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ABSTRACT 

 

COVERING SEQUENCES AND T, K-BENTNESS CRITERIA  

FOR BOOLEAN FUNCTIONS 

 

 

Kurnaz, Güzin 

Ph.D., Department of Electrical and Electronics Engineering 

                    Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

 

March 2009, 126 pages 

 

 

This dissertation deals with some crucial building blocks of cryptosystems in 

symmetric cryptography; namely the Boolean functions that produce a single-bit 

result for each possible value of the m-bit input vector, where m>1. Objectives in 

this study are two-fold; the first objective is to develop relations between 

cryptographic properties of Boolean functions, and the second one is to form new 

concepts that associate coding theory with cryptology. 

For the first objective, we concentrate on the cryptographic properties of Boolean 

functions such as balancedness, correlation immunity, nonlinearity, resiliency and 

propagation characteristics; many of which are depending on the Walsh spectrum 
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that gives components of the Boolean function along the direction of linear 

functions. Another efficient tool to study Boolean functions is the subject of 

covering sequences introduced by Carlet and Tarannikov in 2000. Covering 

sequences are defined in terms of the derivatives of the Boolean function. Carlet 

and Tarannikov relate the correlation immunity and balancedness properties of the 

Boolean function to its covering sequences. We find further relations between the 

covering sequence and the Walsh spectrum, and present two theorems for the 

calculation of covering sequences associated with each null frequency of the 

Walsh spectrum.  

As for the second objective of this thesis, we have studied linear codes over the 

rings Z4 and Z8 and their binary images in the Galois field GF(2). We have 

investigated the best-known examples of nonlinear binary error-correcting codes 

such as Kerdock, Preperata and Nordstrom-Robinson, which are 4Z -linear codes. 

We have then reviewed Tokareva‘s studies on Z4-linear codes and extended them 

to Z8-linear codes. We have defined  a new classes of bent functions. Next, we 

have shown that the newly defined classes of bent, namely Tokareva‘s k-bent and 

our t,k-bent functions are affine equivalent to the well-known Maiorana 

McFarland class of bent functions. As a cryptological application, we have 

described the method of cubic cryptanalysis, as a generalization of the linear 

cryptanalysis given by Matsui in 1993. We conjecture that the newly introduced 

t,k-bent functions are also strong against cubic cryptanalysis, because they are as 

far as possible to t,k-bent functions. 

Keywords: Boolean functions, nonlinearity, Walsh-Hadamard transformation, 

covering sequence, affine equivalence, bent functions, k-bent functions.  
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ÖZ 

 

BOOLE İŞLEVLERİ İÇİN  

KAPSAYAN DİZİNLER VE T, K-BÜKÜKLÜK ÖLÇÜTLERİ 

 

 

KURNAZ, Güzin 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

                         Tez Yöneticisi: Doç. Dr. Melek Diker Yücel 

 

Mart 2009, 126 sayfa 

 

 

Bu tez, simetrik kriptografideki kripto-sistemlerinin önemli yapısal bloklarından 

olan ve m-ikiliden oluşan (m>1) her girdiye karşılık bir tek ikili çıktı üreten Boole 

fonksiyonlarına değinmektedir. Bu çalışmanın iki ana amacı vardır; ilk amaç 

Boole fonksiyonlarının kriptolojik özellikleri arasında ilişkiler geliştirmek; ikincisi 

ise kodlama teorisi ve kriptoloji arasında yeni bir geçiş oluşturan kavramlar 

üretmektir.  

İlk amaç doğrultusunda, dengelilik, ilinti (korelasyon) bağışıklığı, doğrusal 

olmama, esneklik ve yayılma gibi Boole fonksiyonu özellikleri üzerine 

yoğunlaşılmıştır; ki bu özelliklerin çoğu, fonksiyonun doğrusal işlevler yönündeki 
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bileşenlerini veren Walsh görüngesine bağlıdır. Boole fonksiyonlarını çalışmak 

için etkili bir diğer yöntem ise, 2000 yılında Carlet ve Tarannikov, tarafından 

sunulan kapsayan dizin konusudur. Kapsayan dizinler, Boole fonksiyonlarının 

türevlerine bağlı olarak tanımlanmaktadır. Carlet ve Tarannikov, dengelilik ve 

ilinti bağışıklığının kapsayan dizinlerle ilişkilerini kurmuşlardır. Bizim 

çalışmalarımızda ise Walsh görüngesi ve kapsayan dizinler arasında yeni 

bağlantılar kurularak, Walsh görüngesinin her sıfır frekansına bağlı kapsayan 

dizinin hesaplanması üzerine iki teorem sunulmaktadır. 

Tezin ikinci amacı için, 4Z  ve 8Z  halkalarındaki doğrusal kodlar ve bu kodların 

GF(2) sonlu cismine eşlenmiş görüntüleri üzerinde çalıştık. Z4-doğrusal kodlarının 

görüntüsü olan ve bilinen en iyi doğrusal olmayan ikili hata-düzeltme kodlarını, 

Kerdock, Preperata ve Nordstrom-Robinson‘u inceledik.  Tokareva‘nın Z4-

doğrusal kodlar üzerindeki çalışmalarını Z8-doğrusal kodlara genişlettik. Yeni t,k-

doğrusalımsı ve t,k-bükük fonksiyonlar tanımlayarak, Tokareva‘nın k-bükük ve 

bizim t,k-bükük fonksiyonlarımızın, yaygın olarak bilinen Maiorana McFarland 

sınıfı bükük fonksiyonlarla doğrusal denkliğini gösterdik. Ayrıca, kriptolojik bir 

uygulama olarak, 1993 yılında Matsui tarafından tanımlanan doğrusal kriptanalizi 

genelledik ve kübik kriptanalizi tanımladık. Önerdiğimiz t,k-bükük fonksiyonlar 

tüm birinci, ikinci ve üçüncü derece fonksiyonlardan olabildiğince uzakta olduğu 

için, kübik kriptanalize karşı da dirençli oldukları kanısındayız.  

 

Anahtar Sözcükler: Boole işlevleri, doğrusal olmama, Walsh-Hadamard 

dönüşümü, kapsayan dizin, doğrusal denklik, bükük işlevler, k-bükük işlevler. 
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Notation 

 

 

 

Related to fields and rings, 

Z   Ring of integers 

)2(GF    Galois Field with two elements 

mGF )2(   Galois Field with 2
m
 elements 

Related to vectors 

x    m-bit row vector  

ix    i
th

 bit of the vector x. 

)(xwt    Hamming weight of the vector x. 

),( yxd   Hamming distance between vectors x and y. 

Related to Boolean functions 

)(wfW   Walsh transform of the function f at frequency w. 

fr    Autocorrelation function of f. 

fDa    Derivative vector of the function f for a input shift vector a. 

    Kronecker delta function 

Related to codes 

),,( dkn  code  Linear code with length n, dimension k and minimum 

distance d. 

),( mrRM   Reed Muller code of order r and length 2
m
. 
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Related to matrices 

nA   Matrix of order n associated with the Möbius transform 

nH   Hadamard matrix of order n. 

nI   nxn identity matrix. 

nJ   nxn matrix of all ones. 

Related to operators 

   Addition modulo 2. 

+,   Integer addition or addition on rings depending on context. 

 .,.   dot or scalar product of two vectors 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

 

In this thesis, we focus on the study of Boolean functions, which are among the 

main building blocks of symmetric cryptosystems. Symmetric cryptography is 

used in GSM mobile phones, WLAN and Internet connections, banking 

transactions, credit cards and many other places as an effective means of privacy 

and authentication [2].  

There are various and comprehensive studies in the literature for the usage of 

Boolean functions inside cryptography. A vector Boolean function or an S-box 

[61, 66, 70, 84] maps m input bits to n output bits; for 1n  and 1m . If 1n , 

corresponding function is simply called an m-variable Boolean function. A 

Boolean function f can be uniquely represented both by its truth table, which is a 

vector that contains the function values of f and its Walsh transform, which is a 

kind of discrete Fourier transform. The most desirable Boolean function properties 

are those, which strengthen the related cryptosystem against well known statistical 

attacks such as differential, linear and algebraic cryptanalysis. We refer to [4, 10, 

11, 19, 22, 42, 79] for linear and differential cryptanalysis and [3, 11, 16, 17, 34, 

36] for algebraic cryptanalysis. A Boolean function must have good 

autocorrelation properties [37, 57, 58, 79, 82, 88, 95, 97, 102, 14, 116, 117] in 
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order to be safe against differential cryptanalysis. Moreover, a Boolean function 

must be highly nonlinear, i.e., it must be as far as possible to all affine functions 

[49-54] to be strong against linear cryptanalysis. In other words, the magnitude 

Walsh spectrum of a cryptographically strong Boolean function should be as flat 

as possible, to yield maximum achievable nonlinearity [51-53, 77, 78, 83]. Bent 

functions [33, 43, 44, 49, 50, 68, 94, 118] are the Boolean functions that reach this 

maximum nonlinearity. They were first studied by Dillon [49] and Rothaus [94] 

and Rothaus used the word ―bent‖ in the literature in 1970. Maiorana McFarland 

class of bent functions [41, 87, 113] are one of the main families of bent functions. 

This class can be constructed by concatenating affine functions and it achieves 

good cryptographic properties. 

Correlation Immunity [6, 37, 63, 66, 73, 79, 89, 91] of a Boolean function 

measures the correlation of its input variables to its output value. A Boolean 

function is said to be correlation immune of order r if every subset of r or fewer 

input variables are statistically independent with the output. A Boolean function 

with lower order correlation immunity is more succeptible to correlation attacks 

[16, 17, 21, 34, 36] than a Boolean function with higher order correlation 

immunity. It is well known that the correlation immunity order of a Boolean 

function can be directly found from zeros of its Walsh transform spectrum. In 

2000, Carlet and Tarannikov [40] introduced the notion of covering sequences, 

which are connected to the function via its derivatives as an efficient tool to study 

Boolean functions. Then they showed that correlation immunity order and 

covering sequences [39, 40, 101] of a Boolean function are related.  

Classification of Boolean functions is another subject in cryptology. Affine 

equivalent Boolean functions [1, 18, 20, 24, 25, 48, 56, 60, 69, 100, 109] have 
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similar cryptographic properties. This makes affine classification meaningful in 

the sense that the number of representatives is much less than the number of all 

Boolean functions. Such perspective allows the Boolean space to be considered as 

a structure in which all Boolean functions are grouped into affine equivalence 

classes and only one function from each class is sufficient for analysis.  

Relations between error correcting codes and Boolean functions are studied 

extensively in the literature [12-16, 26-31, 45, 46, 55, 59, 64, 67, 71-76, 86, 93, 96, 

98-108, 110-112]. Some of the best-known examples of nonlinear binary error-

correcting codes that are better than any linear code are the Nordstrom-Robinson 

[55, 59, 86, 98], Kerdock and Preparata codes [29, 46, 81, 86]. Calderbank et‘al 

[29] showed that, when properly defined, Kerdock and Preparata codes are linear 

over the ring 4Z ; and as 4Z -codes, they are the duals of each other. All these 

codes are in fact just extended cyclic codes [46, 81]. Since 1990‘s, coding theory 

researchers intensively study nonlinear codes [13, 76] that can be transformed into 

linear codes [26, 67, 74, 103, 104] in other metric spaces via appropriate 

mappings. Tokareva [104-108] used Krotov matrices [72, 73] to generate 4Z -

linear codes [12, 14, 15, 45, 59, 71, 93, 99, 112] and from these codes she 

introduced k-affine binary functions, which are affine in an alternative sense. From 

k-affine functions, she then defined k-bent functions and a special form of the dot-

product denoted as the k-dot product.  

In this thesis, we firstly find a relation between two important tools for Boolean 

functions; Walsh transform null frequencies and covering sequences. Correlation 

immunity order, nonlinearity, resiliency and propagation characteristics of 

Boolean functions depend on the Walsh transform, which is related to the covering 

sequence of the function. Secondly, we derive new classes of affine and bent 
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functions using linear codes over the ring 8Z . We then suggest cubic cryptanalysis, 

as an extended version of linear and quadratic cryptanalyses. We claim that the 

newly introduced class of t,k-bent functions are strong against cubic cryptanalysis, 

since they are as far as possible to affine, quadratic and cubic functions. Finally we 

examine the affine equivalence of t,k-bent functions and Maiorana McFarland 

class of bent functions.  

The main background on properties and definitions of Boolean functions are 

introduced in Chapter 2.  

In Chapter 3, we show that the Walsh transform null frequencies of Boolean 

functions are related to their covering sequences. We prove that each nonzero null 

frequency of the Walsh transform defines a covering sequence; however, in 

general the number of covering sequences is more than the number of Walsh 

transform nulls. We then present a lower bound for the number of covering 

sequences. We also show that the set of covering sequences given in our theorems 

3.3 and 3.4 and those can be found from Proposition 3.2 given by Carlet and 

Tarannikov [40] are distinct. Then we study the covering sequences of affine 

equivalent Boolean functions.  

Chapter 4 studies the 4Z  and 8Z -linear codes and the relation of these codes to 

newly introduced affine Boolean functions. We start by giving the origins of the 

the k-dot product and k-affine functions introduced by Tokareva [104-108]. Then 

we show that Krotov matrices [72, 73] have the lexicographically ordered 

codewords of the 4Z -linear (2
m
, m) code C, as columns. Later we describe the 

rules that quadratic parts of k-dot products must obey. We then extend Tokareva‘s 

definitions to a larger ring, 8Z . We drive a new class of affine functions and a new 
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t,k-dot product using linear codes over the ring 8Z . The new class of t,k-affine 

functions contain affine functions, quadratic functions and cubic functions. 

Examples of these functions are given at the end of Chapter 4.  

In Chapter 5, we study bent functions including k-bent functions in detail. Then we 

suggest a new class, the t,k-bent functions depending on the t,k-dot product 

definition given in Chapter 4. The new class of bent functions are at maximum 

distance from the newly introduced affine functions, i.e., from affine functions, 

quadratic functions and cubic functions. Next we analyse the affine equivalence of 

k-bent and t,k-bent functions with the well known Maiorana McFarland class of 

bent functions. For the application to cryptology, we introduce the method of cubic 

cryptanalysis for block ciphers. It is a generalization of the well-known method of 

linear cryptanalysis given in 1993 by M. Matsui [79]. In our method we 

approximate Boolean functions by t,k- affine functions . The newly introduced t,k-

bent functions are claimed to be strong against cubic cryptanalysis, since they are 

as far as possible to affine, quadratic and cubic functions. 

Finally, we give our conclusions in Chapter 6. 
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CHAPTER 2  

 

 

BOOLEAN FUNCTIONS; DEFINITIONS AND 

AFFINE EQUIVALENCY CLASSES 

 

 

 

The aim of this chapter is to present a compact overview on the most essential 

aspects of Boolean functions related to cryptography. We describe two different 

ways of representing Boolean functions, the truth table and the algebraic normal 

form, in section 2.2. Next, we present two important tools to define cryptographic 

properties of Boolean functions, the Walsh and autocorrelation spectra in section 

2.3. Remark 2.1 gives the relation between the Walsh transform and the Fourier 

transform, both are being widely used in cryptography. Section 2.4 gives necessary 

definitions and notations that will be used throughout the thesis. Remark 2.2 

interprets the bentness criterion in terms of the White Gaussian Noise, which is a 

well-known subject in the telecomunications branch of electrical engineering. 

Then in section 2.5 a review of the affine equivalence classes is made. 

2.1. Introduction 

After Shannon‘s theory which proposes confusion and diffusion in secrecy 

systems [96] and the popularity of the subsequent Data Encryption Standard [11], 

S-boxes are studied widely in the literature [61, 66, 70, 84]. It has then been 
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clearly demonstrated that differential and linear cryptanalysis [4, 9, 11, 19, 22, 42] 

can be resisted by the selection of nearly optimal Boolean functions as components 

of the S-boxes. 

A Boolean function [61, 66, 70, 84, 96] produces a single-bit result )2()( GFf x  

for each possible value of the m-bit vector, mGF )2(x . Boolean functions are 

used in cryptographic applications such as block ciphers, stream ciphers and hash 

functions. There are many criteria used to judge the suitability of a Boolean 

function for use in an encryption algorithm. The most desirable Boolean function 

properties are those, which strengthen the related cryptosystem against well known 

statistical attacks such as differential, linear cryptanalysis [4, 9, 11, 19, 22, 42] and 

algebraic attacks [3, 11, 16, 17, 34, 36]. Different criteria for Boolean functions 

such as balancedness, correlation-immunity [37, 63, 66, 73, 79, 89, 91, 118], 

resiliency, nonlinearity [51-53, 77, 78, 83] and algebraic degree [51-53, 77, 78, 83] 

are studied extensively in many works. It is known that some criteria cannot be 

satisfied simultaneously. So the problem is to find a trade-off between these 

criteria. 

The classification of Boolean functions is meaningful in the sense that the number 

of representatives is much less than the number of all Boolean functions. Such 

perspectives allow the Boolean space to be considered as a structure in which all 

Boolean functions are grouped into equivalence classes and thus only one function 

from each class is enough for analysis. 

2.2 Boolean Function Representations 

We now present two representations of Boolean functions that we will use 

throughout the thesis; truth table (TT) and algebraic normal form (ANF). Other 



 8 

representations such as the numerical normal form representation and trace 

representation [25] also exist in the literature.  

Let f  be a Boolean function that produces a single-bit result for each possible 

combination of m Boolean variables; that is,  

)2()2(:)( GFGFf m x  (2.1) 

Here GF denotes the Galois Field consisting of binary numbers {0,1}, with 

modulo 2 addition (XOR operation shown by ) and multiplication (AND 

operation shown by a dot or nothing). 

2.2.1 Truth Table Representation of Boolean Functions 

A Boolean function f can be uniquely represented by its truth table which is a 

vector that contains the function values of f, ordered lexicographically. In other 

words, the 1x2
m
 dimensional vector  

)11...1(),...01...0(),00...0(( ffff  (2.2) 

is defined as the truth table of f , where the input vector x is ordered 

lexicographically. We mean by the weight and support of a function, the weight 

and support of the corresponding truth table. Analogously, the distance between 

two functions is computed by considering the distance between the corresponding 

truth tables. 

2.2.2. Algebraic Normal Form Representation of Boolean Functions 

Another way of uniquely representing a Boolean function f is by means of a 

polynomial in )2(GF  and is defined as the algebraic normal form. The 

corresponding transformation is called the algebraic normal transform: 
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a
a xa)()( 0

0101)2()(
1

01
hxxaahANF

aa

mmGFaaf
m

m
m

 


   (2.3) 

where h is also a Boolean function on mGF )2( . As the algebraic normal transform 

is a linear transformation, one can also use a matrix representation. Denoting the 

column matrix containing the coefficients )(ah  as hf, then with f representing the 

truth table of f, 

fAh mf   mod 2 (2.4) 

where mA  is recursively determined by 

10A , 









11

01
1A  and 1mm AA 










11

01
 (2.5) 

The algebraic degree of f, denoted by deg(f) or shortly d, is defined as the 

maximum number of variables of the terms 0

01
1 aa

m xx m 
  in the ANF of f. Functions 

with algebraic degree less than or equal to 1 are called affine. If f(0)= 0 then the 

function is called linear.  

2.3 Basic Tools Used to Define Cryptographic Properties of Boolean 

Functions 

Two basic and important tools, Walsh and autocorrelation spectrum are defined in 

this section.  

2.3.1. Walsh Transform of Boolean Functions 

A Boolean function f can be uniquely represented by its Walsh transform. The 

Walsh transform of a Boolean function f  is defined as  
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



 
xw

x

x
w

,

)2(

)1()1()(
)(f

m
GF

fW  (2.6) 

where w GF(2)
m
,  xw,  is the inner product of the vectors w and x. The 1x2

m
 

dimensional vector  

))11...1(),...01...0(),00...0(( fff WWWfW  (2.7) 

is called the Walsh spectrum of f , where the input vector w is ordered 

lexicographically.  

Remark 2.1: Sometimes, the Fourier transform )(w


f  is used instead of theWalsh 

transform. The Fourier transform of the function f  at frequency w  is defined as  





 


a

a

w
aw

,

2

)1()()(
m

)GF(

ff . (2.8) 

Walsh and Fourier transforms of a function f  at frequency w are related by,  

)(2)(ˆ2)( www m

f fW  . (2.9) 

where 






 


else   0

0 if   1
)(

w
w  is the Kronecker delta function.  

Definition 2.1: The support of the Walsh transform of f  is defined as 

   0)(|)2(  ww fWmGFWSup f . (2.10) 

Notice that the support of the Walsh transform and the set of frequencies at which 

Fourier transform is nonzero are equal. Only one exception can occur if 

0)0( fW .  
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2.3.2. Autocorrelation of Boolean Functions 

The autocorrelation of a Boolean function is a real-valued function. To define the 

autocorrelation, we will first define the derivative of f  with respect to the input 

difference vector aGF(2)
m
.  

)()()( axxxa  fffD  (2.11) 

The derivative vector is arrranged by ordering the index x lexicographically,  

))1...1(...,),0...0(( fDfD aafDa . (2.12) 

The autocorrelation of f  corresponding to the shift vector a is denoted by  




 
m

GF

f

m
GF

ff
fr

)2(

)(

)2(

)()( )1()1()1()(

x

xaD

x

axx
a  (2.13) 

All values of the autocorrelation can be collected in a 1x2
m
 dimensional vector 

called the autocorrelation spectrum 

))11...1( ..., ),01...0(  ),00...0(( fff rrrfr , (2.14) 

by ordering the index vector a lexicographically. Note that the autocorrelation 

spectrum does not uniquely determine the function in contrast to the previous 

transformations like ANF, truth table and the Walsh transform. 

2.4 Basic Notations and Definitions 

This section is intended as a summary of the minimum mathematical knowledge 

required throughout the thesis. 
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Definition 2.1: An m-variable Boolean function f  is balanced if its output is 

equally distributed, i.e., its weight is equal to 2
m-1

. This translates in 0)0( fW  for 

the Walsh spectrum. 

Definition 2.2: f  is called r
th

 order correlation immune (r-CI) if [37] 

 rwtGFW m
f  )(1)2(,0)( www . (2.15) 

Definition 2.3: The combination of correlation immunity of order r and the 

property of balancedness results in the property of resiliency of order r. 

Definition 2.4: Nonlinearity of f  is defined as the minimum distance from the set 

of affine functions and one can show that it is related to the maximum magnitude 

in the Walsh spectrum of f as follows 

 )( max
2

12 1
ww f

m
f WNL   .  (2.16) 

Definition 2.5: An m-variable function f, with m even is called a bent function if 

its Walsh spectrum is flat, i.e., 
2/2)( m

fW w  or 
m

fW 2)(2 w  for 

mGF )2(w . Then the function has maximum nonlinearity, i.e., 

1)2/(1 22   mm
fNL . 

Remark 2.2: Using (2.9) in Remark 2.1, it can be observed that 2/2|)(| m
fW w  

is true if and only if the magnitude of the Fourier spectrum is also flat except at 

w=0. This corresponds to White Gaussian Noise (WGN) spectrum (except for 

w=0). Hence a bent Boolean function has the Walsh and Fourier spectra similar to 
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the power spectrum of WGN. The autocorrelation spectra of bent functions and 

WGN are also similar.  

Definition 2.6: An mxn  S-box is a mapping from m binary inputs to n binary 

outputs, i.e., nm GFGFF )2()2(:)( x . The output vector of the S-box, 

))(,),(()( 1 xxx nffF  , can be decomposed into n component functions as, 

niGFGFf m
i ,,1),2()2(:)( x . 

Definition 2.7: The extended output of an nm  S-box can be obtained from its 

output vector by including all linear combinations of output bits. Thus the 

extended output vector G is composed of the functions  

  Fjx ,)(   1 iij fjg n
i   

where n
n GFjjj )2(),...,( 21 j . 

Definition 2.8: The set  

 rffmrR  )deg(|)(),( x  (2.17) 

denotes the r
th

 order Reed-Muller code of codeword length 2
m
. The term 

R(r,m)/R(s,m), where s<r≤ m, defines the set of cosets of R(r,m) with respect to 

R(s,m) [8]. 

Definition 2.9 [40] A covering sequence of a function f  is any sequence  

  m
GF )2(

)(,....., 1....1101....00..00



a

aλ   such that the derivative fDa  

defined by (2.12) satisfies 

ρfDaa

a




)(    ...

)2(


mGF

λ , (2.18) 
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where ρ  is a vector with identical elements. The value of   is called the level of 

this sequence. If 0 , then the covering sequence is said to be nontrivial [40]. 

Definition 2.10: Hadamard matrix mH  is an mxm matrix with entries +1 or -1, 

such that all rows and all columns are orthogonal, i.e., mmm IHH m
T
  where 

T
mH is the transpose of the Hadamard matrix and Im is the identity matrix of order 

m. A special kind of Hadamard matrix, called the Sylvester-Hadamard matrix of 

order 2
m
 denoted by mH  is generated by the following recursive relation  















1m1m

1m          1m
m0

H-     H

HH
HH                             ,1  (2.19) 

It can be shown that each row (or column) of mH  is a linear sequence of length 

2
m
, i.e., it corresponds to the sequence of the linear function  

 xwxw ,)(l . (2.20) 

Walsh transform of a function can easily be transformed into a matrix equation as, 

   )1...1()0...0( )1()1()1....1()1....0()0....0( ff
fff WWW   mf HW  (2.21) 

Remark 2.3: The product of the matrix mA  from the ANF transform and the 

Hadamard matrix mH  satisfies the following recursive relation for 1m , 

 m











02

11
mmHA  (2.22) 

Definition 2.11: The maximum absolute value of the autocorrelation function of 

f(x) is given by 



 15 

)( max 0 αff rAI    (2.23) 

and is known as the absolute indicator [117]. 

The overall absolute indicator for the autocorrelation of an S-box [32-35] is 

defined in terms of the absolute indicators of the component functions (fi‘s) 

fiiS AIAI max . (2.24) 

Definition 2.12: For an mxn  S-box as in Definition 2.6, the XOR table is a 2
m
x2

n
 

matrix with the (i,j)‘th entry  

 kij=  #{ x | F(x)F(x  i)=j} (2.25) 

where i=0,...,2
m
-1 and j=0,...,2

n
-1 and the 1×m vector i and 1×n vector j are the 

corresponding binary representations respectively [4]. 

Definition 2.13: The largest entry in XOR table not including the (0,0)‘th element 

gives the differential uniformity [17]. 

2.5   Affine Equivalence of Boolean Functions 

We will give the definition of equivalence which then leads to affine equivalence of 

two m-variable Boolean functions.  

Definition 2.14: [60] Two functions ),()(),( mrRgf xx  are called equivalent with 

respect to R(s,m), if there exists a nonsingular binary mxm matrix A and 1xm vector 

b such that 

),(mod)()( msRgf bxAx  . (2.26) 

In this case, due to the modulo operation, 

),()()( msRgf  bxAx . (2.27) 
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svgf  )()( bxAx   (2.28) 

where ),( msRvs  .  

Definition 2.15: [60] If one chooses ),1( mRvs   then this equivalence equation 

becomes,  

dfg  cxbxAx ,)()(  (2.29) 

where  cGF(2)
m
 and dGF(2). (2.29) is called the affine equivalence relation.  

Proposition 2.1: [91] Let )(),( xx gf  be two functions satisfying (2.29). Then for 

any mGF )2(w , 

)),(()1()( 1)(   ,
1

 


Awcw
wcbA

fg WW d  (2.30) 

Corollary 2.1: [100] The Walsh spectrum of f(x) at i is equal to the Walsh spectrum 

of g(x) at j, where j = c + iA
T
. Therefore the distribution of the absolute values of 

the Walsh spectrum of f(x) is same as that of g(x). 

Proposition 2.2: [91] Let )(xf  and )(xg  be two functions such that 

 xcbxAx ,)()( fg . Then for any given mGF )2(s , 

)()1()( ,
sAs

sc
fg rr  . 

Corollary 2.2: [100] The autocorrelation function of f(x) at j is equal to the 

autocorrelation function of g(x) at i; where j = iA: Therefore the ranks of vectors 

with the same absolute autocorrelation function value are same between two 

equivalent functions. Hence, the distribution of the absolute values of the 

autocorrelation function of f(x) is same as that of g(x). 
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Proposition 2.3: [100] For any Boolean function ),()( mrRf x , derivative is  

BfDBfD aAa  )()(  (x) (2.31)  

where bxAx )(B . Here ―o― denotes function combination operation.  
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CHAPTER 3 

 

 

RELATION BETWEEN COVERING SEQUENCE 

AND WALSH TRANSFORM NULL FREQUENCIES 

 

 

 

In this chapter, we show that the Walsh transform null frequencies of Boolean 

functions are related to their covering sequences. We show that some covering 

sequences of a Boolean function can be obtained using the Walsh transform nulls. 

We prove that each nonzero null frequency of the Walsh transform  defines one 

covering sequence; and if the Boolean function is balanced, each null is associated 

with two covering sequences. We present a lower bound for the number of 

covering sequences and confirm that the set of covering sequences that we find 

from Walsh transform nulls are distinct from those given by Carlet and 

Tarannikov. 

We then present a lower bound for the number of covering sequences. We also 

show that the set of covering sequences given in our theorems 3.3 and 3.4 and 

those can be found from Proposition 3.2 given by Carlet and Tarannikov are 

distinct. Then, we study the covering sequences of affine equivalent Boolean 

functions. 
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3.1. Introduction 

Covering sequences are introduced in 2000 by Carlet and Tarannikov [40] as an 

efficient tool to study Boolean functions. These are binary-valued sequences 

m
GF 2)2(λ  that are related to the function via its derivatives 

)()()( axxxa  fffD . Carlet and Tarannikov show for any Boolean function 

that, balancedness and admitting a nontrivial covering sequence are equivalent. 

They also obtain a characterization of correlation-immune and resilient functions 

by means of covering sequences. 

In this chapter, we show that, 

i) in Theorem 3.3, for any m-variable Boolean function f, each nomzero Walsh 

transform null mGF )2(w  defines a covering sequence 
m

GF 2)2(λ  with 

elements  aw
a

,)1(  and for each covering sequence λ which can be 

represented as  aw
a

,)1( , there exists a nonzero Walsh transform null w. 

ii) in Theorem 3.4, for a balanced n-variable Boolean function f, each nonzero 

Walsh transform null mGF )2(w  defines a covering sequence 
m

GF 2)2(λ  

with elements  awa ,  and for each covering sequence λ which can be 

represented as  awa , , there exists a nonzero Walsh transform null w, and  

We also show that all the covering sequences calculated from Theorem 3.4 are 

linearly independent and none of them can be an indicator of a subspace. 

Therefore, the set of covering sequences which can be calculated from Proposition 

3.2 given by Carlet and Mesnager [39] and our theorems 3.3 and 3.4 are proven to 

be distinct. 
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3.2. Already Known Facts on Covering Sequences 

For a Boolean function, Carlet and Tarannikov has shown the equivalence between 

its balancedness and the fact it admits a covering sequence. They also obtain a 

characterization of correlation-immune and resilient functions by means of 

covering sequences. Carlet and Tarannikov results are given as therorems and 

propositions 3.1 and 3.2. In section 3.4, we give the relation between covering 

sequence and Walsh transform null frequencies. Correlation immunity order can 

be found from Walsh transform nulls. Thus results of Carlet and Tarannikov are 

related to our findings. At first, the definition of the covering sequence of a Bolean 

functions is given. 

Definition 3.1: [40] The covering sequence of an m-variable function f  is any 

sequence 

  mGF )2(1....1101....00..00 )(,.....,  aaλ    

(where the index vector a is ordered lexicographically) such that 

ρfDaa

a




)(      ...  

)2(


mGF

λ  (3.1) 

is a vector with identical elements and the derivative fDa  is defined by (2.11). 

The value of   is called the level of this sequence. If 0 , then the covering 

sequence is said to be nontrivial. 

Proposition 3.1 [40]: Let f  be a Boolean function on 
m

GF )2( . Assume that there 

exist numbers mGFZ )2(  ,  aa  and a nonzero number  such that 

fDa

a

a
 nGF )2(

  is equal to the constant function . Then f  is balanced. Conversely, 
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assume that f  is balanced, then the integer valued function 
 mGF )2(a

afD  is constant 

and equal to 2
m-1

. 

Theorem 3.1: [40] Let f  be any Boolean function on m
GF )2(  and 

mGF )2(
)(



aaλλ  be any sequence. f  admits   as covering sequence if and 

only if its Fourier transform )(wλ


 takes constant value on the support of the Walsh 

transform fW , i.e., for all frequencies  0)(|)2(  ww fWGF m
 . Let r be this 

constant value, then the level of this covering sequence is the number 
















 mGF

r

)2(

)(
2

1

a

a .  

Theorem 3.2: [40] Let f  be any Boolean function on m
GF )2( .  

1- If f  admits a covering sequence mGF )2(
)(



aaλλ with level ρ (resp. with 

level ρ ≠ 0), then f  is k
th

 order correlation-immune (resp. k-resilient), where (k 

+1) is the minimum Hamming weight of nonzero mGF )2(b  such that r)(ˆ b , 

and r =  2)0(ˆ  . 

2- Conversely if f  is k
th

 order CI and it is not (k+1)
th

 order CI then there exists 

one trivial covering sequence mGF )2(
)(



aaλλ  with level ρ such that k+1 is the 

minimum Hamming weight of nonzero mGF )2(b  satisfying  

 2)0(ˆ)(ˆ b . (3.2) 
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The proof of Theorem 3.2 is given in [40]. The following proposition requires the 

definition of the indicator for a given set, A, of vectors.  

Definition 3.2: The indicator IA is a binary 2
m
–dimensional vector, each element 

IA(x) of which is indicating the existence or nonexistence of (lexicographically 

ordered) mGF )2(  elements within the set A, i. e.,  










A if  0

A if  1
)(A

x

x
xI  (3.3) 

Hence, the Hamming weight of IA is equal to |A|, the number of elements in A. 

Proposition 3.2: [39] Let E be any vector subspace of mGF )2(  and (uE) be any 

of its cosets. Let f  be a Boolean function on mGF )2( . Assume it admits no 

derivative fDa  equal to the constant function 1. Then f  admits the indicator of 

(uE) as a nontrivial covering sequence if and only if the support of  wfW  is 

disjoint from  EGFE Tm 
vxvx ,0|)2( . This is equivalent to the fact 

that the restriction of f  to any coset of E is balanced. The level of this covering 

sequence is then equal to 2/E  and the indicator of every coset of E is also a 

covering sequence of f  with the same level. More generally, any sequence λ  

such that for every Ea and every mGF )2(u , uua λλ   is also a covering 

sequence of f . 
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3.3. Relation Between Covering Sequences and Walsh Transform Null 

Frequencies 

Our aim in this section is to find relations between covering sequences and Walsh 

transform null frequencies of a Boolean function.  

Theorem 3.3: Let f  be any Boolean function on mGF )2(  and )(wfW be its Walsh 

transform at frequency w.  

1- For all nonzero Walsh transform nulls w, there exists a (-1,+1)-valued covering 

sequence mGF )2(
)(



aaλλ  with elements  aw

a
,)1( .  (3.4) 

2- For all covering sequences which can be represented as mGF )2(
)(



aaλλ  with 

elements  aw
a

,)1( , there is a nonzero Walsh transform null w.  

Proof:  

1- A Walsh transform null frequency w satisfies  

0)1()1()1()1()(

)2(

,)(

)2(

,)(  








mm GF

f

GF

f
fW

x

xwx

x

xwx
w . (3.5) 

Hence,  xwx ,)(f  is balanced for all Walsh transfrom null frequencies w. 

Using Proposition 3.3, 

 11

)2(

2  ...2),)(( 




mm

GF

f
m

xwxD

a

a . (3.6) 

Using the definition of derivative of a vector from (2.8) we have, 

 awfDaxwaxxwxxwxD aa ,)(,)(,)(),)(( fff

 (3.7) 
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












1, if ,

0, if       ,
),)((

aw1fD

awfD
xwxD

a

a
a f , (3.8) 














1,if ,

0, if       ,
),)((

awfD1

awfD
xwxD

a

a
a f , (3.9) 

Using (3.9), the binary ‗‗ addition in (3.8), becomes an integer ‗+‗ addition in 

(3.10). 












 

1, if     ,

0, if    ,
)1(),)(( ,

aw1

aw0
fDxwxD a

aw
a f . (3.10) 

For 2
m
 possible a vectors, in 2

m-1
 cases 0,  aw  and in 2

m-1  
cases 1,  aw . 

Then 

)2...2()1()2...2( 11

)2(

,11 



  
mm

GF

mm

m
a

a
aw

fD . (3.11) 

Therefore 

)0...0()1(

)2(

, 




mGFa

a
aw

fD . (3.12) 

Recall the covering sequence relation  

)...(
)2(

 


fDaa

a
m

GF

. (3.13)  

Comparing (3.12) and (3.13), one can find the covering sequence in (3.12) as  

 aw
a

,)1( . (3.14) 

excluding w = 0. Notice that for w = 0, we have 1)1( ,   aw
 and (3.12) can be 

satisfied for only constant functions. Thus (3.14) is valid except for w = 0, which 
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is a Walsh transform null of only balanced functions. 

Hence, mGF )2(
)(



aaλλ  with elements 

 aw
a

,)1(  is a (+1,-1) valued 

trivial covering sequence. 

2- Since the proof steps (3.4) to (3.14) are equalities that can be repeated in the 

reverse direction, the second statement of Theorem 3.3 is also proved 

simultaneously. 

Theorem 3.4: Let f  be a balanced Boolean function on mGF )2(w  and 

 wfW  be its Walsh transform at frequency w.  

1- For all nonzero Walsh transform nulls w, there exists a (0,1)-valued covering 

sequence mGF )2(
)(



aaλλ  with elements  awa , .  (3.15) 

2- For all covering sequences which can be represented as mGF )2(
)(



aaλλ  with 

elements  awa , , there is a nonzero Walsh transform null w.  

Proof:  

1- Starting from (3.12), and since  
aw

aw ,21)1( ,
, 

)0,...,0(),21(

)2(




fDaw

a

a
mGF

. (3.16) 

(3.16) can also be written as 

)0,...,0(),(2

)2()2(

 
 mGFGF m

a

a

a

a fDfDaw . (3.17) 

It is easy to see that 
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















 
 mm GFGF )2()2(

2
1),(

a

a

a

a fDfDaw . (3.18) 

For a balanced function f, )2...22( 111

)2(





 mmm

GF ma

afD  by Proposition 3.1. 

Hence, 

)2...22(),( 222

)2(





 mmm

GF m

fDaw

a

a  (3.19) 

Comparing the covering sequence equation )...(
)2(

 


fDaa

a
m

GF

 and (3.19) 

one gets  awa , , excluding w = 0. Notice that for w = 0 , we have 

0,  aw  and (3.19) can not be satisfied. Thus mGF )2(
)(



aaλλ  with 

elements  awa ,  is a covering sequence of the balanced function f with level 

22  m  except for w=0 which is a Walsh transform null for all balanced 

functions. 

2- Since the proof steps (3.4) to (3.19) are equalities that can be repeated in the 

reverse direction, the second statement of Theorem 3.4 is also proved 

simultaneously. 

We now give corollaries 3.1 and 3.2 for theorems 3.3 and 3.4. 

Corollary 3.1: (i) Let ),,...,( 12 wwwmw  be the nonzero Walsh transform null 

frequency of a Boolean function f, and λ be the corresponding (-1,+1)-valued 

covering sequence with elements  aw
a

,)1( . Then, 0 =1 and for any two 

indices a and b, the element  baba   .   
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(ii) Similarly, any (-1,+1)-valued covering sequence λ, with elements satisfying 

the property  baba    and 0 =1 implies a nonzero Walsh transform null 

frequency, ),...,( 1,2 wwwmw , which is equal to 

2

),,...(
)1 ... 1, ,1( 01...010...00...10 
 . Each element of the vector w can be found 

using 
2

1 aaw  for all 1)(| aa wt .  

Proof: (i) 1)1()1( 0),0...00(

0...00   w

0   and 

ba
bwawbwawbaw

ba   


,,,,, )1()1()1()1(  (3.20) 

(ii) Using  baba    with 0 =1 and the fact that the covering sequence is (-

1,+1)-valued, its elements can be represented as a =  ak ,)1( . For all weight 1 

indexed terms this becomes a = ak
)1( , ka being the a

th
 bit of vector k. Since all 

binary vectors can be represented as a sum of vectors of weight 1 knowledge of 

covering sequence elements with weight 1 is sufficient to calculate other elements. 

This can be shown by (3.21) as, 

)(-1)   ,   ...   , )1(  , )1(  ,)1(   ,0() ...,  ,(
)... ()(

1..10..0
12121 mkkkkkk 

λ

 (3.21) 

Since one can express all weight-1 indexed terms as  

a
ak

a k21)1()1( ,   ak , 
2

1 aak  (3.22) 

The corresponding vector ),,...,( 12 kkkmk  is a Walsh transform null by 

Theorem 3.3. Denoting k by w, from (3.22)  
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2

),,...(
)1 ... 1, ,1(),...,( 01...010...00...10

1,2


 wwwmw , using  aw
a

,)1(  

for 1)(|  aa wt .  (3.23) 

We now give Corollary 3.2 for Theorem 3.4.  

Corollary 3.2: i) Let ),,...,( 12 wwwmw  be the nonzeroWalsh transform null 

frequency of a balanced Boolean function f, and λ be the corresponding (0,1)-

valued covering sequence with elements  awa , . Then, 0 =0 and for any 

two indices a and b, the element ba =  ba   .   

ii) Similarly, any covering sequence λ, with elements satisfying the property 

 baba    and 0 =0 implies a nonzero Walsh transform null frequency w, 

),,...(),...,( 01...010...00...101,2  wwwmw . Each element of the vector w can be 

found using  awa ,  for 1)(|  aa wt .         

Proof: (i) 0),0...00(0...00  w0    and 

bb   aa bwawbaw ,,,  (3.24) 

(ii) Using  baba    with 0 =0 and the fact that the covering sequence is 

(0,1)-valued, its elements can be represented as a =  ak, . For all weight 1 

indexed terms this becomes aka , the a
th

 bit of vector k. Since all binary 

vectors can be represented as a sum of vectors of weight 1 knowledge of covering 

sequence elements with weight 1 is sufficient to calculate other elements. This can 

be shown by (3.25) as, 

))... (   ,   ...   ),(   ,   ,   ,0() ...,  ,( 121211..10..0 mkkkkkk λ .  (3.25) 
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The corresponding vector ),,...,( 12 kkkmk  is a Walsh transform null by 

Theorem 3. Call now k as w. From (3.25)  

),,...(),...,( 01...010...00...101,2  wwwmw , using  awa ,  for 

1)(|  aa wt .  

Corollary 3.3: For any Boolean function, number of covering sequences is greater 

than or equal to the number of Walsh transform nulls, i.e., 

(# of covering sequences)  (# of Walsh transform null frequencies). (3.26) 

Proof: Because of the relations (3.14) and (3.15), each Walsh transform null 

defines a covering sequence; hence, the minimum number of covering sequences 

is equal to the number of Walsh zeros. Inequality occurs either when f is balanced 

or there are other covering sequences that cannot be represented as  awa ,  

or  aw
a

,)1( . 

Corollary 3.4: Hamming weight of the covering sequence of a balanced function 

calculated from any nonzero Walsh transform null frequency through equation 

(3.15) is 2
m-1

.  

Proof: Let w be a nonzero Walsh transform null; 0)( wfW  and let 

mGF )2()(  aaλλ  be the corresponding covering sequence. The Hamming weight 

of λ  is, 





mm GFGF

wt

)2()2(

,)(

aa

a awλ  (3.27) 

0)(  then )0  ...  0( If  λw wt . Assuming  )0  ...  0(w and using (3.12), 
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







mmm GF

n

GFGF )2(

,1,

)2()2(

)1(
2

1
2)1(1

2

1
,

a

awaw

aa

aw  (3.28) 







 

 









else 0

 if 1
)(|)1()1()1(

)2(

0
,,

)2(

, wb
bw

a

b
abaw

a

aw

mm GFGF

 (3.29) 

Since  )0  ...  0(b , and  )0  ...  0(w , 12)(  mwt λ  for any nonzero covering 

sequence calculated from (3.15). 

Corollary 3.5: Hamming weights of the covering sequences calculated from 

Proposition 3.2 of Carlet and Tarannikov, where k is the dimension of the largest 

subspace  EGFE Tm 
vxvx ,0|)2(  constructed by Walsh transform 

nulls of an m-variable Boolean function f, are all 
km2 . 

Proof: In Proposition 3.2, the indicator of every coset of E is given to be a 

covering sequence λ  of function f. Then, kmEwt  22)( )dim(
λ . 

Corollary 3.6: Any pair of covering sequences λ λ   and  calculated from Walsh 

transform null frequencies through  (3.15) are linearly independent, i.e., 

λλλλ    and  0, integersany   for    0)  ...  0( jkjk  (3.30) 

Proof: Let w and w   be two Walsh transform nulls; 0)( wfW , 0)( wfW and 

λ λ   and  be the corresponding covering sequences, so   

mGF )2(
),(



aa awλ  and mGF )2(

),(



aa awλ . We will use 

proof by contradiction. Now assume that λ λ   and  are linearly dependent.  

Then    0)  ...  0(   λλ jk  for 0jk,  (3.31) 
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Now using (3.31), 

)0...00())...(   ,   ...   ),(   ,   ,   ,(

))...(   ,   ...   ),(   ,   ,   ,(

121210

121210





m

m

wwwwwwj

wwwwwwk




 (3.32) 

(3.31) holds if and only if  miwjwk ii ...,1,00  . Notice that λλ   

implies that ww  ; hence there exists at least one iw  such that ii ww  . Without 

lost of generality assume 0iw and 1iw .   0)  ...  0(   λλ jk  implies that k=0. 

Therefore j=0, which contradicts the assumption of (3.31). Hence, λ λ   and  are 

linearly independent.  

Theorem 3.5: The covering sequences calculated from Walsh transform null 

frequencies through equation (3.15) can not be indicators (see (3.3) for the 

definition) of any subspace. 

Proof: The elements of a covering sequence that satisfies  

mGF )2(
),(



aa awλ  are related to each other by (3.20). We will use the 

proof by contradiction. Assume λ  is an indicator of a subspace E. Then λ  satisfies 














E

E
a

a

a

    if    0

    if     1
  (3.33) 

Let   , Eba , as λ  is the indicator of E,  1,1  ba  . Since E is a subspace, it 

is closed, so E )( ba ; therefore, 1ba . However, λ  obtained by (3.15) 

should also satisfy Corollary 3.1, which implies  011 ba . This is a 

contradiction. Hence ),(  awλ a  can not be the indicator of any subspace. 

In the rest of this paper, k will refer to the dimension of the largest subspace 
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 EGFE Tm 
vxvx ,0|)2(  constructed by Walsh transform nulls of an 

m-variable Boolean function f. Then, the dimension of the subspace E is (m─ k).  

Corollary 3.7: The set of covering sequences found from Proposition 3.2 and 

Theorem 3.3 are distinct. 

Proof: This follows from Corollaries 3.4 and 3.5 and Theorem 3.5. 

Corollary 3.8: The set of covering sequences found from Proposition 3.2 and 

Theorem 3.4 are distinct. 

Proof: This follows from the definition of indicator (3.3) and the fact that any  

(-1,1) valued sequence can not be the indicator of a subspace. 

Corollary 3.9: The number of covering sequences  that can be calculated from 

Proposition 3.2 is k2 , which is equal to the number of elements of the largest 

subspace constructed by Walsh transform nulls.  

Proof: The number of cosets that can be constructed from E is  

kkmn 22/2  . Since every coset indicator is a covering sequence, their total 

number is ||2  Ek , which is the number of elements in E . 

Remark 3.1: Our relations (3.14), (3.15) and Theorem 3.2 have very different 

meanings. Theorem 3.2 implies that a covering sequence gives some of the Walsh 

transform nulls (those which have weights less than or equal to the correlation 

immunity order), but calculation of covering sequence from these nulls is not 

given and it is impossible to find covering sequences without the knowledge of all 

nulls. However (3.14) says that every Walsh transform null implies a covering 

sequence  aw
a

,)1(  and some of the covering sequences with the property 
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 aw
a

,)1(  indicates a Walsh transform null w. Hence every Walsh transform 

null frequency can be calculated from covering sequences and some of the 

covering sequences can be calculated from Walsh transform null frequencies. 

3.4. Covering Sequences of Affine Equivalent Boolean Functions  

In this section, relations between the covering sequences of affine equivalent 

Boolean functions are studied. Affine equivalence is defined using the definition in 

[60]. If there exists a nonsingular binary mxm matrix A and 1 mx  vectors b,  

cGF(2)
m
 and dGF(2) such that 

dgf  xcbAxx ,)()(  (3.34) 

then f  and g  are said to be affine equivalent. Walsh and autocorrelation spectra 

of affine equivalent Boolean functions are studied in [23, 24]. The following 

proposition is given in [60] on the Walsh spectra relation of affine equivalent 

Boolean functions. 

Proposition 3.3 [60]: Let )(),( xx gf  be two functions satisfying (3.51). Then for 

any mGF )2(w , [91], 

)),(()1()( 1)(,1

  

Awcw
wcAb

f
d

g WW  (3.35) 

Proposition 3.4 [91]: The Walsh spectrum of f(x) at i is equal to the Walsh 

spectrum of g(x) at j, where j = c + iA
T
. Therefore the distribution of absolute 

value of Walsh spectra of f(x) is same to that of g(x). 

Therefore, the number of Walsh transform null frequencies are same for affine 

equivalent Boolean functions. This means same number of covering sequences can 

be found from Walsh nulls. However affine equivalent Boolean functions can have 
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different number of covering sequences. This is because they can have covering 

sequences other than found from (3.14) and (3.15). Since they have different 

Walsh nulls the corresponding covering sequnces are different. Here we study the 

covering sequences of affine equivalent functions in detail. Three important 

questions are:  

Question 1: If f  does not have any covering sequence, does g  have any covering 

sequence? 

Question 2: Let  be one of the covering sequences of f  with level . What is the 

corresponding covering sequence and its level for g ? 

Question 3: Are all covering sequences of f  and g  related? 

Let us now investigate these questions in three steps. 

Answer 1: Assume f does not have any covering sequence. Thus, 

fDaa

a





m

GF )2(

 is not a constant vector. Then, 























ac

acAayy

acbAaAxbAx

axcbaxA

xcbAx

axxgD

a
a

a

a
a

a

a

a
aa

,

),))()((

,))()((

))(,))((

,)((

))()((

fD

ff

ff

df

df

gg

Aa

a

 (3.36) 

Since  ac,  is constant for given a and c, gDaa  can not be a constant vector. 

Hence, if f does not have any covering sequence then its affine equivalent 
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function g does not have any covering sequence either. 

Answer 2: If f  and g  are affine equivalent then 

dgdgf  xcxxcbAxx ,)(,)()( . (3.37) 

From the fact that if bAxB  with nxn  matrix A and 1nx vector b we have from 

[8], 

BDBD Aaa  ff )( , (3.38) 

one has for )()( xbAB gxgg   

BDD Aaa gg  . (3.39) 

Then, 





acBD

axcxcDD

Aa

aa

,

)(,,

g

ddgf
. (3.40) 

Covering sequence relation for f is 

).....(

)2(

ff

GF m




fDa

a

a =f. (3.41) 

Covering sequence relation for g is 

),...,(

)2(

ggg

GF m




gDa

a

a =g. (3.42) 

(3.41) can also be written as: 





mGF )2(

),(

a

Aaa acBgD  =f . (3.43) 

Then 
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...))11...11((01...00,))11...11((

.

.

.

...))010...00((01...00,))2((

.....))01...00((01...00,))01...00((

)010...00(010...00)01...00(01...00

)010...00(010...00)01...00(01...00

)010...00(010...00)01...00(01...00







BgDcBgD

BgDcBgD

BgDcBgD

AA

AA

AA













 = fρ

 (3.44) 

Here )( jfDi is j
th

-indexed position of the vector fDa  for a=i. (3.42) is equal to 

   
 

  .........................................)11...1(

.............................................)10...00(

....)01..0()01...00(

01...0001...00

01...0001...00

10..0010..0001...0001...00







fD

fD

fDfD








 =g (3.45) 

   
 

  .........,01...00))11...11((

.

.

.

............,01...00))10...00((

))01...00((,01...00))01....00((

01...0001...00

01...00)10...00(01...00

)10...00(10...0001...00)01...00(01...00

)11...11( 





cbAgD

cbAgD

bAgDcbAgD

A

A

AA







= fρ

 (3.46) 

Define, 

),(  caaa  (3.47) 

Then (3.46) can be written as 

 



)10..00()01...00(

))10..00(()))01...00(((

10..0010..0001...0001...00

)10..00(10..00)01...00(01...00

fDfD

bAgbAgD AA



 D
 (3.48) 

There are 
12 m

 such equations. If one can find all mGF )2(
)(



aa from 
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mGF )2()( aa  then  

gf    (3.49) 

Hence, at least one of the covering sequences of two affine equivalent functions 

are related by (3.48) and (3.49). 

Answer 3: In Answer-2 it is seen that every covering sequence of affine equivalent 

Boolean functions are related. However the relation we have found does not show 

that there is a bijective mapping between covering sequences of f  and g. Therefore 

the numbers of covering sequences of affine equivalent functions do not have to be 

equal. This is also conformed by Proposition 3.2 of Carlet and Tarannikov, 

because the largest subspaces of Walsh transform nulls of affine equivalent 

functions do not have the same size in general.  

3.5. Conclusions  

In this chapter, we show that some covering sequences of a Boolean function can 

be obtained using the Walsh transform nulls. We prove that each null frequency of 

the Walsh transform  defines one covering sequence; and if the Boolean function 

is balanced, each null is associated with two covering sequences. We present a 

lower bound for the number of covering sequences and confirm that the set of 

covering sequences that we find from Walsh transform nulls are distinct from 

those given by Carlet and Mesnager. Relations from a covering sequence to a 

Walsh transform null frequency are given as (3.14) and (3.15). We have shown 

that  

i- for any m-variable Boolean function f , each nonzero Walsh transform null 

frequency mGF )2(w  uniquely defines a covering sequence  1,1 λ  with 
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elements  aw
a

,)1(  and for each covering sequence λ which can be 

represented as  aw
a

,)1( , there exists a nonzero Walsh transform null w.  

ii- for an m-variable balanced Boolean function f , each nonzero Walsh transform 

null frequency mGF )2(w  defines a covering sequence 
m

GF 2)2(λ  with 

elements  awa ,  and for each covering sequence λ which can be 

represented as  awa , , there exists a nonzero Walsh transform null w, and 

Hence one can obtain some of the (in fact as much as the number of Walsh 

transform nulls) covering sequences from Walsh transform null frequencies. It is 

proven that all the covering sequences calculated from Walsh transform null 

frequencies through equation (3.15) are linearly independent and none of them can 

be an indicator of a subspace. From this point, we come to the conclusion that, the 

set of covering sequences which can be calculated from Proposition 3.2 of Carlet 

and Mesnager and Theorem 3.3 [39] are distinct, i.e., our theorems 3.3 and 3.4 

give a covering sequence for each Walsh transform null frequency and if these 

nulls form a subspace called E , Carlet- Mesnager Proposition 3.2 gives a 

covering sequence for each coset of E.  

On ther other hand, we have obtained a relation between covering sequences of 

affine equivalent functions and have proven that if one of the affine functions does 

not have any covering sequence then its affine equivalent function does not have 

any either. Also it is shown that number of covering sequences of affine equivalent 

Boolean functions does not have to be equal. 

 

 



 39 

CHAPTER 4 

 

 

k-DOT PRODUCT AND k-AFFINE FUNCTIONS OVER 8Z  

 

 

Relations between error correcting codes and Boolean functions are studied 

extensively in the litterature [12-16, 26-31, 45, 46, 55, 59, 64, 67, 71-76, 86, 93, 

96, 98-108, 110-112]. Since 1990‘s, coding theory researchers intensively study 

nonlinear codes [13, 76] that can be transformed into linear codes [26, 67, 74, 103] 

in other metric spaces via appropriate mappings. Some of the best-known 

examples of nonlinear binary error-correcting codes that are better than any linear 

code are the Nordstrom-Robinson [55, 59, 86, 98], Kerdock and Preparata codes 

[29, 46, 81, 86]. Calderbank et‘al [29] showed that, when properly defined, 

Kerdock and Preparata codes are linear over the ring 4Z ; and as 4Z -codes, they 

are the duals of each other. All these codes are in fact just extended cyclic codes 

[46, 81]. Tokareva [104-108] used Krotov matrices [72, 73] to generate 4Z -linear 

codes [12, 14, 15, 45, 59, 71, 93, 99, 112] and from these codes she introduced k-

affine binary functions which are affine in an alternative sense. From k-affine 

functions, she then defined k-bent functions and a special form of dot-product the 

k-dot product.  

In this chapter, we examine Tokareva‘s studies on 4Z -linear codes. We 

understand and give the origins of k-affine functions and k-dot product definitions 

of Tokareva in Section 4.2. Then in Proposition 4.2, we show that the Krotov 
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matrices )2(, kmk 
A , which are used to construct 4Z -linear Hadamard like codes, in 

fact have as columns as the lexicographically ordered codewords of the 4Z -linear 

(2
m
, m) code C. We observe that, from a 4Z -linear (2

m
, m) code C of type 

kmk 224  , which consists of k many 4Z  elements and (m-2k) many 2Z  elements, 

Tokareva defines a 4Z -linear, (
m22 , m+1) code k

mA . Then as the binary image of 

this code, she obtains the code k
mA . Each codeword of k

mA  defines the truth table 

of a k-affine function, which then leads to the definition of k-dot products. We give 

Proposition 4.5 in order to describe the rules that quadratic parts of k-affine 

functions must obey. In Section 4.3, we give examples of the 4Z -linear codes of 

types 
2024 , 

0124 , 
1124  and 

0224  as to clarify the subject. Finally Section 4.4 

contains our contributions on the extension of these definitions to a larger ring, 

8Z . We drive a new class of functions, which we call t,k-affine, using linear codes 

over the ring 8Z . We then give propositions 4.7 to 4.11. Proposition 4.7 gives the 

properties of the kt,
mC  matrix. Proposition 4.8 shows that for t=0, k-affine and t,k-

affine functions are exactly the same which then imply Proposition 4.9 with the 

proposal that k-dot product and t,k-dot product values are equivalent for t=0. 

Proposition 4.10 gives the properties, wheras Proposition 4.11 gives the explicit 

formula of the t,k-dot product. The new class of functions contain all affine 

functions, some quadratic functions and some cubic functions. Examples of these 

functions are given at the end of this chapter starting from 8Z -linear codes.  
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4.1 4Z -Linear Codes and Krotov Matrices 

We will start this section by giving the definition of 4Z -Linear Codes. Then using 

this definition we give Proposition 4.2 to give the relation of 4Z -Linear Codes and 

Krotov matrices.  

4.1.1 4Z -Linear Codes 

By a quaternary linear code C of length m, a linear block code over 4Z , i.e., an 

additive subgroup of 
mZ
4  is meant. A binary code is 4Z -linear if its coordinates 

can be permuted so that it is the image of a linear code over 4Z . The folowing 

proposition gives the generator matrices of quaternary linear codes. 

Proposition 4.1: [104] Any 4Z -linear code C containing some nonzero 

codewords is permutation equivalent to a 4Z -linear code with the generator matrix 

of the form 















DI0

BA

2

1
k

k

I

2
 (4.1) 

where 
1kI and 

2kI denote the 11xkk  and 22xkk  identity matrices, respectively, and 

A and D are 2Z matrices and B is a 4Z  matrix. Then C is an abelian group of type 

21 24
kk

. C contains 212
2

kk 
codewords. C is a free 4Z  module if and only if 02 k .  
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4.1.2. Krotov Matrices 

In [73] D.S. Krotov introduced matrices of size )2(
21

212  )(
rr

xrr


 and named 

them as 2,1 rr
A . These matrices consists of lexicographically ordered columns T

z , 

where z runs through 21

24
rr

xZZ . For example, 

 


























20202020

33221 100

1 11 111 1 1

,
20

11
,1 1,11,00.0

AAA . (4.2) 

Later than Tokareva [104] named these matrices as k
mG  with 

211 2 and rrmrk   with )2/(0 mk  . Tokareva used these matrices to define 

k-affine functions and k-bentness crireria. We will give the origins of the k
mG  

matrix in order to understand the origins of the k-dot product and k-affine 

functions. We will now give Proposition 4.2 for the k
mG  matrix. 

Proposition 4.2: Columns of the mxkm 2)(   Krotov matrix 













k
mG

A
11

)2(,


kmk  

are the lexicographically ordered codewords generated by 










2kmI0

0Ik

2
. (4.3) 

and an extra symbol ‗1‘ in the first position. 

Proof: We know that by definition )2(, kmk 
A  contains lexicographically ordered 

columns T
z , where z runs through 

kmk xZZ 2
24


. Each column of )2(, kmk 
A  consists 

of k many 4Z  symbols and (m─2k) many 2Z  symbols.  
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Notice that (4.3) is equivalent to (4.1) with the matrices A=0 B=0, D=0. Then (4.3) 

produces codewords containing k1=k many 4Z  symbols and k2=(m-2k) many 2Z  

symbols.  

Hence Columns of k
mG  are the lexicographically ordered codewords generated by 

(4.3).  

4.2 Generating a 4Z -linear, (
m22 , m+1) code k

mA  from a 4Z -linear (2
m

, m) 

code C 

It is observed that from a 4Z -linear (2
m
, m) code C of type kmk 224  , which 

consists of k many 4Z  elements and (m-2k) many 2Z  elements, Tokareva defines 

a 4Z -linear, (
m22 , m+1) code k

mA  using the 1 2 xm  vectors u
h . A code of type 

kmk 224   contains (m−k) symbols, k of which are from (0, 1, 2, 3) and (m−2k) of 

which are from (0, 2). 

k
m

1
k

u
G(u)φh

  (4.4) 

where  

uuuuu(φk  )),((),   (4.5) 

with kZ 4u  and km
Z

2
2


u  and   is the Gray map which is defined by, 

103        

112        

011        

000        

: 2
24









 ZZ

. (4.6) 
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So,  uu(uφk  )1  and   k
m

u
Guuh  . Each u

h  can be seen as a linear 

combination of the rows of k
mG . Then (4.4) can be written as, 

























































)12,()0,(

)12,2()0,2(

)12,1()0,1(

)12,()0,(

)12,1()0,1(

)12,0()0,0(

 

m

m

m

m

m

m

kmkm

kk

kk

kk k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

u

GG

GG

GG

u

GG

GG

GG

uh

















, 

which is also equal to 

 
 
 

 )12,()0,()2(       

 )12,1()0,1()0(      

)12,()0,()(      

            )12,0()0,0()0( 









m

m

m

m

kmkmkm

kk

kkk

k
m

k
m

k
m

k
m

k
m

k
m

k
m

k
m

u

GGu

GGu

GGu

GGuh









 (4.7) 

+ represents addition on 4Z . In (4.7),   )12,()0,( mii k
m

k
m GG   represents i

th
 

row of k
mG  and    )()()( )12,()0,( 1210 icicicii m

m
  k

m
k
m GG  where )(ic j  is 

the i
th

 symbol of the j
h
 codeword. Thus i

th
 row of k

mG  is a vector of size 12 xm  

which contains i
th

 symbols of all the lexicographically ordered codewords of the 

4Z -linear code C.  For example for a 4Z -linear code C of type 11
241 , we have 

       
       ,23,03,22,02

,21,01,20,00

7654

3210





cccc

cccc
. So,  

  )02200220(
20202020

33221100
12 








21

h .  
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Notice that, since columns of k
mG  are ordered lexicographically, elements of the 

vector u
h  are in some kind of order. 

Tokareva defined a 
mm 22   matrix )( ,

k
vuck

mC  over 4Z  with the rows u
h . Its 

rows are in lexicographical order of vectors (u)φ
1

k
 . Thus k

mC  has all linear 

combinations of the symbols of all the codewords of C ( 4Z -linear code of type 

kmk 224  ). This new code of size 12 m  is also a 4Z -linear code. Its of type 
m

24 . 

The linearity of the new code comes from the fact that the new code contains u
h  

for 
mZ
2

u  i.e., all linear combinations of the codeword symbols are in the new 

code. Thus 4Z -linear code of type kmk 224   is extended to the 4Z -linear code of 

type 
m

24  by Tokareva. k
mA  which contains all u

h  and u
h +2 is an affine code (+2 

complements the corresponding binary vector after mapping by  ). Mapping this 

code to 2Z  by   k
mA binary code is obtained.  

13,2      

01,0      

: 24





 ZZ

 (4.8) 

As an ilustration for more understanding; we consider the code C as an 

)()( kmkm  , S-box. Then each codeword of C will be an S-box output. This 

S-box consists of )( km  component functions (symbols of the codwords). Each 

row of 
k
mG  then corresponds to the truth table of one component function. Hence 

each u
h  is a the truth table of a linear combination of the component functions of 

the S-box which is the so called extended output function of the S-box, which is 
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defined in (2.7). Then k
mC  contains the truth tables of all of the extended outputs 

of the S-box as its rows.  

Hence the codewords of 4Z -linear code k
mA  are the truth tables of the extended 

output function of the S-Box (or the code C). Table 4.1 summarizes our 

illustration. 

Table 4.1: Summary of our illustration between Tokareva‘s notations and S-boxes 

C )()( kmkm   S-box 

Symbols of C )( km  component functions of the S-box 

Rows of k
mG  Truth table of one component function 

u
h  Truth table of a extended output function of the S-

box 

Codewords of 4Z -

linear code k
mA  

Truth tables of the extended output functions of the 

S-box 

Codewords of binary 

code k
mA  

Binary image of the truth tables of the extended 

output functions of the S-box 

4.3 k-dot Product and k-Affine Functions  

To every codeword of the binary code k
mA  a truth table of a Boolean function can 

be matched. Codewords of the binary code k
mA  are illustrated as binary images of 

the truth tables of the extended output functions of the S-box ( 4Z -linear code C) 

in Table 4.1. The corresponding Boolean functions are said to be k-affine by 

Tokareva [104]. Thus the extended output functions of the 4Z -linear code C are 
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said to be k-affine. The set of all k-affine functions is denoted by k
m . For k=0,1 k-

affine functions corresponds to affine functions. However for 2k  some of the k-

affine functions are affine and rest are quadratic.  

Proposition 4.3: [108] For any integer m, 2/0 mk  , the class k
m  consists of 

)1(2 1  kkm  many affine functions and )12(2 1  kkkm  many quadratic 

functions. 

Corollary 4.1: [108] The part of affine functions in the class 2/m
m  tends to zero 

as m grows up. 

If g be the Boolean function corresponding to )β(h
u  which is the vector u

h  

whose elements are β  mapped to Z2, then Theorem 4.1 gives g. 

Theorem 4.1: [104] For integer m, k such that )2/(0 mk  , a k-affine function 

with variable v and constant parameter u can be written as, 

 
  avu

vvvvuuuug

ss
m
s

jjiijjii
k

ij
k
i









1

2122122122121

          

))()()(()(v
 (4.9) 

where mZ2u  and 2
Za . For instance, any 2-affine 4-variable function g is 

uniquely determined by a binary vector )( 1234 uuuuu  and an element 2
Za  

as, 

avuvuvuvu

vvvvvvvvuuuuvvvvg





43342112

4232413143211234

                            

))()(()(
. 
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The class 2
4  consists of 24 affine and 8 quadratic functions. Quadratic functions 

can be given by the vectors  )1010(),1001(),0110(),0101(u and  1,0a . 

Definition 4.1: [104] k-dot product of the two m-bit binary vectors u and v is 

defined to be, 

 
 ss

m
s

jjiijjii
k

ij
k
i

k
k

vu

vvvvuuuu

c

1

2122122122121

,

                

))()()((            

)(,









 vuvu 

 (4.10) 

Hence k-dot product definition comes from the k-affine function.  

Proposition 4.4: [104] For any integer n, m, k such that 
mn 2 , 2/0 mk  , it 

holds; 

(i)   )( 0
1n2

k
m

k
1m CJJCC   

(ii)   )( n
1
2

k
m4

1k
2m JCCJC 

  

(iii)   k
m

k
m CC 

T
 

k
mA  is a code, which contains the truth tables of k-affine functions, i.e., 

 acodewordscodewords k
k
m  ,|  vuA . The algebrac normal forms (ANF) 

of k-affine functions contain a linear part and/or a quadratic part. However it is 

observed that only a certain type of quadratic terms are included. We define these 

quadratic terms in Proposition 4.5.  
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Proposition 4.5: Only the quadratic tems obeying (i), (ii), and (iii) can be included 

in the algebraic normal forms of the k-affine functions. Let us pair the m-bit binary 

vector v as  ),),....(,(),,()( 14321 mm vvvvvvvG  . 

(i) Quadratic part can not contain any product of bits from the same pair, i.e., no 

product term like 21vv  can be included. 

(ii) Quadratic part can only contain products of bits from the first k-pairs i.e., 

kk vvvvvv 2224131 ,   can be included. 

(iii) Quadratic part is nonzero if and only if only one of the bits in the same pair of 

the coefficient vector u is nonzero,i.e., 01 21  uu . 

Proof: From the definition of k-dot product, it is seen that quadratic part can only 

result from jiYY  terms with ji  . All (i), (ii) and (iii) comes from the definition 

of iY . 

(iii) part of Proposition 4.5 explains the reason that the class 2
4  consists of 24 

affine and 8 quadratic functions. Quadratic functions can be given by the vectors 

 )1010(),1001(),0110(),0101(u which obey (iii) and  1,0a . We will now 

make some examples in order to understand k-affine functions. 

Example 4.1: Let us begin with the 4Z -linear code of type 
2024 . This code 

contains 2 binary symbols and no 4Z  symbol. Now if we write all possible 2-bit 

binary vectors, we get (00),(01),(10),(11). Columns of 
0
2

G  consists of 2 times 
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these 2-bit binary vectors, 









2020

22000
2

G . For  )11(),10(),01(),00(u  we have 















































0220

2200

2020

0000

11

10

01

00

0
2

h

h

h

h

C  and 















































0110

1100

1010

0000

)(

)(

)(

)(

)(

11

10

01

00

0
2

h

h

h

h

C









 . 

The binary code 
0
2

A  consists of codewords which are the rows of )( 0
2

C  and 

their complements. Binary Boolean functions corresponding to these codeword 

vectors are, 

001212 ),(),00(0),( lvvvvg   for the first row of )( 0
2

C  

0112112 ),(),01(),( lvvvvvg   for the second row of )( 0
2

C  

1012212 ),(),10(),( lvvvvvg   for the third row of )( 0
2

C  

11122112 ),(),11(),( lvvvvvvg   for the fourth row of )( 0
2

C  

From the above equations one gets, u
u

vuh l ,)(  where  vu,  represents 

the dot product of the vectors u and v and  vuvu ,)(l  is the linear function of 

v. Notice that every row of )( 0
2

C  is the truth table of a linear function of v. The 

complement functions corresponding to ( 2u
h ) are then affine functions of v. 

Thus the binary code 
0
2

A  contains affine functions. Table 4.2 shows the 

illustration for this example.  
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Table 4.2: Illustration for Example 4.1. 

C 22  S-box with 2-bit binary outputs multiplied by 

2, each is a linear mapping 

Symbols of C Component functions of the S-box, a binary linear 

function 

Rows of k
mG  Truth table of one component function, truth table of 

a linear function 

u
h  Truth table of one extended output function of the S-

box, linear combination of linear functions. 

Codewords of 4Z -

linear code k
mA  

Truth tables of one extended output function of the 

S-box, linear combination of linear functions. 

Codewords of binary 

code k
mA  

Truth tables of linear combination of linear functions 

divided by 2. This gives linear function truth tables. 

Thus beginning from a binary linear code of size 2
m
, 2

m
 affine functions are 

obtained. Since no 4Z  term was included in the forming code C, Tokareva called 

the resultant functions 0-affine. 

Example 4.2: Let us now begin with the 4Z -linear code of type 
0124 . This code 

contains one 4Z  symbol and no binary symbols. Now if we write all possible 4Z  

symbols, we get (0),(1),(2),(3). Columns of 1
2G  consists of these symbols, 

 32101
2G . For  3,2,1,0)(1 

u
k

 ,  )10(),11(),01(),00(u ,. Then 
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













































1230

2020

3210

0000

10

11

01

00

1
2

h

h

h

h

C  and 























0110

1010

1100

0000

)( 1
2C . 

The binary code 1
2A  consists of codewords which are the rows of )( 1

2C  and 

their complements. Binary Boolean functions corresponding to these codeword 

vectors are, 

001212 ),(),00(0),( lvvvvg   for the first row of )( 1
2C  

1012212 ),(),10(),( lvvvvvg   for the second row of )( 1
2C  

0112112 ),(),01(),( lvvvvvg   for the third row of )( 1
2C  

11122112 ),(),11(),( lvvvvvvg   for the fourth row of )( 1
2C  

From the above equations one gets, u
u

vuh ˆ1
,)( l  where 

1
, vu  represents 

1-dot product of the vectors u and v which was defined by Tokeareva [104]. 

Notice that every row is the truth table of a linear function of v. The complement 

functions corresponding to ( 2u
h ) are then affine functions of v. Thus the binary 

code 1
2A  contains affine functions. Since one 4Z term was included in the forming 

code C. Tokareva called the obtained functions 1-affine which are also affine. 

Thus only one 4Z  term in the codewords of the forming code C, does not destroy 

the affine property of resultant functions. 
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Example 4.3: Let us now begin with the 4Z -linear code of type 1124 . This code 

contains one 4Z  symbol and one binary symbol. Now if we write all possible 4Z  

symbols, we get (0),(1),(2),(3), and all possible 1-bit binary vectors, we get (0),(1). 

Columns of 1
3G  consists of one 4Z  symbol and twice the 2Z symbol, 











20202020

332211001
3G . For  31,30,21,20,11,10,01,00)(1 

u
k

 , 

  )101(),100(),111(),110(),011(),010(),001(),000(u ,. Then 
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









 . 

The binary code 1
3A consists of codewords which are the rows of )( 3

1
C  and their 

complements. Binary Boolean functions corresponding to these codeword vectors 

are, 

000112,312,3 ),(),000(0),( lvvvvvvg   for the first row of )( 3
1

C  

001112,3112,3 ),(),010(),( lvvvvvvvg   for the second row of )( 3
1

C  
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100112,3312,3 ),(),100(),( lvvvvvvvg   for the third row of )( 3
1

C  

101112,31312,3 ),(),110(),( lvvvvvvvvg   for the fourth row, 

 010112,3212,3 ),(),001(),( lvvvvvvvg   for the fifth row,  

011112,31212,3 ),(),011(),( lvvvvvvvvg   for the sixth row, 

 110112,33212,3 ),(),101(),( lvvvvvvvvg   for the seventh row, and 

 111112,312312,3 ),(),111(),( lvvvvvvvvvg   for the last row. 

From the above equations one gets, u
u

vuh ˆ1
,)( l  where 

1
, vu  

represents 1-dot product of the vectors u and v which was defined by Tokareva 

[104]. Notice that every row is the truth table of a linear function of v. The 

complement functions corresponding to ( 2u
h ) are then affine functions of v. 

Thus the binary code 1
3A  contains affine functions. Tokareva called the obtained 

functions 1-affine which are also affine.  

Example 4.4: Let us now begin with the 4Z -linear code of type 
0224 . This code 

contains two 4Z  symbols and no binary symbols. Now if we write all possible 2-

symbol 4Z  vectors, we get (00), (01), (02), (03), (10), (11), (12), (13), 

(20),(21),(22),(23), (30),(31),(32),(33). Columns of 2
4G  consists of two 

4Z symbols, 









3210321032103210

33332222111100002
4G . Then, 
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1111111100000000

0110011001100110
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1100110011001100

0000000000000000

)( 2
4C

. 

The binary code 2
4A consists of codewords which are the rows of )( 2

4C  and their 

complements. The binary Boolean function corresponding to these codeword 

vectors are, 

0000212341234 ),,,(),0000(0),,,( lvvvvvvvvg   for the first row, 

00102123421234 ),,,(),0001(),,,( lvvvvvvvvvg   for the second row, 

00012123411234 ),,,(),0010(),,,( lvvvvvvvvvg   for the third row, 

001121234211234 ),,,(),0011(),,,( lvvvvvvvvvvg   for the fourth, 

2123432411234 ),,,(),1001(),,,( vvvvvvvvvvvvg   for the tenth, and 



 57 

2123431421234 ),,,(),1010(),,,( vvvvvvvvvvvvg   for the 11
th

 row. 

Other rows can be similary shown to satisfy (4.10). From Example 4.4 it is seen 

that Boolean functions corresponding to the codewords of the binary code 2
4A  

both contain a linear part and a quadratic part. From Proposition 4.5, each function 

g(v) contains quadratic parts which are the products of first 2 pairs of input vector 

v. Tokareva called these functions 2-affine since two 4Z symbols were included in 

the codewords of the forming code C, and the functions can contain 2k many 

quadratic terms.  

4.4 New t,k-dot Product and t,k-affine Functions Beginning from 8Z -

Linear Codes 

In previous sections we examined the k-dot product and k-affine functions, which 

were defined beginning from 4Z -linear codes. As a summary, we observed that 

from a (m, m−k) 4Z -linear code C of type 
kmk 224 

, which consists of k many 4Z  

elements and (m─2k) many 2Z elements, Tokareva defined a 4Z -linear code k
mA . 

Then from this code she obtained a binary (
m2 , m+1) code k

mA . Each codeword 

of k
mA  then defined a truth table of a k-affine function which leaded to k-dot 

products.  

Now we will define t,k-dot product and t,k-affine functions beginning from 8Z -

linear codes in a similar way Tokareva defined k-dot product and k-affine 

functions from 4Z -linear codes. Our road map is: 
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I. First of all we will start with a (m, m─k─2t) 8Z -linear code C of type 

ktmkt 23248  , which consists of t many 8Z elements, k many 4Z  elements 

and (m─3t─2k) many 2Z elements.  

II. By writing all codewords lexicographically as columns, we will obtain the 

matrix kt ,
mG . 

III. Then we will obtain a (
m2 , m+1) 8Z -linear code kt

mA ,  using kt ,
mG  as the 

generator matrix.  

IV. Later then from the code obtained in (III) we will produce a binary (
m2 , 

m+1) code k
mA  using the map   which will be defined in (4.14).  

V. Each codeword of k
mA  then defines a truth table of a t,k-affine function as 

the Definition 4.8, which leads to t,k-dot products whose explicit formula is 

given in Proposition 4.11.  

Before using the above road map we will first give some definitions for sZ
2

-

linear codes given by Carlet [45]. 

Definition 4.4: [45] Let k be any positive integer, u any element of sZ
2

 and 





s

i
i

i u
1

12  its binary expansion ( 1,0iu ).The image of u by the generalized Gray 

map is the following Boolean function on  

1)2( iGF , 



 

1

1
11 )(:)(

s

i
iiss yuuyyuG  . 
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The generalized Gray map is a mapping from sZ
2

 onto the Reed–Muller code of 

order 1, R(1; k─1). When k = 2, R (1; 1) being equal to the set of all the Boolean 

functions on GF(2), we obtain the usual Gray map, which is a mapping from 4Z  

to 2)2(GF . For instance, when k = 3, the images of the elements of 8Z  are the 

following words of length 4: G(0) =(0; 0; 0; 0); G(1) = (0; 1; 0; 1); G(2) = (0; 0; 1; 

1); G(3) =(0; 1; 1; 0);G(4) = (1; 1; 1; 1); G(5) = (1; 0; 1; 0); G(6) =(1; 1; 0; 0); 

G(7) = (1; 0; 0; 1). 

Definition 4.5: [45] A binary code is called sZ
2

-linear if its coordinates can be 

arranged so that it is the image of a linear sZ
2

-ary code by the generalized Gray 

map.  

Now we will define k-dot product and k-bentness criteria beginning from 8Z -

linear codes. First of all we will give the mapping table between 8Z  and 4Z  and 

2Z  as Table 4.3.  
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Table 4.3: Generalized Gray mapping between 8Z  and 4Z  and 2Z symbols 

8Z   Generalized 

Gray map 

4Z  Gray map 2Z  

0 0000 0 00 0 

1 0101 0 01 0 

2 0011 1 00 0 

3 0110 1 01 0 

4 1111 2 11 1 

5 1010 2 10 1 

6 1100 3 11 1 

7 1001 3 10 1 

The main quality of the Gray map is that, it is distance preserving. However there 

does not exist a distance preserving mapping from 8Z  [45], to 3

2
Z . The Gray map 

preserves distances, i.e., 

))(),((),( yxyx  ddL  (4.11) 

for all 
nZ
4

, yx . Here ),( yxLd  is the Lee distance of two 4Z  vectors which is 

defined as [27], 

)(),( yxyx  LL wd  (4.12) 

where )(xLw  is the Lee weight of the 4Z  vector ),,( 1 mxx x .  
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



m

i
iLL xww

1

)()(x  (4.13) 

with 1)3(,2)2(,1)1(,0)0( 
LLLL

wwww . 

Carlet uses the generalized Gray map as it is a distance preserving map. However 

representation of 8Z  ring elements by 4 bit is redundant. We will use an 

alternative map which uses 3-bit representation but not distance invariant. Table 

4.4 gives our map,   which is given by, 

1007   ,1106  1015 ,1114        

0113   ,0012  ,0101 ,0000        

: 3
28





 ZZ

. (4.14) 

We construct Table 4.4 from the knowledge that if M is a 2Z  matrix then 4M is a 

proper 8Z  matrix. Then binary symbols are multiplied by 4, i.e., 41,00  . 

Similarly if N is a 4Z  matrix then 2N is a proper 8Z  matrix. Then 4Z  symbols 

are multipled by 2, i.e., 63,42,21,00  . 

The map 24: ZZ   was given in (5.8) and is a part of Gray map. We define the 

map 28: ZZ   according to Table 4.4 as,  

17,6,5,4    

03,2,1,0:




. (4.15) 
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Table 4.4: Our mapping between 8Z  and 4Z  and 2Z  symbols 

8Z   Our map,   4Z  Gray map 2Z  

0 000 0 00 0 

1 010 0 00 0 

2 001 1 01 0 

3 011 1 01 0 

4 111 2 11 1 

5 101 2 11 1 

6 110  3 10 1 

7 100 3 10 1 

Now we will return to our road map.  

Road map I: The first step is to start with a (m, m─k─2t) 8Z -linear code C of 

type ktmkt 23248  , which consists of t many 8Z elements, k many 4Z  elements 

and (m─3t─2k) many 2Z elements. We define the generator matrix for 8Z -linear 

codes in Definition 4.6. 

Definition 4.6: The generator matrices for 8Z -linear codes of type ktmkt 23248   

are equivalent to  



















3
40

20

                                 

                               

               

k

k

1
k

I0

FI

BAI

2
 (4.16) 
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where 
1kI and 

2kI  and 
3kI  denote the 11 kk  , 22 kk   and 33 kk   identity matrices, 

respectively, and A and F are 4Z matrices and B is a 8Z  matrix. Then C contains 

32213
2

kkk 
codewords. C is a free 8Z  module if and only if 02 k  and 03 k .  

Road map II: We use (4.16) with ktmkkktk 23,, 321  , and obtained 

















 2k3tm

t

I00

0I0

00I

k

4

2

 

                                 

                                 

                   

. (4.17) 

Then by writing all codewords lexicographically of this code as columns, we will 

obtain the matrix kt ,
mG , for 3/0 mt   and 2/)3(0 tmk  . Notice that kt,

mG  

is an extension of the matrix k
mG  defined by Tokareva. Let us give some 

examples; 











4040

440000
2
,

G ,  6420
10

2


,
G ,  











40404040

6644220010
3

,
G ,  76543210

01
3


,

G , 











64206420  6420   6420  6420 64206420 6420

7777666655554444333322221111000011
5
,

G .  

Road map III: We will obtain a (
m2 , m+1) 8Z -linear code kt

mA ,  using kt,
mG  as 

the generator matrix. kt
mA ,  contains as codewords as the vectors 

u
h

8  and 4h
u 
8 . 

We define the 1 2 m  vector 
u

h
8  as, 
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kt,
m

1
kt,

u
8

G(u)φh
  (4.18) 

where  

uuuuuuu(φ kt  )),(),((),,,   (4.19) 

with 
tZ
8

u , k
Z4u  and 

ktmZ 23
2

u .   is the Gray map and we give   in 

(4.14). We now define the matrix kt,
mC , which has rows 

u
h

8  as an extension to the 

matrix k
mC  defined by Tokareva. Then kt

m
,A  have codewords as the rows of kt,

mC  

and m2

kt,
m JC 4 . We give the following examples for kt,

mC  matrices.  


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


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












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0,0
2

C , 























2460

4040
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0000

0,1
2

C ,  
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

































62042640

22446600

04400440

44004400

26046240

66442200

40404040
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0,1
3
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1,0C , 




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






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










53174206  3175   2064  1753 064275316420

77776666555544443333222211110000

64206420  6420   6420  6420 64206420 6420

00000000000000000000000000000000

5
1,1

C . 

Proposition 4.7: For any integers n, m, t, k such that 
mn 2 , 3/0 mt   and 

2/)3(0 tmk  , it holds; 

(i)   )(
0,0
1n2

kt,
m

kt,
1m

CJJCC 
  (4.20) 

(ii)   )( n
0,1
2

kt,
m4

1kt,
2m

JCCJC 

  (4.21) 

(iii)   k,
m

k,
m CC

00 
T

 (4.22) 

(iv)   )( 3 n
1,0kt,

m8
k1,t
3m JCCJC 

  (4.23) 

(v)   kt,
m

kt,
m CC 

T
 (4.24) 

Proof: (i) Consider  TTT
mzzz 221 ,, kt,

mG , then  
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














4    0         4     0      4     0

,,,,,, 222211
1

TTTTTT
mm zzzzzz kt,

mG  and using the definition of (u)φ
1
kt,


and 

 nhh 1u
8h , we have 

  )4,,4,(, 11
),(

ahhahha nn
a

 
 kt,

1m
1
kt,

u
8 G(u)φh  for )2(GFa .  

Thus, in order to obtain the matrix 
kt,

1m
C

  we should replace any element ktc ,
,vu  of 

kt,
mC  by the matrix 















 4,
,

,
,

,
,

,
,

ktkt

ktkt

cc

cc

vuvu

vuvu
. Hence (i) is true. 

(ii) and (iii) can be similarly proven as in the proof of Proposition 1 given by 

Tokareva in [104]. 

(iv) Consider 






 TTT
m

zzz
2

21 ,, kt,
mG , then  

















 kt,

m
kt,

m
kt,

m
kt,

m

k,t
m

GGGG
G





  

77221100
1
1  and using the definition of (u)φ

1
kt,


we have 

)7,,1,( 2
8

),,,(


m
h

cba u
8

u
8

u
8

hhh  for )( cba ,,1 . (iv) is then true. 

(v) comes from (iv) and (i). Proposition 4.7 will be used to derive the explicit 

expression of the t,k-dot product in Propositon 4.11. 

Road map IV: The binary image of the code kt
mA ,  is denoted by kt

m
,A . We use the 

map  , which was defined in (4.14), for this purpose. Then kt
m
,A  is a (

m2 , m+1) 
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code, which has as codewords as the rows )( kt,
mC  and )4( m

2
kt,

m JC  . For 

instance,  























0110

1100

1010

0000

)( 0,0
2C , 























0110

1010

1100

0000

)( 0,1
2C ,  



































10010110

00111100

01100110

11001100

01011010

11110000

10101010

00000000

)( 0,1
3C , 



































00011110

01100110

01011010

10101010

10110100

11001100

11110000

00000000

)( 3
1,0C . 

Road map V: Each codeword of kt
m
,A  corresponds to the truth table of a Boolean 

function. We call these functions t,k-affine. We mean the forming 8Z -linear code 

contains t many 8Z  symbols and k many 4Z  symbols. Each t,k-affine Boolean 

function is in the form of t,k-dot product as will be given in our Definition 4.7. The 

set of t,k-affine functions is denoted by kt
m
, . 

Definition 4.7: (t,k-dot product):  

)(, ,
,,
kt

kt c vuvu   (4.25) 
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Proposition 4.8:  

)()( k
m

k
m

0,
CC    (4.26)  

Proof: For t=0, the generator matrix of the 8Z -linear codes given by (4.17) is 

equivalent to generator matrix of the 4Z -linear codes given by (4.3). Then the 

matrices kt ,
mG  and k

mG  are equal except that binary symbols are multiplied by 4 

in kt ,
mG  and by 2 in k

mG . So   mapping (dividing by 2) of the matrix k
mC  and So 

  mapping (dividing by 4) of the matrix kt,
mC  will be equal. Then 

)()( ,0
,,
kk cc vuvu     (4.27) 

which leads to (4.26). 

Proposition 4.9: t,k- dot product is equal to k-dot product for t=0, i.e., 

kk  vuvu ,, ,0  (4.28) 

Proof: Recall equations (4.10), (4.25) and (4.27) as, 

 )(, ,
k

k
c vuvu  , 

)(, ,
,,
kt

kt c vuvu   and 

)()( ,0
,,
kk cc vuvu    

Then (4.28) is true.  

Proposition 4.10:The following are true for t,k-dot product 

(i) ktkt ,, ,,  uvvu  (4.29) 
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(ii) ktkt aa ,, ,,  vuvu  for any 2Za  (4.30) 

(iii)     abba ktkt  ,, ,, vuvu  for any 2, Zba   (4.31) 

(iv)         0,01,0 ,,  bbaabbaa  (4.32) 

(v)         bbaabbbaaabbbaaa  0,00,1 ,,   (4.33) 

for any 2,,, Zbbaa  . 

(vi)         kttkt bbaabbaa ,,1, ,,,   vuvu    (4.34) 

for any 2,,,, Zbbaa    and 1)( ,,  ktkkt v,uvu,   where k  is a 

permutation on (1,2)(3,4)(5,6)…(2k-1, 2k) on m elements.  

(vii)         ktkt bbbaaabbbaaa ,0,,1 ,,,   vuvu   (4.35) 

for any 2,,,, Zbbaa    and 1)( 0,0,  bbaatkt v,uvu,   

where k  is a permutation on (1,3)(4,6)(7,9)…(3t-2, 3t) on m elements. 

Proof: (i) comes directly from (4.22). 

(ii) comes  from the definition of kt,
mC  

(iii) is given for t=0 in Proposition 6 of (147). For t > 0, according to Proposition 

4.7,  

    abcc ktkt
ba

4,,
,

 vu,vu
.  (4.36) 

Then         ababcbac kt
kt

kt
kt

ba
 ,

,
,

,
,

,)4(,)( vuvu vu,vu
 . 

(iv) can be observed comparing the matrices )( 0
2C  and )( 1

2C . 
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(v) can be observed comparing the matrices )( 0,0
3C  and )( 1,0

3C . 

(vi) is proven in Proposition 6 of (147). 

(vii) comes from (4.33) and (4.34). 

Now in the following proposition we give the explicit formula of the t,k-dot 

product. 

Proposition 4.11: 

   

k

jkjkikii
t

ijj
t
i

jis
t

ij
t
ı

k
s

t
ikt

vu

vuuvK

TTK











,                  

)(                  

L,

23223213213,11

11i1,vu

 (4.37) 

))(( 3223232232 ikikikiki vvuuL    (4.38) 

2323  iii vuK  (4.39) 

 232132132232   ikikikiki vuvuT  (4.40) 

Proof: For t=0 it can be observed that (4.37) is equal to k-dot product. This is in 

accordance with (4.28). Induction on t with a fixed k (for simplicity fix it to 0) will 

be sufficient to prove Propositon 4.10. Let‘s start with t=1,  
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 

 

 

 

 

 

 

  





















































































0,1

0,1

0,1

0,1

0,1

0,1

0,1

0,1

3

111

110

101

100

011

010

001

000

00011110

01100110

01011010

10101010

10110100

11001100

11110000

00000000

)(

v,

v,

v,

v,

v,

v,

v,

v,

C
1,0 . . Simplification shows that 

21211322310,1 vvuuvuvuvu  vu,   

On the other hand, ))(( 31311 vvuuL  , 111 vuK   and  12211 vuvuT   

(4.37) also gives 21211322310,1 vvuuvuvuvu  vu, .  

   

k

jkjkikii
t

ijj
t
i

jis
t

ij
t
ı

k
s

t
ikt

vu

vuuvK

TTK











,                  

)(                  

L,

23223213213,11

11i1,vu

 

Let the proposition be right for some t, then show that it is true for t +1. 

 
 )(                   

,,

13131313
1
,1

1
1
11,,1














ttiii
t

jii

ti
t
itktkt

vuuvK

TTLvuvu
 

From (4.35) it is true that 

        ktkt bbbaaabbbaaa ,0,,1 ,,,   vuvu   for any 

2,,,, Zbbaa    and 1)( 0,0,  bbaatkt v,uvu,   where k  

is a permutation on (1,3)(4,6)(7,9)…(3t-2, 3t) on m elements. 
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Then, ))((
1

bbaaL
t


  and babaTt 1 , 

1)( ,,  bbaaktkkt v,uvu,  where k  is a permutation on 

(1,3)(4,6)(7,9)…(3t-2, 3t) on m elements.  

(i) first case, ktkkt ,, )(  v,uvu,  for symmetric u vectors such that 

)(uu k  for which 1 bbaa , if 0 bbaa  then 1  and 

   

bababa

bbaababababbbaaa





                                       

, 0,1  

(ii) second case, ktkkt ,, )(  v,uvu,  for symmetric u vectors such that 

)(uu k  for which 1 bbaa , if 1 bbaa  then 0  and 

      , 0,0 bbaababababbbaaa   

(iii) third case, bbaatkt  0,0, )( v,uvu,  for asymmetric u vectors such 

that )(uu k  for which 0  and 

      , 0,0 bbaababababbbaaa   

Then for all cases (i), (ii), and (iii) numerical calculations show that 

   

    k

ttikiit
t
ikt

bbbaaa

vuuvKTKL

,

13131321311
1
11

,

)(  










which finishes the 

proof. 

All numerical examples given below from Example 4.5 to 4.9 satisfy (4.37). 

Example 4.5: Let us begin with the 8Z -linear code of type 110 248 . This code 

contains one binary symbol and one 4Z  symbol. Now if we write all possible 4Z  
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symbols, we get (0),(1),(2),(3), and all possible 1-bit binary vectors, we get (0),(1). 

Columns of 
1,0

3
G  consists of twice the 4Z symbol and four times the 2Z symbol, 











40404040

664422001,0
3

G . For  31,30,21,20,11,10,01,00)(1 
u

k
 , 

 )101(),100(),111(),110(),011(),010(),001(),000(u ,. Then 









































































62042640

22446600

04400440

44004400

26046240

66442200

40404040

00000000

,0

101

100

111

110

011

010

001

000

1
3

h

h

h

h

h

h

h

h

C  and 









































































10010110

00111100

01100110

11001100

01011010

11110000

10101010

00000000

)(

)(

)(

)(

)(

)(

)(

)(

)(
,0

101

100

111

110

011

010

001

000

1
3

h

h

h

h

h

h

h

h

C

















 . 

Notice that for t=0, )()(
0,1
3

1
3 CC   which is expected.  
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The binary code 
1,0

3
A consists of codewords which are the rows of )(

0,1
3

C  and 

their complements. Binary Boolean functions corresponding to these codeword 

vectors are, 

000112,312,3 ),(),000(0),( lvvvvvvg   for the first row of )(
0,1
3

C  

001112,3112,3 ),(),010(),( lvvvvvvvg   for the second row,  

100112,3312,3 ),(),100(),( lvvvvvvvg   for the third row, 

101112,31312,3 ),(),110(),( lvvvvvvvvg   for the fourth row,  

010112,3212,3 ),(),001(),( lvvvvvvvg   for the fifth row, 

011112,31212,3 ),(),011(),( lvvvvvvvvg   for the sixth row, 

110112,33212,3 ),(),101(),( lvvvvvvvvg   for the seventh row, and 

111112,312312,3 ),(),111(),( lvvvvvvvvvg   for the last row. From 

the above equations one gets, u
u

vuh ˆ1,0
,)( l  where 

1,0
, vu  represents 

0,1-dot product of the vectors u and v. Notice that every row is the truth table of a 

linear function of v. The complement functions corresponding to ( 4h
u  ) are then 

affine functions of v.  

Example 4.6: Let us now begin with the 8Z -linear code of type 020 248 . This 

code contains two 4Z  symbols and no binary symbols. Now if we write all 
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possible 2-symbol 4Z  vectors, we get (00), (01), (02), (03), (10), (11), (12), (13), 

(20),(21),(22),(23), (30),(31),(32),(33. Columns of 
2,0

4
G  consists of two 

4Z symbols multiplied by 2, 











6420642064206420

66664444222200002,0
4

G . 



























































2301301201231230

3131020213132020

0321103212033210

1111222233330000

3012123030121230

0202202002022020

1032321010323210

2222000022220000

0123301223011230

1313020231312020

2103103203213210

3333222211110000

2460246024602460

4040404040404040

6420642064206420

0000000000000000

,0 2
4C

 and  
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

























































1100100100110110

1010010101011100

0110001101011100

0000111111110000

1001011010010110

0101101001011010

0011110000111100

1111000011110000

0011100111000110

0101010110101010

1001001101101100

1111111100000000

0110011001100110

1010101010101010

1100110011001100

0000000000000000

)( 2,
4
0

C

. 

The binary code 
2,0

4
A consists of codewords which are the rows of )(

0,2
4

C  and 

their complements. The binary Boolean function corresponding to these codeword 

vectors are, 

0000212341234 ),,,(),0000(0),,,( lvvvvvvvvg   for the first row of 

)(
0,2
4

C , 

00102123421234 ),,,(),0001(),,,( lvvvvvvvvvg   for the second row, 



 77 

00012123411234 ),,,(),0010(),,,( lvvvvvvvvvg   for the third row, 

001121234211234 ),,,(),0011(),,,( lvvvvvvvvvvg   for the fourth row 

and other rows also satisfy (4.37). Thus the code 
2,0

4
A  is equal to the code 2

4A . 

Example 4.7: Let us now begin with the 8Z -linear code of type 001 248 . This 

code contains one 8Z  symbol.  

 76543210
01

3


,
G , 



































12345670

24602460

36147250

40404040

52742430

64206420

76543210

00000000

3
1,0

C , 



































00011110

01100110

01011010

10101010

10110100

11001100

11110000

00000000

)( 3
1,0C . 
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Table 4.5: Binary Boolean function corresponding to the codeword vectors )(
u

8h  

u <u,v>1,0 

000 0 

001 3v  

010 2v  

011 2123 vvvv   

100 1v  

101 1v 3v  

110 1v 2v  

111 1v 2132 vvvv   

All rows of the matrix )( 3
1,0

C  satisfy (4.37). Six of the 1,0-affine functions are 

affine and two of them are quadratic. 

Example 4.8: Let us now begin with the 8Z -linear code of type 011 248 .. This 

code contains one 4Z  symbols and one 8Z  symbol. 











64206420  6420   6420  6420 64206420 6420

7777666655554444333322221111000011
5
,

G .



 79 



























53174206  3175   2064  1753 064275316420

77776666555544443333222211110000

64206420  6420   6420  6420 64206420 6420

00000000000000000000000000000000

1,1
5C  and 



































11001001001101110100100100110110

00000111111110010001001101101100

11111111000000001111111100000000

01100110011001100110011001100110

10101010101010101010101010101010

11001100110011001100110011001100

00000000000000000000000000000

)( 1,1
5



C
. 

The binary code 
1,1

5A consists of codewords which are the rows of )(
11

5
,

C  and 

their complements. The binary Boolean function corresponding to these codeword 

vectors are given in Table 4.6. 
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Table 4.6: Binary Boolean function corresponding to these codeword vectors )( 8
u

h  

u <u,v>1,1 

00000 0 

00001 
2v  

00010 
1v  

00011 
21 vv   

00100 
5v  

00101 
2v 412 vvv   

00110 
1v 5v  

00111 
1v 4152 vvvv   

01000 
4v  

01001 
3142 vvvv   

01010 
41 vv   

01011 
1v 3142 vvvv   

01100 
5445 vvvv   

01101 
4341452 vvvvvvv   

01110 
43451 vvvvv   

01111 
4341314521 vvvvvvvvvv   
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Table 4.6 (continued) 

10000 3v  

10001 32 vv   

10010 31 vv   

10011 321 vvv   

10100 35 vv   

10101 41532 vvvvv   

10110 135 vvv   

10111 411235 vvvvvv   

11000 34 vv   

11001 31234 vvvvv   

11010 134 vvv   

11011 311234 vvvvvv   

11100 34345 vvvvv   

11101 4341312345 vvvvvvvvvv   

11110 43311345 vvvvvvvv   

11111 413112345 vvvvvvvvv   
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All rows of the matrix )( 1,1
5C  satisfy (5.38). It is observed that five variables are 

partitioned into one 2-bit for k=1 part and 3-bit for t=1,i.e.,  

))(( 54321 vvvvv  and on first part a k-dot product is performed and on the 

second part a tk-dot product is performed (with k=0).  

Example 4.9: Let us now begin with the 8Z -linear code of type 002 248 .. This 

code contains two 8Z symbols. 











012345670123456701234567

777777771111111100000000



2,0
6

G , 













































05274163

04040404

03424725

024602460246024602460246

012345670123456701234567

000000000000000000000000

2,0
6

C  and 













































01011010

01010101

01101101

001100110011001100110011

000011110000111100001111

000000000000000000000000

)(
2,0
6

G  

Table 4.7 shows 6-bit Boolean functions corresponding to each of )(
2,0
6

G . 
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Table 4.7: Binary Boolean function corresponding to these codeword vectors )( 8
u

h  

u <u,v>2,0 

000000 0 

000001 3v  

000010 2v  

000011 2v 213 vvv   

000100 1v  

000101 31 vv   

000110 1v 2v  

000111 1v 2132 vvvv   

001000 6v  

001001 5415242163 vvvvvvvvvv   

001010 5162 vvvv   

001011 1v 54142151522163 vvvvvvvvvvvvvv   

001100 61 vv   

001101 5414214352631 vvvvvvvvvvvvv   

001110 51621 vvvvv   
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Table 4.7 (continued) 

001111 5414215141216321 vvvvvvvvvvvvvvvv   

010000 5v  

010001 4235 vvvv   

010010 4125 vvvv   

010011 412142235 vvvvvvvvv   

010100 15 vv   

010101 42531 vvvvv   

010110 41521 vvvvv   

010111 4142215321 vvvvvvvvvv   

011000 4556 vvvv   

011001 54154524214241653 vvvvvvvvvvvvvvvvv   

011010 414251652 vvvvvvvvv   

011011 5415451524214241216532 vvvvvvvvvvvvvvvvvvvvvv 
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Table 4.7 (continued) 

011100 45651 vvvvv   

011101 545242142416531 vvvvvvvvvvvvvvv   

011110 5451416521 vvvvvvvvvv   

011111 
1 2 3 5 6 1 2 1 4 2 4 1 2 4

2 5 1 5 4 5 1 4 5

v v v v v v v v v v v v v v

v v v v v v v v v

       

   
 

100000 4v  

100001 43 vv   

100010 42 vv   

100100 41 vv   

101000 46 vv   

110000 45 vv   
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CHAPTER 5 

 

 

k-BENT AND t,k-BENT FUNCTIONS 

 

 

 

Bent functions, which are at maximum distance to affine functions, form a well-

known topic in cryptology. They are first studied by Dillon [49] and Rothaus [94] 

in seventies. Rothaus used the word ―bent‖ for the first time in the litterature in 

1970. MacWilliams and Sloane [76] observed that bent functions are stronly 

linked with first order Reed Muller codes. And in 2008, Tokareva defined [104] k-

bent functions starting from 4Z -linear codes. 

In this chapter, we study bent functions, from the conventional Rothaus and Dillan 

as well as Maiorana McFarland bent functions to the Tokareva‘s k-bent functions. 

We defined t,k-Walsh transform and t,k-nonlinearity to propose the t,k-bent 

functions. We give Propositons 5.3 to show that the t,k-Walsh transform of a 

Boolean function satisfies the Parseval‘s equation. We then relate the t,k-

nonlinearity to t,k-Walsh transform in Propositons 5.4. Next, we suggest a new 

class of bent functions, the t,k-bent functions, which are extensions of k-bent 

functions, depending on the t,k-dot product definition given in Chapter 4. We give 

Proposition 5.5 to show that the set of (t+1),k-bent functions and t,(k+1)-bent 

functions are subsets of the set of t,k-bent functions. In sections 5.3 and 5.4, we 
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show that the newly defined classes of bent, namely Tokareva‘s k-bent and our t,k-

bent functions are affine equivalent to the well-known Maiorana McFarland class 

of bent functions. As a cryptology application, in section 5.5, we propose the 

method of cubic cryptanalysis for block ciphers. It is a generalization of the well-

known method of linear cryptanalysis given in 1993 by M. Matsui [79]. In our 

method we approximate Boolean functions by t,k- affine functions. The newly 

introduced t,k-bent functions are claimed to be strong against cubic cryptanalysis, 

since they are at maximum distance to t,k- affine functions, which contain affine, 

quadratic and cubic functions. 

5.1 Conventional Bent Function Definitions and Properties 

For the rest of the chapter, let )2()2(: GFGFf m   be an m-bit binary function. 

In this section, we will give conventional definitions of bent functions including 

Rothaus and Maiorana McFarland class bent functions. 

Definition 5.1: A function f is called bent if all of the components of the Walsh 

spectrum of f have the same magnitude, up to the absolute value.  

Definition 5.2: A function f is called bent if it is at maximum possible distance to 

all affine functions. This implies that bent functions have maximum possible 

nonlinearity.  

From Definition 5.1 and Parseval‘s equation it is observed for bent f  

mm
f GFW )2(for  2)( 2/  ww . (5.1) 

(5.1) requires m to be even. Since bent functions are defined only for even values 

of m, from now on unless otherwise stated explicitly we assume that m is even and 

m > 2.  
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Theorem 5.1.: [49] If f is a bent function, with km 2 ; then the degree of f is at 

most k, except for the case k = 1.  

Proof of this theorem is given in [49]. This theorem gives us an obvious upper 

bound for the number of bent functions which is  

























2/

...
10

2 ofnumber max 
n
nnn

f  (5.2) 

Theorem 5.2.: [49] A bent function is invariant  

(i) Under a linear or an affine transformation in coordinates, that is f is 

bent if and only if the function fh   is bent where bAx  x)( , 

A is a nonsingular matrix of order m and b is any vector in mGF )2( . 

(ii) By adding an affine function, that is f is bent if and only if f  is 

bent for any affine function  . 

5.1.1 Rothaus’ Bent Function Classes 

In 1975, Rothaus [49] presented the first two classes of bent functions. He made an 

exhaustive search on all polynomials in 6)2(GF . He found two general classes of 

bent functions. 

Theorem 5.3: (Rothaus Class I) [49] Let km 2  and kGF )2(, yx and f be a k-

variable function. Then the m variable function  

fyxyxyxQ kk  ...),( 2211yx  (5.3) 

is bent. 
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Theorem 5.4: (Rothaus Class II) [49] Let )(),(),( xxx CBA  be 2k-variable bent 

functions such that )()()( xxx CBA   be also bent. Let )2(, GFzy  . Then the 

function 

yzzCAyBACBCABAzyQ  ))()(())()(()()()()()()(),,( xxxxxxxxxxx

 (5.4) 

is a bent function on 22)2( kGF . 

5.1.2 Maiorana McFarland’s Class 

Maiorana McFarland‘s class of bent functions is a generalization of Rothaus‘ 

Class I.  

Theorem 5.5: (Maiorana McFarland Class) [80] Let k be an arbitrary positive 

integer and km 2 . Then the m-variable function f  given by,  

)()(,),( xxyyx gf    (5.5) 

where kGF )2(, yx  and   is an arbitrary permutation of kGF )2(  and g is an 

arbitrary k-variable function, is bent.  

5.1.3 Tokareva’s k-bent Functions 

Tokareva defined k-bent functions [104] from the definition of k-affine functions, 

which were defined in Section 4.3 of this thesis.  

Definition 5.3: [104] The k-Walsh transform of a Boolean function mGFf )2(  

is the integer valued function  

)(

)2(

,)(
)1()1()( x

x

wx
w

f

GF

k
f

m

kW  



 (5.6) 
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where 2/0 mk  . 

Definition 5.4: [104] By k-nonlinearity 
)(k

f
N  of a function f  the distance 

between f and the class k
m  is meant. 

Proposition 5.1: [104] It is true that 

)(max
2

1
2

)(1)(
ww

k
f

mk
f

WN    (5.7) 

Definition 5.5: [105] For any integers m, k such that 2/0 mk   we call a 

function f , k-bent if and only if all .2)( 2/)( mk
f

W w  

Proposition 5.2: [106] For k-bent functions k
mB  we have 

2/210 m
mmmm BBBB    (5.8) 

Proof is given in [106].  

For m=4 all 1-bent and 2-bent functions are examined numerically and Table 5.1 is 

constructed. 

 

Table 5.1: Properties of 1 and 2-bent 4-variable functions 

k # of k-bent 

functions 

Rf  Deg f 0
f

N  1
f

N  2
f

N  

1 896 16,0...,0 2 6 6 4,6 

2 384 16,0...,0 2 6 6 6 
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There are 896 1-bent 4-variable functions. 384 of them are 2-bent and 512 are not 

2-bent (only 1-bent). Maximum possible nonlinearity value is 6 for m=4.  2-bent 

functions have  

6210 
fff

NNN . (5.9)  

But only 384 of 1-bent functions satisfy (5.9). These functions are shown to be 

exactly equivalent to the 2-bent functions. 512 of 1-bent functions have 

4,6 210 
fff

NNN  (5.10) 

All 1-bent and 2-bent functions have autocorrelation spectrum (16 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0) which is the property of bent functions. This is expected. 

Note that all 1-bent and 2-bent functions have degree equal to 2. They are 

quadratic. Since bent functions must be distinct from affine functions and Theorem 

5.1 says that 2)deg(  kf  for m=4. This is what we expect. 

Example 5.1: Numerical analysis gives all 1 and 2-bent, 4-variable functions. 

Some examples for the truth tables of these functions are listed below. 

 01011000000011011 f ,  11101000000110002 f , 

 10100100110000103 f  and  00101001100000114 f  are truth tables of 1-

bent functions.  

 01100100000011015 f  and  01100010000010116 f  are truth tables of 2-

bent functions.  

Example 5.2: Numerical analysis give some of the 1, 2 and 3-bent 6-variable 

functions. Some examples for the truth tables of these functions are listed below. 
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 10101000001100100010100110011000000010110000001010011001100000111 f

 is 1-bent.  

 11101000001100100010100110011000000010100000001010011000000100012 f

 is 2-bent.  

 10101000001100100010101110000000010010110000001010011000000011103 f

 is 3-bent.  

5.2 t,k-bent Functions  

We will now define t,k-bent functions from the definition of t,k-affine functions 

which were defined in Section 4.4 of this thesis.  

Definition 5.6: The t,k-Walsh transform of a Boolean function )2()( GFf x  with 

m
GF )2(x  is the integer valued function  

)(

)2(

,),(
)1()1()( , x

x

wx
w

f

GF

kt
f

m

ktW  



 (5.11) 

where, 3/0 mt   and 2/)3(0 tmk  . Here kt,,  wx  is the t,k-dot 

product defined in section 4.4 of this thesis.  

Proposition 5.3: The t,k-Walsh transform of a Boolean function satisfies the 

Parseval‘s equation, 

m

GF

kt
f

m

W 2

)2(

2,
2))(( 

w

w . (5.12) 

Proof: Note that for t=k=0 (5.11) gives the Walsh transform. For t=0 (5.11) is 

equal to the k-Walsh transform which obeys the Parseval‘s rule [104], 
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m

GF

k
f

m

W 2

)2(

2 2))(( 
w

w . (5.13) 

If 0t  then the matrix )( kt,
mC  after replacing any element c by (-1)

c
 becomes a 

Hadamard matrix.  





 





 
























w

wwx

x

x

wxwx

w x

w

x

x

wx

w

w

ktkt

ktkt

m m

kt

m

v

v

vff

vfvf

v

GF

f

GFGF

kt
f

W

,,

,,

,

,,

,

)()(

)(,)(,

,

)2(

2

)(

)2(

,

)2(

2,

)1()1(

)1()1(

)1()1())((

 (5.14) 

and since, 











 




else

vifm
v ktkt

0

2
)1( ,, ,, x

w

wwx
 (5.15) 

Then,  

m

v

m

GF

kt
f

m

W 2

,)2(

2,
22))((  

 xw

w . 

Definition 5.7: The t,k-nonlinearity 
),( kt

f
N  of a function f , is the distance 

between f and the class kt
m
, , which contains all t,k-affine functions. 

Proposition 5.4: It is true that 

)(max
2

1
2

),(1),(
ww

kt
f

mkt
f

WN    (5.16) 
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Proof: Let a binary vector )( u
8u hg , then we have ktg ,,)(  vuvu .  

))1,(),,(min()),((min ,
),(


 uu

u
gfdgfdgfdistN kt

mg

kt
f

 (5.17) 

From the definition of )(
,

w
kt

f
W  and from (4.30), 

)(
2

1
2),(

,1
wu

kt
f

m Wgfd    (5.18) 

Using (5.17) and (5.18) we get (5.16). 

Definition 5.8: For any integers m, t, k such that 3/0 mt   and 

2/)3(0 tmk   we call a function f  t,k-bent if and only if all 

.2)( 2/),( mkt

f
W w  (5.19) 

Note that the t,k-bent functions are at maximum distance to t,k-affine functions.  

Denote by kt
mB ,  the class of all t,k-bent functions in m variables. Then we give 

Proposition 5.5 to show that the set of (t+1),k-bent functions and t,(k+1)-bent 

functions are subsets of the set of t,k-bent functions. 

Proposition 5.5: For t,k-bent functions kt
mB ,  we have 

(i) )2/(,2,1,0, mt
m

t
m

t
m

t
m BBBB    (5.20) 

(ii) km
m

k
m

k
m

k
m BBBB ),3/(,2,1,0    (5.21) 

Proof: 

(i) (5.20) comes from (5.8).  
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(ii) The m-variable function  

  )()(),(),,,,,(
11111 uuuu 




 qaasaaaaf iii
t
itt   (5.22) 

is t,k-bent but it is not (t+1),k bent. Here is are 1,k-bent 2-variable functions, 

)(u q  is a (m-3t-2) variable 1,k-bent function and )(u  is a t,k-bent t-variable 

function. 

For m=6 all 1,0-bent and 2,0-bent functions are numerically examined and Table 

5.2 is constructed. 

Table 5.2: Properties of 1,0 and 2,0-bent 6-variable functions, k=0 

t Rf  0
f

N  1
f

N  2
f

N  

1 64,0...,0 28 28 24,28 

2 64,0...,0 28 28 28 

All 1,0-bent and 2,0-bent functions have autocorrelation spectrum (64 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0) which is the property of bent functions. This is expected. 

Example 5.3:Numerical analysis give some of the 1,0 and 2,0-bent 6-variable 

functions. Some examples for these functions are listed below. 

6543216543211 ),,,,,( xxxxxxxxxxxxf  , 

6352416543212 ),,,,,( xxxxxxxxxxxxf   

are 2,0-bent functions which are also Maiorana McFarland type bent functions.  

65433216543213 ),,,,,( xxxxxxxxxxxxxf  , 

63525416543214 ),,,,,( xxxxxxxxxxxxxf   
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are 1,0-bent functions.  

Example 5.4: Numerical analysis give some of the 1, 2 and 3-bent 10-variable 

functions.  

10987654321109876543211 ),,,,,,,,,( xxxxxxxxxxxxxxxxxxxxf   

is a 3,0-bent function which is also Maiorana McFarland type bent functions. 

496
0,3

1


f
N . 

109876543321109876543212 ),,,,,,,,,( xxxxxxxxxxxxxxxxxxxxxf   

is 2,0-bent function. 496
0,2

2


f
N  and 492

0,3

2


f
N . 

5.3 Affine Equivalence Analysis of Tokareva’s k-bent Functions and 

Maiorana McFarland Class Bent Functions 

In this section, we will show that Tokareva‘s k-bent functions are affine equivalent 

to the well-known Maiorana McFarland class of bent functions in Proposition 5.6. 

Proposition 5.6: Tokareva‘s k-bent functions are affine equivalent to the 

Maiorana McFarland class of bent functions. Maiorana McFarland class bent 

functions )()(,),( xxyyx gf    with the permutation )(4 x  and 0)( xg  

and the notation that ),( 212 ii xx   is the i
th

 pair, with 2/1 mi  , such that, 

(i) Permutations of different pairs, or 

(ii) Permutations in a pair 

result in Tokareva‘s (m/2)-bent functions. 



 97 

Proof: We will prove by induction, take m=4 and k=2,  21 xxx  and 

 43 xxy , then    41321243411 .),( xxxxxxxxxxf   with 

)()( 214 xx x  and 0)( xg . Then 621 
ff

WW  implies that f1 is 2-bent.  

Assume for m=2k, that )()(,),( 42 xxyyx gf    is k-bent. Then show that 

for m=2k+2, that )()(,),( 43 xxyyx gf    is (k+1)-bent. 

For m=2k, take  1231  kxxx x  and  kxxx 242 y , then assume 

   121423121324212 .),(   kkkkm xxxxxxxxxxxxxxf   is k-

bent with 112 22
2

  kkk
f

W .  

Then for m=2k+2, take  121231  kk xxxx x  and  22242  kk xxxx y , 

then for 

   122214231212132224213 ),(   kkkkkkm xxxxxxxxxxxxxxxxf 

show that kkk
f

W 22 12

3
  . It is easy to observe that,  

12222122213 ),(),(   kkkk xxxxfxxf  .  (5.23) 

Then the (k+1)-Walsh transform of f3 is,  

12222

22

1,

3

22

1,

3

)(

)2(

,

)(

)2(

,1

)1()1(

)1()1()(





























kk

k

kt

k
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f

GF

k
f

W

x

x
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x

x

wx
w

, which is then equal to  
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12222
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2
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
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k
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k

kt
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k
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The first term on the right hand side of the above equation is k-Walsh transform of 

f2.  

1)(

0,)2(
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)(
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,1
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This is then equal to 

)(

0,)2(

,

)(

0,)2(

,1

2

1222
22

1,

2

1222
22

1,

23

)1()1(            

)1()1()()(
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x

wx

x

x

wx
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f

xxGF

f

xxGF

k
f

k
f

kk
k

kt
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k

ktWW



























. 

Since f2 is 2k-variable k-bent function, kk
f

k
f

WW 21 2)(2)(
23


ww , which then gives 

kkk
f

W 22 12

3
   completing the proof. 

 

 

Example 5.5: For m=4,  

423143211 ),,,( xxxxxxxxf   is a Maiorana McFarland class bent function and 

also Tokareva‘s 2-bent function. 
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For m=6, 

6543216543211 ),,,,,( xxxxxxxxxxxxf  , and 

6543216543211 ),,,,,( xxxxxxxxxxxxf  , are Maiorana McFarland class 

bent functions and also Tokareva‘s 3-bent functions. 

For m=8, 

87654321876543211 ),,,,,,,( xxxxxxxxxxxxxxxxf  , and 

82716354876543211 ),,,,,,,( xxxxxxxxxxxxxxxxf  , and 

83746152876543211 ),,,,,,,( xxxxxxxxxxxxxxxxf   are Maiorana 

McFarland class bent functions and also Tokareva‘s 4-bent functions. 

For m=10, 

10987654321109211 ),,,,( xxxxxxxxxxxxxxf  , and 

105948371621098211 ),,,,,( xxxxxxxxxxxxxxxf  , and 

10593847162109211 ),,,,( xxxxxxxxxxxxxxf   are Maiorana 

McFarland class bent functions and also Tokareva‘s 5-bent functions. 

5.4 Affine Equivalence Analysis of our t,k-bent Functions and Maiorana 

McFarland Class Bent Functions 

Next, we will show that our t,k-bent functions are affine equivalent to the well-

known Maiorana McFarland class of bent functions in Proposition 5.7. 

Proposition 5.7: t,k-bent functions are affine equivalent to the Maiorana 

McFarland class of bent functions . Maiorana McFarland class bent functions 
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)()(,),( xxyyx gf    with the permutation )(8 x  and 0)( xg  and the 

notation that ),,( 31323 iii xxx   is the i
th

 pair, with 3/1 mi  , such that, 

(i) Permutations of different pairs, or 

(ii) the permutation ( 23 ix , 13 ix ) on the i
th

 pair 

Result in our (m/3),k-bent functions with 3 mod   mk  . 

Proof: For t=0 the proof follows from Proposition 5.6. We will prove by induction 

on t. Assume (5.25) is true for t, then show that it is true for t+1.  

Assume for m=3t, that  )(,),( 84 xyyx f  is t,k-bent. Then show that for 

m=3t+3, that  )(,),( 85 xyyx f  is (t+1),k-bent. 

For m=3t, and k=0, take  1231  kxxx x  and  kxxx 242 y , then assume 

   1331423131334214 .),(   ttttm xxxxxxxxxxxxxxf   is t,k-

bent with   2/2313,
22

4

  ttkt
f

W .  

Then for m=3k+6, take  53331331  ttt xxxxx x  and 

 63432342  ttt xxxxx y , then for )2,1()( x , which is one permutation 

which obeys Proposition 5.7,  

   

6353433323131423

533313136343234215 ),(









tttttt

ttttttm

xxxxxxxxxx

xxxxxxxxxxxxf




 

show that   2/4353 22
5

  ttk
f

W . It is easy to observe that,  

6353

4333231323143315 ),(),(









tt

tttttt

xx

xxxxxxfxxf 
.  (5.24) 
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Similar steps as in the proof of Proposition 5.6 gives   2/4353 22
5

  ttk
f

W . This 

proves Proposition 5.7 only for one permutation, )2,1()( x . Similar steps for 

all possible permutations given by Proposition 5.7, need to be proven. It seems 

they require similar steps as the above proof. 

Example 5.6: For m=6,  

6352416543211 ),,,,,( xxxxxxxxxxxxf  , and 

6351426543211 ),,,,,( xxxxxxxxxxxxf  , are Maiorana McFarland class 

bent functions and also our 2,0-bent function. 

For m=8, 

84736251876543211 ),,,,,,,( xxxxxxxxxxxxxxxxf  , and 

84736152876543211 ),,,,,,,( xxxxxxxxxxxxxxxxf  are Maiorana 

McFarland class bent functions and also and also our 2,0-bent function, 

10594837161876543211 ),,,,,,,( xxxxxxxxxxxxxxxxxxf  , and 

10495837162876543211 ),,,,,,,( xxxxxxxxxxxxxxxxxxf  are 

Maiorana McFarland class bent functions and also Tokareva‘s 3,0-bent functions. 

5.5 Cubic Cryptanalysis 

A cryptographic system consists of three basic components, namely the 

plaintext,which is the input to the system, the ciphertext, which is the output and 

the key. Cryptanalysis try to break the cryptosystem by finding the relation 

between these three components. Linear cryptanalysis tries to aproximate this 

relation by linear equations. It was proposed by M. Matsui [79] in 1993.Similarly 
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the quadratic cryptanalysis tries to aproximate the relation between plantext, 

ciphertext and the key by quadratic equations, whose degree is at most 2. It was 

proposed by Tokareva [108] in 2008. She used k-affine and k-bent function 

definitions for extending linear cryptanalysis to quadratic cryptanalysis. She 

applied her method to S-boxes of well-known ciphers, such as GOST, DES and 

s
3
DES and showed that quadratic equations have higher probability than linear 

equations have to define these cryptosystems.  

As a cryptology application of our t,k-bent and t,k-affine functions, we introduce 

the method of cubic cryptanalysis for block ciphers. We call this new method as 

cubic cryptanalysis according to the main idea of it: to use (linear, quadratic and 

cubic) Boolean functions from kt
m
,  for aproximations. In our method we 

approximate Boolean functions by t,k- affine functions. The newly introduced t,k-

bent functions are claimed to be strong against cubic cryptanalysis, since they are 

as far as possible to t,k-affine functions, which are composed of affine, quadratic 

and cubic functions.  

We introduce a generalization of the Matsui's algorithm for the one key bit 

determination. Our algorithm is based on the equality, 

3,2,, 3211
)(,)(,)(, ktktkt KcCbPa   (5.27) 

where P is the plaintext (cryptosystem input), C is the ciphertext (cryptosystem 

output) and K is the key. Integers satisfy 3/,0 21 mtt  , 3/0 3 keymt  , 

2/)3(0 11 tmk  , 2/)3(0 22 tmk   and 3/)3(0 33 tmk key  . Here  
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m is the even length of plaintext and ciphertext, keym  is even length of the key. 

mmm ZxZZF
key

222
:   is a one-to-one transform if we fix the second argument.  

),( KPFC   (5.28) 

mmm
i ZxZZF key

222: 


 is a transform for the i
th

 round of ciphering, it is one-to-one 

if we fix the second argument. Here keym  is the subkey for the i
th

 round. 

Assume that (5.23) holds with probability  2/1p  where 2/10  .   is 

called the bias of (5.23). Notice that if the parameters 1,0  ii kt  then the 

dependence of the corresponding block P, C, or K is linear. And if the parameters 

2,0  ii kt  or 1it  then the dependence of the corresponding block P, C, or K 

is quadratic. For all other cases the dependence is cubic. 

Let us fix a key K. Consider the set of known pairs of plaintext  and ciphertext. 

 NsCP ss 1,   (5.29) 

The algorithm (as in the linear case) is based on the principle of maximum 

likelihood. Steps of the algorithm are given below, 

(i) Define  0)(,)(,
2,,0 211
 ktsktss CbPatN . 

(ii) Guess 


 


else

NNif
Kc kt

1

0*)2/(0
)(,

0

3,3
. 

(iii) Try to find K using the correlation obtained. 
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Further analysis of cubic cryptanalysis is left for future study. Cubic cryptanalysis 

must be studided on S-boxes of well-known cryptosystems. Linear, quadratic and 

cubic cryptanalysis of these cryptosystems must be compared in the future 

research.  

An m-bit input/m-bit output cryptosystem can be considered as an mxm S-box. 

Our claim is that, for a fixed key, we should use (m/3),0-bent functions as the m-

variable component functions of F in order to have the guaranteed high resistance 

to the cubic cryptanalysis. We left the studies of the properties of strong Boolean 

functions against cubic cryptanalysis and affine equivalence analysis of these 

functions to the newly introduced t,k-bent functions for future research.  
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CHAPTER 6 

 

CONCLUSION 

 

 

 

In this dissertation, we have concentrated on basic Boolean function properties 

such as affine equivalence classes, covering sequences and bentness. We have also 

studied the 4Z  and 8Z -linear codes and using these codes, we have introduced a 

new class of bent Boolean functions, which we show to be affine equivalent to the 

well-known Maiorana McFarland class of bent functions. As a cryptological 

application, we have defined the method of cubic cryptanalysis for block ciphers 

and introduced t,k-bent functions, which we consider to be strong against cubic 

cryptanalysis. 

6.1 Results 

Firstly, in Chapter 3, we show that some covering sequences of a Boolean function 

can be obtained using the Walsh transform nulls. We prove that each null 

frequency of the Walsh transform  defines one covering sequence; and if the 

Boolean function is balanced, each null is associated with two covering sequences. 

We present a lower bound for the number of covering sequences and confirm that 

the set of covering sequences that we find from Walsh transform nulls are distinct 

from those given by Carlet and Mesnager [39]. Relations between a Walsh 

transform null frequency and the associated covering sequence are as given in 

(3.14) and (3.15). We have shown that:  
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i) For an arbitrary m-variable Boolean function f , each nonzero Walsh transform 

null frequency mGF )2(w  defines a covering sequence  1,1λ  with elements 

 aw
a

,)1( , and for each covering sequence λ which can be represented as 

 aw
a

,)1( , there exists a nonzero Walsh transform null w.  

ii) For a balanced m-variable Boolean function f , each nonzero Walsh transform 

null frequency mGF )2(w  defines a covering sequence 
m

GF 2)2(λ  with 

elements  awa , , and for each covering sequence λ which can be 

represented as  awa , , there exists a nonzero Walsh transform null w, 

Hence one can obtain some of the covering sequences, at least as much as the 

number of Walsh transform nulls, using the Walsh transform null frequencies. It is 

proven that all the covering sequences calculated from Walsh transform null 

frequencies through equation (3.15) are linearly independent and none of them can 

be an indicator of a subspace. Starting from this point, we come to the conclusion 

that, the set of covering sequences that can be calculated from Proposition 3.2 of 

Carlet and Mesnager [39] and our Theorem 3.3 are distinct. We have also obtained 

a relation between covering sequences of affine equivalent Boolean functions and 

proven that if a function f does not have any covering sequence, any other function 

affinely equivalent to f does not have a covering sequence either. Moreover, we 

also show that numbers of covering sequences of affine equivalent Boolean 

functions do not have to be equal. 

Secondly, in Chapter 4, we examine Tokareva‘s studies [104-108] on 4Z -linear 

codes. We discuss and give the origins of k-affine functions and k-dot product 

definitions of Tokareva in Section 4.2. In Proposition 4.2, we show that the Krotov 
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matrices )2(, kmk 
A , which are used to construct 4Z -linear Hadamard like codes, 

have the lexicographically ordered codewords of the 4Z -linear (2
m
, m) code C, as 

columns.  

We define the quadratic terms in the algebraic normal forms of k-affine functions 

in Proposition 4.5. Then Section 4.4 contains our contributions on the extension of 

Tokareva‘s definitions to a larger ring, 8Z . For this objective, we derive a new 

class of functions, which we call t,k-affine, using linear codes over the ring 8Z . 

We then state propositions 4.7 to 4.11, where Proposition 4.7 gives the properties 

of the kt,
mC  matrix, Proposition 4.8 shows that for t=0, k-affine and t,k-affine 

functions are exactly the same, which then implies Proposition 4.9 saying that k-

dot product and t,k-dot product values are equivalent for t=0. Proposition 4.10 

gives the properties and Proposition 4.11 gives the explicit formula of the t,k-dot 

product. The set of t,k-affine functions contain affine functions, and some of the 

quadratic and cubic functions. Examples of these functions are given at the end of 

Chapter 4 starting from 8Z -linear codes.  

Finally in Chapter 5, we study bent functions, which are at maximum distance to 

affine functions (Rothaus and Dillon), particularly Maiorana McFarland bent 

construction. We review Tokareva‘s k-bent functions [104-108] and extend her 

work by defining the t,k-Walsh transform and t,k-nonlinearity. We give Propositon 

5.3 to show that the t,k-Walsh transform of a Boolean function satisfies the 

Parseval‘s equation; and then relate the t,k-nonlinearity to t,k-Walsh transform in 

Propositon 5.4. Next, we suggest the new class of bent functions, namely the t,k-

bent functions, which depend upon the t,k-dot product definition given in Chapter 

4. We state Proposition 5.5 to show that the set of (t+1),k-bent functions and 
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t,(k+1)-bent functions are subsets of the set of t,k-bent functions. In sections 5.3 

and 5.4, we show that these new classes, namely Tokareva‘s k-bent and our t,k-

bent functions, are affine equivalent to the well-known Maiorana McFarland class 

of bent functions. As a cryptological application, we define the method of cubic 

cryptanalysis for block ciphers in section 5.5, following Matsui‘s work on linear 

cryptanalysis. We conjecture that for a fixed key, one should try to use (m/3),k-

bent functions as the m-variable component functions of the S-boxes in order to 

have higher resistance to cubic cryptanalysis.  

6.2 Summary of Results and Directions for Future Research 

Main results of this thesis can be summarized as follows. We have 

1) proven that, each null frequency of the Walsh transform defines at least one 

covering sequence; however, the number of covering sequences is more than the 

number of Walsh transform nulls in general; 

2) shown that the set of covering sequences which can be calculated from 

Proposition 3.2 of Carlet and Tarannikov and from our Theorem 3.3 are distinct; 

3) obtained a relation between covering sequences of affine equivalent functions 

and proven that if a function does not have any covering sequence, then its affine 

equivalent function does not have any either, on the other hand,  numbers of 

covering sequences of affine equivalent Boolean functions do not have to be equal; 

4) defined a new class of functions, which we call t,k-affine, using linear codes 

over the ring 8Z ; and given the explicit formula of the t,k-dot product and its 

properties;  

5) defined the t,k-Walsh transform of a Boolean function and shown that it 

satisfies the Parseval‘s equation;  
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6) given the definition of t,k-nonlinearity and related it to t,k-Walsh transform; 

7) suggested a new class of bent functions, the t,k-bent functions, which are 

extensions of k-bent functions and shown that they are affine equivalent to 

Maiorana McFarland class of bent functions. 

Future studies can include the extension of such work to larger rings (or fields) and 

the search for codes, whose binary images are nonlinear and having better 

properties than the presently known ones. Suggested cubic cryptanalysis method 

can be applied to the known cryptosystems, compared with linear and quadratic 

cryptanalyses in terms of probability biases, and the correctness of our conjecture 

that ―(m/3),k-bent functions are strong against cubic cryptanalysis‖ can be 

explored more extensively. 
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