

UNIVERSAL COMMAND GENERATOR FOR ROBOTICS AND CNC
MACHINERY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ARDA AKINCI

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

MAY 2009

Approval of the thesis:

UNIVERSAL COMMAND GENERATOR FOR ROBOTICS AND CNC

MACHINERY

submitted by ARDA AKINCI in partial fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering Department, Middle East Technical
University by,

Prof. Dr. Canan Özgen _________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Süha Oral _________________
Head of Department, Mechanical Engineering

Assist. Prof. Dr. Melik Dölen _________________
Supervisor, Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Co-Supervisor, Mechanical Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Eres Söylemez _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. Melik Dölen _________________
Mechanical Engineering Dept., METU

Prof. Dr. M. Kemal Özgören _________________
Mechanical Engineering Dept., METU

Assist. Prof. Dr. A. Buğra Koku _________________
Mechanical Engineering Dept., METU

Assoc. Prof. Dr. Veysel Gazi _________________
Aerospace Engineering Dept., TOBB-ETU

Date: _________________

 iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I also
declare that, as require by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name : Arda, Akıncı

Signature :

 iv

ABSTRACT

UNIVERSAL COMMAND GENERATOR FOR ROBOTICS AND CNC

MACHINERY

Akıncı, Arda

M.Sc., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Melik Dölen

Co-Supervisor: Assist. Prof. Dr. A. Buğra Koku

May 2009, 167 pages

In this study a universal command generator has been designed for robotics and

CNC machinery. Encoding techniques has been utilized in order to represent the

commands and their efficiencies have been discussed. The developed algorithm

generates the trajectory of the end-effector with linear and circular interpolation

in an offline fashion, the corresponding joint states and their error envelopes are

computed with the utilization of a numerical inverse kinematic solver with a

predefined precision. Finally, the command encoder employs the resulting data

and produces the representation of positions in joint space with using proposed

encoding techniques depending on the error tolerance for each joint.

The encoding methods considered in this thesis are: Lossless data compression

via higher order finite difference, Huffman Coding and Arithmetic Coding

techniques, Polynomial Fitting methods with Chebyshev, Legendre and

Bernstein Polynomials and finally Fourier and Wavelet Transformations.

The algorithm is simulated for Puma 560 and Stanford Manipulators for a

trajectory in order to evaluate the performances of the above mentioned

techniques (i.e. approximation error, memory requirement, number of

 v

commands generated). According to the case studies, Chebyshev Polynomials

has been determined to be the most suitable technique for command generation.

Proposed methods have been implemented in MATLAB environment due to its

versatile toolboxes.

With this research the way to develop an encoding/decoding standard for an

advanced command generator scheme for computer numerically controlled

(CNC) machines in the near future has been paved.

Keywords: Universal Command Generator, Inverse Kinematic Solutions, Data

Compression Techniques, Kinematic Modeling, Encoding Methods.

 vi

ÖZ

ROBOTİK UYGULAMALAR VE CNC TAKIM TEZGAHLARI İÇİN

EVRENSEL KOMUT ÜRETECİ

Akıncı, Arda

Yüksek Lisans. Makina Mühendisliği Bölümü

 Tez Yöneticisi: Yard. Doç. Dr. Melik Dölen

 Ortak Tez Yöneticisi: Yard. Doç. Dr. A. Buğra Koku

Mayıs 2009, 167 sayfa

Bu çalışmada, çeşitli robotik uygulamalar ve CNC Takım tezgâhları için

evrensel bir komut üreteci tasarımı yapılmıştır. Daha sonra bu komutların en

verimli şekilde ifade edilmesi için çeşitli kodlama metodları kullanılmıştır. Bu

yordamın kabiliyetleri, öncelikle uç işlemci için verilmiş NC kodunu okuyarak,

doğrusal ve dairesel enterpolasyon kullanarak verilmiş örnekleme zamanına

bağlı uç işlemci konum komutlarının üretilmesidir. Ardından yinelemeli

nümerik metodu ile verilmiş bir konumlama hata toleransı kullanılarak ters

kinematik çözümü yapılarak eklem konumlarının ve bu eklemlerin hata

bantlarının oluşturulması. Son olarak komut kodlayıcısı aracılığı ile bu

konumların hesaplanmış hata bandı içinde kalacak şekilde kodlanıp en uygun

şekilde depolanmasıdır.

Bu çalışmada göz önüne alınan metotlar, yüksek dereceden sonlu farkların

hesaplanması, ve bu farkların Huffman ve Aritmetik kodlama yordamları ile

sıkıştırılıp hatasız bir şekilde saklanması, Chebyshev, Legendre ve Bernstein

Polinomları kullanarak verinin polinomlara uyarlanması ve son olarak Fourier

ve Dalgacık dönüşümleri ile frekans-zaman tanım kümesinde tanımlanmasıdır.

 vii

Geliştirilen yordam, kodlama metotlarının verimliliğini (yaklaştırma hatası,

depolamak için gerekli yer miktarı ve kullanılan komut miktarı cinsinden)

karşılaştırmak için, Puma 560 ve Stanford Manipülatörleri kullanılarak,

belirlenen yörünge üzerinde uygulanmıştır. Sonuçlar göz önünde

bulundurulduğu zaman, en az miktarda komut üreterek, en düşük saklama

alanına ihtiyaç duyması ve istenen hata miktarlarının altında bir yaklaşım

sağladığından dolayı, Chebyshev polinomları en uygun metot olarak

belirlenmiştir. Yordam tasarımında, gelişmiş ve çok yönlü uygulama

alanlarından dolayı MATLAB programı kullanılmıştır.

Bu çalışma ile çeşitli robotik uygulamalar ve CNC Takım tezgâhları için

kodlayıcı/çözümleyici standardı oluşturarak, ileri düzeyde komut üretim

yordamlarının oluşturulmasının temelleri atılmıştır.

Anahtar kelimeler: Evrensel Komut Üreteci, Ters Kinematik Çözümleri, Data

Sıkıştırma Teknikleri, Kinematik Modelleme. Kodlama Metotları

 viii

To My Family Günsel – Adnan & Aslı

 ix

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my supervisor Asst. Prof. Dr.

Melik Dölen and co-supervisor Asst. Prof. Dr. A. Buğra Koku for their guidance

and support throughout this thesis study. I consider myself privileged to have a

mentor with the strong work ethic, never ending knowledge, unyielding patience

and tolerance of Asst. Prof. Dr. Melik Dölen and Asst. Prof. Dr. A. Buğra Koku.

I would also like to thank to Dr. Gürsel Erarslanoğlu and Tolga M. Güçyetmez

for their understanding and tolerance.

I would like to thank to Aslı for her support, encouragement and many other

things. And finally I am deeply in debt to my parents Günsel and Adnan Akıncı

for convincing me to start this study, their never-ending love and spiritual

support at critical and opportune times.

 x

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. vi

LIST OF FIGURES ... xvi

LIST OF TABLES ... xx

CHAPTERS

1. INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Scope of the Thesis ... 2

1.3 Organization ... 5

2. LITERATURE SURVEY .. 7

2.1 Interpolators .. 7

2.2 Trajectory Generation ... 8

2.3 Kinematic Modelling and Solution Methods ... 9

2.4 Algorithms and Toolboxes ... 14

2.5 Optimization of Manipulators .. 15

2.6 Data Compression .. 16

2.7 Open Research Areas ... 18

 xi

3. KINEMATIC MODELING OF ARTICULATED MECHANISMS 20

3.1 Articulated Mechanisms ... 20

3.2 Background Knowledge ... 22

3.2.1 Homogenous Transformations .. 23

3.3 Denavit Hartenberg Notation ... 25

3.4 Forward Kinematics ... 28

3.5 Inverse Kinematics ... 29

3.5.1 Multiple Solution ... 30

3.5.2 Solution Methods .. 31

3.5.3 Numerical Inverse Kinematics .. 33

3.5.4 Singularity Handling ... 39

3.6 Closure .. 40

4. POSITION GENERATION IN JOINT SPACE .. 41

4.1 Position Generation .. 41

4.2 NC Code ... 42

4.2.1 Motion Types .. 43

4.2.2 Frame (Coordinate) Transformations .. 47

4.3 Developed Algorithm ... 50

4.3.1 Trajectory Generation .. 50

 xii

4.3.1 Inverse Kinematics .. 53

4.3.2 Segmentation ... 56

4.4 Case Study .. 57

4.4.1 Position Generation ... 58

4.4.2 Inverse Kinematics .. 60

4.5 Closure .. 63

5. COMMAND GENERATION VIA DIRECT DATA STORAGE 65

5.1 Data Storage ... 65

5.2 Encoding and Storage Spaces ... 67

5.3 Direct Storage ... 68

5.4 Finite Differences ... 69

5.4.1 Finite Composition Techniques ... 70

5.5 Simulation of Finite Difference Techniques .. 71

5.5.1 Finite Difference Methods ... 73

5.6 Data Compression Techniques ... 73

5.6.1 Huffman Coding .. 74

5.6.2 Arithmetic Coding ... 77

5.6.3 Algorithm .. 79

5.7 Simulation of Compression Techniques ... 83

 xiii

5.8 Closure .. 84

6. POLYNOMIAL BASED COMMAND GENERATION 85

6.1 Polynomial Techniques .. 85

6.1.1 Chebyshev Polynomials .. 87

6.1.2 Legendre Polynomials ... 89

6.1.3 Bernstein Polynomials ... 90

6.1.4 Computation of Polynomials ... 91

6.2 Evaluation of Error Tolerance Band .. 92

6.2.1 Case Study ... 94

6.3 Polynomial Based Command Generation .. 96

6.3.1 Coefficient Optimization ... 96

6.4 Implementation of Coefficients .. 97

6.5 Case Study .. 98

6.6 Closure .. 100

7. COMMAND GENERATION VIA TRANSFORMATIONS 101

7.1 Fourier Analysis ... 101

7.1.1 Fourier Transform ... 101

7.1.2 Inverse Fourier Transform ... 102

7.1.3 Fourier via Least Square Method .. 103

 xiv

7.1.4 Signal Partitioning ... 104

7.1.5 Inverse Fourier Transform via Look-up Tables 107

7.2 Wavelet Transformations ... 108

7.2.1 Wavelet Analysis ... 108

7.2.2 Wavelet Families ... 109

7.2.3 Continuous Wavelet Transform .. 110

7.2.4 Multilevel 1-D wavelet decomposition ... 112

7.2.5 Wavelet Reconstruction .. 113

7.2.6 Algorithm .. 113

7.3 Simulation .. 115

7.3.1 Fourier with Least Square Method .. 116

7.3.2 Wavelet transformations .. 117

7.4 Closure .. 119

8. CASE STUDIES .. 120

8.1 Introduction .. 120

8.2 Manipulators ... 121

8.3 Trajectory and Inverse Kinematic Solutions .. 121

8.3.1 Roundabout Signal .. 121

8.4 Simulations ... 125

 xv

8.4.1 Puma 560 ... 129

8.4.2 Stanford Manipulator .. 136

8.5 Closure .. 143

9. CONCLUSIONS AND FUTURE WORK ... 145

9.1 Conclusions .. 145

9.2 Future work .. 148

REFERENCES ... 150

APPENDICES

A. NC CODE OF ROUNDABOUT SIGN – CASE STUDY 157

B. NC CODE OF PUMA 560 FOR ROUNDABOUT SIGN 158

C. LIST OF FINDCENTER .. 159

D. ANALYTICAL SOLUTION OF PUMA MANIPULATOR 160

E. ANALYTICAL SOLUTION OF STANFORD MANIPULATOR 161

F. LISTING OF M FILES ... 161

 xvi

LIST OF FIGURES

FIGURES

Figure 1.1 Flow chart of the proposed method. ... 3

Figure 1.2 Command decoding scheme. .. 4

Figure 3.1 Different types of manipulators [34]. .. 21

Figure 3.2 Standard frames of a manipulator. .. 22

Figure 3.3 Basic Rotation and Translation. .. 23

Figure 3.4 Denavit Hartenberg Frame assignments [35]. 25

Figure 3.5 Hand frame assignment. .. 26

Figure 3.6 Schematic of forward and inverse kinematics. 29

Figure 3.7 Multiple Solutions [22]. .. 31

Figure 3.8 Puma 560 Manipulator. ... 32

Figure 3.9 Stanford Manipulator. ... 33

Figure 3.10 Orientation of end-effector w.r.t working plane. 35

Figure 4.1 Linear Motion. .. 43

Figure 4.2 Circular Motion ... 46

Figure 4.3 Coordinate transformations of complex trajectories. 49

Figure 4.4 Flowchart of trajectory generation. ... 50

Figure 4.5 Flowchart of the parser. .. 51

 xvii

Figure 4.6 Flowchart of Rapid and Linear Motion. ... 53

Figure 4.7 Flow Chart of Circular interpolator. ... 53

Figure 4.8 General Flowchart of Inverse Kinematic. ... 54

Figure 4.9 Flowchart of preparation phase of inverse kinematics. 54

Figure 4.10 Segmentation of the Trajectory of 2-D manipulator. 57

Figure 4.11 Desired Trajectory. ... 58

Figure 4.12 Generated Trajectory. .. 59

Figure 4.13 Trajectory in each axis. ... 59

Figure 4.14 Joint values in degrees. ... 61

Figure 4.15 Angular Velocities of Each Joint. ... 62

Figure 4.16 Error bands of the recalculated trajectory. 63

Figure 5.1 Basic data transfer scheme. ... 66

Figure 5.2 Joint angles and trajectory error with encoder usage. 68

Figure 5.3 Allocated Space vs. order of the finite difference. 70

Figure 5.4 Planar two link mechanism ... 71

Figure 5.5 Trajectory and the joint angles. ... 72

Figure 5.6 Code Mapping in Arithmetic Coding. .. 78

Figure 5.7 Decoding by Huffman Coding Method and approximation error. ... 81

Figure 5.8 Decoding by Arithmetic Coding Method and approximation error. . 82

 xviii

Figure 6.1 First few Chebyshev Polynomial in domain -1<x<1. 88

Figure 6.2 First few Legendre Polynomials in domain -1<x<1. 90

Figure 6.3 Bernstein polynomials up to fourth level. ... 91

Figure 6.4 Error band of the tool tip. .. 93

Figure 6.5 Error Bands of joints throughout the trajectory in Figure 5.5. 95

Figure 6.6 Polynomial space to time domain ... 97

Figure 6.7 Error of the joints by polynomial fitting. .. 99

Figure 6.8 Error in trajectories generated with fitted data. 99

Figure 7.1 Signal Partitioning .. 104

Figure 7.2 Partitioned signal .. 105

Figure 7.3 Results of Discrete Fourier Approximation 106

Figure 7.4 Results of Fourier Approximation by Linear Interpolation. 106

Figure 7.5 Constituent wavelets of different scales and positions [43]. 109

Figure 7.6 Commonly used wavelet functions[71]. ... 110

Figure 7.7 The effect of the signal to C. ... 111

Figure 7.8 Shifting the wavelet. ... 111

Figure 7.9 Scaling of the wavelet. .. 112

Figure 7.10 Wavelet decomposition. .. 113

Figure 7.11 Decomposition of original Signal [43]. .. 114

 xix

Figure 7.12 Joint approximations and trajectory error. 117

Figure 7.13 Joint approximations and trajectory error by wavelet transform. . 118

Figure 8.1 Trajectory of Puma 560 for roundabout. ... 122

Figure 8.2 Distributed motion in each axis on Puma 560 for Roundabout signal.

 .. 123

Figure 8.3 Joint values of Puma 560 for Roundabout Signal. 124

Figure 8.4 Joint values of Stanford Manipulator for Roundabout Signal. 125

Figure 8.5 Maximum errors via proposed segmentation technique. 127

Figure 8.6 Newly added sections. .. 128

Figure 8.7 End-effector deviation via Chebyshev Polynomial. 131

Figure 8.8 End-effector deviation via Legendre Polynomial. 132

Figure 8.9 End-effector deviation via Bernstein Polynomial. 133

Figure 8.10 End-effector deviation via Fourier Transform. 134

Figure 8.11 End-effector deviation via Wavelet Transform. 135

Figure 8.12 End-effector deviation via Chebyshev Polynomial. 138

Figure 8.13 End-effector deviation via Legendre Polynomial. 139

Figure 8.14 End-effector deviation via Bernstein Polynomial. 140

Figure 8.15 End-effector deviation via Fourier Transform. 141

Figure 8.16 End-effector deviation via Wavelet Transform. 142

 xx

LIST OF TABLES

TABLES

Table 3.1 Comparison of inverse kinematic solution methods. 32

Table 4.1 Circular motion representations. .. 45

Table 4.2 Subroutine Pattern. ... 52

Table 4.3 Pseudo code of the inverse kinematic iterations. 55

Table 4.4 Denavit Hartenberg Table. ... 57

Table 5.1 Finite difference scheme .. 71

Table 5.2 Number of bits required for each joint variable. 73

Table 5.3 Pseudo code for Huffman Coding [57]. ... 76

Table 5.4 Number of bytes required for Huffman Coding of nth order finite

difference. ... 83

Table 5.5 Number of bytes required for Arithmetic Coding of nth order finite

difference. ... 83

Table 6.1 Number of coefficients used. ... 98

Table 6.2 Required space allocation of each joint by polynomial techniques. 100

Table 7.1 Pseudo code of Wavelet Transformation. .. 115

Table 7.2 Fourier coefficients found by LSM. ... 116

Table 7.3 Allocated storage space with reconstruct with LSM. 116

 xxi

Table 7.4 Wavelet coefficients and their storage requirements. 118

Table 8.1 Denavit Hartenberg parameters of Stanford Manipulator 121

Table 8.2 Representation Requirement for each Method. 129

Table 8.3 Allocated Storage Spaces with each method. 130

Table 8.4 RMS, Maximum and Minimum Errors for each axis. 133

Table 8.5 Maximum and minimum errors at joints. ... 135

Table 8.6 Representation Requirement for each Method. 136

Table 8.7 Allocated Storage Spaces with each method. 137

Table 8.8 RMS, Maximum and Minimum Errors for each axis. 141

Table 8.9 Maximum and minimum errors at joints. ... 142

 1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The use of robotic manipulators (i.e. articulated mechanisms) in the industry has

accelerated considerably since 1960’s. With the advancing technology, different

types of manipulators have been introduced to various sectors such as automotive,

aviation/aerospace, consumer electronics, etc. Their modularity and the ease of

programming makes manipulators invaluable tools in basic manufacturing tasks

including welding, painting, grinding/polishing, material transfer/handling, and

assembly. Furthermore, since robotic manipulators are capable of performing

high-precision positioning at relatively high speeds, the need for highly skilled

workers could be dramatically reduced, which in turn leads to a significant

increase in the quality and the quantity of the manufactured goods.

The application of a robotic manipulator to the above mentioned fields is

relatively easy: Once the trajectory of the manipulator (i.e. tool or end-effector) is

planned for a specific task at hand, the corresponding angular positions of the

actuators at each joint are calculated using inverse kinematic model of the

manipulator in an offline fashion. Hence, the motion controller of the machine is

programmed using these data (also known as -a.k.a.- the desired joint positions) to

control the angular joint positions accurately.

It is critical to note that industrial motion controller cards (like Delta-Tau’s

PMAC2 and Galil’s DMC), which are commonly used to control such machinery,

employ vector data tables to represent a complex trajectory in terms of (short)

 2

linear patches, provided that the tool’s deviation from the ideal path is within the

acceptable limits (as defined by the task at hand). These cards can then perform a

linear interpolation between the two consecutive (table) entries in real-time to

produce the relevant reference signals for the position servo-control loop. It is

obvious that if the manipulator needs to follow a complex (and relatively long)

trajectory, the length of the linear patches could be too small to abolish the

efficacy of linear interpolation. Furthermore, the number of required entries for

the vector table might well exceed the available resources on the system. For

those cases, advanced controller units (like Siemens Sinumerik 840DI or Fanuc i

series), which oftentimes have the capability to carry out Spline- or NURBS

interpolation, could be utilized at increased hardware cost. However, since the

computational burden associated with such interpolation schemes is extremely

high, the use of such systems may no longer be (technically/economically)

feasible when the number of joints (axes) to be controller is relatively high (>5).

In today’s technology, memory devices (SDRAM, SD Cards, etc) with large

capacity (1 GB++) as well as multi-core RISC processors running at high clock

frequencies (1 GHz++) are widely available in the market at relatively low cost.

Consequently, there is a potential for devising simple yet very effective command

generators for computer numerically controlled (CNC) machinery that benefit

fully from the properties of these advanced devices. Such a scheme may overcome

the difficulties encountered in the afore-mentioned systems. Hence, the central

motivation of this study is to look deeper into this aspect that has not been fully

explored in the industry (or the corresponding technical literature per se).

1.2 Scope of the Thesis

The main objective of this study is to develop a general command generation

paradigm which can be employed for all kinds of mechanisms. The flow chart of

the proposed technique is illustrated in Figure 1.1.

 3

Figure 1.1 Flow chart of the proposed method.

In this method, the user first needs to define the required trajectory for the tool (or

apparatus) attached onto the machine (e.g. manipulator or machine tool) by means

of an enhanced NC code which closely follows RS-274B convention. Just like

conventional approach, this NC code represents the trajectory in terms of linear

and circular segments in a local coordinate frame (“work coordinate system”).

This local frame may be conveniently situated inside a global (fixed) reference

frame by means of specifying the Cartesian coordinates of its origin as well as its

orientation. The proposed method, which requires a careful offline path planning,

interprets this NC code to generate the pose of the tool in time (a.k.a. “tool

location data”). That is, depending on the sampling time specified by the user,

three Cartesian coordinates (of the tool) are calculated at equal time intervals

along the complete trajectory.

Once the position data are produced, the corresponding joint states (a.k.a. “joint

state data or simply JSD”) are computed with the utilization of a numerical

inverse kinematic solver. Note that this solver makes good use of the Denavit-

Hartenberg parameter table that describes the geometric properties of the machine

system at hand. Finally, depending on the encoding technique and the error

tolerance for each joint, the command encoder employs the resulting data to

produce the efficient representation of positions (and its higher order derivatives

 4

in time) in joint state space with minimum redundancy. The following encoding

methods are considered within the context of this thesis:

• Lossless data compression of higher-order finite differences of JSD

• Polynomial (Chebyshev, Legendre, Bernstein) representation of JSD

• Fourier and Wavelet transforms of JSD

Note that in this study, the performances of the above mentioned techniques (i.e.

approximation error, memory requirement, computational complexity, ease of

decoding, etc.) are comparatively evaluated for the purpose of determining the

most suitable technique for command generation.

The proposed method is implemented in MATLAB environment (via MATLAB

scripting language). MATLAB, which has dramatically evolved over the years in

addition, has wide popularity in scientific community due to its versatile

toolboxes. Hence, the study takes full advantage of its features to fulfill the

objectives being set forth.

It is critical to note that one of the primary goals of this research is to pave the

way to develop an encoding/decoding standard for an advanced command

generator scheme for computer numerically controlled (CNC) machines in the

near future. As illustrated in Figure 1.2, once the encoded joint state file is created

efficiently, the resulting file could be uploaded to the command decoder (card)

which is expected to decode the data in real-time. Hence, the decoded joint states

(position, velocity, acceleration) would then be fed to the (centralized or

distributed) joint-axis motion controller as the reference signals. Due to the broad

range of this thesis (as it is), the command decoding as well as its (hardware)

implementation is exempted from this work.

Figure 1.2 Command decoding scheme.

 5

1.3 Organization

This thesis is divided into nine chapters. The second chapter gives detailed

information about the studies relevant to the scope of this thesis. The literature

survey is conducted in various areas such as advanced command generation for

robotics, CNC interpolators, kinematic modeling of articulated mechanisms, data

compression. Likewise, the third chapter deals with the kinematic modeling of

articulated mechanisms. The basics information about manipulators and their

kinematics are also elaborated in that chapter. In addition, the generalized Denavit

– Hartenberg notations, forward kinematics, and corresponding solution methods

for inverse kinematics are explained in detail. The fourth chapter deals with the

position generation in joint space. An algorithm for the interpretation of the NC

code as well as the inverse kinematics of articulated mechanisms are discussed in

this chapter for the purpose of generating the tool trajectory for a specific

machine/manipulator. The chapter is concluded with an example on producing

the joint positions by inverse kinematics algorithm for a pre-defined error

tolerance. In chapter five, the command generation via direct data storage methods

is studied. The main idea of this chapter is to store the generated commands for

each joint in the most efficient way. Lossless data compression methods such as

Huffman Coding and Arithmetic Coding (Shannon-Fano) have been investigated

and their memory requirements have been elaborated. In the following chapter,

polynomial (fitting) methods such as Chebyshev, Legendre, and Bernstein

polynomials has been studied while the relation between Chebyshev polynomials

and Fourier transformations has been explained. Finally, an (command tracking)

error calculation algorithm for determining error tolerance bands in joint space has

been introduced in this chapter. In Chapter 7, the Fourier- and Wavelet

transformations are investigated so that the JSD is transformed into another

domain and insignificant data is neglected for the purpose of representing the

original data efficiently. Chapter 8 evaluates the performance of the presented

methods on various cases. In the last chapter, the thesis is concluded by

 6

summarizing the key results of this research. In addition, possible future works

are presented in this chapter as well.

 7

CHAPTER 2

LITERATURE SURVEY

This chapter is dedicated to a detailed literature survey in the fields relevant to

command generation including kinematic modeling of manipulators, CNC

interpolators, advanced command generation, and methods for data compression.

2.1 Interpolators

The study starts out with detailed investigation about the interpolation methods

and the uses of interpolation techniques in CNC applications. By the study on

interpolators, background knowledge of interpolators has been obtained.

In 2001, Yang and Hong [4] developed a 3-dimensional (3D) Interpolator which

is based on intersection criteria. They developed a real-time reference-pulse 3D

linear- and circular interpolator which is capable of synchronized simultaneous

3D machining. Cheng [6] used NURBS and offered a common mathematical form

for representing both standard analytical shapes and free-form surfaces. The

interpolation with NURBS is high-speed and highly accurate but large data

consume so much memory and too many short segments were slowing down the

cutting speed. Bahr, Xiao, Krishnan [8] implemented spline interpolator inside a

CNC Controller. The main aim was to use finite forward differencing algorithm

for fast evaluation of points on a cubic parametric curve in order to prevent the

accumulative error in the calculation of one piece of curve to propagate to the

whole curve. Bahr used forward differencing method because of its efficiency for

 8

evaluation of points. In addition to the prevention of error accumulation spline

interpolation allows rendering curve points using integer arithmetic.

Following that Omirou [9] used space curve interpolation for CNC machines. He

proposed an efficient and accurate method for developing a class of precise

interpolation algorithms which can drive the cutter of a CNC machine along three

dimensional trajectories. Parametric programming, mathematical calculations with

do-loop subroutines, macro-capabilities and sophisticated canned cycles were

used during this study.

2.2 Trajectory Generation

After interpolators, a comprehensive research has been done for the studies about

trajectory generation. The fundamentals of the NC Code parser and tool path

generation algorithm has been founded by the information gained from here.

In 2001, Lartigue, Thiebaut, Maekawa [7] developed tool path planning algorithm

for smooth free-form surfaces in terms of planar cubic B-spline curves. The

algorithm is based on interpolating the break points by computing the offset

surface - driving plane intersection curve. This method accepts curve coefficients

directly and it is much more accurate and requires less memory. Similarly,

Farouki and Tsai [10] used Taylor series coefficients for variable feedrate CNC

curve interpolators. They examined the situations where the feedrate depends on

elapsed time, curve arc length and local path curvature. In addition they presented

the derivations of compact recursive formulae. Yeung, Altintas, Erkorkmaz [11]

presented a comprehensive virtual simulation model of a realistic and modular

CNC system. They implemented a trajectory generation mechanism in the Virtual

CNC. The start and end coordinates of the toolpath, the types of the tool

movement and the feedrate are recognized and stored into a buffer. By executing

the buffer block by block, the descriptions for each tool path segment are obtained

and then passed to the trajectory generation process sequentially.

 9

Lately, Liu, Guo, Li, Yamazaki, Kashihara and Fujishima [12] developed an

intelligent NC program processor for CNC System of machine tool. They

investigated the basic standards of NC program: RS274D (USA), ISO6981 (ISO)

and DIN66025 (Europe). In addition, they proposed a new structure which adjusts

the CNC system to adopt various NC program formats by only updating a NC

specification dictionary. In 2001, Erkorkmaz and Altintas [13], published a paper

about generating trajectories not only describing the desired tool path accurately,

but also having smooth kinematic profiles in order to maintain high tracking

accuracy, and avoid exciting the natural modes of the mechanical structure or

servo control system. In addition they presented a quantic spline trajectory

generation algorithm that produces continuous position, velocity and acceleration

profiles. Aspragathos [23], presented two techniques for generating an

approximation of a given robot hand trajectory under bounded position deviation

which is specified by the operator according to the accuracy requirements of the

robot application. The first technique was based on bisection pattern which

determines enough knot points on a given Cartesian curve whereas the second one

was based on raster scanning which finds a minimal set of knot points on a given

Cartesian curve and spline interpolation is done between two successive knots.

2.3 Kinematic Modelling and Solution Methods

After completing the study on CNC interpolators and tool path generation, a wide

research on kinematic modeling of manipulators has been started. By this

research, different applications of manipulators have been examined, the

structures of the manipulators have been understood and solution methods have

been investigated.

In 1956, Denavit [31], made an important contribution by basing the mathematic

model of manipulators into logical, systematic and efficient systematic. He

represented all kinematic pairs as axial joints. Link coordinate systems are defined

and the relative placement of the systems was made by four independent

 10

parameters. Wang, Baron and Cloutier [14], published a paper on topology of

manipulators. They characterized the manipulators by geometric constraints,

proposed a comprehensive topological diagram which enables the kinematic

composition to be described precisely. In addition they used graph structure which

makes it possible to implement computer algorithms in order to perform

systematic enumeration, comparison and classification of manipulators. Likewise,

Lee, Go, Kim [20] developed a user friendly automatic polishing system

composed of a three-axis machining center and a two-axis polishing robot. Their

robot was able to keep the tool normal to the die surface. In addition, they

compared control modes to reduce the tracking errors. Besides a geometric

modeler was developed in this research in which internal curves and surfaces are

represented as a non uniform rational power-basis polynomial (NURP).

In 2005, Ho, Komura, Lau [16], proposed a linear programming based inverse

kinematic (LPIK) solver for interactive control of arbitrary multi body structures.

The advantages of using LPIK are handling the inequality constraints which

makes easier to handle with the ranges of the DOFs and collisions of the body

with other obstacles and the performance of LPIK is comparable or sometimes

better than the IK method based on Lagrange multipliers. In addition they

mentioned that the computation time by LPIK increases only linearly proportional

to the number of constraints or DOFs. Hence, LPIK is a suitable approach for

controlling articulated systems with large DOFs and constraints for real-time

applications. On the other hand, Tabaczynski [15] studied and compared Jacobian

based solutions of inverse kinematic problem namely, pseudo inverse, truncated

pseudo-inverse, transpose, and damped least squares (DLS). He showed with

experimental results that DLS is better with its smooth motion and immunity to

singularities and unreachable targets is the best all around solution, but could be

too slow if high convergence accuracy and interactive speed is required.

Erdman [3] edited a book about the history and the development of the

kinematics. He summarized the direct and inverse kinematic approaches

throughout the history. Denavit Hartenberg (DH) notation has been told to be the

most common used notation, in combination with homogenous transformation

 11

matrices. This combination was used with Roth and Pieper. In addition to DH

notation, Erdman summarized the analytic approaches to the inverse kinematic

solutions. Roth reduced the inverse kinematics to the solution of a 32nd degree

equation in the ten-half-angle of one joint. Another approach was a polynomial

using spherical trigonometry in the form of a 16x16 matrix by Duffy and Crane.

More recently, dialectical eliminations are used to reduce the polynomial to a

sixteenth-order polynomial of the tangent of the half-angle of one of the joint

variables by Lee and Liang. Raghavan and Roth have developed a method based

on dialectic eliminations to yield the sixteenth order polynomial of one-joint

variables and turned the solution into a linear sets of equations after finding the

roots of the polynomial. The other approaches mentioned are vector analysis,

tensor methods, screw coordinates, dual member method, quaternion operators,

spherical trigonometry method and zero position method. In addition to analytical

solutions, numerical techniques were being developed. Uicker considered

modified Newton-Raphson iteration schemes for spatial closed chains whereas

Pieper, Hansen and Sing and Gupta used this method for robot manipulators.

Angeles developed a method based on optimization and Gupta found numerical

methods based on joint integrations. Whitney used the inverse Jacobian for

acquiring the joint rates and Waldron used Jacobian for singularity analysis of the

manipulators.

In 1997, Regnier, Ouezdou and Bidaud [17] introduced a new numerical method

to solve inverse kinematics of all kinds of manipulators with a concept from

Distributed Artificial Intelligence. By this multi agent system the resolution of the

problem is distributed. They handled the problem of inverse kinematic as a non

linear distributed optimization problem. The basic of the solution is to associate

for each local joint a new system of equations where an only joint is able to move

and to approach the goal matrix. In 1999, Chen and Yang [18] published a paper

about numerical inverse kinematics for modular reconfigurable robots. They

addressed the formulation of generic numerical inverse kinematics model and

automatic generation of the model for arbitrary robot geometry. They used

Newton-Raphson iteration method for solution of inverse kinematic problems. In

 12

addition to that they defined sub problems for the inverse kinematics of modular

robots which are, pure orientation problem, pure position problem, hybrid

problem. They showed the effectiveness of this solution with computations but

they did not guarantee the convergence of the solution in a finite number of

iterations and finite time.

Pott [21] introduced an algorithm which one can perform the linearization of the

transmission behavior from any number of geometric parameters to the motion of

a six degree of freedom end-effector by applying six unit loads to the end-effector

and determining internal force. Pott based the paper on a general method of using

force transmission to evaluate general Jacobian. Besides he worked on first order

error analysis with sensitivity coefficients. He said that after obtaining a closed-

form expression for the direct kinematics, sensitivity coefficients can be found by

taking derivatives of the closed-form solution with respect to each of the

geometric parameters. And added that sensitivity parameters should be introduced

in such a way that they vanish at the nominal configuration. Hasan et al. [22]

published a paper about an adaptive learning algorithm to solve the inverse

kinematics problem of six degree-of-freedom serial manipulators. He used

artificial neural network (ANN) for learning strategy and used this strategy to

control the motion, overcome the singularities and uncertainties in arm

configurations. The proposed control technique learns the characteristics of the

robot without specifying explicit robot system model which takes away the

requirement of any prior knowledge of the kinematics model of the system being

controlled. The main advantage of using neural network strategy is modification

in the physical set-up of the robot is handled by training for a new path without

major system software modifications.

In 2004, Chapelle and Bidaud [26] investigated closed form solutions for inverse

kinematics approximation of general 6R manipulators by the use of evolutionary

symbolic regression. They used Evolutionary Algorithms, which relies on Genetic

Programming (GP) to provide a fast and general solution to the inverse kinematic

problem. The solution requires the direct model under the form of a mathematical

function or a process getting the design parameters (Y) as input, and returns

 13

evaluation values (X) as output. They simulated the algorithm with PUMA 560

robot and the algorithm approximated expressions approximately in 10 generation

with an average error of about 10-4 radians on each characteristic point of the

learning and the test bases. From the simulated results For the other joint values,

errors between 10-1 and 10-2 radians are found. The length of the individuals

cannot be restricted more than slightly. The most direct consequence of the non

size restriction is to slow down the computation. It takes 50 generations and 30

min to a SiliconGraphics O2 computer to determine one joint parameter.

Similarly, Luh and Lin [24] assumed that the joint co-ordinates of the robot

configuration corresponding to enough knot points of a Cartesian path are known.

Then instead of joining the adjacent transformed points by linear interpolation,

they determine low degree of polynomials and then spline them together in order

to obtain speed and acceleration continuity. A comparative study of the

approximation error between the polynomials used in joint interpolation is also

presented.

Note that in 1979, Taylor [25] introduced a bounded deviation technique to

achieve straight line movement of the end-effector of manipulators. The algorithm

is based on calculating the corresponding joint coordinates θS and θf for given

configuration frames, starting frame Fs and the ending frame Ff, of the hand. Then

the Cartesian coordinates of the joint midpoint is calculated and is compared to

the Cartesian configuration corresponding to the midpoint of the straight line

segment. If the two configurations deviates more than an allowed amount, the end

point configuration is replaced by the Cartesian midpoint configuration and the

algorithm is applied recursively to this straight line segment until the deviation is

smaller than the specified amount.

 14

2.4 Algorithms and Toolboxes

Completing the researches for the interpolators, trajectory generation and

kinematic modelling, an investigation for the algorithms and toolboxes has been

done.

Corke [29] has released a MATLAB toolbox for kinematics, dynamics, and

trajectory generation of manipulators. Representations of the kinematics and

dynamics of serial-link manipulators were based on general methods. Additional

functions for manipulating and converting between data types such as vectors,

homogeneous transformations and unit-quaternion which are necessary to

represent 3-dimensional position and orientation was provided in the toolbox.

Inverse kinematic solution was found by iterative numerical solution methods.

Some examples are given in the toolbox; in addition to that it is possible to add

new robot definitions. Likewise, Hydzik [35] has developed a simple MATLAB

toolbox for the inverse kinematics of Puma and Stanford manipulators using Euler

angles. He performed the solutions on 1D cubic Bezier curve, 2D curve and 3D

Bezier curve specified by 9 control points. In addition to the solution he added a

graphical tool which simulates the manipulator position according to the joint

variables.

In 2003, Tonbul [45] has developed an algorithm for the inverse kinematics

calculations and the trajectory planning of an Edubot robot arm with five axes.

Tonbul used fifth order polynomials while planning trajectory for obtaining

continuity in the positions, velocities and accelerations. Polynomials were used in

order to have continues trajectory and velocity polynomials. Inverse kinematic

problem was described by the product of the exponentials and solution was found

by moving the joint variables one at a time.

In 1997, Vamoser has developed inexpensive and fast simulation software for

Unimation's Puma 560. He tried to develop an application which could not only

perform the simulation and necessary calculations, but which could also be able to

 15

run on any platform without the recompilation of the code. In addition to the

algorithm he gave detailed information on Puma 560.

2.5 Optimization of Manipulators

After completing the research about the kinematic modeling, a basic research on

optimization of the robot manipulators for later studies.

Nawratil [28], published a paper introducing four new posture-dependent

performance indices for control, two based on an object-oriented metric in the

workspace which is end-effector dependent and the other based on a linear

approximation of direct kinematics which is end-effector independent. He showed

that independent indices reflect the distance of the actual posture from the closest

singularity and these distance measures take the possible variation of the joint

axes into account, because they are based on a linear approximation of direct

kinematics. Mitsi [27] developed an optimization algorithm to determine the base

position and the joint angles of a spatial robot, when the end-effector poses are

prescribed, avoiding the singular configurations. The algorithm combined a

simple Genetic Algorithm (GA) with the quasi-Newton method and a constraints

handling method (CHM). The efficiency of the developed method has been

demonstrated by six numerical examples, using two criteria and it is shown that

the obtained result is better than the one obtained by the simple GA or by the

combination of GA with the CHM. Sobh and Toundykov [30], studied the

kinematic synthesis of robotic manipulators and developed a software which

automatically computes possible optimal parameters of robot arms by applying

numerical optimization techniques to the manipulability function, combined with

distances to the targets and restrictions on the dimensions of the robot. It was

aimed to develop a general, easy to use, fast and simple synthesis tool for robotic

manipulators. In addition, they used quantitative measure of the performance in

order to calculate the efficiency and the manipulability of the manipulators.

 16

2.6 Data Compression

Once the literature survey on kinematic modeling has been completed, a survey

on data compression methods has been started. In this part, different method of

the data compression has been searched and several applications have been

studied. Although data compression methods are not applied in robotics, literature

survey on several compression methods has been done.

Saffor [49] studied data compression techniques on 8-bit Computed Tomography

(CT) images and focused on the quantitative comparison of lossy compression

methods. Joint Photographic Experts Group (JPEG) and Wavelet compression

algorithms were used on a set of CT images. These algorithms were applied to

each image to achieve maximum compression ratio (CR). Each compressed image

was then decompressed and quantitative analysis was performed to compare each

compressed-then-decompressed image with its corresponding original image.

And finally he proved that Wavelet compression yields better compression quality

at constant compressed file sizes compared with JPEG which the results mostly

agreed with other published studies. Chen et al. [50] used wavelet network

solution for inverse kinematics. The network is optimized by reducing the number

of wavelets handling large dimension problem according to the sample data. The

algorithms for sparseness analysis of input data and fitting wavelets to the output

data with orthogonal method are introduced. They simulated the solution on

PUMA560 manipulator.

On the other hand, Herman [47] worked on Fourier Transform of time series, and

generated a periodic function of infinite duration at the cost of losing data outside

the fundamental range by restricting data to a time interval [0, T] for period T, and

extending the data to infinity. He managed to have discrete frequencies at discrete

times by sampling the recording data at a finite number of time steps, limiting the

ability to collect data with large oscillations. Similarly, O’Neil [32] has

formulated on partial sums of Fourier series. He applied this method with several

functions and illustrated the convergence of the partial sums of the Fourier series

with graphs. In 1987, Lelewer and Hirschberg [39] have surveyed a variety of

 17

data compression methods spanning almost forty years of research. They

discussed concepts from information theory, as they relate to the goals and

evaluation of data compression methods, evaluated and compared methods is

constructed. In addition, they summarized the compression rates of several

methods, the efficiencies of algorithms, and susceptibilities to error. They divided

data compression methods into two subdivisions which are static and adaptive.

They classified, Shannon-Fano, static Huffman, Elias codes, Fibonacci code as

static methods and Adaptive Huffman Coding, Lempel-Ziv Codes, Algorithm

BSTW, as adaptive methods. In 1989, Nelson [40] has developed a simple

algorithm named LZW compression. The algorithm does not do any analysis of

the incoming text, instead replaces strings of characters with single codes by

adding every new string of characters it sees to a table of strings. Compression

occurs when a single code is output instead of a string of characters.

In a web-site named data-compression.com [41], an overview of the theory,

source modeling, descriptions of Huffman coding, Lempel-Ziv coding, Linde

Buzo Gray vector quantizer (VQ) design algorithm have been given and

performance comparison is also included. It has been said that, in the 1948 paper,

“A Mathematical Theory of Communication”, Claude E. Shannon formulated the

theory of data compression and also developed the theory of lossy data

compression which is better known as rate-distortion theory. In addition the

lossless and lossy data compression methods have been described. Lossless

compression has been investigated with; zero, first, second, third order and

general methods for source modeling, entropy rate of a source and Shannon

Lossless Source Coding Theorem. Huffman coding which is similar to that of the

Morse code has been studied in details. Lempel-Ziv Coding algorithm which is a

variable-to-fixed length code has been studied as well. And lastly, vector

quantization (VQ) which is a lossy data compression method with a fixed-to-fixed

length algorithm based on the principle of block coding has been told.

In 1980, Linde, Buzo, and Gray (LBG) proposed a VQ design algorithm based on

a training sequence which bypasses the need for multi-dimensional integration.

Later in 1978, Gallager has published a paper about Adaptive Huffman coding.

 18

Adaptive Huffman methods are defined-word schemes which determine the

mapping from source messages to code words based upon a running estimate of

the source message probabilities. The code is adaptive, changing so as to remain

optimal for the current estimates. In this way, the adaptive Huffman codes

respond to locality. In essence, the encoder is "learning" the characteristics of the

source. The decoder must learn along with the encoder by continually updating

the Huffman tree so as to stay in synchronization with the encoder. Another

advantage of these systems is that they require only one pass over the data.

2.7 Open Research Areas

During the literature survey, not only the researches has been done until now are

searched, but also the areas that are not worked on yet has been searched. By the

help of this search, the scope of the thesis has been determined.

First of all, the base of this thesis is established on compression of the generated

commands representing the joint configurations since there has not any work on

this subject. General usage in industrial motion controller cards like Delta-Tau’s

PMAC2 and Galil’s DMC and as Yang and Hong [4] discussed, complex

trajectories have been represented with vector data tables in terms of short linear

segments and linear interpolation has been performed between the two following

table entries. This approach results with the requirement of storing large amount

of data especially working on complex trajectories with dividing these trajectories

into small sections to preserve the working tolerances. In order to prevent storage

of high number of data, Cheng [6], Bahr [8] utilized advanced control units with

Spline or NURBS interpolation. But the high computational burden of this type of

interpolators makes these methods inefficient when operating with mechanisms

having high number of joints. In this work, it is aimed to represent the generated

commands within the acceptable tolerances via several encoding techniques.

Although compression techniques has been used for several applications such as

 19

audio, images, text files and images, the usage of the compression methods has

not been observed for command generation of manipulators yet.

Secondly, it has been observed that, there has not been so many works on

numerical iteration methods for manipulators. Most of the algorithms developed

such as Hydzik [35], Tonbul [45], facilitated iterative solutions which are

designed for specific manipulators. This approach brings the requirement of

developing a new solution method which is applicable for different manipulators.

In addition, most of those algorithms implement inverse kinematic solutions with

fixing the orientation of the end-effector w.r.t the global coordinate system

throughout the trajectory. This approach is not sufficient especially working on

inclined surfaces. So it is aimed to develop an inverse kinematics solution

algorithm which can accommodate with different system with changing only the

definition of the mechanism and change the end-effector orientation dynamically

according to the working surface.

Another unexplored area related to the thesis is the command generation for

manipulators. Although NC codes are used for CNC Machine tools, there is none

for manipulators. Since the manipulators are widely used in industrial

applications, each manipulator has its own command generator which uses the

data from CAD/CAM software directly. In this thesis it is aimed to bring a

practical way to define the tool path without requiring a special training. In

addition to defining the tool-path simpler, the interpolation techniques are

synthesized for more efficient results.

 20

CHAPTER 3

KINEMATIC MODELING OF ARTICULATED MECHANISMS

3.1 Articulated Mechanisms

Manipulators are open kinematic chains of rigid objects (links) connected by

joints. These manipulators are designed to perform a variety of motions suitable

for a specific task like welding, painting, material handling, assembly, etc.

Typical robots are serial-link mechanisms. They are characterized by arms for

mobility, a wrist for dexterity, and an end-effector (“apparatus”) to perform a task

[54].

Although different types of joints can be used in manipulators, two joints are

common in practical applications: revolute joints (R) and prismatic joints (P). The

free parameter of the revolute joint is the angle of rotation about its axis while

only the displacement is applicable for a prismatic joint. According to the joint

types used, manipulators can be divided into subgroups: Cartesian-, cylindrical-,

spherical-, and articulated (“anthropomorphic”) manipulators.

Figure 3.1 illustrates common manipulator types. Cartesian manipulators in

Figure 3.1a have three prismatic joints. They are mechanically robust but

inadequate for performing complex motions in space. Thus, they are basically

used for moving large and heavy objects. Similarly, cylindrical manipulators in

Figure 3.1b have one revolute and two prismatic joints. Despite their apparent

robustness, the positioning accuracy of the end-effector is usually low due

horizontal movement. Just like its Cartesian counterpart, they are employed for

material transfer. Spherical manipulators in Figure 3.1c constitute two revolute-

and one

but can

utilized

have th

These

paintin

In the

dimens

the pos

to the o

relative

but the

will be

will be

e prismatic

n carry out m

d for assemb

hree revolut

manipulato

g, welding,

(a) Ca

(c) Sph

field of ro

sional space

sition and o

object. The

e fashion. T

e most com

used for m

described a

joint. The

more compl

bly operatio

e joints and

ors are wid

assembly,

rtesian (PPP

herical (RR

Figure 3.1

obotics, the

e by two att

orientation o

location of

There are di

mmon conve

modeling of

at the next s

2

ir mechanic

licated tasks

ons. Articul

d are consid

dely emplo

surface clea

P)

P)

Different typ

main subje

tributes: pos

of a body, a

f the frames

ifferent way

ention calle

the manipu

section.

21

cal robustne

s in its work

lated manip

dered to be t

oyed in in

aning.

pes of manip

ect is the l

sition and o

a coordinate

 is defined

ys to describ

ed Denavit-

ulators. The

ess is lower

kspace. Hen

pulators, sho

the most ve

ndustrial ap

(b) Cylind

(d) Articul

pulators [34]

location of

orientation. I

e system (“

with respec

be these “ge

-Hartenberg

methodolo

r than the o

nce, they ar

own in Figu

ersatile man

pplications

drical(RPP)

lated: (RRR

.

the links i

In order to

“frame”) is

ct to each o

eometric” a

g (DH) con

gy and con

ther two

e mostly

ure 3.1d,

nipulator.

such as

)

R)

in three-

describe

attached

ther in a

attributes

ventions

ventions

 22

3.2 Background Knowledge

Mechanisms studied in this thesis are serial-link manipulators. One end of the

chain is fixed while other links move relative to that. For a robotic manipulator

with n joints, the joints are enumerated from 1 to n, will have n + 1 links, the links

are numbered from 0 to n. By this convention, joint i connects link i − 1 to link i.

Link 0 is the base of the manipulator, is usually fixed, and link n carries the end-

effector.

Each joint is represented with a coordinate frame. For standardization, some of the

joint frames are specifically named as illustrated in Figure 3.2. The naming and

subsequent use of the frames in robots and control systems facilitates providing

general capabilities in an easily understandable way [1].

Figure 3.2 Standard frames of a manipulator.

The manipulator is divided into three main frames: base {B}, wrist {W} and tool

{T} frames. Base frame is located at the base of the manipulator which is link 0. It

is affixed to the stationary part of the robot. Wrist frame is attached to the last link

of the manipulator where the tool will be located. Tool frame is affixed to the end

 23

of the tool that robot holds and is placed mostly between the fingers of the

gripper. Tool frame is specified w.r.t. the wrist frame.

Position and the orientation of the frames are defined with a translation matrix in

Eqn. (3.2) and basic rotation matrices in Eqn. (3.1) where ܴ ஺
஻ represents rotation

of frame B relative to A as illustrated in Figure 3.3, ݀ ஺
஻

 represents translation from

A to B, i, j, k are unit vectors of original frame, u, v, w are the unit vectors of

rotated frame and di shows displacement in each axis. These matrices are used to

form the homogenous transform matrices.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅
⋅⋅⋅
⋅⋅⋅

=

wzvzuz

wyvyuy

wxvxux

kkjkik
kjjjij
kijiii

RB
A (3.1)

[]Tzyx
B
A dddd = (3.2)

Figure 3.3 Basic Rotation and Translation.

3.2.1 Homogenous Transformations

Homogenous Transform matrices (HTM) are used to define the translation and

rotation of one frame relative to another. The matrix in Eqn. (3.3) represents the

homogenous transformation from frame A to B and contains the rotation and

translation information.

 24

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= ××

10
1000

1333

44

PRdR
T

x

B
A

B
AB

A (3.3)

The inverse kinematic solution is based on this matrix so it should be written

correctly. The rotation part consists of rotations around all axes as in Eqn. (3.4a),

where ψ, Φ, θ represents the rotation about x, y, z axes respectively. The

translational part consists of the displacement of origin of the new frame as in

Eqn. (3.4b) where a, b, c represents the displacements on x, y, z axes respectively

[33]. The T4,4 element is the scale factor and it represents that whole elements are

scaled one to one. For simplicity, cosine function cos (θ) is represented as cθ

while sine function sin (θ) is shown as sθ.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
100

0010
0001

1000
0100

010
0001

1000
0100
0010

001

1000
0100
00
00

1000
00
0010
00

1000
00
00
0001

,,,

,,,

c
d

b
d

a

d

cs
sc

R
cs

sc

R
cs
sc

R

czbyax

zyx

θθ
θθ

φφ

φφ

ψψ
ψψ

θφψ

(3.4a)

(3.4b)

The inverse of the HTM can be found as Eqn. (3.5) by using the orthogonality

property of the homogeneous transformation matrix.

44

1

1000 x

TT dRR
T

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=− (3.5)

The position and orientation of the end-effector with respect to the base frame can

be found by Eqn. (3.6) by the product of the coordinate frame transform matrices

for each link.

Once th

tool’s l

where p

3.3 Den

Denavi

the link

attachin

joint (g

procedu

links, t

by [35]

1.

he orientati

ocation in s

pn is the pos

navit Harte

it and Harte

ks and repre

ng coordina

geometric)

ure should

the frames s

]:

Fig

Coordinate

normal coo

motion of f

Tn
0 =

ion and pos

stationary co

sition of the

enberg Not

enberg intro

esent these

ate frames o

parameters

be clearly

shown in F

gure 3.4 Den

e frame at

ordinate sy

first joint.

2

TT n
n 1

2
1

1
0 −=

sition of the

oordinate fr

n
n qTp)(00 =

e tool in loc

tation

oduced a sy

frames w.r.

onto links a

s. In order

followed.

igure 3.4 ca

navit Hartenb

the base is

ystem (X0, Y

25

T

e end effect

rame (p0) ca

np)

al coordina

ystematic w

.t. each othe

and continu

r to attach

For a mani

an be defin

berg Frame a

s establishe

Y0, Z0). Z0

tor is found

an be calcul

te frame.

way for attac

er. This me

ues on with

the link f

ipulator wit

ned by the p

assignments

ed. It is a r

0 is selected

d, using HT

lated as

ching the fr

ethod starts

finding of

frames pro

th n joints

procedure p

[35].

right-hande

d along the

(3.6)

TMs, the

(3.7)

rames to

out with

link and

operly, a

and n+1

presented

d ortho-

e axis of

 26

The axes of motion for each joint should be found. For each frame, Zi

should be aligned with the axis of motion of joint i+1.

2. The origin of the coordinate frames is to be selected. The origin of the ith

coordinate is found by intersecting the current and previous joint axes, Zi

and Zi-1. If the joint axes are not intersecting, a common normal is drawn

between the Zi and Zi-1 axes. The origin is determined by intersecting the

common normal and the Zi axis.

3. The X axis should be defined for each joint. If the joint axes of the current

and previous joint, the Xi is along the common normal between the Zi and

Zi-1 axes. If they are not parallel, Xi is found by the cross product of the Zi

and Zi-1 axes as in Eqn. (3.8).

)(1 iii ZZX ×= − (3.8)

4. The Y axes are defined for each joint by completing the right handed

coordinate system as in Eqn. (3.9).

)(iii XZY ×= (3.9)

5. For the hand (gripper) frame, the procedure slightly differs: For an n-link

manipulator, the Zn is chosen coincident with Zn-1. On is coincident with

the tip point as shown in Figure 3.5 [51] where P is the tip point, ua is the

approach vector, us is the sliding vector, and un is the normal vector which

is normal to the gripper plane.

Figure 3.5 Hand frame assignment.

 P=O6
Z6 = Z5 =an

X6 = nn

sn

 27

6. The last step after assigning the coordinate frames to each joint, joint and

link parameters are defined for each joint. Position, the orientation and

location, of link i with respect to link i-1 is represented just by the D-H

parameters. DH convention specifies a link by two geometrical properties:

the link length (a), and link twist (α). These properties define the relative

location of the two reference frames in space. Similarly, joints can be

specified by two parameters: the joint (link) offset (d) and joint angle (θ)

are used.

a. Link length ai is the offset distance between the Zi-1 and Zi axes

along the Xi axis.

b. Link twist αi is the angle from the Zi-1 to Zi axis about the Xi axis.

c. Link offset di is the distance from the origin of frame Oi -1 to the Xi

axis along the Zi-1 axis.

d. Joint angle θi is the angle between the Xi-1 and Xi axes about the

Zi-1 axes

Note that for serial manipulators, ai and αi are always constant while the

link parameters for the first and last links are arbitrarily chosen to be zero.

Depending on the joint type either the joint angle θi or the link offset di is

constant and the other is joint variable. They are denoted as generalized

variable, q୧. For revolute joints, q୧ is the angle of rotation, and q୧ is the

link offset for prismatic joints as in Eqn. (3.10).

q୧ ൌ ൜ θ୧: joint i revolute
d୧: joint i prismatic (3.10)

7. After assigning the required frames and parameters, HTM following DH

convention is formed for adjacent coordinate frames, i and i+1 by the

following HTM shown in Eqn. (3.11) [51].

 28

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

= −−−

1000
0

),(),(),(),(111

iii

iiiiiii

iiiiiii

iiiiiiii
i

i

dcs
sacsccs
cassscc

xRaxTzRdzTT

αα
θθαθαθ
θθαθαθ

αθ

 (3.11)

3.4 Forward Kinematics

The objective of forward kinematic analysis is to determine the cumulative effect

of the entire set of joint variables on the position of the end-effector. In another

words, it is simply the computation of position and orientation of the tool frame

relative to the base frame at a quasi-static state. It can be regarded as changing the

representation of the manipulator’s position from joint space into a Cartesian

space [1].

Assuming Ti is the HTM that expresses the position and orientation of frame i

w.r.t. frame i-1. Since the joints are either revolute or prismatic, Ti depends on the

generalized joint variable, qi: Ti = Ti (qi). For an n-axis rigid-link manipulator, the

coordinate frame of the last link can be found by multiplying the HTMs as in Eqn.

(3.6) that are formed by Eqn. (3.3) for each link. Hence, w.r.t a reference frame,

the direct kinematics function is expressed by the HTM shown in Eqn. (3.12)

presented by Sciavicco [68]

⎥
⎦

⎤
⎢
⎣

⎡
=

1000
)()()()(

)(0

qpqaqsqn
qTn (3.12)

where n, s, a are the unit vector of the end-effector frame illustrated in Figure 3.5

and p is the position vector of the origin of that frame w.r.t the origin of the

reference frame.

 29

3.5 Inverse Kinematics

The inverse kinematics problem is simply the problem of finding a set of joint

variables that produce a desired end-effector location. It can be regarded as

changing the representation of the manipulator position from a Cartesian space

into joint space as illustrated in Figure 3.6.

Figure 3.6 Schematic of forward and inverse kinematics.

The inverse kinematics model of a manipulator involves the mapping of joint

arguments (q1, q2, …, qn) into the end-effector position (x, y, z). Throughout the

solution, the orientation of the end-effector changes dynamically w.r.t the working

plane and the trajectory that is being followed. In order to satisfy this requirement,

it is assumed that the approach vector of the end-effector illustrated in Figure 3.5

is always perpendicular to the working plane defined by the user and approach

vector always tangent to circular trajectory or along the linear trajectory. The main

reason for fixing the approach vector to plane normal is to simplify the

representation of the trajectory with the NC codes that will be discussed in the

next chapter. With current NC code definition it is not possible to characteristics

of end-effector orientation. In order to define the orientation new keywords

representing the tool orientation, the type of the task in hand and gripper style

should be added.

Knowing the desired position and orientation of the end-effector is known

beforehand and the joint variables can be found correspondingly. But the solution

 30

is not straightforward since one need to solve a set of nonlinear equations that

oftentimes leads multiple solutions as well as singularities.

To be specific, the nonlinearity of the equations comes from the trigonometric

functions involved in the corresponding expressions. The other problem is the

existence of singularity. For a solution to exist, the pose of the manipulator for a

configuration should lie within the workspace of the manipulator. If there is no

solution for that configuration, it is said to be singular. The handling of singularity

is discussed extensively in the later sections. Note that the singularity may be also

due to invalid joint arrangements. There are some special cases [51] that may

occur in manipulators which results in reduction in degrees of freedom and

infinite number of solutions can be encountered. These special cases are; where

two joints in the ends of a link are both revolute and their axes are parallel to each

other and have infinitely many common normal, when the rotation axes of

revolute joints’ cross each other perpendicularly which results with two different

link twists and final case is when prismatic joints are parallel to each other and

manipulator loses one of its degree of freedom.

3.5.1 Multiple Solution

In addition to singularities, the most encountered problem in inverse kinematic

model is the existence of multiple solutions. For instance, for the 2D manipulator

shown in Figure 3.7, a specific position and orientation of the tool tip can be

reached by different orientations (see the elbow down and elbow up

configurations).

As the number of the joints increase, reaching a solution becomes increasingly

harder. Because of these multiple solutions, the solver has to choose one. The best

way to resolve is to pick up the closest solution to the previous configuration by

minimizing the amount that joint is required to move. This brings the necessity of

selecting the perfect initial conditions.

 31

Figure 3.7 Multiple Solutions [22].

3.5.2 Solution Methods

Inverse kinematics problem can be solved with two different methods: analytic

(closed form) and numerical. One of these methods is selected depending on the

context of the problem. Both have certain advantages and disadvantages which are

summarized in Table 3.1 [18, 19].

Closed-form solution is divided into two which are geometric and analytic

solution. Geometric approach is simply decomposing the mechanism into plane

problems. This can be used for simple mechanisms such as planar mechanism.

Analytic solution is done by the help of the known functions. Multiple functions

are solved together in order to find the variables. Although analytic solution is fast

and accurate, this solution is unique for every arm configuration and it is not

possible to reflect physical changes such as addition of new tool. Non-linearity of

the functions and it is hard to find the functions for different kinds of

manipulators. Polynomial solutions and dyalitic elimination are the mostly used

analytic solution.

 32

Table 3.1 Comparison of inverse kinematic solution methods.

Closed Form Solution Numerical Solution

Derive computationally efficient
closed-form solutions

The precision of the solution is pre-
defined and introduces small errors.

Joint variables explicitly expressed
in terms of other known quantities

Based on the D&H parameters

Highly system-specific [18] Applicable to arbitrary chain
structures

Non-linear and coupled [19] Iterative solution

Singular positions are known Requires singularity check

Multiple Solution in calculations Only one solution.

The derivation of analytic solution for Puma 560 that is illustrated in Figure 3.8 is

presented by [1] and given in Appendix D in details

Figure 3.8 Puma 560 Manipulator.

In num

uses the

the join

form so

because

Raphso

mostly

3.5.3 N

As sho

differen

directly

develop

structur

position

meric solutio

e differentia

nt configura

olutions be

e of the m

on algorithm

used nume

Numerical In

own in pre

nt types of m

y in closed-

p efficient

re of the ma

n will be fo

ons, joint v

al kinematic

ation. Althou

cause of th

manipulabilit

ms, genetic

ric solution

Figu

nverse Kine

evious sect

manipulator

-form becau

and system

anipulator.

ound iterativ

3

variables ar

c equations

ugh numeri

he iterative

ty of the s

c algorithm

ns.

ure 3.9 Stanf

ematics

tion, the m

rs. In additi

use of the n

matic techniq

For that rea

vely from in

33

e found by

of the man

ical solution

nature, num

solution to

ms and neur

ford Manipu

models show

ion, equatio

non-linearity

ques that ex

ason the req

nitial positi

y an iterativ

ipulator and

ns are much

merical solu

many mec

ral network

ulator.

w considera

ons can be to

y. Therefore

xploit the p

quired joint

ion and join

ve procedur

d the initial

h slower tha

utions will

chanisms. N

k solutions

able variat

oo difficult

e, it is nece

particular ki

variables at

nt configura

re which

value of

an closed

be used

Newton–

are the

ions for

to solve

essary to

inematic

t desired

ation. As

 34

mentioned before, selection of initial condition is important in order to handle

multiple solutions and singularity. The initial joint configuration of manipulators

can be given as the well-known poses such as zero-angle, ready and fully-

extended. But if no initial joint configuration is given, zero-angle pose is selected

as default configuration.

Note that before initiating a solution, the orientation and the position of the

desired pose of the mechanism is known. Since the position and the orientation of

both initial configuration and desired configuration are known, transformation

matrix at initial configuration T0, and transformation matrix at desired position T1

can be calculated. With the help of the values at each joint, T0 can be computed

with HTM method:

଴ܶ௡
଴ ൌ ܶ଴

ଵ
଴ ܶଵ

ଶ
଴ … ܶ௡

௡ିଵ
଴ ൌ ቂ ܴ௢

௡
଴ ܶ௢

௡
଴

0 0 0 1 ቃ (3.13)

But T1 is computed with a different method. Throughout the inverse kinematic

solution, it is assumed that end-effector of the mechanism is always perpendicular

to the working plane which means that the approach vector, an, of the hand frame

illustrated in Figure 3.5 is aligned with the surface normal. With the help of the

orientation of the working frame w.r.t the base frame, the rotational part of the T1

can be computed in terms of RPY angles which are obtained by composition of

elementary rotations w.r.t axes of a fixed frame. The acronym RPY stands for the

Roll-Pitch-Yaw angles which are often used in aeronautical field. In this case, the

set of angles (ψ, Φ, θ) which is illustrated in Figure 3.3 are obtained rotating the

reference frame about x axis (yaw), about y axis (pitch) and z axis (roll) of the

fixed frame respectively. The resulting orientation of the working plane is

obtained by composition of rotations w.r.t the base frame and then it can be

computed via premultiplication of matrices of elementary rotation as presented by

Sciavicco [68]

 35

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−+
+−

=

ψθψθθ

ψφψθφψφψθφθφ

ψφψθφψφψθφθφ

ccscs
sccssccssscs
sscsccsssccc

Rn
0 (3.14)

As expressed by Sciavicco the third raw of the HTM in Eqn. (3.12) represents the

normal of the working plane shown with zwp in Figure 3.10. Since the end-effector

moves toward to the plane, an is the opposite of the normal of the plane. So after

inversing the 3rd column of Eqn. (3.14) which represents the surface normal, the

third column of T1 is obtained. Knowing that the sliding vector, sn is aligned or

tangent to the motion, the direction of sn can be found by the direction vector from

starting point to the end point as in Eqn. (3.15)

[] []ssseeen zyxzyxs ,,,, −= (3.15)

Figure 3.10 Orientation of end-effector w.r.t working plane.

Once an and sn are known nn can be simply obtained by completing the right

handed coordinate system with the cross product of nn=anΧsn.

 36

The last step of composing T1 is simply inserting direction vectors and the end-

effector position to the correct place of the HTM according to Eqn. (3.12). So the

T1 takes the form of Eqn. (3.16).

[] []
[] []
[] []

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−×
−−×
+−×

=

1000
)(

)(
)(

1
zznznn

yynynn

xxnxnn

dccssa
dsccssssa
dsscscssa

T
ψθ

ψφψθφ

ψφψθφ

 (3.16)

Once T1 is obtained, the solution simplifies to finding how much the joints will

has to move in order to reach the required position. This can be found by the 1st

order Taylor Series Expansion of T (θ0+δ θ0) [36]:

n
n

nnn
n

nn

TTTT

TT

δθ
θ

δθ
θ

δθ
θ

θ

δθθθ

∂
∂

++
∂
∂

+
∂
∂

+≅

+=
0

2
2

0

1
1

0

00
0

00
0

11
0

)(

)()(

L

(3.17)

Since the T0 and T1 are known in Eqn. (3.17), only the differential terms are left

unknown. The derivative of the T can be found by Eqn. (3.18) which is derived

by Lorenz [36].

⎩
⎨
⎧

>
≤

=
∂

∂ Δ

ji
jiTDT ji

i

j

,0
,00

θ
 (3.18)

Where Di, a 6-element differential motion vector representing the incremental

translation and rotation described by the homogeneous transform T, is found by

Eqn. (3.19) where θx is the rotation about x axis, θy is the rotation about y axis, θz

is the rotation about z axis, x, y and z is the displacement in x, y, z axes

respectively. The other important usage of D is that it constitutes the elements of

the Jacobian Matrix that is explained later in this section.

 37

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

∂
∂

∂
∂

−

∂
∂

∂
∂

−
∂
∂

∂
∂

∂
∂

∂
∂

−

== −
Δ

0000

0

0

0

100

ii

x

i

y

ii

x

i

z

ii

y

i

z

iiii

z

y

x

TTQD

θθ
θ

θ
θ

θθ
θ

θ
θ

θθ
θ

θ
θ

 (3.19)

The inverse of the transform matrix was shown in Eqn. (3.3) and Q for revolute

and prismatic joints is shown in Eqn. (3.20) [36]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

0000
1000
0000
0000

,

0000
0000
0001
0010

transrot QQ (3.20)

Substituting the values into Eqn. (3.17), the expansion takes the form of Eqn.

(3.21), which will be used to form the error matrix shown in Eqn. (3.22)

nnnnnnn TDTDTDTT δθθδθθδθθθδθθ)()()()()(0
0

20
0

210
0

10
0

00
0 ++++=+ L

(3.21)

ITTE nn −= −
∧

1
00

0
1

0)(θ (3.22)

In order to obtain the error matrix, both sides of the Eqn. (3.21) should be

multiplied with ܶିଵ
௡
଴ . So the Taylor Series Expansion takes the form of Eqn.

(3.22),

nnnn DDDITT δθδθδθθδθθ +++=−+ − L2211
1

0
0

00
0)()((3.23)

The left side of the Eqn. (3.23) gives the error matrix ܧ෠ which represents the

deviation in the global coordinates. Notice that ܧ෠ has to be transformed into joint

space by the Jacobian matrix.

Jacobian matrix is an important tool in kinematics. Jacobian can be thought as the

vector form of the derivative of a scalar function. This matrix is used in

kinematics for operations such as, smooth trajectory generation, finding the

singular configurations, the manipulability of the system, derivation of velocities

and finally calculation of forces and moments in the system. For a manipulator

with n joints, the Jacobian is in the form of Eqn. (3.24) and gives the relation

 38

between n-vector of the joint velocities and the 6-vector containing information

about the linear and angular velocities of the end-effector.

qqJx nn && ⋅=)(00 (3.24)

The Jacobian matrix has information about both Cartesian partial derivatives and

rotational partial derivatives. The base frame Cartesian partial derivative is

extracted from the 4th column of the Di ܶ௡
଴

 matrix as in Eqn. (3.25).

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂
∂
∂

=

1000

0

i

i

i

ni

z

y

x

TD

θ

θ

θ

O

(3.25)

The rotational partial derivatives of the Jacobian for each joint with respect to the

end-effector are contained in the Di matrix as mentioned before. Extracting D3,2,

D1,3 and D2,1 from the values found from Di in Eqn. (3.19) the last part of the

Jacobian is formed. Finally after pulling the relevant values from Eqn. (3.19) and

Eqn. (3.25), the Jacobian matrix takes the form of

[]Tzyxzyx vvvwwwJ = (3.26)

The Jacobian matrix of a manipulator for n joints is formed by computing the

Jacobian matrices of each joint repetitively and concatenating all the matrices as

in Eqn. (3.27).

[]n
V

n JJJ
J
J

J L210 =⎥
⎦

⎤
⎢
⎣

⎡
= ω (3.27)

After the Jacobian is found, the by taking ܧ ෡ from Eqn. (3.23) can be solved by

taking the inverse of the Jacobian matrices. The deviations for generalized joint

variables can be found by Eqn. (3.28). The computed joint increments are added

to the initial joint values in order to find new configuration as in Eqn. (3.29).
∧

−= EJ 1δθ (3.28)

δθθθ += 01 (3.29)

But the deviations should be checked if they satisfy the precision required. If the

deviations are smaller than the resolution, θ1 is stored and the iteration starts for

 39

the next point in the trajectory. But if the deviations are not small enough the

iteration continues by using newly calculated joint values as initial configuration

until the deviation values are smaller than the resolution.

3.5.4 Singularity Handling

As mentioned earlier, singularities occur when no solution can be found for a

particular manipulator pose due to an alignment of axes reducing the effective

degrees of freedom, or the point being out of the workspace of the mechanism.

The common criteria for the singularity of manipulator is when the velocity

Jacobian of the manipulator, J(q), loses its full rank, the kinematic chain loses one

of its degrees of freedom [27, 29, 30, 55]. Common singularities observed in

robotic applications when the Jacobian matrix is square can be classified as; Arm-

extended singularity, wrist-extended singularity where the first and last joint of

the wrist are aligned, so they span the same motion freedom. Hence, the angular

velocity about the common normal of the three wrist joints is lost.

From the standpoint of task planning, it is very important to avoid the singular

configurations of the robot. This can be assured by the maximization of the robot

manipulability. Yoshikawa [56] defined the measure of the manipulability, w, as

in Eqn. (3.30).

TJJw ⋅= (3.30)

Yoshikawa’s manipulability measure is based purely on kinematic data, and gives

an indication of how ‘far’ the manipulator is away from singularities and thus is

able to move and exert forces uniformly in all directions. Manipulability varies

from 0 (bad) to 1 (good). For a non-redundant robot manipulator, the measure w is

simplified to w =|det(J)| [27].

In literature some methods has been presented for singularity handling. As

Kemeny [67] summarized some of these techniques modify the numeric

properties of Jacobian matrix with the trade-off of an imperfect end-point

 40

velocity, such as the damped least-squares, pseudo-inverse approach, singular

value decomposition etc. as shown by Dewit or Foret, while others (as Nenchev or

Lloyd) alter the time scales of one or more components in the joint space; either to

take a virtual bypass around the singularity (again, at the cost of imprecise

workspace motion), or to maintain acceptable joint velocities while locally

slowing down the end point motion to zero. In our study, pseudo-inverse method

shown in Eqn. (3.31) has been used for computation of the inverse of the Jacobian

at Eqn. (3.28) for singularity handling [15, 29].
TT JJJJ 1)(−+ = (3.31)

This approach allows a solution to obtain at a singularity since J+ exists even

when J is not square and full rank, but the joint coordinates within the null space

are arbitrarily assigned. J+ is computed by pinv function of MATLAB which is

based on Moore-Penrose pseudo inverse of matrix [43].

3.6 Closure

In this chapter, the background knowledge is presented to develop the command

generation algorithms. Detailed information about the kinematic modeling of

manipulators has been given. DH parameters, notations and frame attachment

operations are discussed step by step. Forward and inverse kinematic models have

been presented for the sake of self-containment. Inverse kinematic solution

methods have been divided into two: closed form and numerical solutions.

Advantages and disadvantages of two solutions have been given. Closed form

solution of PUMA 560 and Stanford manipulator, which will be used throughout

the course of this study has been included. The solution of the numerical method

has been investigated in detail.

 41

CHAPTER 4

POSITION GENERATION IN JOINT SPACE

4.1 Position Generation

Manipulators are able to perform different kinds of tasks such as painting,

welding, material handling and etc. Although operation changes they fulfill their

tasks by following a pre-defined path called trajectory. A common way of causing

a manipulator to move from one location to another in a smooth controlled

fashion is to cause each joint to move as specified by a smooth function of time.

Commonly, each joint starts and ends its motion at the same time, so that the

manipulator motion appears coordinated. How to compute these motion functions

is the problem called trajectory generation [1].

The definition of the trajectory for the manipulator should be given to the

controller in order to find the joint orientations at specific time. Defining the tool

path should be convenient for the user. Instead of entering complicated functions

in spatial or temporal domain, one can define the trajectory with the utilization of

a low-level language. The usage of NC codes as defined by RS-274B comes

handy for that purpose. With an NC code, all the user has to do is to describe

some properties of the motion and the intermediate locations. In this thesis, the

common NC codes are taken as basis and the G-words are modified accordingly

as the need arises. Detailed information regarding this formalism is discussed in

later sections.

 42

4.2 NC Code

An NC program is a code that defines the entire sequence of a machining

operation to be carried out on a particular CNC machine tool [2]. Although NC

codes have been designed originally to program CNC machine tools, they can be

adopted to the robotic manipulators as well. In fact, the NC code can be modified

to define the end-effector trajectory to perform the task with the given tolerances.

NC code devised in this study contains information about the coordinates,

orientation of the end-effector, motion type, manipulator’s operation modes, and

tool’s speed along the trajectory (a.k.a “feedrate”). Each line (i.e. block) in this

custom NC code constitutes information about a segment of the motion. For

trajectories with repetitive features, subprogram/subroutines can be utilized.

The motion type and the operation mode are defined by G-codes. The G-codes

that made use of in this work are as follows: G0 – rapid linear motion; G1 –

rectilinear motion; G2/G3 – circular motion; G17, G18, G19 – selection of

working plane in circular motion; G90 / G91 – absolute and incremental

coordinate mode; G100 – specification of local coordinate frame. In addition to

the G-codes; tool coordinates X, Y, Z (mm), miscellaneous functions M and

feedrate F (mm/min) can be defined in the NC code. M98, M99 M function calls a

subprogram and subroutine respectively while M30 signals the end of the

subprogram. In addition, N word is utilized to label the start of a subroutine and

P-word, which is used in conjunction with M98 function, defines the name of the

subroutine to be called. And finally dwell function is defined by D (sec). The

usage of D-word is essential for the task which needs to keep its pose during the

designated time interval such as spot-welding operation. Note that modal coding

has been utilized to make the code not only efficient but also easy to follow. In

this scheme, the modes set by the G codes or the coordinates being specified do

not change until new mode or coordinate is entered.

 43

4.2.1 Motion Types

Manipulators are capable of performing several motion types such as rectilinear,

circular, helical and parabolic motions. But for simplicity, the motions in this

study are limited to rapid, linear and circular motion.

4.2.1.1 Linear Motion

In linear motion, the tool moves to the destination at a constant feed rate which is

defined by the user. In this mode, all axes work in coordination and tool moves

the same amount in each axis as illustrated in Figure 4.1. The linear motion should

be defined as G1 Xxf Yyf Zzf Ff where xf, yf, zf are the coordinates of the end

point in either absolute or incremental mode and f is the feedrate (mm/min)

defined by the user.

Figure 4.1 Linear Motion.

Notice that a linear interpolation is required to produce position commands to the

controller at the start of each control cycle. To carry out this computation, the

travel (Euclidian) distance should be calculated first:

 44

݀ ൌ ටሺݔ௙ െ ௜ሻଶݔ ൅ ሺݕ௙ െ ௜ሻଶݕ ൅ ሺݖ௙ െ ௜ሻଶ (4.1)ݖ

Similarly, the time required to reach destination becomes

ݐ ൌ
60݀

݂ (4.2)

Hence, the number of commands to be generated along this linear trajectory can

be calculated as

ݏ ൌ ݎ݋݋݈݂ ൬
ݐ
ܶ൰ (4.3)

where T is the sampling rate of the control unit. The increments at each axis
becomes

ݔ∆ ൌ
௙ݔ െ ௜ݔ

ݏ (4.4a)

ݕ∆ ൌ
௙ݕ െ ௜ݕ

ݏ (4.4b)

ݖ∆ ൌ
௙ݖ െ ௜ݖ

ݏ (4.4b)

Similarly, the coordinates of the tool at a particular time (kT) can be expressed as

ሺ݇ሻݔ ൌ ௜ݔ ൅ (4.5a) ݔ∆݇
ሺ݇ሻݕ ൌ ௜ݕ ൅ (4.5b) ݕ∆݇
ሺ݇ሻݖ ൌ ௜ݖ ൅ (4.5c) ݖ∆݇

4.2.1.2 Rapid Motion

Rapid motion, which is basically used to move the tool from one point to another

at the maximum speed, is same as the linear motion but this time feedrate is not

required. The definition of rapid motion is G0 Xxf Yyf Zzf . Unlike point-to-point

motion in formal G0 (of RS 274B); here, all axes work in coordination and tool

moves the same amount in each axis as illustrated in Figure 4.1. This time

feedrate is selected automatically as the maximum feedrate (fmax) that can be

attained by the mechanism.

 45

4.2.1.3 Circular Motion

The last motion type in the interpolator is the circular motion. For circular motion

algorithm and definition slightly differs. Since circle should lie on a plane, user

has to define the working plane and the definition of direction of rotation is

essential in order to draw the correct section of the circle. The block of the NC

code has the information of the working plane, direction of rotation, the

coordinates of the destination, the radius or the coordinates of the circle and the

feedrate. Two alternative definitions are available for circular motion. The

representation options are:

Table 4.1 Circular motion representations.

XY Plane 17ܩ ܩ ቄ2
3ቅ ݔܺ ൜ ݕܻ ݎܴ

ൠ ݆ܬ ıܫ ݂ܨ

XZ Plane 18ܩ ܩ ቄ2
3ቅ ݔܺ ቄ ݖܼ ݎܴ

ቅ ݇ܭ ıܫ ݂ܨ

YZ Plane 19ܩ ܩ ቄ2
3ቅ ݕܻ ൜ ݖܼ ݎܴ

ൠ ݇ܭ ݆ܬ ݂ܨ

Complete Circle ܩ ቄ2
3ቅ ൝

 ݆ܬ ıܫ 17ܩ
݇ܭ ıܫ 18ܩ
݇ܭ ݆ܬ 19ܩ

ൡ ݂ܨ

where X, Y and Z are the coordinates of the destination point, R is the radius of

the circle and I, J, K are the distance from the center to the starting point. I, J, K

values are used as a set of two keywords. I and J keywords are used for defining

the center of the arc in XY Plane. Similarly, J, K is used for arcs in YZ plane and

I, K are used for arcs in XZ plane. If one prefers representing the arc with R, the

sign of radius should be given correctly. For the arc angles larger than 180°, as

illustrated in Figure 4.2 with motion from A to D, radius should be defined as –R.

For smaller arc angles such as motion from A to B, radius should be entered as R.

For the other notation, the incremental distance from center to starting point

should be given as illustrated in Figure 4.2. In this notation, i defines the

incremental distance on X axis, j defines the incremental distance on Y axis and

similarly k represents the distance on Z axis.

 46

Figure 4.2 Circular Motion

Final important definition is the working plane. G17, G18 and G19 are reserved

for defining the working plane and they are used for motion on XY plane, XZ

plane and YZ plane respectively.

According to the definition of the circulars motion calculations differ. If the

incremental distance to the center is given, radius of the circle can be calculated

by Eqn. (4.5) and center coordinates are computed by Eqn. (4.6). If only the

radius is given and the center coordinates left unknown, the center position is

obtained by geometric operations which is shown in the list of findCenter.m

subroutine given in Appendix. Once the center coordinates and radius of the circle

is known, the angle of the starting point of the arc, θs, and the angle of the final

point of the arc angle θf, is calculated by Eqn. (4.7a) respectively for XY, XZ and

YZ planes.

222 kjir ++= (4.5)

kzzjyyixx scscsc +=+=+= (4.6)

௦ߠ ൌ atan ൬
௦ݔ െ ௖ݔ

௦ݕ െ ௖ݕ
൰ , ௙ߠ ൌ atan ቆ

௙ݔ െ ௖ݔ

௙ݕ െ ௖ݕ
ቇ

௦ߠ ൌ atan ൬
௦ݔ െ ௖ݔ

௦ݖ െ ௖ݖ
൰ , ௙ߠ ൌ atan ቆ

௙ݔ െ ௖ݔ

௙ݖ െ ௖ݖ
ቇ

௦ߠ ൌ atan ൬
௦ݕ െ ௖ݕ

௦ݖ െ ௖ݖ
൰ , ௙ߠ ൌ atan ቆ

௙ݕ െ ௖ݕ

௙ݖ െ ௖ݖ
ቇ

(4.7a)

(4.7b)

(4.7c)

Once all of the unknowns are computed, position commands can be produced. To

perform this computation, the travel distance should be calculated first. The travel

 47

distance is simply the length of the arc. In order to compute the arc length, the

sweep angle of the arc should be computed by Eqn. (4.8). Then the arc length, l, is

found by Eqn. (4.9).

sft θθθ −= (4.8)
rl t ⋅=θ (4.9)

Similarly, time required to complete the arc becomes

f
lt ⋅

=
60

 (4.10)

Hence, the number of commands to be generated along this circular trajectory can

be calculated as

ܰ ൌ ݎ݋݋݈݂ ൬
ݐ
ܶ൰ (4.11)

where T is the sampling rate of the control unit. Since the trajectory is circular,

increments should be projected into angles and the angular increments can be

found by

N
tθθ =Δ (4.12)

Similarly, the angle values at a particular time (kT) can be expressed as

kk s ⋅Δ+= θθθ)((4.13)
Finally, the coordinates of the tool at a particular time (kT) can be expressed as in
Eqn. 4.14 which shows the procedures for circular motions in XY, XZ and YZ

planes respectively.

ሺ݇ሻݔ ൌ ሺ0ሻݔ ൅ ݎ כ ሾcosሺ ሺ݇ሻݕ ሺ݇ሻሻሿߠ ൌ ሺ0ሻݕ ൅ ݎ כ ሾsinሺ ሺ݇ሻሻሿߠ
ሺ݇ሻݔ ൌ ሺ0ሻݔ ൅ ݎ כ ሾcosሺ ሺ݇ሻݖ [ሺ݇ሻሻߠ ൌ ሺ0ሻݖ ൅ ݎ כ ሾsinሺ [ሺ݇ሻሻߠ
ሺ݇ሻݕ ൌ ሺ0ሻݕ ൅ ݎ כ ሾcosሺ ሺ݇ሻݖ [ሺ݇ሻሻߠ ൌ ሺ0ሻݖ ൅ ݎ כ ሾsinሺ [ሺ݇ሻሻߠ

(4.14a)

(4.14b)

(4.14c)

4.2.2 Frame (Coordinate) Transformations

Another original idea in this study is the use of complex coordinate

transformations in the NC code. The standard NC codes define the motion of the

tool w.r.t. to a (selected) work coordinate system where the principal axes of this

 48

frame are essentially aligned with those of the global coordinate frame (i.e.

machine coordinate system). Since the tasks handled by industrial manipulators

often times require the complex orientation of the tool (or the workpiece), one

should modify the basic NC Code to accommodate such necessities. For instance,

it would be impossible to define a circular path lying on a slanted plane with the

utilization of the angular motion commands (A, B, C) of the formal NC code.

Therefore, in this work, the user can define a local coordinate frame by specifying

not only the coordinates of its origin w.r.t. the global frame but also its rotations

about the fundamental axes. After this definition, one has the freedom to generate

the NC Code on this frame by using standard NC Code.

The position and orientation of the local frame w.r.t the global frame is defined as

G100 Udx Vdy Wdz Aψ Bθ CΦ where, ψ, θ, Φ are rotations about X, Y, Z axes of

fixed reference frame respectively, dx, dy, dz are the translation of the new frame

w.r.t. the fixed reference frame.

With the information of the frame position and orientation w.r.t the global

coordinate, the trajectory is transformed by Eqn. (3.14) presented by Sciavicco

[68] where l represents the local frame, g represents global fixed frame.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−+
+−

=

1000
z

y

x

l
g dccscs

dsccssccssscs
dsscsccsssccc

T
ψθψθθ

ψφψθφψφψθφθφ

ψφψθφψφψθφθφ

 (4.15)

Once the transformation matrix is obtained, the points on local frame can be

projected onto the global frame by Eqn. (4.16).

l
l
gg pTp ⋅= (4.16)

where, pg and pl are the position vectors w.r.t. the global and local frame

coordinate frame respectively. In Figure 4.3, this transformation (with ψ = 10°, θ

= 10° and Φ = 0°, and dx = 452.1 mm, dy=-150.05 mm, dz =431.8 mm) is

illustrated. The listing of the NC code generating this complex trajectory is given

in Appendix B.

 49

(a) Trajectory w.r.t local frame.

(b) Trajectory w.r.t global frame after transformation.

Figure 4.3 Coordinate transformations of complex trajectories.

-300
-200

-100
0

100
200

300

-300
-200

-100
0

100
200

300

02040

X axis (mm)

Trajectory on Local frame

Y axis (mm)

Z
ax

is
 (m

m
)

200
300

400
500

600
700

-400
-300

-200
-100

0
100

400

450

500

X axis (mm)

Trajectory on Global frame

Y axis (mm)

Z
ax

is
 (m

m
)

 50

4.3 Developed Algorithm

Up to now, kinematic modeling and position generation for robotic manipulators

are discussed. This part of the thesis is about the algorithm of the inverse

kinematics. The algorithm is divided into two parts. The trajectory is generated in

the first part and the inverse kinematics solution is handled in the second part.

4.3.1 Trajectory Generation

Trajectory generation is done in two steps which are, parsing and interpolation as

in Figure 4.4. In order to generate the trajectory user has to input the NC Code.

Required keywords and the representation styles were mentioned in Section 4.2

and the custom NC Code should strictly follow this presented syntax.

Figure 4.4 Flowchart of trajectory generation.

The entered NC code is parsed and the trajectory w.r.t. the local frame is

generated by the interpolator as equi-distant position samples. Note that the

abilities of the parser developed in this thesis are rather limited. Although it

cannot read all the keywords of a standard NC-code, but it is sufficient for

creating the basic motions, such as linear, rapid and circular.

4.3.1.1 Parser

Parser is utilized for interpreting the required commands (and their parameters)

from the sequence of input characters according to the specified rules. This parser

 51

extracts preparatory codes, coordinate axis and values, feed rate, miscellaneous

functions.

Parser takes the NC-Code as input, searches for line ends and breaks down into

lines. For each line, parser looks for ASCII character 32 (space) and stores the

information as letter groups between the spaces. The stored letter groups are split

into two parts: word and number. The output of the parser is an array containing

the information required for the trajectory generation. The value is stored in a

array associated with each word. Figure 4.5 illustrates the flowchart of the parser

algorithm.

Figure 4.5 Flowchart of the parser.

4.3.1.2 Subroutines

For repetitive operations, subroutine algorithm has been incorporated to the

parser. Instead of repeating same lines of commands, subroutines are called when

needed. Subroutines must be defined after the end of the NC Code that is stated by

M30 command. Subroutines should start with a Nnn statement that sets the

 52

subroutine start address to `nn` (integer) and should ended by an M99 statement

which tells the parser to return from that subroutine. When needed inside the main

code, the subroutine is called by M98 Pnn. A sample usage of subroutines is

shown in Table 4.2

Table 4.2 Subroutine Pattern.

G90 G1 X10 F500
M98 P100 (Call Subroutine #100)
G0 X0 Y0
…
M30 (End Program)
N100 (Define Subroutine #100)
G91 Y10 F200
Z5
M99 (End Subroutine #100)
N200 (Define Subroutine #200)
…

M99 (End Subroutine #200)

4.3.1.3 Interpolator

Interpolator is where the tool path is calculated. Interpolator algorithm depends to

the motion type. Flowcharts for rapid motion and linear motion are shown in

Figure 4.6, and circular motion is given in Figure 4.7. The arrays produced by the

parser are utilized in the interpolation. Trajectory generation works line by line.

First, it checks the coordinate mode (G90/G91) in the line. If it is absolute (G90),

target coordinate is set to the stored value in the X, Y, Z arrays. If it is incremental

(G91), target position is found by adding the values in the X, Y, Z arrays to get

the current position of the tool. After that, generator checks the motion type. The

sample positions along the segments calculated by Eqn. (4.4) for rapid and linear

motion and Eqn. (4.14) for circular motion.

 53

Figure 4.6 Flowchart of Rapid and Linear Motion.

Figure 4.7 Flow Chart of Circular interpolator.

Once the samples w.r.t. local frame is generated, the frame transformation

processes starts. By the help of the Eqns. (3.14) and (4.16), the trajectory is

transformed into the global frame.

4.3.1 Inverse Kinematics

As mentioned before inverse kinematics is finding the joint variables that are

needed to yield the desired end-effector position. The required joint variables are

found iteratively by using a numerical solution. The code for solving the inverse

kinematics problem can be thought as a block consisting of preparation- and

processing parts as illustrated in Figure 4.8.

 54

Figure 4.8 General Flowchart of Inverse Kinematic.

In preparation part as illustrated in Figure 4.9, Denavit-Hartenberg (DH) table is

utilized; the initial transformation matrix T0 is calculated by using DH table, using

the initial configuration and the home coordinate of the mechanism is found from

that matrix.

Figure 4.9 Flowchart of preparation phase of inverse kinematics.

The code starts with generation of DH tables by the help of the file input by given

by the user. In addition to the standard DH table, a final row has been added

which represents the joint type. Revolute and prismatic joints should be

represented by “1” and “0” respectively.

Next step is to find the reference transformation matrix. The reference (desired)

transformation matrix T* is calculated for the joint configuration given by the user

with Eqn. (3.16). Recalling that the transformation matrix is composed of rotation

and translational part, home coordinate of the end-effector can be read from the

last column of this matrix. These steps conclude the preparation part of the inverse

kinematic solution.

 55

After the processing part, inverse kinematic calculations, which includes initial

estimations, error and Jacobian calculation and iteration to find the new joint

configuration, commences. The pseudo-code of inverse kinematic solution is

given in Table 4.2.

The process part of the algorithm is straightforward. Estimating the required

initial conditions requires a check, which should be done before the iteration

starts. The code checks the degrees of freedom (DOF) of the mechanism by the

help of the link numbers. For an n-numbered mechanism, which should not be in a

special condition described before, it can be said to have n degrees of freedom. If

there is less than 6 DOF in the mechanism, it is impossible to control the axis

which is not constrained.

Table 4.3 Pseudo code of the inverse kinematic iterations.

Estimate desired Transformation Matrix, T* and initial joint configuration q(0)

Initialize q=q(0)

Iterate:

1. Compute for current joint position, q: T-1(q) & 0J-1(q)
2. Calculate error: ܧ෠ሺ݇ሻ ൌ ሾܶିܶכଵሺݍሻ െ ሿܫ · ݉
3. Map ܧ෠ሺ݇ሻ to 1x6 vector
4. Estimate the joint increment: ߜ௤෢ ൌ Jିଵ

଴ ሺqሻܧ෠଺

5. Move joint virtually ݍ ൌ ݍ ൅ ௤෢ߜ
6. If ߜ௤෢ ൏ stop, otherwise repeat iteration ,݊݋݅ݐݑ݈݋ݏ݁ݎ

Output: q

Consequently, a mask is employed here which assigns 0 to the mask vector “m”

for the unconstrained axis in order to cancel the effect of that axis. For example, a

5-axis manipulator may be incapable of independently controlling rotation about

the end-effectors’ Z-axis. In this case m1 in the Eqn. (4.17) would enable a

solution in which the end-effector adopted the pose defined by HTM, T, except

for the end-effector rotation. Similarly, m2 shows a mask vector for a 6 degrees-

of-freedom mechanism.

 56

݉ଵ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1
1
1
1
1
ے0

ۑ
ۑ
ۑ
ۑ
ې

 , ݉ଶ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1
1
1
1
1
ے1

ۑ
ۑ
ۑ
ۑ
ې

 (4.17)

After that, the homogenous transformation matrix for that configuration is

calculated to compare with the T* in order to find the error matrix which

represents the deviation in the global coordinates Eqn. (3.22)). Then, the Jacobian

matrix in the base frame is calculated Eqn. (3.25). By multiplying the

displacement and the Jacobian, the joint increments are found. The maximum

value of the increment value is compared with the error tolerance defined by the

user for the inverse kinematic operations. If the deviation is smaller than the

required tolerance, it means that the required joint values are found. If the

deviation is large, iterations continue by assigning these joint values as q*.

Throughout the trajectory, the previous configuration of joints are used as starting

point, solve inverse kinematics for the each pose in the trajectory.

4.3.2 Segmentation

The generated trajectory by the interpolation consists of large amount of data and

joint values representing this trajectory are complex and it does not follow a

pattern. Since the main idea is to model the data with polynomials or advanced

transformations efficiently, these data should be divided into manageable

segments. Here, segmenting the trajectory into little patches where the motion or

direction changes will supply smooth joint states as the trajectory does not contain

any sharp transitions which would change the behavior of the joint as seen in

Figure 4.10. Segmentation of the trajectory is handled during the interpolation

step. While generating the samples for each line of the NC Code, the place of the

starting and the ending points are stored so each motion is to be handled in

different sections.

 57

Figure 4.10 Segmentation of the Trajectory of 2-D manipulator.

4.4 Case Study

Here, a simulation of the tool path generation from an NC code and the generation

of the joint variables throughout this trajectory in a kinematic error tolerance of

10-5 is demonstrated. Puma 560 manipulator is selected for this demo. The frame

assignments are done according to the Denavit Hartenberg notation and shown in

Figure 3.8 and the Denavit Hartenberg table generated by Corke [29] is given in

Table 4.4

Table 4.4 Denavit Hartenberg Table.

A θi αi di type
0 jv -90 0 R

43.18 jv 0 0 R
2.03 jv -90 15.005 R

0 jv 90 43.18 R
0 jv -90 0 R
0 jv 0 0 R

350 400 450 500 550 600 650
50

100

150

X

Trajectory

Y

0 250 500 750 1000
-0.6

-0.5

-0.4

-0.3

-0.2

Time index

A
ng

le
 [r

ad
]

Joint angle

1 3

4

1

2

2 3
4

4.4.1 P

The sim

which

illustrat

NC Co

position

30°] w

is plott

defined

trajecto

The ini

the hom

should

coordin

kinema

The mo

in the N

with 2

motion

Position Gen

mulation sta

is program

ted in Figur

ode gives th

n of the loc

.r.t to the gl

ted in. Init

d by the u

ory is found

itial joint co

me coordina

be noted t

nate of the m

atic solution

otion starts

NC Code. T

553 interm

ns in X, Y, Z

neration

arts with the

mmed to m

re 4.11.

Fig

e intermedi

cal frame is

lobal frame

tially the pa

user. The n

d by interpo

onfiguration

ate of the m

that choosi

mechanism

ns.

from home

The generate

mediate poin

Z coordinate

5

e interpretat

mark the te

gure 4.11 De

iate location

[452.1, -15

e. The trans

arser interpr

next step i

olating the p

n defined is

manipulator

ing the tran

to be used,

coordinate

ed trajectory

nts and it

es are plotte

58

tion of the N

emplate of

esired Trajec

ns of traject

0.05, 231.8

formed traj

rets the NC

s the gene

points in a s

was set at t

nslation of

results with

and continu

y which is s

is segment

ed in Figure

NC Code gi

the round

tory.

tory w.r.t to

8] and orient

ectory w.r.t

C Code and

eration of t

sampling ra

the centre o

the local f

h better con

ues with the

shown in Fig

ted into 47

e 4.13.

iven in App

d-about traf

o a local fra

tation is [30

t global coo

d extracts th

the trajecto

ate of 0.05

of the traffic

frame as th

nvergence in

e first point

gure 4.12 is

7 subsectio

pendix A

ffic sign

ame. The

0°, 120°,

ordinates

he points

ory. The

seconds.

c sign. It

he home

n inverse

t defined

s defined

ons. The

 59

Figure 4.12 Generated Trajectory.

Figure 4.13 Trajectory in each axis.

350400450500550
-400

-300
-200

-100
0

100

0

100

200

300

400

500

X axis

Generated Trajectory

Y axis

Z
ax

is

0 20 40 60 80 100 120

400

600

time (sec)

X
 a

xi
s

(m
m

)

0 20 40 60 80 100 120

-400

-200

0

200

Y
 a

xi
s

(m
m

)

time (sec)

0 20 40 60 80 100 120
0

200

400

600

time (sec)

Z
ax

is
 (m

m
)

 60

4.4.2 Inverse Kinematics

In the previous step, the trajectory was generated at a sampling rate of 0.05

seconds. Here the values of joint variables are found for the whole points in the

trajectory. The precision of the inverse kinematic operations are set to 10-5 which

means the iterations for a point continue until the deviation is smaller than 10-5.

After inverse kinematic solution the angle values in degrees are given in the

Figure 4.14 and the angular velocities are shown in Figure 4.15. As seen in Figure

4.14b, sudden changes in the joint angles due to the sharp changes in the

trajectory has been observed. As the direction of the path to be followed changes,

the sliding vector of the end-effector changes as well so the wrist angles are

altered rapidly. The motions of joints between these states are not modeled in this

work.

 (a) Joint values in degrees for first three joint.

0 20 40 60 80 100 120 140
-50

0

50

time (sec)

q 1ο

q1 vs time

0 20 40 60 80 100 120 140
-100

0

100

time (sec)

q 2ο

q2 vs time

0 20 40 60 80 100 120 140
-100

0

100

time (sec)

q 3ο

q3 vs time

 61

(b) Joint values for wrist joints

Figure 4.14 Joint values in degrees.

(a) Angular velocities for first three joints

0 20 40 60 80 100 120 140
-100

-50

0

time (sec)
q 4ο

q4 vs time

0 20 40 60 80 100 120 140
0

20

40

time (sec)

q 5ο
q5 vs time

0 20 40 60 80 100 120 140
-100

0

100

time (sec)

q 6ο

q6 vs time

0 20 40 60 80 100 120

-0.5
0

0.5

time (sec)

w
1ο

w1 vs time

0 20 40 60 80 100 120
-1

0

1

time (sec)

w
2ο

w2 vs time

0 20 40 60 80 100 120

-1
0
1

time (sec)

w
3ο

w3 vs time

 62

(b) Angular velocities for last three joints.

Figure 4.15 Angular Velocities of Each Joint.

In order to confirm the calculated joint variables, the forward kinematic

calculation is done as described in previous chapter. The error of the regenerated

trajectory is computed. As plotted in Figure 4.15, the obtained errors are in

acceptable levels and they are 5 µm where maximum error occurs. Checking the

error values, it can be easily said that the errors coming from the numerical

inverse kinematic solution is not so much with respective to the results obtained

by analytic solutions.

0 20 40 60 80 100 120

-5
0
5

time (sec)
w

4ο

w4 vs time

0 20 40 60 80 100 120

-1
0
1

time (sec)

w
5ο

w5 vs time

0 20 40 60 80 100 120

-5
0
5

time (sec)

w
6ο

w6 vs time

 63

Figure 4.16 Error bands of the recalculated trajectory.

4.5 Closure

This chapter has basically focussed on generation of tool path using an augmented

NC Code. The syntax of NC Codes, keywords, their functions and finally

representation styles were mentioned. In addition, the interpretation of the NC

code was elaborated. The interpolation algorithm that generates the position data

has been discussed. Formulation and the flowcharts of interpolation algorithm

have been discussed in detail. And finally tool path generation has been concluded

with the proposed frame transformation algorithm.

In addition, how the input parameters that are required for inverse kinematic

solution such as Denavit-Hartenberg parameters should be entered has been

discussed. The extra checks and operations added to the numerical iterative

0 20 40 60 80 100 120 140
-5

0

5

time (sec)
x

ax
is

 [μ
m
]

Error of generated trajectory

0 20 40 60 80 100 120 140
-5

0

5

time (sec)

y
ax

is
 [μ

m
]

Error of generated trajectory

0 20 40 60 80 100 120 140
-5

0

5

time (sec)

z
ax

is
 [μ

m
]

Error of generated trajectory

 64

solution method mentioned in Chapter 3 have been elaborated. The flowchart of

the inverse kinematic algorithm has been introduced.

Chapter has been concluded, with an illustration of position generation and

inverse kinematics on a real life example. The error of 10-5 m (10 microns) has

been selected for inverse kinematic operations which generates an error of around

5 microns along the trajectory.

 65

CHAPTER 5

COMMAND GENERATION VIA DIRECT DATA STORAGE

5.1 Data Storage

Storage of the data produced in joint space is as important as producing the data.

CNC controllers used to have small capacities around 64 kilobytes to store the

commands required by the CNC machine tool such as coordinates, feed rates,

joint variables. With the improving technology the ability to store large amount of

data is possible. Today it is possible to store gigabytes of data by using hard

drives, flash drives and optic drives and Random Access Memories. Besides the

high capacity, preserving the data for a long time and the fast accessibility makes

the use of direct storage reasonable. Having large storage spaces does not mean

that all of the space can be used. Data should be stored in an efficient way in order

to reduce the consumption of resources. Compressing the data is the best way to

store the same data by encoding the required information using fewer bits than an

unencoded representation would use. The application areas of compression

include the ZIP file format, mp3’s, video compression and picture compression.

In addition to storage spaces, it is important to limit the data to be transferred in

optimal values. Since the transmission bandwidths of the controllers of the

manipulators are not broadband transferring the commands representing the joint

values will take a long time. Instead of widening the bandwidth, shortening the

length of the data to be transferred is a better solution. Here another approach

should be considered which is transferring the data in smaller sections instead of

sending whole data at once. But this approach has an important outcome which

decreases the efficiency by increasing the data traffic. The standard protocol of

 66

data transfer is to send the generated discrete displacement commands for each

axis at every control interval before machining starts. Then throughout the

machining process, main host sends the required motion commands to the

controllers of each joint, and at the same time the positional feedback is collected

from these controllers as in Figure 5.1. When the data is sent in small pieces

during the machining process, the data transfer traffic in the host increases, which

brings the requirement to use hardware with higher performance. In addition, a

new protocol should be configured between the computer and host in order to

define when data transfer starts and ends.

Figure 5.1 Basic data transfer scheme.

Compression only works when both the sender and receiver of the information

understand the encoding scheme which means a decoder is required to obtain the

original data. Need for a decoder means extra operations and processing times so

that a trade-off study among degree of compression, the amount of distortion

introduced and the computational resources required compressing and

uncompressing the data should be performed.

Compressing the data can be divided into two main kinds, which are lossless and

lossy compression. Lossless compression guarantees that what is compressed can

be recovered without any data loss. Lossy data compression provides a way to

obtain the best accuracy for a given amount of compression. Lossless data

 67

compression is often used for symbolic data such as spreadsheets, text, executable

programs, where losslessness is essential when changing even a single bit cannot

be tolerated. Lossy compression uses the limitations of the human or machines

sensory system. For visual and audio data, some loss of quality can be tolerated

without losing the essential nature of the data by removing the non-audible sounds

and the details that eye cannot distinguish.

In this chapter, numerical methods for compressing and decompressing the data

will be examined. Differentiation, Fourier transformations, segmentation, high

order polynomial fitting methods will be used for compression, integration,

inverse Fourier transformations and interpolators will be used for decompression.

The methods will be examined in details and performance of each method will be

compared.

5.2 Encoding and Storage Spaces

The motors driving the joints are step motors and the input of these motors should

be pulses. Since the joint values generated by inverse kinematic solutions are in

terms of radians they should be converted into pulses by encoders. At their most

basic level, encoders transform mechanical rotary motion into a sequence of

electrical pulses. In order to obtain better accuracy, high resolution encoder with

30000 rpm has been used in calculations. The conversion of radians into pulse is

handled by Eqn. (5.1)

πθ /4 ⋅⋅= rp (5.1)
Where p is pulse, r is the rpm of the encoder and θ is the joint value in radians. All

of the methods in this thesis use the pulse values.

But the usage of an encoder brings an error because the joint value is rounded in

order to obtain a pulse numbers. The joint values with encoder usage and the error

of the trajectory is plotted in Figure 5.2. As seen from the plot, the maximum error

of the trajectory is 1 mm.

 68

Figure 5.2 Joint angles and trajectory error with encoder usage.

The storage space required is measured by bits or bytes that a value allocates in

the hardware. In order to calculate the space requirement, the range of the data, r,

to be stored is calculated by the minimum and maximum number of the data.

Then the bit requirement, n, is found by the Eqn. (5.2).

)2log(
)log(

)min()max()2log(
rn

qqrrn

=

−==

(5.2a)

(5.2b)

5.3 Direct Storage

In direct storage mode, the raw data is stored as discrete data which is sampled in

equal time intervals, kT and used directly. The number of the data used is

proportional to the sampling rate. The size of the data is maximized in this

method. Although no additional operation is required, the storage space needed is

too high.

0 10 20 30 40 50 60 70 80 90 100
-1000

-500

0

500

1000

Time index

A
ng

le
 [r

ad
]

Joint angles

q 1
q

10 20 30 40 50 60 70 80 90 100

200
400
600
800

1000

Time index

|E
rro

r|
[μ

 m]

2

 69

5.4 Finite Differences

In order to save from the storage size, finite difference methods could be used for

storing the data. Instead of storing the raw data, the differences of the joint values

and the initial value can be stored. With this method, the compression is done

without losing any information which is called lossless compression. Differences

are calculated according to Eqn. (5.3)

)1()(
)1()(

)1()(

11

2

−∇−∇=∇
−∇−∇=∇

−−=∇

−− kqkqq
kqkqq

kqkqq

nnn

(5.3a)

(5.3b)

(5.3c)
where ׏nq represents the nth order difference. Since the main idea of Eqn. (5.3) is

to take the difference of two consequent values, the order of this method is up to

the user. Expanding the Eqn. (5.3b), the basics of higher order difference can be

understood better. Inserting Eqn. (5.3a) into Eqn. (5.3b) for qk and qk-1, Eqn (5.4)

is obtained.

)2()1(2)(2 −+−−=∇ kqkqkqq (5.4)
So the nth order difference can be computed by both Eqn. (5.3) and Eqn. (5.4). But

first method is preferred in this study for generalizing the solution.

With finite difference method, the number of the data stored decreases one by one

according to the order and the range of the difference is smaller than the original

data. By reducing the range, allocated memory for each data is decreased in bits.

But it should be investigated if the data storage requirements are reduced or not.

For that purpose, a Monte Carlo Simulation has been done. 1000 trajectories have

been generated randomly and the inverse kinematic operations are applied to find

the joint values. Once the joint values are obtained, the finite differences up to 7th

order are calculated and the storage requirements of each differentiation are

found. As seen on Figure 5.3, usage of differentiation of the orders higher than 3

does not reduce the required storage space. After 4th order the data starts to be

positive and negative consequently so the range widens which results in increase

of the storage space.

 70

Figure 5.3 Allocated Space vs. order of the finite difference.

5.4.1 Finite Composition Techniques

In finite difference method, the increments of each value was calculated and

stored. Bu in order to reconstruct the original data, high order differences should

be composed together. This can be handled by reversing the difference process as

seen in Eqn. (5.5).

qkqkq ∇+−=)1()((5.5)
But this calculation requires an initial value q(k-1), according to the level of the

difference some of the initial values should be stored. For higher order

differences, an approach shown in Eqn. (5.6) can be followed.

)()2()1(2)(2 kqkqkqkq ∇+−−−= (5.6)
Solution can be generalized replacing Eqn. (5.3a) into the equation and it takes the

form of Eqn. (5.7).

)()1()1()(2 kqkqkqkq ∇+−∇+−= (5.7)
By using the equation above, all of original data can be reconstructed by storing

only the initial values of the original data and the lowest differences. Table 5.1

simulates the application of this method and shows which initial values should be

stored for different levels of differences.

0 1 2 3 4 5 6 7

4

5

6

7

8

9

Order

B
its

Bit values vs. Order of Difference

 71

Table 5.1 Finite difference scheme

q ׏q 2׏q 3׏q

k q(k) θ`(k)=Δθ(k) 2׏q =׏(׏q) 3׏q =׏(2׏q)

0 q(0) q(0) q(0) q(0)

1 q(1) q(1) - q(0) ׏(q(0)) ׏(q(0))

2 q(2) q(2) - q(1) ׏(q(1)) - ׏(q(0)) 2׏(q(0))

3 q(3) q(3) - q(2) ׏(q(2)) - ׏(q(1)) 2׏(q(1)) - 2׏(q(0))

… … … …

K q(K) q(K) - q(K-1) ׏(q(K)) - ׏(q(K-1)) 2׏(q(K)) - 2׏(q(K-1))

5.5 Simulation of Finite Difference Techniques

The simulation will be done for a trajectory of planer mechanism with two joints

as illustrated in Figure 5.4. The direct transformation methods mentioned up to

now will be examined for a square trajectory generated with Eqn. (5.8).
wtjejp .100100500 +−= (5.8)

Figure 5.4 Planar two link mechanism

 72

The trajectory and its segments are illustrated in Figure 5.5. The trajectory is

generated as a complex number for simplicity. The real part of the trajectory

represents the X-coordinates of the trajectory and the imaginary part represents

the Y-coordinates. The trajectory is found for the interval of [0 2π] divided into

1000 pieces defined with wt.

Figure 5.5 Trajectory and the joint angles.

The inverse kinematic solution for this example is performed with an analytical

solution. The joint angles in radians found by Eqn. (5.9) as derived by Melamud

[59] are.

⎟
⎠
⎞

⎜
⎝
⎛+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+
=

x
y2arctan

yx
)sin(θarcsin

2
arccos

22
22

1

21

2
2

2
1

22

2

l

ll
llyx

θ

θ

(5.9a)

(5.9b)

350 400 450 500 550 600 650
50

100

150
Trajectory X vs. Y

X (mm)

Y
 (m

m
)

0 100 200 300 400 500 600 700 800 900 1000

-2

-1

0

1

Time index

A
ng

le
 [r

ad
]

Joint angles

q 1
q 2

1st

2nd

3rd

4th

 73

where θ1 and θ2 are the joint angles, l1 and l2 are the link lengths and x and y are

the position of the end effector as illustrated in Figure 5.4 .

5.5.1 Finite Difference Methods

The finite difference method mentioned in Section 5.4 will be implemented here

and storage spaces will be compared. As proven with Figure 5.3, finite differences

up to 3rd order are investigated. For the joint values plotted in Figure 5.5, after

encoding the angle values and computing the finite difference the allocated space

for each method for total of 100 data points are listed in Table 5.2

Table 5.2 Number of bits required for each joint variable.

Order q1 (bytes) q2 (bytes)
Total Storage

(bytes)
q1 (bit per each

value)
q2 (bit per

each value)
0 1625 1750 3375 13 14
1 879 879 1758 7 7
2 752 877 1629 7 6
3 752 877 1629 7 6

5.6 Data Compression Techniques

A simple characterization of data compression is that it involves transforming a

string of characters in some representation into a new string which contains the

same information but whose length is as small as possible. As a result of inverse

kinematics and finite difference methods, data files that represent the joint values

at each sampling time are generated. These files are stored with fixed length

coding, in which each value has the same value. By using a binary code which

encodes each character as a binary string or codeword, it is possible to encode the

file using as few bits as possible and compresses it as much as possible. The

basics of binary coding is to use shorter codeword for frequently used letters

while using longer code words for least used letters or simply with variable-length

code words.

 74

The main approaches to text compression are dictionary and statistical based.

Dictionary based methods replace those consecutive characters with a pointer to

an entry in a dictionary. Statistical based compression calculates the frequencies

of word occurrences and builds a statistical table for later conversion. By using

this table, each character can be converted to specified code, and therefore storage

space is decreased.

As shown in previous section, the storage requirements of original data have been

significantly reduced by finite difference techniques. In this section, the finite

differences are tried to be compressed more by applying lossless compression

algorithms. For this aim, the mostly used and important methods named, Huffman

Coding and Arithmetic Coding are introduced.

5.6.1 Huffman Coding

Huffman codes are being widely used as a very efficient technique for

compressing data. In 1952, Huffman, D. [70], has developed an optimum method

of coding an ensemble of messages consisting of a finite number of members and

constructed a minimum-redundancy code which minimizes the average number of

coding digits per message. In his study, the symbol or sequence of symbols

associated with a given message is named as the message code, the transmitted

messages is named as message ensemble and the mutual agreement between the

transmitter and the receiver about the code is called as ensemble code. He

formalized the requirements of an ensemble code by representing the symbols by

digits. For N messages in an ensemble, he represented the average message length

by Eqn. (5.10), where P(i) is the probability of ith message and L(i) is the number

of coding digits assigned to it.

∑
=

=
N

i
av iLiPL

1
)()(

(5.10)

 As Huffman said, for an optimum code, the length of a given message code can

never be less than the length of a more probable message code. Therefore, he

 75

assumed that the messages in the ensemble have been ordered in a fashion as in

Eqn. (5.11)

)()1()1()1(NPNPPP ≥−≥≥≥ L (5.11)
and in addition for an optimum code, Eqn. (5.12) holds.

)()1()1()1(NLNLLL ≤−≤≤≤ L (5.12)
For ease of development of the optimum coding procedure, he restricted to the

problem of binary coding. According to the rules of coding, the two least probable

messages should have equal lengths of codes and there should only two of the

messages with coded length L(N) which are identical except for their last digits.

The final digits of these two codes will be one of the two binary digits, 0 and 1.

These two messages are assigned to the Nth and (N-1)th messages since it is not

known whether or not other codes of Length L(N) exists at this point. Once this

has been done, these two messages are equivalent to a single composite message.

Its code will be the common prefixes of order L(N) -1 of these two messages. Its

probability will be the sum of the probabilities of the two messages from which it

was created. The ensemble containing this composite message in the place of its

two messages will be called the first auxiliary message ensemble.

This newly created ensemble contains one less message than the original. Its

members should be rearranged if necessary so that the messages are again ordered

according to their probabilities. It may be considered exactly as the original

ensemble was. The codes for each of the two least probable messages in the new

ensemble are required to be identical except in their final digits; 0 and 1 are

assigned as these digits, one for each of the two messages. New auxiliary

ensemble contains one less message than the preceding ensemble each time and

each auxiliary ensemble represents the original ensemble with full use made of the

accumulated necessary coding requirements. This procedure is repeated until the

number of members in the last auxiliary message ensemble is reduced to two and

in each step; binary digits are assigned to each of these composite messages. And

the coding is completed by combining those messages to form a single composite

message with probability unity.

 76

The steps mentioned before allow a simple algorithm to fulfill them. What is

important in the algorithm is to satisfy Eqn. (5.12). The algorithm developed by

Pigeon [57] proceeds iteratively. At the start, all symbols are given a tree node

that is the root of its own subtree. Besides the symbol and its probability, the node

contains pointers to a right and a left child. They are initialized to null,

symbolized here by Ψ. All the roots are put in a list L. Eqn. (5.12) asks for the two

symbols with lowest probability to have codes of the same length. Removing the

two roots having the smallest probabilities from L; let them be a and b, a new root

c having probability P(a) + P(b) and having children a and b is created. Then c is

added to L which causes a and b to share a common prefix, the code for c. So the

number of tree in L decreases by one. Repeating this until only one tree is left in

L, the tree-structured code satisfying the Huffman rules is completed. The

algorithm which builds the Huffman tree in pseudo-code by Pigeon [57] is shown

in Table 5.3.

Table 5.3 Pseudo code for Huffman Coding [57].

L = {(al, P(al), Ψ, Ψ), (a2, P(a2), Ψ, Ψ) (an, P(an),Ψ, Ψ)}

While |L| > 1

{

a = minp L

L= L-{a}

b = minp L

L=L-{b}

c = (Ψ, P(a) + P(b), b, a)

L=L U {c}

}

The codes are obtained by walking down the path from the root to the leaves and

appending a 0 while going down to the left or a 1 while going down to the right.

Once leaf is reached, the end of the code is determined and the code that has been

accumulated as a bit string is copied in an array indexed by the symbol in the leaf

reached.

 77

The encoding process is straightforward. The bit string contained in the table is

emitted, at the address indexed by the symbol. Decoding is just a bit more

complicated. Since the length of the code that is about to read is not known, one

has to walk the tree as bits are read one by one until a leaf which will correspond

to the decoded symbol is reached [57].

5.6.2 Arithmetic Coding

Arithmetic coding is method of generating variable-length codes which is useful

when dealing with sources with small alphabets, and alphabets with highly

skewed probabilities [57]. The length of an arithmetic code, instead of being fixed

relative to the number of symbols being encoded, depends on the statistical

frequency with which the source produces each symbol from its alphabet [43].

As shown by Sayood [57], it is more efficient to generate codewords for groups or

sequences instead of each symbol but it is impractical with Huffman codes since it

causes an exponential growth in the size of the codebook. Arithmetic coding

technique handles this situation by assigning codewords to particular sequences

without having to generate codes for all sequences of that length.

Arithmetic coding, codes one data symbol at a time and assigns to each symbol a

real-valued number of bits and coded messages. Then maps the coded messages to

real numbers in the interval [0,1). The code value, v, of a compressed data

sequence is the real number with fractional digits equal to the sequence's symbols.

The sequences are converted to code values by simply adding "0." to the

beginning of a coded sequence and then interpreting the result as a number in

base-D notation, where D is the number of symbols in the coded sequence

alphabet [6]. As shown in Figure 5.6, if a coding method generates the sequence

of bits 0011000101100, then the code value, v, is

 78

Figure 5.6 Code Mapping in Arithmetic Coding.

This construction creates a convenient mapping between infinite sequences of

symbols from a D-symbol alphabet and real numbers in the interval [0, 1), where

any data sequence can be represented by a real number and vice versa [58].

5.6.2.1 Encoding Process

Fundamentally, the arithmetic encoding process consists of creating a sequence of

nested intervals in the form Φ k(S) = [αk, βk), k = 0, 1 N, where S is the

source data sequence, αk, βk are real numbers such that 0 ≤ αk ≤ αk+1, and

βk+1 ≤ βk ≤ 1. For a simpler way to describe arithmetic coding we represent

intervals in the form |b, l>, where b is called the base or starting point of the

interval, and 1 is the length of the interval. The relationship between the

traditional and the new interval notation is in Eqn. (5.13) when b=α and l=β-α

),[,| βα=〉lb (5.13)
And finally the intervals used in arithmetic coding are defined by the set of

recursive equations in Eqn. (5.14) where k = 1, 2, …, N.

〉+=〉=Φ
〉=〉=Φ

−−− 111

000

)(,)(|,|)(
1,0|,|)(

kkkkkkkk lSplScblbS
lbS (5.14)

The final task in arithmetic encoding is to define a code value v(S) that will

represent data sequence S. However, the code value cannot be provided to the

decoder as a pure real number. It must be stored or transmitted, using a

conventional number representation. The process to find the best binary

representation is quite simple and best shown by induction. The main idea is that

for relatively large intervals the optimal value can be found find by testing a few

 79

binary sequences, and as the interval lengths are halved, the number of sequences

to be tested must double, increasing the number of bits by 1.

5.6.2.2 Decoding Process

In arithmetic coding, the decoded sequence is determined solely by the code value

0 of the compressed sequence. For that reason, the decoded sequence is

represented as in Eqn. (5.15)

{ })(ˆ,),(ˆ),(ˆ)(ˆ 21 vsvsvsvS NK= (5.15)

The decoding process recovers the data symbols in the same sequence that they

were coded. Formally, to find the numerical solution, a sequence of normalized

code values {vl, v2, . . ., vn} are defined. Starting with vl = v, sk is found

sequentially from vk and then vk+l is computed from sk and vk. The recursion

formulas are shown in Eqn. (5.16) to (5.18).

}{

))(ˆ(
))(ˆ(

)1()(:)(ˆ
,

1

1

vsp
vscv

v

scvscsvs
vv

k

kk
k

kk
−

=

+≤≤=
=

+

(5.16)

(5.17)

(5.18)

5.6.3 Algorithm

The algorithms of Huffman and Arithmetic Coding Methods are quite similar. The

encoded data obtained by inverse kinematic operations are handled joint by joint.

Firstly the patterns and their occurrence probabilities are computed. The number

of occurrences of each point is calculated and probability model is formed. The

next steps differ from each other.

 80

5.6.3.1 Huffman Coding

In the Huffman Method, Huffman dictionary is built by the help of the

huffmandict method of MATLAB. The huffmandict function generates a Huffman

code dictionary corresponding to a source with a known probability model. The

generated dictionary is a two-column cell array in which the first column lists the

distinct signal values from symbols and the second column lists the corresponding

Huffman codewords. In the second column, each Huffman codeword is

represented as a numeric row vector. Then finally, signal is encoded using the

Huffman codes described by the code dictionary with huffmanenco method of

MATLAB. At the end of the encoding, the compressed data and the dictionary are

stored in order to decode and generate the trajectory.

The compressed file obtained by Huffman algorithm consists of three parts: one is

the compressed source file and the other two are the mapping table between the

symbols in the source file and the related codes in the compressed file. The nature

of Huffman coding algorithm decides the constancy of the source file’s

compression ratio, so the algorithm’s compression ratio is directly related to the

size of Huffman table, especially when the source file is small, the compressed

file can be even bigger than the source file due to Huffman table’s cost [69].

The total memory requirement of this method is found by the storages of both the

compressed code and the dictionary. Since the compressed code is binary, the

allocated storage, bc, is the length of the data. For the storage space of Huffman

dictionary the allocated spaces of symbols table and the related codes in the

compressed file should be calculated. The space of each symbol in table, bs can be

calculated by Eqn. (5.2) and the space of their counter parts, bd can be calculated

by the length of the data since the representations are stored as binary number. By

adding these storages as in Eqn. (5.19), the bit requirements of each element of

dictionary are calculated.

dst bbb += (5.19)

 81

Since bt is the bit value of each item in the Huffman dictionary, total space

required for Huffman Coding can be computed by Eqn. (5.20) where bh is the

storage space of Huffman Coding method and n is number of symbols in table.

cth bnbb += (5.20)

Decoding operation of this method is handled with the huffmandeco method of

MATLAB from the code and the dictionary. And decoding is completely lossless

as illustrated in Figure 5.7.

Figure 5.7 Decoding by Huffman Coding Method and approximation error.

5.6.3.2 Arithmetic Coding

In arithmetic Coding, once the probability model is formed, a symbol table which

contains the information of the sequence of symbols is created. Then using the

probability model and the table, sequence of symbols are encoded using arithenco

method of MATLAB and the binary arithmetic code is generated.

0 10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4
x 104

Time index

A
ng

le
 [c

ou
nt

s]

Decoding of Huffman Coding Method

Original
Extracted

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Time index

A
pp

ro
xi

m
at

io
n

E
rro

r [
co

un
ts

]

 82

Since the encoder generates a binary code, storage space of the code is simply the

length of the code. The storage requirement of the symbol table is found by Eqn.

(5.20) where ba is the storage space of Arithmetic Coding method, n is number of

data to be compressed and lst is the storage space of the created symbol table.

stta lnbb += (5.21)

Decoding operation of this method is handled with the arithdeco method of

MATLAB from the code and the length of probability model. And decoding is

completely lossless as illustrated in Figure 5.8

Figure 5.8 Decoding by Arithmetic Coding Method and approximation error.

0 10 20 30 40 50 60 70 80 90 100
2.5

3

3.5

4
x 104

Time index

A
ng

le
 [c

ou
nt

s]

Decoding of Arithmetic Coding Method

Original
Extracted

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

Time index

A
pp

ro
xi

m
at

io
n

E
rro

r [
co

un
ts

]

 83

5.7 Simulation of Compression Techniques

In this section, the effect of Huffman Coding and Arithmetic Coding onto storage

space has been investigated on the kinematic model used in Section 5.5. The

coding of encoded data and its differences up to 3rd order has been done. Table 5.4

tabulates the storage space of Huffman Coding according to the order of the

difference where CC is the storage space of the compressed code, ST is the

storage space of symbol table, HC is the storage space of the Huffman code

representing the symbol table and TS represents the total storage spaces for each

joint and for the whole system. The allocated storage space for uncompressed data

is tabulated in the last column.

Table 5.4 Number of bytes required for Huffman Coding of nth order finite difference.

q1 q2 TS

(q1+q2)

Raw

Data CC ST HC TS
(q1)

CC ST HC TS
(q2) Order

1 679 124 71 874 753 222 139 1114 1988 1758
2 217 12 6 235 237 19 10 266 501 1629
3 303 18 12 333 318 26 17 361 694 1629

Table 5.5 tabulates the storage space of Arithmetic Coding according to the order

of the finite difference where CC represents the storage space of compressed code,

ST represents symbol table and TS represents the total storage spaces for each

joint and for the whole system. Last column shows the allocated storage space for

uncompressed data.

Table 5.5 Number of bytes required for Arithmetic Coding of nth order finite difference.

q1 q2
TS (q1+q2) Raw

Data Order CC ST TS(q1) CC ST TS(q1)

1 677 153 830 751 272 1023 1853 1758
2 193 19 212 217 27 244 456 1629
3 289 29 318 305 37 342 660 1629

 84

Checking the results of the compression techniques, it is obvious that there is an

important saving at the storage spaces with Huffman and Arithmetic Coding for

the 2nd order difference of the encoding data. Recalling that raw data needs 3375

bytes to store, saving the 2nd order difference needs 1629 bytes and compressing

with Arithmetic Coding, storage requirement drops to 456 bytes which is %13 of

the original space.

5.8 Closure

In this chapter command generation via direct data storage methods are studied.

Lossless compression techniques such as finite difference methods, Huffman

Coding and Arithmetic Coding have been discussed and their effect on storage

spaces has been compared with a simulation on a planar 2 link manipulator.

The effect of finite differences onto storage space has been generalized with a

Monte-Carlo simulation and according to the results; best compression has been

obtained by 3rd order difference and orders higher than 4 does not supply any

compression because of the change of sign in the respective data points.

In addition to finite differences, Huffman Coding and Arithmetic Coding methods

have been discussed. The theory of these methods suggests that both methods

offer at least %80 compression. Comparing both methods, the Arithmetic Coding

has better compression ratios for sources with small alphabets, and alphabets with

highly skewed probabilities since it generates codewords for groups or sequences

instead of each symbol.

Finally comparing the simulation results, it has been observed that 2nd order and

3rd order differences requires same storage spaces which is the half of the raw

data. By coding these differences it has been seen that storage spaces reduces to

%33 of the space required by difference method. And finally it has been observed

that Arithmetic Compression method has better compression than Huffman

Coding as expected.

 85

CHAPTER 6

POLYNOMIAL BASED COMMAND GENERATION

This chapter presents polynomials based techniques to generate position

commands in joint space. Polynomials are extremely useful mathematical tools as

they can approximate almost any continuous functions to the desired accuracy.

Furthermore, they can be quickly evaluated on a digital control system with

modest resources. Hence, the polynomial functions become a natural candidate to

represent/model the command (reference) signals in the target domain. Before

elaborating the advanced modeling techniques, some background information on

polynomials will be given.

6.1 Polynomial Techniques

Consider a polynomial of the nth order approximating a command function (i.e.

angular position of a particular joint) in the (time) interval [xmin, xmax]:

n
n

n
n xaxaxaaxy ++++= −
−

1
110)(K (6.1)

Assuming that the sufficient number of samples {(x0, y0), (x1, y1), (x2, y2), ..., (xm ,

ym)} are available, one can determine the (unknown) polynomial coefficients ai (i

∈ {0, 1,…, n}) to represent the given data (trajectory) accurately. If m ≥ n, the

coefficients can be determined in the sense of least squares of errors. That is, with

the samples at hand, (m+1) equations can be obtained:

AXY ⋅= (6.2)

 86

where,
[]Tnn aaaA K101)1(=×+ (6.3a)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=+×+

n
mmm

n

n

nm

xxx

xxx
xxx

X

L

MMMMM

L

L

2

1
2
11

0
2
00

)1()1(

1

1
1

 (6.3b
)

[]Tmm yyyY L101)1(=×+ (6.3c)

Coefficient vector A in (6.2) can be conveniently solved via pseudo-inverse

method [52]:

YXXXA TT 1)(−= (6.4)

Notice that the exponential functions xi (i ∈ {0, 1,…, n}) in (6.1) can be regarded

as the basis functions of polynomials. Unfortunately, this natural choice of basis

functions does not generally yield an efficient representation since the basis

functions being employed are not mutually orthogonal:

0
max

min

≠∫
x

x

ji dxxx (6.5)

where (i, j ∈ {0, 1,…, n} | i ≠ j). From the stand point of functional

approximation, it is far better to use orthogonal functional forms as the basis by

taking into account the nature of the problem being studied. It is critical to note

that the basis functions selected must be easily computed while they converge

rapidly to a solution with arbitrary accuracy [60].

In this study, Chebyshev, Legendre, and Bernstein polynomials, which have the

potential to yield more efficient representation of the command sequence, are

investigated. In fact, the Chebyshev- and Legendre polynomials implicitly employ

cosine function as basis function while Bernstein-Bezier polynomials use

binomials.

 87

6.1.1 Chebyshev Polynomials

The Chebyshev polynomials, which are defined in a recursive fashion, are a

sequence of orthogonal polynomials that are related to deMoivre's formula.

Chebyshev polynomials are best used for non-periodic data in a finite interval.

There is no limit in the application area and can be used for any problem.

Chebyshev polynomials normally applied to solve problems on the interval x א [-

1, 1] but domain can be extended to a different interval [a, b] by a change of

variables. Chebyshev polynomials are important in approximation theory because

the roots of the Chebyshev polynomials of the first kind, which are also called

Chebyshev nodes, are used as nodes in polynomial interpolation. The resulting

interpolation polynomial minimizes the problem of Runge's phenomenon and

provides an approximation that is close to the polynomial of best approximation to

a continuous function under the maximum norm. Another reason this polynomial

is nearly optimal is that, for functions with rapidly converging power series, if the

series is cut off after some term, the total error arising from the cutoff is close to

the first term after the cutoff. That is, the first term after the cutoff dominates all

later terms.

The Chebyshev polynomials illustrated in Figure 6.1 can be expressed via the

expansion of Eqn. (6.2)

∑
∞

=

=
0

)()(
n

nn xTaxy (6.2)

and computed via a recurrence relation:

)1()()(2)(11 ≥−⋅= −+ nxTxTxxT nnn (6.3)
where T0 = 1 and T1(x) = x. As mentioned before, there are several types of basis

functions but as Boyd [60] discussed, the best choice is to use ordinary functions

like power series.

 88

Figure 6.1 First few Chebyshev Polynomial in domain -1<x<1.

Even the basis functions of Chebyshev polynomials seem different from those of

Fourier; it is a disguise of basis function of Fourier series. With a change of

variable, the trigonometric functions of Fourier series turn into different basis

functions by the mapping z = cos(θ):

)cos()(θnzTn = (6.4)
With the change of variable, it can be said that series in Eqn. (6.5) and Eqn. (6.6)

are equivalent under the transformation:

∑
∞

=

=
0

)()(
n

nn zTazf (6.5)

)cos())(cos(
0

θθ naf
n

n∑
∞

=

= (6.6)

In other words, the coefficients of f(z) as a Chebyshev series are identical with the

Fourier cosine coefficients of f(cos(θ)). Even if f(z) is not periodic in z, the

function f(cos(θ)) is periodic in θ with a period of 2π. As varying θ over all real θ,

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

T n (x
)

Chebyshev Polynomials

n=0

n=1

n=2

n=3

n=4

 89

the periodicity of cos(θ) implies that z oscillates between -1 to 1. Since f(cos(θ)) is

periodic, its Fourier series must have exponential convergence. The exponential

convergence of the Fourier series implies equally fast convergence of the

Chebyshev series since the sums are term by term identical.

6.1.2 Legendre Polynomials

Legendre polynomials are an alternative to the Chebyshev polynomials for non-

periodic problems in the interval of [-1, 1]. When the computational domain is

split into a large number of sub domains with a separate spectral series on each

sub domain, the formulation is greatly simplified by using the basis functions of

Legendre instead of those of the Chebyshev. The convergence theory for

Legendre polynomials is virtually identical with that of Chebyshev polynomials

but for a given arbitrary function f(x), the maximum point wise error of a

Legendre series (truncated after N terms), is worse than that of its counterpart by a

factor of the square root of N. In contrast to the Chebyshev polynomials, which

oscillate uniformly over the interval x � [-1; 1] (as obvious from the relation

Tn(cos(θ))≡cos(nθ)), the Legendre polynomials are nonuniform with small

amplitude over most of the interval except in extremely narrow boundary layers

where the polynomial rises to one or falls to minus one [60].

Just like Chebyshev, the Legendre polynomials can be expressed as Eqn. (6.7)

∑
∞

=

=
0

)()(
n

nn xPaxy (6.7)

and computed via a recurrence relation as

)1()()()12()()1(11 ≥⋅−⋅⋅+=+ −+ nxPnxPxnxPn nnn (6.8)

where P0 = 1 and P1(x) = x as illustrated in Figure 6.2

 90

Figure 6.2 First few Legendre Polynomials in domain -1<x<1.

6.1.3 Bernstein Polynomials

Bernstein polynomials are the linear combination of Bernstein basis polynomials

that are binomials. Bernstein polynomials are restricted to the interval x [1 ,0] א

and they are always positive. They are used in generation of the Bézier curves

which are widely adapted in computer graphics literature. The (n+1) Bernstein

basis polynomials of degree n are defined as

nixx
i
n

xB ini
ni ,,0)1()(, K=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= − (6.9)

where ቀ݊
݅ ቁ is a binomial coefficient. The Bernstein polynomials illustrated in

Figure 6.3 is expressed as a linear combination of Bernstein basis polynomials as

in Eqn. (6.10)

∑
=

=
n

k
nkn xBaxy

0
,)()((6.10)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

P
n (x

)

Legendre Polynomials

n=0

n=1

n=2

n=3
n=4

 91

Figure 6.3 Bernstein polynomials up to fourth level.

For computational efficiency, Bernstein polynomials can be defined recursively as

in Eqn. (6.11). The kth nth-degree Bernstein polynomial is defined by blending

together two Bernstein polynomials of degree n − 1.

)()()1()(1,11,, xBxxBxxB nknknk −−− ⋅+⋅−= (6.11)

6.1.4 Computation of Polynomials

Polynomials in (6.1) are not the most convenient form for evaluation. If the last

term in (6.1) are considered, it will take (n+1) (floating point) multiplications to

compute that term alone while n multiplications is required for the next (lower

order) one. If one sums up the whole series, (n+1)n/2 multiplications as well as n

additions are needed to compute y(x) [61]. However, if the polynomial is

represented as the number of multiplications could be reduced to n while the

number of additions remains intact. Since the time required for a computer to

carry out a multiplication is usually an order of magnitude greater than that

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

B
i,n

 (x
)

Bernstein Polynomials

n=0

n=1
n=2

n=3

n=4

 92

required for addition, Eqn. (6.12) is a considerably more efficient way to evaluate

y(x). Eqn. (6.12) is sometimes called the "factored form" of the polynomial and

can be immediately written down for any polynomial. This simple technique of

factorization is commonly known as the Horner’s method.

(){ }xxxaaaaxy nn LL +++= −110)(, (6.12)
Note that there is another way of representing the polynomial in terms of factors

as in Eqn. (6.13) in which the last n coefficients of the polynomial have been

replaced by n roots of the polynomial.

)())()(()(321 nn pxpxpxpxaxy −−−−= L (6.13)
But in this approach, the roots (pn) are directly not related to the original

coefficients in a simple way. Furthermore, some of the roots of (6.10) could be

complex conjugate that might slightly complicate the evaluation of the polynomial

[60].

6.2 Evaluation of Error Tolerance Band

In order to fit a polynomial to command sequence for a particular joint, one needs

to specify the corresponding error tolerance band. It is obvious that the allowed

deviation along the tool’s trajectory must be taken into consideration to compute

these bands. Not surprisingly, as the error tolerance bands get tighter, the order of

the polynomials increases and more terms are needed to represent angular position

of a target joint without exceeding the given tolerance band. Note that, for large

command sequences, a single polynomial fit is not efficient. Therefore, the data

must be divided into subsections. In this section, a dynamic error (tolerance band)

calculation algorithm is introduced using the inverse kinematic model described in

Chapter 3.

As mentioned before, the required accuracy of the kinematic operations is given

as positional accuracy of the tool at specified time. In order to find the effect of

each joint to the total error, the tolerances of the tool should be distributed to the

 93

joints. For this distribution a Monte Carlo simulation is done for each point in the

trajectory. The points are processed one by one and multiple points are generated

randomly in a circle with radius equal to the required tolerance as seen in Figure

6.4 in which r is the tolerance of the kinematic model and a is the angle generated

randomly.

The new points generated by Eqn.(6.14) represents the acceptable positions when

the deflection of the tool tip is in the boundary defined with tolerance values.

Once the coordinates of the deflected positions are found, the joint values for each

point in the error band can be calculated. The solution is same with the method

described in Chapter 3 but this time the iterations are done for the points

generated in the Monte Carlo simulation by using the joint values in correct

position as initial guess. By solving iteratively for each point in the tolerance radii

the set of solution for that position is obtained.

)sin(
)cos(

α
α

⋅+=′
⋅+=′

ryy
rxx

 (6.14)

Figure 6.4 Error band of the tool tip.

 94

Corresponding errors of each joint are found by subtracting the joint values for the

error band from the original values. The maximum and minimum values or the

ranges defined by standard deviation (σ) are calculated and the error bands of the

joints are generated. And finally either maximum and minimum error values

obtained by the simulation is stored or a standard deviation in predefined

confidence interval are found and stored in order to obtain the error range of the

joint at that specific coordinate.

6.2.1 Case Study

In the case study, error tolerance band of the planar robot in Section 5.5 has been

defined by means of analytical solution in order to simulate the usage of the

method in analytical solution. The joint values can be written by adding error

values which are assumed to be too small. This assumption makes the solution

easier by calculating the cosine of a small angle as one and sine of a small angle

as itself. After these assumptions, the equation is reduced to a format as in Eqn.

(6.15a) where x and y are the coordinate of the end effector, a, b, c and are

coefficients of the errors ߝଵ, ଶ as given in Eqn. (6.16) and s(q) is sin(q) and c(q) isߝ

cos(q) by definition.

22212

12111

dbay
dbax

++=
++=

εε
εε (6.15a)

(6.15b)

)()()()(
)(),(

)()(),()(

122112122111

12221221

122112122111

qslqsldqclqcld
qclbqslb

qclqclaqslqsla

+=+=
=−=

+=−−=

 (6.16)

The next step is to solve Eqns. (6.15a) and (6.15b) in order to find ε1 and ε2. For

this operation, firstly Eqn. (6.15a) is solved for ߝଵ in terms of ε2 as in Eqn. (6.17).

2112

122112
1 abab

dbdbybxb
−

−+−
=ε

(6.17)

 95

Then, the expression for ε1 is substituted into Eqn. (6.15b). This results in a single

equation involving only ε2 as shown with Eqn. (6.18). For more complex

functions, fsolve function of MATLAB can be used instead. This solution method

is effective when the exact analytical solution of the 2-D manipulator is known

and it can be reduced into a form described in Eqn. (6.15a).

1

111
2 b

dax −−
=

εε
(6.18)

By solving analytically for each point in the tolerance radii, the set of solution for

that position is obtained and the maximum and minimum values or the ranges

defined by standard deviation can be calculated. In order to demonstrate the error

bands mentioned, the kinematic model used in case study of Chapter 5 and the

trajectory illustrated in Figure 5.5 has been used. Once the procedure has been

followed throughout the trajectory, the acceptable error bands of each joint are

computed and plotted in Figure 6.5.

Figure 6.5 Error Bands of joints throughout the trajectory in Figure 5.5.

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

Data Point

E
rro

r i
n

co
un

ts

Error of q1

Maximum
Minimum
+σ
-σ
μ

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

10
Error of q2

E
rro

r i
n

co
un

ts

Data Point

 96

As seen from the error bands illustrated in Figure 6.5, using bands formed by

standard deviations significantly reduces the tolerances of each joint. So error

bands obtained by maximum and minimum values are used in this study.

6.3 Polynomial Based Command Generation

In the previous sections the computation of the polynomial coefficients and the

method of defining the error bands of joints throughout the trajectory have been

described. This section is dedicated to the optimization of the number of

coefficients to be used.

6.3.1 Coefficient Optimization

Since the main aim is to reduce the size of the data to be stored, one has to

optimize the number of coefficients to be used in order to save from space. This

can be done in two ways: i) segmenting the data into manageable parts ii) use

minimum number of coefficients. The segmentation process has been discussed in

Chapter 4, Position Generation in Joint Space.

What is meant with optimization is simply increasing the number of polynomial

coefficients until the fitted joint values lays within the error bands for the

corresponding segment. Iterations start with two coefficients for each joint in each

segment. The data is fitted by Eqns. (6.2), (6.7) or (6.10) depending on the

polynomial method, then the whole fitted data is checked whether is inside of the

error envelope and the number of data that is inside the envelope for

corresponding number of coefficients is stored to a control array. Iteration for

each segment continues until all of the data lies within the envelope. If the whole

values are in the envelope, the coefficients are stored for that section but if the

data does not converge, algorithm searches the number of coefficient which

supplies the best fit from the control array then the consequent coefficients are

 97

calculated and stored. This procedure continues until all sections of each joint are

finished then the storage requirements are calculated.

6.4 Implementation of Coefficients

Recalling that Chebyshev and Legendre Polynomials work in an interval of [-1, 1]

and Bernstein Polynomials work in an interval of [0, 1], coefficients are defined in

polynomial spaces. In order to use these coefficients in time-domain a

transformation is needed. The transformation is simply changing of variable as

shown in Figure 6.6.

Figure 6.6 Polynomial space to time domain

According to the figure the transformation is done with the Eqn. (6.19) where kn-1

and kn are the boundary values of the time domain, k is the specific point in time

domain, a and b are the boundaries of the polynomial interval and c is the

representation of k in polynomial space.

ab
ac

kk
kk

nn

n

−
−

=
−
−

−

−

1

1 (6.19)

When the transformation is required for Chebyshev or Legendre Polynomial the

[a, b] set is replaced with [-1, 1] and for Bernstein Polynomial [a, b] set is

replaced with [0, 1].

 98

6.5 Case Study

In this section, the methods described up to now are simulated on a 2D

manipulator with two links that is used in previous section. So the kinematic

model, trajectory and joint values are used directly. Knowing the joint values

satisfying the trajectory are calculated, the error bands of the joints are generated.

By following the steps in dynamic error calculation section, the error bands are

generated which can be seen in Figure 6.5. Then the joint data is fitted into

polynomials mentioned above. Iterative solution described in Section 6.3.1 is

applied to both joints and the coefficients representing the Chebyshev, Legendre

and Bernstein polynomials are computed. The number of coefficients used for

each method is tabulated in Table 6.1.

Table 6.1 Number of coefficients used.

 Chebyshev Legendre Bernstein
 q1 q2 q1 q2 q1 q2
Segment 1 7 6 6 6 6 6
Segment 2 7 7 7 6 7 6
Segment 3 7 6 7 6 7 6
Segment 4 7 6 7 7 7 7

By using the coefficients found, the new joint values are recalculated and the

accuracy of the polynomial fitting is checked. As seen in Figure 6.7, the errors by

polynomial fitting are within the error band. And the last step is to check whether

the required accuracy of 0.1 mm is obtained by generating the trajectory with

fitted data. The result can be seen by the plot in Figure 6.8. After checking the

error of the joint values, last check should be done for the deviations in the

trajectory. Figure 6.8 shows the errors obtained in the trajectory which all off then

are below the designated tolerance of 0.05 mm.

 99

Figure 6.7 Error of the joints by polynomial fitting.

Figure 6.8 Error in trajectories generated with fitted data.

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4
Error of q1

E
rro

r i
n

co
un

ts

Data Point

Maximum
Minimum
Chebyshev
Legendre
Bernstein

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

10
Error of q2

E
rro

r i
n

co
un

ts

Data Point

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1
Error of trajectory by Chebyshev

E
rro

r i
n

m
m

Data Point

0 10 20 30 40 50 60 70 80 90 100
0

0.05
Error of trajectory by Legendre

E
rro

r i
n

m
m

Data Point

0 10 20 30 40 50 60 70 80 90 100
0

0.05
Error of trajectory by Bernstein

E
rro

r i
n

m
m

Data Point

 100

Since the set of coefficients representing the joint values are obtained the

allocated spaces are calculated by finding the required space for each coefficient

and multiplying with the number of coefficient to be stored. The total space

allocated with each method is given in Table 6.2.

Table 6.2 Required space allocation of each joint by polynomial techniques.

 q1 (bits) q2 (bits)
Raw Data 1625 1750
Chebyshev 53 50
Legendre 51 50
Bernstein 41 38

6.6 Closure

In this chapter, dynamic error calculation and fitting of the data with polynomials

such as Chebyshev, Legendre and Bernstein methods are investigated. Analytic

and numerical dynamic error calculation methods have been developed in order to

distribute the tolerance of the tool tip into the joint spaces. This distribution is

handled with a Monte Carlo simulation. An error area has been generated for each

point through trajectory and the inverse kinematic solution of each point in the

area are computed and the error bands of joint values are generated.

The other subject was the comparison of the polynomial fitting methods.

Comparing the approximations of the methods they supply almost the same

accuracy with using same amount of coefficients. But the difference is quite

noticeable when the allocated storage spaces are compared. In this category, it has

been observed that the coefficients of Bernstein polynomial need minimum space

where coefficients of Chebyshev and Legendre polynomials need almost the same

space which is slightly larger than Bernstein Polynomials.

 101

CHAPTER 7

COMMAND GENERATION VIA TRANSFORMATIONS

7.1 Fourier Analysis

Most of the signals contain various frequency components. Rapidly changing

signals contains high-frequency components where slowly changing ones contains

low-frequency. Fourier analysis is a mathematical tool that is used to analyze the

frequency characteristic of periodic and nonperiodic signals. The main usage areas

of Fourier analysis are signal and image processing, filtering, convolution,

frequency analysis, and power spectrum estimation. Fourier analysis provides

insight into the periodicities in data by representing the data using a linear

combination of sinusoidal components with different frequencies. The amplitude

and phase of each sinusoidal component in the sum determines the relative

contribution of that frequency component to the entire signal [2].

Fourier analysis contains four similar definitions which are, continuous-time

Fourier series, continuous-time Fourier transform, discrete-time Fourier

transform, and discrete Fourier series. Fourier series deals with the periodic data

where Fourier transforms deals with nonperiodic data. Since this study will be

based on discrete and nonperiodic data, Discrete Fourier transforms are utilized.

7.1.1 Fourier Transform

MATLAB performs Fourier analysis by computing the discrete Fourier transform

(DFT) using the fast Fourier transform (FFT) algorithms, which improve

 102

computational performance. For an input sequence x(n) of length N. The DFT of

this sequence is given for 1 ൑ ݇ ൑ ܰ by the vector X(k), as in Eqn. (7.1):

e N
nki

N

n
nxkX)1)(1(2

1
)()(

−
−−

=
∑= π

 (7.1)

The MATLAB function fft will be used for Fourier transforms because of its

speed and discrete nature. The length of X(k) is the same as the length of x(n).

The result of the fft gives the Fourier coefficients as an array of complex numbers

in the form of Eqn. (7.2).

)()()(kbikakX ⋅+= (7.2)

For a discrete input sequence, there is an upper limit on the frequency at which

you can get meaningful information about the periodicities in the data. The

highest frequency that can be uniquely fit to the data is called the Nyquist

frequency. After the Nyquist frequency, there is an even symmetry and the rest of

the data is complex conjugate of the data between 0 and the Nyquist frequency.

7.1.2 Inverse Fourier Transform

Inverse Fourier transform is used for finding the data from the frequencies. The

inverse Fourier transform of a transformed sequence for 1 ൑ ݊ ൑ ܰ is given by

Eqn. (7.3):

e N
nkj

N

k
kX

N
nx)1)(1(2

1
)(1)(

−
−

=
∑= π (7.3)

When the original data, x(n), is real, the synthesis equation can be rewritten by the

help of the sine and cosine functions for 1 ൑ ݊ ൑ ܰ with real coefficients [43].

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−

+⎟
⎠
⎞

⎜
⎝
⎛ −−

=
N

k N
nkkb

N
nkka

N
nx

1

)1)(1(2sin)()1)(1(2cos)(1)(ππ (7.4)

Where, a(k)=real[X(k)], b(k)=-imag[X(k)]

 103

7.1.3 Fourier via Least Square Method

In addition to the classical approach described in the previous section, obtaining

Fourier coefficients and reconstructing via spectral method will be investigated in

this section. In this method, the aim is to represent a data vector as a weighted

sum of basis functions which are tabulated in a matrix, by evaluating each

functions at the sample times, with weight vector x as shown in Eqn. (7.6). The

matrix is generated by the basis functions of Fourier transformation, which are

sine and cosine functions at different frequency values. The basis functions are

computed at each frequency and the matrix is formed by Eqn. (7.5).

)sin(
)cos(

1

12

2

0

tiT
tiT

T

i

i

⋅=
⋅=

=

+⋅

⋅
 (7.5)

For a N point transform, the computation of coefficients are handled by Eqn. (7.6)

proposed by Boyd [60],

NNNNNN

NN

NN

NN

N f

f
f

xwxwxw
xw
xwxwxw
xwxwxw

a

a
a

M

L

OMM

L

L

M
2

1

1212111

212111

0202101

1

1

0

)()()(
)(
)()()(
)()()(

−−−−

=

φφφ
φ
φφφ
φφφ

 (7.6)

where the wi are the Gaussian quadrature weights multiplied by normalization

factors, ׎i(x) are the basis functions and ai is the Fourier coefficients. The

normalization factors are chosen so that the square matrix above is the inverse of

the square matrix below, i. e., such that ai = 1, all other coefficients zero when

f(x) = ׎ i(x). The reconstruction of the original data can be handled by summation

of the interpolant as proposed by Boyd [60],

1

1

0

12111

2111

02010

2

1

)()()(
)(
)()()(
)()()(

−−−−

=

NNNNN

N

N

N

N a

a
a

xxx
x
xxx
xxx

f

f
f

M

L

OMM

L

L

M

φφφ
φ
φφφ
φφφ

 (7.7)

7.1.4 Si

As exp

data. S

results

signal i

point a

The ne

periodi

ignal Partit

plained befo

Since the ob

with poor

is partitione

linear segm

xt step is to

ic data whic

tioning

fore Fourier

btained join

convergenc

ed into two

ment is form

Fi

o subtract th

ch is shown

1

r transform

nt values a

ce of the da

o parts. By

med as seen

igure 7.1 Sig

his line from

in Figure 7

04

mations are

are non per

ata. In order

interpolatin

with the str

gnal Partition

m the origin

7.2

mainly des

iodic, Four

r to handle

ng the start

raight line in

ning

nal signal w

signed for

rier transfor

with this s

ting and the

n Figure 7.1

which result

periodic

rmations

situation,

e ending

1.

ts with a

Now, t

lower n

The rep

method

represe

represe

In Figu

generat

Fourier

of Four

results

pieces

approx

reconst

the Fourier

number of c

presentation

ds. Since th

ented by sto

ented by sto

ure 7.3 and F

ted trajecto

r Transform

rier transfor

with errors

and introd

imation err

tructed traje

F

transforma

coefficients

n and storag

he signal is

oring the st

ring the Fou

Figure 7.4,

ory for dis

m have been

rmation fail

s around 40

ducing the

ors in the jo

ectory to 30

1

igure 7.2 Pa

ation of the

and the con

ge of this m

 divided in

tarting and

urier coeffic

the approxi

crete Fouri

n plotted. As

ls where sha

0 mm’s. Bu

signal par

oint values

0 µm.

05

artitioned sig

e partitione

nvergence o

method is a

nto two piec

the ending

cients.

imation of j

ier Transfo

s seen from

arp transitio

ut with seg

rtitioning w

disappears

nal

ed part can

of the series

a little diffe

ces, linear

point and

oint values

orm and li

m Figure 7.3

ons of joint

gmenting th

with linear

which redu

n be done b

is better.

rent from t

interpolated

the periodi

and the err

nearly inte

, the approx

values occu

he data into

r interpolat

uces the erro

by using

the other

d part is

c part is

or of the

erpolated

ximation

ur which

o smaller

tion, the

or in the

 106

Figure 7.3 Results of Discrete Fourier Approximation

Figure 7.4 Results of Fourier Approximation by Linear Interpolation.

0 100 200 300 400 500 600 700 800 900 1000
-4000

-2000

0

Time index
q 1 [c

ou
nt

s]

Discrete Fourier Approximation

Actual
Approx

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5
x 104

Time index

q 2 [c
ou

nt
s]

Actual
Approx

100 200 300 400 500 600 700 800 900 1000

2

4

x 104

Time index

|E
rro

r|
[μ

m
]

0 100 200 300 400 500 600 700 800 900 1000
-4000

-2000

0

Time index

q 1 [c
ou

nt
s]

Fourier Approximation by Linear Interpolator

Actual
Approx

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5
x 104

Time index

q 2 [c
ou

nt
s]

Actual
Approx

100 200 300 400 500 600 700 800 900 1000

100
200

300

Time index

|E
rro

r|
[μ

m
]

 107

7.1.5 Inverse Fourier Transform via Look-up Tables

As seen in Eqn. (7.4), the coefficients of the Fourier transformed data are useless

without sine and cosine functions. Knowing that the basic controllers used in

manipulators are not capable of calculating the sine and cosine functions, the data

should be sent in a way that manipulators can process. One way of this is to store

the sine and cosine values of the frequencies in a look-up table so that the

controller will find the values of the sine and cosine of the required frequencies

from the table. For generation of the look up tables, built up function of

MATLAB, named fixpt_look1_func_approx will be used. This function optimizes

the breakpoints of a lookup table over a specified range. The lookup table satisfies

the maximum acceptable error, maximum number of points, and spacing

requirements given by the optional parameters. The breakpoints refer to the x

values of the lookup table. The command generates the x and y coordinates of the

lookup table. Spacing of the lookup table is selected as power-of-two because of

the efficiency in data storage and requirement of less effort in calculation.

Although uneven spacing requires fewest data points than power-of-two spacing,

the implementation for the evenly spaced and the power of two cases does not

need the breakpoints in the generated code. This reduces their data ROM

requirements by half [43].

Lookup tables for cosine and sine functions will be generated independently from

each other but will be convoluted later. But one more operation should be

completed just before sending the input to the controller. Recalling equation 6.4,

Fourier coefficients are multiplied with the sinus and cosines of the frequencies.

So the frequencies should be found before sending it to the controller. Once the

frequencies are found, the controller will take lookup tables, Fourier coefficients

and the frequencies. Controller will just match the frequencies with the lookup

table.

 108

7.2 Wavelet Transformations

7.2.1 Wavelet Analysis

Previous section was dedicated to Fourier transformations; in this section another

transformation technique will be used. Wavelet analysis is a set of tools and

techniques for analyzing the signals. Wavelet analysis differs from Fourier

analysis in many ways. The main difference is the capability of revealing aspects

of data like trends, breakdown points, discontinuities in higher derivatives, and

self-similarity. The other reason is that the Wavelet transformations localize a

function both in space and scaling. Wavelet analysis represents a windowing

technique with variable-sized regions. Long time intervals are used for obtaining

precise low-frequency information whereas shorter intervals are used for high-

frequency information. Wavelet analysis does not use a time-frequency region,

but rather a time-scale region [43]. The transform is based on a wavelet matrix,

which can be computed more quickly than the analogous Fourier matrix [44].

Wavelet analysis can often compress or de-noise a signal without appreciable

degradation.

A wavelet is a waveform of effectively limited duration that has an average value

of zero. Wavelet analysis breaks up a signal into shifted and scaled versions of the

original or mother wavelet. A family of wavelets can be constructed from a

function ψ(x), sometimes known as a "mother wavelet," which is confined in a

finite interval. "Daughter wavelets" ψ (a, b) (x) are formed by translation (b) and

contraction (a) as in Eqn. (7.8).

⎟
⎠
⎞

⎜
⎝
⎛ −

= −

a
bxaba ψψ 2/1, (7.8)

The continuous wavelet transform (CWT) in Eqn. (7.9) is defined as the sum over

all time of the signal multiplied by scaled, shifted versions of the wavelet

function:

The res

scale a

shifted

Figure

Scaling

a. The

proport

wavele

Mathem

7.2.2 W

There a

Wavele

used in

charact

particu

wavele

Wψ

sults of the

and position

wavelet yi

7.5:

Figure 7.5

g a wavelet

scale is re

tional to th

et. Shifting

matically, d

Wavelet Fam

are a numbe

et Transform

n the trans

teristics of

lar applicat

et should be

bafW =ψ),)((

CWT are m

n. Multiplyi

elds the con

5 Constituen

means stre

elated to th

he radian

a wavelet

delaying a fu

milies

er of basis

mation. Sinc

sformation

the resultin

tion should

chosen in o

1

tf
a

= ∫
∞

∞−

ψ)(1

many wavel

ing each co

nstituent w

nt wavelets o

etching or c

e frequency

frequency.

t simply m

unction f(t)

functions th

ce the moth

through tra

ng Wavelet

d be taken i

order to use

09

dt
a

bt
⎟
⎠
⎞

⎜
⎝
⎛ −ψ)

let coefficie

oefficient by

avelets of t

f different sc

ompressing

y of the sig

Smaller s

means dela

by k is repr

hat can be u

her wavelet

anslation an

Transform

into accoun

 the Wavele

t

ents C, whic

y the appro

the original

cales and pos

g the wavele

gnal. Scale

scale factor

aying or h

resented by

used as the

produces al

nd scaling,

m. Therefore

nt and the

et Transform

ch are a fun

opriately sca

signal as s

sitions [43].

et by a scal

factor is i

rs, compre

astening it

f(t-k).

mother wav

ll wavelet f

, it determ

e, the detail

appropriate

m effectivel

(7.9)

nction of

aled and

shown in

le factor,

nversely

sses the

ts onset.

velet for

functions

mines the

ls of the

e mother

ly [71].

 110

Figure 7.6 Commonly used wavelet functions [71].

Figure 7.6 illustrates some of the commonly used wavelet functions which are (a)

Haar (b) Daubechies4 (c) Coiflet1 (d) Symlet2 (e) Meyer (f) Morlet (g) Mexican

Hat. Haar wavelet is one of the oldest and simplest wavelet. Therefore, any

discussion of wavelets starts with the Haar wavelet. Daubechies wavelets are the

most popular wavelets. They represent the foundations of wavelet signal

processing and are used in numerous applications. The Haar, Daubechies, Symlets

and Coiflets are compactly supported orthogonal wavelets. These wavelets along

with Meyer wavelets are capable of perfect reconstruction. The Meyer, Morlet and

Mexican Hat wavelets are symmetric in shape. The wavelets are chosen based on

their shape and their ability to analyze the signal in a particular application [71].

7.2.3 Continuous Wavelet Transform

The continuous wavelet transform (CWT) is the sum over all time of the signal

multiplied by scaled, shifted versions of the wavelet. This process produces

wavele

create a

1.

2.

3.

4.

et coefficien

a CWT, the

A wavelet

A number

section of t

precisely, i

may be int

result of th

7.7.

Next step i

steps 1 and

The wavele

repeated

nts that are

following s

is taken and

, C, that re

the signal. T

if the signa

terpreted as

he C is depe

Figure

is to shift th

d 2 are repea

Fig

et is scaled

1

e a function

steps should

d compared

epresents th

The higher C

al energy an

 a correlatio

endent on th

 7.7 The effe

he wavelet t

ated until w

gure 7.8 Shif

as illustrate

11

n of scale a

d be followe

d to a section

he similarit

C means tha

nd the wave

on coefficie

he shape of

ect of the sig

to the right

whole signal

fting the wav

ed in Figure

and position

ed

n at the orig

ty of the w

at the simila

elet energy

ent. It shoul

f the wavele

gnal to C.

as illustrate

is covered

velet.

e 7.9 and st

n [44]. In

ginal signal.

wavelet is w

arity is bette

are equal to

ld be noted

et as seen in

ed in Figure

teps 1 throu

order to

.

with the

er. More

o one, C

d that the

n Figure

e 7.8 and

ugh 3 are

5.

At the

regress

scales

corresp

longer

coarser

7.2.4 M

The de

decomp

compon

compre

approx

coeffic

cD [43

process

of level

Steps 1 thr

end of the

ion of the o

by differe

pond to the

the portion

r the signal

Multilevel 1-

composition

posed in tur

nents. This

ession is th

imated usin

ients, cA, (

3]. In Figur

s is iterative

ls should be

Figu

rough 4 are

e procedure

original sig

ent sections

most stretc

n of the sig

features bei

-D wavelet d

n process c

rn, so that o

is called th

e concept t

ng the follo

(at a suitabl

re 7.10 dec

e, in theory

e selected.

1

ure 7.9 Scali

repeated for

e, the coeff

nal perform

s of the s

ched wavel

gnal with w

ing measure

decomposit

an be iterat

one signal is

he wavelet d

that the reg

owing elem

ly chosen le

composition

it can be co

12

ng of the wa

r all scales.

ficients whi

med on the w

signal are

lets. The m

which it is b

ed by the wa

ion

ted, with su

s broken do

decomposit

gular signal

ments: a sm

evel) and s

n steps are

ontinued ind

avelet.

ich constitu

wavelets pr

obtained.

more stretche

being comp

avelet coeff

ccessive ap

wn into ma

tion tree [43

componen

mall number

ome of the

illustrated.

definitely so

ute the resu

roduced at d

The highe

ed the wav

pared, and

ficients.

pproximatio

any lower re

3]. The bas

nt can be ac

r of approx

 detail coef

Since the

o a suitable

ults of a

different

r scales

velet, the

thus the

ns being

esolution

is of the

ccurately

ximation

fficients,

analysis

e number

 113

7.2.5 Wavelet Reconstruction

Up to now, decomposition of the signals has been studied. This section is

dedicated to the process of assembling the components found in decomposition

without loss of information. Reconstruction of the components will be handled by

inverse discrete wavelet transform (IDWT). The wavelet reconstruction process

consists of up sampling and filtering. Up sampling is the process of lengthening a

signal component by inserting zeros between samples.

Figure 7.10 Wavelet decomposition.

7.2.6 Algorithm

The algorithm of compressing the data by wavelet transformations will be handled

with the built up functions of MATLAB. The compression features of a given

wavelet basis are primarily linked to the relative scarceness of the wavelet domain

representation for the signal [43]. The algorithm is divided into three main pieces

which are, decomposing the original data, thresholding the decomposed signal,

extraction of the approximation and detail coefficients and reconstruction of the

decomposed signal.

Decom

wavede

decomp

user. Th

the boo

for a l

approx

the requ

number

After o

zeroing

error. A

origina

functio

bookke

decomp

mposition of

ec. This fu

position of

he output o

okkeeping v

level-3 dec

imation coe

uired decom

r of each co

F

obtaining th

g the smalle

Algorithm

al coefficien

on of MAT

eeping vect

position. T

f the signa

function tak

the signal X

f this proce

vector L. Th

composition

efficients, cA

mposition le

oefficient. In

Figure 7.11

he wavelet

er coefficie

starts with

nts. Then th

TLAB whic

tor and app

The approxi

1

al is handl

kes the or

X at level N

ess contains

he structure

n example.

An and deta

evel. The ot

n this study

Decompositi

decomposi

ents. The le

zeroing th

he compres

ch takes the

proximates

imated sign

14

led by the

riginal sign

N, using a w

the wavele

e is organize

The decom

ail coefficie

ther output,

Daubechie

ion of origin

tion vector

evel of thre

he lower co

sed data is

e compress

the signal

nal is com

built-in M

nal and re

wavelet met

et decompos

ed as illustr

mposition v

nts, cD1, cD

bookkeepin

s wavelets a

nal Signal [43

, the signal

eshold is se

oefficients

reconstruct

sed decomp

l using the

mpared with

MATLAB f

eturns the

thod define

sition vector

rated in Fig

vector cont

D2... cDn, wh

ng vector, h

are used.

3].

l is compre

elected by t

of the %20

ted by the

position vec

e wavelets

h the origin

function:

wavelet

ed by the

r, C, and

gure 7.11

tains the

here n is

holds the

essed by

trial and

0 of the

waverec

ctor and

used in

nal data

 115

whether it lies in the error band generated for each joint. If the approximated

signal does not lie in the error band, threshold percentage is lowered and the

iterations continue until the reconstructed signal lies in the error band. Once the

required accuracy is obtained, the approximation and detail coefficients are

extracted by appcoef and detcoef functions of MATLAB respectively. Since the

exact values of approximation coefficients and all detail coefficients known, the

storage space of each coefficient can be calculated. The pseudo code of this

algorithm is given in Table 7.1.

Table 7.1 Pseudo code of Wavelet Transformation.

[C,L] = wavedec(x,N,`waveletname`) %decompose original signal x at level N

while maxerror>tol

 comprsC=compress(C,threshold) % threshold signal C by zeroing small coefficients

 X= waverec(cmprsC,L,' waveletname '); %reconstruct signal

 maxerror=max(x-X);

 threshold=threshold-1; % percentage of data to be omitted

end

cAn= appcoef(cmprsC, L, `waveletname`, N) % extract approximation coef.

For i=1:N

cDn= detcoef(cmprsC, L, `waveletname`, i) % extract detail coef.

end

7.3 Simulation

The simulation will be done for the planar robot with two used in Simulation

section of Chapter 5 but the tolerance of the system has been increased to 0.1 mm

for this case.

 116

7.3.1 Fourier with Least Square Method

Here the trajectory will be reconstructed by calculation of Fourier coefficients by

Least Square Method. The data has been divided into sections and the signals in

these sections are partitioned. The number of coefficients used while

reconstruction and their allocated storage spaces are shown in Table 7.2.

Table 7.2 Fourier coefficients found by LSM.

FFT by LSM Bit per coefficient
q1 q2 q1 q2

Section 1 25 25 8 8
Section 2 19 19 8 9
Section 3 19 35 9 9
Section 4 15 16 9 10

Reconstructing the coefficients with Eqn. (7.6) results with a maximum error of

100 μm in the trajectory as plotted in Figure 7.12. Again in the same figure, the

maximum and minimum errors that is acceptable for the specified tolerance is

shown and it can be seen that the errors coming from Fourier transformation is

acceptable.

The allocated space allocation of the Fourier coefficients can be calculated from

Table 7.2. For the linear interpolated part, 5 data points should be stored since

signal is segmented into 4 pieces and space for each data point is known from the

raw data storage calculation. As a result 343 bytes of space is required as

tabulated in Table 7.3. So a compression of %90 has been obtained with this

method.

Table 7.3 Allocated storage space with reconstruct with LSM.

q1 q2 total bytes
Raw data 1625 1750 3375
Fourier 166 177 343

 117

Figure 7.12 Joint approximations and trajectory error.

7.3.2 Wavelet transformations

Here the wavelet transform of the original data will be simulated. These

simulations have been performed with different wavelet families such as

Daubechies, Symlets, Coiflets at different levels of decompositions. When the

performances of these families with respect to storage requirements and better

convergence, Daubechies wavelets at 2nd level decomposition has offered best

results. Hence Daubechies wavelets at 2nd level decomposition have been used in

this thesis. Since decomposition is level 2, one set of approximation coefficient

which is cA1 and two sets of detail coefficients which are cD1 and cD2 will be

generated and stored. The number of coefficients used while reconstruction and

their allocated storage spaces are tabulated in Table 7.4.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2
Error of trajectory by Fourier Transform

E
rro

r i
n

m
m

Data Point

0 100 200 300 400 500 600 700 800 900 1000
-10

0

10
Error of q1

E
rro

r i
n

co
un

ts

Data Point

Maximum
Minimum
Fourier

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20
Error of q2

E
rro

r i
n

co
un

ts

Data Point

 118

Table 7.4 Wavelet coefficients and their storage requirements.

Bit per coefficient # of coefficients Total storage
q1 q2 q1 q2 q1 q2

cA2 14 15 252 252 441 473
cD2 7 7 252 252 221 221
cD1 6 6 501 501 376 376

Total 27 16 1005 1005 1038 1070

But as mentioned in the algorithm section, coefficients that are smaller than the

specified threshold are omitted and they are equal to zero. The number of zero

coefficients for each joint is 740.

Reconstructing the coefficients results with a maximum error of 50 μm in the

trajectory as plotted in Figure 7.13. Again in the same figure, the maximum and

minimum errors that is acceptable for the specified tolerance is shown and it can

be seen that the errors coming from Fourier transformation is acceptable.

Figure 7.13 Joint approximations and trajectory error by wavelet transform.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05
Error of trajectory by Wavelet Transform

E
rro

r i
n

m
m

Data Point

0 100 200 300 400 500 600 700 800 900 1000
-10

0

10
Error of q1

E
rro

r i
n

co
un

ts

Data Point

Maximum
Minimum
Wavelet

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20
Error of q2

E
rro

r i
n

co
un

ts

Data Point

 119

7.4 Closure

In this chapter data compression with transformations has been discussed. The

theory of Fourier and wavelet transformations has been given, transformation and

reconstruction methods has been described. A data set representing the trajectory

of a planar 2 link robot has been transformed both with Fourier and Wavelet

transformations and results have been discussed.

Fourier transformation (FT) analyzes the frequency characteristic of periodic and

nonperiodic signals but best results are obtained with periodic data. The basis

functions of FT are cosine and sine functions. Transformation is time dependent

and can be defined in frequency domain, whereas Wavelet transformation (WT)

uses orthogonal basis of piecewise constant functions, constructed by dilation and

translations. The basis functions of WT are wavelets and there are infinite set of

basic functions.

In addition, in order to avoid the large errors obtained by discrete Fourier

transformation of a non-periodic signal, a new phenomenon has been introduced

which is partitioning the original signal by linearly interpolating the data and

obtain two signals which consists of a linear signal and a periodic signal. Hence

the reconstruction of the periodic part results with better convergence.

Comparing the simulation results of the Fourier and Wavelet transformation, it

has been observed that Fourier transformations via least square method allocate

smaller spaces than wavelet transformations but presenting larger errors in the

trajectory.

 120

CHAPTER 8

CASE STUDIES

8.1 Introduction

Up to now the methodologies of trajectory generation, inverse kinematics,

numerical methods and various advanced transform techniques have been given.

This chapter is dedicated to the comparison of the effectiveness of the methods by

simulation a trajectory with two different manipulators: PUMA 560 and Stanford

Manipulator. The trajectory represents template of a roundabout traffic sign as

illustrated in Figure 4.11. So that the manipulators are programmed to cut out the

template. The inverse kinematic problem was solved with a kinematic tolerance of

10-5 for each manipulator and the error bands are generated with a kinematic

tolerance of 10-2. It is aimed to keep maximum deviation of the end-effector less

than 100 µm. For the encoding operations of the JSD, it is assumed that an

absolute encoder with 30000 RPM has been used.

The chapter is organized such that; firstly the manipulators and the trajectory that

is to be followed are introduced. After that, the inverse kinematic solutions of

each case are computed and the commands for joint variables are obtained. Once

the joint values are found, the methods mentioned up to now are applied to

compress the commands. In the simulation section, the key information about the

results such as number of data to be stored, required storage space for each joint

variable, maximum error of the trajectory and joints are given. The results of the

methods are compared and discussed at the final section of the chapter.

 121

8.2 Manipulators

Puma 560 is one of the most used robot arm in robotics area. It has 6 degrees of

freedom with 6 revolute joints. The schematic view has been given in Fig. 4.11 in

chapter 4 and the D-H parameters of Puma 560 are given in Table 7.1.

Stanford Manipulator is a commonly used robotic system with six degrees of

freedom. It consists of 5 revolute joints and one prismatic joint. The Denavit

Hartenberg table generated by Hydzik [35] is shown in table 7.2 and the

schematic view of the manipulator is given in Figure 3.9.

Table 8.1 Denavit Hartenberg parameters of Stanford Manipulator (* is variable).

a αi θi di(mm) type
0 -90 0* 412 R
0 90 0* 154 R
0 0 -90 0* P
0 -90 0* 0 R
0 90 0* 0 R
0 0 0* 263 R

8.3 Trajectory and Inverse Kinematic Solutions

Trajectory of a roundabout traffic signal is selected for the study. Knowing that

the dimensions of the manipulators are almost same, the position and rotation of

local frames w.r.t global coordinate system are entered identical for both

manipulators in order to compare the performances of the manipulators.

8.3.1 Roundabout Signal

The first application simulated is the making up the template of a roundabout

traffic signal as illustrated in Figure 4.11 The template has standard dimensions

and the NC code listing for this task is given in Appendix A. The displacement of

 122

the local frame is [452.1mm, 150.05mm, 231.8mm] and the rotation about x, y, z

axes are [30° 120° 30°]. Trajectory obtained by interpolation and transformation

is plotted in Figure 8.1. The number of commands generated along this trajectory

is 1628 with a sampling time of 0.05 sec. The motion in each axis is plotted in

Figure 8.2. The joint space data (JSD) obtained by inverse kinematic solution of

this trajectory is plotted in Figure 8.3.

Figure 8.1 Trajectory of Puma 560 for roundabout.

350400450500550
-400

-300
-200

-100
0

100

0

100

200

300

400

500

X axis

Generated Trajectory

Y axis

Z
ax

is

 123

Figure 8.2 Distributed motion in each axis on Puma 560 for Roundabout signal.

(a) JSD of first three joints

0 10 20 30 40 50 60 70 80

300

400

500

600

time (sec)
X

 a
xi

s
(m

m
)

Motion of each axis

0 10 20 30 40 50 60 70 80

-400

-200

0

200

Y
 a

xi
s

(m
m

)

time (sec)

0 10 20 30 40 50 60 70 80
-200

0

200

400

600

time (sec)

Z
ax

is
 (m

m
)

0 10 20 30 40 50 60 70 80 90
-50

0

50

time (sec)

q 1ο

q1 vs time

0 10 20 30 40 50 60 70 80 90
-100

0

100

time (sec)

q 2ο

q2 vs time

0 10 20 30 40 50 60 70 80 90
-100

0

100

time (sec)

q 3ο

q3 vs time

 124

(b) JSD of wrist joints

Figure 8.3 Joint values of Puma 560 for Roundabout Signal.

(a) JSD of first three joints for Stanford Manipulator.

0 10 20 30 40 50 60 70 80 90
-100

0

100

time (sec)

q 4ο

q4 vs time

0 10 20 30 40 50 60 70 80 90
0

100

200

time (sec)

q 5ο

q5 vs time

0 10 20 30 40 50 60 70 80 90
-100

0

100

time (sec)

q 6ο

q6 vs time

0 10 20 30 40 50 60 70 80 90
-100

0

100

time (sec)

q 1ο

q1 vs time

0 10 20 30 40 50 60 70 80 90
50

100

150

time (sec)

q 2ο

q2 vs time

0 10 20 30 40 50 60 70 80 90
0

500

1000

time (sec)

q 3 m
m

q3 vs time

 125

(b) JSD of wrist joints for Stanford Manipulator.

Figure 8.4 Joint values of Stanford Manipulator for Roundabout Signal.

8.4 Simulations

In this section, the following encoding methods are applied to the JSD obtained

in the previous section to produce the efficient representation of positions in joint

state space and the performances of each method are comparatively evaluated.

• Lossless Data Compression
o Higher order differences
o Huffman Encoding Method
o Arithmetic (Shannon-Fano) Method

• Polynomial (fitting) methods
o Chebyshev Polynomials
o Legendre Polynomials
o Bernstein polynomials

• Advanced Transformation Techniques
o Fourier Transformations
o Wavelet Transformations

0 10 20 30 40 50 60 70 80 90
-1000

0

1000

time (sec)

q 4ο

q4 vs time

0 10 20 30 40 50 60 70 80 90
0

100

200

time (sec)

q 5ο

q5 vs time

0 10 20 30 40 50 60 70 80 90
0

500

1000

time (sec)

q 6ο

q6 vs time

 126

Higher order difference of the JSD will be investigated up to the 3rd level. In

tabulation of results, 1st order difference will be represented with FOD, 2nd order

difference with SOD and 3rd order difference with TOD. For the case of Huffman

and Arithmetic Coding techniques, the compression of 2nd and 3rd order finite

differences has been investigated. Checking on the characteristics of raw JSD and

its 1st order finite difference, the data has non-repetitive characteristics. This

behavior of data results in large symbol tables which requires high storage spaces.

So the compression of raw data and 1st order difference has not been taken into

account. The representation of Huffman coding in the tables will be as SOD/HC,

TOD/HC 3rd for the compression of 2nd order difference and 3rd order difference

respectively. In the same fashion, Arithmetic coding will be represented with

SOD/AC 2nd and TOD/AC 3rd It should be noted that, the sharp transitions in the

wrist angles has not been modeled in this study, so higher order differences and

Coding techniques has been evaluated section by section as in Polynomial Fitting

and Advanced Transformation techniques.

The first simulations have been done using the proposed segmentation technique.

Although Chebyshev Polynomial, Legendre Polynomial and Wavelet

Transformations has satisfied the required accuracy, Bernstein Polynomial and

Fourier transformation techniques has failed to converge within the error bands at

sections representing the motion through full circles of the outer frame. The error

of the end-effector is illustrated in Figure 8.5 with proposed segmentation

technique. So for the sake of better accuracy of the end-effecter trajectory,

problematic sections are segmented into smaller pieces by hand. The newly

inserted sections have been illustrated in Figure 8.6. For clarity in the plot,

sections are showed on X-axis and only the problematic sections have been

shown. Upper plot in Figure 8.6 shows the sections obtained from the NC Code

blocks and the lower plot shows the additional sections.

 127

(a) Maximum errors obtained by Bernstein Polynomial.

(b) Maximum errors obtained by Fourier Transformation.

Figure 8.5 Maximum errors via proposed segmentation technique.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7 x 10
1

time (sec)

 E
rr

or
 [m

m
]

Errorr of generated trajectory

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12
x 10

2

time (sec)

 E
rr

or
 [m

m
]

Error of generated trajectory

 128

Figure 8.6 Newly added sections.

Fourier Transformations are handled with Least Square Methods. As mentioned

before, the starting and the ending of the segments to be transformed are linearly

interpolated in order to represent the data with a linear segment and a periodic

segment. For the Wavelet transformations Daubechies wavelets at second level

have been used.

For simplicity in the tabulated data, the initials of each method has been used,

such that CP for Chebyshev Polynomials, LP for Legendre Polynomials, BP for

Bernstein Polynomials, FT for Fourier Transform and WT for Wavelet

Transforms.

Evaluation has been classified into three main aspects: approximation errors of the

end-effector trajectory, memory requirement and number of commands required

to represent data. Errors are divided into four subgroups which are, RMS,

minimum and maximum errors obtained in each axis and maximum error of the

0 61 513 529 954
300

350

400

450

500

550

600

Data Number

X
 a

xi
s

(m
m

)

Proposed Sections

0 61 188 314 513 529 651 767 954
300

350

400

450

500

550

600

Data Number

X
 a

xi
s

(m
m

)

Added Sections

 129

end-effector trajectory. The memory requirement and number of commands

generated by each method have been investigated both joint wise and for the

whole system.

8.4.1Puma 560

8.4.1.1 Memory Requirement

After the JSD of each joint has been encoded with several methods, the

representation requirement and their storage requirements have been obtained.

The number of commands generated for each method has been tabulated in Table

8.2 where qi represents the joint number. According to the results, it is obvious

that polynomial techniques reduced the representation requirement significantly

whereas there has not been any significant reduction with transformation

techniques. In addition the representation requirement of high order difference

techniques is the same with the number of raw data as expected.

Table 8.2 Representation Requirement for each Method.

Representation Requirement for Each Method Compression

ratio q1 q2 q3 q4 q5 q6 Total
Raw
Data 1628 1628 1628 1628 1628 1628 9768 N/A

FOD 1628 1628 1628 1628 1628 1628 9768 N/A
SOD 1628 1628 1628 1628 1628 1628 9768 N/A
TOD 1628 1628 1628 1628 1628 1628 9768 N/A
CP 247 260 249 272 315 360 1703 82,57%
LP 248 259 249 273 333 332 1694 82,66%
BP 248 260 250 274 290 292 1614 83,48%
FT 1599 1595 1617 1605 1613 1597 9626 1,45%
WT 1612 1580 1596 1612 1612 1612 9624 1,47%

The memory requirements for each method have been tabulated in Table 8.3

According to the results; it is obvious that storage requirements of polynomial

 130

techniques are quite low w.r.t the storage requirement of raw data. Encoding with

higher order differences has reduced the allocated space but using Huffman and

Arithmetic Coding with these differences resulted with better compression. The

best compression ratio obtained with Lossless Compression techniques is the

Huffman Coding of 3rd order finite difference and Arithmetic Coding of same data

is the second. Finally encoding JSD with Fourier transformation technique has

provide very small compression values whereas it has been observed that Wavelet

Transformations presents compression ratios around the ones obtained by lossless

compression techniques.

Table 8.3 Allocated Storage Spaces with each method.

Store spaces (bytes) Compression

ratio q1 q2 q3 q4 q5 q6 Total
Raw Data 4274 4477 4477 4477 4477 4477 26659 N/A

FOD 3187 3194 3397 3601 3194 3397 19970 25,09%
SOD 2306 2319 2319 2930 2523 3133 15530 41,75%
TOD 1626 1645 1442 2663 2052 2256 11684 56,17%

SOD/HC 5151 5293 5443 4768 4448 4770 29873 112,06%
TOD/HC 1283 1355 1249 1310 1228 1434 7859 70,52%
SOD/AC 3760 3802 3936 3507 3366 3513 21884 17,91%
TOD/AC 1380 1426 1383 1381 1410 1472 8452 68,30%

CP 618 715 654 714 867 945 4513 83,07%
LP 620 713 654 717 916 872 4492 83,15%
BP 651 683 657 720 798 767 4276 83,96%
FT 4198 3988 4043 4013 3831 4193 24266 8,98%
WT 1746 1772 1849 2080 2131 2004 11582 56,56%

8.4.1.2 Error Statistics

In this part, the end-effector deviations throughout the trajectory generated after

the decoding of the encoded data will be plotted. In addition, the RMS, minimum

and maximum errors obtained in each axis will be tabulated. It should be noted

that High order differences, Huffman Coding and Arithmetic Coding techniques

are lossless compression techniques so decoded data obtained by these methods

fits perfectly to the original trajectory.

 131

The deviations presented by Chebyshev Polynomials are illustrated in Figure 8.7.

The maximum deviation of end-effector with this method is 5.2 microns which is

acceptable levels. As tabulated in Table 8.4, the errors of each axis fluctuate

between -4.3 microns and 4.7 microns at X axis, between -4.4 microns and 5.2

microns at Y axis, and between -3.7 microns and 3.9 microns at Z axis. In

addition, the RMS values of axes are 1.2 µm, 2.1 microns and 1.8 µm for X, Y

and Z axes respectively.

Figure 8.7 End-effector deviation via Chebyshev Polynomial.

The error characteristics of Legendre Polynomials are similar to the Chebyshev

Polynomials and illustrated in Figure 8.8. The maximum deviation of end-effector

with this method is 5.5 microns. As tabulated in Table 8.4, the errors of each axis

fluctuate between -4.2 microns and 4.7 microns at X axis, between -4.4 microns

and 4.5 microns at Y axis, and between -4.1 microns and 5.2 microns at Z axis. In

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 132

addition, the RMS values of axes are 1.1 micron, 2.1 microns and 1.8 micron for

X, Y and Z axes respectively.

Figure 8.8 End-effector deviation via Legendre Polynomial.

The deviations presented by Bernstein Polynomials are illustrated in Figure 8.9.

The maximum deviation of end-effector with this method is 5.7 microns which is

almost the same with the error obtained by previous polynomial techniques. As

tabulated in Table 8.4, the errors of each axis fluctuate between -4.3 microns and

4.5 microns at X axis, between -4.3 microns and 4.6 microns at Y axis, and

between -4.1 microns and 4 microns at Z axis. In addition, the RMS values of

axes are 1.1 micron, 2.1 microns and 1.8 micron for X, Y and Z axes respectively.

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

time (sec)

 E
rro

r [
μm

]
Error of End-effector Trajectory

 133

Figure 8.9 End-effector deviation via Bernstein Polynomial.

Figure 8.10 illustrates the deviations presented by Fourier Transformations. The

maximum deviation of end-effector with this method is 5.5 microns which is

acceptable and it is similar to the errors with polynomial techniques. The errors of

each axis fluctuate between -3.4 microns and 3.5 microns at X axis, between -4.5

microns and 5.2 microns at Y axis, and between -4.2 microns and 4.5 microns at Z

axis. In addition, the RMS values of axes are 1.2 micron, 2.0 microns and 1.8

micron for X, Y and Z axes respectively as tabulated in Table 8.4.

Table 8.4 RMS, Maximum and Minimum Errors for each axis.

X Axis (µm) Y Axis (µm) Z Axis (µm) Trajectory
RMS Min Max RMS Min Max RMS Min Max Max

CP 1.2 -4.3 4.7 2.1 -4.4 5.2 1.8 -3.7 3.9 5.2
LP 1.1 -4.2 4.7 2.1 -4.4 4.5 1.8 -4.1 5.2 5.5
BP 1.1 -4.3 4.5 2.1 -4.3 4.6 1.8 -4.1 4.0 5.7
FT 1.2 -3.4 3.5 2.1 -4.5 5.2 1.8 -4.2 4.5 5.5
WT 1.1 -3.3 3.2 2.0 -4.5 4.8 1.8 -4.5 4.3 4.9

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 134

Figure 8.10 End-effector deviation via Fourier Transform.

Finally the deviations in end-effector have been plotted in Figure 8.11.

Although the maximum error values are not dramatically different than the

previous methods, maximum deviation with this method is 4.9 microns. The

errors of each axis fluctuate between -3.3 microns and 3.2 microns at X axis,

between -4.5 microns and 4.8 microns at Y axis, and between -4.5 microns and

4.3 microns at Z axis. In addition, the RMS values of axes are 1.1 micron, 2

microns and 1.8 micron for X, Y and Z axes respectively as tabulated in Table

8.4.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 135

Figure 8.11 End-effector deviation via Wavelet Transform.

For cross checking the accuracy of the encoding techniques, maximum and

minimum errors in each joint has been calculated and tabulated in Table 8.5. As

seen from table the errors are negligible.

Table 8.5 Maximum and minimum errors at joints.

q1(µrad) q2(µrad) q3(µrad) q4(µrad) q5(µrad) q6(µrad)
min max min max min max min max min max min max

CP -4.9 3.1 -4.8 4.4 -4.4 4.7 -3.9 4.5 -3.0 2.1 -15.6 19.6

LP -3.0 2.7 -4.4 4.3 -4.1 4.8 -3.4 5.4 -3.0 2.4 -16.9 13.2

BP -4.9 4.0 -4.4 4.6 -4.1 4.7 -3.4 5.0 -3.2 2.4 -15340 14519

FT -3.5 4.1 -3.6 4.2 -4.6 3.9 -4.0 4.3 -3.9 3.1 -8.1 6.2

WT -2.2 1.9 -3.5 3.7 -3.5 2.8 -1.4 1.3 -0.7 0.3 -0.7 0.8

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 136

8.4.2 Stanford Manipulator

8.4.2.1 Memory Requirement

After obtaining the JSD of each joint of Stanford Manipulator, all of the encoding

techniques have been applied. The representation requirement of each method has

been tabulated in Table 8.6. Polynomial techniques have significantly reduced the

number of the commands. As expected high order differences kept the number of

commands same and the advanced transformation techniques has reduced the

representation requirement slightly.

Table 8.6 Representation Requirement for each Method.

Representation Requirement for Each Method Compression

ratio q1 q2 q3 q4 q5 q6 Total
Raw
Data 1628 1628 1628 1628 1628 1628 9768 N/A

FOD 1628 1628 1628 1628 1628 1628 9768 N/A
SOD 1628 1628 1628 1628 1628 1628 9768 N/A
TOD 1628 1628 1628 1628 1628 1628 9768 N/A
CP 224 218 137 265 247 254 1345 86,23%
LP 224 216 137 265 246 253 1341 86,27%
BP 225 217 158 267 248 257 1372 85,95%
FT 1561 1587 1213 1583 1607 1559 9110 6,74%
WT 1596 1596 928 1612 1596 1433 8761 10,31%

The memory requirements for each method have been tabulated in Table 8.7

According to the results; it is obvious that storage requirements of commands

generated by encoding have decreased in different levels. The best compression

has been obtained by Polynomial techniques, Huffman Coding of the 3rd order

difference and Arithmetic Coding of 3rd order finite difference. Following these

techniques, Wavelet Transformation and 3rd order finite differences has slightly

less compression levels than the previous ones but the storage requirements

reduced to the half of the original with these methods as well.

 137

Table 8.7 Allocated Storage Spaces with each method.

Store spaces (bytes) Compression

ratio q1 q2 q3 q4 q5 q6 Total
Raw
Data 4274 4477 5088 5088 4681 5088 28696 N/A

FOD 3187 3194 3823 3620 3200 3620 20644 28,06%
SOD 2103 2116 2764 2968 2332 2968 15251 46,85%
TOD 1423 1238 1703 2517 1868 2517 11266 60,74%

SOD/HC 4405 4445 5796 4654 3153 4203 26656 7,11%
TOD/HC 1061 937 1208 1902 1180 1685 7973 72,22%
SOD/AC 3302 3398 4191 3500 2557 3214 20162 29,74%
TOD/AC 1208 1214 1456 1864 1371 1707 8820 69,26%

CP 588 600 429 829 711 794 3951 86,23%
LP 588 594 429 829 708 791 3939 86,27%
BP 591 597 494 835 713 804 4034 85,94%
FT 4098 4166 3185 4156 4018 3898 23521 18,03%
WT 1901 2080 2285 2311 2080 2311 12968 54,81%

8.4.2.2 Error Statistics

In this part, the end-effector deviations throughout the trajectory generated after

the decoding of the encoded data will be plotted. The RMS, minimum and

maximum errors obtained in each axis will be tabulated in addition to the

maximum and minimum joint errors. It should be noted that High order

differences, Huffman Coding and Arithmetic Coding techniques are lossless

compression techniques so decoded data obtained by these methods fits perfectly

to the original trajectory.

The deviations presented by Chebyshev Polynomials are illustrated in Figure 8.7.

The maximum deviation of end-effector with this method is 64.6 microns which is

below the required tolerance of 100 microns. As tabulated in Table 8.8, the errors

of each axis fluctuate between -33.4 microns and 27 microns at X axis, between -

43.3 microns and 54.6 microns at Y axis, and between -19.4 microns and 19.2

microns at Z axis. In addition, the RMS values of axes are 5 µm, 4.9 microns and

3.6 µm for X, Y and Z axes respectively. The important difference between the

 138

RMS values and maximum errors show that there have been local increases in the

end-effector error.

Figure 8.12 End-effector deviation via Chebyshev Polynomial.

Unlike Puma 560, the results of the polynomial fitting techniques for JSD of

Stanford Manipulator have resulted with almost identical error properties. As seen

in Figure 8.13 which illustrates the deviations presented by Legendre

Polynomials, the error values and their distribution matches with the error of

Chebyshev Polynomials. The maximum deviation of end-effector with this

method is 64.6 microns which is below the required tolerance of 100 microns. As

tabulated in Table 8.8, the errors of each axis fluctuate between -33.3 microns and

26.8 microns at X axis, between -43.5 microns and 54.5 microns at Y axis, and

between -19.1 microns and 18.9 microns at Z axis. In addition, the RMS values of

axes are 5 micron, 4.9 microns and 3.6 microns for X, Y and Z axes respectively.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

time (sec)

 E
rro

r [
μm

]
Error of End-effector Trajectory

 139

The important difference between the RMS values and maximum errors show that

there has been local increases in the end-effector error.

Figure 8.13 End-effector deviation via Legendre Polynomial.

The results obtained with Bernstein polynomials are similar to the previous

polynomial techniques. The deviations of the end-effector have been plotted in

Figure 8.14. The maximum deviation of end-effector with this method is 64.6

microns which is below the required tolerance. As tabulated in Table 8.8, the

errors of each axis fluctuate between -33.5 microns and 26.8 microns at X axis,

between -43.2 microns and 54.5 microns at Y axis, and between -19.4 microns

and 19.1 microns at Z axis. In addition, the RMS values of axes are 5 microns, 4.9

microns and 3.6 microns for X, Y and Z axes respectively. The important

difference between the RMS values and maximum errors show that there have

been local increases in the end-effector error.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

time (sec)

 E
rro

r [
μm

]
Error of End-effector Trajectory

 140

Figure 8.14 End-effector deviation via Bernstein Polynomial.

Figure 8.15 illustrates the deviations presented by Fourier Transformations. The

maximum deviation of end-effector with this method is 57.9 microns which is

inside the required error bands. The errors of each axis fluctuate between -57.6

microns and 50.9 microns at X axis, between -46.2 microns and 51.2 microns at Y

axis, and between -32.3 microns and 38.2 microns at Z axis. In addition, the RMS

values of axes are 7.1 microns, 5.2 microns and 3.9 microns for X, Y and Z axes

respectively as tabulated in Table 8.8. These values are slightly higher than the

ones obtained by the polynomial fitting techniques.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 141

Figure 8.15 End-effector deviation via Fourier Transform.

And finally, the deviations of the end-effector have been plotted in Figure 8.16.

The errors found with this method are quite low w.r.t the other methods. The

errors of each axis fluctuate between –8.4 microns and 10.1 microns at X axis,

between -46.2 microns and 51.2 microns at Y axis, and between -7 microns and

8.0 microns at Z axis. In addition, the RMS values of axes are 3.2 µm, 3.0 microns

and 2.6 microns for X, Y and Z axes respectively as tabulated in Table 8.8.

Table 8.8 RMS, Maximum and Minimum Errors for each axis.

X Axis (µm) Y Axis (µm) Z Axis (µm) Trajectory
RMS Min Max RMS Min Max RMS Min Max Max

CP 5.0 -33.4 27.0 4.9 -43.3 54.6 3.6 -19.4 19.2 64.6
LP 5.0 -33.3 26.8 4.9 -43.5 54.5 3.6 -19.1 18.9 64.6
BP 5.0 -33.5 26.8 4.9 -43.2 54.5 3.6 -19.4 19.1 64.6
FT 7.1 -56.6 50.9 5.2 -46.2 51.2 3.9 -32.3 38.2 57.9
WT 3.2 -8.4 10.1 3.0 -7.0 8.0 2.6 -6.1 7.4 10.7

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 142

Figure 8.16 End-effector deviation via Wavelet Transform.

In order to cross check the results obtained by end-effector deviations, maximum

and minimum errors in each joint has been calculated and tabulated in Table 8.9.

As seen from table the errors are negligible but the errors of the prismatic joint is

around 60 microns which is the source of the respectively high errors observed in

the end-effector trajectory.

Table 8.9 Maximum and minimum errors at joints.

q1(µrad) q2(µrad) q3(µrad) q4(µrad) q5(µrad) q6(µrad)
min max min max min max min max min max min max

CP -4.3 7.7 -4.8 4.5 -64.2 51.0 -11.3 13.0 -4.3 3.6 -10.9 12.3

LP -4.6 7.3 -6.7 6.4 -64.2 51.0 -11.3 13.0 -4.3 4.0 -18.2 21.4

BP -4.6 7.3 -6.7 6.0 -64.2 51.0 -11.3 13.0 -4.3 3.6 -11.4 12.8

FT -7.4 5.5 -3.6 3.8 -57.1 51.0 -9.7 9.7 -4.9 4.4 -7.8 8.6

WT -2.2 3.2 -2.7 2.6 -8.9 10.6 -0.9 0.7 -3.9 3.2 -5.5 5.3

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

time (sec)

 E
rro

r [
μm

]

Error of End-effector Trajectory

 143

8.5 Closure

In this chapter, simulations of a template of roundabout traffic sign have been

done for the two mostly used manipulators, Puma 560 and Stanford Manipulator.

The encoding techniques have been applied to each case and the results are

discussed.

Comparing the methods within each other, it has been observed that Polynomial

Fitting methods have presented best compression according to the number of

commands generated and required storage spaces. After Polynomial methods, it

has been seen that Huffman Coding method of 3rd order finite has offered best

compression of storage spaces. Although Wavelet transformation has not reduced

the commands generated significantly, the allocated storage space has been

reduced to the one half of the original data. Once the errors obtained by each

method are compared, since Finite Difference Methods, Huffman Coding and

Arithmetic coding methods are lossless compression techniques, they have

decoded the data without presenting any error. But the number of the commands

to be stored and the special functions that have been used for encoding and

decoding of the Huffman Coding made the selection of these methods infeasible.

Comparing the results of lossy compression techniques, Wavelet Transformations

has provided the best convergence. Although the deviations in the trajectory for

polynomial fitting methods and Fourier Transformations are slightly higher than

Wavelet transformations they are close to each other and they are always within

the acceptable limits.

Comparing the results of methods according to the manipulator used, methods

offered same compression ratios for both manipulators. But in the case of errors, it

has been observed that differences have occurred according to the manipulator.

Although the errors are within the desired levels, deviations of the end-effector

have increased dramatically when modelling the trajectory with Stanford

Manipulator. The main reason of this increase in the deviation is the prismatic

joint used in the system as seen from Table 8.9. But it should be noted that the

 144

errors in the prismatic joint which is around 60 microns has been compensated

with errors in the other joints and the global error has been kept in desired levels.

Evaluating the results of each method, selection of Polynomial fitting seems to be

the best option because of the high compression of storage spaces, reduction of

the commands generated and the errors presented. Comparing the results of each

polynomial fitting technique, they have almost identical compression ratios, same

number of commands and same error characteristics. But taking the problems

encountered during the segmentation into account, and the wider application areas

of Chebyshev Polynomials w.r.t Legendre Polynomials, it is best to use

Chebyshev Polynomials for encoding and decoding of the Joint State Data

obtained by inverse kinematic solution.

 145

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this study, a universal command generator algorithm for computer controlled

mechanisms has been developed. The proposed algorithm can be employed for all

kinds of mechanisms. The abilities of the command generator are path planning

according to the NC code entered, trajectory generator, inverse kinematic solver,

and command encoder which encodes the joint state data (JSD) into an encoded

joint state file. The algorithm starts with the interpretation of the NC code defined

by the user. NC code follows RS-274B conventions but some additions and

simplification has been made in order to fulfill the required tasks. The most

important addition to NC Code is the frame transformations which gives the user

the freedom to define the trajectory in terms of linear and circular segments in a

local coordinate frame. And in the NC code, this local frame can be located inside

a global frame by specifying the Cartesian coordinates of its origin as well as

orientation. The path planning of the tool has been managed off-line. The position

of the tool in time depending on the sampling time has been generated via linear

and circular interpolation methods.

Once the position data in time has been produced, the consequent JSD are

computed with an iterative numerical inverse kinematic solver which uses Denavit

Hartenberg parameter tables. Denavit Hartenberg parameters have been selected

because of the wide usage in the literature and the easiness of describing the

geometric properties of the machine system at hand. In the inverse kinematic

solutions, it is aimed that the tool travels tangent to the circular paths and along

 146

the linear paths. In addition, it is assumed that the end-effector is always

perpendicular to the working surface. In the inverse kinematic solution, the error

bands representing envelope of each joint has been generated numerically. The

error bands are used for checking the results of the encoded data weather the

approximation errors of each joint leads an unwanted deviation of the end-

effector.

Finally the command encoder uses the resulting data of inverse kinematic

operations to produce efficient representation of positions and its higher order

derivatives in joint space with minimum redundancy. In order to find the most

efficient way to encode the data, lossless and lossy compression techniques have

been utilized. The encoding methods considered within the context of this thesis

are:

• Lossless data compression of higher-order finite differences of JSD

• Polynomial (Chebyshev, Legendre, Bernstein) representation of JSD

• Fourier and Wavelet transforms of JSD

Lossless data compression techniques have been divided into two sections: High

order finite differences of JSD and compressing these differences via methods

such as Huffman and Arithmetic coding. With the high order finite differences it

is aimed to reduce the range of the data to be stored and with Coding techniques,

commands are encoded further with defining these data using a binary code which

uses shorter codewords for frequently used data and longer codewords for least

used data.

The polynomial representation of JSD has been investigated on three main

polynomial types: Chebyshev, Legendre, and Bernstein Polynomials. The basis

functions of each Polynomial have been generated in order to obtain the

coefficients of each polynomial via pseudo-inverse method. Since the polynomials

can approximate almost any continuous functions to the desired accuracy quickly

with modest resources, they are the best candidate for modeling the signals in the

target domain.

 147

Finally Fourier and Wavelet transformations have been studied for compressing

the data. The Fourier transformations of joint variables have been calculated in

order to represent the data in frequency domain. The Fourier coefficients are

handled with Least Square Methods. As mentioned before, the starting and the

ending of the segments to be transformed are linearly interpolated in order to

represent the data with a linear segment and a periodic segment which

significantly reduces the approximation error. For the Wavelet transformation

built up MATLAB functions has been used for transformations. Daubechies

wavelets at second level have been used. After the transformation, smaller

coefficients that are below a threshold have been omitted.

After investigating all the compression methods, they have been applied to Puma

560 and Stanford Manipulator on a predefined trajectory. The results of each

method were tabulated in terms of; number of commands generated, the required

storage space, maximum deviation of the trajectory, the root mean square,

maximum and minimum values of the error in each axis and the maximum and

minimum errors observed in decoded joint values.

Comparing the methods, it has been observed that Polynomial Fitting methods

have presented best compression according to the number of commands generated

and required storage spaces and Huffman Coding of the 3rd order finite difference

follows Polynomial methods. Checking on the results of deviations of the end-

effector, Lossless compression techniques decoded the JSD without any errors.

But the number of the commands to be stored and the special functions that have

been used for encoding and decoding of the Huffman Coding made the selection

of these methods infeasible. Comparing the results of lossy compression

techniques, Wavelet Transformations has provided the best convergence.

Although the deviations in the trajectory for polynomial fitting methods and

Fourier Transformations are slightly higher than Wavelet transformations they are

close to each other and they are always within the acceptable limits. Taking all the

input of the methods, encoding with polynomial fitting methods is selected to be

the most efficient way to represent JSD. Comparing the polynomials,

 148

approximation errors obtained by Bernstein Polynomials by the proposed

sectioning method eliminated this method. The use of Chebyshev Polynomial is

preferred instead of Legendre Polynomials because of the wider application areas

of the Chebyshev Polynomials.

9.2 Future work

In addition to the scope of this thesis there are still many contributions that can be

made. These can be classified as trajectory generation, optimization of the

kinematic model, and additions to the encoding and decoding can be done.

In trajectory generation part, the scope of the NC code can be increased. Helical,

parabolic and complex motion types can be added. The interpretation capabilities

of the NC Code can be increased by adding the desired tool orientations

throughout the motion. Various interpolation methods such as spline, NURBS,

space interpolators can be implemented. In this thesis, feedrate is selected to be

constant throughout the machining, but in real life feedrate (velocity) of the tool

can be changed dynamically. So a time scaling algorithm for dynamic velocity

changes should be added.

For the kinematic part, optimization of the initial joint configuration can be added.

Performance of the manipulators can be increased by using modified Jacobian

representations. Inverse kinematic solutions for redundant mechanisms can be

implemented. As mentioned before, the tool is assumed to move perpendicular to

the working plane all over the trajectory. The tool can be arranged to move

perpendicular to the trajectory with several definitions such as desired tool

orientation, type of the task in hand and gripper style.

For compression of the data, additional encoding techniques can be investigated.

In addition to that, it has been observed that currently used segmentation method

fails while approximating the data with some of the methods. This situation forced

the user to define the problematic sections with smaller sections. So a dynamic

segmentation algorithm should be developed.

 149

The last but the most important addition to this work is the command decoding as

well as its (hardware) implementation. Due to the broad range of this thesis

decoding algorithms has not been developed and left for future works.

 150

REFERENCES

[1] Craig, John J. “Introduction to Robotics Mechanisms and Control”, Addison-

Wesley Publishing Company Inc, 1989.

[2] Chapra, Steven C. and Canale, Raymond P. “Numerical Methods for

Engineers”, Mc Graw Hill, 2002.

[3] Erdman, Arthur G. “Modern Kinematics Developments in the last forty years”,

John Wiley & Sons Inc, 1993.

[4] Yang, M. Y. & Hong, W. P. “A PC–NC milling machine with new

simultaneous 3-axis control algorithm”. International Journal of Machine

Tools & Manufacture 41 555–566, 2001.

[5] Dolen, M. “ME440 Chapter 5a” Lecture, METU, 2005, unpublished.

[6] Cheng M. Y. “Real-time NURBS command generators for CNC servo

controllers.” International Journal of Machine Tools & Manufacture 42 801–

813, 2002.

[7] Lartigue, C., Thiebaut, F., Maekawa, T. “CNC tool path in terms of B-spline

curves.” Computer-Aided Design 33 307-319, 2001.

[8] Bahr, B. Xiao, X., Krishnan, K. “A real-time scheme of cubic parametric

curve interpolations for CNC systems.” Computers in Industry 45 309-317,

2001.

[9] Omirou, Sotiris L. “Space curve interpolation for CNC machines”. Journal of

Materials Processing Technology, 2003.

 151

[10] Farouki , Rida T. , Tsai, Yi-Feng. “Exact Taylor series coefficients for

variable-feedrate CNC curve interpolators” Computer-Aided Design 33 155-

165, 2001.

[11] Yeung, C., Altintas, Y. Erkorkmaz, K. “Virtual CNC system. Part I. System

architecture”. International Journal of Machine Tools and Manufacture,

Volume 46, Issue 10, Pages 1107-1123, 2006.

[12] Liu, Y. Guo, X. Li W., Yamazaki, K., Kashihara, K., Fujishima M. “An

intelligent NC program processor for CNC system of machine tool” Robotics

and Computer-Integrated Manufacturing, 2006.

[13] Erkorkmaz, K. Altintas, Y. “High speed CNC system design. Part I: jerk

limited trajectory generation and quintic spline interpolation” International

Journal of Machine Tools and Manufacture Volume 41, Issue 9 , July 2001.

[14] Wang, X. Baron L. Cloutier G. “Topology of serial and parallel manipulators

and topological diagrams” Mechanism and Machine Theory, 2007.

[15] Tabaczynski, M. “Jacobian Solutions to the Inverse Kinematics Problem”

Tufts University, Math 128 Fall 2005 Final Project, 2006.

[16] Ho, E., Komura, T. Lau, R. “Computing Inverse Kinematics with Linear

Programming” VRST’05, November 7–9, 2005.

[17] Regnier, S. Ouezdou F.B. Bidaud P. “Distributed Method for Inverse

kinematics of all serial manipulators”, vol. 32 No. 7, 1997.

[18] Chen, I. Yang, G. “Numerical Inverse Kinematics for Modular

Reconfigurable Robots”, Journal of Robotic Systems 16(4), 213-225, 1999.

[19] Wolovich, W. A. “ROBOTICS: Basic Analysis and Design”. New York:

CBS Collage Publishing, 1987.

 152

[20] M.C. Lee et al. “Robotics and Computer Integrated Manufacturing 17 177-

183, 2001.

[21] A. Pott et al. “A simplified force-based method for the linearization and

sensitivity analysis of complex manipulation systems” Mechanism and

Machine Theory 42, 1445–1461, 2007.

[22] A.T. Hasan et al. “An adaptive-learning algorithm to solve the inverse

kinematics problem of a 6 D.O.F serial robot manipulator” Advances in

Engineering Software 37, 432–438, 2006.

[23] Aspragathos, N.A, “Cartesian Trajectory Generation Under Bounded

Position Deviation”, Mech. Mach. Theory Vol. 33, No. 6, pp. 697-709, 1998.

[24] Luh, J. Y. S. and Lin, C. S. “IEEE Transactions on Systems, Man and

Cybernetics”, 1984.

[25] Taylor, R. H., “IBM Journal of Research and Development”, 23, 1979.

[26] Chapelle, F. and Bidaud P., “Closed form solutions for inverse kinematics

approximation of general 6R manipulators”, Mechanism and Machine Theory

39, 323–338, 2004.

[27] S. Mitsi et al., “Determination of optimum robot base location considering

discrete end-effector positions by means of hybrid genetic algorithm”,

Robotics and Computer-Integrated Manufacturing, 2006.

[28] Nawratil, G., “New performance indices for 6R robots”, Mechanism and

Machine Theory 42, 1499–1511, 2007.

[29] Corke, P. “Robotic Toolbox for MATLAB, IEEE Robotics and Automation

Magazine, March 1, 24-32, 1996.

[30] Sobh, T.M and Toundykov, D, “Optimizing the Tasks at Hand”, IEEE

Robotics & Automation Magazine, June, 2004.

 153

[31] Denavit, J., “Description and Displacement Analysis of Mechanisms Based

on (2x2) Dual Matrices,” Ph.D. dissertation (Advisor- R.S. Hartenberg),

Northwestern University, Evanston, Illinois, 1956.

[32] O’Neil, P. V. “Advanced Engineering Mathematics” 5th ed. Pacific Grove,

Thomson Brooks/Cole, 2003.

[33] Xiao, J.J., “Kinematics II” G5501: Introduction to ROBOTICS Lecture, The

City College of New York, 2005, unpublished.

[34] Kayhan G., “Robot Kinematiğinin Esasları”, Masters Degree Seminar,

Ondokuz Mayıs University Electrics-Electronics Eng. Department, 2003.

[35] Hydzik, T., “Chapter 3. FORWARD KINEMATICS: THE. DENAVIT-

HARTENBERG. CONVENTION” Robotics 315 Lecture, The University of

Western Australia, 2007, unpublished.

[36] Lorenz, R. D. “Advanced Automation and Robotics” ME 739, unpublished,

1995.

[37] Chung, Y.Y., “Applied Numerical Methods using MATLAB” , Wiley

Interscience, 2005.

[38] Vamoser, D. “Puma 560 Simulator Project”, Computer Science and

Engineering Department, University of Bridgeport, 1997.

[39] Lelewer, D.A., Hirschberg, D.S., “Data compression”, Computing Surveys

19, 3 261-297, 1987.

[40] Nelson, M., “LZW Data Compression”, Dr. Dobb's Journal, 1989.

[41] Theory of Data Compression,http://www.data-compression.com. Last access:

03.01.2009

[42] Gallager, R. G. Variations on a Theme by Huffman. IEEE Trans. Inform.

Theory 24, 6 (Nov.), 668-674. 1978.

 154

[43] MATLAB® Help, R2006b, The MathWorks, Inc.

[44] Weisstein, Eric W., Math World--A Wolfram Web Resource.

http://mathworld.wolfram.com/ Last access: 10.01.2009.

[45] Tonbul, S. “Beş Eksenli Bir Edubot Robot Kolunda Ters Kinematik

Hesaplamalar Ve Yörünge Planlamasi” J. Fac. Eng. Arch. Gazi Univ., Vol

18, No 1, 145-167, 2003.

[46] Smith, J. O. “Mathematics of the Discrete Fourier Transform (DFT) with

Audio Applications, Second Edition”, W3K Publishing, 2007.

[47] Dr. Herman R., Fourier Analysis of Time Series, Lecture Notes, UNC

Wilmington, unpublished, 2002.

[48] Holistic Numerical Methods Institute, Numerical Methods for the STEM

Undergraduate, http://numericalmethods.eng.usf.edu/index.html , Last access:

13.01.2009.

[49] Amhmed, S., Kwan, H., Ramli. A., Dowsett, “A Comparison of JPEG and

Wavelet Compression Applied to Computed Tomography Brain, Chest, and

Abdomen Images.” The Internet Journal of Medical Simulation and

Technology, Volume 1 Number 1, 2002.

[50] Chen et al. / J Zhejiang, “Wavelet network solution for the inverse

kinematics problem in robotic manipulator”, Journal of Zhejiang University

SCIENCE A, 7(4):525-529, 2005.

[51] Ozgoren, K., “ME 522 Principles of Robotics” Lecture notes, METU,

unpublished.

[52] Vanicek P. "Approximate Spectral Analysis by Least-squares Fit",

Astrophysics and Space Science, pp.387–391, Volume 4, 1969.

 155

[53] Craymer, M.R., “The Least Squares Spectrum, Its Inverse Transform and

Autocorrelation Function: Theory and Some Applications in Geodesy”, Ph.D.

Dissertation, University of Toronto, Canada, 1998.

[54] Matthias, R. “710.088 Robot Vision” Lecture notes, Institute for Computer

Graphics and Vision, unpublished.

[55] Nahavandi, S., et al., “Automated robotic grinding by low-powered

manipulator”, Robotics and Computer-Integrated Manufacturing 23 589–598,

2007.

[56] Yoshikawa T., “Manipulability of robotic mechanisms.” Int. J. Robotics

Research, 4, No.2, pp3-9, 1985.

[57] Sayood, Khalid, Introduction to Data Compression, San Francisco, Morgan

Kaufmann, 2000.

[58] Amir, S., “Lossless Compression Handbook – Editor Khalid Sayood”,

Academic Press, 2003.

[59] R. Melamud “Kinematics Final”, Introduction to Robotics Lecture notes,

Carnegie Mellon University, Unpublished.

[60] Boyd, J. P., “Chebyshev and Fourier Spectral Methods”, Dover Publications,

Inc., 2000.

[61] Collins, G.W., II. “Fundamental Numerical Methods and Data Analysis”,

NASA Astrophysics Data System (ADS), 2000.

[62] Lo, C.C., “CNC machine tool surface interpolator for ball-end milling of

free-form surfaces”, Lo International Journal of Machine Tools &

Manufacture 40, 307–326, 2000.

[63] Ho, M., Hwang, Y “Machine codes modification algorithm for five-axis

machining”, Journal of Materials Processing Technology, 2003.

 156

[64] Cheng et al. “Real-time NURBS command generators for CNC servo

controllers” International Journal of Machine Tools & Manufacture 42 801–

813, 2002.

[65] Lo, C. Hsiao, C., “CNC machine tool interpolator with path compensation for

repeated contour machining”, Computer-Aided Design Vol. 30, 1998.

[66] Lo, C.-C., “Real-time generation and control of cutter path for 5-axis CNC

machining” International Journal of Machine Tools & Manufacture, 39 471–

488, 1999.

[67] Kemeny, Z., “Mapping, Detection and Handling Of Singularities For

Kinematically Redundant Serial Manipulators”, Periodica Polytechnica Ser.

El. Eng. Vol. 46, No. 1, Pp. 29–45, 2002.

[68] Sciavicco, L. Siciliano, B. “Modeling and Control of Robot Manipulators”,

The McGraw-Hill Companies, Inc. Addison-Wesley Publishing Company

Inc, 1996.

[69] Ergude, B., et al. “A Study and Implementation of the Huffman Algorithm

Based on Condensed Huffman Table”, School of Software, Beijing Jiaotong

University, International Conference on Computer Science and Software

Engineering, 2008.

[70] Huffman, David A., “A Method for the Construction of Minimum-

Redundancy Codes” Proceedings of IRE, Vol. 40, pp. 1098-1101, Sept. 1952.

[71] Sripathi, D., “Efficient Implementations Of Discrete Wavelet Transforms

Using FPGAs”, Master Thesis, Department of Electrical and Computer

Engineering - The Florida State University College Of Engineering, 2003.

[72] Kameyama, M., et al. “Implementation of A High Performance LSI For

Inverse Kinematics Computation”, in Proc. 1989 IEEE Conf. Robotics and

Automation, Scottsdale, AZ, pp. 757-762, 1988.

 157

APPENDIX A

NC CODE OF ROUNDABOUT SIGN – CASE STUDY

g100 u452.1 v-150.05 w231.8 a30 b120 c30
g90 g0 z50
x0 y-300
z0
g3 g17 j300 i0 f5000
g0 z50
x0 y-282.5
z0
g3 j282.5 i0 f5000
g0 z50
x0 y-230
z0
g2 x-226.506 y-39.939 r230 f6000
g1 x-246.202 y-43.412 f3000
x-193.128 y60.893 f6000
g0 z50
x-199.186 y115
g0 z0
g2 x78.665 y216.129 i199.186 j-115
g1 x85.5005 y234.923 f3000
x149.299 y136.807 f6000
g0 z50
x199.186 y115
z0
g2 x147.841 y-176.19 i-199.186 j-115
g1 x160.697 y-191.511 f3000
x43.829 y-197.7 f6000
g0 z50
x0 y-230
z0
g1 x0 y-175
g2 x-172.341 y-30.388 r175
g1 x-152.645 y-26.915 f3000
x-193.128 y60.893 f6000
g0 z50
x-199.186 y115
z0
g1 x-151.554 y87.5
g2 x59.854 y164.446 i151.554 j-87.5
g1 x53.013 y145.652 f3000
x149.299 y136.807 f6000
g0 z50
x199.186 y115
z0
g1 x151.554 y87.5
g2 x112.488 y-134.058 i-151.554 j-87.5
g1 x99.632 y-118.737 f3000
x43.829 y-197.7 f6000

 158

APPENDIX B

NC CODE OF PUMA 560 FOR ROUNDABOUT SIGN

g100 u452.1 v-150.05 w431.8 a10 b10 c0
g90 g0 z50
x0 y-300
z0
g3 g17 j300 i0 f5000
g0 z50
x0 y-282.5
z0
g3 j282.5 i0 f5000
g0 z50
x0 y-230
z0
g2 x-226.506 y-39.939 r230 f6000
g1 x-246.202 y-43.412 f3000
x-193.128 y60.893 f6000
g0 z50
x-199.186 y115
g0 z0
g2 x78.665 y216.129 i199.186 j-115
g1 x85.5005 y234.923 f3000
x149.299 y136.807 f6000
g0 z50
x199.186 y115
z0
g2 x147.841 y-176.19 i-199.186 j-115
g1 x160.697 y-191.511 f3000
x43.829 y-197.7 f6000
g0 z50
x0 y-230
z0
g1 x0 y-175
g2 x-172.341 y-30.388 r175
g1 x-152.645 y-26.915 f3000
x-193.128 y60.893 f6000
g0 z50
x-199.186 y115
z0
g1 x-151.554 y87.5
g2 x59.854 y164.446 i151.554 j-87.5
g1 x53.013 y145.652 f3000
x149.299 y136.807 f6000
g0 z50
x199.186 y115
z0
g1 x151.554 y87.5
g2 x112.488 y-134.058 i-151.554 j-87.5
g1 x99.632 y-118.737 f3000
x43.829 y-197.7 f6000

 159

APPENDIX C

LIST OF FINDCENTER

%Find the center of circle

function centerCoord= findCenter(Xs, Ys, Xf, Yf, R, rotation)

 centerCoord = zeros(1,2);

 diffX=abs(Xf-Xs); diffY=abs(Yf-Ys);

 rootA = Xs; rootB = Ys; rootD = Xf; rootE = Yf;

 rootF = 2 * (rootA - rootD); rootG = 2 * (rootB - rootE);

 rootH = rootA*rootA + rootB*rootB - rootD*rootD - rootE*rootE;

 rootK = rootA - rootH / rootF;

 rootM = 1 + (rootG * rootG / (rootF * rootF));

 rootN = 2 * (rootK * rootG / rootF - rootB);

 rootP = R * R - rootK * rootK - rootB * rootB;

 Yc1 = (-rootN- sqrt(rootN*rootN+ 4*rootM*rootP)) / (2 * rootM);

 Yc2 = (-rootN + sqrt(rootN*rootN + 4*rootM*rootP)) / (2*rootM);

 rootO = rootA * rootA + ((rootB - Yc1) * (rootB - Yc1)) - R * R;

 rootQ = rootA * rootA + ((rootB - Yc2) * (rootB - Yc2)) - R * R;

 Xc1 = ((2 * rootA - sqrt((4 * rootA * rootA - 4 * rootO))) / (2));

 Xc2 = ((2 * rootA + sqrt((4 * rootA * rootA - 4 * rootQ))) / (2));

 if (R > 0 && rotation == 2); centerCoord = [Xc2 Yc2];

 elseif R > 0 && rotation == 3; centerCoord = [Xc1 Yc1];

 elseif R < 0 && rotation == 2; centerCoord = [Xc1 Yc1];

 elseif R < 0 && rotation == 3; centerCoord = [Xc2 Yc2];

 end

 end

 160

APPENDIX D

ANALYTICAL SOLUTION OF PUMA MANIPULATOR

()),(2tan),(2tan 222

31 zyxxy pppdappa ++±−=θ

()),(2tan),(2tan 22
4

2
3433 KdaKadaa −+±−=θ

Note that, θ1 and θ3 has two solutions for elbow up-down and left

hand – right hand configuration of the manipulator.

3232 θθθ −=),(2tan 555 csa=θ),(2tan 666 csa=θ
),(2tan 233323123231131231134 srcsrccrcrsra +−−+−=θ

Where si=sin(θi), ci=cos(θi), sij=sin(θi+ θj), ci=cos(θi+ θj), and

113 cpspd yx +−=

2

2
4

2
3

2
3

2
2

222

2a
ddaappp

K zyx −−−−++
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−−

++−−−
=

))(()(

),)(()(
2tan

11323432

32411323
23

yxz

yxz

pspccaapdsa

sadpspcpcaa
aθ

))()()((4233341231423412314135 csrsccscrsscccrs −−++−=

)()()(233323123231135 crssrscrc −++−=

)()()(4233141231421412314116 ssrcccssrcsccsrs ++−−−=

 []
[])()(

)(

5232354312315541231421

23155412314116

scsccrssscsccscr
scsccsccsrc

+−−−+
−−=

See Reference [1] for more detailed information.

 161

APPENDIX E

ANALYTICAL SOLUTION OF STANFORD MANIPULATOR

())tan()tan(
2

2
22

2
1

dPP

da
P
P

a
yxx

y

++±
−=θ

Note that, θ1 has two solutions for elbow up-down configuration of the

manipulator.

)(
))((

)((
tan

))())(((

)
)(

)(
tan(

))(()
)(

tan(

)()tan(

114
21124

21125
6

114211245

2112

114
5

21124
2112

11
4

211123
11

2

yx
zyx

zyx

yxzyx

zyx

yx

zyx
zyx

yx

zyx
z

yx

ocosc
ososoccs
ocosocss

a

ocossososocccc

acasacs
acass

a

asasaccc
asasacc

acas
a

PcPsPcsd
P

PsPc
a

+−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+−

++
=

+−+−+−

++

+−
=

−++
−+

+−
=

++=
+

=

θ

θ

θ

θ

where si=sin(θi), ci=cos(θi) and,

()[] ()6465416526465421 scccsscsssscccccnx +−−−=
()[] ()6465416526465421 scccsccssssccccsny +−−−=
() 652646542 cscsscccsnz −−−=

()[] ()6465416526465421 scscsscsscscccccox +−−++−=
()[] ()6465416526465421 scscsccssssccccsoy +−+++−=

() 652646542 ssccssccsoz ++=
() 541525421 ssscsscccax −+=
() 541525421 ssccssccsay ++= 52542 ccscsaz +−=

21321 dsdscPx −= 21321 dcdssPy += 32dcPz =

See Reference [72] for more detailed information.

 162

APPENDIX F

LISTING OF M FILES

Main_file:
Description: Main file that runs the algorithm. Calls the trajectory generation, inverse and
forward kinematic, compression and error analysis algorithms and generates the required tables
and plots
Inputs: None.
Outputs: Statistical information of the errors obtained from the compression techniques, plots.

trajectory_generation:
Description: Generates the trajectory of the motion from the given NC file w.r.t a predefined
sampling rate and divides the motion into smaller sections.
Inputs: Path of the NC file, sampling rate
Outputs: Tool position in each sampling time, sections.

kinematics:
Description: Iterative inverse kinematic operations are handled. Joint state data throughout the
pre-defined trajectory is computed according to a kinematic tolerance. Transformations from
working frame to global frame are handled as well. The tolerances of the tool are distributed to the
joints and error bands of the joints are formed.
Inputs: Trajectory, sections, Denavit Hartenberg parameters, orientation and position of the
working frame, initial joint estimation.
Outputs: Joint state data, lower and upper error band of the joints.

compress_tech:
Description: Compression, fitting and transformation is handled in this function. Firstly it takes
the joint configuration throughout the trajectory and encodes this data. Then applies finite
difference techniques up to 3rd degree, Huffman and Arithmetic Compression, Polynomial Fitting
and Advanced transformation techniques such as Fourier and Wavelet transformations, then
checks if the fitted data lies in the error envelope and finally decodes the data in order to cross
check the trajectory. In addition, the statistical information about the errors of the fitting is
generated here.
Inputs: Joint state data, error bands of joint state data, Trajectory, sections, Rpm of the encoder.
Outputs: Storage requirements, estimated joint values, representation requirements and
coefficients of each method.

forward_kinematics:
Description: Forward kinematic operations are handled. The tool position is obtained from the
joint configuration.
Inputs: Joint values, Denavit Hartenberg parameters.
Outputs: Tool positions.

 163

errors:
Description: Computes the Rms, max and min of errors in each axis and tabulates the data.
Inputs: Estimated trajectory, original trajectory, time.
Outputs: Table containing the error statistics.

ArcTan:
Description: Finds the angle of the arc in circular motion.
Inputs: Coordinates of the end-point of the circular motion and center of the circle.
Outputs: Arc angle.

bernfit:
Description: Approximate data inside the error band by Bernstein polynomials for each section.
Inputs: Encoded data, error envelope, sections.
Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of
coefficients in bits.

bernpol:
Description: Computes the basis functions of Bernstein Polynomial up for defined number of
coefficient.
Inputs: Length of the data, number of coefficients.
Outputs: Basis functions.

calc_radi
Description: Computes the radius and the center of the circle when the incremental distances of
the circle are given.
Inputs: Coordinates of the starting point of the circle, incremental distances of the center, working
plane
Outputs: radius and the center of the circle

calculateT:
Description: Generates transformation matrix according to the standart Denavit Hartenberg
Notation.
Inputs: Denavit Hartenberg parameters.
Outputs: Transformation Matrix.

chebyfit:
Description: Approximate data inside the error band by Chebyshev polynomials for each section.
Inputs: Encoded data, error envelope, sections.
Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of
coefficients in bits.

chebypol:
Description: Computes the basis functions of Chebyshev Polynomial up for defined number of
coefficient.
Inputs: Length of the data, number of coefficients.
Outputs: Basis functions.

 164

Compress:
Description: Thresholds signal by zeroing the lower percentage of coefficients and returns the
thresholded signal.
Inputs: Signal, percentage.
Outputs: Thresholded signal.

dacomp:
Description: This function first takes nth order difference of the given vector (x) and then
performs "arithmetic" data compression.
Inputs: input sequence, order of difference.
Outputs: compressed (binary) data, "symbol" table for compressed data, memory usage for
different techniques (bytes).

DH_tbls:
Description: Generates the Denavit Hartenberg table from the parameters.
Inputs: Denavit Hartenberg parameters, joint configuration.
Outputs: Denavit Hartenberg Table.

dhcomp:
Description: This function first takes nth order difference of the given vector (x) and then
performs "Huffman" data compression.
Inputs: input sequence (all integers), order of difference.
Outputs: compressed (binary) data, "dictionary" for compressed data

enc:
Description: Encodes joint state data and makes data ready to send to the controller of the
manipulator.
Inputs: Joint state data, encoder rpm.
Outputs: Encoded joint data.

enc_inv:
Description: Decode the encoded data.
Inputs: Encoded data, encoder rpm.
Outputs:

err_circ:
Description: Assigns random points around the tool position at the error radius in order to obtain
the limits of the acceptable tool positions
Inputs: tool coordinate, error radius, number of trials.
Outputs: new coordinates representing the error radius.

error_band:
Description: Routine for evaluation of error tolerance band. Assigns required number of random
points in the error band.
Inputs: Coordinate of the original point, number of points generated, error tolerance, HTM of the
working frame.
Outputs: Points in the error band.

fft_lsm:
Description: Take the Fourier transform of the encoded data using the least square method. The
signal is partitioned into two parts which are linear and periodic part. Optimum number of Fourier
coefficients is found while remaining inside the tolerance band.

 165

Inputs: Encoded data, error band, sections.
Outputs: Decoded data, number of Fourier coefficients, Fourier coefficients, storage requirement
of coefficients.

find_traj:
Description: Calculate the error in the reconstructed trajectory.
Inputs: Estimated joint data.
Outputs: maximum error observed in the trajectory.

findCenter:
Description: Find the center of circle when the radius of the circle is given.
Inputs: Coordinates of the starting and end points of the circle, radius and direction of rotation
Outputs: Coordinates of the center of the circle.

invkine:
Description: Computes the joint values for the manipulator whose end effector homogeneous
transform is given by T* within a defined kinematic tolerance. Iterative computations are done to
find the increment in the joint variables. Solution is generally not unique, and depends on the
initial guess q
Inputs: D-H parameters, HTM of the destination, initial joint estimation, kinematic tolerance.
Outputs: Joint configuration at the desired position

ishomog:
Description: Test if argument is a homogeneous transformation and returns true if input is a 4 × 4
matrix.
Inputs: Matrix
Outputs: true or false

jacob0:
Description: Compute manipulator Jacobian in base coordinates and returns a Jacobian matrix for
the manipulator pose q as expressed in the base coordinate frame.
Inputs: Denavit-Hartenberg parameters, joint configuration
Outputs: Jacobian Matrix in base coordinates

jacobn :
Description: Compute manipulator Jacobian in end-effector coordinates returns a Jacobian matrix
for the manipulator pose q as expressed in the end-effector coordinate frame.
Inputs: Denavit-Hartenberg parameters, joint configuration
Outputs: Jacobian Matrix in end-effector frame.

legendfit:
Description: Approximate data inside the error band by Legendre polynomials for each section.
Inputs: Encoded data, error envelope, sections.
Outputs: Approximated data, polynomial coefficients, number of coefficients, storage size of
coefficients in bits.

legendpol:
Description: Computes the basis functions of Legendre Polynomial up for defined number of
coefficient.
Inputs: Length of the data, number of coefficients.
Outputs: Basis functions.

 166

lint:
Description: Linearly interpolate the segment for signal partitioning.
Inputs: Data, Segments
Outputs: Linear data.

parser:
Description: Reads and interprets the NC Code defining the trajectory and returns the value of
each G word line by line.
Inputs: NC Code, home coordinates of the machine configuration.
Outputs: Values of G words at each line.

plot_graph:
Description: Plots 2d or 3d graphs. The dimension of the graph should be defined in the inputs
with the data to be plotted.
Inputs: data, number of dimensions
Outputs: None

Plot_coord:
Description: Plots the motion in each axis.
Inputs: Data, time.
Outputs: None

split:
Description: Finds the required keyword in the blocks of the NC Code, splits into two in order to
obtain the value of the keyword and returns the value
Inputs: NC block, keyword.
Outputs: The value of the keyword.

step_Delta:
Description: Finds the number of commands generated to complete the circle.
Inputs: Angular position of the start and end point of the circle w.r.t the center, radius and
feedrate.
Outputs: Number of commands

store_space:
Description: Computes the required storage space for each joint of a data set.
Inputs: Data to be stored.
Outputs: Allocated bit per each value.

table:
Description: Generates the Denavit Hartenberg table for the required pose.
Inputs: Denavit-Hartenberg parameters, Joint configuration.
Outputs: Denavit-Hartenberg table.

tinvrt:
Description: Inverts the HTM matrix from ܶ஺

஻ to ܶ஻
஺ .

Inputs: ܶ஺
஻

Outputs: ܶ஻
஺

 167

tmultt:
Description: Pick up the right elements from the homogenous transformation matrix and
generates the HTM of the joint.
Inputs: HTM of previous frame, HTM of the current frame wrt the previous frame.
Outputs: HTM of the current frame wrt ground frame.

tot_store:
Description: Finds the required storage space for data sets.
Inputs: Bit per joint value, number of data.
Outputs: Byte per joint data.

tr2diff:
Description: Convert a homogeneous transform to a differential motion vector
Inputs: HTM of the initial position, HTM of the desired position.
Outputs: Differential motion

tr2rot:
Description: Extracts the rotational submatrix of the homogeneous transform matrix.
Inputs: HTM
Outputs: Rotational submatrix.

tStar:
Description: Computes the estimated transformation matrix T* of the joint configuration at the
desired position.
Inputs: Orientation of the desired frame, coordinates of the desired position.
Outputs: T*

wave_coef:
Description: Computes the wavelet transformation of the encoded data using Deubechies
wavelets. Wavelet decomposition is at level 3. The signal is thresholded in order to reduce the
number of coefficients.
Inputs: Encoded data, error band of the joint.
Outputs: Decoded data, wavelet coefficients, number of wavelet coefficients, number of omitted
coefficients.

xform:
Description: Compute transformation of each frame with respect to ground frame.
Inputs: Denavit Hartenberg parameter of the frame.
Outputs: HTM of the frame.

