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abstract

SIMPLE GROUPS OF FINITE MORLEY RANK WITH
A TIGHT AUTOMORPHISM WHOSE CENTRALIZER

IS PSEUDOFINITE

Uğurlu, Pınar

Ph. D., Department of Mathematics

Supervisor: Assist. Prof. Dr. Ayşe Berkman

Co-Supervisor: Prof. Dr. Alexandre Borovik

May 2009, 83 pages

This thesis is devoted to the analysis of relations between two major

conjectures in the theory of groups of finite Morley rank. One of them is

the Cherlin-Zil’ber Algebraicity Conjecture which states that infinite simple

groups of finite Morley rank are isomorphic to simple algebraic groups over

algebraically closed fields. The other conjecture is due to Hrushovski and it

states that a generic automorphism of a simple group of finite Morley rank has

pseudofinite group of fixed points. Hrushovski showed that the Cherlin-Zil’ber

Conjecture implies his conjecture. Proving his Conjecture and reversing the

implication would provide a new efficient approach to prove the Cherlin-Zil’ber

Conjecture.

This thesis proposes an approach to derive a proof of the Cherlin-Zil’ber

Conjecture from Hrushovski’s Conjecture and contains a proof of a step in

that direction. Firstly, we show that John S. Wilson’s classification theorem

for simple pseudofinite groups can be adapted for definably simple non-abelian

pseudofinite groups of finite centralizer dimension. Combining this result with

recent related developments, we identify definably simple non-abelian pseudo
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finite groups with Chevalley or twisted Chevalley groups over pseudofinite

fields. After that in the context of Hrushovski’s Conjecture, in a purely

algebraic set-up, we show that the pseudofinite group of fixed points of a

generic automorphism is actually an extension of a Chevalley group or a twisted

Chevalley group over a pseudofinite field.

Keywords: Groups of Finite Morley Rank, Pseudofinite Groups.
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öz

DURGUN ÖZYAPI DÖNÜŞÜMÜNÜN
MERKEZLEYENİ SÖZDESONLU OLAN MORLEY

RANKI SONLU BASİT GRUPLAR

Uğurlu, Pınar

Doktora, Matematik Bölümü

Tez Yöneticisi: Doc.. Dr. Ayşe Berkman

Ortak Tez Yöneticisi: Prof. Dr. Alexandre Borovik

Mayıs 2009, 83 sayfa

Bu tez Morley rankı sonlu olan gruplar kuramındaki iki büyük sanı

arasındaki ilişkinin incelenmesine adanmıştır. Bunlardan biri olan Cherlin-

Zil’ber Cebirsellik Sanısı’na göre Morley rankı sonlu olan her basit son-

suz grup cebirsel kapalı bir cisim üzerinde tanımlı bir cebirsel grup ile

eş yapılıdır. Diğer sanı Hrushovski’ye aittir ve buna göre Morley rankı

sonlu olan basit bir grubun kapsamlı özyapı dönüşümünün sabit bıraktığı

noktalar grubu sözdesonludur. Hrushovski, Cherlin-Zil’ber Sanısı’nın kendi

sanısını gerektirdiğini gösterdi. Hrushovski’nin Sanısı’nın kanıtlanması ve sözü

edilen gerektirmenin zıt yönlüsü üzerinde durulması, Cherlin-Zil’ber Sanısı’nın

kanıtlanmasına yeni ve verimli bir yaklaşım sağlayacaktır.

Bu tez Cherlin-Zil’ber Sanısı’nın kanıtını Hrushovski’nin Sanısı’ndan elde

etmek ic.in bir yaklaşım ileri sürmekte ve bu yönde atılan bir adımın

kanıtını ic.ermektedir. Öncelikle John S. Wilson’ın basit sözdesonlu gruplar

ic.in verdiği sınıflandırma Teoremi’nin, tanımsal basit, değişmeli olmayan

ve merkezleyen boyutu sonlu gruplar ic.in uyarlanabileceği gösterilmiştir.

Bu sonuc., ilgili son gelişmelerle bir araya getirilerek tanımsal basit,
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değişmeli olmayan ve merkezleyen boyutu sonlu gruplar sözdesonlu cisim-

ler üzerinde tanımlı Chevalley ya da burkulmuş Chevalley gruplarıyla

özdeşleştirilmiştir. Bundan sonra, tamamen cebirsel varsayımlar altında,

Hrushovski’nin Sanısı bağlamında, kapsamlı özyapı dönüşümünün sözdesonlu

sabit noktalar grubunun, sözdesonlu cisim üzerinde tanımlı Chevalley ya da

burkulmuş Chevalley grubunun bir genişlemesi olduğu gösterilmiştir.

Anahtar Sözcükler: Morley Rankı Sonlu Gruplar, Sözdesonlu Gruplar.
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chapter 1

Introduction

Morley rank, which was introduced by Michael Morley in 1965 [46], is a

notion of dimension which arises in model theory. In the context of groups,

this model theoretic notion has an axiomatic description as a ranked group.

More generally, a ranked structure is a structure equipped with a rank function

rk, from its non-empty definable subsets to the non-negative integers. This

rank function satisfies some very natural axioms which imitate the behavior of

Zariski dimension in algebraic geometry [13]. Although this rank function is

not the same as Morley rank in general, in the context of groups, the two rank

functions coincide. Indeed, Bruno Poizat proved that a group is ranked if and

only if it is a group of finite Morley rank [51]. This axiomatic approach turns

a purely model theoretical concept into an abstract algebraic concept which is

more convenient to group theorists.

Finite groups and algebraic groups over algebraically closed fields are

examples of groups of finite Morley rank and in the latter case Morley rank

coincides with the Zariski dimension. Actually, the only known infinite

simple groups of finite Morley rank are algebraic groups over algebraically

closed fields. In this direction, there is a long standing conjecture proposed

independently by Gregory Cherlin and Boris Zil’ber in the 1970’s. The so-

called Cherlin-Zil’ber Algebraicity Conjecture, or Algebraicity Conjecture in

short, states that any infinite simple group of finite Morley rank is isomorphic

to an algebraic group over an algebraically closed field. Although this con-

jecture is still open in its full generality, significant progress has been made

by adapting and generalizing ideas from the Classification of Finite Simple

Groups. This approach was suggested by Borovik in the 1980’s and has been

quite useful in this classification project. However, some of the important

methods in finite group theory are not applicable in the context of groups of
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finite Morley rank. For example, counting arguments, which are very

important methods in the finite context have no analogues in finite Morley rank

context. The importance of this deficiency can be explained by an example

once we define simple bad groups. A bad group is a non-solvable group of

finite Morley rank in which every proper definable connected subgroup is

nilpotent. It follows from this definition that infinite simple bad groups are

possible counter-examples to the Algebraicity Conjecture since it is well-known

that Borel subgroups of simple algebraic groups are not nilpotent (§21.4 in

[35]). However, it is currently unknown whether infinite bad groups exist

or not. On the other hand, there are several results about the structure of

simple bad groups. Namely, a simple bad group G can be written as a union

of its Borel subgroups all of which are known to be conjugate and intersect

trivially in pairs [13]. When these structural properties of simple bad groups

are combined with a simple counting argument one can observe that finite bad

groups do not exist. This follows, since finite groups can not be written as a

union of conjugates of one of its subgroups whose pairwise intersections are

trivial. This example shows the power of the counting arguments in finite group

theory. Therefore, the existence of the analogues of these methods in finite

Morley rank context would be useful to eliminate one of the biggest obstacles,

namely bad groups, on the way to prove the Algebraicity Conjecture.

What can be possible analogues of counting arguments in finite Morley

rank context? There has been some work in this direction. It was proven

that the fixed points of generic automorphisms of algebraically closed fields

are pseudofinite fields [41]. The following nice algebraic characterization of

pseudofinite fields, given by Ax in [6], is used in the proof:

A field F is pseudofinite if and only if it is perfect, has exactly one

extension of degree n for each natural number n > 1 and every

absolutely irreducible variety defined over F has an F -rational

point.

Moreover, Hrushovski worked on wider classes of structures, including simple

groups of finite Morley rank, with generic automorphisms in [34]. In the par-

ticular case of simple groups of finite Morley rank, the aim is to prove that the

2



group of fixed points of a generic automorphism is pseudofinite. Hrushovski

suggests that the fixed point subgroups mimic the behavior of pseudofinite

groups in some sense, that is, they admit some kind of ‘measure’ similar to

non-standard probabilistic measure on pseudofinite groups. However, it is not

known how to characterize pseudofinite groups. As we mentioned above, Ax’s

algebraic characterization of pseudofinite fields is very useful when dealing with

pseudofinite fields, however, nothing similar to this is known for pseudofinite

groups.

As it was mentioned by Hrushovski in [34], the Algebraicity Conjecture

implies the following conjecture.

Principal Conjecture. Let G be an infinite simple group of finite Morley

rank with a generic automorphism α. Then, the group of fixed points of α is

pseudofinite.

This thesis is an attempt to construct a bridge between these two

conjectures from the other direction. More precisely, we ultimately aim to

prove that the Principal Conjecture implies the Algebraicity Conjecture. For

this purpose we work around the following conjecture:

Intermediate Conjecture. Let G be an infinite simple group of finite Morley

rank with a generic automorphism α. Assume that the group of fixed points

of α is pseudofinite. Then G is isomorphic to a Chevalley group over an

algebraically closed field.

As a first step in the direction of proving this conjecture, we do not use

the full strength of the concept of generic automorphisms. We introduce the

notion of a tight automorphism in order to work in a purely algebraic context.

To be more precise, an automorphism α of a group of finite Morley rank is

called tight if whenever a definable connected subgroup H of G is α-invariant

then the definable closure of the group of fixed points of α in H is H. This

property of tight automorphism can be considered as some kind of density

property which is satisfied by generic automorphisms. Note that throughout

the present thesis, we will not use any stronger algebraic properties of generic

automorphisms except for tightness.

3



The main result obtained in this thesis can be stated as follows:

Theorem. Let G be an infinite simple group of finite Morley rank and α be a

tight automorphism of G. Assume that the group of fixed points of α, that is,

CG(α) is pseudofinite. Then there is a definable (in CG(α)) normal subgroup

S of CG(α) such that

S P CG(α) 6 Aut(S)

where S is isomorphic to a Chevalley or twisted Chevalley group over a pseudo

finite field.

In order to prove this theorem, we analyze the structure of the pseudo

finite group which arises in a simple group of finite Morley rank as a group of

fixed points of a tight automorphism. The first result we obtain is about the

structure of definably simple pseudofinite subgroups of groups of finite Morley

rank. More precisely and generally, we classify definably simple pseudofinite

groups of finite centralizer dimension. For obtaining this result, we adapt the

main ideas in the proof of the classification of simple pseudofinite groups given

by John S. Wilson in [64]. In the further analysis of the fixed point subgroup,

we use properties of the tight automorphism, some basic facts from the theory

of simple groups of finite Morley rank together with some first order properties

of finite groups and obtain a proof of the main theorem of this thesis.

With the main result of this thesis at hand, there are several ways for

attacking the Intermediate Conjecture. Although, the details of the program

will be given in the last chapter, the possible configurations and several paths

to be taken in this direction can be summarized as follows.

We begin by introducing supertight automorphism which satisfies another

property of generic automorphisms which is explained below.

An automorphism α of a group of finite Morley rank is called supertight

if every positive power of α is tight. In other words, whenever a definable

connected subgroup H of G is αn-invariant for some non-negative integer n,

the definable closure of the fixed points of αn in H is H.

If we work with a supertight automorphism α instead of a tight

automorphism, under the assumption that the groups of fixed points of every
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positive power of α is pseudofinite, then there seem to be two possible ways

for identifying G with a Chevalley group over an algebraically closed field.

One approach is to consider the union of the groups of fixed points of

powers of α and try to prove that this union is elementarily equivalent to G.

The other approach is to use induction on the Morley rank and the Prüfer

2-rank of G. If the small Prüfer 2-rank cases are handled then the generic

case is believed to follow from the results similar to results obtained in the

classification project of simple groups of finite Morley rank. Moreover, in

some cases the latter can be directly used.

The structure of this thesis can be outlined as follows.

In Chapter 2, we give some definitions and state some results in the

theories of algebraic groups and groups of finite Morley rank. Some basic

model theoretical notions are defined in this chapter as well.

In the third chapter, we give necessary background information in order

to define ultraproducts and pseudofinite structures. We state some results

concerning pseudofinite groups. Moreover, as first order statements and the

notion of definability are quite important in the theory of pseudofinite groups,

we will go into the details of this subject. More precisely, we will explicitly

write down some first order formulas and statements related to groups and

fields so that we can refer to them in the sequel.

In Chapter 4, we outline the proof of the classification theorem for simple

pseudofinite groups which was given by John S. Wilson up to elementary

equivalence [64]. Then, we prove an analogue of this classification for de-

finably simple pseudofinite groups of finite centralizer dimension. This result

will be beneficial when we start analyzing the structure of the pseudofinite

group arising in a group of finite Morley rank since any subgroup of a finite

Morley rank group has finite centralizer dimension.

In the last chapter, we start the analysis of the structure of the group of

fixed points of a tight automorphism of a simple group of finite Morley rank

and we prove the main theorem. Moreover, we outline a research program

concerning the future plans for proving the Intermediate Conjecture.

5



chapter 2

preliminaries

This chapter covers some background material which will be necessary

throughout this thesis.

In the first section, linear algebraic groups are defined and the classification

of simple algebraic groups over algebraically closed fields is given without

proofs. Moreover, Chevalley and twisted Chevalley groups are introduced and

the structure of their automorphism groups are given. Since only some basic

properties of algebraic groups and Chevalley groups will be used in this thesis,

we introduce them very briefly and refer the reader to the standard books such

as [18], [35] and [61] for a detailed discussion of the subject.

In the second section, some basic concepts in model theory are summarized.

The books [19], [33] and [45] are among the standard references for this subject.

In the next section, two old conjectures, namely Ore’s Conjecture and

Thompson’s Conjecture, are stated. The results obtained on the way to prove

Thompson’s Conjecture are summarized briefly and the current status of the

conjectures are given. For a detailed discussion of the subject we refer the

reader to the survey article by Kappe and Morse [36].

In the last section, the notion of Morley rank and groups of finite Morley

rank are introduced briefly. The current status of the classification of simple

groups of finite Morley rank is given. Moreover, some important results in the

theory of groups of finite Morley rank are listed without proofs. The proofs of

these facts and detailed information about groups of finite Morley rank can be

found in the book [13]. For a detailed discussion of the classification project,

we refer the reader to the book [1].

6



2.1 Linear Algebraic Groups

Let K be an algebraically closed field and Kn denote the n-dimensional

affine space over K. A subset A ⊆ Kn is called an affine algebraic set if

it is the zero set of some set of polynomials in K[x1, . . . , xn]. A topology,

namely Zariski topology, is defined on Kn by declaring affine algebraic subsets

as Zariski closed sets. It can be observed that, a set of polynomials and the

ideal generated by this set of polynomials have exactly the same set of zeros.

Moreover, it is well-known that the polynomial ring K[x1, . . . , xn] is Noetherian

and so, every ideal is finitely generated in K[x1, . . . , xn]. Therefore, an affine

algebraic set is in fact the zero set of finitely many polynomials.

An affine algebraic group is an affine algebraic set in Kn with a group

structure such that the group operations, multiplication and inversion

µ : G×G −→ G, i : G −→ G

(g, h) 7−→ gh g 7−→ g−1

are given by morphisms of algebraic varieties, that is, by polynomial maps

with coefficients in K. For example, the general linear group GLn(K), which

is the group of invertible n× n matrices with coefficients in K, is an algebraic

group. To see this, we first identify any n × n matrix X with an element of

Kn2
. Then, GLn(K) can be identified with the set

{(X,λ) ∈ Kn2+1 | λ det(X) = 1}

Since determinant of an n×n matrix is a polynomial function in n2 variables,

this set is Zariski closed as the zero set of a polynomial in n2 + 1 variables.

Moreover, since multiplication and inversion of n × n matrices are given by

polynomial maps, GLn(K) is an algebraic group.

Affine algebraic groups are called linear algebraic groups and the following

fact explains the reason for this:

Fact 2.1.1. (§8.6 in Humphreys [35]) Any affine algebraic group is isomorphic

to a closed subgroup of a general linear group GLn(K) for some n.

7



Note that although linear algebraic groups are not the only class of algebraic

groups, throughout this thesis by an algebraic group we mean a linear algebraic

group.

Let k be an arbitrary subfield of an algebraically closed field K. A closed set

X in Kn is called k-closed if it is the zero set of some collection of polynomials

with coefficients in k. X is said to be defined over k, if it is the zero set of

an ideal which is generated by polynomials with coefficients in k. Note that

being k-closed is weaker than being defined over k, and the relation between

these two notions is given by the following fact:

Fact 2.1.2. (§34.1 in Humphreys [35]) If X is k-closed in Kn, then X is

defined over a finite, purely inseparable extension of k.

Throughout this thesis, we will be dealing with perfect fields and so, these

two notions coincide.

If X is a closed subset of Kn defined over k we can talk about k-rational

points of X which is denoted by X(k) = X ∩ kn. Similarly, an algebraic

group G is said to be defined over k if it is defined over k as a variety and

multiplication and inverse maps are given by polynomial maps with coefficients

in k. If this is the case, we denote k-rational points of G by G(k), which is a

subgroup of G.

Let G be a linear algebraic group defined over a field k. The Zariski closure

of any subset (resp. subgroup) X of G in G is defined as the smallest Zariski

closed set (resp. subgroup) in G containing X. If the Zariski closure of X is

G then X is called Zariski dense. G is said to be connected if it has no proper

closed subgroups of finite index.

The following important result, which will be referred in the sequel, is due

to Rosenlicht.

Fact 2.1.3. (Rosenlicht [54]) Let G be a connected algebraic group defined over

an infinite perfect field k. Then G(k) is Zariski dense in G.
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2.1.1 The Classification of Simple Algebraic Groups

A connected algebraic group is called simple, if it has no non-trivial

connected closed proper normal subgroups. It follows from this definition

that a simple algebraic group G has finite center Z(G) and the quotient group

G/Z(G) is simple as an abstract group.

The simple algebraic groups over algebraically closed fields of arbitrary

characteristic were classified up to isomorphism by Chevalley [23]. The

isomorphism type of a simple algebraic group is determined by two invariants,

the abstract root system which is determined up to isomorphism by its Dynkin

diagram, and the fundamental group (See [35] for details). The algebraic

groups of types An, Bn, Cn, Dn are called classical groups consisting of linear,

orthogonal and symplectic groups and the rest E6, E7, E8, F4, G2 are called

exceptional groups. The subscripts denote the Lie ranks of the correspond-

ing groups. For each type there are simply connected and adjoint versions.

The groups of adjoint type have trivial centers and hence they are abstractly

simple, that is, they have no non-trivial proper normal subgroups. For

example, SLn+1(K) is simply connected and PSLn+1(K) ∼= PGLn+1(K) is

adjoint versions of algebraic groups of type An.

The adjoint versions of the simple algebraic groups of types

An, Bn, Cn, Dn, E6, E7, E8, F4, G2 were constructed uniformly by Chevalley as

subgroups of automorphism groups of finite dimensional simple Lie algebras

over C ([18], [24], [61]). In this construction, Chevalley also proved that

these groups can be defined over arbitrary fields and they are simple

as abstract groups except for a few exceptions over small fields, namely,

A1(F2), B2(F2), G2(F2) and A1(F3). The groups constructed this way are

called Chevalley groups. There are also the so-called twisted Chevalley groups,

denoted by 2An,
2Dn,

3D4,
2E6,

2B2,
2F4,

2G2, which can not be obtained by

Chevalley’s construction. Over appropriate finite fields, the groups of types
2An,

2Dn,
3D4,

2E6 were constructed by Steinberg [59] in 1959 and the groups

of types 2F4,
2G2,

2B2 were constructed by Suzuki and Ree ([52], [53], [62]).

Finally, in 1968 Steinberg constructed Chevalley and twisted Chevalley groups

over finite fields uniformly [60] and characterized them as groups of fixed
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points of some special endomorphisms of algebraic groups over the algebraic

closures of the finite fields in concern. We will not go into details of their

construction methods in this text. Twisted Chevalley groups, over finite and

infinite fields (over which they exist) are also simple as abstract groups except

for 2A2(F4),
2B2(F2),

2F4(F2) and 2G2(F3) (See [18]).

The groups of types An, Bn, Cn, Dn, E6, E7, E8, F4, G2,
2An,

2Dn,
3D4,

2E6,
2B2,

2F4,
2G2 over finite fields, with the exceptions mentioned in the last

paragraph, are called simple groups of Lie type. Construction of these groups

was an important progress in the classification project of finite simple groups.

Note that Chevalley groups over algebraically closed fields are algebraic

groups by construction. In other words, a Chevalley group over an algebraically

closed field K coincide with the K-rational points of an algebraic group defined

over K.

Throughout this thesis, a Chevalley or twisted Chevalley group over an

arbitrary field K will be denoted by X(K) where X denotes one of the types

given above.

2.1.2 Automorphism Groups of Chevalley Groups

In this subsection, the structure of automorphism groups of Chevalley

groups over arbitrary perfect fields are given without proofs and details. Note

that throughout this thesis, Aut(G) will denote the automorphism group of

any group G.

For Chevalley groups over algebraically closed fields and finite fields, the

structures of the automorphism groups are determined by using conjugacy

properties of Sylow subgroups [18], [32], [60]. Since Sylow theorems are not

applicable in general, some more complicated methods are needed to obtain

the same results for Chevalley groups over perfect fields [18].

There are four types of automorphisms of a Chevalley group X(K). They

are called inner, diagonal, field and graph automorphisms. These auto-

morphisms can be described very briefly as follows.
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Inner automorphisms are well-known in group theory and they are induced

by conjugation by the elements of the group. More precisely, for each g ∈ X(K)

ϕg : X(K) −→ X(K)

x 7−→ g−1xg

induces an inner automorphism of X(K).

Let Inn(X(K)) denote the group of inner automorphisms of X(K). Then,

it is routine to check that the map

ϕ : X(K) −→ Inn(X(K))

g 7−→ ϕg

is an isomorphism as X(K) is a simple group. Therefore we can identify X(K)

with Inn(X(K)).

Diagonal automorphisms of X(K) are induced by conjugation by some

elements which can be represented by diagonal matrices with respect to the

Chevalley basis. If K is algebraically closed, then diagonal automorphisms are

inner. However, for an arbitrary perfect field there might be outer diagonal

automorphisms.

Field automorphisms are induced by automorphisms of the field in concern.

Graph automorphisms are induced by the symmetries of the associated

Dynkin diagram.

The following fact, which is due to Steinberg if the field is finite, gives the

structure of the automorphism group of a Chevalley group X(K) where K is

a perfect field.

Fact 2.1.4. (Gorenstein et al. [32]) Let α be an automorphism of a Chevalley

group X(K) where K is a perfect field. Then, α = idfg where i, d, f, g denote

inner, diagonal, field and graph automorphisms respectively. Moreover

Aut(X(K)) = ID o ΦΓ

where I,D,Φ,Γ denote the group of inner, diagonal, field and graph auto-

morphisms of X(K) respectively. The so-called outer diagonal automorphism

group, ID/I, is either cyclic of order bounded in terms of the rank or iso-

morphic to elementary abelian group of order 4.
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The following fact is known as Schreier Conjecture and the Classification

of Finite Simple Groups is needed for its proof.

Fact 2.1.5. (Conway et al. [25]) Let S be a finite simple group. Then

Aut(S)/S is solvable.

2.2 Basic Model Theory

We start with structures which are the main objects of mathematics. A

structure M is formed by an underlying set M together with a signature which

consists of function, relation and constant symbols that are to be interpreted.

For example, (G, · ,−1 , e) denote the group structure G where G is the

underlying set, · is a binary function symbol interpreted as the group operation,
−1 is a unary function symbol denoting the inversion operation and e is a

constant symbol denoting the identity element of the group. A formula in a

structure M is a finite string of symbols which is formed, with respect to some

well-known rules, by symbols of the signature, variables v1, v2, . . . , vn denoting

the elements of the underlying set, equality symbol =, predicates ∨ (or), ∧
(and), ¬ (not), quantifiers ∀ (for all), ∃ (there exists) and parentheses ( , ).

Moreover, the elements of the underlying set can be used as parameters in

the formula. The collection of all of these symbols which are used in order

to write formulas is called language. Note that languages are distinguished

by the signature and therefore throughout this thesis when we deal with a

language L, notationally we will not include the symbols which are common in

all languages. For example the language of groups can be taken as { · ,−1 , e}
or { · ,−1 , 1} or { · ,−1 , 0} when we are dealing with abelian groups. We

emphasize that, throughout this thesis we will stay in the borders of the first

order logic, that is, quantification will be over individual variables.

A sentence is a formula without free variables, that is, a formula in which

all of the variables are preceded by quantifiers. For a sentence or a formula

σ, we write M |= σ to mean that the sentence σ holds or the formula σ is

satisfied in the structure M.
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A theory T in a language L is just a set of L-sentences and if T has a model

then it is called consistent theory. A theory T is complete if it is a maximal

consistent set of sentences and T has quantifier elimination if for every formula

there is an equivalent quantifier free formula. A model M of a theory T in a

language L is a structure in which all of the L-sentences of T hold and we write

M |= T . The theory of a model M in the language L is the set of L-sentences

which hold in the structure M.

Let M and N be two structures in a common language L with underlying

sets M and N respectively. M and N are said to be elementarily equivalent if

they satisfy the same L-sentences and we write M ≡ N. An embedding π of

M and N is called elementary if for any L-formula ϕ(x1, . . . , xk) and elements

m1, . . . ,mk from M we have

M |= ϕ(m1, . . . ,mk)⇐⇒ N |= ϕ(π(m1), . . . , π(mk))

M is a substructure of N if M ⊆ N and the interpretations of relation, function

and constant symbols in M are just the restrictions of the corresponding

interpretations in N. A substructure M is existentially closed in N if whenever

a quantifier free formula ϕ(x,m1, . . . ,mk), with parameters m1, . . . ,mk from

M , is satisfied in N then it is satisfied in M as well. A model M of a theory

T is called existentially closed if M is existentially closed in every model of T
which contains M as a substructure.

A class of L-structures is called axiomatizable if there is a set Σ of L-

sentences such that an L-structure M belongs to that class if and only if all of

the sentences in Σ holds in M. If Σ is a finite set, then the class is called finitely

axiomatizable, that is, the class can be axiomatized by a single sentence. A

definable set in a structure M is a subset X ⊆Mn which satisfies a first order

formula in the language of the structure. Throughout this thesis when we say

definable, we mean definable possibly with parameters. Therefore finite sets

will always be definable.

In the next chapter, we will include several examples which will make these

definitions clearer.
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2.3 Ore’s Conjecture and Thompson’s

Conjecture

Commutator subgroup of a group G is defined as a subgroup generated

by the commutators, namely by the elements of the form a−1b−1ab. Since the

product of two commutators need not to be a commutator, the set of commu-

tators does not form a group in general. Oystein Ore worked on the groups in

which all of the elements of the commutator subgroups are commutators [49].

In the article [49], Ore proved that every element of the alternating groups

Alt(n), for n ≥ 5, is a commutator. In the same article, he claimed that this

result could be extended to all non-abelian finite simple groups. This claim

is known as Ore’s Conjecture. This old conjecture was followed by a stronger

conjecture, which is attributed to John Thompson by Arad and Herzog in [5],

stating that for every non-abelian finite simple group G, there exist a conjugacy

class C such that G = CC. For a detailed discussion of these conjectures see

[29] and [36].

It can be observed that Thompson’s Conjecture implies Ore’s Conjecture.

More precisely, if g ∈ G = CC where C = {cG} then g = cg1cg2 for some

g1, g2 ∈ G. Moreover, as 1 ∈ G and c 6= 1 there are x1, x2 ∈ G such that

1 = cx1cx2 , that is, c = (c−1)x2x1
−1

.

Now, the following argument shows that g is a commutator:

g = cg1cg2 (2.1)

= cg1(c−1)x2x1
−1g2 (2.2)

= g2
−1x1x2

−1(x2x1
−1g2g1

−1)c(g1g2
−1x1x2

−1)c−1x2x1
−1g2 (2.3)

= g2
−1x1x2

−1[g1g2
−1x1x2

−1, c−1]x2x1
−1g2 (2.4)

= [g1g2
−1x1x2

−1, c−1]x2x1
−1g2 (2.5)

Although the conjectures are still open, several mathematicians obtained

partial results and the current status of both of the conjectures are the same.

For the details of these results we refer the reader to the survey article by

Kappe and Morse [36].
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The current status of Thompson’s Conjecture can be stated briefly as

follows:

• In 1965, Thompson’s Conjecture for alternating groups Alt(n) where

n ≥ 5 was proved by Cheng-Hao in [21].

• In 1984, Thompson’s Conjecture for sporadic groups was proved by

Neubüser et al. in [48].

• Several mathematicians have obtained partial results for finite simple

groups of Lie type. Finally, in 1998 Ellers and Gordeev [29] verified

Thompson’s Conjecture for finite simple groups of Lie type over a field

with more than 8 elements. (For 2B2(q
2), 2G2(q

2) and 2F4(q
2) it is

enough to assume q2 > 8 )

By the classification of finite simple groups, the only unverified cases are

the simple groups of Lie type over some small fields. Therefore, for finite simple

groups of Lie type over big fields, Thompson’s Conjecture can be used as a

fact. For the purposes of this thesis, the importance of these conjectures lies

in the fact that they can be stated in a first order way and allows one to get

some definability results. These will become clearer in the following chapters.

2.4 Groups of Finite Morley Rank

This section starts with a brief explanation of the notion of Morley rank

in the context of groups. Then, the possible types of infinite simple groups of

finite Morley rank according to the structures of the connected components of

their Sylow 2-subgroups are listed and the current status of the Algebraicity

Conjecture is given. Moreover, basic properties of groups of finite Morley rank

are given without proofs. For the details and proofs we refer the reader to the

books [1] and [13].
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2.4.1 Morley Rank and Simple Groups of Finite Morley

Rank

A universe U is defined to be a collection of sets satisfying certain

conditions such as being closed with respect to some set theoretic operations.

We will not go into details of these conditions, for the details we refer the

reader to the book [13].

For any L-structure M there is a minimal universe which contains the

underlying set M as well as some subsets of Mn which are interpretations of

the relation symbols and graphs of the interpretations of function symbols in L.

Actually, this minimal universe associated to M coincide with the collection of

all interpretable sets, that is, equivalence classes of definable sets with respect

to definable equivalence relations in the L-structure M.

A universe U is called ranked if a rank function rk can be defined from the

non-empty sets in U to the natural numbers satisfying the following axioms

for all A,B ∈ U :

• Monotonicity of rank. rk(A) ≥ n + 1 if and only if there are infinitely

many pairwise disjoint, non-empty, definable subsets of A each of rank

at least n.

• Definability of rank. If f is a definable function from A into B, then, for

each integer n, the set {b ∈ B | rk(f−1(b)) = n} is definable.

• Additivity of rank. If f is a definable function from A onto B and if

rk(f−1(b)) = n for all b ∈ B then rk(A) = rk(B) + n.

• Boundedness of finite preimages. For any definable function f from A

into B there is an integer m such that for any b ∈ B the preimage f−1(b)

is infinite whenever it contains at least m elements.

A structure M is said to be a ranked structure if U (M) is a ranked universe

or more generally if M is definable in a ranked universe. For example, an

algebraically closed field K is known to be a ranked structure in the language

of fields since the definable sets in U (K) are just Boolean combinations of
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Zariski closed sets and Zariski dimension can be attached to these definable sets

as a rank function. As a result, every algebraic group G over an algebraically

closed field K is a ranked group since G is known to be definable in K, that

is, definable in the ranked universe U (K).

Note that the rank function defined above does not necessarily coincide with

Morley rank in the case of arbitrary structures. More precisely, the universe of

a structure of finite Morley rank need not be ranked in the sense defined above

(See [51]). However, Bruno Poizat proved that in the case of groups these two

notions coincide, that is, ranked groups are exactly the groups of finite Morley

rank. This characterization gives an axiomatic description of groups of finite

Morley rank which are model theoretical objects defined as ω-stable groups

having finite Morley rank.

The result obtained by Poizat can be stated as follows:

Fact 2.4.1. (Poizat [51]) Let G be an ω-stable group of finite Morley rank.

Then U (G) is a universe with rank. Conversely, if U is a universe with rank

and a group G is definable in U then G is an ω-stable group of finite Morley

rank.

The discussion above makes both group theoretical and model theoretical

approaches possible in the theory of groups of finite Morley rank. Group

theoretical approach, more precisely, adaptation of some ideas from the

classification of finite simple groups has been quite useful in the classification

project of infinite simple groups of finite Morley rank. As mentioned in the

introduction, this project is based on the Algebraicity Conjecture which claims

that infinite simple groups of finite Morley rank are isomorphic to algebraic

groups over algebraically closed fields. Although, the results obtained up to

now suggest that simple groups of finite Morley rank and simple algebraic

groups over algebraically closed fields have many properties in common, the

conjecture is still open. The current status of the conjecture can be explained

best after introducing the possible types of simple groups of finite Morley rank.

In the theory of groups of finite Morley rank, Sylow 2-subgroups are conju-

gate [13]. Moreover, the structure of Sylow 2-subgroups are well-known. More

precisely, a Sylow 2-subgroup S of a group G of finite Morley rank is a finite
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extension of U ∗ T where U is a definable connected 2-group of bounded ex-

ponent, T is a divisible abelian 2-group and ∗ denotes the central product of

them, that is, [U, T ] = 1 and U ∩ T is finite [1]. If T is non-trivial then it is

isomorphic to a direct sum of finitely many copies of Prüfer 2-groups which

can be defined as

Z2∞ = {x ∈ C | x2n

= 1 for some n ∈ N}

with the usual multiplication of complex numbers. Since all Sylow 2-subgroups

of G are conjugate, the number of isomorphic copies of Prüfer 2-groups in T

is an invariant of G and this number is called the Prüfer 2-rank of G.

Depending on the structure of the connected components of Sylow 2-

subgroups, the Algebraicity Conjecture breaks up into four cases:

(a) U 6= 1 and T = 1, Even type

(b) U = 1 and T 6= 1, Odd type

(c) U 6= 1 and T 6= 1, Mixed type

(d) U = 1 and T = 1, Degenerate type

Note that in the category of algebraic groups, even and odd types correspond

to simple algebraic groups over algebraically closed fields of even and odd

characteristics respectively. Moreover, there are no simple algebraic groups of

mixed and degenerate types. Therefore, the aim of the classification project is

to identify even and odd type groups with simple algebraic groups over alge-

braically closed fields of appropriate characteristics and to prove non-existence

of mixed and degenerate types. Some important results have been obtained in

this direction. The current status of the Algebraicity Conjecture can be stated

as follows:

(a) Simple groups of finite Morley rank of even type have been identified

with Chevalley groups over algebraically closed fields of characteristic 2

(See [1]).
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(b) There are some important restrictions on the structure of potential non-

algebraic simple groups of finite Morley rank of odd type [15].

(c) There are no simple groups of finite Morley rank of mixed type [1].

(d) Degenerate type is the most difficult case which needs to be handled [14].

2.4.2 Basic Properties of Groups of Finite Morley Rank

The proofs of the following facts can be found in the books [1] or [13] as

well as in the indicated articles.

Fact 2.4.2. (Macintyre [42]) An infinite field of finite Morley rank is

algebraically closed.

Fact 2.4.3. (Macintyre [43]) Definable subgroups of a group of finite Morley

rank satisfy descending chain condition, that is, every proper descending chain

of definable subgroups stabilizes after finitely many steps.

Descending chain condition on definable subgroups is a strong property

which allows one to define the notions of definable closure and connected com-

ponent in the context of groups of finite Morley rank.

Fact 2.4.4. (Borovik and Nesin [13]) Let X be any subset of a group of finite

Morley rank G. Then, there is a smallest definable subgroup of G containing

X, denoted by d(X).

d(X) is called the definable closure of X and it is the intersection of all

definable subgroups of G containing X. The definability of this intersection is

guaranteed by the descending chain condition on definable subgroups.

Some properties of definable closure in a group of finite Morley rank G are

listed in the following fact:

Fact 2.4.5. (Borovik and Nesin [13]) Let G be a group of finite Morley rank.

Then

(a) If elements of a subset X of G commute with each other then d(X) is

abelian.
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(b) For any subset X of G we have CG(X) = CG(d(X)).

(c) If a subgroup A normalizes a set X then d(A) normalizes d(X).

(d) Let A 6 B 6 G. If A has finite index in B then d(A) has finite index in

d(B). Moreover, if A P B then d(A) P d(B) and d(B) = d(A)B.

(e) [d(A), d(B)] = d([A,B]) for subgroups A,B of G.

Fact 2.4.6. ( Zil’ber [66] ) If A is solvable (resp. nilpotent) subgroup of class

n in a group of finite Morley rank, then d(A) is also solvable (resp. nilpotent)

of class n.

Fact 2.4.7. (Borovik and Nesin [13]) Let G be a group of finite Morley rank.

Then, G contains a unique minimal definable subgroup of finite index denoted

by G◦.

G◦ is called the connected component of G and it is the intersection of all

definable finite index subgroups of G. If G = G◦ then G is called connected.

There is a closely related notion, the so-called irreducibility. A definable subset

of Morley rank n in a group of finite Morley rank is called irreducible if it has

no disjoint definable subsets of rank n. As in the algebraic group context, a

group of finite Morley rank is connected if and only if it is irreducible. However,

while an algebraic group can be decomposed into its irreducible components

in a unique way, there is no such a well-defined decomposition for a group G

of finite Morley rank. More precisely, if a group G with Morley rank n can

be written as unions of definable irreducible subsets of rank n in two ways

then the number of components in each union are equal. Moreover, for each

component in one of the unions there is a component in the other union such

that this pair of components intersects in a set of rank n.

Fact 2.4.8. (Baldwin and Saxl [7]) For any subset X of a finite Morley rank

group G, the centralizer CG(X) of X in G is a definable subgroup. Moreover,

for any X ⊆ G there is X0 ⊆ X with |X0| ≤ n such that CG(X) = CG(X0).

Remark 2.4.1. The second part of Fact 2.4.8 states that there is a uniform

bound for every proper descending chain of centralizers in a group of finite
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Morley rank. In the literature, a group with this property is said to have

finite centralizer dimension. More precisely, for any integer k ≥ 0, a group

has centralizer dimension k if it has proper descending chain of centralizers of

length k and has no proper descending chain of centralizers of length greater

than k. By a centralizer chain of length k we mean a proper descending chain

of centralizers which has the following form:

G = CG(1) > CG(x1) > CG(x1, x2) > · · · > CG(x1, . . . , xk) = Z(G)

It follows from this definition that the centralizer dimension of an abelian

group is 0. Moreover, it is not difficult to observe that any group of centralizer

dimension 1 is forced to be abelian, that is, it has centralizer dimension 0.

It is clear that groups of finite centralizer dimension satisfy descending chain

condition on centralizers. However, the converse does not necessarily hold since

Roger Bryant constructed an example of a group which satisfies descending

chain condition on centralizers but does not have finite centralizer dimension

[16]. It is well-known that the class of groups with finite centralizer dimension

is closed under taking subgroups and finite direct products [47]. Moreover,

for any integer k ≥ 0, the property of having centralizer dimension k can be

expressed in the first order language of groups (See [28] and [40]). In other

words, there is a first order sentence in the language of groups such that this

sentence holds in a group if and only if the group has centralizer dimension k.

We will write this sentence in the next chapter.

The following four facts are non-trivial corollaries of an important result

due to Boris Zil’ber, the so-called Zil’ber’s Indecomposability Theorem. This

theorem generalizes the well-known Indecomposability Theorem in the theory

of algebraic groups (Humphreys §7.5 in [35]).

Fact 2.4.9. (Zil’ber [67]) Let {Xi | i ∈ I} be a family of connected and defin-

able subgroups of a group of finite Morley rank. Then the subgroup 〈Xi | i ∈ I〉
is definable connected and it is the setwise product of finitely many of them.

Fact 2.4.10. (Altınel et al. [1]) If H is a definable and connected subgroup of

G then the subgroup [H,X] is definable and connected for any subset X ⊆ G.
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Fact 2.4.11. (Altınel et al. [1]) The commutator subgroup of a group of finite

Morley rank is definable.

Fact 2.4.12. (Poizat [51]) A definably simple non-abelian infinite group of

finite Morley rank is simple.
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chapter 3

Ultraproducts and

Pseudofinite Structures

In this chapter, pseudofinite structures will be defined after introducing

ultrafilters and ultraproducts. Some well-known results about ultraproducts

and pseudofinite groups will be given without proofs. The proofs of these

results can be found in the indicated references. For a detailed information

about ultraproducts we refer the reader to the books by Bell and Slomson [8]

and Chang and Keisler [19].

In Section 3.3, we write explicit formulas in the language of groups which

define some subgroups and subsets of a group. Moreover, some first order

properties of groups and fields are stated in the language of groups and rings

so that we can refer to them in the following chapters. We also include some

known results about first order expressibility of some notions in several classes

of structures. More precisely, we consider some axiomatizable classes and check

whether these classes can be finitely axiomatizable or not. We include proofs

of some of these results to illustrate the power and beauty of  Loś’s Theorem.

3.1 Ultraproducts

Ultraproducts are model theoretic objects which are constructed by defin-

ing an equivalence relation, with respect to an ultrafilter, on the cartesian

product of some L-structures. The significance of this construction lies in

the fact that first order properties of ‘most ’ of the structures in the cartesian

product are transferred to their ultraproduct. As ultrafilters are the main

ingredient of this construction we start by defining ultrafilters.
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Let I be a non-empty set and P (I) be the set of all subsets of I. An

ultrafilter U on I is a set U ⊂ P (I) satisfying the following properties:

(a) I ∈ U

(b) If X, Y ∈ U then X ∩ Y ∈ U

(c) If X ∈ U and X ⊆ Y ⊆ I then Y ∈ U

(d) For all X ∈ P (I), X ∈ U if and only if (I\X) /∈ U

The first three conditions together with the assumption ∅ /∈ U define a

filter. Note that this assumption about the empty set becomes superfluous

once we have the last condition.

It follows from the definition that ultrafilters are maximal filters. It can be

checked that the union of any chain of filters is again a filter. Therefore, the

existence of ultrafilters is guaranteed by the existence of filters together with

Zorn’s Lemma.

If the index set I is infinite then it is possible to define different ultrafilters

on I. For example, the collection of all co-finite subsets of I, that is, the subsets

with finite complements forms a filter which is called Fréchet filter and this

filter can be extended to an ultrafilter by using Zorn’s Lemma. For another

example, fix some i ∈ I and consider the set {X ⊆ I | i ∈ X}. It is routine

to check that this set forms an ultrafilter on I which is called the principal

ultrafilter generated by i. If the index set I is finite or more generally if an

ultrafilter U contains a finite set then it is not difficult to observe that U is

a principal ultrafilter generated by some element in I. Therefore, every non-

principal ultrafilter contains Fréchet filter, that is, it contains all co-finite sets.

As a result of this, a non-principal ultrafilter can be thought of as a collection

of ‘huge sets ’.

Now, we are ready to define the ultraproduct.

Let {Xi | i ∈ I} be a collection of non-empty structures in the same

language and U be an ultrafilter on I. A relation ∼U can be defined on the

cartesian product
∏

i∈I Xi as follows

x ∼U y if and only if {i ∈ I | x(i) = y(i)} ∈ U
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where x, y ∈
∏

i∈I Xi and x(i), y(i) denote the ith coordinate of x, y

respectively. The quotient of the cartesian product with respect to ∼U is

called the ultraproduct.

It is routine to check that ∼U is an equivalence relation. In this equivalence

relation, we identify two elements of the cartesian product if their coordinates

agree almost everywhere, that is, on a set belonging to the ultrafilter. Elements

of the ultraproduct are equivalence classes of the elements of the cartesian

product with respect to ∼U . We denote the equivalence class of x ∈
∏

i∈I Xi

by [x]U , more precisely,

[x]U =

{
y ∈

∏
i∈I

Xi | {i ∈ I | y(i) = x(i)} ∈ U

}

Note that the algebraic operations on the cartesian product, which

are defined componentwise, induce well-defined algebraic operations on the

ultraproduct. This can be checked directly by applying the properties of

the ultrafilters mentioned above (See (b), (c) in the definition of ultrafilters).

Similarly, each relation R on the cartesian product induces a well-defined re-

lation on the ultraproduct as follows:

[x]U R [y]U if and only if {i ∈ I | x(i) R y(i)} ∈ U

Throughout this thesis, the ultraproduct will be denoted by
∏

i∈I Xi/U or

by (Xi)U when we need to simplify the notation. If Xi = X for all i ∈ I, then

their ultraproduct, which is called an ultrapower, will be denoted by XI/U .

The fundamental theorem of ultraproducts is due to Jerzy  Loś and can be

stated as follows:

 Loś’s Theorem. Let X =
∏

i∈I Xi/U where U is an ultrafilter on I and Xi

is a non-empty L-structure for each i ∈ I. Then for any first order L-formula

ϕ(x1, . . . , xn) and for all elements a1, . . . , an ∈
∏

i∈I Xi

X |= ϕ([a1]U , . . . , [an]U) if and only if {i ∈ I | Xi |= ϕ(a1(i), . . . , an(i))} ∈ U

25



In the proof of this theorem a well-known proof method in model theory,

namely induction on the complexity of the formula, is used. The fact that U is

an ultrafilter and not just a filter is needed for the negation step of the proof

(See [8] or [19] for a proof).

As a particular case of the  Loś’s Theorem, it follows that a first order

sentence holds in the ultraproduct if and only if it holds in almost all of the

structures, that is, in the structures indexed by a set belonging to the ultrafil-

ter. This means that, first order properties of the ultraproduct is determined

by the first order properties of the structures in the ultraproduct together

with the choice of the ultrafilter. Therefore, in some sense, the ultraproduct

construction is more powerful than some other ways of getting new structures

out of several structures. For example, if we take cartesian product of fields we

get a commutative ring with identity which is not a field since, for example,

the non-zero element (1,0,0, . . . ) has no inverse. However, by taking ultra-

product of fields we get a field. More generally, first order axiomatizable struc-

tures such as groups, fields, algebraically closed fields are closed under taking

ultraproducts. Moreover, ultraproduct construction guarantees the existence

of infinite models of any theory with finite language which has infinitely many

non-isomorphic finite models.

As another consequence of  Loś’s Theorem, it can be observed that any

structure can be elementarily embedded in its ultrapower. More precisely,

there is a natural diagonal embedding of any structure A into its ultrapower

AI/U via the map:

a 7−→ [fa]U

where fa(i) = a for all i ∈ I and this embedding is elementary by  Loś’s

Theorem. Moreover, this embedding is not onto unless A is finite. This argu-

ment clearly explains that cardinality need not be preserved under elementary

equivalence and therefore elementary equivalence is weaker than isomorphism.

Now, we recall, without proofs, some important facts in the theory of ul-

traproducts.
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The following two facts follow from the definition of the ultraproduct to-

gether with the properties of ultrafilters and they will be used in the sequel

even without mention.

Fact 3.1.1. Any set of maps {ϕi : Ai −→ Bi | i ∈ I} induces a well-defined

map

ϕU :
∏
i∈I

Ai/U −→
∏
i∈I

Bi/U

for any ultrafilter U .

Example . Let I be the set of all prime numbers and U be a non-principal

ultrafilter on I. Let

ϕpi
: xi 7−→ xi

pi

be the standard Frobenius automorphism of Fpi
for each prime pi ∈ I. Then

the following map is well-defined by Fact 3.1.1:

ϕU :
∏
pi∈I

Fpi
/U −→

∏
pi∈I

Fpi
/U

[xi]U 7−→ [xi
pi ]U

It is routine to check that ϕU is an automorphism of
∏

pi∈I Fpi
/U . This

automorphism is called the non-standard Frobenius automorphism and it was

studied by Macintyre in the context of generic automorphisms of fields in [41].

Let Fix(ϕU) denote the elements of
∏

pi∈I Fpi
/U which are fixed by the

automorphism ϕU . Then, by  Loś’s Theorem we get

Fix (ϕU) =
∏
pi∈I

Fix(ϕpi
)/U =

∏
pi∈I

Fpi
/U

Fact 3.1.2. For any ultrafilter U on I, we have∏
i∈I

(Ai ×Bi)/U ∼=
∏
i∈I

Ai/U ×
∏
i∈I

Bi/U

This isomorphism easily generalizes to finite direct products.
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An algebraic characterization of elementary equivalence is given by Keisler-

Shelah’s Ultrapower Theorem which can be stated as follows:

Fact 3.1.3. Two structures A and B are elementarily equivalent if and only

if there is a set I and an ultrafilter U on I such that AI/U ∼= BI/U .

This fact was first proved by Keisler in 1964 in the article [37] by assuming

the generalized continuum hypothesis and then Shelah provided a proof in [56]

which is free from the generalized continuum hypothesis.

The following fact is about the cardinalities of ultraproducts of countably

many finite structures. We denote the cardinality of a set X by card(X).

Fact 3.1.4. (Bell and Slomson [8]) Let {Xi | i ∈ I} be a countable collection

of finite sets and U be an ultrafilter on I. If for some integer n,

{i ∈ I | card(Xi) = n} ∈ U

then card(
∏

i∈I Xi/U) = n, otherwise card(
∏

i∈I Xi/U) = 2ℵ0

The following result is important and it will be used several times through-

out the text.

Fact 3.1.5. (Bell and Slomson §6.2 in [8]) If the ultrafilter U is defined on

a set I which is the disjoint union of finitely many subsets I1, . . . , Im, then

exactly one of Ij is in U . Moreover, Uj = {X ∩ Ij | X ∈ U} is an ultrafilter

on Ij and ∏
i∈I

Xi/U ∼=
∏
i∈Ij

Xi/Uj

Remark 3.1.1. Let U denote an ultrafilter on I. Throughout this thesis, when

we say that ‘a property holds for almost all i ∈ I’ we mean that the property

holds in the structures indexed by a set J belonging to the ultrafilter U . More-

over, by Fact 3.1.5, the original ultraproduct
∏

i∈I Xi/U is isomorphic to the

ultraproduct
∏

j∈J Xj/UJ where UJ is the ultrafilter {X ∩ J | X ∈ U}. As

an immediate consequence of this, it follows that ultraproducts over principal

ultrafilters are isomorphic to one of the structures in the cartesian product.

Therefore, throughout this thesis the ultrafilters we consider will always be
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non-principal. Moreover, whenever we have a situation as mentioned above,

that is, whenever a property holds for almost all i ∈ I, we will abuse the

language and we will not change the index set and the ultrafilter. More pre-

cisely, we will assume, without loss of generality, that the property holds in all

of the structures in the ultraproduct.

3.2 Pseudofinite Structures

The motivation for introducing pseudofinite structures stems from field

theory, more precisely from the work of James Ax on the first order theory of

finite fields in [6]. Ax calls a field F pseudofinite if F is perfect, has exactly

one extension of degree n for each integer n > 1 and every irreducible variety

over F has an F -rational point. Note that the second condition implies that

the absolute Galois group of F is the profinite completion of Z denoted by

Ẑ (see Chatzidakis [20]). Any field satisfying the third condition is called

pseudo algebraically closed which is abbreviated as PAC. It can be observed

that the three conditions describing pseudofinite fields can be expressed in a

first order way in the language of rings [6]. Moreover, first two of them are

satisfied by all finite fields while the last condition is not satisfied by any finite

field. As it was pointed out by Ax in [6], the last condition can be expressed

by infinite collection of elementary statements and each elementary statement

holds in all sufficiently large finite fields. For each statement, the fields which

are sufficiently large can be determined explicitly by a theorem of Lang-Weil

which provides a constant for this purpose (see [6] for details). As a result,

the three conditions hold in any non-principal ultraproduct of non-isomorphic

finite fields and so any infinite field which is elementarily equivalent to such

an ultraproduct turns out to be pseudofinite. On the other hand, Ax proved

that pseudofinite fields are exactly the infinite models of the theory of finite

fields, that is, they are elementarily equivalent to a non-principal ultraproduct

of non-isomorphic finite fields.

Motivated by Ax’s characterization of pseudofinite fields in [6], Felgner

introduced pseudofinite groups as infinite models of the theory of finite groups.
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More generally, a pseudofinite structure in a language L is an infinite model of

the theory of finite structures in the common language L. By a suitable choice

of an ultrafilter, it can be shown that any pseudofinite structure is elementarily

equivalent to a non-principal ultraproduct of finite structures with a common

language [65]. As a result, an L-structure is pseudofinite if and only if it

is elementarily equivalent to a non-principal ultraproduct of non-isomorphic

finite L-structures.

For a detailed discussion of the results obtained by Ax as well as some

other important results in the theory of finite and pseudofinite fields, we refer

the reader to the survey article [20] by Chatzidakis.

Unfortunately, unlike pseudofinite fields, an algebraic characterization is

not known for pseudofinite groups. Therefore, it is difficult to determine

whether a given group is pseudofinite or not.

We would like to mention three results in the theory of pseudofinite groups

which are important for us. One of them is a theorem by Point [50] which can

be stated as follows:

Fact 3.2.1. (Point [50]) Let {X(Fi) | i ∈ I} be a family of Chevalley or twisted

Chevalley groups of the same type X over finite or pseudofinite fields, and let

U be a non-principal ultrafilter on the set I. Then∏
i∈I

X(Fi)/U ∼= X(
∏
i∈I

Fi/U)

If Fact 3.2.1 is combined with Keisler-Shelah’s Ultrapower Theorem then

the following result can be obtained:

Fact 3.2.2. (Wilson [64]) Any group G which is elementarily equivalent to a

Chevalley or twisted Chevalley group over a pseudofinite field is pseudofinite.

In particular, it follows that Chevalley and twisted Chevalley groups over

pseudofinite fields are pseudofinite groups. They are examples of simple

pseudofinite groups since Chevalley and twisted Chevalley groups are simple

except for the ones over some small finite fields. Actually, the next result shows

that they are the only examples of simple pseudofinite groups up to elementary

equivalence.
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Fact 3.2.3. (Wilson [64]) Every simple pseudofinite group is elementarily

equivalent to a Chevalley or twisted Chevalley group over a pseudofinite field.

This classification was given by John S. Wilson in [64]. In the proof,

the classification of finite simple groups and Fact 3.2.1 are used. Wilson’s

theorem and a version of it for definably simple pseudofinite groups will be the

considered in detail in the next chapter.

3.3 Definability and Applications of  Loś’s

Theorem

Expressibility of some properties of groups in a first order way are impor-

tant for the purposes of this thesis. Throughout this thesis, in general, we work

up to elementary equivalence and use several first order properties. Therefore,

this section is devoted to write down explicitly the first order formulas which

define some subsets of groups. Moreover we express some first order properties

of groups and fields in the language of groups and rings. While, most of these

arguments are standard and well-known among model theorists, we include the

proofs of the ones which may not be widely known. Moreover, we illustrate

several nice applications of  Loś’s Theorem.

Throughout the text, we work in the language of groups L = { · ,−1 , 1}
or rings L = { · ,+,−, 0, 1} and the language will be clear from the context.

Let x, y denote the elements of the structure (group or field in our context).

We use the following abbreviations:

• p→ q is read as p implies q and it is an abbreviation for ¬p ∨ q.

• x 6= y is an abbreviation for ¬x = y.

• We omit · and write xy instead of x · y.

• xn is an abbreviation for x · x · · ·x︸ ︷︷ ︸
n times

where n is a positive integer.

• nx is an abbreviation for x+ · · ·+ x︸ ︷︷ ︸
n times

where n is a positive integer.
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• xy is an abbreviation for y−1xy.

• [x, y] is an abbreviation for x−1y−1xy.

3.3.1 Definable Subgroups and Subsets

In this subsection, we express some definable subsets and subgroups of a

group G in the language of groups.

(a) Let ϕZ(y) be the formula

∀x (xy = yx)

It is a formula without parameters and with a free variable y which

defines the center of the group G, that is, it defines

Z(G) = {g ∈ G | [x, g] = 1 for all x ∈ G}

(b) Let ϕCk
(x, x1, . . . , xk) be the formula

[x, x1] = 1 ∧ · · · ∧ [x, xn] = 1

It is a formula with parameters x1, . . . , xk and a free variable x. It

defines the centralizer of the elements x1, . . . , xk which is denoted by

CG(x1, . . . , xk).

(c) Let ϕCCk
(y, x1, . . . , xk) be the formula

∀x (ϕCk
(x, x1, . . . , xk)→ [x, y] = 1)

It is a formula with parameters x1, . . . , xk and a free variable y. It defines

the double centralizer of the elements x1, . . . , xk which is denoted by

CG(CG(x1, . . . , xk)).

(d) Let ϕK(x, a) be the formula

∃y (ay = x)

It is a formula with the parameter a and a free variable x which defines

the conjugacy class of a in G, that is, it defines the set

{g ∈ G | g = ay for some y ∈ G}
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(e) In a group G, the set of products of two commutators can be defined by

the following formula:

∃x1∃x2∃x3∃x4 (x = [x1, x2][x3, x4])

We denote this formula by ϕ2(x). Clearly, this formula can be generalized

for defining the set of products of n commutators which will be denoted

by ϕn(x).

(f) Let A be a set defined by the formula ϕA(x) and let ϕC(A)(y) be the

formula

∀x (ϕA(x)→ [x, y] = 1)

Then ϕC(A)(y) defines the centralizer of A, that is, it defines

CG(A) = {g ∈ G | [a, g] = 1 for all a ∈ A}

Similarly, the normalizer of A, that is

NG(A) =
{
g ∈ G | g−1Ag = A for all g ∈ G

}
can be defined by the formula

∀x (ϕA(x)→ ϕA(xy))

We denote this formula by ϕN(A)(y).

(g) Let A1, . . . , Ak be sets defined by the formulas ϕA1(x), . . . , ϕAk
(x)

respectively. Then the setwise product A1A2 · · ·Ak is defined by the

formula

∃y1 · · · ∃yk (ϕA1(y1) ∧ · · · ∧ ϕAk
(yk) ∧ x = y1 · · · yk)

We denote this formula by ϕPk
(x).

(h) If H is a finite subgroup of order n in a group G, then the multiplication

table of H can be expressed by a formula, say ϕH(x1, . . . , xn).
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Then the sentence

∃x1, . . . , xn (ϕH(x1, . . . , xn))

holds in a group if and only if that group has a subgroup which is iso-

morphic to H.

(i) Let ϕI(z, a) be the formula

∀y∃x ([x, a] = 1 ∧ z = xy)

It is a formula with the parameter a and a free variable z which defines

the intersection of all conjugates of CG(a), that is,
⋂

g∈GCG(a)g.

(j) In a group G, the commutator subgroup G′ is not necessarily definable.

Although, any element of G′ is a product of finite number of commuta-

tors, that is, it has finite commutator length, there may not be a uniform

bound for the commutator lengths of the elements of G. However, if

there is such a bound, that is, if G has finite commutator width then we

can define the commutator subgroup. We will write the explicit formula

defining G′ when the commutator width of G is two. This can be easily

generalized for groups with finite commutator width.

Every element of the commutator subgroup of a group G is a product of

two commutators if and only if the following sentence holds in G:

∀x1∀x2∀x3∀x4∀x5∀x6∃y1∃y2∃y3∃y4 ([x1, x2][x3, x4][x5, x6] = [y1, y2][y3, y4])

In this case, G′ can be defined as the set of products of two commutators.

More precisely, the following formula defines G′:

∃x1∃x2∃x3∃x4 (x = [x1, x2][x3, x4])

Clearly, the set of products of any fixed number of commutators can be

defined similarly.

Note that the commutator subgroups of groups of finite Morley rank are

definable by Zil’ber’s Indecomposability Theorem (See Fact 2.4.11).
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(k) The subgroup generated by the conjugacy class of an element a ∈ G is not

necessarily definable. However, if there is a uniform bound on the number

of conjugates of a in order to express each element of the subgroup
〈
aG
〉
,

then
〈
aG
〉

becomes definable. For example, in the connected groups of

finite Morley rank the subgroups generated by the conjugacy class of an

element are definable and the bound depends only on the Morley rank

by Zil’ber’s Indecomposability Theorem.

Another important result follows from these observations. Namely, any

group H which is elementarily equivalent to a simple group of finite

Morley rank is simple. To see this, let σ be the sentence:

∀x∀y∃z1 . . . ∃zk (x = yz1 · · · yzk)

This sentence holds in a simple group G of finite Morley rank since

any conjugacy class in G generates G. Here k is a fixed integer which

depends only on the Morley rank of G. Note that any group elementarily

equivalent to a group of finite Morley rank n also has Morley rank n [13].

Therefore, if G ≡ H then H is a group of finite Morley rank such that

rk(G) = rk(H). Assume that H is not simple. This means that there

is a conjugacy class in H which does not generate H. Combining this

with Zil’ber’s Indecomposability Theorem, it can be observed that the

following sentence holds in H:

∃x∃y∀z1 . . . ∀zk (x 6= yz1 · · · yzk)

Obviously this sentence does not hold in G. As a result H is simple.

3.3.2 First Order Properties of Groups

Groups can be axiomatized by the following sentences in L = { · ,−1 , 1}:

• ∀x∀y∀z ((xy)z = x(yz))

• ∀x (x · 1 = x ∧ 1 · x = x)

• ∀x (x−1x = 1 ∧ xx−1 = 1)
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We will denote the conjunction of these group axioms by σG.

Now, some first order properties of groups can be listed as follows:

(a) ∀x∀y (xy = yx) is a sentence stating commutativity.

(b) The property that a group has finite number of elements can not be

expressed by a first order sentence. However, for a fixed n, having exactly

n elements can be expressed in a first order way. Let σn denote the

sentence

∃x1 . . . ∃xn (x1 6= x2 ∧ . . . ∧ x1 6= xn ∧ x2 6= x3 ∧ . . . ∧ xn−1 6= xn)

This sentence says that there are at least n elements. Therefore,

σn ∧ ¬σn+1 holds in a group if and only if the group has exactly n ele-

ments.

(c) For any integer n ≥ 2, let σn be the sentence

∀x∃y (yn = x)

Then a group G is divisible if and only if the set of sentences {σn | n ≥ 2}
hold in G.

(d) For any integer n ≥ 2, let σn be the sentence

∀x (xn = 1→ x = 1)

Then a group G is torsion-free if and only if the set of sentences

{σn | n ≥ 2} hold in G.

(e) Let A be a non-empty definable subset of a group G defined by the

formula ϕA(x). Then we can express that A is a subgroup of G by the

following first order sentence σA

∀x∀y (((ϕA(x) ∧ ϕA(y))→ ϕA(xy)) ∧ ∀z (ϕA(z)→ ∃t (ϕA(t) ∧ zt = 1)))

(f) Let A be a non-empty definable subset of a group G defined by the

formula ϕA(x) and σA be the sentence defined as in part (e). Then the
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property of being a proper normal subgroup can be expressed by the

following first order sentence σN

∀x∀y (ϕA(x)→ ϕA(xy)) ∧ ∃z (¬ϕA(z)) ∧ σA

(g) G is a solvable group of derived length at most 2 if and only if the

following sentence holds in G

∀x1∀x2∀x3∀x4 ([[x1, x2], [x3, x4]] = 1)

Being a solvable group of derived length at most n, for a fixed integer n,

can also be defined similarly.

(h) G is a nilpotent group of nilpotency class at most 2 if and only if the

following sentence holds in G

∀x1∀x2∀x3 ([[x1, x2], x3] = 1)

For any fixed integer n, being a nilpotent group of class n can be ex-

pressed similarly.

(i) The property of having no non-trivial abelian normal subgroups can

be expressed in the first order language of groups. More precisely, the

sentence

∀x (x 6= 1→ ∃y [x, xy] 6= 1)

holds in a group G if and only if G has no non-trivial abelian normal

subgroups.

To see this, firstly assume that G is a group with an abelian non-trivial

normal subgroup N . Then for any 1 6= n ∈ N , [n, ng] = 1 for all g ∈ G
since N is abelian. Therefore the sentence defined above can not hold

in G. For the other direction, assume that the sentence above does not

hold in G, that is, there is a non-trivial element x such that [x, xy] = 1

for all y ∈ G. As a result,
〈
xG
〉

becomes a non-trivial abelian normal

subgroup of G.
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(j) Let σ be the sentence

∀x∀y ((x 6= 1 ∧ y 6= 1)→ ∃z [y, xz] 6= 1)

Then, σ holds in a group if and only if the centralizer of any non-trivial

normal subgroup is trivial.

A similar argument as in part (i) gives this result. More precisely, assume

that G has a non-trivial normal subgroup N whose centralizer has a non-

trivial element n. Then, [n, xg] = 1 for any x ∈ N and for all g ∈ G and

therefore the sentence above does not hold in G. For the other direction,

assume that the sentence above does not hold in G, that is, there are

non-trivial elements x, y (not necessarily distinct), such that [y, xz] = 1

for all z ∈ G. As a result, we get a non-trivial normal subgroup of G,

namely
〈
xG
〉
, whose centralizer contains y.

(k) The property of having centralizer dimension k can be expressed in the

language of groups. To see this, let ϕCk
(x, x1, . . . , xk) be the formula

defining CG(x1, . . . , xk) as given in Section 3.3.1 (b). Now, for any k ≥ 2,

let σk be the sentence

∀x1 · · · ∀xk∀y1 · · · ∀yk−1 (ϕC1(y1, x1) ∧ ¬ϕC2(y1, x1, x2) ∧ ϕC2(y2, x1, x2)∧

¬ϕC3(y2, x1, x2, x3)∧· · ·∧ϕCk−1
(yk−1, x1, . . . , xk−1)∧¬ϕCk

(yk−1, x1, . . . , xk))

→ ∀x∀y (ϕCk
(x, x1, . . . , xk)→ [x, y] = 1)

Note that this statement is written for k ≥ 2 since the groups with

centralizer dimension 0 and 1 are abelian (see Remark 2.4.1) and abelian

groups are defined by the sentence ∀x∀y ([x, y] = 1).

Now, we claim that σk holds in a group if and only if the group has

centralizer dimension less than or equal to k.

Firstly, assume that a group G has centralizer dimension strictly bigger

than k. This means that we can find x1, . . . , xk+1 such that

CG(1) > CG(x1) > CG(x1, x2) > · · · > CG(x1, x2, . . . , xk+1)
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However, then the sentence above does not hold in G. For the converse,

assume that the sentence σk does not hold in G. For simplicity, let p

denote:

∀x1 · · · ∀xk∀y1 · · · ∀yk−1 (ϕC1(y1, x1) ∧ ¬ϕC2(y1, x1, x2) ∧ ϕC2(y2, x1, x2)∧

¬ϕC3(y2, x1, x2, x3)∧· · ·∧ϕCk−1
(yk−1, x1, . . . , xk−1)∧¬ϕCk

(yk−1, x1, . . . , xk))

and q denote:

∀x∀y (ϕCk
(x, x1, . . . , xk)→ [x, y] = 1)

Now, the sentence σk can be expressed as p → q. Then ¬σk becomes

p ∧ ¬q where ¬q is

∃x∃y (ϕCk
(x, x1, . . . , xk) ∧ [x, y] 6= 1)

It is not difficult to observe that this argument guarantees the existence

of a centralizer chain of length strictly greater than k.

We conclude that, σk ∧ ¬σk−1 holds in a group if and only if the group

has centralizer dimension k.

3.3.3 First Order Properties of Fields

It is well-known that fields can be axiomatized by the following first order

sentences in the language L = { · ,+,−, 0, 1} of rings:

• Axioms for additive abelian groups.

• 0 6= 1

• ∀x∀y∀z ((xy)z = x(yz))

• ∀x (x · 1 = 1 · x = x)

• ∀x∀y∀z (x(y + z) = xy + xz)

• ∀x∀y∀z ((x+ y)z = xz + yz)

39



• ∀x∀y (xy = yx)

• ∀x (x 6= 0→ ∃y xy = 1)

We will denote the conjunction of these field axioms by σF .

Now, some first order properties of fields can be listed as follows:

(a) Let σp be the sentence ∀x (px = 0) for some prime number p. This

sentence holds in a field F if and only if F has characteristic p.

(b) Let σp denote the sentence ∀x (px = 0). Then the set of sentences

{¬σp | p > 1} hold in a field F if and only if F has characteristic zero.

(c) Let σn be the sentence

∀x0 . . . ∀xn (xn 6= 0→ ∃y xny
n + xn−1y

n−1 + . . .+ x1y + x0 = 0)

This sentence says that every polynomial of degree n has a root. There-

fore, a field F is algebraically closed if and only if the infinite set of

sentences {σn | n ≥ 2} hold in F .

(d) Recall that, a field F is perfect if either char(F ) = 0 or char(F ) = p

and every element is a pth power. For each prime p, let σp denote the

sentence

(p · 1 = 0)→ ∀x∃y (yp = x)

Then, a field F is perfect if and only if σp holds in F for some prime p.

3.3.4 Some Applications of  Loś’s Theorem

We start by some well-known classes of structures which are axiomatizable

by infinitely many first order sentences and apply  Loś’s Theorem to show that

these classes are not finitely axiomatizable (See [8]). After that, we present

some results concerning the possibility of expressing the notion of simplicity

in several classes of groups [65].
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Torsion-free groups. The class of torsion-free groups is axiomatizable

by the set of sentences {σn | n ≥ 2} ∪ {σG} where σn is

∀x (xn = 1→ x = 1)

as mentioned in Section 3.3.2 (d) and σG axiomatizes groups. However, this

class is not finitely axiomatizable. This can be observed as follows.

Consider an ultraproduct of cyclic groups of prime orders pi over an

ultrafilter on the set I of all prime numbers. Then for any fixed n ≥ 2, the set

{pi ∈ I | Cpi
|= σn} is co-finite because in a cyclic group of order pi, the orders

of non-trivial elements are pi and so σn holds in Cpi
for all pi > n. Therefore,

for each n ≥ 2, σn holds in the ultraproduct by  Loś’s Theorem. As a result,∏
pi∈I Cpi

/U is torsion-free. If there were a sentence stating torsion-freeness

then that sentence would hold in the ultraproduct and hence in almost all of

the factors. However, none of the groups in the ultraproduct is torsion-free.

Divisible groups. The class of divisible groups is axiomatizable by the

set of sentences {σn | n ≥ 2} ∪ {σG} where σn is

∀x∃y (yn = x)

We will show that this class is not finitely axiomatizable.

Let us consider
∏

pi∈I Cpi
/U as in the previous argument. Then for any

fixed n ≥ 2, σn holds in Cpi
for all pi > n since pi and n are relatively prime.

As a result, the ultraproduct is divisible. However, none of the factors is

divisible since σpi
does not hold in Cpi

for any prime pi.

Fields of characteristic zero. The class of fields of characteristic zero

can be axiomatized by the set of sentences {pi ∈ I | ¬σpi
}∪{σF} where I is the

set of all primes, σpi
is the sentence ∀x (pix = 0) as defined in Section 3.3.3 (a)

and σF is the sentence that axiomatizes fields. However, this class is not finitely

axiomatizable. This can be observed as follows.

Let us consider the field
∏

pi∈I Fpi
/U where U is a non-principal ultrafilter

on the set of primes I and Fpi
denotes the field with pi elements. For each
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fixed prime p0,

{pi ∈ I | Fpi
|= ¬σp0} ∈ U

since there is only one field of characteristic p0 in the factors of the

ultraproduct. As a result of  Loś’s Theorem, the set of sentences {pi ∈ I | ¬σpi
}

hold in
∏

pi∈I Fpi
/U . Therefore the ultraproduct has characteristic zero while

none of its factors is of characteristic zero.

Groups with descending chain condition for centralizers. As we

showed in Section 3.3.2 (k), having centralizer dimension k is a first order prop-

erty of groups. However, the descending chain condition for centralizers can

not be expressed by a first order sentence. This can be observed by considering

the ultraproduct of groups with increasing centralizer dimensions.

Let us consider the alternating groups Alt(ni) for ni ≥ 2. It can be

checked that centralizers of products of even number of disjoint transposi-

tions in Alt(ni) form a centralizer chain of length at least bni/4c where bni/4c
denotes the integer part of ni/4. Let

G =
∏
i∈I

Alt(ni)/U

be an infinite group where U is an ultrafilter on the set I. Now, we will

construct a descending chain of centralizers of infinite length in G.

For any integer k ≥ 1, let [xk]U denote the image of xk ∈
∏

i∈I Alt(ni)

where

xk(i) = (4k − 3, 4k − 2)(4k − 1, 4k)

for all i ∈ I such that ni ≥ 4k and identity elsewhere. We claim that

CG([x1]U) > CG([x1]U , [x
2]U) > . . .

forms an infinite proper descending chain of centralizers. To see this, it is

enough to prove that for any fixed k

CG([x1]U , . . . , [x
k]U) > CG([x1]U , . . . , [x

k+1]U)

which means that the chain does not stabilizes after finitely many steps. Fix

a positive integer k. It is clear that, for all i ∈ I such that ni ≥ 4k + 4, there
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is y(i) ∈ Alt(ni) with the property that

y(i) ∈ CAlt(ni)

(
x1(i), . . . , xk(i)

)
but y(i) /∈ CAlt(ni)

(
x1(i), . . . , xk+1(i)

)
Therefore,

Im = {i ∈ I | y(i)xm(i) = xm(i)y(i)} ∈ U

for all 1 ≤ m ≤ k and

J =
{
i ∈ I | y(i)xk+1(i) 6= xk+1(i)y(i)

}
∈ U

As a result we have

[y]U ∈ CG([x1]U , . . . , [x
k]U) but [y]U /∈ CG([x1]U , . . . , [x

k+1]U)

Now, we consider the expressibility of the notion of simplicity in some

classes of groups.

Abelian groups. Simplicity can not be expressed by a first order

sentence in the class of abelian groups. To see this, it is enough to consider

the ultraproduct of finite cyclic groups of prime order over an ultrafilter on

the set I of all prime numbers. It is clear that
∏

pi∈I Cpi
/U is an infinite

abelian group and hence not simple. If there were a first order sentence

stating simplicity then it would hold in the ultraproduct as all Cpi
’s are simple.

Finite abelian groups. ([39]) In the class of finite abelian groups we can

not express simplicity by an elementary statement. This can be observed as

follows.

Assume that there is a first order sentence σ such that σ holds in a finite

abelian group G if and only if G is simple. Let

G1 =
∏
pi∈I

Cpi
/U and G2 =

∏
pi∈I

C(pi)2/U

where I is the set of all prime numbers and U is a non-principal ultrafilter on

I. Clearly, G1 |= σ and G2 |= ¬σ by  Loś’s Theorem. On the other hand, from
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our previous observations we know that G1 and G2 are divisible abelian and

torsion-free groups. Moreover, G1 and G2 are uncountable by Fact 3.1.4. It is

a well-known fact that groups with these properties are isomorphic [33]. As

a result, such a σ does not exist as isomorphic groups must satisfy the same

first order sentences.

Finite non-abelian groups. Felgner proved that simplicity is an ele-

mentary statement in the class of finite non-abelian groups in his article [31].

In other words, he showed that there is a first order sentence τ such that τ

holds in a finite group G if and only if G is non-abelian simple. He used the

classification of finite simple groups in the proof.

His proof can be summarized as follows.

Firstly, Felgner considers the following statement which holds in non-

abelian simple groups:

∀x1∀x2

(
x1 6= 1 ∧ CG(x1, x2) 6= 1→

⋂
g∈G

(CG(x1, x2)CG(CG(x1, x2)))
g = 1

)

Remark 3.3.1. Note that the statement given above can be expressed by a

first order sentence in the language of groups. The argument goes as follows.

Let ϕC2(x, x1, x2), ϕCC2(x, x1, x2) and ϕP (x, x1, x2) denote the formulas

which define CG(x1, x2), CG(CG(x1, x2)) and CG(x1, x2)CG(CG(x1, x2)) respec-

tively as in Section 3.3.1 (b), (c), (g). Now, it can be observed that the formula

∀x∃y (ϕP (y, x1, x2) ∧ z = yx)

defines the intersection⋂
g∈G

(CG(x1, x2)CG(CG(x1, x2)))
g

We denote this formula by ϕI(z, x1, x2). The following first order sentence σ

expresses the statement above in the language of groups:

∀x1∀x2 (x1 6= 1 ∧ ∃y (y 6= 1 ∧ ϕC2(y, x1, x2))→ ∀z (ϕI(z, x1, x2)→ z = 1))
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Felgner shows that in a finite group satisfying σ, the subgroup generated

by minimal normal subgroups is non-abelian simple. After this point, he uses

the following well-known properties of finite non-abelian simple groups which

follow from the classification:

- Every finite simple group is generated by two elements.

- For any non-abelian finite simple group S, the structure of Aut(S)/Inn(S)

is well-known.

- There is an integer k such that each element of each non-abelian finite

simple group G is a product of k commutators.

Note that the last property can be expressed by a first order sentence

(Section 3.3.1 (e)), say δ. Felgner proves that σ ∧ δ holds in a finite non-

abelian group G if and only if G is simple.

Felgner also proves that this kind of argument can not be generalized to

the class of all non-abelian simple groups. This is explained in the following

item.

Non-abelian groups. Simplicity can not be expressed by an elementary

statement in the class of non-abelian groups. This follows from the following

fact:

Fact 3.3.1. (Wilson [65]) Let G =
∏

i∈I Alt(ni)/U be an infinite group such

that ni ≥ 5 for all i ∈ I and U is a non-principal ultrafilter on the set I. Then

G is not simple.

We include a proof of this fact in order to illustrate a nice and non-trivial

application of  Loś’s Theorem.

Proof. Note that
∏

i∈I Alt(ni)/U is finite when the orders of the alternating

groups in the ultraproduct are bounded. Since G is infinite, we assume that

ni’s are arbitrarily large in the ultraproduct. Let x be the element of the

cartesian product
∏

i∈I Alt(ni) such that x(i) = (12)(34) for all i ∈ I and let

[x]U denote the image of x in the ultraproduct
∏

i∈I Alt(ni)/U .

45



Claim. The group generated by the conjugacy class of [x]U in
∏

i∈I Alt(ni)/U
is a proper normal subgroup of

∏
i∈I Alt(ni)/U .

Let [y]U be the image of y ∈
∏

i∈I Alt(ni) where y(i) = (123 · · ·ni) if ni

is odd and y(i) = (123 · · ·ni − 2)(ni − 1, ni) if ni is even. It is clear that

y(i) ∈ Alt(ni) has no fixed points. Now, the claim will follow if we prove that

[y]U can not be written as a product of finitely many conjugates of [x]U .

Assume that

[y]U = [x]
[d1]U
U · · · [x]

[dk]U
U

for some integer k ≥ 1. Then, by  Loś’s Theorem we have{
i ∈ I | y(i) = x(i)d1(i) · · · x(i)dk(i)

}
∈ U

On the other hand, since x(i) moves at most 4 points, the product of k conju-

gates of x(i) moves at most 4k points and so fixes at least ni − 4k points. As

a result, for all i ∈ I such that ni > 4k, any product of k conjugates of x(i)

has fixed points. However, y(i) is fixed-point-free and ni > 4k for almost all

i ∈ I. Therefore, y(i) can not be written as a product of k conjugates of x(i)

for almost all i ∈ I. Since this holds for any choice of k, we conclude that [y]U

is not an element of the group generated by the conjugates of [x]U . Therefore,

the claim holds and so
∏

i∈I Alt(ni)/U is not simple.
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chapter 4

simple and definably simple

pseudofinite groups

In the first section of this chapter, we mention the importance of simple

groups, especially in the theory of finite groups and we state the Classification

of Finite Simple Groups. Moreover, we state Ulrich Felgner’s conjecture about

the structure of simple pseudofinite groups as well as the result obtained

by John S. Wilson which partially answers this conjecture. We summarize

Wilson’s proof by emphasizing the key points in his argument.

In the second section, we prove a version of Wilson’s theorem by combining

some of the facts in his proof with some other ideas which are available in our

context. More precisely, we classify definably simple pseudofinite groups of

finite centralizer dimension up to elementary equivalence.

In the last section, we discuss the possibility of replacing elementary

equivalence with isomorphism. A brief overview of the literature will give

the desired replacement.

4.1 Simple Pseudofinite Groups

In group theory, it is always desirable to classify simple groups in a

particular class of groups. As it is mentioned by Solomon in his article [57],

the origin of this desire goes back to the last years of nineteenth century when

Otto Hölder explained his feelings about the possibility of classifying finite

simple groups. The Jordan-Hölder Theorem gives some insight about the im-

portance of simple groups in finite group theory. Namely, simple groups can

be considered as building blocks of finite groups.
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The Classification of Finite Simple Groups has been completed in the 1980’s

as a result of incredible efforts of dozens of mathematicians. According to the

classification, any finite simple group belongs to one of the following families

up to isomorphism:

(a) Cyclic groups of prime orders.

(b) Alternating groups Alt(n), for n ≥ 5.

(c) Finite simple groups of Lie type

An, Bn, Cn, Dn, E6, E7, E8, F4, G2,
2An,

2Dn,
2E6,

3D4,
2B2,

2F4,
2G2

(d) 26 Sporadic groups.

Note that there are infinitely many non-isomorphic groups in each family,

except for the sporadic family which has 26 members.

There are some projects to simplify the original proof since it is quite

long and complicated. First simplification project, which is called the second

generation classification, was initiated by Daniel Gorenstein. Several volumes

of this second generation proof have been published up to now. Meanwhile,

there is another simplification project, called third generation classification,

carried out by Ulrich Meierfrankenfeld, Bernd Stellmacher, Gernot Stroth et

al. These two projects are still in progress.

As mentioned before, in his article [31], Ulrich Felgner introduced pseudo-

finite groups as infinite models of the theory of finite groups in accordance with

Ax’s characterization of pseudofinite fields as infinite models of the theory of

finite fields. The Classification of Finite Simple Groups has a particular impor-

tance in the class of pseudofinite groups since finite and pseudofinite groups

are indistinguishable by their first order properties. Felgner believed in the

possibility of classifying simple pseudofinite groups by using the Classification

of Finite Simple Groups [31] and made the following conjecture:

Simple pseudofinite groups are isomorphic to Chevalley or twisted

Chevalley groups over pseudofinite fields.

48



Although Felgner obtained important results in the direction of a classifica-

tion, it was John S. Wilson who classified simple pseudofinite groups, however,

up to elementary equivalence [64].

The result obtained by Wilson can be stated as follows:

Fact 4.1.1. (Wilson [64]) Every simple pseudofinite group is elementarily

equivalent to a Chevalley or twisted Chevalley group over a pseudofinite field.

It is pointed out in Wilson’s article that some of the strategy used in his

proof is due to Felgner. In the rest of this section, we will summarize the proof

of Fact 4.1.1 given by Wilson.

As a first step, by using the ideas in Felgner’s article [31], Wilson proves that

every simple pseudofinite group is elementarily equivalent to an ultraproduct

of non-abelian finite simple groups. The following three facts are used for the

proof of this step.

Fact 4.1.2. (Wilson [64]) There is an integer k such that each element of each

finite non-abelian simple group G is a product of k commutators.

Note that this is a weaker version of Ore’s Conjecture which was stated in

Section 2.3. The classification of finite simple groups is used in the proof of

this fact.

Before stating the next fact used in the proof of the first step, recall that a

non-trivial normal subgroup of a group G is called minimal normal subgroup

if it does not properly contain a non-trivial normal subgroup of G. Through-

out this thesis, Soc(G) stands for the subgroup generated by minimal normal

subgroups of a group G, the so called socle of G.

Fact 4.1.3. (Felgner [31], Wilson [64]) Let σ denote the following statement

∀x1∀x2

(
x1 6= 1 ∧ CG(x1, x2) 6= 1→

⋂
g∈G

(CG(x1, x2)CG(CG(x1, x2)))
g = 1

)

(a) If G is a non-abelian simple group, then G |= σ, that is, σ holds in G.

(b) If G is finite and G |= σ, then Soc(G) is a non-abelian simple group.
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As we mentioned in Section 3.3.4, σ is a first order sentence which was

defined by Felgner in order to prove that simplicity is definable in the class of

finite non-abelian groups. Note that the Classification of Finite Simple Groups

is not used in the proof of this fact.

Fact 4.1.4. (Wilson [64]) Let G be a finite group with a non-abelian simple

socle. If G is not simple then G′ 6= G. Moreover, if every element of Soc(G)

is a product of k commutators, then every element of G′ is a product of k + 3

commutators.

In the proof of this fact, some properties of finite simple groups which follow

from the classification are used.

After achieving the first step by using the facts stated above, Wilson

considers all possible ultraproduct constructions and eliminates all but one

of the cases by following the strategy explained below.

Since there are finitely many families of finite simple groups, without loss

of generality, he assumes that just one of the families occur in the ultraproduct

by Fact 3.1.5. Sporadic case is eliminated immediately since ultraproduct of

groups of bounded order is a finite group.

Then, Wilson proves the following fact:

Fact 4.1.5. (Felgner [31], Wilson [64]) Let G be an infinite group such that

G ≡
∏

i∈I Alt(ni)/U where ni ≥ 5 for all i ∈ I. Then G is not simple.

This fact was first proved by Felgner in [31], however, Wilson provides a

proof of it in his article [64] as well. Note that this result is stronger than the

non-simplicity of an ultraproduct of simple non-isomorphic alternating groups

(see Fact 3.3.1). The idea of the proof is similar to that of Fact 3.3.1, however,

this time first order characterizations of some elements of alternating groups

need to be used rather than the actual elements.

After that, Wilson considers the case where the finite simple groups in

the ultraproduct are classical groups. This case is split into two parts by

considering the classical groups over fields of odd and even characteristics

separately. Wilson characterizes some involutions in classical groups in terms of

their first order properties. Combining these with some well-known properties
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of classical groups, Wilson puts a bound on the Lie ranks of the classical groups

in the ultraproduct.

As a result of these reductions, Wilson is left with the case where all of

the factors in the ultraproduct are Chevalley or twisted Chevalley groups of

the same Lie type and same Lie rank. Therefore, he completes the proof by

referring to the result of Point (see Fact 3.2.1).

4.2 Definably Simple Pseudofinite Groups

In the previous section, we mentioned the importance of the classification

of simple groups and we concentrated on the classification of finite and pseudo

finite ones. One of other well-known classes of simple groups is the class of

simple algebraic groups over algebraically closed fields as we mentioned in the

introduction. Note that in the context of algebraic groups the terminology is

slightly different: Simple groups are allowed to have finite centers such that the

quotient is simple as an abstract group. In any case, their classification is well-

known [35]. Unfortunately, there are still some classes of simple groups which

have not been determined yet. For example, as mentioned in the introduction,

there is an ongoing project for classifying infinite simple groups of finite Morley

rank.

There is a slightly weaker version of simplicity which arises in model theory.

A group is called definably simple if it has no non-trivial definable proper nor-

mal subgroups. Note that in the category of algebraic groups, definable sets

and Zariski closed sets are not the same. However, definable subgroups and

Zariski closed subgroups coincide. For the latter claim, one direction is clear

since any closed subgroup can be defined as the zero set of finitely many poly-

nomials. For the other direction, that is, for the proof of the fact that definable

subgroups of algebraic groups are closed see Lemma 7.4.9 in [45]. Moreover,

in the category of non-abelian groups of finite Morley rank, which includes

non-abelian algebraic groups over algebraically closed fields, definably simple

groups coincide with the simple ones [51]. However, in general, definably simple

groups need not be simple. Pseudofinite groups provides an example for this.
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Namely, any non-principal ultraproduct of simple non-isomorphic alternating

groups is definably simple but not simple (see Fact 3.3.1). Therefore, the dis-

tinction between the notions definably simple and simple becomes important

in the theory of pseudofinite groups.

At this point, we would like to analyze the structure of definably simple

abelian groups in the context of pseudofinite groups. Clearly, infinite abelian

groups can not be simple, however, they can be definably simple. Let A be a

definably simple abelian pseudofinite group. First of all, A should be torsion-

free since any non-trivial element of finite order would generate a non-trivial

proper definable normal subgroup of A. Moreover, A is divisible, because

otherwise for some integer n ≥ 2, there is y ∈ A such that y 6= nx for all

x ∈ A. Therefore, the set nA = {nx | x ∈ A} forms a proper definable normal

subgroup of A which is not possible as A is definably simple. Therefore A

is a divisible abelian torsion-free group. Moreover, we know that A ≡ AI/U
and AI/U is uncountable for any non-principal ultrafilter U on a countable

set I by Fact 3.1.4. On the other hand, it is clear that, as an additive group

QI/U is a divisible abelian torsion-free group of uncountable cardinality which

is elementarily equivalent to the additive group of Q, denoted by Q+. Since

torsion-free divisible abelian groups of uncountable cardinality are isomorphic,

we have

A ≡ AI/U ∼= QI/U ≡ Q+

that is, A ≡ Q+. Moreover, as we observed in Section 3.3.4,
∏

i∈I Cpi
/U is also

an uncountable divisible abelian torsion-free group. As a result, we get

A ≡
∏
i∈I

Cpi
/U ≡ Q+

Having analyzed the structure of definably simple abelian pseudofinite

groups up to elementary equivalence, we will concentrate on definably sim-

ple non-abelian pseudofinite groups from now on. Note that in our context,

the pseudofinite group in consideration arises as a subgroup of a finite Morley

rank group. Since finite Morley rank groups have finite centralizer dimension

and this property is inherited by subgroups, it is natural to consider pseudo

finite groups with finite centralizer dimension. Therefore, we will deal with
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definably simple pseudofinite groups with finite centralizer dimension and we

will prove the following theorem.

Theorem 4.2.1. Let G be a definably simple non-abelian pseudofinite group of

finite centralizer dimension. Then G is elementarily equivalent to a Chevalley

or twisted Chevalley group over a pseudofinite field.

Proof. As a first step, we show that G is elementarily equivalent to an ultra-

product of non-abelian finite simple groups by applying some methods used by

Wilson in his proof. The proofs of the facts given in the previous section are

due to Wilson and when it is necessary we give his proof by emphasizing how

it works in our situation. In the next step, we take different direction from

that of Wilson by using our assumption on centralizer chains.

Step 1. Every definably simple non-abelian pseudofinite group is elementarily

equivalent to an ultraproduct of non-abelian finite simple groups.

Let σ be the sentence defined in Fact 4.1.3. We show that the proof of the

Fact 4.1.3(a) in Wilson’s article [64] works under the weaker assumption that

G is definably simple.

Lemma 4.2.1. Let G be a definably simple non-abelian group. Then, σ holds

in G.

Proof. Assume that σ does not hold in G, that is, there are x1, x2 ∈ G such

that for x1 6= 1 and CG(x1, x2) 6= 1 we have⋂
g∈G

(CG(x1, x2)CG(CG(x1, x2)))
g 6= 1

Let

N =
⋂
g∈G

(CG(x1, x2)CG(CG(x1, x2)))
g

As we observed in Remark 3.3.1, N is a definable subgroup of G defined by the

formula ϕI(z, x1, x2). Moreover, it is clear that N is normalized by G. Since

G is definably simple and N is non-trivial by our assumption, we get G = N .

As a result we have,

CG(x1, x2)CG(CG(x1, x2)) = G
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Therefore, CG(x1, x2) is normalized by G. Moreover, since CG(x1, x2) is a non-

trivial definable subgroup of G, it can not be proper in G, that is, we have

CG(x1, x2) = G. Clearly, this is not possible since Z(G) = 1 as a definable

subgroup of the non-abelian group G. Therefore, we get a contradiction to our

assumption and we conclude that σ holds in G.

Now, let G be a definably simple non-abelian pseudofinite group. Then

G ≡
∏

i∈I Xi/U where each Xi is a non-abelian finite group and U is a non-

principal ultrafilter. Moreover, σ holds in G by Lemma 4.2.1. Therefore,

{i ∈ I | Xi |= σ} ∈ U

by  Loś’s Theorem, that is, σ holds in almost all of the groups in the ultra-

product. Without loss of generality, we may assume that σ holds in all of

the groups Xi by Remark 3.1.1. Now, as Xi |= σ, it follows by Fact 4.1.3(b)

that Soc(Xi) is a non-abelian simple group for each i ∈ I. If Xi is not simple

then, by Fact 4.1.4, Xi
′ is the set of all products of k + 3 commutators where

k is the integer given by Fact 4.1.2. Hence, the first order formula ϕk+3(x)

which was defined in Section 3.3.1 (e), defines Xi
′. Moreover, as explained in

Section 3.3.2 part (f) there is a first order sentence τ which expresses that Xi
′

is a proper normal subgroup of Xi. Now, if Xi is non-simple for all i in a set

belonging to U then the sentence τ holds in almost all of the Xi’s and hence

in G. Therefore, in G we get a definable proper normal subgroup. This is not

possible as G is definably simple. Therefore, Xi is a non-abelian finite simple

group for almost all i ∈ I. Again by referring to Remark 3.1.1 and by abusing

the language we can conclude that

G ≡
∏
i∈I

Xi/U

where Xi is a non-abelian finite simple group for all i ∈ I.

Remark 4.2.1. Note that the Classification of Finite Simple groups is not

needed for identifying Soc(Xi)’s with non-abelian simple groups. However,

classification is used in the rest of the proof.
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Remark 4.2.2. If the argument about definably simple abelian pseudofinite

groups is combined with the result obtained in Step 1, we get the following

result:

Every definably simple pseudofinite group is elementarily equiva-

lent to an ultraproduct of finite simple groups.

Step 2. In this step, by using the classification of finite simple groups, we

analyze all possible ultraproduct constructions by taking into account the finite

centralizer dimension property.

Since there are three main families of non-abelian finite simple groups as

given in Section 4.1, any ultraproduct of finite non-abelian simple groups is

isomorphic to an ultraproduct of members of exactly one family by Fact 3.1.5.

Therefore, we have

G ≡
∏
i∈I

Xi/U

where {Xi | i ∈ I} is a collection of non-abelian finite simple groups from the

same family. The possibilities are analyzed below.

Case 1. Sporadic Groups

Since there are finitely many sporadic groups, without loss of generality,

we may assume that all Xi’s are the same sporadic group X. However, hav-

ing exactly n elements is a first order property as explained in Section 3.3.2

part (b). Therefore, G ≡ XI/U has the same order as X by  Loś’s Theorem.

We eliminate this case since G is a pseudofinite group which is infinite by

definition.

Case 2. Alternating Groups

If there is a bound m on the orders of the alternating groups appearing in

the ultraproduct, then

J = {i ∈ I | Xi = Alt(n)} ∈ U

for some n ≤ m and ∏
i∈I

Xi/U ∼= (Alt(n))J/UJ
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As in the previous case this is a finite group, actually isomorphic to Alt(n), so

it is eliminated.

Therefore, suppose that there are alternating groups with arbitrarily large

orders in the ultraproduct. Let us consider the following centralizer chain

constructed from products of even number of disjoint transpositions in Alt(n).

CAlt(n)(1) > CAlt(n)((12)(34)) > · · · > CAlt(n)((12)(34), . . . , (k−3, k−2)(k−1, k))

Here, k = n or k = n − 1 depending on the parity of n. Clearly, it is a

centralizer chain of length bn/4c. Since n is not bounded in the ultraproduct,

there is no bound on the centralizer dimensions of the alternating groups in

the ultraproduct and we get an infinite descending chain of centralizers (See

the related argument in Section 3.3). Since G has finite centralizer dimension

and this is a first order property, G can not be elementarily equivalent to an

ultraproduct of alternating groups of arbitrarily large orders.

Case 3. Groups of Lie type

This case can be split into two subcases:

(a) No bound on Lie ranks

In this case, all Xi’s are from one of the infinite families of Classical

groups Ani
, Bni

, Cni
, Dni

, 2Ani
, 2Dni

and there is no bound on the Lie

ranks of the groups occurring in the ultraproduct.

The structure of centralizers of semisimple elements of classical groups

are well-known [32]. More precisely, in a classical group of type X, there

are some special semisimple elements whose centralizers contain classical

group of type X of lower rank. In any classical group, this allows one

to construct a descending chain of centralizers whose length increases

with the rank. As a result, if there is no bound on the Lie ranks in the

ultraproduct, the ultraproduct can not have finite centralizer dimension.

(b) Lie ranks are bounded

If there is a bound on the Lie ranks, then without loss of generality, we

may assume that all Xi’s are the groups of same Lie type with fixed Lie
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rank n. In this case, we can conclude that G is elementarily equivalent

to a Chevalley or twisted Chevalley group over a pseudofinite field by

the result of Point (see Fact 3.2.1).

4.3 Elementary Equivalence versus Isomor-

phism

In this section, we will try to clarify the relation between elementary

equivalence and isomorphism in some special cases. We will do this by giving

a brief survey of the results obtained in this direction in the literature. We

will be able to conclude that, any group which is elementarily equivalent to

a Chevalley or twisted Chevalley group over a field K is itself a Chevalley or

twisted Chevalley group of the same Lie type over a field which is elementarily

equivalent to K. As a result, we can replace elementary equivalence with iso-

morphism in Wilson’s theorem as well as in definably simple version of Wilson’s

theorem.

It is clear that, isomorphic structures are elementarily equivalent, how-

ever the converse does not hold in general. This can be seen immediately

by considering the ultrapower of any countably infinite group G over a non-

principal ultrafilter U on a countable index set I. We know that, G ≡ GI/U ,

however, they are not isomorphic as the ultrapower of G is uncountable (see

Fact 3.1.4). We can give another example which is free from ultraproducts.

It is a well-known fact in model theory that any two algebraically closed

fields K1, K2 of the same characteristic are elementarily equivalent (see [45]).

However, they need not be isomorphic as in the case of algebraic closure of

rational numbers and complex numbers. As mentioned in the Introduction,

an algebraic characterization of elementary equivalence is given by Keisler-

Shelah Ultrapower Theorem which states that two structures are elementarily

equivalent if and only if they have isomorphic ultrapowers.

In the case of Chevalley groups, more can be said about the relation

between the notions of isomorphism and elementary equivalence. Simon
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Thomas worked on the elementary properties of Chevalley groups in his

dissertation [63]. He proved that any group which is elementarily equiv-

alent to a group of the form X(K), where X denotes one of the types

An, Bn, Cn, Dn, E6, E7, E8, F4, G2 and K stands for any field, is itself a group

of type X(K). In other words, he showed that being a Chevalley group X(K)

is first order axiomatizable. However, his work did not include a similar result

for twisted Chevalley groups.

For the twisted Chevalley groups over pseudofinite fields, a positive answer

to the question of finite axiomatizability has been obtained by M. Ryten [55]

very recently. In his dissertation, Ryten obtains some results on the uniform

parameter bi-interpretations between groups and families of finite fields which

yield finite axiomatizations of Chevalley and twisted Chevalley groups over

pseudofinite fields.

58



chapter 5

proof of the main theorem

In this chapter, we give some information about the origin of the conjecture

we work on and try to explain where it sits in the classification project of

infinite simple groups of finite Morley rank. Moreover, we analyze an example

in the algebraic group context which is useful for having a better understanding

of the conjecture. After that, we concentrate on the conjecture and we prove

the main theorem of this thesis.

Last section of this chapter is devoted to summarizing possible ways of

proving the Intermediate Conjecture by combining the results obtained in this

thesis with some results in the theory of groups of finite Morley rank. Moreover,

we outline a program which aims to avoid the use of the classification of finite

simple groups in the proof.

Throughout this chapter, the notation will be as follows:

For an automorphism α of a group G, we write CG(α) for the subgroup of

G which is fixed elementwise by α, that is,

CG(α) = {g ∈ G | α(g) = g}

The definable closure of a set X is denoted by d(X) when the universe we

work in is clear from the context. The centralizer dimension of a group G is

denoted by c-dim(G).

5.1 Principal and Intermediate Conjectures

As mentioned in the introduction, there is a classification project for infinite

simple groups of finite Morley rank which is based on the Cherlin-Zil’ber

Algebraicity Conjecture. The aim of this project is to identify these groups

with algebraic groups over algebraically closed fields, that is, with Chevalley
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groups over algebraically closed fields. Some ideas and techniques from finite

group theory have been quite useful in this project and have led to important

results. More precisely, among the four possible types of simple groups of

finite Morley rank, the groups of even type were identified with simple alge-

braic groups over algebraically closed fields of characteristic 2 and the groups

of mixed type were proven not to exist [1]. Some important restrictions have

been obtained on the structures of hypothetical non-algebraic simple groups

of odd and degenerate types ([15], [14]). Meanwhile, an alternative approach

for handling this classification project was proposed by Hrushovski in [34].

The works on the fixed points of generic automorphisms of some structures

were motivating developments for the birth of this alternative approach. Note

that an automorphism α of a structure M is called generic if (M, α) is an

existentially closed model of the theory

T ∪ {‘α is an automorphism’}

where T is a complete theory with quantifier elimination. We would like to

mention a few results supporting this alternative approach without going into

details.

Firstly, it was proven that the fixed points of a generic automorphism of

an algebraically closed field is a pseudofinite field [41], by using the algebraic

characterization of pseudofinite fields. Then, Hrushovski worked on some other

structures with generic automorphisms in [34]. He showed that the fixed points

of generic automorphisms of the structures with some nice properties are PAC

with Galois groups Ẑ. Note that the notions PAC and Galois group which are

relatively well-known in field theory can also be defined for arbitrary structures

(See [34]). This result allowed Hrushovski to prove that any fixed point sub-

group arising this way admits some kind of measure. In particular, these results

hold for simple groups of finite Morley rank with generic automorphisms. A

conjecture of Hrushovski can be composed from these observations:

Principal Conjecture. Let G be an infinite simple group of finite Morley

rank with a generic automorphism α. Then CG(α) is pseudofinite.
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Although the fixed point subgroup mimics some properties of pseudofinite

groups as mentioned above, there is no known direct way of proving that a

group is pseudofinite.

As it was pointed out by Hrushovski in [34], the Algebraicity Conjecture

implies the Principal Conjecture. To be more precise, if the Algebraicity Con-

jecture holds then any infinite simple group of finite Morley rank is isomorphic

to a Chevalley group over algebraically closed field. Therefore, the group in

the Principal Conjecture can be identified with K-rational points G(K) of an

algebraic group G for an algebraically closed field K. Then, as mentioned in

[34], the fixed point subgroup of the generic automorphism is G(k) where k is

a pseudofinite field.

What is more interesting and what is the motivation for the present work

is the reverse direction, that is, derivation of the Algebraicity Conjecture from

the Principal Conjecture. Our work is ultimately aimed at a proof of the

following conjecture:

Intermediate Conjecture. Let G be an infinite simple group of finite Morley

rank with a generic automorphism of α. Assume that CG(α) is pseudofinite.

Then G is isomorphic to a Chevalley group over an algebraically closed field.

Since generic automorphism is a model theoretical notion, we introduce the

notion of a tight automorphism in order to work in a purely algebraic context.

An automorphism α of a group of finite Morley rank G is called tight if

whenever a connected definable subgroup H of G is α-invariant, then

d(CH(α)) = H

In order to give some insight about the conjectures mentioned above, we

analyze an example in the context of algebraic groups.

Example . Let G be a simple algebraic group of adjoint type defined over

the prime subfield of the algebraically closed field K =
∏

pi∈I Fpi
/U . Here, I

is the set of all prime numbers pi and U is a non-principal ultrafilter on I. We

identify G with the group of its K-rational points, that is, with G(K). Let α
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be a non-standard Frobenius automorphism of K, that is,

α =
∏
pi∈I

ϕpi
/U

where ϕpi
is the standard Frobenius map x 7−→ xpi . Then, α induces an

automorphism of G which satisfies the following properties:

(a) CG(α) is pseudofinite.

(b) If H 6 G is a definable connected α-invariant subgroup of G, then

d(CH(α)) = H.

Let FixK(α) denote the elements of the field K which are fixed by α. Then,

CG(α) = G(FixK(α))

where

FixK(α) =
∏
pi∈I

Fpi
/U

Moreover, by  Loś’s Theorem it is not difficult to observe that

CG(α) = G(
∏
pi∈I

Fpi
/U) ∼=

∏
pi∈I

G(Fpi
)/U

Therefore, CG(α) is pseudofinite.

Since definable subgroups coincide with closed subgroups in the context of

algebraic groups, H is a closed subgroup of G (See Section 4.2). Therefore, H

is an algebraic group itself and CH(α) = H(k) where k is a pseudofinite field.

Since H is also connected, it follows by Fact 2.1.3 that CH(α) is Zariski dense in

H. Since definable closure of CH(α) is Zariski closed, we have d(CH(α)) = H.

5.2 Observations about the Group of Fixed

Points

Throughout this section, unless stated otherwise, G is a simple group of

finite Morley rank and α is a tight automorphism of G. Moreover, we assume

that CG(α) is pseudofinite and denote it by P .
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Lemma 5.2.1. Let N be a non-trivial normal or subnormal subgroup of P .

Then, d(N) = G.

Proof. Firstly, let N be a non-trivial normal subgroup of P . Since G is α-

invariant and connected we have

d(P ) = d(CG(α)) = G

by the definition of tight automorphism. Moreover, as P normalizes N we get

d(N) P d(P ) = G

by part (c) of Fact 2.4.5. Since G is simple we have d(N) = G.

Now, if N is a non-trivial subnormal subgroup of P which is normalized

by a normal subgroup M of P then d(N) is normalized by d(M). However,

d(M) = G by the first part of the proof. As a result, d(N) = G.

Corollary 5.2.1. P does not contain any non-trivial normal or subnormal

subgroups which are definable in G. In particular, P has no non-trivial finite

normal or subnormal subgroups.

Proof. For any non-trivial normal or subnormal subgroup N of P , we have

d(N) = G by Lemma 5.2.1. On the other hand, as N is definable in G, we

have d(N) = N . This is not possible since N is a proper subgroup of G. For

the second part, it is enough to emphasize that finite subgroups of a group are

always definable since parameters are allowed.

Corollary 5.2.2. G does not contain any non-trivial proper definable sub-

groups which are normalized by P .

Proof. Let N be a non-trivial proper definable subgroup of G which is

normalized by P . Then d(N) = N is normalized by d(P ) = G which is

not possible as G is simple.
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Lemma 5.2.2. Let N be a non-trivial normal or subnormal subgroup of P .

Then, CG(N) = 1.

Proof. Let 1 6= N be a normal or subnormal subgroup of P . It is clear that

N 6 CG(CG(N)). Moreover, d(N) = G by Lemma 5.2.1. Since CG(CG(N)) is

a definable subgroup of G by Fact 2.4.8, we have

G = d(N) 6 CG(CG(N))

that is, CG(N) 6 Z(G). However, as a simple group G has trivial center and

so CG(N) = 1.

Corollary 5.2.3. P has no non-trivial abelian normal or subnormal subgroups.

Proof. Follows directly from Lemma 5.2.2

Lemma 5.2.3. P ≡
∏

i∈I Gi/U where each Gi is a finite group and U is a

non-principal ultrafilter on I. Moreover, the following conditions hold:

(a)
∏

i∈I Gi/U has finite centralizer dimension and so, there is a uniform

bound for the centralizer dimensions of the groups in the ultraproduct.

(b) Each Gi is a finite group without non-trivial abelian normal subgroups.

(c) Centralizers of non-trivial normal subgroups of
∏

i∈I Gi/U are trivial.

Proof. (a) Since P is a pseudofinite group, it is clear that

P ≡
∏
i∈I

Gi/U

where Gi is a finite group for all i ∈ I and U is a non-principal ultrafilter

on I. Moreover, as a subgroup of a finite Morley rank group P has finite

centralizer dimension, let us say k. Since having centralizer dimension

k is a first order property, as explained in Section 3.3.2 part (k), it is

preserved under elementary equivalence. Therefore, we get

c-dim(
∏
i∈I

Gi/U) = k
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(b) As explained in Section 3.3.2 part (i), there is a first order sentence

σ which holds in a group if and only if the group has no non-trivial

abelian normal subgroups. By Corollary 5.2.3, σ holds in P and hence∏
i∈I Gi/U |= σ as well. It follows by  Loś’s Theorem that

{i ∈ I | Gi |= σ} ∈ U

Therefore, by Remark 3.1.1, we may assume that P ≡
∏

i∈I Gi/U where

each Gi has no non-trivial abelian normal subgroups.

(c) There is a first order sentence σ, given in Section 3.3.2 part (j), such that

σ holds in a group if and only if the centralizers of non-trivial normal

subgroups are trivial in that group. Therefore, P |= σ by Lemma 5.2.2.

As a result,
∏

i∈I Gi/U |= σ.

Lemma 5.2.4. Let x̄, ȳ denote the k-tuples (x1, . . . , xk), (y1, . . . , yk) where xi,

yi (1 ≤ i ≤ k) are elements of a group G. Then the following statement can

be expressed by a first order sentence σ2:

If x̄, ȳ are k-tuples such that

CG(CG(x̄)) ∩ CG(CG(ȳ)) = 1 and [CG(CG(x̄)), CG(CG(ȳ))] = 1

then CG(CG(x̄))CG(CG(ȳ)) can not be normalized by G.

Proof. For any k-tuple x̄, the double centralizer of x̄, that is, CG(CG(x̄))

is defined by the formula ϕCCk
(y, x̄) as in Section 3.3 part (c). Now,

CG(CG(x̄))CG(CG(ȳ)) can be defined by the formula:

∃x∃y (ϕCCk
(x, x̄) ∧ ϕCCk

(y, ȳ) ∧ z = xy)

and we denote this formula by ϕPCCk
(z, x̄, ȳ). Now, the following sentence σ2

expresses the statement in the lemma:

∀x̄∀ȳ (((∀x (ϕCCk
(x, x̄) ∧ ϕCCk

(x, ȳ))→ x = 1)∧

∧∀y∀z ((ϕCCk
(y, x̄) ∧ ϕCCk

(z, ȳ))→ yz = zy))

→ ∃t∃u (ϕPCCk
(t, x̄, ȳ)→ ¬ϕPCCk

(tu, x̄, ȳ)))
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Remark 5.2.1. Lemma 5.2.4 can be generalized for any finite number of k-

tuples. More precisely, for each finite number of k-tuples x̄1, · · · , x̄n for n ≥ 2,

there is a first order sentence σn which expresses the following statement:

Let x̄1, · · · , x̄n be a collection of k-tuples. If for any pair of k-tuples

x̄i and x̄j we have

CG(CG(x̄i))∩CG(CG(x̄j)) = 1 and [CG(CG(x̄i)), CG(CG(x̄j))] = 1

where 1 ≤ i, j ≤ n then CG(CG(x̄1)) · · ·CG(CG(x̄n)) can not be

normalized by G.

Lemma 5.2.5. The sentence σ2 defined in Lemma 5.2.4 holds in P .

Proof. Assume that σ2 does not hold in P . This means that, there are k-tuples

x̄, ȳ such that:

CC(x̄) ∩ CC(ȳ) = 1, [CC(x̄), CC(ȳ)] = 1 and CC(x̄)CC(ȳ) P P

It is clear that CC(x̄) and CC(ȳ) are non-trivial as they contain the tuples x̄

and ȳ respectively. Moreover, they are proper subgroups of P since otherwise

their intersection is CC(x̄) or CC(ȳ) which are non-trivial contradicting to

condition above. Therefore, CC(x̄) is a non-trivial proper subnormal subgroup

of P which is centralized by a non-trivial group CC(ȳ). However, this is

contradictory to Lemma 5.2.2. Therefore, σ2 holds in P .

Remark 5.2.2. Note that the same argument in the proof of Lemma 5.2.5

can be generalized to show that σn, which was mentioned in Remark 5.2.1,

holds in P for any 2 ≤ n ≤ k where k is the centralizer dimension of P .

In the next lemma, we show that P has an involution, that is, an element of

order two by using the Feit-Thompson Odd Order Theorem together with the

following result which was obtained by Khukhro as a corollary of his theorem

in [38]:

Fact 5.2.1. (Khukhro [38]) A pseudofinite group with finite centralizer

dimension which is elementarily equivalent to an ultraproduct of solvable groups

is solvable.
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Lemma 5.2.6. P has an involution.

Proof. Assume that there is no involution in P . Then, the sentence

∀x (x2 = 1→ x = 1)

holds in P . Therefore it holds in almost all of the groups in the ultraproduct.

By Remark 3.1.1, P is elementarily equivalent to an ultraproduct of groups

of odd orders. Moreover, every finite group of odd order is solvable by Feit-

Thompson theorem [30]. Since P has finite centralizer dimension and it is

elementarily equivalent to an ultraproduct of solvable groups, P is solvable

by Fact 5.2.1. Then d(P ) is solvable by Fact 2.4.6. This is not possible as

d(P ) = G and G is a simple group.

5.3 Identification Theorem for the Group of

Fixed Points

For simplicity of the notation, any ultraproduct
∏

i∈I Xi/U is denoted by

(Xi)U throughout this section. Moreover, for any subset X of (Gi)U , C(X)

and N(X) stand for C(Gi)U (X) and N(Gi)U (X) respectively.

This section is devoted to prove the following theorem:

Theorem 5.3.1. Let G be an infinite simple group of finite Morley rank and

α be a tight automorphism of G. Assume that CG(α) is pseudofinite. Then

there is a definable (in CG(α)) normal subgroup S of P such that

S P CG(α) 6 Aut(S)

where S is isomorphic to a Chevalley or twisted Chevalley group over a pseudo

finite field.

Proof. By Lemma 5.2.3 (b), P ≡ (Gi)U where each Gi is a finite group with-

out abelian normal subgroups. If Gi is simple for almost all i, then (Gi)U is

isomorphic to a Chevalley group over a pseudofinite field by the argument in
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Section 4.2 Step 2 and so does P since we can replace elementary equivalence

with isomorphism (See Section 4.3).

Now, assume without loss of generality that Gi is not simple for all i and

let Mi denote a minimal normal subgroup of Gi. It is clear by Lemma 5.2.3 (b)

that each Mi is non-abelian. Moreover, Mi is a direct product of non-abelian

conjugate simple groups. To see this, let Si be a minimal normal subgroup of

Mi. Since Mi P Gi, the subgroup 〈(Si)
g | g ∈ Gi〉 generated by the conjugates

of Si is a normal subgroup of Gi contained in Mi. Since Mi is minimal normal

subgroup of Gi we get

〈(Si)
g | g ∈ Gi〉 = Mi

Moreover, as minimal normal subgroups of Mi, any pair of conjugates of Si are

either equal or intersect trivially and in the latter case they commute pairwise.

Therefore,

Mi = Si × (Si)
gi1 × . . .× (Si)

giki

where Si is a non-abelian simple group. Note that if Si has a proper non-trivial

normal subgroup Ni then Ni is normalized by (Si)
gij , for all 1 ≤ j ≤ ki and

hence by Mi. This is not possible as Si is a minimal normal subgroup of Mi.

In the following three lemmas, we aim to show that almost all of the groups

Gi in the ultraproduct have non-abelian simple socles.

Firstly, we prove that almost all of the groups in the ultraproduct have

unique minimal normal subgroups.

Lemma 5.3.1. Gi has a unique minimal normal subgroup for almost all i.

Proof. Assume that Gi has two minimal normal subgroups Mi and Ni for

almost all i. Since they are minimal normal,

Mi ∩Ni = 1 and [Mi, Ni] = 1

that is, Ni centralizes Mi for almost all i. It follows by  Loś Theorem that, (Ni)U

centralizes (Mi)U which is a normal subgroup of (Gi)U . However, centralizers

of normal subgroups of (Gi)U are trivial by Lemma 5.2.3 (c). Therefore, Gi

has a unique minimal normal subgroup for almost all i.
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Now, without loss of generality, we may assume that each Gi has unique

minimal normal subgroup which is denoted by Mi. We will show that there

is a uniform bound for the number of simple direct factors of Mi in the ultra-

product.

Lemma 5.3.2. There is a bound n on the total number of simple direct factors

of Mi in the ultraproduct.

Proof. Let us consider the chain

CGi
(si) > CGi

(si, s
1
i ) > · · · > CGi

(si, s
1
i , . . . , s

ki
i )

where sj
i ∈ (Si)

gij\{1} for 0 ≤ j ≤ ki with the abbreviations s0
i = si and

(Si)
gi0 = Si. Since each (Si)

gij has trivial center, the chain above is a proper

descending chain whose length increases with the total number of direct fac-

tors of Mi. If there is no bound on this number, we get descending chain of

centralizers of arbitrarily large length in the ultraproduct. This is not possible

as (Gi)U has finite centralizer dimension. Therefore, there is an integer n ≥ 1

such that the total number of simple direct factors of Mi is bounded by n for

almost all i.

As a result of Lemma 5.3.2, for almost all i, the number of simple direct

factors of Soc(Gi) is m for some integer 1 ≤ m ≤ n. Without loss of generality

we may assume that this holds for all Gi. Therefore, we have P ≡ (Gi)U where

each Gi is finite group without abelian normal subgroups and

(Mi)U ∼= (Si)U × (Si)
[gi1]U
U × . . .× (Si)

[gim−1]U
U

In the next lemma, we prove that Mi is a non-abelian simple group for

almost all i.

Lemma 5.3.3. Mi is a non-abelian simple group for almost all i.

Proof. Assume that the claim is not true, that is,

(Mi)U ∼= (Si)U × (Si)
[gi1]U
U × . . .× (Si)

[gim−1]U
U
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where m > 1. In order to simplify the notation, let MS0 ,MS1 , . . . ,MSm−1

denote (Si)U , (Si)
[gi1]U
U , . . . , (Si)

[gim−1]U
U respectively. Clearly,

MSj
6 CC(MSj

)

for all 0 ≤ j ≤ m − 1. Moreover, for any distinct pair MSj
,MSk

we have

CC(MSj
) ∩ CC(MSk

) = 1. To see this, let x ∈ CC(MSj
) ∩ CC(MSk

), so that

x centralizes both C(MSj
) and C(MSk

). It is clear that

MS0 × · · · ×MSj−1
×MSj+1

× · · · ×MSm−1 6 C(MSj
)

MS0 × · · · ×MSk−1
×MSk+1

× · · · ×MSm−1 6 C(MSk
)

Since j 6= k, it follows that x centralizes MSj
for all 0 ≤ j ≤ m − 1 and

hence x centralizes (Mi)U . However, (Mi)U P (Gi)U and we know that normal

subgroups of (Gi)U have trivial centralizers, so x = 1.

Now, as MSj
6 C(MSk

) for j 6= k, we have

CC(MSk
) 6 C(MSj

) 6 N(MSj
)

Therefore, CC(MSk
) normalizes MSj

and so it normalizes CC(MSj
) as well.

Similarly, CC(MSj
) normalizes CC(MSk

). As a result we get

[CC(MSj
), CC(MSk

)] 6 CC(MSj
) ∩ CC(MSk

) = 1

for all 0 ≤ j 6= k ≤ m− 1. Moreover, (Gi)U permutes the direct factors of the

product MS0×· · ·×MSm−1 by conjugation, and so CC(MS0)×· · ·×CC(MSm−1)

is permuted by (Gi)U as well. Since (Gi)U is a group with finite centralizer

dimension k, there are k-tuples x̄0, . . . , x̄m−1 such that

CC(MSj
) = CC(x̄j)

for all 0 ≤ j ≤ m − 1. On the other hand, for each 2 ≤ n ≤ k the sentence

σn which was mentioned in Remark 5.2.1 holds in P by Remark 5.2.2. In

particular, σm holds in P and hence in (Gi)U . However, σm does not allow

(Gi)U to have the k-tuples x̄0, . . . , x̄m−1 with the properties mentioned above.

Therefore, we conclude that (Mi)U has no non-trivial direct factors, in other

words, Mi is a non-abelian finite simple group for almost all i.
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From now on, without loss of generality, we may assume that

Soc(Gi) = Mi = Si

is a non-abelian simple group for all i. Now, the situation can be summarized

as follows.

(Gi)U has a normal subgroup (Mi)U = (Si)U where each Si is a non-abelian

finite simple group. If (Si)U were finite then we could express the existence of a

finite normal subgroup of (Gi)U by a first order sentence as in Section 3.3.1 (h).

This would yield a finite normal subgroup in P . However, this is not possible

by Corollary 5.2.1. Now, by the same argument as in Step 2 of the proof of

Theorem 4.2.1 we can conclude that (Si)U is isomorphic to a Chevalley group

over a pseudofinite field. Actually more can be said about (Si)U and this is

stated in the following lemma.

Lemma 5.3.4. (Si)U is a definable normal subgroup of (Gi)U .

Proof. We know that (Si)U is a Chevalley group over a pseudofinite field and so,

almost all of the groups Si are Chevalley groups over large fields. Therefore,

as we discussed in Section 2.3, Thompson’s Conjecture is applicable in this

context. It follows that, for almost all i, there is a conjugacy class Ci in Si

such that Si = CiCi. Let ri be a representative of the conjugacy class Ci in Si,

that is, {(ri)
Si} = Ci. Let Di denote the conjugacy class of ri in Gi, that is,

{(ri)
Gi} = Di. Since ri ∈ Si and Si P Gi, it is clear that Di ⊆ Si. Moreover,

Di is a definable subset of Gi with one parameter ri. Now, Si can be defined

as the set of products of two elements from the definable set Di. Since this

is true for all of the groups Si in the ultraproduct, every element of (Si)U is

a product of two elements from the definable set {((ri)U)(Gi)U} in (Gi)U . In

other words, (Si)U is the set of products of two elements from the definable

set {((ri)U)(Gi)U}.

As we have observed in Lemma 5.3.4, the set of products of two elements

from the definable set {((ri)U)(Gi)U}, namely (Si)U , is a proper normal sub-

group of (Gi)U which is isomorphic to a Chevalley group over a pseudofinite
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field. Therefore, the set S of products of two elements from the corresponding

conjugacy class in P forms a normal subgroup of P . Moreover, as we have dis-

cussed in Section 4.3, being a Chevalley or twisted Chevalley group is a first

order property. Therefore, S is isomorphic to a Chevalley or twisted Chevalley

group over a pseudofinite field. Moreover, since

S � P and CP (S) = 1

P embeds in Aut(S) and the theorem follows.

5.4 Outline of the Future Research Program

As briefly mentioned in the Introduction, the result obtained in this thesis

can be used for further investigation of simple groups of finite Morley rank with

generic automorphisms. In particular, the Intermediate Conjecture is expected

to follow when we combine the results of this thesis with some results in the

theory of groups of finite Morley rank.

In this section, we give details of the possible approaches mentioned in

the Introduction in order to prove the Intermediate Conjecture. Moreover, we

discuss the possibility of obtaining a proof without using the Classification of

Finite Simple Groups.

Recall that an automorphism α of a group of finite Morley rank is called

supertight if whenever a definable connected subgroup H of G is αn-invariant

for some non-negative integer n then

d(CH(αn) = H

Assume that we have the following set-up:

G is a simple group of finite Morley rank with a supertight auto-

morphism α such that CG(αn) is pseudofinite for each non-negative

integer n.

Can we identify G with a Chevalley group over an algebraically closed field?
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First approach can be outlined as follows.

Let Pn denote CG(αn) for any integer n ≥ 1. Then the following

observations can be made without much difficulty:

• Pn is a simple by solvable pseudofinite group by the main theorem of

this thesis. More precisely, Pn is an extension of a Chevalley or twisted

Chevalley group Sn over a pseudofinite field such that Pn/Sn is solvable.

•
⋃

n≥1 Pn is a Chevalley group over an algebraically closed field.

In this set-up, if it can be shown that
⋃

n≥1 Pn is elementarily equivalent

to G then we can identify G with a Chevalley group over an algebraically

closed field. This identification follows as being a Chevalley group over an

algebraically closed field can be expressed in a first order way.

The other approach is to use induction on the Morley rank and the Prüfer

2-rank of G. The plan can be outlined as follows.

• Simple groups of finite Morley rank of even type were identified with

Chevalley groups over algebraically closed fields of characteristic 2 in the

book [1]. Therefore even type case can be eliminated in our context.

• Simple groups of finite Morley rank of mixed type do not exist (See [1]).

• Simple groups of finite Morley rank of degenerate type have finite

Sylow 2-subgroups by definition. Moreover, it was proven in [14] that

degenerate type groups have no involutions at all. Therefore, if G

is a simple group of degenerate type in our set-up, then CG(α) is a

pseudofinite group without involutions. Moreover, as CG(α) has finite

centralizer dimension, an application of the Feit-Thompson Theorem to-

gether with a result of Khukhro [38] force CG(α) to be solvable which is

not possible (Lemma 5.2.6). As a result, we can eliminate the degenerate

type case from our configuration as well.

• We are left with the case where G is a simple group of finite Morley rank

of odd type. We can divide this case into three subcases according to

the Prüfer 2-ranks of G.
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More precisely, we have the following subcases:

- Prüfer 2-rank of G is 1.

- Prüfer 2-rank of G is 2.

- Prüfer 2-rank of G is ≥ 3.

If the Prüfer 2-rank is 1, then the idea is to identify G with with PSL2(K),

for some algebraically closed field K, by using the following identification

theorem by Delehan and Nesin.

Fact 5.4.1. (Delehan and Nesin [26]) Let G be an infinite split Zassenhaus

group of finite Morley rank. If the stabilizer of two distinct points contains

an involution then G ∼= PSL2(K) for some algebraically closed field K of

characteristic different from 2.

Note that a doubly transitive permutation group G acting on a set X

with at least 3 elements is called Zassenhaus group if the stabilizer of any

three distinct points is the identity. For any distinct elements x, y ∈ X, let

G{x}, G{x,y} denote one-point and two-point stabilizers respectively. G is called

split Zassenhaus group if one point stabilizer G{x} is a split Frobenius group,

that is, G{x,y} 6= 1 and G{x} = A o G{x,y} where Gg
{x,y} ∩ G{x,y} = 1 for all

g ∈ G{x}\G{x,y}.

Some arguments in the articles by Cherlin and Jaligot [22] and Deloro and

Jaligot [27] can be applied in our context yielding sufficient results for the

application of the Fact 5.4.1.

If the Prüfer 2-rank of G is 2, then we may use ideas from the articles [3],

[4] by Altseimer. They are much more workable in our context than in the

general setting of groups of finite Morley rank.

For the generic case, we believe that the arguments from the articles by

Berkman and Borovik [10] and Berkman et al. [11] can be reproduced without

much technical difficulties and yield the result.

In this approach, the generic case can be handled without the Classifica-

tion of Finite Simple Groups since the articles [10] and [11] are free from the

Classification. For the non-generic cases, some results about the structures
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of Sylow 2-subgroups of non-abelian finite simple groups can be used in an

effective way in order to avoid the Classification of Finite Simple Groups.
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