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ABSTRACT 

NEURAL NETWORK BASED BEAMFORMING FOR 
LINEAR AND CYLINDRICAL ARRAY APPLICATIONS 

 

Güreken, Murat 

 

M. Sc., Department of Electrical and Electronics Engineering  

Supervisor: Prof. Dr. Gülbin Dural 

 

May 2009, 106 pages 

 

In this thesis, a Neural Network (NN) based beamforming algorithm is proposed for 

real time target tracking problem. The algorithm is performed for two applications, 

linear and cylindrical arrays.  

The linear array application is implemented with equispaced omnidirectional 

sources. The influence of the number of antenna elements and the angular 

seperation between the incoming signals on the performance of the beamformer in 

the linear array beamformer is studied, and it is observed that the algorithm 

improves its performance by increasing both two parameters in linear array 

beamformer. 

The cylindrical array application is implemented with twelve microstrip patch 

antenna (MPA) elements. The angular range of interest is divided into twelve 

sectors. Since three MPA elements are used to form the beam in each sector, the 

input size of the neural network (NN) is reduced in cylindrical array. According to 

the reduced size of NN, the training time of the beamformer is decreased. The 

reduced size of the NN has no degradation in forming the beams to the desired 

directions.  
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The angular separation between the targets is an important parameter in cylindrical 

array beamformer. 

Keywords: Beamforming, Neural Network, Direction of Arrival, Cylindrical Array, 

Linear Array 
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ÖZ 

YAPAY SĐNĐR AĞLARI TEMELLĐ DOĞRUSAL VE 
SĐLĐNDĐR ANTEN DĐZĐLERĐNDE HUZME 
ŞEKĐLLENDĐRME UYGULAMALARI 

 

Güreken, Murat 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülbin Dural 

 

Mayıs 2009, 106 sayfa 

 

Bu tez çalışmasında Yapay Sinir Ağları kullanılarak gerçek zamanlı hedef takibi 

için geliştirilen bir huzme şekillendirme algoritması önerilmektedir. Algoritma, 

doğrusal ve silindirik anten dizisi olmak üzere iki uygulamada denenmiştir. 

Doğrusal dizi uygulaması eşit aralıklı yönsüz noktasal kaynaklar kullanılarak 

yapılmıştır. Dizideki anten eleman sayısı ve anten dizisine gelen işaretler arasındaki 

açısal farkın algoritma üzerindeki etkisi incelenmiş, hem anten eleman sayısı hem 

de açısal farkı arttırmanın algoritmanın performansını arttırdığı görülmüştür.  

Silindirik dizi uygulaması on iki elemanlı mikroşerit yama anten (MPA) 

elemanlarıyla gerçekleştirilmiştir. Açısal bölge on iki sektöre ayrılmıştır. Her bir 

sektöre gelen işaretlere huzmeyi yönlendirmek için üç adet MPA elemanı 

kullanılarak, Yapay Sinir Ağları girdilerinin boyutu küçültülmüştür.  Boyutun 

küçülmesi Yapay Sinir Ağlarının eğitiminin hızlanmasında önemli bir faktör 
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olmuştur. Boyutun küçülmesi huzme formunda herhangi bir bozulmaya yol 

açmamıştır. 

Hedefler arasındaki açısal fark, silindirik anten dizisinin performansında belirleyici 

etmenlerden biridir. 

Anahtar Kelimeler: Huzme şekillendirme, Yapay Sinir Ağları, Geliş Yönü,  

Silindirik Dizi, Doğrusal Dizi 
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CHAPTER 1  

 

INTRODUCTION 

Improving technologies in Global Positioning, mobile communication and Radar 

technologies demand faster real time target tracking. According to these improving 

technologies, new DOA and beamforming algorithms are developed.  

Early works show that a good beamforming plays an important role in target 

tracking problem. Several beamforming works proposed in the literature serves for 

real time beamforming problem [1], [3], [4] , [8] . 

Beamforming is an antenna array processing technique for shaping the antenna 

array beams to the directions of one or more desired signals and to put nulls in the 

directions of interfering signals [2], [7]. 

The main idea of the beamformer is to direct the antenna pattern to the desired 

signal’s direction and to attenuate the interference signal(s). The output provided by 

each antenna element is weighted to distinguish the spatial properties of a signal of 

interest from noise and interference.  

The beamforming term takes its name from the early forms of antenna arrays that 

were used to generate pencil beams [2]. The antenna arrays with pencil beams 

receive signals from a specific direction and attenuate signals coming from 

interfering directions. Since this type of arrays have narrow beam widths, 

beamforming has been extended to rich scattering scenarios.  
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A brief discussion over adaptive beamforming algorithms is studied in [1]. 

Beamforming techniques are divided in two main groups in [1]: fixed beamforming 

and adaptive beamforming. In fixed beamforming, the interference is not cancelled 

but mitigated with a reasonable cost. Adaptive beamforming requires complex 

signal processing algorithms to steer the main lobe towards the desired direction 

and to cancel the interfering signals. Adaptive beamforming applications leads to 

effective performance, but is more expensive and needs quite implementation 

efforts.  

A narrowband beamformer operates L signals received on antenna elements. The 

antenna weights are [ ]TLwwww ,,, 21 L=  and the received signals are 

[ ]TLxxxx ,,, 21 L= . 

( ) ( )∑
=

⋅=
L

i

ii txwty
1

*                                            (1.1) 

The weights can be applied at the Radio Frequency (RF) stage, realizing a 

beamforming network with analog devices. This choice is rather costly due to the 

high quality required for the RF components. Analog beamforming needs precise 

phase shifters and selective power dividers. Most of the analog beamformers are 

used to form a unique lobe towards a desired direction, while multiple lobes are 

usually difficult to realize [1]. 

An array of N  antenna elements, in which the weights can be modified both in 

amplitude and phase, provides 1N −  degrees of freedom. The one dimensional 

constraint regarding the desired direction reduces this number to 2N − , which 

represents the number of directions that can be cancelled. 

The digital beamforming is similar to analog beamforming in case that both 

techniques adjust the antenna weights. In digital beamforming, the received RF 

signals are downconverted to Intermediate Frequency (IF) and then digitized by 

Analog-to-Digital Converters (ADCs). The DownConverter (DC) is adopted to 
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simplify the digitization process, which gets more complex as the frequency 

increases. [1] 

Improving mobile communication and Global Positioning Sytem (GPS) 

technologies needs faster beamforming algorithms are needed. Since the number of 

users and the interfering signals increases, the communication systems require to 

track the users continuously while they are moving, and to put nulls in the 

directions of interferences by forming the beams of the antenna arrays. In this point, 

the Neural Networks have an increasing demand of implementation in DOA and 

beamforming. 

An early work of Neural Network (NN) Direction of Arrival (DOA) approach is 

given in [4] and [5]. In this work, NN is used for target tracking problem. Multiple 

sources tracking algorithm is proposed here to train the NN for different numbers of 

targets and antenna elements. A summary of DOA with NN is given in the 

Appendix. 

One of the adaptive beamforming algorithms proposed in [1] is NN beamforming. 

According to its fast convergence, NN applications are having more important role 

in DOA and beamforming applications. NN beamforming is a type of adaptive 

beamforming which has a training and a performance phase. The NN is trained for 

suitable input signals and output weight pairs. The trained NN is then used for 

beamforming.  

The early works of A.H. Zooghby have several NN DOA and beamforming 

applications, given in [3] and [10]. In both works Radial Basis Function Neural 

Network (RBFNN) is used as NN. Part of the thesis work related with NN 

beamforming application presented in this thesis is closely related to the work given 

by [3].  

The proposed NN algorithm studied in this thesis uses Radial Basis Function Neural 

Networks (RBFNN) for trainning of each input and output pair. The NN takes the 
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incoming signals of antenna elements as inputs of the training set. The outputs of 

the training set are the optimum weights, assigned to each antenna array elements.  

Two antenna array applications are practiced for the proposed beamforming 

algorithm: linear array with omnidirectional equispaced elements, and cylindrical 

array with microstrip patch antenna elements.  

In the first beamforming problem, a total angular range of 0 090 ,90 −   is covered 

by linear array of isotropic sources. The NN is trained for the cases of single target 

and two targets exist in the range.  

The performance of the linear array beamforming NN is examined according to the 

number of antenna elements in the array and according to the angular separation 

between the targets for two target case for different values of SNR. 

In the second application, cylindrical array application of twelve-elements array 

with directive microstrip patch antennas are taken into consideration to cover a total 

angular range of 0360 . The 0360  of total range is divided into twelve sectors, being 

030  of each. This approach fastens the algorithm computationally. By this 

consideration, beamforming algorithm works for o30 , instead of full range. 

Cylindrical array NN beamforming performance is analyzed for different SNR 

values and different amounts of angular separation between multiple targets for 

single and multiple targets applications. Interfering signal is included in cylindrical 

array simulations.  

An introduction to beamforming, the evolution of the beamforming algorithms and 

an introduction to the beamforming applications studied in literature and the 

organization of this thesis are presented in Chapter 1. 

The fixed beamforming are given in Chapter 2. The main ideas and the main 

constraints of the algorithms are discussed in this chapter. 
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The adaptive beamforming algorithm types, including the Neural Network 

beamforming, are given in Chapter 3.   

The Neural Network based beamforming algorithm, studied for this thesis is 

discussed in Chapter 4. The proposed algorithm for linear array and for cylindrical 

arrays are presented. The angular seperation between the incoming signals are 

discussed and the effect of the number of antenna elements for linear array with 

different SNR’s are discussed in this chapter. 

Simulation results for the proposed algorithms in linear and cylindrical arrays are 

given in Chapter 5. 

Chapter 6 covers the conclusion and the proposals for the future work.   
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CHAPTER 2  

 

FIXED BEAMFORMING  

Beamforming is a signal processing approach of beam steering application of 

antenna arrays. The main idea is to direct the antenna pattern to the desired signal’s 

direction and to attenuate the interference signal. The beamforming is effective 

when the directions of the desired and the interference signals are different. 

The main idea of beamforming can be expressed as; 

 ( ) ( )∑
=

⋅=
L

i

ii txwty
1

*                                         (2.1) 

where ( )y t  is the output of the antenna array. 

*  denotes the complex conjugate of w , iw  are the weights which are applied to 

each antenna element to shape the beam and ix  are the coming signals from the 

sources. Both of these variables are complex variables. Desired signals are tracked 

by shaping the main beam. 

Both the phase and the amplitudes are controlled to steer the antenna pattern to the 

desired location.   
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2.1 Signal Model 

An array with L  omnidirectional elements is assumed to exist in an environment 

with M  uncorrelated point sources. The time, ( )l iτ θ  needed to arrive from the thi  

source to the thl  element is 

( ) ( ) iil l
c

d
θθτ cos1−=                                     (2.2) 

which is given in Figure 2-1. 

1θ
2θ

Kθ

( )2S t( )1S t

1A 2A 3A MA
 

Figure 2-1 Linear Array 

The signal induced on the reference element of the array is, 

( ) 02j f t

im t e
π                                              (2.3) 

Here, ( )tmi  is the modulating function. Modulating function shows the 

characterization of the induced signals. 
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The signal which arrived ( )iil θφτ ,  seconds before to the thl  element according to 

the reference element is expessed as, 

( ) ( )( )02 ,l i ij f t

im t e
π τ φ θ+

                                         (2.4) 

Here it is assumed that the signal has narrow bandwidth and the modulating 

function does not change in ( )iil θφτ ,  seconds. 

The total induced signal on to the thl  element in the presence of M  sources is 

( ) ( )( ) ( )02 ,

1

l i i

M
j f t

l i l

i

x m t e n t
π τ φ θ+

=

= +∑                                 (2.5) 

( )tnl  is a zero mean random noise with 2
nσ  variance, applied to the thl  element. 

The narrow-band beamformer concept is outlined in Figure 2-2. 

1

*w

*
lw

*
Lw

+
( )Output y t

1
x

lx

Lx

 

Figure 2-2 Narrow-Band Beamformer  
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As it is seen in Figure 2-2, signal induced in each antenna element is multiplied by 

the weight of that antenna element. The weighted antenna signals are summed and 

array output is formed. 

The array output is given by 

( ) ( )*

1

L

l l

l

y t w x t
=

=∑                                           (2.6) 

The weights are formed as, 

[ ]1 2, , ,
T

Lw w w w= K                                         (2.7) 

and the signals induced on antenna elements are 

( ) ( ) ( ) ( )1 2, , ,
T

Lx t x t x t x t=   L  .                          (2.8) 

The beamformer, designed by the vectors described above, is 

( ) ( )Hy t w x t=                                                 (2.9) 

The correlation matrix is the correlation between the thi  and the thj  element of 

antenna array. It is expressed by the expectation operation, 

( ) ( ){ }, HR E x t x t=                                         (2.10) 

The steering vector, is  associated from the direction ( ),i iφ θ  by the thi  source is 

( ) ( )0 1 02 , 2 ,, ,i i N i i

T
j f j f

is e e
π τ φ θ π τ φ θ =  L                             (2.11) 

The matrix notation of correlation matrix R  can be formed as follows 

2H

nR ASA Iσ= +   ,                                       (2.12) 
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where I is the identity matrix. The matrix A , [ ]L M×  is composed of M  steering 

vectors 

[ ]1 2, , , MA s s s= L                                         (2.13) 

S  matrix, [ ]M M×  in (2.14) expresses the correlation between sources, which 

takes the values 1 or 0  

,

0,
i

ij

p i j
S

i j

=
= 

≠
                                          (2.14) 

here ip  denotes the variances of the modulating function ( )im t .  

The correlation function can be written in terms of eigenvalues and eigenvectors 

which is the spectral decomposition of R . The eigenvalues are composed of two 

groups. The first one is the group of the eigenvalues of the directional sources and 

the second is the group of the eigenvalues of the white noises.  

Eigenvalues are expressed as lλ  and the eigenvectors as lU , 

HR = ΣΛΣ   ,                                            (2.15) 

1 0 0

0

0

0 0

l

L

λ

λ

λ

 
 
 
 Λ =
 
 
  

O

O

  ,                                  (2.16) 

[ ]1 LU UΣ = L                                                (2.17) 

By the above expressions, R  is formed 

2

1

M
H

l l l n

l

R U U Iλ σ
=

= +∑                                           (2.18) 
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According to the selection of weights, beamforming is divided into the following 

types. 

2.2 Delay-and-Sum Beamforming 

It is the simplest beamformer. Each antenna element is multiplied by the same 

weight values to steer the beam to direction ( )0 0,φ θ . This direction is called as look 

direction and it is assumed to be known before. The array weights can be written in 

terms of steering vector, 0s  in look direction as 

0

1
cw s

L
=                                                (2.19) 

Considering that there is a signal source with power sp  and modulating function 

( )sm t , the expression of the signal source induced on the thl  element of the antenna 

array is 

( ) ( ) ( )( )0 0 02 ,lj f t

ls sx t m t e
π τ φ θ+=                                    (2.20) 

The induced signal expression can be rewritten including 0s  

( ) ( ) 02
0

j f t

s sx t m t e s
π=                                         (2.21) 

The output vector is 

( ) ( )H

c sy t w x t=                                              (2.22) 

            ( ) 02j f t

sm t e
π=                                               (2.23) 

The beamforming concept is equivalent to the steering array mechanically, except it 

is done electronically by phase shifters. 
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The delay-and-sum beamforming design is shown in Figure 2-3. 

Delay T 0.5

0.5

+

( )s t T−

( )s t

element - 1

element - 2

( )Output s t T−

T

signal

θ

 

Figure 2-3 Delay-and-Sum Beamformer 

The antenna array of Figure 2-3 consists of two elements. The wave arrival time 

difference between two elements is given as 

cos
d

T
c

θ=  .                                              (2.24) 

The signal arriving to the first antenna element is ( )s t , and the signal arriving to 

the second element is ( )s t T− . Signal induced to the first element is delayed with 

T , and no delay is applied to the signal induced to the second element. The signals 

become in phase. Each signal is multiplied by 0.5  and then summed to obtain 

antenna output.  

Delay-and-sum beamformer works well in an environment with white noise only. It 

fails in the presence of directional interferences. The correlation function of the 

white noise is 

2
N nR Iσ=                                                  (2.25) 
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The output noise power is 

H

N c N cP w R w=    ,                                        (2.26) 

                                                             
2
n

L

σ
=                                                      (2.27) 

It is observed that the output power is decreased by the ratio L . The SNR of input 

and output are given by 

2

2

s

n

s

n

p
input SNR

p L
output SNR

σ

σ

=

=
   ,                                       (2.28) 

In the absence of directional interferences, the beamformer leads a gain value of L . 

The beamformer output to a signal coming from direction ( ),I Iφ θ , denoting Is as 

the steering vector coming from direction ( ),I Iφ θ , is 

0

1H H

c I Iw s s s
L

=     .                                       (2.29) 

2.3 Null-Steering Beamforming 

The main idea of this beamformer is to generate the desired antenna beam, i.e. put a 

null in the directions of interferences.  

Delay-and-sum beamformer is used ot estimate the signal coming. It is delayed and 

summed by the beamformer. The output of the signal is substracted from each 

antenna element. By this process, strong interferences can be cancelled successfully 

[1],[2]. 
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The weights are selected by the following constraints to put a unity response in the 

direction of desired signals, and to put nulls in the direction of interfering signals 

0 1
1,2, ,

0

H

H

i

w s
i k

w s

=
=

=
K                                         (2.30) 

The weight expression is given by 

1
H Tw A e=                                                   (2.31) 

A  is composed of steering vectors,  

 [ ]0 1, , , kA s s s= L ,                                           (2.32) 

and 1e  is the constraint vector which is composed of zeros, and a one in the first 

element. 

[ ]1 1,0, ,0
T

e = L   .                                            (2.33) 

A  is expected to be invertible, means that each steering vector is linearly 

independent from each other. The weight vector is 

1
1

H Tw e A−=                                                  (2.34) 

The first row of matrix 1A−  gives the weight vector. 

If A  is not a square matrix, means that less than 1L −  nulls are needed, the weight 

vector is given as 

( ) 1

1
H T H Hw e A AA

−
=   .                                         (2.35) 
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2.4 Optimal Beamforming 

The optimal beamformer does not require the knowledge of the directions and the 

power levels of the interferences ad background noises. However, the knowledge of 

the desired signal is required. The weights are calculated to maximize the SNR [1]. 

The weight vector expression is 

1
0 0Nw R sµ −=    ,                                            (2.36) 

NR  is the correlation matrix of noise and does not contain any information of signal 

from direction ( )0 0,φ θ . The constant 0µ  is 

0 1
0 0

1
H

Ns R s
µ

−
=    .                                           (2.37) 

Weight equation is obtained by putting 0µ  in weight’s equation 

1
0
1

0 0

N

H

N

R s
w

s R s

−

−
=     .                                            (2.38) 

The noise level can not be powerful enough in real world applications. R , the 

correlation matrix of noise plus signal is used instead of NR . Weight equation 

becomes 

1
0
1

0 0
H

R s
w

s R s

−

−
=    .                                            (2.39) 

There are two constraints while calculating the weights 

0

min ,

1 .

H

w

H

imize w Rw

subject to w s =
                                (2.40) 
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The objective of this beamformer is to minimize the mean output power and put a 

unity response in the look direction. 

In this process, the power of noise is minimized and output signal stays constant., 

which yields maximized value of the output SNR. 

The output SNR is given by 

1
0 0
H

s NSNR p s R s−=                                           (2.41) 

When there is no interfering signal, the beamformer behaves as conventional 

(delay-and-sum) beamformer. The weights in this special case is 

0sw
L

=   .                                                  (2.42) 

The output SNR in this case, assuming the array gain G L=  

2
s

n

p L
SNR

σ
=     .                                            (2.43) 

In another case, it is assumed that there is only one interfering signal with power 

Ip . The SNR and the antenna gain, G  are given as, 

2

22

1

n

s I

nn

I

p L p L
SNR

p L

σ
ρ

σσ

+
=

+
   ,                                     (2.44) 

2 2

2

1

1

n n

I II

n I

p p Lp L
G

p

σ σ
ρ

σ

  
+ +  

  =
+

    ,                                (2.45) 

Here ρ  is 
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0 0
2

1
H H

I Is s s s

L
ρ = −   .                                         (2.46) 

Another case is that the interference is much more stronger than the background 

noise, 2
I np σ� . SNR and the antenna gain, G  are as follows 

2
s

n

p L
SNR

ρ
σ

≅    ,                                             (2.47) 

2
I

n

p L
G

ρ
σ

≅     .                                              (2.48) 

To have an appropriate performance from the optimal beamformer, there has to be 

less than 1L −  interferences. 

2.5 Optimal Beamforming Using Reference Signal 

Optimal beamforming using reference signal is another application of narrow-band 

beamformer which uses a reference signal to obtain weights, shown in Figure 2-4. 

The weights are adjusted by the error signal 

( ) ( ) ( )Ht r t w x tε = −                                          (2.49) 

where ( )r t  is the reference signal. The main constraint for calculating the weights 

is to minimize the MSE between the array output and the reference signals 

                          ( ){ }2
MSE E tε=  

( ){ } ( ) ( ){ }2
2H HE r t w Rw w E x t r t= + −                          (2.50) 
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Figure 2-4 Narrow-Band Beamformer with Reference Signal 

( ) ( ){ }z E x t r t=  shows the correlation between the array output and reference 

signals. 

The weights are 

1
MSEw R z−=    .                                             (2.51) 

The MMSE is 

( ){ }2 1HMMSE E r t z R z−= −    .                                 (2.52) 
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Beamformer is successful for obtaining a weak signal in the presence of strong 

interfering signal by taking the reference signal, zero to get rid of the strong 

interference signal. It has no effect on the desired signal. [1] 

2.6 Beam-Space Beamforming Process 

The beamformers discussed in the previous sections are the element-space 

beamformers. 

Beam-space beamformers are composed of two parts shown in Figure 2-5. 

1
w

lw

Lw

+

+B

( )Output y t

( )1x t

( )lx t

( )Lx t +

Matrix Prefilter Adjustable

Weights

Auxiliary

Beams

Main Beam

Fixed Weights

( )Lq t

( )lq t

( )1q t

 

Figure 2-5 Beam-Space Beamformer 

The first part generates multiple beams. The beams are weighted and summed in the 

second stage. The weights are not adaptive, they are fixed. 
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In this beamformer, there are L  beams, where L  is the number of antenna 

elements. One beam, the main beam, is in the direction of the desired signal. 1L −  

secondary beams are substracted from the main beam to cancel the interfering 

effects from the main beam. There is no information of desired signal in secondary 

(auxillary) beams. So, in substracting process no information of desired signal is 

lost.  

The main beam pattern has a sinc shape, sin / sinLx x . Since there is no information 

of desired signal in the auxillary beams, these beams have nulls in the look 

direction. 

The 1M −  auxillary beams are expressed as 

( )Hq x t B=                                                (2.53) 

B  is the block matrix.  

0 0Hs B =                                                    (2.54) 

0s  is the steering vector in the look direction. 

The beamformer has high performance when the number of interfering signals is 

less than the number of antenna elements, 1M L− < . The calculation is less than it 

is in the element-space beamformers. 1M −  weights are required in beam-space 

beamformer, comparing to L  weights required in the element-space beamformers. 

The main idea is to cancel the maximum interference and to maximize the output 

SNR. 

2.7 Broad-Band Beamforming 

Broad-band beamforming shown in Figure 2-6 is an element-space beamformer. 
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It is seen from the figure that the incoming signal from the direction ( )0 0,φ θ is 

delayed by an amount of ( )0 0,lT φ θ , 

( ) ( )0 0 0 0 0, ,l lT Tφ θ τ φ θ= +                                      (2.55) 

where ( )0 0,lτ φ θ  is the time of signal arriving to the hl  array element according to 

the reference array element. 

 

Output

T

+

T T

T

T T

+

11w 12w 1Jw

1lw

1Lw LJw

2lw lJw

2L
w

( )1 0 0,T φ θ

( )0 0,lT φ θ

( )0 0,
L

T φ θ

+

+

( )1x t

( )lx t

( )Lx t

Steered Tapped

 

Figure 2-6 Broad-Band Beamformer 

The output signal ( )x t  in terms of induced signal ( )s t  is 

( ) ( ) ( )( )0 0, ,l l lx t s t Tτ φ θ φ θ= + −                                 (2.56) 
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The broad-band is Finite Length Impulse Response (FIR) filter. It is designed to 

steer the beam to the look direction by adjusting the coefficients of the filter. The 

weights are 

[ ]1 2, , ,
T

Jw w w w= L                                          (2.57) 

The weight vector has size of [ ]1LJ × . The mean output power is 

( ) TP w w Rw=  .                                             (2.58) 

The correlation between the ( )1 th
l −  tap on the thm  channel and the ( )1 th

k −  tap on 

the thn  channel outputs 

( ) ( ) ( ) ( ) ( ) ( ), 0 0 0 0,
, , , ,m n l k k ll k

R m n T T Tρ φ θ φ θ τ φ θ τ φ θ= − + − + −         (2.59) 

( )tρ  is the expected value operator, 

( ) ( ) ( ){ }E s t s tρ τ τ= +                                     (2.60) 

( ) ( ) 2j fS f e dfπ τρ τ
∞

−∞

= ∫  .                                    (2.61) 

The following constraints are taken into account for the requirement of interference 

cancellation and of putting appropriate response in the look direction 

min ,

.

T

w

T

imize w Rw

subject to C w F=
                                       (2.62) 

F  [ ]1J ×  denotes the frequency responce in look direction and C [ ]LJ J×  is 
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1 0

1

0 1

C

 
 
 =
 
 
 

O
  .                                      (2.63) 

Weight vector under these constraints is 

( ) 11 1Tw R C C R C F
−− −=   .                                     (2.64) 

jF  is equal to the sum of L weights before thj  delay. In order to direct the beam to 

the look direction, the sum of weights is zero, except the weight near the middle of 

filter.  

The steered array pattern can have a broader shape by taking derivative constraints 

into account. In this constraint, the derivative of power pattern with respect to φ  

and θ  is equal to zero.  

Another constraint uses the known parameters of desired signal, which is 

correlation constraint  

0

min ,

.

T

T

d

imize w Rw

subject to r w ρ=
                                      (2.65) 

0ρ  is a constant value and dr  specifies the correlation between the array output and 

desired signal. 

2.8 Partitioned Realization 

Partitioned processor is a beam-space processor, shown in Figure 2-7.  
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Figure 2-7 Partitioned Processer 

The main constraint is to direct a unitary response in the look direction. The first 

time delays control the induced signal from the look direction to put the signals in 

each antenna element in phase.  [1], [2] 

After the time delays, the beamformer is divided into two parts. In the first part, the 

delayed signals are multiplied by fixed weights, by selecting appropriate FIR filter 

coefficients. The output of the first part is 

( ) ( )
1

1
0

J

c k

k

y t F y t Tk
−

+
=

= −∑   ,                                     (2.66) 

( ) ( )1Tx t
y t

L
=     .                                          (2.67) 

In the second part of the beamformer, the signal coming from the look direction is 

blocked by sW  matrix. The sum of each row of  sW  is equal to zero. The output of 

sW  matris is 
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( ) ( )sx t W x t′ =   .                                             (2.68) 

1L −  output beams are adjusted by FIR filter coefficients, ka  in TDL box. The 

output is 

( ) ( )
1

0

J
T

a k

k

y t a x t kT
−

=

′= −∑   .                                       (2.69) 

the constraint in choosing the coefficients is 

( ) ( ){ }2min
k

c a
a
imize E y t y t−       .                               (2.70) 

FBW, the ratio of the bandwidth to the center frequency, is an important parameter 

that specifies the performance of the beamformer.  

To have a broader beam, a larger ratio of largest eigenvalue of the correlation 

matrix to the smallest value of the correlation matrix is required. 

2.9 Frequency-Domain Beamforming 

Frequency-domain beamformer is an element-space beamformer type, shown in 

Figure 2-8. 
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Figure 2-8 Frequency Domain Beamformer 

Induced signal in each array element is passed to Fast Fourier Transform (FFT) 

process. Each frequency bin is weighted and summed.  

The weights are adjusted independently to minimize the mean output power of each 

frequency bin which serves a faster calculation. 

The performances of the time- and frequency-domain beamformers are the same for 

the constraint of signals in each frequency bin being independent.    

2.10 Digital Beamforming 

Analog beamformig structure is explained under delay-and-sum beamformer part, 

shown in Figure 2-9. 
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Figure 2-9 Analog Beamformer 

The output of the beamformer is 

( ) ( )( )
1

L

i i i

i

y t w x t τ θ
=

= −∑   .                                    (2.71) 

By delaying the induced signal on each array element, signals become in phase and 

then weighted to steer the beam in the look direction.  

In digitial beamforming, weighted signals are sampled and stored. The appropriate 

samples are used to shape the beam. For delay process, a constant value, ∆  is used. 

The arrival time of the induced signal from angle 2θ  to the thi  element is 

( ) ( )2 1i iτ θ = − ∆   .                                           (2.72) 

For a signal induced from angle 3θ , shown with B , needs to be delayed ( )L i− ∆  

seconds, shown in Figure 2-10. For signals coming from angle 1θ , no delay is 

needed.  
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Figure 2-10 Digital Beamforming [1] 

As it is seen from the Figure 2-10, the steering directions are limited in [ ]2 3,θ θ  

range. To enlarge the direction range, sampling is increased by changing the 

sampling interval to / 2∆ , in Figure 2-11. Larger direction range is seen in Figure 

2-10 with 4θ  and 5θ .  
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Figure 2-11 Sampled Digital Beamformer [1] 

High sampling rates require larger storage capacity, faster input-output devices, 

ADC’s. Digital interpolation is applied for increasing sampling rates by zero 

padding. 

Increasing the array size satisfies narrower beams. In application, it is not possible 

to increase the array size. Instead of that, extrapolating is applied in digital 

beamforming.      

2.11 Eigenstructure Method 

Eigenvalues of correlation matrix, R  are seperated into two parts as noise and 

signal eigenvalues. The eigenvectors, corresponded to each part are calculated. 
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The eigenvectors of R are orthogonal to each other, assuming that there are L  

spaces. This set is seperated into signal and noise subspaces.  

Weight vector is adjusted to have an approriate response in look direction and to 

cancel the interferences. It is mentioned above that the weight vector of the desired 

signal is orthogonal to the steering vector of the interfering signal.  
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CHAPTER 3  

 

ADAPTIVE BEAMFORMING 

Adaptive bemaformers update the weights of the antenna array according to the 

desired and/or the interfering signals in the environment. 

There are many adaptive beamforming schemes, which are referred to adaptive 

algorithms [1].  Some of them are presented in this chapter. The characteristics, 

such as the speed of adaption and the mean and variance of the estimated weights 

are given. 

The correlation matrices used for estimating weight vector are not considerable in 

application.  

Since the correlation matrix of noise ( NR ) and the correlation matrix of signal (R) 

are not available, optimal weights are calculated by using the known parameters of 

signal and array output.  

Adaptive algorithms are accomplished to adjust the optimal weights and to shape 

the appropriate array pattern. 

Some of the adaptive algorithms and their parameters are discussed below.  
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3.1 Sample Matrix Inversion Algorithm 

Sample Matrix Inversion (SMI) algorithm estimates the array weights by replacing 

with its estimate. [1], [2] 

N samples of array signal ( )x n  are used to adjust R , 

( ) ( ) ( )
1

0

1 N
H

n

R n x n x n
N

−

=

= ∑   .                                      (3.1) 

The algorithm enables to update R  according to the new signal samples, 

( ) ( ) ( ) ( )1 1
1

1

HnR n x n x n
R n

n

+ + +
+ =

+
   ,                            (3.2) 

according to the new samples, weights are also updated, ( )1w n + . 1R−  is required 

in calculation of optimal weights 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 1

1

1 1
1

1 1

H

H

R n x n x n R n
R n R n

x n R n x n

− −
− −

−

− −
= − −

+ −
   .                 (3.3) 

Increasing the number of samples concludes a good approximation of R  and 

optimal weight, n→∞ , ( )R n R→  and ( ) MSEw n w→ . 

3.2 Least Mean Square Algorithm 

The Least Mean Square (LMS) algorithm can be divided into two sets: constraint 

and unconstrained LMS algorithms. 

In constrained algorithm, the weight updates are adjusted under some 

considerations [1]. 
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In unconstrained algorithm, the weights are updated according to the reference 

signal, without any direction information of the signal [1], [2]. 

Gradient of quadratic surface estimation is referred to weight updates. According to 

the estimation, weights are updated by an amount of step size. Small step size 

success in calculating appropriate optimal weight values. On the other hand, large 

step size values success in faster convergence, but result fluctuations around the 

optimal weights.  

3.2.1 Unconstrained LMS Algorithm 

Unconstrained LMS is the first type of LMS adaptive algorithm. 

The updated weight expression is 

( ) ( ) ( )( )1w n w n g w nµ+ = −   ,                                 (3.4) 

µ  is a scalar value, known as step size. It reflects how fast the algorithm 

approaches to optimum weights.  

( )( )g w n  is the unbiased estimate of MSE 

( )( ) ( ){ } ( ) ( ) ( )
2

1 2H HMSE w n E r n w n Rw n w n z= + + −              (3.5) 

( ) ( ) ( )| 2 2w w w n
MSE w Rw n z=∇ = −    .                              (3.6) 

The output of the beamformer is 

( ) ( ) ( )1Hy n w n x n= +   .                                     (3.7) 

It is seen in equation (3.7) that ( )w n  is used in ( )1 th
n +  iteration. 

For real applications, R  and z  are changed with noisy values 
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( )( ) ( ) ( ) ( ) ( ) ( )2 1 1 2 1 1Hg w n x n x n w n x n r n= + + − + +  

                                      ( ) ( )( )*2 1x n w nε= +                                                       (3.8) 

The error between the array and the reference signal, ( )( )w nε , is 

( )( ) ( ) ( ) ( )1 1Hw n w n x n r nε = + − +                                   (3.9) 

max1/µ λ<  makes the algorithm behave stable and converge to optimal weight. maxλ  

is the maximum eigenvalue of R.  

The convergence speed is represented by the L eigenvectors and thl  eigenvalue of 

R , 

1

2l

l

τ
µλ

=   .                                                  (3.10) 

Larger eigenvalue denotes small convergence speed, lτ . Large eigenvalues refer to 

the signal eigenvalues. Smaller eigenvalues denotes large lτ , which refers to weak 

signals, noise. For large eigenvalues, the convergence speed of the algorithm takes 

small values. The algorithm cancels strong signals first.  

LMS algorithm is not an appropriate algorithm for nonstationary environment, since 

it has a slow convergence speed. 

The covariance matix of the weights is given as 

( ) ( )( ) ( )( ){ }wwk n E w n w w n w= − −   ,                            (3.11) 

w  is the expected value of ( )w n . Algorithm minimizes the MSE given in equation 

to calculate the optimum weights 

( )( ) ( ) ( )HMSE w n MMSE V n RV n= +   ,                          (3.12) 
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( ) ( ) MSEV n w n w= −   .                                       (3.13) 

Equation (3.13) gives the error between estimated and optimal weights. ( )V n  is 

expected to be equal to zero for infinite iterations. 

The difference between the estimated weight in LMS and the optimal weight is 

named as misadjusment. The gradient step size µ  and misadjustment M  are given 

as follows 

max

1
0

4
µ

λ
< <     ,                                             (3.14) 

( )
1

2
1

1 2

L
i

i i

µλ
η µ

µλ=

<
−∑�     ,                                        (3.15) 

( )
( )1

M
η µ
η µ

=
−

  .                                               (3.16) 

Increasing µ  causes an increase in misadjustment. While increasing µ , the 

algorithm converges faster to the optimal weights but fluctuates so much around the 

optimal weights and causes a great miasadjustment. Decreasing µ  decreases the 

convergence speed of the algorithm. For a nonstationary environment, estimated 

weights stay behind the optimal weights.   

3.2.2 Normalized LMS Algorithm 

This algorithm is a type of the constant-step-size LMS algorithm [1], [2]. The data-

dependent step size is given as, 

( )
( ) ( )

0
H

n
x n x n

µ
µ =    .                                         (3.17) 
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The algorithm convergence to the optimal weight better, and no eigenvalue is 

needed to be calculated.  

3.2.3 Constrained LMS Algorithm 

Constrained LMS is the last type of adaptive LMS algorithm. According to the 

constrained LMS algorithm, the updated optimal weight is  

( ) ( ) ( )( ){ } 0

0 0

1
H

s
w n P w n g w n

s s
µ+ = − +                             (3.18) 

0 0
Hs s

P I
L

= −    .                                              (3.19) 

µ  is the step size, 0s  is the steering matrix in the look direction. ( )( )g w n  is the 

estimate of the gradient of ( ) ( )Hw n Rw n  with respect to ( )w n , 

( )( ) ( ) ( ) ( )| 2H

w w w n
g w n w Rw Rw n=∇ =�   .                            (3.20) 

For applications, the above expressions have to be replaced with standard LMS 

algorithm. Assuming the noisy environment 

( ) ( )1 1HR x n x n→ + +   ,                                      (3.21) 

( )( ) ( ) ( )( )*2 1g w n x n y w n= +   .                                (3.22) 

( )( )y w n  is the array output. The gradient step size and the convergence speed are 

as follows 

( )max

1
0

2 PRP
µ

λ
< <   ,                                       (3.23) 
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( ) ( )
1 1

2ln 1 2
l

ll
PRPPRP

τ
µλµλ

−
= ≈

−  
   .                        (3.24) 

lλ  and maxλ  are the thl  and the maximum eigenvalues of PRP . R  is 

0 0
H

s NR p s s R= +                                            (3.25) 

0 0Ps =   ,                                                (3.26) 

Convergence speed depends on the eigenvalues of NPRP PR P= . Eigenvalues 

depend on the direction and power of directional sources.   

The variance of the gradient and the misadjusment are given as, 

( )( ) ( ) ( )4 H

gV w n w n Rw n R=                                   (3.27) 

( )

( )

1

1

1

1

1

1

1
1

1

L

i i

L

i i

PRP
M

PRP

µ
µλ

µ
µλ

−

=

−

=

−
=

−
−

∑

∑
   .                                 (3.28) 

The constrainted LMS algorithm as expressed above is 

( ) ( ) ( )( )0

0 0

1
H

s
w n Pw n Pg w n

s s
µ+ = + − ,                           (3.29) 

where ( )( )g w n  is 

( )( ) ( ) ( ) ( )1 1Hg w n x n x n w n= + +   ,                            (3.30) 

and ( )x n  is 

( ) ( ) ( )0s Nx n m n s x n= +   .                                    (3.31) 
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( )sm n  is the modulating function. ( )Nx n  is the array receiver vector.  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )*
01 1 1 1H H

N N s NPg w n Px n x n w n m n Px n s w n= + + + + +    (3.32) 

( )* 1sm n +  is a random variable which has the variance of the signal power in the 

look direction. 

Weight estimation is sensitive to the signal power in standard LMS algorithm. It is 

better to choose a low step size in an environment where strong signals exist. 

The standard LMS algorithm adjusts the optimal weights by the new samples of 

correlation matrix. However, the recursive algorithm uses previous samples also. 

( ) ( ) ( ) ( )1 1
1

1

H

N NnR n x n x n
R n

n

+ + +
+ =

+
                          (3.33) 

The correlation matrix is used to make an estimation of 

( )( ) ( ) ( )2 1g w n R n w n= +   .                                 (3.34) 

Variance of the estimated gradient is 

( )( )
( )

( ) ( )2

4

1

HVg w n w n Rw n R
n

=
+

  .                           (3.35) 

The gradient is decreased with a ratio of ( )21n + , so the recurcive LMS algorithm is 

less sensitive to the signal power than the standard LMS algorithm. 

The improved LMS algorithm’s correlation function of a linear array, equispaced 

elements is, 
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ir  are the L correlation lags 

( ) ( ) ( )*1
0,1, , 1i l l i

li

r n x n x n i L
N

+= = −∑ L   .                      (3.37) 

The improved LMS algorithm works better in the presence of strong signals. 

Increasing the step size has no effect on algorithm’s stability. 

3.3 Recursive Least Square Algorithm 

Recursive Least Square (RLS) algorithm uses the inverse of correlation matrix, 

( )1R n− . This approximation have a better performance in a large eigenvalue spread. 

The weight update is 

( ) ( ) ( ) ( ) ( )( )1 *1 1w n w n R n x n w nε−= − − −                           (3.38) 

and ( )R n  is 

( ) ( ) ( ) ( )0 1 HR n R n x n x nδ= − +   , 

 ( ) ( )
0

n
n k H

n

k

x k x kδ −

=

=∑   .                                      (3.39) 

0δ  is the forgetting factor, 01/1 δ−  is the memory. The update of the correlation 

matrix is given as 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 1

1
0 0

1 11
1

1

H

H

R n x n x n R n
R n R n

x n R n x nδ δ

− −
− −

−

 − −
= − − 

+ − 
             (3.40) 
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where 

( )1
0

0

1
0 , 0R I ε

ε
− = >    .                                   (3.41) 

The constraint of the RLS algorithm for convergence, independent of the 

eigenvalues of R , is to minimize 

( ) ( )
2

0
0

n
n k

k

J n kδ ε−

=

=∑   .                                     (3.42) 

According to the convergence speed, RLS is the most efficient algorithm. 

3.4 Constant Modulus Algorithm 

The constrained of the gradient-based algorithm, Constant Modulus Algorithm 

(CMA) is to minimize the following 

( ) ( )( )
22 2

0

1

2
J n E y n y

 = − 
 

   .                              (3.43) 

The weight update is  

( ) ( ) ( )( )1w n w n g w nµ+ = −    ,                                (3.44) 

0y  is the desired amplitude when there is no interfering signal, 

( ) ( ) ( )1Hy n w n x n= +  is the array output. The gradient cost function ( )( )g w n  is 

( )( ) ( ) ( )2 1g w n n x nε= +                                      (3.45) 

and 

( ) ( )( ) ( )
2 2

0n y n y y nε −�                                      (3.46) 
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Under the above considerations, the weight update is 

( ) ( ) ( ) ( )1 2 1w n w n n x nµε+ = − +   .                             (3.47) 

3.5 Conjugate Gradient Method 

The algorithm tries to solve the following equation 

Aw b=                                                    (3.48) 

w  is the weight vector, A  matrix is composed of the sampled signals from array 

elements. b  has the samples of desired signal. The algorithm is trying to decrease 

the error between the desired and the array output under a determined value. The 

error variable, named as the residual vector is 

r b Aw= −                                                  (3.49) 

The weight update is 

( ) ( ) ( ) ( )1w n w n n g nµ+ = −   .                                 (3.50) 

where ( )g n , the direction vector and ( )nµ ,step size are as 

( ) ( )Hg n A r n=  ,                                            (3.51) 

( )
( )

( )

2

2

H

H

A r n
n

A g n
µ �   .                                          (3.52) 

The residual update and direction vector update expressions 

( ) ( ) ( ) ( )1r n r n n Ag nµ+ = +   ,                                (3.53) 

( ) ( ) ( ) ( )1 1Hg n A r n n g nα+ = + −   ,                           (3.54) 
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where 

( )
( )

( )

2

2

1H

H

A r n
n

A r n
α

+
=   .                                      (3.55) 

The error surface, ( ) ( )Hr n r n  is minimized in L  iteration. 
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CHAPTER 4  

 

NEURAL NETWORK APPROACH FOR 

BEAMFORMING 

Neural Network algorithms have been more popular in signal processing 

applications. According to the improving mobile communication, Global 

Positioning Sytem (GPS) and Radar technologies, faster beamforming algorithms 

are needed. Since the number of users and the interfering signals increases, the 

communication systems require to track the users continuously while they are 

moving, and to put nulls in the directions of interferences. Neural Networks (NN) 

have good performances in accordance of these needs, and NN can easily be 

implemented for these applications.  

The main idea of NN applications is to define input and output pairs for the training 

phase. The inputs of the training phase have to be chosen carefully, since the NN is 

going to make an optimization for a new, unseen input according to the trained 

input and output pairs. 

In this thesis work, beamforming applications are applied with NN. The main idea 

of this beamformer is to direct the antenna array patterns to the desired signal 

directions and to put nulls in the directions of interferences.  

The inputs are chosen as the correlation matrices of the incoming signals from 

sources. The inputs have all the possibilities of the direction of arrival (DOA) 
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information of the incoming signals. The outputs are the weights of the antenna 

elements with respect to each correlation matrices. These weights are used to steer 

and shape the antenna pattern. 

Radial Basis Function Neural Network (RBFNN) is used for training phase. A brief 

information of RBFNN is described in Section 4.1. 

Two applications are studied for NN beamforming. First one is the linear antenna 

array application RBFNN’s and the second application is over cylindrical array with 

cylindrical microstrip patch antenna elements via RBFNN.  

A part of linear array application in this thesis is parallel to the work given in [3] of 

A. H. Zooghby, C. G. Christodoulou, and M. Georgiopoulos. The network is 

composed of the correlation matrices of the incoming signals to the linear array. 

The outputs are the optimum weights of each antenna element. The weights are 

calculated according to the paper in [3].  

The application is implemented for an angular range of interest of 0 090 ,90 −  . 

Since all the possibilies of single target or multiple targets in any direction are taken 

into consideration for training, the algorithm has the knowledge of the DOA 

information of the whole angular range of interest.  

In the performance phase, the correlation matrix of an incoming signal from any 

direction is given as the input to the NN. The direction of the incoming signal is not 

necessary to be known. Optimum weights are derived by training NN.  

Second approach is implemented for a cylindrical array application. The cylindrical 

array has twelve Circular Microstrip Patch Array (CMPA) elements. Since the 

antenna elements are directive and the array allows a full coverage of 0360 , this 

array is used as a performance application of NN beamformer. 

The main idea of the NN beamforming idea is identical with the linear array 

application. The main difference is that the angular range of 0360  is divided into 
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twelve sectors, having an angular coverage of 030 . Each CMPA element is placed 

in the middle of the corresponding sector, as mentioned in Figure 4-9.  

The inputs of the NN are the correlation matrices of all possible incoming signals 

form all directions of 0360 . The outputs are the calculated weights, according to the 

formulation given in [3]. 

The main advantage of cylindrical array application over the linear array one is that 

the NN in cylindrical array needs less time for training. In the first implementation, 

there are more possibilities for a whole range of 0180 . In cylindrical array 

application, the possibilities are limited with 030  for each twelve sectors.  

For an incoming signal to any sector, three array elements are activated. For 

itor −sec , the activated elements are ( )1 th
i − , thi  and ( )1 th

i +  elements. The 

beamforming for an angle included in itor −sec  is implemented by just three 

antenna elements and only for 030  of interest.  

The DOA information of the incoming signal is not necessary to be known. The NN 

optimizes the beam for the signal in the performance phase. The array pattern is 

shaped according to the new signal. 

Section 4.1 involves an introduction to RBFNN. In Section 4.2, the formulation and 

the algorithm of the linear array approach is given. Section 4.3 presents the 

formulation and the algorithm of CMPA application. The input and output pairs for  

training phase of each two implementation are described briefly in the following 

chapters.  

4.1 Radial Basis Function Neural Network 

The Radial Basis Function Neural Network (RBFNN) is a three layered feed-

forward network.  Since RBFNN network has fast learning speed and needs less 
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iterations for converging to the target values, it is used for the beamforming 

applications of this thesis work. 

The main idea of RBFNN is to make a junction between the inputs and outputs of 

any size. This junction is a multifunction of input. The network tries to fit the 

[input, output] pairs for this multifunction. [4], [10] 

The architecture of the RBFNN is shown in Figure 4-1. 
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Figure 4-1 Radial Basis Function Neural Network 

The mapping between the input-hidden layers is nonlinear. There is a linear 

combination between hidden and outpul layers.  

The mapping function is expressed as 

( ) ( )∑ −=
N

ii xxwxF
1

ϕ    .                                      (4.1) 

N is the number of functions. ix  are the centers of the radial basis function. ϕ  can 

be considered as 
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( ) 2

2

2σϕ
x

ex

−

=    ,                                              (4.2) 

 ( )xϕ  is called as the transfer function of the neural network’s input-output pairs. 

In this thesis, two MATLAB commands of RBFNN are used for training and 

performance phases of the beamformer.  

“newrb” is the training MATLAB command of the RBFNN. The inputs of this 

command are the inputs, outputs, the mean squared error goal, spread of the 

RBFNN and maximum number of neurons. The inputs are the correlation matrices, 

and the outputs are the weights. 

“sim” is the performance MATLAB command. The inputs of this command are 

trained NN, input, network targets. The command returns the corresponding output 

weights of given input correlation matrix.  

4.2 Linear Array  

The linear array beamforming approach is taken from [1], shown in Figure 4-2. 

1θ
2θ
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( )2S t( )1S t

1A 2A 3A MA
 

Figure 4-2 Linear Antenna Array  
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It is assumed that there are M  isotropic equispaced antenna elements, with distance 

d . There are K  number of sources coming from angles Kii ,2,1, L=θ  which is 

0 090 ,90 −  .  The sources are in the far field.  

The correlation matrices are calculated according to the K  incoming signals. The 

number of incoming signals are 181, which includes 00 . The distance between the 

antenna elements are taken as 2/λ .  

The performance analysis of this application is examined by changing the number 

of antenna elements, the SNR value and for multiple target applications, the angular 

separation between the incoming signals. 

In Section 4.2.1, the formulation of the electric field, correlation matrix and the 

weight calculations are given. These informations are used for training and the 

performance phase of the linear array beamforming NN. The algorithms of the 

training and performance phases are described in Section 4.2.2. 

4.2.1 Formulation 

Assuming that there are K  antenna elements, the induced signal to each antenna 

element is calculated by, 

( ) ( ) ( ) ( )∑
=

−− +=
K

m

i

kij

mi tnetStX m

1

1   ,                                  (4.3) 

mS  are the signals coming from each signal source, ( )tni  is a zero mean, 

statistically independent white noise, with variance 2σ , mk  is given as 

mm
c

dw
k θsin0=                                                  (4.4) 
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d , is the distance between the array elements, 0w  is the angular frequency, c  is the 

speed of light. 

Equation (4.3) can be rewriten in matrix form as 

( ) ( ) ( )tNtAStX +=                                             (4.5) 

X  and N  are [ ]1M × -sized vectors. S  is a [ ]1K × -sized vector. A  is a [ ]M K× -

sized matrix. This matrix is the steering matrix for linear array. Steering matrix is 

composed of the following,  

( )1 mj i k

imA e
− −=                                                 (4.6) 

where mk  is given in equation (4.4). 

After deriving the induced signal to the linear array, the correlation matrix of each 

incoming signal is calculated. As mentioned earlier, the correlation matrices are 

used for deriving the inputs of the NN for training and for the performance phases.  

The correlation function is derived from the induced signals on each array element, 

given as 

                                   ( ) ( ){ }H
tXtXER =  

( ) ( ){ } ( ) ( ){ }HHH
tNtNEAtStSAE +=                                 (4.7) 

The first row of the correlation matrix is taken into account for calculating the Z  

vector, [5].  The derived Z  vector is then given as the input of NN.  

The correlation function and vector-b  are given as, 

















=

333231

232221

131211

RRR

RRR

RRR

R  and 

















=

13

12

11

R

R

R

b                              (4.8) 
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Z  vector is obtained from b  

b

b
Z =                                                     (4.9) 

The elements of the correlation matrix R  are complex values. Since the NN does 

not accept the complex values, real and imaginary parts of each element of the 

matrix is considered seperately. The size of Z  vector in equation (4.9) is [ ]1×M . 

Resizing the vector, by seperating it into its real and imaginary parts changes the 

size of Z  to [ ]2 1M × . Z  vector is given as the input to the RBFNN. The next step 

is to calculate the outputs of the NN.   

The outputs are the optimum weights of the linear array elements for corresponding 

DOA’s. The formulation of weight calculation is given in [1]. The weights 

minimize the signals received from interferences and maximizes the array response 

for the desired signal directions.  

The optimum weights are calculated as, 

11 1ˆ H

opt d d dw R S S R S r
−− − =                                    (4.10) 

The main constraint of the optimum weights is to minimize the mean output power.  

R  is the correlation matrix, defined above.  

( ) ( ){ }H
R E X t X t=                                      (4.11) 

dS  is the steering matrix of the desired signals. The information of the directions of 

each desired signal is given in this matrix. Assuming that the scanned azimuth angle 

is [ ],θ θ− , and the number of the desired signals is V , the desired steering matrix 

dS  has a size of ( )2 1 Vθ + ×   . In this thesis work, assuming that the number of 

desired signals is two, the size of  dS  is [ ]2181× . 
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The steering matrix of the desired signals is expressed as, 

( ) ( ) ( )1 2d d d d VS S S Sθ θ θ =  L  .                           (4.12) 

( )d iS θ  is 

( ) ( )121 ii i
j M kjk j k

d iS e e eθ − −− − =  L                           (4.13) 

After the training phase, the performance phase is accomplished to obtain the 

optimum weights for new incoming signals. 

For a new incoming signal of ( )tS , the correlation matrix, b and Z  vectors are 

calculated according to the equations (4.7), (4.8) and (4.9). The outputs are derived 

by performing the trained NN. The outputs are the weights which shapes the beams.   

The array response of the incoming signal is derived by multiplying the weights 

with each antenna element for each direction, given by the following formulations, 

opt

HArray Pattern w X=    (4.14) 

4.2.2 Algorithm 

The algorithm is composed of a neural network with multiple input and output 

pairs. These multiple pairs are trained by RBFNN, as shown in Figure 4-3. 
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Beamformer
z vectors optimum
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Figure 4-3 Neural Network Beamformer 
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The algorithm can be considered for two cases being single target and multiple 

target cases. 

First case deals with single target presence in the angular range of interest of 

0 090 , 90 −  . The total number of possibilities that a single target can be present in 

any angle of the angular range is 0181 . There are 181 cases of correlation matrices 

and 181 cases of weight vectors with 01  steps resolution. 

The second case deals with multiple targets and/or target+interfering signals. The 

number of all possibilities of two signals presence simultaneously is 16290. The 

number of all possibilities of single signal+single interference signal presence 

simultaneously is 32580.  

The increase in the number of possibilities results an increase in the training time. 

The cases of three and more targets are not implemented. Eventhough the main idea 

is similar, more training time is required.  

The training phase and the performance phase of the algorithm are presented in the 

following sections. 

4.2.2.1 Training Phase 

The training phase is composed of calculating the input and the output pairs of the 

neural network. As mentioned above, the inputs are the Z  vectors.  

Z  vectors are calculated from the correlation matrix, as given in equations (4.8)-

(4.9). The optimum weigths are derived from the equation (4.10). 

It is assumed that the number of array elements is M  and the number of desired 

signals is K  and the angular range of interest is 0 090 ,90 −  .  The number of 

antenna elements is given as an .  
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Assuming that the number of possibilities of the inputs is _No Pos , there are 

_No Pos  number of correlation matrices of size an an× , _No Pos  number of Z  

vectors of size [ ]2 1M ×  and _No Pos  number of weight vectors of size 1an× . 

The Z  vector is calculated for all training sets of number _No Pos . For all training 

sets, _No Pos  number of optimum weights are derived.    

The optimum weight formulation contains the steering matrix of desired signals. 

Assuming that the total number of desired and/or interfering signals are 

_ _ intNo des . The size of dS  is [ ]181, _ _ intNo des . The term r  in the equation 

(4.10) is the characteristic parameter that determines if the signals are interfering or 

desired signals. If there are two desired signals, [ ]1 1r = . If there is a single 

desired and a single interfering signal, [ ]1 0r = . 

According to the above calculations, optimum weigths are calculated. The input and 

output pairs are obtained, ( )2 _ , _,M No Pos opt an No PosZ w× × .  

In MATLAB, “newrb” command is used to train the NN for the given input and 

output pairs. The trained network is saved in the memory as data file. This data file 

is used for beamforming in the performance phase. 

4.2.2.2 Performance Phase 

In the performance phase, it is assumed that there comes a signal from an unknown 

direction. According to the incoming signal, the correlation matrix R , b  vector and 

the Z  vector are calculated. 

The calculated Z  vector is presented as the input of the trained network which is 

saved at the end of the training phase.  
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The NN tries to make an optimization for the input Z  vector and outputs optw . The 

performance phase of NN is implemented by “sim” command in MATLAB. 

The derived optw  is then used to obtain the array pattern that is formed for desired 

and interfering signals by equation (4.14). 

4.3 Cylindrical Array With Microstrip Patch Antenna Elements 

Cylindrical Microstrip Patch Antenna (CMPA) is a performance application of the 

NN beamformer. There are twelve CMPA elements, placed on a cylinder. This 

array structure has several advantages. The first advantage of this array is the total 

coverage of 0360 . According to the architecture of the array, the antenna elements 

cover the full range in azimuth. The second advantage is that CMPA elements have 

enough directivity for forming the beams of the array to the directions of the desired 

signals and to put nulls in the directions of interferences.  

The third advantage is that the angular range is divided into twelve sectors. 

Assuming that a signal is coming from an angle coresponds to itor −sec , the 

activated elements are ( )1 th
i − , thi  and ( )1 th

i +  elements. The beamforming for an 

angle included in itor −sec  is implemented by just three antenna elements and only 

for o30  of interest. This reduces the size and the time needed for the training phase 

of the NN.  

 Single element geometry of the array is given in Figure 4-4. 
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Figure 4-4 Cylindrical Microstrip Patch Antenna Element [4] 

a  is the radius of the cylinder, h  is the height of the substrate. 02 aθ  and 2b  are the 

dimensions of the patch. The patch is placed on the angle 0φ . fZ  and fφ  gives the 

position of the coaxial probe feed. 

The performance analysis of this application is examined by changing the SNR 

value and the angular separation between the incoming signals for multiple target 

case.  

In Section 4.3.1, the formulation of the electric field, the correlation and the weight 

calculations are given. The algorithms of the training and performance phases are 

described in Section 4.3.2. These informations are used for training and the 

performance phase of the linear array beamforming NN.  

4.3.1 Formulation 

The NN of the cylinrical array application is composed of Z  and optw  vectors, 

similar to the linear array NN architecture.  
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The calculations of the induced signals, electrical field of single patch antenna 

elements, the total array pattern, input and output pairs are described in the 

following sections. 

4.3.1.1 Single Patch Element 

The formulation and the pattern of single patch antenna element of the cylindrical 

array is given in this section. 

The field equation is given as 

( )
0
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2
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EEE z                (4.15) 

∈= µ22 wk                                                 (4.16) 

The electric field is composed of ρE  component only in the cavity model. 

By using the cavity model approximation and by the assumption of ah << ,  Eρ  

yields ([5]), 
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The magnetic currents radiating along the cylinder are 

npEM ˆˆ ×= ρ    .                                         (4.19) 

The electric field components are 
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pf  and pg  are 
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where 
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( )2
pH  is the Hankel function of second kind. The electric fields can be rewritten as 
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The electric field pattern of one microstrip patch antenna is shown in Figure 4-5 and 

Figure 4-6. 
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Figure 4-5 The Polar Plot of The Electric Field Pattern of One Microstrip Patch 
Antenna 
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Figure 4-6 The Plot of The Electric Field Pattern of One Microstrip Patch Antenna 

The dimensions of the patch are taken as 38.3L mm= , 02 18.3696oθ = , 42w mm= . 

Cylinder has a radius 131a mm= . 0 0 18.3696 / 2oθ φ= = . Height of the substrate 

1.600h = , the permittivity 4.4r∈ = . 

4.3.1.2 Cylindrical Patch Array 

Assuming that there are three antenna elements in each sector beamforming 

calculation, the induced signal to each sector is calculated by equation  (4.3).                                  

There are twelve microstrip patch antennas placed on the cylinder, Figure 4-8. Each 

of them are similar and the antennas are centered beginning from 00 . The thn  

element is positioned on 

2

12n

n
in radians

π
φ =                                   (4.30) 
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The total signal induced on each antenna element of the twelve-element-patch array 

is 

( ) ( ) ( ) ( ) 12,,2,1
1

L=+=∑
=

−
itneEtStX

K

m

i

jk

mTmi
mφ                    (4.31) 

( )tni  is a statistically independent white noise with zero mean.  

X  and N  are [ ]3 1× -sized vectors. S  is a [ ]3 30× -sized matrix. K  is the number 

of angular range. A  is a [ ]3 K× -sized matrix, composed of 

φθ EEET +=                                             (4.32) 

( )0
2 1

cos
12m m

i
k a

c

πω
φ

− 
= − 

 
                               (4.33) 

a  is the radius of the cylinder, c  is the speed of light in free-space, and 0ω  is the 

angular center frequency of the signal.  

The total induced signal can be represented in matrix form 

( ) ( ) ( )tNtAStX +=                                        (4.34) 

X  and N  are [ ]3 1× -sized vectors. S  is a [ ]3 30× -sized matrix. K  is the number 

of antenna elements. A is a [3xK]-sized matrix, composed of 

( ) mjk

mTim eEA
−= φ                                         (4.35) 

Total electric field pattern of the array is given in Figure 4-7. 
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Figure 4-7 Total Electric Field Pattern of CMPA 

The schematical expression of twelve-element cylindrical microstrip patch array is 

in Figure 4-8. 

The angular range is divided into 12 sectors. One element is in the middle of each 

sector. As it is seen from Figure 4-8, each sector is affected by array elements in 

that sector and in the adjacent sectors, which have more than 20 dB signal level 

according to their radiation patterns.  
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Figure 4-8 The geometry of twelve-element cylindrical array [5] 

Since sectors are formed by three antennas, each sector consists of radiation 

patterns of three array elements. There are four sector groups, changing according 

to the incoming signal’s angle of arrival. For example, it is assumed that the signal 

is coming from 3θ . Signal coming from 3θ  activates the Sector-3. Since each sector 

is affected by array elements in that and in adjacent sectors, the second, third and 

the fourth array elements are grouped. The X vector, the steering matrix and A  

matrix are calculated by these three array elements.  

The second, third and the fouth elements are used for the signals coming to the  

Sector-3, in a 030  of range. If a new signal comes from 4θ  simultaneously, which is 

in Sector-4’s angular range, the algorithm does not take this signal into account. It’s 

because of that Sector-4’s sector group includes third, fourth and fifth array 

elements. The third and the fouth array elements are used for Sector-3 for signal(s) 

coming form 3θ .  
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According to the above assumption, the new signal has to come from angle 6θ  

simultaneously, which is in Sector-6. This sector group is composed of the fifth, 

sixth and the seventh array elements. They are not used for Sector-3. 

The sector group is composed of three array elements and an angular range of 030  

is in interest. The electric fields, the correlation matrices and the optimum weights 

are calculated for these two constraints. 

The input of the network is the correlation function, as it is in the linear array 

assumption. The correlation function is derived from the induced signals on each 

array element, given as 

                                    ( ) ( ){ }H
tXtXER =   , 

( ) ( ){ } ( ) ( ){ }HHH
tNtNEAtStSAE +=    .                          (4.36) 

The first row of the correlation matrix is taken into account in further calculations 

for network inputs [5]. A  vector, b  is obtained from the correlation matrix. 
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R

b                             (4.37) 

Z  vector is obtained from b  

b

b
Z =                                                 (4.38) 

The outputs are the optimum weigths of the array elements. It is given as 

11 1ˆ H

opt d d dw R S S R S r
−− − =     .                               (4.39) 

The main constraint of the optimum weights is to minimize the mean output power.  
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R  is the correlation matrix, as mentioned above.  

( ) ( ){ }H
R E X t X t=     ,                                 (4.40) 

dS  is the steering matrix of the desired signals. Assuming that the number of the 

desired signals is V , the desired steering matrix dS  is 

( ) ( ) ( )1 2d d d d VS S S Sθ θ θ =  L    ,                        (4.41) 

where ( )d iS θ  is 

( ) ( )121 ii i
j M kjk j k

d iS e e eθ − −− − =  L    .                      (4.42) 

The Radial Basis Function Neural Network (RBFNN) is used for the training phase. 

The performance phase is accomplished to obtain the optimum weights for unseen 

correlation matrix inputs after the training phase. 

4.3.2 Algorithm 

The network is composed of , optZ w   , input-output pairs. 

The angular range is divided into twelve sectors, as 0, 30, ,330  L . According to 

Figure 4-8 and Figure 4-9, each angular sector is affected by the radiation pattern of 

three antenna elements. For Sector i, ( )1 th
i − , thi  and ( )1 th

i +  elements are taken in 

consideration.  
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Figure 4-9 Sectors of CMPA 

The RBFNN network is used for training phase. The algorithm scheme is given in 

Figure 4-10.  
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Figure 4-10 The Neural Network Beamformer Architecture 
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4.3.2.1 Training Phase 

The training phase includes the input and output pairs which are calculated in 

equations (4.37), (4.38) and (4.39) respectively. 

The training phase has less number of input and output pairs than linear array 

application for multiple signal presence simultaneously.  

For single target case, the number of pairs is 30 12 360× = . For two target presence, 

the number of input-output pairs is 435 12 5220× = , which is 32580 in linear array 

case.  

Z  vectors are calculated from the correlation matrix, as given in equations (4.37) 

and (4.38). The optimum weigths are derived from the equation (4.39). 

The number of array elements for beamforming  in each sector is three and the 

number of desired signals is K  and the angular range of interest is 0 00 ,360   .   

It is assumed that the number of possibities of the inputs is _No Pos . There are 

_No Pos  number of correlation matrices of size 3 3× , _No Pos  number of Z  

vectors of size [ ]6 1×  and _No Pos  number of weight vectors of size 3 1× . The Z  

vector is calculated for all training sets of number _No Pos . For all training sets, 

_No Pos  number of optimum weights are derived.    

The optimum weight formulation contains the steering matrix of desired signals. 

Assuming that the total number of desired and/or interfering signals are 

_ _ intNo des . The size of dS  is [ ]360, _ _ intNo des . The term r  in equation 

(4.39) is characteristic parameter that determines if the signals are interfering or 

desired signals. If there are two desired signals, [ ]1 1r = . If there is a single 

desired and a single interfering signal, [ ]1 0r = . Z  vectors are given as the input 

of the RBFNN network. The output of the network is optw .  
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The input and output pairs are obtained, ( )6 _ ,3 _,No Pos opt No PosZ w× × . This training set 

makes the NN free from the DOA knowledge of the incoming signal.  

In MATLAB, “newrb” command is used to train the NN for the given input and 

output pairs. The trained network is saved in the memory as data file. This data file 

is used for beamforming in the performance phase. 

4.3.2.2 Performance Phase 

In the performance phase, it is assumed that there comes a signal from an unknown 

direction. According to the incoming signal, the correlation matrix R , b  vector and 

the Z  vector are calculated from the induced signals by cylindrical microstrip patch 

antennas in each sector group. 

The calculated Z  vector is presented as the input of the trained network which is 

saved at the end of the training phase.  

The NN tries to make an optimization for the input Z  vector and outputs optw  for 

each sector. The performance phase of NN is implemented by “sim” command in 

MATLAB. 

The derived optw  is then used to obtain the array pattern that is formed for desired 

and interfering signals by the equation (4.14). 
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CHAPTER 5  

 

SIMULATIONS 

In this chapter, some simulations over linear and cylindrical array applications are 

implemented to demonstrate the performance of the NN beamformer.  

The simulations are divided into two main groups: linear antenna array and 

cylindrical antenna array applications.  

The performances of the beamformers are examined according to the number of 

array antenna elements, the angular seperation between targets for multiple target 

simulations and SNR values. 

The first implementation is composed of linear array simulations. The performance 

is analyzed by changing the number of isotropic equispaced antenna elements, the 

SNR value and the angular seperation between antenna elements. The distance 

between the antenna elements is / 2λ . The angular range of interest is 0 090 ,90 −  . 

The operation frequency is 1.8 GHz. 

The second implementation consists twelve element Cylindrical Microstrip Patch 

Antenna (CMPA). This array has a full coverage of 0360 . The geometry and the 

array pattern are given in Figure 4-7 and Figure 4-8. The performance is examined 

according to the SNR value and angular seperation between targets. The angular 

range of interest is 0 00 ,360   . The operating frequency is 1.8 GHz. 
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The simulation results of linear array are given in Section 5.1 and the simulation 

results of cylindrical array are given in Section 5.2.  

5.1 Linear Array Resuls 

Linear array simulations are implemented by assuming an array with equispaced 

antenna elements, as shown in Figure 5-1. 

 

1θ
2θ

Kθ

( )2S t( )1S t

1A 2A 3A MA
 

Figure 5-1 Linear Array Geometry 

Linear array simulation results are divided into two groups: single target and two 

targets and interference cases.  

In Section 5.1.1, simulation results are applied by the assumption of single target 

presence simultaneously in the angular range of interest 0 090 ,90 −  . The 

simulation results are analyzed for different number of antenna elements and for 

different SNR values. 

In Section 5.1.2, simulation performances are given for the case of two target 

presence simultaneously.  
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5.1.1 Single Target 

In the following simulations, the Neural Network is trained for all possibilities of 

single target presence in 0 090 ,90 −  . The criterions of performance analysis are 

number of array antenna elements and SNR value. 

In chapter 5.1.1.1, the number of antenna elements will be changed. In chapter 

5.1.1.2, the SNR effect over the beamformer will be shown. 

5.1.1.1 Effect Of The Number Of Antenna Elements  

The number of antenna elements is an important criteria for the performance of 

beamformer. As it will be seen in the following figures, increasing the number of 

antenna elements results a narrower array pattern for the signal coming from the 

desired direction. 

The simulations are implemented for a single signal coming from 030− .  The 

number of antenna elements ( )an  are chosen as 3, 5, 10 and 15. The SNR value is 

30 dB . 

The simulation results are given in Figure 5-2-Figure 5-5.  
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Figure 5-2 Array Pattern for a signal coming from o30−  with 3an =  and 
30SNR dB=  
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Figure 5-3 Array Pattern for a signal coming from o30−  with 5an =  and 
30SNR dB=  
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Figure 5-4 Array Pattern for a signal coming from o30−  with 10an =  and 
30SNR dB=  
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Figure 5-5 Array Pattern for a signal coming from o30−  with 15an =  and 
30SNR dB=  
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As it is expected from the antenna array theory, increasing the number of antenna 

elements, the beamwidth of the antenna array becomes narrower, and the sidelobe 

levels decreases. These results improve the perfomance of the beamformer. Signals 

coming from the sidelobes are suppressed 15 dB in Figure 5-5. 

A summary of these results are given in Table 5-1. 

Number of antenna Elements Sidelobe Level 3-dB Beamwidth 

3 dB1−  o40  

5 dB2.13−  o5.23  

10 dB5.14−  o5.11  

15 dB15−  o8  

Table 5-1 Summary of Linear Array Application for different number of antenna 
elements 

 

3-dB beamwidth of the array pattern decreases by increasing the number of antenna 

elements. As it is mentioned above, the sidelobe levels are suppressed more for 

higher numbers of antenna elements.  

In Figure 5-6, it is seen that the array pattern is narrower for higher number of 

antenna elements. The beamwidth decreases to 11.5o  for 10an = . 

In Figure 5-7, the sidelobe levels are figured for different numbers of antenna 

elements. The sidelobe level goes to dB5.14−  for 10an = . 
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Figure 5-6 3-dB Beamwith change for Linear Array Application by changing the 
number of antenna elements 
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Figure 5-7 Maximum Sidelobe Lavel change for Linear Array Application by 
changing the number of antenna elements 
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5.1.1.2 SNR Effect 

The SNR value is another important criteria for the performance of beamformer. 

The array has a good performence begining with 10SNR dB= .  

The simulations are implemented for a single signal coming from 020 .  The number 

of antenna elements is 10.  

The performance is analyzed with changing the SNR value by following values: 
5 dB , 10 dB , 15 dB , 20 dB  and 30 dB . It is assumed that the noise is white 
Gaussian noise with zero-mean. The results are given in Figure 5-8-Figure 5-12. 
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Figure 5-8 Array Pattern for a signal coming from 20o  with 10an =  and 
5SNR dB=  
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Figure 5-9 Array Pattern for a signal coming from 20o  with 10an =  and 
10SNR dB=  
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Figure 5-10 Array Pattern for a signal coming from 20o  with 10an =  and 
15SNR dB=  



 

 

77 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-40

-35

-30

-25

-20

-15

-10

-5

0

AOA

A
rr
a
y
 R
e
s
p
o
n
s
e
 i
n
 d
B

 

Figure 5-11 Array Pattern for a signal coming from 20o  with 10an =  and 
20SNR dB=  
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Figure 5-12 Array Pattern for a signal coming from 20o  with 10an =  and 
30SNR dB=  
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It is observed that the array has higher sidelobe suppression values and better beam 

shapes for higher SNR values to direct the pattern in the direction of the desired 

signal. A summary of these results are given in Table 5-2. 

 

SNR value ( )10=an  RMS error Sidelobe Level 

dB10  0.50 dB0  

dB15  0.25 dB6.4−  

dB20  0.1 dB12−  

dB30  0 dB5.20−  

Table 5-2 Summary of Linear Array Application for different SNR values 

In Figure 5-13, the performance of the NN beamformer is shown for five different 

noisy signals with 10 dB  of SNR. 

In Figure 5-14, the RMS error is shown for different SNR values. The RMS error is 

calculated according to the position of the maximum peak level of the array pattern. 

The error is defined as the error of the position of the maximum peak level of the 

array pattern according to the direction of the incoming signal. 

In Figure 5-15, the sidelobe levels are seen for different SNR values. The sidelobe 

level goes to 20.5 dB−  for 30SNR dB= . 
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Figure 5-13 Array Pattern for 5 Different Noisy Signal Cases for Single Target  
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Figure 5-14 RMS error change for different SNR value 
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Figure 5-15 Sidelobe level change for different SNR values 

5.1.2 Two Targets 

In the following simulations, the Neural Network is trained for all possibilies of two 

targets present in 0180  angular range of interest. The criterions of performance 

analysis are angular seperation between targets and SNR value. The number of 

antenna elements is taken as 10. 

5.1.2.1 Angular Seperation Effect 

The simulations for this chapter, are implemented for two signals present 

simultaneously. First signal comes from 00 , while second signal comes from 1o , 3o , 

5o , 10o , 15o  or 20o  respectively. The number of antenna elements is 10 and the 

SNR value is 30 dB . 

The simulation results are shown in Figure 5-16 - Figure 5-21. 
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Figure 5-16 Signals coming from 0o  and 1o  with 10an =  and 30SNR dB=  
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Figure 5-17 Signals coming from 0o  and 3o  with 10an =  and 30SNR dB=  
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Figure 5-18 Signals coming from 0o  and 5o  with 10an =  and 30SNR dB=  
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Figure 5-19 Signals coming from 0o  and 10o  with 10an =  and 30SNR dB=  
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Figure 5-20 Signals coming from 0o  and 15o  with 10an =  and 30SNR dB=  
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Figure 5-21 Signals coming from 0o  and 20o  with 10an =  and 30SNR dB=  
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The simulation results for 01 , 03  and 05  angular seperations do not have peak levels 

of array response in the directions of desired signals. On the other hand, the desired 

signals directions are covered with 3-dB beamwidth of the array pattern. The 

simulation results for higher angular seperations have good performances.  

The summary of simulation results are in Table 5-3. 

Angular Seperation Sidelobe level RMS error 

o1  dB5.9−  o6  

o3  dB7.9−  o5  

o5  dB9.9−  o5.3  

o10  dB5.10−  o3  

o15  dB0.13−  o1  

o20  dB5.13−  o7.0  

Table 5-3 Summary of Two Target Linear Array Application for different angular 
seperation values 

 

5.1.2.2 SNR Effect 

The simulations are implemented for two signals presence simultaneously for SNR 

criteria. Signals are coming from 010  and 025 . The number of antenna elements is 

10. The SNR values are taken as the following values: 5 dB , 10 dB , 15 dB , 20 dB  

and 30 dB . The simulation results are presented in Figure 5-22 - Figure 5-26. 
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Figure 5-22 Array Response for two targets in 10o  and 25o , 10an =  and 
5SNR dB=  
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Figure 5-23 Array Response for two targets in 10o  and 25o , 10an =  and 
10SNR dB=  
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Figure 5-24 Array Response for two targets in 10o  and 25o , 10an =  and 
15SNR dB=  
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Figure 5-25 Array Response for two targets in 10o  and 25o , 10an =  and 
20SNR dB=  
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Figure 5-26 Array Response for two targets in 10o  and 25o , 10an =  and 
30SNR dB=  

 

The beamformer has good performance beginning from 10SNR dB= . The sidelobe 

levels are decreasing by the increase in SNR value, as shown in Table 5-4. 

 

SNR Level Sidelobe level 

10 dB0  

15 dB7.1−  

20 dB10  

30 dB4.12  

Table 5-4 Summary of Two Target Linear Array Application for different SNR 
values 
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In Figure 5-27Figure 5-13, the performance of the NN beamformer is shown for 

five different noisy signals with 15 dB  of SNR. 
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Figure 5-27 Array Pattern for 5 Different Noisy Signal Cases for Two Targets 

5.2 Cylindrical Array Results 

Cylindrical array is composed of twelve CMPA elements. The geometry of the 

array gives the benefit of having a full coverage of 0360  as shown in Figure 5-28.  
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Figure 5-28 Cylindrical Array Pattern and Geometry 

The main advantage of this array for NN is its less training time because that 0360  

is divided into sectors, 030  each. 

The simulations are divided into two: single target and multiple targets. For 

multiple target simulations, the directions targets are assumed to be in the same 

sector and/or in different sectors of the antenna array. 

First simulations are implemented for one target coming to one sector in Section 

5.2.1. Second part simulations are for multiple target signals coming in one or more 

sectors, as mentioned in Section 5.2.2. 
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5.2.1 Single Target 

The following simulations are over one target beamforming applications. The NN is 

trained for all possibilities of single target present in angular coverage of 030  in 

each sector. The number of all posibilities is only 30 for each sector. Twelve sectors 

are trained parallel to each other in one NN. This helps for a faster training. 

In the performance phase, there is a signal coming from 0140 ,  6th  sector in Figure 

4-9, with an angular coverage of  0 0135 ,165    is activated according to Figure 4-7.  

SNR values are taken as, 10 dB , 15 dB , 20 dB   and 30 dB . 

The simulation results are presented in Figure 5-29 - Figure 5-32. 
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Figure 5-29 Array Pattern for signal coming from 140o , 10SNR dB=  
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Figure 5-30 Array Pattern for signal coming from 140o , 15SNR dB=  
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Figure 5-31 Array Pattern for signal coming from 140o , 20SNR dB=  
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Figure 5-32 Array Pattern for signal coming from 140o , 30SNR dB=  

The simulation results shows that the beamformer perfomance is good beginnig 

from 10SNR dB= . The array has very low sidelobe levels in other sectors than in 

the sector of target. The pattern is formed with three antenna elements.  

5.2.2 Multiple Targets 

Multiple target simulations need more time for training, since there are more 

possibilites of multiple target presence in each sectors.  

In the following simulations, it is assumed that there are more than a single target, 

with a 30 dB  SNR value. Three different type of simulations are presented here. In 

Section 5.2.2.1, there are two targets in one sector. The effect of angular seperation 

change in array pattern is taken into consideration in this section. In Section 5.2.2.2, 

there are multiple targets in different sectors and there are interferences which are 

nulled by NN beamformer. 



 

 

93 

5.2.2.1 Angular Seperation Effect 

In this simulation, two targets are considered within the same sector. The NN is 

trained for all possibilities of being two targets simultaneously in a sector. By 

changing the angular seperation between the two targets, the performance of the NN 

beamformer is analyzed. 

There exist two targets in 11th  sector, as shown in Figure 4-9,  which has an angular 

coverage of 0 0285 ,315   .  The simulation is presented to show the performance of 

the Neural Network beamformer under different angular seperation values between 

two targets.  

The first target is assumed to be at 0285  while the second target is at 0290 , 0295 , 

0300 , 0305  and 0315  respectively. 

The simulations are presented in Figure 5-33 - Figure 5-37. 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

Figure 5-33 Array Response for targets in 0285  and 0290 , 30SNR dB=  
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Figure 5-34 Array Response for targets in 0285  and 0295 , 30SNR dB=  
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Figure 5-35 Array Response for targets in 0285  and 0300 , 30SNR dB=  
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Figure 5-36 Array Response for targets in 0285  and 0305 , 30SNR dB=  
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Figure 5-37 Array Response for targets in 0285  and 0315 , 30SNR dB=  
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Increasing the angular seperation causes a wider pattern in these simulations. 

Sidelobe levels are very low in the other sectors.  

5.2.2.2 Targets in Different Sectors 

In this part, two simulations are implemented to show the performance of the NN 

beamformer for target signals coming from different sectors.  

First simulation is composed of four targets in four different sectors. Three antenna 

elements in each sector forms the beam to the direction of incoming signal. SNR is 

30 dB . 

Second simulation consists two targets and a single interfering signal in each of two 

different sectors. The NN is trained for all possibilities of being two targets in each 

sector of 030 , with SNR of 30 dB .  

In the first simulation, the targets are coming from 025 , 0125 , 0210  and 0300  to the 

2nd , 5th , 8th  and 11th  sectors respectively, as shown in Figure 5-38.  

The array pattern is directed to each four targets simultaneouly by directing the 

peaks of each pattern to the directions of incoming signals.  
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Figure 5-38 Array Pattern for targets in 025 , 0125 , 0210  and 0300 , 30SNR dB=  

In the second simulation, 1st , and  7th  sectors are activated. This simulation shows 

the performance of NN beamformer for interference presence. The NN is trained for 

all possibilities of being two targets and an interfering signal in each sector.  

Signals coming to the 1st  sector are from 0345  and 015 .  The interfering signal is 

coming from 00 . 

Signals coming to the 7th  sector are from 0170  and 0190 .  The interfering signal is 

coming from 0180 , shown in Figure 5-39. 
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Figure 5-39 Array Pattern for targets in 0345 , 015 , 0170  and 0190 ,  and for 
interfering signals in 00  and 0180 , 30SNR dB=  

 

It is seen that the beamformer puts nulls successfully in the directions of 

interferences with a trade of having the peak values of each pattern not directly 

pointed in the directions of targets. 

The pattern is not exactly directed to the directions of targets, but the targets are in 

3-dB beamwidth coverage of each four beams.  
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CHAPTER 6  

 

CONCLUSION 

In this thesis, a Neural Network (NN) algorithm for beamforming problem is 

proposed. Two array applications are implemented to show the performance of the 

proposed beamformer. 

The NN’s are trained for each problem to shape the patterns of the arrays to the 

directions of targets and to put nulls in the directions of interfering signals. The 

RBFNN’s are used for the training phase of the NN . The effectiveness of this NN 

helps for fast convergence in training phase. The performance phases give good 

responses for each application. 

Two different array applications are studied in this work. First application is an 

implementation of linear array as shown in Figure 5-1. An angular coverage of 0180  

degrees is handled with this array. The second application is composed of a 

cylindrical array with twelve antenna elements as shown in Figure 4-8. 

The linear antenna array is composed of omnidirectional antennas with an equal 

distance. An angular range of  0180  is trained for forming the beams. The 

performance of the linear array beamformer is examined by changing the number of 

antenna elements of the array and by changing the angular seperation between the 

targets for different SNR values.  
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The number of the antenna elements and the angular seperation between the targets 

influence the performance of the beamforming algorithm. The algorithm works 

better for larger number of antenna elements and for a sufficient angular seperation. 

It is seen that the angular seperation between multiple targets is an important 

criteria for beamformer performance.  

The second application is studied on cylindrical array, composed of twelve 

microstrip patch antenna (MPA) elements. The total angular range of 0360  is 

covered by the MPA elements. The total angular range is divided into twelve 

sectors. The directive MPA elements help for faster training times of NN for 

beamforming. Three antenna elements used for shaping the beams in each sector. 

Since the total angular range of 0360  is considered in terms of twelve sectors of 

030  each, the proposed algorithm performs faster in the cylindrical array 

application. It is seen in the cylindrical array application that the beamformer works 

well for sufficient angular seperation between the targets and interference.  

The simulations are performed for simultaneous target presence in the angular range 

of interest. The NN beamformer is examined under this consideration. The results 

shows that the beamformer has satisfactory performance for two different array 

applications.  

The main need for good perfomance of this beamformer algorithm is to choose the 

exact input and output pairs for the training phase. The performance phase has fast 

responses for each incoming signal.   

The proposed beamformer can easily be implemented in real world applications 

with its flexible algorithm and fast training performance. Since the beamformer 

performance phase has a sufficient speed for forming the beam according to its 

training set, this beamformer can be used for tracking applications. 

The advantage of the NN beamforming algorithm over the adaptive beamforming 

algorithms is that the NN beamformer has fast convergence speed. NN beamformer 
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calculates the weights of the antenna array elements offline for the incoming signal 

direction possibilities. The calculated weights and the correlation matrices form a 

lookup table for the NN. The lookup table is used for a new incoming signal to give 

the new weights, instead of calculating the weights every time of a new signal 

arrival. This approach provides faster responses. 

As a proposal for future works, modulated signals and different types of jamming 

signals can be implemented as the inputs of the NN beamformer to analyze the 

performance of the beamformer in the presence of modulation and jamming signals. 
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APPENDIX A 

 

DOA WITH NEURAL NETWORK 

 

 

This section summarizes the DOA with NN. Formulations given are presented in 

[5]. Thsi study is implemented to understand the application of Neural Networks 

before implementing the NN beamforming application.  

The NN has three stage in the DOA algorithm and the angular range of interest is 

divided into subsectors. In each subsector, a NN is trained and performed. 

The architecture of the DOA NN algorithm is summarized in Figure A-1. 

First stage is the Detection stage.  In this part, according to the direction of 

incoming signal, the appropriate subsector is activated. The input of the NN is the 

correlation matrix of incoming signal,the output is 1 or 0. 

The second stage is the Filtering stage. In this part, the NN is filtered and only the 

activated NN’s are trained. This approach presents a faster training time in place of 

training the whole angular range of interest. The inputs are the same with the first 

stage, the outputs are the correlation matrices of the incoming signals to the 

activated sectors.   

The third stage is DOA Estimation stage. This part decides the DOA of the 

incoming signal. The inputs of this sector are the outputs of the second stage. The 

outputs are the DOA informations of the incoming signals. 
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 Figure A-1 DOA Neural Network Architecture 

In the performance stage, the corelation matrix of the incoming signal is presented 

to the input of Detection stage, and the DOA information is observed at the output 

of the DOA Estimation stage. 

The simlation is implemented under 30SNR dB= .  The angular range is 30 

degrees. This range is divided into three subsectors, each with 010 .  

In the first simulation, the incoming signal is assumed to come from 
02  to the first 

subsector. The DOA result is given Figure A-2. 

In the second simulation, the signal is assumed to come from 025 , to the third 

subsector. The DOA result is given in Figure A-3. 
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 Figure A-2 DOA Result of One Target in 02  
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Figure A-3 DOA Result of One Target in 25o  


