

RRT BASED KINODYNAMIC MOTION PLANNING FOR

MULTIPLE CAMERA INDUSTRIAL INSPECTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

BURAK BILGE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRICAL AND ELECTRONICS ENGINEERING

MAY 2009

Approval of the thesis:

RRT BASED KINODYNAMIC MOTION PLANNING FOR

MULTIPLE CAMERA INDUSTRIAL INSPECTION

submitted by BURAK BILGE in partial fulfillment of the requirements for the degree

of Master of Science in Electrical and Electronics Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen ________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen ________________

Head of Department, Electrical and Electronics Engineering

Assist. Prof. Dr. Afşar Saranlı ________________

Supervisor, Electrical and Electronics Eng. Dept., METU

Examining Committee Members:

Prof. Dr. Aydan Erkmen ________________

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Afşar Saranlı ________________

Electrical and Electronics Engineering Dept., METU

Prof. Dr. Kemal Leblebicioğlu ________________

Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. İlhan Konukseven ________________

Mechanical Engineering Dept., METU

Volkan Arıcı (MS) ________________

Avionics System Engineer, Roketsan

 Date: 06.05.2009

 iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I

also declare that, as required by these rules and conduct, I have fully cited

and referenced all material and results that are not original to this wok.

Name, Surname: Burak Bilge

 Signature:

 iv

ABSTRACT

RRT BASED KINODYNAMIC MOTION PLANNING FOR

MULTIPLE CAMERA INDUSTRIAL INSPECTION

Bilge, Burak

M.S., Department of Electrical and Electronics Engineering

 Supervisor: Assist. Prof. Dr. Afşar Saranlı

May 2009, 82 pages

Kinodynamic motion planning is an important problem in robotics. It consists of

planning the dynamic motion of a robotic system taking into account its kinematic and

dynamic constraints. For this class of problems, high dimensionality is a major

difficulty and finding an exact time optimal robot motion trajectory is proven to be NP-

hard. Probabilistic approximate techniques have therefore been proposed in the

literature to solve particular problem instances. These methods include Randomized

Potential Field Planners (RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring

Random Trees (RRT). When physical obstacles and differential constraints are added to

the problem, applying RPPs or PRMs encounter difficulties. In order to handle these

difficulties, RRTs have been proposed. In this study, we consider a multiple camera

industrial inspection problem where the concurrent motion of these cameras needs to be

planned. The cameras are required to capture maximum number of defect locations

while globally avoiding collisions with each other and with obstacles. Our approach is

 v

to consider a solution to the kinodynamic planning problem of multiple camera

inspection by making use of the RRT algorithm. We explore and resolve issues arising

when RRTs are applied to this specific problem class. Along these lines, we consider

the cases of a single camera without obstacles and then with obstacles. Then, we

attempt to extend the study to the case of multiple camera where we also need to avoid

collisions between cameras. We present simulation results to show the performance of

our RRT based approach to different instrument configurations and compare with

existing deterministic approaches.

Keywords: Motion planning, kinodynamic planning, RRTs, configuration space,

collision avoidance

 vi

ÖZ

ÇOKLU KAMERA ENDÜSTRİYEL DENETİMİ İÇİN RRT TABANLI

KİNODİNAMİK HAREKET PLANLAMASI

Bilge, Burak

Yükseklisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Yard. Doç. Dr. Afşar Saranlı

Mayıs 2009, 82 sayfa

Robotik alanında Kinodinamik Hareket Planlaması önemli bir problemdir. Robotik

sistemlerin kinematik ve dinamik kısıtlamalarını dahil ederek hareket planlaması

yapmaktan oluşmaktadır. Bu sınıftaki problemler için yüksek boyutluluk büyük bir

zorluk ve tam zamanlı optimum bir robot hareket yolunun bulunmasının zor olduğu

kanıtlanmıştır (NP-hard). Bu yüzden belirli örnekleri çözmek için literatürde olasılıklı

yaklaşım teknikleri önerilmiştir. Bu metodlar Rastgele Potensiyel Alan Planlayıcılarını

(RPP), Olasılıklı Yol Haritalarını (PRM) ve Hızlı Keşfeden Rastlansal Ağaçlarını

(RRT) içermektedir. Engeller ve differansiyel kısıtlamalar probleme eklendiğinde,

RPP‟leri veya PRM‟leri uygulamak zorluklarla karşılaştırır. Bu zorluklardan kurtulmak

için literatürde RRT önerilmiştir. Bu çalışmada, biz kameraların eş zamanlı

hareketlerinin planlanması gereken bir çoklu kamera endüstriyel denetleme problemi

üzerinde durduk. Kameraların birbirleri ve engelllerle çarpışmaktan kaçınırken

maksimum sayıda kusur yerini yakalamaları gerektirmektedir. Bizim yaklaşımımız

 vii

RRT algoritmasını kullanarak çoklu kamera denetiminin kinodinamik problemi için bir

çözüm bulmaktır. RRT bu belirli problem sınıfına uygulandığında ortaya çıkan

sorunları araştırıyor ve çözüyoruz. Bu doğrultuda, öncelikle engelsiz ve engelli tek

kamera durumunu inceliyoruz. Sonra, kameralar arası çarpışmalardan kaçınma da

gerektiren çoklu kamera durumunu deniyoruz. Bizim farklı araç konfigürasyondaki

RRT tabanlı yaklaşımımızın performansını göstermek ve var olan deterministik

yaklaşımlarla karşılaştırmak için simulayon çıktıları sunuyoruz.

Anahtar Kelimeler: Hareket planlaması, kinodinamik planlama, RRT, konfigürasyon

uzayı, çarpışma sakınma

 viii

To My Family,

Teman, Hayrettin, Betül and Buğra Bilge.

 ix

ACKNOWLEDGEMENTS

I express sincere thanks to my supervisor, Assist Prof. Dr. Afşar SARANLI for

providing vision, knowledge, guidance and encouragement in the preparation of this

thesis.

I would further like to thank my colleagues in Avionics System Engineering of

ROKETSAN Missiles Industries Inc. for their help and patience.

Finally, my deepest thanks are to my sister Betül Bilge who motivated me and gave

great assistance to finalize this study, and to my parents and my brother for their

support and patience. Also thanks to everyone who helped me directly or indirectly in

completing this thesis.

 x

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ... vi

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS... x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS AND ACRONYMS .. xvii

CHAPTERS

1 INTRODUCTION ... 1

1.1 General .. 1

1.2 Problem Statement .. 3

1.3 Scope & Contribution of the Thesis ... 3

1.4 Outline of the Thesis ... 4

2 LITERATURE SURVEY .. 5

2.1 Kinodynamic Motion Planning ... 5

2.2 Probabilistic Approximate Techniques ... 6

2.2.1 Randomized Potential Fields Planner .. 6

2.2.2 Probabilistic Roadmaps ... 7

2.2.3 Rapidly Exploring Random Trees ... 8

2.2.3.1 RRT Issues and Solutions ... 10

2.2.3.1.1 RRT Performance Dependence on Sampling 10

2.2.3.1.2 Slow Rate of RRT Convergence .. 12

2.2.3.1.3 Undesired and Unintuitive Path ... 14

 xi

2.2.3.1.4 Inefficient Collision Detection ... 14

3 PROBLEM DESCRIPTION.. 16

3.1 The Environment of Multiple Camera Inspection .. 16

3.2 Problem Formulation for Multiple Camera Inspection..................................... 20

3.2.1 Single Camera without Obstacle Case ... 23

3.2.2 Single Camera with Obstacles Case .. 24

3.2.3 Multiple Camera without Obstacle Case ... 25

3.2.4 Multiple Camera with Obstacles Case ... 27

3.2.5 Extended Case (Future Work) ... 28

3.3 Problem Parameters .. 30

4 SOLUTION APPROACH ... 31

4.1 Introduction ... 31

4.2 Our Approach and Motivation .. 32

4.3 Implementation ... 33

4.3.1 Implementation Issues and Solutions .. 33

4.3.2 Assumptions... 38

4.3.3 The Description of the Main Algorithm .. 38

4.3.3.1 The Definition of Functions ... 43

4.3.3.1.1 The MULTI_RRT Function ... 44

4.3.3.1.2 The NEAREST_NEIGHBOR Function 45

4.3.3.1.3 The SAMPLE_GENERATOR Function 45

4.3.3.1.3.1 The Uniform Random Sampling ... 47

4.3.3.1.3.2 The Halton Sampling .. 47

4.3.3.1.3.3 The Goalbiased Sampling ... 47

4.3.3.1.3.4 The Percent Mixture of Halton and Goalbiased 48

4.3.3.1.3.5 The Interleaving Mixture of Halton and Goalbiased 48

4.3.3.1.4 The RRT Function ... 48

4.3.3.1.5 The VELOCITY_CHECK Function .. 50

4.3.3.1.6 The MAP_CHECK Function ... 51

4.3.4 Algorithm Parameters .. 55

5 EXPERIMENTAL RESULTS .. 57

 xii

5.1 Introduction ... 57

5.2 RRT Based Motion Planner Model .. 57

5.2.1 Model Parameters .. 58

5.2.2 Deterministic Method .. 59

5.3 Performance Measure ... 59

5.4 Experiments .. 59

5.4.1 The Optimization of the Sampling Parameters .. 59

5.4.2 The Performance of Our Model ... 66

5.4.3 The Performance Dependence on Critical Parameters 70

5.4.4 The Time Performance of Our Model ... 76

6 CONCLUSION AND FUTURE WORKS .. 79

REFERENCES .. 81

 xiii

LIST OF TABLES

TABLES

Table 1: Problem Parameters ... 30

Table 2: Algorithm Parameters .. 55

Table 3: Model Parameters .. 58

Table 4: The Optimum Values of Sampling Parameters ... 66

Table 5: The Comparison between Our Model and Deterministic Method 75

 xiv

LIST OF FIGURES

FIGURES

Figure 1: RPP Operation (from [13]). .. 6

Figure 2: PRM Operation (from [13]) ... 7

Figure 3: The Basic RRT Algorithm (from [11]) .. 8

Figure 4: The Extend Operation (from [11]) ... 9

Figure 5: The Growth of RRT (from [10]) .. 9

Figure 6: The Representation of Discrepancy (from [14]) .. 11

Figure 7: The Representation of Dispersion (from [14]). .. 11

Figure 8: The Representation of Halton Sampling (from [14]) 12

Figure 9: The Connect Operation (form [14]) ... 13

Figure 10: The Procedure Stopping-Configuration (from [14]). 15

Figure 11: The Most Common Defects of a LCD (from [16]) 17

Figure 12: Multiple Camera Industrial Inspection (from [16])...................................... 19

Figure 13: The Region of Inevitable Collision, Xric (from [12]) 22

Figure 14: Single Camera Case ... 23

Figure 15: The Definition of Collision Free Region in Single Camera with Obstacle

Case. ... 25

Figure 16: Multiple Camera Case .. 26

Figure 17: The Representation of Dynamical Obstacles. .. 27

Figure 18: The X-space Representation of Obstacle in Multiple Camera with Obstacle

Case .. 28

Figure 19: The Extended Case. .. 29

Figure 20: Uniform Random Sampling vs. Halton Sampling (from our simulations) .. 34

 xv

Figure 21: Extend Operation vs. Connect Operation (from our simulations). 35

Figure 22: Halton Sampling vs. Goalbiased Sampling (from our simulations). 36

Figure 23: An Example of Smoothing Final Path ... 37

Figure 24: The Multiple RRTs Technique. .. 39

Figure 25: The Flowchart of the Main Algorithm ... 40

Figure 26: An Example of Final Tree Projected to 2D .. 41

Figure 27: An Example of Final Smoothed Path ... 42

Figure 28: The Hierarchic Representation of Functions in the Main Algorithm........... 43

Figure 29: The Flowchart of the SAMPLE_GENERATOR Function 46

Figure 30: The Flowchart of the RRT Function .. 49

Figure 31: An Example of Lateral Range Computation. ... 51

Figure 32: The Flowchart of the MAP_CHECK Function .. 52

Figure 33: The Cases for the Region of Inevitable Collision .. 53

Figure 34: An Example of Velocity/time Profiles for Case 1 54

Figure 35: An Example of Velocity/time Profiles for Case 2 and 3 54

Figure 36: The Maps of the Experiment 1. .. 60

Figure 37: The Number of Reached Goals vs. the Maximum Standard Deviation Using

Goalbiased Sampling in Map 1 .. 61

Figure 38: An Example of Stuck RRT. ... 62

Figure 39: The Number of Reached Goals vs. the Maximum Standard Deviation Using

Goalbiased Sampling in Map 2 .. 63

Figure 40: The Number of Reached Goals vs. the Percentage of Halton Sampling Using

the Percent Mixture Sampling in Map 2 .. 64

Figure 41: The Number of Reached Goals vs. the Number of Repetition of Halton

Sampling Using the Interleaving Mixture Sampling in Map 2 65

Figure 42: The Number of Reached Goals vs. the Number of Iterations in Map 1 67

Figure 43: The Number of Reached Goals vs. the Number of Iterations in Map 2 68

Figure 44: Another Map for the Experiment 2 .. 69

Figure 45: The Number of Reached Goals vs. the Number of Iterations in Map 3. 70

Figure 46: The Number of Reached Goals vs. the Maximum x-axis Velocity. 72

Figure 47: The Number of Reached Goals vs. the Maximum x-axis Acceleration. 73

 xvi

Figure 48: The Number of Reached Goals vs. the y-axis Velocity. 74

Figure 49: The Number of Reached Goals vs. the Number of Iterations for Different

Number of Cameras. .. 75

Figure 50: The Number of Reached Goals vs. the Maximum Number of Branches

Corresponding to Different Maximum Number of Trees. 77

Figure 51: Time vs. the Maximum Number of Branches Corresponding to Different

Maximum Number of Trees. ... 78

 xvii

LIST OF ABBREVIATIONS AND ACRONYMS

DDS Defect Detection Subsystem

DOF Degrees of Freedom

DRS Defect Review Subsystem

ITO Indium Tin Oxide

POI Point of Interest

PRM Probabilistic Roadmaps

RPP Randomized Potential Fields Planner

RRT Rapidly Exploring Random Trees

 1

CHAPTER 1

1 INTRODUCTION…

1.1 General

Simply put, motion planning is finding a continuous path for a robot from an initial

configuration to a goal configuration. Solutions developed for the general path finding

problem are also very valuable for many important and difficult problems in real-life

industrial and military applications. Steven M. LaValle describes this widespread usage

of motion planning in his book [14]. His examples include a well known toy example,

namely the “Piano Mover‟s Problem” that deals with the problem of how to maneuver a

piano through narrow passages; “Navigating a Mobile Robot” in which a robot is

tasked to build a map of the environment; “Humanoid Robots” that attempt to imitate

natural human movements; “Automotive Assembly” as well as ”Car and Trailer

Parking”. Formally, motion planning can be defined as the problem of finding a

trajectory for a robot from an initial state to a final state while satisfying the robot‟s

constraints, avoiding collisions with obstacles and self collisions [13].

According to the constraints of robots moving in the environment, motion planning can

be divided into some main categories. These are called holonomic, nonholonomic and

kinodynamic motion planning [11]. Holonomic motion planning deals with only

position and orientation of the robot; and it is for holonomic robots in which

controllable degrees of freedom (DOF) are greater than or equal to total number of

 2

DOF. Most of the robots in real-life applications have fewer controllable DOF than the

total DOF. Nonholonomic motion planning is interested in these robots by including

their nonintegrable constraints. By considering both the kinematics and dynamics of the

robot in a generic motion planning problem, one can define the kinodynamic motion

planning. One important issue of this type of planning problem is its high

dimensionality. Because of this issue, an exact time optimal trajectory for the robot

cannot be determined by using conventional planning techniques, this has been proven

to be NP-hard [13, 15]. A number of probabilistic approximate techniques have been

proposed to deal with this difficulty and estimate a solution. These are Randomized

Potential Field Planners (RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring

Random Trees (RRT).

In RPP, a heuristic function is defined to direct a robot towards a goal configuration

through the gradient descent. When robot is stuck in local minima, which typically

happens in the surrounding of the obstacles, random walks are used to escape from

there and sometimes this method fails and robot returns to the same local minima. So a

good heuristic function must be defined to avoid this case, but when obstacles and

differential constraints are added to the problem, the definition of this function becomes

difficult. In PRM, random configurations are generated on configuration space and then

the pairs of nearby configurations are tried to connect by using a local planner. This

provides a graph that is used to find the path of the robot to the goal configuration.

However, for complicated nonholonomic dynamical systems, it is hard to connect the

configurations. In order to resolve these issues, LaValle has developed a new tool for

motion planning that is called RRT as proposed in [10, 11]. RRT easily drives forward

like RPP and explore the space quickly and uniformly like PRM. This approach is

specifically designed to handle nonholonomic constraints including dynamics and high

degrees of freedom [10]. This shows the appropriateness of this algorithm for

kinodynamic motion planning problem.

 3

1.2 Problem Statement

In this study, we consider a kinodynamic planning problem of a multiple camera

inspection platform, where a set of multiple moving cameras are to be controlled over

an inspection area. Firstly, we define mechanical and motion constraints of the system

by relating it with the architecture of an existing “scanner” type inspection device. This

shows important challenges of the problem, which are the presence of multiple goals

and the possibility of collisions between cameras. Therefore, the main problem of this

thesis is to plan the motions of each of the cameras while imaging as much locations as

possible in a given time while globally avoiding collisions. In this problem, we do not

aim to obtain optimal solutions, since kinodynamic motion planning is NP-hard

optimal, and we try to get “good results” as long as the constraints are satisfied as

LaValle suggested in [12].

After a literature research, we decide to use the RRT algorithm for our problem and

resolve the difficulties of the approach. Along these lines, we first consider the case of

a single camera and no obstacle. Then we extend our results to the case where obstacles

are present and collisions with obstacles are to be avoided. Finally, we attempt to

extend to the case of multiple camera and avoiding collisions between cameras. The

available RRT based techniques in the literature are experimentally evaluated and

issues are identified. We incrementally propose techniques to alleviate these problems

to build a working solution whose performance is verified by experimental studies on a

number of scenarios.

1.3 Scope & Contribution of the Thesis

The scope of this thesis is resolving the kinodynamic motion planning problem of a

multiple camera industrial inspection in which there exist multiple robots and goals.

We use the RRT algorithm for this problem in four cases that are single camera without

obstacle, single camera with obstacle, multiple camera without obstacle and multiple

camera with obstacle. Also we consider the extended case of the multiple camera

 4

industrial inspection as a future work in which cameras can move vertically

independent of each other. This extension represents that our approach to this problem

can be applied to the motion planning problems in more generic platforms.

As the main contribution of this study, we can offer the adaptation of the RRT

algorithm to our problem, in which there are multiple initials and goals. In the

literature, the RRT algorithm is mainly used for single query problems that include a

goal in the environment, so we need to adapt this algorithm to our problem and then we

develop a RRT based algorithm in which multiple RRTs are used to find the final path

that reaches as much goals as possible while avoiding collision. While implementing

our algorithm, we experience some issues such as RRT performance dependence on

sampling, low rate of the RRT convergence, inefficient collision avoidance, and

undesired and unintuitive final path, and find solutions in the literature that is explained

in chapter 2. Also, we develop the mixture of sampling techniques to improve the

performance of our algorithm in the environment with obstacles and using this

algorithm, we implement an RRT based motion planner model that solves our problem

in this study.

1.4 Outline of the Thesis

As an outline of this thesis, firstly we give a literature survey about kinodynamic

motion planning and probabilistic approximate techniques RPP, PRM and RRT in

chapter 2 and explain the problem description of the multiple camera inspection in

chapter 3. Then, we tell our approach to the problem with the issues and our solutions

in chapter 4. Chapter 5 represents the results of our experiments. Finally, we present

discussions, conclusion and future work in chapter 6.

 5

CHAPTER 2

2 LITERATURE SURVEY…

2.1 Kinodynamic Motion Planning

Kinodynamic motion planning problem is a problem that takes into consideration both

kinematic constraints, such as the configuration (position) of robot, the joint limits and

obstacles, and dynamic constraints, such as dynamic laws and bounds on velocity,

acceleration and applied force. In other words, this is a motion planning problem of a

robot (or robots) by satisfying the limits on its configuration and time derivative of

configuration. Therefore, in kinodynamic motion planning, the dimension of constraints

doubles and increases the computational complexity. This causes an open problem in

robotics that is to find time-optimal kinodynamic solution. After a great deal of study

on this problem, it has been shown that finding an exact solution is NP-hard [13, 15].

And probabilistic approximate techniques have therefore been developed to find

solutions close to optimal.

As stated in [15], these techniques for the kinodynamic motion planning trade off

computational complexity against optimality in terms of

 “execution time of the motion”

 “strictness in observing safety margin”

 “closeness to the desired start and goal configuration”

 6

By considering this trade off, a tolerance parameter is defined to express the closeness

to an optimal safe solution and using this definition, “near optimal” solution can be

obtained. And in this study, we consider three successful probabilistic approximate

techniques in motion planning problems that are Randomized Potential Fields Planner

(RPP), Probabilistic Roadmaps (PRM) and Rapidly Exploring Random Trees (RRT). In

the following sections, these techniques will be explained.

2.2 Probabilistic Approximate Techniques

2.2.1 Randomized Potential Fields Planner

In Randomized Potential Fields Planner (RPP) [13], a navigation function is defined in

configuration space by using medial axes and level-set methods as shown in figure 1 to

steer robot towards goal through gradient descent.

Figure 1: RPP Operation (from [13]): (a) represents the construction of navigation

function using medial axes and level-set methods; (b) and (c) shows height-fields at

different angles; (d) is an example of local minima.

By using navigation function, potential fields are constructed that are the sum of

simpler fields and one of these fields attracts the robot towards goal and others behave

like repulsive forces that push the robot from the obstacles as shown in figure 1 (b, c).

While computing navigation function, it is avoided to have local minima in which robot

can get stuck. However, local minima can be developed during gradient descent, and

typically the robot is trapped in the surrounding obstacles. Random walks method in

 7

which robot is backed applying some random inputs on potential fields are used to

escape from local minima as shown in figure 1 (d), but there is no guarantee in this

method and if the random-walks fail to escape, the robot returns to the same local

minima and cannot reach the goal configuration. Therefore, the success of RPP depends

heavily on the computation of a good navigation function, but with high dimensional

constraints and obstacles, this computation becomes a difficult task.

2.2.2 Probabilistic Roadmaps

Probabilistic Roadmaps (PRM) [13] is designed for multiple queries in the same

environment and it has a substantial pre-computation step as shown in figure 2 to

enable numerous path-planning queries to be solved.

Figure 2: PRM Operation (from [13]): (a) the environment is uniformly sampled; (b)

the nearest neighbors are connected; (c) the path is defined from initial to goal state

In pre-computation step, firstly, a set of collision free random points is sampled in

configuration space, and then these points are connected with their neighbors by using a

local planner. With these connections, a graph is constructed in configuration space and

then the shortest path between initial and goal configuration through this graph is

determined as shown in figure 2. However, for most dynamical systems, PRMs do not

have a robust local motion planner and while constructing the graph, connecting the

random points through the narrow passage is difficult that is the side effect of stochastic

sampling of random point. Also for complicated and nonholonomic dynamical systems,

 8

connection problem can be as difficult as designing nonlinear controller and the

connection of thousand of configurations can be required to find solution path. This

shows that PRMs are not suitable to solve problems in this kind of systems.

2.2.3 Rapidly Exploring Random Trees

Rapidly Exploring Random Trees [10, 11] is developed by LaValle to solve motion

planning problems that have nonholonomic constraints and high degrees of freedom.

This method is based on the incremental construction of a search tree that attempts to

rapidly and uniformly explore the state space. The basic algorithm of RRT is given as

follows:

Figure 3: The Basic RRT Algorithm (from [11])

This algorithm is a simple iteration and in each step of this iteration, RRT is attempted

to extend to a new point that is randomly selected by using a random sequence that is

typically uniformly distributed random sequence. The EXTEND function finds the

 9

nearest point in RRT and makes a motion towards randomly selected point „x‟ by

applying an input „u‟ for some time increment as shown in figure 4.

Figure 4: The Extend Operation (from [11])

The input „u‟ for extend operation can be selected randomly or selected one of the

possible inputs that is the closest input to the „x‟ state. Also, EXTEND function

includes the collision detection algorithm that checks the collision condition for new

state and if no collision occurs, RRT extends towards the new state and new edge is

added to RRT. This algorithm provides a tendency to grow towards unexplored

portions of the state space as shown in figure 5.

Figure 5: The Growth of RRT (from [10]): RRT grows biasing towards the

unexplored regions in the state space

And this tendency is the key idea of the RRT algorithm, therefore the search tree

rapidly and uniformly grows in state space to reach goals while avoiding obstacles and

satisfying the constraints of the environment.

 10

When we compare RRT with RPP and PRM, it is seen that RRT can easily drive

forward like RPP and explore the free space rapidly and uniformly like PRM;

furthermore it does not require a well-defined navigation function or any local planner

for the connections between pairs of configurations. The RRT algorithm can be

considered as a path planning module, which can be adapted into a wide variety of

planning systems. And the successful applications of RRTs up to twelve degrees of

freedom for holonomic, nonholonomic and kinodynamic motion planning problems are

presented in studies [10, 11, 12], so we consider that the RRT algorithm is suitable for

motion planning problems in high dimensional state spaces. However, this algorithm

has some issues that are RRT performance dependence on sampling, slow rate of RRT

convergence, inefficient collision avoidance, and undesired and unintuitive final path,

and we find some methods to resolve them as told in the following section.

2.2.3.1 RRT Issues and Solutions

2.2.3.1.1 RRT Performance Dependence on Sampling

While implementing the RRT algorithm, we discover that the performance of this

algorithm is heavily dependent on sampling. This is unsurprisingly true, because RRT

is a sampling based motion planning technique. So it is necessary to use a good

sampling technique in the RRT algorithm that produces samples in low discrepancy and

dispersion [14]. Discrepancy is caused by the inconsistent behaviors of samples and it

is the main issue of random sampling. In some cases, we obtain solution with few

samples, and in other cases, we need many samples to reach solution. This issue

changes the computation time of the algorithm. So the discrepancy level is important

for the sampling techniques and this level can be measured by examining the samples

in configuration space as shown in figure 6.

 11

Figure 6: The Representation of Discrepancy (from [14]): The right number of

points fall into box defines discrepancy

In this figure, discrepancy is defined by checking whether the right numbers of points

fall into a box and using this method, sampling techniques in low discrepancy can be

developed. Another issue of random sampling is dispersion that is related to the

resolution of samples in configuration space and can be determined by using the

method shown in figure 7.

Figure 7: The Representation of Dispersion (from [14]): Dispersion is the radius of

the largest empty ball.

Figure 7 represents dispersion as the largest empty ball that is created by the samples in

configuration space. And for low dispersion, the largest distances between samples

need to be decreased. LaValle [14] proposes that there is strong relationship between

discrepancy that is measured based and dispersion that is metric based; and proves that

discrepancy is a subset of dispersion. So low discrepancy implies low dispersion, and

 12

this motivates people to develop low discrepancy sampling methods. One of these

methods is a quasi random sequence, Halton that is an n-dimensional generalization of

the van der Corput sequence. This sequence is used as a way of derandomizing RRTs

as told in [7] and it is constructed by using a deterministic method in which prime

numbers are taken as its base, and a uniformly distributed and stochastic-looking

sampling pattern is generated. Figure 8 illustrates the first 196 Halton points in R
2
.

Figure 8: The Representation of Halton Sampling (from [14]): The first 196 Halton

points in R
2
.

As shown in figure 8, Halton sampling produces asymptotically optimal discrepancy

and achieves more regularity than random sampling since it uses a deterministic

method to generate samples. So Halton sampling is a nice alternative to random

sampling and improves the performance of the RRT algorithm which will also be

shown by a comparison between Halton and Uniform Random sampling, in chapter 4.

2.2.3.1.2 Slow Rate of RRT Convergence

One of the main difficulties in the RRT algorithm is the rate of RRT convergence. RRT

grows rapidly by biasing towards unexplored part of the state space, but its

convergence rate is slow especially for environments with complex constraints. An

efficient approach, RRT-connect which is proposed in [8, 11, 14] increases the rate of

 13

RRT convergence. In this method, instead of attempting to extend an RRT by a single

step, the connect operation tries to reach until random sample while avoiding collision.

And if the nearest point lies in an edge, then this point is connected to the sample as

shown in figure 9.

Figure 9: The Connect Operation (form [14])

To handle this, the edges are divided into vertices and added to the set of RRT vertices.

And so the points in an edge can be considered in nearest neighbor search. By using

this operation, RRT converges the state space faster than the extend operation and also

the computation time decreases.

Another way of increasing RRT convergence is to use Goalbiased sampling as LaValle

suggested in [11]. In this sampling technique, the samples are biased towards goals in

the environment, so Goalbiased RRT reaches goals much faster than the basic RRT

algorithm. But in the environment with obstacles, RRT can get stuck in an obstacle

region because of this sampling technique that will be represented and discussed in

chapter 5.

RRT convergence rate can also be improved by resolving other issues in the RRT

algorithm. The primary one of these issues is the sensitivity of the performance on the

choice of metrics that defines the distance between points in RRT [9]. Using inefficient

metrics increase the computation time considerably. Therefore, metrics design is an

important task in RRT. For ideal choice of a metric, firstly, the cost function is defined

and the optimal cost function is taken as an ideal metric. This provides an efficient

metrics design and so high performance of RRT can be obtained.

 14

“Efficient nearest neighbor searching” also increases the rate of RRT convergence.

While determining the nearest neighbor in RRT, simply the minimum distance is

searched by considering all distances between generated sample and the points in RRT,

but the computation time rises as the number of points increase. Therefore, several

methods have been proposed in literature. One of these methods is the mixture of the

nearest neighbor search of all points and local search in which nearest neighbor is

found by searching only surroundings of sampled point [3]. Another method is to

organize the points of RRT in a data structure, Kd-tree, which is multi-dimensional

generalization of binary search tree [5, 6]. These methods provide efficient nearest

neighbor searching algorithms and so dramatically increase the growing rate of RRT.

2.2.3.1.3 Undesired and Unintuitive Path

In RRT, the generated trajectories that connect the initial configuration to goal

configuration are not optimal because of randomization. This provides inefficient

motion planning. So it is necessary to make simple path smoothing to partially optimize

the solution paths as suggested by LaValle in [11]. A post-processing step is added to

the RRT algorithm in which small perturbations are made to the trajectory by slightly

varying the inputs while satisfying the global constraints and so a nearly optimal

solution path can be obtained.

2.2.3.1.4 Inefficient Collision Detection

In the RRT algorithm, the search tree explores the state space by avoiding the obstacles

and as simple collision avoidance, the random samples that are in the obstacle region is

directly removed and another sample is generated. But the growth rate of RRT

decreases in the environment with complex obstacles, because of wasting many

samples. Therefore an efficient collision detection algorithm should be used to have

good performance in the environment with obstacles. LaValle suggests a Stopping-

configuration procedure [14] as shown in figure 10.

 15

Figure 10: The Procedure Stopping-Configuration (from [14]): If an obstacle

exists, the edge of RRT can grow until the obstacle boundary.

In this procedure, a branch of RRT grows towards the sampled point “)(i ” from the

nearest neighbor point “qn”, and when an obstacle is detected, it is stopped before

hitting the obstacle. So new edge is made from “qn” to “qs” and this provides a denser

RRT growth towards the boundary of obstacles, but this algorithm has an issue that

computation time increases with complex obstacles. To resolve this issue, some

methods are suggested in literature. One of them is using data structures to improve the

distance computation in collision detection [11]. Another method proposed in [1, 2, 4]

is to use local information of old branches of tree and explored regions to more

effectively explore the state space avoiding obstacles. With these methods, an efficient

collision detection algorithm can be defined.

 16

CHAPTER 3

3 PROBLEM DESCRIPTION…

In this study, our task is to solve kinodynamic motion planning problem of multiple

camera inspection by using a feasible motion planning algorithm. Therefore, firstly we

need to describe the environment of our problem by giving both kinematic and dynamic

constraints. And then according to these constraints, we define the problem formulation

of multiple camera inspection in four cases that are single camera without obstacle and

with obstacles, and multiple camera without obstacle and with obstacles. Also we

consider an extended case to our problem in which the cameras in multiple camera

inspection can move independently with variable vertical velocities. This case is added

to show that our problem can be extended to more generic problems in robotics.

In the following sections, firstly the kinematic and dynamic limits of multiple camera

inspection are given to describe the environment of our problem. Then necessary

formulations for a kinodynamic motion planning problem is determined by using

literature and the formulations of our problem for the cases that we have considered are

given and we will use these formulations in the implementation of our approach that is

told in chapter 4.

3.1 The Environment of Multiple Camera Inspection

Multiple camera inspection is a large area automated optical inspection instrument that

scans a large flat plate [16]. Although this instrument is applicable to the inspection of

 17

any flat flexible media, it is particularly designed for high trough-put and in line

inspection of glass plates of TFT/LCD panels.

The production of LCD panels consists of some stages that are deposition, masking,

etching and stripping. During these stages, many production defects may occur that

have electronic and visual implications on the final performance of LCD. These defects

can be short circuits, opens foreign particles, miss-deposition feature size problems,

over and under etching. And in figure 11, the most common defects are shown that are

metal protrusion into Indium Tin Oxide (ITO), ITO protrusion into metal, a so-called

mouse bite, an open circuit, a short in a transistor, and a foreign particle.

Figure 11: The Most Common Defects of a LCD (from [16]): Metal protrusion (110)

into Indium Tin Oxide (ITO, 112), ITO protrusion (114) into metal (116), a so-called

mouse bite (118), an open circuit (120), a short (122) in a transistor (124), and a foreign

particle (126).

 18

These defects can be as small as several microns in size and this defines the detection

limits of the inspection system that is designed to detect the defects of LCD. Also, only

detection of defects is not enough for the repair stage of LCD, the defects should be

classified as process defects (minor imperfection) that do not undermine the finished

product and can be an early indication for big damages, reparable defects that can be

repaired to improve the performance of product and killer defects that disqualify

product from further use.

To provide this level of detection and classification, a two stage imagining process is

often required that are comparatively low resolution and high resolution imaging

process. In low resolution imaging process a number of defect points of interests (POIs)

over the inspected surface are detected by using a fast detection mode and in high

resolution imaging process these POIs are reviewed and imaged as a part of high

resolution image analysis and classification.

And these processes are achieved by the subsystems of multiple camera inspection that

are Defect Detection Subsystem (DDS) and Defect Review Subsystem (DRS) as shown

in figure 12. DDS is an array of 10 comparatively low resolution detection cameras and

the task of this subsystem is to distinguish the defects and pre-classify them according

to their location on the inspected surface. In this pre-classification, the defects can be

categorized as data line, gate line, transistor, capacitor and ITO electrode. Also the

results of this pre-classification can be used for prioritizing the defects by defining a

review worthiness factor. DRS consists of multiple (2-6) comparatively high resolution

review cameras and aims to image the defects that are identified and pre-classified to

provide final defect classification.

 19

X

Y

Figure 12: Multiple Camera Industrial Inspection (from [16]): It consists of

detection sub-system (26-45) and review subsystem (12) that includes moving (x-axis)

review cameras. The system makes multiple passes (y-axis) over inspected area.

DDS and DRS are located on a moving apparatus that performs multiple passes (y-axis)

over the inspected area with a constant velocity. DDS scans through multiple passes of

material motion and DRS immediately follows the detection subsystem. The review

cameras in DRS can move laterally (x-axis) with respect to scan direction

independently of each other and so there comes out the possibility of collision between

cameras. This can be considered as dynamical obstacles that are determined according

to the position and velocity of cameras. There are also static obstacles where the

camera cannot be positioned because of the physical limits such as the corners, the

edges and the thick regions of inspected surface.

In this study, we consider the kinodynamic motion planning problem of review cameras

in DRS to make maximal use of these cameras to image as much defects POIs as

possible in a given time. To solve this problem, firstly we describe the environment of

 20

multiple camera inspection by defining the bounded map, the kinematic and dynamic

constraints of moving robot (or robots), obstacle region, and initial and goal states. The

summary of this description is given below:

 Bounded map: Inspected surface.

 Robots: Review cameras

o Kinematic constraints:

 2 DOFs (x and y axis).

 Static obstacles (physical limits over inspected surface)

o Dynamic constraints:

 Constant y-axis velocity

 Maximum allowable x-axis velocity and Maximum allowable x-

axis acceleration.

 Dynamical obstacles (the collision region between cameras)

 The initial and goal states: Configurations (positions and velocities) of the

review cameras and defect POIs respectively.

3.2 Problem Formulation for Multiple Camera Inspection

The formulation of a motion planning problem can be considered in two representations

that are the configuration space (C-space) and the state space (X-space) according to

the constraints of the environment. The C-space representation is used for the motion

planning problems that have only kinematic constraints. And the problems that also

include the dynamic constraints are represented in X-space. Therefore, for kinodynamic

motion planning problem of multiple camera inspection, we need to use the X-space

representation.

Firstly we define C-space to represent all possible position and orientation of the

cameras of multiple camera inspection as given below.

 qC  , where q is a configuration of the robot (2.1)

 21

Then, X-space that includes the dynamic constraints of the cameras is defined by

adding the time derivative of all configuration space is expressed as below:













qqX , (2.2)

This shows that X-space doubles the dimensionality, and mathematics become

exponentially harder. This is why the probabilistic approximate motion planning

techniques; RPP, PRM and RRT have been developed that have been mentioned

before.

While planning in X-space, there are also differential (nonholonomic) constraints that

arise from conservation laws such as momentum conservation [12]. Using the X-space

representation, the dynamics can be written as a set of „m‟ implicit equations of the

form below:

space-X ofdimension isn ,m and ,..,1i ,0),(wherenmforxxg i 


 (2.3)

And the differential constraints in equation 2.3 can be expressed in a state transition

equation that is proposed in [12, 14] as follows:

),(uxfx 


 (2.4)

In which „u‟ represents the possible inputs that are applied to the cameras for a

specified time interval „ t ‟ satisfying their constraints to define the new states. And

the equation 2.4 is required for the incremental motion planning techniques such as

RRT that is based on a state transition algorithm. Other techniques, RPP and PRM that

find the solutions after a pre-computation step do not need to use this equation.

Now, we are ready to define the obstacles in the environment of multiple camera

inspection in X-space. Firstly, we find a set of the configurations, Cobst, where the

 22

cameras collide with the static obstacles in C-space. And if a configuration of the

camera is in this set, its X-space representation is also in the set Xobst that defines

obstacles in X-space as shown in equation 2.5.

obstXx if and only if   obstCq  for 











qqx , (2.5)

However, there is another obstacle region in X-space. This is the region of inevitable

collision, Xric, in which the camera either collides with obstacle (or other camera) or

can‟t avoid collision because of its momentum. In other words, when the camera moves

in this region, there is no input that can be applied to escape from collision. An example

of a point mass robot that is taken from [12] illustrates Xric in figure 13.

Figure 13: The Region of Inevitable Collision, Xric (from [12]): This is the

representation of Xric for a point mass robot in two dimensions with increasing velocity

(x-axis). White areas are Xfree, black areas are Xobst and gray areas are Xric.

 23

This robot obeys the Newtonian laws without gravity and has L
2
 bounded acceleration

with an initial velocity in x-axis direction. White, black and gray areas represent the

collision free, obstacle and inevitable collision regions respectively. As it is seen in

figure 13, when the velocity of the robot increases, Xric becomes larger and we notice

that this region covers the obstacle region Xobst (ricobst XX ). Therefore, for

kinodynamic motion planning, the region of inevitable region, Xric represents the whole

obstacle region in X-space and the collision free region is defined as follows:

ricfree XXX \ (2.6)

To avoid obstacles, we make kinodynamic motion planning in this collision free region

Xfree. And in the following sections, the problem formulation will be given for the cases

that we have considered.

3.2.1 Single Camera without Obstacle Case

This is the simplest case of multiple camera inspection problem that includes a single

camera and no obstacle in the environment as shown in figure 14.

VxVy

x-axis

y-axis

Single Camera Case

Figure 14: Single Camera Case

 24

The review camera has 2 DOF that are in directions of x and y-axis. By using the

kinematic and dynamic constraints of the camera that is defined in section 3.1, the C-

space representation of the camera is given as below:

  yxC , (2.7)

And adding the dynamics constraints of the camera, the X-space representation is

defined as follows:

 yx VVyxX ,,, (2.8)

Since the y-axis velocity is constant, the final X-space representation is:

 xVyxX ,, (2.9)

Using the state transition equation 2.4, the differential constraints can be determined.

This function will be characterized while implementing our motion planning algorithm.

And since there is no obstacle, the X-space is the collision free space, Xfree.

3.2.2 Single Camera with Obstacles Case

In this case, we have a single camera and static obstacles that are located at specified

positions of the environment. The X-space representation of the camera is same as the

single camera without obstacle case. The only difference is the obstacle region because

of having the static obstacles in the environment and since we use kinodynamic motion

planning, it is necessary to define the collision free path in X-space. For this definition,

we firstly find the region of inevitable collision and remove it from the state space. An

example of single camera with obstacle case in figure 15 represents the definition of

collision free path.

 25

Vx1

Vy

90

90 90

90

Vx1

Vy

Figure 15: The Definition of Collision Free Region in Single Camera with Obstacle

Case: The single camera with obstacle case is on the left and black area is the obstacle.

The collision free region is represented on the right, and the gray and white areas are

the region of inevitable collision and the collision free region respectively.

In this example of a single camera with obstacle case, we give just an illustration of the

region of inevitable collision by considering the dynamic constraints of the camera.

Since the camera can move laterally with a constant y-axis velocity, it can escape from

collision by accelerating to left or right directions when it is under the obstacle and

stopping the lateral motion when it moves towards the left and right sides of the

obstacle, so the possible inevitable collision region can be represented as gray areas in

figure 15, but the inevitable collision region depends on the current configuration of the

camera that includes the position and x-axis velocity, and the computation of this

region will be explained in chapter 4.

3.2.3 Multiple Camera without Obstacle Case

This case is the original configuration of multiple camera inspection problem in which

there exists multiple camera and no static obstacle as shown in figure 16.

 26

Vx1

Vy

x-axis

y-axis

Multiple Camera Case

...
Vx2 Vxn

Figure 16: Multiple Camera Case

Using the same constraints in the single camera case and adding multiple camera to the

environment, the C-space representation is given as below:

 yxxxC n ,,....,, 21 (2.10)

By adding the time derivatives of configurations and removing the constant ones that

are y-axis velocities, X-space is expressed as:

 xnnxx VxVxVyxX ,,....,,,,, 2211 (2.11)

And the differential can be defined as equation 2.4.

Although, there is no static obstacle in this case, the dynamical obstacles arise from the

possibility of the collision between cameras. We consider these obstacles as an

inevitable collision region between cameras that is illustrated by an example of two

cameras and no obstacle case in figure 17.

 27

Vx1

Vy

Vx2

Figure 17: The Representation of Dynamical Obstacles: These obstacle regions are

considered as inevitable collision region between cameras and represented by gray

areas.

In this example, the stopping distance of a camera before collision is determined by

assuming that it moves with the resultant velocity of the cameras and other camera is a

static obstacle. This defines the inevitable collision region and so the dynamical

obstacles. We find these regions for each camera with respect to its neighbor cameras,

and use for collision avoidance at each state of motion planning.

3.2.4 Multiple Camera with Obstacles Case

In this case, there are multiple camera and static obstacles in the environment and the

formulation is same as the multiple camera without obstacle case except the X-space

representation of the obstacle. The obstacle in X-space is the region of inevitable

collision in which the camera is in collision or cannot do anything to avoid collision

with static obstacles (or other cameras) as shown in figure 18.

 28

Vx1

Vy

90

90 90

90

Vx2 Vxn

...

Figure 18: The X-space Representation of Obstacle in Multiple Camera with

Obstacle Case: Gray areas are the region of inevitable collision region where the

camera is in collision or cannot do anything to avoid collision with static obstacles (or

other cameras)

The obstacle in X-space for this case can be considered as the combination of obstacles

in single camera with obstacle case and multiple camera without obstacle case. For

each camera, the region of inevitable collision with respect to the static obstacles and

neighbor cameras are computed at each state of motion planning and the collision free

region is found by extracting it from state space.

3.2.5 Extended Case (Future Work)

We consider an extended case of multiple camera inspection as a future work to show

that our problem in this study can be applied to more generic robotic applications. In

this case, the cameras have variable y-axis velocities as in x-axis and can move in x and

y-axis independent of other cameras through the environment with obstacle as shown in

figure 19.

 29

Vx1

Vyn

Vx2 Vxn

...
Vy2Vy1

Xobs

Xobs

Figure 19: The Extended Case: It consists of multiple camera that move

independently with variable x-axis and y-axis velocities in the environment with

obstacle.

The C-space representation can be expressed as:

 nn yxyxyxC ,,....,,,, 2211 (2.12)

Since the cameras can also move independently in y-axis, new „y‟ constraints are

included in the representation and by adding the time derivatives of configurations; X-

space is given as:

 ynxnnnyxyx VVyxVVyxVVyxX ,,,,....,,,,,,,, 22221111 (2.13)

The obstacle representation in X-space consists of the same regions as in the multiple

camera with obstacle case. Only the shape of this region can be changed because of the

capability of having more DOF. So, it requires a complex collision avoidance algorithm

that is difficult to design, but with an efficient collision avoidance algorithm, the

extended case can become more successful in finding defects than the original case of

multiple camera inspection.

 30

3.3 Problem Parameters

In this section, the parameters of our problem that define the constraints of multiple

camera inspection with their values are given in table 1 below:

Table 1: Problem Parameters

Problem Parameters Values

Plate size (x, y): 1.8 m, 2 m

Number of review cameras: 1-6

Number of detection/review passes: 1-5

Maximum allowable review module x-axis acceleration: 8 m/s
2

Maximum allowable review module x-axis velocity: 0.5 m/s

Material y-axis constant velocity: 0.220 m/s

Number of defects: 50-150.

 31

CHAPTER 4

4 SOLUTION APPROACH…

4.1 Introduction

In this study, our aim is to make kinodynamic motion planning of the review cameras

in a scanner type inspection device that is multiple camera industrial inspection to reach

as much defects as possible over inspected surface while avoiding obstacles. To

achieve this aim we firstly make a literature survey about kinodynamic motion planning

and this survey shows an open problem that is to find a time optimal solution for

kinodynamic motion planning problems. The solution to this problem is also proven to

be NP-hard. This motivates us to research on the probabilistic approximate methods

that are RPPs, PRMs and RRTs to find kinodynamic solutions that are close to optimal.

And we select to use the RRT algorithm in our approach because of computationally

hardness of other methods, and nice properties and promising results of RRT that will

be told in more details.

The roadmap of this chapter is as follows: In section 4.2, we will tell our solution

approach and motivation. Then we will explain the implementation of our approach by

giving the implementation issues and solutions, the assumptions and the description of

the main algorithm with the definition of functions and the algorithm parameters in

section 4.3.

 32

4.2 Our Approach and Motivation

Our solution approach for kinodynamic motion planning problem of multiple camera

inspection is to design an RRT based motion planner to find solutions that are good

enough as long as they satisfy all of the constraints. There are several reasons why we

have selected the RRT technique beside other techniques, RPP and PRM. The primary

reason is that the techniques RPP and PRM do not naturally extend to general problems

that include differential constraints and obstacles [10, 11, 12, 13]. As mentioned in

chapter 2, RPP is heavily dependent on the choice of good navigation function that will

be a difficult task in high dimensional spaces and in PRM the connection problem can

be as difficult as designing a nonlinear controller for nonholonomic and dynamical

systems. This represents that RPP and PRM are not suitable for complex kinodynamic

motion planning problems.

However, RRT is specifically designed for this kind of problems with high degrees of

freedom and it rapidly and uniformly explores the state space in incremental fashion

instead of having pre-processing steps like in RPP and PRM. RRT has also several

properties that make it suited for wide variety of planning problems as proposed in [10].

The key property of RRT is that it searches the state space by biasing toward

unexplored regions. Another property is that RRT is like a path planning module,

which can be adapted into many application of motion planning. Also RRT is a simple

algorithm that is easy to make its performance analysis. These nice properties of RRT

provide promising results in holonomic, nonholonomic and kinodynamic planning

problems of up to twelve degrees freedom as told in [10, 11]. Therefore we are

motivated to use the RRT technique for the kinodynamic motion planning problem in

this study. We have designed an RRT based motion planner by adapting the basic RRT

algorithm to our problem and resolving the issues of RRT to improve its performance

that will be told in the following section.

 33

4.3 Implementation

In implementation of RRT based planner, we need to adapt the RRT algorithm in

literature to kinodynamic motion planning problem of multiple camera inspection

because of some challenges that are multiple initials and goals, and the possibility of

collision between cameras. For multiple goal challenge, it is necessary to find a final

path that passes through multiple goals, and we cannot achieve to connect multiple

goals by using the original RRT algorithm, then we make some changes on this

algorithm and discover the multiple RRT idea, in which multiple trees are created to

make connections between goals. And the multiple initials are added to this algorithm

by increasing the dimensions of the points in state space as defined in chapter 3. In

collision avoidance part of this algorithm, the collision regions between cameras are

included in the region of inevitable collision and by removing this region; we find the

collision free region. And motion planning involves finding a feasible path that lies

entirely in collision free region and passes through as much defect POIs as possible.

However we come upon some issues in the performance of this planner that are related

to the RRT algorithm. And we make some research to find methods to resolve these

issues as mentioned in chapter 2. In the following section, we will tell how to use these

methods to improve the performance of our model and give some results to evaluate

these methods.

4.3.1 Implementation Issues and Solutions

While analyzing our RRT based planner, we see that there are some issues caused by

the drawbacks of the RRT algorithm. The main issue is the performance dependence of

RRT on sampling. The generated samples of Uniform Random Sampling do not cover

the state space completely and in some cases we cannot reach solutions. Also the

solutions are very inconsistent that is a big problem of randomization. Therefore, we

search for a sampling technique that provides low dispersion and low discrepancy, and

find a quasi random sequence, Halton as told in chapter 2. It is useful for incremental

 34

sampling techniques like RRT that can be seen from the results of our simulations in

figure 20.

Figure 20: Uniform Random Sampling vs. Halton Sampling (from our

simulations): 1000 (up) and 2000 (down) iterations of RRT in 100x100 map.

This figure presents a comparison between Uniform Random and Halton samplings. It

is seen that RRT does not grow to the edges of the map, while using Uniform Random

sampling and there come out spaces in these places, but in Halton sampling, RRT

grows towards every places of map and a resolution complete sampling can be obtained.

Also there is no inconsistent solution in Halton Sampling since it uses a deterministic

method to generate samples. So we reach a solution with a same number of samples

 35

and the computation time does not change. This shows that using Halton Sampling

improves the performance of our algorithm.

Another important issue is the slow rate of RRT convergence that is caused by slow

growth of RRT. To resolve this issue, we use the connect operation, in which generated

samples are directly connected to the nearest points in RRT and the edges are divided

into vertices to increase density. This is shown in figure 21 that is taken from our

simulation result of the comparison between extend operation and RRT-connect

operation.

Figure 21: Extend Operation vs. Connect Operation (from our simulations): 100

(up) and 500 (down) iterations of RRT in 100x100 map.

 36

In this figure, we see that connect operation improves the growth of RRT and the

density of RRT is increased, so it converges the state space rapidly and the computation

time to reach goals is decreased.

Also, we find other ways that are Goalbiased sampling, efficient choice of metrics and

efficient nearest neighbor searching to increase the rate of RRT convergence.

Goalbiased sampling, in which samples are biased towards goals, accelerates the RRT

growth to find solution. We implement this sampling technique by using the Gaussian

distribution that is biased towards goals with a specified standard deviation. A 2D

Goalbiased behavior is illustrated in figure 22.

Figure 22: Halton Sampling vs. Goalbiased Sampling (from our simulations): 100

(up) and 500 (down) iterations of RRT in 100x100 map.

Halton Sampling

Goalbiased Sampling

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Halton Sampling, 100 iterations

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Halton Sampling, 500 iterations

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Goalbiased Sampling, 100 iterations

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Goalbiased Sampling, 500 iterations

 37

As it is seen in figure 22, RRT grows faster towards goal in Goalbiased sampling and

this increases the rate of RRT convergence, but in the environment with obstacles RRT

can get stuck. To solve this problem, we increase the variance of Goalbiased sampling

and also we define new sampling techniques that are the percent and the interleaving

mixture of Halton and Goalbiased samplings that will be told later in more details. In

our algorithm, we implement Euclidean metrics and original nearest neighbor searching,

in which all points in RRT are searched to find nearest point, without using any

methods of efficient metrics design and efficient nearest neighbor searching, because

the RRT convergence rate is enough to reach solution for our problem, and we consider

the efficiency on these parts as a future work.

Other issues of implementation are about collision detection and solution path. For

collision detection, directly removing the generated sample in the obstacle region is an

inefficient method. This method increases the time to find solution and making

impossible to reach the goals near obstacle. And then we implement the Stopping-

configuration procedure in which the edges are stopped near the obstacle region to

improve the collision detection algorithm. Also, there is a problem that the generated

solution path is not optimal. We add a post processing step, in which solution path is

smoothed by applying the inputs that are close to optimal and satisfying the global

constraints. And this is illustrated in figure 23.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Final Path

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
Smoothed Final Path

Figure 23: An Example of Smoothing Final Path: The plot on the left shows the final

path of RRT and the smoothed path is given in the right-hand plot.

 38

As we see in this example, the RRT algorithm provide an undesired path and arrival

velocities is in one direction through the path, because while RRT is growing in state

space, it has a tendency to select velocity samples in one direction that is a side effect

of randomization. And by using the post processing step, we smooth the final path that

is shown in the right-hand plot of figure 23, so “near optimal” trajectory is obtained.

4.3.2 Assumptions

Before constructing the algorithm for our RRT based motion planner, we consider

some assumptions that are given below:

 Inspection instrument performs one pass over scan area starting from one side

(bottom in experiments).

 Y-axis velocity is always constant.

 All defect POIs are assumed to be known at the beginning of the motion

planning.

 Review cameras image defects within a tolerance area (assumed to “catch” the

defect once in that area).

 X-axis settling time and auto-focusing allowance times of review cameras are

not considered.

4.3.3 The Description of the Main Algorithm

As we told before, we consider implementing the multiple camera inspection

instrument in four cases that are single camera without obstacle and with obstacle; and

multiple camera without obstacle and with obstacle. We define constrains for these

cases that are given in the problem formulation, chapter 3 and then we construct a main

algorithm that satisfies these constraints. In this algorithm, the key idea is to use

multiple RRTs that grow independently. Since our problem involves capturing multiple

goals, we need to find a final path that passes through multiple goals. And using one

search tree does not satisfy this, because a tree has tendency to reach a sample point

from its nearest branch and two goals at different location cannot be connected through

 39

a continuous path, so we use the multiple RRTs technique in the main algorithm as

shown in figure 24.

texttext

Initial

state

goal1

goal2

goal3

goal4

Initial

state

goal1

goal3

goal4

text

Initial

state

goal1

goal3

goal4

goal2 goal2

Figure 24: The Multiple RRTs Technique: In this technique, when tree is reached to

a goal configuration, a new tree is started to grow from this configuration and so the

connection between goals is defined.

In this technique, a tree grows starting from initial configurations as defined in the RRT

algorithm of literature. When a goal configuration is reached, this configuration is taken

as a root for a new tree and also the number of reached goals until this root is recorded.

At each state of algorithm, a sample is generated in the state space and the nearest tree

grows towards this sample. Trees are independent from each other and are aimed to

reach goals that are above their roots, while satisfying the constraints of the

environment and avoiding obstacles. Finally the connection between goals and initial

configuration is defined. We implement this technique in the main algorithm and the

flowchart of the main algorithm is given in figure 25.

 40

Reset

start

i=1

i <

MAX_ITERATI

ON

j = 1

true

treein =

treearray(j)

SAMPLE_GEN

j <

CURR_TREE_

CNT

true

CURR_BRNCH_CNT <

MAX_BRNCH_CNT

NEAREST_N

EIGHBOUR

true

RRT
Tree_array =

tree_out

REACHED_GOAL > 0

&

CURR_TREE_CNT

<MAX_TREE_CNT

++j false

false

Take this

configuration as a

root for a new tree

and record reached

goals at this root

true

++ifalse

Find the root that has

maximum number of

goals and backtrack to

find solution

Smooth RRT path

and plots
Stop

false

Record nearest tree

and its configuration

Figure 25: The Flowchart of the Main Algorithm

In this algorithm, the kinodynamic motion planning of multiple camera inspection is

performed and no motion takes place before all planning is finished. As seen in figure

25, the algorithm starts with an initial reset that involves defining the dimension and

variables of a configuration in RRT by using the X-space representation of the camera

as told in chapter 3, and initial configuration, and other constant and variable

 41

declarations. Then it enters into a main for loop and in this loop firstly a sample point is

generated in state space by using SAMPLE_GENERATOR function. Another for loop

is performed to find the nearest tree to the generated sample by calling

NEAREST_NEIGHBOR function for each tree in state space. And the nearest tree is

selected to grow by using RRT iteration function. This function attempts to connect its

nearest point to the sample while satisfying the kinematic and dynamic constraints of

cameras and avoiding collision with obstacles that are provided by the functions

VELOCITY_CHECK and MAP_CHECK. If a goal configuration is reached that is also

detected by the MAP_CHECK function, this configuration is considered as a root for a

new tree and the number of reached goals until this root is recorded. Also, the number

of trees and branches are limited to ensure low computation time that will be shown

and discussed in the experimental results, chapter 5. In the end of main loop, we obtain

a final tree that consists of multiple trees with roots at specified goal configurations and

has information about the number of reached goals at these roots. This is illustrated in

the following result from our experiments for the single camera with obstacle case.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
The Final Tree

Figure 26: An Example of Final Tree Projected to 2D: It is for single camera with

obstacle case. The map includes 10 defects and reached ones are shown by circles

 42

This figure shows that the final tree defines the connection between the goals in the

environment and using this final tree, we find the solution path by backtracking from

the root that has the maximum number of reached goals to initial configuration. In this

path, the prioritization of goals can be easily handled by defining defect values, but we

consider that all defects have same weights in the experiments of this study. Then the

solution path is smoothed to define nearly optimal path and this provide the final

solution path for our problem as shown in figure 27.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
The Final Smoothed Path

Figure 27: An Example of Final Smoothed Path: It is the smoothed solution path for

the example in figure 26.

So the kinodynamic motion planning of our problem is obtained and the review

cameras of multiple camera inspection are moved through this solution path to reach as

much defects as possible. In the following sections, the functions of this algorithm will

be told in details by giving their flowcharts.

 43

4.3.3.1 The Definition of Functions

The main algorithm consists of some functions that are MULTIPLE_RRT,

NEAREST_NEIGHBOR, SAMPLE_GENERATOR, RRT, MAP_CHECK and

VELOCITY_CHECK. These functions have a hierarchic relation as shown in figure 28

with their inputs and outputs.

MAP_CHECK

Inputs:

Map_matrix

Problem_param

Edge_configs

Goal_detect_tolerance

Outputs :

Evaluated_edge_configs

RRT

Inputs:

Sample_config

Near_config

RRT_in

Map_matrix

Problem_param

Outputs :

RRT_out

#_of_reached_goals

MULTİPLE_RRT

Inputs:

Max_İteration_number

RRT_in

Map_matrix

Sampling_param

Problem_param

Max_#_of_tree

Max_#_of_branch

Goal_detect_tolerance

Outputs :

#_of_iteration_goals

Final_RRT

Iteration_time

Solution path

VELOCITY_CHECK

Inputs:

Problem_param

Near_config

Sample_config

Outputs :

Grow_en

NEAREST_NEIGHBOR

Inputs:

Sample_config

RRT_in

Outputs :

Near_config

SAMPLE_GENERATOR

Inputs:

Sampling_param

Problem_param

Outputs :

Sample_config

Figure 28: The Hierarchic Representation of Functions in the Main Algorithm

The top of this hierarchic structure is the MULTI_RRT function that carries out the

main algorithm by using the child functions and these functions are described in the

following sections.

 44

4.3.3.1.1 The MULTI_RRT Function

The main algorithm is executed in the MULTI_RRT function by using child functions

as shown in figure 28. So it is the main function of the algorithm; and the inputs and

outputs can be described as follows:

 Inputs:

o Max_iteration_number: defines the maximum number of iterations of

the main for loop.

o RRT_in: is the RRT input that is initially the configuration of initial

state.

o Map_matrix: defines the configuration of goals and obstacles in a

specified map.

o Sampling_param: represents the sampling parameters that include the

maximum standard deviation, the percentage of Halton Sampling and

the number of repetition of Halton Sampling. These parameters will be

described later.

o Problem_param: represents problem parameters as defined in the end

of chapter 3.

o Max_#_of_tree: is a limit to the number of generated trees.

o Max_#_of_branch: is a limit to the number of branches of each tree.

o Goal_detect_tolerance: is the tolerance distance to detect a goal.

 Outputs:

o #_of_iteration_goals: defines the maximum number of reached goals in

the end of main for loop.

o Final_RRT: is the generated final RRT that consists of multiple RRTs

and includes the number of reached goals in their roots.

o Iteration_time: defines the spent time in the end of main for loop.

o Solution_path: is the smoothed final path.

 45

4.3.3.1.2 The NEAREST_NEIGHBOR Function

In this function the nearest neighbor configuration in RRT to sample configuration is

determined. Its inputs and outputs are given below:

 Inputs:

o Sample_config: is the configuration of generated sample.

o RRT_in: is the RRT input.

 Outputs:

o Near_config: is the nearest configuration in RRT to sample.

This function firstly finds the points in RRT that are below the sample configuration

since the inspection instrument scans the surface with a constant y-axis velocity and

RRT cannot grow downwards. Then by searching these points, the nearest

configuration to the sample is determined.

4.3.3.1.3 The SAMPLE_GENERATOR Function

This function generates a sample point in the state space according to the sampling

techniques Uniform Random, Goalbiased, Halton, the percent mixture of Halton and

Goalbiased, and the repeat mixture of Halton and Goalbiased samplings. The inputs and

outputs of this function are given as follows:

 Inputs:

o Sampling_param: represents the sampling parameters that include the

maximum standard deviation, the percentage of Halton Sampling and

the number of repetition of Halton Sampling.

o Problem_param: represents problem parameters.

 Outputs:

o Sample_config: is the configuration of generated sample.

The sampling technique in this function is selected by using a case function as shown in

its flowchart.

 46

Start

Stop

Sampling == 1 Uniform_Sampling

Halton_Sampling

Goalbiased_Sampling

The Percent Mixture of

Halton & Goalbiased

Sampling == 2

Sampling == 3

Sampling == 4

Sampling == 5

false

false

false

false

false

true

true

true

true

true
The Interleaving Mixture

of Halton & Goalbiased

Figure 29: The Flowchart of the SAMPLE_GENERATOR Function

One of the sampling techniques and its corresponding parameters are chosen according

to the case of the experiment. This function is developed to make comparison between

the sampling techniques that we have considered in this study to improve the main

algorithm. And in the following sections these sampling techniques are described in

details.

 47

4.3.3.1.3.1 The Uniform Random Sampling

In this sampling technique, the uniformly distributed samples are used and in our

algorithm we use the MATLAB function “rand” to generate this kind of samples and it

has no parameter. This technique is suggested by LaValle [10, 11] to use in the RRT

algorithm, but we have some problems about the resolution of samples in the state

space and inconsistent solutions as told in chapter 2. And we try to solve this by using a

low discrepancy sampling method, Halton Sampling.

4.3.3.1.3.2 The Halton Sampling

This is a quasi-random sequence that uses a deterministic method to generate low

discrepancy samples as told in chapter 2. We consider this sampling technique to get

rid of low resolution and high inconsistency of Uniform Random sampling and as it is

seen in section 4.3.1, it is useful for generating resolution complete samples, but it

reaches a solution in slow rate and so we look for another sampling technique that

provides faster solutions and find Goalbiased Sampling that is described below.

4.3.3.1.3.3 The Goalbiased Sampling

This sampling technique is proposed by LaValle to increase the convergence rate of

RRT. In this technique, the samples are biased towards the goals in the environment.

For our problem, we use Gaussian random distribution to bias the sample towards the

position of goals in the state space with a specified standard deviation and other

variables in the configuration of sample such as the velocities are generated using

Halton sampling since these ones do not affect the goal detection that will be told in the

definition of MAP_CHECK function. Starting from bottom to top, the samples are

biased towards each goal for a number of times with gradually decreasing its standard

deviation. And so we define the maximum standard deviation as a parameter for this

sampling technique.

 48

4.3.3.1.3.4 The Percent Mixture of Halton and Goalbiased

This is a mixture technique of Halton and Goalbiased samplings. In this technique, the

first part is Halton sequence and the other part is Gaussian sequence that is biased

towards goals. This technique is aimed to be used in the environment with obstacles,

because while analyzing Goalbiased sampling in this kind of environments, we see a

problem about being stuck in an obstacle region and so an initial Sampling technique is

necessary before Goalbiased sampling to scatter the samples in the state space and

decrease the possibility of encountering this problem. We use Halton sampling for this

technique and define the percent mixture of Halton and Goalbiased samplings. It has

some parameters that are the maximum standard deviation for Goalbiased sampling,

and the percentage of Halton sampling.

4.3.3.1.3.5 The Interleaving Mixture of Halton and Goalbiased

This is another mixture technique of Halton and Goalbiased samplings that also aims to

avoid getting stuck in obstacle region as the percent mixture. In this technique, firstly

samples are generated by using Halton sampling for a number of times and then

Goalbiased sampling for once, and this is repeated. And its parameters are the

maximum standard deviation and the number of repetition of Halton sampling that

defines how many times Halton sampling is applied in the first part of this mixture.

4.3.3.1.4 The RRT Function

This function attempts to construct an RRT while satisfying the constraints and

avoiding the obstacles. The input and outputs of this function is given below:

 Inputs:

o Sample_config: is the configuration of generated sample.

o Near_config: is the nearest configuration in RRT to sample.

o RRT_in: is the RRT input.

 49

o Map_matrix: defines the configuration of goals and obstacles in a

specified map.

o Problem_param: represents problem parameters.

 Outputs:

o RRT_out: is the RRT output.

o #_of_reached_goals: defines the number of reached goals when the

RRT function is executed.

And the flowchart of this function is given as follows:

Start

Stop

VELOCITY_CHECK

Grow_en == 1

Form an edge between sample

and near config and divide into

intermediate points

MAP_CHECK

Add Evaluated_Edge

to RRT and compute

reached goal

true

false

Figure 30: The Flowchart of the RRT Function

 50

As shown in the flowchart, firstly the VELOCITY_CHECK function is called to check

if the motion from the nearest configuration to sample configuration satisfies the

velocity constraints that are described in chapter 3. If this is satisfied, an edge is formed

between these configurations and intermediate points are inserted to provide denser

RRT. These points are checked for collision and goal detection in MAP_CHECK to

evaluate the edge. Then this evaluated edge is added to input RRT to form the output

RRT and the number of reached goals at the end of constructing this edge is computed.

4.3.3.1.5 The VELOCITY_CHECK Function

This function checks the velocity constraints of the motion from the nearest

configuration in RRT to the sample configuration before the construction of an edge.

The inputs and outputs of this function are given below:

 Inputs:

o Problem_param: represents problem parameters.

o Sample_config: is the configuration of generated sample.

o Near_config: is the nearest configuration in RRT to sample.

 Outputs:

o Grow_en: is a flag that enables the construction of an edge.

In this function, we examine if a camera can move from the position and velocity of the

nearest configuration to the position and velocity of the sample configuration. To do

this, firstly the spent time of this motion is computed by dividing the y-axis distance

between these configurations with the constant y-axis velocity. And the velocities of

nearest and sample configurations are taken as initial and final velocities respectively.

The spent time and the velocities are used to determine the maximum distances that can

be travelled in the directions of positive and negative x-axes by considering that the

camera moves in these directions with maximum acceleration, so the lateral range

between the nearest and sample configurations is found that is also illustrated in figure

31.

 51

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.4

-0.2

0

0.2

0.4

0.6
Maximum Distance in x-axis

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.5

0

0.5

Maximum Distance in (-x)-axis

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

time(s)

V
x

The Limits of Velocity Profile

Figure 31: An Example of Lateral Range Computation: The limits are determined

by moving in the directions of x and -x axes with maximum acceleration and the

maximum distances in these directions are computed to find the lateral range. The x-

axes velocities are limited.

In figure 31, firstly the lateral limits are found by moving in the x and -x axes directions

with maximum acceleration and by computing the lateral distances in these directions,

lateral range between a sample and nearest point to this sample is obtained. If the lateral

motion between these configurations is in this range, connection is permitted to form an

edge and this edge is divided into intermediate points to be checked in the

MAP_CHECK function that is described in the following section.

4.3.3.1.6 The MAP_CHECK Function

This function provides obstacle avoidance and goal detection and it has some inputs

and outputs that are given below:

 Inputs:

o Map_matrix: defines the configuration of goals and obstacles in a

specified map.

o Problem_param: represents problem parameters.

o Edge_configs: is an array of intermediate points that form an edge.

o Goal_detect_tolerance: is a tolerance distance to detect goals

 52

 Outputs:

o Evaluated_edge_configs: is the evaluated edge in which the points in

the obstacle region are removed and the goal configuration is defined if

it is detected.

And its flowchart is given as follows:

Evaluate edge according to the

stop-config procedure and the

region of inevitable collision

i=1

i < # of GOAL
EDGE_CONFIG <

GOAL_TOLERANCE
++EDGE_CONFIG_VALUE

Start

++i

Using this information

create evaluated edge

Stop

true true

false

false

Figure 32: The Flowchart of the MAP_CHECK Function

Firstly, it takes an array of points, edge_configs that represents the edge between the

nearest point in RRT and sample point. And the region of inevitable collision is defined

for the configuration of each point in edge and this region includes the locations where

a camera collides with obstacle (or other cameras) or can‟t avoid collision. We consider

 53

three cases for the definition of inevitable collision region about an obstacle that is

shown in figure 33.

1

Xobs

ymax

ymin

xmin xmax

32

1

Xobs 32

Figure 33: The Cases for the Region of Inevitable Collision: Case 1 represents a

camera that is under the obstacle, in case 2 and 3 camera is on the left and on the right

respectively with the velocities towards obstacle and these cases are the inevitable

collision region if the escape motion profiles in the right-hand drawing cannot be

followed.

These cases occur when the camera is under the obstacle, and on the left and on the

right with the velocities towards the obstacle. And to determine the inevitable collision

region for each configuration of the points in edge_configs about an obstacle, we check

if the camera in these cases can escape from collision by following the motion profiles

in the right-hand drawing of figure 33. If these profiles cannot be followed, we consider

that camera cannot do anything to avoid colliding with obstacle and so its configuration

is in the inevitable collision region.

In case 1 the camera can escape from collision by accelerating in the directions of x and

-x axes since its y-axis velocity is constant. For this escape motion, we use the motion

profile that is formed by increasing the x-axis velocity with maximum acceleration in

these directions as illustrated in figure 34.

 54

0 0.05 0.1 0.15 0.2 0.25

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
x

t

0 0.05 0.1 0.15 0.2 0.25

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

t

V
x

Figure 34: An Example of Velocity/time Profiles for Case 1: The profiles on the left

and on the right represent motions with maximum acceleration in direction of x and -x

axis respectively. The maximum time is the spent time to reach ymin of obstacle and

also the velocity is limited to the maximum x-axis velocity.

These plots in figure 34 show the escape motions from collision by using the possible

lateral motion capability of the camera. For case 2 and 3, collision can be avoided by

stopping the lateral motion as shown in figure 35.

0 0.01 0.02 0.03 0.04 0.05

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
x

t

0 0.01 0.02 0.03 0.04 0.05

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

V
x

t

Figure 35: An Example of Velocity/time Profiles for Case 2 and 3: Stopping lateral

motions with maximum acceleration for case 2 and 3 respectively.

In this profile, it is considered to decrease the lateral velocity with maximum

acceleration to stop before colliding with obstacle. And these escape motions from

collision are used to see whether the camera is in the inevitable collision region or in

the free region. To check the collision between cameras, we consider that one of the

cameras is a static obstacle and the other camera moves towards this obstacle with

 55

resultant velocity, and the motion profiles of case 2 and 3 are used to define the

inevitable collision region. So the free region is determined by removing the sum of all

inevitable collision regions. Then the points of edge that are in the region of inevitable

collision are removed by using the Stopping-configuration procedure that is defined in

chapter 2. So new edge is obtained which is in collision free region. Then goal

detection is performed on this new edge. In goal detection operation we compute the

distances between the points of new edge and the goals by considering their positions in

the state space, and if one of these distances is smaller than or equal to the

goal_detect_tolerance, this is taken as a goal configuration and the number of reached

goals are recorded. Finally evaluated_edge_configs is formed in which goal

configuration and the number of reached goals in this configuration is defined.

4.3.4 Algorithm Parameters

In this section, the parameters of the main algorithm with their values that are used in

our experiments are given below:

Table 2: Algorithm Parameters

Sampling Parameters Values

The maximum standard deviation: 0-0.2

The percentage of Halton sampling: %10-%100

The number of repetition of Halton sampling: 1-10

Other Parameters Values

The tolerance distance in goal detection: 0.01

The maximum number of trees: 30, 50, 100, 200, 500

The maximum number of branches: 30, 50,100, 500, 1000

The maximum number of iterations: 500, 1000, 2000.

Algorithm parameters consist of sampling parameters and other parameters as shown in

table 2. The sampling parameters are defined in the sampling techniques, Goalbiased

sampling, the percent mixture of Halton and Goalbiased samplings, and the interleaving

mixture of Halton and Goalbiased samplings. The maximum standard deviation is the

 56

limit for the standard deviation of Gaussian distribution in Goalbiased sampling. The

percentage of Halton sampling and the number of repetition of Halton sampling define

the amount of Halton sampling in the percent and interleaving mixtures respectively.

Other parameters involve the tolerance distance in goal detection, the maximum

number of trees and the maximum number of branches. The tolerance distance is an

assumption to define a tolerance area for goal detection. The maximum number of trees

and branches are considered to put limits to the number of trees in final tree and the

number of branches in each tree respectively. By using these parameters, we aim to

decrease the computation time without changing the solution that will be shown and

discussed in the experimental results.

 57

CHAPTER 5

5 EXPERIMENTAL RESULTS…

5.1 Introduction

In this study, our aim is to plan motion of the review cameras in multiple camera

industrial inspection to image as much defect locations as possible in a given time

while satisfying the kinematic and dynamic constraints of cameras and avoiding the

obstacles in the environment; and we consider this problem in four cases that are single

camera without obstacle and with obstacle, and multiple camera without obstacle and

with obstacle. And we implement an RRT based motion planner model for these four

cases based on the main algorithm that is described in chapter 4. In the following

sections, this model will be explained with its parameters, and also a deterministic

method that is used for comparison with our model will be described. Then the

performance measure of our experiments will be told and finally the results of these

experiments will be shown with some evaluations.

5.2 RRT Based Motion Planner Model

RRT based motion planner is developed by using the main algorithm, and four cases of

multiple camera inspection that are single camera without and with obstacle, and

multiple camera without and with obstacle are implemented in this model. The task of

this model is to make kinodynamic motion planning of the cameras in multiple camera

 58

inspection to reach as much defect POIs as possible in a given time. In this model, we

use different sampling techniques that are Uniform Random, Halton, Goalbiased, and

the percent and interleaving mixture of Halton and Goalbiased samplings to obtain the

best performance and analyze the parameters of this model to reach nearly optimal

solutions. And in the following section, these parameters are described.

5.2.1 Model Parameters

The parameters of our model that are considered in this study are given in table 3 with

the values that are used in the experiments:

Table 3: Model Parameters

Experimental Parameters Values

The number of Monte Carlo, N: 10

Problem Parameters Values

Plate size (x, y): 1.8 m, 2 m

Number of review cameras: 1-3

Number of detection/review passes: 1

Maximum allowable review module x-axis acceleration: 1-15 m/s
2

Maximum allowable review module x-axis velocity: 0.1-1 m/s

Material y-axis constant velocity: 0.01-0.5 m/s

Number of defects: 50

Sampling Parameters Values

The maximum standard deviation: 0-0.2

The percentage of Halton sampling: %10-%100

The number of repetition of Halton sampling: 1-10

Other Parameters Values

The tolerance distance in goal detection: 0.01

The maximum number of trees: 30, 50, 100, 200, 500

The maximum number of branches: 30, 50, 100, 500, 1000

The maximum number of iterations: 500, 1000, 2000

 59

5.2.2 Deterministic Method

In this section, we describe a deterministic method for motion planning of the cameras

in multiple camera inspection that has been designed and implemented by Afşar

Saranlı. This method uses a graph theoretic deterministic method to make motion

planning of the cameras. The map is divided into “bands” for each camera and the

collision between cameras is handled by using a post-processing step. And it may

require multiple re-planning to resolve collisions. The obstacles in inspection area

cannot be handled. Therefore, we consider this deterministic method as a “baseline” to

compare its result with the results of our model in the environments without obstacle,

and the results for these cases will be discussed to evaluate our model.

5.3 Performance Measure

We consider the following performance measures in the experiments of our model.

 The ability to generate samples in low dispersion and low discrepancy.

 The ability to avoid obstacles in the environment as well as dynamic obstacles.

 The maximum number of goals reached in a fixed time.

 The minimum time to reach fixed number of goals.

5.4 Experiments

In this section, we give the results of some experiments that are made to evaluate the

performance of our model according to performance measures in section 5.3 by using

different baselines and parameters.

5.4.1 The Optimization of the Sampling Parameters

In this experiment, we are aimed to optimize the sampling parameters, which are the

maximum standard deviation, the percentage of Halton sampling and the number of

 60

repetition of Halton sampling to provide the best performance in sampling techniques

that are Goalbiased, the percent mixture of Halton and Goalbiased, and the repeat

mixture of Halton and Goalbiased. The values of the parameters that are used in this

experiment are given as follows:

 Number of review cameras: 1

 Maximum allowable review module x-axis acceleration: 8 m/s
2

 Maximum allowable review module x-axis velocity: 0.5 m/s

 Material y-axis constant velocity: 0.220 m/s

 The maximum standard deviation: 0-0.2

 The percentage of Halton sampling: %10-%100

 The number of repetition of Halton sampling: 1-10

 The maximum number of trees: infinite

 The maximum number of branches: infinite

 The maximum number of iterations: 1000

 The values of other parameters are defined in table 3

And the maps that are used in this experiment are shown in figure 36.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Map 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Map 2

Figure 36: The Maps of the Experiment 1: Map 1 (left) and map 2 (right) includes 50

defects without and with obstacle respectively.

Firstly the maximum standard deviation is attempted to be defined for Goalbiased

sampling in map1 and the result for this case is given in figure 37.

 61

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
8

8.5

9

9.5

10

10.5

11

The Maximum Standart Deviation

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs The Maximum Standart Deviation

Using Goalbiased Sampling in Map 1

Figure 37: The Number of Reached Goals vs. the Maximum Standard Deviation

Using Goalbiased Sampling in Map 1

This figure represents the number of reached goals in map 1 that includes 50 defects

without obstacle for different values of the maximum standard deviation and as it is

seen in the result, the performance of our model increases when the maximum standard

deviation decreases and even becomes zero. And zero standard deviation means that the

sample is directly biased to the position of the goals in the state space and the other

variables such as velocities are generated by Halton sampling as defined in chapter 4.

This is an expected result for this case, because the goals are easily detected by using

this direct bias. Therefore we consider that Goalbiased sampling with no deviation is

the best choice for the environment without obstacle cases.

However, when we include the obstacle to the environment, we come upon a problem

that RRT can get stuck in obstacle region while it is growing in the state space. And

 62

this is illustrated by an example in which Goalbiased sampling without deviation is

used in map 2 as shown in figure 38.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 38: An Example of Stuck RRT: While using Goalbiased sampling without

deviation in an environment with obstacle, RRT gets stuck in obstacle region.

In this example, RRT gets stuck in obstacle region, because when RRT reaches the

obstacle region, it attempts to connect its nearest point to the samples that are biased

towards goals above the obstacles and collision avoidance algorithm stops the growth

of the RRT, so we get this result. To handle this problem, we consider that the standard

deviation should be increased to generate samples that are far from the obstacles and

this can decrease the possibility of getting stuck. Therefore, we examine the maximum

standard deviation of Goalbiased sampling in the environment with obstacle, map 2 as

shown in figure 39.

 63

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

The Maximum Standart Deviation

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs The Maximum Standart Deviation

Using Goalbiased Sampling in Map 2

Figure 39: The Number of Reached Goals vs. the Maximum Standard Deviation

Using Goalbiased Sampling in Map 2

This result shows that Goalbiased sampling in the environment with obstacle performs

well when its standard deviation is increased to a middle value, because in low

deviation, RRT gets stuck in obstacle region with high probability as mentioned before,

and in high deviation, the bias towards goals is vanished, so by using the deviation of

middle level as shown in figure 39, the best performance is obtained for Goalbiased

sampling with obstacle case. However this sampling technique is not sufficient to be

successful in the environments with more complex obstacles that will be shown in the

performance experiments. It is necessary to have a sampling technique that generates

samples with complete resolution as Halton sampling to avoid getting stuck in obstacle

and also biases these samples towards goals as Goalbiased sampling to increase the

RRT growth, and we design two mixture techniques, the percent and interleaving

mixture of Halton and Goalbiased samplings especially for the environments with

 64

obstacle. And in the following results, we try to determine the parameters of these

techniques.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2

2.5

3

3.5

4

4.5

5

5.5

6

% of Halton Sampling

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs % of Halton Sampling

Using the Percent Mixture of Halton and Goalbiased Sampling in Map 2

Figure 40: The Number of Reached Goals vs. the Percentage of Halton Sampling

Using the Percent Mixture Sampling in Map 2

In this figure, the performance of the percent mixture sampling in the environment with

obstacle is examined about different percentages of Halton sampling, and the maximum

standard deviation is taken as 0.1 that is defined in figure 39. And this result shows that

low percentage of Halton sampling gives the best performance, because this is enough

to scatter the samples in state space to escape from obstacle region and then Goalbiased

sampling is used to accelerate to reach solution. And As a result of the plot in figure 40,

in the percent mixture sampling, firstly we need to use about 25% Halton sampling and

then Goalbiased sampling to have the best performance. For the interleaving mixture,

its parameters are defined in figure 41.

 65

1 2 3 4 5 6 7 8 9 10
3

3.5

4

4.5

5

5.5

6

6.5

of Repetition of Halton Sampling

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs # of Repetition of Halton Sampling

Using Interleaving Mixture of Halton and Goalbiased Sampling in Map 2

Figure 41: The Number of Reached Goals vs. the Number of Repetition of Halton

Sampling Using the Interleaving Mixture Sampling in Map 2

For this case, the maximum standard deviation is also taken as 0.1 and we look for the

performance of the interleaving mixture about the number of repetition of Halton

sampling. It is seen that low repetition of Halton is the best choice for this sampling

technique as in the percent mixture, and the result in figure 41 shows that the optimum

value for the number of repetition of Halton sampling is 2 in the interleaving mixture

sampling technique. As a result of this experiment, the optimum values of sampling

parameters can be summarized as table 4.

 66

Table 4: The Optimum Values of Sampling Parameters

The Maximum

Standard

Deviation

The Percentage of

Halton Sampling

The Number of

Repetition of

Halton Sampling

Goalbiased

Sampling without

Obstacle

0 - -

Goalbiased

Sampling with

Obstacle

0.1 - -

The Percent

Mixture
0.1 0.25 -

The Interleaving

Mixture
0.1 - 2

And in the following experiments, we use the values in table 4 for the parameters of

these sampling techniques.

5.4.2 The Performance of Our Model

This experiment is carried out to define the performance of our RRT based motion

planner model for different sampling techniques and baselines, and find the best

performance for the cases of multiple camera inspection that we have considered in this

study. The values of parameters that are used in this experiment are given as follows:

 Number of review cameras: 1

 Maximum allowable review module x-axis acceleration: 8 m/s
2

 Maximum allowable review module x-axis velocity: 0.5 m/s

 Material y-axis constant velocity: 0.220 m/s

 The maximum standard deviation: 0, 0.1

 The percentage of Halton sampling: 0.25

 The number of repetition of Halton sampling: 2

 The maximum number of trees: infinite

 The maximum number of branches: infinite

 The maximum number of iterations: 2000

 67

 The values of other parameters are defined in table 3

In this experiment, we also use map 1 and 2 as shown in figure 36 and another

environment with more complex obstacle, map 3 that will be shown later. Firstly we

look for the number of reached goals in the environment without obstacle, map 1 for

different sampling techniques.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

of Iterations

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals in a Fixed # of Iterations in Map 1

Uniform

Halton

Goalbiased

The percent Mixture

The Interleaving Mixture

Figure 42: The Number of Reached Goals vs. the Number of Iterations in Map 1

As it is seen in this result, Goalbiased sampling is the best choice for the environment

without obstacle, since it biases towards goals and increases the rate of RRT

convergence, and when we compare the performance of Goalbiased sampling with the

deterministic method as told in section 5.2.2, we see that the deterministic methods

reaches 12 goals in map1 for same parameters and this shows that our model for this

case provides 92% performance of the deterministic method. And when we use map 2

to include obstacles, we get the result in figure 43.

 68

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

of Iterations

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals in a Fixed # of Iterations in Map 2

Uniform

Halton

Goalbiased

The percent Mixture

The Interleaving Mixture

Figure 43: The Number of Reached Goals vs. the Number of Iterations in Map 2

In this case, the standard deviation of Goalbiased sampling is increased to 0.1 as

defined in table 4 to avoid getting stuck in obstacle region. And once more we get

better performance while using Goalbiased sampling. The percent and interleaving

mixture techniques can reach this performance at high number of iterations, because

Halton sampling that are used in the first part of these techniques slows down to reach

goals while generating samples to cover whole state space. From this result, it can be

believed that using only Goalbiased sampling is better than using other techniques, but

when we include more complex obstacles as shown in figure 44, Goalbiased sampling

cannot be successful to escape from getting stuck, although its standard deviation is

increased.

 69

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Map 3

Figure 44: Another Map for the Experiment 2: It includes 50 defects with an

obstacle.

In figure 44, map 3 is represented that includes 50 defects and two obstacles in the

environment. These obstacles form a narrow passage and it difficult to grow RRT

through this passage. Goalbiased sampling cannot handle this and so we need to use the

mixture techniques. This is shown in figure 45 that is the analysis of the performance of

our model for different sampling techniques in map 3.

 70

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

of Iterations

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals in a Fixed # of Iterations in Map 3

Uniform

Halton

Goalbiased

The Percent Mixture

The Interleaving Mixture

Figure 45: The Number of Reached Goals vs. the Number of Iterations in Map 3.

In this result, Goalbiased sampling with a middle deviation is saturated to a specified

number of reached goals because of getting stuck in obstacle, but the mixture

techniques, especially the percent mixture give the best performance for this case and

this shows that these mixture techniques are more suitable for the environment with

obstacles than using only Goalbiased Sampling.

5.4.3 The Performance Dependence on Critical Parameters

In this experiment, we try to define the performance dependence of our model on

critical parameters that are the maximum x-axis velocity, the maximum x-axis

acceleration, y-axis constant velocity and the number of review cameras. To see this

dependence, we divide this experiment into four parts and in each part; the performance

of the system about one of these parameters is analyzed by assigning constant values to

 71

others. And the values of the common parameters that are used in four parts of this

experiment are given below:

 The maximum standard deviation: 0

 The maximum number of trees: infinite

 The maximum number of branches: infinite

 The maximum number of iterations: 500, 2000

 The values of other parameters are defined in table 3

For every part of this experiment, we use only Goalbiased sampling in map 1 that does

not include obstacle, and in the first part of the experiment, we examine the maximum

x-axis velocity by using the values of the critical parameters as given below:

 Number of review cameras: 1

 Maximum allowable review module x-axis acceleration: 8 m/s
2

 Maximum allowable review module x-axis velocity: 0.1-1 m/s

 Material y-axis constant velocity: 0.220 m/s

We determine the number of reached goals in 500 iterations by using these values of

the critical parameters and get the performance plot about the maximum x-axis velocity

as shown in figure 46.

 72

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

11

The Maximum Vx

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs the Maximum Vx

Figure 46: The Number of Reached Goals vs. the Maximum x-axis Velocity.

This result shows that in low velocities, the performance becomes worse as expected,

but in high velocities, it increases and becomes saturated at some point. This saturation

happens because of that the x-axis acceleration is still limited to a specified value and

the VELOCITY_CHECK function in the algorithm does not permit to reach high

velocities, so increasing the x-axis velocity to high values does not affect the

performance of our model for this case. Then we examine the effect of the maximum

acceleration on the performance of our model by using the values of the critical

parameters as follows:

 Number of review cameras: 1

 Maximum allowable review module x-axis acceleration: 1-15 m/s
2

 Maximum allowable review module x-axis velocity: 2.0 m/s

 Material y-axis constant velocity: 0.220 m/s

And the result of this experiment is given in figure 47.

 73

0 5 10 15
7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

12

The Maximum ax

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs the Maximum ax

Figure 47: The Number of Reached Goals vs. the Maximum x-axis Acceleration.

This shows that cameras can reach more defects when the maximum lateral

acceleration is increased since difficult motions can be easily handled. Another part of

this experiment is related with the y-axis velocity and the values of the critical

parameters are given below:

 Number of review cameras: 1

 Maximum allowable review module x-axis acceleration: 8 m/s
2

 Maximum allowable review module x-axis velocity: 0.5 m/s

 Material y-axis constant velocity: 0.01-0.5 m/s

According to these values, the performance plot about the y-axis velocity is obtained as

shown in figure 48.

 74

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
7

8

9

10

11

12

13

Vy

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs Vy

Figure 48: The Number of Reached Goals vs. the y-axis Velocity.

As expected, we can reach more goals in the environment by decreasing the y-axis

velocity. And this shows that the performance of our model can be improved by

varying y-axis velocity. This is considered in extended case in which the cameras can

move independently with variable y-axis velocities as told in chapter 3. We have not

implemented this case in our algorithm, but it is applicable by only changing the

configuration definition of the cameras and the region of inevitable collision since it

has more DOFs, and we consider this case as a future work. The final part of this

experiment is about examining the performance about the number of review cameras of

the system with the values of critical parameters below:

 Number of review cameras: 1-3

 Maximum allowable review module x-axis acceleration: 8 m/s
2

 Maximum allowable review module x-axis velocity: 0.5 m/s

 Material y-axis constant velocity: 0.220 m/s

 75

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20

of Iterations

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs # of Iterations

3 camera

2 camera

1 camera

Figure 49: The Number of Reached Goals vs. the Number of Iterations for

Different Number of Cameras.

In this result, we get the best performance while using the largest number of camera as

expected, and since this experiment is performed in the environment without obstacle,

its result can be compared with deterministic method for the same case. And this

comparison is given in table 5.

Table 5: The Comparison between Our Model and Deterministic Method

of Cameras
of Reached Goals

Our model Deterministic Method

1 11 12

2 15 22

3 20 32

 76

As shown in these results, the performance of our model is not good as the

deterministic method in multiple camera cases; this is because of increase on the

collision possibility between cameras. As the number of cameras is increased, the

generated samples have high probability to be in collision regions between cameras and

so many samples are removed in validation part of the RRT algorithm and cannot be

used, and if we increase the number of generated samples, we can reach the results of

multiple camera in deterministic method, but the most important advantage of our

model is the ability to handle obstacles and also dynamic obstacles that the

deterministic method cannot provide.

5.4.4 The Time Performance of Our Model

In this experiment, we attempt to improve the computation time of our model by using

two parameters that are the maximum number of trees and branches. In our algorithm,

new trees are created at every goal detection and each tree grows when it is the nearest

one to generated sample, so if we increase the number of defects in the environment

and iteration time, the computation time rises because of many trees and their branches

in the environment. So we consider a limit to the number of trees and branches to reach

the same number of goals in lower computation time. And we define the values of

parameters as follows.

 Number of review cameras: 1

 Maximum allowable review module x-axis acceleration: 8 m/s
2

 Maximum allowable review module x-axis velocity: 0.5 m/s

 Material y-axis constant velocity: 0.220 m/s

 The maximum standard deviation: 0

 The maximum number of trees: 30, 50, 100, 200, 500

 The maximum number of branches: 30, 50, 100, 500, 1000

 The maximum number of iterations: 1000

 The values of other parameters are defined in table 3

 77

We use only Goalbiased Sampling in map 1 for this experiment, and search for the

minimum time to reach fixed number of goals (10 for this experiment) by putting limits

on the number of trees and branches. Firstly we determine the successful cases in which

10 goals are reached as shown in figure 50.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

11

of Max Branches

#
 o

f
R

e
a
c
h
e
d
 G

o
a
ls

of Reached Goals vs # of Max Branches

max tree: 30

max tree: 50

max tree: 100

max tree: 200

max tree: 500

Figure 50: The Number of Reached Goals vs. the Maximum Number of Branches

Corresponding to Different Maximum Number of Trees.

In this plot, the number of reached goals is determined by changing the maximum

number of branches for 5 different cases in which different limits are put on the number

of trees. As it is seen, at low limits on the number of trees, desired number of goals

cannot be reached. But if we use sufficient limit on the number trees, we do not change

the performance of our model and then we examine the computation time for these

cases in the following figure.

 78

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

of Max Branches

T
im

e
(s

)

Time(s) vs # of Max Branches

max tree: 30

max tree: 50

max tree: 100

max tree: 200

max tree: 500

Figure 51: Time vs. the Maximum Number of Branches Corresponding to

Different Maximum Number of Trees.

When we consider the successful cases of this figure in which the maximum number of

trees are 100, 200 and 500, we see that as the maximum number of branches is

decreased, and the computation time to reach 10 goals decreases. Also the maximum

number of trees does not change the computation time for the successful cases. As a

result of these plots, the computation time of our model can be improved without

affecting the solution by only putting a low limit on the number of branches for each

tree.

 79

CHAPTER 6

6 CONCLUSION AND FUTURE WORKS…

When we search the available techniques to solve the kinodynamic motion planning

problem of the multiple camera industrial inspection, we see three important techniques

that are RPP, PRM and RRT. As we have mentioned before, the RPP and PRM

algorithms need complex computations when we include the differential constraints and

obstacles, and the RRT algorithm handles this difficulty. This is why we have used the

RRT algorithm in our approach.

In this study, we firstly described our environment and formulated the problem in four

cases that were single camera without obstacle, with obstacle, and multiple camera

without obstacle and with obstacle as told in chapter 3. We defined the main algorithm

in chapter 4 by adapting the RRT algorithm to our problem. Using this algorithm we

implemented a RRT based motion planner model that aimed to reach as much defect

POIs as possible over inspection area while satisfying the constraints of our problem

and avoiding collision with obstacles, and made some experiments on this planner to

analyze its performance. And we saw that the sampling techniques were very important

in the performance of the RRT based motion planning. Goalbiased sampling had better

performance than others in environments without obstacles, but when we added some

obstacles, there came out a problem that was the possibility of getting stuck in obstacle

region. We attempted to solve this problem by increasing the standard deviation, but in

the environment with complex obstacles that include narrow passages, only using

Goalbiased sampling was not sufficient to have good results. And this motivated us to

 80

define new sampling techniques for these cases that were the percent and interleaving

mixture of Halton and Goalbiased samplings, and the results of these techniques

showed us that they were successful in the environment with obstacles. Then we

examined the effect of the critical parameters on the performance of our model that

were the maximum x-axis velocity, the maximum x-axis acceleration, and y-axis

constant velocity as well as the number of review cameras, and we got the expected

results. When we compared our results with the results of deterministic method as

described in section 5.2.2, we saw that our model did not outperform the deterministic

method for no obstacle case; this was because of increase on the possibility of collision

between cameras. But our model was able to handle inspection area with obstacle as

well. Also we examined the time performance of our model and improved the

computation time by putting low limits on the number of branches for each tree.

As a future work, the sampling techniques in the RRT algorithm can be developed to

provide better performance. The sample generation is important task for an RRT based

planner since RRT is a sampling based algorithm and we should give importance to this

topic. Our algorithm can be improved by using efficient nearest neighbor search and

choosing efficient metrics that are important issues of the RRT algorithm. And the

collision avoidance algorithm can be developed by using data structures, and local

information of old branches and explored regions. Also we can attempt to implement

the extended case of multiple camera inspection that was told in chapter 3 and this case

is applicable to our algorithm by only changing the configuration definition and

collision avoidance part. We consider that this case has potential to provide better

results because of involving more DOFs and so we can show that our problem is

applicable to general problems in robotics.

 81

REFERENCES

[1] Ferguson, D., Stentz, A. “Any time RRTs”. IEEE international Conference on

Intelligent Robots and Systems, pp. 5369-5375. October, 2006.

[2] Ferguson, D., Kalra, N., Stentz, A. ”Replanning with RRTs”. IEEE

International Conference on Robotics and Automation, pp. 1243-1248. May,

2006.

[3] Ege, E., Saranlı A. “A New Approach to Increase Performance of RRT in

Mobile Robotics”. IEEE. METU. Ankara. 2006.

[4] Rodriguez, S., Tang, X., Lien, J., Amato, N. “An Obstacle Based RRT”. IEEE

International Conference on Robotics and Automation, pp. 895-900. May

2006.

[5] Atramentov, A., LaValle, S. M “Efficient Nearest Neighbor Searching for

Motion Planning”. IEEE International Conference on Robotics and

Automation, pp. 632-637. May, 2002.

[6] Yershove, A., LaValle, S. M. “Improving Motion Planning Algorithms by

Efficient Nearest Neighbor Searching”. IEEE Transactions on Robotics.

November, 2002.

[7] Lindemann, S. R., LaValle, S. M. “Steps toward Derandomizing RRTs”. 4
th

International Workshop on Robot Motion and Control. June, 2004

[8] Kuffner, J. J., LaValle, S. M. ”RRT-Connect: An Efficient Approach to

Single-Query Path Planning”. IEEE International Conference on Robotics and

Automation. 2000.

[9] Cheng, P., LaValle, S. M. “Reducing Metric Sensitivity in Randomized

Trajectory Design”. Computer Science Department, Iowa State University.

 82

[10] LaValle, S. M. “Rapidly-Exploring Random Trees: A New Tool for Path

Planning”. Report No. TR 98-11, Computer Science Department, Iowa State

University. 1998.

[11] LaValle, S. M., Kuffner., J. J. “Rapidly-Exploring Random Trees: Progress

and Prospects”. In Proc. Int. Workshop on Algorithmic Foundations of

Robotics (WAFR), pp. 45-59. 2000.

[12] LaValle, S. M., and Kuffner, J. J. “Randomized Kinodynamic Planning”. The

International Journal of Robotics Research, pp. 378-400. May, 2001.

[13] Kalisiak, M. “Kinodynamic Motion Planning with Viability Models”. A

Research & Thesis Proposal. Computer Science Department, University of

Toronto. 2007.

[14] LaValle, S. M. ”Planning Algorithms”. University of Illinois. Cambridge

University Press. New York. 2006.

[15] Donald, B., Xavier, P., Canny, J., Reif, J. “Kinodynamic Motion Planning”.

Journal of the ACM, vol. 40, pp. 1048-1066. 1993.

[16] Weiss, A., Saranlı A., Ghelman, E., Baldwin, D. US patent, no: US 7,137,309

B2. November, 2006

