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ABSTRACT

UNIVERSAL COMMAND GENERATOR FOR ROBOTICS AND CNC
MACHINERY

Akinci, Arda
M.Sc., Department of Mechanical Engineering
Supervisor: Assist. Prof. Dr. Melik Délen
Co-Supervisor: Assist. Prof. Dr. A. Bugra Koku

May 2009, 167 pages

In this study a universal command generator has been designed for robotics and
CNC machinery. Encoding techniques has been utilized in order to represent the
commands and their efficiencies have been discussed. The developed algorithm
generates the trajectory of the end-effector with linear and circular interpolation
in an offline fashion, the corresponding joint states and their error envelopes are
computed with the utilization of a numerical inverse kinematic solver with a
predefined precision. Finally, the command encoder employs the resulting data
and produces the representation of positions in joint space with using proposed
encoding techniques depending on the error tolerance for each joint.

The encoding methods considered in this thesis are: Lossless data compression
via higher order finite difference, Huffman Coding and Arithmetic Coding
techniques, Polynomial Fitting methods with Chebyshev, Legendre and

Bernstein Polynomials and finally Fourier and Wavelet Transformations.

The algorithm is simulated for Puma 560 and Stanford Manipulators for a
trajectory in order to evaluate the performances of the above mentioned

techniques (i.e. approximation error, memory requirement, number of

v



commands generated). According to the case studies, Chebyshev Polynomials
has been determined to be the most suitable technique for command generation.
Proposed methods have been implemented in MATLAB environment due to its

versatile toolboxes.

With this research the way to develop an encoding/decoding standard for an
advanced command generator scheme for computer numerically controlled

(CNC) machines in the near future has been paved.

Keywords: Universal Command Generator, Inverse Kinematic Solutions, Data

Compression Techniques, Kinematic Modeling, Encoding Methods.
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ROBOTIK UYGULAMALAR VE CNC TAKIM TEZGAHLARI ICIN
EVRENSEL KOMUT URETECI

Akinci, Arda
Yiiksek Lisans. Makina Miihendisligi Boliimii
Tez Yoneticisi: Yard. Dog. Dr. Melik Délen
Ortak Tez Yoneticisi: Yard. Dog. Dr. A. Bugra Koku

Mayis 2009, 167 sayfa

Bu calismada, cesitli robotik uygulamalar ve CNC Takim tezgahlar1 igin
evrensel bir komut iireteci tasarimi yapilmistir. Daha sonra bu komutlarin en
verimli sekilde ifade edilmesi i¢in ¢esitli kodlama metodlart kullanilmigtir. Bu
yordamin kabiliyetleri, dncelikle ug islemci i¢in verilmis NC kodunu okuyarak,
dogrusal ve dairesel enterpolasyon kullanarak verilmis o6rnekleme zamanina
baghh u¢ islemci konum komutlarinin {retilmesidir. Ardindan yinelemeli
nlimerik metodu ile verilmis bir konumlama hata toleransi kullanilarak ters
kinematik ¢oziimii yapilarak eklem konumlarimin ve bu eklemlerin hata
bantlarinin olusturulmasi. Son olarak komut kodlayicis1 aracilifi ile bu
konumlarin hesaplanmis hata bandi icinde kalacak sekilde kodlanip en uygun

sekilde depolanmasidir.

Bu calismada g6z oOniine alinan metotlar, yiiksek dereceden sonlu farklarin
hesaplanmasi, ve bu farklarin Huffman ve Aritmetik kodlama yordamlar ile
sikistirilip hatasiz bir sekilde saklanmasi, Chebyshev, Legendre ve Bernstein
Polinomlar1 kullanarak verinin polinomlara uyarlanmasi ve son olarak Fourier

ve Dalgacik doniistimleri ile frekans-zaman tanim kiimesinde tanimlanmasidir.
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Gelistirilen yordam, kodlama metotlarinin verimliligini ( yaklastirma hatasi,
depolamak igin gerekli yer miktart1 ve kullanilan komut miktar1 cinsinden)
karsilastirmak i¢in, Puma 560 ve Stanford Manipiilatorleri kullanilarak,
belirlenen  yoriinge lizerinde uygulanmistir. Sonuglar g6z  Oniinde
bulunduruldugu zaman, en az miktarda komut iireterek, en diisiik saklama
alanina ihtiya¢c duymasi ve istenen hata miktarlarinin altinda bir yaklasim
sagladigindan dolayi, Chebyshev polinomlart1 en uygun metot olarak
belirlenmistir. Yordam tasariminda, gelismis ve c¢ok yonli uygulama

alanlarindan dolay1 MATLAB programi kullanilmigtir.

Bu c¢alisma ile ¢esitli robotik uygulamalar ve CNC Takim tezgahlar1 igin
kodlayici/¢oziimleyici standardi olusturarak, ileri diizeyde komut {iretim

yordamlarinin olusturulmasinin temelleri atilmistir.

Anahtar kelimeler: Evrensel Komut Ureteci, Ters Kinematik Coziimleri, Data

Sikistirma Teknikleri, Kinematik Modelleme. Kodlama Metotlari
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The use of robotic manipulators (i.e. articulated mechanisms) in the industry has
accelerated considerably since 1960’s. With the advancing technology, different
types of manipulators have been introduced to various sectors such as automotive,
aviation/aerospace, consumer electronics, etc. Their modularity and the ease of
programming makes manipulators invaluable tools in basic manufacturing tasks
including welding, painting, grinding/polishing, material transfer/handling, and
assembly. Furthermore, since robotic manipulators are capable of performing
high-precision positioning at relatively high speeds, the need for highly skilled
workers could be dramatically reduced, which in turn leads to a significant

increase in the quality and the quantity of the manufactured goods.

The application of a robotic manipulator to the above mentioned fields is
relatively easy: Once the trajectory of the manipulator (i.e. tool or end-effector) is
planned for a specific task at hand, the corresponding angular positions of the
actuators at each joint are calculated using inverse kinematic model of the
manipulator in an offline fashion. Hence, the motion controller of the machine is
programmed using these data (also known as -a.k.a.- the desired joint positions) to

control the angular joint positions accurately.

It is critical to note that industrial motion controller cards (like Delta-Tau’s
PMAC?2 and Galil’s DMC), which are commonly used to control such machinery,

employ vector data tables to represent a complex trajectory in terms of (short)



linear patches, provided that the tool’s deviation from the ideal path is within the
acceptable limits (as defined by the task at hand). These cards can then perform a
linear interpolation between the two consecutive (table) entries in real-time to
produce the relevant reference signals for the position servo-control loop. It is
obvious that if the manipulator needs to follow a complex (and relatively long)
trajectory, the length of the linear patches could be too small to abolish the
efficacy of linear interpolation. Furthermore, the number of required entries for
the vector table might well exceed the available resources on the system. For
those cases, advanced controller units (like Siemens Sinumerik 840DI or Fanuc i
series), which oftentimes have the capability to carry out Spline- or NURBS
interpolation, could be utilized at increased hardware cost. However, since the
computational burden associated with such interpolation schemes is extremely
high, the use of such systems may no longer be (technically/economically)

feasible when the number of joints (axes) to be controller is relatively high (>5).

In today’s technology, memory devices (SDRAM, SD Cards, etc) with large
capacity (1 GB++) as well as multi-core RISC processors running at high clock
frequencies (1 GHz++) are widely available in the market at relatively low cost.
Consequently, there is a potential for devising simple yet very effective command
generators for computer numerically controlled (CNC) machinery that benefit
fully from the properties of these advanced devices. Such a scheme may overcome
the difficulties encountered in the afore-mentioned systems. Hence, the central
motivation of this study is to look deeper into this aspect that has not been fully

explored in the industry (or the corresponding technical literature per se).

1.2 Scope of the Thesis

The main objective of this study is to develop a general command generation
paradigm which can be employed for all kinds of mechanisms. The flow chart of

the proposed technique is illustrated in Figure 1.1.
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Figure 1.1 Flow chart of the proposed method.

In this method, the user first needs to define the required trajectory for the tool (or
apparatus) attached onto the machine (e.g. manipulator or machine tool) by means
of an enhanced NC code which closely follows RS-274B convention. Just like
conventional approach, this NC code represents the trajectory in terms of linear
and circular segments in a local coordinate frame (“work coordinate system”).
This local frame may be conveniently situated inside a global (fixed) reference
frame by means of specifying the Cartesian coordinates of its origin as well as its
orientation. The proposed method, which requires a careful offline path planning,
interprets this NC code to generate the pose of the tool in time (a.k.a. “tool
location data’). That is, depending on the sampling time specified by the user,
three Cartesian coordinates (of the tool) are calculated at equal time intervals

along the complete trajectory.

Once the position data are produced, the corresponding joint states (a.k.a. “joint
state data or simply JSD”) are computed with the utilization of a numerical
inverse kinematic solver. Note that this solver makes good use of the Denavit-
Hartenberg parameter table that describes the geometric properties of the machine
system at hand. Finally, depending on the encoding technique and the error
tolerance for each joint, the command encoder employs the resulting data to

produce the efficient representation of positions (and its higher order derivatives

3



in time) in joint state space with minimum redundancy. The following encoding

methods are considered within the context of this thesis:

e Lossless data compression of higher-order finite differences of JSD
e Polynomial (Chebyshev, Legendre, Bernstein) representation of JSD

e Fourier and Wavelet transforms of JSD

Note that in this study, the performances of the above mentioned techniques (i.e.
approximation error, memory requirement, computational complexity, ease of
decoding, etc.) are comparatively evaluated for the purpose of determining the

most suitable technique for command generation.

The proposed method is implemented in MATLAB environment (via MATLAB
scripting language). MATLAB, which has dramatically evolved over the years in
addition, has wide popularity in scientific community due to its versatile
toolboxes. Hence, the study takes full advantage of its features to fulfill the
objectives being set forth.

It 1s critical to note that one of the primary goals of this research is to pave the
way to develop an encoding/decoding standard for an advanced command
generator scheme for computer numerically controlled (CNC) machines in the
near future. As illustrated in Figure 1.2, once the encoded joint state file is created
efficiently, the resulting file could be uploaded to the command decoder (card)
which is expected to decode the data in real-time. Hence, the decoded joint states
(position, velocity, acceleration) would then be fed to the (centralized or
distributed) joint-axis motion controller as the reference signals. Due to the broad
range of this thesis (as it is), the command decoding as well as its (hardware)

implementation is exempted from this work.

Encoded ; :

int Axi

Joint State Command Decoder |————» .JO t S
File Motion Controller

Figure 1.2 Command decoding scheme.




1.3 Organization

This thesis is divided into nine chapters. The second chapter gives detailed
information about the studies relevant to the scope of this thesis. The literature
survey is conducted in various areas such as advanced command generation for
robotics, CNC interpolators, kinematic modeling of articulated mechanisms, data
compression. Likewise, the third chapter deals with the kinematic modeling of
articulated mechanisms. The basics information about manipulators and their
kinematics are also elaborated in that chapter. In addition, the generalized Denavit
— Hartenberg notations, forward kinematics, and corresponding solution methods
for inverse kinematics are explained in detail. The fourth chapter deals with the
position generation in joint space. An algorithm for the interpretation of the NC
code as well as the inverse kinematics of articulated mechanisms are discussed in
this chapter for the purpose of generating the tool trajectory for a specific
machine/manipulator. The chapter is concluded with an example on producing
the joint positions by inverse kinematics algorithm for a pre-defined error
tolerance. In chapter five, the command generation via direct data storage methods
is studied. The main idea of this chapter is to store the generated commands for
each joint in the most efficient way. Lossless data compression methods such as
Huffman Coding and Arithmetic Coding (Shannon-Fano) have been investigated
and their memory requirements have been elaborated. In the following chapter,
polynomial (fitting) methods such as Chebyshev, Legendre, and Bernstein
polynomials has been studied while the relation between Chebyshev polynomials
and Fourier transformations has been explained. Finally, an (command tracking)
error calculation algorithm for determining error tolerance bands in joint space has
been introduced in this chapter. In Chapter 7, the Fourier- and Wavelet
transformations are investigated so that the JSD is transformed into another
domain and insignificant data is neglected for the purpose of representing the
original data efficiently. Chapter 8 evaluates the performance of the presented

methods on various cases. In the last chapter, the thesis is concluded by



summarizing the key results of this research. In addition, possible future works

are presented in this chapter as well.



CHAPTER 2

LITERATURE SURVEY

This chapter is dedicated to a detailed literature survey in the fields relevant to
command generation including kinematic modeling of manipulators, CNC

interpolators, advanced command generation, and methods for data compression.

2.1 Interpolators

The study starts out with detailed investigation about the interpolation methods
and the uses of interpolation techniques in CNC applications. By the study on

interpolators, background knowledge of interpolators has been obtained.

In 2001, Yang and Hong [4] developed a 3-dimensional (3D) Interpolator which
is based on intersection criteria. They developed a real-time reference-pulse 3D
linear- and circular interpolator which is capable of synchronized simultaneous
3D machining. Cheng [6] used NURBS and offered a common mathematical form
for representing both standard analytical shapes and free-form surfaces. The
interpolation with NURBS is high-speed and highly accurate but large data
consume so much memory and too many short segments were slowing down the
cutting speed. Bahr, Xiao, Krishnan [8] implemented spline interpolator inside a
CNC Controller. The main aim was to use finite forward differencing algorithm
for fast evaluation of points on a cubic parametric curve in order to prevent the
accumulative error in the calculation of one piece of curve to propagate to the

whole curve. Bahr used forward differencing method because of its efficiency for



evaluation of points. In addition to the prevention of error accumulation spline

interpolation allows rendering curve points using integer arithmetic.

Following that Omirou [9] used space curve interpolation for CNC machines. He
proposed an efficient and accurate method for developing a class of precise
interpolation algorithms which can drive the cutter of a CNC machine along three
dimensional trajectories. Parametric programming, mathematical calculations with
do-loop subroutines, macro-capabilities and sophisticated canned cycles were

used during this study.

2.2 Trajectory Generation

After interpolators, a comprehensive research has been done for the studies about
trajectory generation. The fundamentals of the NC Code parser and tool path

generation algorithm has been founded by the information gained from here.

In 2001, Lartigue, Thiebaut, Maekawa [7] developed tool path planning algorithm
for smooth free-form surfaces in terms of planar cubic B-spline curves. The
algorithm is based on interpolating the break points by computing the offset
surface - driving plane intersection curve. This method accepts curve coefficients
directly and it is much more accurate and requires less memory. Similarly,
Farouki and Tsai [10] used Taylor series coefficients for variable feedrate CNC
curve interpolators. They examined the situations where the feedrate depends on
elapsed time, curve arc length and local path curvature. In addition they presented
the derivations of compact recursive formulae. Yeung, Altintas, Erkorkmaz [11]
presented a comprehensive virtual simulation model of a realistic and modular
CNC system. They implemented a trajectory generation mechanism in the Virtual
CNC. The start and end coordinates of the toolpath, the types of the tool
movement and the feedrate are recognized and stored into a buffer. By executing
the buffer block by block, the descriptions for each tool path segment are obtained

and then passed to the trajectory generation process sequentially.



Lately, Liu, Guo, Li, Yamazaki, Kashihara and Fujishima [12] developed an
intelligent NC program processor for CNC System of machine tool. They
investigated the basic standards of NC program: RS274D (USA), ISO6981 (ISO)
and DIN66025 (Europe). In addition, they proposed a new structure which adjusts
the CNC system to adopt various NC program formats by only updating a NC
specification dictionary. In 2001, Erkorkmaz and Altintas [13], published a paper
about generating trajectories not only describing the desired tool path accurately,
but also having smooth kinematic profiles in order to maintain high tracking
accuracy, and avoid exciting the natural modes of the mechanical structure or
servo control system. In addition they presented a quantic spline trajectory
generation algorithm that produces continuous position, velocity and acceleration
profiles. Aspragathos [23], presented two techniques for generating an
approximation of a given robot hand trajectory under bounded position deviation
which is specified by the operator according to the accuracy requirements of the
robot application. The first technique was based on bisection pattern which
determines enough knot points on a given Cartesian curve whereas the second one
was based on raster scanning which finds a minimal set of knot points on a given

Cartesian curve and spline interpolation is done between two successive knots.

2.3 Kinematic Modelling and Solution Methods

After completing the study on CNC interpolators and tool path generation, a wide
research on kinematic modeling of manipulators has been started. By this
research, different applications of manipulators have been examined, the
structures of the manipulators have been understood and solution methods have

been investigated.

In 1956, Denavit [31], made an important contribution by basing the mathematic
model of manipulators into logical, systematic and efficient systematic. He
represented all kinematic pairs as axial joints. Link coordinate systems are defined

and the relative placement of the systems was made by four independent



parameters. Wang, Baron and Cloutier [14], published a paper on topology of
manipulators. They characterized the manipulators by geometric constraints,
proposed a comprehensive topological diagram which enables the kinematic
composition to be described precisely. In addition they used graph structure which
makes it possible to implement computer algorithms in order to perform
systematic enumeration, comparison and classification of manipulators. Likewise,
Lee, Go, Kim [20] developed a user friendly automatic polishing system
composed of a three-axis machining center and a two-axis polishing robot. Their
robot was able to keep the tool normal to the die surface. In addition, they
compared control modes to reduce the tracking errors. Besides a geometric
modeler was developed in this research in which internal curves and surfaces are

represented as a non uniform rational power-basis polynomial (NURP).

In 2005, Ho, Komura, Lau [16], proposed a linear programming based inverse
kinematic (LPIK) solver for interactive control of arbitrary multi body structures.
The advantages of using LPIK are handling the inequality constraints which
makes easier to handle with the ranges of the DOFs and collisions of the body
with other obstacles and the performance of LPIK is comparable or sometimes
better than the IK method based on Lagrange multipliers. In addition they
mentioned that the computation time by LPIK increases only linearly proportional
to the number of constraints or DOFs. Hence, LPIK is a suitable approach for
controlling articulated systems with large DOFs and constraints for real-time
applications. On the other hand, Tabaczynski [15] studied and compared Jacobian
based solutions of inverse kinematic problem namely, pseudo inverse, truncated
pseudo-inverse, transpose, and damped least squares (DLS). He showed with
experimental results that DLS is better with its smooth motion and immunity to
singularities and unreachable targets is the best all around solution, but could be

too slow if high convergence accuracy and interactive speed is required.

Erdman [3] edited a book about the history and the development of the
kinematics. He summarized the direct and inverse kinematic approaches
throughout the history. Denavit Hartenberg (DH) notation has been told to be the

most common used notation, in combination with homogenous transformation
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matrices. This combination was used with Roth and Pieper. In addition to DH
notation, Erdman summarized the analytic approaches to the inverse kinematic
solutions. Roth reduced the inverse kinematics to the solution of a 32™ degree
equation in the ten-half-angle of one joint. Another approach was a polynomial
using spherical trigonometry in the form of a 16x16 matrix by Duffy and Crane.
More recently, dialectical eliminations are used to reduce the polynomial to a
sixteenth-order polynomial of the tangent of the half-angle of one of the joint
variables by Lee and Liang. Raghavan and Roth have developed a method based
on dialectic eliminations to yield the sixteenth order polynomial of one-joint
variables and turned the solution into a linear sets of equations after finding the
roots of the polynomial. The other approaches mentioned are vector analysis,
tensor methods, screw coordinates, dual member method, quaternion operators,
spherical trigonometry method and zero position method. In addition to analytical
solutions, numerical techniques were being developed. Uicker considered
modified Newton-Raphson iteration schemes for spatial closed chains whereas
Pieper, Hansen and Sing and Gupta used this method for robot manipulators.
Angeles developed a method based on optimization and Gupta found numerical
methods based on joint integrations. Whitney used the inverse Jacobian for
acquiring the joint rates and Waldron used Jacobian for singularity analysis of the

manipulators.

In 1997, Regnier, Ouezdou and Bidaud [17] introduced a new numerical method
to solve inverse kinematics of all kinds of manipulators with a concept from
Distributed Artificial Intelligence. By this multi agent system the resolution of the
problem is distributed. They handled the problem of inverse kinematic as a non
linear distributed optimization problem. The basic of the solution is to associate
for each local joint a new system of equations where an only joint is able to move
and to approach the goal matrix. In 1999, Chen and Yang [18] published a paper
about numerical inverse kinematics for modular reconfigurable robots. They
addressed the formulation of generic numerical inverse kinematics model and
automatic generation of the model for arbitrary robot geometry. They used

Newton-Raphson iteration method for solution of inverse kinematic problems. In
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addition to that they defined sub problems for the inverse kinematics of modular
robots which are, pure orientation problem, pure position problem, hybrid
problem. They showed the effectiveness of this solution with computations but
they did not guarantee the convergence of the solution in a finite number of

iterations and finite time.

Pott [21] introduced an algorithm which one can perform the linearization of the
transmission behavior from any number of geometric parameters to the motion of
a six degree of freedom end-effector by applying six unit loads to the end-effector
and determining internal force. Pott based the paper on a general method of using
force transmission to evaluate general Jacobian. Besides he worked on first order
error analysis with sensitivity coefficients. He said that after obtaining a closed-
form expression for the direct kinematics, sensitivity coefficients can be found by
taking derivatives of the closed-form solution with respect to each of the
geometric parameters. And added that sensitivity parameters should be introduced
in such a way that they vanish at the nominal configuration. Hasan et al. [22]
published a paper about an adaptive learning algorithm to solve the inverse
kinematics problem of six degree-of-freedom serial manipulators. He used
artificial neural network (ANN) for learning strategy and used this strategy to
control the motion, overcome the singularities and uncertainties in arm
configurations. The proposed control technique learns the characteristics of the
robot without specifying explicit robot system model which takes away the
requirement of any prior knowledge of the kinematics model of the system being
controlled. The main advantage of using neural network strategy is modification
in the physical set-up of the robot is handled by training for a new path without

major system software modifications.

In 2004, Chapelle and Bidaud [26] investigated closed form solutions for inverse
kinematics approximation of general 6R manipulators by the use of evolutionary
symbolic regression. They used Evolutionary Algorithms, which relies on Genetic
Programming (GP) to provide a fast and general solution to the inverse kinematic
problem. The solution requires the direct model under the form of a mathematical

function or a process getting the design parameters (Y) as input, and returns

12



evaluation values (X) as output. They simulated the algorithm with PUMA 560
robot and the algorithm approximated expressions approximately in 10 generation
with an average error of about 10 radians on each characteristic point of the
learning and the test bases. From the simulated results For the other joint values,
errors between 10™ and 107 radians are found. The length of the individuals
cannot be restricted more than slightly. The most direct consequence of the non
size restriction is to slow down the computation. It takes 50 generations and 30
min to a SiliconGraphics O2 computer to determine one joint parameter.
Similarly, Luh and Lin [24] assumed that the joint co-ordinates of the robot
configuration corresponding to enough knot points of a Cartesian path are known.
Then instead of joining the adjacent transformed points by linear interpolation,
they determine low degree of polynomials and then spline them together in order
to obtain speed and acceleration continuity. A comparative study of the
approximation error between the polynomials used in joint interpolation is also

presented.

Note that in 1979, Taylor [25] introduced a bounded deviation technique to
achieve straight line movement of the end-effector of manipulators. The algorithm
is based on calculating the corresponding joint coordinates 0s and 0y for given
configuration frames, starting frame Fs and the ending frame Ff, of the hand. Then
the Cartesian coordinates of the joint midpoint is calculated and is compared to
the Cartesian configuration corresponding to the midpoint of the straight line
segment. If the two configurations deviates more than an allowed amount, the end
point configuration is replaced by the Cartesian midpoint configuration and the
algorithm is applied recursively to this straight line segment until the deviation is

smaller than the specified amount.

13



2.4 Algorithms and Toolboxes

Completing the researches for the interpolators, trajectory generation and
kinematic modelling, an investigation for the algorithms and toolboxes has been

done.

Corke [29] has released a MATLAB toolbox for kinematics, dynamics, and
trajectory generation of manipulators. Representations of the kinematics and
dynamics of serial-link manipulators were based on general methods. Additional
functions for manipulating and converting between data types such as vectors,
homogeneous transformations and unit-quaternion which are necessary to
represent 3-dimensional position and orientation was provided in the toolbox.
Inverse kinematic solution was found by iterative numerical solution methods.
Some examples are given in the toolbox; in addition to that it is possible to add
new robot definitions. Likewise, Hydzik [35] has developed a simple MATLAB
toolbox for the inverse kinematics of Puma and Stanford manipulators using Euler
angles. He performed the solutions on 1D cubic Bezier curve, 2D curve and 3D
Bezier curve specified by 9 control points. In addition to the solution he added a
graphical tool which simulates the manipulator position according to the joint

variables.

In 2003, Tonbul [45] has developed an algorithm for the inverse kinematics
calculations and the trajectory planning of an Edubot robot arm with five axes.
Tonbul used fifth order polynomials while planning trajectory for obtaining
continuity in the positions, velocities and accelerations. Polynomials were used in
order to have continues trajectory and velocity polynomials. Inverse kinematic
problem was described by the product of the exponentials and solution was found

by moving the joint variables one at a time.

In 1997, Vamoser has developed inexpensive and fast simulation software for
Unimation's Puma 560. He tried to develop an application which could not only

perform the simulation and necessary calculations, but which could also be able to
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run on any platform without the recompilation of the code. In addition to the

algorithm he gave detailed information on Puma 560.

2.5 Optimization of Manipulators

After completing the research about the kinematic modeling, a basic research on

optimization of the robot manipulators for later studies.

Nawratil [28], published a paper introducing four new posture-dependent
performance indices for control, two based on an object-oriented metric in the
workspace which is end-effector dependent and the other based on a linear
approximation of direct kinematics which is end-effector independent. He showed
that independent indices reflect the distance of the actual posture from the closest
singularity and these distance measures take the possible variation of the joint
axes into account, because they are based on a linear approximation of direct
kinematics. Mitsi [27] developed an optimization algorithm to determine the base
position and the joint angles of a spatial robot, when the end-effector poses are
prescribed, avoiding the singular configurations. The algorithm combined a
simple Genetic Algorithm (GA) with the quasi-Newton method and a constraints
handling method (CHM). The efficiency of the developed method has been
demonstrated by six numerical examples, using two criteria and it is shown that
the obtained result is better than the one obtained by the simple GA or by the
combination of GA with the CHM. Sobh and Toundykov [30], studied the
kinematic synthesis of robotic manipulators and developed a software which
automatically computes possible optimal parameters of robot arms by applying
numerical optimization techniques to the manipulability function, combined with
distances to the targets and restrictions on the dimensions of the robot. It was
aimed to develop a general, easy to use, fast and simple synthesis tool for robotic
manipulators. In addition, they used quantitative measure of the performance in

order to calculate the efficiency and the manipulability of the manipulators.
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2.6 Data Compression

Once the literature survey on kinematic modeling has been completed, a survey
on data compression methods has been started. In this part, different method of
the data compression has been searched and several applications have been
studied. Although data compression methods are not applied in robotics, literature

survey on several compression methods has been done.

Saffor [49] studied data compression techniques on 8-bit Computed Tomography
(CT) images and focused on the quantitative comparison of lossy compression
methods. Joint Photographic Experts Group (JPEG) and Wavelet compression
algorithms were used on a set of CT images. These algorithms were applied to
each image to achieve maximum compression ratio (CR). Each compressed image
was then decompressed and quantitative analysis was performed to compare each
compressed-then-decompressed image with its corresponding original image.
And finally he proved that Wavelet compression yields better compression quality
at constant compressed file sizes compared with JPEG which the results mostly
agreed with other published studies. Chen et al. [50] used wavelet network
solution for inverse kinematics. The network is optimized by reducing the number
of wavelets handling large dimension problem according to the sample data. The
algorithms for sparseness analysis of input data and fitting wavelets to the output
data with orthogonal method are introduced. They simulated the solution on

PUMAS560 manipulator.

On the other hand, Herman [47] worked on Fourier Transform of time series, and
generated a periodic function of infinite duration at the cost of losing data outside
the fundamental range by restricting data to a time interval [0, T] for period T, and
extending the data to infinity. He managed to have discrete frequencies at discrete
times by sampling the recording data at a finite number of time steps, limiting the
ability to collect data with large oscillations. Similarly, O’Neil [32] has
formulated on partial sums of Fourier series. He applied this method with several
functions and illustrated the convergence of the partial sums of the Fourier series

with graphs. In 1987, Lelewer and Hirschberg [39] have surveyed a variety of
16



data compression methods spanning almost forty years of research. They
discussed concepts from information theory, as they relate to the goals and
evaluation of data compression methods, evaluated and compared methods is
constructed. In addition, they summarized the compression rates of several
methods, the efficiencies of algorithms, and susceptibilities to error. They divided
data compression methods into two subdivisions which are static and adaptive.
They classified, Shannon-Fano, static Huffman, Elias codes, Fibonacci code as
static methods and Adaptive Huffman Coding, Lempel-Ziv Codes, Algorithm
BSTW, as adaptive methods. In 1989, Nelson [40] has developed a simple
algorithm named LZW compression. The algorithm does not do any analysis of
the incoming text, instead replaces strings of characters with single codes by
adding every new string of characters it sees to a table of strings. Compression

occurs when a single code is output instead of a string of characters.

In a web-site named data-compression.com [41], an overview of the theory,
source modeling, descriptions of Huffman coding, Lempel-Ziv coding, Linde
Buzo Gray vector quantizer (VQ) design algorithm have been given and
performance comparison is also included. It has been said that, in the 1948 paper,
“A Mathematical Theory of Communication”, Claude E. Shannon formulated the
theory of data compression and also developed the theory of lossy data
compression which is better known as rate-distortion theory. In addition the
lossless and lossy data compression methods have been described. Lossless
compression has been investigated with; zero, first, second, third order and
general methods for source modeling, entropy rate of a source and Shannon
Lossless Source Coding Theorem. Huffman coding which is similar to that of the
Morse code has been studied in details. Lempel-Ziv Coding algorithm which is a
variable-to-fixed length code has been studied as well. And lastly, vector
quantization (VQ) which is a lossy data compression method with a fixed-to-fixed

length algorithm based on the principle of block coding has been told.

In 1980, Linde, Buzo, and Gray (LBG) proposed a VQ design algorithm based on
a training sequence which bypasses the need for multi-dimensional integration.

Later in 1978, Gallager has published a paper about Adaptive Huffman coding.
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Adaptive Huffman methods are defined-word schemes which determine the
mapping from source messages to code words based upon a running estimate of
the source message probabilities. The code is adaptive, changing so as to remain
optimal for the current estimates. In this way, the adaptive Huffman codes
respond to locality. In essence, the encoder is "learning" the characteristics of the
source. The decoder must learn along with the encoder by continually updating
the Huffman tree so as to stay in synchronization with the encoder. Another

advantage of these systems is that they require only one pass over the data.

2.7 Open Research Areas

During the literature survey, not only the researches has been done until now are
searched, but also the areas that are not worked on yet has been searched. By the

help of this search, the scope of the thesis has been determined.

First of all, the base of this thesis is established on compression of the generated
commands representing the joint configurations since there has not any work on
this subject. General usage in industrial motion controller cards like Delta-Tau’s
PMAC2 and Galil’s DMC and as Yang and Hong [4] discussed, complex
trajectories have been represented with vector data tables in terms of short linear
segments and linear interpolation has been performed between the two following
table entries. This approach results with the requirement of storing large amount
of data especially working on complex trajectories with dividing these trajectories
into small sections to preserve the working tolerances. In order to prevent storage
of high number of data, Cheng [6], Bahr [8] utilized advanced control units with
Spline or NURBS interpolation. But the high computational burden of this type of
interpolators makes these methods inefficient when operating with mechanisms
having high number of joints. In this work, it is aimed to represent the generated
commands within the acceptable tolerances via several encoding techniques.

Although compression techniques has been used for several applications such as
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audio, images, text files and images, the usage of the compression methods has

not been observed for command generation of manipulators yet.

Secondly, it has been observed that, there has not been so many works on
numerical iteration methods for manipulators. Most of the algorithms developed
such as Hydzik [35], Tonbul [45], facilitated iterative solutions which are
designed for specific manipulators. This approach brings the requirement of
developing a new solution method which is applicable for different manipulators.
In addition, most of those algorithms implement inverse kinematic solutions with
fixing the orientation of the end-effector w.r.t the global coordinate system
throughout the trajectory. This approach is not sufficient especially working on
inclined surfaces. So it is aimed to develop an inverse kinematics solution
algorithm which can accommodate with different system with changing only the
definition of the mechanism and change the end-effector orientation dynamically

according to the working surface.

Another unexplored area related to the thesis is the command generation for
manipulators. Although NC codes are used for CNC Machine tools, there is none
for manipulators. Since the manipulators are widely used in industrial
applications, each manipulator has its own command generator which uses the
data from CAD/CAM software directly. In this thesis it is aimed to bring a
practical way to define the tool path without requiring a special training. In
addition to defining the tool-path simpler, the interpolation techniques are

synthesized for more efficient results.
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CHAPTER 3

KINEMATIC MODELING OF ARTICULATED MECHANISMS

3.1 Articulated Mechanisms

Manipulators are open kinematic chains of rigid objects (links) connected by
joints. These manipulators are designed to perform a variety of motions suitable
for a specific task like welding, painting, material handling, assembly, etc.
Typical robots are serial-link mechanisms. They are characterized by arms for
mobility, a wrist for dexterity, and an end-effector (“apparatus”) to perform a task

[54].

Although different types of joints can be used in manipulators, two joints are
common in practical applications: revolute joints (R) and prismatic joints (P). The
free parameter of the revolute joint is the angle of rotation about its axis while
only the displacement is applicable for a prismatic joint. According to the joint
types used, manipulators can be divided into subgroups: Cartesian-, cylindrical-,

spherical-, and articulated (“anthropomorphic’’) manipulators.

Figure 3.1 illustrates common manipulator types. Cartesian manipulators in
Figure 3.1a have three prismatic joints. They are mechanically robust but
inadequate for performing complex motions in space. Thus, they are basically
used for moving large and heavy objects. Similarly, cylindrical manipulators in
Figure 3.1b have one revolute and two prismatic joints. Despite their apparent
robustness, the positioning accuracy of the end-effector is usually low due
horizontal movement. Just like its Cartesian counterpart, they are employed for

material transfer. Spherical manipulators in Figure 3.1c¢ constitute two revolute-
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and one prismatic joint. Their mechanical robustness is lower than the other two
but can carry out more complicated tasks in its workspace. Hence, they are mostly
utilized for assembly operations. Articulated manipulators, shown in Figure 3.1d,
have three revolute joints and are considered to be the most versatile manipulator.
These manipulators are widely employed in industrial applications such as

painting, welding, assembly, surface cleaning.
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Figure 3.1 Different types of manipulators [34].

In the field of robotics, the main subject is the location of the links in three-
dimensional space by two attributes: position and orientation. In order to describe
the position and orientation of a body, a coordinate system (“frame”) is attached
to the object. The location of the frames is defined with respect to each other in a
relative fashion. There are different ways to describe these “geometric” attributes
but the most common convention called Denavit-Hartenberg (DH) conventions
will be used for modeling of the manipulators. The methodology and conventions

will be described at the next section.
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3.2 Background Knowledge

Mechanisms studied in this thesis are serial-link manipulators. One end of the
chain is fixed while other links move relative to that. For a robotic manipulator
with n joints, the joints are enumerated from 1 to n, will have n + 1 links, the links
are numbered from 0 to n. By this convention, joint i connects link i — 1 to link i.
Link 0 is the base of the manipulator, is usually fixed, and link n carries the end-

effector.

Each joint is represented with a coordinate frame. For standardization, some of the
joint frames are specifically named as illustrated in Figure 3.2. The naming and
subsequent use of the frames in robots and control systems facilitates providing

general capabilities in an easily understandable way [1].

Figure 3.2 Standard frames of a manipulator.

The manipulator is divided into three main frames: base {B}, wrist {W} and tool
{T} frames. Base frame is located at the base of the manipulator which is link 0. It
is affixed to the stationary part of the robot. Wrist frame is attached to the last link

of the manipulator where the tool will be located. Tool frame is affixed to the end
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of the tool that robot holds and is placed mostly between the fingers of the
gripper. Tool frame is specified w.r.t. the wrist frame.

Position and the orientation of the frames are defined with a translation matrix in
Eqgn. (3.2) and basic rotation matrices in Eqn. (3.1) where BR represents rotation
of frame B relative to A as illustrated in Figure 3.3, 8d represents translation from
A to B, i, j, k are unit vectors of original frame, u, v, w are the unit vectors of
rotated frame and d; shows displacement in each axis. These matrices are used to

form the homogenous transform matrices.

ix'iu ix'jv ix'kw

ER: jy'iu jy'jv jy'kw (31)
kz'iu kz'jv kz'kw
8d=[d, d, d, (3.2)

Figure 3.3 Basic Rotation and Translation.

3.2.1 Homogenous Transformations

Homogenous Transform matrices (HTM) are used to define the translation and
rotation of one frame relative to another. The matrix in Egn. (3.3) represents the
homogenous transformation from frame A to B and contains the rotation and

translation information.
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(3.3)

The inverse kinematic solution is based on this matrix so it should be written
correctly. The rotation part consists of rotations around all axes as in Eqn. (3.4a),
where y, @, 0 represents the rotation about X, y, z axes respectively. The
translational part consists of the displacement of origin of the new frame as in
Eqn. (3.4b) where a, b, ¢ represents the displacements on X, y, z axes respectively
[33]. The T44 element is the scale factor and it represents that whole elements are
scaled one to one. For simplicity, cosine function cos (0) is represented as c6

while sine function sin (0) is shown as s6.

1 0 0 0 cg 0 sg O cd -sf 0 0
0 cy —-sy O 0O 1 0 0 s cd 0 0

Rx,u/ = Ry,¢ = Rz.H = (343)
0 sw cy O -s¢ 0 cg O 0 0 10
00 0 1 0 0 0 1 0 0 01
100 a 1000 1000

g |01 oo d 010D g o100

oo 10 o010 * oo 1 ¢ (3.4b)
0001 0001 0001

The inverse of the HTM can be found as Eqn. (3.5) by using the orthogonality

property of the homogeneous transformation matrix.

T = (3.5)

4x4

The position and orientation of the end-effector with respect to the base frame can
be found by Eqn. (3.6) by the product of the coordinate frame transform matrices

for each link.
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T=T2T.... 0T (3.6)
Once the orientation and position of the end effector is found, using HTMs, the

tool’s location in stationary coordinate frame (po) can be calculated as

Po=0T (d,) Py (3.7)

where p, is the position of the tool in local coordinate frame.

3.3 Denavit Hartenberg Notation

Denavit and Hartenberg introduced a systematic way for attaching the frames to
the links and represent these frames w.r.t. each other. This method starts out with
attaching coordinate frames onto links and continues on with finding of link and
joint (geometric) parameters. In order to attach the link frames properly, a
procedure should be clearly followed. For a manipulator with n joints and n+1
links, the frames shown in Figure 3.4 can be defined by the procedure presented

by [35]:

Jointi+1

Jointi—1

Figure 3.4 Denavit Hartenberg Frame assignments [35].

1. Coordinate frame at the base is established. It is a right-handed ortho-
normal coordinate system (Xo, Yo, Zo). Zo is selected along the axis of

motion of first joint.
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The axes of motion for each joint should be found. For each frame, Z;

should be aligned with the axis of motion of joint i+1.

. The origin of the coordinate frames is to be selected. The origin of the i
coordinate is found by intersecting the current and previous joint axes, Z;
and Z;;. If the joint axes are not intersecting, a common normal is drawn
between the Z; and Z;.; axes. The origin is determined by intersecting the

common normal and the Z; axis.

. The X axis should be defined for each joint. If the joint axes of the current
and previous joint, the Xj is along the common normal between the Z; and
Zi axes. If they are not parallel, X;is found by the cross product of the Z;
and Z;.; axes as in Eqn. (3.8).

X, =(Z,,%Z)) (3.8)
. The Y axes are defined for each joint by completing the right handed
coordinate system as in Eqn. (3.9).

Yi =(Z; x X;) (3.9)
. For the hand (gripper) frame, the procedure slightly differs: For an n-link
manipulator, the Z, is chosen coincident with Z, ;. O, is coincident with
the tip point as shown in Figure 3.5 [51] where P is the tip point, u, is the
approach vector, ug is the sliding vector, and u, is the normal vector which

is normal to the gripper plane.

«
< Sn

X6:nn

Figure 3.5 Hand frame assignment.
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6. The last step after assigning the coordinate frames to each joint, joint and
link parameters are defined for each joint. Position, the orientation and
location, of link 1 with respect to link i-1 is represented just by the D-H
parameters. DH convention specifies a link by two geometrical properties:
the link length (a), and link twist (o). These properties define the relative
location of the two reference frames in space. Similarly, joints can be
specified by two parameters: the joint (link) offset (d) and joint angle (0)
are used.

a. Link length a; is the offset distance between the Z;; and Z; axes
along the X; axis.
b. Link twist o;is the angle from the Z;_; to Z; axis about the x; axis.
c. Link offset d; is the distance from the origin of frame O; _; to the X;
axis along the Z;.; axis.
d. Joint angle 6; is the angle between the X;.; and X; axes about the
Zi.1 axes
Note that for serial manipulators, a; and o; are always constant while the
link parameters for the first and last links are arbitrarily chosen to be zero.
Depending on the joint type either the joint angle 0; or the link offset d; is
constant and the other is joint variable. They are denoted as generalized
variable, q;. For revolute joints, q; is the angle of rotation, and q; is the
link offset for prismatic joints as in Eqn. (3.10).

_ { 0;: joint i revolute
4= d;: joint i prismatic

(3.10)

7. After assigning the required frames and parameters, HTM following DH
convention is formed for adjacent coordinate frames, i and i+1 by the

following HTM shown in Eqn. (3.11) [51].
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i—ilT =T(z,,,d)R(z;,,0)T (X, a)R(X;, ;)
cd, —-ca;s6,  sa;s6,  aco

_|s6  coch,  —sechd ash, (3.11)
= 0 Sal Cai dI
0 0 0 1

3.4 Forward Kinematics

The objective of forward kinematic analysis is to determine the cumulative effect
of the entire set of joint variables on the position of the end-effector. In another
words, it is simply the computation of position and orientation of the tool frame
relative to the base frame at a quasi-static state. It can be regarded as changing the
representation of the manipulator’s position from joint space into a Cartesian

space [1].

Assuming T; is the HTM that expresses the position and orientation of frame i
w.r.t. frame i-1. Since the joints are either revolute or prismatic, T; depends on the
generalized joint variable, qi: Ti = T; (q;). For an n-axis rigid-link manipulator, the
coordinate frame of the last link can be found by multiplying the HTMs as in Eqn.
(3.6) that are formed by Eqn. (3.3) for each link. Hence, w.r.t a reference frame,
the direct kinematics function is expressed by the HTM shown in Eqn. (3.12)
presented by Sciavicco [68]

n(@) s(@) a() p(q)} (3.12)

BT(q)=[O o o 1

where n, s, a are the unit vector of the end-effector frame illustrated in Figure 3.5
and p is the position vector of the origin of that frame w.r.t the origin of the

reference frame.
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3.5 Inverse Kinematics

The inverse kinematics problem is simply the problem of finding a set of joint
variables that produce a desired end-effector location. It can be regarded as
changing the representation of the manipulator position from a Cartesian space

into joint space as illustrated in Figure 3.6.

Joint Position and Orientation
Variables Direct of the erﬁ-effector

Kinematics =

Estimated Joint
Variables Inverse
Kinematics

Figure 3.6 Schematic of forward and inverse kinematics.

The inverse kinematics model of a manipulator involves the mapping of joint
arguments (qi, q2, -.., qn) into the end-effector position (x, y, z). Throughout the
solution, the orientation of the end-effector changes dynamically w.r.t the working
plane and the trajectory that is being followed. In order to satisfy this requirement,
it is assumed that the approach vector of the end-effector illustrated in Figure 3.5
is always perpendicular to the working plane defined by the user and approach
vector always tangent to circular trajectory or along the linear trajectory. The main
reason for fixing the approach vector to plane normal is to simplify the
representation of the trajectory with the NC codes that will be discussed in the
next chapter. With current NC code definition it is not possible to characteristics
of end-effector orientation. In order to define the orientation new keywords
representing the tool orientation, the type of the task in hand and gripper style
should be added.

Knowing the desired position and orientation of the end-effector is known

beforehand and the joint variables can be found correspondingly. But the solution

29



is not straightforward since one need to solve a set of nonlinear equations that

oftentimes leads multiple solutions as well as singularities.

To be specific, the nonlinearity of the equations comes from the trigonometric
functions involved in the corresponding expressions. The other problem is the
existence of singularity. For a solution to exist, the pose of the manipulator for a
configuration should lie within the workspace of the manipulator. If there is no
solution for that configuration, it is said to be singular. The handling of singularity
is discussed extensively in the later sections. Note that the singularity may be also
due to invalid joint arrangements. There are some special cases [51] that may
occur in manipulators which results in reduction in degrees of freedom and
infinite number of solutions can be encountered. These special cases are; where
two joints in the ends of a link are both revolute and their axes are parallel to each
other and have infinitely many common normal, when the rotation axes of
revolute joints’ cross each other perpendicularly which results with two different
link twists and final case is when prismatic joints are parallel to each other and

manipulator loses one of its degree of freedom.

3.5.1 Multiple Solution

In addition to singularities, the most encountered problem in inverse kinematic
model is the existence of multiple solutions. For instance, for the 2D manipulator
shown in Figure 3.7, a specific position and orientation of the tool tip can be
reached by different orientations (see the elbow down and elbow up

configurations).

As the number of the joints increase, reaching a solution becomes increasingly
harder. Because of these multiple solutions, the solver has to choose one. The best
way to resolve is to pick up the closest solution to the previous configuration by
minimizing the amount that joint is required to move. This brings the necessity of

selecting the perfect initial conditions.
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Figure 3.7 Multiple Solutions [22].

3.5.2 Solution Methods

Inverse kinematics problem can be solved with two different methods: analytic
(closed form) and numerical. One of these methods is selected depending on the
context of the problem. Both have certain advantages and disadvantages which are

summarized in Table 3.1 [18, 19].

Closed-form solution is divided into two which are geometric and analytic
solution. Geometric approach is simply decomposing the mechanism into plane
problems. This can be used for simple mechanisms such as planar mechanism.
Analytic solution is done by the help of the known functions. Multiple functions
are solved together in order to find the variables. Although analytic solution is fast
and accurate, this solution is unique for every arm configuration and it is not
possible to reflect physical changes such as addition of new tool. Non-linearity of
the functions and it is hard to find the functions for different kinds of
manipulators. Polynomial solutions and dyalitic elimination are the mostly used

analytic solution.
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Table 3.1 Comparison of inverse kinematic solution methods.

Closed Form Solution Numerical Solution

Derive computationally efficient | The precision of the solution is pre-
closed-form solutions defined and introduces small errors.
Joint variables explicitly expressed | Based on the D&H parameters

in terms of other known quantities

Highly system-specific [18] Applicable to arbitrary chain
structures

Non-linear and coupled [19] Iterative solution

Singular positions are known Requires singularity check

Multiple Solution in calculations Only one solution.

The derivation of analytic solution for Puma 560 that is illustrated in Figure 3.8 is

presented by [1] and given in Appendix D in details

Figure 3.8 Puma 560 Manipulator.
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In numeric solutions, joint variables are found by an iterative procedure which
uses the differential kinematic equations of the manipulator and the initial value of
the joint configuration. Although numerical solutions are much slower than closed
form solutions because of the iterative nature, numerical solutions will be used
because of the manipulability of the solution to many mechanisms. Newton—
Raphson algorithms, genetic algorithms and neural network solutions are the

mostly used numeric solutions.

23.5,6

Figure 3.9 Stanford Manipulator.

3.5.3 Numerical Inverse Kinematics

As shown in previous section, the models show considerable variations for
different types of manipulators. In addition, equations can be too difficult to solve
directly in closed-form because of the non-linearity. Therefore, it is necessary to
develop efficient and systematic techniques that exploit the particular kinematic
structure of the manipulator. For that reason the required joint variables at desired

position will be found iteratively from initial position and joint configuration. As
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mentioned before, selection of initial condition is important in order to handle
multiple solutions and singularity. The initial joint configuration of manipulators
can be given as the well-known poses such as zero-angle, ready and fully-
extended. But if no initial joint configuration is given, zero-angle pose is selected

as default configuration.

Note that before initiating a solution, the orientation and the position of the
desired pose of the mechanism is known. Since the position and the orientation of
both initial configuration and desired configuration are known, transformation
matrix at initial configuration Ty, and transformation matrix at desired position T}
can be calculated. With the help of the values at each joint, Ty can be computed
with HTM method:
0Ty = 3ToiTy . ™ 3T, = | 03500 310] (3.13)

But T; is computed with a different method. Throughout the inverse kinematic
solution, it is assumed that end-effector of the mechanism is always perpendicular
to the working plane which means that the approach vector, a,, of the hand frame
illustrated in Figure 3.5 is aligned with the surface normal. With the help of the
orientation of the working frame w.r.t the base frame, the rotational part of the T,
can be computed in terms of RPY angles which are obtained by composition of
elementary rotations w.r.t axes of a fixed frame. The acronym RPY stands for the
Roll-Pitch-Yaw angles which are often used in aeronautical field. In this case, the
set of angles (y, ®, 0) which is illustrated in Figure 3.3 are obtained rotating the
reference frame about x axis (yaw), about y axis (pitch) and z axis (roll) of the
fixed frame respectively. The resulting orientation of the working plane is
obtained by composition of rotations w.r.t the base frame and then it can be
computed via premultiplication of matrices of elementary rotation as presented by

Sciavicco [68]
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CsCo  C4SpS, —S,C, C,S,C, +5,S,

n —_—

oR=[8,C5 845,5,+C,C, S,58C, —C,S, (3.14)
-$, CyS, CyC,

As expressed by Sciavicco the third raw of the HTM in Eqn. (3.12) represents the
normal of the working plane shown with zy,, in Figure 3.10. Since the end-effector
moves toward to the plane, a, is the opposite of the normal of the plane. So after
inversing the 3™ column of Eqn. (3.14) which represents the surface normal, the
third column of T; is obtained. Knowing that the sliding vector, s, is aligned or
tangent to the motion, the direction of s, can be found by the direction vector from

starting point to the end point as in Eqn. (3.15)
Sn:[xe’ ye’ze]_[xsﬂysﬂzs] (315)

Figure 3.10 Orientation of end-effector w.r.t working plane.

Once a, and s, are known n, can be simply obtained by completing the right

handed coordinate system with the cross product of n,=a,Xsh.
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The last step of composing T, is simply inserting direction vectors and the end-
effector position to the correct place of the HTM according to Eqn. (3.12). So the
T, takes the form of Eqn. (3.16).

[an X3S, ]x [Sn ]x - (C¢SQCW + S¢sz//) dx
[an x Sn ]y [Sn ]y - (S¢56Cy/ - C(]ﬁst//) d y
[an x Sn ]z [Sn ]z - (CHCI//) d z

0 0 0 |

T = (3.16)

Once T, is obtained, the solution simplifies to finding how much the joints will
has to move in order to reach the required position. This can be found by the 1*

order Taylor Series Expansion of T (810 6y) [36]:

(r:Tl (01 ):?1-'- (90 + 500)

0 0 0
EOT0(90)+£59] +6LT5¢92 il 56, (3.17)
00, 00, o0,

Since the Ty and T; are known in Eqn. (3.17), only the differential terms are left
unknown. The derivative of the T can be found by Eqn. (3.18) which is derived
by Lorenz [36].

O 2[DfT <]
= (3.18)

0. | 0 i>j

Where Dj, a 6-element differential motion vector representing the incremental
translation and rotation described by the homogeneous transform T, is found by
Eqn. (3.19) where 0, is the rotation about x axis, 0y is the rotation about y axis, 0,
is the rotation about z axis, X, y and z is the displacement in x, y, z axes
respectively. The other important usage of D is that it constitutes the elements of

the Jacobian Matrix that is explained later in this section.
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0o _96 99, X

00 06, 00

X 00, 06, oy
D=TQT " =| 2 06, 06, (3.19)

9, a0, o, @

06, 06, 00

0 0 0 0

The inverse of the transform matrix was shown in Eqn. (3.3) and Q for revolute

and prismatic joints is shown in Eqn. (3.20) [36]

0 -1 0 0 0 0 0O
1 0 0 O 0 0 0

QI’Ot = O 0 0 0 > Qtrans = 0 0 0 1 (3-20)
0 0 0 O 0 00O

Substituting the values into Eqn. (3.17), the expansion takes the form of Eqn.
(3.21), which will be used to form the error matrix shown in Eqn. (3.22)

o (6, +30,)=,T(8,) + D, ;T (6,)6, + D, T (6,)30, +---+ D, ;T (6,)56,  (3.21)

E="T,’T,(6,)" — | (3.22)

n

In order to obtain the error matrix, both sides of the Eqn. (3.21) should be
multiplied with 3T~1. So the Taylor Series Expansion takes the form of Eqn.
(3.22),
T, +066,)°T (6, " -1 =D,00,+D,50, +---+ D, 50, (3.23)

The left side of the Eqn. (3.23) gives the error matrix E which represents the
deviation in the global coordinates. Notice that E has to be transformed into joint
space by the Jacobian matrix.

Jacobian matrix is an important tool in kinematics. Jacobian can be thought as the
vector form of the derivative of a scalar function. This matrix is used in
kinematics for operations such as, smooth trajectory generation, finding the
singular configurations, the manipulability of the system, derivation of velocities
and finally calculation of forces and moments in the system. For a manipulator

with n joints, the Jacobian is in the form of Eqn. (3.24) and gives the relation
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between n-vector of the joint velocities and the 6-vector containing information
about the linear and angular velocities of the end-effector.

0 %=¢J(0)-¢ (3.24)
The Jacobian matrix has information about both Cartesian partial derivatives and
rotational partial derivatives. The base frame Cartesian partial derivative is

extracted from the 4™ column of the DidT matrix as in Eqn. (3.25).

OX
o6,
. oy
DT = © | oe (3.25)
oz
| 06,
0 0 0] 1

The rotational partial derivatives of the Jacobian for each joint with respect to the
end-effector are contained in the D; matrix as mentioned before. Extracting Dj »,
D;3 and Dy from the values found from D; in Eqn. (3.19) the last part of the
Jacobian is formed. Finally after pulling the relevant values from Eqn. (3.19) and

Eqn. (3.25), the Jacobian matrix takes the form of

J:[WX W, W, v, oV, VZ]T (3.26)

The Jacobian matrix of a manipulator for n joints is formed by computing the
Jacobian matrices of each joint repetitively and concatenating all the matrices as

in Eqn. (3.27).

JU
QJzL’}:[Jl J, 3] (3.27)

\

After the Jacobian is found, the by taking E from Eqn. (3.23) can be solved by
taking the inverse of the Jacobian matrices. The deviations for generalized joint
variables can be found by Eqn. (3.28). The computed joint increments are added

to the initial joint values in order to find new configuration as in Eqn. (3.29).
50=J"E (3.28)

0, =6, +50 (3.29)

But the deviations should be checked if they satisfy the precision required. If the

deviations are smaller than the resolution, 0, is stored and the iteration starts for
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the next point in the trajectory. But if the deviations are not small enough the
iteration continues by using newly calculated joint values as initial configuration

until the deviation values are smaller than the resolution.

3.5.4 Singularity Handling

As mentioned earlier, singularities occur when no solution can be found for a
particular manipulator pose due to an alignment of axes reducing the effective
degrees of freedom, or the point being out of the workspace of the mechanism.
The common criteria for the singularity of manipulator is when the velocity
Jacobian of the manipulator, J(q), loses its full rank, the kinematic chain loses one
of its degrees of freedom [27, 29, 30, 55]. Common singularities observed in
robotic applications when the Jacobian matrix is square can be classified as; Arm-
extended singularity, wrist-extended singularity where the first and last joint of
the wrist are aligned, so they span the same motion freedom. Hence, the angular

velocity about the common normal of the three wrist joints is lost.

From the standpoint of task planning, it is very important to avoid the singular
configurations of the robot. This can be assured by the maximization of the robot
manipulability. Yoshikawa [56] defined the measure of the manipulability, w, as

in Eqn. (3.30).

W= \J-JT\ (3.30)
Yoshikawa’s manipulability measure is based purely on kinematic data, and gives
an indication of how ‘far’ the manipulator is away from singularities and thus is
able to move and exert forces uniformly in all directions. Manipulability varies

from 0 (bad) to 1 (good). For a non-redundant robot manipulator, the measure w is

simplified to w =|det(J)| [27].

In literature some methods has been presented for singularity handling. As
Kemeny [67] summarized some of these techniques modify the numeric

properties of Jacobian matrix with the trade-off of an imperfect end-point
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velocity, such as the damped least-squares, pseudo-inverse approach, singular
value decomposition etc. as shown by Dewit or Foret, while others (as Nenchev or
Lloyd) alter the time scales of one or more components in the joint space; either to
take a virtual bypass around the singularity (again, at the cost of imprecise
workspace motion), or to maintain acceptable joint velocities while locally
slowing down the end point motion to zero. In our study, pseudo-inverse method
shown in Eqn. (3.31) has been used for computation of the inverse of the Jacobian
at Eqn. (3.28) for singularity handling [15, 29].
J'=Q"H "7 (3.31)

This approach allows a solution to obtain at a singularity since J* exists even
when J is not square and full rank, but the joint coordinates within the null space
are arbitrarily assigned. J* is computed by pinv function of MATLAB which is

based on Moore-Penrose pseudo inverse of matrix [43].

3.6 Closure

In this chapter, the background knowledge is presented to develop the command
generation algorithms. Detailed information about the kinematic modeling of
manipulators has been given. DH parameters, notations and frame attachment
operations are discussed step by step. Forward and inverse kinematic models have
been presented for the sake of self-containment. Inverse kinematic solution
methods have been divided into two: closed form and numerical solutions.
Advantages and disadvantages of two solutions have been given. Closed form
solution of PUMA 560 and Stanford manipulator, which will be used throughout
the course of this study has been included. The solution of the numerical method

has been investigated in detail.
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CHAPTER 4

POSITION GENERATION IN JOINT SPACE

4.1 Position Generation

Manipulators are able to perform different kinds of tasks such as painting,
welding, material handling and etc. Although operation changes they fulfill their
tasks by following a pre-defined path called trajectory. A common way of causing
a manipulator to move from one location to another in a smooth controlled
fashion is to cause each joint to move as specified by a smooth function of time.
Commonly, each joint starts and ends its motion at the same time, so that the
manipulator motion appears coordinated. How to compute these motion functions

is the problem called trajectory generation [1].

The definition of the trajectory for the manipulator should be given to the
controller in order to find the joint orientations at specific time. Defining the tool
path should be convenient for the user. Instead of entering complicated functions
in spatial or temporal domain, one can define the trajectory with the utilization of
a low-level language. The usage of NC codes as defined by RS-274B comes
handy for that purpose. With an NC code, all the user has to do is to describe
some properties of the motion and the intermediate locations. In this thesis, the
common NC codes are taken as basis and the G-words are modified accordingly
as the need arises. Detailed information regarding this formalism is discussed in

later sections.
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4.2 NC Code

An NC program is a code that defines the entire sequence of a machining
operation to be carried out on a particular CNC machine tool [2]. Although NC
codes have been designed originally to program CNC machine tools, they can be
adopted to the robotic manipulators as well. In fact, the NC code can be modified

to define the end-effector trajectory to perform the task with the given tolerances.

NC code devised in this study contains information about the coordinates,
orientation of the end-effector, motion type, manipulator’s operation modes, and
tool’s speed along the trajectory (a.k.a “feedrate”). Each line (i.e. block) in this
custom NC code constitutes information about a segment of the motion. For

trajectories with repetitive features, subprogram/subroutines can be utilized.

The motion type and the operation mode are defined by G-codes. The G-codes
that made use of in this work are as follows: GO — rapid linear motion; Gl —
rectilinear motion; G2/G3 — circular motion; G17, G18, G19 — selection of
working plane in circular motion; G90 / G91 — absolute and incremental
coordinate mode; G100 — specification of local coordinate frame. In addition to
the G-codes; tool coordinates X, Y, Z (mm), miscellancous functions M and
feedrate F (mm/min) can be defined in the NC code. M98, M99 M function calls a
subprogram and subroutine respectively while M30 signals the end of the
subprogram. In addition, N word is utilized to label the start of a subroutine and
P-word, which is used in conjunction with M98 function, defines the name of the
subroutine to be called. And finally dwell function is defined by D (sec). The
usage of D-word is essential for the task which needs to keep its pose during the
designated time interval such as spot-welding operation. Note that modal coding
has been utilized to make the code not only efficient but also easy to follow. In
this scheme, the modes set by the G codes or the coordinates being specified do

not change until new mode or coordinate is entered.
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4.2.1 Motion Types

Manipulators are capable of performing several motion types such as rectilinear,
circular, helical and parabolic motions. But for simplicity, the motions in this

study are limited to rapid, linear and circular motion.

4.2.1.1 Linear Motion

In linear motion, the tool moves to the destination at a constant feed rate which is
defined by the user. In this mode, all axes work in coordination and tool moves
the same amount in each axis as illustrated in Figure 4.1. The linear motion should
be defined as Gl Xx¢ Yyr Zz¢ Ff where xy, yy, z¢ are the coordinates of the end
point in either absolute or incremental mode and f is the feedrate (mm/min)

defined by the user.

/ Xf, Yf, Zf
Xi, Yi, ZI/ <

Figure 4.1 Linear Motion.

Notice that a linear interpolation is required to produce position commands to the
controller at the start of each control cycle. To carry out this computation, the

travel (Euclidian) distance should be calculated first:
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4= \/(xf —x)%+ Oy —¥)? + (2 — 2)? (4.1)

Similarly, the time required to reach destination becomes

60d
= T (4.2)

Hence, the number of commands to be generated along this linear trajectory can

t

be calculated as

s = floor (%) 4.3)

where T is the sampling rate of the control unit. The increments at each axis
becomes

X X
Ax =L - l (4.42)
Ay = @ (4.4b)
Zs — Z;
Az=" - l (4.4b)

Similarly, the coordinates of the tool at a particular time (kT) can be expressed as

x(k) = x; + kAx (4.5a)
y(k) = y; + kAy (4.5b)
z(k) = z; + kAz (4.5¢)

4.2.1.2 Rapid Motion

Rapid motion, which is basically used to move the tool from one point to another
at the maximum speed, is same as the linear motion but this time feedrate is not
required. The definition of rapid motion is GO XX; Yy; Zz; . Unlike point-to-point
motion in formal GO (of RS 274B); here, all axes work in coordination and tool
moves the same amount in each axis as illustrated in Figure 4.1. This time
feedrate is selected automatically as the maximum feedrate (fiy.x) that can be

attained by the mechanism.
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4.2.1.3 Circular Motion

The last motion type in the interpolator is the circular motion. For circular motion
algorithm and definition slightly differs. Since circle should lie on a plane, user
has to define the working plane and the definition of direction of rotation is
essential in order to draw the correct section of the circle. The block of the NC
code has the information of the working plane, direction of rotation, the
coordinates of the destination, the radius or the coordinates of the circle and the
feedrate. Two alternative definitions are available for circular motion. The

representation options are:

Table 4.1 Circular motion representations.

XY Plane 6176 {2} xx vy {If?]rj } Ff
XZ Plane G18 G {é} Xx Zz {“R;{rk }Ff
R
YZ Plane 619G {;} Yy Zz L}. I:k} Ff
G17 11 j
Complete Circle G {2} {618 I Kk} Ff
619 Jj Kk

where X, Y and Z are the coordinates of the destination point, R is the radius of
the circle and I, J, K are the distance from the center to the starting point. [, J, K
values are used as a set of two keywords. I and J keywords are used for defining
the center of the arc in XY Plane. Similarly, J, K is used for arcs in YZ plane and
I, K are used for arcs in XZ plane. If one prefers representing the arc with R, the
sign of radius should be given correctly. For the arc angles larger than 180°, as
illustrated in Figure 4.2 with motion from A to D, radius should be defined as —R.
For smaller arc angles such as motion from A to B, radius should be entered as R.
For the other notation, the incremental distance from center to starting point
should be given as illustrated in Figure 4.2. In this notation, i defines the
incremental distance on X axis, j defines the incremental distance on Y axis and

similarly k represents the distance on Z axis.
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X,

Figure 4.2 Circular Motion

Final important definition is the working plane. G17, G18 and G19 are reserved
for defining the working plane and they are used for motion on XY plane, XZ

plane and YZ plane respectively.

According to the definition of the circulars motion calculations differ. If the
incremental distance to the center is given, radius of the circle can be calculated
by Eqn. (4.5) and center coordinates are computed by Eqn. (4.6). If only the
radius is given and the center coordinates left unknown, the center position is
obtained by geometric operations which is shown in the list of findCenter.m
subroutine given in Appendix. Once the center coordinates and radius of the circle
is known, the angle of the starting point of the arc, 65, and the angle of the final
point of the arc angle 6, is calculated by Eqn. (4.7a) respectively for XY, XZ and
YZ planes.

r=.i+j>+k? (4.5)

X, =X+l Y. =Y. +] z.=2.+k (4.6)
6, = atan (2 :;:), 6; = atan (’;; : J;Z) (4.7a)
0; = atan ()ZC - §> 6y = atan (Z - ﬁ > (4.7b)
0; = atan (iz : )Zt), 0y = atan (321; :Z) (4.7¢)

Once all of the unknowns are computed, position commands can be produced. To

perform this computation, the travel distance should be calculated first. The travel
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distance is simply the length of the arc. In order to compute the arc length, the
sweep angle of the arc should be computed by Eqn. (4.8). Then the arc length, 1, is
found by Eqn. (4.9).
6, =06, -0, (4.8)
=6 -r (4.9)

Similarly, time required to complete the arc becomes

601
f

Hence, the number of commands to be generated along this circular trajectory can

t (4.10)

be calculated as

N = floor (%) (@.11)
where T is the sampling rate of the control unit. Since the trajectory is circular,

increments should be projected into angles and the angular increments can be

found by
7
AO=— 4.12
. (4.12)
Similarly, the angle values at a particular time (kT) can be expressed as
0(k)=6,+A06-k (4.13)

Finally, the coordinates of the tool at a particular time (kT) can be expressed as in
Eqn. 4.14 which shows the procedures for circular motions in XY, XZ and YZ

planes respectively.

x(k) = x(0) + r* [cos(O(k))] y(k) =y(0)+r* [sin(O(k))] (4.14a)
x(k) = x(0) + 7 * [cos(O(k))] z(k) = z(0) +r * [sin( O (k))] (4.14b)

y(k) = y(0) + 7 * [cos(O(k)]  z(k) = z(0) +r x[sin( 8 (k))] (4.14c)

4.2.2 Frame (Coordinate) Transformations

Another original idea in this study is the use of complex coordinate
transformations in the NC code. The standard NC codes define the motion of the

tool w.r.t. to a (selected) work coordinate system where the principal axes of this
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frame are essentially aligned with those of the global coordinate frame (i.e.
machine coordinate system). Since the tasks handled by industrial manipulators
often times require the complex orientation of the tool (or the workpiece), one
should modify the basic NC Code to accommodate such necessities. For instance,
it would be impossible to define a circular path lying on a slanted plane with the
utilization of the angular motion commands (A, B, C) of the formal NC code.
Therefore, in this work, the user can define a local coordinate frame by specifying
not only the coordinates of its origin w.r.t. the global frame but also its rotations
about the fundamental axes. After this definition, one has the freedom to generate

the NC Code on this frame by using standard NC Code.

The position and orientation of the local frame w.r.t the global frame is defined as
G100 Udy Vd, Wd, Ay B8 CO where, vy, 0, ® are rotations about X, Y, Z axes of
fixed reference frame respectively, dy, dy, d, are the translation of the new frame

w.r.t. the fixed reference frame.

With the information of the frame position and orientation w.r.t the global
coordinate, the trajectory is transformed by Eqn. (3.14) presented by Sciavicco

[68] where 1 represents the local frame, g represents global fixed frame.

c,Co  C;84S, —S,C, C;8,C, +s,8, d,
S,Co 45,5, +C,C, 8,5, —C,S, d, @.15)
-S, CyS, CyC, d '

0 0 0 1

|
ol =

z

Once the transformation matrix is obtained, the points on local frame can be
projected onto the global frame by Eqn. (4.16).

Pe=gT - P (4.16)
where, p, and p; are the position vectors w.r.t. the global and local frame
coordinate frame respectively. In Figure 4.3, this transformation (with y = 10°, 6
= 10° and ® = 0°, and dy = 452.1 mm, dy=-150.05 mm, d, =431.8 mm) is
illustrated. The listing of the NC code generating this complex trajectory is given
in Appendix B.
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Z axis (mm)

Z axis (mm)

Trajectory on Local frame

-100
-200
Y axis (mm) -300 -300

(a) Trajectory w.r.t local frame.

Trajectory on Global frame

Xaxis (mm)

(b) Trajectory w.r.t global frame after transformation.

Figure 4.3 Coordinate transformations of complex trajectories.
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4.3 Developed Algorithm

Up to now, kinematic modeling and position generation for robotic manipulators
are discussed. This part of the thesis is about the algorithm of the inverse
kinematics. The algorithm is divided into two parts. The trajectory is generated in

the first part and the inverse kinematics solution is handled in the second part.

4.3.1 Trajectory Generation

Trajectory generation is done in two steps which are, parsing and interpolation as
in Figure 4.4. In order to generate the trajectory user has to input the NC Code.
Required keywords and the representation styles were mentioned in Section 4.2

and the custom NC Code should strictly follow this presented syntax.

NC Code Input Frame Output Data
GO01G90 X..Y..Z..F.. Parser Interpolation - p .
Translation to Each Axis

G02 X..Y.Z. U.V.W..F

Figure 4.4 Flowchart of trajectory generation.

The entered NC code is parsed and the trajectory w.r.t. the local frame is
generated by the interpolator as equi-distant position samples. Note that the
abilities of the parser developed in this thesis are rather limited. Although it
cannot read all the keywords of a standard NC-code, but it is sufficient for

creating the basic motions, such as linear, rapid and circular.

4.3.1.1 Parser

Parser is utilized for interpreting the required commands (and their parameters)

from the sequence of input characters according to the specified rules. This parser
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extracts preparatory codes, coordinate axis and values, feed rate, miscellaneous

functions.

Parser takes the NC-Code as input, searches for line ends and breaks down into
lines. For each line, parser looks for ASCII character 32 (space) and stores the
information as letter groups between the spaces. The stored letter groups are split
into two parts: word and number. The output of the parser is an array containing
the information required for the trajectory generation. The value is stored in a
array associated with each word. Figure 4.5 illustrates the flowchart of the parser

algorithm.

( NC Code O

v

Split into lines

v

‘ Finds the Expressions ‘

v
v v v v v

Position G Words Subroutine

- Feedrate Dwell
XY, Z Functions F D
M30, M98, M99,
P, N
Motion Type Coordinate
GO, G1, G2, Mode
G3 G90, G91

Figure 4.5 Flowchart of the parser.

4.3.1.2 Subroutines

For repetitive operations, subroutine algorithm has been incorporated to the
parser. Instead of repeating same lines of commands, subroutines are called when
needed. Subroutines must be defined after the end of the NC Code that is stated by

M30 command. Subroutines should start with a Nnn statement that sets the
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subroutine start address to 'nn’ (integer) and should ended by an M99 statement
which tells the parser to return from that subroutine. When needed inside the main
code, the subroutine is called by M98 Pnn. A sample usage of subroutines is

shown in Table 4.2

Table 4.2 Subroutine Pattern.

G90 G1 X10 F500

M98 P100 (Call Subroutine #100)
GO X0 YO

MSO (End Program)

N100 (Define Subroutine #100)
G91 Y10 F200

z5

M99 (End Subroutine #100)
N200 (Define Subroutine #200)
M99 (End Subroutine #200)

4.3.1.3 Interpolator

Interpolator is where the tool path is calculated. Interpolator algorithm depends to
the motion type. Flowcharts for rapid motion and linear motion are shown in
Figure 4.6, and circular motion is given in Figure 4.7. The arrays produced by the
parser are utilized in the interpolation. Trajectory generation works line by line.
First, it checks the coordinate mode (G90/G91) in the line. If it is absolute (G90),
target coordinate is set to the stored value in the X, Y, Z arrays. If it is incremental
(G91), target position is found by adding the values in the X, Y, Z arrays to get
the current position of the tool. After that, generator checks the motion type. The
sample positions along the segments calculated by Eqn. (4.4) for rapid and linear

motion and Eqn. (4.14) for circular motion.
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Find Total Time & Find the
Line Input —» Displacement for each » Find # of Steps | — incremental
axis distances

v‘—‘

Input Add the incremental No
Previous .
. distances
Coordinates

Reach
The desired
point?

Stop |« Output Each Axis [4——yes

Figure 4.6 Flowchart of Rapid and Linear Motion.

Line Inout Find Working Compute Center Compute radius of Find The Sweep
P d Plane of the circle d the circle Angle of circle
Output . Form the circle’s midpoints Find the Incremental Angles |« Find number of
Each Axis parametrically Steps

Figure 4.7 Flow Chart of Circular interpolator.

Once the samples w.r.t. local frame is generated, the frame transformation
processes starts. By the help of the Eqns. (3.14) and (4.16), the trajectory is

transformed into the global frame.

4.3.1 Inverse Kinematics

As mentioned before inverse kinematics is finding the joint variables that are
needed to yield the desired end-effector position. The required joint variables are
found iteratively by using a numerical solution. The code for solving the inverse
kinematics problem can be thought as a block consisting of preparation- and

processing parts as illustrated in Figure 4.8.

53



Y

PRE- INVERSE
INPUTS > PROCESSING KINEMATICS OuTPUT

Figure 4.8 General Flowchart of Inverse Kinematic.

In preparation part as illustrated in Figure 4.9, Denavit-Hartenberg (DH) table is
utilized; the initial transformation matrix Ty is calculated by using DH table, using
the initial configuration and the home coordinate of the mechanism is found from

that matrix.

Machine Initial Joint
Configuration Configuration

Find
D-H Table HTM
Generation > Home

Calculation Coordinate

OUTPUTS
D-H Table
Reference HTM
Home Coordinate

Figure 4.9 Flowchart of preparation phase of inverse kinematics.

The code starts with generation of DH tables by the help of the file input by given
by the user. In addition to the standard DH table, a final row has been added
which represents the joint type. Revolute and prismatic joints should be

represented by “1”” and “0” respectively.

Next step is to find the reference transformation matrix. The reference (desired)
transformation matrix T" is calculated for the joint configuration given by the user
with Eqn. (3.16). Recalling that the transformation matrix is composed of rotation
and translational part, home coordinate of the end-effector can be read from the
last column of this matrix. These steps conclude the preparation part of the inverse

kinematic solution.
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After the processing part, inverse kinematic calculations, which includes initial
estimations, error and Jacobian calculation and iteration to find the new joint
configuration, commences. The pseudo-code of inverse kinematic solution is

given in Table 4.2.

The process part of the algorithm is straightforward. Estimating the required
initial conditions requires a check, which should be done before the iteration
starts. The code checks the degrees of freedom (DOF) of the mechanism by the
help of the link numbers. For an n-numbered mechanism, which should not be in a
special condition described before, it can be said to have n degrees of freedom. If
there is less than 6 DOF in the mechanism, it is impossible to control the axis

which is not constrained.

Table 4.3 Pseudo code of the inverse kinematic iterations.

Estimate desired Transformation Matrix, T* and initial joint configuration q(0)
Initialize g=q(0)

Iterate:

1. Compute for current joint position, q: T"(q) & °T'(q)

2. Calculate error: E(k) = [T*T Y (q) —I]-m

3. Map E(k) to 1x6 vector

4.  Estimate the joint increment: §; = °J%(q)E,

5. Move joint virtually g = g + (/?;

6. If (/?; < resolution, stop, otherwise repeat iteration
Output: q

Consequently, a mask is employed here which assigns 0 to the mask vector “m”
for the unconstrained axis in order to cancel the effect of that axis. For example, a
5-axis manipulator may be incapable of independently controlling rotation about
the end-effectors’ Z-axis. In this case m; in the Eqn. (4.17) would enable a
solution in which the end-effector adopted the pose defined by HTM, T, except
for the end-effector rotation. Similarly, m, shows a mask vector for a 6 degrees-

of-freedom mechanism.
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After that, the homogenous transformation matrix for that configuration is
calculated to compare with the T  in order to find the error matrix which
represents the deviation in the global coordinates Eqn. (3.22)). Then, the Jacobian
matrix in the base frame is calculated Eqn. (3.25). By multiplying the
displacement and the Jacobian, the joint increments are found. The maximum
value of the increment value is compared with the error tolerance defined by the
user for the inverse kinematic operations. If the deviation is smaller than the
required tolerance, it means that the required joint values are found. If the
deviation is large, iterations continue by assigning these joint values as q*.
Throughout the trajectory, the previous configuration of joints are used as starting

point, solve inverse kinematics for the each pose in the trajectory.

4.3.2 Segmentation

The generated trajectory by the interpolation consists of large amount of data and
joint values representing this trajectory are complex and it does not follow a
pattern. Since the main idea is to model the data with polynomials or advanced
transformations efficiently, these data should be divided into manageable
segments. Here, segmenting the trajectory into little patches where the motion or
direction changes will supply smooth joint states as the trajectory does not contain
any sharp transitions which would change the behavior of the joint as seen in
Figure 4.10. Segmentation of the trajectory is handled during the interpolation
step. While generating the samples for each line of the NC Code, the place of the
starting and the ending points are stored so each motion is to be handled in

different sections.
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Figure 4.10 Segmentation of the Trajectory of 2-D manipulator.

4.4 Case Study

Here, a simulation of the tool path generation from an NC code and the generation
of the joint variables throughout this trajectory in a kinematic error tolerance of
10~ is demonstrated. Puma 560 manipulator is selected for this demo. The frame
assignments are done according to the Denavit Hartenberg notation and shown in

Figure 3.8 and the Denavit Hartenberg table generated by Corke [29] is given in

Table 4.4

Table 4.4 Denavit Hartenberg Table.

A 0; 0 di type
0 iv 290 0 R
43.18 Jv 0 0 R
2.03 Jv -90 15.005 R
0 Jv 90 43.18 R
0 iv 290 0 R
0 iv 0 0 R
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4.4.1 Position Generation

The simulation starts with the interpretation of the NC Code given in Appendix A
which is programmed to mark the template of the round-about traffic sign

illustrated in Figure 4.11.

Figure 4.11 Desired Trajectory.

NC Code gives the intermediate locations of trajectory w.r.t to a local frame. The
position of the local frame is [452.1, -150.05, 231.8] and orientation is [30°, 120°,
30°] w.r.t to the global frame. The transformed trajectory w.r.t global coordinates
is plotted in. Initially the parser interprets the NC Code and extracts the points
defined by the user. The next step is the generation of the trajectory. The
trajectory is found by interpolating the points in a sampling rate of 0.05 seconds.
The initial joint configuration defined is

the home coordinate of the manipulator was set at the centre of the traffic sign. It
should be noted that choosing the translation of the local frame as the home
coordinate of the mechanism to be used, results with better convergence in inverse

kinematic solutions.

The motion starts from home coordinate and continues with the first point defined
in the NC Code. The generated trajectory which is shown in Figure 4.12 is defined
with 2553 intermediate points and it is segmented into 47 subsections. The

motions in X, Y, Z coordinates are plotted in Figure 4.13.
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Y axis

Xaxis

Figure 4.12 Generated Trajectory.
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Figure 4.13 Trajectory in each axis.
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4.4.2 Inverse Kinematics

In the previous step, the trajectory was generated at a sampling rate of 0.05
seconds. Here the values of joint variables are found for the whole points in the
trajectory. The precision of the inverse kinematic operations are set to 10 which
means the iterations for a point continue until the deviation is smaller than 107,
After inverse kinematic solution the angle values in degrees are given in the
Figure 4.14 and the angular velocities are shown in Figure 4.15. As seen in Figure
4.14b, sudden changes in the joint angles due to the sharp changes in the
trajectory has been observed. As the direction of the path to be followed changes,
the sliding vector of the end-effector changes as well so the wrist angles are

altered rapidly. The motions of joints between these states are not modeled in this

work.
q1 vs time
50 T T T T T T
- 0 W ]
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0 20 40 60 80 100 120 140
time (sec)
g2 vs time
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s ° ;\/\/\/\/\\/ )
-100 | | | | | |
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g3 vs time
100 T T T T T T
OD(_") 0 / \/W i
_1 OO L L L L L L
0 20 40 60 80 100 120 140
time (sec)

(a) Joint values in degrees for first three joint.
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(b) Joint values for wrist joints

Figure 4.14 Joint values in degrees.
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(a) Angular velocities for first three joints
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(b) Angular velocities for last three joints.

Figure 4.15 Angular Velocities of Each Joint.

In order to confirm the calculated joint variables, the forward kinematic
calculation is done as described in previous chapter. The error of the regenerated
trajectory is computed. As plotted in Figure 4.15, the obtained errors are in
acceptable levels and they are 5 um where maximum error occurs. Checking the
error values, it can be easily said that the errors coming from the numerical
inverse kinematic solution is not so much with respective to the results obtained

by analytic solutions.
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Figure 4.16 Error bands of the recalculated trajectory.

4.5 Closure

This chapter has basically focussed on generation of tool path using an augmented
NC Code. The syntax of NC Codes, keywords, their functions and finally
representation styles were mentioned. In addition, the interpretation of the NC
code was elaborated. The interpolation algorithm that generates the position data
has been discussed. Formulation and the flowcharts of interpolation algorithm
have been discussed in detail. And finally tool path generation has been concluded

with the proposed frame transformation algorithm.

In addition, how the input parameters that are required for inverse kinematic
solution such as Denavit-Hartenberg parameters should be entered has been

discussed. The extra checks and operations added to the numerical iterative
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solution method mentioned in Chapter 3 have been elaborated. The flowchart of

the inverse kinematic algorithm has been introduced.

Chapter has been concluded, with an illustration of position generation and
inverse kinematics on a real life example. The error of 10° m (10 microns) has

been selected for inverse kinematic operations which generates an error of around

5 microns along the trajectory.
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CHAPTER S

COMMAND GENERATION VIA DIRECT DATA STORAGE

5.1 Data Storage

Storage of the data produced in joint space is as important as producing the data.
CNC controllers used to have small capacities around 64 kilobytes to store the
commands required by the CNC machine tool such as coordinates, feed rates,
joint variables. With the improving technology the ability to store large amount of
data is possible. Today it is possible to store gigabytes of data by using hard
drives, flash drives and optic drives and Random Access Memories. Besides the
high capacity, preserving the data for a long time and the fast accessibility makes
the use of direct storage reasonable. Having large storage spaces does not mean
that all of the space can be used. Data should be stored in an efficient way in order
to reduce the consumption of resources. Compressing the data is the best way to
store the same data by encoding the required information using fewer bits than an
unencoded representation would use. The application areas of compression

include the ZIP file format, mp3’s, video compression and picture compression.

In addition to storage spaces, it is important to limit the data to be transferred in
optimal values. Since the transmission bandwidths of the controllers of the
manipulators are not broadband transferring the commands representing the joint
values will take a long time. Instead of widening the bandwidth, shortening the
length of the data to be transferred is a better solution. Here another approach
should be considered which is transferring the data in smaller sections instead of
sending whole data at once. But this approach has an important outcome which

decreases the efficiency by increasing the data traffic. The standard protocol of
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data transfer is to send the generated discrete displacement commands for each
axis at every control interval before machining starts. Then throughout the
machining process, main host sends the required motion commands to the
controllers of each joint, and at the same time the positional feedback is collected
from these controllers as in Figure 5.1. When the data is sent in small pieces
during the machining process, the data transfer traffic in the host increases, which
brings the requirement to use hardware with higher performance. In addition, a
new protocol should be configured between the computer and host in order to

define when data transfer starts and ends.

Host

Motion 4 A N

Motion Motion
Command Feedback Feedback

\ Command Feedback

Command Y

Controller Controller Controller

of 1st Joint of 2nd Joint of nth Joint

Figure 5.1 Basic data transfer scheme.

Compression only works when both the sender and receiver of the information
understand the encoding scheme which means a decoder is required to obtain the
original data. Need for a decoder means extra operations and processing times so
that a trade-off study among degree of compression, the amount of distortion
introduced and the computational resources required compressing and

uncompressing the data should be performed.

Compressing the data can be divided into two main kinds, which are lossless and
lossy compression. Lossless compression guarantees that what is compressed can
be recovered without any data loss. Lossy data compression provides a way to

obtain the best accuracy for a given amount of compression. Lossless data
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compression is often used for symbolic data such as spreadsheets, text, executable
programs, where losslessness is essential when changing even a single bit cannot
be tolerated. Lossy compression uses the limitations of the human or machines
sensory system. For visual and audio data, some loss of quality can be tolerated
without losing the essential nature of the data by removing the non-audible sounds

and the details that eye cannot distinguish.

In this chapter, numerical methods for compressing and decompressing the data
will be examined. Differentiation, Fourier transformations, segmentation, high
order polynomial fitting methods will be used for compression, integration,
inverse Fourier transformations and interpolators will be used for decompression.
The methods will be examined in details and performance of each method will be

compared.

5.2 Encoding and Storage Spaces

The motors driving the joints are step motors and the input of these motors should
be pulses. Since the joint values generated by inverse kinematic solutions are in
terms of radians they should be converted into pulses by encoders. At their most
basic level, encoders transform mechanical rotary motion into a sequence of
electrical pulses. In order to obtain better accuracy, high resolution encoder with
30000 rpm has been used in calculations. The conversion of radians into pulse is
handled by Eqn. (5.1)
p=4-r-0/ (5.1

Where p is pulse, r is the rpm of the encoder and 0 is the joint value in radians. All

of the methods in this thesis use the pulse values.

But the usage of an encoder brings an error because the joint value is rounded in
order to obtain a pulse numbers. The joint values with encoder usage and the error
of the trajectory is plotted in Figure 5.2. As seen from the plot, the maximum error

of the trajectory is 1 mm.
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Figure 5.2 Joint angles and trajectory error with encoder usage.

The storage space required is measured by bits or bytes that a value allocates in
the hardware. In order to calculate the space requirement, the range of the data, r,
to be stored is calculated by the minimum and maximum number of the data.

Then the bit requirement, n, is found by the Eqn. (5.2).

log(2")=r r=max(q) - min(q) (5.2a)
_|{log(r)
B log(2) (5.2b)

5.3 Direct Storage

In direct storage mode, the raw data is stored as discrete data which is sampled in
equal time intervals, kT and used directly. The number of the data used is
proportional to the sampling rate. The size of the data is maximized in this
method. Although no additional operation is required, the storage space needed is

too high.
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5.4 Finite Differences

In order to save from the storage size, finite difference methods could be used for
storing the data. Instead of storing the raw data, the differences of the joint values
and the initial value can be stored. With this method, the compression is done
without losing any information which is called lossless compression. Differences

are calculated according to Eqn. (5.3)

vq =qk)—q(k—1) (5.32)
Vg =Vvaqk)-Vvak -1) (5.3b)
v'q=V""'qk)-V"'q(k —1) (5.3¢)

where V"q represents the n™ order difference. Since the main idea of Eqn. (5.3) is
to take the difference of two consequent values, the order of this method is up to
the user. Expanding the Eqn. (5.3b), the basics of higher order difference can be
understood better. Inserting Eqn. (5.3a) into Eqn. (5.3b) for qx and qx.1, Eqn (5.4)
is obtained.

Via=a(k)-2qk-1)+aqk-2) (54)
So the n™ order difference can be computed by both Eqn. (5.3) and Eqn. (5.4). But

first method is preferred in this study for generalizing the solution.

With finite difference method, the number of the data stored decreases one by one
according to the order and the range of the difference is smaller than the original
data. By reducing the range, allocated memory for each data is decreased in bits.
But it should be investigated if the data storage requirements are reduced or not.
For that purpose, a Monte Carlo Simulation has been done. 1000 trajectories have
been generated randomly and the inverse kinematic operations are applied to find
the joint values. Once the joint values are obtained, the finite differences up to 7"
order are calculated and the storage requirements of each differentiation are
found. As seen on Figure 5.3, usage of differentiation of the orders higher than 3
does not reduce the required storage space. After 4™ order the data starts to be
positive and negative consequently so the range widens which results in increase

of the storage space.

69



Bit values vs. Order of Difference

Bits
(]
T
|
|
|
|
|

Figure 5.3 Allocated Space vs. order of the finite difference.

5.4.1 Finite Composition Techniques

In finite difference method, the increments of each value was calculated and
stored. Bu in order to reconstruct the original data, high order differences should
be composed together. This can be handled by reversing the difference process as
seen in Eqn. (5.5).
qk)=qk -1 +Vq (5.5)

But this calculation requires an initial value q(k-1), according to the level of the
difference some of the initial values should be stored. For higher order
differences, an approach shown in Eqn. (5.6) can be followed.

q(k) =2q(k 1) —q(k =2) + V*q(k) (5.6)
Solution can be generalized replacing Eqn. (5.3a) into the equation and it takes the

form of Eqn. (5.7).

qk) =qk -1 +Vvak —1)+V3q(k) (5.7)

By using the equation above, all of original data can be reconstructed by storing
only the initial values of the original data and the lowest differences. Table 5.1
simulates the application of this method and shows which initial values should be

stored for different levels of differences.
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Table 5.1 Finite difference scheme

q Vq V’q Vq
k | qk) | 6 (K=A8(K) V’q=V(Vq) V’q=V(V’q)
0 | q(0) q(0) q(0) q(0)
I [ a) | q()-q) V(q(0)) V(q(0))
2 [q@ | 9@ -qD) V(q(1)) - V(q(0)) V*(q(0))
3 (9@ | 9B) -q@) V(q(2)) - V(q(1) V2(q(1)) - VX(q(0))
K [ qK) [ qK) -qK-1) | V(qK)) - V(qK-1)) | V¥qK)) - V¥(q(K-1))

5.5 Simulation of Finite Difference Techniques

The simulation will be done for a trajectory of planer mechanism with two joints
as illustrated in Figure 5.4. The direct transformation methods mentioned up to

now will be examined for a square trajectory generated with Eqn. (5.8).

p=500—-100 j+100e’"" (5.8)

P(xy)

&

Figure 5.4 Planar two link mechanism
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The trajectory and its segments are illustrated in Figure 5.5. The trajectory is
generated as a complex number for simplicity. The real part of the trajectory
represents the X-coordinates of the trajectory and the imaginary part represents
the Y-coordinates. The trajectory is found for the interval of [0 2n] divided into
1000 pieces defined with wy.

Trajectory X vs. Y
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Figure 5.5 Trajectory and the joint angles.

The inverse kinematic solution for this example is performed with an analytical
solution. The joint angles in radians found by Eqn. (5.9) as derived by Melamud
[59] are.

SEFIRVE S [ 5.9
492=arccos(x +y -l IZJ (5-9)

211
6, = arcsin(MJ +arctan 2(

1'2
JX+y’

|

j (5.9b)
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where 0, and 0, are the joint angles, 1; and 1, are the link lengths and x and y are

the position of the end effector as illustrated in Figure 5.4 .

5.5.1 Finite Difference Methods

The finite difference method mentioned in Section 5.4 will be implemented here
and storage spaces will be compared. As proven with Figure 5.3, finite differences
up to 3™ order are investigated. For the joint values plotted in Figure 5.5, after
encoding the angle values and computing the finite difference the allocated space

for each method for total of 100 data points are listed in Table 5.2

Table 5.2 Number of bits required for each joint variable.

Total Storage q; (bit per each qs (bit per
Order | q; (bytes) | q, (bytes) (bytes) value) each value)
0 1625 1750 3375 13 14
1 879 879 1758
2 752 877 1629
3 752 877 1629 7 6

5.6 Data Compression Techniques

A simple characterization of data compression is that it involves transforming a
string of characters in some representation into a new string which contains the
same information but whose length is as small as possible. As a result of inverse
kinematics and finite difference methods, data files that represent the joint values
at each sampling time are generated. These files are stored with fixed length
coding, in which each value has the same value. By using a binary code which
encodes each character as a binary string or codeword, it is possible to encode the
file using as few bits as possible and compresses it as much as possible. The
basics of binary coding is to use shorter codeword for frequently used letters
while using longer code words for least used letters or simply with variable-length

code words.
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The main approaches to text compression are dictionary and statistical based.
Dictionary based methods replace those consecutive characters with a pointer to
an entry in a dictionary. Statistical based compression calculates the frequencies
of word occurrences and builds a statistical table for later conversion. By using
this table, each character can be converted to specified code, and therefore storage

space is decreased.

As shown in previous section, the storage requirements of original data have been
significantly reduced by finite difference techniques. In this section, the finite
differences are tried to be compressed more by applying lossless compression
algorithms. For this aim, the mostly used and important methods named, Huffman

Coding and Arithmetic Coding are introduced.

5.6.1 Huffman Coding

Huffman codes are being widely used as a very efficient technique for
compressing data. In 1952, Huffman, D. [70], has developed an optimum method
of coding an ensemble of messages consisting of a finite number of members and
constructed a minimum-redundancy code which minimizes the average number of
coding digits per message. In his study, the symbol or sequence of symbols
associated with a given message is named as the message code, the transmitted
messages is named as message ensemble and the mutual agreement between the
transmitter and the receiver about the code is called as ensemble code. He
formalized the requirements of an ensemble code by representing the symbols by
digits. For N messages in an ensemble, he represented the average message length
by Eqn. (5.10), where P(i) is the probability of i™ message and L(i) is the number
of coding digits assigned to it.

L =D POLE) 10

As Huffman said, for an optimum code, the length of a given message code can

never be less than the length of a more probable message code. Therefore, he
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assumed that the messages in the ensemble have been ordered in a fashion as in

Eqn. (5.11)

P(>P1)=--->P(N-1)>P(N) (5.11)
and in addition for an optimum code, Eqn. (5.12) holds.
L) < L)<~ < L(N =1) < L(N) (5.12)

For ease of development of the optimum coding procedure, he restricted to the
problem of binary coding. According to the rules of coding, the two least probable
messages should have equal lengths of codes and there should only two of the
messages with coded length L(N) which are identical except for their last digits.
The final digits of these two codes will be one of the two binary digits, 0 and 1.
These two messages are assigned to the N™ and (N-1)" messages since it is not
known whether or not other codes of Length L(N) exists at this point. Once this
has been done, these two messages are equivalent to a single composite message.
Its code will be the common prefixes of order L(N) -1 of these two messages. Its
probability will be the sum of the probabilities of the two messages from which it
was created. The ensemble containing this composite message in the place of its

two messages will be called the first auxiliary message ensemble.

This newly created ensemble contains one less message than the original. Its
members should be rearranged if necessary so that the messages are again ordered
according to their probabilities. It may be considered exactly as the original
ensemble was. The codes for each of the two least probable messages in the new
ensemble are required to be identical except in their final digits; 0 and 1 are
assigned as these digits, one for each of the two messages. New auxiliary
ensemble contains one less message than the preceding ensemble each time and
each auxiliary ensemble represents the original ensemble with full use made of the
accumulated necessary coding requirements. This procedure is repeated until the
number of members in the last auxiliary message ensemble is reduced to two and
in each step; binary digits are assigned to each of these composite messages. And
the coding is completed by combining those messages to form a single composite

message with probability unity.
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The steps mentioned before allow a simple algorithm to fulfill them. What is
important in the algorithm is to satisfy Eqn. (5.12). The algorithm developed by
Pigeon [57] proceeds iteratively. At the start, all symbols are given a tree node
that is the root of its own subtree. Besides the symbol and its probability, the node
contains pointers to a right and a left child. They are initialized to null,
symbolized here by W. All the roots are put in a list L. Eqn. (5.12) asks for the two
symbols with lowest probability to have codes of the same length. Removing the
two roots having the smallest probabilities from L; let them be a and b, a new root
¢ having probability P(a) + P(b) and having children a and b is created. Then c is
added to L which causes a and b to share a common prefix, the code for c. So the
number of tree in L decreases by one. Repeating this until only one tree is left in
L, the tree-structured code satisfying the Huffman rules is completed. The
algorithm which builds the Huffman tree in pseudo-code by Pigeon [57] is shown
in Table 5.3.

Table 5.3 Pseudo code for Huffman Coding [57].

L={(a, P(a), ¥, V), (a, P(ay), ¥, ¥)..... (an, P(ay),¥, ¥)}
While [L| > 1
{
a=minp L
L=L-{a}
b=minp L
L=L-{b}
c=(¥,P(a) +P(b), b, a)
L=L U {c}
}

The codes are obtained by walking down the path from the root to the leaves and
appending a 0 while going down to the left or a 1 while going down to the right.
Once leaf is reached, the end of the code is determined and the code that has been
accumulated as a bit string is copied in an array indexed by the symbol in the leaf

reached.
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The encoding process is straightforward. The bit string contained in the table is
emitted, at the address indexed by the symbol. Decoding is just a bit more
complicated. Since the length of the code that is about to read is not known, one
has to walk the tree as bits are read one by one until a leaf which will correspond

to the decoded symbol is reached [57].

5.6.2 Arithmetic Coding

Arithmetic coding is method of generating variable-length codes which is useful
when dealing with sources with small alphabets, and alphabets with highly
skewed probabilities [57]. The length of an arithmetic code, instead of being fixed
relative to the number of symbols being encoded, depends on the statistical

frequency with which the source produces each symbol from its alphabet [43].

As shown by Sayood [57], it is more efficient to generate codewords for groups or
sequences instead of each symbol but it is impractical with Huffman codes since it
causes an exponential growth in the size of the codebook. Arithmetic coding
technique handles this situation by assigning codewords to particular sequences

without having to generate codes for all sequences of that length.

Arithmetic coding, codes one data symbol at a time and assigns to each symbol a
real-valued number of bits and coded messages. Then maps the coded messages to
real numbers in the interval [0,1). The code value, v, of a compressed data
sequence is the real number with fractional digits equal to the sequence's symbols.
The sequences are converted to code values by simply adding "0." to the
beginning of a coded sequence and then interpreting the result as a number in
base-D notation, where D is the number of symbols in the coded sequence
alphabet [6]. As shown in Figure 5.6, if a coding method generates the sequence

of bits 0011000101100, then the code value, v, is
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Code Sequence d =|[001 1000101 100]I

Code Value v =0!00110001011003 = 0.19287109375

Figure 5.6 Code Mapping in Arithmetic Coding.

This construction creates a convenient mapping between infinite sequences of
symbols from a D-symbol alphabet and real numbers in the interval [0, 1), where

any data sequence can be represented by a real number and vice versa [58].

5.6.2.1 Encoding Process

Fundamentally, the arithmetic encoding process consists of creating a sequence of
nested intervals in the form ®(S) = [0k, Px), k=0, 1 .. ... N, where S is the
source data sequence, oy, Bk are real numbers such that 0 < oy < o+, and

Br1 < Pk < 1. For a simpler way to describe arithmetic coding we represent
intervals in the form |b, 1>, where b is called the base or starting point of the
interval, and 1 is the length of the interval. The relationship between the
traditional and the new interval notation is in Eqn. (5.13) when b=a and 1=3-a

|b,1) =[a, ) (5.13)
And finally the intervals used in arithmetic coding are defined by the set of
recursive equations in Eqn. (5.14) where k=1, 2, ..., N.
©,(S) = by, 15) = 0.1)
@, (S) = by, 1) = by + (SO, PSOL)

The final task in arithmetic encoding is to define a code value v(S) that will

(5.14)

represent data sequence S. However, the code value cannot be provided to the
decoder as a pure real number. It must be stored or transmitted, using a
conventional number representation. The process to find the best binary
representation is quite simple and best shown by induction. The main idea is that

for relatively large intervals the optimal value can be found find by testing a few
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binary sequences, and as the interval lengths are halved, the number of sequences

to be tested must double, increasing the number of bits by 1.

5.6.2.2 Decoding Process

In arithmetic coding, the decoded sequence is determined solely by the code value
0 of the compressed sequence. For that reason, the decoded sequence is

represented as in Eqn. (5.15)
S(V) = {8,(V).5,(V),....8, (W)} (5.15)

The decoding process recovers the data symbols in the same sequence that they
were coded. Formally, to find the numerical solution, a sequence of normalized
code values {vi, vo, . . ., v4} are defined. Starting with v; = v, s¢ is found
sequentially from vy and then vy is computed from s¢ and vi. The recursion

formulas are shown in Eqn. (5.16) to (5.18).

v, =V, (5.16)
§k(V):{S:C(S)SVkAS c(s+1) | (5.17)
k+1 p(ék (V)) (518)

5.6.3 Algorithm

The algorithms of Huffman and Arithmetic Coding Methods are quite similar. The
encoded data obtained by inverse kinematic operations are handled joint by joint.
Firstly the patterns and their occurrence probabilities are computed. The number
of occurrences of each point is calculated and probability model is formed. The

next steps differ from each other.
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5.6.3.1 Huffman Coding

In the Huffman Method, Huffman dictionary is built by the help of the
huffmandict method of MATLAB. The huffmandict function generates a Huffman
code dictionary corresponding to a source with a known probability model. The
generated dictionary is a two-column cell array in which the first column lists the
distinct signal values from symbols and the second column lists the corresponding
Huffman codewords. In the second column, each Huffman codeword is
represented as a numeric row vector. Then finally, signal is encoded using the
Huffman codes described by the code dictionary with huffmanenco method of
MATLAB. At the end of the encoding, the compressed data and the dictionary are

stored in order to decode and generate the trajectory.

The compressed file obtained by Huffman algorithm consists of three parts: one is
the compressed source file and the other two are the mapping table between the
symbols in the source file and the related codes in the compressed file. The nature
of Huffman coding algorithm decides the constancy of the source file’s
compression ratio, so the algorithm’s compression ratio is directly related to the
size of Huffman table, especially when the source file is small, the compressed

file can be even bigger than the source file due to Huffman table’s cost [69].

The total memory requirement of this method is found by the storages of both the
compressed code and the dictionary. Since the compressed code is binary, the
allocated storage, b, is the length of the data. For the storage space of Huffman
dictionary the allocated spaces of symbols table and the related codes in the
compressed file should be calculated. The space of each symbol in table, bs can be
calculated by Eqn. (5.2) and the space of their counter parts, bq can be calculated
by the length of the data since the representations are stored as binary number. By
adding these storages as in Eqn. (5.19), the bit requirements of each element of

dictionary are calculated.

b, =b, +D (5.19)
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Since by is the bit value of each item in the Huffman dictionary, total space
required for Huffman Coding can be computed by Eqn. (5.20) where by, is the
storage space of Huffman Coding method and n is number of symbols in table.

b, =nb, +b, (5.20)
Decoding operation of this method is handled with the huffmandeco method of
MATLAB from the code and the dictionary. And decoding is completely lossless

as illustrated in Figure 5.7.
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Figure 5.7 Decoding by Huffman Coding Method and approximation error.

5.6.3.2 Arithmetic Coding

In arithmetic Coding, once the probability model is formed, a symbol table which
contains the information of the sequence of symbols is created. Then using the
probability model and the table, sequence of symbols are encoded using arithenco

method of MATLAB and the binary arithmetic code is generated.

81



Since the encoder generates a binary code, storage space of the code is simply the
length of the code. The storage requirement of the symbol table is found by Eqn.
(5.20) where b, is the storage space of Arithmetic Coding method, n is number of
data to be compressed and I is the storage space of the created symbol table.

b, =nb, +1 (5.21)
Decoding operation of this method is handled with the arithdeco method of
MATLAB from the code and the length of probability model. And decoding is

completely lossless as illustrated in Figure 5.8
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Figure 5.8 Decoding by Arithmetic Coding Method and approximation error.
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5.7 Simulation of Compression Techniques

In this section, the effect of Huffman Coding and Arithmetic Coding onto storage
space has been investigated on the kinematic model used in Section 5.5. The
coding of encoded data and its differences up to 3™ order has been done. Table 5.4
tabulates the storage space of Huffman Coding according to the order of the
difference where CC is the storage space of the compressed code, ST is the
storage space of symbol table, HC is the storage space of the Huffman code
representing the symbol table and TS represents the total storage spaces for each
joint and for the whole system. The allocated storage space for uncompressed data

is tabulated in the last column.

Table 5.4 Number of bytes required for Huffman Coding of n™ order finite difference.

di Q2 TS Raw

order | €C | sT |HC| TS | cc | st | mc | IS | (@tq) | Data
(qi) (92)

1 | 679 | 124 | 71 | 874 | 753 | 222 | 139 | 1114 | 1988 | 1758

217 | 12| 6 | 235 | 237 | 19 10 | 266 | 501 | 1629

3 | 303 |18 | 12| 333 [318] 26 17 | 361 | 694 | 1629

Table 5.5 tabulates the storage space of Arithmetic Coding according to the order
of the finite difference where CC represents the storage space of compressed code,
ST represents symbol table and TS represents the total storage spaces for each
joint and for the whole system. Last column shows the allocated storage space for

uncompressed data.

Table 5.5 Number of bytes required for Arithmetic Coding of n™ order finite difference.

ql q2
TS (ql+q2) | RaW
Order | CC | ST | TSql) | cC | ST | TSl Data
1 | 677 | 153 | 830 751 | 272 | 1023 1853 | 1758
193 | 19 | 212 207 | 27 | 244 456 | 1629
3 289 | 29 | 318 305 | 37 | 34 660 | 1629
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Checking the results of the compression techniques, it is obvious that there is an
important saving at the storage spaces with Huffman and Arithmetic Coding for
the 2™ order difference of the encoding data. Recalling that raw data needs 3375
bytes to store, saving the 2™ order difference needs 1629 bytes and compressing
with Arithmetic Coding, storage requirement drops to 456 bytes which is %13 of

the original space.

5.8 Closure

In this chapter command generation via direct data storage methods are studied.
Lossless compression techniques such as finite difference methods, Huffman
Coding and Arithmetic Coding have been discussed and their effect on storage

spaces has been compared with a simulation on a planar 2 link manipulator.

The effect of finite differences onto storage space has been generalized with a
Monte-Carlo simulation and according to the results; best compression has been
obtained by 3" order difference and orders higher than 4 does not supply any

compression because of the change of sign in the respective data points.

In addition to finite differences, Huffman Coding and Arithmetic Coding methods
have been discussed. The theory of these methods suggests that both methods
offer at least %80 compression. Comparing both methods, the Arithmetic Coding
has better compression ratios for sources with small alphabets, and alphabets with
highly skewed probabilities since it generates codewords for groups or sequences

instead of each symbol.

Finally comparing the simulation results, it has been observed that 2" order and
3 order differences requires same storage spaces which is the half of the raw
data. By coding these differences it has been seen that storage spaces reduces to
%33 of the space required by difference method. And finally it has been observed
that Arithmetic Compression method has better compression than Huffman

Coding as expected.
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CHAPTER 6

POLYNOMIAL BASED COMMAND GENERATION

This chapter presents polynomials based techniques to generate position
commands in joint space. Polynomials are extremely useful mathematical tools as
they can approximate almost any continuous functions to the desired accuracy.
Furthermore, they can be quickly evaluated on a digital control system with
modest resources. Hence, the polynomial functions become a natural candidate to
represent/model the command (reference) signals in the target domain. Before
elaborating the advanced modeling techniques, some background information on

polynomials will be given.

6.1 Polynomial Techniques

Consider a polynomial of the nth order approximating a command function (i.e.

angular position of a particular joint) in the (time) interval [Xmin, Xmax]:

n-1 n

y(X)=a,+a,x+...+a,, X  +a,X (6.1)
Assuming that the sufficient number of samples {(Xo, yo), (X1, 1), (X2, ¥2), -, (Xm
ym)} are available, one can determine the (unknown) polynomial coefficients a; (i
e {0, 1,..., n}) to represent the given data (trajectory) accurately. If m > n, the
coefficients can be determined in the sense of least squares of errors. That is, with

the samples at hand, (m+1) equations can be obtained:

Y=X-A (6.2)

85



where,

T
AYn+1)xl = [aO a1 s an] (63a)
1 X, X; XD
1 X X x"
X (mety(nan) = . :1 :1 :1 (6.31;
1 ox, X X"
Y(m+1)><1 = [yo Yy o ym]T (6.3¢)

Coefficient vector A in (6.2) can be conveniently solved via pseudo-inverse

method [52]:

A=(XTX)"'XTY (6.4)
Notice that the exponential functions X (1€ {0,1,...,n})in (6.1) can be regarded
as the basis functions of polynomials. Unfortunately, this natural choice of basis
functions does not generally yield an efficient representation since the basis

functions being employed are not mutually orthogonal:
Txx‘xjdx;to 6.5)

where (i, j € {0, 1,..., n} | 1 # j ). From the stand point of functional
approximation, it is far better to use orthogonal functional forms as the basis by
taking into account the nature of the problem being studied. It is critical to note
that the basis functions selected must be easily computed while they converge

rapidly to a solution with arbitrary accuracy [60].

In this study, Chebyshev, Legendre, and Bernstein polynomials, which have the
potential to yield more efficient representation of the command sequence, are
investigated. In fact, the Chebyshev- and Legendre polynomials implicitly employ
cosine function as basis function while Bernstein-Bezier polynomials use

binomials.
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6.1.1 Chebyshev Polynomials

The Chebyshev polynomials, which are defined in a recursive fashion, are a
sequence of orthogonal polynomials that are related to deMoivre's formula.
Chebyshev polynomials are best used for non-periodic data in a finite interval.
There is no limit in the application area and can be used for any problem.
Chebyshev polynomials normally applied to solve problems on the interval x € [-
1, 1] but domain can be extended to a different interval [a, b] by a change of
variables. Chebyshev polynomials are important in approximation theory because
the roots of the Chebyshev polynomials of the first kind, which are also called
Chebyshev nodes, are used as nodes in polynomial interpolation. The resulting
interpolation polynomial minimizes the problem of Runge's phenomenon and
provides an approximation that is close to the polynomial of best approximation to
a continuous function under the maximum norm. Another reason this polynomial
is nearly optimal is that, for functions with rapidly converging power series, if the
series is cut off after some term, the total error arising from the cutoff is close to
the first term after the cutoff. That is, the first term after the cutoff dominates all
later terms.

The Chebyshev polynomials illustrated in Figure 6.1 can be expressed via the

expansion of Eqn. (6.2)

yo) = a,T,(x) (6.2)
n=0
and computed via a recurrence relation:
T () =2x-T, (X)-T,,(x) (n=1) (6.3)

where Ty = 1 and T,(x) = x. As mentioned before, there are several types of basis
functions but as Boyd [60] discussed, the best choice is to use ordinary functions

like power series.
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Chebyshev Polynomials
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Figure 6.1 First few Chebyshev Polynomial in domain -1<x<1.

Even the basis functions of Chebyshev polynomials seem different from those of
Fourier; it is a disguise of basis function of Fourier series. With a change of
variable, the trigonometric functions of Fourier series turn into different basis

functions by the mapping z = cos(0):

T,(z) =cos(n@) (6.4)
With the change of variable, it can be said that series in Eqn. (6.5) and Eqn. (6.6)

are equivalent under the transformation:

f(z)= ianTn(Z) (6.5)
f (cos(9)) = ian cos(no) (6.6)

In other words, the coefficients of f(z) as a Chebyshev series are identical with the
Fourier cosine coefficients of f(cos(0)). Even if f(z) is not periodic in z, the

function f(cos(0)) is periodic in 8 with a period of 2n. As varying 0 over all real 6,
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the periodicity of cos(0) implies that z oscillates between -1 to 1. Since f(cos(0)) is
periodic, its Fourier series must have exponential convergence. The exponential
convergence of the Fourier series implies equally fast convergence of the

Chebyshev series since the sums are term by term identical.

6.1.2 Legendre Polynomials

Legendre polynomials are an alternative to the Chebyshev polynomials for non-
periodic problems in the interval of [-1, 1]. When the computational domain is
split into a large number of sub domains with a separate spectral series on each
sub domain, the formulation is greatly simplified by using the basis functions of
Legendre instead of those of the Chebyshev. The convergence theory for
Legendre polynomials is virtually identical with that of Chebyshev polynomials
but for a given arbitrary function f(x), the maximum point wise error of a
Legendre series (truncated after N terms), is worse than that of its counterpart by a
factor of the square root of N. In contrast to the Chebyshev polynomials, which
oscillate uniformly over the interval x [] [-1; 1] (as obvious from the relation
Tn(cos(0))=cos(nB)), the Legendre polynomials are nonuniform with small
amplitude over most of the interval except in extremely narrow boundary layers

where the polynomial rises to one or falls to minus one [60].

Just like Chebyshev, the Legendre polynomials can be expressed as Eqn. (6.7)
y(x) =D a,P(x) (6.7)
n=0
and computed via a recurrence relation as

(N+DP,,(X)=2n+1)-x-P,(x)=n-P_ (x) (n=1) 6.9)

where Py =1 and Py(x) = x as illustrated in Figure 6.2
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Legendre Polynomials
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Figure 6.2 First few Legendre Polynomials in domain -1<x<I.

6.1.3 Bernstein Polynomials

Bernstein polynomials are the linear combination of Bernstein basis polynomials
that are binomials. Bernstein polynomials are restricted to the interval x € [0, 1]
and they are always positive. They are used in generation of the Bézier curves
which are widely adapted in computer graphics literature. The (n+1) Bernstein

basis polynomials of degree n are defined as
Bi,n(x)z(?jx‘(l—x)"‘ i=0,...,n (6.9)

where (711) is a binomial coefficient. The Bernstein polynomials illustrated in

Figure 6.3 is expressed as a linear combination of Bernstein basis polynomials as

in Eqn. (6.10)

yx) =Y a,B,,(X) (6.10)
k=0
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Bernstein Polynomials
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Figure 6.3 Bernstein polynomials up to fourth level.

For computational efficiency, Bernstein polynomials can be defined recursively as
in Eqn. (6.11). The k™ nth-degree Bernstein polynomial is defined by blending
together two Bernstein polynomials of degree n — 1.

Bin (X) = (1=X)-By o, (X) +X- By, 1, (X) (6.11)

6.1.4 Computation of Polynomials

Polynomials in (6.1) are not the most convenient form for evaluation. If the last
term in (6.1) are considered, it will take (n+1) (floating point) multiplications to
compute that term alone while n multiplications is required for the next (lower
order) one. If one sums up the whole series, (n+1)n/2 multiplications as well as n
additions are needed to compute y(x) [61]. However, if the polynomial is
represented as the number of multiplications could be reduced to n while the
number of additions remains intact. Since the time required for a computer to

carry out a multiplication is usually an order of magnitude greater than that
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required for addition, Eqn. (6.12) is a considerably more efficient way to evaluate
y(x). Eqn. (6.12) is sometimes called the "factored form" of the polynomial and
can be immediately written down for any polynomial. This simple technique of

factorization is commonly known as the Horner’s method.

y(x):a0+{a1+---(an71+anx)x---}x’ (6.12)
Note that there is another way of representing the polynomial in terms of factors

as in Eqn. (6.13) in which the last n coefficients of the polynomial have been

replaced by n roots of the polynomial.

V() = 8, (x= p)(X = P )(X= Py)-++(X= P,) 6.13)
But in this approach, the roots (p,) are directly not related to the original
coefficients in a simple way. Furthermore, some of the roots of (6.10) could be

complex conjugate that might slightly complicate the evaluation ot the polynomia
pl jugate that might slightly pli h luati f the poly ial

[60].

6.2 Evaluation of Error Tolerance Band

In order to fit a polynomial to command sequence for a particular joint, one needs
to specify the corresponding error tolerance band. It is obvious that the allowed
deviation along the tool’s trajectory must be taken into consideration to compute
these bands. Not surprisingly, as the error tolerance bands get tighter, the order of
the polynomials increases and more terms are needed to represent angular position
of a target joint without exceeding the given tolerance band. Note that, for large
command sequences, a single polynomial fit is not efficient. Therefore, the data
must be divided into subsections. In this section, a dynamic error (tolerance band)
calculation algorithm is introduced using the inverse kinematic model described in

Chapter 3.

As mentioned before, the required accuracy of the kinematic operations is given
as positional accuracy of the tool at specified time. In order to find the effect of

each joint to the total error, the tolerances of the tool should be distributed to the
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joints. For this distribution a Monte Carlo simulation is done for each point in the
trajectory. The points are processed one by one and multiple points are generated
randomly in a circle with radius equal to the required tolerance as seen in Figure
6.4 in which r is the tolerance of the kinematic model and a is the angle generated

randomly.

The new points generated by Eqn.(6.14) represents the acceptable positions when
the deflection of the tool tip is in the boundary defined with tolerance values.
Once the coordinates of the deflected positions are found, the joint values for each
point in the error band can be calculated. The solution is same with the method
described in Chapter 3 but this time the iterations are done for the points
generated in the Monte Carlo simulation by using the joint values in correct
position as initial guess. By solving iteratively for each point in the tolerance radii
the set of solution for that position is obtained.

X"=X+r-cos(a) 6.14)

y'=y+r-sin(a)

Figure 6.4 Error band of the tool tip.
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Corresponding errors of each joint are found by subtracting the joint values for the
error band from the original values. The maximum and minimum values or the
ranges defined by standard deviation (o) are calculated and the error bands of the
joints are generated. And finally either maximum and minimum error values
obtained by the simulation is stored or a standard deviation in predefined
confidence interval are found and stored in order to obtain the error range of the

joint at that specific coordinate.

6.2.1 Case Study

In the case study, error tolerance band of the planar robot in Section 5.5 has been
defined by means of analytical solution in order to simulate the usage of the
method in analytical solution. The joint values can be written by adding error
values which are assumed to be too small. This assumption makes the solution
easier by calculating the cosine of a small angle as one and sine of a small angle
as itself. After these assumptions, the equation is reduced to a format as in Eqn.
(6.15a) where x and y are the coordinate of the end effector, a, b, ¢ and are
coefficients of the errors &, €, as given in Eqn. (6.16) and s(q) is sin(q) and c(q) is

cos(q) by definition.

X =ae +be,+d, (6.15a)
y=a,s +be, +d, (6.15b)

a, = _Ils(Q1) - |2S(Q12)= a, = Ilc(ql)+ |2c(q12)
bl = —|25(q12), bz = Izc(Q12)

d, =lc(q,)+1c(@,) d,=1s(q)+1,s(q,) (6.16)

The next step is to solve Eqns. (6.15a) and (6.15b) in order to find €; and €. For
this operation, firstly Eqn. (6.15a) is solved for &; in terms of €; as in Eqn. (6.17).

. _bx-by+bd, -byd,
‘ b,a, —b,a, (6.17)
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Then, the expression for €, is substituted into Eqn. (6.15b). This results in a single
equation involving only €, as shown with Eqn. (6.18). For more complex
functions, fsolve function of MATLAB can be used instead. This solution method
is effective when the exact analytical solution of the 2-D manipulator is known

and it can be reduced into a form described in Eqn. (6.15a).

_x-as -0,
b, (6.18)

&

By solving analytically for each point in the tolerance radii, the set of solution for
that position is obtained and the maximum and minimum values or the ranges
defined by standard deviation can be calculated. In order to demonstrate the error
bands mentioned, the kinematic model used in case study of Chapter 5 and the
trajectory illustrated in Figure 5.5 has been used. Once the procedure has been
followed throughout the trajectory, the acceptable error bands of each joint are

computed and plotted in Figure 6.5.
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Figure 6.5 Error Bands of joints throughout the trajectory in Figure 5.5.
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As seen from the error bands illustrated in Figure 6.5, using bands formed by
standard deviations significantly reduces the tolerances of each joint. So error

bands obtained by maximum and minimum values are used in this study.

6.3 Polynomial Based Command Generation

In the previous sections the computation of the polynomial coefficients and the
method of defining the error bands of joints throughout the trajectory have been
described. This section is dedicated to the optimization of the number of

coefficients to be used.

6.3.1 Coefficient Optimization

Since the main aim is to reduce the size of the data to be stored, one has to
optimize the number of coefficients to be used in order to save from space. This
can be done in two ways: 1) segmenting the data into manageable parts ii) use
minimum number of coefficients. The segmentation process has been discussed in

Chapter 4, Position Generation in Joint Space.

What is meant with optimization is simply increasing the number of polynomial
coefficients until the fitted joint values lays within the error bands for the
corresponding segment. Iterations start with two coefficients for each joint in each
segment. The data is fitted by Eqns. (6.2), (6.7) or (6.10) depending on the
polynomial method, then the whole fitted data is checked whether is inside of the
error envelope and the number of data that is inside the envelope for
corresponding number of coefficients is stored to a control array. Iteration for
each segment continues until all of the data lies within the envelope. If the whole
values are in the envelope, the coefficients are stored for that section but if the
data does not converge, algorithm searches the number of coefficient which

supplies the best fit from the control array then the consequent coefficients are
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calculated and stored. This procedure continues until all sections of each joint are

finished then the storage requirements are calculated.

6.4 Implementation of Coefficients

Recalling that Chebyshev and Legendre Polynomials work in an interval of [-1, 1]
and Bernstein Polynomials work in an interval of [0, 1], coefficients are defined in
polynomial spaces. In order to use these coefficients in time-domain a
transformation is needed. The transformation is simply changing of variable as

shown in Figure 6.6.

Polynomial Space

(@)
eT

=
o]

a
Time Domain kn-1 k

Figure 6.6 Polynomial space to time domain

According to the figure the transformation is done with the Eqn. (6.19) where k,.;
and k, are the boundary values of the time domain, k is the specific point in time
domain, a and b are the boundaries of the polynomial interval and c is the
representation of k in polynomial space.

k—-k,, c-a
k,—k,, b-a

(6.19)

When the transformation is required for Chebyshev or Legendre Polynomial the
[a, b] set is replaced with [-1, 1] and for Bernstein Polynomial [a, b] set is

replaced with [0, 1].
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6.5 Case Study

In this section, the methods described up to now are simulated on a 2D
manipulator with two links that is used in previous section. So the kinematic
model, trajectory and joint values are used directly. Knowing the joint values
satisfying the trajectory are calculated, the error bands of the joints are generated.
By following the steps in dynamic error calculation section, the error bands are
generated which can be seen in Figure 6.5. Then the joint data is fitted into
polynomials mentioned above. Iterative solution described in Section 6.3.1 is
applied to both joints and the coefficients representing the Chebyshev, Legendre
and Bernstein polynomials are computed. The number of coefficients used for

each method is tabulated in Table 6.1.

Table 6.1 Number of coefficients used.

Chebyshev Legendre Bernstein
qu 92 qi 92 qu 92
Segment 1 7 6 6 6 6 6
Segment 2 7 7 7 6 7 6
Segment 3 7 6 7 6 7 6
Segment 4 7 6 7 7 7 7

By using the coefficients found, the new joint values are recalculated and the
accuracy of the polynomial fitting is checked. As seen in Figure 6.7, the errors by
polynomial fitting are within the error band. And the last step is to check whether
the required accuracy of 0.1 mm is obtained by generating the trajectory with
fitted data. The result can be seen by the plot in Figure 6.8. After checking the
error of the joint values, last check should be done for the deviations in the
trajectory. Figure 6.8 shows the errors obtained in the trajectory which all off then

are below the designated tolerance of 0.05 mm.
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Figure 6.7 Error of the joints by polynomial fitting.
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Figure 6.8 Error in trajectories generated with fitted data.
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Since the set of coefficients representing the joint values are obtained the
allocated spaces are calculated by finding the required space for each coefficient
and multiplying with the number of coefficient to be stored. The total space

allocated with each method is given in Table 6.2.

Table 6.2 Required space allocation of each joint by polynomial techniques.

qi (bits) | g» (bits)

Raw Data 1625 1750

Chebyshev 53 50

Legendre 51 50

Bernstein 41 38
6.6 Closure

In this chapter, dynamic error calculation and fitting of the data with polynomials
such as Chebyshev, Legendre and Bernstein methods are investigated. Analytic
and numerical dynamic error calculation methods have been developed in order to
distribute the tolerance of the tool tip into the joint spaces. This distribution is
handled with a Monte Carlo simulation. An error area has been generated for each
point through trajectory and the inverse kinematic solution of each point in the

area are computed and the error bands of joint values are generated.

The other subject was the comparison of the polynomial fitting methods.
Comparing the approximations of the methods they supply almost the same
accuracy with using same amount of coefficients. But the difference is quite
noticeable when the allocated storage spaces are compared. In this category, it has
been observed that the coefficients of Bernstein polynomial need minimum space
where coefficients of Chebyshev and Legendre polynomials need almost the same

space which is slightly larger than Bernstein Polynomials.
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CHAPTER 7

COMMAND GENERATION VIA TRANSFORMATIONS

7.1 Fourier Analysis

Most of the signals contain various frequency components. Rapidly changing
signals contains high-frequency components where slowly changing ones contains
low-frequency. Fourier analysis is a mathematical tool that is used to analyze the
frequency characteristic of periodic and nonperiodic signals. The main usage areas
of Fourier analysis are signal and image processing, filtering, convolution,
frequency analysis, and power spectrum estimation. Fourier analysis provides
insight into the periodicities in data by representing the data using a linear
combination of sinusoidal components with different frequencies. The amplitude
and phase of each sinusoidal component in the sum determines the relative

contribution of that frequency component to the entire signal [2].

Fourier analysis contains four similar definitions which are, continuous-time
Fourier series, continuous-time Fourier transform, discrete-time Fourier
transform, and discrete Fourier series. Fourier series deals with the periodic data
where Fourier transforms deals with nonperiodic data. Since this study will be

based on discrete and nonperiodic data, Discrete Fourier transforms are utilized.

7.1.1 Fourier Transform

MATLAB performs Fourier analysis by computing the discrete Fourier transform

(DFT) using the fast Fourier transform (FFT) algorithms, which improve
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computational performance. For an input sequence x(n) of length N. The DFT of

this sequence is given for 1 < k < N by the vector X(k), as in Eqn. (7.1):

—i2ﬂ(k—1)(%)

X(k)=ZN:x(n)e (7.1)
The MATLAB function fftn;lill be used for Fourier transforms because of its
speed and discrete nature. The length of X(k) is the same as the length of x(n).
The result of the fft gives the Fourier coefficients as an array of complex numbers
in the form of Eqn. (7.2).
X(k)=a(k)+i-b(k) (7.2)

For a discrete input sequence, there is an upper limit on the frequency at which
you can get meaningful information about the periodicities in the data. The
highest frequency that can be uniquely fit to the data is called the Nyquist
frequency. After the Nyquist frequency, there is an even symmetry and the rest of

the data is complex conjugate of the data between 0 and the Nyquist frequency.

7.1.2 Inverse Fourier Transform

Inverse Fourier transform is used for finding the data from the frequencies. The
inverse Fourier transform of a transformed sequence for 1 <n < N is given by
Eqn. (7.3):

. n-1
2z (k—l)(W)

K=Y X (e (7.3)

When the original data, x(n), is real, the synthesis equation can be rewritten by the

help of the sine and cosine functions for 1 < n < N with real coefficients [43].

)= Iili(a(k)co{zﬂ(k —b- Dj + b(k)sir{zﬂ(k —J0-b D (7.4)
k=1

Where, a(k)=real[X(k)], b(k)=-imag[X(k)]
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7.1.3 Fourier via Least Square Method

In addition to the classical approach described in the previous section, obtaining
Fourier coefficients and reconstructing via spectral method will be investigated in
this section. In this method, the aim is to represent a data vector as a weighted
sum of basis functions which are tabulated in a matrix, by evaluating each
functions at the sample times, with weight vector x as shown in Eqn. (7.6). The
matrix is generated by the basis functions of Fourier transformation, which are
sine and cosine functions at different frequency values. The basis functions are

computed at each frequency and the matrix is formed by Eqn. (7.5).

T, =1
T,; =cos(i-t) (7.5)
T, =sin(i-t)

For a N point transform, the computation of coefficients are handled by Eqn. (7.6)

proposed by Boyd [60],

a, W1¢0(X1) Wz¢o(xz) e Wy ¢0(XN) fl

a _ W1¢1(X1) Wz¢1 (Xz) WN¢ (XN) fz
T | W (%) (7.6)

Ay W1¢N—1(X1) W2¢N—1(X2) WN¢N—1(XN) fN

where the w; are the Gaussian quadrature weights multiplied by normalization
factors, @i(x) are the basis functions and a; is the Fourier coefficients. The
normalization factors are chosen so that the square matrix above is the inverse of
the square matrix below, i. e., such that a; = 1, all other coefficients zero when
f(x) = @ i(x). The reconstruction of the original data can be handled by summation

of the interpolant as proposed by Boyd [60],

fl ¢0(X1) ¢0(X2) ¢0(XN) a,
fz _ ¢1(X1) ¢1(X2) ¢ (XN) q
: : : (x|
ful 180 (X)) Ay (X)) - by, (X)|an

(7.7)
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7.1.4 Signal Partitioning

As explained before Fourier transformations are mainly designed for periodic
data. Since the obtained joint values are non periodic, Fourier transformations
results with poor convergence of the data. In order to handle with this situation,
signal is partitioned into two parts. By interpolating the starting and the ending

point a linear segment is formed as seen with the straight line in Figure 7.1.

Original Data vs. t
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Figure 7.1 Signal Partitioning

The next step is to subtract this line from the original signal which results with a

periodic data which is shown in Figure 7.2
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Figure 7.2 Partitioned signal

Now, the Fourier transformation of the partitioned part can be done by using

lower number of coefficients and the convergence of the series is better.

The representation and storage of this method is a little different from the other
methods. Since the signal is divided into two pieces, linear interpolated part is
represented by storing the starting and the ending point and the periodic part is

represented by storing the Fourier coefficients.

In Figure 7.3 and Figure 7.4, the approximation of joint values and the error of the
generated trajectory for discrete Fourier Transform and linearly interpolated
Fourier Transform have been plotted. As seen from Figure 7.3, the approximation
of Fourier transformation fails where sharp transitions of joint values occur which
results with errors around 40 mm’s. But with segmenting the data into smaller
pieces and introducing the signal partitioning with linear interpolation, the
approximation errors in the joint values disappears which reduces the error in the

reconstructed trajectory to 300 pm.
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Discrete Fourier Approximation
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Figure 7.4 Results of Fourier Approximation by Linear Interpolation.
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7.1.5 Inverse Fourier Transform via Look-up Tables

As seen in Eqn. (7.4), the coefficients of the Fourier transformed data are useless
without sine and cosine functions. Knowing that the basic controllers used in
manipulators are not capable of calculating the sine and cosine functions, the data
should be sent in a way that manipulators can process. One way of this is to store
the sine and cosine values of the frequencies in a look-up table so that the
controller will find the values of the sine and cosine of the required frequencies
from the table. For generation of the look up tables, built up function of
MATLAB, named fixpt lookl func approx will be used. This function optimizes
the breakpoints of a lookup table over a specified range. The lookup table satisfies
the maximum acceptable error, maximum number of points, and spacing
requirements given by the optional parameters. The breakpoints refer to the x
values of the lookup table. The command generates the x and y coordinates of the
lookup table. Spacing of the lookup table is selected as power-of-two because of
the efficiency in data storage and requirement of less effort in calculation.
Although uneven spacing requires fewest data points than power-of-two spacing,
the implementation for the evenly spaced and the power of two cases does not
need the breakpoints in the generated code. This reduces their data ROM
requirements by half [43].

Lookup tables for cosine and sine functions will be generated independently from
each other but will be convoluted later. But one more operation should be
completed just before sending the input to the controller. Recalling equation 6.4,
Fourier coefficients are multiplied with the sinus and cosines of the frequencies.
So the frequencies should be found before sending it to the controller. Once the
frequencies are found, the controller will take lookup tables, Fourier coefficients
and the frequencies. Controller will just match the frequencies with the lookup

table.
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7.2 Wavelet Transformations

7.2.1 Wavelet Analysis

Previous section was dedicated to Fourier transformations; in this section another
transformation technique will be used. Wavelet analysis is a set of tools and
techniques for analyzing the signals. Wavelet analysis differs from Fourier
analysis in many ways. The main difference is the capability of revealing aspects
of data like trends, breakdown points, discontinuities in higher derivatives, and
self-similarity. The other reason is that the Wavelet transformations localize a
function both in space and scaling. Wavelet analysis represents a windowing
technique with variable-sized regions. Long time intervals are used for obtaining
precise low-frequency information whereas shorter intervals are used for high-
frequency information. Wavelet analysis does not use a time-frequency region,
but rather a time-scale region [43]. The transform is based on a wavelet matrix,
which can be computed more quickly than the analogous Fourier matrix [44].
Wavelet analysis can often compress or de-noise a signal without appreciable

degradation.

A wavelet is a waveform of effectively limited duration that has an average value
of zero. Wavelet analysis breaks up a signal into shifted and scaled versions of the
original or mother wavelet. A family of wavelets can be constructed from a
function y(x), sometimes known as a "mother wavelet," which is confined in a
finite interval. "Daughter wavelets" v @b (x) are formed by translation (b) and

contraction (a) as in Eqn. (7.8).

ab a2 [(X=Db
" =[q| w(—j (7.8)

The continuous wavelet transform (CWT) in Eqn. (7.9) is defined as the sum over
all time of the signal multiplied by scaled, shifted versions of the wavelet

function:

108



W, (f)(@b) = % 1 (t)y{%}jt (7.9)

The results of the CWT are many wavelet coefficients C, which are a function of
scale and position. Multiplying each coefficient by the appropriately scaled and
shifted wavelet yields the constituent wavelets of the original signal as shown in

Figure 7.5:

Wavalal )
Ty
RS +
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Figure 7.5 Constituent wavelets of different scales and positions [43].

Scaling a wavelet means stretching or compressing the wavelet by a scale factor,
a. The scale is related to the frequency of the signal. Scale factor is inversely
proportional to the radian frequency. Smaller scale factors, compresses the
wavelet. Shifting a wavelet simply means delaying or hastening its onset.

Mathematically, delaying a function f(t) by k is represented by f(t-k).

7.2.2 Wavelet Families

There are a number of basis functions that can be used as the mother wavelet for
Wavelet Transformation. Since the mother wavelet produces all wavelet functions
used in the transformation through translation and scaling, it determines the
characteristics of the resulting Wavelet Transform. Therefore, the details of the
particular application should be taken into account and the appropriate mother

wavelet should be chosen in order to use the Wavelet Transform effectively [71].
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Figure 7.6 Commonly used wavelet functions [71].

Figure 7.6 illustrates some of the commonly used wavelet functions which are (a)
Haar (b) Daubechies4 (c) Coiflet]l (d) Symlet2 (e) Meyer (f) Morlet (g) Mexican
Hat. Haar wavelet is one of the oldest and simplest wavelet. Therefore, any
discussion of wavelets starts with the Haar wavelet. Daubechies wavelets are the
most popular wavelets. They represent the foundations of wavelet signal
processing and are used in numerous applications. The Haar, Daubechies, Symlets
and Coiflets are compactly supported orthogonal wavelets. These wavelets along
with Meyer wavelets are capable of perfect reconstruction. The Meyer, Morlet and
Mexican Hat wavelets are symmetric in shape. The wavelets are chosen based on

their shape and their ability to analyze the signal in a particular application [71].

7.2.3 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is the sum over all time of the signal

multiplied by scaled, shifted versions of the wavelet. This process produces
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wavelet coefficients that are a function of scale and position [44]. In order to

create a CWT, the following steps should be followed

1. A wavelet is taken and compared to a section at the original signal.

2. A number, C, that represents the similarity of the wavelet is with the
section of the signal. The higher C means that the similarity is better. More
precisely, if the signal energy and the wavelet energy are equal to one, C
may be interpreted as a correlation coefficient. It should be noted that the
result of the C is dependent on the shape of the wavelet as seen in Figure

7.7.

)
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Figure 7.7 The effect of the signal to C.

3. Next step is to shift the wavelet to the right as illustrated in Figure 7.8 and

steps 1 and 2 are repeated until whole signal is covered

=
=

Wavelet E> E

Figure 7.8 Shifting the wavelet.

4. The wavelet is scaled as illustrated in Figure 7.9 and steps 1 through 3 are

repeated
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Figure 7.9 Scaling of the wavelet.

5. Steps 1 through 4 are repeated for all scales.
At the end of the procedure, the coefficients which constitute the results of a
regression of the original signal performed on the wavelets produced at different
scales by different sections of the signal are obtained. The higher scales
correspond to the most stretched wavelets. The more stretched the wavelet, the
longer the portion of the signal with which it is being compared, and thus the

coarser the signal features being measured by the wavelet coefficients.

7.2.4 Multilevel 1-D wavelet decomposition

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution
components. This is called the wavelet decomposition tree [43]. The basis of the
compression is the concept that the regular signal component can be accurately
approximated using the following elements: a small number of approximation
coefficients, cA, (at a suitably chosen level) and some of the detail coefficients,
cD [43]. In Figure 7.10 decomposition steps are illustrated. Since the analysis
process is iterative, in theory it can be continued indefinitely so a suitable number

of levels should be selected.
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7.2.5 Wavelet Reconstruction

Up to now, decomposition of the signals has been studied. This section is
dedicated to the process of assembling the components found in decomposition
without loss of information. Reconstruction of the components will be handled by
inverse discrete wavelet transform (IDWT). The wavelet reconstruction process
consists of up sampling and filtering. Up sampling is the process of lengthening a

signal component by inserting zeros between samples.
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Figure 7.10 Wavelet decomposition.

7.2.6 Algorithm

The algorithm of compressing the data by wavelet transformations will be handled
with the built up functions of MATLAB. The compression features of a given
wavelet basis are primarily linked to the relative scarceness of the wavelet domain
representation for the signal [43]. The algorithm is divided into three main pieces
which are, decomposing the original data, thresholding the decomposed signal,
extraction of the approximation and detail coefficients and reconstruction of the

decomposed signal.

113



Decomposition of the signal is handled by the built-in MATLAB function:
wavedec. This function takes the original signal and returns the wavelet
decomposition of the signal X at level N, using a wavelet method defined by the
user. The output of this process contains the wavelet decomposition vector, C, and
the bookkeeping vector L. The structure is organized as illustrated in Figure 7.11
for a level-3 decomposition example. The decomposition vector contains the
approximation coefficients, cA, and detail coefficients, cDy, cD,... cD,, where n is
the required decomposition level. The other output, bookkeeping vector, holds the

number of each coefficient. In this study Daubechies wavelets are used.
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Figure 7.11 Decomposition of original Signal [43].

After obtaining the wavelet decomposition vector, the signal is compressed by
zeroing the smaller coefficients. The level of threshold is selected by trial and
error. Algorithm starts with zeroing the lower coefficients of the %20 of the
original coefficients. Then the compressed data is reconstructed by the waverec
function of MATLAB which takes the compressed decomposition vector and
bookkeeping vector and approximates the signal using the wavelets used in

decomposition. The approximated signal is compared with the original data
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whether it lies in the error band generated for each joint. If the approximated
signal does not lie in the error band, threshold percentage is lowered and the
iterations continue until the reconstructed signal lies in the error band. Once the
required accuracy is obtained, the approximation and detail coefficients are
extracted by appcoef and detcoef functions of MATLAB respectively. Since the
exact values of approximation coefficients and all detail coefficients known, the
storage space of each coefficient can be calculated. The pseudo code of this

algorithm is given in Table 7.1.

Table 7.1 Pseudo code of Wavelet Transformation.

[C,L] = wavedec(x,N, waveletname") %decompose original signal x at level N
while maxerror>tol
comprsC=compress(C,threshold) % threshold signal C by zeroing small coefficients
X= waverec(cmprsC,L,' waveletname '); %reconstruct signal
maxerror=max(x-X);
threshold=threshold-1; % percentage of data to be omitted
end
cA,= appcoef(cmprsC, L, ‘waveletname', N) % extract approximation coef.
For i=1:N
cD,= detcoef(cmprsC, L, ‘waveletname’, i) % extract detail coef.

end

7.3 Simulation

The simulation will be done for the planar robot with two used in Simulation
section of Chapter 5 but the tolerance of the system has been increased to 0.1 mm

for this case.
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7.3.1 Fourier with Least Square Method

Here the trajectory will be reconstructed by calculation of Fourier coefficients by
Least Square Method. The data has been divided into sections and the signals in
these sections are partitioned. The number of coefficients used while

reconstruction and their allocated storage spaces are shown in Table 7.2.

Table 7.2 Fourier coefficients found by LSM.

FFT by LSM Bit per coefficient

qu 92 qQi Q2
Section 1 25 25 8 8
Section 2 19 19 8 9
Section 3 19 35 9 9
Section 4 15 16 9 10

Reconstructing the coefficients with Eqn. (7.6) results with a maximum error of
100 um in the trajectory as plotted in Figure 7.12. Again in the same figure, the
maximum and minimum errors that is acceptable for the specified tolerance is
shown and it can be seen that the errors coming from Fourier transformation is

acceptable.

The allocated space allocation of the Fourier coefficients can be calculated from
Table 7.2. For the linear interpolated part, 5 data points should be stored since
signal is segmented into 4 pieces and space for each data point is known from the
raw data storage calculation. As a result 343 bytes of space is required as
tabulated in Table 7.3. So a compression of %90 has been obtained with this

method.

Table 7.3 Allocated storage space with reconstruct with LSM.

di Q2 total bytes
Raw data 1625 1750 3375
Fourier 166 177 343
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Error of trajectory by Fourier Transform
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Figure 7.12 Joint approximations and trajectory error.

7.3.2 Wavelet transformations

Here the wavelet transform of the original data will be simulated. These
simulations have been performed with different wavelet families such as
Daubechies, Symlets, Coiflets at different levels of decompositions. When the
performances of these families with respect to storage requirements and better
convergence, Daubechies wavelets at 2" level decomposition has offered best
results. Hence Daubechies wavelets at 2™ level decomposition have been used in
this thesis. Since decomposition is level 2, one set of approximation coefficient
which is cA; and two sets of detail coefficients which are ¢D; and cD, will be
generated and stored. The number of coefficients used while reconstruction and

their allocated storage spaces are tabulated in Table 7.4.
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Table 7.4 Wavelet coefficients and their storage requirements.

Bit per coefficient | # of coefficients Total storage
qi 9> qi q2 qi 92
CA; 14 15 252 252 441 473
cD, 7 7 252 252 221 221
cD, 6 6 501 501 376 376
Total 27 16 1005 1005 1038 1070

But as mentioned in the algorithm section, coefficients that are smaller than the
specified threshold are omitted and they are equal to zero. The number of zero
coefficients for each joint is 740.

Reconstructing the coefficients results with a maximum error of 50 pm in the
trajectory as plotted in Figure 7.13. Again in the same figure, the maximum and
minimum errors that is acceptable for the specified tolerance is shown and it can

be seen that the errors coming from Fourier transformation is acceptable.
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Figure 7.13 Joint approximations and trajectory error by wavelet transform.
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7.4 Closure

In this chapter data compression with transformations has been discussed. The
theory of Fourier and wavelet transformations has been given, transformation and
reconstruction methods has been described. A data set representing the trajectory
of a planar 2 link robot has been transformed both with Fourier and Wavelet

transformations and results have been discussed.

Fourier transformation (FT) analyzes the frequency characteristic of periodic and
nonperiodic signals but best results are obtained with periodic data. The basis
functions of FT are cosine and sine functions. Transformation is time dependent
and can be defined in frequency domain, whereas Wavelet transformation (WT)
uses orthogonal basis of piecewise constant functions, constructed by dilation and
translations. The basis functions of WT are wavelets and there are infinite set of

basic functions.

In addition, in order to avoid the large errors obtained by discrete Fourier
transformation of a non-periodic signal, a new phenomenon has been introduced
which is partitioning the original signal by linearly interpolating the data and
obtain two signals which consists of a linear signal and a periodic signal. Hence

the reconstruction of the periodic part results with better convergence.

Comparing the simulation results of the Fourier and Wavelet transformation, it
has been observed that Fourier transformations via least square method allocate
smaller spaces than wavelet transformations but presenting larger errors in the

trajectory.
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CHAPTER 8

CASE STUDIES

8.1 Introduction

Up to now the methodologies of trajectory generation, inverse kinematics,
numerical methods and various advanced transform techniques have been given.
This chapter is dedicated to the comparison of the effectiveness of the methods by
simulation a trajectory with two different manipulators: PUMA 560 and Stanford
Manipulator. The trajectory represents template of a roundabout traffic sign as
illustrated in Figure 4.11. So that the manipulators are programmed to cut out the
template. The inverse kinematic problem was solved with a kinematic tolerance of
10° for each manipulator and the error bands are generated with a kinematic
tolerance of 107, It is aimed to keep maximum deviation of the end-effector less
than 100 um. For the encoding operations of the JSD, it is assumed that an

absolute encoder with 30000 RPM has been used.

The chapter is organized such that; firstly the manipulators and the trajectory that
is to be followed are introduced. After that, the inverse kinematic solutions of
each case are computed and the commands for joint variables are obtained. Once
the joint values are found, the methods mentioned up to now are applied to
compress the commands. In the simulation section, the key information about the
results such as number of data to be stored, required storage space for each joint
variable, maximum error of the trajectory and joints are given. The results of the

methods are compared and discussed at the final section of the chapter.
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8.2 Manipulators

Puma 560 is one of the most used robot arm in robotics area. It has 6 degrees of
freedom with 6 revolute joints. The schematic view has been given in Fig. 4.11 in

chapter 4 and the D-H parameters of Puma 560 are given in Table 7.1.

Stanford Manipulator is a commonly used robotic system with six degrees of
freedom. It consists of 5 revolute joints and one prismatic joint. The Denavit
Hartenberg table generated by Hydzik [35] is shown in table 7.2 and the

schematic view of the manipulator is given in Figure 3.9.

Table 8.1 Denavit Hartenberg parameters of Stanford Manipulator (* is variable).

a o 0; di(mm) | type
0 -90 0* 412 R
0 90 0* 154 R
0 0 -90 0* P
0 -90 0* 0 R
0 90 0* 0 R
0 0 0* 263 R

8.3 Trajectory and Inverse Kinematic Solutions

Trajectory of a roundabout traffic signal is selected for the study. Knowing that
the dimensions of the manipulators are almost same, the position and rotation of
local frames w.r.t global coordinate system are entered identical for both

manipulators in order to compare the performances of the manipulators.

8.3.1 Roundabout Signal

The first application simulated is the making up the template of a roundabout
traffic signal as illustrated in Figure 4.11 The template has standard dimensions

and the NC code listing for this task is given in Appendix A. The displacement of
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the local frame is [452.1mm, 150.05mm, 231.8mm] and the rotation about x, y, z
axes are [30° 120° 30°]. Trajectory obtained by interpolation and transformation
is plotted in Figure 8.1. The number of commands generated along this trajectory
is 1628 with a sampling time of 0.05 sec. The motion in each axis is plotted in
Figure 8.2. The joint space data (JSD) obtained by inverse kinematic solution of

this trajectory is plotted in Figure 8.3.
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Figure 8.1 Trajectory of Puma 560 for roundabout.
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Figure 8.2 Distributed motion in each axis on Puma 560 for Roundabout signal.
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(a) JSD of first three joints for Stanford Manipulator.
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(b) JSD of wrist joints for Stanford Manipulator.

Figure 8.4 Joint values of Stanford Manipulator for Roundabout Signal.

8.4 Simulations

In this section, the following encoding methods are applied to the JSD obtained
in the previous section to produce the efficient representation of positions in joint

state space and the performances of each method are comparatively evaluated.

e Lossless Data Compression
0 Higher order differences
0 Huffman Encoding Method
O Arithmetic (Shannon-Fano) Method
e Polynomial (fitting) methods
0 Chebyshev Polynomials
0 Legendre Polynomials
0 Bernstein polynomials
e Advanced Transformation Techniques
0 Fourier Transformations
0 Wavelet Transformations
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Higher order difference of the JSD will be investigated up to the 3™ level. In
tabulation of results, 1% order difference will be represented with FOD, 2™ order
difference with SOD and 3" order difference with TOD. For the case of Huffman
and Arithmetic Coding techniques, the compression of 2™ and 3™ order finite
differences has been investigated. Checking on the characteristics of raw JSD and
its 1* order finite difference, the data has non-repetitive characteristics. This
behavior of data results in large symbol tables which requires high storage spaces.
So the compression of raw data and 1* order difference has not been taken into
account. The representation of Huffman coding in the tables will be as SOD/HC,
TOD/HC 3" for the compression of 2™ order difference and 3™ order difference
respectively. In the same fashion, Arithmetic coding will be represented with
SOD/AC 2™ and TOD/AC 3™ It should be noted that, the sharp transitions in the
wrist angles has not been modeled in this study, so higher order differences and
Coding techniques has been evaluated section by section as in Polynomial Fitting

and Advanced Transformation techniques.

The first simulations have been done using the proposed segmentation technique.
Although Chebyshev Polynomial, Legendre Polynomial and Wavelet
Transformations has satisfied the required accuracy, Bernstein Polynomial and
Fourier transformation techniques has failed to converge within the error bands at
sections representing the motion through full circles of the outer frame. The error
of the end-effector is illustrated in Figure 8.5 with proposed segmentation
technique. So for the sake of better accuracy of the end-effecter trajectory,
problematic sections are segmented into smaller pieces by hand. The newly
inserted sections have been illustrated in Figure 8.6. For clarity in the plot,
sections are showed on X-axis and only the problematic sections have been
shown. Upper plot in Figure 8.6 shows the sections obtained from the NC Code

blocks and the lower plot shows the additional sections.
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(b) Maximum errors obtained by Fourier Transformation.
Figure 8.5 Maximum errors via proposed segmentation technique.
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Figure 8.6 Newly added sections.

Fourier Transformations are handled with Least Square Methods. As mentioned
before, the starting and the ending of the segments to be transformed are linearly
interpolated in order to represent the data with a linear segment and a periodic
segment. For the Wavelet transformations Daubechies wavelets at second level

have been used.

For simplicity in the tabulated data, the initials of each method has been used,
such that CP for Chebyshev Polynomials, LP for Legendre Polynomials, BP for
Bernstein Polynomials, FT for Fourier Transform and WT for Wavelet

Transforms.

Evaluation has been classified into three main aspects: approximation errors of the
end-effector trajectory, memory requirement and number of commands required
to represent data. Errors are divided into four subgroups which are, RMS,

minimum and maximum errors obtained in each axis and maximum error of the
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end-effector trajectory. The memory requirement and number of commands
generated by each method have been investigated both joint wise and for the

whole system.

8.4.1Puma 560

8.4.1.1 Memory Requirement

After the JSD of each joint has been encoded with several methods, the
representation requirement and their storage requirements have been obtained.
The number of commands generated for each method has been tabulated in Table
8.2 where q; represents the joint number. According to the results, it is obvious
that polynomial techniques reduced the representation requirement significantly
whereas there has not been any significant reduction with transformation
techniques. In addition the representation requirement of high order difference

techniques is the same with the number of raw data as expected.

Table 8.2 Representation Requirement for each Method.

Representation Requirement for Each Method Compression
a eb gs 4 gs qs | Total ratio
1};2:; 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
FOD 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
SOD 1628 1628 1628 1628 1628 | 1628 | 9768 N/A
TOD 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
CP 247 260 249 272 315 360 | 1703 82,57%
LP 248 259 249 273 333 332 | 1694 82,66%
BP 248 260 250 274 290 292 | 1614 83,48%
FT 1599 | 1595 | 1617 | 1605 | 1613 | 1597 | 9626 1,45%
WT 1612 1580 1596 1612 1612 | 1612 | 9624 1,47%

The memory requirements for each method have been tabulated in Table 8.3

According to the results; it is obvious that storage requirements of polynomial
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techniques are quite low w.r.t the storage requirement of raw data. Encoding with
higher order differences has reduced the allocated space but using Huffman and
Arithmetic Coding with these differences resulted with better compression. The
best compression ratio obtained with Lossless Compression techniques is the
Huffman Coding of 3 order finite difference and Arithmetic Coding of same data
is the second. Finally encoding JSD with Fourier transformation technique has
provide very small compression values whereas it has been observed that Wavelet
Transformations presents compression ratios around the ones obtained by lossless

compression techniques.

Table 8.3 Allocated Storage Spaces with each method.

Store spaces (bytes) Compression
q %@ 93 a ds qs | Total ratio
Raw Data | 4274 | 4477 | 4477 | 4477 | 4477 | 4477 | 26659 N/A

FOD 3187 | 3194 | 3397 | 3601 | 3194 | 3397 | 19970 25,09%
SOD 2306 | 2319 | 2319 | 2930 | 2523 | 3133 | 15530 41,75%
TOD 1626 | 1645 | 1442 | 2663 | 2052 | 2256 | 11684 56,17%
SOD/HC | 5151 | 5293 | 5443 | 4768 | 4448 | 4770 | 29873 112,06%
TOD/HC | 1283 | 1355 | 1249 | 1310 | 1228 | 1434 | 7859 70,52%
SOD/AC | 3760 | 3802 | 3936 | 3507 | 3366 | 3513 | 21884 17,91%
TOD/AC | 1380 | 1426 | 1383 | 1381 | 1410 | 1472 | 8452 68,30%

CpP 618 715 654 714 867 945 | 4513 83,07%
LP 620 713 654 717 916 872 | 4492 83,15%
BP 651 683 657 720 798 767 | 4276 83,96%

FT 4198 | 3988 | 4043 | 4013 | 3831 | 4193 | 24266 8,98%
WT 1746 | 1772 | 1849 | 2080 | 2131 | 2004 | 11582 56,56%

8.4.1.2 Error Statistics

In this part, the end-effector deviations throughout the trajectory generated after
the decoding of the encoded data will be plotted. In addition, the RMS, minimum
and maximum errors obtained in each axis will be tabulated. It should be noted
that High order differences, Huffman Coding and Arithmetic Coding techniques
are lossless compression techniques so decoded data obtained by these methods

fits perfectly to the original trajectory.
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The deviations presented by Chebyshev Polynomials are illustrated in Figure 8.7.
The maximum deviation of end-effector with this method is 5.2 microns which is
acceptable levels. As tabulated in Table 8.4, the errors of each axis fluctuate
between -4.3 microns and 4.7 microns at X axis, between -4.4 microns and 5.2
microns at Y axis, and between -3.7 microns and 3.9 microns at Z axis. In
addition, the RMS values of axes are 1.2 um, 2.1 microns and 1.8 um for X, Y

and Z axes respectively.
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Figure 8.7 End-effector deviation via Chebyshev Polynomial.

The error characteristics of Legendre Polynomials are similar to the Chebyshev
Polynomials and illustrated in Figure 8.8. The maximum deviation of end-effector
with this method is 5.5 microns. As tabulated in Table 8.4, the errors of each axis
fluctuate between -4.2 microns and 4.7 microns at X axis, between -4.4 microns

and 4.5 microns at Y axis, and between -4.1 microns and 5.2 microns at Z axis. In
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addition, the RMS values of axes are 1.1 micron, 2.1 microns and 1.8 micron for

X, Y and Z axes respectively.
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Figure 8.8 End-effector deviation via Legendre Polynomial.

The deviations presented by Bernstein Polynomials are illustrated in Figure 8.9.
The maximum deviation of end-effector with this method is 5.7 microns which is
almost the same with the error obtained by previous polynomial techniques. As
tabulated in Table 8.4, the errors of each axis fluctuate between -4.3 microns and
4.5 microns at X axis, between -4.3 microns and 4.6 microns at Y axis, and
between -4.1 microns and 4 microns at Z axis. In addition, the RMS values of

axes are 1.1 micron, 2.1 microns and 1.8 micron for X, Y and Z axes respectively.
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Figure 8.9 End-effector deviation via Bernstein Polynomial.

90

Figure 8.10 illustrates the deviations presented by Fourier Transformations. The

maximum deviation of end-effector with this method is 5.5 microns which is

acceptable and it is similar to the errors with polynomial techniques. The errors of

each axis fluctuate between -3.4 microns and 3.5 microns at X axis, between -4.5

microns and 5.2 microns at Y axis, and between -4.2 microns and 4.5 microns at Z

axis. In addition, the RMS values of axes are 1.2 micron, 2.0 microns and 1.8

micron for X, Y and Z axes respectively as tabulated in Table 8.4.

Table 8.4 RMS, Maximum and Minimum Errors for each axis.

X Axis (pum) Y Axis (um) Z Axis (pum) Trajectory
RMS | Min | Max | RMS | Min | Max | RMS Min Max Max
CP| 12 | 43|47 | 21 |44 52 1.8 -3.7 39 52
LP | 1.1 |42 | 47 | 2.1 |-44| 4.5 1.8 -4.1 5.2 5.5
BP | 1.1 |43 | 45 | 2.1 |43 46 1.8 -4.1 4.0 5.7
FT | 1.2 |-34 | 35 | 21 |-45| 5.2 1.8 -4.2 4.5 55
wT| 1.1 |-33] 32 | 20 |-45]| 458 1.8 -4.5 4.3 49
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Figure 8.10 End-effector deviation via Fourier Transform.

Finally the deviations in end-effector have been plotted in Figure 8.11.
Although the maximum error values are not dramatically different than the
previous methods, maximum deviation with this method is 4.9 microns. The
errors of each axis fluctuate between -3.3 microns and 3.2 microns at X axis,
between -4.5 microns and 4.8 microns at Y axis, and between -4.5 microns and
4.3 microns at Z axis. In addition, the RMS values of axes are 1.1 micron, 2
microns and 1.8 micron for X, Y and Z axes respectively as tabulated in Table

8.4.
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Figure 8.11 End-effector deviation via Wavelet Transform.

For cross checking the accuracy of the encoding techniques, maximum and

minimum errors in each joint has been calculated and tabulated in Table 8.5. As

seen from table the errors are negligible.

Table 8.5 Maximum and minimum errors at joints.

q:(prad) qx(prad) qs(prad) q4(prad) qs(prad) qe(prad)
min | max | min | max | min | max | min | max | min | max min max
CP 491 3.1 |48 | 44 |44 | 47 | -39 45 | -3.0| 2.1 -15.6 19.6
LP 30127 |44 43 |41 | 48 |34 | 54 | -30| 24 -16.9 13.2
BP 49| 40 | 44| 46 | 41| 47 | -34| 50 | -32| 24 | -15340 | 14519
FT 350 41 |36 42 |46 39 |40 43 | -39 | 3.1 -8.1 6.2
WT 22119 | -35| 37 |-35] 28 |-14] 13 |-07| 03 -0.7 0.8
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8.4.2 Stanford Manipulator

8.4.2.1 Memory Requirement

After obtaining the JSD of each joint of Stanford Manipulator, all of the encoding
techniques have been applied. The representation requirement of each method has
been tabulated in Table 8.6. Polynomial techniques have significantly reduced the
number of the commands. As expected high order differences kept the number of
commands same and the advanced transformation techniques has reduced the

representation requirement slightly.

Table 8.6 Representation Requirement for each Method.

Representation Requirement for Each Method Compression
qi Q2 q3 Q4 gs Qs Total ratio
gz:; 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
FOD | 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
SOD | 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
TOD | 1628 | 1628 | 1628 | 1628 | 1628 | 1628 | 9768 N/A
CP 224 218 137 | 265 247 254 1345 86,23%
LP 224 216 137 | 265 246 253 1341 86,27%
BP 225 217 158 | 267 248 257 1372 85,95%
FT 1561 1587 | 1213 | 1583 | 1607 | 1559 | 9110 6,74%
WT 1596 | 1596 928 | 1612 | 1596 | 1433 | 8761 10,31%

The memory requirements for each method have been tabulated in Table 8.7
According to the results; it is obvious that storage requirements of commands
generated by encoding have decreased in different levels. The best compression
has been obtained by Polynomial techniques, Huffman Coding of the 3 order
difference and Arithmetic Coding of 3 order finite difference. Following these
techniques, Wavelet Transformation and 3" order finite differences has slightly
less compression levels than the previous ones but the storage requirements

reduced to the half of the original with these methods as well.
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Table 8.7 Allocated Storage Spaces with each method.

Store spaces (bytes) Compression
qi q2 g3 94 9s 96 Total ratio
%ZZ 4274 | 4477 | 5088 | 5088 | 4681 5088 | 28696 N/A

FOD 3187 | 3194 | 3823 | 3620 | 3200 | 3620 | 20644 28,06%
SOD 2103 | 2116 | 2764 | 2968 | 2332 | 2968 | 15251 46,85%
TOD 1423 | 1238 | 1703 | 2517 | 1868 | 2517 | 11266 60,74%

SOD/HC | 4405 | 4445 | 5796 | 4654 | 3153 | 4203 | 26656 7,11%
TOD/HC | 1061 | 937 | 1208 | 1902 1180 | 1685 | 7973 72,22%
SOD/AC | 3302 | 3398 | 4191 | 3500 | 2557 | 3214 | 20162 29,74%
TOD/AC | 1208 | 1214 | 1456 | 1864 | 1371 1707 | 8820 69,26%
CpP 588 600 | 429 829 711 794 3951 86,23%
LP 588 594 | 429 829 708 791 3939 86,27%
BP 591 597 | 494 835 713 804 4034 85,94%
FT 4098 | 4166 | 3185 | 4156 | 4018 | 3898 | 23521 18,03%

WT 1901 | 2080 | 2285 | 2311 | 2080 | 2311 | 12968 54,81%

8.4.2.2 Error Statistics

In this part, the end-effector deviations throughout the trajectory generated after
the decoding of the encoded data will be plotted. The RMS, minimum and
maximum errors obtained in each axis will be tabulated in addition to the
maximum and minimum joint errors. It should be noted that High order
differences, Huffman Coding and Arithmetic Coding techniques are lossless
compression techniques so decoded data obtained by these methods fits perfectly

to the original trajectory.

The deviations presented by Chebyshev Polynomials are illustrated in Figure 8.7.
The maximum deviation of end-effector with this method is 64.6 microns which is
below the required tolerance of 100 microns. As tabulated in Table 8.8, the errors
of each axis fluctuate between -33.4 microns and 27 microns at X axis, between -
43.3 microns and 54.6 microns at Y axis, and between -19.4 microns and 19.2
microns at Z axis. In addition, the RMS values of axes are 5 um, 4.9 microns and

3.6 um for X, Y and Z axes respectively. The important difference between the
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RMS values and maximum errors show that there have been local increases in the

end-effector error.
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Figure 8.12 End-effector deviation via Chebyshev Polynomial.

Unlike Puma 560, the results of the polynomial fitting techniques for JSD of
Stanford Manipulator have resulted with almost identical error properties. As seen
in Figure 8.13 which illustrates the deviations presented by Legendre
Polynomials, the error values and their distribution matches with the error of
Chebyshev Polynomials. The maximum deviation of end-effector with this
method is 64.6 microns which is below the required tolerance of 100 microns. As
tabulated in Table 8.8, the errors of each axis fluctuate between -33.3 microns and
26.8 microns at X axis, between -43.5 microns and 54.5 microns at Y axis, and
between -19.1 microns and 18.9 microns at Z axis. In addition, the RMS values of

axes are 5 micron, 4.9 microns and 3.6 microns for X, Y and Z axes respectively.
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The important difference between the RMS values and maximum errors show that

there has been local increases in the end-effector error.
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Figure 8.13 End-effector deviation via Legendre Polynomial.

The results obtained with Bernstein polynomials are similar to the previous
polynomial techniques. The deviations of the end-effector have been plotted in
Figure 8.14. The maximum deviation of end-effector with this method is 64.6
microns which is below the required tolerance. As tabulated in Table 8.8, the
errors of each axis fluctuate between -33.5 microns and 26.8 microns at X axis,
between -43.2 microns and 54.5 microns at Y axis, and between -19.4 microns
and 19.1 microns at Z axis. In addition, the RMS values of axes are 5 microns, 4.9
microns and 3.6 microns for X, Y and Z axes respectively. The important
difference between the RMS values and maximum errors show that there have

been local increases in the end-effector error.
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Figure 8.14 End-effector deviation via Bernstein Polynomial.

Figure 8.15 illustrates the deviations presented by Fourier Transformations. The
maximum deviation of end-effector with this method is 57.9 microns which is
inside the required error bands. The errors of each axis fluctuate between -57.6
microns and 50.9 microns at X axis, between -46.2 microns and 51.2 microns at Y
axis, and between -32.3 microns and 38.2 microns at Z axis. In addition, the RMS
values of axes are 7.1 microns, 5.2 microns and 3.9 microns for X, Y and Z axes
respectively as tabulated in Table 8.8. These values are slightly higher than the

ones obtained by the polynomial fitting techniques.
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Figure 8.15 End-effector deviation via Fourier Transform.

And finally, the deviations of the end-effector have been plotted in Figure 8.16.
The errors found with this method are quite low w.r.t the other methods. The
errors of each axis fluctuate between —8.4 microns and 10.1 microns at X axis,
between -46.2 microns and 51.2 microns at Y axis, and between -7 microns and
8.0 microns at Z axis. In addition, the RMS values of axes are 3.2 um, 3.0 microns

and 2.6 microns for X, Y and Z axes respectively as tabulated in Table 8.8.

Table 8.8 RMS, Maximum and Minimum Errors for each axis.

X Axis (um) Y Axis (um) Z Axis (um) Trajectory
RMS | Min | Max | RMS | Min | Max | RMS | Min | Max Max
CP | 50 |-334]| 27.0 49 | -433|546 | 3.6 |-194 ]| 19.2 64.6
LP | 50 |-333] 2638 49 |-435|545| 3.6 |-19.1 | 18.9 64.6
BP | 5.0 |-33.5| 26.8 49 | -432|545| 3.6 |-194 ] 19.1 64.6
FT | 7.1 | -56.6 | 50.9 52 | 462|512 | 39 |-323| 382 57.9
WT | 3.2 -8.4 10.1 3.0 | -7.0 | 8.0 26 | 6.1 | 74 10.7
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In order to cross check the results obtained by end-effector deviations, maximum

and minimum errors in each joint has been calculated and tabulated in Table 8.9.

As seen from table the errors are negligible but the errors of the prismatic joint is

around 60 microns which is the source of the respectively high errors observed in

the end-effector trajectory.

Table 8.9 Maximum and minimum errors at joints.

qi(urad) | qo(prad) | qs(prad) qs(prad) qs(prad) qe(prad)

min | max| min | max | min | max min max | min | max | min | max
CP 43| 77 |48 45 | -642 | 51.0 | -11.3 | 13.0 | -43 | 3.6 | -109 | 123
LP 46| 73 |-67| 64 | -642 | 510 | -11.3 | 13.0 | 43 | 40 | -182 | 214
BP 46| 73 |1-67] 60 |-642 | 510 | -11.3 | 13.0 | 43 | 3.6 | -11.4 | 12.8
FT 74| 55 |-36| 3.8 | -57.1 | 51.0 -9.7 97 | 49 | 44 -7.8 8.6
WT 2232|271 26 -8.9 10.6 -0.9 07 | -39 | 32 -5.5 5.3
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8.5 Closure

In this chapter, simulations of a template of roundabout traffic sign have been
done for the two mostly used manipulators, Puma 560 and Stanford Manipulator.
The encoding techniques have been applied to each case and the results are

discussed.

Comparing the methods within each other, it has been observed that Polynomial
Fitting methods have presented best compression according to the number of
commands generated and required storage spaces. After Polynomial methods, it
has been seen that Huffman Coding method of 3™ order finite has offered best
compression of storage spaces. Although Wavelet transformation has not reduced
the commands generated significantly, the allocated storage space has been
reduced to the one half of the original data. Once the errors obtained by each
method are compared, since Finite Difference Methods, Huffman Coding and
Arithmetic coding methods are lossless compression techniques, they have
decoded the data without presenting any error. But the number of the commands
to be stored and the special functions that have been used for encoding and
decoding of the Huffman Coding made the selection of these methods infeasible.
Comparing the results of lossy compression techniques, Wavelet Transformations
has provided the best convergence. Although the deviations in the trajectory for
polynomial fitting methods and Fourier Transformations are slightly higher than
Wavelet transformations they are close to each other and they are always within

the acceptable limits.

Comparing the results of methods according to the manipulator used, methods
offered same compression ratios for both manipulators. But in the case of errors, it
has been observed that differences have occurred according to the manipulator.
Although the errors are within the desired levels, deviations of the end-effector
have increased dramatically when modelling the trajectory with Stanford
Manipulator. The main reason of this increase in the deviation is the prismatic

joint used in the system as seen from Table 8.9. But it should be noted that the
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errors in the prismatic joint which is around 60 microns has been compensated

with errors in the other joints and the global error has been kept in desired levels.

Evaluating the results of each method, selection of Polynomial fitting seems to be
the best option because of the high compression of storage spaces, reduction of
the commands generated and the errors presented. Comparing the results of each
polynomial fitting technique, they have almost identical compression ratios, same
number of commands and same error characteristics. But taking the problems
encountered during the segmentation into account, and the wider application areas
of Chebyshev Polynomials w.rt Legendre Polynomials, it is best to use
Chebyshev Polynomials for encoding and decoding of the Joint State Data

obtained by inverse kinematic solution.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this study, a universal command generator algorithm for computer controlled
mechanisms has been developed. The proposed algorithm can be employed for all
kinds of mechanisms. The abilities of the command generator are path planning
according to the NC code entered, trajectory generator, inverse kinematic solver,
and command encoder which encodes the joint state data (JSD) into an encoded
joint state file. The algorithm starts with the interpretation of the NC code defined
by the user. NC code follows RS-274B conventions but some additions and
simplification has been made in order to fulfill the required tasks. The most
important addition to NC Code is the frame transformations which gives the user
the freedom to define the trajectory in terms of linear and circular segments in a
local coordinate frame. And in the NC code, this local frame can be located inside
a global frame by specifying the Cartesian coordinates of its origin as well as
orientation. The path planning of the tool has been managed off-line. The position
of the tool in time depending on the sampling time has been generated via linear

and circular interpolation methods.

Once the position data in time has been produced, the consequent JSD are
computed with an iterative numerical inverse kinematic solver which uses Denavit
Hartenberg parameter tables. Denavit Hartenberg parameters have been selected
because of the wide usage in the literature and the easiness of describing the
geometric properties of the machine system at hand. In the inverse kinematic

solutions, it is aimed that the tool travels tangent to the circular paths and along
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the linear paths. In addition, it is assumed that the end-effector is always
perpendicular to the working surface. In the inverse kinematic solution, the error
bands representing envelope of each joint has been generated numerically. The
error bands are used for checking the results of the encoded data weather the
approximation errors of each joint leads an unwanted deviation of the end-

effector.

Finally the command encoder uses the resulting data of inverse kinematic
operations to produce efficient representation of positions and its higher order
derivatives in joint space with minimum redundancy. In order to find the most
efficient way to encode the data, lossless and lossy compression techniques have
been utilized. The encoding methods considered within the context of this thesis

arc:

e Lossless data compression of higher-order finite differences of JSD
e Polynomial (Chebyshev, Legendre, Bernstein) representation of JSD

e Fourier and Wavelet transforms of JSD

Lossless data compression techniques have been divided into two sections: High
order finite differences of JSD and compressing these differences via methods
such as Huffman and Arithmetic coding. With the high order finite differences it
is aimed to reduce the range of the data to be stored and with Coding techniques,
commands are encoded further with defining these data using a binary code which
uses shorter codewords for frequently used data and longer codewords for least

used data.

The polynomial representation of JSD has been investigated on three main
polynomial types: Chebyshev, Legendre, and Bernstein Polynomials. The basis
functions of each Polynomial have been generated in order to obtain the
coefficients of each polynomial via pseudo-inverse method. Since the polynomials
can approximate almost any continuous functions to the desired accuracy quickly
with modest resources, they are the best candidate for modeling the signals in the

target domain.
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Finally Fourier and Wavelet transformations have been studied for compressing
the data. The Fourier transformations of joint variables have been calculated in
order to represent the data in frequency domain. The Fourier coefficients are
handled with Least Square Methods. As mentioned before, the starting and the
ending of the segments to be transformed are linearly interpolated in order to
represent the data with a linear segment and a periodic segment which
significantly reduces the approximation error. For the Wavelet transformation
built up MATLAB functions has been used for transformations. Daubechies
wavelets at second level have been used. After the transformation, smaller

coefficients that are below a threshold have been omitted.

After investigating all the compression methods, they have been applied to Puma
560 and Stanford Manipulator on a predefined trajectory. The results of each
method were tabulated in terms of; number of commands generated, the required
storage space, maximum deviation of the trajectory, the root mean square,
maximum and minimum values of the error in each axis and the maximum and

minimum errors observed in decoded joint values.

Comparing the methods, it has been observed that Polynomial Fitting methods
have presented best compression according to the number of commands generated
and required storage spaces and Huffman Coding of the 3™ order finite difference
follows Polynomial methods. Checking on the results of deviations of the end-
effector, Lossless compression techniques decoded the JSD without any errors.
But the number of the commands to be stored and the special functions that have
been used for encoding and decoding of the Huffman Coding made the selection
of these methods infeasible. Comparing the results of lossy compression
techniques, Wavelet Transformations has provided the best convergence.
Although the deviations in the trajectory for polynomial fitting methods and
Fourier Transformations are slightly higher than Wavelet transformations they are
close to each other and they are always within the acceptable limits. Taking all the
input of the methods, encoding with polynomial fitting methods is selected to be

the most efficient way to represent JSD. Comparing the polynomials,
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approximation errors obtained by Bernstein Polynomials by the proposed
sectioning method eliminated this method. The use of Chebyshev Polynomial is
preferred instead of Legendre Polynomials because of the wider application areas

of the Chebyshev Polynomials.

9.2 Future work

In addition to the scope of this thesis there are still many contributions that can be
made. These can be classified as trajectory generation, optimization of the

kinematic model, and additions to the encoding and decoding can be done.

In trajectory generation part, the scope of the NC code can be increased. Helical,
parabolic and complex motion types can be added. The interpretation capabilities
of the NC Code can be increased by adding the desired tool orientations
throughout the motion. Various interpolation methods such as spline, NURBS,
space interpolators can be implemented. In this thesis, feedrate is selected to be
constant throughout the machining, but in real life feedrate (velocity) of the tool
can be changed dynamically. So a time scaling algorithm for dynamic velocity

changes should be added.

For the kinematic part, optimization of the initial joint configuration can be added.
Performance of the manipulators can be increased by using modified Jacobian
representations. Inverse kinematic solutions for redundant mechanisms can be
implemented. As mentioned before, the tool is assumed to move perpendicular to
the working plane all over the trajectory. The tool can be arranged to move
perpendicular to the trajectory with several definitions such as desired tool

orientation, type of the task in hand and gripper style.

For compression of the data, additional encoding techniques can be investigated.
In addition to that, it has been observed that currently used segmentation method
fails while approximating the data with some of the methods. This situation forced
the user to define the problematic sections with smaller sections. So a dynamic

segmentation algorithm should be developed.
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The last but the most important addition to this work is the command decoding as
well as its (hardware) implementation. Due to the broad range of this thesis

decoding algorithms has not been developed and left for future works.
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APPENDIX A

NC CODE OF ROUNDABOUT SIGN - CASE STUDY

2100 u452.1 v-150.05 w231.8 a30 b120 c30
290 g0 z50

x0 y-300

z0

23 g17 3300 i0 £5000

20 z50

x0 y-282.5

z0

23 j282.5 10 £f5000

20 z50

x0 y-230

z0

g2 x-226.506 y-39.939 1230 6000
gl x-246.202 y-43.412 3000
x-193.128 y60.893 £6000

20 z50

x-199.186 y115

20 z0

22 x78.665 y216.129 1199.186 j-115
g1 x85.5005 y234.923 £3000
x149.299 y136.807 £6000

20 z50

x199.186 y115

z0

22 x147.841 y-176.19 i-199.186 j-115
g1 x160.697 y-191.511 £3000
x43.829 y-197.7 £6000

20 z50

x0 y-230

z0

gl x0y-175

22 x-172.341 y-30.388 r175

gl x-152.645 y-26.915 3000
x-193.128 y60.893 f6000

g0 z50

x-199.186 y115

z0

gl x-151.554 y87.5

22 x59.854 y164.446 1151.554 j-87.5
gl x53.013 y145.652 3000
x149.299 y136.807 £6000

20 z50

x199.186 y115

z0

gl x151.554 y87.5

22 x112.488 y-134.058 i-151.554 j-87.5
g1 x99.632 y-118.737 £3000
x43.829 y-197.7 £6000
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APPENDIX B

NC CODE OF PUMA 560 FOR ROUNDABOUT SIGN

2100 u452.1 v-150.05 w431.8 a10 b10 cO
290 g0 z50

x0 y-300

z0

23 g17 3300 i0 £5000

20 z50

x0 y-282.5

z0

23 j282.5 10 £f5000

20 z50

x0 y-230

z0

g2 x-226.506 y-39.939 1230 6000
gl x-246.202 y-43.412 3000
x-193.128 y60.893 £6000

20 z50

x-199.186 y115

20 z0

22 x78.665 y216.129 1199.186 j-115
g1 x85.5005 y234.923 £3000
x149.299 y136.807 £6000

20 z50

x199.186 y115

z0

22 x147.841 y-176.19 i-199.186 j-115
g1 x160.697 y-191.511 £3000
x43.829 y-197.7 £6000

20 z50

x0 y-230

z0

gl x0y-175

22 x-172.341 y-30.388 r175

gl x-152.645 y-26.915 3000
x-193.128 y60.893 f6000

g0 z50

x-199.186 y115

z0

gl x-151.554 y87.5

22 x59.854 y164.446 1151.554 j-87.5
gl x53.013 y145.652 3000
x149.299 y136.807 £6000

20 z50

x199.186 y115

z0

gl x151.554 y87.5

22 x112.488 y-134.058 i-151.554 j-87.5
g1 x99.632 y-118.737 £3000
x43.829 y-197.7 £6000
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APPENDIX C

LIST OF FINDCENTER

%Find the center of circle

function centerCoord= findCenter(Xs, Ys, Xf, Yf, R, rotation)
centerCoord = zeros(1,2);
diffX=abs(Xf-Xs); diffY=abs(Yf-Ys);
rootA = Xs; rootB = Ys; rootD = Xf; rootE = YT,
rootF =2 * (rootA - rootD); rootG = 2 * (rootB - rootE);
rootH = rootA*rootA + rootB*rootB - rootD*rootD - rootE*rootE;
rootK = rootA - rootH / rootF;
rootM = 1 + (rootG * rootG / (rootF * rootF));
rootN = 2 * (rootK * rootG / rootF - rootB);
rootP =R * R - rootK * rootK - rootB * rootB;
Ycl = (-rootN- sqrt(rootN*rootN+ 4*rootM*rootP)) / (2 * rootM);
Yc2 = (-rootN + sqrt(rootN*rootN + 4*rootM*rootP)) / (2*rootM);
rootO = rootA * rootA + ((rootB - Ycl) * (rootB - Ycl)) - R * R;
rootQ =rootA * rootA + ((rootB - Yc2) * (rootB - Yc2)) - R * R;
Xcl =((2 * rootA - sqrt((4 * rootA * rootA - 4 * r00t0))) / (2));
Xc2 =((2 * rootA + sqrt((4 * rootA * rootA - 4 * rootQ))) / (2));
if (R > 0 && rotation == 2); centerCoord = [Xc2 Yc2];
elseif R > 0 && rotation == 3; centerCoord = [Xcl Ycl];
elseif R < 0 && rotation == 2; centerCoord = [Xcl Ycl];
elseif R < 0 && rotation == 3; centerCoord = [Xc2 Yc2];
end

end
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APPENDIX D

ANALYTICAL SOLUTION OF PUMA MANIPULATOR

6, =atan2(p,, px)—atanz(d3,J_r\/(px2 +p, + pf))

0, =atan2(a,,d,)—atan2(K,+,/la; +d; —K?))

Note that, 0; and 05 has two solutions for elbow up-down and left

hand — right hand configuration of the manipulator.
0,=0,,-0, 0,=atan2(s,,c;) 6, =atan2(s,,C,)
0, =atan2(—I;S, +y;C;,—1;C,Cpy = 1;8,Cy5 +1535,3)

Where si=sin(0;), ci=cos(6), s;j=sin(0;+ 6;), c;i=cos(6;+ 0;), and
d3 =—P,S; + pyCl

2 2 2 2 2 2 2
K = Py + Py +P; _az_a3_d3_d4

2a,

(_ a3_azc3)pz _(Cl Py 5, py)(d4 + a233)7
0,, =atan2
(8253 _d4)pz _(a3+a2C3)(C1 Py +Slpy)

Ss = _(r13 (C4C1C23 + S134) +Iy (C4 SiCy3 — C134) — I (323C4 ))
Cs =1 (_CISZB) +Iy (31323) + (_023)
Se =1, (S4C1C23 - 51C4)_ I (5451C23 + C1C4) +15 (52354)

Co = r11[(s4C1C23 - S1C4)Cs - S5(:1523]
+ r21[(c4slc23 - C154)C5 - 5551323]_ r31((:405523 + C2355)

See Reference [1] for more detailed information.
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APPENDIX E

ANALYTICAL SOLUTION OF STANFORD MANIPULATOR

0 —atan(&)—atan( g, )
1 P i\/(PX2+Py2+d22)

Note that, 0; has two solutions for elbow up-down configuration of the

manipulator.
¢,P +s,P,
0, = atan(——~ 5 ) d, =s,(c,P, +s,P)+c,P,
z
-sa, +ca,
6, = atan( )+c,(cy(ca, +sa,)-s,a,)

c,(ca, + slay) -5,a,
S4 (_Slax + Clay)
s,(ca, + slay) +c,a,

0, = atan(

—¢c,(c,(c,(c0, + sloy) -5,0,)+5S,(-s,0, + cloy))

S.(S,(C,0, +S,0,)+C,0
96=atan 5( z(lx ly) 2%z
- 54(C2 (Clox + Sloy) - Szoz)

J +¢,(-s,0, +C0,)
where s;=sin(0;), c;i=cos(0;) and,

N, =¢ [Cz(C4C5C6 _8486)_ 525506]—81 (S4C5C6 + C486)

n =3 [Cz (C4C5C6 _8486)_SZSSC6]_C1 (S4C5C6 +C486)

n, =—5,(C,CsC; — 5,5, )—C,S5C,

Cl[ (C4C5C6 + S4C6)+ stsce]_ S (_ S4CsS¢ + C456)
Sl[ (C4CSC6 +S4S6)+SZSSC6]+C1(_ S4C5S6 +C4S6)
52(c €S, +5,C, )+ C,S5S,

[(c,c,s, +5,C,)—5,8,5;

(c,c,s, +5,6,)+Cs,8, @, =—5,C,S, +C,C,
s,d,—s,d, P, =s;s,d; +cd, P, =c,d,

z

o » o oo
[

C
S
o
See Reference [72] for more detailed information.
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APPENDIX F

LISTING OF M FILES

Main_file:

Description: Main file that runs the algorithm. Calls the trajectory generation, inverse and
forward kinematic, compression and error analysis algorithms and generates the required tables
and plots

Inputs: None.

Outputs: Statistical information of the errors obtained from the compression techniques, plots.

trajectory_generation:

Description: Generates the trajectory of the motion from the given NC file w.r.t a predefined
sampling rate and divides the motion into smaller sections.

Inputs: Path of the NC file, sampling rate

Outputs: Tool position in each sampling time, sections.

kinematics:

Description: Iterative inverse kinematic operations are handled. Joint state data throughout the
pre-defined trajectory is computed according to a kinematic tolerance. Transformations from
working frame to global frame are handled as well. The tolerances of the tool are distributed to the
joints and error bands of the joints are formed.

Inputs: Trajectory, sections, Denavit Hartenberg parameters, orientation and position of the
working frame, initial joint estimation.

Outputs: Joint state data, lower and upper error band of the joints.

compress_tech:

Description: Compression, fitting and transformation is handled in this function. Firstly it takes
the joint configuration throughout the trajectory and encodes this data. Then applies finite
difference techniques up to 3rd degree, Huffman and Arithmetic Compression, Polynomial Fitting
and Advanced transformation techniques such as Fourier and Wavelet transformations, then
checks if the fitted data lies in the error envelope and finally decodes the data in order to cross
check the trajectory. In addition, the statistical information about the errors of the fitting is
generated here.

Inputs: Joint state data, error bands of joint state data, Trajectory, sections, Rpm of the encoder.
Outputs: Storage requirements, estimated joint values, representation requirements and
coefficients of each method.

forward_kinematics:

Description: Forward kinematic operations are handled. The tool position is obtained from the
joint configuration.

Inputs: Joint values, Denavit Hartenberg parameters.

Outputs: Tool positions.
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errors:

Description: Computes the Rms, max and min of errors in each axis and tabulates the data.
Inputs: Estimated trajectory, original trajectory, time.

Outputs: Table containing the error statistics.

ArcTan:

Description: Finds the angle of the arc in circular motion.

Inputs: Coordinates of the end-point of the circular motion and center of the circle.
Outputs: Arc angle.

bernfit:

Description: Approximate data inside the error band by Bernstein polynomials for each section.
Inputs: Encoded data, error envelope, sections.

Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of
coefficients in bits.

bernpol:

Description: Computes the basis functions of Bernstein Polynomial up for defined number of
coefficient.

Inputs: Length of the data, number of coefficients.

Outputs: Basis functions.

calc_radi

Description: Computes the radius and the center of the circle when the incremental distances of
the circle are given.

Inputs: Coordinates of the starting point of the circle, incremental distances of the center, working
plane

Outputs: radius and the center of the circle

calculateT:

Description: Generates transformation matrix according to the standart Denavit Hartenberg
Notation.

Inputs: Denavit Hartenberg parameters.

Outputs: Transformation Matrix.

chebyfit:

Description: Approximate data inside the error band by Chebyshev polynomials for each section.
Inputs: Encoded data, error envelope, sections.

Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of
coefficients in bits.

chebypol:

Description: Computes the basis functions of Chebyshev Polynomial up for defined number of
coefficient.

Inputs: Length of the data, number of coefficients.

Outputs: Basis functions.
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Compress:

Description: Thresholds signal by zeroing the lower percentage of coefficients and returns the
thresholded signal.

Inputs: Signal, percentage.

Outputs: Thresholded signal.

dacomp:

Description: This function first takes n™ order difference of the given vector (x) and then
performs "arithmetic" data compression.

Inputs: input sequence, order of difference.

Outputs: compressed (binary) data, "symbol" table for compressed data, memory usage for
different techniques (bytes).

DH_tbls:

Description: Generates the Denavit Hartenberg table from the parameters.
Inputs: Denavit Hartenberg parameters, joint configuration.

Outputs: Denavit Hartenberg Table.

dhcomp:

Description: This function first takes n™ order difference of the given vector (x) and then
performs "Huffman" data compression.

Inputs: input sequence (all integers), order of difference.

Outputs: compressed (binary) data, "dictionary" for compressed data

enc:

Description: Encodes joint state data and makes data ready to send to the controller of the
manipulator.

Inputs: Joint state data, encoder rpm.

Outputs: Encoded joint data.

enc_inv:

Description: Decode the encoded data.
Inputs: Encoded data, encoder rpm.
Outputs:

err_circ:

Description: Assigns random points around the tool position at the error radius in order to obtain
the limits of the acceptable tool positions

Inputs: tool coordinate, error radius, number of trials.

Outputs: new coordinates representing the error radius.

error_band:

Description: Routine for evaluation of error tolerance band. Assigns required number of random
points in the error band.

Inputs: Coordinate of the original point, number of points generated, error tolerance, HTM of the
working frame.

Outputs: Points in the error band.

fft_Ism:

Description: Take the Fourier transform of the encoded data using the least square method. The
signal is partitioned into two parts which are linear and periodic part. Optimum number of Fourier
coefficients is found while remaining inside the tolerance band.
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Inputs: Encoded data, error band, sections.
Outputs: Decoded data, number of Fourier coefficients, Fourier coefficients, storage requirement
of coefficients.

find_traj:

Description: Calculate the error in the reconstructed trajectory.
Inputs: Estimated joint data.

Outputs: maximum error observed in the trajectory.

findCenter:

Description: Find the center of circle when the radius of the circle is given.

Inputs: Coordinates of the starting and end points of the circle, radius and direction of rotation
Outputs: Coordinates of the center of the circle.

invkine:

Description: Computes the joint values for the manipulator whose end effector homogeneous
transform is given by T* within a defined kinematic tolerance. Iterative computations are done to
find the increment in the joint variables. Solution is generally not unique, and depends on the
initial guess q

Inputs: D-H parameters, HTM of the destination, initial joint estimation, kinematic tolerance.
Outputs: Joint configuration at the desired position

ishomog:

Description: Test if argument is a homogeneous transformation and returns true if input is a 4 x 4
matrix.

Inputs: Matrix

Outputs: true or false

jacob0:

Description: Compute manipulator Jacobian in base coordinates and returns a Jacobian matrix for
the manipulator pose q as expressed in the base coordinate frame.

Inputs: Denavit-Hartenberg parameters, joint configuration

Outputs: Jacobian Matrix in base coordinates

jacobn :

Description: Compute manipulator Jacobian in end-effector coordinates returns a Jacobian matrix
for the manipulator pose q as expressed in the end-effector coordinate frame.

Inputs: Denavit-Hartenberg parameters, joint configuration

Outputs: Jacobian Matrix in end-effector frame.

legendfit:

Description: Approximate data inside the error band by Legendre polynomials for each section.
Inputs: Encoded data, error envelope, sections.

Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of
coefficients in bits.

legendpol:

Description: Computes the basis functions of Legendre Polynomial up for defined number of
coefficient.

Inputs: Length of the data, number of coefficients.

Outputs: Basis functions.
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lint:

Description: Linearly interpolate the segment for signal partitioning.
Inputs: Data, Segments

Outputs: Linear data.

parser:

Description: Reads and interprets the NC Code defining the trajectory and returns the value of
each G word line by line.

Inputs: NC Code, home coordinates of the machine configuration.

Outputs: Values of G words at each line.

plot_graph:

Description: Plots 2d or 3d graphs. The dimension of the graph should be defined in the inputs
with the data to be plotted.

Inputs: data, number of dimensions

Outputs: None

Plot_coord:

Description: Plots the motion in each axis.
Inputs: Data, time.

Outputs: None

split:

Description: Finds the required keyword in the blocks of the NC Code, splits into two in order to
obtain the value of the keyword and returns the value

Inputs: NC block, keyword.

Outputs: The value of the keyword.

step_Delta:

Description: Finds the number of commands generated to complete the circle.

Inputs: Angular position of the start and end point of the circle w.r.t the center, radius and
feedrate.

Outputs: Number of commands

store_space:

Description: Computes the required storage space for each joint of a data set.
Inputs: Data to be stored.

Outputs: Allocated bit per each value.

table:

Description: Generates the Denavit Hartenberg table for the required pose.
Inputs: Denavit-Hartenberg parameters, Joint configuration.

Outputs: Denavit-Hartenberg table.

tinvrt:

Description: Inverts the HTM matrix from 5T to 4T.
Inputs: T

Outputs: 4T
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tmultt:

Description: Pick up the right elements from the homogenous transformation matrix and
generates the HTM of the joint.

Inputs: HTM of previous frame, HTM of the current frame wrt the previous frame.

Outputs: HTM of the current frame wrt ground frame.

tot_store:

Description: Finds the required storage space for data sets.
Inputs: Bit per joint value, number of data.

Outputs: Byte per joint data.

tr2diff:

Description: Convert a homogeneous transform to a differential motion vector
Inputs: HTM of the initial position, HTM of the desired position.

Outputs: Differential motion

tr2rot:

Description: Extracts the rotational submatrix of the homogeneous transform matrix.
Inputs: HTM

Outputs: Rotational submatrix.

tStar:

Description: Computes the estimated transformation matrix T* of the joint configuration at the
desired position.

Inputs: Orientation of the desired frame, coordinates of the desired position.

Outputs: T*

wave_coef:

Description: Computes the wavelet transformation of the encoded data using Deubechies
wavelets. Wavelet decomposition is at level 3. The signal is thresholded in order to reduce the
number of coefficients.

Inputs: Encoded data, error band of the joint.

Outputs: Decoded data, wavelet coefficients, number of wavelet coefficients, number of omitted
coefficients.

xform:

Description: Compute transformation of each frame with respect to ground frame.
Inputs: Denavit Hartenberg parameter of the frame.

Outputs: HTM of the frame.
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