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ABSTRACT

COVERING SEQUENCES AND T, K-BENTNESS CRITERIA
FOR BOOLEAN FUNCTIONS

Kurnaz, Giizin
Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Melek Diker Yiicel

March 2009, 126 pages

This dissertation deals with some crucial building blocks of cryptosystems in
symmetric cryptography; namely the Boolean functions that produce a single-bit
result for each possible value of the m-bit input vector, where m>1. Objectives in
this study are two-fold; the first objective is to develop relations between
cryptographic properties of Boolean functions, and the second one is to form new

concepts that associate coding theory with cryptology.

For the first objective, we concentrate on the cryptographic properties of Boolean
functions such as balancedness, correlation immunity, nonlinearity, resiliency and

propagation characteristics; many of which are depending on the Walsh spectrum



that gives components of the Boolean function along the direction of linear
functions. Another efficient tool to study Boolean functions is the subject of
covering sequences introduced by Carlet and Tarannikov in 2000. Covering
sequences are defined in terms of the derivatives of the Boolean function. Carlet
and Tarannikov relate the correlation immunity and balancedness properties of the
Boolean function to its covering sequences. We find further relations between the
covering sequence and the Walsh spectrum, and present two theorems for the
calculation of covering sequences associated with each null frequency of the

Walsh spectrum.

As for the second objective of this thesis, we have studied linear codes over the
rings Z4 and Z8 and their binary images in the Galois field GF(2). We have
investigated the best-known examples of nonlinear binary error-correcting codes

such as Kerdock, Preperata and Nordstrom-Robinson, which are Z ,-linear codes.

We have then reviewed Tokareva’s studies on Z4-linear codes and extended them
to Z8-linear codes. We have defined a new classes of bent functions. Next, we
have shown that the newly defined classes of bent, namely Tokareva’s k-bent and
our tk-bent functions are affine equivalent to the well-known Maiorana
McFarland class of bent functions. As a cryptological application, we have
described the method of cubic cryptanalysis, as a generalization of the linear
cryptanalysis given by Matsui in 1993. We conjecture that the newly introduced
t,k-bent functions are also strong against cubic cryptanalysis, because they are as

far as possible to t,k-bent functions.

Keywords: Boolean functions, nonlinearity, Walsh-Hadamard transformation,

covering sequence, affine equivalence, bent functions, k-bent functions.



0z

BOOLE ISLEVLERI ICIN

KAPSAYAN DIZINLER VE T, K-BUKUKLUK OLCUTLERI

KURNAZ, Giizin
Doktora, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Dog. Dr. Melek Diker Yiicel

Mart 2009, 126 sayfa

Bu tez, simetrik kriptografideki kripto-sistemlerinin 6nemli yapisal bloklarindan
olan ve m-ikiliden olusan (m>1) her girdiye karsilik bir tek ikili ¢ikt1 tireten Boole
fonksiyonlarina deginmektedir. Bu g¢alismanin iki ana amaci vardir; ilk amag
Boole fonksiyonlarinin kriptolojik 6zellikleri arasinda iligkiler gelistirmek; ikincisi
ise kodlama teorisi ve kriptoloji arasinda yeni bir gegis olusturan kavramlar

uretmektir.

[lk ama¢ dogrultusunda, dengelilik, ilinti (korelasyon) bagisikligi, dogrusal
olmama, esneklik ve yayilma gibi Boole fonksiyonu ozellikleri iizerine

yogunlasilmistir; ki bu 6zelliklerin ¢ogu, fonksiyonun dogrusal islevler yoniindeki

Vi



bilesenlerini veren Walsh goriingesine baglidir. Boole fonksiyonlarini ¢aligmak
icin etkili bir diger yontem ise, 2000 yilinda Carlet ve Tarannikov, tarafindan
sunulan kapsayan dizin konusudur. Kapsayan dizinler, Boole fonksiyonlarinin
tirevlerine bagli olarak tanimlanmaktadir. Carlet ve Tarannikov, dengelilik ve
ilinti  bagisikligimin  kapsayan dizinlerle iliskilerini kurmuslardir. Bizim
caligmalarimizda ise Walsh goriingesi ve kapsayan dizinler arasinda yeni
baglantilar kurularak, Walsh goriingesinin her sifir frekansina bagli kapsayan

dizinin hesaplanmasi iizerine iki teorem sunulmaktadir.

Tezin ikinci amaci i¢in, Z, Ve Zg halkalarindaki dogrusal kodlar ve bu kodlarin

GF(2) sonlu cismine eslenmis goriintiileri lizerinde calistik. Z4-dogrusal kodlarinin
goriintlisii olan ve bilinen en iyi dogrusal olmayan ikili hata-diizeltme kodlarini,
Kerdock, Preperata ve Nordstrom-Robinson’u inceledik. Tokareva’nin Z4-
dogrusal kodlar tizerindeki ¢aligsmalarin1 Z8-dogrusal kodlara genislettik. Yeni t,k-
dogrusalimsi ve tk-biikiik fonksiyonlar tanimlayarak, Tokareva’nin K-biikiik ve
bizim tk-biikiik fonksiyonlarimizin, yaygimn olarak bilinen Maiorana McFarland
smifi biikiik fonksiyonlarla dogrusal denkligini gosterdik. Ayrica, kriptolojik bir
uygulama olarak, 1993 yilinda Matsui tarafindan tanimlanan dogrusal kriptanalizi
genelledik ve kiibik kriptanalizi tanimladik. Onerdigimiz t,k-biikiik fonksiyonlar
tiim birinci, ikinci ve liclincli derece fonksiyonlardan olabildigince uzakta oldugu

i¢in, kiibik kriptanalize kars1 da direngli olduklar1 kanisindayiz.

Anahtar Sozciikler: Boole islevleri, dogrusal olmama, Walsh-Hadamard

doniistimii, kapsayan dizin, dogrusal denklik, biikiik islevler, k-biikiik islevler.
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CHAPTER 1

INTRODUCTION

In this thesis, we focus on the study of Boolean functions, which are among the
main building blocks of symmetric cryptosystems. Symmetric cryptography is
used in GSM mobile phones, WLAN and Internet connections, banking
transactions, credit cards and many other places as an effective means of privacy

and authentication [2].

There are various and comprehensive studies in the literature for the usage of
Boolean functions inside cryptography. A vector Boolean function or an S-box
[61, 66, 70, 84] maps m input bits to n output bits; for n>1 and m>1. If n=1,
corresponding function is simply called an m-variable Boolean function. A
Boolean function f can be uniquely represented both by its truth table, which is a
vector that contains the function values of f and its Walsh transform, which is a
kind of discrete Fourier transform. The most desirable Boolean function properties
are those, which strengthen the related cryptosystem against well known statistical
attacks such as differential, linear and algebraic cryptanalysis. We refer to [4, 10,
11, 19, 22, 42, 79] for linear and differential cryptanalysis and [3, 11, 16, 17, 34,
36] for algebraic cryptanalysis. A Boolean function must have good
autocorrelation properties [37, 57, 58, 79, 82, 88, 95, 97, 102, 14, 116, 117] in



order to be safe against differential cryptanalysis. Moreover, a Boolean function
must be highly nonlinear, i.e., it must be as far as possible to all affine functions
[49-54] to be strong against linear cryptanalysis. In other words, the magnitude
Walsh spectrum of a cryptographically strong Boolean function should be as flat
as possible, to yield maximum achievable nonlinearity [51-53, 77, 78, 83]. Bent
functions [33, 43, 44, 49, 50, 68, 94, 118] are the Boolean functions that reach this
maximum nonlinearity. They were first studied by Dillon [49] and Rothaus [94]
and Rothaus used the word “bent” in the literature in 1970. Maiorana McFarland
class of bent functions [41, 87, 113] are one of the main families of bent functions.
This class can be constructed by concatenating affine functions and it achieves
good cryptographic properties.

Correlation Immunity [6, 37, 63, 66, 73, 79, 89, 91] of a Boolean function
measures the correlation of its input variables to its output value. A Boolean
function is said to be correlation immune of order r if every subset of r or fewer
input variables are statistically independent with the output. A Boolean function
with lower order correlation immunity is more succeptible to correlation attacks
[16, 17, 21, 34, 36] than a Boolean function with higher order correlation
immunity. It is well known that the correlation immunity order of a Boolean
function can be directly found from zeros of its Walsh transform spectrum. In
2000, Carlet and Tarannikov [40] introduced the notion of covering sequences,
which are connected to the function via its derivatives as an efficient tool to study
Boolean functions. Then they showed that correlation immunity order and

covering sequences [39, 40, 101] of a Boolean function are related.

Classification of Boolean functions is another subject in cryptology. Affine
equivalent Boolean functions [1, 18, 20, 24, 25, 48, 56, 60, 69, 100, 109] have



similar cryptographic properties. This makes affine classification meaningful in
the sense that the number of representatives is much less than the number of all
Boolean functions. Such perspective allows the Boolean space to be considered as
a structure in which all Boolean functions are grouped into affine equivalence

classes and only one function from each class is sufficient for analysis.

Relations between error correcting codes and Boolean functions are studied
extensively in the literature [12-16, 26-31, 45, 46, 55, 59, 64, 67, 71-76, 86, 93, 96,
98-108, 110-112]. Some of the best-known examples of nonlinear binary error-
correcting codes that are better than any linear code are the Nordstrom-Robinson
[55, 59, 86, 98], Kerdock and Preparata codes [29, 46, 81, 86]. Calderbank et’al
[29] showed that, when properly defined, Kerdock and Preparata codes are linear

over the ring Z4; and as Z,-codes, they are the duals of each other. All these

codes are in fact just extended cyclic codes [46, 81]. Since 1990’s, coding theory
researchers intensively study nonlinear codes [13, 76] that can be transformed into
linear codes [26, 67, 74, 103, 104] in other metric spaces via appropriate
mappings. Tokareva [104-108] used Krotov matrices [72, 73] to generate Z4-

linear codes [12, 14, 15, 45, 59, 71, 93, 99, 112] and from these codes she
introduced k-affine binary functions, which are affine in an alternative sense. From
k-affine functions, she then defined k-bent functions and a special form of the dot-

product denoted as the k-dot product.

In this thesis, we firstly find a relation between two important tools for Boolean
functions; Walsh transform null frequencies and covering sequences. Correlation
immunity order, nonlinearity, resiliency and propagation characteristics of
Boolean functions depend on the Walsh transform, which is related to the covering

sequence of the function. Secondly, we derive new classes of affine and bent



functions using linear codes over the ring Zg. We then suggest cubic cryptanalysis,

as an extended version of linear and quadratic cryptanalyses. We claim that the
newly introduced class of t,k-bent functions are strong against cubic cryptanalysis,
since they are as far as possible to affine, quadratic and cubic functions. Finally we
examine the affine equivalence of t,k-bent functions and Maiorana McFarland

class of bent functions.

The main background on properties and definitions of Boolean functions are
introduced in Chapter 2.

In Chapter 3, we show that the Walsh transform null frequencies of Boolean
functions are related to their covering sequences. We prove that each nonzero null
frequency of the Walsh transform defines a covering sequence; however, in
general the number of covering sequences is more than the number of Walsh
transform nulls. We then present a lower bound for the number of covering
sequences. We also show that the set of covering sequences given in our theorems
3.3 and 3.4 and those can be found from Proposition 3.2 given by Carlet and
Tarannikov [40] are distinct. Then we study the covering sequences of affine

equivalent Boolean functions.

Chapter 4 studies the Z, and Zg-linear codes and the relation of these codes to

newly introduced affine Boolean functions. We start by giving the origins of the
the k-dot product and k-affine functions introduced by Tokareva [104-108]. Then
we show that Krotov matrices [72, 73] have the lexicographically ordered
codewords of the Z4-linear (2", m) code C, as columns. Later we describe the
rules that quadratic parts of k-dot products must obey. We then extend Tokareva’s

definitions to a larger ring, Zg. We drive a new class of affine functions and a new



t,k-dot product using linear codes over the ring Zg. The new class of tk-affine

functions contain affine functions, quadratic functions and cubic functions.

Examples of these functions are given at the end of Chapter 4.

In Chapter 5, we study bent functions including k-bent functions in detail. Then we
suggest a new class, the tk-bent functions depending on the tk-dot product
definition given in Chapter 4. The new class of bent functions are at maximum
distance from the newly introduced affine functions, i.e., from affine functions,
quadratic functions and cubic functions. Next we analyse the affine equivalence of
k-bent and t,k-bent functions with the well known Maiorana McFarland class of
bent functions. For the application to cryptology, we introduce the method of cubic
cryptanalysis for block ciphers. It is a generalization of the well-known method of
linear cryptanalysis given in 1993 by M. Matsui [79]. In our method we
approximate Boolean functions by t k- affine functions . The newly introduced t,k-
bent functions are claimed to be strong against cubic cryptanalysis, since they are

as far as possible to affine, quadratic and cubic functions.

Finally, we give our conclusions in Chapter 6.



CHAPTER 2

BOOLEAN FUNCTIONS; DEFINITIONS AND
AFFINE EQUIVALENCY CLASSES

The aim of this chapter is to present a compact overview on the most essential
aspects of Boolean functions related to cryptography. We describe two different
ways of representing Boolean functions, the truth table and the algebraic normal
form, in section 2.2. Next, we present two important tools to define cryptographic
properties of Boolean functions, the Walsh and autocorrelation spectra in section
2.3. Remark 2.1 gives the relation between the Walsh transform and the Fourier
transform, both are being widely used in cryptography. Section 2.4 gives necessary
definitions and notations that will be used throughout the thesis. Remark 2.2
interprets the bentness criterion in terms of the White Gaussian Noise, which is a
well-known subject in the telecomunications branch of electrical engineering.

Then in section 2.5 a review of the affine equivalence classes is made.
2.1. Introduction

After Shannon’s theory which proposes confusion and diffusion in secrecy
systems [96] and the popularity of the subsequent Data Encryption Standard [11],
S-boxes are studied widely in the literature [61, 66, 70, 84]. It has then been



clearly demonstrated that differential and linear cryptanalysis [4, 9, 11, 19, 22, 42]
can be resisted by the selection of nearly optimal Boolean functions as components

of the S-boxes.
A Boolean function [61, 66, 70, 84, 96] produces a single-bit result f (x) € GF(2)

for each possible value of the m-bit vector, x € GF(2)™. Boolean functions are

used in cryptographic applications such as block ciphers, stream ciphers and hash
functions. There are many criteria used to judge the suitability of a Boolean
function for use in an encryption algorithm. The most desirable Boolean function
properties are those, which strengthen the related cryptosystem against well known
statistical attacks such as differential, linear cryptanalysis [4, 9, 11, 19, 22, 42] and
algebraic attacks [3, 11, 16, 17, 34, 36]. Different criteria for Boolean functions
such as balancedness, correlation-immunity [37, 63, 66, 73, 79, 89, 91, 118],
resiliency, nonlinearity [51-53, 77, 78, 83] and algebraic degree [51-53, 77, 78, 83]
are studied extensively in many works. It is known that some criteria cannot be
satisfied simultaneously. So the problem is to find a trade-off between these

criteria.

The classification of Boolean functions is meaningful in the sense that the number
of representatives is much less than the number of all Boolean functions. Such
perspectives allow the Boolean space to be considered as a structure in which all
Boolean functions are grouped into equivalence classes and thus only one function

from each class is enough for analysis.
2.2  Boolean Function Representations

We now present two representations of Boolean functions that we will use
throughout the thesis; truth table (TT) and algebraic normal form (ANF). Other



representations such as the numerical normal form representation and trace
representation [25] also exist in the literature.
Let f be a Boolean function that produces a single-bit result for each possible

combination of m Boolean variables; that is,

f(x):GF(2)™ —»GF(2) (2.1)

Here GF denotes the Galois Field consisting of binary numbers {0,1}, with
modulo 2 addition (XOR operation shown by @) and multiplication (AND

operation shown by a dot or nothing).
2.2.1 Truth Table Representation of Boolean Functions

A Boolean function f can be uniquely represented by its truth table which is a
vector that contains the function values of f, ordered lexicographically. In other

words, the 1x2™ dimensional vector
f =(f(0...00), f(0...0D,...T (2...17) (2.2)

is defined as the truth table of f, where the input vector x is ordered

lexicographically. We mean by the weight and support of a function, the weight
and support of the corresponding truth table. Analogously, the distance between
two functions is computed by considering the distance between the corresponding
truth tables.

2.2.2. Algebraic Normal Form Representation of Boolean Functions

Another way of uniquely representing a Boolean function f is by means of a

polynomial in GF(2) and is defined as the algebraic normal form. The

corresponding transformation is called the algebraic normal transform:



a
ANFf = @(am_l”'ao)eGF @m h(am—l o 'aO)Xmm:ll t Xg” = ®a h(a)xa (2-3)

where h is also a Boolean function on GF(2)™. As the algebraic normal transform

is a linear transformation, one can also use a matrix representation. Denoting the

column matrix containing the coefficients h(a) as hy, then with f representing the

truth table of f,
h, =A,f mod 2 (2.4)
where A, is recursively determined by

10

10
Apg=1 A= 11 and A, =

11} @A (2.5)

The algebraic degree of f, denoted by deg(f) or shortly d, is defined as the
maximum number of variables of the terms x ;™7 ---x* in the ANF of f. Functions

with algebraic degree less than or equal to 1 are called affine. If f(0)= 0 then the

function is called linear.

2.3 Basic Tools Used to Define Cryptographic Properties of Boolean

Functions

Two basic and important tools, Walsh and autocorrelation spectrum are defined in

this section.
2.3.1. Walsh Transform of Boolean Functions

A Boolean function f can be uniquely represented by its Walsh transform. The

Walsh transform of a Boolean function f is defined as



Wiw)= Y (-1) %)W (2.6)
xeGF(2)M

where we GF(2)", <Ww, X > is the inner product of the vectors w and x. The 1x2"

dimensional vector
is called the Walsh spectrum of f, where the input vector w is ordered

lexicographically.

Remark 2.1: Sometimes, the Fourier transform ?(w) Is used instead of theWalsh

transform. The Fourier transform of the function f at frequency w is defined as

fw= ¥ i@, (2.8)

acGF(2)™
Walsh and Fourier transforms of a function f at frequency w are related by,
W, (W) = -2 (W) + 2" S(w).. (2.9)

1ifw=0

where 5(w) :{O olse } is the Kronecker delta function.
S

Definition 2.1: The support of the Walsh transform of f is defined as
Sup{W |= {w eGF(2)™ W (w) = o}. (2.10)

Notice that the support of the Walsh transform and the set of frequencies at which

Fourier transform is nonzero are equal. Only one exception can occur if
W (0)=0.

10



2.3.2. Autocorrelation of Boolean Functions

The autocorrelation of a Boolean function is a real-valued function. To define the

autocorrelation, we will first define the derivative of f with respect to the input

difference vector acGF(2)".

D,f(x)=f(x)® f(x®a) (2.11)
The derivative vector is arrranged by ordering the index x lexicographically,

D,f = (D4 (0...0), ..., D, f (1...2)). (2.12)

The autocorrelation of f corresponding to the shift vector a is denoted by

n@= XEDENT = TPl (213)
xeGF (2)™ xeGF (2)™

All values of the autocorrelation can be collected in a 1x2™ dimensional vector
called the autocorrelation spectrum

r, =(r, (0..00), r, (0..0D,..., r, (1...10)), (2.14)

by ordering the index vector a lexicographically. Note that the autocorrelation
spectrum does not uniquely determine the function in contrast to the previous

transformations like ANF, truth table and the Walsh transform.
2.4 Basic Notations and Definitions

This section is intended as a summary of the minimum mathematical knowledge

required throughout the thesis.

11



Definition 2.1: An m-variable Boolean function f is balanced if its output is
equally distributed, i.e., its weight is equal to 2™*. This translates in W; (0) =0 for

the Walsh spectrum.

Definition 2.2: f is called r™ order correlation immune (r-Cl) if [37]
Wi (W) =0, {VWeGF(Z)m|1£Wt(W) < r}. (2.15)
Definition 2.3: The combination of correlation immunity of order r and the

property of balancedness results in the property of resiliency of order r.

Definition 2.4: Nonlinearity of f is defined as the minimum distance from the set

of affine functions and one can show that it is related to the maximum magnitude

in the Walsh spectrum of f as follows
NLy =2™71 = 17 max,, |W (w)|. (2.16)

Definition 2.5: An m-variable function f, with m even is called a bent function if

its Walsh spectrum is flat, ie, W,(w)=+2"% or W?Z(w)=2" for

vweGF(2)". Then the function has maximum nonlinearity, i.e.,

Remark 2.2: Using (2.9) in Remark 2.1, it can be observed that |W¢ (w) |:2m/2

is true if and only if the magnitude of the Fourier spectrum is also flat except at
w=0. This corresponds to White Gaussian Noise (WGN) spectrum (except for

w=0). Hence a bent Boolean function has the Walsh and Fourier spectra similar to
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the power spectrum of WGN. The autocorrelation spectra of bent functions and
WGN are also similar.

Definition 2.6: An mxn S-box is a mapping from m binary inputs to n binary

outputs, i.e., F(x):GF(2™ —»GF(2)". The output vector of the S-box,

F(X)=(f1(x),--, f,(x)), can be decomposed into n component functions as,
f;(xX):GF(2)™ - GF(2),i=1,---,n.

Definition 2.7: The extended output of an mxn S-box can be obtained from its
output vector by including all linear combinations of output bits. Thus the

extended output vector G is composed of the functions

gj(x):@P:l Jifi=<JF>

where j=(ji, jp.Jn) € GF(Q".
Definition 2.8: The set
R(r,m) = {f (x) | deg(f) <r} (2.17)

denotes the r" order Reed-Muller code of codeword length 2™ The term
R(r,m)/R(s,m), where s<r< m, defines the set of cosets of R(r,m) with respect to
R(s,m) [8].

Definition 2.9 [40] A covering sequence of a function f is any sequence

h=(00.0:10..01r1..1)=(Ra)

defined by (2.12) satisfies

acGF(2)™ such that the derivative D,f

D f=(pp ..p)=p , (2.18)
acGF (2)"
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where p is a vector with identical elements. The value of p is called the level of
this sequence. If p =0, then the covering sequence is said to be nontrivial [40].

Definition 2.10: Hadamard matrix H,, is an mxm matrix with entries +1 or -1,
such that all rows and all columns are orthogonal, i.e., HmHmT =ml,, where

Hm' is the transpose of the Hadamard matrix and I, is the identity matrix of order
m. A special kind of Hadamard matrix, called the Sylvester-Hadamard matrix of

order 2™ denoted by H,, is generated by the following recursive relation

Ho —1 Hm _ Hm—l Hm—l (2.19)
Hm—l - Hm—l

It can be shown that each row (or column) of H,, is a linear sequence of length
2m, i.e., it corresponds to the sequence of the linear function

Iy (X) =<w,Xx>. (2.20)
Walsh transform of a function can easily be transformed into a matrix equation as,

We = Wi 0.0\ Wy (0..2) - Wi (1..D)]= Hyp [-1) T @0 ... F&-D | 221

Remark 2.3: The product of the matrix A, from the ANF transform and the

Hadamard matrix H,, satisfies the following recursive relation for m>1,

(2.22)

11 [m]
o

AmHm :[

Definition 2.11: The maximum absolute value of the autocorrelation function of

f(x) is given by
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Al § =max ;0| 't () (2.23)

and is known as the absolute indicator [117].

The overall absolute indicator for the autocorrelation of an S-box [32-35] is

defined in terms of the absolute indicators of the component functions (fi’s)

Al =max; Al ;. (2.24)
Definition 2.12: For an mxn S-box as in Definition 2.6, the XOR table is a 2"x2"
matrix with the (i,j)’th entry

kij= #{ X | F(X)®F(x @ i)=j} (2.25)

where i=0,...,2™-1 and j=0,...,2"-1 and the 1xm vector i and 1xn vector j are the

corresponding binary representations respectively [4].

Definition 2.13: The largest entry in XOR table not including the (0,0)’th element
gives the differential uniformity [17].

2.5 Affine Equivalence of Boolean Functions

We will give the definition of equivalence which then leads to affine equivalence of

two m-variable Boolean functions.

Definition 2.14: [60] Two functions f(x),g(x) € R(r,m) are called equivalent with

respect to R(s,m), if there exists a nonsingular binary mxm matrix A and 1xm vector
b such that

f(X) =g(xA®b)modR(s,m). (2.26)
In this case, due to the modulo operation,

f(X)® g(xA®b) e R(s,m). (2.27)
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f(x)=g(XA®Db) ®vq (2.28)
where v, € R(s,m).

Definition 2.15: [60] If one chooses v, € R(1,m) then this equivalence equation
becomes,

g(x)=f (XxA®@b)® < x,c>@d (2.29)
where ce GF(2)™ and de GF(2). (2.29) is called the affine equivalence relation.
Proposition 2.1: [91] Let f(x),g(x) be two functions satisfying (2.29). Then for

any weGF(2)",

Wy () = (-1)¢® PAT Oy (< cow), AL ) (2.30)

Corollary 2.1: [100] The Walsh spectrum of f(x) at i is equal to the Walsh spectrum
of g(x) at j, where j = ¢ + iAT. Therefore the distribution of the absolute values of

the Walsh spectrum of f(x) is same as that of g(x).

Proposition 2.2: [91] Let f(x) and g(x) be two functions such that
g(x)=f(xA®b)®<c,x>. Then for any given seGF(2)",
rg (8) = (=D rs (sA).

Corollary 2.2: [100] The autocorrelation function of f(x) at j is equal to the
autocorrelation function of g(x) at i; where j = iA: Therefore the ranks of vectors
with the same absolute autocorrelation function value are same between two

equivalent functions. Hence, the distribution of the absolute values of the

autocorrelation function of f(x) is same as that of g(x).

16



Proposition 2.3: [100] For any Boolean function f(x) € R(r,m), derivative is
Dy (f oB) =Daa(f)oB(X) (2.31)

where B(x) =xA®b. Here “o* denotes function combination operation.
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CHAPTER 3

RELATION BETWEEN COVERING SEQUENCE
AND WALSH TRANSFORM NULL FREQUENCIES

In this chapter, we show that the Walsh transform null frequencies of Boolean
functions are related to their covering sequences. We show that some covering
sequences of a Boolean function can be obtained using the Walsh transform nulls.
We prove that each nonzero null frequency of the Walsh transform defines one
covering sequence; and if the Boolean function is balanced, each null is associated
with two covering sequences. We present a lower bound for the number of
covering sequences and confirm that the set of covering sequences that we find
from Walsh transform nulls are distinct from those given by Carlet and

Tarannikov.

We then present a lower bound for the number of covering sequences. We also
show that the set of covering sequences given in our theorems 3.3 and 3.4 and
those can be found from Proposition 3.2 given by Carlet and Tarannikov are
distinct. Then, we study the covering sequences of affine equivalent Boolean

functions.
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3.1. Introduction

Covering sequences are introduced in 2000 by Carlet and Tarannikov [40] as an

efficient tool to study Boolean functions. These are binary-valued sequences
m
L e GF(2)? that are related to the function wvia its derivatives

D,f(x)=f(x)® f(x®a). Carlet and Tarannikov show for any Boolean function

that, balancedness and admitting a nontrivial covering sequence are equivalent.
They also obtain a characterization of correlation-immune and resilient functions

by means of covering sequences.
In this chapter, we show that,
1) in Theorem 3.3, for any m-variable Boolean function f, each nomzero Walsh

transform null w e GF(2)™ defines a covering sequence )veGF(Z)2m with

<w,a>

elements 1, =(-1) and for each covering sequence A which can be

represented as 1, = (-1) "%, there exists a nonzero Walsh transform null w.

ii) in Theorem 3.4, for a balanced n-variable Boolean function f, each nonzero

m
Walsh transform null weGF(2)™ defines a covering sequence xeGF(Z)2
with elements A, =<w,a> and for each covering sequence A which can be

represented as A, =< w,a >, there exists a nonzero Walsh transform null w, and

We also show that all the covering sequences calculated from Theorem 3.4 are
linearly independent and none of them can be an indicator of a subspace.
Therefore, the set of covering sequences which can be calculated from Proposition
3.2 given by Carlet and Mesnager [39] and our theorems 3.3 and 3.4 are proven to
be distinct.
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3.2.  Already Known Facts on Covering Sequences

For a Boolean function, Carlet and Tarannikov has shown the equivalence between
its balancedness and the fact it admits a covering sequence. They also obtain a
characterization of correlation-immune and resilient functions by means of
covering sequences. Carlet and Tarannikov results are given as therorems and
propositions 3.1 and 3.2. In section 3.4, we give the relation between covering
sequence and Walsh transform null frequencies. Correlation immunity order can
be found from Walsh transform nulls. Thus results of Carlet and Tarannikov are
related to our findings. At first, the definition of the covering sequence of a Bolean

functions is given.

Definition 3.1: [40] The covering sequence of an m-variable function f is any

sequence

(where the index vector a is ordered lexicographically) such that

Z 2D f=(pp ... 0)=p (3.1)
acGF (2)"

is a vector with identical elements and the derivative D,f is defined by (2.11).
The value of p is called the level of this sequence. If p=0, then the covering
sequence is said to be nontrivial.

Proposition 3.1 [40]: Let f be a Boolean function on GF(2)™ . Assume that there
exist numbers A, e€Z, acGF(2™ and a nonzero number o such that

> 23D,f is equal to the constant function p. Then f is balanced. Conversely,
aeGF (2)"
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assume that f is balanced, then the integer valued function ) D,f is constant
acGF (2)"

and equal to 2™,

Theorem 3.1: [40] Let f be any Boolean function on GF(2)™ and

A= O“a)aeGF(z)m be any sequence. f admits 4 as covering sequence if and

only if its Fourier transform ﬁ(w) takes constant value on the support of the Walsh
transform W, , i.e., for all frequencies {WeGF(Z)m W (W) ¢o} . Let r be this

constant value, then the level of this covering sequence is the number

N |-

( 2Xha)-r|

aeGF(2)™

Theorem 3.2: [40] Let f be any Boolean function on GF(2)™ .

1- If f admits a covering sequence A= (A,) m with level p (resp. with

acGF(2)
level p # 0), then f is k™ order correlation-immune (resp. k-resilient), where (k
+1) is the minimum Hamming weight of nonzero b e GF(2)™ such that i(b) =r,
and r= 1(0)-2p.

2- Conversely if f is k™ order CI and it is not (k+1)™ order CI then there exists

one trivial covering sequence A = (Ag) m With level p such that k+1 is the

aeGF(2)

minimum Hamming weight of nonzero b e GF(2)™ satisfying

A(b) = 1(0)-2p. (3.2)
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The proof of Theorem 3.2 is given in [40]. The following proposition requires the
definition of the indicator for a given set, A, of vectors.

Definition 3.2: The indicator 14 is a binary 2™-dimensional vector, each element

Ia(X) of which is indicating the existence or nonexistence of (lexicographically

ordered) GF(2)™ elements within the set A, i. e.,

lifxeA
'A(X):{o if x e A 3.3)

Hence, the Hamming weight of 14 is equal to |A|, the number of elements in A.

Proposition 3.2: [39] Let E be any vector subspace of GF(2)™ and (ueE) be any
of its cosets. Let f be a Boolean function on GF(2)™. Assume it admits no
derivative D,f equal to the constant function 1. Then f admits the indicator of
(ueE) as a nontrivial covering sequence if and only if the support of W; (W) is
disjoint from E+ = {)(e GF(2)™ | v x =0,V e E}. This is equivalent to the fact
that the restriction of f to any coset of E is balanced. The level of this covering
sequence is then equal to |E|/2 and the indicator of every coset of E is also a
covering sequence of f with the same level. More generally, any sequence A

such that for every acEand every ueGF(2)™, Ja., =4, is also a covering

sequence of f .
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3.3.  Relation Between Covering Sequences and Walsh Transform Null

Frequencies
Our aim in this section is to find relations between covering sequences and Walsh

transform null frequencies of a Boolean function.

Theorem 3.3: Let f be any Boolean function on GF(2)™ and w; (w) be its Walsh
transform at frequency w.
1- For all nonzero Walsh transform nulls w, there exists a (-1,+1)-valued covering

sequence A = (Ay) m with elements 1, = (-1)“"V*. (3.4)

aeGF(2)

2- For all covering sequences which can be represented as A = (A,) m With

aeGF(2)
elements 2, =(-1)<""#>, there is a nonzero Walsh transform null w.

Proof:

1- A Walsh transform null frequency w satisfies

Wf (W) — Z(_l) f (X) (_1)<W,X> — Z(_l) f(X) (_1)<W,X> — 0 (35)
xeGF(2)™ xeGF(2)™

Hence, f(X)® <w,x > is balanced for all Walsh transfrom null frequencies w.

Using Proposition 3.3,

3D, (f ()@ < w,X >) :(2”‘—1... 2‘“—1). (3.6)
acGF (2)M

Using the definition of derivative of a vector from (2.8) we have,

Do(f(X)@ <w,x>)=f(X)®<w,x>@f(xPa)® <w,(xDa)>=Df®&<w,a>
(3.7)
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D,f, if<w,a>=0

Do (f(X)® <w,x>) = . : (3.8)
Df@lif<w,a>=1
D,f, if<w,a>=0

Da(f(X)® <w,x>) = i (3.9)
1-D.f,if <w,a>=1

Using (3.9), the binary ‘@©° addition in (3.8), becomes an integer ‘+* addition in
(3.10).

(3.10)

0! f , :0
Da(f(X)®<w,x>):(_1)<w,a>Daf+{ if <w,a> }

1, if<w,a>=1

For 2™ possible a vectors, in 2™ cases <w,a>=0 and in 2™ cases <w,a>=1.

Then
@™ L2 Y ()@ D,f = (2™ L2, (3.11)
acGF (2)M
Therefore
> ()@ D,f =(0...0). (3.12)
aeGF(2)™M

Recall the covering sequence relation

D 4Dsf = (0 p..p). (3.13)

aeGF (2)"
Comparing (3.12) and (3.13), one can find the covering sequence in (3.12) as
Aq = (D), (3.14)

excluding w = 0. Notice that for w = 0, we have (-1)*"# =1 and (3.12) can be

satisfied for only constant functions. Thus (3.14) is valid except for w = 0, which
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is a Walsh transform null of only balanced functions.

Hence, &= (Ay) m with elements 2, =(-D)""'* is a (+1,-1) valued

aeGF(2)

trivial covering sequence.

2- Since the proof steps (3.4) to (3.14) are equalities that can be repeated in the
reverse direction, the second statement of Theorem 3.3 is also proved

simultaneously.

Theorem 3.4: Let f be a balanced Boolean function on weGF(2)" and

W (w) be its Walsh transform at frequency w.

1- For all nonzero Walsh transform nulls w, there exists a (0,1)-valued covering

sequence A = (ka)aeGF(Z)m with elements 1, =<w,a>. (3.15)
2- For all covering sequences which can be represented as A = (;“a)aeGF(z)m with
elements 1, =<w,a >, there is a nonzero Walsh transform null w.
Proof:
1- Starting from (3.12), and since (-1)*"'% =1-2<w,a >,

3 (1-2<w,a>)D,f =(0,..,0). (3.16)
acGF (2)™
(3.16) can also be written as
2 D(<w,a>)Dif+ > Dif =(0,..,0). (3.17)

aeGF(2)M acGF(2)M

It is easy to see that
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Y(<w,a>)Daf =3 YD.f|. (3.18)

acGF(2)" acGF(2)™

For a balanced function f, > D,f =(2™* 2™*..2™) by Proposition 3.1.

acGF (2)"
Hence,

> (<w,a>)D,f = (2™ % 2™ . 2M) (3.19)
acGF (2)"

Comparing the covering sequence equation ZﬂaDaf =(p p..p) and (3.19)
acGF (2)"

one gets A, =<w,a>, excluding w = 0. Notice that for w = 0 , we have

<w,a>=0 and (3.19) can not be satisfied. Thus A= (ry) m Wwith

aeGF(2)

elements A, =<w,a > is a covering sequence of the balanced function f with level
p:2m_2 except for w=0 which is a Walsh transform null for all balanced
functions.

2- Since the proof steps (3.4) to (3.19) are equalities that can be repeated in the
reverse direction, the second statement of Theorem 3.4 is also proved

simultaneously.
We now give corollaries 3.1 and 3.2 for theorems 3.3 and 3.4.

Corollary 3.1: (i) Let w = (W,..., Wo, W) be the nonzero Walsh transform null
frequency of a Boolean function f, and A be the corresponding (-1,+1)-valued
covering sequence with elements 2, =(=1)="®. Then, 4;=1 and for any two

indices a and b, the element A ¢p = 154y -
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(it) Similarly, any (-1,+1)-valued covering sequence A, with elements satisfying

the property Aaep = Aadp and A,=1 implies a nonzero Walsh transform null

frequency, W = (W ey W, W), which is equal to

L1,..1)— (A10..0 ’---ﬁc;..lo  Ao...01)

. Each element of the vector w can be found

using w, :1—&—2a forall a|wt(a) =1.

Proof: (i) A, = Ay o = (-1)"*® " =(-1)° =1 and
Aa@b = (_1)<W,a®b> _ (_1)<W,a>@<w,b> _ (_1)<W,a> (_1)<w,b> = Aap (3.20)

(if) Using Auep =Aa4dp  With 4y =1 and the fact that the covering sequence is (-

1,+1)-valued, its elements can be represented as ia:(—1)<k'a>. For all weight 1

indexed terms this becomes /161:(—1)ka , ka being the a'" bit of vector k. Since all

binary vectors can be represented as a sum of vectors of weight 1 knowledge of
covering sequence elements with weight 1 is sufficient to calculate other elements.
This can be shown by (3.21) as,

h=(ho.0, - 2.1)=(0 (D, (-2, (-p a®2) - ()la®-Okm))
(3.21)

Since one can express all weight-1 indexed terms as

Aa

Ay = (DK —(cpka =1-2k, ky =1- 5 (3.22)

The corresponding vector Kk = (Kp,..., Ko, K;) is a Walsh transform null by

Theorem 3.3. Denoting k by w, from (3.22)
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(Mo...ov--?vc;..lo,ko...01)’ using 7, = (-1)We

for va|wt(a) =1. (3.23)

W = (W, Wo Wy ) = (L, 1,...1) -

We now give Corollary 3.2 for Theorem 3.4.

Corollary 3.2: i) Let w = (Wq,..., Wp, W) be the nonzeroWalsh transform null

frequency of a balanced Boolean function f, and A be the corresponding (0,1)-

valued covering sequence with elements A, =<w,a>. Then, 4,=0 and for any
two indices a and b, the element Aygp=44 © 4y .

i) Similarly, any covering sequence A, with elements satisfying the property
Aawb =4 © 4, and 4,=0 implies a nonzero Walsh transform null frequency w,
W = (Wi ,eees Wo W) = (Agg_01--Ao_101 Ao_01) - EACh element of the vector w can be

found using 4, =<w,a > for Va|wt(a) =1.
Proof: (i) A, = Ay, =< (00...0),w >=0 and
Adaep =<W,a®@b>=<w,a>@®<w,b>=1, &4, (3.24)
(if) Using Auep =44 @ 4, with A4,=0 and the fact that the covering sequence is
(0,1)-valued, its elements can be represented as 1,=<k,a>. For all weight 1

indexed terms this becomes A, =k, , the a" bit of vector k. Since all binary

vectors can be represented as a sum of vectors of weight 1 knowledge of covering
sequence elements with weight 1 is sufficient to calculate other elements. This can
be shown by (3.25) as,

=g 0s g 1) =(0, ki, Ko, (K ®Ko), o , (kg @..®Kp)).  (3.25)
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The corresponding vector k = (Kp,,...,kp,k;) is a Walsh transform null by
Theorem 3. Call now k as w. From (3.25)

W= (Wm,..., Wp W) = (M0, 0+-+-R0..20,20..01)»  USING  Aq =<w,a>  for
Va|wt(a) =1.

Corollary 3.3: For any Boolean function, number of covering sequences is greater
than or equal to the number of Walsh transform nulls, i.e.,

(# of covering sequences) > (# of Walsh transform null frequencies). (3.26)

Proof: Because of the relations (3.14) and (3.15), each Walsh transform null
defines a covering sequence; hence, the minimum number of covering sequences
is equal to the number of Walsh zeros. Inequality occurs either when f is balanced

or there are other covering sequences that cannot be represented as 1, =<w,a >
or 4y =(-1) V.

Corollary 3.4: Hamming weight of the covering sequence of a balanced function
calculated from any nonzero Walsh transform null frequency through equation
(3.15) is 2™,

Proof: Let w be a nonzero Walsh transform null; W;(w)=0 and let
A =(ha)acar (2 be the corresponding covering sequence. The Hamming weight

of A is,

wt(h) = Dk = D<w,a> (3.27)
acGF(2)™ aeGF(2)M

If w=(0 ... 0) thenwt()) =0. Assuming w = (0 ... 0) and using (3.12),
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z<w,a>:% 21—(—1)<W’<'3‘>:2”—1—1 > (-p<Wes (3.28)

aeGF(2)™M aeGF(2)™M aeGF(2)™M

1 ifb=w
Z(_l)<W,a> — Z(_1)<W,a> (_1)<b,a> |b:0 — S(W(‘B b) — {0 I }
aeGF(2)M aeGF(2)M else

(3.29)
Since b=(0 .. 0) , and w=(0 ... 0) , M(k):Zm_l for any nonzero covering
sequence calculated from (3.15).
Corollary 3.5: Hamming weights of the covering sequences calculated from
Proposition 3.2 of Carlet and Tarannikov, where k is the dimension of the largest
subspace E* = {Xe GF(2Q)™M | vix=0we E} constructed by Walsh transform

nulls of an m-variable Boolean function f, are all Zm_k .

Proof: In Proposition 3.2, the indicator of every coset of E is given to be a

covering sequence A of function f. Then, wt()) = 29M(E) — pm-k_

Corollary 3.6: Any pair of covering sequences A and A’ calculated from Walsh

transform null frequencies through (3.15) are linearly independent, i.e.,
kKh+ jo" = (0 ... 0) for any integersk, j =0 and A=A’ (3.30)

Proof: Let wand w’ be two Walsh transform nulls; W; (w) =0, W; (w") =0and

A and A’ be the corresponding covering sequences, SO

A=(hg =<w,a>) m and A'=(A5 =<w'a>) We will use

acGF (2) aeGF(2)™ "

proof by contradiction. Now assume that & and A’ are linearly dependent.

Then Kh+jr'=(0..0) fork, j=0 (3.31)
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Now using (3.31),

K(Adg, W, Wy, (W @W,), .. , W D..OW,))D

H ' ’ ' ' ' ' ' (332)
120, Wi, Wy, (W @ws), .., WS..&w,))=(00..---0)

(3.31) holds if and only if kw; @ jw/ =0Vie{0,1..m}. Notice that =2’
implies that w = w’; hence there exists at least one w, such that w, = w; . Without
lost of generality assume w, =0 and W/ =1. kih+jr'=(0..0) implies that k=0.

Therefore j=0, which contradicts the assumption of (3.31). Hence, A and A’ are

linearly independent.

Theorem 3.5: The covering sequences calculated from Walsh transform null
frequencies through equation (3.15) can not be indicators (see (3.3) for the
definition) of any subspace.

Proof: The elements of a covering sequence that satisfies

A=(hg =<w,a>) m are related to each other by (3.20). We will use the

aeGF(2)

proof by contradiction. Assume  is an indicator of a subspace E. Then . satisfies

P 1 if aeE (333)
2710 if ageE '

Let a,beE , as u isthe indicator of E, 1, =1, 4, =1 . Since E is a subspace, it
is closed, so (a®b)eE; therefore, A,, =1. However, » obtained by (3.15)
should also satisfy Corollary 3.1, which implies A,gp =1®©1=0. This is a

contradiction. Hence A = (4, =< w,a >) can not be the indicator of any subspace.

In the rest of this paper, k will refer to the dimension of the largest subspace
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EL= {><e GF(2)M | vIx=0wve E} constructed by Walsh transform nulls of an

m-variable Boolean function f. Then, the dimension of the subspace E is (m— k).

Corollary 3.7: The set of covering sequences found from Proposition 3.2 and
Theorem 3.3 are distinct.

Proof: This follows from Corollaries 3.4 and 3.5 and Theorem 3.5.

Corollary 3.8: The set of covering sequences found from Proposition 3.2 and

Theorem 3.4 are distinct.
Proof: This follows from the definition of indicator (3.3) and the fact that any
(-1,1) valued sequence can not be the indicator of a subspace.

Corollary 3.9: The number of covering sequences that can be calculated from
Proposition 3.2 is 2%, which is equal to the number of elements of the largest

subspace constructed by Walsh transform nulls.

Proof: The number of cosets that can be constructed from E is

2" 12M=k — 2K Since every coset indicator is a covering sequence, their total

number is 2% =| E* |, which is the number of elements in EL.

Remark 3.1: Our relations (3.14), (3.15) and Theorem 3.2 have very different
meanings. Theorem 3.2 implies that a covering sequence gives some of the Walsh
transform nulls (those which have weights less than or equal to the correlation
immunity order), but calculation of covering sequence from these nulls is not
given and it is impossible to find covering sequences without the knowledge of all
nulls. However (3.14) says that every Walsh transform null implies a covering

sequence 1, =(-1)"'* and some of the covering sequences with the property
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25 = (D)= indicates a Walsh transform null w. Hence every Walsh transform
null frequency can be calculated from covering sequences and some of the
covering sequences can be calculated from Walsh transform null frequencies.

3.4. Covering Sequences of Affine Equivalent Boolean Functions

In this section, relations between the covering sequences of affine equivalent
Boolean functions are studied. Affine equivalence is defined using the definition in
[60]. If there exists a nonsingular binary mxm matrix A and mx1 vectors b,
ce GF(2)" and d e GF(2) such that

f(x) = g(AX Db)® < ¢, x > @d (3.34)

then f and g are said to be affine equivalent. Walsh and autocorrelation spectra

of affine equivalent Boolean functions are studied in [23, 24]. The following
proposition is given in [60] on the Walsh spectra relation of affine equivalent

Boolean functions.
Proposition 3.3 [60]: Let f(x), g(x) be two functions satisfying (3.51). Then for

any w e GF(2)™, [91],
Wy (W) = (- HH0ATCW W (< e+ w), AT >) (3.35)

Proposition 3.4 [91]: The Walsh spectrum of f(x) at i is equal to the Walsh
spectrum of g(x) at j, where j = ¢ + iA". Therefore the distribution of absolute

value of Walsh spectra of f(x) is same to that of g(x).

Therefore, the number of Walsh transform null frequencies are same for affine
equivalent Boolean functions. This means same number of covering sequences can

be found from Walsh nulls. However affine equivalent Boolean functions can have
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different number of covering sequences. This is because they can have covering
sequences other than found from (3.14) and (3.15). Since they have different
Walsh nulls the corresponding covering sequnces are different. Here we study the
covering sequences of affine equivalent functions in detail. Three important
questions are:

Question 1: If f does not have any covering sequence, does g have any covering

sequence?
Question 2: Let A be one of the covering sequences of f with level p. What is the
corresponding covering sequence and its level for g ?

Question 3: Are all covering sequences of f and g related?

Let us now investigate these questions in three steps.

Answer 1: Assume f does not have any covering sequence. Thus,

> kg Daf is not a constant vector. Then,
aeGF(2)M

2 2aDag =2 25(g(x) @ g(x@a))
a

=Y 2 (F(AX @ b)® < ¢, x> @d
+ f(A(x®a)®b)® <c, (xDa)>@d)
=S AL (f(AX®h)® f (Ax ® Aa ® b)) <c,a> (3.36)

=2 A (f(y)® f(y® Aa))® <c,a>)
a

=>A,Dpaaf @A, <ca>
a

Since<c,a> is constant for given a and ¢, > 1,D,9 can not be a constant vector.

Hence, if f does not have any covering sequence then its affine equivalent
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function g does not have any covering sequence either.
Answer 2: If f and g are affine equivalent then

f(X)=g(AX®b)®<c,x>®d =g'(X)d<c,Xx>@d . (3.37)
From the fact that if B =Ax ®@bwith nxn matrix A and nxlvector b we have from
8],

D,(foB)=Dp,f 0B, (3.38)
one has forgoB = g(Ax®b) = g'(x)

D,9'=Dpag°B. (3.39)
Then,

D,f=D,0'®@<c,x>@d®<c,(xDa)>@d

(3.40)
=Dp,0°B®<ca>

Covering sequence relation for f is

Y ha Daf =(pf.pt) =pr. (3.41)
aeGF(2)M

Covering sequence relation for g is

2 2aDag=(pg,Pg.-Pg) =P (3.42)
acGF(2)™M

(3.41) can also be written as:

> ha(DaggeB+<c,a>)=ps. (3.43)
aeGF(2)™

Then
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100...01(DA(OO...Ol)g(OO“'Ol)) oB+<¢,00..01> +2‘OO...010 (DA(00010)9(0001)) oB+.....
200..01(D A(00..029(2)) ° B+ < ¢,00...01> + 209, 010 (D A(00...020)9(00...010)) o B +...

=Pt
ﬂ’OO...Ol(DA(OO...Ol)g(ll"'11)) oB+<c¢,00..01> +/100...010 (DA(OO...Olo)g(ll'"ll)) oB+...

(3.44)
Here D;f(j)is j™-indexed position of the vector D,f for a=i. (3.42) is equal to
[460..01D00..01F(00...0D)]+ [A60_10D0.10F(0.0D)] + ..
.[ﬂoo_..OIDOOmOlf (00...20) ]+ s oo e s s =p, (3.45)
(260, 01D00. 02F L LD ]+ oo e e e :
lloo...mDA(oo...01)9(A(00----01) +b) |+ Agp_ 01 <00..0Lc> +lﬂvoo...1oDA(oo...10)9(A(00---01) +b)]
+[A0..01D A(00..10) 9(A(00...10) +b) |+ Agg_g3 <0001, > +.r . “

=Pt

[00..01D s, 199(AQL.1D) +b) |+ Agg oz <0001, >+

(3.46)
Define,
L=(@,4, <a,c>) (3.47)
Then (3.46) can be written as
400..01 (D a(00..01)9(A(00...01)) + b) + Ag0_10 Da(00..10) 9 (A(00..10) + b) + (3.48)
o+ B =200..01D00..01f(00...01) + 299 10Doo..10 (00..10) +---

m-1 H H '

There are 2 such equations. If one can find all (ka)aEGF(Z)m from
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(Za)accr(2)» then
Pt =Py (3.49)

Hence, at least one of the covering sequences of two affine equivalent functions
are related by (3.48) and (3.49).

Answer 3: In Answer-2 it is seen that every covering sequence of affine equivalent
Boolean functions are related. However the relation we have found does not show
that there is a bijective mapping between covering sequences of f and g. Therefore
the numbers of covering sequences of affine equivalent functions do not have to be
equal. This is also conformed by Proposition 3.2 of Carlet and Tarannikov,
because the largest subspaces of Walsh transform nulls of affine equivalent

functions do not have the same size in general.

3.5.  Conclusions

In this chapter, we show that some covering sequences of a Boolean function can
be obtained using the Walsh transform nulls. We prove that each null frequency of
the Walsh transform defines one covering sequence; and if the Boolean function
is balanced, each null is associated with two covering sequences. We present a
lower bound for the number of covering sequences and confirm that the set of
covering sequences that we find from Walsh transform nulls are distinct from
those given by Carlet and Mesnager. Relations from a covering sequence to a
Walsh transform null frequency are given as (3.14) and (3.15). We have shown

that

i- for any m-variable Boolean function f , each nonzero Walsh transform null

frequency w e GF(2)™ uniquely defines a covering sequence ke{l, —1} with
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<W,a>

elements 1, =(-1) and for each covering sequence A which can be

represented as 1, = (1) "%, there exists a nonzero Walsh transform null w.
ii- for an m-variable balanced Boolean function f , each nonzero Walsh transform

m
null frequency weGF(2)™ defines a covering sequence keGF(Z)2 with
elements A, =<w,a> and for each covering sequence A which can be

represented as A, =< w,a >, there exists a nonzero Walsh transform null w, and

Hence one can obtain some of the (in fact as much as the number of Walsh
transform nulls) covering sequences from Walsh transform null frequencies. It is
proven that all the covering sequences calculated from Walsh transform null
frequencies through equation (3.15) are linearly independent and none of them can
be an indicator of a subspace. From this point, we come to the conclusion that, the
set of covering sequences which can be calculated from Proposition 3.2 of Carlet
and Mesnager and Theorem 3.3 [39] are distinct, i.e., our theorems 3.3 and 3.4

give a covering sequence for each Walsh transform null frequency and if these

nulls form a subspace called E=, Carlet- Mesnager Proposition 3.2 gives a
covering sequence for each coset of E.

On ther other hand, we have obtained a relation between covering sequences of
affine equivalent functions and have proven that if one of the affine functions does
not have any covering sequence then its affine equivalent function does not have
any either. Also it is shown that number of covering sequences of affine equivalent

Boolean functions does not have to be equal.
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CHAPTER 4

k-DOT PRODUCT AND k-AFFINE FUNCTIONS OVER Zg

Relations between error correcting codes and Boolean functions are studied
extensively in the litterature [12-16, 26-31, 45, 46, 55, 59, 64, 67, 71-76, 86, 93,
96, 98-108, 110-112]. Since 1990’s, coding theory researchers intensively study
nonlinear codes [13, 76] that can be transformed into linear codes [26, 67, 74, 103]
in other metric spaces via appropriate mappings. Some of the best-known
examples of nonlinear binary error-correcting codes that are better than any linear
code are the Nordstrom-Robinson [55, 59, 86, 98], Kerdock and Preparata codes
[29, 46, 81, 86]. Calderbank et’al [29] showed that, when properly defined,
Kerdock and Preparata codes are linear over the ring Z4; and as Z,4-codes, they
are the duals of each other. All these codes are in fact just extended cyclic codes
[46, 81]. Tokareva [104-108] used Krotov matrices [72, 73] to generate Z,-linear
codes [12, 14, 15, 45, 59, 71, 93, 99, 112] and from these codes she introduced k-
affine binary functions which are affine in an alternative sense. From k-affine
functions, she then defined k-bent functions and a special form of dot-product the

k-dot product.

In this chapter, we examine Tokareva’s studies on Z,-linear codes. We

understand and give the origins of k-affine functions and k-dot product definitions
of Tokareva in Section 4.2. Then in Proposition 4.2, we show that the Krotov
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matrices A% which are used to construct Z, -linear Hadamard like codes, in
fact have as columns as the lexicographically ordered codewords of the Z4-linear

(2™, m) code C. We observe that, from a Z,-linear (2", m) code C of type

42™2¢ "which consists of k many Z, elements and (m-2k) many Z, elements,

m
Tokareva defines a Z,4 -linear, (22 , m+1) code Ar'; . Then as the binary image of

this code, she obtains the code A'r‘n. Each codeword of A'r‘n defines the truth table
of a k-affine function, which then leads to the definition of k-dot products. We give
Proposition 4.5 in order to describe the rules that quadratic parts of k-affine

functions must obey. In Section 4.3, we give examples of the Z,-linear codes of

types 4922 4120 4121 and 4220 as to clarify the subject. Finally Section 4.4
contains our contributions on the extension of these definitions to a larger ring,

Zg. We drive a new class of functions, which we call t,k-affine, using linear codes

over the ring Zg. We then give propositions 4.7 to 4.11. Proposition 4.7 gives the

properties of the Cfﬁk matrix. Proposition 4.8 shows that for t=0, k-affine and t k-
affine functions are exactly the same which then imply Proposition 4.9 with the
proposal that k-dot product and tk-dot product values are equivalent for t=0.
Proposition 4.10 gives the properties, wheras Proposition 4.11 gives the explicit
formula of the t,k-dot product. The new class of functions contain all affine
functions, some quadratic functions and some cubic functions. Examples of these

functions are given at the end of this chapter starting from Zg-linear codes.
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4.1  Z4-Linear Codes and Krotov Matrices

We will start this section by giving the definition of Z,-Linear Codes. Then using

this definition we give Proposition 4.2 to give the relation of Z,-Linear Codes and

Krotov matrices.

4.1.1 Z,-Linear Codes

By a quaternary linear code C of length m, a linear block code over Z4, i.e., an

additive subgroup of ZZ” is meant. A binary code is Z4-linear if its coordinates

can be permuted so that it is the image of a linear code over Z,. The folowing

proposition gives the generator matrices of quaternary linear codes.

Proposition 4.1: [104] Any Z,-linear code C containing some nonzero

codewords is permutation equivalent to a Z, -linear code with the generator matrix

of the form

l, A B
[o 21y, D} 4

where 1, and I, denote the kyxk; and kpxk; identity matrices, respectively, and
Aand D are Z, matrices and B isa Z, matrix. Then C is an abelian group of type

4'12*2 C contains 224"*2 codewords. C is a free Z, module if and only if k, =0.
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4.1.2. Krotov Matrices

In [73] D.S. Krotov introduced matrices of size (r1+r2)x2(2r1+r2)and named

them as A™"2 ., These matrices consists of lexicographically ordered columns z,

where z runs through Z,xZ . For example,
11111111

11
A% =[1] A% = {0 2} AM=100112233 . (4.2)
02020202

Later than Tokareva [104] named these matrices as G  with
k=rand m=2r +r, with 0<k <(m/2). Tokareva used these matrices to define
k-affine functions and k-bentness crireria. We will give the origins of the GX

matrix in order to understand the origins of the k-dot product and k-affine

functions. We will now give Proposition 4.2 for the Gﬁq matrix.

1...1
Proposition 4.2: Columns of the (m—k)x2™ Krotov matrix A*™ % :{Gk }
m

are the lexicographically ordered codewords generated by

I, O
[0 2|m—2kj. (4.3)

and an extra symbol ‘1’ in the first position.

Proof: We know that by definition A*(™2X) contains lexicographically ordered
columns z" , where z runs through foZ?‘Zk. Each column of A*™ 2 consists

of k many Z, symbols and (m—2k) many Z, symbols.
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Notice that (4.3) is equivalent to (4.1) with the matrices A=0 B=0, D=0. Then (4.3)
produces codewords containing ky=k many Z, symbols and k,=(m-2k) many Z,

symbols.

Hence Columns of Gﬁ are the lexicographically ordered codewords generated by

(4.3).

m
4.2  Generating aZ, -linear, (22 , m+1) code Ar'; froma Z,-linear (2", m)
code C

It is observed that from a Z,-linear (2", m) code C of type 4%2™2<, which

consists of k many Z, elements and (m-2k) many Z, elements, Tokareva defines

m
a Z4-linear, (22 , m+1) code Ar'; using the 2™x1 vectors h'. A code of type

4%2™-2k contains (m—k) symbols, k of which are from (0, 1, 2, 3) and (m—2k) of

which are from (0, 2).

h' = (U) G, (4.4)
where
@, (U, u") = (g(U'),u") =u (4.5)

with u'ezf and u” e sz_Z" and ¢ is the Gray map which is defined by,

$:Z4 73
0— 00
101 . (4.6)
211
3—10
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!/ 14

So, @ir(u)=[u’u"] and h' =[u'u"]GK . Each h“ can be seen as a linear

combination of the rows of an . Then (4.4) can be written as,

(GX(00)--GK(02"-1)] [GK(Kk+10)---GK (k+12™ -1)
Y _y GK (1,0)---GK (1,2™ -1) Ly GK (k+20)---GK (k+2,2™ -1)
k k m k k m
GK(K0)--GKK2™-1)| |GK(m-k0)---GK(m-k2™-1)]

which is also equal to

h' =u'©) |6 00)-GK 02" -] +--
+u'(K) [Gﬁ(k,O)--G'r;(k,Zm —1)]+
+u"(0)[(3§(k +1,0)---GK (k +1,2™ —1)]+--.
+U(m - 2K) [GK (m—K,0)-+-GK (m k2™ - 1]

(4.7)

+ represents addition on Z,4. In (4.7), [G'r‘n(i,O)---G'r‘n(i,2m —1)J represents i"
row of G and |GK (1,0)-GK (1.2™ ~1)|=[co () 1 (i) +-Cpn_; ()] where c; (i) is
the i™ symbol of the j" codeword. Thus i row of G¥ is a vector of size 2Mx1
which contains i™ symbols of all the lexicographically ordered codewords of the

Z 4 -linear code C. For example for a Z,-linear code C of type 4125 we have

co =[00] ¢; =[02] c; =[10] c5 =[12]
cq =[20] cs =[22] ¢ =[30] ¢, =[32]

ht - o1] 00112233
a 02020202

} = (02200220 .
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Notice that, since columns of G¥ are ordered lexicographically, elements of the

vector h" are in some kind of order.

Tokareva defined a 2™ x2™ matrix Cﬁ :(cu,vk) over Z, with the rows h". Its

rows are in lexicographical order of vectors ¢.'(u) . Thus C',; has all linear
combinations of the symbols of all the codewords of C (Z,-linear code of type

2™ is also aZ4-linear code. Its of type 42"

4¥2™2%) This new code of size
The linearity of the new code comes from the fact that the new code contains h

for Yu e Zg‘ i.e., all linear combinations of the codeword symbols are in the new
code. Thus Z,-linear code of type 42™? is extended to the Z,-linear code of

type 47" by Tokareva. Ar'; which contains all h" and h"+2 is an affine code (+2
complements the corresponding binary vector after mapping by £). Mapping this
codeto Z, by B AX binary code is obtained.

ﬂ . Z4 —> ZZ

01—-0 (4.8)
23—>1

As an ilustration for more understanding; we consider the code C as an

(m—=k)x(m-k), S-box. Then each codeword of C will be an S-box output. This

S-box consists of (m—k) component functions (symbols of the codwords). Each
row of Gﬁ then corresponds to the truth table of one component function. Hence

each h" is a the truth table of a linear combination of the component functions of

the S-box which is the so called extended output function of the S-box, which is
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defined in (2.7). Then Cﬁq contains the truth tables of all of the extended outputs

of the S-box as its rows.

Hence the codewords of Z,-linear code A,'Tﬂ are the truth tables of the extended

output function of the S-Box (or the code C). Table 4.1 summarizes our
illustration.

Table 4.1: Summary of our illustration between Tokareva’s notations and S-boxes

C (m—k)x(m-k) S-box

Symbols of C (m—k) component functions of the S-box

Rows of Gﬁ Truth table of one component function

hu Truth table of a extended output function of the S-
box

Codewords of Z,- | Truth tables of the extended output functions of the

linear code AX S-box

Codewords of binary | Binary image of the truth tables of the extended

code AX output functions of the S-box

4.3 k-dot Product and k-Affine Functions

To every codeword of the binary code A¥ a truth table of a Boolean function can
be matched. Codewords of the binary code AX are illustrated as binary images of
the truth tables of the extended output functions of the S-box (Z,-linear code C)

in Table 4.1. The corresponding Boolean functions are said to be k-affine by

Tokareva [104]. Thus the extended output functions of the Z,-linear code C are
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said to be k-affine. The set of all k-affine functions is denoted by a//r'; . For k=0,1 k-

affine functions corresponds to affine functions. However for k > 2 some of the k-

affine functions are affine and rest are quadratic.

Proposition 4.3: [108] For any integer m, 0<k <m/2, the class ://,'; consists of

2m—k+1 2m—k+1(

(k+1) many affine functions and 2k —k—-1) many quadratic

functions.

Corollary 4.1: [108] The part of affine functions in the class Wmlz tends to zero

as m grows up.

If g be the Boolean function corresponding to p(h") which is the vector h
whose elements are p mapped to Z,, then Theorem 4.1 gives g.

Theorem 4.1: [104] For integer m, k such that 0 <k <(m/2), a k-affine function

with variable v and constant parameter u can be written as,

a(v) = (@rzl @K (Ugjg ® Uz )(Ugjg B Uy )Vaig DVo;)(Vaj 4 BV ))@

@ ugv, Joa (4.9)

where ueZj and ae Z, . For instance, any 2-affine 4-variable function g is

uniquely determined by a binary vectoru = (u4 Uz Uy up) and an element a e Z,

as,

(Vg V3 Vo V1) = (U ® Uz )(uz @ Uy )(v1v3 D ViV DVovz ©Vov,) @
U2V1(‘DU1V2 @U4V3 (‘DU3V4 ®a .
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The class z//f consists of 24 affine and 8 quadratic functions. Quadratic functions

can be given by the vectors u e {(0101), (0110), (1003), (1010)}and a  {0,1}.

Definition 4.1: [104] k-dot product of the two m-bit binary vectors u and v is
defined to be,

(uv), =BEiy)
= (@2(:1 @K (Ui 1 ® Ui )Unjg ®Uyj)(Vaig BV )Vaj g DVyj )) (4.10)
® (@'Sn:l usvs)

Hence k-dot product definition comes from the k-affine function.

Proposition 4.4: [104] For any integer n, m, k such that n=2", 0<k<m/2, it
holds;

(i) CK .1 = (crn ®32)@(3n ®C?)

(i) C% = (04 ®CK Jo (b ®3,)

ity (ck ]| =k

AK is a code, which contains the truth tables of k-affine functions, i.e.,

Akm = {codewords| codewords=< u,V > @a}. The algebrac normal forms (ANF)

of k-affine functions contain a linear part and/or a quadratic part. However it is
observed that only a certain type of quadratic terms are included. We define these
quadratic terms in Proposition 4.5.
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Proposition 4.5: Only the quadratic tems obeying (i), (ii), and (iii) can be included
in the algebraic normal forms of the k-affine functions. Let us pair the m-bit binary

vector v as G(v) = {(vq,V2),(V3,V4),e.(Vi_1,Vim ) } -

(i) Quadratic part can not contain any product of bits from the same pair, i.e., no

product term like vyvo can be included.

(if) Quadratic part can only contain products of bits from the first k-pairs i.e.,

VqV3, V4Vy -+ Vo Vo Can be included.

(iii) Quadratic part is nonzero if and only if only one of the bits in the same pair of

the coefficient vector u is nonzero,i.e., u; =1=u, =0.

Proof: From the definition of k-dot product, it is seen that quadratic part can only

result from Y;Y; terms with i= j. All (i), (ii) and (iii) comes from the definition

of Yi-

(iii) part of Proposition 4.5 explains the reason that the class wf consists of 24
affine and 8 quadratic functions. Quadratic functions can be given by the vectors
u € {(0101), (0110), (1007), (1010)}which obey (iii) and a < {0,1}. We will now

make some examples in order to understand k-affine functions.

Example 4.1: Let us begin with the Z,-linear code of type 4922 This code

contains 2 binary symbols and no Z, symbol. Now if we write all possible 2-bit

binary vectors, we get (00),(01),(10),(11). Columns of Gg consists of 2 times
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0022
these 2-bit binary vectors, G :( j For u € {(00), (01), (10), (11)} we have

0202

00 00
h 0000 AOT)1 (0000
o0 _ h% | 0202 and B(CO) - ph®)|_|o1o1
27 |plo| 0022 27| g0y | |0011
qit| 0220 sntty) 0110

The binary code Ag consists of codewords which are the rows of ﬂ(Cg) and

their complements. Binary Boolean functions corresponding to these codeword

vectors are,

(v, vy) =0=((00), (v, V1)) =lgg for the first row of ﬂ(Cg)
g(vo,vi)=vy = <(Ol), (vp, v1)> =l for the second row of ,B(Cg)
g(va, v1) =Vp =((10), (v, v1)) = 1o for the third row of ﬂ(Cg)
g(vy, Vi) =V3 @V, =((11), (v2, vp)) = ly; for the fourth row of ﬂ(Cg)

From the above equations one gets, g(h") = (u,v) =1, where <u,v > represents

the dot product of the vectors u and v and 1, (v) =< u,Vv > is the linear function of
v. Notice that every row of ,B(Cg) is the truth table of a linear function of v. The

complement functions corresponding to (h" +2) are then affine functions of v.
Thus the binary code Ag contains affine functions. Table 4.2 shows the

illustration for this example.
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Table 4.2: Illustration for Example 4.1.

C 2x2 S-box with 2-bit binary outputs multiplied by
2, each is a linear mapping

Symbols of C Component functions of the S-box, a binary linear
function
Rows of GK Truth table of one component function, truth table of

a linear function

hY Truth table of one extended output function of the S-

box, linear combination of linear functions.

Codewords of Z,- | Truth tables of one extended output function of the

linear code A S-box, linear combination of linear functions.

Codewords of binary | Truth tables of linear combination of linear functions

code A divided by 2. This gives linear function truth tables.

Thus beginning from a binary linear code of size 2™, 2™ affine functions are
obtained. Since no Z, term was included in the forming code C, Tokareva called

the resultant functions 0-affine.

Example 4.2: Let us now begin with the Z,-linear code of type 42° This code
contains one Z, symbol and no binary symbols. Now if we write all possible Z4

symbols, we get (0),(2),(2),(3). Columns of G% consists of these symbols,

G5 =(0123). For ¢ *(u) €{0,1, 2,3}, ue{(00), (0), 1D, (L0)},. Then
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0000 0000
hot| 10123 0011
Cy=| .. |= and A(C3) =
hit| (0202 0101
hio | 0321 0110

The binary code A12 consists of codewords which are the rows of ,B(C%) and
their complements. Binary Boolean functions corresponding to these codeword

vectors are,

g(v2, v1) =0={((00), (v2, v;)) =lgq for the first row of B(CH)

g(vy, V) =Vvy = <(10), (vp, v1)> = |1 for the second row of ,B(C%)
9(vo, V1) =v3 =((02), (v2, v1)) = lo for the third row of B(C3)

g(va, 1) =V; @V, =((11), (vo, vp)) = ly; for the fourth row of B(C3)

From the above equations one gets, A(h"Y) = (u,v), =lg where (u,v), represents

1-dot product of the vectors u and v which was defined by Tokeareva [104].

Notice that every row is the truth table of a linear function of v. The complement
functions corresponding to (h" + 2) are then affine functions of v. Thus the binary

code A12 contains affine functions. Since one Z,term was included in the forming
code C. Tokareva called the obtained functions 1-affine which are also affine.

Thus only one Z, term in the codewords of the forming code C, does not destroy

the affine property of resultant functions.
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Example 4.3: Let us now begin with the Z,-linear code of type 4121 This code
contains one Z, symbol and one binary symbol. Now if we write all possible Z,4
symbols, we get (0),(1),(2),(3), and all possible 1-bit binary vectors, we get (0),(1).
Columns  of G% consists of one Z, symbol and twice the Z,symbol,

, (00112233
G} -

.For ¢.1(u) < {00, 01,10,11, 20, 21, 30, 31},
ozozozozj A (1) < 00,01,10,11,20, 21,30, 31}

u e {(000), (001), (010), (011), (110), (111), (100), (101)} . Then

hOOO ﬁ(hOOO)
oo | (00000000 oot | (00000000
o | [02020202 Al 010) 01010101
h 00112233 AO)| looo01111
ol _ h011 _|02132031 | Al - A(h°) _|01011010
371110 | 00220022 7| g0y | 00110011
h111 02200220 ﬂ(hlll) 01100110
0o | 00832211 100 00111100
h 02312013 AN | lo1101001
thl ﬁ(hlol)

The binary code A% consists of codewords which are the rows of ﬂ(C%) and their

complements. Binary Boolean functions corresponding to these codeword vectors

are,

g(v3, V2, V1) =0=((000), (v3, vy, v1)>1 = logo for the first row of B(C3)

g(V3l Vo, Vl) =V = <(010), (V3, Vo, V1)>l = |001 for the second row of ﬂ(C%)
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g(v3 Vo,Vp) =Vv3 = <(100), (V3 Vo, V1)>1 =lygg for the third row of ﬁ(C%)
g(vz Vo, V1) =V3 ®Vvy = <(110), (V3 Vo, v1)>l =197 for the fourth row,

g(vs, V2, V1) = Vo =((00D), (v3, Vy, v1)>l =gy for the fifth row,

g(v3 Vo, Vp) =V @Vvy = <(011), (V3 Vo, v1)>1 =1g11 for the sixth row,

g(v3 Vo, Vq) =Vy @V3 = <(101), (V3 Vo, v1)>1 =ly1¢ for the seventh row, and
g(vs, V2, V1) =V3 ®V, ®vy =((L11), (v3, Vo, v1)>1 =l111 for the last row.

From the above equations one gets, ,B(h“)=<u’”,v>l=lfJ where <u,v>1

represents 1-dot product of the vectors u and v which was defined by Tokareva

[104]. Notice that every row is the truth table of a linear function of v. The
complement functions corresponding to (h" +2) are then affine functions of v.

Thus the binary code A% contains affine functions. Tokareva called the obtained

functions 1-affine which are also affine.

Example 4.4: Let us now begin with the Z4-linear code of type 4229 This code
contains two Z, symbols and no binary symbols. Now if we write all possible 2-

symbol Z, vectors, we get (00), (01), (02), (03), (10), (11), (12), (13),

(20),(21),(22),(23), (30),(31),(32),(33). Columns of Gﬁ consists of two

> (0000111122223333
Z4symbols, Gz = . Then,

0123012301230123
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h 0000
h 0001
h 0011
h 0010
h 0100
h 0101
h 0111
h 0110
hllOO
hllOl
hllll
hlllO
thOO
thOl
h1011

thlO

0000000000000000
0123012301230123
0202020202020202
0321032103210321
0000111122223333
0123123023013012
0202131320203131
0321103221033210
0000222200002222
0123230101232301
0202202002022020
0321210303212103
0000333322221111
0123302123011230
0202313120201313
0321321021031032
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0000000000000000
0011001100110011
0101010101010101
0110011001100110
0000000011111112
0011011011001001
0101010110101010
0110001110011100
00001111000011112
0011110000111100
0101101001011010
0110100101101001
0000111111110000
0011101011000110
0101101010100101
0110110010010011

B(CS) =

The binary code Aﬁconsists of codewords which are the rows of ,B(Cﬁ) and their

complements. The binary Boolean function corresponding to these codeword

vectors are,

g(va, V3, Vo, V) = 0=((0000), (v4, V3, V2, V1)), = logog for the first row,
g(Va, V3, V2, V1) =Vp =((0003), (v4, V3, Vo, V1)), =looz0 for the second row,
g(vg, V3, Vo, V1) =Vy = <(0010), (Va, V3, Vo, v1)>2 =lggoy for the third row,
g(vg, V3, Vo, V1) =V @V = <(001:I), (V4, V3, Vo, v1)>2 =lggy1 for the fourth,

g(Va, V3, V2, V) = VaVg ®Vy @ Vg =((L00D), (v4, V3, Vo, V1)), for the tenth, and
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g(vg, V3, Vo, V1) =VoVy @V ©Vg = <(1010), (V4, V3, Vo, v1)>2 for the 11" row.

Other rows can be similary shown to satisfy (4.10). From Example 4.4 it is seen

that Boolean functions corresponding to the codewords of the binary code Aﬁ

both contain a linear part and a quadratic part. From Proposition 4.5, each function
g(v) contains quadratic parts which are the products of first 2 pairs of input vector
v. Tokareva called these functions 2-affine since two Z, symbols were included in

the codewords of the forming code C, and the functions can contain 2k many
quadratic terms.

44  New tk-dot Product and tk-affine Functions Beginning from Zg-

Linear Codes

In previous sections we examined the k-dot product and k-affine functions, which

were defined beginning from Z,-linear codes. As a summary, we observed that
from a (m, m—k) Z,4-linear code C of type 4%2M-2k \which consists of k many Z4
elements and (m—2k) many Z,elements, Tokareva defined a Z,-linear code Ar';.
Then from this code she obtained a binary (2™, m+1) code Aﬁ]. Each codeword

of A'r‘n then defined a truth table of a k-affine function which leaded to k-dot

products.

Now we will define t,k-dot product and t,k-affine functions beginning from Zg-

linear codes in a similar way Tokareva defined k-dot product and k-affine

functions from Z 4 -linear codes. Our road map is:
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First of all we will start with a (m, m—k—2t) Zg-linear code C of type

8l4k2m-3-2k 'which consists of t many Zgelements, k many Z, elements

and (m—3t—2k) many Z, elements.

By writing all codewords lexicographically as columns, we will obtain the

matrix Gtrhk .

Then we will obtain a (2™, m+1) Zg-linear code A%X using GLK as the

generator matrix.

Later then from the code obtained in (111) we will produce a binary (2,

m+1) code AK, using the map 7 which will be defined in (4.14).

Each codeword of Aﬁ] then defines a truth table of a t,k-affine function as

the Definition 4.8, which leads to t,k-dot products whose explicit formula is
given in Proposition 4.11.

Before using the above road map we will first give some definitions for Z25 -

linear codes given by Carlet [45].

Definition 4.4: [45] Let k be any positive integer, u any element of Z2S and

S .
22"1ui its binary expansion (u; = 0,1).The image of u by the generalized Gray

i=1

map is the following Boolean function on

s—1

GF(2)'™L,G(U): (y1-+ Vs_1) = Us + 2 U;Y; .

i=1
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The generalized Gray map is a mapping from Z2S onto the Reed—Muller code of

order 1, R(1; k—1). When k = 2, R (1; 1) being equal to the set of all the Boolean

functions on GF(2), we obtain the usual Gray map, which is a mapping from Z,

to GF(2)2. For instance, when k = 3, the images of the elements of Zg are the
following words of length 4: G(0) =(0; 0; 0; 0); G(1) = (0; 1; 0; 1); G(2) = (0; 0; 1;
1); G(3) =(0; 1; 1; 0);G(4) = (1; 1; 1; 1); G(5) = (1; 0; 1; 0); G(6) =(1; 1; 0; 0);
G(7) =(1; 0; 0; 1).

Definition 4.5: [45] A binary code is called Z28 -linear if its coordinates can be
arranged so that it is the image of a linear Z o5 ary code by the generalized Gray
map.

Now we will define k-dot product and k-bentness criteria beginning from Zg-

linear codes. First of all we will give the mapping table between Zg and Z, and

Z, as Table 4.3.
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Table 4.3: Generalized Gray mapping between Zg and Z, and Z, symbols

Zg Generalized Zy Gray map Zy
Gray map
0 0000 0 00 0
1 0101 0 01 0
2 0011 1 00 0
3 0110 1 01 0
4 1111 2 11 1
5 1010 2 10 1
6 1100 3 11 1
7 1001 3 10 1

The main quality of the Gray map is that, it is distance preserving. However there

does not exist a distance preserving mapping from Zg [45], to Zz . The Gray map

preserves distances, i.e.,
di (xy) =d(9(x), &(y)) (4.11)

for all x,y e 22. Here d| (x,y) is the Lee distance of two Z, vectors which is

defined as [27],
d (xy)=w(x-y) (4.12)

where w (x) is the Lee weight of the Z, vector X = (X1, -+, Xm) -
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m
wi (%) = D wi (%) (4.13)
i1

with w, (0) =0, w, @ =1, w, (2) =2, w, (3)=1.

Carlet uses the generalized Gray map as it is a distance preserving map. However

representation of Zg ring elements by 4 bit is redundant. We will use an

alternative map which uses 3-bit representation but not distance invariant. Table

4.4 gives our map, & which is given by,

0:2g > 73
0—000,1— 010, 2— 001, 3— 011. (4.14)
4511151016 —»110, 7 —>100
We construct Table 4.4 from the knowledge that if M is a Z, matrix then 4M is a
proper Zg matrix. Then binary symbols are multiplied by 4, i.e., 0—50,1—4.
Similarly if N is a Z, matrix then 2N is a proper Zg matrix. Then Z, symbols

are multipled by 2,i.e., 0>0,1>2,2—>4,3—>6.

Themap f:Z, — Z, was given in (5.8) and is a part of Gray map. We define the

map z:Zg — Z, according to Table 4.4 as,

7:0,1,2,3—->0

. (4.15)
4,5 6,7—>1
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Table 4.4: Our mapping between Zg and Z, and Z, symbols

Zg Our map, & Zy Gray map Z
0 000 0 00 0
1 010 0 00 0
2 001 1 01 0
3 011 1 01 0
4 111 2 11 1
5 101 2 11 1
6 110 3 10 1
7 100 3 10 1

Now we will return to our road map.
Road map I: The first step is to start with a (m, m—k—2t) Zg-linear code C of

type 814%2™-%-2 "which consists of t many Zgelements, k many Z, elements
and (m—3t—2k) many Z,elements. We define the generator matrix for Zg-linear

codes in Definition 4.6.

Definition 4.6: The generator matrices for Zg-linear codes of type 8t4k2m-3-2

are equivalent to

L, A B
0 21, F (4.16)

0 0 a1,

3
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where 1, and I, and I, denote the k; xk,, k, xk, and k, xk; identity matrices,
respectively, and A and F are Z,matrices and B is a Zg matrix. Then C contains

2%4*22%s codewords. C is a free Zg module if and only if k, =0 and k3 =0.

Road map I1: We use (4.16) with k; =t, k, =k, kg = m—3t — 2k, and obtained

I, O 0
0 21, 0 . (4.17)
0 0 4l m-3t-2k

Then by writing all codewords lexicographically of this code as columns, we will

obtain the matrix Gﬁhk ,for 0<t<m/3 and 0<k <(m-3t)/2. Notice that Gﬁhk

is an extension of the matrix G'fn defined by Tokareva. Let us give some

examples;

0044
0,0 01
G0 = G9'-(02456),
2 (0404) 2 = )

01 (00224466)
3 - )

= G =(01234567),
04040404

11 [OOOO 1111 2222 3333 4444 5555 6666 7777 j

5 710246 0246 0246 0246 0246 0246 0246 0246

Road map I11: We will obtain a (2™, m+1) Zg-linear code AL¥ using GLK as
the generator matrix. A,tﬁk contains as codewords as the vectors hg and hg +4.

We define the 2™ x1 vector hg as,
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hy =gk (U) G (4.18)
where

@y (U, u",u") = (O(u"), g(u”),u") =u (4.19)

with u'e Z{, u"e 24X and u” e 2772 4 is the Gray map and we give 6 in
(4.14). We now define the matrix Cﬁhk, which has rows hg as an extension to the
matrix Cﬁ defined by Tokareva. Then AEﬁk have codewords as the rows of Cﬁqk

and CLK + 43 m . We give the following examples for CEK matrices.

0000 0000
00 _|0404| o1 _|0246
2 0044]| 2 0404

0440 0642
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00000000
04040404
00224466
04264062
3 100440044
04400440
00664422
04624026

0000 0000 0000 OOOO OO0O0O OOOO OOOO0O 0OO0OOO
0246 0246 0246 0246 0246 0246 0246 0246
CéL:OOOOllﬂ.222233334444555566667777
0246 1357 2460 3571 4602 5713 6024 7135

“104040404

00000000
01234567
02460246
03614725

05274163
06420642
07654321

Proposition 4.7: For any integers n, m, t, k such that n=2", 0<t<m/3 and

0<k<(m-3t)/2,itholds;

(i) CLK - = (c}h" ®J2)@ (Jn ®CYY)

m+1

anc““1=@4®cmﬂ@«£4®Jm

m+2
Gii) (o ] = o

(iv) Ctk — (3, @ Ct o (CL ®4,)

m+3 —

W) (ke =i

Proof: (i) Consider GLK :(le 23, Zgn ) then
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T T T T T T
Gt,k _[Zl121122122,"',22m,22m

= and using the definition of q)_l (u) and
™o 4 0 4 04] Lk

hg =[h, ---h, ], we have
h{'a) - (<pgﬁ(u),a)c;§h'jl =(hy, h, +4a,---h,, h, +4a) for acGF(2).

Thus, in order to obtain the matrix CH‘H we should replace any element cf_,‘i, of

C C

CFﬁk by the matrix

tk .tk

u,v u,v N -
) ) . Hence (i) is true.

ciy ey +4

(if) and (iii) can be similarly proven as in the proof of Proposition 1 given by
Tokareva in [104].

(iv) Consider GLK =(le, zg ,---z;m j then

Gt+l,k _

0...-01---12---2--.7---7
m+1l —

and using the definition of q)t_%((u) we have
Kotk ~tk Kk ,
GLkglkglk...gl J

hga,b,c,U) = (hY, hg +81,--, hgm +87) for 8:9_1(a,b,c) . (iv) is then true.

(v) comes from (iv) and (i). Proposition 4.7 will be used to derive the explicit

expression of the t,k-dot product in Propositon 4.11.

Road map 1V: The binary image of the code A,tﬁk is denoted by Atrﬁk . We use the

map 7z, which was defined in (4.14), for this purpose. Then AET']" isa (2™, m+1)
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code, which has as codewords as the rows 7(Ch) and z(CLK +4J3,.). For

instance,
0000 0000
0101 0011

c00y _ (COY) = |

#C2)= 5011 | 7207 9101
0110 0110
00000000 00000000
01010101 00001111
00001111 00110011
01011010 00101101

7(CoY) = , 1(C5°%) =
00110011 01010101
01100110 01011010
00111100 01100110
01101001 01111000

Road map V: Each codeword of A}hk corresponds to the truth table of a Boolean
function. We call these functions t,k-affine. We mean the forming Zg-linear code
contains t many Zg symbols and k many Z, symbols. Each tk-affine Boolean

function is in the form of t,k-dot product as will be given in our Definition 4.7. The

set of t,k-affine functions is denoted by WEﬁk :
Definition 4.7: (t,k-dot product):

<u,V > = 7(e5%) (4.25)
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Proposition 4.8:

B(Cr)=7(Cp) (4.26)
Proof: For t=0, the generator matrix of the Zg-linear codes given by (4.17) is
equivalent to generator matrix of the Z,-linear codes given by (4.3). Then the
matrices GET']" and Gﬁq are equal except that binary symbols are multiplied by 4
in GLX and by 2in GK,. So g mapping (dividing by 2) of the matrix CX, and So
7z mapping (dividing by 4) of the matrix C}ﬁk will be equal. Then

Bleyy) = 7(cdy (4.27)
which leads to (4.26).

Proposition 4.9: t,k- dot product is equal to k-dot product for t=0, i.e.,

<U,V>qp=<U,V >y (4.28)
Proof: Recall equations (4.10), (4.25) and (4.27) as,
(uv), =Bk, .

<U,V>p=7(chX) and

Blesy) =7y
Then (4.28) is true.
Proposition 4.10:The following are true for t,k-dot product

(1) <U V> =<V,U>¢y (4.29)
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(i) <au,v>=a<u,v> forany aeZ, (4.30)

(iii) <[u a}[v b]> =<u,v>, ®ab forany a,bez, (4.31)
(iv) <[a a']b b]>g1=<[a" a}[b’ b]>ge (4.32)
(v) <[a a" a’l[b b’ b"]>p=<[a" a" a}[b” b’ b]>o, ®aa'bb’ (4.33)

forany a,a’,b,b'eZ,.

(vi) <[a a'ul[b b’ v]>ia=<[a al[o b]>, ®<u,v >, (4.34)
forany a,a’,b,b',eeZ, and £ =<u,v>  ® <y, (Uu),v>, ®1 where y, isa
permutation on (1,2)(3,4)(5,6)...(2k-1, 2k) on m elements.

(vii) <[a a’a"ul[b b'b" v]>y=<[a &' a’}[o b'b"]>, o ®<u,v>;, (4.35)
for any a,a',b,b’,eeZ, and s=<u,v> (@< (u),v>,Paabb' @l
where ¢, is a permutation on (1,3)(4,6)(7,9)...(3t-2, 3t) on m elements.

Proof: (i) comes directly from (4.22).

(i) comes from the definition of Ct¥

(iii) is given for t=0 in Proposition 6 of (147). For t > 0, according to Proposition
4.7,

t.k _ Atk
C[u a],[v b] =Cyv @ 4ab. (4.36)

Then n(cEL'] 2] [vb]) =< [u al[v b]>g=7(ch¥ ®4ab) =<u,v>;, ®ab.

(iv) can be observed comparing the matrices ,B(Cg) and ﬂ(C%) .
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(v) can be observed comparing the matrices z(C3°) and #(C3°).
(vi) is proven in Proposition 6 of (147).
(vii) comes from (4.33) and (4.34).

Now in the following proposition we give the explicit formula of the tk-dot

product.

Proposition 4.11:

<uvs=@L L ek, el el KT e

@iy ®'g i KiVaia (Unkeziin O Unksaj 2 Vakszj2) (4.37)
@D <u,V >
Li = (Uok+3i-2 © Uaky3i ) (Vaks3iz © Vokasi ) (4.38)
Ki = Ugi_pV3i_» (4.39)
Ti = (Unkgi-2Vakssia + Uoksgi-1Vokgi-2) (4.40)

Proof: For t=0 it can be observed that (4.37) is equal to k-dot product. This is in
accordance with (4.28). Induction on t with a fixed k (for simplicity fix it to 0) will

be sufficient to prove Propositon 4.10. Let’s start with t=1,
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<[000} v >4 4
<[001}v>; 4

00000000
00001111
00110011 <[010} v >1
00101101 <[011jv>
”(Cé,o): _ [ ] 10 .. Simplification shows that

01010101 <100} v >, 4
01011010 <[to1 v >4
01100110 <[t10 v >4
01111000 <[22 v >,

<uVv >1‘0: UqV3 ® UsVso @ usVq @ U uosVyVo
On the other hand, Ly = (u; ®u3)(vy ® V3 ), Ky =upv; and Ty = (Ugv, +Uyv; )
(4.37) also gives < U,V >; o= UVg @ UV, @ UgVy @ UgUpVyVsy.

<uvs=@L L ek, el el KT e

£t
Dig g, ji KiVaia (Unkisis @ Uokizj-2 Vokesj—2)
@D <u,V >

Let the proposition be right for some t, then show that it is true for t +1.
<ULV >pgp=<U, V> O, @ (69}:% TiTt+1)
D ((—D}:]]:,i;tj KiVai1(Ugig @ Uty V3t+1))
From (4.35) it is true that
<[a aa"ullb b'b"v]>,=<[a a’a’}[b b'b"]>, o ®<uv>, for any
a,a',b,b,eeZ, and e=<u,v> o ®<ay(u),v>,Daa bb’ ®1 where

is a permutation on (1,3)(4,6)(7,9)...(3t-2, 3t) on m elements.
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Then, L, , = (@a®a")(b®b") and T,,; =ab' ®ab,

t+1 ~
e=<U, V>t ®<oy(u),v>t, @®aa’bb’'®1l where o, is a permutation on
(1,3)(4,6)(7,9)...(3t-2, 3t) on m elements.

(i) first case, <U,v>ty=<ay(u),v> for symmetric u vectors such that
u=og(u) for which g=aa'bb’'®l1l, if aa'bb'=0 then ¢£=1 and

<[a a’a"}]b b'b"]> 0=ab’@ab®a'h’ ®aabb’
—ab’®a'b@a'b’

(ii) second case, <U,V >t =<ay (u),V > for symmetric u vectors such that
u=og () for which g=aa'bb’'®l, if aabb'=1 then £=0 and
<[a a’a"l[b b'b"]>gg=ab"®a"b®a’b’ ®aa'bb’

(iii) third case, <u,V > g=< o (U),V >t o @aa’bb’ for asymmetric u vectors such
that u = oy (u) for which e=0 and
<[a a’a"}[b b'b"]>gg=ab"@a’b@a’b’ ®aa'bd’

Then for all cases (i), (ii), and (iii) numerical calculations show that

t+1
L1 ® (Kk ® Tt+1)@ (KirVai 1 Uk 43i-1 @ U341 Vars1))

which finishes the
=<[a a’a"}[b b'b"]>¢

proof.

All numerical examples given below from Example 4.5 to 4.9 satisfy (4.37).

Example 4.5: Let us begin with the Zg-linear code of type 824121, This code

contains one binary symbol and one Z, symbol. Now if we write all possible Z 4
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symbols, we get (0),(1),(2),(3), and all possible 1-bit binary vectors, we get (0),(1).

Columns of Gg'l consists of twice the Z,symbol and four times the Z, symbol,

Go1_ (00224406 For ¢ *(u) € {00,01,10,11, 20, 21, 30, 31}
3 "l04040404) : T

u € {(000), (001), (010), (011), (110), (111), (100), (101)},. Then

hOOO
oo | (00000000
04040404
hOlO
00224466

01 |h%Y| 04264062
Cy = = and
h110 | |00440044

h111 04400440

100 00664422
o 04624026

ﬂ“iz) 00000000

PO 101010101

O | 100001111

(GO A(h%h) 101011010

3 77| ppt1oy | |00110011

ﬂ(hlll) 01100110

100 00111100

AOT) 1 lo1101001

ﬂ(hlol)

Notice that for t=0, ,B(C%) = E(Cg’l) which is expected.
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The binary code Ag'l consists of codewords which are the rows of ﬂ(Cg’l) and

their complements. Binary Boolean functions corresponding to these codeword

vectors are,

g(vs
g(vs,
g(vs,
g(vs
g(vs
g(vs,

g(vs,
g(vs

the above equations one gets, z(h") :<u’”,v

Vo, V) =0= <(000), (V3 Vo, v1)>1 =lggo for the first row of ﬂ(Cg’l)
V2, V1) =V =((010), (v3, Vo, v1)>l = lggy for the second row,

V2, V1) =V3 =((100), (v3 Vo, v1)>l = lygo for the third row,

Vo, V1) =V3 @V = <(110), (V3 Vo, v1)>1 =191 for the fourth row,
Vo, V) =Vo = <(001), (V3 Vo, v1)>1 =g for the fifth row,

Vo, V) =Vo ®vy =((01), (v3, Vp, v1)>1 = l11 for the sixth row,

Vo, Vl) =V @V3 = <(101), (V3, Vo, V1)>l = |110 for the seventh row, and
Vo, V1) =V3 @V ®Vp :<(111), (V3 Vo, v1)>1 =ly17 for the last row. From

)o1 =la where (u,v),, represents

0,1-dot product of the vectors u and v. Notice that every row is the truth table of a

linear function of v. The complement functions corresponding to (h" +4) are then

affine functions of v.

Example 4.6: Let us now begin with the Zg-linear code of type 894220 This

code contains two Z, symbols and no binary symbols. Now if we write all
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possible 2-symbol Z, vectors, we get (00), (01), (02), (03), (10), (11), (12), (13),

(20),(21),(22),(23), (30),(31),(32),(33. Columns of G}? consists of two

Z 4 symbols multiplied by 2,

4 T10246024602460246

0.2 (0000222244446666)
0000000000000000
0246024602460246
0404040404040404
0642064206420642
0000111122223333
0123123023013012
0202131320203131
0321103221033210
710000222200002222
0123230101232301
0202202002022020
0321210303212103
0000333322221111
0123302123011230
0202313120201313

0321321021031032 | ad
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0000000000000000
0011001100110011
0101010101010101
0110011001100110
0000000011111111
0011011011001001
0101010110101010
0110001110011100
0000111100001111
0011110000111100
0101101001011010
0110100101101001
0000111111110000
0011101011000110
0101101010100101
0110110010010011

7(Cy?) =

The binary code Ag’zconsists of codewords which are the rows of 7Z'(C2’2) and

their complements. The binary Boolean function corresponding to these codeword

vectors are,
g(va, V3, Vo, V1) =0=((0000), (V4, V3, V2, V1)), =loggo for the first row of

7(C3?),

g(Va, V3, V2, V) = Vo =((0003), (v4, V3, V2, V1)), = lgo1g for the second row,
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g(va, V3, Vo, V1) =V3 =((0010), (V4, V3, V2, V1)), =lggoy for the third row,

g(vg, V3, Vo, V1) =V @V, :<(001:I), (V4, V3, Vo, v1)>2 =lgg11 for the fourth row

and other rows also satisfy (4.37). Thus the code Ag,z is equal to the code Aﬁ.

Example 4.7: Let us now begin with the Zg-linear code of type 814920 This

code contains one Zg symbol.

G0 =(0123 4567),

00000000 00000000
01234567 00001111
02460246 00110011

clo_[03424725 (CL0) - 00101101

3 |04040404| "3 01010101
05274163 01011010
06420642 01100110
07654321 01111000
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Table 4.5: Binary Boolean function corresponding to the codeword vectors z(hg")

u <u,v>10

000 0

001 V3

010 Vs

011 V3 @ Vy ®VpVy

100 v

101 V1 @ V3

110 Vi @ Vo

111 V1 ®Vy ®Vg D VqV)

All rows of the matrix ﬂ(C%’O) satisfy (4.37). Six of the 1,0-affine functions are

affine and two of them are quadratic.
Example 4.8: Let us now begin with the Zg-linear code of type 814120 . This

code  contains  one Zy symbols and  one Zg symbol.

11 (0000 1111 2222 3333 4444 5555 6666 7777 j
5 = .

“l0246 0246 02460246 0246 0246 0246 0246
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0000 0000 0000 OOO0O OO0O0 OOOO OOOO 0OOOQO

0246 0246 02460246 0246 0246 0246 0246
Ci'=|0000 1111 2222 3333 4444 5555 6666 7777 and
0246 1357 2460 3571 4602 5713 6024 7135

000000000000000O00Q0OOCO0OO0OOOOOQOOO
0011001100110011001 1001100110011
01010101010101010101010101010101
01100110011001100110011001100110
000000001111111100000000111111112
00110110110010010001111111100000

z(Cgh) =

01101100100100110110110010010011

The binary code A%’l consists of codewords which are the rows of ﬂ(C]é’l) and

their complements. The binary Boolean function corresponding to these codeword

vectors are given in Table 4.6.
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Table 4.6: Binary Boolean function corresponding to these codeword vectors 7z(hg")

u <U,V>11

00000 0

00001 V)

00010 V1

00011 V1 DV,

00100 Vs

00101 V) ®Vy ®Vqvy

00110 v ® Vs

00111 Vi ®Vy ® Vg Dy

01000 vy

01001 Vo @vy ©Vivg

01010 (RSCA

01011 V1 DV, DV, @ ViV

01100 Vs @DV D VyVs

01101 Vo) @ Vg @V, D ViVy ©V3Vy
01110 V1 D Vs Dy DV3Vy

01111 Vi ®Vy DV DV, DV D ViV, D Vavy
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Table 4.6 (continued)

10000 V3

10001 vy @ V3

10010 EEA

10011 Vi @V, Dvg

10100 Vg D V3

10101 Vo) ®V3 @ Vg D Vivy

10110 V5 ®v3 D vy

10111 Vg V3 DVy DV D Vyvy

11000 V4 @ V3

11001 Vy ©V3 DVy @ VyVg

11010 vy ®V3 D Vg

11011 Vg ®V3 @V @V D VyVg

11100 Vg @V @ Vg @ Vyvg

11101 V5 ®Vvy vz ®Vy @ Vivz @ Vivy @ Vgvy
11110 V5 @ Vg @Vg DV @ Vyv3 @ Vzvy
11111 V5 @Vy @z DVy DV D Vivz @ Vqvy
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All rows of the matrix z(CE') satisfy (5.38). It is observed that five variables are

partitioned into one 2-bit for k=1 part and 3-bit for t=1,i.e.,

(v Vvp)(vg vg Vg) and on first part a k-dot product is performed and on the

second part a tk-dot product is performed (with k=0).

Example 4.9: Let us now begin with the Zg-linear code of type 824920 . This

code contains two Zgsymbols.

20 (000000001111111%--77777777
6 10123456701234567---01234567)’

0000000000000000 00000000
0123456701234567---01234567
0246024602460246 02460246
c2¥ =| 03424725 and
04040404 --
05274163 -

0000000000000000 -00000000
000011110000111%--00001111
001100110011001%-00110011
7(G§°) =| 01101101 -
01010101 --
01011010 -

Table 4.7 shows 6-bit Boolean functions corresponding to each of z(G é'o) .
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Table 4.7: Binary Boolean function corresponding to these codeword vectors 7z(hg")

u <u,V>7¢
000000 | O
000001 | vs
000010 | v,

000011 Vo @ V3 @ V1V

000100 | vy

000101 | v, vy

000110 | vy ®v,

000111 Vi @ Vo @ V3 @ V1Vo

001000 | vg

001001 V3 @ Vg @ V1VaVy @ VoVg @ V1V4V5g

001010 Vo @ Vg @ V1Vs5

001011 V1 @ V3 @ Vg @ V1Vo @ VoVg @ V1V5 @ V1VoVy @ V1VqVs5

001100 | v; ®vg

001101 V1 @ V3 @ Vg @ VoVg @ V3Vy @® V1VaVy @ V1V4V5

001110 V1 @ Vo @ Vg ® V1Vs5
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Table 4.7 (continued)

001111 V1 @ Vy ®V3 ®Vg D VVy @ ViVy @ ViVg @ VqVoVy @ VqVyVs
010000 Vg

010001 V5 @ V3 ®Vyvy

010010 Vg @ Vy @ VVy

010011 Vs DV3 DVy D Vyvy @ Vvy B vy

010100 Vs ®Vq

010101 V1 @V3 @V DVyvy

010110 V1 @Vy @ Vg @ VyVy

010111 V1 @ Vo) ®V3 D Vg @ VVy D VoV DViVy

011000 Vg @ Vg @ VgVy

011001 V3 @ Vg @ Vg @ V1V D VoV D ViVoVy @ VoV D VgV @ VqVyVg
011010 Vo @ Vg @ Vg @ ViVg D VoV D ViV,

011011 Vo @V3 @ Vg @ Vg @ Vv @ Vv @ Vv @ VqVovy @ Vyvg @ Vivg @
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Table 4.7 (continued)

011100

V1 @VS (‘BVG ) VgVy

011101

V1 ) V3 @ Vg @ Vg @ V1Vg @ VoVy @ V1VoVy @ VoVg @ V4V5

011110

V1 @ Vo @ Vg © Vg D ViV @ VVg D VyVs

011111

vV, &V, DV, DV, DV, DV,Vv, DVV, DV,V, DV,V,V,
®V,V, DV,V, DV,V, DV,V,V,

100000

Vy

100001

V3 @ Vy

100010

Vo @V4

100100

V1 @V4

101000

Vg @ Vy

110000

V5 @ vy
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CHAPTER 5

k-BENT AND t,k-BENT FUNCTIONS

Bent functions, which are at maximum distance to affine functions, form a well-
known topic in cryptology. They are first studied by Dillon [49] and Rothaus [94]
in seventies. Rothaus used the word “bent” for the first time in the litterature in
1970. MacWilliams and Sloane [76] observed that bent functions are stronly
linked with first order Reed Muller codes. And in 2008, Tokareva defined [104] k-

bent functions starting from Z 4 -linear codes.

In this chapter, we study bent functions, from the conventional Rothaus and Dillan
as well as Maiorana McFarland bent functions to the Tokareva’s k-bent functions.
We defined tk-Walsh transform and tk-nonlinearity to propose the tk-bent
functions. We give Propositons 5.3 to show that the t,k-Walsh transform of a
Boolean function satisfies the Parseval’s equation. We then relate the tk-
nonlinearity to t,k-Walsh transform in Propositons 5.4. Next, we suggest a new
class of bent functions, the t,k-bent functions, which are extensions of k-bent
functions, depending on the t,k-dot product definition given in Chapter 4. We give
Proposition 5.5 to show that the set of (t+1)k-bent functions and t,(k+1)-bent
functions are subsets of the set of t,k-bent functions. In sections 5.3 and 5.4, we
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show that the newly defined classes of bent, namely Tokareva’s k-bent and our t,k-
bent functions are affine equivalent to the well-known Maiorana McFarland class
of bent functions. As a cryptology application, in section 5.5, we propose the
method of cubic cryptanalysis for block ciphers. It is a generalization of the well-
known method of linear cryptanalysis given in 1993 by M. Matsui [79]. In our
method we approximate Boolean functions by tk- affine functions. The newly
introduced t,k-bent functions are claimed to be strong against cubic cryptanalysis,
since they are at maximum distance to t,k- affine functions, which contain affine,

quadratic and cubic functions.
5.1 Conventional Bent Function Definitions and Properties

For the rest of the chapter, let f :GF(2)™ — GF(2) be an m-bit binary function.

In this section, we will give conventional definitions of bent functions including

Rothaus and Maiorana McFarland class bent functions.

Definition 5.1: A function f is called bent if all of the components of the Walsh

spectrum of f have the same magnitude, up to the absolute value.

Definition 5.2: A function f is called bent if it is at maximum possible distance to
all affine functions. This implies that bent functions have maximum possible

nonlinearity.

From Definition 5.1 and Parseval’s equation it is observed for bent f
W+ (w)|=2™/2 forw  GF(2)". (5.1)

(5.1) requires m to be even. Since bent functions are defined only for even values
of m, from now on unless otherwise stated explicitly we assume that m is even and

m> 2.
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Theorem 5.1.: [49] If f is a bent function, with m = 2k ; then the degree of f is at

most k, except for the case k = 1.

Proof of this theorem is given in [49]. This theorem gives us an obvious upper

bound for the number of bent functions which is

max number of f = 2(8}@}“(“/2) (5.2)

Theorem 5.2.: [49] A bent function is invariant

(i) Under a linear or an affine transformation in coordinates, that is f is
bent if and only if the function h= f o is bent where 9(x) =xA®b,

A is a nonsingular matrix of order m and b is any vector inGF (2)" .

(i) By adding an affine function, that is f is bent if and only if f ®¢ is

bent for any affine function ¢.

5.1.1 Rothaus’ Bent Function Classes
In 1975, Rothaus [49] presented the first two classes of bent functions. He made an

exhaustive search on all polynomials in GF(2)6. He found two general classes of

bent functions.

Theorem 5.3: (Rothaus Class 1) [49] Let m=2k and X,y e GF(2)kand f be a k-

variable function. Then the m variable function
Q(XY)=XY1 D X0y .. O X Yk @ T (5.3)

is bent.

88



Theorem 5.4: (Rothaus Class Il) [49] Let A(x), B(x),C(x) be 2k-variable bent
functions such that A(x) ® B(x) ©C(x) be also bent. Let y,z e GF(2). Then the

function

Q(X,Y,2) = A(X)B(X) @ A(X)C(X) ® B(X)C(x) @ (A(X) ® B(X))y ® (A(X) ®C(X))zD yz
(5.4)

is a bent function on GF (2)2¢+2.

5.1.2 Maiorana McFarland’s Class
Maiorana McFarland’s class of bent functions is a generalization of Rothaus’
Class .

Theorem 5.5: (Maiorana McFarland Class) [80] Let k be an arbitrary positive

integer and m = 2k . Then the m-variable function f given by,

f(xy) =<y, z(x) > Sg(x) (5.5)
where X,y e GF(Z)" and 7 is an arbitrary permutation of GF(Z)k and g is an
arbitrary k-variable function, is bent.

5.1.3 Tokareva’s k-bent Functions

Tokareva defined k-bent functions [104] from the definition of k-affine functions,
which were defined in Section 4.3 of this thesis.

Definition 5.3: [104] The k-Walsh transform of a Boolean function f € GF(2)™

is the integer valued function

Wigk) (W) _ Z(_1)<X,W>k (_1) f (X) (56)
xeGF (2)M
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where 0<k <m/2.

Definition 5.4: [104] By k-nonlinearity N(fk) of a function f the distance
between f and the class ://,',‘1 IS meant.

Proposition 5.1: [104] It is true that

N Eck) =om-1 —%maxwr\/\/f(k)(w)‘ (5.7)
Definition 5.5: [105] For any integers m, k such that 0<k <m/2 we call a

function f, k-bent if and only if all W {*) (w) = +2™/2,

Proposition 5.2: [106] For k-bent functions B,']ﬂ we have

B =BL 5B2..-5BM/2 (5.8)
Proof is given in [106].

For m=4 all 1-bent and 2-bent functions are examined numerically and Table 5.1 is

constructed.

Table 5.1: Properties of 1 and 2-bent 4-variable functions

k | # of k-bent | Ry Deg ¢ N (f) N% N %
functions

1 |896 16,0...,0 2 6 6 4.6

2 | 384 16,0...,0 2 6 6 6
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There are 896 1-bent 4-variable functions. 384 of them are 2-bent and 512 are not
2-bent (only 1-bent). Maximum possible nonlinearity value is 6 for m=4. 2-bent

functions have
0 1 2

But only 384 of 1-bent functions satisfy (5.9). These functions are shown to be

exactly equivalent to the 2-bent functions. 512 of 1-bent functions have

0 1 2
NT =N{ =6Nf=4 (5.10)
All 1-bent and 2-bent functions have autocorrelation spectrum (16000000000

0 0 0 00 0) which is the property of bent functions. This is expected.

Note that all 1-bent and 2-bent functions have degree equal to 2. They are
quadratic. Since bent functions must be distinct from affine functions and Theorem

5.1 says that deg(f) <k =2 for m=4. This is what we expect.

Example 5.1: Numerical analysis gives all 1 and 2-bent, 4-variable functions.
Some examples for the truth tables of these functions are listed below.

f, =[000000110D10110], f, =[000001100a11010],
f3 =[001100001@01001] and f, =[011000001001010] are truth tables of 1-

bent functions.

fs =[000000110D11001] and fg =[100000101D11000] are truth tables of 2-

bent functions.

Example 5.2: Numerical analysis give some of the 1, 2 and 3-bent 6-variable
functions. Some examples for the truth tables of these functions are listed below.
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fl = [011000001D01010011(D01011000(100110000(100010100]100000110(1010]
is 1-bent.

fy = [000001000I)O1010011(1D01010000(100110000(1000101001100000110(1110]
is 2-bent.

f3 = [000000111(!!)01010011(0)01011000(100000000]100010101]100000110(1010]
is 3-bent.

5.2 t,k-bent Functions

We will now define t,k-bent functions from the definition of t,k-affine functions

which were defined in Section 4.4 of this thesis.

Definition 5.6: The t,k-Walsh transform of a Boolean function f (x) € GF(2) with

x e GF(2)™ is the integer valued function

Wf(t'k)(w) _ z(_1)<x,W>t,k (_1)f(X) (5.11)
xeGF (2)™

where, 0<t<m/3 and 0<k<(m-3t)/2. Here <x,w>{ Iis the tk-dot

product defined in section 4.4 of this thesis.

Proposition 5.3: The tk-Walsh transform of a Boolean function satisfies the

Parseval’s equation,

> wikw)?=22", (5.12)

weGF(2)M

Proof: Note that for t=k=0 (5.11) gives the Walsh transform. For t=0 (5.11) is
equal to the k-Walsh transform which obeys the Parseval’s rule [104],
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> Wiw)? =22m,

weGF (2)M

(5.13)

If t =0 then the matrix n(CFhk) after replacing any element c by (-1)° becomes a

Hadamard matrix.

2
Z (W E,k (W))2 = Z { Z (_1) <KW ¢ (_1) f (X)]

weGF (2)" weGF (2)™ { xeGF (2)"
_ Z Z (1) <KW @ (X) (-1 <V,W> @ (V)
W X,V

_ Z (1) f(X)®f(v) Z (1) KWy DV, Wy

X,V W
and since,
Z(_1)<X,W>tyk D<V,W> :{Zm if x=v}
w 0 else
Then,

> whkw)? = y2m=22m,

weGF(2)M

(5.14)

(5.15)

Definition 5.7: The tk-nonlinearity N(ft'k) of a function f, is the distance

between f and the class w}ﬁk , Which contains all t,k-affine functions.

Proposition 5.4: It is true that

41
N g,k) _om-1 _Emaxwrv\/f(t’k) (W)‘
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Proof: Let a binary vector g, = n(hg ), then we have g (V) =<U,V > .

NOK) —min - (dist(f,g)) = min(d(f,gy).d(f,g, ®I) (5.17)
Ju€EV¥m
From the definition of W]E*k (w) and from (4.30),

d(f,gu)=2m_1—%W]E'k(w) (5.18)

Using (5.17) and (5.18) we get (5.16).

Definition 5.8: For any integers m, t, k such that 0<t<m/3 and
0<k<(m-3t)/2 we call a function f tk-bent if and only if all

w ) (w) = £2™m/2, (5.19)
Note that the t,k-bent functions are at maximum distance to t,k-affine functions.

Denote by B,ﬁ;k the class of all t,k-bent functions in m variables. Then we give

Proposition 5.5 to show that the set of (t+1),k-bent functions and t,(k+1)-bent
functions are subsets of the set of t,k-bent functions.

Proposition 5.5: For t,k-bent functions Brt.ﬁk we have

()BL? = BLl 5 BL2...5 BL(M/2) (5.20)
(i) BOK = BLK 5 B2K...5 g(M/3).k (5.21)
Proof:

(i) (5.20) comes from (5.8).
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(if) The m-variable function
flar, a ae1a 1 UL = (01 si(a.a) )@ o(u) @ ) (5.22)

is t,k-bent but it is not (t+1),k bent. Here sjare 1,k-bent 2-variable functions,
q(u”) is a (m-3t-2) variable 1,k-bent function and ¢(u’) is a tk-bent t-variable
function.

For m=6 all 1,0-bent and 2,0-bent functions are numerically examined and Table

5.2 is constructed.
Table 5.2: Properties of 1,0 and 2,0-bent 6-variable functions, k=0

t R 0 1 2

f N N N
1 164,0..0 28 28 24,28
2 |64,0..,0 28 28 28

All 1,0-bent and 2,0-bent functions have autocorrelation spectrum (640000000
0000000 0) which is the property of bent functions. This is expected.

Example 5.3:Numerical analysis give some of the 1,0 and 2,0-bent 6-variable

functions. Some examples for these functions are listed below.

f1(X1,X2,X3, X4, X5, Xg) = X1 X2 @ X3X4 D X5Xg,

f2 (X1, X2, X3, X4, X5, Xg) = X1 X4 D X2 X5 © X3Xg

are 2,0-bent functions which are also Maiorana McFarland type bent functions.
f3(Xq, X2, X3, X4, X5, Xg) = X1 X2 X3 @ X3X4 D X5Xg,

f4 (X1, X2, X3, X4, X5, Xg) = X1 X4X5 D Xo X5 @ X3Xg
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are 1,0-bent functions.

Example 5.4: Numerical analysis give some of the 1, 2 and 3-bent 10-variable

functions.
f1(X1, X2, X3, X4, X5, Xg, X7, X8, X9, X10) = X1 X2 D X3Xg4 D X5Xg D X7Xg D XgX10
is a 3,0-bent function which is also Maiorana McFarland type bent functions.

N?'O — 496,
1

f2 (X]_, X2 s X3, X4, X5, X6, X7 , X8, Xg s XlO) = X1X2X3 &) X3X4 @ X5X6 &) X7X8 @ X9X10
is 2,0-bent function. N %20 =496 and N ?’20 =492,
5.3  Affine Equivalence Analysis of Tokareva’s k-bent Functions and

Maiorana McFarland Class Bent Functions

In this section, we will show that Tokareva’s k-bent functions are affine equivalent

to the well-known Maiorana McFarland class of bent functions in Proposition 5.6.

Proposition 5.6: Tokareva’s k-bent functions are affine equivalent to the

Maiorana McFarland class of bent functions. Maiorana McFarland class bent
functions f(x,y) =<y, z(X) >®g(x) with the permutation z,(x) and g(x)=0
and the notation that (X,j_1, X»i) is the i" pair, with 1<i<m/2, such that,

(i) Permutations of different pairs, or

(i) Permutations in a pair

result in Tokareva’s (m/2)-bent functions.
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Proof: We will prove by induction, take m=4 and k=2, x=[x X,] and

y=[x3x4],  then i, xa) =[xg xallxo xa]=xoxg ®@xxq  with
n4(X) = (X1 X2) and g(x) =0. Then wi =Wf2 =6 implies that f; is 2-bent.
Assume for m=2k, that f,(X,y) =<y, 74(X) > g(x) is k-bent. Then show that
for m=2k+2, that f3(X,y) =<y, 74(X) > @ g(x) is (k+1)-bent.

For m=2k, take X=[x; Xg---Xox_1] and y =[xy X4--- X9 ], then assume
fo (xa,+Xm) = [X2 X4 -~ Xai Ix3 X3+ Xok_1] = XgXp @ x4%q ® -+ @ Xgy X1 IS k-

bent with W11(2 = g2k-1_ok-1

Then for m=2k+2, take X =[x] X3---Xok_1Xok+1] and y =[Xo X4+~ Xok Xok12],
then for

fa(Xg, Xm) = [X2 Xq -+ Xok Xoks2 ] XaXq -+ Xok _1Xok+1]= X3X2 ® XgX @+ ® Xop 4 2 Xk 41
show that W]l‘s = 22K+1 _ 2K It is easy to observe that,

f3(Xg, - Xok12) = fa (X0, XoK ) @ Xok 4+ 2Xok +1- (5.23)

Then the (k+1)-Walsh transform of f is,

W) = S g B0
3 XeGF (2)2k+2

, Which is then equal to
_ > (-1) KWt g &) £, (X)DXok 4 2Xok 41 f

XeGF (2)2k+2
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W ]i(+1 (W) = z &) <KW it (-1) f,(x)
3

X€GF (2)%*2 Yoy, 2=0,X5)0,1=0
n Z (-1) <X W>y i (-1) f) (X)®Xop 1 2Xok01

XeGF (2)%2 Xy, 1#0,Xp 11 %0

The first term on the right hand side of the above equation is k-Walsh transform of
f).

W w) =W (w) + 3 (-t g 209
XeGF (2)%42 xox 4 2%k 41=0

<X,W> fo(x)@1
+ > (- (- 20
XEGF(2)2k+21X2k+2X2k+1¢0

This is then equal to

X,W f
WER ) =W () + 3 () e (g 20
xeGF (2)2K2 oy 1 2%k 410

_ Z (_1) <KWt k1 (_1) fo(x)
XeGF (2)2%2 xok 12Xk 170

Since f, is 2k-variable k-bent function, W]'f;l(w) = 2W]'§2 (w)+22K, which then gives

5 — ok completing the proof.

Example 5.5: For m=4,

f1(X1,X2,X3,Xg) = X1 X3 @ XpX4 is a Maiorana McFarland class bent function and

also Tokareva’s 2-bent function.
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For m=6,

f1(X1, X2, X3, X4, X5, Xg) = X1 X2 @ X3X4 @ X5Xg, and

f1(X1,X2,X3, X4, X5, Xg) = X1 X2 @ X3X4 @ X5Xg, are Maiorana McFarland class
bent functions and also Tokareva’s 3-bent functions.

For m=8,

f1(X1,X2,X3, Xg, X5, Xg, X7,Xg) = X1 X2 D X3Xg @ X5Xg @ X7Xg, and
f1(X1,X2,X3, X4, X5, Xg, X7, Xg) = X4 X5 @ X3Xg @ X1X7 @ XoXg, and

f1(X1,X2,X3, X4, X5, Xg, X7,Xg) = XoX5 @ X1 Xg D Xg4X7 @ XgXg  are  Maiorana
McFarland class bent functions and also Tokareva’s 4-bent functions.

For m=10,

f1(X1, X0, 5, Xg, X10) = X1 X2 D X3X4 D X5Xg D X7Xg D XgXqg, and

f1(X1, X0, -+, Xg, Xg, X10) = XoXg D X1 X7 @ X3Xg D XqXg D X5Xq9, and

f1(X1, X0, 5, Xg, X10) = X2 Xg @ X1 X7 D X4Xg D@ X3Xg D X5Xqg are Maiorana
McFarland class bent functions and also Tokareva’s 5-bent functions.

5.4  Affine Equivalence Analysis of our tk-bent Functions and Maiorana

McFarland Class Bent Functions

Next, we will show that our t,k-bent functions are affine equivalent to the well-

known Maiorana McFarland class of bent functions in Proposition 5.7.

Proposition 5.7: tk-bent functions are affine equivalent to the Maiorana

McFarland class of bent functions . Maiorana McFarland class bent functions
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f(x,y) =<y, z(X) >® g(x) with the permutation 7g(x) and g(x)=0 and the
notation that (Xsj_o,X3i_1,X3j) is the i pair, with 1<i <m/3, such that,

(i) Permutations of different pairs, or

(i) the permutation (X3j_2, X3j_1) on the i pair
Result in our (m/3),k-bent functions with k =m mod3.

Proof: For t=0 the proof follows from Proposition 5.6. We will prove by induction

on t. Assume (5.25) is true for t, then show that it is true for t+1.
Assume for m=3t, that fs(X,y) =<y, 7g(X)> is tk-bent. Then show that for
m=3t+3, that f5(x,y) =<y, zg(X) > is (t+1),k-bent.
For m=3t, and k=0, take X =[x; Xg---Xox_1] and y =[xy X4 --- X5 ], then assume
fa(xa,Xm) = [Xo Xg -+ Xar IXg X+ Xara] = XgXp @ XXy @+ @ XgyXgrg is tk-
bent with W]f'k =231 2(3t_2)/2.

4
Then for m=3k+6, take X =[X; X3+ X341 X3t43%3ts5 ] and

Y =[Xy X4+ Xarr2 Xateq Xarseg ], then for z(x) = (4, 2), which is one permutation

which obeys Proposition 5.7,

f5 (X Xm) = [Xa X4+ Xary2 Xarea Xares] [Xa X0 Xateq Xatr3Xates )
= XXy D XgX @+ D X349 X342 D X311.3X3044 D X345X3146

show that W K = 23+° — 2(3+4)12 1t is easy to observe that,

5

f5 (X1, Xate3) = Fa(Xg,++ Xar42) © Xari1Xat42 © Xat43Xat44 (5.24)
D Xat45Xat46

100



Similar steps as in the proof of Proposition 5.6 gives W =232 _0(B+4)2 Thig

proves Proposition 5.7 only for one permutation, z(x) = (L, 2). Similar steps for

all possible permutations given by Proposition 5.7, need to be proven. It seems

they require similar steps as the above proof.

Example 5.6: For m=6,

f1(Xq, X2, X3, X4, X5, Xg) = X1 X4 © Xo X5 @ X3Xg, and

f1(X1, X2, X3, X4, X5, Xg) = X2Xg4 @ X1 X5 @ X3Xg, are Maiorana McFarland class
bent functions and also our 2,0-bent function.

For m=8,

f1(X1,X2,X3, X4, X5, Xg, X7, Xg) = X1 X5 @ XoXg D X3X7 @ X4Xg, and

f1(X1,X2,X3, X4, X5, Xg, X7,Xg) = XoX5 @ X1 Xg D X3X7 @ X4Xgare Maiorana
McFarland class bent functions and also and also our 2,0-bent function,

f1(X1, X2, X3, X4, X5, Xg, X7,Xg) = X1 Xg © X1 X7 D X3Xg D XgXg @ X5X10, and

f1(X1, X2, X3, X, X5, Xg, X7,Xg) = X2Xg @ X1X7 D X3Xg D X5Xg @ Xg4X10 are
Maiorana McFarland class bent functions and also Tokareva’s 3,0-bent functions.
55  Cubic Cryptanalysis

A cryptographic system consists of three basic components, namely the
plaintext,which is the input to the system, the ciphertext, which is the output and
the key. Cryptanalysis try to break the cryptosystem by finding the relation
between these three components. Linear cryptanalysis tries to aproximate this

relation by linear equations. It was proposed by M. Matsui [79] in 1993.Similarly
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the quadratic cryptanalysis tries to aproximate the relation between plantext,
ciphertext and the key by quadratic equations, whose degree is at most 2. It was
proposed by Tokareva [108] in 2008. She used k-affine and k-bent function
definitions for extending linear cryptanalysis to quadratic cryptanalysis. She
applied her method to S-boxes of well-known ciphers, such as GOST, DES and
s°DES and showed that quadratic equations have higher probability than linear

equations have to define these cryptosystems.

As a cryptology application of our t,k-bent and t,k-affine functions, we introduce
the method of cubic cryptanalysis for block ciphers. We call this new method as
cubic cryptanalysis according to the main idea of it: to use (linear, quadratic and

cubic) Boolean functions from \pﬁ]k for aproximations. In our method we

approximate Boolean functions by t,k- affine functions. The newly introduced t,k-
bent functions are claimed to be strong against cubic cryptanalysis, since they are
as far as possible to t,k-affine functions, which are composed of affine, quadratic

and cubic functions.

We introduce a generalization of the Matsui's algorithm for the one key bit
determination. Our algorithm is based on the equality,

<a,o(P) >t kg D< b,y(C) >ty,ky =< c,o(K) >t3,kg (5.27)

where P is the plaintext (cryptosystem input), C is the ciphertext (cryptosystem
output) and K is the key. Integers satisfy 0<tj,tp) <m/3, 0<tz <myq, /3,

0<k; <(m-34)/2, 0<ky, <(M-3tp)/2 and 0<kz < (Mmyey —3t3)/3. Here
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mis the even length of plaintext and ciphertext, myey is even length of the key.
F: Zgnxzénkey — ZE" is a one-to-one transform if we fix the second argument.
C=F(P,K) (5.28)

Fi:Z'xZ,™ —Z5 is a transform for the i" round of ciphering, it is one-to-one

if we fix the second argument. Here myq, is the subkey for the i round.

Assume that (5.23) holds with probability p=1/2+¢ where 0<[¢/<1/2. ¢ is

called the bias of (5.23). Notice that if the parameters t; =0, k; =1 then the

dependence of the corresponding block P, C, or K is linear. And if the parameters

ti =0,k; =2 or t; =1 then the dependence of the corresponding block P, C, or K

Is quadratic. For all other cases the dependence is cubic.

Let us fix a key K. Consider the set of known pairs of plaintext and ciphertext.
{Ps,Csls =1---N}| (5.29)
The algorithm (as in the linear case) is based on the principle of maximum

likelihood. Steps of the algorithm are given below,

(i) Define Ng = {ts‘< a,a(Ps) >4, kg ®<b,7(Cs) >t k,=0f-

0 if (Ng—N/2)*¢>0
(ii) Guess <C,G(K)>t3,k3:{1 else( 0 " |

(iii) Try to find K using the correlation obtained.
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Further analysis of cubic cryptanalysis is left for future study. Cubic cryptanalysis
must be studided on S-boxes of well-known cryptosystems. Linear, quadratic and
cubic cryptanalysis of these cryptosystems must be compared in the future

research.

An m-bit input/m-bit output cryptosystem can be considered as an mxm S-box.
Our claim is that, for a fixed key, we should use (m/3),0-bent functions as the m-
variable component functions of F in order to have the guaranteed high resistance
to the cubic cryptanalysis. We left the studies of the properties of strong Boolean
functions against cubic cryptanalysis and affine equivalence analysis of these

functions to the newly introduced t,k-bent functions for future research.
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CHAPTER 6

CONCLUSION

In this dissertation, we have concentrated on basic Boolean function properties
such as affine equivalence classes, covering sequences and bentness. We have also

studied the Z, and Zg-linear codes and using these codes, we have introduced a

new class of bent Boolean functions, which we show to be affine equivalent to the
well-known Maiorana McFarland class of bent functions. As a cryptological
application, we have defined the method of cubic cryptanalysis for block ciphers
and introduced t,k-bent functions, which we consider to be strong against cubic

cryptanalysis.

6.1 Results

Firstly, in Chapter 3, we show that some covering sequences of a Boolean function
can be obtained using the Walsh transform nulls. We prove that each null
frequency of the Walsh transform defines one covering sequence; and if the
Boolean function is balanced, each null is associated with two covering sequences.
We present a lower bound for the number of covering sequences and confirm that
the set of covering sequences that we find from Walsh transform nulls are distinct
from those given by Carlet and Mesnager [39]. Relations between a Walsh
transform null frequency and the associated covering sequence are as given in
(3.14) and (3.15). We have shown that:
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1) For an arbitrary m-variable Boolean function f , each nonzero Walsh transform
null frequency w e GF(2)™ defines a covering sequence A € {1,—1} with elements
2q =(=1)<"*, and for each covering sequence . which can be represented as

Aq = (1) ="®, there exists a nonzero Walsh transform null w.
il) For a balanced m-variable Boolean function f , each nonzero Walsh transform

m
null frequency weGF(2)" defines a covering sequence )\«EGF(Z)Z with
elements A, =<w,a>, and for each covering sequence A which can be

represented as A, =< w,a >, there exists a nonzero Walsh transform null w,

Hence one can obtain some of the covering sequences, at least as much as the
number of Walsh transform nulls, using the Walsh transform null frequencies. It is
proven that all the covering sequences calculated from Walsh transform null
frequencies through equation (3.15) are linearly independent and none of them can
be an indicator of a subspace. Starting from this point, we come to the conclusion
that, the set of covering sequences that can be calculated from Proposition 3.2 of
Carlet and Mesnager [39] and our Theorem 3.3 are distinct. We have also obtained
a relation between covering sequences of affine equivalent Boolean functions and
proven that if a function f does not have any covering sequence, any other function
affinely equivalent to f does not have a covering sequence either. Moreover, we
also show that numbers of covering sequences of affine equivalent Boolean

functions do not have to be equal.

Secondly, in Chapter 4, we examine Tokareva’s studies [104-108] on Z,4-linear

codes. We discuss and give the origins of k-affine functions and k-dot product

definitions of Tokareva in Section 4.2. In Proposition 4.2, we show that the Krotov
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matrices A*™?9 which are used to construct Z,-linear Hadamard like codes,
have the lexicographically ordered codewords of the Z4-linear (2", m) code C, as

columns.

We define the quadratic terms in the algebraic normal forms of k-affine functions
in Proposition 4.5. Then Section 4.4 contains our contributions on the extension of

Tokareva’s definitions to a larger ring, Zg. For this objective, we derive a new
class of functions, which we call t,k-affine, using linear codes over the ring Zg.
We then state propositions 4.7 to 4.11, where Proposition 4.7 gives the properties

of the C}ﬁk matrix, Proposition 4.8 shows that for t=0, k-affine and t,k-affine

functions are exactly the same, which then implies Proposition 4.9 saying that k-
dot product and t,k-dot product values are equivalent for t=0. Proposition 4.10
gives the properties and Proposition 4.11 gives the explicit formula of the t,k-dot
product. The set of t,k-affine functions contain affine functions, and some of the
quadratic and cubic functions. Examples of these functions are given at the end of

Chapter 4 starting from Zg-linear codes.

Finally in Chapter 5, we study bent functions, which are at maximum distance to
affine functions (Rothaus and Dillon), particularly Maiorana McFarland bent
construction. We review Tokareva’s k-bent functions [104-108] and extend her
work by defining the t,k-Walsh transform and t,k-nonlinearity. We give Propositon
5.3 to show that the tk-Walsh transform of a Boolean function satisfies the
Parseval’s equation; and then relate the t,k-nonlinearity to t,k-Walsh transform in
Propositon 5.4. Next, we suggest the new class of bent functions, namely the t,k-
bent functions, which depend upon the t,k-dot product definition given in Chapter
4. We state Proposition 5.5 to show that the set of (t+1),k-bent functions and
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t,(k+1)-bent functions are subsets of the set of tk-bent functions. In sections 5.3
and 5.4, we show that these new classes, namely Tokareva’s k-bent and our tk-
bent functions, are affine equivalent to the well-known Maiorana McFarland class
of bent functions. As a cryptological application, we define the method of cubic
cryptanalysis for block ciphers in section 5.5, following Matsui’s work on linear
cryptanalysis. We conjecture that for a fixed key, one should try to use (m/3),k-
bent functions as the m-variable component functions of the S-boxes in order to

have higher resistance to cubic cryptanalysis.
6.2 Summary of Results and Directions for Future Research
Main results of this thesis can be summarized as follows. We have

1) proven that, each null frequency of the Walsh transform defines at least one
covering sequence; however, the number of covering sequences is more than the

number of Walsh transform nulls in general;

2) shown that the set of covering sequences which can be calculated from

Proposition 3.2 of Carlet and Tarannikov and from our Theorem 3.3 are distinct;

3) obtained a relation between covering sequences of affine equivalent functions
and proven that if a function does not have any covering sequence, then its affine
equivalent function does not have any either, on the other hand, numbers of

covering sequences of affine equivalent Boolean functions do not have to be equal;

4) defined a new class of functions, which we call t,k-affine, using linear codes

over the ring Zg; and given the explicit formula of the t,k-dot product and its

properties;

5) defined the tk-Walsh transform of a Boolean function and shown that it

satisfies the Parseval’s equation;
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6) given the definition of t,k-nonlinearity and related it to t,k-Walsh transform;

7) suggested a new class of bent functions, the tk-bent functions, which are
extensions of k-bent functions and shown that they are affine equivalent to

Maiorana McFarland class of bent functions.

Future studies can include the extension of such work to larger rings (or fields) and
the search for codes, whose binary images are nonlinear and having better
properties than the presently known ones. Suggested cubic cryptanalysis method
can be applied to the known cryptosystems, compared with linear and quadratic
cryptanalyses in terms of probability biases, and the correctness of our conjecture
that “(m/3),k-bent functions are strong against cubic cryptanalysis” can be

explored more extensively.
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