
DESIGN AND IMPLEMENTATION OF A MONITORING FRAMEWORK

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

KADİR KUZ

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER

OF SCIENCE IN

COMPUTER ENGINEERING

MAY 2009

Approval of the thesis:

DESIGN AND IMPLEMENTATION OF A MONITORING FRAMEWORK

submitted by Kadir Kuz in partial fulfillment of the requirements for the degree of

Master of Science in Computer Engineering Department, Middle East Technical

University by,

Prof. Dr. Canan Özgen _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslüm Bozyiğit _____________________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali Doğru _____________________

Supervisor, Computer Engineering Dept., METU

Examining Committee Members

Assoc. Prof. Dr. Nihan Kesim Çiçekli _____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Doğru _____________________

Computer Engineering Dept., METU

Assist. Prof. Dr. Tolga Can _____________________

Computer Engineering Dept., METU

Assist. Prof. Dr. Pınar Şenkul _____________________

Computer Engineering Dept., METU

Onur Aktuğ, M.Sc. _____________________

Lead Design Engineer, ASELSAN

 Date: 12.05.2009

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Kadir KUZ

Signature : ________________

 iv

ABSTRACT

DESIGN AND IMPLEMENTATION OF A MONITORING FRAMEWORK

Kuz, Kadir

M. S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Doğru

May 2009, 61 pages

In this thesis work, the symptoms in Windows XP operating system for fault

monitoring are investigated and a fault monitoring library is developed. A test GUI

is implemented to examine this library. Performance tests including memory and

CPU usage are done to see its overhead to the system and platform tests on the

current version of Windows operating system series (Windows Vista) are done to

see for compatibility.

In this thesis, fault monitor-fault detector interface is also defined and implemented.

To monitor a symptom that is not implemented in the monitoring library, projects

can implement their own monitors. A monitoring framework is designed to control

and coordinate these monitors with the main one. To create monitors for Java

projects easily, a monitor creator library is developed.

Keywords: Fault Monitoring, Fault Detection, Windows XP.

 v

ÖZ

HATA İZLEME ALTYAPISI TASARIM VE GERÇEKLEMESİ

Kuz, Kadir

Yüksek Lisans , Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Doğru

Mayıs 2009, 61 Sayfa

Bu tez çalışmasında Windows XP işletim sisteminde hata olarak neler

izlenebileceği araştırılmış ve bir hata izleme kütüphanesi oluşturulmuştur. Bu

kütüphanenin testi için kullanıcı ara yüzü geliştirilmiştir. Sisteme getirdiği yükü

ölçmek için hafıza ve işlemci kullanımını içeren performans testi ile Windows

işletim sisteminin şu andaki sürümü (Windows Vista) üzerinde platform uyumluluk

testi yapılmıştır.

Bu tezde hata izleme-hata tespit ara yüzü de tanımlanmış ve gerçeklemesi

yapılmıştır. Hata izleme kütüphanesinde gerçeklenmemiş bir belirtiyi izlemek için

projeler kendi izleyicilerini oluşturabilirler. Bu izleyicileri kontrol etmek ve ana

izleyici ile bir arada koordine bir şekilde çalıştırmak için izleme altyapısı

oluşturulmuştur. Java projeleri için kolay bir şekilde izleyici oluşturmasına yardımcı

olacak izleyici oluşturma kütüphanesi geliştirilmiştir.

Anahtar Kelimeler: Hata İzleme, Hata Tespit, Windows XP.

 vi

To My Family

 vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr. Ali

Doğru for his keen interest, guidance, encouragement, endless patience and insight

throughout the completion of the thesis.

I am indebted to all of my friends and colleagues for their support and

encouragements. I am also grateful to ASELSAN Inc. for the facilities that made

my work easier.

I also thank to TÜBİTAK (The Scientific and Technological Research Council of

Turkey) for their support through these hard days.

I would also like to thank Metin Tekkalmaz for his suggestions and comments.

The last but not least I would like to express my thanks to my family for the life

they provide to me.

 viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

DEDICATION ... vii

LIST OF TABLES ... x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS ... xiii

CHAPTERS

1. INTRODUCTION .. 1

2. BACKGROUND INFORMATION ... 5

2.1 FAULT MANAGEMENT .. 5

2.1.1 Basic Definitions ... 5

2.1.2 Fault Management Stages .. 7

2.1.2.1 Monitoring ... 8

2.1.2.2 Detection .. 8

2.1.2.3 Prediction ... 11

2.1.2.4 Diagnosis ... 11

2.1.2.5 Isolation ... 12

2.1.2.6 Recovery .. 14

2.1.2.7 Repair ... 15

2.1.2.8 Reporting ... 16

2.1.3 Fault Management in Aselsan Inc.. 16

2.2 JAVA NATIVE INTERFACE (JNI) ... 18

2.3 REMOTE METHOD INVOCATION (RMI) ... 19

 ix

3. DESIGN AND IMPLEMENTATION ... 22

3.1 FAULT MONITORING LIBRARY ... 22

3.1.1 Symptoms in Windows XP .. 22

3.1.2 Monitoring Library .. 34

3.1.3 Test GUI for Monitoring Library ... 35

3.2 MONITORING FRAMEWORK .. 40

3.2.1 Monitor – Detector Interface ... 40

3.2.2 Monitoring Framework .. 41

4. EVALUATION AND TEST RESULTS.. 46

4.1 PERFORMANCE TESTS ... 46

4.1.1 Testing Environment ... 46

4.1.2 Memory Tests .. 48

4.1.3 CPU Tests .. 50

4.2 PLATFORM TESTS ... 55

5. CONCLUSION .. 57

REFERENCES ... 59

 x

LIST OF TABLES

TABLES

Table 1-1 Classes of High Availability Systems [1] .. 1

Table 4-1 CPU Usage with respect to Common Applications 55

 xi

LIST OF FIGURES

FIGURES

Figure 1-1 Fault Management Flow Diagram [1] .. 3

Figure 2-1 Fault, error, failure [4] .. 6

Figure 2-2 Fault Management Activity Diagram [5] ... 17

Figure 2-3 Java Native Interface Architecture [7] ... 18

Figure 2-4 Writing Native Methods [7] ... 20

Figure 2-5 RMI architecture [8] ... 21

Figure 3-1 Fault Symptoms Related With Memory Usage 23

Figure 3-2 CPU Usage ... 26

Figure 3-3 Disc Usage .. 26

Figure 3-4 Process I/O Status ... 27

Figure 3-5 Process Times ... 28

Figure 3-6 Version Information ... 29

Figure 3-7 Process Information .. 30

Figure 3-8 System Information .. 31

Figure 3-9 Application Information ... 31

Figure 3-10 Power Status ... 32

Figure 3-11 Network Information .. 33

Figure 3-12 JNI Framework in Fault Monitoring .. 34

Figure 3-13 Applications Tab .. 35

Figure 3-14 Processes Tab ... 36

Figure 3-15 Process Table Column Chooser ... 37

Figure 3-16 Process Information .. 38

Figure 3-17 Performance Tab .. 38

Figure 3-18 System Information Tab ... 39

Figure 3-19 Monitor – Detector Interface Sequence Diagram 42

Figure 3-20 Monitoring Framework .. 43

 xii

Figure 3-21 Monitor Interface Definition .. 44

Figure 3-22 Sequence Diagram between Monitor Controller and Detector 45

Figure 4-1 Working Set Size for Test GUI of Monitoring Library 48

Figure 4-2 Working Set Size for Process Explorer Tool ... 49

Figure 4-3 Heap Usage for Test GUI of Monitoring Library 49

Figure 4-4 Heap Usage for Process Explorer Tool .. 50

Figure 4-5 CPU Usage for Test GUI of Monitoring Library 51

Figure 4-6 CPU Usage for Test GUI of Monitoring Library under Heavy Load 51

Figure 4-7 CPU Usage for Task Manager Processes Tab .. 52

Figure 4-8 CPU Usage for Task Manager Performance Tab 52

Figure 4-9 CPU Usage for Task Manager Applications Tab 53

Figure 4-10 CPU Usage for Task Manager Network Connections Tab 53

Figure 4-11 CPU Usage for Process Explorer ... 54

 xiii

LIST OF ABBREVIATIONS

API: Application Programming Interface

CPU: Central Processing Unit

DLL: Dynamic-Link Library

DOT: Distributed Object Technology

FM: Fault Management

GUI: Graphical User Interface

HA: High Availability

JNI: Java Native Interface

JVM: Java Virtual Machine

MMU: Memory Management Unit

RMI: Remote Method Invocation

XML: Extensible Markup Language

1

CHAPTER 1

INTRODUCTION

High availability (HA) is the term associated with computer systems which are able

to provide service most of the time. The demand for these systems has grown over

the past two decades. When everything is going well, the systems do not catch our

attention! However, if they start to fail to perform their expected behavior, they got

our immediate attention [1].

High available systems are those that are able to tolerate both expected and

unexpected faults [2]. They exhibit almost no downtime. HA is often quantified in

terms of the number of “9s” [1]. Table 1-1 shows the annual downtime of typical

applications:

Table 1-1 Classes of High Availability Systems [1]

Number of 9s Downtime per Year Typical Application

3 Nines (99.9%) 9 hours Typical Desktop or Server

4 Nines (99.99%) 1 hour Enterprise Server

5 Nines (99.999%) 5 minutes Carrier Class Server

6 Nines (99.9999%) 31 seconds Carrier Switch Equipment

2

The bigger the number of 9s, the lesser downtime per year, means the higher uptime

per year.

In software case, to show that an application does not include any errors is very

difficult and it is known that every software have some defects. These defects cause

failures. While some of these do not prevent the application performing its main

task, some of them may be fatal [5, 25].

In order to make a system highly available, fully automated, intelligent and well-

rounded fault management is needed to avoid unavoidable resource failures. Fault

management (FM) is the process of detecting and identifying system faults and then

taking corrective steps to get rid of them and making the system provide service

again [3]. The stages of fault management are [1, 5]:

 Monitoring: The system resources are tracked.

 Detection: The fault is found

 Prediction: It is predicted that a fault will occur.

 Diagnosis: The cause and location of the fault is determined.

 Isolation: The faulty part is isolated form the rest of the system.

 Recovery: The faulty part is adjusted or re-started to function properly

 Repair: The faulty part is replaced.

 Reporting: Used in every stage of FM to notify the user about the goings on

FM.

3

There are fine lines between these stages. The first three steps detect or predict that

a fault has occurred. The forth step examines the fault characteristics and the next

three steps take corrective actions. Flow diagram of FM can be seen in Figure 1-1.

Figure 1-1 Fault Management Flow Diagram [1]

Motivation

In Aselsan Inc., fault management is being developed for REHIS Mission software

department to make the systems more reliable and highly available. All of the fault

management stages mentioned above are being carried out for embedded software

which runs on VxWorks operating system. From now on, FM is planned to be

applied to software running on different platforms like Windows, Solaris, etc. For

4

that reason, within the scope of this work, in this thesis, a fault monitoring library is

developed for Windows XP operating system, since the software for user interface

in our systems runs on Windows XP. First of all, the symptoms that can be

monitored on this platform are investigated and the ones that are most useful for our

fault detection and prediction mechanisms are considered together and combined in

a library. The library is tested to see its behavior under heavy load. However, our

aim is not to conduct performance tests on the library, only to see whether the

overhead of the library to the system is acceptable or not. Moreover, it is also tested

on Windows Vista to see for compatibility on the current version of Microsoft’s

Windows operating systems series.

A project may want to monitor project specific things or symptoms that are not

considered in this library and may want to write its own monitor. For this purpose, a

monitoring framework is designed for coordinating multiple monitors in the system

and a helper library is developed to create monitors for Java projects easily.

Thesis Organization

This thesis is organized as follows: In Chapter 2, background information on Fault

Management is given besides JNI and RMI. The implemented fault monitoring

library and monitoring framework are detailed in Chapter 3. After detailed

explanation, performance and platform test results are presented in Chapter 4.

Finally, Chapter 5 presents our conclusions.

5

CHAPTER 2

BACKGROUND INFORMATION

In this chapter, Fault Management and the technologies that are used in the

implementation of the fault monitoring library and monitoring framework are

reviewed. After presenting the definition and steps of fault management, a brief

explanation will be given for Java Native Interface (JNI) and Remote Method

Invocation (RMI).

2.1 FAULT MANAGEMENT

This section briefly defines the concepts, principles and steps of fault management.

2.1.1 Basic Definitions

“High Availability”, (HA), is the term associated with computer systems that

exhibit almost no downtime. High available systems provide service most of the

time and this is quantified in terms of “number of 9s”. The higher the number of 9s

means the system has lower downtime [1]. While 3 nines availability (9 hours

downtime per year) is acceptable for a home user, at least 6 nines is required (30

seconds downtime per year) for carrier switching applications [9].

All systems are designed to have “Service Availability” most of the time. A service

is basically the thing or behavior that user wants from a system. These systems are

also called “Reliable” systems. The probability that a system will continue its

6

function properly without failure shows how reliable that system is. Besides, in [1]

“Availability” is defined as the readiness of the system. The availability is

expressed by:

Availability = MTTF / (MTTF + MTTR)

MTTF: Mean Time to Failure.

MTTR: Mean Time to Repair.

Three terms are confused much; fault, error and failure. In Figure 2-1, they are

explained briefly.

Figure 2-1 Fault, error, failure [4]

For example, throwing a telephone away is a fault. If it is broken, it is an error and

this may result speaking failure. As it is seen, a fault may not cause an error and in

the same way an error may not trigger a failure.

Fault types are [4]:

 Transient: Appears, and then disappears.

 Permanent: Remains until repaired.

 Intermittent: Occurs from time to time.

There are basically four main approaches to deal with these faults [2, 24]:

7

1. Fault avoidance

2. Fault removal

3. Fault masking

4. Fault forecasting

From these, last two techniques are implemented by using redundant or diverse

implementation of a system to avoid the effects of faults whereas the first two are

implemented by software and hardware.

To avoid or remove faults occurred in the system, system resources must be

monitored like process memory usage, process thread count, CPU usage of the

system, etc. In this thesis work, the symptoms that can be monitored in the system

are researched and a fault monitoring library is developed for Windows XP.

2.1.2 Fault Management Stages

Fault management is considered as an eight-stage process in this research:

1. Monitoring

2. Detection

3. Prediction

4. Diagnosis

5. Isolation

6. Recovery

7. Repair

8

8. Reporting

 Hereon, these stages will be explained briefly [1], [5].

2.1.2.1 Monitoring

Monitoring is the process of observing the state of the system resources such as

CPU usage of a process, memory usage in system or process, etc. The states of the

resources are sent to the detection or prediction stages or both of them for analysis.

To provide high levels of service availability, it is desirable that each component,

process or system should be monitored. To say more, each component may report

its current status to the main fault detector of the whole system. In this thesis, we

provide a monitoring framework to achieve this desire. One main tracker contacts

other component or process trackers and gets relevant information from them to

detect faults and isolate or recover later.

Monitoring can be done synchronously or asynchronously. Fault detector may want

the monitoring results at the time of the function call or tracker may send the results

to the detector in every predefined time interval. However, there is a balance

between monitoring and performance. Higher monitoring frequency brings more

degraded system performance.

2.1.2.2 Detection

Detection is the process of identifying undesirable conditions which may lead to

loss of service. It may be conducted as direct observation or by inference (observing

other behavior of the system).

9

The main objective of fault detection is to detect if a fault occurs and provide

information about a fault such as the location and type of the fault, the time of

occurrence and may be the most likely next affected component.

There are two types of faults for a detector:

 Active faults: These are the faults that have been detected but not isolated

or recovered from. The system may or may not continue its function when

an active fault occurs. The system can deliver an acceptable level of service.

For instance, when one of the CPUs of a dual core system fails, the system

may continue its services if there is not much workload on it.

 Latent faults: A latent fault is a fault that escapes from the detection

schema and remains undetected for a period of time. Uncovered fault

scenarios are the main source of these types of faults.

A fault detector is a hardware or software component that detects if a fault occurs. If

a fault detector finds an error in the output of a component, it is said that component

has faulted. This is an example of direct detection. However, in indirect detection,

the faulty component may be found by looking at more system-centric errors, such

as high temperature, excessive memory or CPU usage of a process or system.

Faults can be detected through various ways within a system. For example, a fault

may be detected at the source of the fault itself. Lots of components are designed so

that the component can report error or undesirable conditions. An intelligent power

supply is an instance that may send its state like working, degraded, etc. to its

observers.

Faults may also be detected outside the faulty component. For example, a non-

intelligent fan may not say to its observers that it is no longer working. But, if we

10

monitor the system temperature periodically, we may indicate that there is a

problem in the cooling system.

Some of the techniques to detect faults are:

o Value Range Checking: It is expected that most of the operations must fall

within a certain range. Tests can be done to check whether the result

satisfies boundary conditions or not. For example, if the temperature of the

system is above some threshold, it indicates an error.

o Data Integrity Checking: The data may be transferred form one component

to another during the operation and it may get corrupted. This is true

especially when the data is being transferred between hardware components.

It may be useful to check for integrity at multiple positions. This may be

achieved by inserting some information to the passed data to understand

whether it is deformed or not.

o Comparison Testing: When redundant components are used within a

system, it is possible to make calculations in parallel and compare the

results. If they are not the same, there is an error.

o Time Testing: This is the simplest form of fault detection techniques. If an

event is expected within a certain time period and if it has not happened, a

fault is detected.

In fault detection, it is very important that if a component fails, it should fail with

notification. Meaning, it can write its status to a log or notifies its listeners that it is

failing.

11

2.1.2.3 Prediction

Prediction is the process of calculating the probability that a fault is about to occur

in the system. Prediction gets the monitoring results and runs prediction rule set on

these results and decides about the probability of a fault.

Prediction may decide also by referring to the error patterns. For example, in the

past, usually an error happened when event A has occurred after events B and C. In

runtime, prediction may estimate that there is an error if the same scenario occurs.

Then, prediction sends its guess to the stage that takes corrective actions.

2.1.2.4 Diagnosis

After detection operation, a fault must be diagnosed to determine appropriate

isolation and recovery techniques. The main objective of diagnosis operation is to

identify the nature and location of the fault. To do so, diagnosis may check one or

more system events or symptoms.

This step can be automatic or can be invoked by the user depending on the specific

type of a component that is being diagnosed (hardware, operating system,

application, etc.) or the type of the component which is responsible for diagnosis

operation. For instance, a power supply may diagnose its problems while a fan may

be diagnosed elsewhere in the system.

Diagnosis can be conducted while the system is continuing its normal operations

(online). This implies that the fault is not fatal to the system. It is also done when

the system is not running (offline). In offline diagnosis, there is no need to close all

system applications every time. Only the part that will be conducted offline

diagnosis may be restricted from being available to running applications. Thus, the

system continues to supply services up to some level.

12

If the diagnosis is done within a system resource, it is local diagnosis. There is only

one failure mode and diagnosis is implicit. Implicit diagnosis is the simplest form of

diagnosis. The component reporting itself as failing is the faulty component. For

example, low disk drive speed is determined with implicit diagnosis. However, if it

is performed for the whole system by another resource in the system, it is global

diagnosis. There are multiple failure modes and some additional work and query are

required to find the location and nature of the fault. For instance, high CPU

temperature may be caused by low fan speed or blocked air vents, etc.

Systems are composed of large number of resources including hardware and

software that may fail anytime. In order to provide service availability most of the

time, a quick response should be given in case of a failure. For that reason, the

primary goal of the diagnosis is to find the faulty component to be replaced or

repaired.

Diagnosis largely depends the following:

 The systems fault detection ability.

 Having information about the dependencies of the system components.

 Having information about the fault detectors in the system.

2.1.2.5 Isolation

The objective of isolation is to separate the faulty component from the service so as

to keep the fault from scattering to other components in the system and cause

secondary failures. To isolate, all the interactions with other components is

removed.

There are two types of fault isolation:

13

 Physical Isolation: Physical isolation prevents the component from

interacting with the system. It can be done, in hardware, by disconnecting

the component from the bus or powering off the component. In software

case, it can be accomplished through the Memory Management Unit

(MMU) by preventing read, write on a page or memory location. This is also

called “Data Isolation”.

 Logical Isolation: Logical isolation in hardware is to remove the device

entries from the I/O subsystem so that no further interactions with the device

are possible. This can be done either by preventing interactions with the

device driver or by removal of the device driver. In software case, logical

isolation can be done by the removal of the software like killing a process,

unloading a library, etc.

Both of the techniques can also be used for isolation. For example, if a process in a

card is failing, the process may be killed (logical isolation) and the card may be

removed from the system (physical isolation).

In a system that is designed to achieve high availability, the cause and effect of a

component removal must be clearly understood. Otherwise, fault management

damages service availability.

Fault isolation includes actions that prevent faults from propagating in the system.

Their aim is not to make system function properly. This is the job of the recovery

step.

Some isolation techniques are:

o Component Isolation: If a fault on a component has a fatal effect, that

component can be isolated physically or logically.

14

o Quiescing Components: Although the fault occurred on a component has

detrimental effects on the component, it may be desirable that the

component should complete its operations before isolation. To do so, input

isolation is done first and then waited for the output in operation. After

getting all of the output, component is isolated.

o Safe Value Output: If it is expected that a component should give results

within a certain range and fails to do so, removing the component is one

solution. However, this may cause undesirable conditions. So, it is designed

that the component should give a safe value in case of failure until a

recovery is made. This value can be the last valid value as well as the pre-

programmed table value. However, the components interacting with the

failing one should be notified about the error condition.

o Routing Change: If there are multiple components that can do the same job

as the faulty one, one of them can be assigned to take the faulty components

responsibilities.

2.1.2.6 Recovery

Recovery is the process of restoring the system in a state that it is again operable

even in a degraded mode. Recovery includes the components that are affected by

the failing component as well as failing one. It aims to provide service availability

back to some level.

When redundant components are used for recovery, one is active while the others

are in standby. In case of failure, one of the standby units become active. In order

to do this, all of the standby components must know what is the last input and in

which state the active component is. The technique that a standby component

knows where and how it should start processing is “checkpointing”. In [2, 26], it is

15

stated that checkpointing includes taking a snapshot of the component’s situation

just as it is about to begin the first step of the next transaction. The snapshot is taken

only if the previous transaction was completed successfully.

Another technique for recovery is “Software Rejuvenation”. This is reloading an

image, restarting an application, dynamic library or initializing the resources that

the service uses. In some cases, doing the things above may not be sufficient.

Restarting the operating system may be needed [26].

Recovery depends on redundant elements and the techniques that can be applied

which are stated on policies while the system is being configured. A policy initiates

actions according to the information that comes from the detector. It is invoked

when a detector fires. This makes a policy to respond several detectors in the same

way.

2.1.2.7 Repair

The aim of the repair is to return the system to its original state including all the

redundancies. This operation particularly depends on the type of the fault. If the

faulty component is a physical hardware unit, then a hot replacement is done.

Before removal of the component, diagnostic tests can be run in order to detect the

component that causes the failure. These tests are also done after replacement of the

new component to verify that it is working correctly.

In case of software, the repair operation may be conducted as downloading another

copy of it. However, sometimes this may not be sufficient. A system patch may be

needed. Patches are small changes in the code and can be applied while the system

is performing its operation. Another method is upgrading the software. The

software version that has been loaded to the system may include lots of bugs and in

16

the new release these bugs may have been covered. So, upgrading the software to

the new version may also repair software [27].

2.1.2.8 Reporting

Reporting is the process of notifying the user by the fault management process. This

includes logging to a file, printing a message, giving alarms, displaying graphs, etc.

2.1.3 Fault Management in Aselsan Inc.

Figure 2-2 shows the activity diagram of fault management procedure that is

developed in Aselsan Inc.

In [5], it is stated that monitoring is done for the symptoms that may lead to failures

in the system such as CPU Usage, memory usage, process status, etc and the results

are sent to the detection, prediction or both of them. In case of prediction, the

probability that a fault occurs is calculated according to the prediction rules. In case

of detection, it is determined whether a fault is occurred and sent to the diagnosis.

In diagnosis, the type, location and nature of the fault is determined by using rules,

algorithms and previous fault decisions. In the correction step, the fault either came

from diagnosis or prediction. Corrective action may isolate the faulty component

from the system in order not to cause secondary failures, switch on a backup

component in place of the faulty one, or restart the faulty component. Correction

step understands whether the action is successful or not by the information that

comes from diagnosis. If not, it can retry or make a comprehensive corrective

action. Other than these actions, repair is made to the faulty component offline.

Repair includes debugging and recompiling for software or changing the defective

part of hardware.

17

Figure 2-2 Fault Management Activity Diagram [5]

18

2.2 JAVA NATIVE INTERFACE (JNI)

Java Native Interface (JNI) is a programming framework which allows Java code

running in a Java Virtual Machine (JVM) to call and be called by native

applications and libraries written in other languages, such as C, C++, etc. [6].

In [7], it is stated that JNI is generally used in the following situations:

 When program needs platform-dependent features that standard Java class

library does not support.

 When libraries and applications already written in other programming

languages like C are wanted to be accessible in Java applications.

 In time-critical functions, Java may not be a good choice. For that reason, it

may be preferred to write the critical part of the application in low-level

programming languages such as assembly and to be called within Java.

JNI can be thought as a glue between Java and native applications. Figure 3 shows

how JNI ties the C side of the program to the Java side [7].

Figure 2-3 Java Native Interface Architecture [7]

19

The steps to write native methods for Java are [7]:

1. A Java class that declares native methods is created.

2. The Java class that includes the native methods is compiled.

3. A header file which contains the signature of native methods is generated by

using javah with –jni flag.

4. Native method’s implementation is written in the language that is preferred

(C, C++, or Assembly).

5. A shared library is created by compiling the header and the implementation

file.

6. Java program is ready to run.

These steps are illustrated in Figure 2-4. In the figure, the HelloWorld class calls the

native method “displayHelloWorld” and loads the shared library “hello”.

“HelloWorldImp” class implements the native method and is compiled with the

“HelloWorld” header file to generate the “hello” library.

2.3 REMOTE METHOD INVOCATION (RMI)

Java Remote Method Invocation (RMI) allows a Java Virtual Machine (JVM) to

call a method of an object in another Java Virtual Machine. This JVM may be on

the same machine or on a different one.

Figure 2-5 shows the RMI architecture.

20

Figure 2-4 Writing Native Methods [7]

21

Figure 2-5 RMI architecture [8]

In RMI, there are often two programs; a client and a server. Server creates remote

objects and puts references of these objects to the RMI registry. The client program

looks up this registry for the reference of the object to be invoked. Once obtaining

the reference, the client can call methods of the remote object. This makes two JVM

communicate with each other.

Dynamic code downloading is one of the main features of RMI. If server object’s

class is not defined in the receivers’ side, RMI downloads the class from the server

JVM so that all the types and behavior of the object is transmitted to the receivers

JVM [8].

22

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this chapter, fault monitoring library is discussed first. Then, a GUI is presented

that is for testing whether the library works correctly or not. Finally, design and

implementation of the monitoring framework is explained in a detailed way.

3.1 FAULT MONITORING LIBRARY

The first step of fault management is monitoring the system resources for fault

detection and prediction. There are lots of symptom types in an operating system

that can be used for fault monitoring. However, monitoring all of them brings

performance bottleneck. For this reason, the most useful ones should be selected.

In this section, the symptoms in the library will be presented and the test GUI

developed to test this library will be shown.

3.1.1 Symptoms in Windows XP

In this subsection, symptoms that can be monitored in Windows XP operating

system will be explained. Here are the most useful symptoms for fault management

[28]:

 Memory Usage: Figure 3-1 shows all the symptoms that can be monitored

for memory usage in the system.

23

Figure 3-1 Fault Symptoms Related With Memory Usage

All application programs and many system processes except core parts of

the operating system use virtual memory addresses which are then translated

24

to the RAM addresses by the hardware. A 32 bit Windows O.S. has

approximately 4 GB virtual memory addresses no matter how much physical

memory exists in the system. 2 GB of it is used for each process’ private

usage and the other 2 GB is shared between all processes and the operating

system. When the memory used by all processes exceeds the amount of

memory available (RAM), operating system moves some pages to the hard

disk to free some memory. Thus, the increase in page file usage results in

performance decrease [10].

In [11], it is defined that working set of a process is the set of pages in its

virtual address space which are available in RAM. When a process wants to

access a page that is not included in the working set, a “page fault” occurs.

If the page fault handler resolves the fault, the page is added to the working

set. The more page fault the more degraded performance.

A memory leak occurs when a process allocates memory for use and does

not free when it finishes its job. These leaks cause Windows to slow down.

Leaks generally occur in small amounts and may take time to detect.

Memory manager creates paged and nonpaged pools to allocate memory.

The nonpaged pool contains virtual memory addresses that are guaranteed to

reside in RAM whereas the paged pool consists of virtual memory that can

be paged in or out [12, 13].

When an application is started, the operating system creates a virtual address

space that contains stack, application code, application data, heap, etc. Heap

is the place where dynamic memory allocation occurs. The heap memory

block can have a fixed location or the location can be moveable. If a

memory allocated on the heap is not freed after its job is finished, the heap

may be bloated.

25

Every address can be thought of as one of these; free, reserved or committed

at any given time. At the beginning all of the addresses of a process are free.

Then, an address may be reserved or committed. An address is reserved to

protect it from allocation requests of other processes. This type is usually

needed in operations such as loading a DLL or resource that could occupy

specific addresses. To use reserved addresses, memory must be committed

to the addresses. When memory is committed, pages of it always exists as

either physical pages of memory or as pages that have been paged to the

pagefile on disk [15]. The committed memory limit shows the maximum

size that virtual memory can be without making any changes to its

configuration. Peak committed memory is the maximum amount of memory

used since tracking begun. Total committed memory shows the virtual

memory size in use [16].

Kernel is the core part of the operating system that does most of the

background work. Paged kernel memory shows the amount of virtual

memory set aside for the kernel while nonpaged kernel memory shows the

amount of RAM dedicated to the kernel [16].

Physical memory is the total amount of memory installed in the computer.

The physical memory is not used fully. If it is becoming full some of the

memory is written to the disk. System cache shows the amount of memory

which is used for quick access of the recently used data.

 CPU Usage: CPU (Central Processing Unit) is the main and perhaps the

most important component of a computer. It does the execution of the

commands and data processing. High CPU Usage means lots of processing

is being done in the CPU that results in slowing of programs. In order to run

all the programs concurrently, the CPU will execute commands of each

program in some order. If there are lots of programs that uses CPU much,

26

the time given to each program will decrease and the program will do its job

in a bigger time interval. As it is seen from Figure 3-2, two kinds of CPU

usage is being monitored; system and process. “System CPU Usage” shows

the total CPU usage of the computer while “Process CPU Usage” shows the

CPU usage of the specified process. If a process or system highly utilizes the

CPU for a long time, there may be a problem with the system or process.

Moreover, in systems that have multiple CPUs, each CPUs burden can be

retrieved and some arrangements can be done to decrease the burden of

heavy ones. Hence CPU usage is usually the most important symptom for

monitoring.

Figure 3-2 CPU Usage

 Disc Usage: Nearly all of the application programs write something to disc.

Log information, output of a program such as screen shots or backup data

for later usage, and temporary files that are created by the program are some

examples of disc usage.

Figure 3-3 Disc Usage

In Windows platforms, disks are usually partitioned into disc drives. Each

drive has free and used space. In the monitoring library, free and total space

of each drive is being monitored.

27

 Process Input/Output Status: Each process performs I/O operations. The

monitoring library contains APIs for process I/O accounting information

such as read, write and other operations (Figure 3-4) [17].

Figure 3-4 Process I/O Status

- Read Operation Count: number of read operations performed.

- Read Transfer Count: number of bytes read.

- Write Operation Count: number of write operations performed.

- Write Transfer Count: number of bytes written.

- Other Operation Count: number of I/O operations (other than read

and write operations) performed.

- Other Transfer Count: number of bytes transferred during I/O

operations other than read and write.

 Process Times: This symptom shows timing information about each process

[18].

28

Figure 3-5 Process Times

- Start Time: shows the creation time of the process.

- Exit Time: shows the exit time of the process. If the process is not

exited, it is undefined.

- Kernel Time: shows the amount of time that process has executed in

kernel mode.

- User Timer: shows the amount of time that process has executed in

user mode.

In kernel mode, the application has unrestricted access to the underlying

hardware. It can execute any instruction and reference any memory address.

Kernel mode is generally used by the most trusted operating system

functions. In user mode, the application can not directly access the hardware

or reference any memory location. To access, it uses system APIs [19].

Every process except “System” is started in user mode in Windows. When a

program wants to call a Windows API, it triggers an interrupt and CPU

switches to the kernel mode and begins executing the API. After finishing

its job, CPU switches back to the user mode again and continues execution

of the program [20]. For that reason, total CPU time for a process is the sum

of the kernel time and the user time.

 Version Information: Version information is useful for applications to

install the files properly. For example, an application may need the Adobe

29

Reader version 5.0 in order to run. If not present, it may decide to install that

version. For another example, a program may run efficiently on versions of

the Windows operating system that are above some version number.

Figure 3-6 Version Information

Figure 3-6 shows the types of version information that monitoring library

tracks:

- Operating System: shows the major and minor versions, build

number and platform ID. “CSD Version” shows the latest Service

Pack installed such as “Service Pack 3”. While “Language” shows

the operating systems language like “Turkish”, “Locale” represents a

specific geographical region.

- File: shows the major and minor versions, build, and revision

numbers. Besides these, name of the product, company produced the

file, and copyright applied to the file is given.

30

 Process Information: Figure 3-7 shows some other process information

that is monitored.

Figure 3-7 Process Information

- Priority: shows the priority value of the process like Normal, High,

and Idle. The operating system uses this information to determine

which process (thread) gets the next slice of CPU time.

- Status: shows whether the process is running or not. In windows,

information about status of a process like running, pending, stable,

killed etc is not given with an API therefore; only the status types of

“available” or “not available” are being monitored.

- Thread Count: shows the total number of threads of a process.

Moreover, name, ID, parent process ID and full path of a process can be

retrieved from the operating system. To kill a process, an API is written

which will be useful especially in the isolation step of fault management.

 System Information: Total thread count, handle count and process count in

the system is monitored (Figure 3-8).

31

Figure 3-8 System Information

 Application Information: A process may have one or more applications in

the system. For example, Firefox process [23] can open three web sites as

three different applications. Killing the Firefox process kills all the

applications; however, killing one of the windows (web site) does not kill

others. In the monitoring library, required APIs are written to monitor all of

the applications in the system.

Figure 3-9 Application Information

- Application Name: shows the title of the application.

- Application Status: shows the status of the application. It can be

“Running” or “Not Responding”.

- Process ID: shows the ID of the process that created the application.

32

Moreover, an API is written to close an application which may be used in

the isolation step of the fault management mechanism.

 Power Status: Power status of the system is one of the most important

symptoms. It indicates whether the system is running on AC or DC power

and whether the remaining battery life is sufficient or not [21].

Figure 3-10 Power Status

- AC Line Status: indicates AC power status: online, offline.

- Battery Flag: shows charge status: High, low, Critical, Charging, No

System Battery.

- Percent Battery Life: shows the percentage of the remaining battery

charge.

- Full Battery Life Time: shows the number of seconds of battery life

at full charge.

- Battery Life Time: shows the number of seconds of battery life

remaining.

33

 Network Information: Applications may send and receive information

to/from a specific address over network. For that reason, information about

the quality and status of a network is very important.

Figure 3-11 Network Information

- Network Status: shows the status of the network adapter; connected

or not.

- Network Address Reachability: shows whether the specified network

address is reachable or not.

- Band Width: shows the band width of the network adapter.

- Sent Packets: shows the number of packets sent over the network

adapter.

- Received Packets: shows the number of packets received over the

network adapter.

- Sent Bytes: shows the number of bytes sent over the network adapter.

- Received Bytes: shows the number of bytes received over the

network adapter.

34

- Network Usage: shows the percentage of the band width being used.

3.1.2 Monitoring Library

The symptoms that are detailed in section 3.1.1 are implemented and a shared

monitoring library is developed. The library is written in C++ to access operating

system resources easily and is developed in .NET 2005 environment.

In Aselsan Inc, in Mission Software department, user interface software is being

developed in Java programming language and run on the Windows XP operating

system. As it is discussed in Section 3.2, monitoring framework is developed in

Java to add Java Project trackers to the framework easily. This framework includes

the main tracker that uses fault monitoring library. For that reason, the library is

compiled in a way that is compatible with Java Native Interface (JNI) framework to

be accessed within Java.

Figure 3-12 JNI Framework in Fault Monitoring

As it is seen in Figure 3-12, fault monitor that is written in Java makes function

calls to the fault monitoring library written in C++ like its own function via JNI

framework. JNI does all the communication work between. If the library is wanted

35

to be called from a C or C++ project, compiling the library with suitable headers is

enough.

3.1.3 Test GUI for Monitoring Library

The monitoring library is tested for all symptoms by implementing a graphical user

interface (GUI).

The “Applications” tab, Figure 3-13, shows all the applications in the system. In the

table, application name and status are displayed. The status of the application is

“Running” if the window of it responds to the sent message within specified time. If

it does not respond, status becomes “Not Responding”. While “Kill” button closes

the application, “Go to” button opens the “Processes” tab and selects the process of

the application. The table grows as new applications opened and shrinks if they are

closed.

Figure 3-13 Applications Tab

36

Figure 3-14 shows the “Processes” tab. All of the processes in the system are listed

in this tab. ID, name, CPU usage, priority, full path and thread count of a process

are presented in each row. “Kill” button, at the beginning of each row, kills the

selected process.

Figure 3-14 Processes Tab

The table can be sorted according to the specified column like CPU usage, Thread

count so as to see the dominant processes in that column type. The table is refreshed

in each predefined time interval. As defined in section 3.1.1, there are much more

symptoms about a process. The user can add these symptoms to the table by using

the “Select Column” menu item under “View” menu. In the opened window (Figure

3-15) the user may add new columns to the table or remove the existing ones.

37

Furthermore, version information, product name, legal copyright of a process can be

viewed by double-clicking on a process row in the table. The opened window can

be seen in Figure 3-16.

Figure 3-15 Process Table Column Chooser

The “Performance” tab, as it is seen in Figure 3-17, shows the general performance

information about the system. Total or available physical memory; paged or

nonpaged kernel memory; total or peak committed memory in the system are

presented numerically and graphically. Moreover, total process, handle and thread

count in the system are shown. These values are refreshed in every predefined time

interval.

38

Figure 3-16 Process Information

Figure 3-17 Performance Tab

39

The last tab “System Info” shows some general information about the system such

as operating system information, system power status information and free disk

spaces in each drive and network usage in the system (see Figure 3-18).

Figure 3-18 System Information Tab

All of the information in the test GUI is updated within some predefined time.

These update times can be changed by using the configuration file.

40

3.2 MONITORING FRAMEWORK

The monitoring library includes the most useful symptoms that can be tracked in

Windows XP. However, there may be some that the library does not cover or

projects may want to write their own monitors. To control and coordinate all of

these monitors, a monitoring framework is designed and implemented.

3.2.1 Monitor – Detector Interface

In fault management, a fault detector communicates with fault monitors for the

symptoms that are being tracked in the system. Since there may be lots of monitors

in the system, an interface must be defined that must be implemented by all

monitors. The monitor – detector interface used in this thesis is as follows:

void startMonitoring();

void stopMonitoring();

Vector<SymptomInterface> getMonitoredSymptoms();

boolean setThreshold(SymptomInterface symp, Object min, Object max);

boolean assignPeriod(SymptomInterface symp, int time);

boolean assignPeriod (int time);

SymptomInterface monitorSymptom(SymptomInterface symp);

Vector< SymptomInterface > monitorAllSymptoms();

void attachObserver(MonitorObserver observer);

void detachObserver(MonitorObserver observer);

According to the monitor-detector interface, the detector can start and stop the

monitoring process. The detector firstly gets all the symptoms that monitor tracks.

Then it can set threshold values or assign a period to each symptom or the general

monitoring process. The detector may want the result of a specific symptom or the

41

result of all symptoms. Monitor tracks each symptom in each period time interval.

If the tracked value is within threshold values, it sends the result to the log and its

observers. If a detector wants to get these periodic results, it must be attached to the

monitor and implement the “MonitorObserver” interface below (Figure 3-19):

void sendMonitoredSymptom(SymptomInterface symp);

void sendMonitoredSymptoms(Vector< SymptomInterface > sympList);

The “SymptomInterface” that all symptom classes should implement is as follows:

int getSymptomType();

Object getSymptomValue();

Class<?> getSymptomValueType();

Source getSource();

void setThresholdValue(Object min, Object max);

According to the interface, all symptoms must have a type which shows what it is

tracking. Each symptom has a value and value type since they may return different

types of values such as “String”, “Integer”, etc. While source of the symptom shows

the place of the tracking point, threshold values indicate where tracking value is

worth-attending.

3.2.2 Monitoring Framework

The monitor-detector interface presented in Section 3.2.1 presents a single-monitor

case. However, what about if there are two or three? The detector may connect to

each separately and start monitoring all of them. In the beginning, this solution

seems fine. However, if the detector is designed to detect the faults in a system

42

which consists of multiple subsystems and each subsystem has more than one

monitor inside, then things are getting complicated [29].

Figure 3-19 Monitor – Detector Interface Sequence Diagram

43

As it is frequently mentioned, the monitoring library may not be covering some

symptoms that may be useful for some projects. Hence, each project may decide to

use its own monitor besides the main one. To coordinate these monitors, a

monitoring framework is designed and implemented (Figure 3-20).

Figure 3-20 Monitoring Framework

As it is seen in Figure 3-20, the monitor controller does the main job in the

framework. The primary job of it is making it easy to add new monitors to the

framework and as its name implies controlling all of them.

Monitor controller implements the monitor-detector interface and behaves like a

monitor that consists of sub-monitors. The messages coming from the detector or

the predictor are interpreted here and the correct action is done. When the detector

wants to get all the symptoms that are being monitored, controller gets all

symptoms from its sub-monitors and sends the result to the detector.

Likewise, when the detector sends “Start Monitoring” message, controller sends this

message to all its sub-monitors and monitoring starts in all of them. The controller

knows which symptom is monitored by which monitor so that it directs the

“Monitor Symptom” message to the correct monitor and gets the result. Each

44

monitor tracks its symptoms in every period and the results are sent to the

observers. Monitor controller is one of the observers in each monitor and the

results that come here are sent to the fault detector or the predictor (see Figure 3-

22).

Monitoring framework uses Remote Method Invocation (RMI) to communicate

with each monitor. RMI has two main advantages:

o Calling methods of the remote object that may be on the same computer or

on another computer like a local function call (for distributed monitors).

o Dynamic code downloading that enables the receiver side to use the classes

of the server side.

Each monitor in the framework implements the monitor interface that is extended

from the “Remote” object (Figure 3-21). This interface is almost the same with the

monitor-detector interface. The monitor puts the remote object that implements this

interface to the RMI registry so that the monitor controller can call its functions like

local functions. Likewise, the monitor controller creates a remote object and puts it

to the RMI registry by which each monitor sends its monitored symptoms.

Figure 3-21 Monitor Interface Definition

45

Figure 3-22 Sequence Diagram between Monitor Controller and Detector

46

CHAPTER 4

EVALUATION AND TEST RESULTS

Three monitors have been written and run on three different systems to test the

monitoring framework. According to the test results, it is seen that the framework

runs smoothly and supports working with multiple monitors that are distributed on

different environments.

In this chapter, performance and platform tests that were conducted on the

monitoring library are explained. The results show that the library’s overhead to the

system is acceptable and the overhead of the library does not change when the total

load in the system increases.

4.1 PERFORMANCE TESTS

Performance tests done on the developed monitoring library will be introduced in

this section. After presenting the testing environment, memory and CPU test results

of the library will be presented and comparison of the results with similar programs

in the market will be discussed.

4.1.1 Testing Environment

Intel Pentium personal computer which is containing a single 1.70 GHz processor, 1

GB RAM, running on Windows XP and Service Pack 3 is used for the tests which

47

are detailed below. Moreover, there were 53 processes in the system during these

tests.

Test GUI that is explained in section 3.1.3 is used for monitoring library tests. The

refresh time for the information in tabs of the GUI is like below:

 Applications tab: 2000 milliseconds.

 Processes tab: 2000 milliseconds.

 Performance tab: 1000 milliseconds.

 System Information tab: 1000 milliseconds.

All of the tabs refresh their information during the running time of the test GUI to

see its performance under heavy load. However, similar programs in the market

such as “Task Manager” and “Process Explorer”, rightly, do not follow this strategy

to consume less system resources. They update the information only if it is seen by

the user. Only the selected tab runs. Moreover, only the visible part of the table is

updated during run time, for efficiency. For that reason, the comparison will be

based on some estimation.

The refresh time for the “Process Explorer” tool is 2000 milliseconds and the

refresh times for the “Task Manager” tool are:

 Applications tab: 2000 milliseconds.

 Processes tab: 2000 milliseconds.

 Performance tab: 1000 milliseconds.

 Network Communication tab: 1000 milliseconds.

48

The results in these tests are recorded by the “Performance Monitor” program of

Windows XP except for the Heap Memory Usage tests which are recorded by a

small program that uses the monitoring library.

4.1.2 Memory Tests

Working set size and heap memory usage is determined for the test GUI of the

monitoring library and the “Process Explorer” tool. Memory usage depends on

many parameters besides the program such as the middleware used (JVM) or

figures and pictures in the program, etc. For that reason, comparison of the test GUI

regarding memory usage with other tools does not give us much information. In

Figures 4-1 to 4-11, memory consumption is in bytes and number of recorded

samples is shown. Record interval is 1 seconds for each test.

While Figure 4-1 and 4-2 show the working set size, Figure 4-3 and 4-4 show the

heap usages for the test GUI and the Process Explorer tool.

Figure 4-1 Working Set Size for Test GUI of Monitoring Library

49

Figure 4-2 Working Set Size for Process Explorer Tool

Heap Usage

12080000

12090000

12100000

12110000

12120000

12130000

12140000

12150000

12160000

12170000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Time

M
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n

Figure 4-3 Heap Usage for Test GUI of Monitoring Library

50

Heap Usage

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Time

M
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n

Figure 4-4 Heap Usage for Process Explorer Tool

The fluctuation in the test GUI is more than the other for both working set size and

heap usage because of the garbage collector in Java. At the time of the decrease, the

garbage collector releases unused allocated memory.

Comparison of memory usage does not guide us much in the case of small memory

usage values. Figure 4-1 shows us that test GUI uses approximately 32 MB of

memory which is appropriate.

4.1.3 CPU Tests

CPU usage of the test GUI, task manager and process explorer tool are tested and

the results are shown in Figures 4-5 to 4-11.

51

Figure 4-5 CPU Usage for Test GUI of Monitoring Library

As can be seen in Figure 4-5, CPU usage of the test GUI is 8.7 on the average.

Figure 4-6 shows the behavior of the CPU usage of the test GUI under heavy load.

According to the figure, CPU Usage of the test GUI (thicker curve) does not change

when the load in the system increases.

Figure 4-6 CPU Usage for Test GUI of Monitoring Library under Heavy Load

52

Since the task manager runs only one of its tabs actively, each tab’s CPU usage is

calculated separately (Figures 4-7, 4-8, 4-9 and 4-10).

Figure 4-7 CPU Usage for Task Manager Processes Tab

Figure 4-8 CPU Usage for Task Manager Performance Tab

53

Figure 4-9 CPU Usage for Task Manager Applications Tab

Figure 4-10 CPU Usage for Task Manager Network Connections Tab

According to Figures 4-7 to 4-10, processes tab uses 3.63%, performance tab uses

2.18%, applications tab uses 0.26% and network communication tab uses 2.11%

CPU usage, on the average. Totally, task manager uses 8.18% CPU usage. When

54

compared with monitoring library, it is a bit less. However, monitoring library

offers more information than task manager. Moreover it uses JNI, a middleware, to

access system resources. So, the difference is acceptable.

Figure 4-11 shows the CPU usage of the Process Explorer tool which is 7.2% on the

average. Although it shows only process related information, it consumes CPU a

similar time as the test GUI does for the monitoring library.

Of course, performance test results shown above may change according to the

system status at the specific time. However, these results, surely, indicate that

monitoring library runs within appropriate values as compared to others.

Figure 4-11 CPU Usage for Process Explorer

Table 4-1 summarizes the CPU Usage for all these programs.

55

Table 4-1 CPU Usage with respect to Common Applications

 Min Max Average

Test GUI of Monitoring Library 1 23 8.7

Task Manager 0 18 8.2

Process Explorer 0 19 7.2

4.2 PLATFORM TESTS

In Aselsan Inc, XP is used as the Windows operating system and currently there is

no plan to use new versions of Windows. However, this is not the final decision.

Therefore, the monitoring library is tested on Windows Vista, the current version of

Microsoft’s Windows operating system series.

Different from XP, Vista includes an updated graphical user interface, improved

searching features, new multimedia creation tools, etc. However, the primary

objective of Microsoft to release Vista is improving the state of security in the

Windows operating system. One of the main criticism about XP and its

predecessors is the security vulnerabilities to viruses, malware and buffer overflows

[22].

The monitoring library is tested on Windows Vista by the main monitor that is

designed for the monitoring framework. Each function in the library is tested one by

one. All of the functions passed the test, except one. Getting the process name from

Vista has some problems. The name comes in a corrupted way. However, this is not

a big problem and it can be solved easily.

56

The main problem with Vista is its security settings. In Microsoft operating

systems, although user can see all of the process IDs in the system, he/she can not

see all of the information about some processes because of the privileges he/she has.

Privileges determine the operation types that user is allowed. In XP, the monitoring

library grants access to debug programs and see all of the process related

information. However, in Vista, because of its advanced security mechanisms, the

monitoring library could not get all process information such as name, full path, etc.

for system processes like “svchost.exe”.

Other than two problems mentioned above which may be solved easily, the

monitoring library runs also on Windows Vista. This is achieved mostly by

Microsoft’s backward compatibility in system APIs.

57

CHAPTER 5

CONCLUSION

In this thesis, a fault monitoring library for Windows XP operating system is

developed and a monitoring framework is designed and implemented for integration

of multiple trackers that run in the system.

In the concept of this work, symptoms in Windows XP operating system are

investigated and most useful ones for monitoring system resources are extracted. A

dynamic-link library (DLL) is developed which includes all monitoring Application

Programming Interfaces (API). The library is compiled in a way that is compatible

with Java Native Interface (JNI) framework to be called in Java.

In order to test the monitoring library, a graphical user interface (GUI) is

implemented in Java. It is seen that all symptoms are monitored correctly by the

library. A series of performance tests are done both to the test GUI of the library

and similar programs in the market. According to the test results, the test GUI is

using a reasonable amount of memory and CPU as compared with other programs.

The overhead of the library is acceptable and does not change when the load in the

system increases. The platform test that was conducted on Windows Vista showed

that nearly all of the API services in the library are also running on the current

version of Microsoft’s Windows operating system series.

Monitoring framework which is responsible for communication with fault detector

or predictor and coordinating multiple trackers in the system is designed and

58

implemented. However, it is not yet integrated to the fault management framework

in Aselsan Inc. To test this framework, three trackers are implemented:

 Main Tracker: monitors all system resources by using the monitoring

library.

 Two Project Trackers: monitor project specific symptoms.

It is seen that these trackers are integrated to the framework easily and

communication between these trackers and fault detector is established successfully.

The trackers run on different systems to show the framework supports monitors on

distributed environments. A tracker library is written in Java to make Java projects

implement their trackers easily.

As future work, the following can be done:

 Monitoring library can be revised for other Windows platforms like Vista.

 Tracking framework can be supported to work with all distributed object

technologies such as CORBA, sockets. By this, trackers written in other

languages such as C can be easily added to the framework.

 The integration of the monitoring framework with the fault management

project in Aselsan is not carried out and planned yet due to lack of time.

This work can be done as a future work.

 New monitoring libraries can be written for other platforms like Solaris,

Unix, etc.

59

REFERENCES

[1] HA Forum, "Providing Open Architecture High Availability Solutions",

Revision 1.0, February, 2001.

[2] http://www.kalinskyassociates.com/Wpaper6.html, Last access date:

February 2009.

[3] GoAhead Software, FAQ: Fault Management How Does Fault Management

Work?, 2000.

[4] Kalinsky D, "Principles of High Availability Embedded Systems Design",

Embedded World Conference, Nürnberg 2006.

[5] Tekkalmaz M., Kaya Ö., Dursun M., Tekkalmaz T. S., Doğru A., "Görev

Kritik ve Gömülü Sistemler için Hata Yönetimi Klavuz Mimarisi: T5D", 2.

National Software Architecture Conference, İzmir, September 2008.

[6] Wikipedia, http://en.wikipedia.org/wiki/Java_Native_Interface, Last access

date: February 2009.

[7] Sun Microsystems, The Java Tutorial, version 1.5

[8] Sun Microsystems, http://java.sun.com/docs/books/tutorial/rmi/TOC.html,

Last access date: February 2009.

[9] GoAhead Software, High Availability: A Design Primer, 2004

[10] http://support.microsoft.com/kb/555223/en-us, Last access date: February

2009.

60

[11] http://msdn.microsoft.com/en-us/library/cc441804(VS.85).aspx, Last access

date: February 2009.

[12] http://msdn.microsoft.com/en-us/library/cc267832.aspx, Last access date:

February 2009.

[13] http://msdn.microsoft.com/en-us/library/aa965226(VS.85).aspx, Last access

date: February 2009.

[14] http://developers.sun.com/solaris/articles/multiproc/multiproc.html, Last

access date: February 2009.

[15] http://msdn.microsoft.com/en-us/library/ms810627.aspx, Last access date:

February 2009.

[16] http://technet.microsoft.com/en-us/library/bb742598.aspx, Last access date:

February 2009.

[17] http://msdn.microsoft.com/en-us/library/ms684125(VS.85).aspx, Last access

date: February 2009.

[18] http://msdn.microsoft.com/en-us/library/ms683223(VS.85).aspx, Last access

date: February 2009.

[19] http://www.codinghorror.com/blog/archives/001029.html, Last access date:

February 2009.

[20] http://en.wikibooks.org/wiki/Windows_Programming/User_vs_Kernel, Last

access date: February 2009.

[21] http://msdn.microsoft.com/en-us/library/aa372693(VS.85).aspx, Last access

date: February 2009.

61

[22] http://en.wikipedia.org/wiki/Windows_Vista, Last access date: February

2009.

[23] http://www.mozilla.com/en-US/firefox/personal.html, Last access date:

February 2009.

[24] Laura L. Pullum, Software fault tolerance techniques and implementation,

Artech House, Inc., Norwood, MA, 2001.

[25] Martin L. Shooman, Reliability of Computer Systems and Networks: Fault

Tolerance,Analysis,and Design, John Wiley & Sons, Inc., New York, NY,

2002 .

[26] A Middleware for Dependable Distributed Real-Time systems: Tom

Bracewell, Priya Narasimhan, Raytheon, CMU, 2003.

[27] Designing Systems for High Availability, Shiv Nagarajan (QNX Software

systems), Embedded System Conference, San Jose, April 2006.

[28] Kuz K., Kaya Ö., Alkışlar L., Tekkalmaz M., Doğru A. H., “A DSK Based

Reference Architecture for Fault Management in Mission Critical Systems”,

Submitted to SDRS conference, Niagara Falls, New York, September 27-30,

2009.

[29] Pohl K., Böckle G., ve v. d. Linden F., “Software Product Line Engineering:

Foundations, Principles, and Techniques”, Springer, Berlin Heidelberg New

York, 2005.

http://portal.acm.org/citation.cfm?id=580116&dl=GUIDE&coll=GUIDE&CFID=36289223&CFTOKEN=65615599
http://portal.acm.org/citation.cfm?id=580116&dl=GUIDE&coll=GUIDE&CFID=36289223&CFTOKEN=65615599
http://portal.acm.org/citation.cfm?id=580116&dl=GUIDE&coll=GUIDE&CFID=36289223&CFTOKEN=65615599
http://portal.acm.org/citation.cfm?id=580116&dl=GUIDE&coll=GUIDE&CFID=36289223&CFTOKEN=65615599

