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ABSTRACT

NEURAL NETWORK BASED BEAMFORMING FOR
LINEAR AND CYLINDRICAL ARRAY APPLICATIONS

Giireken, Murat

M. Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Giilbin Dural

May 2009, 106 pages

In this thesis, a Neural Network (NN) based beamforming algorithm is proposed for
real time target tracking problem. The algorithm is performed for two applications,

linear and cylindrical arrays.

The linear array application is implemented with equispaced omnidirectional
sources. The influence of the number of antenna elements and the angular
seperation between the incoming signals on the performance of the beamformer in
the linear array beamformer is studied, and it is observed that the algorithm
improves its performance by increasing both two parameters in linear array

beamformer.

The cylindrical array application is implemented with twelve microstrip patch
antenna (MPA) elements. The angular range of interest is divided into twelve
sectors. Since three MPA elements are used to form the beam in each sector, the
input size of the neural network (NN) is reduced in cylindrical array. According to
the reduced size of NN, the training time of the beamformer is decreased. The
reduced size of the NN has no degradation in forming the beams to the desired

directions.
v



The angular separation between the targets is an important parameter in cylindrical

array beamformer.

Keywords: Beamforming, Neural Network, Direction of Arrival, Cylindrical Array,

Linear Array



0z

YAPAY SINIR AGLARI TEMELLI DOGRUSAL VE
SILINDIR ANTEN DIZILERINDE HUZME
SEKILLENDIRME UYGULAMALARI

Giireken, Murat

Yiiksek Lisans, Elektrik Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Giilbin Dural

Mayis 2009, 106 sayfa

Bu tez calismasinda Yapay Sinir Aglar1 kullanilarak gergek zamanli hedef takibi
icin gelistirilen bir huzme sekillendirme algoritmas: Onerilmektedir. Algoritma,

dogrusal ve silindirik anten dizisi olmak iizere iki uygulamada denenmistir.

Dogrusal dizi uygulamasi esit aralikli yonsiiz noktasal kaynaklar kullanilarak
yapilmistir. Dizideki anten eleman sayisi ve anten dizisine gelen isaretler arasindaki
acisal farkin algoritma {izerindeki etkisi incelenmis, hem anten eleman sayist hem

de agisal farki arttirmanin algoritmanin performansini arttirdigi goriilmiistiir.

Silindirik dizi uygulamasi on iki elemanli mikroserit yama anten (MPA)
elemanlariyla gerceklestirilmistir. Acisal bolge on iki sektore ayrilmistir. Her bir
sektore gelen isaretlere huzmeyi yonlendirmek icin ii¢ adet MPA elemant
kullanilarak, Yapay Sinir Aglar1 girdilerinin boyutu kiiciiltiilmiistiir. Boyutun

kiiciilmesi Yapay Sinir Aglarinin egitiminin hizlanmasinda 6nemli bir faktor

Vi



olmustur. Boyutun kiigiilmesi huzme formunda herhangi bir bozulmaya yol

acmamistir.

Hedefler arasindaki acisal fark, silindirik anten dizisinin performansinda belirleyici

etmenlerden biridir.

Anahtar Kelimeler: Huzme sekillendirme, Yapay Sinir Aglar, Gelis Yonii,

Silindirik Dizi, Dogrusal Dizi
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CHAPTER 1

INTRODUCTION

Improving technologies in Global Positioning, mobile communication and Radar
technologies demand faster real time target tracking. According to these improving

technologies, new DOA and beamforming algorithms are developed.

Early works show that a good beamforming plays an important role in target
tracking problem. Several beamforming works proposed in the literature serves for

real time beamforming problem [1], [3], [4], [8] .

Beamforming is an antenna array processing technique for shaping the antenna
array beams to the directions of one or more desired signals and to put nulls in the

directions of interfering signals [2], [7].

The main idea of the beamformer is to direct the antenna pattern to the desired
signal’s direction and to attenuate the interference signal(s). The output provided by
each antenna element is weighted to distinguish the spatial properties of a signal of

interest from noise and interference.

The beamforming term takes its name from the early forms of antenna arrays that
were used to generate pencil beams [2]. The antenna arrays with pencil beams
receive signals from a specific direction and attenuate signals coming from
interfering directions. Since this type of arrays have narrow beam widths,

beamforming has been extended to rich scattering scenarios.

1



A brief discussion over adaptive beamforming algorithms is studied in [1].
Beamforming techniques are divided in two main groups in [1]: fixed beamforming
and adaptive beamforming. In fixed beamforming, the interference is not cancelled
but mitigated with a reasonable cost. Adaptive beamforming requires complex
signal processing algorithms to steer the main lobe towards the desired direction
and to cancel the interfering signals. Adaptive beamforming applications leads to
effective performance, but is more expensive and needs quite implementation

efforts.

A narrowband beamformer operates L signals received on antenna elements. The

. T . .
antenna weights are w=[w,w,,--,w,|| and the received signals are

x:[xl,x2,~-~,xL]T.

we)="w - x,(t) (1.1)

The weights can be applied at the Radio Frequency (RF) stage, realizing a
beamforming network with analog devices. This choice is rather costly due to the
high quality required for the RF components. Analog beamforming needs precise
phase shifters and selective power dividers. Most of the analog beamformers are
used to form a unique lobe towards a desired direction, while multiple lobes are

usually difficult to realize [1].

An array of N antenna elements, in which the weights can be modified both in
amplitude and phase, provides N —1 degrees of freedom. The one dimensional
constraint regarding the desired direction reduces this number to N —2, which

represents the number of directions that can be cancelled.

The digital beamforming is similar to analog beamforming in case that both
techniques adjust the antenna weights. In digital beamforming, the received RF
signals are downconverted to Intermediate Frequency (IF) and then digitized by

Analog-to-Digital Converters (ADCs). The DownConverter (DC) is adopted to

2



simplify the digitization process, which gets more complex as the frequency

increases. [1]

Improving mobile communication and Global Positioning Sytem (GPS)
technologies needs faster beamforming algorithms are needed. Since the number of
users and the interfering signals increases, the communication systems require to
track the users continuously while they are moving, and to put nulls in the
directions of interferences by forming the beams of the antenna arrays. In this point,
the Neural Networks have an increasing demand of implementation in DOA and

beamforming.

An early work of Neural Network (NN) Direction of Arrival (DOA) approach is
given in [4] and [5]. In this work, NN is used for target tracking problem. Multiple
sources tracking algorithm is proposed here to train the NN for different numbers of
targets and antenna elements. A summary of DOA with NN is given in the

Appendix.

One of the adaptive beamforming algorithms proposed in [1] is NN beamforming.
According to its fast convergence, NN applications are having more important role
in DOA and beamforming applications. NN beamforming is a type of adaptive
beamforming which has a training and a performance phase. The NN is trained for
suitable input signals and output weight pairs. The trained NN is then used for

beamforming.

The early works of A.H. Zooghby have several NN DOA and beamforming
applications, given in [3] and [10]. In both works Radial Basis Function Neural
Network (RBFNN) is used as NN. Part of the thesis work related with NN

beamforming application presented in this thesis is closely related to the work given

by [3].

The proposed NN algorithm studied in this thesis uses Radial Basis Function Neural
Networks (RBFNN) for trainning of each input and output pair. The NN takes the



incoming signals of antenna elements as inputs of the training set. The outputs of

the training set are the optimum weights, assigned to each antenna array elements.

Two antenna array applications are practiced for the proposed beamforming
algorithm: linear array with omnidirectional equispaced elements, and cylindrical

array with microstrip patch antenna elements.

In the first beamforming problem, a total angular range of [—900,90°] is covered

by linear array of isotropic sources. The NN is trained for the cases of single target

and two targets exist in the range.

The performance of the linear array beamforming NN is examined according to the
number of antenna elements in the array and according to the angular separation

between the targets for two target case for different values of SNR.

In the second application, cylindrical array application of twelve-elements array
with directive microstrip patch antennas are taken into consideration to cover a total
angular range of 360°. The 360° of total range is divided into twelve sectors, being
30° of each. This approach fastens the algorithm computationally. By this

consideration, beamforming algorithm works for 30°, instead of full range.

Cylindrical array NN beamforming performance is analyzed for different SNR
values and different amounts of angular separation between multiple targets for
single and multiple targets applications. Interfering signal is included in cylindrical

array simulations.

An introduction to beamforming, the evolution of the beamforming algorithms and
an introduction to the beamforming applications studied in literature and the

organization of this thesis are presented in Chapter 1.

The fixed beamforming are given in Chapter 2. The main ideas and the main

constraints of the algorithms are discussed in this chapter.



The adaptive beamforming algorithm types, including the Neural Network

beamforming, are given in Chapter 3.

The Neural Network based beamforming algorithm, studied for this thesis is
discussed in Chapter 4. The proposed algorithm for linear array and for cylindrical
arrays are presented. The angular seperation between the incoming signals are
discussed and the effect of the number of antenna elements for linear array with

different SNR’s are discussed in this chapter.

Simulation results for the proposed algorithms in linear and cylindrical arrays are

given in Chapter 5.

Chapter 6 covers the conclusion and the proposals for the future work.



CHAPTER 2

FIXED BEAMFORMING

Beamforming is a signal processing approach of beam steering application of
antenna arrays. The main idea is to direct the antenna pattern to the desired signal’s
direction and to attenuate the interference signal. The beamforming is effective

when the directions of the desired and the interference signals are different.

The main idea of beamforming can be expressed as;
W)= wi - x,(0) 2.1
i=1

where y(t) is the output of the antenna array.

" denotes the complex conjugate of w, w, are the weights which are applied to
each antenna element to shape the beam and x, are the coming signals from the

sources. Both of these variables are complex variables. Desired signals are tracked

by shaping the main beam.

Both the phase and the amplitudes are controlled to steer the antenna pattern to the

desired location.



2.1 Signal Model

An array with L omnidirectional elements is assumed to exist in an environment

with M uncorrelated point sources. The time, 7, (Q) needed to arrive from the i”

source to the /" element is

7,(6,)= i(l —1)cos b, (2.2)
C

which is given in Figure 2-1.

Figure 2-1 Linear Array

The signal induced on the reference element of the array is,

m, (t) e’ (2.3)

Here, ml.(t) is the modulating function. Modulating function shows the

characterization of the induced signals.



The signal which arrived 7,(g,,6,) seconds before to the /" element according to

the reference element is expessed as,
m, (1) ¢/ hlt+a(:0) 24

Here it is assumed that the signal has narrow bandwidth and the modulating

function does not change in ,(¢,,6,) seconds.

The total induced signal on to the /" element in the presence of M sources is

X, = im (t) eﬂ”‘fb(w’(qj"’g")) +n (t) (2.5)
1 i 1 .

i=1
n,(t) is a zero mean random noise with ¢ variance, applied to the /” element.

The narrow-band beamformer concept is outlined in Figure 2-2.

Figure 2-2 Narrow-Band Beamformer
8



As it is seen in Figure 2-2, signal induced in each antenna element is multiplied by
the weight of that antenna element. The weighted antenna signals are summed and

array output is formed.

The array output is given by

y(0)= ;le,*x, (1) 2.6)
The weights are formed as,
w=[w,w,,..,m, | 2.7)
and the signals induced on antenna elements are
x(0) =[x (0).x, (1), x, (1)] 2.8)
The beamformer, designed by the vectors described above, is
y(t)=w"x(t) (2.9)

The correlation matrix is the correlation between the i” and the ;” element of

antenna array. It is expressed by the expectation operation,
R=E{x(t),x" (1)} (2.10)

The steering vector, s, associated from the direction (¢,6,) by the i” source is

=

g = [ eﬂzzﬁm(@,@)

=

Lo T
’...,efz”foﬂv(@ﬂfq (2.11)

The matrix notation of correlation matrix R can be formed as follows

R=A4SA" +o’1 , (2.12)



where I is the identity matrix. The matrix 4, [LxM ] is composed of M steering

vectors
A=[§1,§2,~-~,§M] (2.13)

S matrix, [M xM] in (2.14) expresses the correlation between sources, which

takes the values 1 or 0

D i=j
S. = 2.14
Y {O, i# @.14)

here p, denotes the variances of the modulating function m, (¢).

The correlation function can be written in terms of eigenvalues and eigenvectors
which is the spectral decomposition of R. The eigenvalues are composed of two
groups. The first one is the group of the eigenvalues of the directional sources and

the second is the group of the eigenvalues of the white noises.

Eigenvalues are expressed as 4, and the eigenvectors as U, ,

R=3AX" | (2.15)
o .
0 .
A= A, , (2.16)
.0
K 0 4|
2=[U,--U,] (2.17)

By the above expressions, R is formed

M
R=Y AUU +0.1 (2.18)
I=1
10



According to the selection of weights, beamforming is divided into the following

types.

2.2 Delay-and-Sum Beamforming

It is the simplest beamformer. Each antenna element is multiplied by the same
weight values to steer the beam to direction ((150,6’0) . This direction is called as look

direction and it is assumed to be known before. The array weights can be written in

terms of steering vector, s, in look direction as

S, (2.19)

—C

~ -

Considering that there is a signal source with power p and modulating function
m, (), the expression of the signal source induced on the /" element of the antenna

array is
x, (1) =m, ()0 (2.20)

The induced signal expression can be rewritten including s,

x, (t)=m,(t)e”*" s, (2.21)

The output vector is
y(t)=w'x(t) (2:22)
=m,(t)e”*™" (2.23)

The beamforming concept is equivalent to the steering array mechanically, except it

is done electronically by phase shifters.

11



The delay-and-sum beamforming design is shown in Figure 2-3.

I
elelment -1

Delay T

Output s (t - T)

S(t—T) 05

element - 2

Figure 2-3 Delay-and-Sum Beamformer

The antenna array of Figure 2-3 consists of two elements. The wave arrival time

difference between two elements is given as

T :icosﬁ . (2.24)
c

The signal arriving to the first antenna element is s(t), and the signal arriving to

the second element is s(¢#—T'). Signal induced to the first clement is delayed with

T, and no delay is applied to the signal induced to the second element. The signals
become in phase. Each signal is multiplied by 0.5 and then summed to obtain

antenna output.

Delay-and-sum beamformer works well in an environment with white noise only. It
fails in the presence of directional interferences. The correlation function of the

white noise is

R, =01 (2.25)



The output noise power is

P, =w'R.w, , (2.26)
2
o
=t 2.27
. (2.27)

It is observed that the output power is decreased by the ratio L. The SNR of input

and output are given by

input  SNR = L;
o

o, 228
p.L (228
2

output  SNR =

In the absence of directional interferences, the beamformer leads a gain value of L.

The beamformer output to a signal coming from direction ((151,6’1) , denoting s, as

the steering vector coming from direction (¢,, 0,) , 18

w's, :%%H& . (2.29)

2.3 Null-Steering Beamforming

The main idea of this beamformer is to generate the desired antenna beam, i.e. put a

null in the directions of interferences.

Delay-and-sum beamformer is used ot estimate the signal coming. It is delayed and
summed by the beamformer. The output of the signal is substracted from each

antenna element. By this process, strong interferences can be cancelled successfully

[11.[2].
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The weights are selected by the following constraints to put a unity response in the

direction of desired signals, and to put nulls in the direction of interfering signals

:::Hj'::é i=1,2,....k (2.30)

The weight expression is given by
wid=¢" (2.31)

A 1is composed of steering vectors,
A:[so,sl,~-~,sk], (2.32)

and e is the constraint vector which is composed of zeros, and a one in the first

element.
& =[1,0,---,0]" . (2.33)

A 1is expected to be invertible, means that each steering vector is linearly

independent from each other. The weight vector is

w'=¢'4" (2.34)

The first row of matrix 4~ gives the weight vector.

If 4 is not a square matrix, means that less than L —1 nulls are needed, the weight

vector is given as

wh =gl A" (44" . (2.35)
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2.4 Optimal Beamforming

The optimal beamformer does not require the knowledge of the directions and the
power levels of the interferences ad background noises. However, the knowledge of

the desired signal is required. The weights are calculated to maximize the SNR [1].

The weight vector expression is
w=u,Rys, (2.36)

R, 1s the correlation matrix of noise and does not contain any information of signal

from direction (¢,,6, ). The constant s, is

Ho=—fma— - (2.37)

(2.38)

The noise level can not be powerful enough in real world applications. R, the

correlation matrix of noise plus signal is used instead of R, . Weight equation

becomes
w=—t (2.39)

There are two constraints while calculating the weights

minimize w" Rw ,
w (2.40)
subject to w5, =1
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The objective of this beamformer is to minimize the mean output power and put a

unity response in the look direction.

In this process, the power of noise is minimized and output signal stays constant.,

which yields maximized value of the output SNR.
The output SNR is given by
SNR = p s/ 'R,'s, (2.41)

When there is no interfering signal, the beamformer behaves as conventional

(delay-and-sum) beamformer. The weights in this special case is

)
w= . 242
w== (2.42)
The output SNR in this case, assuming the array gain G = L

pL
SNR="5 (2.43)

n

In another case, it is assumed that there is only one interfering signal with power

p, - The SNR and the antenna gain, G are given as,

+In
SNR—p‘—‘ZL ng : (2.44)
Gn 1+ O-n
p,L
2 2
L(” j(” "Lj
g=P\ P Py , (2.45)
o, 1+ p,

Here p is
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SHS SHS
SE RN (2.46)

—1-
P L

Another case is that the interference is much more stronger than the background

noise, p, ] o..SNR and the antenna gain, G are as follows

pLp
SNR=£=5 (2.47)
G?‘l
p.Lp
G=+=E (2.48)
(o}

n

To have an appropriate performance from the optimal beamformer, there has to be

less than L —1 interferences.
2.5 Optimal Beamforming Using Reference Signal

Optimal beamforming using reference signal is another application of narrow-band

beamformer which uses a reference signal to obtain weights, shown in Figure 2-4.

The weights are adjusted by the error signal
g(l)zr(t)—v_ng(t) (2.49)

where r(t) is the reference signal. The main constraint for calculating the weights

is to minimize the MSE between the array output and the reference signals

|

= B{Jr (o) |+ 0" Rw—=20" B {x(1)r (1)} (2.50)

MSE = E{[s (¢}
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Output y(t)

\ 4

) 4

Control for Weight | Error SZgnal g(t) /+
Estimation h

+
Reference
signal r(z)

Figure 2-4 Narrow-Band Beamformer with Reference Signal

z =E{§(t)r(t)} shows the correlation between the array output and reference

The weights are

Wy =R 'z (2.51)

The MMSE is

MMSE = E{|r (0 | -2"R 'z (2.52)
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Beamformer is successful for obtaining a weak signal in the presence of strong
interfering signal by taking the reference signal, zero to get rid of the strong

interference signal. It has no effect on the desired signal. [1]
2.6 Beam-Space Beamforming Process

The beamformers discussed in the previous sections are the element-space

beamformers.

Beam-space beamformers are composed of two parts shown in Figure 2-5.

Main Beam

Output y(t)

x, (1)

Auxiliary
Fixed Weights B€ams

9, (t)

B

Matrix Prefilter ~ Adjustable
Weights

Figure 2-5 Beam-Space Beamformer

The first part generates multiple beams. The beams are weighted and summed in the

second stage. The weights are not adaptive, they are fixed.
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In this beamformer, there are L beams, where L is the number of antenna
elements. One beam, the main beam, is in the direction of the desired signal. L —1
secondary beams are substracted from the main beam to cancel the interfering
effects from the main beam. There is no information of desired signal in secondary
(auxillary) beams. So, in substracting process no information of desired signal is

lost.

The main beam pattern has a sinc shape, sin Lx/sin x. Since there is no information
of desired signal in the auxillary beams, these beams have nulls in the look

direction.

The M —1 auxillary beams are expressed as
q= x" (l)B (2.53)
B is the block matrix.
s'B=0 (2.54)
s, 1s the steering vector in the look direction.

The beamformer has high performance when the number of interfering signals is
less than the number of antenna elements, M —1< L. The calculation is less than it
is in the element-space beamformers. M —1 weights are required in beam-space

beamformer, comparing to L weights required in the element-space beamformers.

The main idea is to cancel the maximum interference and to maximize the output

SNR.
2.7 Broad-Band Beamforming

Broad-band beamforming shown in Figure 2-6 is an element-space beamformer.
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It is seen from the figure that the incoming signal from the direction (¢0,00)is

delayed by an amount of 7, (¢,.6, ),
Z(¢07€0):Z)+Tl(¢0’90) (2.55)

where 7, (¢0,00) is the time of signal arriving to the /" array element according to

the reference array element.

Steered

—

— %(4-6)

R

—
QO
°
o
[0}
Q

e :

— 7 (4.6)

Output
+ D

B
(-
a ,

—

— Z.(¢:6) T

Figure 2-6 Broad-Band Beamformer

The output signal x(7) in terms of induced signal s(7) is

x(1)=s(t+7,(4.0)-T,(4.6,)) (2.56)



The broad-band is Finite Length Impulse Response (FIR) filter. It is designed to
steer the beam to the look direction by adjusting the coefficients of the filter. The
weights are

w=[w,wy,ow, (2.57)

The weight vector has size of [LJ X 1] . The mean output power is
P(v_v):v_vTRv_v ) (2.58)

The correlation between the (l —l)th tap on the m” channel and the (k —l)th tap on

the n” channel outputs
(R, )l’k =pl(m=n)T+T,(4,6,) T, (,6,)+7,(4.0)-7,(4.0)] (259

p(t) is the expected value operator,

p(r)zE{s(l)s(l+r)} (2.60)

S(f)e* ™ df . (2.61)

jo!
—_
N
~
Il
5'3'—38

The following constraints are taken into account for the requirement of interference

cancellation and of putting appropriate response in the look direction

minimize W' Rw
w (2.62)
subject to C'w=F

F [J X 1] denotes the frequency responce in look direction and C [LJ xJ ] is
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1
C= - : (2.63)
0 1
Weight vector under these constraints is
w=R"C(C"RC) F . (2.64)

F, is equal to the sum of L weights before j" delay. In order to direct the beam to

the look direction, the sum of weights is zero, except the weight near the middle of

filter.

The steered array pattern can have a broader shape by taking derivative constraints

into account. In this constraint, the derivative of power pattern with respect to ¢

and @ is equal to zero.

Another constraint uses the known parameters of desired signal, which is

correlation constraint

min imize v_vTTRLv ; (2.65)
subject to 1, w=p,

P, 1s a constant value and r, specifies the correlation between the array output and

desired signal.
2.8 Partitioned Realization

Partitioned processor is a beam-space processor, shown in Figure 2-7.
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TDL

Output y(t)

xl] (t) TDL

TDL

Figure 2-7 Partitioned Processer

The main constraint is to direct a unitary response in the look direction. The first
time delays control the induced signal from the look direction to put the signals in

each antenna element in phase. [1], [2]

After the time delays, the beamformer is divided into two parts. In the first part, the
delayed signals are multiplied by fixed weights, by selecting appropriate FIR filter

coefficients. The output of the first part is

J-1

Fkﬂyt Tk , (2.66)
k=0
x"(#)1
y(t):_ (L)_ ) (2.67)

In the second part of the beamformer, the signal coming from the look direction is

blocked by W, matrix. The sum of each row of W, is equal to zero. The output of

W_ matris is
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X (t)=Wx(t) . (2.68)

L—1 output beams are adjusted by FIR filter coefficients, g, in TDL box. The

output is
v, (6)=2 a/x'(t-kT) . (2.69)

the constraint in choosing the coefficients is

minimize E{[y.(0)-», (0]} (2.70)

a

FBW, the ratio of the bandwidth to the center frequency, is an important parameter

that specifies the performance of the beamformer.

To have a broader beam, a larger ratio of largest eigenvalue of the correlation

matrix to the smallest value of the correlation matrix is required.
2.9 Frequency-Domain Beamforming

Frequency-domain beamformer is an element-space beamformer type, shown in

Figure 2-8.
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Figure 2-8 Frequency Domain Beamformer

Induced signal in each array element is passed to Fast Fourier Transform (FFT)

process. Each frequency bin is weighted and summed.

The weights are adjusted independently to minimize the mean output power of each

frequency bin which serves a faster calculation.

The performances of the time- and frequency-domain beamformers are the same for

the constraint of signals in each frequency bin being independent.

2.10 Digital Beamforming

Analog beamformig structure is explained under delay-and-sum beamformer part,

shown in Figure 2-9.
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Output t
Y )ty
7,(9)

Figure 2-9 Analog Beamformer

The output of the beamformer is

y(t)zmei(t—ri(H)) . (2.71)
By delaying the induced signal on each array element, signals become in phase and

then weighted to steer the beam in the look direction.

In digitial beamforming, weighted signals are sampled and stored. The appropriate

samples are used to shape the beam. For delay process, a constant value, A is used.

The arrival time of the induced signal from angle 8, to the i element is
7,(6,)=(i-1)A . (2.72)

For a signal induced from angle &,, shown with B, needs to be delayed (L—z' )A

seconds, shown in Figure 2-10. For signals coming from angle 6, no delay is

needed.
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Figure 2-10 Digital Beamforming [1]

As it is seen from the Figure 2-10, the steering directions are limited in [02,93]

range. To enlarge the direction range, sampling is increased by changing the
sampling interval to A/2, in Figure 2-11. Larger direction range is seen in Figure

2-10 with 6, and 6, .
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Figure 2-11 Sampled Digital Beamformer [1]

High sampling rates require larger storage capacity, faster input-output devices,
ADC’s. Digital interpolation is applied for increasing sampling rates by zero

padding.

Increasing the array size satisfies narrower beams. In application, it is not possible
to increase the array size. Instead of that, extrapolating is applied in digital

beamforming.

2.11 Eigenstructure Method

Eigenvalues of correlation matrix, R are seperated into two parts as noise and

signal eigenvalues. The eigenvectors, corresponded to each part are calculated.
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The eigenvectors of R are orthogonal to each other, assuming that there are L

spaces. This set is seperated into signal and noise subspaces.

Weight vector is adjusted to have an approriate response in look direction and to
cancel the interferences. It is mentioned above that the weight vector of the desired

signal is orthogonal to the steering vector of the interfering signal.
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CHAPTER 3

ADAPTIVE BEAMFORMING

Adaptive bemaformers update the weights of the antenna array according to the

desired and/or the interfering signals in the environment.

There are many adaptive beamforming schemes, which are referred to adaptive
algorithms [1]. Some of them are presented in this chapter. The characteristics,
such as the speed of adaption and the mean and variance of the estimated weights

are given.

The correlation matrices used for estimating weight vector are not considerable in

application.

Since the correlation matrix of noise (R, ) and the correlation matrix of signal (R)

are not available, optimal weights are calculated by using the known parameters of

signal and array output.

Adaptive algorithms are accomplished to adjust the optimal weights and to shape

the appropriate array pattern.

Some of the adaptive algorithms and their parameters are discussed below.
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3.1 Sample Matrix Inversion Algorithm

Sample Matrix Inversion (SMI) algorithm estimates the array weights by replacing

with its estimate. [1], [2]
N samples of array signal x(n) are used to adjust R,

1N

= 3.1
N &x (3.1)
The algorithm enables to update R according to the new signal samples,
R(n)+x(n+1)x" (n+1
R(n+1)=" () x( 1)5 (n+1) (3.2)
n+

-1

according to the new samples, weights are also updated, v_v(n+1). R is required

in calculation of optimal weights

(3.3)

Increasing the number of samples concludes a good approximation of R and

optimal weight, n >0, R(n)—> R and w(n) — wy; .

3.2 Least Mean Square Algorithm

The Least Mean Square (LMS) algorithm can be divided into two sets: constraint

and unconstrained LMS algorithms.

In constrained algorithm, the weight updates are adjusted under some

considerations [1].
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In unconstrained algorithm, the weights are updated according to the reference

signal, without any direction information of the signal [1], [2].

Gradient of quadratic surface estimation is referred to weight updates. According to
the estimation, weights are updated by an amount of step size. Small step size
success in calculating appropriate optimal weight values. On the other hand, large
step size values success in faster convergence, but result fluctuations around the

optimal weights.
3.2.1 Unconstrained LMS Algorithm

Unconstrained LMS is the first type of LMS adaptive algorithm.

The updated weight expression is

v_v(n+1):v_v(n)—/1g(v_v(n)) , (3.4)

M is a scalar value, known as step size. It reflects how fast the algorithm

approaches to optimum weights.

g( v_v(n)) is the unbiased estimate of MSE

MSE (w(n)) = E{lr(n+1)f |+ w" (n) Ruw(n) 2" () z (3.5)
=2Rw(n)-2z . (3.6)
The output of the beamformer is

y(n)=w" (n)x(n+1) . (3.7)
It is seen in equation (3.7) that w(n) is used in (n+1)" iteration.

For real applications, R and z are changed with noisy values
33



g(w(n)) = 2§(n+1)f1 (n+1)v_v(n)—2§(n+l)£(n+l)
:2§(n+1)5*(1v(n)) (3.8)

The error between the array and the reference signal, g(v_v(n)) , 18
8(v_v(n))=v_vH (n)g(n+1)—1(n+1) (3.9)

u<1/4_ . makes the algorithm behave stable and converge to optimal weight. 4__

is the maximum eigenvalue of R.

The convergence speed is represented by the L eigenvectors and /” eigenvalue of

R,

1
2ul,

(3.10)

7

Larger eigenvalue denotes small convergence speed, r,. Large eigenvalues refer to
the signal eigenvalues. Smaller eigenvalues denotes large 7,, which refers to weak

signals, noise. For large eigenvalues, the convergence speed of the algorithm takes

small values. The algorithm cancels strong signals first.

LMS algorithm is not an appropriate algorithm for nonstationary environment, since

it has a slow convergence speed.

The covariance matix of the weights is given as

ki (1) = E{(1(n) - ) (w(n) )} . (3.11)

I=

w is the expected value of v_v(n) . Algorithm minimizes the MSE given in equation

to calculate the optimum weights

MSE (w(n))= MMSE+V" (n)RV (n) , (3.12)
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Z(n):W(n)_KVMSE . (3.13)

Equation (3.13) gives the error between estimated and optimal weights. Z(n) is

expected to be equal to zero for infinite iterations.

The difference between the estimated weight in LMS and the optimal weight is

named as misadjusment. The gradient step size ¢ and misadjustment M are given

as follows

O<py<—— (3.14)
4lnax
L 2ul,

0 1 (3.15)
7(4) ;1—2M—

ar = 1) (3.16)
1-7(u)

Increasing u causes an increase in misadjustment. While increasing u, the

algorithm converges faster to the optimal weights but fluctuates so much around the

optimal weights and causes a great miasadjustment. Decreasing x decreases the

convergence speed of the algorithm. For a nonstationary environment, estimated

weights stay behind the optimal weights.
3.2.2 Normalized LMS Algorithm

This algorithm is a type of the constant-step-size LMS algorithm [1], [2]. The data-

dependent step size is given as,

p(n)=—-==20_— (3.17)

35



The algorithm convergence to the optimal weight better, and no eigenvalue is

needed to be calculated.

3.2.3 Constrained LMS Algorithm

Constrained LMS is the last type of adaptive LMS algorithm. According to the
constrained LMS algorithm, the updated optimal weight is

v_v(n+1):P{v_v(n)—u§(v_v(n))}+Sfl"s (3.18)
S8
P=1- i (3.19)

u 1s the step size, s, is the steering matrix in the look direction. g(v_v(n)) is the

estimate of the gradient of w" (n)Rv_v(n) with respect to v_v(n) ,

g(w(n))0 v, (w"Rw) = 2Rw(n) . (3.20)

For applications, the above expressions have to be replaced with standard LMS

algorithm. Assuming the noisy environment

R—)E(n+1)§H(n+l) , (3.21)

g(w(n))=2x(n+1)y"(w(n)) . (3.22)

y(v_v(n)) is the array output. The gradient step size and the convergence speed are

as follows

O<u< , (3.23)

24, (PRP)

max

36



-1 1

" n[1-2u4 (PRP)] 2u4,(PRP) 524

4, and A__ are the /" and the maximum eigenvalues of PRP. R is
R=p,s,s' +R, (3.25)
Ps,=0 , (3.26)

Convergence speed depends on the eigenvalues of PRP = PR, P. Eigenvalues

depend on the direction and power of directional sources.

The variance of the gradient and the misadjusment are given as,

V, (w(n))=4w" (n)Rw(n)R (3.27)
M: z; _ PRP) (3.28)
le PRP)
The constrainted LMS algorithm as expressed above is
»_v(n+1)=P»_v(n)+§0§°§0 ~ uPg(w(n)), (3.29)
where g((n) is
g(w(n))=x(n+1)x" (n+1)w(n) , (3.30)
and x(n) is
x(n)=m, (n)s,+xy(n) . (331)
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m, (n) is the modulating function. x, (n) is the array receiver vector.

Pg(Lv(n)) = Px, (n +1)chvi (n +1)Lv(n)+ m, (n +1)P§N (n +1)§0Hv_v(n) (3.32)

m, (n +1) is a random variable which has the variance of the signal power in the

look direction.

Weight estimation is sensitive to the signal power in standard LMS algorithm. It is

better to choose a low step size in an environment where strong signals exist.

The standard LMS algorithm adjusts the optimal weights by the new samples of

correlation matrix. However, the recursive algorithm uses previous samples also.

nR(n)+§N (n+1)§f,1 (n+1)

R(n+1)= | (3.33)
The correlation matrix is used to make an estimation of
g(w(n)=2R(n+1)w(n) . (3.34)
Variance of the estimated gradient is
Vg(w(n))= (njl)z w" (n)Rw(n)R . (3.35)

The gradient is decreased with a ratio of (n + 1)2 , so the recurcive LMS algorithm is

less sensitive to the signal power than the standard LMS algorithm.

The improved LMS algorithm’s correlation function of a linear array, equispaced

elements is,
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R=| . ' . , (3.36)
o Ty
r, are the L correlation lags
ri(n)zNLZx,(n)x;;i(n) i=0,1-,L-1 . (3.37)
i

The improved LMS algorithm works better in the presence of strong signals.

Increasing the step size has no effect on algorithm’s stability.
3.3 Recursive Least Square Algorithm

Recursive Least Square (RLS) algorithm uses the inverse of correlation matrix,

R (n) . This approximation have a better performance in a large eigenvalue spread.

The weight update is
Lv(n):v_v(n—l)—R’l(n)g(n)g*(n/(n—l)) (3.38)
and R(n) is
R(n)zﬁOR(n—1)+§(n)icH(n) ,

=3 s x(k) 2" (k) (3.39)

0, 1s the forgetting factor, 1/1-0, is the memory. The update of the correlation
matrix is given as

R n—l)
0, S, +x"
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where

R-l(o)zgiz, £>0 . (3.41)
0

The constraint of the RLS algorithm for convergence, independent of the

eigenvalues of R, is to minimize

J(n)=3 6 e (k) (3.42)

k=0

According to the convergence speed, RLS is the most efficient algorithm.
3.4 Constant Modulus Algorithm

The constrained of the gradient-based algorithm, Constant Modulus Algorithm
(CMA) is to minimize the following

1 2 ,)\?
J(n):EE{(‘y(n)‘ —yo)} . (343)
The weight update is

v_v(n+1)=v_v(n)—,ug(v_v(n)) , (3.44)

Y, 1s the desired amplitude when there is no interfering signal,

y(n) =w' (n)g(n +1) is the array output. The gradient cost function g(v_v(n)) is

g(w(n))=2¢(n)x(n+1) (3.45)

and
g(n)lj (‘y(n)‘z—yg)y(n) (3.46)
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Under the above considerations, the weight update is

Lv(n+1)=w(n)—2yg(n)§(n+l) . (3.47)

3.5 Conjugate Gradient Method

The algorithm tries to solve the following equation

Aw=b (3.48)

w is the weight vector, 4 matrix is composed of the sampled signals from array
elements. b has the samples of desired signal. The algorithm is trying to decrease

the error between the desired and the array output under a determined value. The

error variable, named as the residual vector is

r=b-Aw (3.49)

The weight update is
v_v(n+1):v_v(n)—,u(n)§(n) . (3.50)

where g(n), the direction vector and () step size are as

g(n)=A"r(n) . (3.51)
u(n)0 M (3.52)
[4"g(n)
The residual update and direction vector update expressions
r(n+1)=r(n)+p(n) Ag(n) . (3.53)
g(n+1)=A"r(n+1)-a(n)g(n) . (3.59)
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where

B ‘AHK(n+1)‘2
_—‘AHK(n)‘Z

a(n)

(3.55)

The error surface, " (n)r(n) is minimized in L iteration.
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CHAPTER 4

NEURAL NETWORK APPROACH FOR

BEAMFORMING

Neural Network algorithms have been more popular in signal processing
applications. According to the improving mobile communication, Global
Positioning Sytem (GPS) and Radar technologies, faster beamforming algorithms
are needed. Since the number of users and the interfering signals increases, the
communication systems require to track the users continuously while they are
moving, and to put nulls in the directions of interferences. Neural Networks (NN)
have good performances in accordance of these needs, and NN can easily be

implemented for these applications.

The main idea of NN applications is to define input and output pairs for the training
phase. The inputs of the training phase have to be chosen carefully, since the NN is
going to make an optimization for a new, unseen input according to the trained

input and output pairs.

In this thesis work, beamforming applications are applied with NN. The main idea
of this beamformer is to direct the antenna array patterns to the desired signal

directions and to put nulls in the directions of interferences.

The inputs are chosen as the correlation matrices of the incoming signals from

sources. The inputs have all the possibilities of the direction of arrival (DOA)
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information of the incoming signals. The outputs are the weights of the antenna
elements with respect to each correlation matrices. These weights are used to steer

and shape the antenna pattern.

Radial Basis Function Neural Network (RBFNN) is used for training phase. A brief
information of RBFNN is described in Section 4.1.

Two applications are studied for NN beamforming. First one is the linear antenna
array application RBFNN’s and the second application is over cylindrical array with

cylindrical microstrip patch antenna elements via RBFNN.

A part of linear array application in this thesis is parallel to the work given in [3] of
A. H. Zooghby, C. G. Christodoulou, and M. Georgiopoulos. The network is
composed of the correlation matrices of the incoming signals to the linear array.
The outputs are the optimum weights of each antenna element. The weights are

calculated according to the paper in [3].

The application is implemented for an angular range of interest of [—900,900]

Since all the possibilies of single target or multiple targets in any direction are taken
into consideration for training, the algorithm has the knowledge of the DOA

information of the whole angular range of interest.

In the performance phase, the correlation matrix of an incoming signal from any
direction is given as the input to the NN. The direction of the incoming signal is not

necessary to be known. Optimum weights are derived by training NN.

Second approach is implemented for a cylindrical array application. The cylindrical

array has twelve Circular Microstrip Patch Array (CMPA) elements. Since the

antenna elements are directive and the array allows a full coverage of 360°, this

array is used as a performance application of NN beamformer.

The main idea of the NN beamforming idea is identical with the linear array

application. The main difference is that the angular range of 360° is divided into
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twelve sectors, having an angular coverage of 30°. Each CMPA element is placed

in the middle of the corresponding sector, as mentioned in Figure 4-9.

The inputs of the NN are the correlation matrices of all possible incoming signals

form all directions of 360°. The outputs are the calculated weights, according to the

formulation given in [3].

The main advantage of cylindrical array application over the linear array one is that

the NN in cylindrical array needs less time for training. In the first implementation,
there are more possibilities for a whole range of 180°. In cylindrical array

application, the possibilities are limited with 30° for each twelve sectors.

For an incoming signal to any sector, three array elements are activated. For
. . . th .th . th
sector —i, the activated elements are (i—1)", i and (i+1) elements. The

beamforming for an angle included in sector —i is implemented by just three

antenna elements and only for 30° of interest.

The DOA information of the incoming signal is not necessary to be known. The NN
optimizes the beam for the signal in the performance phase. The array pattern is

shaped according to the new signal.

Section 4.1 involves an introduction to RBFNN. In Section 4.2, the formulation and
the algorithm of the linear array approach is given. Section 4.3 presents the
formulation and the algorithm of CMPA application. The input and output pairs for
training phase of each two implementation are described briefly in the following

chapters.

4.1 Radial Basis Function Neural Network

The Radial Basis Function Neural Network (RBFNN) is a three layered feed-

forward network. Since RBFNN network has fast learning speed and needs less
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iterations for converging to the target values, it is used for the beamforming

applications of this thesis work.

The main idea of RBFNN is to make a junction between the inputs and outputs of
any size. This junction is a multifunction of input. The network tries to fit the

[input, output] pairs for this multifunction. [4], [10]

The architecture of the RBFNN is shown in Figure 4-1.

Figure 4-1 Radial Basis Function Neural Network

The mapping between the input-hidden layers is nonlinear. There is a linear

combination between hidden and outpul layers.

The mapping function is expressed as
N
F(x)=> wolx-x|) (4.1)
1

N is the number of functions. x, are the centers of the radial basis function. ¢ can

be considered as
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p(x)=e>*" | (4.2)
go(x) is called as the transfer function of the neural network’s input-output pairs.

In this thesis, two MATLAB commands of RBFNN are used for training and

performance phases of the beamformer.

“newrb” is the training MATLAB command of the RBFNN. The inputs of this
command are the inputs, outputs, the mean squared error goal, spread of the
RBFNN and maximum number of neurons. The inputs are the correlation matrices,

and the outputs are the weights.

“sim” is the performance MATLAB command. The inputs of this command are
trained NN, input, network targets. The command returns the corresponding output

weights of given input correlation matrix.
4.2 Linear Array

The linear array beamforming approach is taken from [1], shown in Figure 4-2.

Figure 4-2 Linear Antenna Array
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It is assumed that there are M isotropic equispaced antenna elements, with distance
d . There are K number of sources coming from angles €, i=12---,K which is

[—900,900} . The sources are in the far field.

The correlation matrices are calculated according to the K incoming signals. The

number of incoming signals are 181, which includes 0°. The distance between the

antenna elements are taken as 1/2.

The performance analysis of this application is examined by changing the number
of antenna elements, the SNR value and for multiple target applications, the angular

separation between the incoming signals.

In Section 4.2.1, the formulation of the electric field, correlation matrix and the
weight calculations are given. These informations are used for training and the
performance phase of the linear array beamforming NN. The algorithms of the

training and performance phases are described in Section 4.2.2.
4.2.1 Formulation

Assuming that there are K antenna elements, the induced signal to each antenna

element is calculated by,

X(6)=>8,()e " n(e) (4.3)

K
m=

S, are the signals coming from each signal source, nl.(t) is a zero mean,

statistically independent white noise, with variance o, k,, is given as

k=2 Gno (4.4)

m
C
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d , is the distance between the array elements, w, is the angular frequency, c is the

speed of light.
Equation (4.3) can be rewriten in matrix form as
X(2)= 4S(t)+ N(z) (4.5)

X and N are [M x1]-sized vectors. S is a [K x1]-sized vector. 4 is a [M xK]-

sized matrix. This matrix is the steering matrix for linear array. Steering matrix is

composed of the following,
= ¢ (4.6)
where &, is given in equation (4.4).

After deriving the induced signal to the linear array, the correlation matrix of each
incoming signal is calculated. As mentioned earlier, the correlation matrices are

used for deriving the inputs of the NN for training and for the performance phases.

The correlation function is derived from the induced signals on each array element,

given as
R=EX()x ()"}
= AES(1)S(e)" 4" + EIN(N(e)' | 4.7)

The first row of the correlation matrix is taken into account for calculating the Z

vector, [5]. The derived Z vector is then given as the input of NN.

The correlation function and vector-5 are given as,

Rll R12 R13 Rll
R=|R, R, R,|andb=|R, (4.8)
R31 R32 R33 R13
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Z vector is obtained from b

b

7=
el

(4.9)

The elements of the correlation matrix R are complex values. Since the NN does
not accept the complex values, real and imaginary parts of each element of the
matrix is considered seperately. The size of Z vector in equation (4.9) is [M x1].
Resizing the vector, by seperating it into its real and imaginary parts changes the

size of Z to [2M x1]. Z vector is given as the input to the RBFNN. The next step

is to calculate the outputs of the NN.

The outputs are the optimum weights of the linear array elements for corresponding
DOA’s. The formulation of weight calculation is given in [1]. The weights
minimize the signals received from interferences and maximizes the array response

for the desired signal directions.

The optimum weights are calculated as,
W, =R'S,[SUR'S, ] r (4.10)

The main constraint of the optimum weights is to minimize the mean output power.

R is the correlation matrix, defined above.
R=E{X(1)X(1)"] 4.11)

S, 1s the steering matrix of the desired signals. The information of the directions of
each desired signal is given in this matrix. Assuming that the scanned azimuth angle

is [-6,0], and the number of the desired signals is ¥, the desired steering matrix
S, has a size of [(26’+1)>< V] . In this thesis work, assuming that the number of

desired signals is two, the size of S, is [I81x2].
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The steering matrix of the desired signals is expressed as,

Sdz[Sd(é’l) S,(6,) - Sd(eV)] (4.12)

Sd(e.):[l e gL e*f‘M*“"f] (4.13)

After the training phase, the performance phase is accomplished to obtain the

optimum weights for new incoming signals.

For a new incoming signal of S(t), the correlation matrix, band Z vectors are

calculated according to the equations (4.7), (4.8) and (4.9). The outputs are derived
by performing the trained NN. The outputs are the weights which shapes the beams.

The array response of the incoming signal is derived by multiplying the weights

with each antenna element for each direction, given by the following formulations,

Array Pattern = w! X (4.14)

4.2.2 Algorithm

The algorithm is composed of a neural network with multiple input and output

pairs. These multiple pairs are trained by RBFNN, as shown in Figure 4-3.

2 vectors Neural Network optimum
Beamformer weights

Figure 4-3 Neural Network Beamformer
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The algorithm can be considered for two cases being single target and multiple

target cases.

First case deals with single target presence in the angular range of interest of
[—900, 900] The total number of possibilities that a single target can be present in

any angle of the angular range is 181°. There are 181 cases of correlation matrices

and 181 cases of weight vectors with 1° steps resolution.

The second case deals with multiple targets and/or target+interfering signals. The
number of all possibilities of two signals presence simultaneously is 16290. The
number of all possibilities of single signal+single interference signal presence

simultaneously is 32580.

The increase in the number of possibilities results an increase in the training time.
The cases of three and more targets are not implemented. Eventhough the main idea

is similar, more training time is required.

The training phase and the performance phase of the algorithm are presented in the

following sections.
4.2.2.1 Training Phase

The training phase is composed of calculating the input and the output pairs of the

neural network. As mentioned above, the inputs are the Z vectors.

Z vectors are calculated from the correlation matrix, as given in equations (4.8)-

(4.9). The optimum weigths are derived from the equation (4.10).

It is assumed that the number of array elements is M and the number of desired

signals is K and the angular range of interest is [—900,900]. The number of

antenna elements is given as an .
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Assuming that the number of possibilities of the inputs is No Pos, there are

No _Pos number of correlation matrices of size anxan, No Pos number of Z

vectors of size [2M x1] and No _ Pos number of weight vectors of size anx1.

The Z vector is calculated for all training sets of number No Pos. For all training

sets, No _Pos number of optimum weights are derived.

The optimum weight formulation contains the steering matrix of desired signals.

Assuming that the total number of desired and/or interfering signals are
No des int. The size of S, is [181,N0_des_int]. The term 7 in the equation
(4.10) is the characteristic parameter that determines if the signals are interfering or

desired signals. If there are two desired signals, r:[l 1]. If there is a single

desired and a single interfering signal, r=[1 0].

According to the above calculations, optimum weigths are calculated. The input and

w

Pos > ""opt,anxNo _Pos ) :

output pairs are obtained, (22 MxNo._

In MATLAB, “newrb” command is used to train the NN for the given input and
output pairs. The trained network is saved in the memory as data file. This data file

is used for beamforming in the performance phase.
4.2.2.2 Performance Phase

In the performance phase, it is assumed that there comes a signal from an unknown
direction. According to the incoming signal, the correlation matrix R, b vector and

the Z vector are calculated.

The calculated Z vector is presented as the input of the trained network which is

saved at the end of the training phase.
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The NN tries to make an optimization for the input Z vector and outputs w, . The

performance phase of NN is implemented by “sim” command in MATLAB.

The derived w,, is then used to obtain the array pattern that is formed for desired

and interfering signals by equation (4.14).
4.3 Cylindrical Array With Microstrip Patch Antenna Elements

Cylindrical Microstrip Patch Antenna (CMPA) is a performance application of the
NN beamformer. There are twelve CMPA elements, placed on a cylinder. This
array structure has several advantages. The first advantage of this array is the total
coverage of 360°. According to the architecture of the array, the antenna elements
cover the full range in azimuth. The second advantage is that CMPA elements have
enough directivity for forming the beams of the array to the directions of the desired

signals and to put nulls in the directions of interferences.

The third advantage is that the angular range is divided into twelve sectors.

Assuming that a signal is coming from an angle coresponds to sector —i, the
activated elements are (i —l)th, i" and (i +1)th elements. The beamforming for an

angle included in sector —i is implemented by just three antenna elements and only

for 30° of interest. This reduces the size and the time needed for the training phase

of the NN.

Single element geometry of the array is given in Figure 4-4.
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Figure 4-4 Cylindrical Microstrip Patch Antenna Element [4]

a is the radius of the cylinder, /4 is the height of the substrate. 26,a and 2b are the
dimensions of the patch. The patch is placed on the angle ¢. Z, and ¢, gives the

position of the coaxial probe feed.

The performance analysis of this application is examined by changing the SNR
value and the angular separation between the incoming signals for multiple target

case.

In Section 4.3.1, the formulation of the electric field, the correlation and the weight
calculations are given. The algorithms of the training and performance phases are
described in Section 4.3.2. These informations are used for training and the

performance phase of the linear array beamforming NN.

4.3.1 Formulation

The NN of the cylinrical array application is composed of Z and w,, vectors,

similar to the linear array NN architecture.
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The calculations of the induced signals, electrical field of single patch antenna
elements, the total array pattern, input and output pairs are described in the

following sections.
4.3.1.1 Single Patch Element

The formulation and the pattern of single patch antenna element of the cylindrical

array is given in this section.

The field equation is given as

2 0’E, O°E 2
-%iﬁﬁﬂ—lf » 9% OE pep g (4.15)
ot opop o oFf ot acop

kK*=wue (4.16)
The electric field is composed of £, component only in the cavity model.

By using the cavity model approximation and by the assumption of h<<a, E,

yields ([5]),
mr | nmz
E, =y, =E, cos{z—g0 (¢—¢0 )_ cos[z—bj (4.17)
2 g2 _ mnr nr ’
k _km”_(—2(a+h)90j + 2bj . (4.18)

The magnetic currents radiating along the cylinder are
M=E, pxi . (4.19)

The electric field components are
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- /kor

E,=E,——sin@ Z e P f (~k,cos6) (4.20)
p_—oo
Eyky €™ |
E,=— ——siné Ze’”¢]p+ gp( k,cos6) , (4.21)
WHy 7 —o

f, and g, are

: 422
fp(u) (kz uz)H[(f)(a\/kg uz) ( )
jwe, M,y(p,u) { _ pui\7¢(p,u)}
g,(u)= ~M.(p.u)+ . @®)
p() (ko2 uz)H,(;Z) a koz_uz) ( ) akoz_uz
where

2 ©

Z\7¢(p,u)=% [dg [dzM (. 4,2)e e (4.24)
0 —o0
2z o0

W (pu) = [dp [ (g2l e (425)
Ty ol

H Ef) 1s the Hankel function of second kind. The electric fields can be rewritten as

M[l— n _Jkobcosg]i e’ ip(¢~dy ) p+1l(0 _p)

O,mn 272'2”' Sin(9 =, H 2 (k a81n(9) 5 (426)
E he ™" o, leh) o B
E mn :_J . 1 b,n,_k COS@ S 1—-(=1 ”e J2pb,
[ 272'27"(1 ( 0 )pz_w Hl(lz) (koa Sin 9)[ ( ) ]
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o thei'/kor cosd 1 (_ l)n e—jZkObCOSQ:Ii efl’(¢’¢0)jp+1p1(90, m’_p) ;(427)

27’ra kysin® 0 — Hff)’ (k,asin 6)
I’s are
‘ niz
1\b,n,~k 0)= — dz 4.28
( n,—k, cos ) Lcos( b je z (4.28)
2% mrg | _.
1(6,,m,—p)= ! cos 2—00}”‘”’61(15 . (4.29)

The electric field pattern of one microstrip patch antenna is shown in Figure 4-5 and

Figure 4-6.

Figure 4-5 The Polar Plot of The Electric Field Pattern of One Microstrip Patch
Antenna
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Figure 4-6 The Plot of The Electric Field Pattern of One Microstrip Patch Antenna

The dimensions of the patch are taken as L =38.3mm, 26, =18.3696°, w=42mm .
Cylinder has a radius a=131mm. 6, =¢, =18.3696° /2. Height of the substrate

h=1.600, the permittivity € =4.4.

4.3.1.2 Cylindrical Patch Array

Assuming that there are three antenna elements in each sector beamforming

calculation, the induced signal to each sector is calculated by equation (4.3).

There are twelve microstrip patch antennas placed on the cylinder, Figure 4-8. Each

of them are similar and the antennas are centered beginning from 0°. The n”

element is positioned on

¢ = % in radians (4.30)

n
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The total signal induced on each antenna element of the twelve-element-patch array

is

X()=>8,()E (8, ) +n(t) i=12,-]12 (4.31)

m=

—

n.(t) is a statistically independent white noise with zero mean.

X and N are [3><1] -sized vectors. S is a [3><30] -sized matrix. K is the number

of angular range. 4 is a [3 xK ] -sized matrix, composed of

E, =E,+E, (4.32)

k. :&acos(@, —Mj (4.33)
c 12

a i1s the radius of the cylinder, ¢ is the speed of light in free-space, and @, is the

angular center frequency of the signal.

The total induced signal can be represented in matrix form
X(2)= 4S(t)+ N(t) (4.34)

X and N are [3><1] -sized vectors. S is a [3><30] -sized matrix. K is the number

of antenna elements. A is a [3xK]-sized matrix, composed of
A, =E.(¢,)e (4.35)

m

Total electric field pattern of the array is given in Figure 4-7.
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Figure 4-7 Total Electric Field Pattern of CMPA

The schematical expression of twelve-element cylindrical microstrip patch array is

in Figure 4-8.

The angular range is divided into 12 sectors. One element is in the middle of each
sector. As it is seen from Figure 4-8, each sector is affected by array elements in
that sector and in the adjacent sectors, which have more than 20 dB signal level

according to their radiation patterns.
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Figure 4-8 The geometry of twelve-element cylindrical array [5]

Since sectors are formed by three antennas, each sector consists of radiation
patterns of three array elements. There are four sector groups, changing according
to the incoming signal’s angle of arrival. For example, it is assumed that the signal
is coming from 6, . Signal coming from &, activates the Sector-3. Since each sector
is affected by array elements in that and in adjacent sectors, the second, third and
the fourth array elements are grouped. The X vector, the steering matrix and A4

matrix are calculated by these three array elements.

The second, third and the fouth elements are used for the signals coming to the
Sector-3, in a 30° of range. If a new signal comes from @, simultaneously, which is
in Sector-4’s angular range, the algorithm does not take this signal into account. It’s

because of that Sector-4’s sector group includes third, fourth and fifth array

elements. The third and the fouth array elements are used for Sector-3 for signal(s)
coming form 6, .
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According to the above assumption, the new signal has to come from angle 6,

simultaneously, which is in Sector-6. This sector group is composed of the fifth,

sixth and the seventh array elements. They are not used for Sector-3.

The sector group is composed of three array elements and an angular range of 30’
is in interest. The electric fields, the correlation matrices and the optimum weights

are calculated for these two constraints.

The input of the network is the correlation function, as it is in the linear array
assumption. The correlation function is derived from the induced signals on each

array element, given as
R=EX(O)X ()"} ,
= AEIS(1)S(e)" J4" + EIN(ONG)' | (4.36)

The first row of the correlation matrix is taken into account in further calculations

for network inputs [5]. A vector, b is obtained from the correlation matrix.

Rll R12 R13 Rll
R=|R,, R, R,|and b=|R, (4.37)
R31 R32 R33 R13
Z vector is obtained from b
b
Z = (4.38)
el
The outputs are the optimum weigths of the array elements. It is given as
A Hp-1 -1
W, = RS, [SIRTS, | . (4.39)

The main constraint of the optimum weights is to minimize the mean output power.
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R is the correlation matrix, as mentioned above.
R=E{x()x(1)"} . (4.40)

S, 1is the steering matrix of the desired signals. Assuming that the number of the

desired signals is 7, the desired steering matrix S, is
Sdz[sd(el) S,(6,) - sd(ey)] , (4.41)
where S, (6,) is
S, (6)=[1 e e e ] (4.42)

The Radial Basis Function Neural Network (RBFNN) is used for the training phase.
The performance phase is accomplished to obtain the optimum weights for unseen

correlation matrix inputs after the training phase.

4.3.2 Algorithm
The network is composed of [Z W, } , input-output pairs.

The angular range is divided into twelve sectors, as [O, 30, --- ,330} . According to
Figure 4-8 and Figure 4-9, each angular sector is affected by the radiation pattern of
three antenna elements. For Sector i, (i —l)th, i" and (i +1)th elements are taken in

consideration.
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Figure 4-9 Sectors of CMPA

The RBFNN network is used for training phase. The algorithm scheme is given in

Figure 4-10.

e N\
sector,l I I Wsecmr,l
sector,2 I Wsector,Z
Zsecmr,3 I Wsector,3
: Neural Network ,
, Beamformer :
sector,12 I Wsector,lZ
. J

Figure 4-10 The Neural Network Beamformer Architecture
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4.3.2.1 Training Phase

The training phase includes the input and output pairs which are calculated in

equations (4.37), (4.38) and (4.39) respectively.

The training phase has less number of input and output pairs than linear array

application for multiple signal presence simultaneously.

For single target case, the number of pairs is 30x12=360. For two target presence,
the number of input-output pairs is 435x12 =5220, which is 32580 in linear array

casec.

Z vectors are calculated from the correlation matrix, as given in equations (4.37)

and (4.38). The optimum weigths are derived from the equation (4.39).

The number of array elements for beamforming in each sector is three and the

number of desired signals is K and the angular range of interest is [00,3 600} .

It is assumed that the number of possibities of the inputs is No Pos. There are
No Pos number of correlation matrices of size 3x3, No Pos number of Z
vectors of size [6x1] and No_ Pos number of weight vectors of size 3x1. The Z
vector is calculated for all training sets of number No Pos. For all training sets,

No _Pos number of optimum weights are derived.

The optimum weight formulation contains the steering matrix of desired signals.

Assuming that the total number of desired and/or interfering signals are

No des int. The size of S, is [360,N0_des_int]. The term r in equation
(4.39) is characteristic parameter that determines if the signals are interfering or
desired signals. If there are two desired signals, r:[l 1]. If there is a single
desired and a single interfering signal, » = [1 O] . Z vectors are given as the input

of the RBFNN network. The output of the network is w,, .
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Wopt ,3xNo _ Pos

The input and output pairs are obtained, (Z ) This training set

6xNo _Pos >

makes the NN free from the DOA knowledge of the incoming signal.

In MATLAB, “newrb” command is used to train the NN for the given input and
output pairs. The trained network is saved in the memory as data file. This data file

is used for beamforming in the performance phase.
4.3.2.2 Performance Phase

In the performance phase, it is assumed that there comes a signal from an unknown
direction. According to the incoming signal, the correlation matrix R, b vector and
the Z vector are calculated from the induced signals by cylindrical microstrip patch

antennas in each sector group.

The calculated Z vector is presented as the input of the trained network which is

saved at the end of the training phase.

The NN tries to make an optimization for the input Z vector and outputs w,, for

each sector. The performance phase of NN is implemented by “sim” command in

MATLAB.

The derived w,, is then used to obtain the array pattern that is formed for desired

and interfering signals by the equation (4.14).
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CHAPTER 5

SIMULATIONS

In this chapter, some simulations over linear and cylindrical array applications are

implemented to demonstrate the performance of the NN beamformer.

The simulations are divided into two main groups: linear antenna array and

cylindrical antenna array applications.

The performances of the beamformers are examined according to the number of
array antenna elements, the angular seperation between targets for multiple target

simulations and SNR values.

The first implementation is composed of linear array simulations. The performance
is analyzed by changing the number of isotropic equispaced antenna elements, the

SNR value and the angular seperation between antenna elements. The distance

between the antenna elements is A/2. The angular range of interest is [—900,900].

The operation frequency is 1.8 GHz.

The second implementation consists twelve element Cylindrical Microstrip Patch

Antenna (CMPA). This array has a full coverage of 360°. The geometry and the
array pattern are given in Figure 4-7 and Figure 4-8. The performance is examined

according to the SNR value and angular seperation between targets. The angular

range of interest is [00,3600] The operating frequency is 1.8 GHz.
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The simulation results of linear array are given in Section 5.1 and the simulation

results of cylindrical array are given in Section 5.2.

5.1 Linear Array Resuls

Linear array simulations are implemented by assuming an array with equispaced

antenna elements, as shown in Figure 5-1.

Figure 5-1 Linear Array Geometry

Linear array simulation results are divided into two groups: single target and two

targets and interference cases.

In Section 5.1.1, simulation results are applied by the assumption of single target

presence simultaneously in the angular range of interest [—900,900] The

simulation results are analyzed for different number of antenna elements and for

different SNR values.

In Section 5.1.2, simulation performances are given for the case of two target

presence simultaneously.
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5.1.1 Single Target

In the following simulations, the Neural Network is trained for all possibilities of

single target presence in [—900,900] The criterions of performance analysis are

number of array antenna elements and SNR value.

In chapter 5.1.1.1, the number of antenna elements will be changed. In chapter

5.1.1.2, the SNR effect over the beamformer will be shown.
5.1.1.1 Effect Of The Number Of Antenna Elements

The number of antenna elements is an important criteria for the performance of
beamformer. As it will be seen in the following figures, increasing the number of
antenna elements results a narrower array pattern for the signal coming from the

desired direction.

The simulations are implemented for a single signal coming from —30°. The

number of antenna elements (an) are chosen as 3, 5, 10 and 15. The SNR value is

30dB.

The simulation results are given in Figure 5-2-Figure 5-5.
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As it is expected from the antenna array theory, increasing the number of antenna
elements, the beamwidth of the antenna array becomes narrower, and the sidelobe
levels decreases. These results improve the perfomance of the beamformer. Signals

coming from the sidelobes are suppressed 15 dB in Figure 5-5.

A summary of these results are given in Table 5-1.

Number of antenna Elements Sidelobe Level 3-dB Beamwidth
3 —-1dB 40°
5 -13.2dB 23.5°
10 -14.5dB 11.5°
15 —15dB 8’

Table 5-1 Summary of Linear Array Application for different number of antenna
elements

3-dB beamwidth of the array pattern decreases by increasing the number of antenna
elements. As it is mentioned above, the sidelobe levels are suppressed more for

higher numbers of antenna elements.

In Figure 5-6, it is seen that the array pattern is narrower for higher number of

antenna elements. The beamwidth decreases to 11.5° for an =10.

In Figure 5-7, the sidelobe levels are figured for different numbers of antenna

elements. The sidelobe level goes to —14.5 dB for an=10.
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5.1.1.2 SNR Effect

The SNR value is another important criteria for the performance of beamformer.

The array has a good performence begining with SNR=10dB .

The simulations are implemented for a single signal coming from 20°. The number

of antenna elements is 10.

The performance is analyzed with changing the SNR value by following values:
5dB, 10dB, 15dB, 20dB and 30dB. It is assumed that the noise is white

Gaussian noise with zero-mean. The results are given in Figure 5-8-Figure 5-12.

Array Response in dB

100

Figure 5-8 Array Pattern for a signal coming from 20 with an =10 and
SNR=5dB
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It is observed that the array has higher sidelobe suppression values and better beam
shapes for higher SNR values to direct the pattern in the direction of the desired

signal. A summary of these results are given in Table 5-2.

SNR value (an = 10) RMS error Sidelobe Level
10 dB 0.50 0dB
15dB 0.25 -4.6 dB
20 dB 0.1 —~12 dB
30dB 0 -20.5dB

Table 5-2 Summary of Linear Array Application for different SNR values

In Figure 5-13, the performance of the NN beamformer is shown for five different

noisy signals with 10 dB of SNR.

In Figure 5-14, the RMS error is shown for different SNR values. The RMS error is
calculated according to the position of the maximum peak level of the array pattern.
The error is defined as the error of the position of the maximum peak level of the

array pattern according to the direction of the incoming signal.

In Figure 5-15, the sidelobe levels are seen for different SNR values. The sidelobe
level goes to —20.5 dB for SNR =30dB .
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Figure 5-15 Sidelobe level change for different SNR values

5.1.2 Two Targets

In the following simulations, the Neural Network is trained for all possibilies of two

targets present in 180° angular range of interest. The criterions of performance
analysis are angular seperation between targets and SNR value. The number of

antenna elements is taken as 10.

5.1.2.1 Angular Seperation Effect

The simulations for this chapter, are implemented for two signals present
simultaneously. First signal comes from 0°, while second signal comes from 1°, 3°,

5%, 10%, 15 or 20° respectively. The number of antenna elements is 10 and the

SNR value is 30 dB .

The simulation results are shown in Figure 5-16 - Figure 5-21.
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The simulation results for 1°, 3° and 5° angular seperations do not have peak levels
of array response in the directions of desired signals. On the other hand, the desired
signals directions are covered with 3-dB beamwidth of the array pattern. The

simulation results for higher angular seperations have good performances.

The summary of simulation results are in Table 5-3.

Angular Seperation | Sidelobe level | RMS error
1° -9.5dB 6°
30 -9.7dB 50
5° -99dB 3.5°
10° -10.5dB 30
15° —-13.0dB 1°
20° -13.5dB 0.7°

Table 5-3 Summary of Two Target Linear Array Application for different angular
seperation values

5.1.2.2 SNR Effect

The simulations are implemented for two signals presence simultaneously for SNR
criteria. Signals are coming from 10° and 25°. The number of antenna elements is

10. The SNR values are taken as the following values: 5dB, 10dB, 15dB, 20 dB

and 30 dB . The simulation results are presented in Figure 5-22 - Figure 5-26.
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The beamformer has good performance beginning from SNR =10 dB . The sidelobe

levels are decreasing by the increase in SNR value, as shown in Table 5-4.

Sidelobe level

0dB

-1.7dB

10 dB

12.4 dB

SNR Level

10

15

20

30

Table 5-4 Summary of Two Target Linear Array Application for different SNR

values
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In Figure 5-27Figure 5-13, the performance of the NN beamformer is shown for

five different noisy signals with 15 dB of SNR.

Array Response in dB

100

Figure 5-27 Array Pattern for 5 Different Noisy Signal Cases for Two Targets

5.2 Cylindrical Array Results

Cylindrical array is composed of twelve CMPA elements. The geometry of the

array gives the benefit of having a full coverage of 360° as shown in Figure 5-28.
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Figure 5-28 Cylindrical Array Pattern and Geometry

The main advantage of this array for NN is its less training time because that 360°

is divided into sectors, 30° each.

The simulations are divided into two: single target and multiple targets. For
multiple target simulations, the directions targets are assumed to be in the same

sector and/or in different sectors of the antenna array.

First simulations are implemented for one target coming to one sector in Section
5.2.1. Second part simulations are for multiple target signals coming in one or more

sectors, as mentioned in Section 5.2.2.
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5.2.1 Single Target

The following simulations are over one target beamforming applications. The NN is

trained for all possibilities of single target present in angular coverage of 30° in
each sector. The number of all posibilities is only 30 for each sector. Twelve sectors

are trained parallel to each other in one NN. This helps for a faster training.

In the performance phase, there is a signal coming from 140°, 6" sector in Figure

4-9, with an angular coverage of [1350, 1650] is activated according to Figure 4-7.

SNR values are taken as, 10dB, 15dB ,20dB and 30dB .

The simulation results are presented in Figure 5-29 - Figure 5-32.

Figure 5-29 Array Pattern for signal coming from 140°, SNR =10 dB
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Figure 5-30 Array Pattern for signal coming from 140°, SNR =15 dB

Figure 5-31 Array Pattern for signal coming from 140°, SNR =20 dB
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Figure 5-32 Array Pattern for signal coming from 140°, SNR =30 dB

The simulation results shows that the beamformer perfomance is good beginnig

from SNR =10 dB . The array has very low sidelobe levels in other sectors than in

the sector of target. The pattern is formed with three antenna elements.

5.2.2 Multiple Targets

Multiple target simulations need more time for training, since there are more

possibilites of multiple target presence in each sectors.

In the following simulations, it is assumed that there are more than a single target,

with a 30 dB SNR value. Three different type of simulations are presented here. In

Section 5.2.2.1, there are two targets in one sector. The effect of angular seperation
change in array pattern is taken into consideration in this section. In Section 5.2.2.2,
there are multiple targets in different sectors and there are interferences which are

nulled by NN beamformer.
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5.2.2.1 Angular Seperation Effect

In this simulation, two targets are considered within the same sector. The NN is
trained for all possibilities of being two targets simultaneously in a sector. By
changing the angular seperation between the two targets, the performance of the NN

beamformer is analyzed.

There exist two targets in 11" sector, as shown in Figure 4-9, which has an angular

coverage of [2850,3 150]. The simulation is presented to show the performance of

the Neural Network beamformer under different angular seperation values between

two targets.

The first target is assumed to be at 285" while the second target is at 290°, 295°,

300°, 305° and 315° respectively.

The simulations are presented in Figure 5-33 - Figure 5-37.

270

Figure 5-33 Array Response for targets in 285° and 290°, SNR =30 dB
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Figure 5-34 Array Response for targets in 285° and 295°, SNR =30 dB
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Figure 5-35 Array Response for targets in 285° and 300°, SNR =30 dB
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Figure 5-36 Array Response for targets in 285° and 305", SNR =30 dB

Figure 5-37 Array Response for targets in 285° and 315°, SNR =30 dB
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Increasing the angular seperation causes a wider pattern in these simulations.

Sidelobe levels are very low in the other sectors.

5.2.2.2 Targets in Different Sectors

In this part, two simulations are implemented to show the performance of the NN

beamformer for target signals coming from different sectors.

First simulation is composed of four targets in four different sectors. Three antenna
elements in each sector forms the beam to the direction of incoming signal. SNR is

30dB.

Second simulation consists two targets and a single interfering signal in each of two

different sectors. The NN is trained for all possibilities of being two targets in each

sector of 30°, with SNR of 30 dB .

In the first simulation, the targets are coming from 25°, 125°, 210° and 300° to the

2" 5" 8" and 11" sectors respectively, as shown in Figure 5-38.

The array pattern is directed to each four targets simultaneouly by directing the

peaks of each pattern to the directions of incoming signals.
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Figure 5-38 Array Pattern for targets in 25°, 125°, 210° and 300°, SNR =30 dB

In the second simulation, 1*, and 7" sectors are activated. This simulation shows
the performance of NN beamformer for interference presence. The NN is trained for

all possibilities of being two targets and an interfering signal in each sector.

Signals coming to the 1* sector are from 345" and 15°. The interfering signal is

coming from 0°.

Signals coming to the 7" sector are from 170° and 190°. The interfering signal is

coming from 180°, shown in Figure 5-39.
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Figure 5-39 Array Pattern for targets in 345°, 15°, 170° and 190°, and for
interfering signals in 0° and 180°, SNR =30 dB

It is seen that the beamformer puts nulls successfully in the directions of
interferences with a trade of having the peak values of each pattern not directly

pointed in the directions of targets.

The pattern is not exactly directed to the directions of targets, but the targets are in

3-dB beamwidth coverage of each four beams.
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CHAPTER 6

CONCLUSION

In this thesis, a Neural Network (NN) algorithm for beamforming problem is
proposed. Two array applications are implemented to show the performance of the

proposed beamformer.

The NN’s are trained for each problem to shape the patterns of the arrays to the
directions of targets and to put nulls in the directions of interfering signals. The
RBFNN’s are used for the training phase of the NN . The effectiveness of this NN
helps for fast convergence in training phase. The performance phases give good

responses for each application.

Two different array applications are studied in this work. First application is an
implementation of linear array as shown in Figure 5-1. An angular coverage of 180°
degrees is handled with this array. The second application is composed of a

cylindrical array with twelve antenna elements as shown in Figure 4-8.

The linear antenna array is composed of omnidirectional antennas with an equal
distance. An angular range of 180" is trained for forming the beams. The
performance of the linear array beamformer is examined by changing the number of
antenna elements of the array and by changing the angular seperation between the

targets for different SNR values.
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The number of the antenna elements and the angular seperation between the targets
influence the performance of the beamforming algorithm. The algorithm works
better for larger number of antenna elements and for a sufficient angular seperation.
It is seen that the angular seperation between multiple targets is an important

criteria for beamformer performance.

The second application is studied on cylindrical array, composed of twelve

microstrip patch antenna (MPA) elements. The total angular range of 360° is
covered by the MPA elements. The total angular range is divided into twelve
sectors. The directive MPA elements help for faster training times of NN for

beamforming. Three antenna elements used for shaping the beams in each sector.
Since the total angular range of 360° is considered in terms of twelve sectors of
30" each, the proposed algorithm performs faster in the cylindrical array
application. It is seen in the cylindrical array application that the beamformer works

well for sufficient angular seperation between the targets and interference.

The simulations are performed for simultaneous target presence in the angular range
of interest. The NN beamformer is examined under this consideration. The results
shows that the beamformer has satisfactory performance for two different array

applications.

The main need for good perfomance of this beamformer algorithm is to choose the
exact input and output pairs for the training phase. The performance phase has fast

responses for each incoming signal.

The proposed beamformer can easily be implemented in real world applications
with its flexible algorithm and fast training performance. Since the beamformer
performance phase has a sufficient speed for forming the beam according to its

training set, this beamformer can be used for tracking applications.

The advantage of the NN beamforming algorithm over the adaptive beamforming

algorithms is that the NN beamformer has fast convergence speed. NN beamformer
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calculates the weights of the antenna array elements offline for the incoming signal
direction possibilities. The calculated weights and the correlation matrices form a
lookup table for the NN. The lookup table is used for a new incoming signal to give
the new weights, instead of calculating the weights every time of a new signal

arrival. This approach provides faster responses.

As a proposal for future works, modulated signals and different types of jamming
signals can be implemented as the inputs of the NN beamformer to analyze the

performance of the beamformer in the presence of modulation and jamming signals.
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APPENDIX A

DOA WITH NEURAL NETWORK

This section summarizes the DOA with NN. Formulations given are presented in
[5]. Thsi study is implemented to understand the application of Neural Networks

before implementing the NN beamforming application.

The NN has three stage in the DOA algorithm and the angular range of interest is

divided into subsectors. In each subsector, a NN is trained and performed.
The architecture of the DOA NN algorithm is summarized in Figure A-1.

First stage is the Detection stage. In this part, according to the direction of
incoming signal, the appropriate subsector is activated. The input of the NN is the

correlation matrix of incoming signal,the output is 1 or 0.

The second stage is the Filtering stage. In this part, the NN is filtered and only the
activated NN’s are trained. This approach presents a faster training time in place of
training the whole angular range of interest. The inputs are the same with the first
stage, the outputs are the correlation matrices of the incoming signals to the

activated sectors.

The third stage is DOA Estimation stage. This part decides the DOA of the
incoming signal. The inputs of this sector are the outputs of the second stage. The

outputs are the DOA informations of the incoming signals.
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Figure A-1 DOA Neural Network Architecture

In the performance stage, the corelation matrix of the incoming signal is presented
to the input of Detection stage, and the DOA information is observed at the output

of the DOA Estimation stage.

The simlation is implemented under SNR=30dB. The angular range is 30

degrees. This range is divided into three subsectors, each with 10°.

In the first simulation, the incoming signal is assumed to come from 2° to the first

subsector. The DOA result is given Figure A-2.

In the second simulation, the signal is assumed to come from 25°, to the third

subsector. The DOA result is given in Figure A-3.
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