
ludes a probability of perturbation that
hanges the expression value of a gene randomly. After the simulations, the authors show thatthe states of the MC in the simulation very mu
h resemble the biologi
al data.In addition to the above mentioned methods, di�erential equations [13, 19℄, s-systems [87℄and hybrids of the above methods [47℄ are also used in modeling. Di�erential equations typi
allymodel regulation as a set of rate equations of the form dxi/dt = f(x) where xi is the gene weare trying to model and f is the fun
tion that will be sear
hed and x is a set of variables that isthought to be e�e
ting the expression level of xi. S-systems are a type of power-law formalismthat 
an be des
ribed by a set of non-linear di�erential equations. But it has a problem thatit requires the estimation of a large number of parameters.Hybrid methods are the ones that use a mixture of the above methods. Inferring a regulatorynetwork model by using GAs and neural networks is des
ribed in [47℄. The IDs of the genes are
onsidered as the 
hromosomes of the GA and a single layer neural network is trained for the�tness fun
tion of the GA. The root mean square error of the trained neural network is used asthe �tness fun
tion for GA. The best 
hromosome is 
hosen as the regulators of gene j. Then

j is in
reased and the algorithm �nds the regulators for all output genes. Finally, the neuralnetwork of the best 
hromosome for all output genes is used as the predi
tor for the next timestep. The results are given for 3 di�erent settings. The �rst one is a randomly generated data32



from a known network; the se
ond is the rate of spinal 
ord data; and the third is 
ell 
y
ledata of Spellman et al. [81℄.Besides these, a graphi
al modeling paradigm, whi
h is generally named as Gaussian Graph-i
al Modeling (GGM) [52℄, has re
eived 
onsiderable attention [11, 20, 42, 58, 71, 75, 95, 97℄.In this paradigm, it is assumed that the data 
onstitute a random sample from a multivariatenormal distribution. Generally, the fo
us here is to 
ompute (or approximate) the 
ovari-an
e matrix in the existen
e of small number of data samples 
ompared to the large numberof genes. The solutions proposed in
lude approximately 
omputing the 
ovarian
e matrixby shrinkage estimators [75℄ or de
omposition [42℄ and low-order 
onditional independen
egraphs [11, 20, 58, 95℄. Graph de
omposition te
hniques were also previously integrated withGGM and PC algorithm [97℄. Re
ently, an information theoreti
 approa
h was proposed forusing low order partial 
orrelations as a measure of 
onditional independen
e [71℄. Also im-portan
e of 
onditional 
orrelation has re
ently been studied in reverse engineering regulatorynetworks [103℄.Due to the small sample sizes of biologi
al data, methods of 
ombining multiple typesof biologi
al data have re
ently been developed [12, 54, 55, 105℄. These studies generallypropose to 
ombine gene expression, TF binding lo
ation and TF binding motif data. All theresults show that 
ombining multiple data types lead for better identi�
ation of better geneasso
iations/
lusters/networks 
ompared to using a single data type. These studies 
onstitutesupporting eviden
e for the motivation of the algorithms proposed in this 
hapter as well.3.4 The Gap Covered by the Proposed MethodsThe algorithms that are dis
ussed above to derive a GRN (and stru
ture learning algorithmsin general) su�er from one or more of the following; s
alability, small sample sizes and densely
onne
ted nodes. Constraint-based learning algorithms s
ale well in general, whi
h makes thema strong 
andidate to apply for GRNs. Although there are some previous work to deal withsmall sample sizes, to the best of our knowledge, this is the �rst study that tries to handlenodes with large number of 
onne
tions in a stru
ture learning 
ontext. The PC algorithm isknown to work well for sparse graphs. But the algorithm may fail to learn a good graph wheneither the sample size is small or the underlying graph has some dense nodes. Unfortunately,biologi
al data and GRNs have both of these properties.To over
ome the above problems and derive GRNs from biologi
al data by using the PCalgorithm, we propose two modi�
ations to the PC algorithm. For the �rst modi�
ation, weargue that integrating multiple available biologi
al data types in learning a GRN should behelpful. We integrated TF binding lo
ation (ChIP-
hip) and mi
roarray gene expression datathrough statisti
al independen
e tests of the PC algorithm. As depi
ted in the results, this33



greatly improves the performan
e in learning. In addition to the PC algorithm, this method
an also be used in other 
onstraint-based stru
ture learning algorithms as well. Also, otherthan TF binding lo
ation data, any biologi
al data that 
an be 
onverted into probabilities ofedges being present, 
an be used as the prior knowledge. For instan
e, by using TF bindingmotif data in the form of position weight matri
es one 
an 
ompute the probability of existan
eof a binding region for a given TF on a gene's promoter regions [50℄.The se
ond modi�
ation is related to the nodes that have a large number of 
onne
tions. Asthese 
onstitute a problem for most of the learning algorithms, we propose a method to pro
essthem di�erently from the normal nodes in a graph. This method improves the performan
e bypreventing the order in the PC algorithm to in
rease to large numbers that 
an 
ause errors,as a large order de
reases the power of statisti
al independen
e tests. By identifying densenodes from prior information obtained from another type of biologi
al data, the new algorithmnamed PCPDPr, outputs a better network than the PC algorithm and has the potential to beimproved further.
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CHAPTER 4LARGE-SCALE GENE REGULATORYNETWORK CONTROL
Controlling GRNs is an important and hard problem. As it is the 
ase in all 
ontrol problems,
urse of dimensionality is the main issue in real appli
ations. It is possible that hundreds ofgenes may regulate one biologi
al a
tivity in an organism; for instan
e a set of approximately800 genes were previously estimated to be 
ell-
y
le related in budding yeast, Sa

haromy
es
erevisiae [81℄. As the state spa
e for a GRN will be exponentially large in the number ofgenes, number of states for the 
ell-
y
le model of yeast in
luding these genes will be enormous.Although it may be possible to maintain (learn, keep, et
.) su
h a model, it is not possiblefor most of the 
urrent 
ontrol algorithms to solve a 
ontrol problem of this size. This is alsoevident in the literature that only models of small portions of the genome of a living organism
ould be used in 
ontrol appli
ations. Following the dis
ussion in the previous 
hapter, aslarger models be
ome available, s
alable 
ontrol algorithms will be ne
essary for the analysisof these networks for interventions.This 
hapter in
ludes the des
ription of two methods that are aimed at the s
alability for
ontrol in GRNs. Given a PBN model, the methods in this 
hapter try to redu
e the model to a�simpler� PBN model so that the 
ontrol problem is easier to solve. However, this simpli�
ation,obviously, makes sense if the solution of the redu
ed problem is a good approximate solution tothe original problem. To a
hieve this, �rst, in Se
tion 4.1, we des
ribe the method that 
an benamed as a feature redu
tion method whi
h tries to identify and eliminate the genes that areirrelevant for the 
ontrol problem. This way, the model (and so the state spa
e) gets smallerand be
omes easier to solve by MDP solvers. But instead of eliminating a gene 
ompletelyfrom the model, some 
onne
tions of this gene in the model 
an be removed as well to rea
h asimpler model, and the resulting model may be solved more e�
iently by a FMDP solver. These
ond method whi
h is des
ribed in Se
tion 4.2 is built on this idea; simplifying the model byeliminating edges, instead of genes, in the model. In addition to the proposed methods, this
hapter also in
ludes in Se
tion 4.3 the previous work done in the domain of GRN 
ontrol. We
lose this 
hapter by expli
itly stating the 
ontributions of this 
hapter and the gap 
overedby these algorithms. 35



4.1 S
alable Control by Feature Redu
tionFeature redu
tion is the pro
ess of �nding and ex
luding from further 
onsideration, featuresthat are expe
ted to have reasonably negligible or minimal e�e
t on the output quality. Ingeneral, feature redu
tion or feature sele
tion is performed to improve the performan
e of somepredi
tors [33℄. The features in the 
ase of gene expression data are the genes, the samples,or both. Here, we 
onsider feature redu
tion as de
reasing the number of genes. What we
onsider as output is the value fun
tion found by solving the MDP. This is reasonable asthe value fun
tion represents the reward (or 
ost) asso
iated with a given state by applyingthe 
ontrol poli
y. In real life, this 
an give an indi
ation of the 
ost of treatment (poli
y).The speed-up gained by redu
ing the state spa
e of the MDP is 
onsidered as performan
eimprovement.
Figure 4.1: Finding 
ontrol poli
y for the given dataIn the GRN 
ontrol domain, we observed that some of the genes 
an be ignored in thepro
ess of �nding a 
ontrol poli
y for a given data. So, it is essential to estimate the redundan
yin the data before starting the modeling and MDP solving parts. This way, we 
an e�e
tivelydeal with GRNs that have larger number of genes by applying redu
tion to obtain a smallerset of genes instead. This is depi
ted in Figure 4.1, where path (a) is the ordinary path ofsolving the 
ontrol problem and path (b) is the redu
tion based method proposed to solve theproblem. Fun
tion F that labels the last link along path (b) in Figure 4.1 maps poli
y π′ foundfor MDP M ′ to poli
y π of the larger MDP M . Assume the Model on path (a) has two states

si and sj whi
h only di�er in the value of one gene, say the third gene. For example, for thebinary 
ase let these states be si = 1001010 and sj = 1001110, for a network of seven genes.If, in the feature redu
tion step of path (b), we de
ide that the third gene is irrelevant, then
si and sj will be aggregated in Model′, forming a state sn = 100110. To get poli
y π, aftersolving M ′, we have to remap the a
tion de�ned for sn in π′ to si and sj . Sin
e we know thatthe third gene is redundant, si and sj are in fa
t equivalent states. Therefore, F simply gets
π′ and produ
es π by setting π(si) = π(sj) = π′(sn), for all si, sj and sn.The proposed solution is based on the assumption that the obje
tive is de�ned in terms ofthe expression values of some genes, namely the genes that we want to 
ontrol. We require36



that the reward fun
tion is de�ned in the form R(s, a, s′) and depends only on the a
tion andnext state. This does not need to be the 
ase in real life, but it also does not overly restri
t theproblem be
ause the obje
tive is generally de�ned in terms of desirable or undesirable states.Finally, model minimization 
an also be performed after building the model. However, if wethink of the pro
ess as �nding a poli
y for some given data, then feature (or gene) redu
tionbefore modeling saves time in the modeling stage be
ause model building is a time-
onsumingtask as well.4.1.1 Sele
ting the genes to removeThe sele
tion of the gene to remove is based on the following observation: Sin
e the obje
tiveis de�ned in terms of reward and 
ontrol genes, all other genes are 
andidates for removal.From the set of 
andidate genes, a subset will be sele
ted based on their estimated relevan
efor deriving a 
ontrol poli
y.

(a) (b)Figure 4.2: Aggregation of sto
hasti
ally bisimilar states s1 and s2
Re
all that genes to be removed should have the lowest e�e
t on the value fun
tion. Asexplained above, removing a gene, say g from 
onsideration is equivalent to aggregating thestates that di�er only in the value of g. Assume that s′, s1, s2 and s′′ are related in the MDPas shown in Figure 4.2(a). Both s1 and s2 have to be sto
hasti
ally bisimilar [30℄ in order tobe aggregated so that the resulting MDP has the same solution as the original MDP.De�nition 1. [30℄ Any two states si and sj in an MDP are said to be sto
hasti
ally bisimilarif the following two 
onditions hold:I. ∀a R(si, a) = R(sj , a)II. ∀a, s′ T (si, a, s

′) = T (sj, a, s
′) •Sto
hasti
 bisimilarity for the states of an MDP is an equivalen
e relation (see Theorem 4in [30℄ for more details). Two sto
hasti
ally bisimilar states have the same value in the solution37



for an MDP. Under this equivalen
e relation, sto
hasti
ally bisimilar states are said to beequivalent in an MDP; by using this information, the MDP 
an be redu
ed to another MDPwith a smaller state spa
e.Theorem 1. [30℄ Two sto
hasti
ally bisimilar states in an MDP are equivalent and 
an beaggregated. •Proof. Follows from Theorem 7 in [30℄.The aggregation pro
edure of the two sto
hasti
ally bisimilar states s1 and s2 from Fig-ure 4.2(a) leads to the new state sag shown in Figure 4.2(b); it has the same reward fun
tion as
s1 and s2, i.e., ∀a, s′ R(sag, a, s

′) = R(s1, a, s
′) = R(s2, a, s

′), and the transition probabilitiesare as shown in the �gure1.Consider states si and sj that only di�er in the value of g inM (see Figure 4.1). A

ordingto Theorem 1, if the states si and sj are sto
hasti
ally bisimilar and there is in M ′ a state sagas the aggregation of si and sj, then M ′ is the minimized version of M , and hen
e has thesame solution as M . This may be interpreted as follows, we 
an �nd the 
ontrol poli
y fasterby lo
ating and removing from the data every gene g for whi
h 
ases I and II in De�nition 1hold for the states that only di�er in the value of g.For 
ase I, we will use the assumption in the de�nition of R(s, a, s′) that it does not dependon the 
urrent state s. Assume we have one reward gene gr that we want to 
ontrol. Thereward fun
tion R(s, a) by de�nition satis�es:
R(s, a) =

∑

s′

T (s, a, s′)R(s, a, s′) (4.1)and by using our assumption on the reward fun
tion, it 
an be rewritten as:
R(s, a) =

∑

i∈Val(gr)

∑

s′∈Sgr=i

T (s, a, s′)R(s, a, s′) (4.2)where Val(gr) denote the dis
rete values that gr 
an take, and Sgr=i denote the set of allstates that satisfy gr = i. Noti
e that R(s, a, s′) is 
onstant for all s′ (where gr = i) and agiven a
tion a (re
all the assumption about R(s, a, s′)). This means that 
ase I in De�nition 1holds for two di�erent states si and sj if,
∀i

∑

s′∈Sgr=i

T (si, a, s
′) =

∑

s′∈Sgr=i

T (sj, a, s
′) (4.3)Eq (4.3) may be interpreted as follows: being in state si or state sj makes no di�eren
eabout the value of gr in s′. If si and sj di�er only in the value of a gene, say g, thenEq (4.3) holds if the probability of gr taking value i in s′ is independent of the value of g,1Note that Givan et al. [30℄ 
all sag a blo
k (set of states) rather than a new state, but there is 
on
eptuallyno di�eren
e for our 
ase. 38



i.e., Pr(gr(t + 1) = k|g(t)) = Pr(gr(t + 1) = k), where g(t) denotes the value of g at timestep t. In other words, 
ase I holds if g has no in�uen
e on the next state value of gr. Usingsimilar argument, for 
ase II to hold for states si and sj that di�er only in the value of g, gene
g should have a low e�e
t on determining the next state of any gene. So, we have to 
he
ksimilar 
onditions for 
ases I and II. If we approximate the in�uen
e of a gene on a set of genesas the average in�uen
e, both the in�uen
e of g on gr and the average in�uen
e of g on allother genes are important.In�uen
e S
oreGiven two genes gi and gj , the in�uen
e of gi on gj 
an be estimated by 
he
king to whatdegree the equation Pr(gj(t + 1) = k|gi(t)) = Pr(gj(t + 1) = k) is satis�ed. We de�ne thefollowing fun
tion to estimate the in�uen
e of gi on gj:

Inf(gi, gj) =
∑

k∈Val(gj)

|Pr(gj(t+ 1) = k|gi(t)) − Pr(gj(t+ 1) = k)| (4.4)and we de�ne the average in�uen
e of g on a set of genes G as:
AvgInf(g,G) =

1

|G|

∑

gG∈G

Inf(g, gG) (4.5)where |G| is the number of genes in G. The 
ounts for the di�erent values of pairs (gi, gj) inthe data 
onstitute su�
ient statisti
s for Inf(gi, gj).Note that the fun
tion Inf(gi, gj) that gives the in�uen
e of gene gi on gj is similar innature to the in�uen
e 
on
ept introdu
ed by Shmulevi
h et al. [78℄. But, Shmulevi
h etal. [78℄ 
ompute this value based on the model (Probabilisti
 Boolean Network), while we
ompute the value of Inf(gi, gj) dire
tly from the data without building a model.To sele
t a subset from the genes in the data, we assign to ea
h gene what we 
all In�uen
eS
ore (IS), whi
h is based on two sub-s
ores inspired for the 
ases in De�nition 1. The sub-s
ore for 
ase I is:
SI(g) = Inf(g, gr) (4.6)where gr is the reward gene. The sub-s
ore for 
ase II is:

SII(g) = AvgInf(g,G) (4.7)where G in
ludes all genes in the data ex
ept g. As a result,
IS(g) = SI(g) + SII(g) (4.8)Combining all the already introdu
ed 
on
epts, the �nal redu
tion method that we 
all FRGC(Feature Redu
tion for GRN Control) is given in Algorithm 4.39



Algorithm 4 FRGCInput: m× n dis
rete gene expression data (D) and threshold ThOutput: (m− k) × n redu
ed gene expression data (D′)
number_of_genes× number_of_samples = size(D)

Genes = {1, . . . , number_of_genes}
IrrelevantGenes = {}for all g ∈ Genes doCompute IS(g)if IS(g) < Th then

IrrelevantGenes = g ∪ IrrelevantGenesend ifend for
D′ = Remove IrrelevantGenes from Dreturn D′FRGC identi�es and removes some of the lowest s
ored gene(s). One point to 
onsider inthe pro
ess is the number of lowest s
ored genes to remove. We use a threshold s
ore Th asthe stopping 
riteria of the removal; Th obviously depends on the analyzed expression data.In this thesis, we rely on domain expert to spe
ify the value of Th.De
iding on a value for the threshold is a subje
tive pro
ess whi
h depends on several issues,like the usage of the results, the degree of a

ura
y, simpli
ity of the poli
y, 
omputationalresour
es and the obje
tive. A large (small) threshold implies less (more) a

urate results andrequires less (more) 
omputational resour
es. The expe
ted 
omplexity of the resulting poli
y
an also be important be
ause eliminating some of the genes would generally produ
e a simplerpoli
y whi
h is more attra
tive as the appli
ability is 
on
erned. The need to take immediatea
tion for time 
riti
al 
ases may tolerate lower a

ura
y for simpler poli
y. All these fa
torsare good indi
ators to guide the 
hoi
e of a threshold value. The pro
ess is subje
tive; it is likea multi-obje
tive optimization issue be
ause most of the fa
tors and obje
tives des
ribed abovedo 
on�i
t. So, it is the duty of the domain expert to de
ide on whi
h fa
tors or obje
tivesshould be 
onsidered more important to the spe
i�
 problem being investigated and hen
e setthe threshold value a

ordingly. For instan
e, a lower threshold value is preferred if sensitivityis the issue, while a higher threshold value is expe
ted if simpli
ity is the major 
on
ern; mostof the 
ases it is somewhere in between. Finally, while de
iding on the threshold value it ispossible to employ simple pro
edures su
h as investigating the sum of IS s
ores for all genesand eliminating the genes with smallest s
ores up to a 
ertain per
entage of the sum; however,a de
ision on the per
entage is ne
essary and this is again subje
tive. The problem 
an be also
onsidered as determining the number of minimum s
ored genes to eliminate; this depends on40



the set of genes being investigated by the experimenter. Keeping all these issues in mind andknowing how subje
tive the pro
ess is, �nding a method that minimizes as mu
h as possiblethe involvement of the domain expert in a way to automati
ally determine the threshold valueis a 
hallenging task; on
e put in a
tion su
h a method will add mu
h to the value of theredu
tion approa
h proposed in this work, turning it into a more adaptable pro
ess.As des
ribed in the experiments se
tion, errors are 
omputed as the per
entage di�eren
ebetween the resulting value fun
tion and the approximate value fun
tion. How mu
h error istolerable highly depends on the problem spe
i�
ation. For instan
e, if the reward fun
tion isde�ned as the �nan
ial 
ost of a treatment, then the tolerable error bound 
an be large 
om-pared to the 
ase when the reward fun
tion is de�ned in terms of life expe
tan
y or probabilityof survival. For instan
e, a 10% error would be a

eptable as �nan
ial 
ost is 
on
erned, i.e.,it may be tolerable for some 
ases. But if the survival of a patient is the 
on
ern then 10%error should not be a

eptable unless it is the best available alternative. Therefore, de
idingwhether an error bound is tolerable or not is problem dependent.4.2 S
alable Control by Edge Elimination from Fa
toredRepresentationsControl problems 
an also be solved by using fa
tored representations (see Se
tion 2.3.1). InGRN domain, this fa
torization naturally o

urs as ea
h gene 
orresponds to a fa
tor. In thisse
tion, we des
ribe the appli
ation of FMDP framework to GRN 
ontrol problem and proposea method to redu
e the GRN model to a simpler one so that the solution 
an be found easier.The genes/nodes in a fa
tored model that have no e�e
t on the reward gene(s) do not existin the solution of the 
ontrol problem [9℄. This situation gives rise to the following questions;What about the genes that have small or negligible e�e
t on the reward genes? Can the
onne
tions of these genes be eliminated from 
onsideration in solving the 
ontrol problem?This se
tion dis
usses the methods proposed based on this idea.Although fa
tored representations help in solving some of the problems, they still su�erfrom the 
urse of dimensionality in the worst 
ase [9℄. Fortunately, in most of these 
ases we
an still rea
h a reasonable approximate solution by pruning and/or approximating the valuetree.Most of the approximate methods prune the 
onstru
ted trees during the pro
ess of solvingFMDP. Another possibility in �nding an approximate result is to prune the transition modelbefore solving the problem. In this se
tion, we elaborate on su
h a method, but before thatwe introdu
e the 
on
ept of edge in�uen
e.
41



4.2.1 Edge In�uen
eWe start by introdu
ing the basi
 
on
epts required to understand edge in�uen
e as in De�-nition 2. For a PBN, given gene gi and its parent genes Pi, Shmulevi
h et al. [78℄, formalizedIn�uen
e to measure the e�e
t of a parent on gi. In�uen
e of gi on gj is the probability thatthe next state value of gj will 
hange when we 
hange the value of gi at the 
urrent time step.To formally de�ne the in�uen
e of gi on gj , denoted Ii(gj), �rst we have to de�ne the in�uen
eof a gene with respe
t to a boolean fun
tion f , whi
h is the probability that the output of fwill 
hange if we 
hange gi. Assume that f is de�ned on the set of input genes P = (g1, ..., gk).The in�uen
e Ij(f) of gj on f is de�ned as;
Ij(f) = Pr{f(g1, ..gj−1, 0, gj+1, .., gk) ⊕ f(g1, ..gj−1, 1, gj+1, .., gk)} (4.9)where ⊕ stands for ex
lusive OR. Equation 4.9 depi
ts the probability that f will output adi�erent value if gj is toggled while the other input variables are kept un
hanged. Also notethat Ij(f) = 0 if gj /∈ P .Given V, F and c(i)j of a PBN, Ii(gj) is de�ned as follows [78℄:

Ii(gj) =

lj
∑

k=1

Ii(f
(j)
k )c

(j)
k (4.10)whi
h is the weighted sum of all in�uen
es of gi on the set of fun
tions Fj . Refer to [79℄ forfurther details of in�uen
e 
on
ept.Given a PBN, in�uen
e of a gene gi on gene gj, Ii(gj), 
an be interpreted as a measure ofthe strength of the link between the two genes. But, Ii(gj) will be zero if gi is not among theparents of gj. However, this does not mean gi has no in�uen
e on gj . This be
omes more 
learif we 
onsider the PBN in Figure 4.3(a) and its �unrolled� version for g3 in Figure 4.3(b). Asdepi
ted in the �unrolled� PBN, 
onsidering the future e�e
ts of ea
h gene, it is obvious thatea
h gene has more to in�uen
e than only its 
hildren. If there is a path from gi to gj in theunrolled PBN, then gi at time step t has in�uen
e on the value of gj at time step t+ k, where

k is the length of the shortest path between gi and gj in the unrolled PBN.Given a node gi as the root, an unrolled PBN is 
onstru
ted (as a tree) by expanding ea
hnode g at level t with the parents of g at level t − 1 in the given PBN. Nodes are expandedunless the unique path from the leaf node to gi in
ludes a 
y
le. For instan
e, leaf node g3 isnot expanded in Figure 4.3(b) be
ause the path from leaf g3 to the root in
ludes g3 twi
e. Alsonoti
e that there 
an be links like g1 → g1 as g1 has itself as the parent in the PBN, and g1'sat the leaves are not expanded be
ause the two paths g1 → g2 → g3 and g1 → g2 → g4 → g3in
lude g1.Re
all that ea
h Ii(gj) 
orresponds to the e�e
t of the value of gi at time step t on the valueof gj at time step t+ 1, and assume gk is one of the parents of gi. When we unroll the PBNone time step, we will observe the path gk → gi → gj. We know that, based on Markovian42
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I
(∗)
1 (g3) 0.1080

I
(∗)
2 (g3) 0.54

I
(∗)
3 (g3) 1

I
(∗)
4 (g3) 0.1

EIg1,g1
(g3) 0.0648

EIg1,g2
(g3) 0.1080

EIg2,g3
(g3) 0.5

EIg3,g4
(g3) 0.025(
) In�uen
es 
orre-sponding to all pathsFigure 4.3: Unrolling a PBNproperty, Ik(gi) is independent of Ii(gj). Therefore, to 
ompute the in�uen
e of gk on gj aftertwo time steps, we simply multiply Ik(gi) and Ii(gj).Formally, 
onsider a simple path (a path that does not have any 
y
les) p = gi1 , gi2 , ..., gikbetween gi1 and gik

in an unrolled PBN; if we label ea
h edge Egil
gil+1

on the path with
Iil

(gil+1
), we 
an de�ne the in�uen
e of gi1 on gik


orresponding to path p, denoted I(p)
i1

(gik
),as: I(p)

i1
(gik

) =
∏k−1

l=1 Iil
(gil+1

).Note that there 
an be more than one simple path from one gene to another in an unrolledPBN. Let P be the set of all simple paths from gi to gj in an unrolled PBN. We de�ne all-pathin�uen
e of gi on gj , denoted I(∗)
i (gj), as:

I
(∗)
i (gj) =

8

<

:

P

p∈P
I
(p)
i (gj) if i 6= j

1 if i = j
(4.11)Figure 4.3(b) shows Ii(gj) values as labels on the edges; I2(g3) = 0.5, I3(g4) = 0.25, et
.From those, we 
an easily 
ompute I(∗)

i (gj) values. To 
ompute I(∗)
1 (g3) for instan
e, we
onsider the two simple paths from g1 to g3 in the unrolled PBN, whi
h are p1 = g1 → g2 → g3and p2 = g1 → g2 → g4 → g3. For the �rst path I(p1)

1 (g3) = 0.2 ∗ 0.5 = 0.1, and for the se
ondpath, I(p2)
1 (g3) = 0.2 ∗ 0.4 ∗ 0.1 = 0.008. So, I(∗)

1 (g3) = I
(p1)
1 (g3) + I

(p2)
1 (g3) = 0.1080. Theother I(∗)(g3) values 
an be 
omputed similarly based on Equation 4.11 and they are givenin Figure 4.3(
).De�nition 2 (Edge In�uen
e). Given three genes gi, gj and gk, Edge In�uen
e (EI) of theedge between gi and gj on gk is de�ned as: EIi,j(gk) = Ii(gj)I

(∗)
j (gk).

EI 
an also be 
omputed on a set of genes, denoted EIS: EISi,j(S) =
∑

gk∈S EIi,j(gk), whi
his simply the sum of in�uen
es of an edge on all genes in the given set.43



Considering nodes with same label as di�erent nodes, the unrolled PBN 
orresponds to atree. By 
onsidering them as the same node and aggregating them, we �nd a graph; then, pathsear
h in a tree turns into path sear
h in a graph. Computing all paths between two nodes ina graph is a hard problem. It is NP-
omplete as it in
ludes the solution of the longest pathproblem whi
h is known to be NP-
omplete [45℄. Also, the size of the unrolled PBN tree 
angrow exponentially large depending on the stru
ture of PBN and the number of genes. So, itis better to 
ompute approximate values for EI. One possible method is to prune the unrolledPBN tree. Also noti
e that the unrolled PBN tree for a given gene only in
ludes relevant genesand edges. All nodes in a tree have an in�uen
e on the given gene, so the parts of the PBNthat are not related to the solution of the 
ontrol problem are not expanded and the EI valuesfor those edges are not 
omputed.Approximate 
omputation of EILimiting the size of the unrolled PBN up to a 
ertain level 
an give good results. But a bettermethod is to prune the unrolled PBN if I(∗)
i (gj) is less than a 
ertain threshold T . As Ii(gj)is a
tually a probability value, I(p)

i (gj) for any i, j and p monotoni
ally de
reases with ea
hnew level in the unrolled PBN. So, when we 
onsider that the edge in�uen
e values below Tare not signi�
ant then we may stop expanding a node i further down in 
ase EIi,j(gk) ≤ T ,where gk is the root.After this approximation, we are ready to 
onstru
t an approximate algorithm for 
om-puting EI values for a given gene gj whi
h will be the root of the unrolled PBN tree. The
omplete pro
ess is given in Algorithm 5. It is a re
ursive algorithm that a
tually does a lim-ited depth �rst traversal of the unrolled PBN tree (in the reverse dire
tion of the ar
s shownin Figure 4.3(b)), and does not expand node i for su�
iently small values of I(∗)
i (gj).4.2.2 Edge elimination for approximate solutions of FMDPsA

ording to De�nition 2, the EI value is a measure of how a 
ertain gene is e�e
ted by the
hanges in values of other genes. In FMDP, the solution in
ludes genes that have some e�e
ton the reward genes. So, genes that have no e�e
t on the reward genes at any time in thefuture 
an be eliminated from FMDP. However, based on the study des
ribed in this se
tion,we realized that instead of eliminating a gene 
ompletely (as done in Se
tion 4.1), removingsome of the unimportant edges from a DBN in FMDP may produ
e better results.Given the set of reward genes Γ of FMDP, EISi,j(Γ) denotes how ea
h relevant edge in theFMDP in�uen
es the set of reward genes. This in�uen
e 
an be very low su
h that some ofthese edges 
an be negle
ted from the model. This means that edges with low EIS values 
anbe eliminated from 
onsideration. So, given a threshold δ, the edges with the smallest EISvalues whose total EIS do not ex
eed δ are removed. As a �nal step, redu
eFMDP performs44



Algorithm 5 computeEI(g, p, I(p)
g (gt), T, gt, pbn,EI)Input: gene g, path p = gt, pi1 , .., pik

, path in�uen
e I
(p)
g (gt), target gene gt, PBN pbn, initial valuesof EIOutput: ∀gi, gj rea
hable from gt, EI(gi,gj)(gt)if g ∈ p then

EIg,pik
(gt) = EIg,pik

(gt) + Ig(pik
) ∗ I

(p)
pik

(gt)elseif EIg,pik
(gt) > T thenfor every pg ∈ parents(g) in pbn do

EI = computeEI(pg, {p, g}, Ig(pik
) ∗ I

(p)
pik

(gt), T, gt, pbn,EI)end forend ifend ifreturn EIa maximum-likelihood learning of the parameters of the DBN using data sampled from theoriginal model.Algorithm 6 redu
eFMDP(EIS(Γ), δ,M,D)Input: EIS(Γ),δ,FMDP M ,DOutput: FMDP M̂

M̂ = MLet S be the sorted set of edges Ei,j where EISi,j(Γ) 6= 0Take the �rst k edges,Sk, from S su
h that P

Ei,j∈Sk
EISi,j(Γ) < δfor all Ei,j ∈ Sk doRemove edge Ei,j from DBNs for all a
tions in M̂Learn maximum likelihood parameters of new DBN from data Dend forreturn M̂The pro
ess in Algorithm 6 redu
es a given FMDP M , to another possibly sparser FMDP

M̂ by applying the pro
edure des
ribed above. Let π∗ and π̂∗ denote the optimal poli
iesfor M and M̂ , respe
tively; π̂∗ will depend on fewer number of variables than π∗ be
ause ofthe absent edges. This means that value trees or poli
y trees may require less 
omputationalresour
es to store and modify.
45



4.2.3 Estimating δOne of the drawba
ks of redu
eFMDP is that it assumes δ as given by an expert. Moreover, itrequires that we sample from the model and use it for maximum likelihood learning of modelparameters of the redu
ed model. In this se
tion we propose a method to estimate a reasonablevalue for δ, denoted δest, and use δest to redu
e an FMDP without sampling from it.To estimate δ we assume that the obje
tive for the FMDP is de�ned as a propositionallogi
 
lause in terms of some of the genes in the model. Given the set of genes V and a set
Γ of reward genes where Γ ⊂ V , let us denote the obje
tive fun
tion as the logi
al formula,
Φ(Γ). So, we say that a gene a
tivity pro�le s satis�es our obje
tive if Φ(Γ) = 1 for the valuesof Γ in s. Usually, there 
an be more than one ways of a
hieving an obje
tive. For instan
e if
Φ({A,B}) = A ∨ B for genes A and B then we 
an try to a
hieve either A = 1 or B = 1 orboth.Disjun
tive normal form (DNF) is a standardization of logi
al formulae. It represents theformula as a disjun
tions of 
onjun
tions of literals. Every logi
al formula 
an be 
onvertedinto DNF. This means that we 
an represent any Φ(Γ) as;

Φ(Γ) = C1 ∨ C2 ∨ C3 ∨ ...Ck (4.12)where ea
h Ci is a 
onjun
tion of literals that we will 
all the 
omponents of the obje
tive.Hereafter, we will denote the DNF of Φ(Γ) as ΦN (Γ), where N stands for normalization. Ea
hof these Ci's a
tually 
orrespond to di�erent ways of a
hieving our obje
tive. Finally, let usdenote the set of genes that exist in the formula Ci as γi.Assume we are given a 
ontrol problem 
omposed of the PBN model P of a GRN, a
tionset A, and the obje
tive Φ(Γ). By using the a
tions in A we will try to a
hieve the obje
tive,
ΦN (Γ) = C1 ∨ C2 ∨ ...Ck. Also remember that ea
h a
tion 
orresponds to the interventionof one of the genes in the model. We say that Ci is a
hievable if a given a
tion a for gene gmay satisfy Ci. In other words, if there is a path between g and all genes in γi in the unrolled
P then we have a 
han
e to a
hieve Ci. Otherwise, if there is at least one gene in γi that isnot rea
hable from g in the unrolled P then a
tion a is not useful to satisfy Ci. This de�nesa mapping that we 
all the a
hievable set of obje
tives, C, from A to a subset of Ci's, where
Ci ∈ C i� Ci is a
hievable by some a
tion a ∈ A. We will denote the proje
tion of the obje
tivefun
tion to a
hievable set of obje
tives as ΦN

C (Γ), where ΦN
C (Γ) =

∨

Ci∈C Ci.Sin
e there 
an be more than one ways of satisfying an obje
tive, simplifying the problemby de
omposing the obje
tive into 
omponents may help an FMDP solver to �nd a reasonableapproximate solution easily. For this, we say that two 
omponents Ci and Cj are separated if
∀gi ∈ γi and ∀gj ∈ γj , there is no path between gi and gj in the GRN model represented as anundire
ted graph obtained by 
onverting ea
h edge in the original model (P ) to an undire
tededge. If all Ci ∈ C are separated from ea
h other we say that C is maximally separated.46



Based on the mentioned ideas, we 
onstru
ted an algorithm to determine a reasonable valuefor δ. The algorithm CT (for 
hoose threshold) is given in Algorithm 7. CT tries to �nd theminimum δ that a
hieves maximum separation of 
omponents (de
ompose the obje
tive) whilepreserving a
hievable obje
tives.Algorithm 7 CT (EIS(Γ),M,Φ(Γ))Input: EIS(Γ),FMDP M , Obje
tive Φ(Γ)Output: δestCompute ΦN (Γ) = C1 ∨ C2 ∨ ...Ck

C = a
hievable set of obje
tives of MCompute δmax = maximum δ that preserves CCompute δsep = minimum δ that maximally separates C

δest = min(δsep, δmax)return δestComputing δsep and δmax in CT should be straight-forward; sort EIS(Γ) values and elim-inate edges in as
ending order starting from the minimum, until the 
onstraints are violated.
δmax is 
omputed by eliminating edges as long as a
hievable set of obje
tives is preserved and
δsep is 
omputed until C is maximally separated. To be able to make as few modi�
ations aspossible to the original model (so that the solution is a good approximate poli
y), in the �nalstep, minimum of δsep and δmax is 
hosen as δest.Given δest by CT , the redu
tion pro
edure is given in Algorithm 8. Note that Algo-rithm 8 does not require sampling from the original model and also all edges less than δest areeliminated; di�erent from redu
eFMDP2. The last step of redu
eFMDP2 updates the rewardfun
tion R in M̂ . De�ning a reward fun
tion for a given obje
tive is a relatively subje
tivepro
edure. To the best of our knowledge, there is no well-de�ned pro
edure to map a givenobje
tive to a reward fun
tion and �nding su
h a mapping is out of the s
ope of this thesis.In this thesis, we assume the obje
tive Φ(Γ) is given, and it is mapped to a reward fun
tion Rthat represents the obje
tive and the 
ost of a
tions as �good� as possible. So, if we representthis mapping as F where F : Φ(Γ) → R, then by using the same pro
edure F we 
an alsomap ΦN

C (Γ) to a new reward fun
tion; this 
orresponds to the last step of redu
eFMDP2. Forinstan
e, given Φ({A,B}) = A∨B, a possible reward fun
tion 
an be 
onstru
ted by assigninga reward of 10 to the states where Φ({A,B}) is satis�ed and 0 to all other states. So the rewardfun
tion returns 0 for A = 0, B = 0 and 10 otherwise. Now assume ΦN
C ({A,B}) = A whi
h2This di�eren
e is not important as δ in redu
eFMDP 
an be mapped to the usage in redu
eFMDP2 by
hoosing δ as the maximum EIS of the eliminated edges47



means that the a
hievable set of obje
tives is {A}. The reward fun
tion for ΦN
C 
onstru
tedby the same pro
edure above assigns 0 to states where A = 0 and 10 for A = 1.Algorithm 8 redu
eFMDP2 (EIS(Γ), δest,M)Input: EIS(Γ),δest by CT ,FMDP MOutput: FMDP M̂

M̂ = Mfor all Ei,j ∈ S doif EISi,j(Γ) < δest thenRemove edge Ei,j from DBNs for all a
tions in M̂Marginalize out gi from the CPTs of gj for all a
tionsend ifend forUpdate reward fun
tion R of M̂ based on Creturn M̂4.3 Related WorkGenerally, 
ontrol in GRNs is studied on Markovian models [79, 17, 18, 64, 66℄. In [79℄, PBNsare investigated in terms of perturbations and interventions. Random gene perturbationsin PBNs are introdu
ed. The transition probabilities in the existen
e of perturbations arederived. Then intervention that is for
ibly 
hanging value of a gene is introdu
ed to PBNs.A

ording to a goal (for example rea
hing the state 111) they try to sele
t the best gene tointervene in terms of the in�uen
e 
on
ept that is introdu
ed in [78℄ and �rst passage timesin Markov Chain theory. Finally they investigate the sensitivity of stationary distributions togene perturbations.One of the �rst studies of formulating the problem of 
ontrol in GRNs in an MDP frameworkis by Datta et al. [17℄. PBNs are used as the model and an MDP is formulated and solvedby dynami
 programming in a general setting. A real world example is given at the endbased on gene expression data that 
onstitute a 10-gene network whose obje
tive is to down-regulate one of the genes. Although the derivations are given for a PBN, the network used inthe example is ternary (so is not a PBN) and derived using the methods in [48℄. But sin
etransition probabilities are important for dynami
 programming, ternary valued variables makeno di�eren
e other than in
reasing the sear
h spa
e from 2n to 3n.In an extension of the study des
ribed above, the authors give the results of dynami
programming solution of the 
ase in whi
h the state of the PBN is not known, but a �
lue� aboutit 
an be observed in the form of a number of measurable outputs [18℄. Results are given on a48



7-gene network in whi
h the 
ontrol obje
tive is to ensure that a gene (namely WNT5A) is notup-regulated. Dire
tly 
ontrolling the gene (by an inhibitory protein) gives better results than
ontrolling through another gene that in�uen
es WNT5A. Expe
ted 
osts are de
reased andthe probability of being in the desired state is in
reased with 
ontrol 
ompared to un
ontrolled
ase.The work des
ribed in [64℄ 
on
entrates on �nding an optimal poli
y using dynami
 pro-gramming for a PBN that is 
onstru
ted using the method of [104℄.They �rst derive transitionprobabilities T (s, s′) and T (s, a, s′) and use this to solve a �nite-horizon 
ontrol problem whi
hminimizes a 
ost fun
tion. The a
tion is set as toggling a gene's value. Sele
ting the 
ontrolgene is performed using the in�uen
e metri
 of [78℄. They �nally give the results of an appli-
ation to melanoma data where the obje
tive is again to have WNT5A gene not up-regulatedand show that the 
ost is de
reased with 
ontrol.The in�nite-horizon of the problem whose �nite-horizon solution was given in [64℄, is studiedin [66℄. The authors use PBNs derived by the method of [67℄ and transition probabilities forPBNs derived in [64℄. They give the solutions for both dis
ounted 
osts and average 
ost perstage. Results are given on a melanoma appli
ation whi
h in
ludes a 7-gene network that has128 states. Value iteration and poli
y iteration results are given a

ording to total 
ost with
ontrol and without 
ontrol, and a

ording to time spent in desirable and undesirable statesduring the appli
ation of the 
urrent poli
y.The problem is also investigated by dividing the �nite-horizon into episodes of 
ontrol andmonitoring that is generally done in treatment of diseases [1℄. Again the model is assumed tobe given, and dynami
 programming solutions to four di�erent types of problems are studied,whi
h are �nite-
ontrol, �nite-
ontrol �nite-monitoring, �nite 
ontrol in�nite-monitoring andin�nite 
ontrol. For a GRN, three kinds of models 
an be available; M as GRN model, L asstate 
ost model, andK as state-a
tion 
ost model. All or some of these models 
an be availableto us in solving problems of optimal a
tion sequen
es based on our biologi
al knowledge of thedomain. In this study, solutions depending on the availability of these models and ways of
ombination of these models are also dis
ussed in
luding a multi-obje
tive solution.As opposed to what has been suggested in [17℄, state 
osts and state-a
tion 
osts are infa
t non-additive be
ause they denote di�erent kinds of values. Based on this fa
t, a multi-obje
tive solution is suggested in [2℄. The solution is general for any number of obje
tives, butspe
i�
ally the solution for state and state-a
tion 
osts is given.An approximate solution by reinfor
ement learning (Q-learning) based on the assumptionof a model simulator is given in [25℄. The results are promising for s
alability but the authorsreport the results only for a 10-gene network to be able to 
ompare to the optimal solutions.As all biologi
al data in
urs some type of noise, the models derived from su
h data may beerroneous. Pal et al. [65℄ investigate the e�e
t of the appli
ation of a 
ontrol poli
y on a gene49



network whose transition probabilities are di�erent from the one for whi
h the poli
y is found.Finally, in real life some 
onstraints may exist in the appli
ation for a treatment to a patient.For instan
e, a given a
tion may be applied only up to a 
ertain number of times. Deriving a
ontrol poli
y in the existen
e of su
h 
onstraints has been investigated by Faryabi et. al [26℄.4.4 The Gap Covered by the Proposed MethodsAs already mentioned earlier in this 
hapter, the main issue in 
ontrol problems is the
urse of dimensionality. In real problems, su
h as the GRN 
ontrol domain, it is hard to rea
ha solution by applying the available te
hniques, espe
ially with MDP representations. Allthe proposed methods for �nding an intervention strategy in GRN 
ontrol is based on MDPrepresentations that are hardly s
alable. Be
ause of this, all the appli
ations in the �eld arerestri
ted to small networks that have no more than 7 or 8 genes at best. Although thesemethods are promising and important for handling the 
ontrol problem in general, algorithmsthat 
an work for larger networks are needed as a GRN 
an in
lude genes in the order ofthousands.My expe
tation is that the reader has absorbed the di�erent novel aspe
ts of the two typesof algorithms proposed in this 
hapter to �ll this gap. The �rst algorithm 
on
entrates onMDP representations, in whi
h a feature (or gene) redu
tion method is devised for redu
ingthe given model to another, where the latter have a signi�
antly smaller state spa
e than theformer. This type of redu
tion provides near-optimal solutions to the otherwise unsolvableGRN 
ontrol problems. This redu
tion is also di�erent from the existing MDP redu
tion (orminimization) te
hniques already des
ribed in the literature (see [30℄ for instan
e) in the sensethat it is applied before modeling to fo
us on the 
omponents of the network that is essentialfor 
ontrol.The se
ond proposed method works well for FMDP representations. There are two 
ontri-butions here; �rst, it is the �rst appli
ation of FMDP representations to GRN 
ontrol domain,se
ond, a new redu
tion algorithm for a given FMDP representation is proposed for near-optimal solutions to 
ontrol problems. This algorithm is very promising to rea
h the obje
tiveof solving genome-wide 
ontrol problems.Although FMDP formalism is more appropriate for domains that are easily fa
torized likeGRN 
ontrol, MDP representations are still investigated due to their ease of implementationand interpretation. This makes both of the methods proposed in this 
hapter appli
able forthe studies in this �eld. This be
omes more 
onvin
ing by the experimental results reportedin the next 
hapter.
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CHAPTER 5EXPERIMENTAL RESULTS
This 
hapter in
ludes the results of the experiments performed to demonstrate the appli
abilityof the proposed algorithms. Both syntheti
 and real data sets are used in the experiments.Naturally following from the presentation of the algorithms, the results are also given in twoparts; the �rst part of the results 
overs the modeling and the se
ond part of the results isdedi
ated to the 
ontrol of GRNs. Ea
h se
tion in
ludes the des
ription of the data sets, resultsand dis
ussion.5.1 Implementation and Exe
ution EnvironmentsThe algorithms are mostly implemented in Matlab1 (unless otherwise stated). No spe
i�
toolbox dominates the implementation but some fun
tions from the statisti
s toolbox are used.Other than that, for tasks like graph 
onstru
tion/drawing and data pre-pro
essing, somefeatures of R2 and Python3 are used.Most of the experiments are performed on a 
omputer with Intel Core2 2.4 GHz CPU and3GB of RAM running Linux. For some of the time 
onsuming empiri
al experiments, an HPC
luster4 is also used. But none of the algorithms here require more than an ordinary desktop
omputer.5.2 Constraint-based Modeling of Gene Regulatory Net-works5.2.1 Data setsIn addition to the data 
onstru
ted from syntheti
 networks, there are four real data sets usedfor the experiments in this se
tion. These are widely investigated data sets in the litetature.1The Mathworks - MATLAB and Simulink for Te
hni
al Computing, http://www.mathworks.
om, a

essed1-June-20092The R Proje
t for Statisti
al Computing, http://www.r-proje
t.org, a

essed 1-June-20093Python Programming Language, http://www.python.org, a

essed 1-June-20094High Performan
e Computing, http://hp
.
eng.metu.edu.tr, a

essed 1-June-200951



The list of these data sets are as follows:1. The expression data of Spellman et. al. [81℄: It is time-series gene expression data
omposed of 77 time steps for di�erent phases of the 
ell 
y
le and in
ludes 6178 genes.2. The TF binding lo
ation data of Lee et al. [53℄: It has binding data for 106 TFs and 6270genes.3. The TF binding lo
ation data produ
ed by Harbison et al. [34℄: It is 
omposed of bindingdata for 203 TFs and 6229 genes.4. Protein 
on
entration data from 
ytometry experiments by Sa
hs et al. [73℄ for Rafsignalling pathway. It is stati
 data 
omposed of 500 samples for ea
h of the 11 genes.5.2.2 The PCPr algorithmTo evaluate the PCPr algorithm as des
ribed in Chapter 3, we performed two di�erent typesof experiments. The experiments di�er in the sour
e of data used; syntheti
 networks or realbiologi
al data. In the experiments with syntheti
 networks, a sparse syntheti
 network whi
hresembles biologi
al networks is 
onstru
ted. Then we sample from this network and 
he
k howwell we build the network from the data. We repeated the experiment for syntheti
 networkswith di�erent number of nodes and di�erent sample sizes. Prior information matrix is builtfrom given network by adding some amount of error (noise).The se
ond type of experiment is the one that involves real biologi
al data. This time,prior knowledge is 
onstru
ted from one type of data (TF binding data) and the other type ofdata (mi
roarray data) is used in statisti
al tests by adapting the signi�
an
e level a

ordingto prior knowledge. Results are veri�ed by 
onstru
ting a gold standard network from theliterature whenever possible. Methods based on Gene Ontology annotations are used when agold standard network is not available or is hard to 
onstru
t.There are three evaluation measures that we use in the experiments; pre
ision, re
all andstru
tural hamming distan
e (SHD). Pre
ision and re
all are de�ned in terms of the numberof true positive (TP), false positive (FP) and false negative (FN) edges. Pre
ision is given as;
TP

(TP+FP ) , and re
all is TP
(TP+FN) . High pre
ision along with high re
all should be the obje
tivefor an algorithm. SHD is a measure to �nd a distan
e between two dire
ted graphs where ea
hoperation of edge removal, edge orientation and edge addition is de�ned to be of distan
e 1.SHD is the total number of operations applied on one of the graphs to obtain the se
ond graph.We will use SHD to evaluate dire
ted graphs, pre
ision and re
all for undire
ted graphs. Sin
ethe skeletons of the graphs (sometimes referred as undire
ted dependen
y graphs [20℄) are
onsidered important in the bioinformati
s 
ommunity, we report both undire
ted and dire
tedgraph evaluations. 52



Syntheti
 networks:To 
onstru
t syntheti
 networks, we used the method des
ribed in [43℄, whi
h is publi
lyavailable in the R-pa
kage p
alg. The algorithm in p
alg 
onstru
ts a DAG whose sparseness 
anbe 
ontrolled by a parameter. The syntheti
 graphs used in these experiments are 
onstru
tedbased on the following parameters:
• Number of nodes(p): p ∈ {20, 40, 60, 80, 100}.

• Expe
ted number of 
onne
tions for ea
h gene(E[N ]): 3A total of 10 graphs are 
onstru
ted for ea
h p with E[N ] set as spe
i�ed above. As GRNs arethought to be sparse, we 
hose E(N) as 3. From ea
h of these 10 graphs, 5 datasets with size
n are generated, where n ∈ {100, 1000, 5000}. The reported results are the averages of these.The prior information matrix B for the syntheti
 networks is 
onstru
ted from the DAG
G 
onstru
ted by the p
alg. If Gij = 1 (the edge exists in G) then Bij is set to a random realnumber in the range [0.5, 1]. When Gij = 0, we have Bij ∈ [0, 0.5]. After that, a noise term
εij is added, where εij is a random variable distributed as N(0, σ). In the given results, σ isset to 0.1, whi
h means that the error is approximately in the range [−0.25, 0.25] with 0.99probability.Choosing the value of β depends on the noise level εij of prior knowledge. Given a lownoise level (a low standard deviation σ of εij with mean 0), a high value of β 
an in
rease thequality of the output, but a very high value 
an also bias the output in su
h a way that it onlyrepresents the prior knowledge. So, the value of β must be 
hosen 
arefully.
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Figure 5.1 shows the 
hange in the number of errors with the value of β for di�erent valuesof σ. The 
urves plotted in Figure 5.1 are 
onstru
ted as follows; given a DAG G with pnodes and E[N ] = 3, we 
onstru
ted matrix B for a given value of σ and applied the PCPralgorithm to a dataset of size 500. We performed 50 su
h runs, produ
ing a new B ea
h time;the number of errors are averaged over these 50 runs. This pro
edure is repeated for a set of σvalues. Figure 5.1 shows the results of this pro
edure for p = 40 and p = 60. If we don't knowthe value of σ (whi
h is generally the 
ase), 
hoosing a high value of β is risky. For instan
e, if
β is 
hosen as 35 for p = 60, the number of errors approximately doubles for σ = 0.35 
omparedto the 
ase when β is 0 (see Figure 5.1). So, 
hoosing a value between 15 and 25 de
reases thenumber of errors in 
ase of small σ (low error) and does not in
rease the number of errors toomu
h if σ is large. In the experiments 
ondu
ted using the syntheti
 datasets, sin
e we don'tassume any prior knowledge of σ, we experimentally 
hose the value of β as 20.
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hanges the result in a positive way, though e�e
ts di�er. Here, it is important toemphasize one more time that we 
ould do better by 
hoosing a larger value for β if weassumed a knowledge of σ as 0.1.Gene Regulatory Networks:In this experiment, we used TF binding data in addition to the mi
roarray data in order tobe able to 
ope with the problem of small samples in mi
roarray data. Ea
h TF binding data
ell has a p-value whi
h indi
ates the 
on�den
e of the binding of a 
ertain TF to a 
ertain54



gene. The smaller the p-value, the more 
on�dent we are about that binding. In this study,mi
roarray data is the data we used for 
onditional independen
e tests; from the TF bindingdata we 
onstru
ted the prior information matrix B to set the signi�
an
e level. In otherwords, binding data will 
onstitute our prior information on the existen
e of edges betweengenes and TFs.In the experiments, we used the gene expression data of Spellman et al. [81℄ and the TFbinding data of Lee et al. [53℄. Ea
h time sample in the expression data of Spellman et al. isused as a feature for a gene; it is used in deriving the 
onditional independen
e relationshipsalong with binding data as the prior knowledge in the PC algorithm. Evaluating the resultsis performed as sear
hing the literature for eviden
e of the derived intera
tions, so we hadto 
hoose a subset of genes to demonstrate the performan
e of the method. The gene set
hosen to model is the 25-gene set that was previously used in [6℄; this 
hoi
e will also allowfor 
omparison of the results. The expression data 
orresponding to this set is extra
tedfrom Spellman et al. and missing values are imputed in mi
roarray data using the k-nearestneighbors algorithm (KNNImpute [88℄) with k = 10. No further pro
essing is performedfor expression data. But, the binding data has to be pro
essed to derive probability values
orresponding to the entries in B. Next, we summarize this pro
ess by using the notationdes
ribed in [6℄.As mentioned before, the TF binding lo
ation data is in the form of p-values, whi
h 
anbe interpreted as indi
ators of edges being present in the graph. To 
onvert a p-value to aprobability of an edge being present, we follow the method des
ribed in [6℄. The p-value Pijof edge Eij is assumed previously to be exponentially distributed given that Eij exists in themodel stru
ture G [76℄, and uniformly distributed given that Eij does not exist (follows fromthe de�nition of p-value). This means that P (Pi = p|Ei ∈ G) = λe−λp/(1 − e−λ), where λ isa parameter of exponential distribution, and P (Pi = p|Ei /∈ G) = 1. After this step, applyingBayes rule and integrating over prede�ned minimum and maximum values of λ lead to thefollowing:
Bij = P (Eij ∈ G|Pij = p) =

1
λH−λL

∫ λH

λL

λe−λpϑij

λe−λpϑij+(1−e−λ)(1−ϑij)
dλ

(5.1)In Eq (5.1), G is the stru
ture of the model, Pij is the p-value of Eij , whi
h indi
ates the
on�den
e of the binding of TF i to gene j, λL and λH are the 
hosen lowest and highestvalues of λ, respe
tively, and ϑij = P (Eij ∈ G). In the 
omputations, ϑij = 0.5, λL = 0.1 and
λH = 10, 000 were used as suggested in [6℄. The integral is then solved numeri
ally for ea
h�xed value of pij [6℄.In the 
hosen set of 25 genes, 10 exist as TFs in the binding data of Lee et al. So, the p-values are available only for edges 
onne
ting these 10 genes to the other genes in the set. Thus,only for these edges Bij values 
an be 
omputed from the binding data. After we 
ompute ea
h55



Bij for these edges, the other entries in B are �lled with 0.5, indi
ating no prior knowledge forthose edges. Ea
h entry in B then, indi
ates the probability of a TF binding to a 
ertain gene.The 
onne
tions of genes in a GRN may be a�e
ted by the 
urrent phase of the 
ell 
y
le.To be able to explain these dependen
ies, we added a phase variable in the same way asdes
ribed in [6℄. The phase variable is assumed to be 
onne
ted to all the other genes andthese 
onne
tions are assumed to be permanent, i.e., they are not tested like the other edgesin 
onditional independen
e tests in the algorithm.To be able to evaluate the results, we built what is 
alled a �gold standard� network, whi
hin
ludes the edges that are experimentally veri�ed in the literature. In order to 
onstru
tthe gold standard network, we used the pathwaystudio tool (available at: �Ariadne Genomi
s:Pathway Studio, http://www.ariadnegenomi
s.
om/produ
ts/pathway-studio, a

essed 1-June-2009�). This tool takes a set of genes and builds all the dire
t intera
tions among thegiven genes based on the ResNet database. To the network derived in this way, we also addedthe intera
tions extra
ted from the BioGrid database [84℄. We used this network as our �goldstandard� network. The results are given in Table 5.1, where TP, FP and FN, respe
tively,stand for true positives, false positives and false negatives.Table 5.1: Quality of the derived networks for 25-gene experimentAlgorithm TP FP+FNPC 5 19 + 79 = 98PCPr (β = 20) 16 11 + 68 = 79PCPr (β = 30) 20 11 + 64 = 75PCPr (β = 40) 37 14 + 47 = 61
DBNBA 44 34 + 40 = 74Instead of 
hoosing a �xed β, this time we give the results 
orresponding to 3 di�erent valuesof β, namely 20, 30 and 40; these values have been sele
ted based on some initial tests wherewe realized that the number of false positives in
reases after 40. The network derived by PCPrwith β = 40 is also given in Figure 5.3. It is obvious from the results reported in Table 5.1that PCPr always outputs a better network than PC. This shows the e�e
tiveness of ourpro
edure in 
ombining multiple types of biologi
al data in this study, i.e., mi
roarray dataand TF binding data. Table 5.1 also in
ludes the results of Bernard et al. [6℄ for 
omparison; Wename their algorithm as DBNBA. Although they derive a di�erent type of network, namely adynami
 bayesian network, we 
an 
ompare the results by 
onverting the graph in their resultsto an undire
ted graph. Using the latter undire
ted graph we 
ompared their output to our56



�gold standard� network5. Pre
ision value of PCPr for β = 40 is 0.72 and the pre
ision for theoutput of DBNBA is 0.56. This shows that the existen
e of ea
h edge in the output of PCPris more �reliable�. Re
all values for the outputs are very 
lose, 0.44 and 0.52 for PCPr and
DBNBA, respe
tively. As a result, PCPr outputs a network with a mu
h better pre
ision and
omparable re
all values 
ompared to DBNBA.Our results also verify the results of Bernard et al. in the sense that the binding data ofLee et al. is more informative in deriving the GRN than the mi
roarray data of Spellman etal., at least for the 
hosen set of genes.
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Figure 5.3: Output of PCPr with β = 40 and α0 = 0.05. Red edges are the ones that have beenveri�ed in the literature, green ones are the novel relationships proposed by the algorithm.
5.2.3 PCPDPr algorithmThe experimental results for the PCPDPr algorithm as des
ribed in Se
tion 3.1 are reportedand dis
ussed in this se
tion. We follow the same evaluation strategy applied to the PCPr5Note that the numbers reported in Table 5.1 are di�erent from the ones reported in [6℄; we mapped theminto the s
ale used by our model be
ause of the di�erent evaluation 
riteria and di�erent �gold standard�networks. 57



algorithm; we also 
ompare PCPr to PCPDPr.Syntheti
 Networks:Note that the PCPDPr algorithm is proposed for graphs that have some densely 
onne
tednodes; we 
all su
h graphs partially-dense (PD) graphs. So syntheti
 PD graphs have to be
onstru
ted for testing PCPDPr.To 
onstru
t syntheti
 networks that are PD, we used a modi�ed version of the algorithmin p
alg. We modi�ed the algorithm to be able to produ
e networks that have dense nodes,i.e., whose expe
ted number of neighbors is larger from the other nodes. We 
onstru
ted PDgraphs this way and used them for testing the proposed algorithms.The syntheti
 graphs used in the experiments are 
onstru
ted based on the following pa-rameters:
• Number of nodes (p): p ∈ {100, 300, 500}.

• Number of dense nodes (dn) : To the best of our knowledge, determination of the numberof dense nodes for a given genome has not been studied before. Number of genes in afun
tional 
ategory in a genome s
ales by following a power-law [90℄. This power-lawrelationship is given as nc = κ∗ gγ, where nc is the number of genes in 
ategory c, κ and
γ are the parameters of the relationship. The key 
omponents in the GRN are usuallythe trans
ription fa
tors, ea
h of whi
h regulates several genes and other TFs. As theTFs 
an regulate other 
omponents (genes), we set the TFs to be the dense nodes in theGRN. In order to �nd the number of TFs in the GRN, we found the number of genes thatare related to �Trans
riptional regulation� 
ategory in both eukaryotes and ba
teria [90℄.The average is taken be
ause not all the TFs have the same degree of density. Also, sin
ethere are 
ommon TFs between eukaryotes and ba
teria whi
h are essential for the basi

ellular pro
esses like DNA synthesis and signal transdu
tion, it is more reasonable toin
lude both eukaryotes and ba
teria. So, we set the number of dense nodes by using theabove equation where κ = 0.002 and γ = 1.5. γ is 
hosen as 
lose to the mean parametervalue of �Trans
riptional regulation� 
ategory for eukaryotes and ba
teria. κ = 0.002 isderived again by using the values in [90℄. So for instan
e the number of dense nodes is22 for a network with 500 nodes.

• Expe
ted number of edges for ea
h node (E[N ]): 3 for sparse nodes and 30 for densenodes. 30 is 
hosen by 
al
ulating the average number of 
onne
tions for some of thedense genes in di�erent organisms (see Table 5.2).A total of 10 graphs are 
onstru
ted for ea
h p with E[N ] and dn set as spe
i�ed above. Fromea
h of these 10 graphs, 5 datasets with sample size n are generated, where n ∈ {100, 250, 500}.The reported results are the average of these. Noti
e that the 
hosen values of n are typi
alsample sizes for a mi
roarray experiment. 58



The prior information matrix is 
onstru
ted in the same way as in the experiments forPCPr des
ribed in the previous se
tion. β is set as 20 and α0 is again set to 0.05.One important di�eren
e from the previous experiments is that this time, not only theskeleton but the PDAG derived from the se
ond part of the PC algorithm is evaluated as well.
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Figure 5.4 gives the evaluation results (note that SHD values are normalized to [0, 1]). It
an be easily seen in Figure 5.4 that prior knowledge always improves the result, though e�e
tsdi�er. Also, the PCPDPr algorithm is always better than PCPr. Noti
e that as the numberof dense nodes follows a power-law, e�e
t is more apparent for larger sized networks. Rate ofimprovement in pre
ision and re
all for p = 100 is larger than rate of improvement in SHD. Butfor p = 500 for instan
e, SHD also improves more rapidly. This shows that the improvementin skeleton is re�e
ted to the edge orientation part as well. So PCPDPr 
an dis
over 
ausalintera
tions mu
h better than PC and PCPr. Also another important aspe
t is the 
onsisten
yof PCPDPr with in
reasing sample size. It outputs a better network 
onsistently when thesample size in
reases (see the 
olumns in Figure 5.4).Figure 5.5 gives the exe
ution time in se
onds for the algorithms, where it is obvious thatPCPDPr outperforms others for all settings, though it is di�
ult to rea
h a 
on
lusion for59
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PCPr and PC. Sin
e the mistakes done by 
onditional independen
e tests 
an both in
reaseor de
rease the 
omputational time required by the algorithms, the exe
ution time dependsgreatly on the used network and data. But the gain by PCPDPr is 
lear; it always requires lesstime to 
omplete and sometimes the di�eren
e is huge. For instan
e, for p = 500 and n = 500,PCPDPr works 41 times faster than PC.Table 5.2: Some TFs and number of bindings for a) E. Coli, b) B. Subtilis, 
) S. CerevisiaeGene Bindingsar
A 20
rp 72purR 16fnr 22rpoE_rseABC 24y
fC_purB 26himA 21(a)

Gene BindingsAbrB 33GerE 20
odY 15C
pA 44TnrA 26Fur 23PhoP 19(b)
Gene BindingsMig1 27Msn4 32Skn7 21Ste12 72Te
1 44Ume6 38Gln3 29(
)
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Gene Regulatory Networks:GRNs are generally thought to be sparse. For example, the average number of 
onne
tionsin Es
heri
hia Coli trans
riptional network is given as 5 in [77℄. But, there are also some TFsthat are found to bind on a large number of genes (either as an a
tivator or a repressor). Some ofthe TFs that are known to bind to more than 15 genes (by using TF binding data) in Es
heri
hia
oli, Ba
illus subtilis and Sa

haromy
es 
erevisiae are given in Table 5.2 [59, 60, 77℄. (Thedata used for Table 5.3(a) and Table 5.3(
) are available at �Uri Alon's Mole
ular Cell BiologyLab, http://www.weizmann.a
.il/m
b/UriAlon (a

essed 1-June-2009)�, and the data usedfor Table 5.3(b) is available at �DBTBS, http://dbtbs.hg
.jp (a

essed 1-June-2009)�.Table 5.2 demonstrates and emphasizes that our proposed approa
h 
an be applied toGRNs as well. In this se
tion, the results of applying the proposed algorithms to real geneexpression data are presented. We used the gene expression data of Spellman et al. [81℄ andthe TF binding data of Lee et al. [53℄.The same data set used to test PCPr in 5.2.2 is also used to test PCPDPr. The priorinformation matrix, B, is again derived from binding data by the method of Bernard et al. [6℄.Dense nodes are found in the same way des
ribed in Se
tion 3.1.2. If a gene is estimatedto have more than 5 
onne
tions with probability greater than 0.8 in B, then that node is
onsidered as dense. Based on the data we used, genes that have been found as dense from Bare ACE2, MCM1, NDD1, SWI4, SWI5, SWI6 and CLB2. These dense genes are importantfor transition between phases of the 
ell 
y
le. Both SWI5 and ACE2 are TFs that a
tivatethe trans
ription of genes expressed early in G1 phase in order to promote the transition fromM to G1. The three genes SWI4, SWI6, and MBP1 are DNA binding 
omponents of MBF andSBF, whi
h regulate the late G1 spe
i�
 trans
ription, in
luding 
y
lins and DNA synthesisgenes. The two genes NDD1 and CLB2 play a role in G2/M transition. At this stage of the
ell division, the 
ell undergoes a huge 
hange in the trans
ription of genes in order to pro
eedto the following phase.The same �gold standard� network mentioned in Se
tion 5.2.2 is used to evaluate the al-gorithms. The results are given in Table 5.3. The network derived by PCPDPr with β = 40is also given in Figure 5.6. It is 
lear from the results reported in Table 5.3 that PCPDProutputs a better network in a shorter time. The results for DBNBA and PCPr are in
ludedin this table again for the ease of 
omparison.As reported in Table 5.3, PCPDPr and PCPr always have higher pre
isions than both PCand DBNBA. And PCPDPr with β = 40 has a mu
h better pre
ision than DBNBA with a
omparable re
all. Also, we should emphasize here that sin
e we 
ould not obtain the algorithmbut only the results for DBNBA, we 
an not report the time for that algorithm. But, the timeelapsed for PCPr and PCPDPr for β = 40 shows that PCPDPr outputs a better network inmu
h shorter time than PCPr. 61



Table 5.3: Quality of the derived networks for 25-gene experimentAlgorithm TP FP+FN Time Pre
ision Re
allPC 5 19 + 79 = 98 0.37 0.20 0.05PCPr (β = 20) 16 11 + 68 = 79 0.48 0.59 0.19PCPr (β = 30) 20 11 + 64 = 75 0.67 0.64 0.23PCPr (β = 40) 37 14 + 47 = 61 4.17 0.72 0.44PCPDPr (β = 20) 18 11 + 65 = 76 0.49 0.62 0.21PCPDPr (β = 30) 25 11 + 59 = 70 0.46 0.69 0.29PCPDPr (β = 40) 38 14 + 46 = 60 0.69 0.73 0.45
DBNBA 44 34 + 40 = 74 - 0.56 0.52Again, by 
onsidering the result when β = 40, we 
an see that PCPDPr is missing impor-tant intera
tions like: SWI6-STB1, SWI6-CLB2, SWI6-MBP1, SWI5-CLB2, ACE2-CLN2, andACE2-CDC28. Most of these intera
tions are also missing in the study of Bernard et al. [6℄. Itis also worth mentioning here that all these are not a
tually protein-protein intera
tions [84℄,where protein-protein intera
tions should not be expe
ted to be extra
ted by using the typesof data used here.

ACE2

ASH1FKH1 MBP1MCM1NDD1

STB1

SWI4SWI5

SWI6

ALG7 CDC20

CDC21

CDC5

CDC6

CLB2 CLB5

CLN1

CLN2

CTS1EGT2 FAR1 HTA1

PCL2SIC1

 

 

True pos.

False pos.Figure 5.6: Output of PCPDPr with β = 40 and α0 = 0.05

62



In the resulted network shown in Figure 5.6, we observe that we have 14 FP intera
tions; inother words, our algorithm predi
ted 14 intera
tions whi
h are not dis
overed yet; 11 of thoseintera
tions are gene-gene intera
tions and only 3 are between TFs and genes; this indi
atesthat using TF binding data is useful to de
rease FPs. Our algorithm predi
ted the false positiverelationship between 
d
21 and CLB5. The reason for this FP type of relationship is that both
d
21 and CLB5 are regulated by the same TF, namely MBP1; this indi
ates that both 
d
21and CLB5 are 
orrelated. Similarly, the edge between CLB2 and CLN2 resulted be
ause bothare regulated by two di�erent TFs whi
h are regulated by NDD1. We also predi
ted a falsepositive relationship between CLN1-CTS1 and CLN1-EGT2. A possible interpretation forthis 
ould be that both CTS1 and EGT2 are regulated indire
tly by NDD1 through SWI5;CLN1 is also regulated by NDD1. Therefore, our algorithm predi
ted intera
tions betweenCLN1 and both CTS1 and EGT2. These two intera
tions were also predi
ted by Bernard etal.. Two more intera
tions, namely FKH1-
d
20 and NDD1-
d
20, are worth 
onsidering forfurther investigation. Both FKH1 and NDD1 are TFs required for G2/M spe
i�
 trans
ription;also 
d
20 is important in metaphase/anaphase transition in the M-phase of the 
ell 
y
le.This result should be interesting be
ause FKH1 and NDD1 may 
ontrol the expression of
d
20 through other genes, whi
h we did not 
onsider in this experiment. PCPDPr has anadditional advantage that supports the need for its development; PCPDPr dis
overed all theedges dis
overed by PCPr, and in addition it dis
overed a new TP edge, namely CDC6-CLB2,whi
h is the only di�eren
e between the outputs of the two algorithms.Comparing our TP intera
tions with those reported by Bernard et al., it 
an be seenthat there are 30 
ommon intera
tions. In addition to these, PCPDPr did dis
over 7 novelintera
tions, with respe
t to Bernard et al., like: ACE2-PCL2, MBP1-CLB5, FKH1-CLB2,SWI5-PCL2, CDC6-CLB2, SWI6-CDC6 and SWI6-CLB5.Key TFs based validationGene Ontology (GO) is one of the most important ontologies built within the fun
tional bioin-formati
s �eld [16℄. The goal of GO is to provide a stru
tured and 
ontrolled vo
abulary todes
ribe gene fun
tions and the pro
ess in whi
h the genes are involved.We validated our results using GO annotations based on the sub-networks derived fromthe resulting network shown in Figure 5.6. We grouped the 10 TFs into four groups: G1/Stransition of mitoti
 
ell 
y
le (SWI4, SWI6 and STB1), G2/M spe
i�
 trans
ription in mitoti

ell 
y
le (FKH1 and NDD1), Interphase of mitoti
 
ell 
y
le (SWI4, SWI5, SWI6, FKH1,ACE2, STB1 and NDD1) and DNA repli
ation (MBP1 and MCM1); these TFs will be 
alledkey TFs. We 
onsidered all the genes and (non-key) TFs whi
h intera
t with ea
h group ofkey TFs as a sub-network, and we validated the GO annotations for ea
h subnetwork using theGO Term Finder available at �Gene Ontology Term Finder, http://db.yeastgenome.org/63




gi-bin/GO/goTermFinder (a

essed 1-June-2009)�. This system takes a set of genes andreturns p-values 
orresponding to GO terms. Ea
h p-value indi
ates the 
on�den
e that theset of genes share the 
orresponding GO term. The smaller the p-value is, the more spe
i�
 isthe GO term shared by the genes.Here, we propose a new te
hnique whi
h utilizes key TFs to measure and validate thesigni�
an
e of the intera
tions between the genes and the TFs of ea
h group. The proposedapproa
h works as follows. We �rst �nd the p-value of the TFs within ea
h group of genes andthe genes/TFs they intera
t with; we denote this set of genes by S. Then, we �nd the p-valueof the genes/TFs with whom the key TFs intera
t, after ex
luding (from the former TFs) keyTFs that do not intera
t with ea
h other, i.e., we leave in the former set of TFs all key TFsthat have internal intera
tions among ea
h other; we denote this set of genes by S′.To illustrate the proposed validation pro
ess, 
onsider the following example set S of G1/Sgroup whi
h 
ontains the following TFs/genes (SWI4, SWI6, STB1, CLB2, PCL2, HTA1, 
d
6,MBP1, MCM1, NDD1, CLN2, 
d
21, CLB5). The genes/TFs other than the key TFs are thegenes that the key TFs intera
t with. Set S′ has the following TFs/genes (SWI4, SWI6, CLB2,PCL2, HTA1, 
d
6, MBP1, MCM1, NDD1, CLN2, 
d
21, CLB5). We see that SWI4 andSWI6 are in
luded in the set S′ be
ause SWI4 intera
ts with SWI6, and SWI6 intera
ts withSWI4. We found the p-value for ea
h set of genes S and S′ for the four groups enumeratedabove. The p-value in S′ indi
ates how signi�
ant are the intera
tions among TFs in S. If thep-value of S′ is very 
lose to the p-value of the 
orresponding S, then we say that we havegained most of the information that was in S, and this infers that the intera
tions within Sare signi�
ant. We applied this method to the four groups enumerated above and the resultsare summarized in Table 5.4.Table 5.4: P-values of S and S′ sets for both PCPr and PCPDPr when β = 40Group Set S Set S′

G1/S 9.39 × e−7 5.6 × e−5

G2/M 0.00025 >0.01Interphase 4.23 × e−14 4.23 × e−14DNA Repli
ation 1.34 × e−5 0.00996From the results reported in Table 5.4, it 
an be easily seen that our sub-networks for the�rst and fourth groups are strong as they gained all of the intera
tions in the S set. The othertwo groups did not gain enough information from set S as they 
ontain small number of TFs.Sin
e the sets S and S′ are the same for both PCPr and PCPDPr (be
ause the intera
tionsare almost the same), we had the same p-values for both algorithms.64



Finally, we want to elaborate more on the appli
ability of the proposed validation approa
h.There are three 
ases to be 
onsidered as the key TFs are 
on
erned. In the �rst 
ase, theredoes not exist any intera
tion between the key TFs. Consequently, no key TF is expe
ted tobe in set S′. As a result, the p-value of set S′ will be mu
h larger than the p-value of set S;this indi
ates that the information in S was not 
ompletely gained. This 
ase is what we seein the DNA Repli
ation group. The se
ond 
ase 
overs the situation where ea
h key TF is
onne
ted to at least one other key TF. In this 
ase, the p-values of the two sets S and S′ arethe same be
ause S and S′ 
ontain the same set of genes. This 
ase is prominent in groupInterphase. The last 
ase is somehow in between the other two 
ases, i.e., only some of the keyTFs are 
onne
ted to ea
h other while ea
h of the remaining key TFs are not 
onne
ted to anykey TFs. In this 
ase, not all the key TFs in S will be present in S′, and that will 
ause thep-value to drop down. Depending on the signi�
an
e of the eliminated key TFs, the p-valueof S′ will in
rease. This 
ase is shown in group G1/S in Table 5.4. To sum up, the proposedapproa
h 
onsiders three 
ases of key TFs 
onne
tivity and the information gain depends onthe degree of 
onne
tivity.Empiri
al analysis of gssAs gss is a greedy pro
edure, it may not always �nd the best graph. To be able to see how wellthe gss pro
edure e�e
ts the output, we de�ned two algorithms 
alled gPC and gPCPr, wheregPC (greedy PC) is the same as the PC algorithm ex
ept that the separators are sear
hed onlyby applying the gss pro
edure. Like the PC algorithm, no prior knowledge is used. On theother hand, gPCPr, is the same as gPC ex
ept that it uses prior knowledge to update the valueof α0 (see Se
tion 3.2). We performed some experiments with the same parameters given inSe
tion 5.2.3. The results are shown in Figure 5.7. gPC and gPCPr demonstrate an a

eptableperforman
e, but never performs better than PCPDPr, as a stru
ture learning algorithm issaid to perform better than another, if it in
reases both pre
ision and re
all. But neither gPCnor gPCPr shows su
h a performan
e, though they are sometimes better than PCPDPr in onlyone aspe
t. Similar results for (normalized) SHD are also available in Figure 5.7.One important point in these results is the high re
all values in gPC and gPCPr. Thisshows that as the algorithms do not sear
h for all 
andidate separators, but only the ones
hosen greedily, sometimes they 
an not �nd the separators despite their existen
e, thereforethe algorithms keep su
h edges in the graph. This in
reases TPs and de
reases FNs, but alsoin
reases FPs, therefore a larger re
all and smaller pre
ision is obtained. There are two typesof errors in gPC and gPCPr. The �rst type of error is the error resulting from small samplesize and the other type is the error due to greedy steps. As the sample size in
reases, greedystep errors be
ome more apparent; pre
ision de
reases and re
all in
reases.65
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5.2.4 Yeast 
ell-
y
le modelTo be able to demonstrate the s
alability of PCPDPr, an experiment is devised to derive alarge network by using the PCPDPr algorithm. For this experiment, we 
hose all genes thathave been previously identi�ed as related to the 
ell 
y
le [81℄. We used the same mi
roarraydata as in the previous experiment and used the lo
ation data of Harbison et al. [34℄. Thereare almost 800 genes that have been previously determined to be 
ell 
y
le related [81℄. Fromthese genes, we extra
ted a set of 763 genes for whi
h both mi
roarray data and lo
ation dataare available. Among these 763 genes, only 27 of them are available as TFs in lo
ation data,so only these are used to 
ompute prior information matrix B. A phase variable is then addedas in the previous experiment. It took approximately 84.5 minutes for PCPDPr to output anetwork with 1830 edges for β = 30 and 87.9 minutes to output a network with 2112 edges for
β = 40; we used the same other parameters as in the previous experiment.As it is hard to 
onstru
t a �gold standard" network for su
h a large gene set, we use onlythe key TFs based validation for this experiment. This is another eviden
e in support of theimportan
e of the developed validation approa
h.For the analysis, �rst we have 
lassi�ed the 27 TFs based on their GO annotation. Sevengenes are related to Interphase of mitoti
 
ell 
y
le, 10 genes are related to the 
ell 
y
lepro
ess, 4 genes are related to G1/S transition of mitoti
 
ell 
y
le, and 4 genes are related toG2/M spe
i�
 trans
ription in mitoti
 
ell 
y
le. After this, we found the S and S′ sets fromthe output graph. 66



The results of PCPDPr when β = 30 show that the 7 TFs related to the interphase termhave 
onne
tions to 40 genes, whi
h have p-value of 0.00022 with respe
t to interphase ofmitoti
 
ell 
y
le term. Among those 40 genes, YHP1, SWI4, FKH1, ACE2, CIK1, NDD1,and KIP2 are the genes most related to the interphase term. The 10 TFs related to 
ell 
y
leterms have 60 genes 
onne
ted to them; those genes are related to the mitoti
 
ell 
y
le termwith p-value as 4.77 × 10−6. The genes whi
h are 
onne
ted to the 4 TFs related to G1/Stransition of the mitoti
 
ell 
y
le were related to the same term with a p-value of 0.00568.Also, we have seen that CIK1 and KIP2 are among the genes 
onne
ted to G2/M transitionTFs. These two genes are related to the mi
rotubule motor a
tivity, whi
h is essential forassembly of the mitoti
 spindle at the beginning of M phase, with p-value of 0.00463.Similarly, we have analyzed the genes 
onne
ted to TF 
lasses when β = 40. We havefound that the list of genes whi
h are related to the interphase TFs have a signi�
ant p-valueof 2.63 × 10−5 with respe
t to the same term. Also, we have found that the same gene list ishighly related to 
y
line �dependent protein kinase regulator a
tivity fun
tion with p-value of
1.47× 10−8. This fun
tional term was not dis
overed using β = 30. Besides, the genes relatedto G1/S term showed to be related to the term with p-value of 0.00549.Moreover, we have analyzed the histone 
luster by Spellman [81℄. This 
luster has 9 genes,all of them are histone genes; they are related to 
hromatin assembly and disassembly GOterm with p-value of 1.7× 10−12. We got all the genes with whi
h the 9 histone genes intera
tbased on our algorithm (17 genes when β = 40 and 16 genes when β = 30), and study theGO annotation related to them. For β = 40, we found that 8 out of 9 of the histone genesare among the 17 genes they bind to. This means that, most of the histone genes are found tobe dependent on ea
h other. The 17 genes are related to 
hromatin assembly and disassemblyGO term with p-value of 2.35 × 10−9. When β = 30, we found that 8 out of 9 of the histonegenes were among the 16; these genes have p-value of 1.1×10−9 with respe
t to the 
hromatinassembly and disassembly GO term. For both β = 30 and β = 40, HHO1 is the gene that wasnot in
luded in the 16 or 17 genes, respe
tively.5.2.5 Raf Signalling PathwayTo evaluate PCPDPr with a well-known stru
tured network, in this se
tion we report the resultsfor the Raf signalling pathway. Raf is an important protein for human immune system. Raf isinvolved in signalling proliferation of immune system 
ells. Raf signalling pathway has widelybeen studied in the literature, e.g., [24, 73, 93℄. So this network has a relatively well-knownstru
ture; 
urrently a

epted Raf signalling pathway is shown in Figure 5.8.From the study by Sa
hs et al. [73℄, protein 
on
entration data from 
ytometry experimentsis available about Raf signalling pathway. Werhli et al. [93℄ split this data into 5 data sets of 100samples ea
h in order to better test their inferen
e algorithm. We also follow the same strategy67
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Figure 5.8: Raf signalling pathway (taken from [73, 93℄)and use these 5 data sets separately and give mean results of these experiments. Here, we areusing the prior data as well, whi
h was used by Werhli et al. [93℄. This prior data have beenderived from the Kyoto En
y
lopedia of Genes and Genomes (KEGG) pathway database [44℄.For ea
h pair (i, j) of genes, the number of pathways where there is an edge between the genesis divided by the total number of pathways where two genes exist together and Bij is set tothis ratio. If there are no pathways with an edge between the genes, then we set that entryof matrix B to 0.5, indi
ating no prior knowledge. The value of β is again set to 30 for thisexperiment.We 
ompared the results of our algorithm to the results of the algorithm byWerhli et al. [93℄.Their algorithm is a bayesian network stru
ture learning algorithm by using prior knowledgeand Markov Chain Monte Carlo (MCMC) simulations. The results are shown in Figure 5.9. Itis worth noting that the algorithm by Werhli et al. [93℄ is named as BNMCMC in the �gure.
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In [93℄, the results are given in terms of the TP 
ounts 
orresponding to 5 FPs for theundire
ted graphs. We also report the results here in the same way for 
omparability. Tobe able to �x the number of FPs, we found the value of α for PC and α0 for PCPDPr thatoutputs a network with 5 FPs a

ording to the 
urrently a

epted Raf pathway in Figure 5.8,and used that α values in the experiments. Again for BNMCMC we found a threshold thatoutputs a network with 5 FPs based on the set of sampled networks by MCMC. The resultsin Figure 5.9(a) demonstrates that PCPDPr outputs a more reliable network as the error barsshow the standard deviation of the results for 5 di�erent data sets. The result for dire
tedgraph evaluation is shown in Figure 5.9(b). As 
an be seen, the performan
es of PCPDPr andBNMCMC is almost the same, but we must mention here that, MCMC is a 
omputationallyvery expensive pro
edure and BNMCMC is exe
uted for approximately 2.6 hours on the averagewith the parameters suggested by the authors of [93℄ for ea
h of the 5 data sets, while PCPDProutputs these networks in only 0.32 se
onds on the average.5.3 Large-s
ale Gene Regulatory Network ControlThe experimental results for the algorithms proposed for s
alable intervention in GRNs aregiven in this se
tion. Again, following the presentation of the methods in Chapter 4 they aregiven in two separate se
tions.5.3.1 S
alable Control by Feature Redu
tionThis se
tion reports the experimental results for the feature redu
tion method des
ribed inSe
tion 4.1. For these experiments, we used PBNs [78, 79℄ as the modeling te
hnique. Theidea in PBNs is to use more than one boolean fun
tion for ea
h target gene instead one, usedin Boolean networks (see Se
tion 2.2.2 for details)The PBN derivation algorithm uses three parameters:1. The number of regulators that will be 
hosen for ea
h gene. Biologi
ally, genes arethought to be regulated by few number of genes [17, 48℄. So, among one, two and threegene-regulator sets, the genes with highest COD values are sele
ted, where the errormeasure is the best-�t extension error [51℄.2. The number of fun
tions that will be used to model ea
h gene. It is set to 3 basedon some initial test runs that 
he
k the model's ability to predi
t the next state of thenetwork given its 
urrent state.3. The probabilities assigned to the fun
tions 
hosen to model a gene. Probability c(i)j whi
his the probability of 
hoosing the jth fun
tion for gene i, is 
al
ulated based on CODvalues as dis
ussed in Se
tion 2.2.2. 69



Perturbation probability [79℄, say p, is the probability of randomly 
hanging the expressionlevel of genes in the model. This way, all the states in the model be
ome rea
hable, and theunderlying Markov Chain 
orresponding to the PBN be
omes ergodi
 [79℄. Ergodi
ity meansthat the steady-state probability of a Markov Chain 
an be estimated empiri
ally. More detailsabout this parameter of the PBN 
an be found in [79℄. In our settings for deriving the PBN,the perturbation probability p is set to 0.01.There are two types of error measures used in this se
tion. The �rst error measure is theper
entage di�eren
e between the optimal value fun
tion of the original model and the valuefun
tion of the poli
y found after feature redu
tion. In other words, error is the per
entagedi�eren
e between value fun
tions of the poli
ies found by following paths (a) and (b) in Fig-ure 4.1. The se
ond measure is the type named as simulation error. This type of error is foundby simulating the model applying the interventions implied by the poli
y to see how well thepoli
y does in keeping the model out of the undesirable states.As the models used are dis
rete in this se
tion, data are dis
retized before usage. Intervaldis
retization with 2 bins is applied as the dis
retization method when ne
essary.Syntheti
 dataWe �rst evaluated our algorithm on some syntheti
 data sets generated using the algorithmproposed in [102℄, whi
h is based on a regulation matrix A. Matrix A is set su
h that ea
hentry aij of A gives the degree of regulation of gene j on gene i, and the diagonal of A is 1,i.e., for all i, aii = 1. If Yt denotes the system state at time t, the next state is generated asfollows:
Yt+1 = A(Yt −N) + ε (5.2)where N is the threshold that a gene has to be above (or below) in order to a�e
t other genes,and ε is the noise uniformly distributed in a spe
i�ed range. In the experiments, N is set as50 and ε is randomly set uniformly in the range [−10, 10].To generate the data sets, we used the same parameters that are used in [102℄. Setting Y0 torandom values, we generated 500 samples from ea
h network, where one sample is taken every5 steps of the simulation. Ea
h aij is set to be 0.1 or −0.1 representing positive or negativeregulation6, respe
tively. For example, for the network shown in Figure 5.10(a), a53 = −0.1and a14 = 0.1. In the �gures, arrows denote positive regulation and the lines with a bar denotenegative regulation. Expression levels are assumed to be in the range [−100, 100], so in datageneration, if a value goes above (below) these limits, it is set to 100 (−100). Finally, the datagenerated by the above simulation is dis
retized into binary levels (ON and OFF).In all of the syntheti
 data experiments, the obje
tive is to down regulate the se
ond gene6Noti
e that positive or negative regulation does not mean to always in
rease or de
rease the expressionlevel of the gene. The net e�e
t depends on the value of the regulator's expression level and N .70



and the �rst gene is intervened. For this obje
tive, we assigned a negative reward of −5 to thestates if the expression level of the se
ond gene is 1 (ON), and a reward of 0 otherwise. Thereare two a
tions where one is the intervention of the �rst gene, whose 
ost is 1, and the otheris the 
ostless monitoring a
tion.

(a) Network 1 (b) Network 2Figure 5.10: Syntheti
 networks
The �rst set of data is generated from the network shown in Figure 5.10(a) that representsmatrix A in Eq (5.2). As 
an be seen in Figure 5.10(a), there are two 
omponents in thenetwork 
onne
ted via gene 3. So, we 
an expe
t that a subset of genes, namely {4, 5, 6, 7},
an be ignored in �nding a 
ontrol poli
y be
ause they seem to be less related to the 
ontroland reward genes, namely 1 and 2.Table 5.5: In�uen
e S
ores of genes in network 1Gene 3 4 5 6 7 8S
ore 1.004 1.181 0.626 0.923 1.162 1.282The IS values for all genes are shown in Table 5.5; these values demonstrate that the leasts
ored genes are 5 and 6. In 
ase Th is given as 1, the set that will be 
hosen is {5, 6}. Table 5.6shows the errors asso
iated with the di�erent gene subsets; only subsets that have error lessthan 10% are listed. From the results reported in Table 5.6, it 
an be easily seen that {5, 6} isone of the three best subsets.The se
ond set of syntheti
 data is generated from the network shown in Figure 5.10(b).In this network, the expression level of the se
ond gene has to be 
ontrolled indire
tly. The71



Table 5.6: Gene subsets with error less than 10% for network 1Subset Error Subset Error Subset Error3 2.582 5 8 2.073 3 5 8 2.2455 2.073 6 7 0.203 3 5 7 2.2456 0.134 6 8 0.000 3 5 6 0.1737 0.184 7 8 0.758 5 6 7 8 0.1738 0.026 6 7 8 0.173 3 6 7 8 0.1733 5 2.245 5 7 8 2.245 3 5 7 8 2.2453 6 0.173 5 6 8 0.000 3 5 6 8 0.1733 7 2.245 5 6 7 0.173 3 5 6 7 0.1733 8 3.012 3 7 8 2.245 3 5 6 7 8 0.1735 6 0.000 3 6 8 0.1735 7 2.245 3 6 7 0.173
Table 5.7: In�uen
e S
ores of genes in network 2Gene 3 4 5 6 7 8S
ore 2.837 2.502 1.944 2.623 1.534 2.875

Table 5.8: Gene subsets with error less than 10% for network 2Subset Error Subset Error Subset Error3 3.177 3 7 1.246 3 6 7 2.0045 0.085 5 6 4.812 3 5 7 0.8586 3.990 5 7 0.429 3 5 6 4.2357 0.287 6 7 2.004 3 5 6 7 2.0043 5 2.295 5 6 7 2.0043 6 4.985 4 5 7 9.517
72



�rst gene is 
onne
ted to the reward gene through genes 4 and 8. This time, a subset ofthe genes, namely {3, 5, 6, 7}, is expe
ted to be the 
andidates for removal. The results areshown in Table 5.7 and Table 5.8. Genes 5 and 7 have the smallest s
ores, so they 
an be the
andidates for removal. And if we 
he
k Table 5.8, we see that the best subset is {5} followedby {7} and {5, 7}. This means that if Th is set as 2 for the data derived from this network,the subset {5, 7} will be 
hosen for removal; it is the third best subset out of 64 subsets.Gene expression dataMetastati
 Melanoma:In this se
tion, we report the results of the appli
ation of the gene sele
tion algorithm tothe gene expression data produ
ed in a study of metastati
 melanoma [7℄. The data was alsoused in [67℄ for deriving a PBN model; 7 genes are 
hosen from the whole data set based ontheir ability to predi
t the states of ea
h other; these genes are pirin, WNT5A, S100P, RET1,MART1, HADHB and STC2. The obje
tive here is spe
i�ed as down-regulating WNT5A; andpirin is used as the 
ontrol gene, as in [64℄. The reward fun
tion is set in the same way as in thesyntheti
 data based experiments. The data is relatively small 
ompared to the syntheti
 datasets, it has 31 samples. This 
an be a disadvantage for the gene sele
tion algorithm be
ausethe information that the data 
ontains is small 
ompared to the syntheti
 data sets. Sin
e theauthors of [67℄ were also working on binary data, the samples were dis
retized to binary levels.Table 5.9: In�uen
e S
ores of genes for melanoma dataGene 3 4 5 6 7S
ore 0.775 0.911 0.333 0.526 1.333The results are given in Table 5.9 and Table 5.10. Although the error rates are large in this
ase, there is still one subset, {5} with minimum IS, that we 
an remove with error less than2% and with appropriate Th. The high error rates 
an be due to high degree of 
onne
tivityamong the sele
ted genes. This is 
onsistent with the information stated above that the genesare sele
ted based on their ability to predi
t ea
h other's state. Another reason 
an be thepossible high e�e
ts of most of the genes on the reward gene, WNT5A.Yeast Cell Cy
le:In this se
tion, we report the results of appli
ation of our method to a set of well-knowntrans
ription fa
tors of budding yeast (Sa

haromy
es 
erevisiae). These 11 trans
ription fa
-tors were previously identi�ed to be the important regulators for the yeast 
ell 
y
le [99℄ :ACE2, FKH1, FKH2, MBP1, MCM1, NDD1, SKN7, STB1, SWI4, SWI5 and SWI6. Themi
roarray data with 77 time steps that we have used in this experiment was produ
ed by73



Table 5.10: Gene subset errors of genes for melanoma dataSubset Error Subset Error Subset Error3 20.766 4 5 12.907 3 5 7 30.1794 14.477 3 7 27.822 3 5 6 31.7395 1.856 3 6 34.248 3 4 7 16.5496 19.223 3 5 21.643 3 4 6 38.6417 39.257 3 4 29.564 3 4 5 34.9746 7 42.276 5 6 7 43.796 3 4 5 6 27.9665 7 38.417 4 6 7 32.570 3 4 5 7 16.5495 6 19.980 4 5 7 31.461 3 4 6 7 16.5494 7 31.238 4 5 6 27.966 3 5 6 7 35.6194 6 19.935 3 6 7 44.455 4 5 6 7 31.274Spellman et al. [81℄. Missing values in the data were imputed by using the KNNImpute soft-ware [88℄. Again, before applying our method, we dis
retized the data set �rst into binarylevels by interval dis
retization.The reward gene is set as SWI4, whi
h is one of the important trans
ription fa
tors (partof the SBF 
omplex) that play a role in G1 phase. Control gene is set as ACE2; it is 
hosensin
e the PBN model derived from the data has ACE2 as one of the regulators of SWI47. Theobje
tive is set as down-regulating SWI4 and the reward fun
tion is set in the same way aspreviously des
ribed. Table 5.11: In�uen
e s
ores of genes for yeast dataGene FKH2 MBP1 MCM1 NDD1 SKN7 STB1 FKH1 SWI5 SWI6S
ore 1.605 0.836 0.610 1.128 1.312 0.642 1.489 0.471 1.226The IS s
ores of genes are given in Table 5.11. SWI5 is the lowest s
ored gene with a s
oreof 0.471. If this gene is eliminated, an error of 1.5% o

urs; see Table 5.12 for errors of someof the subsets. This error is very low and demonstrates the appli
ability of the method in 
asethe threshold is 
hosen as 0.5. The 
ase 
orresponding to elimination of SWI5 and MCM1(with a threshold of 0.62 for instan
e) has an error of 5.4% whi
h 
an be 
onsidered a

eptablefor some 
ases. The 
omputational gain, however, 
orresponding to this error rate is huge; it7Note that, to the best of our knowledge, ACE2 and SWI4 have not been identi�ed as regulating ea
hother. But veri�
ation of the model derived by the modeling algorithm we use here, is out of the s
ope of thisexperiment. 74



takes 3.32 minutes to solve when SWI5 and MCM1 are eliminated and 12.10 minutes whenSWI5 is eliminated, while it takes 52.25 minutes to solve without any elimination. We dis
ussmore time 
omplexity below.Table 5.12: Subset errors of genes for yeast dataSubset Error Subset ErrorFKH2 9.684 FKH1 5.049MBP1 0.123 SWI5 1.506MCM1 2.399 SWI6 1.821NDD1 5.119 SWI5 MCM1 5.409SKN7 2.062 SWI5 MCM1 FKH1 9.319STB1 1.372
Comparison to other methodsThe GRN 
ontrol problem has been previously studied as evident by the available 
orrespondingliterature (see Se
tion 4.3), however s
alability and feature redu
tion issues have not yet been
onsidered for this problem. As mentioned before, feature redu
tion 
an also be performedafter the modeling phase. But due to the 
omputational gain of redu
tion before modeling,irrelevant genes are eliminated prior to the modeling phase (see Figure 4.1).As mentioned before, 
ontrol genes 
an be determined by using the in�uen
e 
on
ept [64, 78℄whi
h is the underlying notion for the In�uen
e S
ore introdu
ed in this study. The genes 
analso be eliminated after the modeling phase on path (a) in Figure 4.1 by using the in�uen
e
on
ept. This feature redu
tion method eliminates genes with the lowest s
ores, where thes
ore is 
omputed as in Equation 4.8 ex
ept that instead of the Inf(gi, gj) value, this time,In�uen
e value from [78℄ is used. Noti
e that, this method is di�erent from ours in the stepwhere it applies; it is a method that 
an be applied given the model, i.e., it is applied afterthe modeling phase. Sin
e the In�uen
e value dis
ussed in [78℄ is 
omputed based on the PBNmodel; we performed a number of experiments to demonstrate how this type of elimination
ompares to ours. This will show the e�e
t of elimination before the modeling step.A stru
ture learning (or modeling) algorithm may output a number of models for a givendata set, where ea
h of these models are equally likely. When this is the 
ase, most of themodeling algorithms 
hoose one of these models as their output. The number of equally likelymethods gets smaller as the number of samples in the dataset gets larger. The PBN learningalgorithm we use in this work outputs one of the equally likely models by breaking the tiesrandomly during the 
onstru
tion. To eliminate the e�e
t of this for a fair 
omparison, we75



repeated the pro
ess of the following the paths 20 times for ea
h data set and reported theaverage results, also we sampled the data sets of 1000 steps instead of the previously used 500for syntheti
 networks.A 
ontrol poli
y 
an also be evaluated by simulations; starting from a random initial state,apply the poli
y and 
ount the number of undesired state visits. Although 
omparison ofvalue fun
tions is more a

urate, this type of evaluation provides a kind of weighted di�eren
ebetween value fun
tions by eliminating the e�e
t of states that are hardly visited. So if thesteady state probability of a state in a model is small then the e�e
t of the value fun
tiondi�eren
e (if any) for that state will also be small. This type of evaluation also has theadvantage of being faster 
ompared to the value determination, as the value determination fora given poli
y requires very long time to exe
ute. So, we 
hose the number of undesired statevisits in the simulation as the evaluation metri
 for this experiment with 20 iterations. Ea
hstarting from a random initial state, we performed 5 simulations of 1000 steps and averaged thenumber of undesired state visits. The results will be given as average per
entages of undesiredstate visits in 1000 steps.For the experiment, we used the same 4 data sets. The 
ontrol problems are de�ned inexa
tly the same way as before. To be able to make a fair 
omparison, we 
hose the thresholdvalues so that two genes will be eliminated for ea
h of the methods. We will 
all the methodthat is based on 
hoosing the 
ontrol gene in Pal et al. [64℄ and Shmulevi
h et al. [78℄ as PSreferring to the names of the authors. Note that this time, Path (a) also has a feature redu
tionstep applied after model generation (i.e. after Model(M) is obtained in Figure 4.1).Table 5.13: Comparison to PS
FRGC PSSim. Error Time Sim. Error TimeNetwork-1 48.35 4.76 50.81 48.27Network-2 32.30 2.67 36.53 40.60Metastati
 Melanoma 28.05 0.77 21.43 14.15Yeast Cell Cy
le 9.46 305.20 9.12 5772.83The results are given in Table 5.13. The Sim. Error 
olumn gives the simulation errorsde�ned above. Although PS has the advantage of dire
tly using the model, the results demon-strate that FRGC outputs 
omparable results to PS, sometimes even better. This shows thatfo
using on important parts of the model by eliminating irrelevant genes provides a reliablemodel redu
tion method for 
ontrol. Only the metastati
 melanoma results 
an be 
onsideredas signi�
antly di�erent, but noti
e that we for
e two-gene elimination for 
omparison here76



instead of the one-gene elimination in Se
tion 5.3.1. The given table also in
ludes the totaltime of following Path (a) with PS and Path (b) with FRGC in Figure Figure 4.1. Exe
utiontime results demonstrate the 
omputational gain of FRGC 
ompared to PS.Time 
omplexityThe 
omplexity of deriving a Boolean network under the best-�t extension paradigm is givenin [51℄ as O(
(

n
k

)

.n.m.poly(k)), where n is the number of genes, k is the number of predi
tors(regulators) for ea
h gene, m is the number of samples in the data and poly(k) is a polynomialfun
tion of k, whi
h is in most 
ases equal to k. Deriving a PBN adds an additional 
ost of
O(

(

n
k

)

.nf.n), where nf is the number of fun
tions for ea
h target gene, be
ause, for ea
h gene,we are 
hoosing nf fun
tions out of (

n
k

). The last two steps in path (a) of Figure 4.1, whi
h arethe 
onstru
tion of the MDP and value iteration, have an equal 
omplexity of O(a.4n) for thebinary 
ase, where a is the number of a
tions. So, the dominating term in the total 
omplexityof path (a) is O(4n) for k < n (whi
h is generally the 
ase for GRNs). The 
omplexityof 
omputing IS(g) is O(n.m), sin
e it depends on all genes other than g and the su�
ientstatisti
s for Inf(g, gi) are 
olle
ted from the data in one pass. Sin
e we are 
omputing IS forall genes and removing the l sele
ted genes in the algorithm, the total 
omplexity of featureredu
tion is O(n2.m + l.n.m), assuming no 
lever data stru
tures in shifting the 
olumns ofa multi-dimensional array. So, the total 
omplexity of both paths in Figure 4.1 is dominatedby the O(4n) term for the binary 
ase. Even if the stru
tured representations that may havelower average 
ase 
omplexity in terms of n are used in solving the MDP, the feature redu
tionalgorithm does not dominate the overall 
omplexity, provided that k ≥ 2 in PBN modeling,whi
h is usually the 
ase.Table 5.14: Elapsed time (in se
s.) for the experimentsNetwork 1 Network 2 Metastati
 melanoma Yeast Cell 
y
lePath (a) 19.141 19.157 4.329 3135.258Path (b) 1.125 1.110 1.015 199.362The main purpose of performing feature redu
tion is to a
hieve speed-up in rea
hing thepoli
y with tolerable error rate. In this sense, Table 5.14 
ontains the elapsed time for �ndingthe poli
ies for ea
h of the data sets used in the experiments. From the results reportedin Table 5.14, it 
an be easily seen that there is a signi�
ant de
rease in time. The results hereare also in 
orrelation with the 
omplexity analysis.
77



5.3.2 S
alable Control by Edge Elimination from Fa
tored Represen-tationsThis se
tion reports the results for the edge elimination te
hnique proposed for s
alability in
ontrol of GRNs. The details of the proposed method are dis
ussed in Se
tion 4.2. There aretwo experiments reported in this se
tion. They are based on the Boolean models proposed formammalian 
ell-
y
le and human T-
ell a
tivation.Control of mammalian 
ell-
y
leThe �rst experiment is adapted from a re
ent study [26℄. In this study, a mutation that 
anlead to a 
an
erous state is implemented in the Boolean logi
 model of the mammalian 
ell
y
le. The model is relatively small and has 9 genes, where this property en
ouraged us to usethis model, as this will demonstrate the e�e
t of the proposed method to the optimal solutionsof 
ontrol problems. This model has been 
onstru
ted by Faure et al. [27℄. In [26℄ gene p27 isassumed to be mutated and it is always ina
tive. This leads to the situation where both Cy
Dand Rb genes might be ina
tive (OFF), whi
h in turn leads to unlimited proliferation. Thelogi
al rules of the mutated 
ell 
y
le model is given in Table 5.15. The notation is 
onventional;
X represents logi
al NOT of X , ∨ and ∧ represent logi
al OR and AND operators, respe
tively.Table 5.15: Mutated 
ell 
y
le modelProdu
t Predi
tors

CycD Input

Rb (CycD ∧ CycE) ∧ CycA ∧ CycB)

E2F (Rb ∧ CycA ∧ CycB)

CycE (E2F ∧ Rb)

CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc)) ∨ (CycA ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc))

Cdc20 CycB

Cdh1 (CycA ∧ CycB) ∨ (Cdc20)

Ubc (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB (Cdc20 ∧ Cdh1)The relationship given in Table 5.15 is temporal; the value of the Produ
t 
olumn at timestep t + 1 is determined by the value of the logi
al formula given in Predi
tors 
olumn at t.So the set of formulae given 
onstitute a number of di�erent BoNs 
orresponding to di�erentvalues of the input gene. In the 
ell 
y
le model, there is only one input gene so there aretwo di�erent BoNs 
orresponding to CycD taking values 0 and 1. From these two BoNs, we
onstru
ted a PBN with ea
h BoN being equally probable at ea
h step of the simulation.78



Given the PBN model of the mammalian 
ell 
y
le, the undesirable states are de�ned asthe states leading to 
ell 
y
le without any limitation and these are the ones where CycD are
Rb are both ina
tive. So the obje
tive fun
tion is de�ned as: Φ({CycD,Rb}) = CycD ∨ Rb.Based on this, we de�ned the reward fun
tion for the FMDP as follows:

R(s, a) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

10 if a = noop, (CycD, Rb) 6= (0, 0) in s
1 if a = noop, (CycD, Rb) = (0, 0) in s
9 if a 6= noop, (CycD, Rb) 6= (0, 0) in s
0 if a 6= noop, (CycD, Rb) = (0, 0) in s (5.3)Equation 5.3 re�e
ts the fa
t that the 
ost of ea
h a
tion is 1 and the reward re
eived fora desirable state is 10. Given the reward fun
tion, ea
h of the genes in the model (ex
ept theinput gene) is then 
onsidered to be the only 
ontrol gene for a separate experiment. So forea
h experiment, the a
tion set is 
omposed of a 'noop' a
tion and the a
tion that immediatelytoggles the value of the 
ontrol gene. Having de�ned all 
omponents of the FMDP this way,we solved it using the proposed redu
tion method. As this model is small enough for optimalsolution, we used SPUDD to solve the FMDP.The reward fun
tion de�ned in Equation 5.3 is for the FMDPs without redu
tion. Ifthe redu
tion is applied then, as dis
ussed in Se
tion 4.2.3, this reward fun
tion is updateda

ording to the a
hievable set of obje
tives and δ.To be able to evaluate the results, we performed simulations. These simulations 
orrespondto observing the evolution of the model under the poli
ies 
omputed. Starting from a randominitial state, the simulation is exe
uted for 10,000 steps, and this is repeated 10 times ea
hstarting from a new random state. The average of these 10 runs is reported in the results. Apoli
y is evaluated a

ording to the number of interventions performed (whi
h gives an ideaabout the 
ost of this poli
y) and the number of undesirable state visits (whi
h gives an ideaon how �su

essful� the poli
y is) throughout the simulation. Without any intervention, thesystem stays in undesirable states in 130 out of 10,000 steps on the average. The results aregiven in Table 5.16; they also in
lude optimal solutions where the redu
tion method is notapplied (the 
olumn 
orresponding to πδ=0). The 
olumn with δ = 0.05 gives the results ofredu
eFMDP where 0.05 is 
hosen as the threshold, and the 
olumn 
orresponding to πδestis the one on whi
h the redu
tion method is applied (redu
eFMDP2 ), where δest denotes δ
omputed by the CT algorithm. The last value in Table 5.16 is the time elapsed to solve theproblem. Running times should be interpreted keeping in mind that su
h a small network ishardly suitable for the analysis of the 
omputational requirements of the redu
tion method.As 
an be seen in the results, estimating the threshold based on CT is not only is e�
ient interms of time, but also outputs mu
h better poli
ies than redu
eFMDP.The results demonstrate that the poli
y found after edge elimination by redu
eFMDP2 is79



Table 5.16: Cell 
y
le 
ontrol, number of undesired states, number of interventions and timein se
s. Control gene πδ=0 πδ=0.05 πδest(no redu
tion) (redu
eFMDP) (redu
eFMDP2 )
Rb 92.60, 14.00, 0.26 101.20, 14.60, 13.30 91.00, 12.20, 0.59

E2F 106.70, 11.40, 0.33 107.30, 36.60, 14.00 110.40, 87.10, 0.21
CycE 96.40, 12.40, 0.37 108.10, 13.10, 13.31 109.90, 14.30, 0.21
CycA 112.20, 9.20, 0.46 923.30, 855.50, 12.89 110.80, 4.60, 0.26
Cdc20 86.10, 27.90, 0.34 88.50, 27.40, 13.62 92.10, 28.70, 0.29
Cdh1 89.90, 37.90, 0.27 409.80, 366.00, 13.65 1068.70, 1035.20, 0.21
Ubc 121.80, 0.50, 0.26 433.10, 338.30, 13.15 123.90, 0.00, 0.56
CyB 83.90, 29.30, 0.44 81.40, 55.50, 14.27 105.10, 14.80, 0.24almost as good as the optimal poli
y for most of the 
ontrol genes. Only for one 
ontrol gene(Cdh1), the poli
y is not as good. Rb is seen as the most e�e
tive one, and this 
oin
ides withthe results reported in [26℄. For a 
omparison, the poli
ies 
orresponding to δ = 0 and δest aregiven in Figure 5.11. Note that after the redu
tion pro
edure is applied, a simpli�ed poli
y isexpe
ted as we simplify the problem. This is 
learly seen in Figure 5.11; πδest

is a �generalized�version of πδ=0. This is also important as simpli
ity is an issue to determine the appli
abilityof a poli
y in 
lini
al pra
ti
e.
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Control of T-
ell a
tivationA similar Boolean pathway to the mammalian 
ell-
y
le for the a
tivation of trans
riptionfa
tors (TFs) that a
tivate T-
ells is given in [49℄; this model has 40 genes. So, solving thisproblem with MDP formalism requires very large resour
es as the size of the state spa
e is 240.T-
ells form a type of white blood 
ells known as lympho
ytes. They play an importantrole for immunity su
h that its dysfun
tion has severe 
onsequen
es for the organism. T-
ells have the ability to re
ognize foreign agents and subsequently eliminate them. By theirT-Cell Re
eptor (TCR) they dete
t the potentially dangerous agents and then a
tivate (andproliferate) through a signalling 
as
ade [40℄.Chroni
 lympho
yti
 leukemia (CLL) is a type of 
an
er 
aused by the un
ontrolled pro-liferation of immunologi
ally immature lympho
ytes. ZAP-70 is an important gene in thesignalling pathway of T-
ell a
tivation [40℄. High ZAP-70 expression is thought to be the in-di
ator of T-
ell a
tivation and prognosis and overall survival for CLL [36, 62℄. Similarly, inT-
ell a
tivation model of Klamt et al. [49℄, if ZAP-70 is overexpressed (it is always ON), thenthe TFs that lead to proliferation of T-
ells be
ome always a
tive (ON). So, in the light ofthese �ndings, we introdu
ed a ZAP-70 overexpression mutation to the model given in [49℄.ZAP-70 is, therefore, always a
tive (ON) in our mutated model given in Table 5.17 as logi
alformulae. This mutation (a

ording to our model) leads to unlimited T-
ell proliferation; thatis a 
an
erous state.The �rst three genes in Table 5.17 are the input variables as given in [49℄, and the last fourare the output TFs whi
h a
tivate T-
ells. Having de�ned the PBN model of T-
ell a
tivationin the same way as the 
ell 
y
le model in the previous se
tion, the 
ontrol problem here isde�ned as �nding an intervention strategy that avoids the a
tivation of output TFs. So, thestates that we try to avoid are those where AP1, CRE, NFAT and NFkB are all a
tive (ON)together. The obje
tive fun
tion, therefore, is:
Φ({AP1, CRE, NFAT, NFkB}) = AP1 ∨ CRE ∨ NFAT ∨ NFkB (5.4)We de�ned the reward fun
tion similarly to 
ell 
y
le model as follows:

R(s, a) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

10 if a = noop, (AP1, CRE,NFAT, NFkB) 6= (1, 1, 1, 1) in s
1 if a = noop, (AP1, CRE,NFAT, NFkB) = (1, 1, 1, 1) in s
9 if a 6= noop, (AP1, CRE,NFAT, NFkB) 6= (1, 1, 1, 1) in s
0 if a 6= noop, (AP1, CRE,NFAT, NFkB) = (1, 1, 1, 1) in s (5.5)Again, we should mention that the reward fun
tion in Equation 5.5 may be updated whenthe redu
tion methods are applied.Given one of the genes as the 
ontrol gene and a �noop� a
tion, we tried to �nd the best81



Table 5.17: Mutated T-
ell a
tivation modelProdu
t Predi
tors
CD45 Input

CD8 Input

TCRlig Input

Ca IP3

Calcin Ca

cCbl 1
CREB Rsk

DAG PLCg(act)

ERK MEK

Fos ERK

Fyn (Lck ∧ CD45) ∨ (TCRbind ∧ CD45)

Gads LAT

Grb2Sos LAT

lKKbeta PKCth

IP3 PLCg(act)

JNK SEK

Jun JNK

LAT 1
Lck PAGCsk ∧ CD8 ∧ CD45

lkB lKKbeta

ltk SLP76

MEK Raf

PAGCsk Fyn ∨ TCRbind

PKCth DAG

PLCg(act) (SLP76 ∧ PLCg(bind)) ∧ (ltk ∨ Rlk)

PLCg(bind) LAT

Raf Ras

Ras Grb2Sos ∨ RasGRPI

RasGRPI PKCth ∧ DAG

Rlk Lck

Rsk ERK

SEK PKCth

SLP76 Gads

TCRbind TCRlig ∧ cCbl

TCRphos Fyn ∨ (TCRbind ∧ Lck)

AP1 Jun ∧ Fos

CRE CREB

NFAT Calcin

NFkB lkB
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ontrol gene and intervention strategy using the proposed methods. The problem is too largeto solve exa
tly with our 
urrent 
omputing resour
es; so for an approximate solution, weused APRICODD with the size parameter set to 75. To be able to evaluate the poli
ies, weperformed simulations. We applied ea
h poli
y in 10 simulations ea
h starting from a randominitial state for 10,000 steps and 
ounted the number of undesired states (the states whereall output TFs are ON) and number of interventions during the simulation. The results arereported in Table 5.18 as average of these 10 simulations; note that not all of the genes arereported in the table as 
ontrol genes, rather only those that lead to good poli
ies in termsof the simulation results. Without any intervention, the system stays in undesirable states in9,754 steps out of 10,000. Again, we report the results with and without redu
tion and δest is
δ 
omputed by the CT algorithm.Among all other 
ontrol genes, ERK and MEK are the most e�e
tive ones in terms ofboth the number of undesired states and the number of interventions. Number of interventionshere is important as it represents the 
ost asso
iated with the 
ontrol poli
y. ERK andMEKe�e
tively stop a
tivation of four output TFs with relatively low 
ost. The poli
ies where ERKis the 
ontrol gene for δ = 0 and δest are given in Figure 5.12. The poli
y 
orresponding to
δest is again a �simpler� version of the one for δ = 0. Raf/MEK/ERK pathway has beenshown to be important in the development of leukemia [85℄. All genes in this pathway are seenas the most e�e
tive ones in 
ontrol whi
h 
oin
ide with this �nding. It is also interesting tonote that the poli
y found where Raf is the 
ontrol gene for δest is better than for δ = 0. Thismay be due to the fa
t that we are using an approximate FMDP solver here (APRICODD).So simplifying the model by the redu
tion method proposed, leads to fo
using on the parts ofthe model that are more important for 
ontrol.As 
an be re
ognized from the results reported in Table 5.18, redu
tion with the CTalgorithm 
an provide large 
omputational savings for most of the 
ontrol genes. For instan
e,it takes only 1.05 se
onds to �nd a good poli
y where Calcin is the 
ontrol gene, instead of173.3 se
onds with no redu
tion. For 3 genes, namely DAG, PKCth and PCLg(act), usageof the redu
tion method does not help in terms of time, but also does not e�e
t the solutionquality.5.4 Closing RemarksThere are several data sets and models used for evaluating the proposed algorithms. The datasets used for modeling are the most widely studied data sets in the �eld of GRN modeling.These data sets have be
ome the ben
hmark data sets for model derivation algorithms. Thetime-series gene expression data of Spellman et al. [81℄ 
overs a large number of genes ofbudding yeast. Most of the studies investigating yeast 
ell-
y
le use this data set. The data83



Table 5.18: T-
ell a
tivation 
ontrol, number of undesired states, number of interventions andtime in se
ondsControl gene πδ=0 πδ=0.1 πδest(no redu
tion) (redu
eFMDP) (redu
eFMDP2 )
Ca 20.00, 9648.90, 92.96 18.10, 9638.80, 41.55 20.10, 9773.50, 1.05

Calcin 9.70, 9608.90, 158.95 9.40, 9601.90, 41.03 10.40, 9742.60, 1.04
CREB 9.80, 9604.10, 157.71 8.60, 9605.00, 40.99 10.90, 9742.60, 1.08
DAG 3240.60, 3242.20, 211.24 3243.40, 3247.40, 41.12 3241.70, 3242.90, 212.06
ERK 19.60, 4865.30, 263.38 18.70, 4865.30, 41.03 21.60, 4868.60, 35.99
Fos 9.70, 9609.10, 156.64 11.40, 9588.20, 40.94 8.80, 9593.20, 1.03

lKKbeta 18.10, 9644.30, 87.79 18.80, 9628.40, 40.99 20.10, 9772.70, 1.05
JNK 19.80, 9643.30, 89.71 18.70, 9639.40, 41.19 19.30, 9657.10, 32.51
Jun 9.80, 9602.90, 155.98 9.30, 9580.50, 41.17 9.70, 9600.10, 1.03
lkB 9.90, 9585.70, 160.03 10.40, 9600.30, 41.22 9.90, 9743.70, 1.05

MEK 26.00, 4883.40, 121.95 27.10, 4886.20, 41.14 29.6, 4973.60, 27.15
PKCth 30.40, 4878.10, 126.99 30.30, 4874.70, 41.03 32.40, 4878.70, 128.49

PLCg(act) 2455.60, 2445.90, 211.46 2453.20, 3280.70, 41.32 2456.00, 2444.00, 222.43
Raf 3244.10, 3251.90, 217.02 3249.40, 3249.90, 41.01 39.40, 4991.20, 17.14
Rsk 20.30, 9630.60, 89.95 18.40, 9658.00, 41.05 19.90, 9768.90, 1.05
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sets of Lee et al. [53℄ and Harbison et al. [34℄ are also two of the most widely used genome-wide lo
ation analysis (ChIP-
hip) data sets in the literature. These data sets exhibit the
ommon 
hara
teristi
s (or 
hallenges) in biologi
al data sets, namely having large number ofgenes asso
iated with small number of samples, missing values, some amount of noise and therequirement for little or a fair number of pre-pro
essing steps for some of the analysis. Unlikethe data by Spellman et al., protein 
on
entration data by Sa
hs et al. [73℄ for the Raf pathwayis stati
; it is one of the largest data sets for the Raf pathway. This diversity in the datasetsutilized demonstrate the ability of the proposed algorithms to work for data sets of di�erenttypes.Compared to the modeling literature, GRN 
ontrol may be 
onsidered in its infan
y. There-fore, there are no data sets that 
an be 
lassi�ed as ben
hmarks for testing new methods. Hav-ing this in mind, for feature redu
tion in MDPs, again the data by Spellman et al. was used inaddition to the small metestati
 melanoma data set that was used in several papers for bothdis
rete modeling and 
ontrol. As the algorithms proposed for FMDPs do not require a dataset but a model for testing, two models from two di�erent organisms (yeast and human) wereused. These models have the 
ommon property of being Boolean models. Although a Booleanmodel is not mandatory, for the ease of presentation and 
larity, PBNs were 
hosen as themodel in FMDP evaluations. This is one of the reasons for using these two models (
ell 
y
leand T-
ell a
tivation models) as the testbed. Another reason is their potential involvementin the development of undesired situations. Mutations 
an lead to 
an
erous states in bothmodels.Some further tests 
an be performed to get more insights about the algorithms. It is possibleto study the e�e
t of the two thresholds for the prior knowledge to determine whether a gene isdense or not; a gene is 
onsidered to be dense if it has more 
onne
tions than a given number(�rst threshold) with a larger probability value than a given probability (se
ond threshold).Another test 
ould be 
ondu
ted to study limiting the maximum order for PCPDPr; there aresome suggestions in the literature to determine the maximum value of the order depending onthe sample size [82℄. Moreover, the e�e
t of the subje
tive reward fun
tion de�nition on theredu
tion algorithms for MDPs and FMDPs is an interesting aspe
t to investigate. All of theseare on my agenda for future work.
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CHAPTER 6CONCLUSIONS
Modeling and 
ontrol of GRNs is an essential problem that has re
eived the attention ofdi�erent resear
h group as evident by the already published literature whi
h has been reviewedin this dissertation. However, we identi�ed 
ertain gaps within the existing literature andsu

essfully handled them within the s
ope of this dissertation. To wrap up this do
ument,we present in this 
losing 
hapter a summary of our �ndings, the 
on
lusions and the possiblefuture resear
h dire
tions.6.1 Summary and Con
lusionsThis dissertation investigates two important issues about GRNs whi
h 
ould be 
lassi�ed amongthe most essential me
hanisms in order to 
on
eive the 
ellular organization. These two issuesare GRN modeling and 
ontrol, where modeling refers to deriving a representation of the GRNand 
ontrol refers to intervening the dynami
s of the GRN in a way that alters the possiblefuture states a

ording to a 
ertain obje
tive.In general, we 
on
entrated on 
onstraint-based stru
ture learning algorithms for GRNmodeling and espe
ially the PC algorithm. Two modi�
ations have been proposed for the PCalgorithm to learn better networks by integrating multiple data types. This is based on the fa
tthat most of the biologi
al data types have some amount of noise and not abundant enoughto derive all relationships between the genes. One of the data types (TF binding lo
ation -ChIP-
hip) is named as the prior knowledge and is used to �dire
t� the sear
h for 
onditionalindependen
ies through adapting the signi�
an
e level in statisti
al tests in the PC algorithm.The data type on whi
h these tests are performed is the mi
roarray gene expression data.Another information derived from TF binding lo
ation data is the set of dense nodes that havea large number of 
onne
tions. These nodes are handled in a spe
ial way with a greedy sear
halgorithm to get rid of the exponential burst of the number of statisti
al tests.For GRN 
ontrol, we fo
used on the redu
tion algorithms that 
an be used to eliminatesome of the irrelevant 
omponents in the data or model. This is important for s
alabilityand for redu
ing the resour
es (
ost) required to ta
kle the problem. We proposed a methodfor MDPs that removes genes at the very beginning of the pro
ess starting from the data86



and ending in a poli
y to 
ontrol the GRN implied by the data. Those genes are identi�edto be negligible for the solution of the 
ontrol problem. Other than that, for the �rst time,GRN 
ontrol is formulated by using the FMDP framework and a method to simplify the givenFMDP has been devised. The experiments showed that the solution of the simpli�ed FMDPis a near-optimal poli
y for the original problem.Syntheti
 and real experiments are performed to evaluate the proposed methods. Theresults demonstrate the appli
ability, e�e
tiveness and s
alability of the proposed algorithms.6.2 Future Resear
h Dire
tionsFirst, we are working on the theoreti
al error bounds for the greedy separator sear
h pro
e-dure. Although some empiri
al tests have been performed to evaluate the e�e
tiveness of themethod, a theoreti
al analysis may also be very useful. Se
ond, we want to apply the proposedalgorithms to other types of data and derive other kinds of biologi
al networks, like proteinintera
tion networks. Protein intera
tion networks are also known to in
lude dense regions, aproperty that makes them a suitable 
andidate appli
ation area. The pro
edure introdu
edto use prior knowledge also allows for the use of prior information in an in
remental way. Aswe have already 
omputed prior information matrix B from some type of biologi
al data, weargue that it should be possible that new information obtained from other sour
es 
an beadded to this matrix as long as the prior knowledge 
an be mapped to a probability value. Of
ourse there should be some 
onstraints and restri
tions to be taken into 
onsideration whileexpanding B to 
over new information sour
es; in other words, this is not a trivial pro
ess andshould be 
arefully handled in order not to diverse from the main theme of having matrix B.Su
h an in
remental extension of this work is also to be investigated. Furthermore, in
orpo-rating temporal information available in time-series mi
roarray data into PCPDPr is also onour agenda. This should bring a new dimension into the problem and still need to be 
arefullyinvestigated.Although the gene elimination algorithm for MDPs is good at �nding some less importantgenes, the order relationship among genes in the error rates 
an not be in general 
apturedby the s
ore fun
tion. To give exa
t solutions or to be able to give an error bound, the s
oremust always be dire
tly proportional to the error. Also, a s
ore fun
tion that gives the s
oreof a set of genes instead of a single gene may improve the results be
ause summation of thes
ores of genes in a set may not be always proportional to the error of that set. We are alsoworking on an automated method to determine the threshold value. Solving the 
onstru
tedMDP in �nite horizon is another extension that is worth further 
onsideration; investigatingthe e�e
t of the horizon on the quality of the solution 
an bring new insights to the problem.Finally, adapting some other biologi
al information (pathway information for instan
e) while87



determining the genes to eliminate is also among our plans.In the light of the �ndings in this thesis, we are planning to apply the developed ideas toa genome-wide 
ontrol problem. This will test the s
alability limits of the algorithms. Butthis study should wait until the existen
e of the genome-wide PBN model of an organism.Existing models mostly fo
us on 
ertain biologi
al 
omponents. Although the results andmodels presented here are not dire
tly appli
able to 
lini
al pra
ti
e yet, genome-wide solutionof a 
ontrol problem gives the 
han
e to 
ompare the poli
ies found to real treatments, wherethis may lead to new insights of the applied 
lini
al treatments and drug dis
overy resear
h.There are several types of di�erent FMDPs in terms of the performan
e 
riterion and thelength of the horizon. Also there 
an be 
onstraints on the solution related to the appli
ability,su
h as the number of genes involved in the �nal fa
tored poli
y. Finding the best simple poli
ydepending on a set of genes whose size does not ex
eed a pre-de�ned value 
an be essential forthe appli
ability of that poli
y as a treatment in medi
ine for instan
e. Investigating the e�e
tof the redu
tion method to these other types of FMDPs is another future resear
h dire
tion tobe investigated.As a 
losing remark, it is worth emphasizing that this thesis 
ontains the des
ription ofsome novel approa
hes to handle the modeling and 
ontrol of GRNs. The developed approa
hesare very promising as evident by the reported test results, the published related papers, andthe identi�ed future resear
h dire
tions. I do 
onsider my e�orts re�e
ted in this dissertationas a major step in the right dire
tion. The out
ome and vision I shaped as a result of thisstudy will de�nitely drive my future resear
h for the 
oming years.
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