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ABSTRACT 

 

MULTIOBJECTIVE DESIGN OPTIMIZATION OF 
ROCKETS AND MISSILES 

 

Öztürk, Mustafa Yavuz 

M.Sc., Department of Aerospace Engineering 

Supervisor: Prof.Dr. Ozan Tekinalp 

March 2009, 100 pages 

 

Multidisciplinary design optimization of aerospace vehicles has attracted interest of 

many researchers. Well known aerospace companies are developing tools for the 

mutlidisciplinary design optimization. However, the multiobjective optimization of 

the design is a new and important area investigated very little by the researchers. 

This thesis will examine the approaches to the multiobjective and mutlidisciplinary 

design optimization of rockets and missiles. In the study, multiobjective 

optimization method called MC-MOSA will be used. 

 

Keywords: Design Optimization, Missile Conceptual Design, Simulated Annealing 
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ÖZ 

 

ROKET VE FÜZE TASARIMINDA ÇOK AMAÇLI 
OPTİMİZASYON 

 

Öztürk, Mustafa Yavuz 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof.Dr. Ozan Tekinalp 

Mart 2009, 100 sayfa 

 

Hava uzay araçlarının çok disiplinli tasarım optimizasyonu pek çok araştırmanın 

konusu olmuştur. Tanınmış havacılık ve uzay şirketleri çok disiplinli tasarım 

optimizasyonu için araçlar geliştirmektedirler. Fakat tasarımın çok amaçlı olarak 

optimizasyonu yeni bir yaklaşım olduğundan bu alanda pek bir çalışma 

yapılmamıştır. Bu tezde füze ve roketlerin çok amaçlı ve çok disiplinli tasarım 

optimizasyonu çalışılacaktır. Çalışmada daha önce geliştirilen ve MC-MOSA adı 

verilen çok amaçlı optimizasyon yöntemi kullanılacaktır. 

 

Anahtar Kelimeler: Tasarım Optimizasyonu, Füze Kavramsal Tasarımı, Benzetilmiş 

Tavlama 
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CHAPTER 1 

 

1INTRODUCTION 

 

 

Design optimization can be defined as finding the maximum or minimum value of 

an objective function by systematically choosing the values of design variables 

from within an allowed set. In this definition, design variables refer to the 

specifications of the system that can be controlled by the designer during system 

design (e.g. diameter and wing span values of a missile). Design objectives are the 

outputs of the system, which are functions of design variables and are tried to be 

maximized or minimized by changing the values of the design variables (e.g. range 

and mass of a missile). They are represented by objective functions. Defining the 

design variables set and evaluating it during optimization process generally involve 

multidisciplinary studies since they represent the characteristics of the system in 

terms of many different disciplines such as aerodynamics, flight mechanics, 

propulsion, automatic control and structural mechanics. Moreover, many aerospace 

systems are actually “system of systems”, that is, they involve several subsystems, 

each of which performs certain functions to satisfy the requirements allocated to it, 

so that the whole system satisfies the system requirements. This design approach 

actually emerges from the fact that modern aerospace systems are generally 

required to accomplish more than one and generally conflicting objectives as a 

result of increasing operational needs. Because of these reasons, multidisciplinary 

and multiobjective optimization is inevitable for many aerospace systems. 
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Irish statistician and economist Francis Ysidro Edgeworth [7] was the first to 

propose the notion of multiobjective optimization. Italian economist Vilfredo Pareto 

generalized the multiobjective optimization in his book first published in 1896 [19]. 

His name is given to the hyper surface (or the curve, in two-objective problems), 

containing the optimum solutions of multiple objectives (Pareto front). 

Optimization algorithms are either deterministic, or stochastic. The deterministic 

ones require function derivatives, or gradient information. Some gradient-based 

methods are Newton’s method, steepest descent and conjugate gradient. These 

algorithms are well-developed in the literature and have been adapted for 

multiobjective optimization. The usual approach is to use a scalarizing function to 

convert a vector of objectives to a scalar objective function [24]. A comprehensive 

review of various continuous multiobjective methods that use gradient information 

may be found in [18]. However, gradient-based algorithms converge to local 

optimum. Since most engineering problems are modeled with nonlinear, 

multimodal and even discontinuous functions, gradient-based methods may fail to 

provide even a feasible solution. To overcome this problem, several stochastic 

methods that do not require gradient information have been applied developed such 

as random search, grid search, evolutionary algorithms and simulated annealing. 

Among them, evolutionary algorithms and Simulated Annealing (SA) have been 

most successful [9]. They have also been adapted for multiobjective optimization. A 

detailed description of SA algorithms can be found in Chapter 3. 

A missile is a guided weapon system that is propelled by a certain type of engine, 

follows a certain trajectory in the air and uses aerodynamic or thrust forces for 

steering. Launch vehicles used in space missions and unguided missiles are 

generally called rockets. Some characteristics that define the performance of a 

typical rocket or missile are range, accuracy, hit effectiveness and flight time. In 

addition to these, an effectively designed rocket/missile system has some other 

capabilities such as high reliability, maintainability, endurance against 

environmental conditions, and of course, low cost. A typical missile system is 

comprised of several subsystems such as launcher, engine, guidance-control units 
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and warhead. In addition, depending on the operational concept and requirements, 

some other subsystems may be implemented into a missile such as seeker and data 

link. 

Missiles are generally classified according to mission specific properties such as 

launch platform location, launch platform type, trajectory shape, target location, 

target type, speed and guidance method. One example classification is given in 

Table 1-1 [33]. 

 

Table 1-1 Classification of Missiles 

Platform/Target 
Location 

Trajectory/ 
Target Type 

Example System 

Ballistic ATACMS (U.S.A.) 

Cruise Tomahawk (U.S.A.) 

Anti-ship Exocet (France) 

Surface to Surface/ 
Air to Surface 

Anti-tank Hellfire (U.S.A.) 

Anti-aircraft S-75 Dvina (Russia) 

Surface to Air  
Anti-ballistic Arrow (Israel) 

Air-to-air  AIM-9 Sidewinder (U.S.A.) 

 

 

From the initial formulation of the concept for a new rocket/missile system to the 

end of the life cycle, there is a continuous need to predict the performance of 

alternative designs that satisfy changing operational requirements and to introduce 

improvements against changing threat. Design engineers use several methods to 
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obtain information on the performance of alternative rocket/missile configurations. 

Among these are analytical estimates, computer simulations, laboratory tests, and 

flight tests. Simple analytical techniques provide estimates of rocket/missile 

performance characteristics, such as maximum range and flight time, in the very 

beginning of the design cycle, but they do not allow evaluation of complex 

interactions of subsystems. The most accurate method is flight testing, but it is also 

the most costly. Laboratory testing also provides accurate information, but it is 

restricted mainly to subsystem evaluation. A compromise between these methods is 

flight simulation. The major system performance measures can be predicted by 

modeling rocket/missile flight under dynamic and environmental conditions. It 

allows the mathematical analysis of flight which is complex and involves 

nonlinearities, logic sequences, singular events, and interactions among multiple 

subsystems [17]. 

The various levels of simulations needed for rocket/missile development and the 

diversity of simulations used for related analyses require a wide range of simulation 

approaches. In the case of missiles, these approaches differ in terms of the degree of 

fidelity in simulating the target track sensor and in simulating the transient control 

and maneuver response of the missile. For example, methods used to simulate target 

sensors range from the very simple assumption that tracking is performed perfectly 

to the use of real-time simulations using actual flight hardware seekers that view 

simulated target scenes that radiate electromagnetic energy. Also methods used to 

simulate missile motion range from the use of simple two-degree-of-freedom (2-

DOF) formulations to very sophisticated six-degree-of-freedom (6-DOF) models. 

Also a major consideration is whether the simulation should be designed to operate 

in real time. Certain simulated events, such as control-surface deflections and 

seeker signal processing, contain high-frequency spectral components that require 

very small computational time steps to simulate. Because of the small time steps, 

the time to calculate these events may be considerably longer than the time it would 

take for them to happen in actual missile flight. When actual missile hardware 

components are substituted for some of the mathematical equations in the 
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simulation, it is necessary that the model be constrained to run in real time to mesh 

with the real-time operation of the hardware. The level of detail to be included in a 

simulation very much depends on the objectives of the user. Including unnecessary 

detail increases the chances for subtle program errors that may never be found and 

that could mask important simulation results, decreases the general visibility of the 

interactions within the simulation program and complicates the interpretation of 

simulation results, and increases development time and computer setup and run 

times. Conversely, omitting detail that is important to the objectives of the user may 

invalidate the simulation for its intended purpose and lead users to wrong 

conclusions. [17] 

In this thesis, Multiple Cooling Multiobjective Simulated Annealing (MC-MOSA) 

algorithm [24] is modified and applied to several missile design optimization 

problems. The aim was to develop a tool which runs together with a simulation 

algorithm so that it allows for evaluation of many design parameters and outputs the 

Pareto-optimal solutions and the corresponding design variables. This tool also 

accepts geometric variables into the optimization loop as well as the other variables, 

hence eliminates the need for separate runs for different aerodynamic 

configurations. The functional flow of the tool can be summarized as in Figure 1-1.  

 

SIMULATION 
ALGORITHM

OPTIMIZATION 
ALGORITHM

DESIGN 

OBJECTIVES

Aerodynamic 
Database 

Genaration

DESIGN 

VARIABLES

PARETO-

OPTIMAL 

SOLUTIONS

Geometric 

variables

Other 

variables

Aerodynamic 

coefficients

 

Figure 1-1 Functional Flow of the Optimization Tool 
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This tool can be used in missile or rocket conceptual design studies, for which 

assumptions of Section 2.2 apply, to find out the optimum configurations as close to 

design targets as possible. A surface to surface / air to surface anti-tank missile is 

modeled for this purpose. The simulation is intended to provide flyout 

characteristics e.g. range as a function of time for different configurations which 

can be obtained using a 2-DOF simulation, but not intended to provide more 

detailed performance metrics such as target coverage diagrams, performance against 

maneuvering targets, rotational response characteristics or detailed 

guidance/autopilot/seeker performance, which requires at least 3-DOF. [17] As a 

result, a modified 2-DOF simulation is developed for the purposes of this thesis. 

The tool is prepared in FORTRAN programming language. 

This thesis report contains 5 chapters. Chapter 2 and 3 give detailed information 

about the simulation part and optimization part of the modified MC-MOSA 

algorithm, respectively, Chapter 4 presents the results of the case studies performed, 

and Chapter 5 finalizes the report with conclusions about this study.  
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CHAPTER 2 

 

2SIMULATION ALGORITHM 

 

 

As stated in Chapter 1, a 2-DOF simulation algorithm was developed for simulating 

the flight of a surface to surface/air to surface anti-tank missile. It is actually a 

“modified” 2-DOF simulation because the missile is not assumed to be purely point 

mass, geometric dimensions of the missile are also included in the calculations. 

Following paragraphs give information about configuration of the missile modeled, 

assumptions used throughout the simulation, functional architecture, description of 

the algorithm and some sample results. 

 

2.1 Missile Configuration 

A baseline missile configuration was determined for simulation studies, the main 

geometric properties of which are based on AGM-114 Hellfire missile [30, 31, 32]. 

The general view of this configuration can be seen in Figure 2-1. 

 

 

Figure 2-1 Baseline Missile 
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The general properties of the baseline missile are summarized below (these 

properties are fixed and was not altered during optimization process, in other words, 

they are not included in the design variables set): 

Launch platform: The missile can be launched from land platforms or helicopters. 

Propulsion: The missile has a solid propellant, single stage rocket motor. 

Wing configuration: In the front section there are 4 small fixed wings (called 

“strakes”) with X configuration, that is, they make 45° angles with horizontal plane 

during flight. Since they are located in front of the center of gravity (cg), they 

increase maneuverability. In the aft section wings and flaps are located, also with X 

configuration. Wings provide lifting surfaces. Since they are located behind cg, they 

increase stability. Flaps just behind them are moving surfaces which are used for 

control. 

Control: The missile performs angle of attack control by moving flaps in 

accordance with angle of attack command sent from missile computer.  

The parameters defining the geometry are shown in Figure 2-2, Figure 2-3, Figure 

2-4, Figure 2-5 and Figure 2-6. Nose section shown in Figure 2-3 has “ogive” 

geometry. 
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Figure 2-2 Missile Geometry Parameters 
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Figure 2-3 Nose Geometry Parameters 
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Dexit
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Dexit  

Figure 2-4 Engine Exit and Finset Roll Angle Parameters (looking from behind) 
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Figure 2-5 Strake Geometry Parameters 



 11

 

c2,1

c2,2

c3,1

c3,2

c3,3

b2,2= b3,3
b3,2

lflat,2lmax,2

t2

Notes: - lmax ,lflat  and t are the same for wings and flaps, and for all cross sections

- Cross sections are symmetric about AA’ 

A A’

A A’

c2,1

c2,2

c3,1

c3,2

c3,3

b2,2= b3,3
b3,2

lflat,2lmax,2

t2

Notes: - lmax ,lflat  and t are the same for wings and flaps, and for all cross sections

- Cross sections are symmetric about AA’ 

A A’

A A’

 

Figure 2-6 Wing and Flap Geometry Parameters 

 

2.2 Assumptions 

The assumptions used throughout the simulation are as follows: 

• The inertial reference frame and convention for the coordinate system assumed 

is as shown in Figure 2-7. 

xe

ze
Vertical 
projection of 

launch point 

on the earth

 

Figure 2-7 Reference Frame 
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• Flat and non-rotating earth is assumed since the feasible range (~1.5-10 km) and 

maximum altitude (~500-1000 m) of this baseline missile is relatively low. 

Hence a non-translating and non-rotating reference frame whose origin is at the 

projection of launching point on earth surface is used. 

• The dynamics of the missile motion in launcher, which is constrained in radial 

direction, are neglected. 

• In case of helicopter launch, the downwash effects on the missile aerodynamics 

during launch period are neglected. 

• A modified 2-DOF simulation is used, that is, the missile flies in xe-ze plane as a 

point mass, with zero lateral force and zero yaw and roll moments and in X 

configuration. However, angle of attack and cg position are considerations since 

horizontal and vertical forces on the point mass are calculated accordingly. 

• The missile flies always in trim condition, that is, in a condition where pitch 

moment is always zero. This is done by calculating flap deflection angles 

required to trim the missile at the current angle of attack command in each time 

step and assuming that a perfect control system deflects the flaps to these angles 

instantaneously.  

• Response of the missile to the angle of attack command is modeled by a first 

order transfer function with a certain time constant. 

• US Standard Atmosphere 1976 [34] is assumed for atmospheric calculations. 

• The changes in aerodynamic coefficients due to altitude are neglected. 

However, changes in speed of sound and air density due to altitude are taken 

into account. 

• Engine and mass models with assumptions described in Section 2.3.2 are used. 
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• Mass and cg position change linearly until propellant burnout time. Also, these 

changes are caused only by propellant burning. 

• No effects of thrust misalignments (linear or angular) are included. 

• No wind or other atmospheric disturbances are included. 

 

2.3 Algorithm Definition 

The simulation algorithm is designed as a subroutine of the modified-MC-MOSA 

algorithm. Every time this simulation subroutine is called by the main program, the 

required parameter set is transferred to the main program and a different missile 

configuration is simulated. The parameters transferred can be seen in Table 2-4. The 

simulation results (range, flight time, hit angle, hit velocity and aerodynamic 

coefficients for a specific flight condition) are used as objectives in the case studies 

of Chapter 4; hence they are transferred to the main program after simulation loop 

ends. More information about these objectives is given in Chapter 4. 

The steps of the algorithm are as follows: 

 

STEP 1 PERFORM INITIAL STEPS 

Step 1.1 Calculate aerodynamic coefficients based on the design variables set 

transferred from main program and generate aerodynamic databases 

for each flight phase. 

Step 1.2 Calculate initial and final values of mass and cg position of the 

missile. 

Step 1.3 Initialize range, altitude, velocity, flight path angle and angle of 

attack. 
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Step 1.4 Calculate aerodynamic coefficients corresponding to a specific flight 

condition (described in Chapter 4). 

STEP 2 START SIMULATION LOOP 

Step 2.1 Calculate speed of sound, air pressure and air density corresponding 

to the current altitude. 

Step 2.2 Perform interpolations based on current flight phase 

� Interpolate for mass and cg position using initial and final values. 

� Interpolate for aerodynamic coefficients using current Mach 

number, angle of attack and cg position. 

Step 2.3 Calculate angle of attack command. 

Step 2.4 Calculate thrust force, aerodynamic forces and total forces along 

stability axes. 

Step 2.5 Integrate range, altitude, velocity, flight path angle and angle of 

attack. 

Step 2.6 Calculate the current total energy. 

Step 2.7 Go to Step 2.1 until altitude reaches zero. 

STEP 2′ END SIMULATION LOOP 

STEP 3 Transfer the objective values (range, flight time, hit angle, hit 

velocity and aerodynamic coefficients for a specific flight condition) 

to the main program. 

STEP 4 Return to the main program. 
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Some detailed explanations of these steps are explained in the following paragraphs. 

 

2.3.1 Calculation of Aerodynamic Databases 

Lift and drag coefficients for trim (CL,trim and CD,trim) are assumed to be functions of 

angle of attack, Mach number and missile geometry. They are calculated using 

Missile DATCOM prediction tool, using TRIM control card. This tool accepts an 

input set which contains an angle of attack vector, a Mach vector and parameters 

defining the whole geometry of the missile. The parameters in the input set are 

listed in Table 2-1. Definitions of these parameters are given in Section 2.1. 

 

Table 2-1 Missile DATCOM Input Parameter Set 

Bnose lmax,i / ci,j xle,i npanel,i 

Dnose lflat,i / ci,j ti / ci,j δlim 

Laft bi,j Λte,i ALPHA vector 
Daft ci,j Φi,j MACH vector 

 

 

Every time the simulation subroutine is called, a new DATCOM input set based on 

the new parameter set transferred from main program is generated, DATCOM is 

run and the resulting CL,trim and CD,trim values are stored in arrays as a database. This 

database tabulates CL,trim and CD,trim values corresponding to each pair of elements 

of angle of attack and Mach number vectors. The database contains three parts:  

• First one belongs to before-burnout phase and based on initial cg position,  

• Second one belongs to before-burnout phase and based on final cg position, 

• Third one belongs to after-burnout phase and based on final cg position, 
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This partition is necessary because of two reasons: First, DATCOM computes 

CD,trim by taking base-jet plume interaction effects into account, and these effects are 

implemented into calculations by a corresponding input file parameter. This 

parameter is changed to zero for the case of after-burnout indicating no plume 

effects. Second, before-burnout database is needed to be further divided into two, 

differing by cg position inputs since cg position affects CL,trim and CD,trim. This 

database generation is performed once before simulation loop starts, and resulting 

database is used in interpolation described in 2.3.4. The angle of attack and Mach 

number vectors are fixed (not taken as optimization parameters) and given in (2.1) 

and (2.2). 

ALPHA = [ 0, 1, 2, 3, 4 ]  (deg)     (2.1) 

MACH = [ 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.05, 1.1, 1.15, 1.2, 1.3, 

1.4, 1.5, 1.6 ]       (2.2) 

The bounds of these vectors had to be kept tight because of unexpected results 

resulting from DATCOM’s internal calculation methods when these bounds are 

exceeded. If some angle of attack and Mach values beyond these bounds occur in 

the simulation loop, the algorithm extrapolates for CL,trim and CD,trim. 

Graphical demonstrations of sample aerodynamic databases using the geometric 

parameters given in Table 2-4 are shown in Figure 2-8, Figure 2-9, Figure 2-10, 

Figure 2-11, Figure 2-12 and Figure 2-13. 
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Figure 2-8 Trim Lift Coefficient vs. [Angle of Attack, Mach Number] (before 

burnout , xcg = xcg,0) 
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Figure 2-9 Trim Lift Coefficient vs. [Angle of Attack, Mach Number] (before 

burnout , xcg = xcg,final) 
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Figure 2-10 Trim Lift Coefficient vs. [Angle of Attack, Mach Number] (after 

burnout , xcg = xcg,final) 
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Figure 2-11 Trim Drag Coefficient vs. [Angle of Attack, Mach Number] (before 

burnout , xcg = xcg,0) 
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Figure 2-12 Trim Drag Coefficient vs. [Angle of Attack, Mach Number] (before 

burnout , xcg = xcg,final) 
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Figure 2-13 Trim Drag Coefficient vs. [Angle of Attack, Mach Number] (after 

burnout , xcg = xcg,final) 
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Some interpretations of these figures are as follows: 

• All the figures show that CL,trim changes with angle of attack almost linearly and 

CD,trim changes very little, ceteris paribus. These are because angle of attack 

range is relatively tight and close to zero (linear region). 

• From Figure 2-8 and Figure 2-9 it is seen that as cg shifts forward, slopes of 

CL,trim - α lines decrease. As stated in Section 2.1, wings and control surfaces are 

located towards the aft of the missile and initial cg position is near the middle. 

Since strake surface areas are smaller in magnitude, the center of pressure (cp), 

on which total aerodynamic forces acts, is behind cg. A shift-forward in cg 

elongates the moment arm of total lift force assuming that cp does not change. 

This means that the flap deflections required to trim the missile at a specific 

angle of attack and Mach number become smaller, which in turn decreases 

CL,trim. This can also be proven analytically by writing moment equations for the 

two cg positions shown in Figure 2-14, using ∆L>0 and assuming small angle of 

attack. 
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∞

CL,trim

CD,trim

xcg,0

xcg,final

∆L = xcg,0 − xcg,final c.p.

α

 

Figure 2-14 Effect of cg Shift on Trim Aerodynamic Coefficients 
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• Figure 2-11 and Figure 2-12 show that CD,trim remains almost unchanged as cg 

shifts forward, ceteris paribus. This is expected because of small angles of 

attack and can also be proven by the moment equations of Figure 2-14. 

• Figure 2-9 and Figure 2-10 show that CL,trim values before and after burnout are 

almost the same, ceteris paribus. As stated previously in this section, it is base 

drag calculations that differ in these phases, and they have seemingly no 

contribution to CL,trim.  

• Figure 2-12 and Figure 2-13 show that CD,trim surface slightly shifts up as 

burnout is completed. This is because as base-plume interaction effects 

disappear, a full base drag instead of a partial one is induced at the aft, adding 

slightly to CD,trim. 

These aerodynamic databases are generated assuming sea level density in 

DATCOM. Figure 2-15 and Figure 2-16 demonstrates the results of a DATCOM 

run showing the changes of CL,trim - M and CD,trim – M curves with altitude for 

different a.o.a. values. For CD,trim (Figure 2-16) these curves actually close to each 

other, hence not to deteriorate the visualization of altitude errors, only one curve is 

shown in this graph. Actually it corresponds to the maximum altitude error. Then, 

taking into account that maximum altitude of the baseline missile of this study is 

~500-1000 m, the errors due to altitude are very small as seen in this two figures, 

hence the assumption is justified. 
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Figure 2-15 Change of CL,trim with Altitude 
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Figure 2-16 Change of CD,trim with Altitude 
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The effects of base drag do not change CL,trim, hence second and third CL,trim 

databases are the same. Moreover, it is observed from the data of Figure 2-12 and 

Figure 2-13 that the maximum increase in CD,trim is 1.10 times and the average 

increase is 1.06 times. Since these are relatively small differences, to improve the 

algorithm run time, no separate DATCOM run is performed to obtain the third 

database. Instead, the CD,trim elements of second database is multiplied by the 

average increase (1.06) to get the third database. This greatly improves the total run 

time of the optimization algorithm since DATCOM spends more than 90 percent of 

the run time of one optimization loop. 

 

2.3.2 Propulsion and Mass Models 

Propulsion system and warhead are the sections responsible for most of the mass of 

a typical rocket or missile. Propulsion system is modeled as a single stage, solid 

propellant and neutral burning (constant thrust) rocket motor. Total impulse, which 

is a measure of momentum released by burning of propellant and defined as the 

total area under thrust-time curve, dictates the mass and geometry of the propellant.  

In this study, the design thrust and burning time are selected as design variables.  

The configuration of rocket motor can be seen in Figure 2-17. 
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Figure 2-17 Rocket Motor Parameters 
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Various constants related to propulsion and mass models are selected and used in 

the calculations described throughout this section. The values and references for 

these constants are given in Table 2-2. 

 

Table 2-2 Constants Used in Propulsion and Mass Models 

 Value Unit Reference 
Propellant CMDB+HMX - [22] 
rref 0.02 m/s [22] 
Pref 6.89x106 Pa [22] 
n 0.49  - [22] 
Isp 220 s [22] 
ρp 1800 kg/m3 [22] 
CF 1.3  - [22] 
k 1.25  - [3] 
kvl 0.7  - [3] 
σcase 4.35 x108 Pa Al7075-T73 
Pe 101325 Pa - 
tliner 0.002 m - 
Dbody 0.178 m - 
DPR 10  - - 
βinlet 45 deg [23] 
βexit 15 deg [23] 
ρcase 2823 kg/m3 Al7075-T73 
ρliner 860 kg/m3 EPDM 
ρnozzle 1570 kg/m3 Cellulose phenolic 
ρfinsets 2700 kg/m3 Al 
mcon 3.5 kg - 
mwh 10 kg [30, 31, 32] 
mother 17.6 kg [30, 31, 32] 
lwh 0.6 m [30, 31, 32] 
lother 0.57 m [30, 31, 32] 
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For a single stage neutral burning rocket motor, total impulse and mass of the 

propellant is given by [3] 

bdtot tTI ⋅= , 
gI

I
m

sp

tot

p =        (2.3) 

To have a constant thrust, a star-shaped cross section is chosen for propellant grain. 

Figure 2-18 shows the successive burning contours, which demonstrates the growth 

of internal cavity [22]. The lengths of these contour lines are roughly the same, 

which means that burning area is roughly constant.  

 

 

Figure 2-18 Successive Burning Contours of Star-Shaped Propellant Grain 

 

For the sake of simplicity, the outer diameter of the propellant grain is assumed 

equal to missile diameter, since case thickness that will be calculated below and 

liner thickness assumed in Table 2-2 are small compared to missile diameter. 

Length of the propellant grain can be calculated using the volume formula for the 

grain configuration and calculated propellant mass [3] 

vlpp

p

p
kD

m
l

ρπ 2

4
=         (2.4) 
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Here, kvl is the volumetric loading, which is defined as the ratio of propellant 

volume to combustion chamber volume. It depends on the geometry of star-shaped 

cavity. A detailed design of this shape is beyond the scope of the context and kvl is 

assumed as 0.7 in this study.   

Assuming a neutral burning means that area of the burning surface remains constant 

during propellant burning. At the end of burning, the area is assumed equal to the 

area of propellant outer surface. Hence, the area of burning surface at all instants of 

burning is given by 

 ppb lDA π=          (2.5) 

Assuming that combustion product is calorically perfect, expansion in the nozzle is 

isentropic, and maximum flow rate through the nozzle is achieved, propellant mass 

can also be calculated by the following expression [23] 

b
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c

refpbp t
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P
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


= ρ        (2.6) 

The combustion chamber pressure Pc can be found from this equation by 

substituting the other known variables. Required case thickness to endure this 

pressure can be calculated using hoop stress formula, [23] 

case

bodyc

case

DPRDP
t

σ2
=         (2.7) 

Nozzle throat and exit areas can be found from [3] 
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Nozzle exit diameter Dexit, which will be an input for aerodynamic calculations, can 

be found from Ae. The lengths of convergent (inlet) and divergent (exit) sections of 

nozzle can be found using the geometry shown in Figure 2-17, 

inlett

p

inlet r
D

l βcot
2 








−=        (2.10) 

( ) exitteexit rrl βcot−=         (2.11) 

Then, the total lengths of nozzle and motor are, 

exitinletnozzle lll +=         (2.12) 

nozzlepmotor lll +=         (2.13) 

Thus, the whole geometry of rocket motor shown in Figure 2-17 has been defined. 

By calculating the volumes of individual components (propellant, case, liner and 

nozzle) and using the assumed material density values given in Table 2-2, the 

masses of each component and hence the total mass of rocket motor can be found, 

linercasenozzlepmotor mmmmm +++=       (2.14) 

To calculate the masses of finset elements (strakes, wings and flaps), the volumes 

should be calculated. All the elements are solid hexagonal prismatoids, they can be 

assumed to be made of aluminum and masses can be calculated accordingly.  

Thus, the total initial mass and length of the missile can be found using the assumed 

values of Table 2-2, 

otherfinsetsconwhmotor mmmmmm ++++=0      (2.15) 

otherwhmotortot llll ++=         (2.16) 

The mass of missile after burnout is given by 
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pfin mmm −= 0         (2.17) 

The centers of mass of control, nozzle and propellant sections are assumed to be on 

the middle of each section. The centers of mass of warhead and section in front of 

warhead are assumed to be on 2/3 towards the aft of each section. The centers of 

mass of finset elements are assumed to be on the middle of average horizontal 

lengths of trapezoidal planform areas, to simplify the calculation. Then; summing 

the moments about the foremost point of missile nose, the initial and final cg 

positions of the missile can be calculated.  

 

2.3.3 Atmospheric Calculations 

Simulation loop starts with calculations of atmospheric parameters. Speed of sound, 

air density and pressure are assumed to be the functions of altitude only, and in each 

loop they are calculated. An atmospheric model based on U.S. Standard 

Atmosphere, 1976 [34] is employed. 

After that, Mach number is calculated by 

sounda

V
M =           (2.18) 

 

2.3.4 Interpolations 

To find the corresponding CL,trim and CD,trim values at the current Mach number, 

angle of attack and cg position at a time step of the simulation loop, trilinear and 

bilinear interpolations are used depending on the current flight phase. Angle of 

attack and Mach number vectors used are defined by (2.1) and (2.2).  

• In before-burnout phase, a trilinear interpolation given in (2.19) is carried out to 

find the corresponding CL,trim and CD,trim. Aerodynamic databases corresponding 

to initial cg and final cg are used as interpolation arrays.  
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• In after-burnout phase, a bilinear interpolation given in (2.19) is carried out to 

find the corresponding CL,trim and CD,trim. Aerodynamic database corresponding 

to final cg is used as interpolation array. 

CL, trim  =  fint3 (CL,1, CL,2, M, α, xcg) ,  t ≤ tb    (2.19) 

   fint2 (CL,3, M, α) ,   t > tb 

CD,trim  =   fint3 (CD,1, CD,2 M, α, xcg) , t ≤ tb 

  fint2 (CD,3, M, α) ,  t > tb 

In a similar fashion, current mass and cg position are calculated hereafter, 

performing a linear interpolation given by 

m = fint ( [t0   tb ;  m0   mfinal] , t ) ,   t ≤ tb    (2.20) 

 mfinal ,      t > tb 

xcg  = fint ( [t0   tb ;  xcg,0   xcg,final] , t ) ,  t ≤ tb    (2.21) 

 xcg,final ,     t > tb 

 

2.3.5 Calculation of Angle of Attack Command 

An angle of attack command profile is determined using nodes equally spaced in 

time until burnout and equally spaced in energy consumption after burnout. This 

approach has been shown to be superior to using all nodes equally spaced in time 

[23]. An additional hit phase is added to the end of the profile, which is initiated 

when missile reaches to a pre-determined distance to the ground. In this phase, a 

negative angle of attack command is produced to hit the target with a steep hit 

angle. A sample profile is given in Figure 2-19. 
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Figure 2-19 Sample Angle of Attack Command Profile 

 

The angle of attack values in each node are actually optimization variables and they 

are given some upper and lower bounds in optimization algorithm. The values 

shown in Figure 2-19 are samples. The first node is the initial angle of attack given 

to the missile, which is also an optimization variable. The angle of attack command 

for each simulation loop is found by linear interpolation with time until burnout and 

with consumed total energy after burnout. Hit phase angle of attack command is a 

constant negative value, as stated above. The angle of attack command is calculated 

by 

αcom  =  fint (αnode,1 , t) ,  t ≤ tb     (2.22)  

   fint (αnode,2 , Emax−Etot) , t > tb and  z ≥ zhit 

  αhit ,    t > tb and z < zhit 
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After-burnout phase is the region where nodes are placed in equal energy 

consumption intervals. The beginning point is where the missile has its maximum 

energy, which is the burnout point, and a portion of this energy will have been 

consumed at the end of flight. The total energy of the missile at any instant is 

calculated by 

2

2

1
VmzgmEtot ⋅⋅+⋅⋅=         (2.23) 

Specifically, the maximum total energy (Emax) can be found by inserting the burnout 

mass, corresponding altitude and speed at burnout, into (2.23).  

Before-burnout phase can be divided into equal time intervals since the burnout 

time is a known parameter before simulation starts. The total energy at burnout is 

also calculated when after-burnout phase is initiated. However, the total energy at 

the end of after-burnout phase is unknown at that instant, hence a known parameter 

at that node is needed to divide after-burnout phase into equal energy consumption 

intervals. A parameter eper is introduced, which is the predicted percentage of the 

maximum energy consumed in after-burnout phase. This parameter is chosen as an 

optimization variable. Then the missile energy at the end of after-burnout phase 

becomes a known parameter and equals Emax .(1- eper) . The node at that point is 

shown in Figure 2-19 as coincident with hit phase initiation point, but in general 

this is not the case. To find the angle of attack command at that point, the algorithm 

either interpolates using the value of last node or extrapolates beyond, which is 

determined by eper and zhit.  

 

2.3.6 Calculation of Forces and Derivatives 

Figure 2-20 shows the forces on the missile at any instant of flight, which are thrust 

(T), gravitational force (W), lift (L) and drag (D). The angles α, γ and θ are angle of 

attack, flight path angle and pitch angle, respectively. [xs,zs], [xb,zb] and [xE,zE] 

defines stability, body and earth axes, respectively. V is the total velocity vector [1]. 
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Figure 2-20 Forces and Angles on Body, Stability and Earth Axes 

 

Thrust force varies with altitude and this change is given by the following thrust 

equation [23], in which Pe - Pa  stands for the pressure difference between nozzle 

design exit pressure and ambient pressure.  

eaed APPTT )( −+=         (2.24.) 

Resultant forces in stability axes are given by 

)sin()cos( γα ⋅−−⋅= WDTX S        (2.25)  

)cos()sin( γα ⋅−+⋅= WLTZS       (2.26) 

where 

trimLrefair CSVL ,
2

2

1
⋅⋅⋅⋅= ρ        (2.27) 
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trimDrefair CSVD ,
2

2

1
⋅⋅⋅⋅= ρ        (2.28) 

Sref is the reference area which is taken as the maximum cross sectional are of the 

missile body. CL,trim and CD,trim  are lift and drag coefficients for trim described in 

Section 2.3.4. 

To find the velocity and flight path angle derivatives, tangential and normal 

acceleration components will be used [1]. They are shown in Figure 2-21 and given 

by 

m

X
a S

T =          (2.29) 

m

Z
a S

N =          (2.30) 
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Figure 2-21 Tangential and Normal Acceleration 
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where  

∆s : Infinitesimal displacement along the missile flight path 

∆γ : Infinitesimal change in flight path angle 

R : Instantaneous radius of curvature of flight path 

Acceleration components can also be written as 

V
t

V
aT

&=
∂

∂
=          (2.31) 

R

V
aN

2

=          (2.32) 

From (2.29) and (2.31), velocity derivative can be obtained as 

m

X
V s=&          (2.33) 

Figure 2-21 indicates that 

R

s∆
=∆γ          (2.34) 

tVs ∆⋅=∆          (2.35) 

From (2.34) and (2.35) it can be shown that 

R

V

tt
t ==

∂

∂
=

∆

∆
→∆ γ

γγ
&

0lim        (2.36) 

Using (2.30), (2.32) and (2.36), flight path angle derivative can be obtained as 

Vm

Z s

⋅
=γ&          (2.37) 
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Besides, from Figure 2-20 it is seen that 

E

E xV
t

x
&=⋅=

∂

∂
)cos(γ         (2.38) 

E

E zV
t

z
&=⋅=

∂

∂
)sin(γ         (2.39) 

(2.33), (2.37), (2.38) and (2.39) are the equations defining the motion of the missile 

and are integrated to obtain the instantaneous velocity, flight path angle and earth 

coordinates of the missile. 

tVVV
ii ∆⋅+=+

&
&1          (2.40) 

t
ii ∆⋅+=+ γγγ &
&1         (2.41) 

txxx
ii ∆⋅+=+

&
&1         (2.42) 

tzzz
ii ∆⋅+=+

&
&1         (2.43) 

To find the angle of attack derivative, a first order transfer function given by the 

following is assumed. 

1

1

)(

)(

+⋅
=

ss

s

com τα

α
        (2.44) 

Taking the inverse Laplace, 

)(
1

αα
τ

α −= com
&         (2.45) 

Then, the angle of attack in each loop is found by integrating this equation 

 tii ∆⋅+=+ ααα &
1         (2.46) 

Finally, from Figure 2-20, the pitch angle θ is found by 
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111 +++ += iii αγθ         (2.47) 

Since this is a 2-DOF simulation with trim flight, pitch angle in each loop 

corresponds to the case where pitch moment is always zero. 

The simulation loop is executed until missile hits the ground, that is, z becomes less 

than zero. The results (objectives) are returned to the main program thereafter. 

 

2.4 Sample Results 

In this section, the results of a simulation run with a sample design variable set are 

presented. In addition to the constants given in Table 2-2, parameters given in Table 

2-3 are also taken as constants. They are also employed in the case studies of 

Chapter 4. The design variable set used in this sample simulation run is given in 

Table 2-4. 

 

Table 2-3 Constants Used in Simulation 

 Value Unit 
ALPHA see Eq. (2.1) deg 
MACH see Eq. (2.2) - 
Dnose 17.8 cm 
Daft 16 cm 
npanel,1 4 - 
Φ1,j 45 deg 
Λte,2 0 deg 
npanel,2 4 - 
Φ2,j 45 deg 
Λle,3 0 deg 
npanel,3 4 - 
Φ3,j 45 deg 
xle,3 xle,2 + c2,1 cm 
x0 0 m 
t0 0 s 
node#1 2 - 
node#2 8 - 
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Table 2-4 Design Variable Set of Sample Simulation Run 

 Value Unit   Value Unit 
tb 3 s  c3,3 5 cm 
Td 7000 N  δlim 25 deg 
Bnose 7 cm  z0 10 m 
Laft 5 cm  V0 10 m/s 
b1,2 5 cm  γ0 5 deg 
lmax1 / c 0.2 -  α0 2 deg 
c1,1 10 cm  τ 0.3 s 
c1,2 7 cm  eper 0.9 - 
t1 / c 0.02 -  αhit -15 deg 
Λte,1 0 deg  zhit 100 m 
xle,1 30 cm  αnode,2 3 deg 
b2,2 8 cm  αnode,3 3 deg 
lmax2 / c 0.2 -  αnode,4 0 deg 
c2,1 50 cm  αnode,5 0 deg 
c2,2 35 cm  αnode,6 1 deg 
t2 / c 0.02 -  αnode,7 1.5 deg 
xle,2 110 cm  αnode,8 2 deg 
b3,2 6 cm  αnode,9 2.5 deg 
c3,1 8 cm  αnode,10 3 deg 
c3,2 8 cm  αnode,11 3 deg 

 

 

The following figures show the results of the simulation run with parameter set 

given in Table 2-4. 
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Figure 2-22 Altitude vs. Range 
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Figure 2-23 Speed vs. Time 
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Figure 2-24 Mach Number vs. Time 
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Figure 2-25 Flight Path Angle vs. Time 
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Figure 2-26 Angle of Attack vs. Time 
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Figure 2-27 Pitch Angle vs. Time 
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Figure 2-28 Total Energy vs. Time 

 

The detailed interpretation of the results of that sample simulation run will not be 

given here since this run is for demonstration purposes only. Instead, some 

comments regarding to the simulation and optimization parts of the modified MC-

MOSA in the light of these results are made below: 

• The trajectory shape in Figure 2-22 is mainly determined by the angle of attack 

commands in the nodes. Optimization algorithm will try to reach to an optimum 

angle of attack command profile that will generate a trajectory which satisfies 

the objectives simultaneously.  

• Speed, Mach number and total energy assumes similar profiles, whose maxima 

are mainly determined by rocket motor parameters. Again, the optimization 

algorithm will search for the optimum thrust parameters which as well satisfy 

the total impulse constraint imposed on thrust parameters.  
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• For an anti tank missile, a hit angle as steep as possible is required in terms of 

warhead effectiveness. Hence, the last portion of the angle of attack command 

profile shown in Figure 2-26 is employed to have a steep hit angle. Hit angle 

will be chosen as an optimization objective in some of the case studies. 

• For an anti tank missile, hit angle is more important than hit velocity in terms of 

warhead effectiveness. However, a high hit velocity may be also important in 

terms of survivability and endurance against counter-measures for certain 

operational conditions. Hit velocity will also be used as an optimization 

objective in some of the case studies. 

The integration method used, which is Euler method, and integration time step ∆t 

have obviously an effect on the accuracy of the results. A study was carried out to 

investigate these effects. The time step used in the above study was ∆t = 0.1 s. 

Separate studies were performed for ∆t = 0.01 s and ∆t = 0.001 s. Moreover, an 

integration algorithm using Runge-Kutta-Fehlberg Method (RKF45) described in 

[35] was prepared and applied. It has an adaptive procedure to determine if the 

proper time step is being used.  At each integration step, two different Runge-Kutta 

approximations having errors in the order of 4 and 5 are made and compared.  If the 

two answers are in close agreement, the approximation is accepted. If the two 

answers do not agree to a specified accuracy, the step size is reduced.  If the 

answers agree to more significant digits than required, the step size is increased. 

In these runs, a parameter set different from Table 2-4 is used. The comparative 

results are given in the following figures. Although only four graphs are presented, 

the other simulation profiles; namely; Mach number, flight path angle, angle of 

attack command and total energy showed similar behavior. The only remarkable 

difference is observed in the trajectory shape seen in Figure 2-29. The objectives of 

the case studies of Chapter 4, namely; range, flight time, hit angle and hit velocity 

are not affected remarkably by the change of integration method and time step. 

Hence, to benefit from simulation run times, the integration method for the case 

studies was chosen as Euler method with time step ∆t = 0.1 s. 
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Figure 2-29 Altitude vs. Range (comparative study) 
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Figure 2-30 Pitch Angle vs. Time (comparative study) 
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Figure 2-31 Angle of Attack vs. Time (comparative study) 
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Figure 2-32 Speed vs. Time (comparative study) 
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CHAPTER 3 

 

3OPTIMIZATION ALGORITHM 

 

 

Simulated annealing (SA) is an optimization method that simulates the physical 

annealing process. The concept is based on the manner in which liquids freeze or 

metals recrystallize in the process of annealing. The molecules of hot glass or metal 

are free to move about. Temperature is an average of the thermal energy in each 

molecule of an object. If the temperature drops quickly, these molecules solidify 

into a complex structure. However, if the temperature drops slowly, they form a 

highly ordered crystal. The molecules of a crystal solidify into a minimal energy 

state. In an annealing process, a melt, initially at high temperature and disordered, is 

slowly cooled so that the system at any time is approximately in thermodynamic 

equilibrium. As cooling proceeds, the system becomes more ordered and 

approaches a "frozen" ground state at zero temperature. If the initial temperature of 

the system is too low or cooling is done insufficiently slowly, the system may 

become quenched forming defects or freezing out in metastable states (i.e. trapped 

in a local minimum energy state). 

For a given temperature T, the probability of a system to be in state r may be found 

from the Boltzmann distribution 








Tk

rE

B

)(
exp , where E(r) is the energy of the 

configuration, and kB is the Boltzmann constant [11]. To simulate the annealing 

process, Metropolis criterion may be used. For this purpose, the change in the 

energy of a system with the movement of an atom is calculated (∆E). If the 
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movement lowers the energy of the system, it is accepted (∆E ≤ 0). Otherwise it is 

accepted with probability of 






 ∆−
=∆

T

E
EP exp)(  (Accepting some movements that 

do not lower the energy prevents getting stuck in local optima). In SA, the objective 

function replaces the energy of the system, and the design variables represent the 

atoms. This idea was first used by Kirkpatrick et al. to solve discrete combinatorial 

optimization problems [11]. The technique was later extended to the optimization of 

functions of continuous variables [2, 4, 8, 20, 21, 26]. 

In SA, the success of the algorithm to find the global optimum by the fewest 

number of function evaluations is closely related to the method used in selecting the 

next candidate point. Another important aspect is the cooling scheme used. For 

these purposes, various methods are proposed. Some of them are summarized in 

[24]. 

For the optimization problems subject to this thesis, MC-MOSA [24], with some 

modifications, is used as the optimization algorithm. It is based on Hide-and-Seek, 

which is a continuous SA algorithm that uses pure random walk, where both the 

search direction and step size of test points are taken from uncorrelated uniform 

distributions, and an adaptive cooling schedule [2, 20]. In addition to these, MC-

MOSA uses special elliptic and ellipsoid fitness functions as objective functions. 

Each function has its own adaptive cooling schedule.  

Following paragraphs give information about the formulation, definition and some 

sample results of the modified MC-MOSA algorithm. 
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3.1 Formulation of the Optimization Problem 

A constrained multiobjective optimization problem may be stated as follows: 

minimize fi(x) ,  i = 1, ... ,I     (3.1) 

with respect to x = xj ,  j = 1, ... ,J  

subject to ga(x) ≥ 0,  a = 1, ... ,A    

      hb(x) = 0,   b = 1, ... ,B 

     mc(fi(x)) ≥ 0, c = 1, ... ,C 

     nd(fi(x)) ≥ 0, d = 1, ... ,D 

 

(3.1) defines a minimizing problem. Objectives to be maximized can be included in 

this definition by taking the negatives of their objective functions. The design 

variables are usually given some upper and lower bounds, these bounds can be 

treated as inequality constraints and augmented into (3.1). Objective functions may 

also be constrained with some constraint functions or given some upper and lower 

bounds, which defines the feasible solution space. In this case, the optimal solutions 

are sought only within this space. 

The vector objective function of (3.1) may be converted into a scalar one by using a 

scalarizing function with weights. A general one may be expressed as [5];  

β
β

ν
/1

0

1

)( 







−= ∑

=
ii

I

i

i fxfF        (3.2) 

To be able to assign weights to objective functions of different magnitudes, 

objective functions can be normalized with respect to some reference values: 
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min,0max,0

min,0)(
)(

~

ii

ii

i
ff

fxf
xf

−

−
=        (3.3) 

Here, the bounds of the feasible space are defined by the designer. They may result 

from the physical limitations known from the real experience (e.g. maximum or 

minimum range limits known for similar missile systems) or intolerability for some 

values beyond limits defined by design requirements (e.g. requirement for 

maximum flight time). The constraint functions and bounds for design variables are 

also derived by making similar judgments due to the nature of the problem (e.g. 

imposing constraints over propellant burn time and/or thrust levels to satisfy the 

maximum total impulse that can be achieved using a specific amount of propellant). 

By choosing the reference values in (3.2) equal to min,0

if , taking β=1 (weighted sum 

approach) and combining (3.2) with (3.3), 

)(
~

1

xfwF i

I

i

i∑
=

=         (3.4) 

Then, the optimization problem becomes minimizing F of (3.4) under conditions 

stated in (3.1). 

By minimizing the single F, the designer will reach to a particular point on Pareto 

front. In MC-MOSA, the problem is further developed by introducing a population 

of scalar objective functions (F’s) called fitness functions (FF’s). In this approach, 

instead of summing up the objective values, some ellipses or ellipsoids (for 2 and 3 

objective problems, respectively) are constructed and special points on them are 

used to generate an estimate for the whole Pareto front. Using a population of FF’s 

rather than one enables the algorithm to move towards the whole Pareto front. 

Moreover, evaluating them together reduces the run times of the algorithm [24]. 

Two types of FF’s that may be used in a two objective problem are linear and 

elliptic FF’s. Linear FF’s are especially suited for convex Pareto fronts. To have a 
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capability for solving non-convex problems, some special elliptic and ellipsoidal 

FF’s are introduced in MC-MOSA.  

The construction of elliptic FF’s of MC-MOSA is shown in Figure 3-1 [24] 

 

 

Figure 3-1 Construction of Elliptic Fitness Functions 

 

In this figure, 21

~~
ff  defines the normalized objective space. A square area in this 

space is defined having corners at origin, G, (1,0) and (0,1). Origin corresponds to 

the normalized values of 
min,0

if  which are zero, and (1,0) and (0,1) points 

corresponds to the normalized values of max,0
if  which are one. This area covers all 

the possible solutions in or out of the feasible space. Cj are the centers of the 

ellipses placed on a quarter-circle with origin G and a pre-determined radius R. Pi is 

a particular solution corresponding to a design variable set xi. In each function 

evaluation i, the ellipses are constructed which are centered at Cj, passing through 
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point Pi and whose semi-major and semi-minor axes are aligned with the coordinate 

directions. Then, the semi-major axes are aligned with lines CjG by performing a 

rotation. The length of the semi-major axis of such an ellipse can be written as 

rQΛQra
TT ⋅⋅⋅⋅=        (3.5) 

where  
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In (3.6), 
21

1

e−
=κ  and e is the eccentricity of the ellipses. φ is the angle between 

the horizontal axis and the line CjG corresponding to each ellipse. 

In this fashion, centers of ellipses are uniformly spread along the quarter-circle, 

ellipses are constructed as described and semi-major axes are calculated. Then, the 

optimization problem becomes minimizing the semi major axes of the ellipses (i.e., 

Fj = aj). The minimum of each semi major axis corresponds to the point closest to a 

particular center. 

The above procedure may be extended for a three-dimensional problem, 

constructing ellipsoids in this case. The centers are distributed on the surface of an 

eighth of a sphere almost uniformly, since providing a perfect uniformity is rather 

difficult and not necessary for the purposes of MC-MOSA. The rotation required to 

direct the semi-major axes towards G is defined as such: To align 1

~
f  axis with the 

line connecting point C to the center of the sphere G, first rotate by an angle φ along 

3

~
f  axis, then rotate by an angle θ around the negative 2

~
f  axis direction. The semi-

major axis of such an ellipsoid may be written as 

ddd

T

d

T

dd rQΛQra
333333 ⋅⋅⋅⋅=       (3.7) 

where  
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3.2 Algorithm Definition 

This section describes the optimization algorithm used in this thesis, which is MC-

MOSA with some modifications. A two-loop optimization method, which was not 

present in the original MC-MOSA, is investigated in this thesis. It is applied in [23] 

for single objective optimization. In this thesis it is extended to multiobjective 

problems.  

In two-loop approach, the optimization process is carried out in two concentric 

loops. In the inner loop, control parameters are changed while remaining parameters 

are kept constant. Geometry, thrust and initial condition parameters are changed in 

the outer loop more slowly. In the beginning of each outer loop, temperatures for 

each FF are reset. The parameter groups are given in Chapter 4. 

As mentioned in the end of Section 2.3.1, DATCOM is the main time-consuming 

element of the algorithm. By applying two-loop optimization, aerodynamic 

database generation process is needed only in the outer loop, greatly improving the 

algorithm run times. If all the parameters are changed in one loop, for a total of 10k 

function evaluations, it takes roughly 12 hours (using a PC that has AMD-2800 

processor and 512 MB of RAM) to complete one of the case studies of Chapter 4. 

In the two-loop approach; for the same number of loops and using the same 
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machine, this duration is reduced to only about 1.5 minutes, allowing much more 

loops to be applied and hence improving the accuracy of the results. 

The steps of the modified MC-MOSA are as follows: 

STEP 1 PERFORM INITIAL STEPS 

Step 1.1  Define the numbers of design variables and FF’s. Define allowed 

number of function evaluations (FE). Define eccentricity for FF’s 

(ellipses/ellipsoids) and radius of the circle/sphere upon which FF 

centers are distributed. Define the probability value used in minimum 

semi-major estimation. 

Step 1.2 Initialize the temperature array whose elements correspond to initial 

temperatures for the annealing schedules of each fitness function. 

Step 1.3 Construct lower and upper bound vectors for design variables. 

Step 1.4 Initialize random number generators and determine the percentile 

point of the chi-square distribution corresponding to the dimension of 

design variable space. 

Step 1.5 Initialize test point vector to the mid-points between lower and upper 

bound vectors. 

Step 1.6 Distribute centers of the FF’s (ellipses/ellipsoids) on the surface of a 

circle/sphere and calculate rotation matrices Qj for each FF. 

Step 1.7 Define maximum and minimum reference values for each objective. 

Step 1.8 Define boundaries of feasible solution space. 

Step 1.9 Apply (3.3) to boundary points of feasible space and get normalized 

feasible solution vectors. 
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Step 1.10  Calculate semi-major lengths corresponding to boundary points of 

feasible space, assign maximum and minimum of them as upper and 

lower bounds for minimum semi-major estimation. 

Step 1.11  Initialize counters for number of function evaluations, accepted 

function evaluations and records. Assign initial values of 2nd best 

solutions array to all zero. 

Step 1.12 Generate the new set of control variables (new test point) based on 

current point by moving a random direction and with a random step 

size. In the beginning of each outer loop, also change geometry, 

thrust and initial condition variables when generating new point. 

(Step size is bounded so that the upper/lower bounds on design 

variables are not violated) 

Step 1.13 Evaluate the new test point (run the missile simulation) and obtain 

the values of objectives. Check for certain errors during evaluation, if 

encountered, break evaluation and go to Step 1.12. 

Step 1.14 Normalize the objective values. For maximization problems apply a 

proper normalization such that it is converted to a minimization 

problem. 

Step 1.15 Check whether the objective values are within the feasible space. If 

not, go to Step 1.12. 

Step 1.16  Calculate semi-major lengths corresponding to the initial test point 

using (3.5) or (3.7) and assign them as the initial values of best 

solutions array. 

STEP 2 START FUNCTION EVALUATION LOOP 

Step 2.1 Repeat Steps 1.12-1.15. 

STEP 3 START FITNESS FUNCTION EVALUATION LOOP 
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Step 3.1 Calculate semi-major lengths corresponding to the current test point 

using (3.5) or (3.7). If the current solution (semi-major length) is 

less than the best solution for the current FF,  

� Assign it to the corresponding element of best solutions array. 

Assign the previous best solution to the corresponding element of 

2nd best solutions array. 

� Estimate the minimum semi-major for the current FF. 

� Update the estimation bounds found in Step 1.10 so that current 

best solution is guaranteed to lie between them. 

� Bound the estimation using these bounds. 

� Update the corresponding element of the temperature array. 

� Activate record flag indicating a record is found currently. 

Step 3.2  If the current solution is not less than the best solution for the current 

FF, calculate acceptance probability. 

Step 3.3  Go to Step 3.1 until all FF’s are evaluated. 

STEP 3′ FINISH FITNESS FUNCTION EVALUATION LOOP 

Step 2. 2 If record flag is activated,  

� Archive current test point and objective values as a record. 

� Assign test point as the current point. 

� Increase record and accepted function evaluation counters by 1 

and deactivate the record flag. 

Step 2.3 If record flag is not activated, 
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� Find the FF that has the highest acceptance probability. 

� Accept the test point with the highest acceptance probability 

using a random number generator. If accepted, assign test point 

as the current point and increase accepted function evaluation 

counters by 1. 

Step 2.4 Check restart condition. If satisfied, randomly select a test point 

among the records found so far and make this point as the current test 

point. 

Step 2.5 Check whether an inner loop is completed. If so, reset each FF 

temperatures to initial temperature and go to Step 2.1. 

Step 2.6  Go to Step 2.1 until allowed number of function evaluations is 

reached. 

STEP 3′ FINISH FUNCTION EVALUATION LOOP 

STEP 4 Sort non-dominated solution points among the records to obtain the 

Pareto front. 

Some remarks concerning the modified MC-MOSA algorithm defined above are 

given in the following sections. 

 

3.2.1 Number, Sign Convention and Normalization of Objectives 

The algorithm covers both two and three objective problems and the choice can be 

made by adjusting a single parameter before running the algorithm. 

As stated earlier, negatives of the objectives that are to be maximized can be taken 

within the algorithm so that the problem becomes a whole minimization to avoid 

confusions among objectives. In the normalization equation (3.3), choosing 

reference values that has the same sign as the objective makes the normalized 
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values always positive, which prevents any sign confusion within the algorithm. 

Moreover, normalizing both objective values and feasible space boundary points 

with respect to the reference values (whose normalized values are 0 and 1) makes 

all the comparisons between feasible space and objectives consistent. Normalized 

solution space including feasible space is shown in Figure 3-2. 
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Figure 3-2 Normalized Solution Space 

 

3.2.2 Handling of Constraints 

The common approach in SA algorithms is to make the problem unconstrained by 

augmenting the design variable constraint functions of (3.1) to the objective 

function using penalty coefficients [16, 25]. This approach combines all the 

constraint functions into a single one, just like objective functions are combined 

into a scalar one given in (3.4). In [24], the following formulation is used for this 

purpose 
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To add constraint functions of different magnitudes, suitable penalty coefficients 

are required, just as weights for the case of objective functions. Then, this term is 

added to the scalar objective function so that the problem becomes minimizing this 

augmented objective function. If the problem includes lots of constraints, this 

method makes handling of them easier. However, it has some drawbacks: 

• This method does not guarantee that the resulting Pareto solutions satisfy the 

constraints on design variables, just gives the solutions that have the minimum 

constraint violation. 

• This approach requires some initial effort to find the accurate penalty 

coefficients which are related to the relative magnitudes of constraint functions. 

In a problem including many constraints, a considerable amount of initial trials 

may be required for that purpose.  

Tournament selection method given in [5] may also be applied for constraint 

functions [6]. Among the current and newly generated test points, the one having 

the smallest overall constraint violation is chosen as the new test point. Both this 

and the augmentation method rely on minimization of objective and constraint 

functions both, but tournament selection method treats objective and constraint 

functions separately. 

Another approach is to keep the problem constrained, track constrains as algorithm 

proceeds, if they are violated, reject the test point and generate a new one (rejection 

method) [21]. This approach eliminates the need for penalty coefficients. However, 

it also has some drawbacks: 

• This method decreases the likelihood of evaluating the points on the constraint 

boundaries. 
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• If the constraint boundaries define a relatively narrow region in the design 

variables space, that is, considerably narrower than the region defined by upper 

and lower bounds, it may take long times for the algorithm to pull the test point 

into that region, making the optimization ineffective. 

The constraint handling method used in modified MC-MOSA is described in 

connection to test point generation in the following section. 

 

3.2.3 Generating New Test Point 

Various methods are proposed for generating a new test point. Vanderbilt and 

Lougie [26] use random walk with a fixed maximum step size, where, for each 

variable, it is updated after a predetermined number of trials. The new set of step 

sizes is selected proportional to the inverse of the objective function’s Hessian. 

Corona et al. on the other hand displaces one optimization variable at a time [4]. 

Siarry et al. also selects the next test point using random walk, but only displacing a 

randomly selected subset of optimization variables [21]. In [4] and [21], the step 

size is kept constant for a predetermined number of iterations. 

Two additional methods are proposed in this thesis, which are closely related to 

constraint handling. These methods are intended to provide a general method for 

handling any type of constraints (linear, non-linear, discontinuous, piecewise, etc.) 

with any number of design variables, and especially for implicit constraint 

functions. For problems having lots of constraints, these methods become rather 

complicated and computationally intense, but they generalize all types of 

constraints and do not require explicit expressions for constraint functions.  

First one is called squeeze-and-replace method and depicted in Figure 3-3. This 

figure shows a two dimensional design space of variables x1, x2 with upper and 

lower bounds (0.2, 1.0), However, this method can be applied for any design space 

dimension. Design variables are constrained into the shaded region. In this method, 

the region defined by upper and lower bounds is squeezed so that constraint 
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function has at least one real value for every variable in the squeezed region, as 

shown with dashed lines. When generating new test points, the step sizes are 

bounded within this region. If a generated point P1 violates the constraint, one of the 

variables (which is previously chosen among the variables of this constraint) is 

moved to a point P1* on the constraint curve while others are kept constant. Thus, 

new test point becomes P1*. Squeezing guarantees that always a P1* can be found 

on that region. An algorithm using bisection method can perform this operation: 

Initialize x1 with its lower bound while keeping other variables as they are 

generated, increase x1, seek for a sign change in the constraint function value while 

halving the search interval and changing the movement direction in each sign 

change occurrence, iterate this operation until a predetermined convergence is 

satisfied and repeat the steps for upper bound. This process can be repeated for 

other dimensions of the design space using the values found in the previous loop. 

The whole process can be repeated for other constraint functions, obtaining the 

squeezed region covering all the constraints. And finally, the step sizes for 

generating new test point are limited by this region. By this way, always a P1* can 

be found corresponding to any variable. 
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Figure 3-3 Squeeze-and-Replace Method 
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The second one is called nearest point method and depicted in Figure 3-4. If a 

newly generated point P1 violates a constraint, the point on the constraint curve 

nearest to the test point (P1*) is selected as the new test point. In this method, the 

constraint curve, bounded by design variable bounds, is defined as a vector function 

of the variables belonging to that constraint. By differantiating this vector function, 

a point-to-curve method may then be used to find the point corresponding to the 

nearest distance. The corresponding algorithm requires derivative information, 

hence one has use a numerical derivative technique such as finite difference 

method. 
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Figure 3-4 Nearest Point Method 

 

Instead of these methods, a random point on the constraint curve may be selected as 

the new test point when constraints are violated. However, for implicit constraint 

functions this may not be an easy task and may require more computational power 

than the two methods.  
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The two methods proposed prevent evaluation of points beyond constraints and, 

although iterative, generate a replacement point in one-step instead of purely 

rejecting and generating a new one, probably many times. 

In modified MC-MOSA, a simplified version of squeeze-and-replace method is 

employed. Since the constraint functions used in case studies subject to this thesis 

are readily squeezed as in Figure 3-5, one variable is chosen and simply replaced 

while keeping other variables constant. 

 

0

1

2

3

4

5

6

0 1 2 3 4 5 6

x1

x2

P1

P0

P1*
g′(xi)

0

1

2

3

4

5

6

0 1 2 3 4 5 6

x1

x2

P1

P0

P1*
g′(xi)

 

Figure 3-5 Replacement of Test Point 

 

The variables chosen to be replaced for each constraint function are determined 

such that bounding that variable is anticipated to be more feasible than bounding 

others. For example, if a total impulse constraint is imposed on the thrust profile of 

a missile and if it is violated, it may be more feasible for engine designer to limit 

burning time instead of thrust levels since it can be adjusted by changing the 

burning surface geometry of the propellant. Or, if the root chord location of an aft 

wing from the nose is not to exceed the total length of the missile, changing the aft 
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wing location on the missile body may be more convenient than increasing length 

because an elongation of missile may be less tolerable in terms of design priorities. 

The constraints on objective values (which define the feasible solution space) are 

handled simply by rejecting and regenerating the test point when these constraints 

are violated, after the function evaluation step. 

For generating a new test point, the following steps are employed: 

• Generate a unit vector θ originating at the current test point and directing 

towards a random direction in the design variables space.  

• Choose random magnitudes Λ from uniform distribution such that 

( ) );1,0( max Ssx ∈⋅⋅+∈=Λ θλλ      (3.12) 

where S is the design variables space.  

• Set new test point y as 

maxsxy ⋅⋅Λ+= θ         (3.13) 

where smax is the maximum allowed step size to stay in the upper/lower bounds. 

It is updated in each function evaluation loop by: 

smax =  xi – xlower,i , λiθi ≤ 0      (3.14) 

  xupper,i – xi , λiθi > 0 

 

3.2.4 Acceptance of Test Points 

In the process of SA algorithms, 3 cases may be encountered: 

•••• If a test point improves all the objectives, that is, a design variable set lowers all 

the objective functions (FF semi-major lengths in the case of this thesis) with 
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respect to previous ones, that point is accepted and the new test point is 

generated based on this point (test points improving any FF is called “records” 

throughout this thesis).  

•••• If the test point improves some of the objectives and deteriorates others, that 

point is accepted with a 1 or less probability depending on the method used.  

•••• If a test point deteriorates all the objectives, it is accepted with a probability less 

than 1. After evaluating the probability if it is rejected, the new test point is 

generated based on the last record.  

The acceptance probability may be calculated by various methods, the most 

common ones employed are presented in [24]. In MC-MOSA, if any of the FF 

semi-major lengths improve, then the test point is accepted with probability one. 

Otherwise the highest probability acceptance value is used. For each FF, the 

probability is calculated by 


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where x is the current test point and y is the candidate for current test point. 

 

3.2.5 Annealing Schedule 

In MC-MOSA, each FF has its own temperature parameter and cooled individually. 

Whenever a FF is improved, its temperature is updated as follows: 
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where )1(2
pd −χ  is 100(1 − p) percentile point of the chi-square distribution with d 

degrees of freedom. ∗

jF
~

 is the minimum semi-major estimation for that FF. It is 

calculated using the following heuristic estimator: 
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Parameter p corresponds to the probability that the real minimum is larger than its 

estimate 
∗

jF
~

 and d is the number of design variables. 

As shown in [23], using the estimator with upper and lower bounds results in a 

better estimator and improves the convergence rate. The upper and lower bounds in 

modified MC-MOSA are found by calculating semi-major values corresponding to 

the corner points of the feasible space, and taking the maximum and minimum of 

them as bounds. These bounds are further updated so that the current best solution 

lies between them. This improves the reliability of the estimation. 

Kirkpatrick [10] suggested that a suitable initial temperature (T0) is one that results 

in an average probability 0χ  of a solution that increases f being accepted of about 

0.8. The value of T0 will clearly depend on the scaling of f and, hence, be problem-

specific. It can be estimated by conducting an initial search in which all increases in 

f are accepted and calculating the average objective increase observed +
fδ . It is then 

given by: 

0

0
χ

δ +

=
f

T          (3.18) 

Alternatively, if the standard deviation 0σ  of the variation in the objective function 

observed during this initial search is calculated, then the formulation of White [27] 

can be used: 

00 σ=T          (3.19) 
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Since (3.16) defines an adaptive cooling, the initial temperature has minor effect in 

the course of function evaluation loops. Regardless, (3.18) is employed in modified 

MC-MOSA to initialize the temperature array for FF’s. As mentioned in Section 

3.2, FF temperature array is also initialized in the algorithm at the beginning of each 

outer loop. 

 

3.2.6 Restart Condition 

If the SA search is no longer making progress, i.e. many loops have passed since a 

new best solution was last found, a strategy by which the search is restarted from a 

random test point selected among the best solutions found thus far (while keeping 

the temperature unchanged) can prove effective. Such a restart strategy must be 

used with caution, since, if the conditions under which a restart is made are met too 

easily, only a limited part of the search space (possibly only a local minimum) will 

be explored. 

In modified MC-MOSA, restart is applied when no record is found for a certain 

percent of maximum allowed number of function evaluations, which is called restart 

coefficient (RC). The effects of this parameter on the performance of the algorithm 

are investigated with some parametric studies presented in Section 3.3 and also in 

Chapter 4. 

 

3.2.7 Selection of Non-Dominated Points 

When all the function evaluation loops ends, the non-dominated points (or Pareto-

optimal solutions) are selected among the records. To do this, objective pairs (or 

triples in 3-objective problem) are sorted with respect to first objective in ascending 

order. In this objective array, the rows where the second (or third) objective is 

descending are non-dominated points and they constitute the Pareto front. In formal 

words, a design variable set d
Sx ∈*  corresponds to a Pareto-optimal solution if 
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there does not exist another d
Sx ∈  such that )(*)( xfxf ii ≤  for all i; and 

)(*)( xfxf jj <  for at least one j. 

 

3.3 Sample Results 

The modified MC-MOSA algorithm was tested against two simple multi-objective 

optimization problems with two and three objecives. The result are presented 

below. 

The first problem is from [24]: 

minimize xf =1  , yf =2       (3.20) 

subject to 025
2)3(5.0 ≤−+ −−− yee xx  

50,50 ≤≤≤≤ yx  

In Table 3-1, some input parameters and resulting number of non-dominated 

solutions of this sample run are given. 

 

Table 3-1 Parameters of Sample Problem #1 

FEN FFN e R p NDP 

5000 250 0.999 2 0.01 418 

 

 

The resulting Pareto points are shown in Figure 3-6 along with the curve defined by 

constraint function. This curve actually defines the exact Pareto front for this 

problem. No Pareto points exist on the middle portion of the curve because of non-

dominated selection. 
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Figure 3-6 Pareto Points for Sample Problem #1 

 

In [24], MC-MOSA is compared with NSGA-II for this sample problem, which is a 

famous genetic algorithm used in multiobjective optimization. The comparisons are 

made through some parametric studies.  

The same studies were performed for modified MC-MOSA and the results are 

presented below along with the results of NSGA-II and original MC-MOSA. The 

quality metrics defined in Appendix B are used for comparison. The function 

evaluation number (FEN) is chosen the same as the study of [24], which is 10k. 

NSGA-II parameters in these studies are given as 100 population evaluated for 100 

generations. Number of elliptic FF’s (FFN) used MC-MOSA is given as 250, the 

same is utilized in modified MC-MOSA. For each algorithm 30 runs of this sample 

problem are performed, the resulting average values and standard deviations of the 

quality metrics are tabulated in Table 3-2. 
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Table 3-2 Comparison of Algorithms for Sample Problem #1 

 NSGA-II MC-MOSA 
Modified 

MC-MOSA 
 Av. SD Av. SD Av. SD 

NDP 73.9 16.1 65.4 6.4 487.2 26.0 
HD 0.390 0.012 0.386 0.004 0.383 0.006 
A 37.9 27.5 66.1 15.4 42.1 21.0 
OS 0.719 0.180 0.875 0.028 0.702 0.064 
CL1/25 3.29 1.04 2.20 0.19 15.82 1.13 
CL1/100 1.43 0.37 1.14 0.05 4.41 0.26 
CO1/25 23.9 7.1 29.7 1.7 30.9 2.1 
CO1/100 55.1 17.3 57.4 5.3 110.6 5.8 

 

 

It may be observed from the table that modified MC-MOSA generated much more 

non-dominated points (NDP) than the other algorithms. It also performed slightly 

better than NSGA-II and nearly same as MC-MOSA in terms of HD. Its accuracy 

(A) metric lies in-between, nearer to NSGA-II. It has a worse average overall 

spread (OS) than MC-MOSA and NSGA-II, but observing standard deviations it 

can be said that OS performance is somewhat better than NSGA-II. Due to the 

definitions given in Appendix B, CL metrics are not conclusive here because NDP 

values of modified MC-MOSA are much more than the others. For low cluster step 

size (CO1/25), performance of modified MC-MOSA is better than NSGA-II and 

nearly same as MC-MOSA. For low cluster step size (CO1/100) it is quite better than 

the others. In general, modified MC-MOSA performed quite better than NSGA-II in 

terms of these quality metrics for this non-convex problem. It can be said that its 

general performance is also superior to original MC-MOSA due to much better 

NDP and better CO metric. It can be commented that modifications in constraint 

handling and test point generation methods may have a huge impact on these 

results. 

Second problem is a 3-objective problem; 
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minimize 
x

f
10

1 = , yf −=2 , 523 ++= yxf     (3.21) 

subject to 102 1 ≤≤ f , 05 2 ≤≤− f , 205 3 ≤≤ f  

  50 ≤≤ x , 50 ≤≤ y  

In Table 3-3, some input parameters and the resulting number of NDP for this 

sample problem are given. 

 

Table 3-3 Parameters of Sample Problem #2 

FEN FFN e R p NDP 

20000 100 x 100 0.999 2 0.01 1444 

 

 

The resulting Pareto points are shown in Figure 3-7. In order for a design problem 

to be a multiobjective optimization problem, it has to be formulated such that an 

improvement in one objective causes at least one deterioration in the other(s). This 

problem satisfies that property, and in accordance with the definition given in 3.2.7, 

each point on the Pareto surface of Figure 3-7 is an improvement over some other 

points, along at least one objective dimension. 
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Figure 3-7 Pareto Points for Sample Problem #2 
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CHAPTER 4 

 

4CASE STUDIES 

 

 

Modified MC-MOSA algorithm described in Chapter 3 is applied to 5 different 

missile multiobjective design optimization problems, utilizing the modified 2-DOF 

simulation described in Chapter 2. These are 2 and 3 objective problems. Some 

parametric studies are also carried out to investigate the performance of the 

algorithm for different input conditions. This chapter presents the results of these 

studies. 

The optimization problems are as follows: 

• Maximize range, minimize flight time. 

• Maximize range and hit velocity. 

• Maximize hit angle and hit velocity. 

• Maximize trim lift coefficient, minimize trim drag coefficient for a specific 

flight condition.  

• Maximize range and hit velocity, minimize flight time. 

The specific flight condition 4th problem is defined by the angle of attack and Mach 

number as α=2°, M=0.65. These are some typical average values for after-burnout 

flight phase of the baseline missile of this thesis. Although the average values 
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apparently change for each design variable set, these values are assumed so that the 

resulting CL,trim and CD,trim and can be used as a measure of the aerodynamic 

effectiveness of the configuration for most of the flight. 

The case studies are tabulated in Table 4-1. In accordance with the description 

given in Section 3.2.1, maximization problems are converted into minimization by 

properly normalizing the associated objective. 

 

Table 4-1 Case Studies 

Case 
Study  # 

# of 
Objectives 

Maximize Minimize 

1 2 R  t 

2 2 R, Vhit  

3 2 θhit, Vhit  

4 2 
CL,trim 

(α=2°,M=0.65) 
CD,trim 

(α=2°,M=0.65) 

5 3 R, Vhit  t 

 

 

The inequality and equality constaints imposed on the design variables are given in 

Table 4-2. Also given is the replaced variable for each constraint (see Section 3.2.3 

for information on replaced variables). Some other equality constraints which are 

not included in this table are also employed, they are described in sections 2.1 and 

2.2. 
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Table 4-2 Constraints on the Design Variables of Case Studies 

# Constraint Definition Replaced Variable 

1 c1,2 − c1,1 ≤ 0 c1,2 

2 Lnose − xle,1 ≥ 0 xle,1 

3 c2,2 − c2,1 ≤ 0 c2,2 

4 xle,2 − (Lnose + Lbody − c2,1) ≤ 0 xle,2 

5 c3,2 − c3,1 ≤ 0 c3,2 

6 c3,3 − c3,2 ≤ 0 c3,3 

7 tb − 30000 / Td  ≤ 0 tb 

8 xle,3 − xle,2 − c2,1 = 0 - 

9 δlim,max + δlim,min = 0 - 

 

 

As described in Section 3.2, a two-loop optimization method is used in these studies 

(except CS#4). The parameters changed in outer and inner loops and the upper and 

lower bounds on them are given in Table 4-3 and Table 4-4, respectively. 
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Table 4-3 Outer Loop Design Variable Bounds for Case Studies 

 Lower Upper Unit 
tb 2 4 s THRUST 

PARAMETERS Td 5000 10000 N 
Bnose 5 10 cm 
Laft 0 10 cm 
b1,2 3 7 cm 
lmax1 / c 0.1 0.2 - 
c1,1 10 15 cm 
c1,2 5 10 cm 
t1 / c 0.01 0.02 - 
Λte,1 -10 5 deg 
xle,1 25 35 cm 
b2,2 5 10 cm 
lmax2 / c 0.1 0.2 - 
c2,1 40 60 cm 
c2,2 28 38 cm 
t2 / c 0.01 0.02 - 
xle,2 80 110 cm 
b3,2 4 7 cm 
c3,1 6 9 cm 
c3,2 6 9 cm 
c3,3 0 9 cm 

GEOMETRY 
PARAMETERS 

δlim -30 -20 deg 
z0 100 0 m 
V0 0 20 m/s 
γ0 5 10 deg 

INITIAL 
CONDITION 

PARAMETERS 
α0 -1 3 deg 

 



 75

 

Table 4-4 Inner Loop Design Variable Bounds for Case Studies 

 Lower Upper Unit 
τ 0.2 0.7 s 
eper 0.85 0.95 - 
αhit -25 -5 deg 
zhit 300 50 m 

CONTROL 
PARAMETERS 

αnode,i 0 5 deg 
 

 

All the objectives are given some reference and feasible values. Reference values 

(f0
min , f

0
max) are used in the normalization equation (3.3). They are chosen as zero 

for one extreme, and a high value for other extreme. The high values represent the 

ideal best or worst values anticipated for the objectives. Feasible values, on the 

other hand, are the practical best and worst values expected. They define the limits 

of objectives in optimization algorithm. Moreover, they are used in calculation of 

estimation bounds as described Section 3.2.5. Reference and objective values are 

given in Table 4-5. 

 

Table 4-5 Reference and Feasible Values for the Objectives of Case Studies 

 R (m) t (s) 
θhit 

(deg) 
Vhit 

(m/s) 

CL 

(α=2°, 

M=0.65) 

CD 

(α=2°, 
M=0.65) 

f
0
min 0 0 0 0 0 0 

f
0
max 14000 80 90 600 2 2 

fmin 2000 5 20 100 0.1 0.1 

fmax 12000 60 90 500 0.5 0.5 

 

 



 76

In all of the following studies, eccentricity values for FF’s are taken as e = 0.99, 

radii of circle/sphere on which FF centers are placed are taken as R = 2 and 

probability values used in minimum semi-major estimation are taken as p= 0.01. 

 

4.1 Pareto-Optimal Solutions for Case Studies 

This section covers the graphs showing the record points and the non-dominated 

points for each case study and comments on them. The feasible regions are also 

shown in each graph. Feasible region is one side of Pareto front that contains the 

point corresponding to the worst Pareto-optimal solution of each objective, which is 

also called “nadir point” [6].  

Some intermediate Pareto-optimal solutions are chosen from each graph, these 

solutions and the corresponding design variables are presented in Appendix, Table 

A.1. The flight trajectories and angle of attack profiles for the two extreme Pareto-

optimal solutions of each CS, as well as those for the intermediate solutions of 

design variable sets of Table A.1 are also given in the figures of Appendix. 

All studies were performed utilizing a total of 100k function evaluations (total of 

inner and outer loops) and 1000 inner loops, with the exception of CS#4. This 

problem was a one-loop optimization as will be described below and in each loop 

DATCOM had to be run. Hence, the algorithm run time dramatically increased 

(11.3 hours for 10k function evaluations). Consequently, a total of 10k function 

evaluations were utilized for CS#4. The algorithm run times were approximately 

7.5 minutes for CS#1, CS#2 and CS#3; and 14.6 minutes for CS#5.   

In all problems, if no records are found for 0.05 percent of allowed number of 

function evaluations, restart process defined in Section 3.2.6 was applied. For 2-

objective problems, 250 elliptic FF’s are used whereas for 3-objective problem, 

50x50=2500 ellipsoids are used. 
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Figure 4-1 Pareto Points for CS#1: Range vs. Flight Time 

 

Range vs. Flight Time turned out to be a convex problem and generated the most 

convex and clear front compared with the other case studies as seen in the figure 

above. Also it is seen that the ratio of NDP to number of records is quite higher for 

this problem than the others. It can be concluded that this is relatively the simplest 

multiobjective problem among other case studies.  

 



 78

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000

R (m)

Vhit (m/s)
Record pts

Non-dominated pts

FEASIBLE REGION 47 

non-dominated 

points

 

Figure 4-2 Pareto Points for CS#2: Range vs. Hit Velocity 

 

Range vs Hit Velocity problem resulted in a non-convex front. The records between 

the ranges ~6200 m and 8200 m are not included in the Pareto front because of non-

dominated selection. As proceeded from left to right in the figure, hit velocity 

decreases as range increases. However, after a point near 6500 m, velocity starts to 

increase for some time and then starts to decrease again at around 8200 m. This is 

because missile configurations of this portion gains so much altitude that the 

potential energy gains of them are enough to improve hit velocities as well as range 

(Altitude gain in this portion can be observed in Figure A.3). This portion is where 

range and hit velocity is non-conflicting for this baseline missile. It should also be 

noted that the border points between ~6200 m and ~6500 m are non-dominated by 

the left-side points but dominated by the right-side points of the front, hence they 

are excluded. 
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Figure 4-3 Pareto Points for CS#3: Hit Angle vs. Hit Velocity 

 

Hit Angle vs Hit Velocity problem turned out to be convex, but not many non-

dominated points were generated. Also the record points are more sparse and 

scattered. This problem can be interpreted as the most difficult one along with the 

3-objective one. 
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Figure 4-4 Pareto Points for CS#4: CL,trim vs. CD,trim 

 

For CL,trim vs. CD,trim problem; thrust, control and initial condition variables were not 

applicable because no flight simulation was needed, only DATCOM results 

corresponding to the specific flight condition (α=2°, M=0.65) were used. 

Consequently, a one loop optimization is performed using only geometry variables. 

This problem is also a convex one. Although non-dominated selection process 

caused Pareto points to be sparse for CL,trim values less than ~0.26, a fairly enough 

number of record points were generated in the neighbourhood of Pareto front so that 

it is well visualized.  It should be noted again that these are the results of only 10k 

function evaluations, implying that this is also a relatively simple problem (except 

for the long run time) along with CS#1. It appeared that a smaller upper limit for 

CD,trim (e.g. 0.3 instead of 0.5) may have been used to eliminate the scattered points 

in the upper region of the graph. 
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Figure 4-5 Pareto Points for CS#5: Range vs Flight Time vs Hit Velocity 

 

A partially-curve and partially-surface like cluster of Pareto points occurred for the 

3-objective problem of Range vs Flight Time vs Hit Velocity. Record points are not 

shown here not to deteriorate the visualization; however, it can be noted that 186 

record points were generated, 119 of which are non-dominated points. Showing the 

feasible space on this figure is somewhat difficult, but it is on the side of the Pareto 

front including the point “ R = 0 m, t = 100 s, Vhit = 0 m/s ” (ideal worst values - 

nadir point). 

 

4.2 Parametric Studies 

The modified MC-MOSA algorithm has mainly four basic parameters: Total 

number of function evaluations, inner loop number, number of FF, and restart 

coefficient. In this section the effects of these parameters in obtaining Pareto front is 
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examined by the help of Range vs. Flight Time problem. For this purpose some 

quality metrics are used. Many different metrics are proposed in the literature [12, 

28, 29]. The troubles associated with these metrics in evaluating the quality of the 

front have also been discussed in the literature [12, 29]. The quality metrics used in 

this study are taken from [24, 28] and also summarized in Appendix B. 

Following tables compare the effects of four basic algorithm parameters. Average 

and standard deviation values of quality metrics are given for 30 runs. In all the 

following tables, the nominal values of algorithm parameters used are FEN=100k, 

FENinner =1000, FFN=250 and RC=0.005. 

 

Table 4-6 Parametric Study for Function Evaluation Number (FENinner = 1000) 

 FEN=10k FEN=100k FEN=500k 
 Av. SD Av. SD Av. SD 
NDP 124.1 21.4 114.0 18.0 117.3 15.2 
HD 0.242 0.009 0.225 0.007 0.215 0.005 
A 39.3 11.4 77.8 21.2 133.7 28.6 
OS 0.234 0.036 0.318 0.032 0.386 0.028 
CL1/25 4.02 0.75 3.20 0.46 2.93 0.36 
CL1/100 1.46 0.15 1.31 0.09 1.26 0.06 
CO1/25 31.1 2.8 35.7 2.3 40.1 2.1 
CO1/100 84.7 8.6 86.8 8.8 93.1 8.9 

 

 

Parametric study for increasing FEN (Table 4-6) is actually equivalent to a study for 

increasing outer loop number (i.e. evaluating more geometry, thrust and initial 

condition variables), since inner loop number is kept constant. NDP values for this 

problem do not show an apparent improvement or deterioration as FEN increases, 

the average and SD values are not much different. Both average and SD values 

improve for HD and OS. Accuracy also improves with increasing FEN since 

average A metric is improving together with a slight improvement in the ratio of SD 
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to average. Since NDP values are close, CL metrics can be compared. All the CL 

and CO metrics are improving too. Hence, more FEN apparently improves the 

quality of the front. However, it dramatically increases the computational cost 

because of the reason described in Section 3.2. 

 

Table 4-7 Parametric Study for Inner Loop Number (FEN = 100k) 

 FENinner = 200 FENinner =1000 FENinner = 5000 
 Av. SD Av. SD Av. SD 

NDP 98.3 10.1 114.0 18.0 188.0 43.8 
HD 0.214 0.002 0.225 0.007 0.232 0.008 
A 124.9 20.0 77.8 21.2 65.9 20.1 
OS 0.392 0.021 0.318 0.032 0.295 0.038 
CL1/25 2.57 0.30 3.20 0.46 5.19 1.12 
CL1/100 1.20 0.06 1.31 0.09 1.71 0.27 
CO1/25 38.4 2.2 35.7 2.3 36.2 2.5 
CO1/100 82.0 6.4 86.8 8.8 108.6 10.7 

 

 

Increasing inner loop number (Table 4-7) means that less geometry, thrust and 

initial condition parameters and more control parameters are evaluated in the course 

of algorithm. Average values of NDP improve as inner loop number increases, 

however, the ratio of SD to average also increases. Hence no significant difference 

is observed between 200 and 1000 inner loops but for 5000 inner loops the 

difference in NDP is obvious, the increase in SD to average ratio is inferior in this 

case. HD, A and OS deteriorate as inner loop number increases. Since NDP values 

for 200 and 1000 inner loops are close, CL metrics can be compared. More 

clustering (CL) is observed for 1000 inner loops compared to 200 inner loops. For 

5000 loops NDP value is much different, hence CL metrics are not conclusive. 

Numbers of occupied cells for 25x25 grid are close for all the three inner loop 

numbers. For 100x100 grid they are close for 200 and 1000 inner loops, and they 

improve for 5000 inner loops. It should be noted here that less inner loops means 
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more outer loops for a constant FEN, and this leads to more algorithm run time 

because of the reason described in Section 3.2. 

 

Table 4-8 Parametric Study for Fitness Function Number 

 FFN=2 FFN=50 FFN=250 
 Av. SD Av. SD Av. SD 
NDP 43.4 12.5 79.0 11.3 114.0 18.0 
HD 0.258 0.009 0.223 0.007 0.225 0.007 
A 50.3 15.4 72.2 14.0 77.8 21.2 
OS 0.339 0.037 0.333 0.033 0.318 0.032 
CL1/25 1.82 0.34 2.32 0.32 3.20 0.46 
CL1/100 1.18 0.10 1.17 0.06 1.31 0.09 
CO1/25 23.5 3.9 34.1 2.2 35.7 2.3 
CO1/100 36.5 8.9 67.2 7.0 86.8 8.8 

 

 

NDP is improved as more fitness function is used (Table 4-8). HD is better when 50 

FF’s are used instead of 2, but no significant difference is observed when FFN is 

increased to 250. Actually, parametric studies presented in [24] showed that elliptic 

FF’s may not be so successful in terms of HD for convex problems. Accuracy 

shows a similar behaviour with HD. It improves for 50 FF’s, but even though the 

average value improves for 250 FF, the ratio of SD to average deteriorates, hence 

no significant accuracy difference occurs between 50 and 250 FF’s. OS metric 

deteriorates as FFN increases. Since NDP values are significantly different, CL 

metrics are not conclusive. Number of occupied cells for both 25x25 grids and 

100x100 grids improve, hence clustering is reduced with increasing FFN. In the 

light of these results and the parametric studies of [24], it may be more effective to 

use linear FF’s instead of elliptic ones for this problem (Range vs. Flight Time) 

since it is a quite convex one. 
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Table 4-9 Parametric Study for Restart Coefficient 

 RC=0.000025 RC=0.005 RC=1 
 Av. SD Av. SD Av. SD 
NDP 146.3 16.4 114.0 18.0 109.5 13.1 
HD 0.204 0.006 0.225 0.007 0.217 0.003 
A 220.8 25.0 77.8 21.2 120.9 30.5 
OS 0.441 0.022 0.318 0.032 0.373 0.023 
CL1/25 3.42 0.48 3.20 0.46 2.84 0.32 
CL1/100 1.34 0.07 1.31 0.09 1.25 0.08 
CO1/25 42.9 2.0 35.7 2.3 38.6 2.0 
CO1/100 109.1 7.2 86.8 8.8 87.7 7.1 

 

 

In Table 4-9, RC=0.000025 means restart process is applied if no record is found 

for only 3 funcion evaluations, and RC=1 means it is never applied. NDP does not 

change very much for RC=0.005 and RC=1 since the average decreases but ratio of 

SD to average decreases too. It improves when more frequent restart is applied. For 

intermediate RC; HD, A and OS take their worst values, very frequent restart is the 

best in terms of these metrics.  Since NDP of RC=0.000025 is significantly 

different, CL metrics are not conclusive, but RC=0.005 and RC=1 can be compared. 

CL metrics both are reduced when no restart is applied. In terms of CO metrics, 

RC=0.005 and RC=1 are close to each other whereas RC=0.000025 is the best. It 

seems that very frequent restart generates the front that has the best quality in terms 

of most metrics. 
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CHAPTER 5 

 

5CONCLUSION 

 

 

In this thesis, a recent SA algorithm called MC-MOSA was modified, applied to 

several multiobjective missile design optimization problems and the results are 

presented. Even though the baseline missile in this study was a surface to surface / 

air to surface anti-tank missile, the tool developed can be applied easily to any 

missile or rocket conceptual design optimization problem which aims to optimize 

basic performance parameters such as range, flight time and hit angle, and for 

which assumptions of 2.2 apply. As a future work, the simulation tool can be 

developed further by increasing the DOF and including seeker, guidance and target 

models, enabling the analysis of some other design objectives such as hit accuracy. 

One of the major aims in the development of the optimization tool was to run it 

interactively with DATCOM aerodynamic prediction tool so that a new 

aerodynamic database is generated automatically in each function evaluation loop. 

The major difficulty in this approach was the resulting long run times of the 

algorithm. An investigation on a simple function evaluation loop (covering all 

simulation and fitness function evaluation loops) showed that more than 90 percent 

of a typical loop is spent by DATCOM. Two-loop optimization greatly improved 

the run times since DATCOM is called only in the outer loop and the resulting 

database is used in all of the corresponding inner loops. Also, based on an 

observation on DATCOM databases, 2 databases were generated instead of 3 by 

making a justified assumption. This further improved the run times. In future works, 
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a less time-consuming aerodynamic prediction subroutine may be developed. Some 

studies on rocket/missile aerodynamic prediction given in [13, 14, 15] may be used 

for this purpose. 

The main highlights of the original MC-MOSA were carried to these studies, 

namely, the adaptive cooling schedule, elliptic/ellipsoid fitness functions and 

individual cooling schedules for FF’s. Moreover, several modifications were made 

to lessen the initial effort prior to the algorithm runs and to have a more automated 

and reliable code: 

• All maximization problems were converted into minimization problems and all 

objective values including feasible space boundaries were normalized with 

respect to reference solutions so that normalized solutions always lie in the 

interval [0,1]. This prevented any sign confusion during the development of the 

modified code. 

• Estimation bounds were calculated within the code, using feasible space bounds. 

They were further updated to guarantee that current best semi-major value lies 

between these bounds. 

• When no record is found for a certain percent of allowed number of function 

evaluations, restart was performed. 

• Replacement method shown in Figure 3-5 were employed for constraint 

handling, which is an effective way for evaluation of constraint boundaries for 

problems in which design variable bounds are squeezed as described in Section 

3.2.3. In other problems, however, one has to stick to constraint augmentation to 

the objective function with penalty coefficients, or develop algorithms based on 

methods proposed in Section 3.2.3, despite their disadvantages. 

• An initial temperature prediction method was used, even though it has minor 

effect in the course of optimization thanks to adaptive cooling. 

 



 88

A total of 40 design variables were employed, which can be grouped as geometry, 

thrust, initial condition and control variables. For such a high dimensional design 

space and highly nonlinear optimization problems, the algorithm proved effective in 

generating Pareto fronts with fairly good number of points in most of the problems. 

The effectiveness of the algorithm was further investigated by means of parametric 

studies and the effects of 4 optimization-related parameters were demonstrated by 

means of some quality metrics. 
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APPENDIX A 

 

SAMPLE MISSILE CONFIGURATIONS 

 

Table A.1 Sample Pareto-Optimal Design Variables and Corresponding Solutions 

for Case Studies 

 CS#1 CS#2 CS#3 CS#4 CS#5 Unit 
tb 3.05 3.01 3.03 - 2.82 s 
Td 7263.42 7508.99 7328.01 - 7706.84 N 
Bnose 6.97 6.99 7.62 6.12 7.59 cm 
Laft 6.03 6.19 4.54 9.09 5.06 cm 
b1,2 4.98 5.39 5.00 4.84 5.37 cm 
lmax1 / c 0.153 0.144 0.148 0.167 0.148 - 
c1,1 12.93 12.80 12.51 12.66 12.56 cm 
c1,2 7.68 7.82 7.27 7.73 7.25 cm 
t1 / c 0.0146 0.0119 0.0153 0.0128 0.0155 - 
Λte,1 -1.66 -2.74 -1.48 -4.745 -2.34 deg 
xle,1 30.94 29.33 29.89 31.31 29.83 cm 
b2,2 7.60 7.66 7.42 9.13 7.70 cm 
lmax2 / c 0.158 0.148 0.159 0.143 0.159 - 
c2,1 50.60 46.39 48.90 46.81 51.46 cm 
c2,2 33.84 32.19 33.54 33.31 31.89 cm 
t2 / c 0.0155 0.013 0.0142 0.0169 0.0158 - 
xle,2 92.70 90.80 96.93 92.78 95.86 cm 
b3,2 5.57 5.31 5.78 5.65 5.31 cm 
c3,1 7.65 7.95 7.69 7.96 7.71 cm 
c3,2 7.62 7.09 7.69 7.59 7.28 cm 
c3,3 5.79 4.28 4.38 4.82 5.08 cm 
δlim -24.80 -24.87 -24.87 -26.54 -25.24 deg 
z0 40.93 42.13 46.60 - 58.35 m 
V0 9.84 9.20 10.41 - 8.48 m/s 
γ0 7.39 7.17 7.34 - 7.79 deg 
α0 1.184 1.75 0.911 - 1.274 deg 



 93

 

Table A.1 (continued) Sample Pareto-Optimal Design Variables and Corresponding 

Solutions for Case Studies 

 CS#1 CS#2 CS#3 CS#4 CS#5 Unit 
τ 0.447 0.372 0.484 - 0.473 s 
eper 0.923 0.902 0.899 - 0.900 - 
αhit -16.82 -7.80 -22.18 - -17.01 deg 
zhit 120.01 110.02 185.06 - 187.16 m 
αnode,2 2.86 4.62 1.66 - 4.37 deg 
αnode,3 1.83 3.19 2.61 - 3.96 deg 
αnode,4 1.55 3.61 2.32 - 3.27 deg 
αnode,5 2.15 2.98 2.36 - 3.26 deg 
αnode,6 2.37 2.68 1.71 - 3.05 deg 
αnode,7 2.42 2.76 2.37 - 3.39 deg 
αnode,8 1.15 4.58 1.81 - 3.32 deg 
αnode,9 1.31 3.61 0.59 - 4.28 deg 
αnode,10 2.96 2.90 2.43 - 1.14 deg 
αnode,11 2.75 3.07 1.62 - 1.93 deg 
R 8028.6     8483.2 - - 8128.1  m 
t 34.1 - - - 49.9 s 
θhit - - 70.7 - - deg 
Vhit - 202.7 230.2 - 192.7 m/s 
CL,trim - - - 0.405      - - 
CD,trim - - - 0.227 - - 
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Figure A.1 Trajectories for Sample Missile Configurations of CS#1  
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Figure A.2 A.o.a. Command Profiles for Sample Missile Configurations of CS#1  
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Figure A.3 Trajectories for Sample Missile Configurations of CS#2  
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Figure A.4 A.o.a. Command Profiles for Sample Missile Configurations of CS#2  
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Figure A.5 Trajectories for Sample Missile Configurations of CS#3  
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Figure A.6 A.o.a. Command Profiles for Sample Missile Configurations of CS#3  

 



 97

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x (m)

z
 (

m
) min CL,trim

max CL,trim

intermediate CL,trim

 

Figure A.7 Trajectories for Sample Missile Configurations of CS#4  
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Figure A.8 Trajectories for Sample Missile Configurations of CS#5  
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Figure A.9 A.o.a. Command Profiles for Sample Missile Configurations of CS#5  
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APPENDIX B 

 

QUALITY METRICS 

 

In this thesis, the quality assessment of the frontier obtained through multiobjective 

optimization is conducted using four metrics proposed in [24, 28]. They are: the 

hyper-area difference (HD), overall Pareto spread (OS), accuracy of the observed 

Pareto frontier (AC), cluster (CL). 

The hyperarea difference is the area below the Pareto frontier, as shown in Figure 

B.1(a). Points A and B defines the bounding box around the Pareto front. Normally, 

HD shall be calculated using normalized objectives. Then, in general, it is claimed 

that the smaller the HD metric is, the better the observed Pareto solution set [28]. 

Overall Pareto spread (OS) is the area of the maximum rectangle constructed using 

the two extremes of the Pareto front (p1 and p2) as shown in Figure B.1(b). Again A 

solution set with the largest OS value is generally an indication that a particular 

front has spread to the extreme ends of the Pareto front, and consequently, it is 

comparatively better than a front with a smaller value. Accuracy (A) is a measure 

how smooth the observed front is. To obtain this metric, areas of the small 

rectangles constructed from neighboring solutions are summed up (Figure B.1(c)) to 

obtain a total area. The metric is defined as the inverse of this total area. If the 

solution set contains all the actual Pareto solutions (i.e., a continuous Pareto 

frontier), then the total area will be zero, causing the A metric to be infinite. Thus, a 

solution set with a large A value is better than the one with a smaller A value. It is 

desirable to have the solutions spread uniformly along the front. Clustering occurs, 

when too many solutions are found at certain parts of the front, while other parts are 

empty. To obtain the CLµ metric, the whole domain normalized objectives is 
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divided into square grids of size µ. Then, those rectangles occupied with a non-

dominated solution are counted. The total number of non-dominated solutions in the 

set is divided to the number of occupied rectangles. Ideally, to have a good spread, 

each rectangle shall be occupied by a single solution giving a CLµ metric equal to 

one. For example, in Figure B.1(d) there are four solutions in the front, while only 

three grids are occupied (i.e., CLµ = 1.25). Similarly, of the two solution sets 

having almost equal number of solutions, the one with a smaller CLµ metric shall 

be preferred. However, this comparison may not be meaningful if each set contains 

very different number of solutions. For this reason, in this thesis the number of cells 

occupied by a non-dominated solution (COµ) is also used as a metric. In this case, 

the greater the COµ value, the better the solution is.  

 

 

Figure B.1 Geometric Description of the Metrics Used in this Thesis [24, 28] with 

Normalized Objectives 


