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ABSTRACT 

 

RRT BASED KINODYNAMIC MOTION PLANNING FOR  

MULTIPLE CAMERA INDUSTRIAL INSPECTION 

 

 

Bilge, Burak 

M.S., Department of Electrical and Electronics Engineering 

                       Supervisor: Assist. Prof. Dr. Afşar Saranlı 

 

 

May 2009, 82 pages 

 

 

Kinodynamic motion planning is an important problem in robotics. It consists of 

planning the dynamic motion of a robotic system taking into account its kinematic and 

dynamic constraints. For this class of problems, high dimensionality is a major 

difficulty and finding an exact time optimal robot motion trajectory is proven to be NP-

hard. Probabilistic approximate techniques have therefore been proposed in the 

literature to solve particular problem instances. These methods include Randomized 

Potential Field Planners (RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring 

Random Trees (RRT). When physical obstacles and differential constraints are added to 

the problem, applying RPPs or PRMs encounter difficulties. In order to handle these 

difficulties, RRTs have been proposed. In this study, we consider a multiple camera 

industrial inspection problem where the concurrent motion of these cameras needs to be 

planned. The cameras are required to capture maximum number of defect locations 

while globally avoiding collisions with each other and with obstacles. Our approach is 
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to consider a solution to the kinodynamic planning problem of multiple camera 

inspection by making use of the RRT algorithm. We explore and resolve issues arising 

when RRTs are applied to this specific problem class. Along these lines, we consider 

the cases of a single camera without obstacles and then with obstacles. Then, we 

attempt to extend the study to the case of multiple camera where we also need to avoid 

collisions between cameras. We present simulation results to show the performance of 

our RRT based approach to different instrument configurations and compare with 

existing deterministic approaches. 

 

Keywords: Motion planning, kinodynamic planning, RRTs, configuration space, 

collision avoidance 
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ÖZ 

 

ÇOKLU KAMERA ENDÜSTRİYEL DENETİMİ İÇİN RRT TABANLI 

KİNODİNAMİK HAREKET PLANLAMASI   

 

 

Bilge, Burak 

Yükseklisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. Afşar Saranlı  

 

 

Mayıs 2009, 82 sayfa 

 

 

Robotik alanında Kinodinamik Hareket Planlaması önemli bir problemdir. Robotik 

sistemlerin kinematik ve dinamik kısıtlamalarını dahil ederek hareket planlaması 

yapmaktan oluşmaktadır. Bu sınıftaki problemler için yüksek boyutluluk büyük bir 

zorluk ve tam zamanlı optimum bir robot hareket yolunun bulunmasının zor olduğu 

kanıtlanmıştır (NP-hard). Bu yüzden belirli örnekleri çözmek için literatürde olasılıklı 

yaklaşım teknikleri önerilmiştir. Bu metodlar Rastgele Potensiyel Alan Planlayıcılarını 

(RPP), Olasılıklı Yol Haritalarını (PRM) ve Hızlı Keşfeden Rastlansal Ağaçlarını 

(RRT) içermektedir. Engeller ve differansiyel kısıtlamalar probleme eklendiğinde, 

RPP‟leri veya PRM‟leri uygulamak zorluklarla karşılaştırır. Bu zorluklardan kurtulmak 

için literatürde RRT önerilmiştir. Bu çalışmada, biz kameraların eş zamanlı 

hareketlerinin planlanması gereken bir çoklu kamera endüstriyel denetleme problemi 

üzerinde durduk. Kameraların birbirleri ve engelllerle çarpışmaktan kaçınırken 

maksimum sayıda kusur yerini yakalamaları gerektirmektedir. Bizim yaklaşımımız 
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RRT algoritmasını kullanarak çoklu kamera denetiminin kinodinamik problemi için bir 

çözüm bulmaktır. RRT bu belirli problem sınıfına uygulandığında ortaya çıkan 

sorunları araştırıyor ve çözüyoruz. Bu doğrultuda, öncelikle engelsiz ve engelli tek 

kamera durumunu inceliyoruz. Sonra, kameralar arası çarpışmalardan kaçınma da 

gerektiren çoklu kamera durumunu deniyoruz.  Bizim farklı araç konfigürasyondaki 

RRT tabanlı yaklaşımımızın performansını göstermek ve var olan deterministik 

yaklaşımlarla karşılaştırmak için simulayon çıktıları sunuyoruz.   

 

Anahtar Kelimeler: Hareket planlaması, kinodinamik planlama, RRT, konfigürasyon 

uzayı, çarpışma sakınma 
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CHAPTER 1 

 

1 INTRODUCTION…  

 

 

1.1 General 

 

Simply put, motion planning is finding a continuous path for a robot from an initial 

configuration to a goal configuration. Solutions developed for the general path finding 

problem are also very valuable for many important and difficult problems in real-life 

industrial and military applications. Steven M. LaValle describes this widespread usage 

of motion planning in his book [14]. His examples include a well known toy example, 

namely the “Piano Mover‟s Problem” that deals with the problem of how to maneuver a 

piano through narrow passages; “Navigating a Mobile Robot” in which a robot is 

tasked to build a map of the environment; “Humanoid Robots” that attempt to imitate 

natural human movements; “Automotive Assembly” as well as ”Car and Trailer 

Parking”. Formally, motion planning can be defined as the problem of finding a 

trajectory for a robot from an initial state to a final state while satisfying the robot‟s 

constraints, avoiding collisions with obstacles and self collisions [13]. 

 

According to the constraints of robots moving in the environment, motion planning can 

be divided into some main categories. These are called holonomic, nonholonomic and 

kinodynamic motion planning [11]. Holonomic motion planning deals with only 

position and orientation of the robot; and it is for holonomic robots in which 

controllable degrees of freedom (DOF) are greater than or equal to total number of 



 2 

DOF. Most of the robots in real-life applications have fewer controllable DOF than the 

total DOF. Nonholonomic motion planning is interested in these robots by including 

their nonintegrable constraints. By considering both the kinematics and dynamics of the 

robot in a generic motion planning problem, one can define the kinodynamic motion 

planning. One important issue of this type of planning problem is its high 

dimensionality. Because of this issue, an exact time optimal trajectory for the robot 

cannot be determined by using conventional planning techniques, this has been proven 

to be NP-hard [13, 15]. A number of probabilistic approximate techniques have been 

proposed to deal with this difficulty and estimate a solution. These are Randomized 

Potential Field Planners (RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring 

Random Trees (RRT).  

 

In RPP, a heuristic function is defined to direct a robot towards a goal configuration 

through the gradient descent. When robot is stuck in local minima, which typically 

happens in the surrounding of the obstacles, random walks are used to escape from 

there and sometimes this method fails and robot returns to the same local minima. So a 

good heuristic function must be defined to avoid this case, but when obstacles and 

differential constraints are added to the problem, the definition of this function becomes 

difficult. In PRM, random configurations are generated on configuration space and then 

the pairs of nearby configurations are tried to connect by using a local planner. This 

provides a graph that is used to find the path of the robot to the goal configuration. 

However, for complicated nonholonomic dynamical systems, it is hard to connect the 

configurations. In order to resolve these issues, LaValle has developed a new tool for 

motion planning that is called RRT as proposed in [10, 11]. RRT easily drives forward 

like RPP and explore the space quickly and uniformly like PRM. This approach is 

specifically designed to handle nonholonomic constraints including dynamics and high 

degrees of freedom [10]. This shows the appropriateness of this algorithm for 

kinodynamic motion planning problem.      
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1.2 Problem Statement  

 

In this study, we consider a kinodynamic planning problem of a multiple camera 

inspection platform, where a set of multiple moving cameras are to be controlled over 

an inspection area. Firstly, we define mechanical and motion constraints of the system 

by relating it with the architecture of an existing “scanner” type inspection device. This 

shows important challenges of the problem, which are the presence of multiple goals 

and the possibility of collisions between cameras. Therefore, the main problem of this 

thesis is to plan the motions of each of the cameras while imaging as much locations as 

possible in a given time while globally avoiding collisions. In this problem, we do not 

aim to obtain optimal solutions, since kinodynamic motion planning is NP-hard 

optimal, and we try to get “good results” as long as the constraints are satisfied as 

LaValle suggested in [12].  

 

After a literature research, we decide to use the RRT algorithm for our problem and 

resolve the difficulties of the approach. Along these lines, we first consider the case of 

a single camera and no obstacle. Then we extend our results to the case where obstacles 

are present and collisions with obstacles are to be avoided. Finally, we attempt to 

extend to the case of multiple camera and avoiding collisions between cameras. The 

available RRT based techniques in the literature are experimentally evaluated and 

issues are identified. We incrementally propose techniques to alleviate these problems 

to build a working solution whose performance is verified by experimental studies on a 

number of scenarios. 

1.3 Scope & Contribution of the Thesis 

    

The scope of this thesis is resolving the kinodynamic motion planning problem of a 

multiple camera industrial inspection in which there exist multiple robots and goals. 

We use the RRT algorithm for this problem in four cases that are single camera without 

obstacle, single camera with obstacle, multiple camera without obstacle and multiple 

camera with obstacle. Also we consider the extended case of the multiple camera 
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industrial inspection as a future work in which cameras can move vertically 

independent of each other.  This extension represents that our approach to this problem 

can be applied to the motion planning problems in more generic platforms.  

 

As the main contribution of this study, we can offer the adaptation of the RRT 

algorithm to our problem, in which there are multiple initials and goals. In the 

literature, the RRT algorithm is mainly used for single query problems that include a 

goal in the environment, so we need to adapt this algorithm to our problem and then we 

develop a RRT based algorithm in which multiple RRTs are used to find the final path 

that reaches as much goals as possible while avoiding collision. While implementing 

our algorithm, we experience some issues such as RRT performance dependence on 

sampling, low rate of the RRT convergence, inefficient collision avoidance, and 

undesired and unintuitive final path, and find solutions in the literature that is explained 

in chapter 2. Also, we develop the mixture of sampling techniques to improve the 

performance of our algorithm in the environment with obstacles and using this 

algorithm, we implement an RRT based motion planner model that solves our problem 

in this study. 

1.4 Outline of the Thesis 

 

As an outline of this thesis, firstly we give a literature survey about kinodynamic 

motion planning and probabilistic approximate techniques RPP, PRM and RRT in 

chapter 2 and explain the problem description of the multiple camera inspection in 

chapter 3. Then, we tell our approach to the problem with the issues and our solutions 

in chapter 4. Chapter 5 represents the results of our experiments. Finally, we present 

discussions, conclusion and future work in chapter 6. 
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CHAPTER 2 

 

2 LITERATURE SURVEY… 

 

 

2.1 Kinodynamic Motion Planning  

 

Kinodynamic motion planning problem is a problem that takes into consideration both 

kinematic constraints, such as the configuration (position) of robot, the joint limits and 

obstacles, and dynamic constraints, such as dynamic laws and bounds on velocity, 

acceleration and applied force. In other words, this is a motion planning problem of a 

robot (or robots) by satisfying the limits on its configuration and time derivative of 

configuration. Therefore, in kinodynamic motion planning, the dimension of constraints 

doubles and increases the computational complexity. This causes an open problem in 

robotics that is to find time-optimal kinodynamic solution. After a great deal of study 

on this problem, it has been shown that finding an exact solution is NP-hard [13, 15]. 

And probabilistic approximate techniques have therefore been developed to find 

solutions close to optimal. 

 

As stated in [15], these techniques for the kinodynamic motion planning trade off 

computational complexity against optimality in terms of 

 “execution time of the motion” 

 “strictness in observing safety margin” 

 “closeness to the desired start and goal configuration” 
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By considering this trade off, a tolerance parameter is defined to express the closeness 

to an optimal safe solution and using this definition, “near optimal” solution can be 

obtained. And in this study, we consider three successful probabilistic approximate 

techniques in motion planning problems that are Randomized Potential Fields Planner 

(RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring Random Trees (RRT). In 

the following sections, these techniques will be explained.   

2.2 Probabilistic Approximate Techniques 

2.2.1 Randomized Potential Fields Planner 

 

In Randomized Potential Fields Planner (RPP) [13], a navigation function is defined in 

configuration space by using medial axes and level-set methods as shown in figure 1 to 

steer robot towards goal through gradient descent.   

 

 

Figure 1: RPP Operation (from [13]): (a) represents the construction of navigation 

function using medial axes and level-set methods; (b) and (c) shows height-fields at 

different angles; (d) is an example of local minima. 

 

By using navigation function, potential fields are constructed that are the sum of 

simpler fields and one of these fields attracts the robot towards goal and others behave 

like repulsive forces that push the robot from the obstacles as shown in figure 1 (b, c).  

 

While computing navigation function, it is avoided to have local minima in which robot 

can get stuck. However, local minima can be developed during gradient descent, and 

typically the robot is trapped in the surrounding obstacles. Random walks method in 
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which robot is backed applying some random inputs on potential fields are used to 

escape from local minima as shown in figure 1 (d), but there is no guarantee in this 

method and if the random-walks fail to escape, the robot returns to the same local 

minima and cannot reach the goal configuration. Therefore, the success of RPP depends 

heavily on the computation of a good navigation function, but with high dimensional 

constraints and obstacles, this computation becomes a difficult task.  

2.2.2 Probabilistic Roadmaps 

 

Probabilistic Roadmaps (PRM) [13] is designed for multiple queries in the same 

environment and it has a substantial pre-computation step as shown in figure 2 to 

enable numerous path-planning queries to be solved. 

 

 

Figure 2: PRM Operation (from [13]): (a) the environment is uniformly sampled; (b) 

the nearest neighbors are connected; (c) the path is defined from initial to goal state 

 

In pre-computation step, firstly, a set of collision free random points is sampled in 

configuration space, and then these points are connected with their neighbors by using a 

local planner. With these connections, a graph is constructed in configuration space and 

then the shortest path between initial and goal configuration through this graph is 

determined as shown in figure 2. However, for most dynamical systems, PRMs do not 

have a robust local motion planner and while constructing the graph, connecting the 

random points through the narrow passage is difficult that is the side effect of stochastic 

sampling of random point. Also for complicated and nonholonomic dynamical systems, 
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connection problem can be as difficult as designing nonlinear controller and the 

connection of thousand of configurations can be required to find solution path. This 

shows that PRMs are not suitable to solve problems in this kind of systems.     

2.2.3 Rapidly Exploring Random Trees 

 

Rapidly Exploring Random Trees [10, 11] is developed by LaValle to solve motion 

planning problems that have nonholonomic constraints and high degrees of freedom. 

This method is based on the incremental construction of a search tree that attempts to 

rapidly and uniformly explore the state space. The basic algorithm of RRT is given as 

follows:   

 

Figure 3: The Basic RRT Algorithm (from [11]) 

 

This algorithm is a simple iteration and in each step of this iteration, RRT is attempted 

to extend to a new point that is randomly selected by using a random sequence that is 

typically uniformly distributed random sequence. The EXTEND function finds the 



 9 

nearest point in RRT and makes a motion towards randomly selected point „x‟ by 

applying an input „u‟ for some time increment as shown in figure 4.         

 

 

Figure 4: The Extend Operation (from [11]) 

 

The input „u‟ for extend operation can be selected randomly or selected one of the 

possible inputs that is the closest input to the „x‟ state. Also, EXTEND function 

includes the collision detection algorithm that checks the collision condition for new 

state and if no collision occurs, RRT extends towards the new state and new edge is 

added to RRT. This algorithm provides a tendency to grow towards unexplored 

portions of the state space as shown in figure 5. 

 

 

Figure 5: The Growth of RRT (from [10]): RRT grows biasing towards the 

unexplored regions in the state space 

 

And this tendency is the key idea of the RRT algorithm, therefore the search tree 

rapidly and uniformly grows in state space to reach goals while avoiding obstacles and 

satisfying the constraints of the environment.  
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When we compare RRT with RPP and PRM, it is seen that RRT can easily drive 

forward like RPP and explore the free space rapidly and uniformly like PRM; 

furthermore it does not require a well-defined navigation function or any local planner 

for the connections between pairs of configurations. The RRT algorithm can be 

considered as a path planning module, which can be adapted into a wide variety of 

planning systems. And the successful applications of RRTs up to twelve degrees of 

freedom for holonomic, nonholonomic and kinodynamic motion planning problems are 

presented in studies [10, 11, 12], so we consider that the RRT algorithm is suitable for 

motion planning problems in high dimensional state spaces. However, this algorithm 

has some issues that are RRT performance dependence on sampling, slow rate of RRT 

convergence, inefficient collision avoidance, and undesired and unintuitive final path, 

and we find some methods to resolve them as told in the following section. 

2.2.3.1 RRT Issues and Solutions  

2.2.3.1.1 RRT Performance Dependence on Sampling 

 

While implementing the RRT algorithm, we discover that the performance of this 

algorithm is heavily dependent on sampling. This is unsurprisingly true, because RRT 

is a sampling based motion planning technique. So it is necessary to use a good 

sampling technique in the RRT algorithm that produces samples in low discrepancy and 

dispersion [14]. Discrepancy is caused by the inconsistent behaviors of samples and it 

is the main issue of random sampling. In some cases, we obtain solution with few 

samples, and in other cases, we need many samples to reach solution. This issue 

changes the computation time of the algorithm. So the discrepancy level is important 

for the sampling techniques and this level can be measured by examining the samples 

in configuration space as shown in figure 6.    
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Figure 6: The Representation of Discrepancy (from [14]): The right number of 

points fall into box defines discrepancy  

 

In this figure, discrepancy is defined by checking whether the right numbers of points 

fall into a box and using this method, sampling techniques in low discrepancy can be 

developed. Another issue of random sampling is dispersion that is related to the 

resolution of samples in configuration space and can be determined by using the 

method shown in figure 7.       

 

 

Figure 7: The Representation of Dispersion (from [14]):  Dispersion is the radius of 

the largest empty ball. 

  

Figure 7 represents dispersion as the largest empty ball that is created by the samples in 

configuration space. And for low dispersion, the largest distances between samples 

need to be decreased. LaValle [14] proposes that there is strong relationship between 

discrepancy that is measured based and dispersion that is metric based; and proves that 

discrepancy is a subset of dispersion. So low discrepancy implies low dispersion, and 
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this motivates people to develop low discrepancy sampling methods. One of these 

methods is a quasi random sequence, Halton that is an n-dimensional generalization of 

the van der Corput sequence. This sequence is used as a way of derandomizing RRTs 

as told in [7] and it is constructed by using a deterministic method in which prime 

numbers are taken as its base, and a uniformly distributed and stochastic-looking 

sampling pattern is generated. Figure 8 illustrates the first 196 Halton points in R
2
.  

 

 

Figure 8: The Representation of Halton Sampling (from [14]):  The first 196 Halton 

points in R
2
. 

 

As shown in figure 8, Halton sampling produces asymptotically optimal discrepancy 

and achieves more regularity than random sampling since it uses a deterministic 

method to generate samples. So Halton sampling is a nice alternative to random 

sampling and improves the performance of the RRT algorithm which will also be 

shown by a comparison between Halton and Uniform Random sampling, in chapter 4. 

2.2.3.1.2 Slow Rate of RRT Convergence  

 

One of the main difficulties in the RRT algorithm is the rate of RRT convergence. RRT 

grows rapidly by biasing towards unexplored part of the state space, but its 

convergence rate is slow especially for environments with complex constraints. An 

efficient approach, RRT-connect which is proposed in [8, 11, 14] increases the rate of 
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RRT convergence. In this method, instead of attempting to extend an RRT by a single 

step, the connect operation tries to reach until random sample while avoiding collision. 

And if the nearest point lies in an edge, then this point is connected to the sample as 

shown in figure 9. 

 

 

Figure 9: The Connect Operation (form [14]) 

 

To handle this, the edges are divided into vertices and added to the set of RRT vertices. 

And so the points in an edge can be considered in nearest neighbor search. By using 

this operation, RRT converges the state space faster than the extend operation and also 

the computation time decreases. 

 

Another way of increasing RRT convergence is to use Goalbiased sampling as LaValle 

suggested in [11]. In this sampling technique, the samples are biased towards goals in 

the environment, so Goalbiased RRT reaches goals much faster than the basic RRT 

algorithm. But in the environment with obstacles, RRT can get stuck in an obstacle 

region because of this sampling technique that will be represented and discussed in 

chapter 5.  

 

RRT convergence rate can also be improved by resolving other issues in the RRT 

algorithm. The primary one of these issues is the sensitivity of the performance on the 

choice of metrics that defines the distance between points in RRT [9]. Using inefficient 

metrics increase the computation time considerably. Therefore, metrics design is an 

important task in RRT. For ideal choice of a metric, firstly, the cost function is defined 

and the optimal cost function is taken as an ideal metric. This provides an efficient 

metrics design and so high performance of RRT can be obtained. 
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“Efficient nearest neighbor searching” also increases the rate of RRT convergence. 

While determining the nearest neighbor in RRT, simply the minimum distance is 

searched by considering all distances between generated sample and the points in RRT, 

but the computation time rises as the number of points increase. Therefore, several 

methods have been proposed in literature. One of these methods is the mixture of the 

nearest neighbor search of all points and local search in which nearest neighbor is 

found by searching only surroundings of sampled point [3]. Another method is to 

organize the points of RRT in a data structure, Kd-tree, which is multi-dimensional 

generalization of binary search tree [5, 6]. These methods provide efficient nearest 

neighbor searching algorithms and so dramatically increase the growing rate of RRT.   

2.2.3.1.3 Undesired and Unintuitive Path 

 

In RRT, the generated trajectories that connect the initial configuration to goal 

configuration are not optimal because of randomization. This provides inefficient 

motion planning. So it is necessary to make simple path smoothing to partially optimize 

the solution paths as suggested by LaValle in [11].  A post-processing step is added to 

the RRT algorithm in which small perturbations are made to the trajectory by slightly 

varying the inputs while satisfying the global constraints and so a nearly optimal 

solution path can be obtained.  

2.2.3.1.4 Inefficient Collision Detection 

 

In the RRT algorithm, the search tree explores the state space by avoiding the obstacles 

and as simple collision avoidance, the random samples that are in the obstacle region is 

directly removed and another sample is generated. But the growth rate of RRT 

decreases in the environment with complex obstacles, because of wasting many 

samples. Therefore an efficient collision detection algorithm should be used to have 

good performance in the environment with obstacles. LaValle suggests a Stopping-

configuration procedure [14] as shown in figure 10. 
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Figure 10: The Procedure Stopping-Configuration (from [14]):  If an obstacle 

exists, the edge of RRT can grow until the obstacle boundary.  

 

In this procedure, a branch of RRT grows towards the sampled point “ )(i ” from the 

nearest neighbor point “qn”, and when an obstacle is detected, it is stopped before 

hitting the obstacle. So new edge is made from “qn” to “qs” and this provides a denser 

RRT growth towards the boundary of obstacles, but this algorithm has an issue that 

computation time increases with complex obstacles. To resolve this issue, some 

methods are suggested in literature. One of them is using data structures to improve the 

distance computation in collision detection [11]. Another method proposed in [1, 2, 4] 

is to use local information of old branches of tree and explored regions to more 

effectively explore the state space avoiding obstacles. With these methods, an efficient 

collision detection algorithm can be defined.       
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CHAPTER 3 

 

3 PROBLEM DESCRIPTION… 

 

 

In this study, our task is to solve kinodynamic motion planning problem of multiple 

camera inspection by using a feasible motion planning algorithm. Therefore, firstly we 

need to describe the environment of our problem by giving both kinematic and dynamic 

constraints. And then according to these constraints, we define the problem formulation 

of multiple camera inspection in four cases that are single camera without obstacle and 

with obstacles, and multiple camera without obstacle and with obstacles. Also we 

consider an extended case to our problem in which the cameras in multiple camera 

inspection can move independently with variable vertical velocities. This case is added 

to show that our problem can be extended to more generic problems in robotics.  

 

In the following sections, firstly the kinematic and dynamic limits of multiple camera 

inspection are given to describe the environment of our problem. Then necessary 

formulations for a kinodynamic motion planning problem is determined by using 

literature and the formulations of our problem for the cases that we have considered are 

given and we will use these formulations in the implementation of our approach that is 

told in chapter 4.     

3.1 The Environment of Multiple Camera Inspection 

 

Multiple camera inspection is a large area automated optical inspection instrument that 

scans a large flat plate [16]. Although this instrument is applicable to the inspection of 
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any flat flexible media, it is particularly designed for high trough-put and in line 

inspection of glass plates of TFT/LCD panels.  

 

The production of LCD panels consists of some stages that are deposition, masking, 

etching and stripping. During these stages, many production defects may occur that 

have electronic and visual implications on the final performance of LCD. These defects 

can be short circuits, opens foreign particles, miss-deposition feature size problems, 

over and under etching. And in figure 11, the most common defects are shown that are 

metal protrusion into Indium Tin Oxide (ITO), ITO protrusion into metal, a so-called 

mouse bite, an open circuit, a short in a transistor, and a foreign particle.   

 

Figure 11: The Most Common Defects of a LCD (from [16]): Metal protrusion (110) 

into Indium Tin Oxide (ITO, 112), ITO protrusion (114) into metal (116), a so-called 

mouse bite (118), an open circuit (120), a short (122) in a transistor (124), and a foreign 

particle (126). 
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These defects can be as small as several microns in size and this defines the detection 

limits of the inspection system that is designed to detect the defects of LCD. Also, only 

detection of defects is not enough for the repair stage of LCD, the defects should be 

classified as process defects (minor imperfection) that do not undermine the finished 

product and can be an early indication for big damages, reparable defects that can be 

repaired to improve the performance of product and killer defects that disqualify 

product from further use. 

 

To provide this level of detection and classification, a two stage imagining process is 

often required that are comparatively low resolution and high resolution imaging 

process. In low resolution imaging process a number of defect points of interests (POIs) 

over the inspected surface are detected by using a fast detection mode and in high 

resolution imaging process these POIs are reviewed and imaged as a part of high 

resolution image analysis and classification.  

 

And these processes are achieved by the subsystems of multiple camera inspection that 

are Defect Detection Subsystem (DDS) and Defect Review Subsystem (DRS) as shown 

in figure 12. DDS is an array of 10 comparatively low resolution detection cameras and 

the task of this subsystem is to distinguish the defects and pre-classify them according 

to their location on the inspected surface. In this pre-classification, the defects can be 

categorized as data line, gate line, transistor, capacitor and ITO electrode. Also the 

results of this pre-classification can be used for prioritizing the defects by defining a 

review worthiness factor. DRS consists of multiple (2-6) comparatively high resolution 

review cameras and aims to image the defects that are identified and pre-classified to 

provide final defect classification.  
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Figure 12: Multiple Camera Industrial Inspection (from [16]): It consists of 

detection sub-system (26-45) and review subsystem (12) that includes moving (x-axis) 

review cameras. The system makes multiple passes (y-axis) over inspected area. 

 

DDS and DRS are located on a moving apparatus that performs multiple passes (y-axis) 

over the inspected area with a constant velocity. DDS scans through multiple passes of 

material motion and DRS immediately follows the detection subsystem. The review 

cameras in DRS can move laterally (x-axis) with respect to scan direction 

independently of each other and so there comes out the possibility of collision between 

cameras. This can be considered as dynamical obstacles that are determined according 

to the position and velocity of cameras. There are also static obstacles where the 

camera cannot be positioned because of the physical limits such as the corners, the 

edges and the thick regions of inspected surface.   

 

In this study, we consider the kinodynamic motion planning problem of review cameras 

in DRS to make maximal use of these cameras to image as much defects POIs as 

possible in a given time. To solve this problem, firstly we describe the environment of 
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multiple camera inspection by defining the bounded map, the kinematic and dynamic 

constraints of moving robot (or robots), obstacle region, and initial and goal states. The 

summary of this description is given below:  

 Bounded map: Inspected surface. 

 Robots: Review cameras  

o Kinematic constraints:  

 2 DOFs (x and y axis).  

 Static obstacles (physical limits over inspected surface)  

o Dynamic constraints:  

 Constant y-axis velocity 

 Maximum allowable x-axis velocity and Maximum allowable x-

axis acceleration.  

 Dynamical obstacles (the collision region between cameras) 

 The initial and goal states: Configurations (positions and velocities) of the 

review cameras and defect POIs respectively.  

3.2 Problem Formulation for Multiple Camera Inspection 

 

The formulation of a motion planning problem can be considered in two representations 

that are the configuration space (C-space) and the state space (X-space) according to 

the constraints of the environment. The C-space representation is used for the motion 

planning problems that have only kinematic constraints. And the problems that also 

include the dynamic constraints are represented in X-space. Therefore, for kinodynamic 

motion planning problem of multiple camera inspection, we need to use the X-space 

representation. 

 

Firstly we define C-space to represent all possible position and orientation of the 

cameras of multiple camera inspection as given below. 

 

 qC  , where q is a configuration of the robot                       (2.1) 
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Then, X-space that includes the dynamic constraints of the cameras is defined by 

adding the time derivative of all configuration space is expressed as below:   

 













qqX ,                                                        (2.2) 

 

This shows that X-space doubles the dimensionality, and mathematics become 

exponentially harder. This is why the probabilistic approximate motion planning 

techniques; RPP, PRM and RRT have been developed that have been mentioned 

before. 

 

While planning in X-space, there are also differential (nonholonomic) constraints that 

arise from conservation laws such as momentum conservation [12]. Using the X-space 

representation, the dynamics can be written as a set of „m‟ implicit equations of the 

form below: 

space-X ofdimension  isn    ,m  and  ,..,1i   ,0),( wherenmforxxg i 


      (2.3) 

 

And the differential constraints in equation 2.3 can be expressed in a state transition 

equation that is proposed in [12, 14] as follows: 

 

),( uxfx 


                                                      (2.4)  

 

In which „u‟ represents the possible inputs that are applied to the cameras for a 

specified time interval „ t ‟ satisfying their constraints to define the new states. And 

the equation 2.4 is required for the incremental motion planning techniques such as 

RRT that is based on a state transition algorithm. Other techniques, RPP and PRM that 

find the solutions after a pre-computation step do not need to use this equation.       

 

Now, we are ready to define the obstacles in the environment of multiple camera 

inspection in X-space. Firstly, we find a set of the configurations, Cobst, where the 
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cameras collide with the static obstacles in C-space. And if a configuration of the 

camera is in this set, its X-space representation is also in the set Xobst that defines 

obstacles in X-space as shown in equation 2.5. 

 

obstXx   if and only if   obstCq   for 











qqx ,                        (2.5) 

 

However, there is another obstacle region in X-space. This is the region of inevitable 

collision, Xric, in which the camera either collides with obstacle (or other camera) or 

can‟t avoid collision because of its momentum. In other words, when the camera moves 

in this region, there is no input that can be applied to escape from collision. An example 

of a point mass robot that is taken from [12] illustrates Xric in figure 13. 

 

 

Figure 13: The Region of Inevitable Collision, Xric (from [12]): This is the 

representation of Xric for a point mass robot in two dimensions with increasing velocity 

(x-axis). White areas are Xfree, black areas are Xobst and gray areas are Xric. 
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This robot obeys the Newtonian laws without gravity and has L
2
 bounded acceleration 

with an initial velocity in x-axis direction. White, black and gray areas represent the 

collision free, obstacle and inevitable collision regions respectively. As it is seen in 

figure 13, when the velocity of the robot increases, Xric becomes larger and we notice 

that this region covers the obstacle region Xobst ( ricobst XX  ). Therefore, for 

kinodynamic motion planning, the region of inevitable region, Xric represents the whole 

obstacle region in X-space and the collision free region is defined as follows:   

 

ricfree XXX \                                                    (2.6) 

 

To avoid obstacles, we make kinodynamic motion planning in this collision free region 

Xfree. And in the following sections, the problem formulation will be given for the cases 

that we have considered. 

3.2.1 Single Camera without Obstacle Case 

 

This is the simplest case of multiple camera inspection problem that includes a single 

camera and no obstacle in the environment as shown in figure 14. 

VxVy

x-axis

y-axis

Single Camera Case

 

Figure 14: Single Camera Case 
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The review camera has 2 DOF that are in directions of x and y-axis. By using the 

kinematic and dynamic constraints of the camera that is defined in section 3.1, the C-

space representation of the camera is given as below: 

 

  yxC ,                                                         (2.7) 

 

And adding the dynamics constraints of the camera, the X-space representation is 

defined as follows: 

 

 yx VVyxX ,,,                                                  (2.8) 

 

Since the y-axis velocity is constant, the final X-space representation is: 

 

 xVyxX ,,                                                  (2.9) 

 

Using the state transition equation 2.4, the differential constraints can be determined. 

This function will be characterized while implementing our motion planning algorithm. 

And since there is no obstacle, the X-space is the collision free space, Xfree. 

3.2.2 Single Camera with Obstacles Case 

 

In this case, we have a single camera and static obstacles that are located at specified 

positions of the environment. The X-space representation of the camera is same as the 

single camera without obstacle case. The only difference is the obstacle region because 

of having the static obstacles in the environment and since we use kinodynamic motion 

planning, it is necessary to define the collision free path in X-space. For this definition, 

we firstly find the region of inevitable collision and remove it from the state space. An 

example of single camera with obstacle case in figure 15 represents the definition of 

collision free path. 
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Figure 15: The Definition of Collision Free Region in Single Camera with Obstacle 

Case: The single camera with obstacle case is on the left and black area is the obstacle. 

The collision free region is represented on the right, and the gray and white areas are 

the region of inevitable collision and the collision free region respectively.       

 

In this example of a single camera with obstacle case, we give just an illustration of the 

region of inevitable collision by considering the dynamic constraints of the camera. 

Since the camera can move laterally with a constant y-axis velocity, it can escape from 

collision by accelerating to left or right directions when it is under the obstacle and 

stopping the lateral motion when it moves towards the left and right sides of the 

obstacle, so the possible inevitable collision region can be represented as gray areas in 

figure 15, but the inevitable collision region depends on the current configuration of the 

camera that includes the position and x-axis velocity, and the computation of this 

region will be explained in chapter 4.  

3.2.3 Multiple Camera without Obstacle Case  

 

This case is the original configuration of multiple camera inspection problem in which 

there exists multiple camera and no static obstacle as shown in figure 16.  
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Figure 16: Multiple Camera Case 

 

Using the same constraints in the single camera case and adding multiple camera to the 

environment, the C-space representation is given as below: 

 

 yxxxC n ,,....,, 21                                             (2.10) 

 

By adding the time derivatives of configurations and removing the constant ones that 

are y-axis velocities, X-space is expressed as: 

 

 xnnxx VxVxVyxX ,,....,,,,, 2211                                   (2.11) 

 

And the differential can be defined as equation 2.4. 

  

Although, there is no static obstacle in this case, the dynamical obstacles arise from the 

possibility of the collision between cameras. We consider these obstacles as an 

inevitable collision region between cameras that is illustrated by an example of two 

cameras and no obstacle case in figure 17. 
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Figure 17: The Representation of Dynamical Obstacles: These obstacle regions are 

considered as inevitable collision region between cameras and represented by gray 

areas. 

 

In this example, the stopping distance of a camera before collision is determined by 

assuming that it moves with the resultant velocity of the cameras and other camera is a 

static obstacle. This defines the inevitable collision region and so the dynamical 

obstacles. We find these regions for each camera with respect to its neighbor cameras, 

and use for collision avoidance at each state of motion planning.    

3.2.4 Multiple Camera with Obstacles Case 

 

In this case, there are multiple camera and static obstacles in the environment and the 

formulation is same as the multiple camera without obstacle case except the X-space 

representation of the obstacle. The obstacle in X-space is the region of inevitable 

collision in which the camera is in collision or cannot do anything to avoid collision 

with static obstacles (or other cameras) as shown in figure 18. 
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Figure 18: The X-space Representation of Obstacle in Multiple Camera with 

Obstacle Case: Gray areas are the region of inevitable collision region where the 

camera is in collision or cannot do anything to avoid collision with static obstacles (or 

other cameras) 

 

The obstacle in X-space for this case can be considered as the combination of obstacles 

in single camera with obstacle case and multiple camera without obstacle case. For 

each camera, the region of inevitable collision with respect to the static obstacles and 

neighbor cameras are computed at each state of motion planning and the collision free 

region is found by extracting it from state space. 

3.2.5 Extended Case (Future Work) 

 

We consider an extended case of multiple camera inspection as a future work to show 

that our problem in this study can be applied to more generic robotic applications. In 

this case, the cameras have variable y-axis velocities as in x-axis and can move in x and 

y-axis independent of other cameras through the environment with obstacle as shown in 

figure 19. 
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Figure 19: The Extended Case: It consists of multiple camera that move 

independently with variable x-axis and y-axis velocities in the environment with 

obstacle. 

 

The C-space representation can be expressed as: 

 

 nn yxyxyxC ,,....,,,, 2211                                             (2.12) 

 

Since the cameras can also move independently in y-axis, new „y‟ constraints are 

included in the representation and by adding the time derivatives of configurations; X-

space is given as: 

 

 ynxnnnyxyx VVyxVVyxVVyxX ,,,,....,,,,,,,, 22221111                    (2.13) 

 

The obstacle representation in X-space consists of the same regions as in the multiple 

camera with obstacle case. Only the shape of this region can be changed because of the 

capability of having more DOF. So, it requires a complex collision avoidance algorithm 

that is difficult to design, but with an efficient collision avoidance algorithm, the 

extended case can become more successful in finding defects than the original case of 

multiple camera inspection.  



 30 

3.3 Problem Parameters 

 

In this section, the parameters of our problem that define the constraints of multiple 

camera inspection with their values are given in table 1 below: 

 

Table 1: Problem Parameters 

Problem Parameters Values 

Plate size (x, y): 1.8 m, 2 m 

Number of review cameras: 1-6 

Number of detection/review passes: 1-5 

Maximum allowable review module x-axis acceleration: 8 m/s
2
 

Maximum allowable review module x-axis velocity: 0.5 m/s 

Material y-axis constant velocity: 0.220 m/s 

Number of defects: 50-150. 
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CHAPTER 4 

 

4 SOLUTION APPROACH… 

 

 

4.1 Introduction 

 

In this study, our aim is to make kinodynamic motion planning of the review cameras 

in a scanner type inspection device that is multiple camera industrial inspection to reach 

as much defects as possible over inspected surface while avoiding obstacles. To 

achieve this aim we firstly make a literature survey about kinodynamic motion planning 

and this survey shows an open problem that is to find a time optimal solution for 

kinodynamic motion planning problems.  The solution to this problem is also proven to 

be NP-hard. This motivates us to research on the probabilistic approximate methods 

that are RPPs, PRMs and RRTs to find kinodynamic solutions that are close to optimal. 

And we select to use the RRT algorithm in our approach because of computationally 

hardness of other methods, and nice properties and promising results of RRT that will 

be told in more details. 

 

The roadmap of this chapter is as follows: In section 4.2, we will tell our solution 

approach and motivation. Then we will explain the implementation of our approach by 

giving the implementation issues and solutions, the assumptions and the description of 

the main algorithm with the definition of functions and the algorithm parameters in 

section 4.3. 
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4.2 Our Approach and Motivation 

 

Our solution approach for kinodynamic motion planning problem of multiple camera 

inspection is to design an RRT based motion planner to find solutions that are good 

enough as long as they satisfy all of the constraints. There are several reasons why we 

have selected the RRT technique beside other techniques, RPP and PRM. The primary 

reason is that the techniques RPP and PRM do not naturally extend to general problems 

that include differential constraints and obstacles [10, 11, 12, 13]. As mentioned in 

chapter 2, RPP is heavily dependent on the choice of good navigation function that will 

be a difficult task in high dimensional spaces and in PRM the connection problem can 

be as difficult as designing a nonlinear controller for nonholonomic and dynamical 

systems. This represents that RPP and PRM are not suitable for complex kinodynamic 

motion planning problems. 

 

However, RRT is specifically designed for this kind of problems with high degrees of 

freedom and it rapidly and uniformly explores the state space in incremental fashion 

instead of having pre-processing steps like in RPP and PRM. RRT has also several 

properties that make it suited for wide variety of planning problems as proposed in [10]. 

The key property of RRT is that it searches the state space by biasing toward 

unexplored regions. Another property is that RRT is like a path planning module, 

which can be adapted into many application of motion planning. Also RRT is a simple 

algorithm that is easy to make its performance analysis. These nice properties of RRT 

provide promising results in holonomic, nonholonomic and kinodynamic planning 

problems of up to twelve degrees freedom as told in [10, 11]. Therefore we are 

motivated to use the RRT technique for the kinodynamic motion planning problem in 

this study. We have designed an RRT based motion planner by adapting the basic RRT 

algorithm to our problem and resolving the issues of RRT to improve its performance 

that will be told in the following section.     

   



 33 

4.3 Implementation 

 

In implementation of RRT based planner, we need to adapt the RRT algorithm in 

literature to kinodynamic motion planning problem of multiple camera inspection 

because of some challenges that are multiple initials and goals, and the possibility of 

collision between cameras. For multiple goal challenge, it is necessary to find a final 

path that passes through multiple goals, and we cannot achieve to connect multiple 

goals by using the original RRT algorithm, then we make some changes on this 

algorithm and discover the multiple RRT idea, in which multiple trees are created to 

make connections between goals. And the multiple initials are added to this algorithm 

by increasing the dimensions of the points in state space as defined in chapter 3. In 

collision avoidance part of this algorithm, the collision regions between cameras are 

included in the region of inevitable collision and by removing this region; we find the 

collision free region. And motion planning involves finding a feasible path that lies 

entirely in collision free region and passes through as much defect POIs as possible. 

 

However we come upon some issues in the performance of this planner that are related 

to the RRT algorithm. And we make some research to find methods to resolve these 

issues as mentioned in chapter 2. In the following section, we will tell how to use these 

methods to improve the performance of our model and give some results to evaluate 

these methods.    

4.3.1 Implementation Issues and Solutions 

 

While analyzing our RRT based planner, we see that there are some issues caused by 

the drawbacks of the RRT algorithm. The main issue is the performance dependence of 

RRT on sampling. The generated samples of Uniform Random Sampling do not cover 

the state space completely and in some cases we cannot reach solutions. Also the 

solutions are very inconsistent that is a big problem of randomization. Therefore, we 

search for a sampling technique that provides low dispersion and low discrepancy, and 

find a quasi random sequence, Halton as told in chapter 2. It is useful for incremental 
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sampling techniques like RRT that can be seen from the results of our simulations in 

figure 20. 

 

 

Figure 20: Uniform Random Sampling vs. Halton Sampling (from our 

simulations): 1000 (up) and 2000 (down) iterations of RRT in 100x100 map. 

 

This figure presents a comparison between Uniform Random and Halton samplings. It 

is seen that RRT does not grow to the edges of the map, while using Uniform Random 

sampling and there come out spaces in these places, but in Halton sampling, RRT 

grows towards every places of map and a resolution complete sampling can be obtained. 

Also there is no inconsistent solution in Halton Sampling since it uses a deterministic 

method to generate samples. So we reach a solution with a same number of samples 



 35 

and the computation time does not change. This shows that using Halton Sampling 

improves the performance of our algorithm. 

  

Another important issue is the slow rate of RRT convergence that is caused by slow 

growth of RRT. To resolve this issue, we use the connect operation, in which generated 

samples are directly connected to the nearest points in RRT and the edges are divided 

into vertices to increase density. This is shown in figure 21 that is taken from our 

simulation result of the comparison between extend operation and RRT-connect 

operation.  

 

 

Figure 21: Extend Operation vs. Connect Operation (from our simulations): 100 

(up) and 500 (down) iterations of RRT in 100x100 map. 
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In this figure, we see that connect operation improves the growth of RRT and the 

density of RRT is increased, so it converges the state space rapidly and the computation 

time to reach goals is decreased. 

 

Also, we find other ways that are Goalbiased sampling, efficient choice of metrics and 

efficient nearest neighbor searching to increase the rate of RRT convergence. 

Goalbiased sampling, in which samples are biased towards goals, accelerates the RRT 

growth to find solution. We implement this sampling technique by using the Gaussian 

distribution that is biased towards goals with a specified standard deviation. A 2D 

Goalbiased behavior is illustrated in figure 22. 

 

 

Figure 22: Halton Sampling vs. Goalbiased Sampling (from our simulations): 100 

(up) and 500 (down) iterations of RRT in 100x100 map. 
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As it is seen in figure 22, RRT grows faster towards goal in Goalbiased sampling and 

this increases the rate of RRT convergence, but in the environment with obstacles RRT 

can get stuck. To solve this problem, we increase the variance of Goalbiased sampling 

and also we define new sampling techniques that are the percent and the interleaving 

mixture of Halton and Goalbiased samplings that will be told later in more details. In 

our algorithm, we implement Euclidean metrics and original nearest neighbor searching, 

in which all points in RRT are searched to find nearest point, without using any 

methods of efficient metrics design and efficient nearest neighbor searching, because 

the RRT convergence rate is enough to reach solution for our problem, and we consider 

the efficiency on these parts as a future work. 

 

Other issues of implementation are about collision detection and solution path. For 

collision detection, directly removing the generated sample in the obstacle region is an 

inefficient method. This method increases the time to find solution and making 

impossible to reach the goals near obstacle. And then we implement the Stopping-

configuration procedure in which the edges are stopped near the obstacle region to 

improve the collision detection algorithm. Also, there is a problem that the generated 

solution path is not optimal. We add a post processing step, in which solution path is 

smoothed by applying the inputs that are close to optimal and satisfying the global 

constraints. And this is illustrated in figure 23. 
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Figure 23: An Example of Smoothing Final Path: The plot on the left shows the final 

path of RRT and the smoothed path is given in the right-hand plot. 
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As we see in this example, the RRT algorithm provide an undesired path and arrival 

velocities is in one direction through the path, because while RRT is growing in state 

space, it has a tendency to select velocity samples in one direction that is a side effect 

of randomization. And by using the post processing step, we smooth the final path that 

is shown in the right-hand plot of figure 23, so “near optimal” trajectory is obtained. 

4.3.2 Assumptions 

 

Before constructing the algorithm for our RRT based motion planner, we consider 

some assumptions that are given below: 

 Inspection instrument performs one pass over scan area starting from one side 

(bottom in experiments). 

 Y-axis velocity is always constant. 

 All defect POIs are assumed to be known at the beginning of the motion 

planning. 

 Review cameras image defects within a tolerance area (assumed to “catch” the 

defect once in that area). 

 X-axis settling time and auto-focusing allowance times of review cameras are 

not considered. 

4.3.3 The Description of the Main Algorithm 

 

As we told before, we consider implementing the multiple camera inspection 

instrument in four cases that are single camera without obstacle and with obstacle; and 

multiple camera without obstacle and with obstacle. We define constrains for these 

cases that are given in the problem formulation, chapter 3 and then we construct a main 

algorithm that satisfies these constraints. In this algorithm, the key idea is to use 

multiple RRTs that grow independently. Since our problem involves capturing multiple 

goals, we need to find a final path that passes through multiple goals. And using one 

search tree does not satisfy this, because a tree has tendency to reach a sample point 

from its nearest branch and two goals at different location cannot be connected through 
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a continuous path, so we use the multiple RRTs technique in the main algorithm as 

shown in figure 24. 
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Figure 24: The Multiple RRTs Technique: In this technique, when tree is reached to 

a goal configuration, a new tree is started to grow from this configuration and so the 

connection between goals is defined. 

 

In this technique, a tree grows starting from initial configurations as defined in the RRT 

algorithm of literature. When a goal configuration is reached, this configuration is taken 

as a root for a new tree and also the number of reached goals until this root is recorded. 

At each state of algorithm, a sample is generated in the state space and the nearest tree 

grows towards this sample. Trees are independent from each other and are aimed to 

reach goals that are above their roots, while satisfying the constraints of the 

environment and avoiding obstacles. Finally the connection between goals and initial 

configuration is defined. We implement this technique in the main algorithm and the 

flowchart of the main algorithm is given in figure 25. 
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Figure 25: The Flowchart of the Main Algorithm 

 

In this algorithm, the kinodynamic motion planning of multiple camera inspection is 

performed and no motion takes place before all planning is finished. As seen in figure 

25, the algorithm starts with an initial reset that involves defining the dimension and 

variables of a configuration in RRT by using the X-space representation of the camera 

as told in chapter 3, and initial configuration, and other constant and variable 
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declarations. Then it enters into a main for loop and in this loop firstly a sample point is 

generated in state space by using SAMPLE_GENERATOR function. Another for loop 

is performed to find the nearest tree to the generated sample by calling 

NEAREST_NEIGHBOR function for each tree in state space. And the nearest tree is 

selected to grow by using RRT iteration function. This function attempts to connect its 

nearest point to the sample while satisfying the kinematic and dynamic constraints of 

cameras and avoiding collision with obstacles that are provided by the functions 

VELOCITY_CHECK and MAP_CHECK. If a goal configuration is reached that is also 

detected by the MAP_CHECK function, this configuration is considered as a root for a 

new tree and the number of reached goals until this root is recorded. Also, the number 

of trees and branches are limited to ensure low computation time that will be shown 

and discussed in the experimental results, chapter 5. In the end of main loop, we obtain 

a final tree that consists of multiple trees with roots at specified goal configurations and 

has information about the number of reached goals at these roots. This is illustrated in 

the following result from our experiments for the single camera with obstacle case. 
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Figure 26: An Example of Final Tree Projected to 2D: It is for single camera with 

obstacle case. The map includes 10 defects and reached ones are shown by circles  
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This figure shows that the final tree defines the connection between the goals in the 

environment and using this final tree, we find the solution path by backtracking from 

the root that has the maximum number of reached goals to initial configuration. In this 

path, the prioritization of goals can be easily handled by defining defect values, but we 

consider that all defects have same weights in the experiments of this study. Then the 

solution path is smoothed to define nearly optimal path and this provide the final 

solution path for our problem as shown in figure 27.  
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Figure 27: An Example of Final Smoothed Path: It is the smoothed solution path for 

the example in figure 26. 

 

So the kinodynamic motion planning of our problem is obtained and the review 

cameras of multiple camera inspection are moved through this solution path to reach as 

much defects as possible. In the following sections, the functions of this algorithm will 

be told in details by giving their flowcharts.     
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4.3.3.1 The Definition of Functions  

 

The main algorithm consists of some functions that are MULTIPLE_RRT, 

NEAREST_NEIGHBOR, SAMPLE_GENERATOR, RRT, MAP_CHECK and 

VELOCITY_CHECK. These functions have a hierarchic relation as shown in figure 28 

with their inputs and outputs. 
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Figure 28: The Hierarchic Representation of Functions in the Main Algorithm 

 

The top of this hierarchic structure is the MULTI_RRT function that carries out the 

main algorithm by using the child functions and these functions are described in the 

following sections.   
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4.3.3.1.1 The MULTI_RRT Function 

 

The main algorithm is executed in the MULTI_RRT function by using child functions 

as shown in figure 28. So it is the main function of the algorithm; and the inputs and 

outputs can be described as follows: 

 Inputs: 

o Max_iteration_number: defines the maximum number of iterations of 

the main for loop. 

o RRT_in: is the RRT input that is initially the configuration of initial 

state. 

o Map_matrix: defines the configuration of goals and obstacles in a 

specified map. 

o Sampling_param: represents the sampling parameters that include the 

maximum standard deviation, the percentage of Halton Sampling and 

the number of repetition of Halton Sampling. These parameters will be 

described later. 

o Problem_param: represents problem parameters as defined in the end 

of chapter 3. 

o Max_#_of_tree: is a limit to the number of generated trees.  

o Max_#_of_branch: is a limit to the number of branches of each tree. 

o Goal_detect_tolerance: is the tolerance distance to detect a goal. 

 Outputs: 

o #_of_iteration_goals: defines the maximum number of reached goals in 

the end of main for loop. 

o Final_RRT: is the generated final RRT that consists of multiple RRTs 

and includes the number of reached goals in their roots. 

o Iteration_time: defines the spent time in the end of main for loop. 

o Solution_path: is the smoothed final path.  

 

 



 45 

4.3.3.1.2 The NEAREST_NEIGHBOR Function 

 

In this function the nearest neighbor configuration in RRT to sample configuration is 

determined. Its inputs and outputs are given below: 

 Inputs: 

o Sample_config: is the configuration of generated sample. 

o RRT_in: is the RRT input. 

 Outputs: 

o Near_config: is the nearest configuration in RRT to sample. 

 

This function firstly finds the points in RRT that are below the sample configuration 

since the inspection instrument scans the surface with a constant y-axis velocity and 

RRT cannot grow downwards. Then by searching these points, the nearest 

configuration to the sample is determined. 

4.3.3.1.3 The SAMPLE_GENERATOR Function 

 

This function generates a sample point in the state space according to the sampling 

techniques Uniform Random, Goalbiased, Halton, the percent mixture of Halton and 

Goalbiased, and the repeat mixture of Halton and Goalbiased samplings. The inputs and 

outputs of this function are given as follows: 

  Inputs: 

o Sampling_param: represents the sampling parameters that include the 

maximum standard deviation, the percentage of Halton Sampling and 

the number of repetition of Halton Sampling.  

o Problem_param: represents problem parameters. 

 Outputs: 

o Sample_config: is the configuration of generated sample. 

 

The sampling technique in this function is selected by using a case function as shown in 

its flowchart. 
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Figure 29: The Flowchart of the SAMPLE_GENERATOR Function 

 

One of the sampling techniques and its corresponding parameters are chosen according 

to the case of the experiment. This function is developed to make comparison between 

the sampling techniques that we have considered in this study to improve the main 

algorithm. And in the following sections these sampling techniques are described in 

details. 
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4.3.3.1.3.1 The Uniform Random Sampling 

 

In this sampling technique, the uniformly distributed samples are used and in our 

algorithm we use the MATLAB function “rand” to generate this kind of samples and it 

has no parameter. This technique is suggested by LaValle [10, 11] to use in the RRT 

algorithm, but we have some problems about the resolution of samples in the state 

space and inconsistent solutions as told in chapter 2. And we try to solve this by using a 

low discrepancy sampling method, Halton Sampling. 

4.3.3.1.3.2 The Halton Sampling 

 

This is a quasi-random sequence that uses a deterministic method to generate low 

discrepancy samples as told in chapter 2. We consider this sampling technique to get 

rid of low resolution and high inconsistency of Uniform Random sampling and as it is 

seen in section 4.3.1, it is useful for generating resolution complete samples, but it 

reaches a solution in slow rate and so we look for another sampling technique that 

provides faster solutions and find Goalbiased Sampling that is described below. 

4.3.3.1.3.3 The Goalbiased Sampling 

 

This sampling technique is proposed by LaValle to increase the convergence rate of 

RRT. In this technique, the samples are biased towards the goals in the environment. 

For our problem, we use Gaussian random distribution to bias the sample towards the 

position of goals in the state space with a specified standard deviation and other 

variables in the configuration of sample such as the velocities are generated using 

Halton sampling since these ones do not affect the goal detection that will be told in the 

definition of MAP_CHECK function. Starting from bottom to top, the samples are 

biased towards each goal for a number of times with gradually decreasing its standard 

deviation. And so we define the maximum standard deviation as a parameter for this 

sampling technique.  
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4.3.3.1.3.4 The Percent Mixture of Halton and Goalbiased 

 

This is a mixture technique of Halton and Goalbiased samplings. In this technique, the 

first part is Halton sequence and the other part is Gaussian sequence that is biased 

towards goals. This technique is aimed to be used in the environment with obstacles, 

because while analyzing Goalbiased sampling in this kind of environments, we see a 

problem about being stuck in an obstacle region and so an initial Sampling technique is 

necessary before Goalbiased sampling to scatter the samples in the state space and 

decrease the possibility of encountering this problem. We use Halton sampling for this 

technique and define the percent mixture of Halton and Goalbiased samplings. It has 

some parameters that are the maximum standard deviation for Goalbiased sampling, 

and the percentage of Halton sampling. 

4.3.3.1.3.5 The Interleaving Mixture of Halton and Goalbiased  

 

This is another mixture technique of Halton and Goalbiased samplings that also aims to 

avoid getting stuck in obstacle region as the percent mixture. In this technique, firstly 

samples are generated by using Halton sampling for a number of times and then 

Goalbiased sampling for once, and this is repeated. And its parameters are the 

maximum standard deviation and the number of repetition of Halton sampling that 

defines how many times Halton sampling is applied in the first part of this mixture. 

4.3.3.1.4 The RRT Function 

 

This function attempts to construct an RRT while satisfying the constraints and 

avoiding the obstacles. The input and outputs of this function is given below: 

 Inputs: 

o Sample_config: is the configuration of generated sample. 

o Near_config: is the nearest configuration in RRT to sample. 

o RRT_in: is the RRT input. 
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o Map_matrix: defines the configuration of goals and obstacles in a 

specified map. 

o Problem_param: represents problem parameters. 

 Outputs: 

o RRT_out: is the RRT output. 

o #_of_reached_goals: defines the number of reached goals when the 

RRT function is executed. 

 

And the flowchart of this function is given as follows: 
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Figure 30: The Flowchart of the RRT Function 
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As shown in the flowchart, firstly the VELOCITY_CHECK function is called to check 

if the motion from the nearest configuration to sample configuration satisfies the 

velocity constraints that are described in chapter 3. If this is satisfied, an edge is formed 

between these configurations and intermediate points are inserted to provide denser 

RRT. These points are checked for collision and goal detection in MAP_CHECK to 

evaluate the edge. Then this evaluated edge is added to input RRT to form the output 

RRT and the number of reached goals at the end of constructing this edge is computed. 

4.3.3.1.5 The VELOCITY_CHECK Function 

 

This function checks the velocity constraints of the motion from the nearest 

configuration in RRT to the sample configuration before the construction of an edge. 

The inputs and outputs of this function are given below: 

 Inputs: 

o Problem_param: represents problem parameters. 

o Sample_config: is the configuration of generated sample. 

o Near_config: is the nearest configuration in RRT to sample. 

 Outputs: 

o Grow_en: is a flag that enables the construction of an edge. 

 

In this function, we examine if a camera can move from the position and velocity of the 

nearest configuration to the position and velocity of the sample configuration. To do 

this, firstly the spent time of this motion is computed by dividing the y-axis distance 

between these configurations with the constant y-axis velocity. And the velocities of 

nearest and sample configurations are taken as initial and final velocities respectively. 

The spent time and the velocities are used to determine the maximum distances that can 

be travelled in the directions of positive and negative x-axes by considering that the 

camera moves in these directions with maximum acceleration, so the lateral range 

between the nearest and sample configurations is found that is also illustrated in figure 

31.  
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Figure 31: An Example of Lateral Range Computation: The limits are determined 

by moving in the directions of x and -x axes with maximum acceleration and the 

maximum distances in these directions are computed to find the lateral range. The x-

axes velocities are limited. 

 

In figure 31, firstly the lateral limits are found by moving in the x and -x axes directions 

with maximum acceleration and by computing the lateral distances in these directions, 

lateral range between a sample and nearest point to this sample is obtained. If the lateral 

motion between these configurations is in this range, connection is permitted to form an 

edge and this edge is divided into intermediate points to be checked in the 

MAP_CHECK function that is described in the following section. 

4.3.3.1.6 The MAP_CHECK Function 

 

This function provides obstacle avoidance and goal detection and it has some inputs 

and outputs that are given below: 

 Inputs: 

o Map_matrix: defines the configuration of goals and obstacles in a 

specified map. 

o Problem_param: represents problem parameters. 

o Edge_configs: is an array of intermediate points that form an edge. 

o Goal_detect_tolerance: is a tolerance distance to detect goals 
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 Outputs: 

o Evaluated_edge_configs: is the evaluated edge in which the points in 

the obstacle region are removed and the goal configuration is defined if 

it is detected. 

 

And its flowchart is given as follows: 
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Figure 32: The Flowchart of the MAP_CHECK Function 

 

Firstly, it takes an array of points, edge_configs that represents the edge between the 

nearest point in RRT and sample point. And the region of inevitable collision is defined 

for the configuration of each point in edge and this region includes the locations where 

a camera collides with obstacle (or other cameras) or can‟t avoid collision. We consider 
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three cases for the definition of inevitable collision region about an obstacle that is 

shown in figure 33.  
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Figure 33: The Cases for the Region of Inevitable Collision: Case 1 represents a 

camera that is under the obstacle, in case 2 and 3 camera is on the left and on the right 

respectively with the velocities towards obstacle and these cases are the inevitable 

collision region if the escape motion profiles in the right-hand drawing cannot be 

followed.   

 

These cases occur when the camera is under the obstacle, and on the left and on the 

right with the velocities towards the obstacle. And to determine the inevitable collision 

region for each configuration of the points in edge_configs about an obstacle, we check 

if the camera in these cases can escape from collision by following the motion profiles 

in the right-hand drawing of figure 33. If these profiles cannot be followed, we consider 

that camera cannot do anything to avoid colliding with obstacle and so its configuration 

is in the inevitable collision region.  

 

In case 1 the camera can escape from collision by accelerating in the directions of x and 

-x axes since its y-axis velocity is constant. For this escape motion, we use the motion 

profile that is formed by increasing the x-axis velocity with maximum acceleration in 

these directions as illustrated in figure 34. 
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Figure 34: An Example of Velocity/time Profiles for Case 1: The profiles on the left 

and on the right represent motions with maximum acceleration in direction of x and -x 

axis respectively. The maximum time is the spent time to reach ymin of obstacle and 

also the velocity is limited to the maximum x-axis velocity. 

 

These plots in figure 34 show the escape motions from collision by using the possible 

lateral motion capability of the camera. For case 2 and 3, collision can be avoided by 

stopping the lateral motion as shown in figure 35. 
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Figure 35: An Example of Velocity/time Profiles for Case 2 and 3: Stopping lateral 

motions with maximum acceleration for case 2 and 3 respectively.  

 

In this profile, it is considered to decrease the lateral velocity with maximum 

acceleration to stop before colliding with obstacle. And these escape motions from 

collision are used to see whether the camera is in the inevitable collision region or in 

the free region. To check the collision between cameras, we consider that one of the 

cameras is a static obstacle and the other camera moves towards this obstacle with 
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resultant velocity, and the motion profiles of case 2 and 3 are used to define the 

inevitable collision region. So the free region is determined by removing the sum of all 

inevitable collision regions. Then the points of edge that are in the region of inevitable 

collision are removed by using the Stopping-configuration procedure that is defined in 

chapter 2. So new edge is obtained which is in collision free region. Then goal 

detection is performed on this new edge. In goal detection operation we compute the 

distances between the points of new edge and the goals by considering their positions in 

the state space, and if one of these distances is smaller than or equal to the 

goal_detect_tolerance, this is taken as a goal configuration and the number of reached 

goals are recorded. Finally evaluated_edge_configs is formed in which goal 

configuration and the number of reached goals in this configuration is defined.     

4.3.4 Algorithm Parameters 

 

In this section, the parameters of the main algorithm with their values that are used in 

our experiments are given below: 

Table 2: Algorithm Parameters 

Sampling Parameters Values 

The maximum standard deviation: 0-0.2 

The percentage of Halton sampling: %10-%100 

The number of repetition of Halton sampling: 1-10 

Other Parameters Values 

The tolerance distance in goal detection: 0.01 

The maximum number of trees: 30, 50, 100, 200, 500 

The maximum number of branches: 30, 50,100, 500, 1000 

The maximum number of iterations: 500, 1000, 2000. 

 

Algorithm parameters consist of sampling parameters and other parameters as shown in 

table 2. The sampling parameters are defined in the sampling techniques, Goalbiased 

sampling, the percent mixture of Halton and Goalbiased samplings, and the interleaving 

mixture of Halton and Goalbiased samplings. The maximum standard deviation is the 
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limit for the standard deviation of Gaussian distribution in Goalbiased sampling. The 

percentage of Halton sampling and the number of repetition of Halton sampling define 

the amount of Halton sampling in the percent and interleaving mixtures respectively.  

 

Other parameters involve the tolerance distance in goal detection, the maximum 

number of trees and the maximum number of branches. The tolerance distance is an 

assumption to define a tolerance area for goal detection. The maximum number of trees 

and branches are considered to put limits to the number of trees in final tree and the 

number of branches in each tree respectively. By using these parameters, we aim to 

decrease the computation time without changing the solution that will be shown and 

discussed in the experimental results. 



 57 

 

 

 

 

CHAPTER 5 

 

5 EXPERIMENTAL RESULTS… 

 

 

5.1 Introduction 

 

In this study, our aim is to plan motion of the review cameras in multiple camera 

industrial inspection to image as much defect locations as possible in a given time 

while satisfying the kinematic and dynamic constraints of cameras and avoiding the 

obstacles in the environment; and we consider this problem in four cases that are single 

camera without obstacle and with obstacle, and multiple camera without obstacle and 

with obstacle.  And we implement an RRT based motion planner model for these four 

cases based on the main algorithm that is described in chapter 4. In the following 

sections, this model will be explained with its parameters, and also a deterministic 

method that is used for comparison with our model will be described. Then the 

performance measure of our experiments will be told and finally the results of these 

experiments will be shown with some evaluations.      

5.2 RRT Based Motion Planner Model 

 

RRT based motion planner is developed by using the main algorithm, and four cases of 

multiple camera inspection that are single camera without and with obstacle, and 

multiple camera without and with obstacle are implemented in this model. The task of 

this model is to make kinodynamic motion planning of the cameras in multiple camera 
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inspection to reach as much defect POIs as possible in a given time. In this model, we 

use different sampling techniques that are Uniform Random, Halton, Goalbiased, and 

the percent and interleaving mixture of Halton and Goalbiased samplings to obtain the 

best performance and analyze the parameters of this model to reach nearly optimal 

solutions. And in the following section, these parameters are described. 

5.2.1 Model Parameters 

 

The parameters of our model that are considered in this study are given in table 3 with 

the values that are used in the experiments: 

Table 3: Model Parameters 

Experimental Parameters Values 

The number of Monte Carlo, N: 10 

Problem Parameters Values 

Plate size (x, y): 1.8 m, 2 m 

Number of review cameras: 1-3 

Number of detection/review passes: 1 

Maximum allowable review module x-axis acceleration: 1-15 m/s
2
 

Maximum allowable review module x-axis velocity: 0.1-1 m/s 

Material y-axis constant velocity: 0.01-0.5 m/s 

Number of defects: 50 

Sampling Parameters Values 

The maximum standard deviation: 0-0.2 

The percentage of Halton sampling: %10-%100 

The number of repetition of Halton sampling: 1-10 

Other Parameters Values 

The tolerance distance in goal detection: 0.01 

The maximum number of trees: 30, 50, 100, 200, 500 

The maximum number of  branches: 30, 50, 100, 500, 1000 

The maximum number of iterations: 500, 1000, 2000 
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5.2.2 Deterministic Method 

 

In this section, we describe a deterministic method for motion planning of the cameras 

in multiple camera inspection that has been designed and implemented by Afşar 

Saranlı. This method uses a graph theoretic deterministic method to make motion 

planning of the cameras. The map is divided into “bands” for each camera and the 

collision between cameras is handled by using a post-processing step. And it may 

require multiple re-planning to resolve collisions. The obstacles in inspection area 

cannot be handled.  Therefore, we consider this deterministic method as a “baseline” to 

compare its result with the results of our model in the environments without obstacle, 

and the results for these cases will be discussed to evaluate our model. 

5.3 Performance Measure 

 

We consider the following performance measures in the experiments of our model. 

 The ability to generate samples in low dispersion and low discrepancy. 

 The ability to avoid obstacles in the environment as well as dynamic obstacles.  

 The maximum number of goals reached in a fixed time.  

 The minimum time to reach fixed number of goals.  

5.4 Experiments 

 

In this section, we give the results of some experiments that are made to evaluate the 

performance of our model according to performance measures in section 5.3 by using 

different baselines and parameters. 

5.4.1 The Optimization of the Sampling Parameters  

 

In this experiment, we are aimed to optimize the sampling parameters, which are the 

maximum standard deviation, the percentage of Halton sampling and the number of 
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repetition of Halton sampling to provide the best performance in sampling techniques 

that are Goalbiased, the percent mixture of Halton and Goalbiased, and the repeat 

mixture of Halton and Goalbiased. The values of the parameters that are used in this 

experiment are given as follows: 

 Number of review cameras: 1  

 Maximum allowable review module x-axis acceleration: 8 m/s
2
 

 Maximum allowable review module x-axis velocity: 0.5 m/s 

 Material y-axis constant velocity: 0.220 m/s 

 The maximum standard deviation: 0-0.2 

 The percentage of Halton sampling: %10-%100 

 The number of repetition of Halton sampling: 1-10 

 The maximum number of trees: infinite 

 The maximum number of branches: infinite 

 The maximum number of iterations: 1000 

 The values of other parameters are defined in table 3 

 

And the maps that are used in this experiment are shown in figure 36.  
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Figure 36: The Maps of the Experiment 1: Map 1 (left) and map 2 (right) includes 50 

defects without and with obstacle respectively.  

 

Firstly the maximum standard deviation is attempted to be defined for Goalbiased 

sampling in map1 and the result for this case is given in figure 37. 
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Figure 37: The Number of Reached Goals vs. the Maximum Standard Deviation 

Using Goalbiased Sampling in Map 1 

 

This figure represents the number of reached goals in map 1 that includes 50 defects 

without obstacle for different values of the maximum standard deviation and as it is 

seen in the result, the performance of our model increases when the maximum standard 

deviation decreases and even becomes zero. And zero standard deviation means that the 

sample is directly biased to the position of the goals in the state space and the other 

variables such as velocities are generated by Halton sampling as defined in chapter 4. 

This is an expected result for this case, because the goals are easily detected by using 

this direct bias. Therefore we consider that Goalbiased sampling with no deviation is 

the best choice for the environment without obstacle cases. 

 

However, when we include the obstacle to the environment, we come upon a problem 

that RRT can get stuck in obstacle region while it is growing in the state space. And 
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this is illustrated by an example in which Goalbiased sampling without deviation is 

used in map 2 as shown in figure 38. 
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Figure 38: An Example of Stuck RRT: While using Goalbiased sampling without 

deviation in an environment with obstacle, RRT gets stuck in obstacle region. 

 

In this example, RRT gets stuck in obstacle region, because when RRT reaches the 

obstacle region, it attempts to connect its nearest point to the samples that are biased 

towards goals above the obstacles and collision avoidance algorithm stops the growth 

of the RRT, so we get this result. To handle this problem, we consider that the standard 

deviation should be increased to generate samples that are far from the obstacles and 

this can decrease the possibility of getting stuck. Therefore, we examine the maximum 

standard deviation of Goalbiased sampling in the environment with obstacle, map 2 as 

shown in figure 39. 
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Figure 39: The Number of Reached Goals vs. the Maximum Standard Deviation 

Using Goalbiased Sampling in Map 2 

   

This result shows that Goalbiased sampling in the environment with obstacle performs 

well when its standard deviation is increased to a middle value, because in low 

deviation, RRT gets stuck in obstacle region with high probability as mentioned before, 

and in high deviation, the bias towards goals is vanished, so by using the deviation of 

middle level as shown in figure 39, the best performance is obtained for Goalbiased 

sampling with obstacle case. However this sampling technique is not sufficient to be 

successful in the environments with more complex obstacles that will be shown in the 

performance experiments. It is necessary to have a sampling technique that generates 

samples with complete resolution as Halton sampling to avoid getting stuck in obstacle 

and also biases these samples towards goals as Goalbiased sampling to increase the 

RRT growth, and we design two mixture techniques, the percent and interleaving 

mixture of Halton and Goalbiased samplings especially for the environments with 
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obstacle. And in the following results, we try to determine the parameters of these 

techniques. 

   

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

2.5

3

3.5

4

4.5

5

5.5

6

% of Halton Sampling

#
 o

f 
R

e
a
c
h
e
d
 G

o
a
ls

# of Reached Goals vs % of Halton Sampling

Using the Percent Mixture of Halton and Goalbiased Sampling in Map 2

 

Figure 40: The Number of Reached Goals vs. the Percentage of Halton Sampling 

Using the Percent Mixture Sampling in Map 2 

 

In this figure, the performance of the percent mixture sampling in the environment with 

obstacle is examined about different percentages of Halton sampling, and the maximum 

standard deviation is taken as 0.1 that is defined in figure 39. And this result shows that 

low percentage of Halton sampling gives the best performance, because this is enough 

to scatter the samples in state space to escape from obstacle region and then Goalbiased 

sampling is used to accelerate to reach solution. And As a result of the plot in figure 40, 

in the percent mixture sampling, firstly we need to use about 25% Halton sampling and 

then Goalbiased sampling to have the best performance. For the interleaving mixture, 

its parameters are defined in figure 41. 
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Figure 41: The Number of Reached Goals vs. the Number of Repetition of Halton 

Sampling Using the Interleaving Mixture Sampling in Map 2 

 

For this case, the maximum standard deviation is also taken as 0.1 and we look for the 

performance of the interleaving mixture about the number of repetition of Halton 

sampling. It is seen that low repetition of Halton is the best choice for this sampling 

technique as in the percent mixture, and the result in figure 41 shows that the optimum 

value for the number of repetition of Halton sampling is 2 in the interleaving mixture 

sampling technique. As a result of this experiment, the optimum values of sampling 

parameters can be summarized as table 4. 
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Table 4: The Optimum Values of Sampling Parameters 

 

The Maximum 

Standard 

Deviation 

The Percentage of 

Halton Sampling 

The Number of 

Repetition of 

Halton Sampling 

Goalbiased 

Sampling without 

Obstacle 

0 - - 

Goalbiased 

Sampling with 

Obstacle 

0.1 - - 

The Percent 

Mixture  
0.1 0.25 - 

The Interleaving 

Mixture  
0.1 - 2 

 

And in the following experiments, we use the values in table 4 for the parameters of 

these sampling techniques.  

5.4.2 The Performance of Our Model 

 

This experiment is carried out to define the performance of our RRT based motion 

planner model for different sampling techniques and baselines, and find the best 

performance for the cases of multiple camera inspection that we have considered in this 

study. The values of parameters that are used in this experiment are given as follows: 

 Number of review cameras: 1 

 Maximum allowable review module x-axis acceleration: 8 m/s
2
 

 Maximum allowable review module x-axis velocity: 0.5 m/s 

 Material y-axis constant velocity: 0.220 m/s 

 The maximum standard deviation: 0, 0.1 

 The percentage of Halton sampling: 0.25 

 The number of repetition of Halton sampling: 2 

 The maximum number of trees: infinite 

 The maximum number of  branches: infinite 

 The maximum number of iterations: 2000 
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 The values of other parameters are defined in table 3 

 

In this experiment, we also use map 1 and 2 as shown in figure 36 and another 

environment with more complex obstacle, map 3 that will be shown later. Firstly we 

look for the number of reached goals in the environment without obstacle, map 1 for 

different sampling techniques. 
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Figure 42: The Number of Reached Goals vs. the Number of Iterations in Map 1 

 

As it is seen in this result, Goalbiased sampling is the best choice for the environment 

without obstacle, since it biases towards goals and increases the rate of RRT 

convergence, and when we compare the performance of Goalbiased sampling with the 

deterministic method as told in section 5.2.2, we see that the deterministic methods 

reaches 12 goals in map1 for same parameters and this shows that our model for this 

case provides 92% performance of the deterministic method. And when we use map 2 

to include obstacles, we get the result in figure 43. 
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Figure 43: The Number of Reached Goals vs. the Number of Iterations in Map 2 

 

In this case, the standard deviation of Goalbiased sampling is increased to 0.1 as 

defined in table 4 to avoid getting stuck in obstacle region. And once more we get 

better performance while using Goalbiased sampling. The percent and interleaving 

mixture techniques can reach this performance at high number of iterations, because 

Halton sampling that are used in the first part of these techniques slows down to reach 

goals while generating samples to cover whole state space. From this result, it can be 

believed that using only Goalbiased sampling is better than using other techniques, but 

when we include more complex obstacles as shown in figure 44, Goalbiased sampling 

cannot be successful to escape from getting stuck, although its standard deviation is 

increased. 
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Figure 44: Another Map for the Experiment 2: It includes 50 defects with an 

obstacle.  

 

In figure 44, map 3 is represented that includes 50 defects and two obstacles in the 

environment. These obstacles form a narrow passage and it difficult to grow RRT 

through this passage. Goalbiased sampling cannot handle this and so we need to use the 

mixture techniques. This is shown in figure 45 that is the analysis of the performance of 

our model for different sampling techniques in map 3. 
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Figure 45: The Number of Reached Goals vs. the Number of Iterations in Map 3. 

 

In this result, Goalbiased sampling with a middle deviation is saturated to a specified 

number of reached goals because of getting stuck in obstacle, but the mixture 

techniques, especially the percent mixture give the best performance for this case and 

this shows that these mixture techniques are more suitable for the environment with 

obstacles than using only Goalbiased Sampling.       

5.4.3 The Performance Dependence on Critical Parameters 

 

In this experiment, we try to define the performance dependence of our model on 

critical parameters that are the maximum x-axis velocity, the maximum x-axis 

acceleration, y-axis constant velocity and the number of review cameras. To see this 

dependence, we divide this experiment into four parts and in each part; the performance 

of the system about one of these parameters is analyzed by assigning constant values to 
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others. And the values of the common parameters that are used in four parts of this 

experiment are given below: 

 The maximum standard deviation: 0 

 The maximum number of trees: infinite 

 The maximum number of  branches: infinite 

 The maximum number of iterations: 500, 2000 

 The values of other parameters are defined in table 3 

 

For every part of this experiment, we use only Goalbiased sampling in map 1 that does 

not include obstacle, and in the first part of the experiment, we examine the maximum 

x-axis velocity by using the values of the critical parameters as given below:  

 Number of review cameras: 1 

 Maximum allowable review module x-axis acceleration: 8 m/s
2
 

 Maximum allowable review module x-axis velocity: 0.1-1 m/s 

 Material y-axis constant velocity: 0.220 m/s 

 

We determine the number of reached goals in 500 iterations by using these values of 

the critical parameters and get the performance plot about the maximum x-axis velocity 

as shown in figure 46. 
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Figure 46: The Number of Reached Goals vs. the Maximum x-axis Velocity. 

 

This result shows that in low velocities, the performance becomes worse as expected, 

but in high velocities, it increases and becomes saturated at some point. This saturation 

happens because of that the x-axis acceleration is still limited to a specified value and 

the VELOCITY_CHECK function in the algorithm does not permit to reach high 

velocities, so increasing the x-axis velocity to high values does not affect the 

performance of our model for this case. Then we examine the effect of the maximum 

acceleration on the performance of our model by using the values of the critical 

parameters as follows: 

 Number of review cameras: 1  

 Maximum allowable review module x-axis acceleration: 1-15 m/s
2
 

 Maximum allowable review module x-axis velocity: 2.0 m/s 

 Material y-axis constant velocity: 0.220 m/s 

 

And the result of this experiment is given in figure 47. 
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Figure 47: The Number of Reached Goals vs. the Maximum x-axis Acceleration. 

 

This shows that cameras can reach more defects when the maximum lateral 

acceleration is increased since difficult motions can be easily handled. Another part of 

this experiment is related with the y-axis velocity and the values of the critical 

parameters are given below: 

 Number of review cameras: 1 

 Maximum allowable review module x-axis acceleration: 8 m/s
2
 

 Maximum allowable review module x-axis velocity: 0.5 m/s 

 Material y-axis constant velocity: 0.01-0.5 m/s 

 

According to these values, the performance plot about the y-axis velocity is obtained as 

shown in figure 48. 
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Figure 48: The Number of Reached Goals vs. the y-axis Velocity. 

 

As expected, we can reach more goals in the environment by decreasing the y-axis 

velocity. And this shows that the performance of our model can be improved by 

varying y-axis velocity. This is considered in extended case in which the cameras can 

move independently with variable y-axis velocities as told in chapter 3. We have not 

implemented this case in our algorithm, but it is applicable by only changing the 

configuration definition of the cameras and the region of inevitable collision since it 

has more DOFs, and we consider this case as a future work. The final part of this 

experiment is about examining the performance about the number of review cameras of 

the system with the values of critical parameters below: 

 Number of review cameras: 1-3 

 Maximum allowable review module x-axis acceleration: 8 m/s
2
 

 Maximum allowable review module x-axis velocity: 0.5 m/s 

 Material y-axis constant velocity: 0.220 m/s 
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Figure 49: The Number of Reached Goals vs. the Number of Iterations for 

Different Number of Cameras. 

 

In this result, we get the best performance while using the largest number of camera as 

expected, and since this experiment is performed in the environment without obstacle, 

its result can be compared with deterministic method for the same case. And this 

comparison is given in table 5. 

 

Table 5: The Comparison between Our Model and Deterministic Method 

# of  Cameras 
# of Reached Goals 

Our model Deterministic Method 

1 11 12 

2 15 22 

3 20 32 



 76 

 

As shown in these results, the performance of our model is not good as the 

deterministic method in multiple camera cases; this is because of increase on the 

collision possibility between cameras. As the number of cameras is increased, the 

generated samples have high probability to be in collision regions between cameras and 

so many samples are removed in validation part of the RRT algorithm and cannot be 

used, and if we increase the number of generated samples, we can reach the results of 

multiple camera in deterministic method, but the most important advantage of our 

model is the ability to handle obstacles and also dynamic obstacles that the 

deterministic method cannot provide.  

5.4.4 The Time Performance of Our Model   

 

In this experiment, we attempt to improve the computation time of our model by using 

two parameters that are the maximum number of trees and branches. In our algorithm, 

new trees are created at every goal detection and each tree grows when it is the nearest 

one to generated sample, so if we increase the number of defects in the environment 

and iteration time, the computation time rises because of many trees and their branches 

in the environment. So we consider a limit to the number of trees and branches to reach 

the same number of goals in lower computation time. And we define the values of 

parameters as follows. 

 Number of review cameras: 1 

 Maximum allowable review module x-axis acceleration: 8 m/s
2
 

 Maximum allowable review module x-axis velocity: 0.5 m/s 

 Material y-axis constant velocity: 0.220 m/s 

 The maximum standard deviation: 0 

 The maximum number of trees: 30, 50, 100, 200, 500 

 The maximum number of branches: 30, 50, 100, 500, 1000 

 The maximum number of iterations: 1000 

 The values of other parameters are defined in table 3 
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We use only Goalbiased Sampling in map 1 for this experiment, and search for the 

minimum time to reach fixed number of goals (10 for this experiment) by putting limits 

on the number of trees and branches. Firstly we determine the successful cases in which 

10 goals are reached as shown in figure 50.    
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Figure 50: The Number of Reached Goals vs. the Maximum Number of Branches 

Corresponding to Different Maximum Number of Trees. 

 

In this plot, the number of reached goals is determined by changing the maximum 

number of branches for 5 different cases in which different limits are put on the number 

of trees. As it is seen, at low limits on the number of trees, desired number of goals 

cannot be reached. But if we use sufficient limit on the number trees, we do not change 

the performance of our model and then we examine the computation time for these 

cases in the following figure.      
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Figure 51: Time vs. the Maximum Number of Branches Corresponding to 

Different Maximum Number of Trees. 

 

When we consider the successful cases of this figure in which the maximum number of 

trees are 100, 200 and 500, we see that as the maximum number of branches is 

decreased, and the computation time to reach 10 goals decreases. Also the maximum 

number of trees does not change the computation time for the successful cases. As a 

result of these plots, the computation time of our model can be improved without 

affecting the solution by only putting a low limit on the number of branches for each 

tree.  
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CHAPTER 6 

 

6 CONCLUSION AND FUTURE WORKS… 

 

 

When we search the available techniques to solve the kinodynamic motion planning 

problem of the multiple camera industrial inspection, we see three important techniques 

that are RPP, PRM and RRT. As we have mentioned before, the RPP and PRM 

algorithms need complex computations when we include the differential constraints and 

obstacles, and the RRT algorithm handles this difficulty. This is why we have used the 

RRT algorithm in our approach. 

 

In this study, we firstly described our environment and formulated the problem in four 

cases that were single camera without obstacle, with obstacle, and multiple camera 

without obstacle and with obstacle as told in chapter 3. We defined the main algorithm 

in chapter 4 by adapting the RRT algorithm to our problem. Using this algorithm we 

implemented a RRT based motion planner model that aimed to reach as much defect 

POIs as possible over inspection area while satisfying the constraints of our problem 

and avoiding collision with obstacles, and made some experiments on this planner to 

analyze its performance. And we saw that the sampling techniques were very important 

in the performance of the RRT based motion planning. Goalbiased sampling had better 

performance than others in environments without obstacles, but when we added some 

obstacles, there came out a problem that was the possibility of getting stuck in obstacle 

region. We attempted to solve this problem by increasing the standard deviation, but in 

the environment with complex obstacles that include narrow passages, only using 

Goalbiased sampling was not sufficient to have good results. And this motivated us to 
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define new sampling techniques for these cases that were the percent and interleaving 

mixture of Halton and Goalbiased samplings, and the results of these techniques 

showed us that they were successful in the environment with obstacles. Then we 

examined the effect of the critical parameters on the performance of our model that 

were the maximum x-axis velocity, the maximum x-axis acceleration, and y-axis 

constant velocity as well as the number of review cameras, and we got the expected 

results. When we compared our results with the results of deterministic method as 

described in section 5.2.2, we saw that our model did not outperform the deterministic 

method for no obstacle case; this was because of increase on the possibility of collision 

between cameras. But our model was able to handle inspection area with obstacle as 

well. Also we examined the time performance of our model and improved the 

computation time by putting low limits on the number of branches for each tree.  

 

As a future work, the sampling techniques in the RRT algorithm can be developed to 

provide better performance. The sample generation is important task for an RRT based 

planner since RRT is a sampling based algorithm and we should give importance to this 

topic. Our algorithm can be improved by using efficient nearest neighbor search and 

choosing efficient metrics that are important issues of the RRT algorithm. And the 

collision avoidance algorithm can be developed by using data structures, and local 

information of old branches and explored regions. Also we can attempt to implement 

the extended case of multiple camera inspection that was told in chapter 3 and this case 

is applicable to our algorithm by only changing the configuration definition and 

collision avoidance part. We consider that this case has potential to provide better 

results because of involving more DOFs and so we can show that our problem is 

applicable to general problems in robotics.    
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