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ABSTRACT 

 
UNIVERSAL COMMAND GENERATOR FOR ROBOTICS AND CNC 

MACHINERY 
 

 

Akıncı, Arda 

M.Sc., Department of Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Melik Dölen 

Co-Supervisor: Assist. Prof. Dr. A. Buğra Koku 

 

May 2009, 167 pages 

 

In this study a universal command generator has been designed for robotics and 

CNC machinery. Encoding techniques has been utilized in order to represent the 

commands and their efficiencies have been discussed. The developed algorithm 

generates the trajectory of the end-effector with linear and circular interpolation 

in an offline fashion, the corresponding joint states and their error envelopes are 

computed with the utilization of a numerical inverse kinematic solver with a 

predefined precision. Finally, the command encoder employs the resulting data 

and produces the representation of positions in joint space with using proposed 

encoding techniques depending on the error tolerance for each joint. 

The encoding methods considered in this thesis are: Lossless data compression 

via higher order finite difference, Huffman Coding and Arithmetic Coding 

techniques, Polynomial Fitting methods with Chebyshev, Legendre and 

Bernstein Polynomials and finally Fourier and Wavelet Transformations. 

The algorithm is simulated for Puma 560 and Stanford Manipulators for a 

trajectory in order to evaluate the performances of the above mentioned 

techniques (i.e. approximation error, memory requirement, number of 
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commands generated). According to the case studies, Chebyshev Polynomials 

has been determined to be the most suitable technique for command generation. 

Proposed methods have been implemented in MATLAB environment due to its 

versatile toolboxes.  

With this research the way to develop an encoding/decoding standard for an 

advanced command generator scheme for computer numerically controlled 

(CNC) machines in the near future has been paved. 

 

Keywords: Universal Command Generator, Inverse Kinematic Solutions, Data 

Compression Techniques, Kinematic Modeling, Encoding Methods. 
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ÖZ 

ROBOTİK UYGULAMALAR VE CNC TAKIM TEZGAHLARI İÇİN 

EVRENSEL KOMUT ÜRETECİ 

Akıncı, Arda 

Yüksek Lisans. Makina Mühendisliği Bölümü 

     Tez Yöneticisi: Yard. Doç. Dr. Melik Dölen 

     Ortak Tez Yöneticisi: Yard. Doç. Dr. A. Buğra Koku 

 

Mayıs 2009, 167 sayfa 

 

Bu çalışmada, çeşitli robotik uygulamalar ve CNC Takım tezgâhları için 

evrensel bir komut üreteci tasarımı yapılmıştır. Daha sonra bu komutların en 

verimli şekilde ifade edilmesi için çeşitli kodlama metodları kullanılmıştır. Bu 

yordamın kabiliyetleri, öncelikle uç işlemci için verilmiş NC kodunu okuyarak, 

doğrusal ve dairesel enterpolasyon kullanarak verilmiş örnekleme zamanına 

bağlı uç işlemci konum komutlarının üretilmesidir. Ardından yinelemeli 

nümerik metodu ile verilmiş bir konumlama hata toleransı kullanılarak ters 

kinematik çözümü yapılarak eklem konumlarının ve bu eklemlerin hata 

bantlarının oluşturulması. Son olarak komut kodlayıcısı aracılığı ile bu 

konumların hesaplanmış hata bandı içinde kalacak şekilde kodlanıp en uygun 

şekilde depolanmasıdır.  

Bu çalışmada göz önüne alınan metotlar, yüksek dereceden sonlu farkların 

hesaplanması, ve bu farkların Huffman ve Aritmetik kodlama yordamları ile 

sıkıştırılıp hatasız bir şekilde saklanması, Chebyshev, Legendre ve Bernstein 

Polinomları kullanarak verinin polinomlara uyarlanması ve son olarak Fourier 

ve Dalgacık dönüşümleri ile frekans-zaman  tanım kümesinde tanımlanmasıdır.  
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Geliştirilen yordam, kodlama metotlarının verimliliğini ( yaklaştırma hatası, 

depolamak için gerekli yer miktarı ve kullanılan komut miktarı cinsinden) 

karşılaştırmak için, Puma 560 ve Stanford Manipülatörleri kullanılarak, 

belirlenen yörünge üzerinde uygulanmıştır. Sonuçlar göz önünde 

bulundurulduğu zaman, en az miktarda komut üreterek, en düşük saklama 

alanına ihtiyaç duyması ve istenen hata miktarlarının altında bir yaklaşım 

sağladığından dolayı, Chebyshev polinomları en uygun metot olarak 

belirlenmiştir. Yordam tasarımında, gelişmiş ve çok yönlü uygulama 

alanlarından dolayı MATLAB programı kullanılmıştır. 

Bu çalışma ile çeşitli robotik uygulamalar ve CNC Takım tezgâhları için 

kodlayıcı/çözümleyici standardı oluşturarak, ileri düzeyde komut üretim 

yordamlarının oluşturulmasının temelleri atılmıştır. 

Anahtar kelimeler: Evrensel Komut Üreteci, Ters Kinematik Çözümleri, Data 

Sıkıştırma Teknikleri, Kinematik Modelleme. Kodlama Metotları 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Motivation 

The use of robotic manipulators (i.e. articulated mechanisms) in the industry has 

accelerated considerably since 1960’s. With the advancing technology, different 

types of manipulators have been introduced to various sectors such as automotive, 

aviation/aerospace, consumer electronics, etc. Their modularity and the ease of 

programming makes manipulators invaluable tools in basic manufacturing tasks 

including welding, painting, grinding/polishing, material transfer/handling, and 

assembly. Furthermore, since robotic manipulators are capable of performing 

high-precision positioning at relatively high speeds, the need for highly skilled 

workers could be dramatically reduced, which in turn leads to a significant 

increase in the quality and the quantity of the manufactured goods.  

The application of a robotic manipulator to the above mentioned fields is 

relatively easy: Once the trajectory of the manipulator (i.e. tool or end-effector) is 

planned for a specific task at hand, the corresponding angular positions of the 

actuators at each joint are calculated using inverse kinematic model of the 

manipulator in an offline fashion.  Hence, the motion controller of the machine is 

programmed using these data (also known as -a.k.a.- the desired joint positions) to 

control the angular joint positions accurately.  

It is critical to note that industrial motion controller cards (like Delta-Tau’s 

PMAC2 and Galil’s DMC), which are commonly used to control such machinery, 

employ vector data tables to represent a complex trajectory in terms of (short) 
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linear patches, provided that the tool’s deviation from the ideal path is within the 

acceptable limits (as defined by the task at hand). These cards can then perform a 

linear interpolation between the two consecutive (table) entries in real-time to 

produce the relevant reference signals for the position servo-control loop. It is 

obvious that if the manipulator needs to follow a complex (and relatively long) 

trajectory, the length of the linear patches could be too small to abolish the 

efficacy of linear interpolation. Furthermore, the number of required entries for 

the vector table might well exceed the available resources on the system. For 

those cases, advanced controller units (like Siemens Sinumerik 840DI or Fanuc i 

series), which oftentimes have the capability to carry out Spline- or NURBS 

interpolation, could be utilized at increased hardware cost.  However, since the 

computational burden associated with such interpolation schemes is extremely 

high, the use of such systems may no longer be (technically/economically) 

feasible when the number of joints (axes) to be controller is relatively high (>5).   

In today’s technology, memory devices (SDRAM, SD Cards, etc) with large 

capacity (1 GB++) as well as multi-core RISC processors running at high clock 

frequencies (1 GHz++) are widely available in the market at relatively low cost. 

Consequently, there is a potential for devising simple yet very effective command 

generators for computer numerically controlled (CNC) machinery that benefit 

fully from the properties of these advanced devices. Such a scheme may overcome 

the difficulties encountered in the afore-mentioned systems. Hence, the central 

motivation of this study is to look deeper into this aspect that has not been fully 

explored in the industry (or the corresponding technical literature per se).     

 

1.2 Scope of the Thesis 

The main objective of this study is to develop a general command generation 

paradigm which can be employed for all kinds of mechanisms. The flow chart of 

the proposed technique is illustrated in Figure 1.1.   
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Figure 1.1 Flow chart of the proposed method. 

 

In this method, the user first needs to define the required trajectory for the tool (or 

apparatus) attached onto the machine (e.g. manipulator or machine tool) by means 

of an enhanced NC code which closely follows RS-274B convention. Just like 

conventional approach, this NC code represents the trajectory in terms of linear 

and circular segments in a local coordinate frame (“work coordinate system”). 

This local frame may be conveniently situated inside a global (fixed) reference 

frame by means of specifying the Cartesian coordinates of its origin as well as its 

orientation. The proposed method, which requires a careful offline path planning, 

interprets this NC code to generate the pose of the tool in time (a.k.a. “tool 

location data”). That is, depending on the sampling time specified by the user, 

three Cartesian coordinates (of the tool) are calculated at equal time intervals 

along the complete trajectory.   

Once the position data are produced, the corresponding joint states (a.k.a. “joint 

state data or simply JSD”) are computed with the utilization of a numerical 

inverse kinematic solver.  Note that this solver makes good use of the Denavit-

Hartenberg parameter table that describes the geometric properties of the machine 

system at hand.  Finally, depending on the encoding technique and the error 

tolerance for each joint, the command encoder employs the resulting data to 

produce the efficient representation of positions (and its higher order derivatives 
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in time) in joint state space with minimum redundancy.  The following encoding 

methods are considered within the context of this thesis: 

• Lossless data compression of higher-order finite differences of JSD 

• Polynomial (Chebyshev, Legendre, Bernstein) representation of JSD 

• Fourier and Wavelet transforms of JSD 

Note that in this study, the performances of the above mentioned techniques (i.e. 

approximation error, memory requirement, computational complexity, ease of 

decoding, etc.) are comparatively evaluated for the purpose of determining the 

most suitable technique for command generation.  

The proposed method is implemented in MATLAB environment (via MATLAB 

scripting language). MATLAB, which has dramatically evolved over the years in 

addition, has wide popularity in scientific community due to its versatile 

toolboxes.  Hence, the study takes full advantage of its features to fulfill the 

objectives being set forth.    

It is critical to note that one of the primary goals of this research is to pave the 

way to develop an encoding/decoding standard for an advanced command 

generator scheme for computer numerically controlled (CNC) machines in the 

near future. As illustrated in Figure 1.2, once the encoded joint state file is created 

efficiently, the resulting file could be uploaded to the command decoder (card) 

which is expected to decode the data in real-time.  Hence, the decoded joint states 

(position, velocity, acceleration) would then be fed to the (centralized or 

distributed) joint-axis motion controller as the reference signals.  Due to the broad 

range of this thesis (as it is), the command decoding as well as its (hardware) 

implementation is exempted from this work.  

     

 

Figure 1.2 Command decoding scheme. 
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1.3 Organization 

This thesis is divided into nine chapters. The second chapter gives detailed 

information about the studies relevant to the scope of this thesis. The literature 

survey is conducted in various areas such as advanced command generation for 

robotics, CNC interpolators, kinematic modeling of articulated mechanisms, data 

compression. Likewise, the third chapter deals with the kinematic modeling of 

articulated mechanisms. The basics information about manipulators and their 

kinematics are also elaborated in that chapter. In addition, the generalized Denavit 

– Hartenberg notations, forward kinematics, and corresponding solution methods 

for inverse kinematics are explained in detail. The fourth chapter deals with the 

position generation in joint space.  An algorithm for the interpretation of the NC 

code as well as the inverse kinematics of articulated mechanisms are discussed in 

this chapter for the purpose of generating the tool trajectory for a specific 

machine/manipulator.  The chapter is concluded with an example on producing 

the joint positions by inverse kinematics algorithm for a pre-defined error 

tolerance. In chapter five, the command generation via direct data storage methods 

is studied. The main idea of this chapter is to store the generated commands for 

each joint in the most efficient way. Lossless data compression methods such as 

Huffman Coding and Arithmetic Coding (Shannon-Fano) have been investigated 

and their memory requirements have been elaborated. In the following chapter, 

polynomial (fitting) methods such as Chebyshev, Legendre, and Bernstein 

polynomials has been studied while the relation between Chebyshev polynomials 

and Fourier transformations has been explained. Finally, an (command tracking) 

error calculation algorithm for determining error tolerance bands in joint space has 

been introduced in this chapter. In Chapter 7, the Fourier- and Wavelet 

transformations are investigated so that the JSD is transformed into another 

domain and insignificant data is neglected for the purpose of representing the 

original data efficiently.  Chapter 8 evaluates the performance of the presented 

methods on various cases. In the last chapter, the thesis is concluded by 
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summarizing the key results of this research.  In addition, possible future works 

are presented in this chapter as well. 
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CHAPTER 2  

 

LITERATURE SURVEY 

 

This chapter is dedicated to a detailed literature survey in the fields relevant to 

command generation including kinematic modeling of manipulators, CNC 

interpolators, advanced command generation, and methods for data compression.  

2.1 Interpolators 

The study starts out with detailed investigation about the interpolation methods 

and the uses of interpolation techniques in CNC applications. By the study on 

interpolators, background knowledge of interpolators has been obtained. 

In 2001, Yang and Hong [4] developed a 3-dimensional (3D) Interpolator which 

is based on intersection criteria. They developed a real-time reference-pulse 3D 

linear- and circular interpolator which is capable of synchronized simultaneous 

3D machining. Cheng [6] used NURBS and offered a common mathematical form 

for representing both standard analytical shapes and free-form surfaces. The 

interpolation with NURBS is high-speed and highly accurate but large data 

consume so much memory and too many short segments were slowing down the 

cutting speed. Bahr, Xiao, Krishnan [8] implemented spline interpolator inside a 

CNC Controller. The main aim was to use finite forward differencing algorithm 

for fast evaluation of points on a cubic parametric curve in order to prevent the 

accumulative error in the calculation of one piece of curve to propagate to the 

whole curve. Bahr used forward differencing method because of its efficiency for 
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evaluation of points. In addition to the prevention of error accumulation spline 

interpolation allows rendering curve points using integer arithmetic. 

Following that Omirou [9] used space curve interpolation for CNC machines. He 

proposed an efficient and accurate method for developing a class of precise 

interpolation algorithms which can drive the cutter of a CNC machine along three 

dimensional trajectories. Parametric programming, mathematical calculations with 

do-loop subroutines, macro-capabilities and sophisticated canned cycles were 

used during this study. 

2.2 Trajectory Generation 

After interpolators, a comprehensive research has been done for the studies about 

trajectory generation. The fundamentals of the NC Code parser and tool path 

generation algorithm has been founded by the information gained from here. 

In 2001, Lartigue, Thiebaut, Maekawa [7] developed tool path planning algorithm 

for smooth free-form surfaces in terms of planar cubic B-spline curves. The 

algorithm is based on interpolating the break points by computing the offset 

surface - driving plane intersection curve. This method accepts curve coefficients 

directly and it is much more accurate and requires less memory. Similarly, 

Farouki and Tsai [10] used Taylor series coefficients for variable feedrate CNC 

curve interpolators. They examined the situations where the feedrate depends on 

elapsed time, curve arc length and local path curvature. In addition they presented 

the derivations of compact recursive formulae. Yeung, Altintas, Erkorkmaz [11] 

presented a comprehensive virtual simulation model of a realistic and modular 

CNC system. They implemented a trajectory generation mechanism in the Virtual 

CNC. The start and end coordinates of the toolpath, the types of the tool 

movement and the feedrate are recognized and stored into a buffer. By executing 

the buffer block by block, the descriptions for each tool path segment are obtained 

and then passed to the trajectory generation process sequentially. 
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Lately, Liu, Guo, Li, Yamazaki, Kashihara and Fujishima [12] developed an 

intelligent NC program processor for CNC System of machine tool. They 

investigated the basic standards of NC program: RS274D (USA), ISO6981 (ISO) 

and DIN66025 (Europe). In addition, they proposed a new structure which adjusts 

the CNC system to adopt various NC program formats by only updating a NC 

specification dictionary. In 2001, Erkorkmaz and Altintas [13], published a paper 

about generating trajectories not only describing the desired tool path accurately, 

but also having smooth kinematic profiles in order to maintain high tracking 

accuracy, and avoid exciting the natural modes of the mechanical structure or 

servo control system. In addition they presented a quantic spline trajectory 

generation algorithm that produces continuous position, velocity and acceleration 

profiles. Aspragathos [23], presented two techniques for generating an 

approximation of a given robot hand trajectory under bounded position deviation 

which is specified by the operator according to the accuracy requirements of the 

robot application. The first technique was based on bisection pattern which 

determines enough knot points on a given Cartesian curve whereas the second one 

was based on raster scanning which finds a minimal set of knot points on a given 

Cartesian curve and spline interpolation is done between two successive knots. 

2.3 Kinematic Modelling and Solution Methods 

After completing the study on CNC interpolators and tool path generation, a wide 

research on kinematic modeling of manipulators has been started. By this 

research, different applications of manipulators have been examined, the 

structures of the manipulators have been understood and solution methods have 

been investigated. 

In 1956, Denavit [31], made an important contribution by basing the mathematic 

model of manipulators into logical, systematic and efficient systematic. He 

represented all kinematic pairs as axial joints. Link coordinate systems are defined 

and the relative placement of the systems was made by four independent 
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parameters. Wang, Baron and Cloutier [14], published a paper on topology of 

manipulators. They characterized the manipulators by geometric constraints, 

proposed a comprehensive topological diagram which enables the kinematic 

composition to be described precisely. In addition they used graph structure which 

makes it possible to implement computer algorithms in order to perform 

systematic enumeration, comparison and classification of manipulators. Likewise, 

Lee, Go, Kim [20] developed a user friendly automatic polishing system 

composed of a three-axis machining center and a two-axis polishing robot. Their 

robot was able to keep the tool normal to the die surface. In addition, they 

compared control modes to reduce the tracking errors. Besides a geometric 

modeler was developed in this research in which internal curves and surfaces are 

represented as a non uniform rational power-basis polynomial (NURP).  

In 2005, Ho, Komura, Lau [16], proposed a linear programming based inverse 

kinematic (LPIK) solver for interactive control of arbitrary multi body structures. 

The advantages of using LPIK are handling the inequality constraints which 

makes easier to handle with the ranges of the DOFs and collisions of the body 

with other obstacles and the performance of LPIK is comparable or sometimes 

better than the IK method based on Lagrange multipliers. In addition they 

mentioned that the computation time by LPIK increases only linearly proportional 

to the number of constraints or DOFs. Hence, LPIK is a suitable approach for 

controlling articulated systems with large DOFs and constraints for real-time 

applications. On the other hand, Tabaczynski [15] studied and compared Jacobian 

based solutions of inverse kinematic problem namely, pseudo inverse, truncated 

pseudo-inverse, transpose, and damped least squares (DLS). He showed with 

experimental results that DLS is better with its smooth motion and immunity to 

singularities and unreachable targets is the best all around solution, but could be 

too slow if high convergence accuracy and interactive speed is required.   

Erdman [3] edited a book about the history and the development of the 

kinematics. He summarized the direct and inverse kinematic approaches 

throughout the history. Denavit Hartenberg (DH) notation has been told to be the 

most common used notation, in combination with homogenous transformation 
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matrices. This combination was used with Roth and Pieper. In addition to DH 

notation, Erdman summarized the analytic approaches to the inverse kinematic 

solutions. Roth reduced the inverse kinematics to the solution of a 32nd degree 

equation in the ten-half-angle of one joint. Another approach was a polynomial 

using spherical trigonometry in the form of a 16x16 matrix by Duffy and Crane. 

More recently, dialectical eliminations are used to reduce the polynomial to a 

sixteenth-order polynomial of the tangent of the half-angle of one of the joint 

variables by Lee and Liang. Raghavan and Roth have developed a method based 

on dialectic eliminations to yield the sixteenth order polynomial of one-joint 

variables and turned the solution into a linear sets of equations after finding the 

roots of the polynomial. The other approaches mentioned are vector analysis, 

tensor methods, screw coordinates, dual member method, quaternion operators, 

spherical trigonometry method and zero position method. In addition to analytical 

solutions, numerical techniques were being developed. Uicker considered 

modified Newton-Raphson iteration schemes for spatial closed chains whereas 

Pieper, Hansen and Sing and Gupta used this method for robot manipulators. 

Angeles developed a method based on optimization and Gupta found numerical 

methods based on joint integrations. Whitney used the inverse Jacobian for 

acquiring the joint rates and Waldron used Jacobian for singularity analysis of the 

manipulators.  

In 1997, Regnier, Ouezdou and Bidaud [17] introduced a new numerical method 

to solve inverse kinematics of all kinds of manipulators with a concept from 

Distributed Artificial Intelligence. By this multi agent system the resolution of the 

problem is distributed. They handled the problem of inverse kinematic as a non 

linear distributed optimization problem. The basic of the solution is to associate 

for each local joint a new system of equations where an only joint is able to move 

and to approach the goal matrix. In 1999, Chen and Yang [18] published a paper 

about numerical inverse kinematics for modular reconfigurable robots. They 

addressed the formulation of generic numerical inverse kinematics model and 

automatic generation of the model for arbitrary robot geometry. They used 

Newton-Raphson iteration method for solution of inverse kinematic problems. In 
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addition to that they defined sub problems for the inverse kinematics of modular 

robots which are, pure orientation problem, pure position problem, hybrid 

problem. They showed the effectiveness of this solution with computations but 

they did not guarantee the convergence of the solution in a finite number of 

iterations and finite time. 

Pott [21] introduced an algorithm which one can perform the linearization of the 

transmission behavior from any number of geometric parameters to the motion of 

a six degree of freedom end-effector by applying six unit loads to the end-effector 

and determining internal force. Pott based the paper on a general method of using 

force transmission to evaluate general Jacobian. Besides he worked on first order 

error analysis with sensitivity coefficients. He said that after obtaining a closed-

form expression for the direct kinematics, sensitivity coefficients can be found by 

taking derivatives of the closed-form solution with respect to each of the 

geometric parameters. And added that sensitivity parameters should be introduced 

in such a way that they vanish at the nominal configuration. Hasan et al. [22] 

published a paper about an adaptive learning algorithm to solve the inverse 

kinematics problem of six degree-of-freedom serial manipulators. He used 

artificial neural network (ANN) for learning strategy and used this strategy to 

control the motion, overcome the singularities and uncertainties in arm 

configurations. The proposed control technique learns the characteristics of the 

robot without specifying explicit robot system model which takes away the 

requirement of any prior knowledge of the kinematics model of the system being 

controlled.  The main advantage of using neural network strategy is modification 

in the physical set-up of the robot is handled by training for a new path without 

major system software modifications. 

In 2004, Chapelle and Bidaud [26] investigated closed form solutions for inverse 

kinematics approximation of general 6R manipulators by the use of evolutionary 

symbolic regression. They used Evolutionary Algorithms, which relies on Genetic 

Programming (GP) to provide a fast and general solution to the inverse kinematic 

problem. The solution requires the direct model under the form of a mathematical 

function or a process getting the design parameters (Y) as input, and returns 
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evaluation values (X) as output. They simulated the algorithm with PUMA 560 

robot and the algorithm approximated expressions approximately in 10 generation 

with an average error of about 10-4 radians on each characteristic point of the 

learning and the test bases. From the simulated results For the other joint values, 

errors between 10-1 and 10-2 radians are found. The length of the individuals 

cannot be restricted more than slightly. The most direct consequence of the non 

size restriction is to slow down the computation. It takes 50 generations and 30 

min to a SiliconGraphics O2 computer to determine one joint parameter. 

Similarly, Luh and Lin [24] assumed that the joint co-ordinates of the robot 

configuration corresponding to enough knot points of a Cartesian path are known. 

Then instead of joining the adjacent transformed points by linear interpolation, 

they determine low degree of polynomials and then spline them together in order 

to obtain speed and acceleration continuity. A comparative study of the 

approximation error between the polynomials used in joint interpolation is also 

presented.  

Note that in 1979, Taylor [25] introduced a bounded deviation technique to 

achieve straight line movement of the end-effector of manipulators. The algorithm 

is based on calculating the corresponding joint coordinates θS and θf for given 

configuration frames, starting frame Fs and the ending frame Ff, of the hand. Then 

the Cartesian coordinates of the joint midpoint is calculated and is compared to 

the Cartesian configuration corresponding to the midpoint of the straight line 

segment. If the two configurations deviates more than an allowed amount, the end 

point configuration is replaced by the Cartesian midpoint configuration and the 

algorithm is applied recursively to this straight line segment until the deviation is 

smaller than the specified amount. 
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2.4 Algorithms and Toolboxes 

Completing the researches for the interpolators, trajectory generation and 

kinematic modelling, an investigation for the algorithms and toolboxes has been 

done. 

Corke [29] has released a MATLAB toolbox for kinematics, dynamics, and 

trajectory generation of manipulators. Representations of the kinematics and 

dynamics of serial-link manipulators were based on general methods. Additional 

functions for manipulating and converting between data types such as vectors, 

homogeneous transformations and unit-quaternion which are necessary to 

represent 3-dimensional position and orientation was provided in the toolbox. 

Inverse kinematic solution was found by iterative numerical solution methods. 

Some examples are given in the toolbox; in addition to that it is possible to add 

new robot definitions. Likewise, Hydzik [35] has developed a simple MATLAB 

toolbox for the inverse kinematics of Puma and Stanford manipulators using Euler 

angles. He performed the solutions on 1D cubic Bezier curve, 2D curve and 3D 

Bezier curve specified by 9 control points. In addition to the solution he added a 

graphical tool which simulates the manipulator position according to the joint 

variables. 

In 2003, Tonbul [45] has developed an algorithm for the inverse kinematics 

calculations and the trajectory planning of an Edubot robot arm with five axes. 

Tonbul used fifth order polynomials while planning trajectory for obtaining 

continuity in the positions, velocities and accelerations. Polynomials were used in 

order to have continues trajectory and velocity polynomials. Inverse kinematic 

problem was described by the product of the exponentials and solution was found 

by moving the joint variables one at a time.  

In 1997, Vamoser has developed inexpensive and fast simulation software for 

Unimation's Puma 560. He tried to develop an application which could not only 

perform the simulation and necessary calculations, but which could also be able to 
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run on any platform without the recompilation of the code. In addition to the 

algorithm he gave detailed information on Puma 560. 

2.5 Optimization of Manipulators 

After completing the research about the kinematic modeling, a basic research on 

optimization of the robot manipulators for later studies. 

Nawratil [28], published a paper introducing four new posture-dependent 

performance indices for control, two based on an object-oriented metric in the 

workspace which is end-effector dependent and the other based on a linear 

approximation of direct kinematics which is end-effector independent. He showed 

that independent indices reflect the distance of the actual posture from the closest 

singularity and these distance measures take the possible variation of the joint 

axes into account, because they are based on a linear approximation of direct 

kinematics. Mitsi [27] developed an optimization algorithm to determine the base 

position and the joint angles of a spatial robot, when the end-effector poses are 

prescribed, avoiding the singular configurations. The algorithm combined a 

simple Genetic Algorithm (GA) with the quasi-Newton method and a constraints 

handling method (CHM). The efficiency of the developed method has been 

demonstrated by six numerical examples, using two criteria and it is shown that 

the obtained result is better than the one obtained by the simple GA or by the 

combination of GA with the CHM. Sobh and Toundykov [30], studied the 

kinematic synthesis of robotic manipulators and developed a software which 

automatically computes possible optimal parameters of robot arms by applying 

numerical optimization techniques to the manipulability function, combined with 

distances to the targets and restrictions on the dimensions of the robot. It was 

aimed to develop a general, easy to use, fast and simple synthesis tool for robotic 

manipulators. In addition, they used quantitative measure of the performance in 

order to calculate the efficiency and the manipulability of the manipulators.  
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2.6 Data Compression 

Once the literature survey on kinematic modeling has been completed, a survey 

on data compression methods has been started. In this part, different method of 

the data compression has been searched and several applications have been 

studied. Although data compression methods are not applied in robotics, literature 

survey on several compression methods has been done. 

Saffor [49] studied data compression techniques on 8-bit Computed Tomography 

(CT) images and focused on the quantitative comparison of lossy compression 

methods. Joint Photographic Experts Group (JPEG) and Wavelet compression 

algorithms were used on a set of CT images. These algorithms were applied to 

each image to achieve maximum compression ratio (CR). Each compressed image 

was then decompressed and quantitative analysis was performed to compare each 

compressed-then-decompressed image with its corresponding original image.  

And finally he proved that Wavelet compression yields better compression quality 

at constant compressed file sizes compared with JPEG which the results mostly 

agreed with other published studies. Chen et al. [50] used wavelet network 

solution for inverse kinematics. The network is optimized by reducing the number 

of wavelets handling large dimension problem according to the sample data. The 

algorithms for sparseness analysis of input data and fitting wavelets to the output 

data with orthogonal method are introduced. They simulated the solution on 

PUMA560 manipulator. 

On the other hand, Herman [47] worked on Fourier Transform of time series, and 

generated a periodic function of infinite duration at the cost of losing data outside 

the fundamental range by restricting data to a time interval [0, T] for period T, and 

extending the data to infinity. He managed to have discrete frequencies at discrete 

times by sampling the recording data at a finite number of time steps, limiting the 

ability to collect data with large oscillations. Similarly, O’Neil [32] has 

formulated on partial sums of Fourier series. He applied this method with several 

functions and illustrated the convergence of the partial sums of the Fourier series 

with graphs. In 1987, Lelewer and Hirschberg [39] have surveyed a variety of 
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data compression methods spanning almost forty years of research. They 

discussed concepts from information theory, as they relate to the goals and 

evaluation of data compression methods, evaluated and compared methods is 

constructed. In addition, they summarized the compression rates of several 

methods, the efficiencies of algorithms, and susceptibilities to error. They divided 

data compression methods into two subdivisions which are static and adaptive. 

They classified, Shannon-Fano, static Huffman, Elias codes, Fibonacci code as 

static methods and Adaptive Huffman Coding, Lempel-Ziv Codes, Algorithm 

BSTW, as adaptive methods. In 1989, Nelson [40] has developed a simple 

algorithm named LZW compression. The algorithm does not do any analysis of 

the incoming text, instead replaces strings of characters with single codes by 

adding every new string of characters it sees to a table of strings. Compression 

occurs when a single code is output instead of a string of characters. 

In a web-site named data-compression.com [41], an overview of the theory, 

source modeling, descriptions of Huffman coding, Lempel-Ziv coding, Linde 

Buzo Gray vector quantizer (VQ) design algorithm have been given and 

performance comparison is also included. It has been said that, in the 1948 paper, 

“A Mathematical Theory of Communication”, Claude E. Shannon formulated the 

theory of data compression and also developed the theory of lossy data 

compression which is better known as rate-distortion theory. In addition the 

lossless and lossy data compression methods have been described. Lossless 

compression has been investigated with; zero, first, second, third order and 

general methods for source modeling, entropy rate of a source and Shannon 

Lossless Source Coding Theorem. Huffman coding which is similar to that of the 

Morse code has been studied in details. Lempel-Ziv Coding algorithm which is a 

variable-to-fixed length code has been studied as well. And lastly, vector 

quantization (VQ) which is a lossy data compression method with a fixed-to-fixed 

length algorithm based on the principle of block coding has been told.  

In 1980, Linde, Buzo, and Gray (LBG) proposed a VQ design algorithm based on 

a training sequence which bypasses the need for multi-dimensional integration. 

Later in 1978, Gallager has published a paper about Adaptive Huffman coding. 
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Adaptive Huffman methods are defined-word schemes which determine the 

mapping from source messages to code words based upon a running estimate of 

the source message probabilities. The code is adaptive, changing so as to remain 

optimal for the current estimates. In this way, the adaptive Huffman codes 

respond to locality. In essence, the encoder is "learning" the characteristics of the 

source. The decoder must learn along with the encoder by continually updating 

the Huffman tree so as to stay in synchronization with the encoder. Another 

advantage of these systems is that they require only one pass over the data. 

2.7 Open Research Areas 

During the literature survey, not only the researches has been done until now are 

searched, but also the areas that are not worked on yet has been searched. By the 

help of this search, the scope of the thesis has been determined. 

First of all, the base of this thesis is established on compression of the generated 

commands representing the joint configurations since there has not any work on 

this subject. General usage in industrial motion controller cards like Delta-Tau’s 

PMAC2 and Galil’s DMC and as Yang and Hong [4] discussed, complex 

trajectories have been represented with vector data tables in terms of short linear 

segments and linear interpolation has been performed between the two following 

table entries. This approach results with the requirement of storing large amount 

of data especially working on complex trajectories with dividing these trajectories 

into small sections to preserve the working tolerances. In order to prevent storage 

of high number of data, Cheng [6], Bahr [8] utilized advanced control units with 

Spline or NURBS interpolation. But the high computational burden of this type of 

interpolators makes these methods inefficient when operating with mechanisms 

having high number of joints. In this work, it is aimed to represent the generated 

commands within the acceptable tolerances via several encoding techniques. 

Although compression techniques has been used for several applications such as 
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audio, images, text files and images, the usage of the compression methods has 

not been observed for command generation of manipulators yet. 

Secondly, it has been observed that, there has not been so many works on 

numerical iteration methods for manipulators. Most of the algorithms developed 

such as Hydzik [35], Tonbul [45], facilitated iterative solutions which are 

designed for specific manipulators. This approach brings the requirement of 

developing a new solution method which is applicable for different manipulators. 

In addition, most of those algorithms implement inverse kinematic solutions with 

fixing the orientation of the end-effector w.r.t the global coordinate system 

throughout the trajectory. This approach is not sufficient especially working on 

inclined surfaces. So it is aimed to develop an inverse kinematics solution 

algorithm which can accommodate with different system with changing only the 

definition of the mechanism and change the end-effector orientation dynamically 

according to the working surface. 

Another unexplored area related to the thesis is the command generation for 

manipulators. Although NC codes are used for CNC Machine tools, there is none 

for manipulators. Since the manipulators are widely used in industrial 

applications, each manipulator has its own command generator which uses the 

data from CAD/CAM software directly. In this thesis it is aimed to bring a 

practical way to define the tool path without requiring a special training. In 

addition to defining the tool-path simpler, the interpolation techniques are 

synthesized for more efficient results. 
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CHAPTER 3  

 

KINEMATIC MODELING OF ARTICULATED MECHANISMS 

3.1 Articulated Mechanisms 

Manipulators are open kinematic chains of rigid objects (links) connected by 

joints. These manipulators are designed to perform a variety of motions suitable 

for a specific task like welding, painting, material handling, assembly, etc.  

Typical robots are serial-link mechanisms. They are characterized by arms for 

mobility, a wrist for dexterity, and an end-effector (“apparatus”) to perform a task 

[54].  

Although different types of joints can be used in manipulators, two joints are 

common in practical applications: revolute joints (R) and prismatic joints (P). The 

free parameter of the revolute joint is the angle of rotation about its axis while 

only the displacement is applicable for a prismatic joint.  According to the joint 

types used, manipulators can be divided into subgroups: Cartesian-, cylindrical-, 

spherical-, and articulated (“anthropomorphic”) manipulators.  

Figure 3.1 illustrates common manipulator types. Cartesian manipulators in 

Figure 3.1a have three prismatic joints. They are mechanically robust but 

inadequate for performing complex motions in space. Thus, they are basically 

used for moving large and heavy objects. Similarly, cylindrical manipulators in 

Figure 3.1b have one revolute and two prismatic joints. Despite their apparent 

robustness, the positioning accuracy of the end-effector is usually low due 

horizontal movement. Just like its Cartesian counterpart, they are employed for 

material transfer.  Spherical manipulators in Figure 3.1c constitute two revolute- 
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3.2 Background Knowledge 

Mechanisms studied in this thesis are serial-link manipulators. One end of the 

chain is fixed while other links move relative to that. For a robotic manipulator 

with n joints, the joints are enumerated from 1 to n, will have n + 1 links, the links 

are numbered from 0 to n. By this convention, joint i connects link i − 1 to link i. 

Link 0 is the base of the manipulator, is usually fixed, and link n carries the end-

effector.  

Each joint is represented with a coordinate frame. For standardization, some of the 

joint frames are specifically named as illustrated in Figure 3.2. The naming and 

subsequent use of the frames in robots and control systems facilitates providing 

general capabilities in an easily understandable way [1].  

 

 

Figure 3.2 Standard frames of a manipulator. 

 

The manipulator is divided into three main frames: base {B}, wrist {W} and tool 

{T} frames. Base frame is located at the base of the manipulator which is link 0. It 

is affixed to the stationary part of the robot. Wrist frame is attached to the last link 

of the manipulator where the tool will be located. Tool frame is affixed to the end 
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of the tool that robot holds and is placed mostly between the fingers of the 

gripper. Tool frame is specified w.r.t. the wrist frame. 

Position and the orientation of the frames are defined with a translation matrix in 

Eqn. (3.2) and basic rotation matrices in Eqn. (3.1) where ܴ 
 represents rotation 

of frame B relative to A as illustrated in Figure 3.3, ݀ 


 represents translation from 

A to B, i, j, k are unit vectors of original frame, u, v, w are the unit vectors of 

rotated frame and di shows displacement in each axis.  These matrices are used to 

form the homogenous transform matrices. 
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Figure 3.3 Basic Rotation and Translation. 

3.2.1 Homogenous Transformations 

Homogenous Transform matrices (HTM) are used to define the translation and 

rotation of one frame relative to another.  The matrix in Eqn. (3.3) represents the 

homogenous transformation from frame A to B and contains the rotation and 

translation information. 
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The inverse kinematic solution is based on this matrix so it should be written 

correctly. The rotation part consists of rotations around all axes as in Eqn. (3.4a), 

where ψ, Φ, θ represents the rotation about x, y, z axes respectively. The 

translational part consists of the displacement of origin of the new frame as in 

Eqn.  (3.4b) where a, b, c represents the displacements on x, y, z axes respectively 

[33]. The T4,4  element is the scale factor and it represents that whole elements are 

scaled one to one. For simplicity, cosine function cos (θ) is represented as cθ 

while sine function sin (θ) is shown as sθ. 
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(3.4b)

The inverse of the HTM can be found as Eqn. (3.5) by using the orthogonality 

property of the homogeneous transformation matrix. 
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The position and orientation of the end-effector with respect to the base frame can 

be found by Eqn. (3.6) by the product of the coordinate frame transform matrices 

for each link.  
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The axes of motion for each joint should be found. For each frame, Zi 

should be aligned with the axis of motion of joint i+1. 

2. The origin of the coordinate frames is to be selected. The origin of the ith 

coordinate is found by intersecting the current and previous joint axes, Zi 

and Zi-1. If the joint axes are not intersecting, a common normal is drawn 

between the Zi and Zi-1 axes. The origin is determined by intersecting the 

common normal and the Zi axis. 

3. The X axis should be defined for each joint. If the joint axes of the current 

and previous joint, the Xi is along the common normal between the Zi and 

Zi-1 axes. If they are not parallel, Xi is found by the cross product of the Zi 

and Zi-1 axes as in Eqn. (3.8).  

)( 1 iii ZZX ×= −  (3.8)

4. The Y axes are defined for each joint by completing the right handed 

coordinate system as in Eqn. (3.9). 

)( iii XZY ×=  (3.9)

5. For the hand (gripper) frame, the procedure slightly differs: For an n-link 

manipulator, the Zn is chosen coincident with Zn-1. On is coincident with 

the tip point as shown in Figure 3.5 [51] where P is the tip point, ua is the 

approach vector, us is the sliding vector, and un is the normal vector which 

is normal to the gripper plane. 

 

Figure 3.5 Hand frame assignment. 

 

 P=O6 
Z6 = Z5 =an 

X6 = nn 

sn 
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6. The last step after assigning the coordinate frames to each joint, joint and 

link parameters are defined for each joint. Position, the orientation and 

location, of link i with respect to link i-1 is represented just by the D-H 

parameters. DH convention specifies a link by two geometrical properties: 

the link length (a), and link twist (α). These properties define the relative 

location of the two reference frames in space. Similarly, joints can be 

specified by two parameters: the joint (link) offset (d) and joint angle (θ) 

are used.  

a. Link length ai is the offset distance between the Zi-1  and Zi axes 

along the Xi axis. 

b. Link twist αi is the angle from the Zi-1 to Zi axis about the Xi axis. 

c. Link offset di is the distance from the origin of frame Oi -1 to the Xi 

axis along the Zi-1 axis. 

d. Joint angle θi is the angle between the Xi-1 and Xi axes about the  

Zi-1  axes 

Note that for serial manipulators, ai and αi are always constant while the 

link parameters for the first and last links are arbitrarily chosen to be zero. 

Depending on the joint type either the joint angle θi or the link offset di is 

constant and the other is joint variable. They are denoted as generalized 

variable, q୧. For revolute joints, q୧ is the angle of rotation, and q୧ is the 

link offset for prismatic joints as in Eqn. (3.10). 

q୧ ൌ ൜ θ୧: joint i revolute
d୧: joint i prismatic (3.10)

7. After assigning the required frames and parameters, HTM following DH 

convention is formed for adjacent coordinate frames, i and i+1 by the 

following HTM shown in Eqn. (3.11) [51]. 
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3.4 Forward Kinematics 

The objective of forward kinematic analysis is to determine the cumulative effect 

of the entire set of joint variables on the position of the end-effector. In another 

words, it is simply the computation of position and orientation of the tool frame 

relative to the base frame at a quasi-static state.  It can be regarded as changing the 

representation of the manipulator’s position from joint space into a Cartesian 

space [1]. 

Assuming Ti is the HTM that expresses the position and orientation of frame i 

w.r.t. frame i-1. Since the joints are either revolute or prismatic, Ti depends on the 

generalized joint variable, qi: Ti = Ti (qi). For an n-axis rigid-link manipulator, the 

coordinate frame of the last link can be found by multiplying the HTMs as in Eqn. 

(3.6) that are formed by Eqn. (3.3) for each link. Hence, w.r.t a reference frame, 

the direct kinematics function is expressed by the HTM shown in Eqn. (3.12) 

presented by Sciavicco [68] 
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qpqaqsqn
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where n, s, a are the unit vector of the end-effector frame illustrated in Figure 3.5 

and p is the position vector of the origin of that frame w.r.t the origin of the 

reference frame.  
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3.5 Inverse Kinematics 

The inverse kinematics problem is simply the problem of finding a set of joint 

variables that produce a desired end-effector location. It can be regarded as 

changing the representation of the manipulator position from a Cartesian space 

into joint space as illustrated in Figure 3.6. 

 

 

Figure 3.6 Schematic of forward and inverse kinematics. 

 

The inverse kinematics model of a manipulator involves the mapping of joint 

arguments (q1, q2, …, qn) into the end-effector position (x, y, z). Throughout the 

solution, the orientation of the end-effector changes dynamically w.r.t the working 

plane and the trajectory that is being followed. In order to satisfy this requirement, 

it is assumed that the approach vector of the end-effector illustrated in Figure 3.5 

is always perpendicular to the working plane defined by the user and approach 

vector always tangent to circular trajectory or along the linear trajectory. The main 

reason for fixing the approach vector to plane normal is to simplify the 

representation of the trajectory with the NC codes that will be discussed in the 

next chapter. With current NC code definition it is not possible to characteristics 

of end-effector orientation. In order to define the orientation new keywords 

representing the tool orientation, the type of the task in hand and gripper style 

should be added.  

Knowing the desired position and orientation of the end-effector is known 

beforehand and the joint variables can be found correspondingly. But the solution 
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is not straightforward since one need to solve a set of nonlinear equations that 

oftentimes leads multiple solutions as well as singularities. 

To be specific, the nonlinearity of the equations comes from the trigonometric 

functions involved in the corresponding expressions.  The other problem is the 

existence of singularity.  For a solution to exist, the pose of the manipulator for a 

configuration should lie within the workspace of the manipulator. If there is no 

solution for that configuration, it is said to be singular. The handling of singularity 

is discussed extensively in the later sections. Note that the singularity may be also 

due to invalid joint arrangements. There are some special cases [51] that may 

occur in manipulators which results in reduction in degrees of freedom and 

infinite number of solutions can be encountered.  These special cases are; where 

two joints in the ends of a link are both revolute and their axes are parallel to each 

other and have infinitely many common normal, when the rotation axes of 

revolute joints’ cross each other perpendicularly which results with two different 

link twists and final case is when prismatic joints are parallel to each other and 

manipulator loses one of its degree of freedom.  

3.5.1 Multiple Solution 

In addition to singularities, the most encountered problem in inverse kinematic 

model is the existence of multiple solutions. For instance, for the 2D manipulator 

shown in Figure 3.7, a specific position and orientation of the tool tip can be 

reached by different orientations (see the elbow down and elbow up 

configurations).  

As the number of the joints increase, reaching a solution becomes increasingly 

harder. Because of these multiple solutions, the solver has to choose one. The best 

way to resolve is to pick up the closest solution to the previous configuration by 

minimizing the amount that joint is required to move. This brings the necessity of 

selecting the perfect initial conditions. 
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Figure 3.7 Multiple Solutions [22]. 

3.5.2 Solution Methods 

Inverse kinematics problem can be solved with two different methods: analytic 

(closed form) and numerical. One of these methods is selected depending on the 

context of the problem. Both have certain advantages and disadvantages which are 

summarized in Table 3.1 [18, 19]. 

Closed-form solution is divided into two which are geometric and analytic 

solution. Geometric approach is simply decomposing the mechanism into plane 

problems. This can be used for simple mechanisms such as planar mechanism. 

Analytic solution is done by the help of the known functions. Multiple functions 

are solved together in order to find the variables. Although analytic solution is fast 

and accurate, this solution is unique for every arm configuration and it is not 

possible to reflect physical changes such as addition of new tool. Non-linearity of 

the functions and it is hard to find the functions for different kinds of 

manipulators. Polynomial solutions and dyalitic elimination are the mostly used 

analytic solution.  
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Table 3.1 Comparison of inverse kinematic solution methods. 

Closed Form Solution Numerical Solution 

Derive computationally efficient 
closed-form solutions 

The precision of the solution is pre-
defined and introduces small errors. 

Joint variables explicitly expressed 
in terms of other known quantities 

Based on the D&H parameters 

Highly system-specific [18] Applicable to arbitrary chain 
structures 

Non-linear and coupled [19] Iterative solution 

Singular positions are known Requires singularity check 

Multiple Solution in calculations Only one solution. 

 
 

The derivation of analytic solution for Puma 560 that is illustrated in Figure 3.8 is 

presented by [1] and given in Appendix D in details 

 

 

 

Figure 3.8 Puma 560 Manipulator. 
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mentioned before, selection of initial condition is important in order to handle 

multiple solutions and singularity. The initial joint configuration of manipulators 

can be given as the well-known poses such as zero-angle, ready and fully-

extended. But if no initial joint configuration is given, zero-angle pose is selected 

as default configuration. 

Note that before initiating a solution, the orientation and the position of the 

desired pose of the mechanism is known.  Since the position and the orientation of 

both initial configuration and desired configuration are known, transformation 

matrix at initial configuration T0, and transformation matrix at desired position T1 

can be calculated. With the help of the values at each joint, T0 can be computed 

with HTM method: 

ܶ
 ൌ ܶ

ଵ
 ܶଵ

ଶ
 … ܶ

ିଵ
 ൌ ቂ ܴ


 ܶ




0 0 0 1 ቃ (3.13)

 
But T1 is computed with a different method. Throughout the inverse kinematic 

solution, it is assumed that end-effector of the mechanism is always perpendicular 

to the working plane which means that the approach vector, an, of the hand frame 

illustrated in Figure 3.5 is aligned with the surface normal. With the help of the 

orientation of the working frame w.r.t the base frame, the rotational part of the T1 

can be computed in terms of RPY angles which are obtained by composition of 

elementary rotations w.r.t axes of a fixed frame. The acronym RPY stands for the 

Roll-Pitch-Yaw angles which are often used in aeronautical field. In this case, the 

set of angles (ψ, Φ, θ) which is illustrated in Figure 3.3 are obtained rotating the 

reference frame about x axis (yaw), about y axis (pitch) and z axis (roll) of the 

fixed frame respectively. The resulting orientation of the working plane is 

obtained by composition of rotations w.r.t the base frame and then it can be 

computed via premultiplication of matrices of elementary rotation as presented by 

Sciavicco [68] 
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As expressed by Sciavicco the third raw of the HTM in Eqn. (3.12) represents the 

normal of the working plane shown with zwp in Figure 3.10. Since the end-effector 

moves toward to the plane, an is the opposite of the normal of the plane. So after 

inversing the 3rd column of Eqn. (3.14) which represents the surface normal, the 

third column of T1 is obtained. Knowing that the sliding vector, sn is aligned or 

tangent to the motion, the direction of sn can be found by the direction vector from 

starting point to the end point as in Eqn. (3.15) 

[ ] [ ]ssseeen zyxzyxs ,,,, −=  (3.15) 

 

 

 

Figure 3.10 Orientation of end-effector w.r.t working plane. 

 

Once an and sn are known nn can be simply obtained by completing the right 

handed coordinate system with the cross product of nn=anΧsn. 
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The last step of composing T1 is simply inserting direction vectors and the end-

effector position to the correct place of the HTM according to Eqn. (3.12). So the 

T1 takes the form of Eqn. (3.16). 

 

[ ] [ ]
[ ] [ ]
[ ] [ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−×
−−×
+−×

=

1000
)(

)(
)(

1
zznznn

yynynn

xxnxnn

dccssa
dsccssssa
dsscscssa

T
ψθ

ψφψθφ

ψφψθφ

 (3.16) 

Once T1 is obtained, the solution simplifies to finding how much the joints will 

has to move in order to reach the required position. This can be found by the 1st 

order Taylor Series Expansion of T (θ0+δ θ0) [36]: 
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Since the T0 and T1 are known in Eqn. (3.17), only the differential terms are left 

unknown. The derivative of the T can be found by Eqn. (3.18)  which is derived 

by Lorenz [36]. 
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Where Di, a 6-element differential motion vector representing the incremental 

translation and rotation described by the homogeneous transform T, is found by 

Eqn. (3.19) where θx is the rotation about x axis, θy is the rotation about y axis, θz 

is the rotation about z axis, x, y and z is the displacement in x, y, z axes 

respectively. The other important usage of D is that it constitutes the elements of 

the Jacobian Matrix that is explained later in this section. 
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The inverse of the transform matrix was shown in Eqn. (3.3) and Q for revolute 

and prismatic joints is shown in Eqn. (3.20) [36] 
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Substituting the values into Eqn. (3.17), the expansion takes the form of Eqn. 

(3.21), which will be used to form the error matrix shown in Eqn. (3.22) 
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In order to obtain the error matrix, both sides of the Eqn. (3.21) should be 

multiplied with ܶିଵ

 . So the Taylor Series Expansion takes the form of Eqn. 

(3.22), 

nnnn DDDITT δθδθδθθδθθ +++=−+ − L2211
1

0
0

00
0 )()(  (3.23)

The left side of the Eqn. (3.23) gives the error matrix ܧ which represents the 

deviation in the global coordinates. Notice that ܧ  has to be transformed into joint 

space by the Jacobian matrix. 

Jacobian matrix is an important tool in kinematics. Jacobian can be thought as the 

vector form of the derivative of a scalar function. This matrix is used in 

kinematics for operations such as, smooth trajectory generation, finding the 

singular configurations, the manipulability of the system, derivation of velocities 

and finally calculation of forces and moments in the system.  For a manipulator 

with n joints, the Jacobian is in the form of Eqn. (3.24) and gives the relation 
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between n-vector of the joint velocities and the 6-vector containing information 

about the linear and angular velocities of the end-effector. 

qqJx nn && ⋅= )(00  (3.24)

The Jacobian matrix has information about both Cartesian partial derivatives and 

rotational partial derivatives. The base frame Cartesian partial derivative is 

extracted from the 4th column of the Di ܶ


 matrix as in Eqn. (3.25). 
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The rotational partial derivatives of the Jacobian for each joint with respect to the 

end-effector are contained in the Di matrix as mentioned before. Extracting D3,2, 

D1,3 and D2,1 from the values found from Di in Eqn. (3.19) the last part of the 

Jacobian is formed. Finally after pulling the relevant values from Eqn. (3.19) and 

Eqn. (3.25), the Jacobian matrix takes the form of  

[ ]Tzyxzyx vvvwwwJ =  (3.26)
 
The Jacobian matrix of a manipulator for n joints is formed by computing the 

Jacobian matrices of each joint repetitively and concatenating all the matrices as 

in Eqn. (3.27). 
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After the Jacobian is found, the by taking ܧ  from Eqn. (3.23) can be solved by 

taking the inverse of the Jacobian matrices. The deviations for generalized joint 

variables can be found by Eqn. (3.28). The computed joint increments are added 

to the initial joint values in order to find new configuration as in Eqn. (3.29). 
∧

−= EJ 1δθ  (3.28)
  

δθθθ += 01  (3.29)

But the deviations should be checked if they satisfy the precision required. If the 

deviations are smaller than the resolution, θ1 is stored and the iteration starts for 
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the next point in the trajectory. But if the deviations are not small enough the 

iteration continues by using newly calculated joint values as initial configuration 

until the deviation values are smaller than the resolution. 

3.5.4 Singularity Handling 

As mentioned earlier, singularities occur when no solution can be found for a 

particular manipulator pose due to an alignment of axes reducing the effective 

degrees of freedom, or the point being out of the workspace of the mechanism. 

The common criteria for the singularity of manipulator is when the velocity 

Jacobian of the manipulator, J(q), loses its full rank, the kinematic chain loses one 

of its degrees of freedom [27, 29, 30, 55]. Common singularities observed in 

robotic applications when the Jacobian matrix is square can be classified as; Arm-

extended singularity, wrist-extended singularity where the first and last joint of 

the wrist are aligned, so they span the same motion freedom. Hence, the angular 

velocity about the common normal of the three wrist joints is lost.  

From the standpoint of task planning, it is very important to avoid the singular 

configurations of the robot. This can be assured by the maximization of the robot 

manipulability. Yoshikawa [56] defined the measure of the manipulability, w, as 

in Eqn. (3.30). 

TJJw ⋅=  (3.30)

Yoshikawa’s manipulability measure is based purely on kinematic data, and gives 

an indication of how ‘far’ the manipulator is away from singularities and thus is 

able to move and exert forces uniformly in all directions. Manipulability varies 

from 0 (bad) to 1 (good). For a non-redundant robot manipulator, the measure w is 

simplified to w =|det(J)| [27]. 

In literature some methods has been presented for singularity handling. As 

Kemeny [67] summarized some of these techniques modify the numeric 

properties of Jacobian matrix with the trade-off of an imperfect end-point 
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velocity, such as the damped least-squares, pseudo-inverse approach, singular 

value decomposition etc. as shown by Dewit or Foret, while others (as Nenchev or 

Lloyd) alter the time scales of one or more components in the joint space; either to 

take a virtual bypass around the singularity (again, at the cost of imprecise 

workspace motion), or to maintain acceptable joint velocities while locally 

slowing down the end point motion to zero. In our study, pseudo-inverse method 

shown in Eqn. (3.31) has been used for computation of the inverse of the Jacobian 

at Eqn. (3.28) for singularity handling [15, 29].  
TT JJJJ 1)( −+ =  (3.31)

This approach allows a solution to obtain at a singularity since J+ exists even 

when J is not square and full rank, but the joint coordinates within the null space 

are arbitrarily assigned. J+ is computed by pinv function of MATLAB which is 

based on Moore-Penrose pseudo inverse of matrix [43]. 

3.6 Closure 

In this chapter, the background knowledge is presented to develop the command 

generation algorithms. Detailed information about the kinematic modeling of 

manipulators has been given. DH parameters, notations and frame attachment 

operations are discussed step by step. Forward and inverse kinematic models have 

been presented for the sake of self-containment. Inverse kinematic solution 

methods have been divided into two: closed form and numerical solutions. 

Advantages and disadvantages of two solutions have been given. Closed form 

solution of PUMA 560 and Stanford manipulator, which will be used throughout 

the course of this study has been included. The solution of the numerical method 

has been investigated in detail.  
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CHAPTER 4  

 

POSITION GENERATION IN JOINT SPACE 

4.1 Position Generation 

Manipulators are able to perform different kinds of tasks such as painting, 

welding, material handling and etc. Although operation changes they fulfill their 

tasks by following a pre-defined path called trajectory. A common way of causing 

a manipulator to move from one location to another in a smooth controlled 

fashion is to cause each joint to move as specified by a smooth function of time. 

Commonly, each joint starts and ends its motion at the same time, so that the 

manipulator motion appears coordinated. How to compute these motion functions 

is the problem called trajectory generation [1].  

The definition of the trajectory for the manipulator should be given to the 

controller in order to find the joint orientations at specific time. Defining the tool 

path should be convenient for the user. Instead of entering complicated functions 

in spatial or temporal domain, one can define the trajectory with the utilization of 

a low-level language. The usage of NC codes as defined by RS-274B comes 

handy for that purpose. With an NC code, all the user has to do is to describe 

some properties of the motion and the intermediate locations. In this thesis, the 

common NC codes are taken as basis and the G-words are modified accordingly 

as the need arises. Detailed information regarding this formalism is discussed in 

later sections. 
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4.2 NC Code 

An NC program is a code that defines the entire sequence of a machining 

operation to be carried out on a particular CNC machine tool [2]. Although NC 

codes have been designed originally to program CNC machine tools, they can be 

adopted to the robotic manipulators as well. In fact, the NC code can be modified 

to define the end-effector trajectory to perform the task with the given tolerances.  

NC code devised in this study contains information about the coordinates, 

orientation of the end-effector, motion type, manipulator’s operation modes, and 

tool’s speed along the trajectory (a.k.a “feedrate”). Each line (i.e. block) in this 

custom NC code constitutes information about a segment of the motion. For 

trajectories with repetitive features, subprogram/subroutines can be utilized.  

The motion type and the operation mode are defined by G-codes. The G-codes 

that made use of in this work are as follows: G0 – rapid linear motion; G1 – 

rectilinear motion; G2/G3 – circular motion; G17, G18, G19 – selection of 

working plane in circular motion;  G90 / G91 – absolute and incremental 

coordinate mode;  G100 – specification of local coordinate frame. In addition to 

the G-codes; tool coordinates X, Y, Z (mm), miscellaneous functions M and 

feedrate F (mm/min) can be defined in the NC code. M98, M99 M function calls a 

subprogram and subroutine respectively while M30 signals the end of the 

subprogram. In addition, N word is utilized to label the start of a subroutine and 

P-word, which is used in conjunction with M98 function, defines the name of the 

subroutine to be called. And finally dwell function is defined by D (sec). The 

usage of D-word is essential for the task which needs to keep its pose during the 

designated time interval such as spot-welding operation. Note that modal coding 

has been utilized to make the code not only efficient but also easy to follow. In 

this scheme, the modes set by the G codes or the coordinates being specified do 

not change until new mode or coordinate is entered. 
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4.2.1 Motion Types 

Manipulators are capable of performing several motion types such as rectilinear, 

circular, helical and parabolic motions. But for simplicity, the motions in this 

study are limited to rapid, linear and circular motion. 

4.2.1.1 Linear Motion 

In linear motion, the tool moves to the destination at a constant feed rate which is 

defined by the user. In this mode, all axes work in coordination and tool moves 

the same amount in each axis as illustrated in Figure 4.1. The linear motion should 

be defined as G1 Xxf Yyf Zzf Ff where xf, yf, zf are the coordinates of the end 

point in either absolute or incremental mode and f is the feedrate (mm/min) 

defined by the user. 

 

 

Figure 4.1 Linear Motion. 

 

 

Notice that a linear interpolation is required to produce position commands to the 

controller at the start of each control cycle. To carry out this computation, the 

travel (Euclidian) distance should be calculated first: 
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݀ ൌ ටሺݔ െ ሻଶݔ  ሺݕ െ ሻଶݕ  ሺݖ െ ሻଶ (4.1)ݖ

Similarly, the time required to reach destination becomes 

ݐ ൌ
60݀

݂  (4.2)

Hence, the number of commands to be generated along this linear trajectory can 

be calculated as  

ݏ ൌ ݎ݈݂ ൬
ݐ
ܶ൰ (4.3)

where T is the sampling rate of the control unit. The increments at each axis 
becomes 

ݔ∆ ൌ
ݔ െ ݔ

ݏ  (4.4a)

ݕ∆ ൌ
ݕ െ ݕ

ݏ  (4.4b)

ݖ∆ ൌ
ݖ െ ݖ

ݏ  (4.4b)

Similarly, the coordinates of the tool at a particular time (kT) can be expressed as 

ሺ݇ሻݔ ൌ ݔ  (4.5a) ݔ∆݇
ሺ݇ሻݕ ൌ ݕ  (4.5b) ݕ∆݇
ሺ݇ሻݖ ൌ ݖ  (4.5c) ݖ∆݇

4.2.1.2 Rapid Motion 

Rapid motion, which is basically used to move the tool from one point to another 

at the maximum speed, is same as the linear motion but this time feedrate is not 

required. The definition of rapid motion is G0 Xxf Yyf Zzf  . Unlike point-to-point 

motion in formal G0 (of RS 274B); here, all axes work in coordination and tool 

moves the same amount in each axis as illustrated in Figure 4.1. This time 

feedrate is selected automatically as the maximum feedrate (fmax) that can be 

attained by the mechanism. 

 



 45

4.2.1.3 Circular Motion 

The last motion type in the interpolator is the circular motion. For circular motion 

algorithm and definition slightly differs. Since circle should lie on a plane, user 

has to define the working plane and the definition of direction of rotation is 

essential in order to draw the correct section of the circle. The block of the NC 

code has the information of the working plane, direction of rotation, the 

coordinates of the destination, the radius or the coordinates of the circle and the 

feedrate. Two alternative definitions are available for circular motion. The 

representation options are:  

Table 4.1 Circular motion representations. 

XY Plane 17ܩ ܩ ቄ2
3ቅ ݔܺ ൜ ݕܻ ݎܴ

ൠ ݆ܬ ıܫ  ݂ܨ 

XZ Plane 18ܩ ܩ ቄ2
3ቅ ݔܺ ቄ ݖܼ ݎܴ

ቅ ݇ܭ ıܫ  ݂ܨ 

YZ Plane 19ܩ ܩ ቄ2
3ቅ ݕܻ ൜ ݖܼ ݎܴ

ൠ ݇ܭ ݆ܬ  ݂ܨ 

Complete Circle ܩ ቄ2
3ቅ ൝

 ݆ܬ ıܫ 17ܩ
݇ܭ ıܫ 18ܩ
݇ܭ ݆ܬ 19ܩ

ൡ  ݂ܨ 

 

where X, Y and Z are the coordinates of the destination point, R is the radius of 

the circle and I, J, K are the distance from the center to the starting point. I, J, K 

values are used as a set of two keywords. I and J keywords are used for defining 

the center of the arc in XY Plane. Similarly, J, K is used for arcs in YZ plane and 

I, K are used for arcs in XZ plane. If one prefers representing the arc with R, the 

sign of radius should be given correctly. For the arc angles larger than 180°, as 

illustrated in Figure 4.2 with motion from A to D, radius should be defined as –R. 

For smaller arc angles such as motion from A to B, radius should be entered as R. 

For the other notation, the incremental distance from center to starting point 

should be given as illustrated in Figure 4.2. In this notation, i defines the 

incremental distance on X axis, j defines the incremental distance on Y axis and 

similarly k represents the distance on Z axis. 
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Figure 4.2 Circular Motion 

 

Final important definition is the working plane. G17, G18 and G19 are reserved 

for defining the working plane and they are used for motion on XY plane, XZ 

plane and YZ plane respectively. 

According to the definition of the circulars motion calculations differ. If the 

incremental distance to the center is given, radius of the circle can be calculated 

by Eqn. (4.5) and center coordinates are computed by Eqn. (4.6). If only the 

radius is given and the center coordinates left unknown, the center position is 

obtained by geometric operations which is shown in the list of findCenter.m 

subroutine given in Appendix. Once the center coordinates and radius of the circle 

is known, the angle of the starting point of the arc, θs, and the angle of the final 

point of the arc angle θf, is calculated by Eqn. (4.7a) respectively for XY, XZ and 

YZ planes. 

222 kjir ++=  (4.5)

kzzjyyixx scscsc +=+=+=  (4.6)

௦ߠ      ൌ atan ൬
௦ݔ െ ݔ

௦ݕ െ ݕ
൰ , ߠ ൌ atan ቆ

ݔ െ ݔ

ݕ െ ݕ
ቇ 

௦ߠ ൌ atan ൬
௦ݔ െ ݔ

௦ݖ െ ݖ
൰ , ߠ ൌ atan ቆ

ݔ െ ݔ

ݖ െ ݖ
ቇ 

௦ߠ ൌ atan ൬
௦ݕ െ ݕ

௦ݖ െ ݖ
൰ , ߠ ൌ atan ቆ

ݕ െ ݕ

ݖ െ ݖ
ቇ 

(4.7a)

(4.7b)

(4.7c)

 
Once all of the unknowns are computed, position commands can be produced. To 

perform this computation, the travel distance should be calculated first. The travel 
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distance is simply the length of the arc. In order to compute the arc length, the 

sweep angle of the arc should be computed by Eqn. (4.8). Then the arc length, l, is 

found by Eqn. (4.9).  

sft θθθ −=  (4.8)
rl t ⋅=θ  (4.9)

Similarly, time required to complete the arc becomes 

f
lt ⋅

=
60

 (4.10)

Hence, the number of commands to be generated along this circular trajectory can 

be calculated as  

ܰ ൌ ݎ݈݂ ൬
ݐ
ܶ൰ (4.11)

where T is the sampling rate of the control unit. Since the trajectory is circular, 

increments should be projected into angles and the angular increments can be 

found by  

N
tθθ =Δ (4.12)

Similarly, the angle values at a particular time (kT) can be expressed as 

kk s ⋅Δ+= θθθ )( (4.13)
Finally, the coordinates of the tool at a particular time (kT) can be expressed as in 
Eqn. 4.14 which shows the procedures for circular motions in XY, XZ and YZ 

planes respectively. 

ሺ݇ሻݔ ൌ ሺ0ሻݔ  ݎ כ ሾcosሺ ሺ݇ሻݕ ሺ݇ሻሻሿߠ ൌ ሺ0ሻݕ  ݎ כ ሾsinሺ  ሺ݇ሻሻሿߠ
ሺ݇ሻݔ ൌ ሺ0ሻݔ  ݎ כ ሾcosሺ ሺ݇ሻݖ  [ሺ݇ሻሻߠ ൌ ሺ0ሻݖ  ݎ כ ሾsinሺ  [ሺ݇ሻሻߠ
ሺ݇ሻݕ ൌ ሺ0ሻݕ  ݎ כ ሾcosሺ ሺ݇ሻݖ  [ሺ݇ሻሻߠ ൌ ሺ0ሻݖ  ݎ כ ሾsinሺ  [ሺ݇ሻሻߠ

(4.14a)

(4.14b)

(4.14c)

4.2.2 Frame (Coordinate) Transformations 

Another original idea in this study is the use of complex coordinate 

transformations in the NC code. The standard NC codes define the motion of the 

tool w.r.t. to a (selected) work coordinate system where the principal axes of this 
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frame are essentially aligned with those of the global coordinate frame (i.e. 

machine coordinate system).  Since the tasks handled by industrial manipulators 

often times require the complex orientation of the tool (or the workpiece), one 

should modify the basic NC Code to accommodate such necessities. For instance, 

it would be impossible to define a circular path lying on a slanted plane with the 

utilization of the angular motion commands (A, B, C) of the formal NC code. 

Therefore, in this work, the user can define a local coordinate frame by specifying 

not only the coordinates of its origin w.r.t. the global frame but also its rotations 

about the fundamental axes. After this definition, one has the freedom to generate 

the NC Code on this frame by using standard NC Code. 

The position and orientation of the local frame w.r.t the global frame is defined as 

G100 Udx Vdy Wdz Aψ Bθ CΦ where, ψ, θ, Φ are rotations about X, Y, Z axes of 

fixed reference frame respectively, dx, dy, dz are the translation of the new frame 

w.r.t. the fixed reference frame. 

With the information of the frame position and orientation w.r.t the global 

coordinate, the trajectory is transformed by Eqn. (3.14) presented by Sciavicco 

[68] where l represents the local frame, g represents global fixed frame. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−+
+−

=

1000
z

y

x

l
g dccscs

dsccssccssscs
dsscsccsssccc

T
ψθψθθ

ψφψθφψφψθφθφ

ψφψθφψφψθφθφ

 (4.15)

Once the transformation matrix is obtained, the points on local frame can be 

projected onto the global frame by Eqn. (4.16). 

l
l
gg pTp ⋅=  (4.16)

where, pg and pl are the position vectors w.r.t. the global and local frame 

coordinate frame respectively. In Figure 4.3, this transformation (with ψ = 10°, θ 

= 10° and Φ = 0°, and dx = 452.1 mm, dy=-150.05 mm, dz =431.8 mm) is 

illustrated. The listing of the NC code generating this complex trajectory is given 

in Appendix B. 
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(a) Trajectory w.r.t local frame. 

 

 

(b) Trajectory w.r.t global frame after transformation. 

Figure 4.3 Coordinate transformations of complex trajectories. 
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4.3 Developed Algorithm 

Up to now, kinematic modeling and position generation for robotic manipulators 

are discussed. This part of the thesis is about the algorithm of the inverse 

kinematics. The algorithm is divided into two parts. The trajectory is generated in 

the first part and the inverse kinematics solution is handled in the second part. 

4.3.1 Trajectory Generation 

Trajectory generation is done in two steps which are, parsing and interpolation as 

in Figure 4.4. In order to generate the trajectory user has to input the NC Code. 

Required keywords and the representation styles were mentioned in Section 4.2 

and the custom NC Code should strictly follow this presented syntax.  

 

 
Figure 4.4 Flowchart of trajectory generation. 

 

The entered NC code is parsed and the trajectory w.r.t. the local frame is 

generated by the interpolator as equi-distant position samples. Note that the 

abilities of the parser developed in this thesis are rather limited. Although it 

cannot read all the keywords of a standard NC-code, but it is sufficient for 

creating the basic motions, such as linear, rapid and circular.  

4.3.1.1 Parser 

Parser is utilized for interpreting the required commands (and their parameters) 

from the sequence of input characters according to the specified rules. This parser 
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extracts preparatory codes, coordinate axis and values, feed rate, miscellaneous 

functions. 

Parser takes the NC-Code as input, searches for line ends and breaks down into 

lines. For each line, parser looks for ASCII character 32 (space) and stores the 

information as letter groups between the spaces. The stored letter groups are split 

into two parts: word and number. The output of the parser is an array containing 

the information required for the trajectory generation. The value is stored in a 

array associated with each word. Figure 4.5 illustrates the flowchart of the parser 

algorithm. 

 

 

Figure 4.5 Flowchart of the parser. 

4.3.1.2 Subroutines 

For repetitive operations, subroutine algorithm has been incorporated to the 

parser. Instead of repeating same lines of commands, subroutines are called when 

needed. Subroutines must be defined after the end of the NC Code that is stated by 

M30 command. Subroutines should start with a Nnn statement that sets the 



 52

subroutine start address to `nn` (integer) and should ended by an M99 statement 

which tells the parser to return from that subroutine. When needed inside the main 

code, the subroutine is called by M98 Pnn. A sample usage of subroutines is 

shown in Table 4.2 

Table 4.2 Subroutine Pattern. 

G90 G1 X10 F500  
M98 P100  (Call Subroutine #100) 
G0 X0 Y0      
… 
M30   (End Program) 
N100   (Define Subroutine #100)  
G91 Y10 F200 
Z5 
M99   (End Subroutine #100) 
N200   (Define Subroutine #200) 
… 

M99   (End Subroutine #200) 

4.3.1.3 Interpolator 

Interpolator is where the tool path is calculated. Interpolator algorithm depends to 

the motion type. Flowcharts for rapid motion and linear motion are shown in 

Figure 4.6, and circular motion is given in Figure 4.7. The arrays produced by the 

parser are utilized in the interpolation. Trajectory generation works line by line. 

First, it checks the coordinate mode (G90/G91) in the line. If it is absolute (G90), 

target coordinate is set to the stored value in the X, Y, Z arrays. If it is incremental 

(G91), target position is found by adding the values in the X, Y, Z arrays to get 

the current position of the tool. After that, generator checks the motion type. The 

sample positions along the segments calculated by Eqn. (4.4) for rapid and linear 

motion and Eqn. (4.14) for circular motion. 
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Figure 4.6 Flowchart of Rapid and Linear Motion. 

 

 

Figure 4.7 Flow Chart of Circular interpolator. 

 

Once the samples w.r.t. local frame is generated, the frame transformation 

processes starts. By the help of the Eqns. (3.14) and (4.16), the trajectory is 

transformed into the global frame.  

4.3.1 Inverse Kinematics 

As mentioned before inverse kinematics is finding the joint variables that are 

needed to yield the desired end-effector position. The required joint variables are 

found iteratively by using a numerical solution. The code for solving the inverse 

kinematics problem can be thought as a block consisting of preparation- and 

processing parts as illustrated in Figure 4.8.  
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Figure 4.8 General Flowchart of Inverse Kinematic. 

 

In preparation part as illustrated in Figure 4.9, Denavit-Hartenberg (DH) table is 

utilized; the initial transformation matrix T0 is calculated by using DH table, using 

the initial configuration and the home coordinate of the mechanism is found from 

that matrix.  

 

 
Figure 4.9 Flowchart of preparation phase of inverse kinematics. 

 

The code starts with generation of DH tables by the help of the file input by given 

by the user. In addition to the standard DH table, a final row has been added 

which represents the joint type. Revolute and prismatic joints should be 

represented by “1” and “0” respectively.  

Next step is to find the reference transformation matrix. The reference (desired) 

transformation matrix T* is calculated for the joint configuration given by the user 

with Eqn. (3.16). Recalling that the transformation matrix is composed of rotation 

and translational part, home coordinate of the end-effector can be read from the 

last column of this matrix. These steps conclude the preparation part of the inverse 

kinematic solution. 
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After the processing part, inverse kinematic calculations, which includes initial 

estimations, error and Jacobian calculation and iteration to find the new joint 

configuration, commences. The pseudo-code of inverse kinematic solution is 

given in Table 4.2.  

The process part of the algorithm is straightforward. Estimating the required 

initial conditions requires a check, which should be done before the iteration 

starts. The code checks the degrees of freedom (DOF) of the mechanism by the 

help of the link numbers. For an n-numbered mechanism, which should not be in a 

special condition described before, it can be said to have n degrees of freedom. If 

there is less than 6 DOF in the mechanism, it is impossible to control the axis 

which is not constrained. 

Table 4.3 Pseudo code of the inverse kinematic iterations. 

Estimate desired Transformation Matrix, T* and initial joint configuration q(0) 

Initialize q=q(0) 

Iterate: 

1. Compute for current joint position, q: T-1(q) & 0J-1(q) 
2. Calculate error: ܧሺ݇ሻ ൌ ሾܶିܶכଵሺݍሻ െ ሿܫ · ݉ 
3. Map ܧሺ݇ሻ to 1x6 vector 
4. Estimate the joint increment: ߜ ൌ Jିଵ

 
 ሺqሻܧ 

5. Move joint virtually ݍ ൌ ݍ   ߜ
6. If ߜ ൏  stop, otherwise repeat iteration ,݊݅ݐݑ݈ݏ݁ݎ

Output: q 
 
Consequently, a mask is employed here which assigns 0 to the mask vector “m” 

for the unconstrained axis in order to cancel the effect of that axis. For example, a 

5-axis manipulator may be incapable of independently controlling rotation about 

the end-effectors’ Z-axis. In this case m1 in the Eqn. (4.17) would enable a 

solution in which the end-effector adopted the pose defined by HTM, T, except 

for the end-effector rotation. Similarly, m2 shows a mask vector for a 6 degrees-

of-freedom mechanism. 
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ې

   (4.17)

 
After that, the homogenous transformation matrix for that configuration is 

calculated to compare with the T* in order to find the error matrix which 

represents the deviation in the global coordinates Eqn. (3.22)). Then, the Jacobian 

matrix in the base frame is calculated Eqn. (3.25). By multiplying the 

displacement and the Jacobian, the joint increments are found. The maximum 

value of the increment value is compared with the error tolerance defined by the 

user for the inverse kinematic operations. If the deviation is smaller than the 

required tolerance, it means that the required joint values are found. If the 

deviation is large, iterations continue by assigning these joint values as q*. 

Throughout the trajectory, the previous configuration of joints are used as starting 

point, solve inverse kinematics for the each pose in the trajectory. 

4.3.2 Segmentation 

The generated trajectory by the interpolation consists of large amount of data and 

joint values representing this trajectory are complex and it does not follow a 

pattern. Since the main idea is to model the data with polynomials or advanced 

transformations efficiently, these data should be divided into manageable 

segments. Here, segmenting the trajectory into little patches where the motion or 

direction changes will supply smooth joint states as the trajectory does not contain 

any sharp transitions which would change the behavior of the joint as seen in 

Figure 4.10. Segmentation of the trajectory is handled during the interpolation 

step. While generating the samples for each line of the NC Code, the place of the 

starting and the ending points are stored so each motion is to be handled in 

different sections.  
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Figure 4.10 Segmentation of the Trajectory of 2-D manipulator. 

4.4 Case Study  

Here, a simulation of the tool path generation from an NC code and the generation 

of the joint variables throughout this trajectory in a kinematic error tolerance of 

10-5 is demonstrated. Puma 560 manipulator is selected for this demo. The frame 

assignments are done according to the Denavit Hartenberg notation and shown in 

Figure 3.8 and the Denavit Hartenberg table generated by Corke [29] is given in 

Table 4.4 

Table 4.4 Denavit Hartenberg Table. 

A θi   αi  di type 
0 jv -90 0 R 

43.18 jv 0 0 R 
2.03 jv -90 15.005 R 

0 jv 90 43.18 R 
0 jv -90 0 R 
0 jv 0 0 R 
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Figure 4.12  Generated Trajectory. 

 

 
Figure 4.13 Trajectory in each axis. 
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4.4.2 Inverse Kinematics 

In the previous step, the trajectory was generated at a sampling rate of 0.05 

seconds. Here the values of joint variables are found for the whole points in the 

trajectory. The precision of the inverse kinematic operations are set to 10-5 which 

means the iterations for a point continue until the deviation is smaller than 10-5. 

After inverse kinematic solution the angle values in degrees are given in the 

Figure 4.14 and the angular velocities are shown in Figure 4.15. As seen in Figure 

4.14b, sudden changes in the joint angles due to the sharp changes in the 

trajectory has been observed. As the direction of the path to be followed changes, 

the sliding vector of the end-effector changes as well so the wrist angles are 

altered rapidly. The motions of joints between these states are not modeled in this 

work. 

 

 (a) Joint values in degrees for first three joint. 
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(b) Joint values for wrist joints 

Figure 4.14 Joint values in degrees. 

 

 
(a) Angular velocities for first three joints 
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(b) Angular velocities for last three joints. 

Figure 4.15 Angular Velocities of Each Joint. 

 

In order to confirm the calculated joint variables, the forward kinematic 

calculation is done as described in previous chapter. The error of the regenerated 

trajectory is computed. As plotted in Figure 4.15, the obtained errors are in 

acceptable levels and they are 5 µm where maximum error occurs. Checking the 

error values, it can be easily said that the errors coming from the numerical 

inverse kinematic solution is not so much with respective to the results obtained 

by analytic solutions. 
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Figure 4.16 Error bands of the recalculated trajectory. 
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solution method mentioned in Chapter 3 have been elaborated. The flowchart of 

the inverse kinematic algorithm has been introduced.  

Chapter has been concluded, with an illustration of position generation and 

inverse kinematics on a real life example. The error of 10-5 m (10 microns) has 

been selected for inverse kinematic operations which generates an error of around 

5 microns along the trajectory. 
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CHAPTER 5  

 

COMMAND GENERATION VIA DIRECT DATA STORAGE 

5.1 Data Storage 

Storage of the data produced in joint space is as important as producing the data. 

CNC controllers used to have small capacities around 64 kilobytes to store the  

commands required by the CNC machine tool such as coordinates, feed rates, 

joint variables. With the improving technology the ability to store large amount of 

data is possible. Today it is possible to store gigabytes of data by using hard 

drives, flash drives and optic drives and Random Access Memories. Besides the 

high capacity, preserving the data for a long time and the fast accessibility makes 

the use of direct storage reasonable. Having large storage spaces does not mean 

that all of the space can be used. Data should be stored in an efficient way in order 

to reduce the consumption of resources. Compressing the data is the best way to 

store the same data by encoding the required information using fewer bits than an 

unencoded representation would use. The application areas of compression 

include the ZIP file format, mp3’s, video compression and picture compression.  

In addition to storage spaces, it is important to limit the data to be transferred in 

optimal values. Since the transmission bandwidths of the controllers of the 

manipulators are not broadband transferring the commands representing the joint 

values will take a long time. Instead of widening the bandwidth, shortening the 

length of the data to be transferred is a better solution. Here another approach 

should be considered which is transferring the data in smaller sections instead of 

sending whole data at once. But this approach has an important outcome which 

decreases the efficiency by increasing the data traffic. The standard protocol of 
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data transfer is to send the generated discrete displacement commands for each 

axis at every control interval before machining starts. Then throughout the 

machining process, main host sends the required motion commands to the 

controllers of each joint, and at the same time the positional feedback is collected 

from these controllers as in Figure 5.1. When the data is sent in small pieces 

during the machining process, the data transfer traffic in the host increases, which 

brings the requirement to use hardware with higher performance. In addition, a 

new protocol should be configured between the computer and host in order to 

define when data transfer starts and ends. 

 

 

Figure 5.1 Basic data transfer scheme. 

 

Compression only works when both the sender and receiver of the information 

understand the encoding scheme which means a decoder is required to obtain the 

original data. Need for a decoder means extra operations and processing times so 

that a trade-off study among degree of compression, the amount of distortion 

introduced and the computational resources required compressing and 

uncompressing the data should be performed. 

Compressing the data can be divided into two main kinds, which are lossless and 

lossy compression. Lossless compression guarantees that what is compressed can 

be recovered without any data loss. Lossy data compression provides a way to 

obtain the best accuracy for a given amount of compression. Lossless data 
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compression is often used for symbolic data such as spreadsheets, text, executable 

programs, where losslessness is essential when changing even a single bit cannot 

be tolerated. Lossy compression uses the limitations of the human or machines 

sensory system. For visual and audio data, some loss of quality can be tolerated 

without losing the essential nature of the data by removing the non-audible sounds 

and the details that eye cannot distinguish. 

In this chapter, numerical methods for compressing and decompressing the data 

will be examined. Differentiation, Fourier transformations, segmentation, high 

order polynomial fitting methods will be used for compression, integration, 

inverse Fourier transformations and interpolators will be used for decompression. 

The methods will be examined in details and performance of each method will be 

compared. 

5.2 Encoding and Storage Spaces 

The motors driving the joints are step motors and the input of these motors should 

be pulses. Since the joint values generated by inverse kinematic solutions are in 

terms of radians they should be converted into pulses by encoders. At their most 

basic level, encoders transform mechanical rotary motion into a sequence of 

electrical pulses. In order to obtain better accuracy, high resolution encoder with 

30000 rpm has been used in calculations. The conversion of radians into pulse is 

handled by Eqn. (5.1) 

πθ /4 ⋅⋅= rp  (5.1)
Where p is pulse, r is the rpm of the encoder and θ is the joint value in radians. All 

of the methods in this thesis use the pulse values. 

But the usage of an encoder brings an error because the joint value is rounded in 

order to obtain a pulse numbers. The joint values with encoder usage and the error 

of the trajectory is plotted in Figure 5.2. As seen from the plot, the maximum error 

of the trajectory is 1 mm. 
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Figure 5.2 Joint angles and trajectory error with encoder usage. 

 

The storage space required is measured by bits or bytes that a value allocates in 

the hardware. In order to calculate the space requirement, the range of the data, r, 

to be stored is calculated by the minimum and maximum number of the data. 

Then the bit requirement, n, is found by the Eqn. (5.2). 
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5.3 Direct Storage 

In direct storage mode, the raw data is stored as discrete data which is sampled in 

equal time intervals, kT and used directly. The number of the data used is 

proportional to the sampling rate. The size of the data is maximized in this 

method. Although no additional operation is required, the storage space needed is 

too high.  
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5.4 Finite Differences 

In order to save from the storage size, finite difference methods could be used for 

storing the data. Instead of storing the raw data, the differences of the joint values 

and the initial value can be stored. With this method, the compression is done 

without losing any information which is called lossless compression. Differences 

are calculated according to Eqn. (5.3) 
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nnn

 
(5.3a)

(5.3b)

(5.3c)
where nq represents the nth order difference. Since the main idea of Eqn. (5.3) is 

to take the difference of two consequent values, the order of this method is up to 

the user. Expanding the Eqn. (5.3b), the basics of higher order difference can be 

understood better. Inserting Eqn. (5.3a) into Eqn. (5.3b) for qk and qk-1, Eqn (5.4) 

is obtained. 

)2()1(2)(2 −+−−=∇ kqkqkqq  (5.4)
So the nth order difference can be computed by both Eqn. (5.3) and Eqn. (5.4). But 

first method is preferred in this study for generalizing the solution. 

With finite difference method, the number of the data stored decreases one by one 

according to the order and the range of the difference is smaller than the original 

data. By reducing the range, allocated memory for each data is decreased in bits. 

But it should be investigated if the data storage requirements are reduced or not. 

For that purpose, a Monte Carlo Simulation has been done. 1000 trajectories have 

been generated randomly and the inverse kinematic operations are applied to find 

the joint values. Once the joint values are obtained, the finite differences up to 7th 

order are calculated and the storage requirements of each differentiation are 

found. As seen on Figure 5.3, usage of differentiation of the orders higher than 3 

does not reduce the required storage space. After 4th order the data starts to be 

positive and negative consequently so the range widens which results in increase 

of the storage space. 
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Figure 5.3 Allocated Space vs. order of the finite difference. 

5.4.1 Finite Composition Techniques 

In finite difference method, the increments of each value was calculated and 

stored. Bu in order to reconstruct the original data, high order differences should 

be composed together. This can be handled by reversing the difference process as 

seen in Eqn. (5.5).  

qkqkq ∇+−= )1()( (5.5)
But this calculation requires an initial value q(k-1), according to the level of the 

difference some of the initial values should be stored. For higher order 

differences, an approach shown in Eqn. (5.6) can be followed. 

)()2()1(2)( 2 kqkqkqkq ∇+−−−=  (5.6)
Solution can be generalized replacing Eqn. (5.3a) into the equation and it takes the 

form of Eqn. (5.7). 

)()1()1()( 2 kqkqkqkq ∇+−∇+−=  (5.7)
By using the equation above, all of original data can be reconstructed by storing 

only the initial values of the original data and the lowest differences. Table 5.1 

simulates the application of this method and shows which initial values should be 

stored for different levels of differences. 
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Table 5.1 Finite difference scheme 

 
q q 2q 3q 

k q(k) θ`(k)=Δθ(k) 2q =(q) 3q =(2q) 

0 q(0) q(0) q(0) q(0) 

1 q(1) q(1) - q(0) (q(0)) (q(0)) 

2 q(2) q(2)  - q(1) (q(1))  - ( q(0)) 2(q(0)) 

3 q(3) q(3)  - q(2) (q(2))  - ( q(1)) 2(q(1)) - 2(q(0)) 

… … … … 

K q(K) q(K)  - q(K-1) (q(K))  - (q(K-1)) 2(q(K))  - 2(q(K-1)) 

5.5 Simulation of Finite Difference Techniques 

The simulation will be done for a trajectory of planer mechanism with two joints 

as illustrated in Figure 5.4. The direct transformation methods mentioned up to 

now will be examined for a square trajectory generated with Eqn. (5.8).  
wtjejp .100100500 +−=  (5.8) 

 

 

 

Figure 5.4 Planar two link mechanism 
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The trajectory and its segments are illustrated in Figure 5.5. The trajectory is 

generated as a complex number for simplicity. The real part of the trajectory 

represents the X-coordinates of the trajectory and the imaginary part represents 

the Y-coordinates. The trajectory is found for the interval of [0 2π] divided into 

1000 pieces defined with wt. 

 

 
Figure 5.5 Trajectory and the joint angles. 

 

 

The inverse kinematic solution for this example is performed with an analytical 

solution. The joint angles in radians found by Eqn. (5.9) as derived by Melamud 
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where θ1 and θ2 are the joint angles, l1 and l2 are the link lengths and x and y are 

the position of the end effector as illustrated in Figure 5.4 . 

5.5.1 Finite Difference Methods 

The finite difference method mentioned in Section 5.4 will be implemented here 

and storage spaces will be compared. As proven with Figure 5.3, finite differences 

up to 3rd order are investigated. For the joint values plotted in Figure 5.5, after 

encoding the angle values and computing the finite difference the allocated space 

for each method for total of 100 data points are listed in Table 5.2 

Table 5.2 Number of bits required for each joint variable. 

Order q1 (bytes) q2 (bytes)
Total Storage 

(bytes) 
q1 (bit per each 

value) 
q2 (bit per 

each value) 
0 1625 1750 3375 13 14 
1 879 879 1758 7 7 
2 752 877 1629 7 6 
3 752 877 1629 7 6 

5.6 Data Compression Techniques 

A simple characterization of data compression is that it involves transforming a 

string of characters in some representation into a new string which contains the 

same information but whose length is as small as possible. As a result of inverse 

kinematics and finite difference methods, data files that represent the joint values 

at each sampling time are generated. These files are stored with fixed length 

coding, in which each value has the same value. By using a binary code which 

encodes each character as a binary string or codeword, it is possible to encode the 

file using as few bits as possible and compresses it as much as possible. The 

basics of binary coding is to use shorter codeword for frequently used letters 

while using longer code words for least used letters or simply with variable-length 

code words. 
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The main approaches to text compression are dictionary and statistical based. 

Dictionary based methods replace those consecutive characters with a pointer to 

an entry in a dictionary.  Statistical based compression calculates the frequencies 

of word occurrences and builds a statistical table for later conversion.  By using 

this table, each character can be converted to specified code, and therefore storage 

space is decreased. 

As shown in previous section, the storage requirements of original data have been 

significantly reduced by finite difference techniques. In this section, the finite 

differences are tried to be compressed more by applying lossless compression 

algorithms. For this aim, the mostly used and important methods named, Huffman 

Coding and Arithmetic Coding are introduced. 

5.6.1 Huffman Coding 

Huffman codes are being widely used as a very efficient technique for 

compressing data. In 1952, Huffman, D. [70], has developed an optimum method 

of coding an ensemble of messages consisting of a finite number of members and 

constructed a minimum-redundancy code which minimizes the average number of 

coding digits per message. In his study, the symbol or sequence of symbols 

associated with a given message is named as the message code, the transmitted 

messages is named as message ensemble and the mutual agreement between the 

transmitter and the receiver  about the code is called as ensemble code. He 

formalized the requirements of an ensemble code by representing the symbols by 

digits. For N messages in an ensemble, he represented the average message length 

by Eqn. (5.10), where P(i) is the probability of ith message and L(i) is the number 

of coding digits assigned to it.  

∑
=

=
N

i
av iLiPL

1
)()(  

(5.10)

 As Huffman said, for an optimum code, the length of a given message code can 

never be less than the length of a more probable message code. Therefore, he 
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assumed that the messages in the ensemble have been ordered in a fashion as in 

Eqn. (5.11) 

)()1()1()1( NPNPPP ≥−≥≥≥ L (5.11)
and in addition for an optimum code, Eqn. (5.12) holds. 

)()1()1()1( NLNLLL ≤−≤≤≤ L (5.12)
For ease of development of the optimum coding procedure, he restricted to the 

problem of binary coding. According to the rules of coding, the two least probable 

messages should have equal lengths of codes and there should only two of the 

messages with coded length L(N) which are identical except for their last digits. 

The final digits of these two codes will be one of the two binary digits, 0 and 1. 

These two messages are assigned to the Nth and (N-1)th messages since it is not 

known whether or not other codes of Length L(N) exists at this point. Once this 

has been done, these two messages are equivalent to a single composite message. 

Its code will be the common prefixes of order L(N) -1 of these two messages. Its 

probability will be the sum of the probabilities of the two messages from which it 

was created. The ensemble containing this composite message in the place of its 

two messages will be called the first auxiliary message ensemble. 

This newly created ensemble contains one less message than the original. Its 

members should be rearranged if necessary so that the messages are again ordered 

according to their probabilities. It may be considered exactly as the original 

ensemble was. The codes for each of the two least probable messages in the new 

ensemble are required to be identical except in their final digits; 0 and 1 are 

assigned as these digits, one for each of the two messages. New auxiliary 

ensemble contains one less message than the preceding ensemble each time and 

each auxiliary ensemble represents the original ensemble with full use made of the 

accumulated necessary coding requirements. This procedure is repeated until the 

number of members in the last auxiliary message ensemble is reduced to two and 

in each step; binary digits are assigned to each of these composite messages. And 

the coding is completed by combining those messages to form a single composite 

message with probability unity. 
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The steps mentioned before allow a simple algorithm to fulfill them. What is 

important in the algorithm is to satisfy Eqn. (5.12). The algorithm developed by 

Pigeon [57] proceeds iteratively. At the start, all symbols are given a tree node 

that is the root of its own subtree. Besides the symbol and its probability, the node 

contains pointers to a right and a left child. They are initialized to null, 

symbolized here by Ψ. All the roots are put in a list L. Eqn. (5.12) asks for the two 

symbols with lowest probability to have codes of the same length. Removing the 

two roots having the smallest probabilities from L; let them be a and b, a new root 

c having probability P(a) + P(b) and having children a and b is created. Then c is 

added to L which causes a and b to share a common prefix, the code for c. So the 

number of tree in L decreases by one. Repeating this until only one tree is left in 

L, the tree-structured code satisfying the Huffman rules is completed. The 

algorithm which builds the Huffman tree in pseudo-code by Pigeon [57] is shown 

in Table 5.3. 

Table 5.3 Pseudo code for Huffman Coding [57]. 

L = {(al, P(al), Ψ, Ψ), (a2, P(a2), Ψ, Ψ) . . . . . (an, P(an),Ψ, Ψ)} 

While |L| > 1 

{ 

a = minp L 

L= L-{a} 

b = minp L 

L=L-{b} 

c = (Ψ, P(a) + P(b), b, a) 

L=L U {c} 

} 

 
The codes are obtained by walking down the path from the root to the leaves and 

appending a 0 while going down to the left or a 1 while going down to the right. 

Once leaf is reached, the end of the code is determined and the code that has been 

accumulated as a bit string is copied in an array indexed by the symbol in the leaf 

reached. 
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The encoding process is straightforward. The bit string contained in the table is 

emitted, at the address indexed by the symbol. Decoding is just a bit more 

complicated. Since the length of the code that is about to read is not known, one 

has to walk the tree as bits are read one by one until a leaf which will correspond 

to the decoded symbol is reached [57]. 

5.6.2 Arithmetic Coding 

Arithmetic coding is method of generating variable-length codes which is useful 

when dealing with sources with small alphabets, and alphabets with highly 

skewed probabilities [57]. The length of an arithmetic code, instead of being fixed 

relative to the number of symbols being encoded, depends on the statistical 

frequency with which the source produces each symbol from its alphabet [43]. 

As shown by Sayood [57], it is more efficient to generate codewords for groups or 

sequences instead of each symbol but it is impractical with Huffman codes since it 

causes an exponential growth in the size of the codebook. Arithmetic coding 

technique handles this situation by assigning codewords to particular sequences 

without having to generate codes for all sequences of that length. 

Arithmetic coding, codes one data symbol at a time and assigns to each symbol a 

real-valued number of bits and coded messages. Then maps the coded messages to 

real numbers in the interval [0,1). The code value, v, of a compressed data 

sequence is the real number with fractional digits equal to the sequence's symbols. 

The sequences are converted to code values by simply adding "0." to the 

beginning of a coded sequence and then interpreting the result as a number in 

base-D notation, where D is the number of symbols in the coded sequence 

alphabet [6]. As shown in Figure 5.6, if a coding method generates the sequence 

of bits 0011000101100, then the code value, v, is  
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Figure 5.6 Code Mapping in Arithmetic Coding. 

 

This construction creates a convenient mapping between infinite sequences of 

symbols from a D-symbol alphabet and real numbers in the interval [0, 1), where 

any data sequence can be represented by a real number and vice versa [58]. 

5.6.2.1 Encoding Process 

Fundamentally, the arithmetic encoding process consists of creating a sequence of 

nested intervals in the form Φ k(S) = [αk, βk), k = 0, 1 . . . . . N, where S is the 

source data sequence, αk, βk are real numbers such that 0 ≤ αk ≤ αk+1, and  

βk+1 ≤ βk ≤ 1. For a simpler way to describe arithmetic coding we represent 

intervals in the form |b, l>, where b is called the base or starting point of the 

interval, and 1 is the length of the interval. The relationship between the 

traditional and the new interval notation is in Eqn. (5.13) when b=α and l=β-α 

),[,| βα=〉lb  (5.13)
And finally the intervals used in arithmetic coding are defined by the set of 

recursive equations in Eqn. (5.14) where k = 1, 2, …, N. 
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The final task in arithmetic encoding is to define a code value v(S) that will 

represent data sequence S. However, the code value cannot be provided to the 

decoder as a pure real number. It must be stored or transmitted, using a 

conventional number representation. The process to find the best binary 

representation is quite simple and best shown by induction. The main idea is that 

for relatively large intervals the optimal value can be found find by testing a few 
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binary sequences, and as the interval lengths are halved, the number of sequences 

to be tested must double, increasing the number of bits by 1. 

5.6.2.2 Decoding Process 

In arithmetic coding, the decoded sequence is determined solely by the code value 

0 of the compressed sequence. For that reason, the decoded sequence is 

represented as in Eqn. (5.15)  

{ })(ˆ,),(ˆ),(ˆ)(ˆ 21 vsvsvsvS NK=  (5.15)

The decoding process recovers the data symbols in the same sequence that they 

were coded. Formally, to find the numerical solution, a sequence of normalized 

code values {vl, v2, . . ., vn} are defined. Starting with vl = v, sk is found 

sequentially from vk and then vk+l is computed from sk and vk. The recursion 

formulas are shown in Eqn. (5.16) to (5.18). 
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(5.16)

(5.17)

(5.18)

 

5.6.3 Algorithm 

The algorithms of Huffman and Arithmetic Coding Methods are quite similar. The 

encoded data obtained by inverse kinematic operations are handled joint by joint. 

Firstly the patterns and their occurrence probabilities are computed. The number 

of occurrences of each point is calculated and probability model is formed. The 

next steps differ from each other. 
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5.6.3.1 Huffman Coding 

In the Huffman Method, Huffman dictionary is built by the help of the 

huffmandict method of MATLAB. The huffmandict function generates a Huffman 

code dictionary corresponding to a source with a known probability model. The 

generated dictionary is a two-column cell array in which the first column lists the 

distinct signal values from symbols and the second column lists the corresponding 

Huffman codewords. In the second column, each Huffman codeword is 

represented as a numeric row vector. Then finally, signal is encoded using the 

Huffman codes described by the code dictionary with huffmanenco method of 

MATLAB. At the end of the encoding, the compressed data and the dictionary are 

stored in order to decode and generate the trajectory. 

The compressed file obtained by Huffman algorithm consists of three parts: one is 

the compressed source file and the other two are the mapping table between the 

symbols in the source file and the related codes in the compressed file. The nature 

of Huffman coding algorithm decides the constancy of the source file’s 

compression ratio, so the algorithm’s compression ratio is directly related to the 

size of Huffman table, especially when the source file is small, the compressed 

file can be even bigger than the source file due to Huffman table’s cost [69]. 

The total memory requirement of this method is found by the storages of both the 

compressed code and the dictionary. Since the compressed code is binary, the 

allocated storage, bc, is the length of the data. For the storage space of Huffman 

dictionary the allocated spaces of symbols table and the related codes in the 

compressed file should be calculated. The space of each symbol in table, bs can be 

calculated by Eqn. (5.2) and the space of their counter parts, bd can be calculated 

by the length of the data since the representations are stored as binary number. By 

adding these storages as in Eqn. (5.19), the bit requirements of each element of 

dictionary are calculated. 

dst bbb +=  (5.19)
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Since bt is the bit value of each item in the Huffman dictionary, total space 

required for Huffman Coding can be computed by Eqn. (5.20) where bh is the 

storage space of Huffman Coding method and n is number of symbols in table. 

cth bnbb +=  (5.20)

Decoding operation of this method is handled with the huffmandeco method of 

MATLAB from the code and the dictionary. And decoding is completely lossless 

as illustrated in Figure 5.7. 

 
Figure 5.7 Decoding by Huffman Coding Method and approximation error. 

5.6.3.2 Arithmetic Coding 

In arithmetic Coding, once the probability model is formed, a symbol table which 

contains the information of the sequence of symbols is created. Then using the 

probability model and the table, sequence of symbols are encoded using arithenco 

method of MATLAB and the binary arithmetic code is generated.  
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Since the encoder generates a binary code, storage space of the code is simply the 

length of the code. The storage requirement of the symbol table is found by Eqn. 

(5.20) where ba is the storage space of Arithmetic Coding method, n is number of 

data to be compressed and lst is the storage space of the created symbol table. 

stta lnbb +=  (5.21)

Decoding operation of this method is handled with the arithdeco method of 

MATLAB from the code and the length of probability model. And decoding is 

completely lossless as illustrated in Figure 5.8  

 

 
Figure 5.8 Decoding by Arithmetic Coding Method and approximation error. 
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5.7 Simulation of Compression Techniques 

In this section, the effect of Huffman Coding and Arithmetic Coding onto storage 

space has been investigated on the kinematic model used in Section 5.5. The 

coding of encoded data and its differences up to 3rd order has been done. Table 5.4 

tabulates the storage space of Huffman Coding according to the order of the 

difference where CC is the storage space of the compressed code, ST is the 

storage space of symbol table, HC is the storage space of the Huffman code 

representing the symbol table and TS represents the total storage spaces for each 

joint and for the whole system. The allocated storage space for uncompressed data 

is tabulated in the last column. 

Table 5.4 Number of bytes required for Huffman Coding of nth order finite difference. 

q1 q2 TS 

(q1+q2) 

Raw 

Data CC ST HC TS 
(q1) 

CC ST HC TS 
(q2) Order 

1 679 124 71 874 753 222 139 1114 1988 1758 
2 217 12 6 235 237 19 10 266 501 1629 
3 303 18 12 333 318 26 17 361 694 1629 

 

Table 5.5 tabulates the storage space of Arithmetic Coding according to the order 

of the finite difference where CC represents the storage space of compressed code, 

ST represents symbol table and TS represents the total storage spaces for each 

joint and for the whole system. Last column shows the allocated storage space for 

uncompressed data. 

Table 5.5 Number of bytes required for Arithmetic Coding of nth order finite difference. 

q1 q2 
TS (q1+q2) Raw 

Data Order CC ST TS(q1) CC ST TS(q1) 

1 677 153 830 751 272 1023 1853 1758 
2 193 19 212 217 27 244 456 1629 
3 289 29 318 305 37 342 660 1629 
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Checking the results of the compression techniques, it is obvious that there is an 

important saving at the storage spaces with Huffman and Arithmetic Coding for 

the 2nd order difference of the encoding data. Recalling that raw data needs 3375 

bytes to store, saving the 2nd order difference needs 1629 bytes and compressing 

with Arithmetic Coding, storage requirement drops to 456 bytes which is %13 of 

the original space. 

5.8 Closure 

In this chapter command generation via direct data storage methods are studied. 

Lossless compression techniques such as finite difference methods, Huffman 

Coding and Arithmetic Coding have been discussed and their effect on storage 

spaces has been compared with a simulation on a planar 2 link manipulator. 

The effect of finite differences onto storage space has been generalized with a 

Monte-Carlo simulation and according to the results; best compression has been 

obtained by 3rd order difference and orders higher than 4 does not supply any 

compression because of the change of sign in the respective data points. 

In addition to finite differences, Huffman Coding and Arithmetic Coding methods 

have been discussed. The theory of these methods suggests that both methods 

offer at least %80 compression. Comparing both methods, the Arithmetic Coding 

has better compression ratios for sources with small alphabets, and alphabets with 

highly skewed probabilities since it generates codewords for groups or sequences 

instead of each symbol. 

Finally comparing the simulation results, it has been observed that 2nd order and 

3rd order differences requires same storage spaces which is the half of the raw 

data. By coding these differences it has been seen that storage spaces reduces to 

%33 of the space required by difference method. And finally it has been observed 

that Arithmetic Compression method has better compression than Huffman 

Coding as expected.  
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CHAPTER 6  

 

POLYNOMIAL BASED COMMAND GENERATION 

 

This chapter presents polynomials based techniques to generate position 

commands in joint space.  Polynomials are extremely useful mathematical tools as 

they can approximate almost any continuous functions to the desired accuracy. 

Furthermore, they can be quickly evaluated on a digital control system with 

modest resources. Hence, the polynomial functions become a natural candidate to 

represent/model the command (reference) signals in the target domain. Before 

elaborating the advanced modeling techniques, some background information on 

polynomials will be given. 

6.1 Polynomial Techniques 

Consider a polynomial of the nth order approximating a command function (i.e. 

angular position of a particular joint) in the (time) interval [xmin, xmax]:  

n
n

n
n xaxaxaaxy ++++= −
−

1
110)( K  (6.1)

Assuming that the sufficient number of samples {(x0, y0), (x1, y1), (x2, y2), ..., (xm , 

ym)} are available, one can determine the (unknown) polynomial coefficients ai  (i 

∈ {0, 1,…, n}) to represent the given data (trajectory) accurately.  If m ≥ n, the 

coefficients can be determined in the sense of least squares of errors. That is, with 

the samples at hand, (m+1) equations can be obtained: 

AXY ⋅= (6.2)
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Coefficient vector A in (6.2) can be conveniently solved via pseudo-inverse 

method [52]: 

YXXXA TT 1)( −=  (6.4)

Notice that the exponential functions xi (i ∈ {0, 1,…, n}) in (6.1) can be regarded 

as the basis functions of polynomials. Unfortunately, this natural choice of basis 

functions does not generally yield an efficient representation since the basis 

functions being employed are not mutually orthogonal:   

0
max

min

≠∫
x

x

ji dxxx  (6.5)

where (i, j ∈ {0, 1,…, n} | i ≠ j ).  From the stand point of functional 

approximation, it is far better to use orthogonal functional forms as the basis by 

taking into account the nature of the problem being studied. It is critical to note 

that the basis functions selected must be easily computed while they converge 

rapidly to a solution with arbitrary accuracy [60]. 

In this study, Chebyshev, Legendre, and Bernstein polynomials, which have the 

potential to yield more efficient representation of the command sequence, are 

investigated. In fact, the Chebyshev- and Legendre polynomials implicitly employ 

cosine function as basis function while Bernstein-Bezier polynomials use 

binomials.  
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6.1.1 Chebyshev Polynomials 

The Chebyshev polynomials, which are defined in a recursive fashion, are a 

sequence of orthogonal polynomials that are related to deMoivre's formula.  

Chebyshev polynomials are best used for non-periodic data in a finite interval. 

There is no limit in the application area and can be used for any problem. 

Chebyshev polynomials normally applied to solve problems on the interval x א [-

1, 1] but domain can be extended to a different interval [a, b] by a change of 

variables. Chebyshev polynomials are important in approximation theory because 

the roots of the Chebyshev polynomials of the first kind, which are also called 

Chebyshev nodes, are used as nodes in polynomial interpolation. The resulting 

interpolation polynomial minimizes the problem of Runge's phenomenon and 

provides an approximation that is close to the polynomial of best approximation to 

a continuous function under the maximum norm. Another reason this polynomial 

is nearly optimal is that, for functions with rapidly converging power series, if the 

series is cut off after some term, the total error arising from the cutoff is close to 

the first term after the cutoff. That is, the first term after the cutoff dominates all 

later terms. 

The Chebyshev polynomials illustrated in Figure 6.1 can be expressed via the 

expansion of Eqn. (6.2)  

∑
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=
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)()(
n

nn xTaxy  (6.2)

and computed via a recurrence relation: 

)1()()(2)( 11 ≥−⋅= −+ nxTxTxxT nnn  (6.3)
where T0 = 1 and T1(x) = x. As mentioned before, there are several types of basis 

functions but as Boyd [60] discussed, the best choice is to use ordinary functions 

like power series.  
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Figure 6.1 First few Chebyshev Polynomial in domain -1<x<1. 

 

Even the basis functions of Chebyshev polynomials seem different from those of 

Fourier; it is a disguise of basis function of Fourier series. With a change of 

variable, the trigonometric functions of Fourier series turn into different basis 

functions by the mapping z = cos(θ): 

)cos()( θnzTn =  (6.4)
With the change of variable, it can be said that series in Eqn. (6.5) and Eqn. (6.6) 

are equivalent under the transformation: 
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In other words, the coefficients of f(z) as a Chebyshev series are identical with the 

Fourier cosine coefficients of f(cos(θ)). Even if f(z) is not periodic in z, the 

function f(cos(θ)) is periodic in θ with a period of 2π. As varying θ over all real θ, 
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the periodicity of cos(θ) implies that z oscillates between -1 to 1. Since f(cos(θ)) is 

periodic, its Fourier series must have exponential convergence. The exponential 

convergence of the Fourier series implies equally fast convergence of the 

Chebyshev series since the sums are term by term identical. 

6.1.2 Legendre Polynomials 

Legendre polynomials are an alternative to the Chebyshev polynomials for non-

periodic problems in the interval of [-1, 1]. When the computational domain is 

split into a large number of sub domains with a separate spectral series on each 

sub domain, the formulation is greatly simplified by using the basis functions of 

Legendre instead of those of the Chebyshev. The convergence theory for 

Legendre polynomials is virtually identical with that of Chebyshev polynomials 

but for a given arbitrary function f(x), the maximum point wise error of a 

Legendre series (truncated after N terms), is worse than that of its counterpart by a 

factor of the square root of N. In contrast to the Chebyshev polynomials, which 

oscillate uniformly over the interval x � [-1; 1] (as obvious from the relation 

Tn(cos(θ))≡cos(nθ)), the Legendre polynomials are nonuniform with small 

amplitude over most of the interval except in extremely narrow boundary layers 

where the polynomial rises to one or falls to minus one [60]. 

Just like Chebyshev, the Legendre polynomials can be expressed as Eqn. (6.7) 
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and computed via a recurrence relation as 

)1()()()12()()1( 11 ≥⋅−⋅⋅+=+ −+ nxPnxPxnxPn nnn  (6.8)

where P0 = 1 and P1(x) = x as illustrated in Figure 6.2  
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Figure 6.2 First few Legendre Polynomials in domain -1<x<1. 

 

6.1.3 Bernstein Polynomials 

Bernstein polynomials are the linear combination of Bernstein basis polynomials 

that are binomials.  Bernstein polynomials are restricted to the interval x [1 ,0] א 

and they are always positive. They are used in generation of the Bézier curves 

which are widely adapted in computer graphics literature. The (n+1) Bernstein 

basis polynomials of degree n are defined as  
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where ቀ݊
݅ ቁ is a binomial coefficient. The Bernstein polynomials illustrated in 

Figure 6.3 is expressed as a linear combination of Bernstein basis polynomials as 

in Eqn. (6.10) 
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Figure 6.3 Bernstein polynomials up to fourth level. 

 

For computational efficiency, Bernstein polynomials can be defined recursively as 

in Eqn. (6.11). The kth nth-degree Bernstein polynomial is defined by blending 

together two Bernstein polynomials of degree n − 1. 

)()()1()( 1,11,, xBxxBxxB nknknk −−− ⋅+⋅−=  (6.11)

6.1.4 Computation of Polynomials 

Polynomials in (6.1) are not the most convenient form for evaluation.  If the last 

term in (6.1) are considered, it will take (n+1) (floating point) multiplications to 

compute that term alone while n multiplications is required for the next (lower 

order) one.  If one sums up the whole series, (n+1)n/2 multiplications as well as n 

additions are needed to compute y(x) [61]. However, if the polynomial is 

represented as the number of multiplications could be reduced to n while the 

number of additions remains intact.  Since the time required for a computer to 

carry out a multiplication is usually an order of magnitude greater than that 
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required for addition, Eqn. (6.12) is a considerably more efficient way to evaluate 

y(x). Eqn. (6.12) is sometimes called the "factored form" of the polynomial and 

can be immediately written down for any polynomial. This simple technique of 

factorization is commonly known as the Horner’s method.  

( ){ }xxxaaaaxy nn LL +++= −110)( , (6.12)
Note that there is another way of representing the polynomial in terms of factors 

as in Eqn. (6.13) in which the last n coefficients of the polynomial have been 

replaced by n roots of the polynomial. 

)())()(()( 321 nn pxpxpxpxaxy −−−−= L  (6.13)
But in this approach, the roots (pn) are directly not related to the original 

coefficients in a simple way.  Furthermore, some of the roots of (6.10) could be 

complex conjugate that might slightly complicate the evaluation of the polynomial 

[60].  

6.2 Evaluation of Error Tolerance Band 

In order to fit a polynomial to command sequence for a particular joint, one needs 

to specify the corresponding error tolerance band. It is obvious that the allowed 

deviation along the tool’s trajectory must be taken into consideration to compute 

these bands. Not surprisingly, as the error tolerance bands get tighter, the order of 

the polynomials increases and more terms are needed to represent angular position 

of a target joint without exceeding the given tolerance band. Note that, for large 

command sequences, a single polynomial fit is not efficient. Therefore, the data 

must be divided into subsections. In this section, a dynamic error (tolerance band) 

calculation algorithm is introduced using the inverse kinematic model described in 

Chapter 3. 

As mentioned before, the required accuracy of the kinematic operations is given 

as positional accuracy of the tool at specified time.  In order to find the effect of 

each joint to the total error, the tolerances of the tool should be distributed to the 
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joints. For this distribution a Monte Carlo simulation is done for each point in the 

trajectory. The points are processed one by one and multiple points are generated 

randomly in a circle with radius equal to the required tolerance as seen in Figure 

6.4 in which r is the tolerance of the kinematic model and a is the angle generated 

randomly. 

The new points generated by Eqn.(6.14) represents the acceptable positions when 

the deflection of the tool tip is in the boundary defined with tolerance values. 

Once the coordinates of the deflected positions are found, the joint values for each 

point in the error band can be calculated. The solution is same with the method 

described in Chapter 3 but this time the iterations are done for the points 

generated in the Monte Carlo simulation by using the joint values in correct 

position as initial guess. By solving iteratively for each point in the tolerance radii 

the set of solution for that position is obtained.  
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Figure 6.4 Error band of the tool tip. 
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Corresponding errors of each joint are found by subtracting the joint values for the 

error band from the original values. The maximum and minimum values or the 

ranges defined by standard deviation (σ) are calculated and the error bands of the 

joints are generated. And finally either maximum and minimum error values 

obtained by the simulation is stored or a standard deviation in predefined 

confidence interval are found and stored in order to obtain the error range of the 

joint at that specific coordinate.  

6.2.1 Case Study 

In the case study, error tolerance band of the planar robot in Section 5.5 has been 

defined by means of analytical solution in order to simulate the usage of the 

method in analytical solution. The joint values can be written by adding error 

values which are assumed to be too small. This assumption makes the solution 

easier by calculating the cosine of a small angle as one and sine of a small angle 

as itself. After these assumptions, the equation is reduced to a format as in Eqn. 

(6.15a) where x and y are the coordinate of the end effector, a, b, c and are 

coefficients of the errors ߝଵ,  ଶ as given in Eqn. (6.16) and s(q) is sin(q) and c(q) isߝ

cos(q) by definition. 
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The next step is to solve Eqns. (6.15a) and (6.15b) in order to find ε1 and ε2. For 

this operation, firstly Eqn. (6.15a) is solved for ߝଵ in terms of ε2 as in Eqn. (6.17). 
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Then, the expression for ε1 is substituted into Eqn. (6.15b). This results in a single 

equation involving only ε2 as shown with Eqn. (6.18). For more complex 

functions, fsolve function of MATLAB can be used instead. This solution method 

is effective when the exact analytical solution of the 2-D manipulator is known 

and it can be reduced into a form described in Eqn. (6.15a). 

1

111
2 b

dax −−
=

εε  
(6.18)   

By solving analytically for each point in the tolerance radii, the set of solution for 

that position is obtained and the maximum and minimum values or the ranges 

defined by standard deviation can be calculated. In order to demonstrate the error 

bands mentioned, the kinematic model used in case study of Chapter 5 and the 

trajectory illustrated in Figure 5.5 has been used. Once the procedure has been 

followed throughout the trajectory, the acceptable error bands of each joint are 

computed and plotted in Figure 6.5.  

 

 

Figure 6.5 Error Bands of joints throughout the trajectory in Figure 5.5. 
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As seen from the error bands illustrated in Figure 6.5, using bands formed by 

standard deviations significantly reduces the tolerances of each joint. So error 

bands obtained by maximum and minimum values are used in this study.  

6.3 Polynomial Based Command Generation 

In the previous sections the computation of the polynomial coefficients and the 

method of defining the error bands of joints throughout the trajectory have been 

described. This section is dedicated to the optimization of the number of 

coefficients to be used. 

6.3.1 Coefficient Optimization 

Since the main aim is to reduce the size of the data to be stored, one has to 

optimize the number of coefficients to be used in order to save from space. This 

can be done in two ways: i) segmenting the data into manageable parts ii) use 

minimum number of coefficients. The segmentation process has been discussed in 

Chapter 4, Position Generation in Joint Space.  

What is meant with optimization is simply increasing the number of polynomial 

coefficients until the fitted joint values lays within the error bands for the 

corresponding segment. Iterations start with two coefficients for each joint in each 

segment. The data is fitted by Eqns. (6.2), (6.7) or (6.10) depending on the 

polynomial method, then the whole fitted data is checked whether is inside of the 

error envelope and the number of data that is inside the envelope for 

corresponding number of coefficients is stored to a control array. Iteration for 

each segment continues until all of the data lies within the envelope. If the whole 

values are in the envelope, the coefficients are stored for that section but if the 

data does not converge, algorithm searches the number of coefficient which 

supplies the best fit from the control array then the consequent coefficients are 
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calculated and stored. This procedure continues until all sections of each joint are 

finished then the storage requirements are calculated. 

6.4 Implementation of Coefficients 

Recalling that Chebyshev and Legendre Polynomials work in an interval of [-1, 1] 

and Bernstein Polynomials work in an interval of [0, 1], coefficients are defined in 

polynomial spaces. In order to use these coefficients in time-domain a 

transformation is needed. The transformation is simply changing of variable as 

shown in Figure 6.6.  

 

 

Figure 6.6 Polynomial space to time domain 

 

According to the figure the transformation is done with the Eqn. (6.19) where kn-1 

and kn are the boundary values of the time domain, k is the specific point in time 

domain, a and b are the boundaries of the polynomial interval and c is the 

representation of k in polynomial space.  
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When the transformation is required for Chebyshev or Legendre Polynomial the 

[a, b] set is replaced with [-1, 1] and for Bernstein Polynomial [a, b] set is 

replaced with [0, 1]. 



 98

6.5 Case Study 

In this section, the methods described up to now are simulated on a 2D 

manipulator with two links that is used in previous section. So the kinematic 

model, trajectory and joint values are used directly. Knowing the joint values 

satisfying the trajectory are calculated, the error bands of the joints are generated. 

By following the steps in dynamic error calculation section, the error bands are 

generated which can be seen in Figure 6.5. Then the joint data is fitted into 

polynomials mentioned above. Iterative solution described in Section 6.3.1 is 

applied to both joints and the coefficients representing the Chebyshev, Legendre 

and Bernstein polynomials are computed. The number of coefficients used for 

each method is tabulated in Table 6.1. 

Table 6.1 Number of coefficients used. 

  Chebyshev Legendre Bernstein 
  q1 q2 q1 q2 q1 q2 
Segment 1 7 6 6 6 6 6 
Segment 2 7 7 7 6 7 6 
Segment 3 7 6 7 6 7 6 
Segment 4 7 6 7 7 7 7 

 

By using the coefficients found, the new joint values are recalculated and the 

accuracy of the polynomial fitting is checked. As seen in Figure 6.7, the errors by 

polynomial fitting are within the error band.  And the last step is to check whether 

the required accuracy of 0.1 mm is obtained by generating the trajectory with 

fitted data. The result can be seen by the plot in Figure 6.8. After checking the 

error of the joint values, last check should be done for the deviations in the 

trajectory. Figure 6.8 shows the errors obtained in the trajectory which all off then 

are below the designated tolerance of 0.05 mm. 
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Figure 6.7 Error of the joints by polynomial fitting. 

 

 
Figure 6.8 Error in trajectories generated with fitted data. 
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Since the set of coefficients representing the joint values are obtained the 

allocated spaces are calculated by finding the required space for each coefficient 

and multiplying with the number of coefficient to be stored. The total space 

allocated with each method is given in Table 6.2. 

Table 6.2 Required space allocation of each joint by polynomial techniques. 

  q1 (bits) q2 (bits)
Raw Data 1625 1750
Chebyshev 53 50
Legendre 51 50
Bernstein 41 38

6.6 Closure 

In this chapter, dynamic error calculation and fitting of the data with polynomials 

such as Chebyshev, Legendre and Bernstein methods are investigated. Analytic 

and numerical dynamic error calculation methods have been developed in order to 

distribute the tolerance of the tool tip into the joint spaces. This distribution is 

handled with a Monte Carlo simulation. An error area has been generated for each 

point through trajectory and the inverse kinematic solution of each point in the 

area are computed and the error bands of joint values are generated. 

The other subject was the comparison of the polynomial fitting methods. 

Comparing the approximations of the methods they supply almost the same 

accuracy with using same amount of coefficients. But the difference is quite 

noticeable when the allocated storage spaces are compared. In this category, it has 

been observed that the coefficients of Bernstein polynomial need minimum space 

where coefficients of Chebyshev and Legendre polynomials need almost the same 

space which is slightly larger than Bernstein Polynomials.  
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CHAPTER 7  

 

COMMAND GENERATION VIA TRANSFORMATIONS 

7.1 Fourier Analysis  

Most of the signals contain various frequency components. Rapidly changing 

signals contains high-frequency components where slowly changing ones contains 

low-frequency. Fourier analysis is a mathematical tool that is used to analyze the 

frequency characteristic of periodic and nonperiodic signals. The main usage areas 

of Fourier analysis are signal and image processing, filtering, convolution, 

frequency analysis, and power spectrum estimation. Fourier analysis provides 

insight into the periodicities in data by representing the data using a linear 

combination of sinusoidal components with different frequencies. The amplitude 

and phase of each sinusoidal component in the sum determines the relative 

contribution of that frequency component to the entire signal [2]. 

Fourier analysis contains four similar definitions which are, continuous-time 

Fourier series, continuous-time Fourier transform, discrete-time Fourier 

transform, and discrete Fourier series. Fourier series deals with the periodic data 

where Fourier transforms deals with nonperiodic data. Since this study will be 

based on discrete and nonperiodic data, Discrete Fourier transforms are utilized.  

7.1.1 Fourier Transform 

MATLAB performs Fourier analysis by computing the discrete Fourier transform 

(DFT) using the fast Fourier transform (FFT) algorithms, which improve 
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computational performance. For an input sequence x(n) of length N. The DFT of 

this sequence is given for 1  ݇  ܰ by the vector X(k), as in Eqn. (7.1): 

e N
nki

N

n
nxkX )1)(1(2

1
)()(

−
−−

=
∑= π

 (7.1)

The MATLAB function fft will be used for Fourier transforms because of its 

speed and discrete nature. The length of X(k) is the same as the length of x(n). 

The result of the fft gives the Fourier coefficients as an array of complex numbers 

in the form of Eqn. (7.2).  

)()()( kbikakX ⋅+=  (7.2)
 
For a discrete input sequence, there is an upper limit on the frequency at which 

you can get meaningful information about the periodicities in the data. The 

highest frequency that can be uniquely fit to the data is called the Nyquist 

frequency. After the Nyquist frequency, there is an even symmetry and the rest of 

the data is complex conjugate of the data between 0 and the Nyquist frequency. 

7.1.2 Inverse Fourier Transform 

Inverse Fourier transform is used for finding the data from the frequencies. The 

inverse Fourier transform of a transformed sequence for 1  ݊  ܰ is given by 

Eqn. (7.3): 
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When the original data, x(n), is real, the synthesis equation can be rewritten by the 

help of the sine and cosine functions for  1  ݊  ܰ with real coefficients [43]. 
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Where, a(k)=real[X(k)],    b(k)=-imag[X(k)] 
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7.1.3 Fourier via Least Square Method 

In addition to the classical approach described in the previous section, obtaining 

Fourier coefficients and reconstructing via spectral method will be investigated in 

this section. In this method, the aim is to represent a data vector as a weighted 

sum of basis functions which are tabulated in a matrix, by evaluating each 

functions at the sample times, with weight vector x as shown in Eqn. (7.6). The 

matrix is generated by the basis functions of Fourier transformation, which are 

sine and cosine functions at different frequency values. The basis functions are 

computed at each frequency and the matrix is formed by Eqn. (7.5). 
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For a N point transform, the computation of coefficients are handled by Eqn. (7.6) 

proposed by Boyd [60], 
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where the wi are the Gaussian quadrature weights multiplied by normalization 

factors, i(x) are the basis functions and ai is the Fourier coefficients. The 

normalization factors are chosen so that the square matrix above is the inverse of 

the square matrix below, i. e., such that ai = 1, all other coefficients zero when  

f(x) =  i(x). The reconstruction of the original data can be handled by summation 

of the interpolant as proposed by Boyd [60], 
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Figure 7.3 Results of Discrete Fourier Approximation 

 

 

 
Figure 7.4 Results of Fourier Approximation by Linear Interpolation. 
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7.1.5 Inverse Fourier Transform via Look-up Tables 

As seen in Eqn. (7.4), the coefficients of the Fourier transformed data are useless 

without sine and cosine functions. Knowing that the basic controllers used in 

manipulators are not capable of calculating the sine and cosine functions, the data 

should be sent in a way that manipulators can process. One way of this is to store 

the sine and cosine values of the frequencies in a look-up table so that the 

controller will find the values of the sine and cosine of the required frequencies 

from the table. For generation of the look up tables, built up function of 

MATLAB, named fixpt_look1_func_approx will be used. This function optimizes 

the breakpoints of a lookup table over a specified range. The lookup table satisfies 

the maximum acceptable error, maximum number of points, and spacing 

requirements given by the optional parameters. The breakpoints refer to the x 

values of the lookup table. The command generates the x and y coordinates of the 

lookup table. Spacing of the lookup table is selected as power-of-two because of 

the efficiency in data storage and requirement of less effort in calculation. 

Although uneven spacing requires fewest data points than power-of-two spacing, 

the implementation for the evenly spaced and the power of two cases does not 

need the breakpoints in the generated code. This reduces their data ROM 

requirements by half [43].  

Lookup tables for cosine and sine functions will be generated independently from 

each other but will be convoluted later. But one more operation should be 

completed just before sending the input to the controller. Recalling equation 6.4, 

Fourier coefficients are multiplied with the sinus and cosines of the frequencies. 

So the frequencies should be found before sending it to the controller. Once the 

frequencies are found, the controller will take lookup tables, Fourier coefficients 

and the frequencies. Controller will just match the frequencies with the lookup 

table. 



 108

7.2 Wavelet Transformations 

7.2.1 Wavelet Analysis 

Previous section was dedicated to Fourier transformations; in this section another 

transformation technique will be used. Wavelet analysis is a set of tools and 

techniques for analyzing the signals. Wavelet analysis differs from Fourier 

analysis in many ways. The main difference is the capability of revealing aspects 

of data like trends, breakdown points, discontinuities in higher derivatives, and 

self-similarity. The other reason is that the Wavelet transformations localize a 

function both in space and scaling. Wavelet analysis represents a windowing 

technique with variable-sized regions. Long time intervals are used for obtaining 

precise low-frequency information whereas shorter intervals are used for high-

frequency information. Wavelet analysis does not use a time-frequency region, 

but rather a time-scale region [43]. The transform is based on a wavelet matrix, 

which can be computed more quickly than the analogous Fourier matrix [44]. 

Wavelet analysis can often compress or de-noise a signal without appreciable 

degradation. 

A wavelet is a waveform of effectively limited duration that has an average value 

of zero. Wavelet analysis breaks up a signal into shifted and scaled versions of the 

original or mother wavelet. A family of wavelets can be constructed from a 

function ψ(x), sometimes known as a "mother wavelet," which is confined in a 

finite interval. "Daughter wavelets" ψ (a, b) (x) are formed by translation (b) and 

contraction (a) as in Eqn. (7.8). 
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The continuous wavelet transform (CWT) in Eqn. (7.9) is defined as the sum over 

all time of the signal multiplied by scaled, shifted versions of the wavelet 

function: 
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Figure 7.6 Commonly used wavelet functions [71]. 

 

Figure 7.6 illustrates some of the commonly used wavelet functions which are (a) 

Haar (b) Daubechies4 (c) Coiflet1 (d) Symlet2 (e) Meyer (f) Morlet (g) Mexican 

Hat. Haar wavelet is one of the oldest and simplest wavelet. Therefore, any 

discussion of wavelets starts with the Haar wavelet. Daubechies wavelets are the 

most popular wavelets. They represent the foundations of wavelet signal 

processing and are used in numerous applications. The Haar, Daubechies, Symlets 

and Coiflets are compactly supported orthogonal wavelets. These wavelets along 

with Meyer wavelets are capable of perfect reconstruction. The Meyer, Morlet and 

Mexican Hat wavelets are symmetric in shape. The wavelets are chosen based on 

their shape and their ability to analyze the signal in a particular application [71]. 

7.2.3 Continuous Wavelet Transform 

The continuous wavelet transform (CWT) is the sum over all time of the signal 

multiplied by scaled, shifted versions of the wavelet. This process produces 
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7.2.5 Wavelet Reconstruction 

Up to now, decomposition of the signals has been studied. This section is 

dedicated to the process of assembling the components found in decomposition 

without loss of information. Reconstruction of the components will be handled by 

inverse discrete wavelet transform (IDWT). The wavelet reconstruction process 

consists of up sampling and filtering. Up sampling is the process of lengthening a 

signal component by inserting zeros between samples. 

 

 

Figure 7.10 Wavelet decomposition. 

7.2.6 Algorithm 

The algorithm of compressing the data by wavelet transformations will be handled 

with the built up functions of MATLAB. The compression features of a given 
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representation for the signal [43]. The algorithm is divided into three main pieces 

which are, decomposing the original data, thresholding the decomposed signal, 

extraction of the approximation and detail coefficients and reconstruction of the 

decomposed signal. 
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whether it lies in the error band generated for each joint. If the approximated 

signal does not lie in the error band, threshold percentage is lowered and the 

iterations continue until the reconstructed signal lies in the error band. Once the 

required accuracy is obtained, the approximation and detail coefficients are 

extracted by appcoef and detcoef functions of MATLAB respectively. Since the 

exact values of approximation coefficients and all detail coefficients known, the 

storage space of each coefficient can be calculated. The pseudo code of this 

algorithm is given in Table 7.1. 

Table 7.1 Pseudo code of Wavelet Transformation. 

[C,L] = wavedec(x,N,`waveletname`) %decompose original signal x at level N 

while maxerror>tol 

  comprsC=compress(C,threshold) % threshold signal C by zeroing small coefficients 

  X= waverec(cmprsC,L,' waveletname '); %reconstruct signal 

  maxerror=max(x-X); 

  threshold=threshold-1; % percentage of data to be omitted 

end 

cAn= appcoef(cmprsC, L, `waveletname`, N) % extract approximation coef. 

For i=1:N 

cDn= detcoef(cmprsC, L, `waveletname`, i) % extract detail coef. 

end 

7.3 Simulation 

The simulation will be done for the planar robot with two used in Simulation 

section of Chapter 5 but the tolerance of the system has been increased to 0.1 mm 

for this case.  
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7.3.1 Fourier with Least Square Method 

Here the trajectory will be reconstructed by calculation of Fourier coefficients by 

Least Square Method. The data has been divided into sections and the signals in 

these sections are partitioned. The number of coefficients used while 

reconstruction and their allocated storage spaces are shown in Table 7.2.  

Table 7.2 Fourier coefficients found by LSM. 

FFT by LSM Bit per coefficient 
q1 q2 q1 q2 

Section 1 25 25 8 8 
Section 2 19 19 8 9 
Section 3 19 35 9 9 
Section 4 15 16 9 10 

 

Reconstructing the coefficients with Eqn. (7.6) results with a maximum error of 

100 μm in the trajectory as plotted in Figure 7.12. Again in the same figure, the 

maximum and minimum errors that is acceptable for the specified tolerance is 

shown and it can be seen that the errors coming from Fourier transformation is 

acceptable.  

 

The allocated space allocation of the Fourier coefficients can be calculated from 

Table 7.2. For the linear interpolated part, 5 data points should be stored since 

signal is segmented into 4 pieces and space for each data point is known from the 

raw data storage calculation. As a result 343 bytes of space is required as 

tabulated in Table 7.3. So a compression of %90 has been obtained with this 

method. 

Table 7.3 Allocated storage space with reconstruct with LSM. 

q1 q2 total bytes 
Raw data 1625 1750 3375 
Fourier 166 177 343 
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Figure 7.12 Joint approximations and trajectory error. 
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Table 7.4 Wavelet coefficients and their storage requirements. 

Bit per coefficient # of coefficients Total storage 
q1 q2 q1 q2 q1 q2 

cA2 14 15 252 252 441 473 
cD2 7 7 252 252 221 221 
cD1 6 6 501 501 376 376 

Total 27 16 1005 1005 1038 1070 
 
But as mentioned in the algorithm section, coefficients that are smaller than the 

specified threshold are omitted and they are equal to zero. The number of zero 

coefficients for each joint is 740. 

Reconstructing the coefficients results with a maximum error of 50 μm in the 

trajectory as plotted in Figure 7.13. Again in the same figure, the maximum and 

minimum errors that is acceptable for the specified tolerance is shown and it can 

be seen that the errors coming from Fourier transformation is acceptable.  

 

 
Figure 7.13 Joint approximations and trajectory error by wavelet transform. 
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7.4 Closure 

In this chapter data compression with transformations has been discussed. The 

theory of Fourier and wavelet transformations has been given, transformation and 

reconstruction methods has been described. A data set representing the trajectory 

of a planar 2 link robot has been transformed both with Fourier and Wavelet 

transformations and results have been discussed. 

Fourier transformation (FT) analyzes the frequency characteristic of periodic and 

nonperiodic signals but best results are obtained with periodic data. The basis 

functions of FT are cosine and sine functions. Transformation is time dependent 

and can be defined in frequency domain, whereas Wavelet transformation (WT) 

uses orthogonal basis of piecewise constant functions, constructed by dilation and 

translations. The basis functions of WT are wavelets and there are infinite set of 

basic functions. 

In addition, in order to avoid the large errors obtained by discrete Fourier 

transformation of a non-periodic signal, a new phenomenon has been introduced 

which is partitioning the original signal by linearly interpolating the data and 

obtain two signals which consists of a linear signal and a periodic signal. Hence 

the reconstruction of the periodic part results with better convergence. 

Comparing the simulation results of the Fourier and Wavelet transformation, it 

has been observed that Fourier transformations via least square method allocate 

smaller spaces than wavelet transformations but presenting larger errors in the 

trajectory.  
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CHAPTER 8  

 

CASE STUDIES 

8.1 Introduction 

Up to now the methodologies of trajectory generation, inverse kinematics, 

numerical methods and various advanced transform techniques have been given. 

This chapter is dedicated to the comparison of the effectiveness of the methods by 

simulation a trajectory with two different manipulators: PUMA 560 and Stanford 

Manipulator. The trajectory represents template of a roundabout traffic sign as 

illustrated in Figure 4.11. So that the manipulators are programmed to cut out the 

template. The inverse kinematic problem was solved with a kinematic tolerance of 

10-5 for each manipulator and the error bands are generated with a kinematic 

tolerance of 10-2. It is aimed to keep maximum deviation of the end-effector less 

than 100 µm. For the encoding operations of the JSD, it is assumed that an 

absolute encoder with 30000 RPM has been used. 

The chapter is organized such that; firstly the manipulators and the trajectory that 

is to be followed are introduced. After that, the inverse kinematic solutions of 

each case are computed and the commands for joint variables are obtained. Once 

the joint values are found, the methods mentioned up to now are applied to 

compress the commands. In the simulation section, the key information about the 

results such as number of data to be stored, required storage space for each joint 

variable, maximum error of the trajectory and joints are given. The results of the 

methods are compared and discussed at the final section of the chapter. 
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8.2 Manipulators  

Puma 560 is one of the most used robot arm in robotics area. It has 6 degrees of 

freedom with 6 revolute joints. The schematic view has been given in Fig. 4.11 in 

chapter 4 and the D-H parameters of Puma 560 are given in Table 7.1. 

Stanford Manipulator is a commonly used robotic system with six degrees of 

freedom. It consists of 5 revolute joints and one prismatic joint. The Denavit 

Hartenberg table generated by Hydzik [35] is shown in table 7.2 and the 

schematic view of the manipulator is given in Figure 3.9.  

Table 8.1 Denavit Hartenberg parameters of Stanford Manipulator (* is variable). 

a αi θi di(mm) type 
0 -90 0* 412 R 
0 90 0* 154 R 
0 0 -90 0* P 
0 -90 0* 0 R 
0 90 0* 0 R 
0 0 0* 263 R 

8.3 Trajectory and Inverse Kinematic Solutions 

Trajectory of a roundabout traffic signal is selected for the study. Knowing that 

the dimensions of the manipulators are almost same, the position and rotation of 

local frames w.r.t global coordinate system are entered identical for both 

manipulators in order to compare the performances of the manipulators. 

8.3.1 Roundabout Signal 

The first application simulated is the making up the template of a roundabout 

traffic signal as illustrated in Figure 4.11 The template has standard dimensions 

and the NC code listing for this task is given in Appendix A. The displacement of 
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the local frame is [452.1mm, 150.05mm, 231.8mm] and the rotation about x, y, z 

axes are [30° 120° 30°].  Trajectory obtained by interpolation and transformation 

is plotted in Figure 8.1. The number of commands generated along this trajectory 

is 1628 with a sampling time of 0.05 sec. The motion in each axis is plotted in 

Figure 8.2. The joint space data (JSD) obtained by inverse kinematic solution of 

this trajectory is plotted in Figure 8.3. 

 

 

 
Figure 8.1 Trajectory of Puma 560 for roundabout. 
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Figure 8.2 Distributed motion in each axis on Puma 560 for Roundabout signal. 
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(b) JSD of wrist joints 

Figure 8.3 Joint values of Puma 560 for Roundabout Signal. 

 
(a) JSD of first three joints for Stanford Manipulator. 
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(b) JSD of wrist joints for Stanford Manipulator. 

Figure 8.4 Joint values of Stanford Manipulator for Roundabout Signal. 
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Higher order difference of the JSD will be investigated up to the 3rd level. In 

tabulation of results, 1st order difference will be represented with FOD, 2nd order 

difference with SOD and 3rd order difference with TOD. For the case of Huffman 

and Arithmetic Coding techniques, the compression of 2nd and 3rd order finite 

differences has been investigated. Checking on the characteristics of raw JSD and 

its 1st order finite difference, the data has non-repetitive characteristics. This 

behavior of data results in large symbol tables which requires high storage spaces. 

So the compression of raw data and 1st order difference has not been taken into 

account. The representation of Huffman coding in the tables will be as SOD/HC, 

TOD/HC 3rd for the compression of 2nd order difference and 3rd order difference 

respectively. In the same fashion, Arithmetic coding will be represented with 

SOD/AC 2nd and TOD/AC 3rd It should be noted that, the sharp transitions in the 

wrist angles has not been modeled in this study, so higher order differences and 

Coding techniques has been evaluated section by section as in Polynomial Fitting 

and Advanced Transformation techniques. 

The first simulations have been done using the proposed segmentation technique. 

Although Chebyshev Polynomial, Legendre Polynomial and Wavelet 

Transformations has satisfied the required accuracy, Bernstein Polynomial and 

Fourier transformation techniques has failed to converge within the error bands at 

sections representing the motion through full circles of the outer frame. The error 

of the end-effector is illustrated in Figure 8.5 with proposed segmentation 

technique. So for the sake of better accuracy of the end-effecter trajectory, 

problematic sections are segmented into smaller pieces by hand. The newly 

inserted sections have been illustrated in Figure 8.6. For clarity in the plot, 

sections are showed on X-axis and only the problematic sections have been 

shown. Upper plot in Figure 8.6 shows the sections obtained from the NC Code 

blocks and the lower plot shows the additional sections. 
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(a) Maximum errors obtained by Bernstein Polynomial. 

 
(b) Maximum errors obtained by Fourier Transformation. 

Figure 8.5 Maximum errors via proposed segmentation technique. 
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Figure 8.6 Newly added sections. 
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end-effector trajectory. The memory requirement and number of commands 

generated by each method have been investigated both joint wise and for the 

whole system. 

8.4.1Puma 560 

8.4.1.1 Memory Requirement 

After the JSD of each joint has been encoded with several methods, the 

representation requirement and their storage requirements have been obtained. 

The number of commands generated for each method has been tabulated in Table 

8.2 where qi represents the joint number. According to the results, it is obvious 

that polynomial techniques reduced the representation requirement significantly 

whereas there has not been any significant reduction with transformation 

techniques. In addition the representation requirement of high order difference 

techniques is the same with the number of raw data as expected. 

Table 8.2 Representation Requirement for each Method. 

 
Representation Requirement for Each Method Compression 

ratio q1 q2 q3 q4 q5 q6 Total 
Raw 
Data 1628 1628 1628 1628 1628 1628 9768 N/A 

FOD 1628 1628 1628 1628 1628 1628 9768 N/A 
SOD 1628 1628 1628 1628 1628 1628 9768 N/A 
TOD 1628 1628 1628 1628 1628 1628 9768 N/A 
CP 247 260 249 272 315 360 1703 82,57% 
LP 248 259 249 273 333 332 1694 82,66% 
BP 248 260 250 274 290 292 1614 83,48% 
FT 1599 1595 1617 1605 1613 1597 9626 1,45% 
WT 1612 1580 1596 1612 1612 1612 9624 1,47% 

 

The memory requirements for each method have been tabulated in Table 8.3 

According to the results; it is obvious that storage requirements of polynomial 
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techniques are quite low w.r.t the storage requirement of raw data. Encoding with 

higher order differences has reduced the allocated space but using Huffman and 

Arithmetic Coding with these differences resulted with better compression. The 

best compression ratio obtained with Lossless Compression techniques is the 

Huffman Coding of 3rd order finite difference and Arithmetic Coding of same data 

is the second. Finally encoding JSD with Fourier transformation technique has 

provide very small compression values whereas it has been observed that Wavelet 

Transformations presents compression ratios around the ones obtained by lossless 

compression techniques. 

Table 8.3 Allocated Storage Spaces with each method. 

 
Store spaces (bytes) Compression 

ratio q1 q2 q3 q4 q5 q6 Total 
Raw Data 4274 4477 4477 4477 4477 4477 26659 N/A 

FOD 3187 3194 3397 3601 3194 3397 19970 25,09% 
SOD 2306 2319 2319 2930 2523 3133 15530 41,75% 
TOD 1626 1645 1442 2663 2052 2256 11684 56,17% 

SOD/HC 5151 5293 5443 4768 4448 4770 29873 112,06% 
TOD/HC 1283 1355 1249 1310 1228 1434 7859 70,52% 
SOD/AC 3760 3802 3936 3507 3366 3513 21884 17,91% 
TOD/AC 1380 1426 1383 1381 1410 1472 8452 68,30% 

CP 618 715 654 714 867 945 4513 83,07% 
LP 620 713 654 717 916 872 4492 83,15% 
BP 651 683 657 720 798 767 4276 83,96% 
FT 4198 3988 4043 4013 3831 4193 24266 8,98% 
WT 1746 1772 1849 2080 2131 2004 11582 56,56% 

8.4.1.2 Error Statistics 

In this part, the end-effector deviations throughout the trajectory generated after 

the decoding of the encoded data will be plotted. In addition, the RMS, minimum 

and maximum errors obtained in each axis will be tabulated. It should be noted 

that High order differences, Huffman Coding and Arithmetic Coding techniques 

are lossless compression techniques so decoded data obtained by these methods 

fits perfectly to the original trajectory.  
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The deviations presented by Chebyshev Polynomials are illustrated in Figure 8.7. 

The maximum deviation of end-effector with this method is 5.2 microns which is 

acceptable levels. As tabulated in Table 8.4, the errors of each axis fluctuate 

between -4.3 microns and 4.7 microns at X axis, between -4.4 microns and 5.2 

microns at Y axis, and between -3.7 microns and 3.9 microns at Z axis. In 

addition, the RMS values of axes are 1.2 µm, 2.1 microns and 1.8 µm for X, Y 

and Z axes respectively. 

 

 
Figure 8.7 End-effector deviation via Chebyshev Polynomial. 
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addition, the RMS values of axes are 1.1 micron, 2.1 microns and 1.8 micron for 

X, Y and Z axes respectively. 

 

 

Figure 8.8 End-effector deviation via Legendre Polynomial. 
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Figure 8.9 End-effector deviation via Bernstein Polynomial. 
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Figure 8.10 End-effector deviation via Fourier Transform. 
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Figure 8.11 End-effector deviation via Wavelet Transform. 
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8.4.2 Stanford Manipulator 

8.4.2.1 Memory Requirement 

After obtaining the JSD of each joint of Stanford Manipulator, all of the encoding 

techniques have been applied. The representation requirement of each method has 

been tabulated in Table 8.6. Polynomial techniques have significantly reduced the 

number of the commands. As expected high order differences kept the number of 

commands same and the advanced transformation techniques has reduced the 

representation requirement slightly. 

Table 8.6 Representation Requirement for each Method. 

 
Representation Requirement for Each Method Compression 

ratio q1 q2 q3 q4 q5 q6 Total 
Raw 
Data 1628 1628 1628 1628 1628 1628 9768 N/A 

FOD 1628 1628 1628 1628 1628 1628 9768 N/A 
SOD 1628 1628 1628 1628 1628 1628 9768 N/A 
TOD 1628 1628 1628 1628 1628 1628 9768 N/A 
CP 224 218 137 265 247 254 1345 86,23% 
LP 224 216 137 265 246 253 1341 86,27% 
BP 225 217 158 267 248 257 1372 85,95% 
FT 1561 1587 1213 1583 1607 1559 9110 6,74% 
WT 1596 1596 928 1612 1596 1433 8761 10,31% 

 

The memory requirements for each method have been tabulated in Table 8.7 

According to the results; it is obvious that storage requirements of commands 

generated by encoding have decreased in different levels. The best compression 

has been obtained by Polynomial techniques, Huffman Coding of the 3rd order 

difference and Arithmetic Coding of 3rd order finite difference. Following these 

techniques, Wavelet Transformation and 3rd order finite differences has slightly 

less compression levels than the previous ones but the storage requirements 

reduced to the half of the original with these methods as well. 
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Table 8.7 Allocated Storage Spaces with each method. 

 
Store spaces (bytes) Compression 

ratio q1 q2 q3 q4 q5 q6 Total 
Raw 
Data 4274 4477 5088 5088 4681 5088 28696 N/A 

FOD 3187 3194 3823 3620 3200 3620 20644 28,06% 
SOD 2103 2116 2764 2968 2332 2968 15251 46,85% 
TOD 1423 1238 1703 2517 1868 2517 11266 60,74% 

SOD/HC 4405 4445 5796 4654 3153 4203 26656 7,11% 
TOD/HC 1061 937 1208 1902 1180 1685 7973 72,22% 
SOD/AC 3302 3398 4191 3500 2557 3214 20162 29,74% 
TOD/AC 1208 1214 1456 1864 1371 1707 8820 69,26% 

CP 588 600 429 829 711 794 3951 86,23% 
LP 588 594 429 829 708 791 3939 86,27% 
BP 591 597 494 835 713 804 4034 85,94% 
FT 4098 4166 3185 4156 4018 3898 23521 18,03% 
WT 1901 2080 2285 2311 2080 2311 12968 54,81% 

8.4.2.2 Error Statistics 

In this part, the end-effector deviations throughout the trajectory generated after 

the decoding of the encoded data will be plotted. The RMS, minimum and 

maximum errors obtained in each axis will be tabulated in addition to the 

maximum and minimum joint errors. It should be noted that High order 

differences, Huffman Coding and Arithmetic Coding techniques are lossless 

compression techniques so decoded data obtained by these methods fits perfectly 

to the original trajectory.  

The deviations presented by Chebyshev Polynomials are illustrated in Figure 8.7. 

The maximum deviation of end-effector with this method is 64.6 microns which is 

below the required tolerance of 100 microns. As tabulated in Table 8.8, the errors 

of each axis fluctuate between -33.4 microns and 27 microns at X axis, between -

43.3 microns and 54.6 microns at Y axis, and between -19.4 microns and 19.2 

microns at Z axis. In addition, the RMS values of axes are 5 µm, 4.9 microns and 

3.6 µm for X, Y and Z axes respectively. The important difference between the 
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RMS values and maximum errors show that there have been local increases in the 

end-effector error. 

 

 
Figure 8.12 End-effector deviation via Chebyshev Polynomial. 

 

Unlike Puma 560, the results of the polynomial fitting techniques for JSD of 

Stanford Manipulator have resulted with almost identical error properties. As seen 

in Figure 8.13 which illustrates the deviations presented by Legendre 

Polynomials, the error values and their distribution matches with the error of 

Chebyshev Polynomials. The maximum deviation of end-effector with this 

method is 64.6 microns which is below the required tolerance of 100 microns. As 

tabulated in Table 8.8, the errors of each axis fluctuate between -33.3 microns and 

26.8 microns at X axis, between -43.5 microns and 54.5 microns at Y axis, and 

between -19.1 microns and 18.9 microns at Z axis. In addition, the RMS values of 

axes are 5 micron, 4.9 microns and 3.6 microns for X, Y and Z axes respectively. 
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The important difference between the RMS values and maximum errors show that 

there has been local increases in the end-effector error. 

 

 
Figure 8.13 End-effector deviation via Legendre Polynomial. 

 

The results obtained with Bernstein polynomials are similar to the previous 

polynomial techniques. The deviations of the end-effector have been plotted in 

Figure 8.14. The maximum deviation of end-effector with this method is 64.6 

microns which is below the required tolerance. As tabulated in Table 8.8, the 

errors of each axis fluctuate between -33.5 microns and 26.8 microns at X axis, 

between -43.2 microns and 54.5 microns at Y axis, and between -19.4 microns 

and 19.1 microns at Z axis. In addition, the RMS values of axes are 5 microns, 4.9 

microns and 3.6 microns for X, Y and Z axes respectively. The important 

difference between the RMS values and maximum errors show that there have 

been local increases in the end-effector error. 
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Figure 8.14 End-effector deviation via Bernstein Polynomial. 

 

Figure 8.15 illustrates the deviations presented by Fourier Transformations. The 

maximum deviation of end-effector with this method is 57.9 microns which is 

inside the required error bands. The errors of each axis fluctuate between -57.6 

microns and 50.9 microns at X axis, between -46.2 microns and 51.2 microns at Y 

axis, and between -32.3 microns and 38.2 microns at Z axis. In addition, the RMS 

values of axes are 7.1 microns, 5.2 microns and 3.9 microns for X, Y and Z axes 

respectively as tabulated in Table 8.8. These values are slightly higher than the 

ones obtained by the polynomial fitting techniques. 
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Figure 8.15 End-effector deviation via Fourier Transform. 

 

And finally, the deviations of the end-effector have been plotted in Figure 8.16. 

The errors found with this method are quite low w.r.t the other methods. The 

errors of each axis fluctuate between –8.4 microns and 10.1 microns at X axis, 

between -46.2 microns and 51.2 microns at Y axis, and between -7 microns and 

8.0 microns at Z axis. In addition, the RMS values of axes are 3.2 µm, 3.0 microns 

and 2.6 microns for X, Y and Z axes respectively as tabulated in Table 8.8.  

Table 8.8 RMS, Maximum and Minimum Errors for each axis. 

X Axis (µm) Y Axis (µm) Z Axis (µm) Trajectory
RMS Min Max RMS Min Max RMS Min Max Max 

CP 5.0 -33.4 27.0 4.9 -43.3 54.6 3.6 -19.4 19.2 64.6 
LP 5.0 -33.3 26.8 4.9 -43.5 54.5 3.6 -19.1 18.9 64.6 
BP 5.0 -33.5 26.8 4.9 -43.2 54.5 3.6 -19.4 19.1 64.6 
FT 7.1 -56.6 50.9 5.2 -46.2 51.2 3.9 -32.3 38.2 57.9 
WT 3.2 -8.4 10.1 3.0 -7.0 8.0 2.6 -6.1 7.4 10.7 
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Figure 8.16 End-effector deviation via Wavelet Transform. 

 

In order to cross check the results obtained by end-effector deviations, maximum 

and minimum errors in each joint has been calculated and tabulated in Table 8.9. 

As seen from table the errors are negligible but the errors of the prismatic joint is 

around 60 microns which is the source of the respectively high errors observed in 

the end-effector trajectory.  

Table 8.9 Maximum and minimum errors at joints. 

q1(µrad) q2(µrad) q3(µrad) q4(µrad) q5(µrad) q6(µrad) 
min max min max min max min max min max min max 

CP -4.3 7.7 -4.8 4.5 -64.2 51.0 -11.3 13.0 -4.3 3.6 -10.9 12.3 

LP -4.6 7.3 -6.7 6.4 -64.2 51.0 -11.3 13.0 -4.3 4.0 -18.2 21.4 

BP -4.6 7.3 -6.7 6.0 -64.2 51.0 -11.3 13.0 -4.3 3.6 -11.4 12.8 

FT -7.4 5.5 -3.6 3.8 -57.1 51.0 -9.7 9.7 -4.9 4.4 -7.8 8.6 

WT -2.2 3.2 -2.7 2.6 -8.9 10.6 -0.9 0.7 -3.9 3.2 -5.5 5.3 
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8.5 Closure 

In this chapter, simulations of a template of roundabout traffic sign have been 

done for the two mostly used manipulators, Puma 560 and Stanford Manipulator. 

The encoding techniques have been applied to each case and the results are 

discussed. 

Comparing the methods within each other, it has been observed that Polynomial 

Fitting methods have presented best compression according to the number of 

commands generated and required storage spaces. After Polynomial methods, it 

has been seen that Huffman Coding method of 3rd order finite has offered best 

compression of storage spaces. Although Wavelet transformation has not reduced 

the commands generated significantly, the allocated storage space has been 

reduced to the one half of the original data. Once the errors obtained by each 

method are compared, since Finite Difference Methods, Huffman Coding and 

Arithmetic coding methods are lossless compression techniques, they have 

decoded the data without presenting any error. But the number of the commands 

to be stored and the special functions that have been used for encoding and 

decoding of the Huffman Coding made the selection of these methods infeasible. 

Comparing the results of lossy compression techniques, Wavelet Transformations 

has provided the best convergence. Although the deviations in the trajectory for 

polynomial fitting methods and Fourier Transformations are slightly higher than 

Wavelet transformations they are close to each other and they are always within 

the acceptable limits. 

Comparing the results of methods according to the manipulator used, methods 

offered same compression ratios for both manipulators. But in the case of errors, it 

has been observed that differences have occurred according to the manipulator. 

Although the errors are within the desired levels, deviations of the end-effector 

have increased dramatically when modelling the trajectory with Stanford 

Manipulator. The main reason of this increase in the deviation is the prismatic 

joint used in the system as seen from Table 8.9. But it should be noted that the 
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errors in the prismatic joint which is around 60 microns has been compensated 

with errors in the other joints and the global error has been kept in desired levels. 

Evaluating the results of each method, selection of Polynomial fitting seems to be 

the best option because of the high compression of storage spaces, reduction of 

the commands generated and the errors presented. Comparing the results of each 

polynomial fitting technique, they have almost identical compression ratios, same 

number of commands and same error characteristics. But taking the problems 

encountered during the segmentation into account, and the wider application areas 

of Chebyshev Polynomials w.r.t Legendre Polynomials, it is best to use 

Chebyshev Polynomials for encoding and decoding of the Joint State Data 

obtained by inverse kinematic solution. 
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CHAPTER 9  

 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

In this study, a universal command generator algorithm for computer controlled 

mechanisms has been developed. The proposed algorithm can be employed for all 

kinds of mechanisms. The abilities of the command generator are path planning 

according to the NC code entered, trajectory generator, inverse kinematic solver, 

and command encoder which encodes the joint state data (JSD) into an encoded 

joint state file. The algorithm starts with the interpretation of the NC code defined 

by the user. NC code follows RS-274B conventions but some additions and 

simplification has been made in order to fulfill the required tasks. The most 

important addition to NC Code is the frame transformations which gives the user 

the freedom to define the trajectory in terms of linear and circular segments in a 

local coordinate frame. And in the NC code, this local frame can be located inside 

a global frame by specifying the Cartesian coordinates of its origin as well as 

orientation. The path planning of the tool has been managed off-line. The position 

of the tool in time depending on the sampling time has been generated via linear 

and circular interpolation methods. 

Once the position data in time has been produced, the consequent JSD are 

computed with an iterative numerical inverse kinematic solver which uses Denavit 

Hartenberg parameter tables. Denavit Hartenberg parameters have been selected 

because of the wide usage in the literature and the easiness of describing the 

geometric properties of the machine system at hand. In the inverse kinematic 

solutions, it is aimed that the tool travels tangent to the circular paths and along 
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the linear paths. In addition, it is assumed that the end-effector is always 

perpendicular to the working surface. In the inverse kinematic solution, the error 

bands representing envelope of each joint has been generated numerically. The 

error bands are used for checking the results of the encoded data weather the 

approximation errors of each joint leads an unwanted deviation of the end-

effector.  

Finally the command encoder uses the resulting data of inverse kinematic 

operations to produce efficient representation of positions and its higher order 

derivatives in joint space with minimum redundancy. In order to find the most 

efficient way to encode the data, lossless and lossy compression techniques have 

been utilized. The encoding methods considered within the context of this thesis 

are: 

• Lossless data compression of higher-order finite differences of JSD 

• Polynomial (Chebyshev, Legendre, Bernstein) representation of JSD 

• Fourier and Wavelet transforms of JSD 

Lossless data compression techniques have been divided into two sections: High 

order finite differences of JSD and compressing these differences via methods 

such as Huffman and Arithmetic coding. With the high order finite differences it 

is aimed to reduce the range of the data to be stored and with Coding techniques, 

commands are encoded further with defining these data using a binary code which 

uses shorter codewords for frequently used data and longer codewords for least 

used data. 

The polynomial representation of JSD has been investigated on three main 

polynomial types: Chebyshev, Legendre, and Bernstein Polynomials. The basis 

functions of each Polynomial have been generated in order to obtain the 

coefficients of each polynomial via pseudo-inverse method. Since the polynomials 

can approximate almost any continuous functions to the desired accuracy quickly 

with modest resources, they are the best candidate for modeling the signals in the 

target domain. 
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Finally Fourier and Wavelet transformations have been studied for compressing 

the data. The Fourier transformations of joint variables have been calculated in 

order to represent the data in frequency domain. The Fourier coefficients are 

handled with Least Square Methods. As mentioned before, the starting and the 

ending of the segments to be transformed are linearly interpolated in order to 

represent the data with a linear segment and a periodic segment which 

significantly reduces the approximation error. For the Wavelet transformation 

built up MATLAB functions has been used for transformations. Daubechies 

wavelets at second level have been used. After the transformation, smaller 

coefficients that are below a threshold have been omitted.  

After investigating all the compression methods, they have been applied to Puma 

560 and Stanford Manipulator on a predefined trajectory. The results of each 

method were tabulated in terms of; number of commands generated, the required 

storage space, maximum deviation of the trajectory, the root mean square, 

maximum and minimum values of the error in each axis and the maximum and 

minimum errors observed in decoded joint values.  

Comparing the methods, it has been observed that Polynomial Fitting methods 

have presented best compression according to the number of commands generated 

and required storage spaces and Huffman Coding of the 3rd order finite difference 

follows Polynomial methods. Checking on the results of deviations of the end-

effector, Lossless compression techniques decoded the JSD without any errors. 

But the number of the commands to be stored and the special functions that have 

been used for encoding and decoding of the Huffman Coding made the selection 

of these methods infeasible. Comparing the results of lossy compression 

techniques, Wavelet Transformations has provided the best convergence. 

Although the deviations in the trajectory for polynomial fitting methods and 

Fourier Transformations are slightly higher than Wavelet transformations they are 

close to each other and they are always within the acceptable limits. Taking all the 

input of the methods, encoding with polynomial fitting methods is selected to be 

the most efficient way to represent JSD. Comparing the polynomials, 
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approximation errors obtained by Bernstein Polynomials by the proposed 

sectioning method eliminated this method. The use of Chebyshev Polynomial is 

preferred instead of Legendre Polynomials because of the wider application areas 

of the Chebyshev Polynomials. 

9.2 Future work 

In addition to the scope of this thesis there are still many contributions that can be 

made. These can be classified as trajectory generation, optimization of the 

kinematic model, and additions to the encoding and decoding can be done. 

In trajectory generation part, the scope of the NC code can be increased. Helical, 

parabolic and complex motion types can be added. The interpretation capabilities 

of the NC Code can be increased by adding the desired tool orientations 

throughout the motion. Various interpolation methods such as spline, NURBS, 

space interpolators can be implemented. In this thesis, feedrate is selected to be 

constant throughout the machining, but in real life feedrate (velocity) of the tool 

can be changed dynamically. So a time scaling algorithm for dynamic velocity 

changes should be added. 

For the kinematic part, optimization of the initial joint configuration can be added. 

Performance of the manipulators can be increased by using modified Jacobian 

representations. Inverse kinematic solutions for redundant mechanisms can be 

implemented. As mentioned before, the tool is assumed to move perpendicular to 

the working plane all over the trajectory. The tool can be arranged to move 

perpendicular to the trajectory with several definitions such as desired tool 

orientation, type of the task in hand and gripper style. 

For compression of the data, additional encoding techniques can be investigated. 

In addition to that, it has been observed that currently used segmentation method 

fails while approximating the data with some of the methods. This situation forced 

the user to define the problematic sections with smaller sections. So a dynamic 

segmentation algorithm should be developed.  
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The last but the most important addition to this work is the command decoding as 

well as its (hardware) implementation. Due to the broad range of this thesis 

decoding algorithms has not been developed and left for future works. 
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APPENDIX A 

 

NC CODE OF ROUNDABOUT SIGN – CASE STUDY 

 
 

g100 u452.1 v-150.05 w231.8 a30 b120 c30 
g90 g0 z50 
x0 y-300 
z0 
g3 g17 j300 i0 f5000 
g0 z50 
x0 y-282.5  
z0 
g3 j282.5 i0 f5000 
g0 z50 
x0 y-230  
z0 
g2 x-226.506 y-39.939 r230 f6000 
g1 x-246.202 y-43.412 f3000 
x-193.128 y60.893 f6000 
g0 z50 
x-199.186 y115  
g0 z0 
g2 x78.665 y216.129 i199.186 j-115 
g1 x85.5005 y234.923 f3000 
x149.299 y136.807 f6000 
g0 z50 
x199.186 y115  
z0 
g2 x147.841 y-176.19 i-199.186 j-115 
g1 x160.697 y-191.511 f3000 
x43.829 y-197.7 f6000 
g0 z50 
x0 y-230  
z0 
g1 x0 y-175  
g2 x-172.341 y-30.388 r175 
g1 x-152.645 y-26.915 f3000 
x-193.128 y60.893 f6000 
g0 z50 
x-199.186 y115  
z0 
g1 x-151.554 y87.5  
g2 x59.854 y164.446 i151.554 j-87.5 
g1 x53.013 y145.652 f3000 
x149.299 y136.807 f6000 
g0 z50 
x199.186 y115  
z0 
g1 x151.554 y87.5  
g2 x112.488 y-134.058 i-151.554 j-87.5 
g1 x99.632 y-118.737 f3000 
x43.829 y-197.7 f6000 
 

  



 158

 

  

APPENDIX B 

 

NC CODE OF PUMA 560 FOR ROUNDABOUT SIGN 

 
 

g100 u452.1 v-150.05 w431.8 a10 b10 c0 
g90 g0 z50 
x0 y-300 
z0 
g3 g17 j300 i0 f5000 
g0 z50 
x0 y-282.5  
z0 
g3 j282.5 i0 f5000 
g0 z50 
x0 y-230  
z0 
g2 x-226.506 y-39.939 r230 f6000 
g1 x-246.202 y-43.412 f3000 
x-193.128 y60.893 f6000 
g0 z50 
x-199.186 y115  
g0 z0 
g2 x78.665 y216.129 i199.186 j-115 
g1 x85.5005 y234.923 f3000 
x149.299 y136.807 f6000 
g0 z50 
x199.186 y115  
z0 
g2 x147.841 y-176.19 i-199.186 j-115 
g1 x160.697 y-191.511 f3000 
x43.829 y-197.7 f6000 
g0 z50 
x0 y-230  
z0 
g1 x0 y-175  
g2 x-172.341 y-30.388 r175 
g1 x-152.645 y-26.915 f3000 
x-193.128 y60.893 f6000 
g0 z50 
x-199.186 y115  
z0 
g1 x-151.554 y87.5  
g2 x59.854 y164.446 i151.554 j-87.5 
g1 x53.013 y145.652 f3000 
x149.299 y136.807 f6000 
g0 z50 
x199.186 y115  
z0 
g1 x151.554 y87.5  
g2 x112.488 y-134.058 i-151.554 j-87.5 
g1 x99.632 y-118.737 f3000 
x43.829 y-197.7 f6000 
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APPENDIX C 

 

LIST OF FINDCENTER 

 

%Find the center of circle 

function centerCoord= findCenter(Xs, Ys, Xf, Yf, R, rotation) 

            centerCoord = zeros(1,2); 

            diffX=abs(Xf-Xs); diffY=abs(Yf-Ys); 

            rootA = Xs; rootB = Ys; rootD = Xf; rootE = Yf; 

            rootF = 2 * (rootA - rootD);            rootG = 2 * (rootB - rootE); 

            rootH = rootA*rootA + rootB*rootB - rootD*rootD - rootE*rootE; 

            rootK = rootA - rootH / rootF; 

            rootM = 1 + (rootG * rootG / (rootF * rootF)); 

            rootN = 2 * (rootK * rootG / rootF - rootB); 

            rootP = R * R - rootK * rootK - rootB * rootB; 

            Yc1 = (-rootN- sqrt(rootN*rootN+ 4*rootM*rootP)) / (2 * rootM); 

            Yc2 = (-rootN + sqrt(rootN*rootN + 4*rootM*rootP)) / (2*rootM); 

            rootO = rootA * rootA + ((rootB - Yc1) * (rootB - Yc1)) - R * R; 

            rootQ = rootA * rootA + ((rootB - Yc2) * (rootB - Yc2)) - R * R; 

            Xc1 = ((2 * rootA - sqrt((4 * rootA * rootA - 4 * rootO))) / (2)); 

            Xc2 = ((2 * rootA + sqrt((4 * rootA * rootA - 4 * rootQ))) / (2)); 

            if (R > 0 && rotation == 2);  centerCoord = [Xc2 Yc2]; 

            elseif R > 0 && rotation == 3; centerCoord = [Xc1 Yc1]; 

            elseif R < 0 && rotation == 2; centerCoord = [Xc1 Yc1]; 

            elseif R < 0 && rotation == 3; centerCoord = [Xc2 Yc2];              

            end 

            end 
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APPENDIX D 

 

ANALYTICAL SOLUTION OF PUMA MANIPULATOR 

 
( )),(2tan),(2tan 222

31 zyxxy pppdappa ++±−=θ

( )),(2tan),(2tan 22
4

2
3433 KdaKadaa −+±−=θ

 
 

Note that, θ1 and θ3 has two solutions for elbow up-down and left 

hand – right hand configuration of the manipulator. 

3232 θθθ −=    ),(2tan 555 csa=θ   ),(2tan 666 csa=θ
),(2tan 233323123231131231134 srcsrccrcrsra +−−+−=θ

 
Where si=sin(θi), ci=cos(θi), sij=sin(θi+ θj), ci=cos(θi+ θj), and 

113 cpspd yx +−=  

2

2
4

2
3

2
3

2
2

222

2a
ddaappp

K zyx −−−−++
=

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−−

++−−−
=

))(()(

),)(()(
2tan

11323432

32411323
23

yxz

yxz

pspccaapdsa

sadpspcpcaa
aθ

 ))()()(( 4233341231423412314135 csrsccscrsscccrs −−++−=

 )()()( 233323123231135 crssrscrc −++−=

 )()()( 4233141231421412314116 ssrcccssrcsccsrs ++−−−=

 [ ]
[ ] )()(

)(

5232354312315541231421

23155412314116

scsccrssscsccscr
scsccsccsrc

+−−−+
−−=

 

 
See Reference [1] for more detailed information.  



 161

 

  

APPENDIX E 

 

ANALYTICAL SOLUTION OF STANFORD MANIPULATOR 

 

( ))tan()tan(
2

2
22

2
1
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P
P

a
yxx

y

++±
−=θ  

Note that, θ1 has two solutions for elbow up-down configuration of the 

manipulator. 
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where si=sin(θi), ci=cos(θi) and, 

( )[ ] ( )6465416526465421 scccsscsssscccccnx +−−−=  
( )[ ] ( )6465416526465421 scccsccssssccccsny +−−−=  
( ) 652646542 cscsscccsnz −−−=  

( )[ ] ( )6465416526465421 scscsscsscscccccox +−−++−=  
( )[ ] ( )6465416526465421 scscsccssssccccsoy +−+++−=  

( ) 652646542 ssccssccsoz ++=  
( ) 541525421 ssscsscccax −+=  
( ) 541525421 ssccssccsay ++=        52542 ccscsaz +−=  

21321 dsdscPx −=  21321 dcdssPy +=  32dcPz =  

See Reference [72] for more detailed information. 
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APPENDIX F 

 

LISTING OF M FILES 

 
Main_file: 
Description: Main file that runs the algorithm. Calls the trajectory generation, inverse and 
forward kinematic, compression and error analysis algorithms and generates the required tables 
and plots 
Inputs: None. 
Outputs: Statistical information of the errors obtained from the compression techniques, plots. 
 
trajectory_generation: 
Description: Generates the trajectory of the motion from the given NC file w.r.t a predefined 
sampling rate and divides the motion into smaller sections. 
Inputs: Path of the NC file, sampling rate 
Outputs: Tool position in each sampling time, sections. 
 
kinematics: 
Description: Iterative inverse kinematic operations are handled. Joint state data throughout the 
pre-defined trajectory is computed according to a kinematic tolerance. Transformations from 
working frame to global frame are handled as well. The tolerances of the tool are distributed to the 
joints and error bands of the joints are formed. 
Inputs: Trajectory, sections, Denavit Hartenberg parameters, orientation and position of the 
working frame, initial joint estimation. 
Outputs: Joint state data, lower and upper error band of the joints. 
 
compress_tech: 
Description: Compression, fitting and transformation is handled in this function. Firstly it takes 
the joint configuration throughout the trajectory and encodes this data. Then applies finite 
difference techniques up to 3rd degree, Huffman and Arithmetic Compression, Polynomial Fitting 
and Advanced transformation techniques such as Fourier and Wavelet transformations, then 
checks if the fitted data lies in the error envelope and finally decodes the data in order to cross 
check the trajectory. In addition, the statistical information about the errors of the fitting is 
generated here. 
Inputs: Joint state data, error bands of joint state data, Trajectory, sections, Rpm of the encoder. 
Outputs: Storage requirements, estimated joint values, representation requirements and 
coefficients of each method. 
 
forward_kinematics: 
Description: Forward kinematic operations are handled. The tool position is obtained from the 
joint configuration. 
Inputs: Joint values, Denavit Hartenberg parameters. 
Outputs: Tool positions. 
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errors: 
Description: Computes the Rms, max and min of errors in each axis and tabulates the data. 
Inputs: Estimated trajectory, original trajectory, time. 
Outputs: Table containing the error statistics. 
 
 
ArcTan: 
Description: Finds the angle of the arc in circular motion. 
Inputs: Coordinates of the end-point of the circular motion and center of the circle. 
Outputs: Arc angle. 
 
bernfit: 
Description: Approximate data inside the error band by Bernstein polynomials for each section. 
Inputs: Encoded data, error envelope, sections. 
Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of 
coefficients in bits. 
 
bernpol: 
Description: Computes the basis functions of Bernstein Polynomial up for defined number of 
coefficient. 
Inputs: Length of the data, number of coefficients. 
Outputs: Basis functions. 
 
calc_radi  
Description: Computes the radius and the center of the circle when the incremental distances of 
the circle are given. 
Inputs: Coordinates of the starting point of the circle, incremental distances of the center, working 
plane 
Outputs: radius and the center of the circle 
 
calculateT: 
Description: Generates transformation matrix according to the standart Denavit Hartenberg 
Notation. 
Inputs: Denavit Hartenberg parameters. 
Outputs: Transformation Matrix. 
 
chebyfit: 
Description: Approximate data inside the error band by Chebyshev polynomials for each section. 
Inputs: Encoded data, error envelope, sections. 
Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of 
coefficients in bits. 
 
chebypol: 
Description: Computes the basis functions of Chebyshev Polynomial up for defined number of 
coefficient. 
Inputs: Length of the data, number of coefficients. 
Outputs: Basis functions. 
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Compress: 
Description: Thresholds signal by zeroing the lower percentage of coefficients and returns the 
thresholded signal. 
Inputs: Signal, percentage. 
Outputs: Thresholded signal.  
 
dacomp: 
Description: This function first takes nth order difference of the given vector (x) and then 
performs "arithmetic" data compression. 
Inputs: input sequence, order of difference. 
Outputs: compressed (binary) data, "symbol" table for compressed data, memory usage for 
different techniques (bytes). 
 
DH_tbls: 
Description: Generates the Denavit Hartenberg table from the parameters. 
Inputs: Denavit Hartenberg parameters, joint configuration. 
Outputs: Denavit Hartenberg Table. 
 
dhcomp: 
Description: This function first takes nth order difference of the given vector (x) and then 
performs "Huffman" data compression. 
Inputs: input sequence (all integers), order of difference. 
Outputs: compressed (binary) data, "dictionary" for compressed data 
 
enc: 
Description: Encodes joint state data and makes data ready to send to the controller of the 
manipulator. 
Inputs: Joint state data, encoder rpm. 
Outputs: Encoded joint data. 
 
enc_inv: 
Description: Decode the encoded data. 
Inputs: Encoded data, encoder rpm. 
Outputs: 
 
err_circ: 
Description: Assigns random points around the tool position at the error radius in order to obtain 
the limits of the acceptable tool positions 
Inputs: tool coordinate, error radius, number of trials. 
Outputs: new coordinates representing the error radius. 
 
error_band: 
Description: Routine for evaluation of error tolerance band. Assigns required number of random 
points in the error band. 
Inputs: Coordinate of the original point, number of points generated, error tolerance, HTM of the 
working frame. 
Outputs: Points in the error band.   
 
fft_lsm: 
Description: Take the Fourier transform of the encoded data using the least square method. The 
signal is partitioned into two parts which are linear and periodic part. Optimum number of Fourier 
coefficients is found while remaining inside the tolerance band. 
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Inputs: Encoded data, error band, sections. 
Outputs: Decoded data, number of Fourier coefficients, Fourier coefficients, storage requirement 
of coefficients. 
 
find_traj:  
Description: Calculate the error in the reconstructed trajectory. 
Inputs: Estimated joint data. 
Outputs: maximum error observed in the trajectory. 
 
findCenter: 
Description: Find the center of circle when the radius of the circle is given. 
Inputs: Coordinates of the starting and end points of the circle, radius and direction of rotation 
Outputs: Coordinates of the center of the circle. 
 
invkine: 
Description: Computes the joint values for the manipulator whose end effector homogeneous 
transform is given by T* within a defined kinematic tolerance. Iterative computations are done to 
find the increment in the joint variables. Solution is generally not unique, and depends on the 
initial guess q 
Inputs: D-H parameters, HTM of the destination, initial joint estimation, kinematic tolerance. 
Outputs: Joint configuration at the desired position 
 
ishomog: 
Description: Test if argument is a homogeneous transformation and returns true if input is a 4 × 4 
matrix. 
Inputs: Matrix 
Outputs: true or false 
 
jacob0: 
Description: Compute manipulator Jacobian in base coordinates and returns a Jacobian matrix for 
the manipulator pose q as expressed in the base coordinate frame. 
Inputs: Denavit-Hartenberg parameters, joint configuration 
Outputs: Jacobian Matrix in base coordinates 
 
jacobn : 
Description: Compute manipulator Jacobian in end-effector coordinates returns a Jacobian matrix 
for the manipulator pose q as expressed in the end-effector coordinate frame. 
Inputs: Denavit-Hartenberg parameters, joint configuration 
Outputs: Jacobian Matrix in end-effector frame. 
 
legendfit: 
Description: Approximate data inside the error band by Legendre polynomials for each section. 
Inputs: Encoded data, error envelope, sections. 
Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of 
coefficients in bits. 
 
legendpol: 
Description: Computes the basis functions of Legendre Polynomial up for defined number of 
coefficient. 
Inputs: Length of the data, number of coefficients. 
Outputs: Basis functions. 
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lint: 
Description: Linearly interpolate the segment for signal partitioning. 
Inputs: Data, Segments 
Outputs: Linear data. 
 
parser: 
Description: Reads and interprets the NC Code defining the trajectory and returns the value of 
each G word line by line. 
Inputs: NC Code, home coordinates of the machine configuration. 
Outputs: Values of G words at each line. 
 
plot_graph: 
Description: Plots 2d or 3d graphs. The dimension of the graph should be defined in the inputs 
with the data to be plotted. 
Inputs: data, number of dimensions 
Outputs: None 
 
Plot_coord: 
Description: Plots the motion in each axis. 
Inputs: Data, time. 
Outputs: None 
 
split:  
Description: Finds the required keyword in the blocks of the NC Code, splits into two in order to 
obtain the value of the keyword and returns the value 
Inputs: NC block, keyword. 
Outputs: The value of the keyword. 
  
step_Delta:  
Description: Finds the number of commands generated to complete the circle. 
Inputs: Angular position of the start and end point of the circle w.r.t the center, radius and 
feedrate.  
Outputs: Number of commands 
 
store_space: 
Description: Computes the required storage space for each joint of a data set. 
Inputs: Data to be stored. 
Outputs: Allocated bit per each value. 
 
table: 
Description: Generates the Denavit Hartenberg table for the required pose. 
Inputs: Denavit-Hartenberg parameters, Joint configuration. 
Outputs: Denavit-Hartenberg table. 
 
tinvrt:  
Description: Inverts the HTM matrix from ܶ

  to ܶ
 . 

Inputs: ܶ
  

Outputs: ܶ
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tmultt: 
Description: Pick up the right elements from the homogenous transformation matrix and 
generates the HTM of the joint. 
Inputs: HTM of previous frame, HTM of the current frame wrt the previous frame. 
Outputs: HTM of the current frame wrt ground frame. 
 
tot_store: 
Description: Finds the required storage space for data sets. 
Inputs: Bit per joint value, number of data. 
Outputs: Byte per joint data. 
 
tr2diff: 
Description: Convert a homogeneous transform to a differential motion vector 
Inputs: HTM of the initial position, HTM of the desired position. 
Outputs: Differential motion 
 
tr2rot: 
Description: Extracts the rotational submatrix of the homogeneous transform matrix. 
Inputs: HTM 
Outputs: Rotational submatrix. 
 
tStar: 
Description: Computes the estimated transformation matrix T* of the joint configuration at the 
desired position. 
Inputs: Orientation of the desired frame, coordinates of the desired position. 
Outputs: T* 
 
wave_coef:  
Description: Computes the wavelet transformation of the encoded data using Deubechies 
wavelets. Wavelet decomposition is at level 3. The signal is thresholded in order to reduce the 
number of coefficients.  
Inputs: Encoded data, error band of the joint. 
Outputs: Decoded data, wavelet coefficients, number of wavelet coefficients, number of omitted 
coefficients. 
 
xform: 
Description: Compute transformation of each frame with respect to ground frame. 
Inputs: Denavit Hartenberg parameter of the frame. 
Outputs: HTM of the frame. 
 




