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ABSTRACT 

 

 

 

PREDICTION OF THE TRANSIENT FORCE SUBSEQUENT  

TO A LIQUID MASS IMPACT ON AN ELBOW  

OF AN INITIALLY VOIDED LINE 

 

 

 

Kayhan, Bülent Abbas 

Ph. D., Department of Civil Engineering 

Supervisor: Assoc. Prof. Dr. Zafer Bozkuş 

 

 

February  2009, 263 pages 

 

 

 

The aim of the thesis, is to find the transient force applied by an individual 

transient liquid slug on an elbow at the end of a horizontal line due to an impact. The 

liquid slug is driven by pressurized air in a tank located upstream of the pipeline.  

The time dependent pressure distribution along the elbow and a vertical 

extension segment after the elbow was solved, with a 1-D numerical approach along 

a curved line mesh. For this purpose; firstly, a 3-D axial turbulent velocity profile 

function was assumed for the slug, with its shape allowed to sway towards the 

convex side of the elbow along the curved mesh with the aid of a calibration tool. 

Then, the pressure values were calculated by using 1-D application of 

Reynolds Equations in cylindrical polar and cartesian coordinates for the elbow and 

the vertical extension segment, respectively. The transient force acting on the elbow 
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and the following vertical extension segment was found by using these calculated 

pressure values and applying conservation of momentum principle over the volume 

elements selected along the elbow and the vertical extension segment.   

For the analysis of the slug motion from the pressurizer tank to the elbow, a 

previously written computer code BOZKUŞ-2 was utilized. Then, the elbow and the 

vertical extension segment calculations in this study were made with a new code 

KAYHAN, which is an improved version of BOZKUŞ-2.   

The calculated transient force and impact pressures at the elbow were also 

compared with those from previous studies.  

 

 

Keywords:  Liquid Slug, Elbow, Turbulent Velocity Profile, BOZKUŞ-2, 

KAYHAN, Transient Force  
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BAŞLANGIÇTA BOŞ OLAN BİR BORU HATTININ DİRSEĞİNE 

BİR SIVI KÜTLESİNİN ÇARPMASI SONUCU OLUŞAN  

TRANSİT KUVVETİN TAHMİNİ 

 

 

 

Kayhan, Bülent Abbas 

Doktora, İnşaat Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Zafer Bozkuş 

 

 

February 2009, 263 sayfa 

 

 

 

Bu tez çalışmasının amacı yatay bir boru hattının sonundaki dirseğe çarpan 

tekil bir su kütlesinin uyguladığı transit kuvvetin belirlenmesidir. Su kütlesi 

membada bulunan bir tanktaki basınçlı hava tarafından itilmektedir. 

Dirsekte ve ona bağlı, borunun bir düşey uzantı kısmındaki basınç dağılımın 

zamana bağlı değişimi, eğrisel bir hat şeklindeki ağ üzerinde 1 boyutlu nümerik bir 

yaklaşım ile çözümlenmiştir. Bu amaçla, ilk olarak 3 boyutlu bir eksenel, türbülanslı 

akım hız profili fonksiyonu tahmin edilmiştir ve bu fonksiyonun şeklinin seçilen hat 

üzerideki eğrisel ağ boyunca, kalibrasyon parametresi olarak kullanılan diğer bir 

fonksiyon yardımı ile dirseğin konveks tarafına doğru deforme olabilmesi 

sağlanmıştır.         

Basınç değerleri silindirik kutupsal ve kartezyen koordinatlardaki Reynolds 
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Denklemleri’nin, dirsek ve borunun düşey uzantı kısımlarında 1 boyutlu olarak 

uygulanması ile hesaplanmıştır. Dirseğe ve ona bağlı, düşey uzantı kısmına etkiyen 

transit kuvvet; hesaplanan bu basınç değerleri kullanılarak ve momentumun 

korunumu prensibinin dirsek ve düşey uzantı kısmı boyunca seçilen hacimsel 

elemanlar üzerinde uygulanması ile bulunmuştur.        

Su kütlesinin basınç tankından dirseğe kadar olan hareketinin analizi için 

daha önce yazılmış bir bilgisayar kodu olan BOZKUŞ-2 kullanılmıştır. Daha sonra 

bu çalışmadaki dirsek ve düşey uzantı kısmı için olan hesaplamalar, BOZKUŞ-2’nin 

geliştirilmiş bir versiyonu olan KAYHAN isimli yeni bir kod ile yapılmıştır. 

  Tezde, dirsekte hesaplanan darbesel basınçlar ve bulunan transit kuvvet 

değerlerinin daha önce yapılan çalışmalarda bulunan sonuçlarla karşılaştırılması da 

yer almaktadır.  

 

 

Anahtar Kelimeler:  Su kütlesi,  Dirsek,  Türbülanslı Akım Hız Profili, 

BOZKUŞ-2, KAYHAN, Transit Kuvvet  
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mF  : predicted force at the elbow with the numerical model,  

pF  : experimentally obtained peak force at the elbow, 

vecF


 : vectorial expression, 

xF  : force acting on the volumetric element in x -direction, 

xF  , yF  : x  and y  components of the total transient force acting on the 

elbow and the vertical extension segment, respectively, 

yF  : force acting on the volumetric element in y -direction, 

*F  : normalized force, 

g  : gravitational acceleration, 

xg , yg , zg  : components of gravitational acceleration respectively in x , y  

and z directions, 

rg , g  : components of gravitational acceleration respectively in r  and   

directions, 

g   : functional parameter as integrand, 

ig  , cig   : parameters having discrete values at points i , 

1h , 2h , 3h  : parameters for the geometry of the velocity profile function, 

h  : any integrand function for the line integral, 

1h , 2h , 3h   : values of the function h  over the nodes of the 1-D Gauss 

element, 

i , j , k  : incremental grid location in r ,   and z  directions, respectively, 

ip  : indice for the node number, 

AI  : area integral expression, 

nmAI ,;  : expression for the area integral over the mesh element in the circular 

domain A , with the mesh element’s center point at node nm, ; 

nmA
cI ,; : expression for the area integral over the central mesh element in the 

circular domain A , with the mesh element’s center point at node nm, ; 
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LI  : line integral expression, 

1LI  : integral expression, 

qLI ,  : expression for the line integral over the line mesh element with the 

mesh elements’s center point located at node q , 

*
uI , *

I , *
usI  : integral expressions, 

mK  : minor loss coefficient at the elbow, 

K   : upper boundary of the line integral, 

l  : mixing length, 

ml  : mixing length, 

L  : slug length remaining within the horizontal part of the pipeline, 

L  : scaling factor for length, 

aveL  : average length of the slug that occurs during the motion of the slug 

along the horizontal part of the pipeline, 

elbL  : central arc length of the elbow, 

extL  : length of the vertical extension segment after the elbow, 

finL  : final slug length of the horizontal pipe calculations , 

finalL  : final length of the slug remaining in the horizontal part of the pipeline 

obtained from horizontal pipe calculations,  

inL  : initial slug length, 

pL  : length of the horizontal part of the pipeline, 

sL  : instantaneous slug length at any time during its travel along the 

horizontal part of the pipeline,  

impsL  : slug length at the instant that the slug front enters the elbow, 

tL  : travel distance of the slug,  

totL  : total axial length of the elbow and the vertical extension segment, 

m  : indice for the radial location of the mesh element in the circular domain, 

M  and N  : number of mesh elements in the radial and the circumferential 

directions of the pipe cross-section, respectively, 
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MLPRSS : number of nodes for the line mesh used for the impact pressure 

calculation, 

LM : total number of clustered line mesh elements in case the domain of line 

integral is the whole diameter of the cross-section of the elbow, in r  direction, 

rtm  : Ratio of the circumferential mesh size to the radial one, at any cross-

section of the pipe, 

1cm , 2cm  : slopes of the calibration function, c , before and after its point 

of maximum, respectively, 

n  : indice for the circumferential location of the mesh element circular 

domain, 

NBOUND  : point on the s -curve at the boundary of the elbow and the 

vertical extension segment, 

NELBW  : number of nodes along the axis of the elbow, 

NLFF  : nodal number corresponding to the location of the slug front face 

along the s -curve,  

slugN  : number of nodes selected over the slug length, impsL . 

NSTOT  : total number of nodal points along the s -curve, 

ktanN  : number of tank pressure data points, 

n : outer unit normal vector, 

O  : center of curvature of the elbow, 

O : origin of the local coordinate system, 

O   : origin of the upper local coordinate system,   

cO  : origin of the coordinate system for the calibration function, c , 

p  : ensemble average local pressure, 

P : average pressure over the pipe cross-section, 

calcP  : calculated average pressure value at the elbow cross-section, 

DP  : driving air pressure acting on the slug upstream face, 

finalDP  : final driving air pressure value at the upstream face of the slug from 

horizontal pipe calculations at the instant that the slug front face reaches the entrance 

section of the elbow, 
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EP  : average liquid pressure retarding the motion of that part of the slug in 

the horizontal part of the pipeline, and acting at the entrance section of the elbow, 

calcEP  : calculated average liquid pressure retarding the motion of that part of 

the slug in the horizontal part of the pipeline, and acting at the entrance section of the 

elbow, 

0P  :  initial tank pressure at the pressurizer tank, 

atmP  : atmospheric absolute pressure, 

dP  : average pressure acting at the downstream face of the control volume, 

NLFFP  : atmospheric pressure at the front face of the liquid slug, 

NBOUNDP  : average pressure at the connection boundary of the elbow and the 

vertical extension segment, 

Op   :  local pressure at the center point O  of the elbow cross-section, 

pP , mP  and nP  : average pressures at the center points of respectively the 

previous, current and next volume elements on the s -curve, 

peakp  : peak pressure from program KAYHAN at the location of transducer  

#2. 

TP  : tank pressure, 

finalTP  : final tank pressure value from horizontal pipe calculations at the 

instant that the slug front face reaches the entrance section of the elbow,   

uP  : average pressure acting at the upstream face of the control volume, 

wP  : driving air absolute pressure acting at the upstream face of the slug, 

wetP : wetted perimeter, 

PO  : atmospheric pressure, 

gagePO  : atmospheric gage pressure, 

q  : any node number of the line mesh, also coinciding with the center point 

of a 1-D Gauss element, 

Q : discharge, 

KQ  : mesh size of the 1-D clustered line mesh, 
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r  : radial axis of the cylindrical coordinate system,   

R : internal radius of the pipe, 

R  : radius of the bottom circle of the lower cone, 

R   : radius of the bottom circle of the upper cone,   

Re  : Reynolds number, 

 RHS  :  right-hand side of equation, 

gR  : gas constant, 

0R  : radius of curvature of the elbow, 

mr  : given radial coordinate in the cross-section of the elbow, with respect to 

the cylindrical coordinate system,   

mR  : distance of the point of maximum velocity from the origin of the local 

coordinate system, measured along the y  axis,  

qr  : radial location of the center point of the 1-D Gauss element over the 

clustered mesh, with respect to the cylindrical coordinate system, 

s  : curvilinear coordinate, 

S   : surface area of the control volume, 

dS  : downstream pipe cross-sectional area for the control volume,   

ds , us  : location of respectively the downstream and the upstream faces of 

the current volume element at node ip , on the s -curve, 

elbs  : location on s -curve for the exit section of the elbow, 

exts  : location on s -curve for the exit section of the vertical extension 

segment, 

mS  : area of the mid-plane of the volume element perpendicular to pipe axis, 

maxs  : location on s -curve where the maximum value of c  occurs, 

ps , ms , ns  : location of the center points of respectively the previous, current 

and next volume elements on the s -curve, 

uS  : upstream pipe cross-sectional area for the control volume, 

n
frols  : slug front face location on the s -curve at ant time step n , 

s , t   : cartesian axes as parameters for coordinate transformation, 
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t  : time, 

T  : temperature, 

t   : scaling factor for time, 

int  : initial time of slug motion, 

fint  : final time of slug motion, 

nt  : time value at any time step n , 

U  : average slug velocity, 

U   : scaling factor for velocity, 

aveU  : average velocity of the slug taken over the cross-section of the elbow, 

bU


 : velocity of the boundary of the control surface, 

BU  : velocity of the back face of the slug,    

finalU  : final slug velocity obtained from horizontal pipe calculations, 

FU  : velocity of the front face of the slug, 

inU  : initial slug velocity, 

ixU  : fluid velocity relative to the global coordinate axis, on the surface i  for 

the control volume, and in the x -direction, 

mU  : maximum velocity on the assumed velocity profile function, 

pasU  : slug passage velocity through the elbow, 

rU


 : liquid velocity relative to the control surface boundary, 

riU  : fluid velocity relative to the control surface i , 

su : velocity profile function defined along the s-curve, 

suu , sdu  : axial velocity profile functions at the upstream and the downstream 

faces of the volume element,  

su  : average value of the assumed axial velocity profile function along the s -

curve, 

xU  : liquid velocity relative to the fixed reference frame, 

u  : axial velocity profile function in the elbow, in   direction, 

u  : average value of the velocity profile function in the elbow, in   
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direction, 

uu , du  : assumed and calibrated axial velocity profile functions evaluated at 

respectively the upstream and downstream faces of the control volume, 

V  : velocity within the air volume, in the x -direction, 

axialV  : axial velocity, 

V


 : velocity vector at any point of the flow, 

rV , V  : ensemble average local velocity components respectively in r  and 

  directions,  

rV  , V   : turbulence fluctuations of the velocity components respectively in r  

and   directions, 

rdV  : local radial velocity at the downstream face of the control volume, 

ruV  : local radial velocity at the upstream face of the control volume, 

 xV , yV , zV  : ensemble average local velocities respectively in x , y  and z  

directions, 

xV  , yV  , zV  : turbulence fluctuations of the velocity components respectively 

in x , y  and z  directions, 

xdV  : local velocity in x -direction at the downstream face of the control 

volume, 

xuV  : local velocity in x -direction at the upstream face of the control volume,  

yV  : average velocity in y direction, 

yuV , ydV  : local velocities in y -direction at respectively the upstream and the 

downstream faces of the control volume,  

dV  : local axial velocity at the downstream face of the control volume, 

uV  : local axial velocity at the upstream face of the control volume, 

V  : average axial velocity in  -direction, 

1w , 2w , 3w  : weighting coefficients, 

x , y  : cartesian coordinate axes, 

x , y , z  : coordinate axes for the local coordinate system, 
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x  , y  , z  : coordinate axes for the upper local coordinate system, 

inX  : initial slug position, 

0x , 0y , 0z  : coordinates for the apex point of the general cone equation, 

0x  , 0y  , 0z   : coordinates for the apex point of the upper cone with respect to 

the upper local coordinate system,   

wy  : distance from the pipe wall, 

1y  , 2y   : parameters for the geometry of the velocity profile function, 

z  : axis of the cylindrical polar coordinate axes,  

nz  : given z  coordinate in the cross-section of the elbow, with respect to the 

cylindrical coordinate system. 

 

Greek symbols:  

  : hold up coefficient, 

  : angular axis,  

d  : reference angle for the downstream face of the control volume,  

u  : reference angle for the upstream face of the control volume, 

p  : circumferential coordinate for the given cross-section of the elbow , with 

respect to the cylindrical coordinate system, 

xF , yF  : horizontal and the vertical components  of the reaction force 

applied by the pipe on the control volume, respectively, 

sL  : whole change in slug length during the travel of the slug from the 

pressurizer tank up to the elbow, 

WHP  : pressure rise due to sudden valve closure, 

qr  : length of the clustered line mesh element at node q , 

s  : axial length of the volume element, 

t , 1t , 2t : time increments for the horizontal pipe calculations, 

past  : slug passage time through the elbow, 

st  : time increment at any time step of the elbow and the vertical extension 
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segment calculations, 

1st  : first time increment value used for the elbow and the vertical extension 

segment calculations, 
n

st  : time increment at any time step, n , 

U  : change in slug velocity, 

W  : weight of the control volume, 

  : incremental angle of curvature over the infinitesimal element in the 

elbow, 

  : incremental angle of the mesh in   direction (angular direction), 

  : incremental length of the mesh in   direction (radial direction),   

  : volume of the selected pipe element, 




 : divergence operator, 

  : roughness height of the pipe wall, 

t  : turbulent eddy viscosity of the liquid, 

  : radial coordinate axis over the pipe cross-section,  

m : radial distance of the central node of the 9-point mesh element from the 

center-point of the domain of the circular cross-section, 

  : circumferential coordinate axis over the pipe cross-section,  

n  : angular distance between the line connecting the central node of the 9-

point mesh element to the origin of the circular domain, and the x  axis,   

 : dynamic viscosity of water, 

  : pi number, 

  : kinematic viscosity of the liquid, 

  : density of the liquid (water), 

a  : density of air,  

w  : density of water, 

  : circumferential axis of the cylindrical polar coordinate system,  

c  : calibration function for the angle at a selected point of the velocity 

profile function,  
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entc  : c  value at the entrance section of the elbow, 

extc  : c  value at the exit section of the vertical extension segment, 

maxc  : maximum value of c  along the s -curve, 

f  : angle for the gradient of the velocity profile at the pipe wall, 

  : shear stress value at wy  distance away from the circular pipe wall, 

0 : wall shear stress,  

  : divergence operator, 

  : volume of the control volume, 

r  : volume of the volumetric element, 

1  : volume of the bottom cone, 

2  : volume of the oblique upper cone, 

 : symbol indicating ensemble averaging. 

 
 
Subscripts: 

ip  : variable at this node  

L  : location of the left boundary of the gas volume, 

R  : location of the right boundary of the gas volume,  

S  : location of the right at the mid-time step. 

 

 

Superscripts: 

n  : time level, 

* : dimensionless parameter. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

 

1.1 Rationale for the Present Study    

Study of the impact pressures applied by high pressure air or steam driven 

liquid pockets, called slugs, formed in voided lines is an important phenomenon as 

far as the resulting potential damage on the pipelines is concerned. There are some 

different mechanisms that cause formation of speed motion of liquid slugs in nuclear 

power plants.  

One of these mechanisms is the creation of a condensate in steam lines of a 

power plant during its operation, and following motion of this condensate in the form 

of a liquid slug along a voided line (Kim [17]; Merilo and et al. [18]; Bozkuş and 

Wiggert [20]). Inadequate draining is one of the factors that yields the formation of 

condensate in a steam line which afterwards under the pushing effect of high 

pressure steam may accelerate along the voided line, and turn into a slug as a whole 

liquid pocket filling all the pipe cross-section during its motion. Then, the liquid slug 

which attains very high speeds along the pipeline may hit elbows, partially or fully 

open valves or junctions applying very high impact pressures on these parts of the 

pipeline. 

Another cause of slug creation in voided lines is the pushing effect of high 

pressure steam on water, collected in loop seal parts of the pipelines in power plants 

(Bozkuş [2]; Wheeler and Siegel [19]; Bozkuş and Wiggert [20]). A loop seal is that 

part of a pressurized water reactor which is located upstream the pressurizer safety 

and relief valves and it is used for preventing excessive gas leakage through these 

valves. When the upstream pressure in the reactor coolant system exceeds a 

previously defined limiting value, the safety or relief valves suddenly open to relieve 
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the excess pressure in the system. As soon as the valves open, the high pressure 

steam starts to push the water in the loop seal causing the formation of a liquid slug 

which attains very high velocities in the pipeline and applies high dynamic pressures 

on such pipe components as elbows, tees and valves as a source of potential damage.                      

The parameters to describe the hydraulic properties of the slug motion and the 

following impact event consist of initial mass and length of the slug, magnitude of 

the driving pressure acting on the upstream face of the slug, pipe material and pipe 

geometry. These hydraulic parameters are all effective in the value that the 

magnitude of the dynamic pressures on the pipe components will reach. Since the 

magnitude of the dynamic loads acting on the pipeline and its supports is a measure 

of the possible damage that the pipeline system will experience, a hydrodynamic 

analysis is essential to predict and mitigate any potential risk of damage to the 

pipeline system. This field of hydrodynamics that analyses the forces applied by 

propelled liquid slugs in voided lines is actually a subject on which a limited number 

of studies were have been performed so far and this makes the subject an issue that 

requires more attention. Also considering that pipeline systems and pipe supports and 

restraints constitute quite a large amount of the total investments to be made for 

nuclear power plants, prediction of the forces acting on these support and restraint 

structures becomes an important subject of research (Bozkuş [2]; Smith and Van 

Laan [21]).  

 

1.2 Specific Objectives of the Present Study    

In previously performed numerical studies related with estimation of impact 

pressures and dynamic loads applied by liquid slugs on elbows of initially voided 

lines, different 1-D mathematical models were proposed for the simulation of slug 

motion along straight pipelines and following impact events at elbows located at the 

end of the pipelines. Although these 1-D mathematical models were adequate enough 

to describe the actual flow conditions for the slug motion along straight pipelines, 

they have not included a much detailed modeling of elbow part calculations up to 

now. Actually, differing from case for the motion of a liquid slug along a straight 

part of a pipeline, the asymmetric axial velocity profile of a slug in an elbow part 

requires special attention to consider that distorted profile in a numerical model.  
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The aim of the present study is to predict numerically the transient force 

acting on a 90° degree elbow with its axis extending in the vertical plane, and on a 

following vertical extension segment, subsequent to a liquid mass impact on those 

parts. In the study, both of the elbow and the following vertical extension segment 

were taken to be located at the end of a straight and initially voided pipeline 

extending in the horizontal plane. For the part of the calculations that accounts for 

the motion of the liquid slug in the horizontal pipeline, a previous 1-D study 

performed by Bozkuş and Wiggert [2, 20] that contains gas and slug dynamics 

equations were utilized. And for the elbow and the following vertical extension 

segment calculations, a new 1-D analysis was performed with the intention of 

making a more detailed consideration of the flow in those parts, and by taking into 

account the variation of 3-D shape of the asymmetric axial velocity profile along the 

elbow and the vertical extension segment. 

 

1.3 Scope of the Present Study 

In the present study, the transient force acting on a 90° elbow and the 

following vertical extension segment was calculated by making a 1-D numerical 

analysis. For the analysis, a calibration technique was adopted to determine the 

unknown parameters for the change in the shape of an assumed 3-D axial velocity 

profile along the elbow and the vertical extension segment. For the calibration 

purposes, some experimental data of peak pressures obtained previously by Bozkuş 

[2] were utilized as reference values. By using the calibration function obtained from 

correlated data, various computer runs were made with different initial slug lengths 

and initial tank pressures to get a set of plots for the peak pressure time histories at 

the elbow and the time histories for the transient forces acting on the elbow and the 

vertical extension segment. The obtained results for the pressure peaks, and impact 

pressure and transient force time history plots were also compared with those from 

previously made studies.    

 

 

    

 



 
 
 
 

 
4 

 

 

 

CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

 

There are various studies performed by different researchers, related with the 

prediction of forces that arise due to impact of a liquid slug on an elbow of an 

initially voided pipeline, but the number of these works is not quite high. Those of 

them which are most relevant to the present study were carried out by Woo and 

Papadakis [23], Fenton [22], Bozkuş [2], Neumann and Griffith [24], Baran [27]. 

Woo and Papadakis [23] developed a mathematical model for the 

determination of hydrodynamic forces at pipe bends that arise while an initially 

voided pipeline system was being filled. In that study, a combination of rigid column 

theory and method of characteristics was utilized for the mathematical modeling. As 

a result of the analysis, discharges, and forces at the pipes and pipe bends calculated 

with that model were seemed to be smaller than those in a previous made model by 

Papadakis and Hollingshead [37]. The reason for this reduction was attributed to the 

fact that in the previously made model, minor head losses at pipe junctions and pipe 

bends had been neglected; and therefore, it was indicated that the inclusion of minor 

losses became important if the velocities in the system were high [2, 23].    

Fenton [22] performed both an analytical and an experimental study with the 

purpose of predicting the forces at a pipe bend, induced by the impact of a liquid slug 

which was driven by air along a pipeline. The aim of the analytical study was to 

develop a simple method for the prediction of loads acting on the pipe supports. And, 

an experimental work was performed to check the validity of the analytical method 

developed in the same study. For this purpose, he used an experimental apparatus as 

shown in Figure 2.1. 
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Figure 2.1 Fenton’s experimental setup [22]. 

 

The experimental apparatus was composed of an air pressurizer vessel to 

supply high pressure air to the system and a 2-inch-diameter steel pipe was 

connected to this vessel. There was ball valve at the entrance of the steel pipe to 

control air flow to the system, and an orifice and a pressure transducer were also 

attached to the steel pipe. At the downstream side, a 1-inch-diameter plexiglass pipe 

which was inclined upwards was connected to the steel pipe. The connection here 

was made by means of a Tee section which was also utilized for the purpose of 

filling and draining water to the lower part of the plexiglass pipe. There was an 

elbow located at the downstream end of the plexiglass pipe, which was open to the 

atmosphere.           

Fenton carried out his experiments with different initial slug lengths, initial 

tank pressures, and also by varying the distance between the slug front face and the 

elbow at the downstream side.  

Fenton’s analytical model included some assumptions, the most restrictive of 

which was that the slug as a coherent mass. Due to this coherent mass assumption, 
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amount of liquid that was left behind during the slug motion was neglected. As other 

assumptions, the gas from the pressure vessel, driving the liquid slug was taken to be 

compressed isothermally and as ideal, and the slug flow was considered as 

incompressible. During the flow of gas and the liquid slug, the shear resistance acting 

on the flow at the pipe wall was taken into consideration. 

Fenton’s analytical study overestimated the impact loads at the elbow 

especially when the normalized slug travel distance was equal to or greater than 7 [2, 

22].   

Bozkuş [2] performed an experimental study together with an analytical 

modeling to investigate the hydrodynamics of a transient liquid mass driven by high 

pressure air in a voided line. For this purpose, he used an experimental setup which 

consisted of a pressurizer and a horizontal pipeline connected to this pressurizer, and 

at the downstream end of the pipeline there was a 90° elbow attached together with a 

vertical extension segment, as shown in Figure 2.2. There was also a  slug  generator 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 System setup used in Bozkuş’s study [2]. 

 

pipe (SGP) located between the pressurizer and a PVC ball valve. By selecting a 

SGP of any desired length and filling it with water, it was possible to generate slugs 

with different initial lengths. With this system setup, liquid slugs with various initial 
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lengths and under the propelling effect of different initial tank pressures were driven 

along the horizontal and initially empty pipeline and the pressure time histories that 

form due to impact of the liquid slugs on the elbow were recorded by the transducers 

mounted on the elbow as shown in Figure 2.2. As a result of the analysis it was 

concluded that long slugs lost more amount of their initial masses than did the short 

slugs during their motion along the horizontal pipeline. In addition, for long and 

medium slugs, two different peak pressures were observed in the pressure recordings 

with respect to time at the elbow. The reason for the occurrence of this double peak 

phenomenon was attributed to the disintegration of the slug mass into two pieces 

following the sudden opening of the ball valve upstream. Another conclusion drawn 

in this study was that more air entrainment effect was observed in the cases of short 

slugs than compared to long slugs and this difference between the two cases was 

explained with the reason that short slugs had a longer normalized travel distance. It 

was also indicated in that study that large amounts of air entrainment was a factor 

that caused significant reduction in the densities of especially short liquid slugs.  

Analytical study of Bozkuş [2] consisted of two different mathematical 

models. The  first  one  of  these  models,  called  “Simple Model” [2],  included  two 

different control volume analyses; one for the determination of peak pressures at the 

elbow and another for obtaining pressure time history plots for the variation of 

impact pressures at the elbow. The second mathematical model was called the 

“Advanced Model” [2] and in this model, in addition to the slug dynamics equations 

that was used in the Simple Model, another set of equations that also takes into 

account the gas dynamics effects were included as a further improvement. The peak 

pressures at the elbow were also calculated with this advanced model. Both of the 

analytical models gave the peak pressures at the elbow induced by the short slugs as 

being higher than the experimentally obtained ones. This overestimation of the 

analytical models was indicated to be due to the fact that the air entrainment effect 

was neglected in these models, which was a phenomenon that caused the density of 

the liquid slug to reduce and thus, the experimentally obtained impact pressures to 

become smaller as compared to those from the analytical models. The analytically 

obtained peak pressures for long and medium slugs were stated to match closely with 

the experimental results. A detailed explanation for the Advanced Model of Bozkuş 
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[2] is given in Chapter III together with the analytical methods followed in writing 

the computer codes with both the Simple Model and the Advanced Model.   

Bozkuş, et. al [20] published the findings of the study by comparing them to 

those from Fenton and Griffith [26] and it was stated that the normalized forces in 

Bozkuş’s experimental study were nearly the same as those given by Fenton and 

Griffith except that the results from Bozkuş’s study showed a variation of data over a 

relatively larger range of normalized force values. This discrepancy between the two 

results was indicated to be probably due to the differences in the experimental setups 

used. For example, it was pointed out that the pipe diameter in Bozkuş’s study was 

twice as large as the one in the case of Fenton and Griffith’s study.  In addition, it 

was expressed that the pipe in Bozkuş’s study was horizontal rather than the pipe  

inclined upwards pipe towards downstream that was used in the study of Fenton and 

Griffith. Furthermore, it was stated that in Bozkuş’s study, a ball valve was used to 

control the motion of the slug; however, Fenton and Griffith utilized a ruptured disk 

for the same purpose. In conclusion, Bozkuş and Wiggert [20] suggested that these 

differences between the experimental setups were likely to be the reason for higher 

scatter of data in Bozkuş’s study as compared to the values obtained by  Fenton and 

Griffith.   

Neumann and Griffith [24] studied how the forces acting on a 90° bend are 

affected if the bend is located downstream of a pipe expansion. As a result of an 

analysis by conducting a set of experiments it was concluded that the peak forces at a 

bend located after an expansion were very close to those that occurred in case of a 

pipe with a constant diameter. Another conclusion reached in that study was that for 

both types of the pipes considered, the slug traveling distances required for the force 

at the pipe bend to reduce to very small values were nearly the same. 

Baran also [27] carried out an experimental and numerical study to 

investigate the hydrodynamics of an individual transient liquid mass in voided line. 

Baran’s experimental setup consisted of an air tank and a pipeline which was 

inclined upward towards downstream, and this pipeline was connected to an air tank 

at its upstream  end   through   a    ball  valve as   shown in   Figure 2.3.   There was a  
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Figure 2.3 Experimental setup used by Baran [27]. 

 

sharp turn  elbow connected to the downstream end of the inclined pipeline, which 

was extending downwards in the vertical plane. A transducer was located on the 

elbow to be used with the purpose of measuring slug impact pressures at that point of 

the elbow. It was possible with this system to create slugs with desired initial lengths 

by filling water from the fill valve into the pipeline, and then drive these slugs under 

the action of high pressure air from the air tank along the inclined pipeline upon 

sudden opening of the ball valve. With this experimental setup, Baran conducted a 

set of tests by propelling slugs with different initial lengths and tank pressures and by 

measuring the impact pressures at the elbow. The experimental results from these test 

cases were compared with those from Bozkuş’s experimental study [2] and it was 

concluded that the results from both studies were in accordance with each other 

although there were some differences between the experimental setups used in these 

two studies as far as the sizes of the pipe diameters and the pipe inclinations selected 

were concerned. 

Baran’s numerical analysis was composed of the solution of Euler Equations 

with Godunov Method for the compressible gas part in the system shown in Figure 

2.3 and of the calculation of impact pressures at the elbow by utilizing a method 

proposed by Daugherty and et. al. [30]. In the mathematical modeling, the mass loss 
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from the slug body during the motion of the slug was neglected in Baran’s study. For 

the impact pressure calculation as suggested by Daugherty and et. al., a fictitious 

surge tank was assumed to exist at the elbow. Thus, the impact pressures were 

allowed to take values somewhere between those of sudden value closure case, and 

of a stagnation pressure estimates that would have computed with the use energy 

equation for an elbow open to the atmospheric pressure at one end. The impact 

pressures at the elbow computed with this method underestimated the peak pressures 

at the elbow with respect to those from the experimental findings obtained in the 

same study. As a result of this numerical analysis, it was concluded that the modeling 

of the elbow so as to give results between the cases of existence of a surge tank and 

of a sudden valve closure would have provided the improvement of the results for the 

peak pressures obtained at the elbow. 

Baran’s results [27] for the variation of normalized peak force with respect to 

normalized dispersion distance was compared with the values in Bozkuş’s [2] and 

Fenton’s [22] studies in Bozkuş, et. al [28]. From this comparison, it was concluded 

that Baran’s results complied with those of Bozkuş and Fenton although the 

normalized force values from Baran’s study had some tendency to remain on the 

conservative side as Fenton’s data. Making a comment on the obtained results from 

the three studies performed by Fenton [22], Bozkuş [2] and Baran [27], it was stated 

that there was a sharp drop in the normalized forces when the normalized slug travel 

distance with respect to initial slug length was greater than 6. Another conclusion 

drawn in this study was that the slanted configuration of the slug front shape with 

respect to the inclined pipeline had an increased effect in the occurrence of Taylor-

Instability and thereby resulting in more air entrainment into the slug body to take 

place especially for short slugs during their motion.  
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CHAPTER III 

 

 

MATHEMATICAL DEVELOPMENT FOR THE 

HORIZONTAL PART  

 

 

 

3.1 Introduction 

In the present study, the formulations for the calculation of impact pressures 

at the elbow of an initially voided horizontal pipeline applied by an air driven liquid 

slug are made in two stages. At first stage, the calculations required for the analysis 

of the motion of the liquid slug along the horizontal part of the pipeline is made by 

using a previously developed formulation by Bozkuş [2]. Then, in the second stage, 

final values for the hydrodynamics parameters obtained from the first part are used as 

initial conditions for the analysis of the motion of the slug in the elbow and the 

following vertical extension segment of the pipeline as the main purpose of the thesis 

In this chapter, a numerical analysis for the hydrodynamics of the motion of 

an air driven liquid slug along an initially voided horizontal pipeline, performed 

previously by Bozkuş [2], is presented. The system setup used by Bozkuş for this 

purpose is as shown in Figure 2.2 and the description of this system was given in 

Chapter II.  The mathematical formulation given in this chapter which was named as 

“Advanced Method” [2] in Bozkuş’s study covers the description of the accelerated 

motion of an individual liquid slug from zero initial velocity upon a sudden valve 

opening, under the action of the driving effect of high pressure air acting at the 

upstream side of the slug. The mass loss from the liquid slug due to its interaction 

with the pipe wall during the slug motion along the horizontal pipeline is also 

considered with the use of a calibration parameter. The flow of the high pressure gas 

upstream the liquid slug is analyzed by using 1-D gas dynamics equations and thus, 

the waterhammer effects within the region of slug driving gas volume is taken into 
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account. The solution of gas dynamics equations are made with method of 

characteristics and the mathematical expressions obtained from this part are coupled 

with a set of slug dynamics equations obtained from a control volume analysis, to 

close the system. During the solution, the upstream pressure boundary condition for 

the system is taken as the tank pressure at the pipe inlet and the downstream 

boundary condition is the zero atmospheric pressure at the slug front face. The 

calculations are performed until the computational procedure results in the case that 

the slug front face of the liquid slug reaches the elbow at the downstream end of the 

horizontal pipeline. The values for the slug driving pressure and the slug velocity 

corresponding to the arrival time of the slug front face at the entrance section of the 

elbow were then, taken to be utilized as initial conditions for a second stage of 

calculations that were made for the analysis of the slug motion within the elbow and 

the vertical extension segment of the same system shown in Figure 2.2. 

In the following subsections, the derivation of slug dynamics equations with a 

control volume analysis, and the formulation for the flow of the gas driving the liquid 

slug by using 1-D gas dynamics equations and method of characteristics are 

presented. An algorithm that explains the use of the resulting equations from the 

above procedure is also given. In Section 3.5 of this chapter, a new formulation for 

the calculation of a functional hold up coefficient that was developed in the present 

study as an improvement of Bozkuş’s [2] Advanced Method is also presented.  

 

3.2 Slug Dynamics Equations 

To analyze the motion of a liquid slug propelled by upstream high pressure 

air along a horizontal pipeline, Bozkuş [2] made a control volume analysis by 

selecting a control volume as shown in Figure 3.1. Then, he applied the conservation 

of mass and conservation of momentum principles over this control volume. 

For the analysis of the slug motion, a set of simplifying assumptions were 

made. These assumptions are that: 

a) The slug flow is accepted as one-dimensional, incompressible and planar. 

b) Liquid density is constant. 

c) Pipe material is rigid and the pipe does not vibrate or move in any 

direction during the slug motion. 
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Figure 3.1 Control volume for the liquid slug selected by Bozkuş [2] along the 

horizontal pipeline.  

 

d) Gas (air) does not entrain into the liquid slug (water), in other words, one 

phase assumption is valid during the entire motion of the slug. 

e) A quasi-steady flow assumption is made to find the shear resistance to the 

slug flow. 

f) Some of the slug mass is lost during the motion. 

The mass loss from the liquid slug during its motion due to interaction of the 

slug with the pipe wall by means of shearing effects was taken into account by using 

a hold up coefficient,  . An   value for the hold up coefficient means that the slug 

loses its mass through a percentage of 1-  of pipe cross-sectional area, during its 

motion. For example, if   value is equal to 0.99, it means that slug losses its mass at 

a rate of 1% of the total pipe cross-sectional area. Thus, during the motion of the 

liquid slug by a distance of x  along the horizontal pipeline, an amount of mass loss 

from the slug equal to the value of   xA 1  occurs. Here, the meanings of the 

symbols are as, 

 : density of water  

and 

A  : pipe cross-sectional area. 

The hold up coefficient value,  , can only take values between 0 and 1. The 
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  value being equal to 1 indicates that there is no hold up or mass loss from the 

slug, while decreasing values of   indicates that more amount of mass loss from the 

slug is taking place.  

In Bozkuş’s study [2], during the motion of a liquid slug along the horizontal 

pipeline only single, selected fixed values of hold up coefficients were used in the 

calculations. However, in the present study, a function was developed which 

accounts for the variation of the value of the hold up coefficient,  , along the 

horizontal pipeline during the slug motion, in terms of the normalized travel distance 

of the liquid slug with respect to instantaneous slug length. The mathematical 

procedure for the development of this function is given in Section 3.5 of this chapter.  

With the above indicated simplifying assumptions, the application of 

conservation of mass and conservation of momentum equations are given in the 

following subsections. 

 

3.2.1 Conservation of Mass Equation   

For the analysis of the slug motion, firstly the conservation of mass equation 

was written in its integral form for a control volume which is moving together with 

the liquid slug along the horizontal pipeline, as shown in Figure 3.1: 

 

    0







  dSnUdSnUd

t
.S.C

r

S.C

b

.V.C


               (3.1) 

 

In this equation bU


 and rU


 stand for the velocity of the boundary of the 

control surface, and the liquid velocity relative to the control surface boundary, 

respectively. Also, S  is the surface area and   is the volume of the control volume 

selected. 

Canceling first and second terms of Equation (3.1) and then, applying 

remaining part of Equation (3.1) and the relations   

 

           AA 1                            (3.2) 

                                                          AA  12                                                   (3.3) 
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             AA 3                                                         (3.4) 

                                                       FBr UUU


1                                                  (3.5) 

              Fr UU


2                                                    (3.6) 

and 

              03 rU


                                                      (3.7) 

 

to the control volume in Figure 3.1;  Equation (3.8) below is obtained (Bozkuş [2]).  

 

                                            BF UU                                                  (3.8) 

 

In above equations, 

A : cross-sectional area of the pipe, 

1A , 2A , 3A  : areas of the parts of the pipe cross-section as shown in Figure 

3.1, 

riU : fluid velocity relative to the control surface i , 

BU  : velocity of the back face of the slug,    

FU  : velocity of the front face of the slug, 

n : outer unit normal vector. 

Now, apart from the above conservation of mass principle, a differential 

equation which relates the hold up coefficient,  , to the slug length, L , is utilized as 

given below. 

 

                                BF UU
dt
dL

                 (3.9) 

 

Solving for BU  from (3.9) and substituting into (3.8), the following 

expression is obtained: 

 

                    FU
dt
dL )11( 


                                          (3.10) 
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The resulting equation given in (3.10) is actually a form of continuity 

equation and given a value of hold up coefficient α, this equation can be used as a 

relation between the slug length L and the slug front velocity UF. 

 

3.2.2 Conservation of Momentum Equation 

The general form of the conservation of momentum equation utilized is of the 

form 

 

                     

.S.C

rx

.V.C

xx dSnUUdU
dt
dF 

                     (3.11) 

 

Here,  

xU  : liquid velocity relative to the fixed reference frame,  

rU


 : liquid velocity relative to the control surface boundary,  

xF  : net force acting on the selected control volume, in x -direction. 

The left side of (3.11) can be written as: 

 

                                         LDAPFx  0                                    (3.12) 

 

where, 

 

                                                      2
0 8

1
Ff Uf                                          (3.13) 

and  

D  : pipe diameter,  

P  : air gage pressure driving the liquid slug acting at the slug upstream face, 

  : pi number, 

ff  : the Moody’s friction factor, 

0  :  wall shear stress. 

In this formulation, the change in the direction of friction force with that of  
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fluid velocity was discarded with the assumption of no reverse flow. 

In Bozkuş’s study [2], a fixed average value of Moody’s friction factor, ff , 

was used in the calculations but in the present study, the friction factor value was 

calculated from Swamee-Jain formula (Walski [11]; Swamee and Jain [12]) given in 

(3.14) to improve the method.  

 

                            2

9.0Re
74.5

7.3
ln

325.1















 



D

f f


              (3.14) 

 

In this expression,  

  : roughness height of the pipe wall, 

Re  : Reynods number. 

The Reynolds number can be calculated from 

 

                     


 DURe F                                              (3.15)  

 

where   is the dynamic viscosity of water. 

Next, substituting,  

 

   dLAd                                                 (3.16) 

    Bx UU 1                            (3.17) 

                                                    02 xU                                                  (3.18) 

                                                   Fx UU 3                                      (3.19) 

                                              FBr UUU


1                                    (3.20) 

                                                   Fr UU 2                           (3.21) 

                                                     03 rU                 (3.22) 

 

in Equation (3.11)  according to the control volume selected in Figure  3.1, and also 
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using Equation (3.8) together with the final form of the conservation of mass 

expression given by (3.10), the following equation is obtained (Bozkuş [2]): 

 

                       
L

PU
LD

f
dt

dU
F

fF


















 

 212
2

                               (3.23) 

 

In above derivation, ixU  stands for the  fluid velocity relative to the global 

coordinate axis, on the surface i  for the control volume, and in the x -direction 

  

3.2.3 Slug Kinematics Equation 

To complete the slug dynamics equations, in addition to above conservation 

equations, which are Equations (3.10) and (3.23), one more equation independent of 

these can be obtained from the slug kinematics. This last equation is simply an 

expression for the rate of change of the position of the front face of the slug with 

time, and can be given as: 

 

                          FU
dt
dx

                                                   (3.24) 

 

In all of the expressions (3.10), (3.23) and (3.24), the slug front velocity FU  

can be replaced with the mean slug velocity U  and then, the final system of 

differential slug dynamics equations becomes 

 

                                
L

PU
LD

f
dt

dU f


















 

 212
2

             (3.25) 

 

                     U
dt
dL )11( 


            (3.26) 

 

                      U
dt
dx

                        (3.27) 
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The average pressure value, P , in (3.25), is calculated from the analysis of 

the flow of the high pressure gas at the upstream side of the slug, and the 

formulations for this part of the calculation are given in the following section which 

includes the solution of gas dynamics equations. 

 

3.3 Gas Dynamics Equations   

For the analysis of the flow of the high pressure gas upstream the liquid slug, 

the conservation of mass, momentum and energy equations in differential form given 

by Equations (3.28), (3.29), (3.30) below were utilized by Bozkuş [2]; 

 

            02 











x
VC

x
PV

t
P

a                                    (3.28) 
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                          (3.30) 

where   

  
A

VPf
F wetf

8

2

2                                                  (3.31) 

and 

                                      TRPC g
a








.                             (3.32) 

 

Here, the meanings of the symbols are as follows: 

a  : density of air,  

V  : velocity within the air volume, in the x -direction, 

P  : average pressure at a cross-section of the pipeline,    

t  : time, 

x  : space coordinate along the axes of the horizontal pipe, 

F  : friction force per unit length of the pipe assuming no reverse flow, 
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wetP  : wetted perimeter of the cross-section, 

C  : wave speed, 

gR  : gas constant, 

T  : temperature. 

As the assumptions in using the above gas dynamics equations given by 

(3.28), (3.29), (3.30); one-dimensional, unsteady, nonuniform and a compressible gas 

flow was considered. In addition to these, the flow was also accepted as adiabatic, 

isothermal and turbulent. 

The system of hyperbolic partial differential equations given by (3.28), 

(3.29), (3.30) were transformed to a set of total ordinary differential equations by 

using method characteristics. The transformation procedure followed for this purpose 

can be found in references from Moody [31], Chaudhry [32] or Streeter [33]. The 

resulting ordinary differential equations are given by expressions (3.33) and (3.34). 

 

      dtFVCdP            for          CV
dt
dx

                (3.33) 

   dtFdVCdP           for          CV
dt
dx

               (3.34) 

 

with  

 

                                                   
A

VCPf
F wetf

8

2
              (3.35) 

 

Equations (3.33) and (3.34) are valid over the computational domain starting 

from the upstream pressurizer up to the back face of the liquid slug shown in Figure 

3.2. As the slug is moving downstream continuously in an accelerating pattern, the 

computational domain gets larger and larger by time as shown in this figure. 

Equation (3.33) here is a right travelling characteristic equation and is valid along the 
C  line in the computational domain, and Equation (3.34) is a left travelling 

characteristics equation which is valid along the C   line. 
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Figure 3.2 Computational domain used by Bozkuş [2] for the solution of gas 

dynamics equations. 

 

3.4 Coupling of Gas and Slug Dynamics Equations 

To solve the gas dynamics and slug dynamics equations in a closed form 

pattern, the fist slug dynamics equation given by (3.25) can be rewritten as in the 

following form: 

 

                                       
L
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                (3.36) 

 

 The meanings of the symbols here are as: 

 fwf  : friction factor for water, 

 wP  : driving air absolute pressure acting at the upstream face of the slug, 

 atmP  : atmospheric absolute pressure, 

w  : density of water. 

Then, by integrating the slug dynamics equations given in (3.26), (3.27) and 

(3.36) between the grid points along the slug path curve shown in Figure 3.2; and 

integrating the gas dynamics equations given by (3.33) and (3.34) along the 
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corresponding characteristic lines in the computational domain, a set of formulas for 

the upstream and the downstream boundary computations of the pressurized gas 

region in the horizontal pipeline is obtained. While making these calculations, the 

known boundary conditions of the system together with Equation (3.32) and the ideal 

gas equation given in (3.37) are also used (Bozkuş [2]).  

 

     
TR

P

g

                 (3.37) 

 

   The formulas for the calculation of upstream boundary conditions are as 

follows as obtained by Bozkuş [2]:  

 

                       TL PP                                           (3.38) 
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The subscripts L  and S  of the variables in above equations indicate the 

location of left rights boundaries where the variables are being evaluated as shown in 

Figure 3.2.    

The algorithm for the calculation of the values at the upstream boundary of 

the pressurized gas region in the system is presented below. 

1) Calculate LP  from Equation (3.38) by using the boundary value for the 
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gas pressure TP at the pressurizer tank.   

2) Calculate gas density L  by using (3.39). 

3) Compute the wave speed LC at the upstream boundary of the pressurized 

gas region from (3.40). 

4) Calculate Lt  from Equation (3.41) by taking 0Lx , and using the  

known values of variables with the subscript S  that were calculated at the 

previous time step (Figure 3.2). 

5) Compute t  from (3.42). 

6) Calculate the gas velocity at the left boundary, LV , using (3.43). 

 

The set of equations obtained by Bozkuş [2] for the calculation of 

downstream boundary values of the computational domain of the pressurized gas 

volume are given below. 
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The downstream boundary conditions indicated with the subscript R , for the 

domain of gas volume are calculated with the following algorithm:  

1) Calculate the position of the upstream face of the slug from (3.44). 

2) Compute the time increment, 1t  and 2t , values from Equations (3.45) 

and (3.47). 

3) Calculate Rt  value by using (3.46). 

4) Compute slug length, RL  , by using the expression given by (3.48). 

5) Calculate the wave speed, RC ,  from (3.49). 

6) Compute the pressure acting at the upstream face of the slug, RP , by 

using Equation (3.52).   

7) Calculate the velocity of the upstream face of the slug, RU , from 

Equation (3.53). 

During the above calculations, the time dependent decrease of the tank 

pressure, TP , is also taken into account according to the data given in Figure 3.3. In 

this figure; 

0P  :  initial tank pressure at the pressurizer tank.  
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Figure 3.3 Variation of pressure at the upstream pressure tank (Bozkuş [2]). 

 

 

The calculation procedure given above is continued until the front face of the 

slug reaches the entrance section of the elbow with a computer program BOZKUŞ-2 

coded by Bozkuş [2]. Then, the final values for the slug velocity, slug length and the 

driving air pressure acting at the upstream face of the liquid slug obtained from these 

horizontal pipe calculations are used as initial conditions for the analysis of the slug 

motion in the elbow and the following vertical extension segment of the pipeline, 

given in the later chapters of the thesis.  

  

3.5 Functional Hold Up Coefficient 

To be able to better represent the actual hold up amount that occurs during the 

motion of the slug along the horizontal part of the pipeline, a new approach of using 

a functional hold up coefficient was made in the present study. The new hold up 

coefficient that was developed in this study is in the form a function of normalized 

slug travel distance with respect to the instantaneous slug length as given in Equation 

(3.54). The details for the development of this function are presented in Appendix 
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A.1.  

 

65196494057439003850 .L/L.if.)L/L(.)L/L( spspsp      

                                               (3.54)                

and                                                                                                                          

             spsp L/L.if.)L/L(  651961                                   

 

This method of calculating the hold up coefficient,  , is actually a more 

developed form of the previous one used in Bozkuş’s [2] study in which the hold up 

coefficient was kept at a constant value during the whole motion of the slug along the 

horizontal part of the pipeline. 

The expression in (3.54) is the functional hold up coefficient in terms of the 

travel distance normalized with respect to the instantaneous slug length. Thus, with 

the use of this formula, the hold up coefficient was allowed to change as a function 

of instantaneous slug length, sL , during the motion of the slug along the pipeline, 

given a certain value for the length of the horizontal part of the pipeline, pL .  

With this new development of the functional hold up coefficient, the hold up 

value,  , is calculated by using the formula given by (3.54) at the beginning of each 

time step of the calculations made by executing the algorithm given in Section 3.4 

for the motion of the liquid slug along the horizontal part of the pipeline   

 

3.6 Closure   

In this chapter, an analytical method for the analysis of an air driven liquid 

slug motion along a horizontal pipeline was given as proposed by Bozkuş [2]. For the 

improvement of the method, a mathematical development to obtain a functional hold 

up coefficient as a part of the present study was also presented in Section 3.5 of this 

chapter.  

The same system setup given in Figure 2.2, which was used by Bozkuş [2] for 

the analysis of the slug motion along the horizontal part of the pipeline, was also 

utilized as the system in the present study for the modeling of the slug motion in the 

elbow and the following vertical extension segment of the pipeline. In the present 
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study, for the calculation of impact pressures applied by the slug at the elbow of the 

system; firstly, that motion of the slug along the horizontal pipeline was analyzed 

with Bozkuş’s [2] method given in this chapter, and the final values of the 

hydrodynamic parameters for the case that the slug front face reached the elbow were 

calculated. Then, by using those final set of values as the initial values in the new 

mathematical model that was made in the present study, the analysis of the slug 

motion in the elbow and the following vertical extension segment was made. To 

perform these calculations, a computer program KAYHAN was coded in this study 

with the purpose of computing the impact pressure at the elbow by simulating the 

slug motion in the system. This code was written in FORTRAN, and it used a 

previously written code BOZKUŞ-2 by Bozkuş [2] for the simulation of the slug 

motion along the horizontal pipe in the system.   

The formulation for the analysis of the slug motion in the elbow and the 

vertical extension segment as the aim of the present study, after the slug reaches the 

entrance section of the elbow, is given in the next chapter of the thesis, together with 

the discussion of the results and the comparison of them with those from the previous 

studies.        
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CHAPTER IV 

 

 

MATHEMATICAL DEVELOPMENT FOR THE 

ELBOW PART 

 

 

 

4.1 Introduction  

In this chapter, a mathematical development for the analysis of the slug 

motion in the elbow and the following vertical extension segment of the pipeline 

system shown in Figure 2.2 is given. The elbow and the vertical extension segment 

calculations here are a continuation of the analysis of the slug motion along the 

horizontal pipeline presented in Chapter III. Therefore, the final values for the 

hydrodynamic parameters obtained from horizontal pipe calculations are used as the 

initial conditions for the elbow and the vertical extension segment calculations given 

in this chapter.        

The aim for making the numerical analysis of the slug motion in the elbow 

and the vertical extension segment given in this chapter is to predict the time 

dependent impact pressures at the elbow and to find the transient hydrodynamic 

forces acting on the elbow and the vertical extension segment.   

For this purpose, an axial velocity profile function with a 3-D shape was 

assumed in Section 4.2. Then, by utilizing this velocity profile function, the time 

dependent impact pressures at the elbow, and the transient forces applied by the 

liquid slug on the elbow and the vertical extension segment of the pipeline were 

formulated in Sections 4.3 and 4.4, respectively. In Section 4.5, some numerical 

integration methods are presented to be used for the evaluation of some integral 

terms of the equations given in Sections 4.3 and 4.4. A calibration function was 

proposed in Section 4.6 for the variation of the skewed shape of the axial velocity 

profile function in the elbow and the vertical extension segment. The non-
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dimensionalization and the discretization of the equations are given in Sections 4.7 

and 4.8, respectively. In section 4.9, the mesh sizes and the input data used are 

presented.         

 

4.2 Assumed Axial Velocity Profile Function 

In this section, an axial velocity profile function with a 3-D shape is assumed 

in the elbow and the vertical extension segment of the system shown in Figure 2.2, 

which can change in shape along these parts of the pipeline with the help of a 

calibration function. This assumed velocity profile function was used later on, in 

reducing the number of unknown dependent variables in momentum equations given 

in Section 4.3. The transient force calculations in Section 4.4 were also made by 

using this velocity profile function. 

   

 

 

 

 

 

 

 

 

Figure 4.1 Velocity distribution in a curved pipe given by  

Prandtl [13], [14] (Schlichting [10]). 

 

 

The general pattern of the cross-sectional view of the axial velocity profile 

and the velocity distribution over the pipe cross-section, for steady uniform turbulent 

pipe flow in curved pipes is given in Figure 4.1 as investigated firstly by Prandtl 

[13], [14] (Schlichting [10]). The flow of the liquid slug in the elbow and vertical 

extension segment of the pipeline in the present study is actually of type unsteady 

and non-uniform; however, as a simplification, the shape of the axial velocity profile 

in the current study was selected in such a way that the cross-section of the assumed 
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profile is of the form depicted in Figure 4.1 as suggested by Prandtl. 

For this purpose two cone equations were utilized one being an oblique cone 

and the other having a symmetric and truncated shape and the plot of these two cones  

were mounted on each other to get an assumed turbulent velocity profile with its 

point of maximum shifted towards the convex side of the elbow by some amount.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Parameters for the general oblique cone equation. 

 

The most general equation for an oblique cone is given in cartesian 

coordinates in Equation 4.1. (Young [9])   
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The parameters for this general oblique cone equation in (4.1) are as given in 

Figure 4.2. 

According to this figure,   

x , y , z  : coordinate axes, 

0x , 0y , 0z  : coordinates of the apex of the cone, 
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R  : radius of the bottom circle of the cone,     

O  : origin of the cartesian coordinate system. 

By using the general cone equation given in (4.1), an equation in the form of 

a non-differentiable function for the assumed turbulent axial velocity profile with 3-

D shape was obtained, the cross-sectional view of the plot of which is shown in 

Figure 4.3. In this figure, the cross-sectional shape of the assumed velocity profile 

function is given over the vertical mid-plane of the elbow and the vertical extension 

segment.  

While selecting the velocity profile equation, it was accepted that the 

maximum velocity occurs in the vertical mid-plane of the elbow and at a distance mR  

away from the origin of the local coordinate system as measured in the positive y -

direction as shown in Figure 4.3. This general pattern for the shape of the velocity 

profile was suggested by making an analogy with that of a steady uniform turbulent 

pipe flow in curved pipes as investigated firstly by Prandtl [13], [14]. (Schlichting 

[10])  

For the symmetrical bottom cone part of the axial velocity profile equation, 

with 3-D shape, the following function was used.   

 

                                                           fs Ru  tan                 (4.2) 

 

Equation given in (4.2) is valid for the domain of the bottom cone which is 

defined by  

 

                              Ry  1                    (4.3)  

 

according to the polar coordinate system given for the cross-sectional view of the 

elbow in Figure 4.5, and considering the placement pattern of the bottom cone in the 

cartesian coordinate system shown in Figure 4.4. 

 And, for the upper oblique cone part of the axial velocity profile function, the 

expression given by (4.4) was utilized.  
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Figure 4.3 Cross-sectional shape of the assumed turbulent  

velocity profile function. 
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Figure 4.4 Parameters used for the assumed velocity profile in a single  

coordinate system. 
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Figure 4.5 (a) Complete physical setup for the system (Bozkuş [2]); 

Computational domain for (b) the elbow and the vertical extension segment, 

(c) the cross-section of the elbow,  

(d) the cross-section of vertical extension segment of the pipe. 
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The expression in (4.4) for the upper oblique cone part of the velocity profile 

function shown in Figure 4.4 is valid over that region of the pipe cross-section 

defined by 

 

10 y                      (4.5) 

 

according to the polar coordinate system for the cross-section of the elbow given in 

Figure 4.5. 

The procedure for the mathematical development of the expressions given by 

(4.2) and (4.4) above are given in Appendices A.2.1 and A.2.2, respectively. 

The meanings of the symbols in equations (4.2) to (4.5) are as: 

  : radial coordinate axis over the pipe cross-section,  

  : circumferential coordinate axis over the pipe cross-section,  

R  : pipe radius, 

mR  : distance of the point of maximum velocity from the origin of the local 

coordinate system, measured along the y  axis, according to Figure 4.4, 

f  : angle for the gradient of the velocity profile at the pipe wall,  

with other parameters being as shown in Figure 4.4.  

By combining two cone equations, the assumed velocity profile was intended 

to be given a shape similar to the actual turbulent velocity profile. The shape of this 

assumed profile was also allowed to change along the elbow and the extension 

segment with the aid of a calibration function for the angle c  shown in Figure 4.4. 

With this calibration function in the form of  

 

               )(scc   ,                  (4.6) 
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c  value was changed along the s -curve in the elbow and the extension segment of 

the pipe at the desired rate for the calibration purposes.  

The values for the parameters mR , 1y , 1h , 2h  can be calculated by using 

geometry, from Figure 4.4 as 

                     
f

m
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tan

                    (4.7) 
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where 

 mU  : maximum velocity on the assumed velocity profile function.  

The parameters mU  and f  in expressions (4.7) to (4.10) are calculated as 

given in Appendix A.2.3. 

By knowing the values of the parameters given in (4.7), (4.8), (4.9) and 

(4.10), the piece-wise smooth velocity profile function given by Equations (4.2) and 

(4.4) can be defined.  

 

4.3 Calculation of the Impact Pressures at the Elbow 

In the present study, the time dependent impact pressure distribution on an 

elbow of an initially voided pipeline, applied a by a propelled liquid slug under the 

driving effect of high pressure air from upstream, were obtained by solving 1-D 

Reynolds Equations numerically. The reason for choosing the Reynolds Equations 

was the highly turbulent character of the slug flow due to very high velocities 
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attained in the system. The solution was made over a computational domain selected 

within the elbow and the following vertical extension segment of Bozkuş’s [2] 

system setup shown in Figure 2.2. The elbow and the vertical extension segment 

calculations given here are a continuation of those made for the analysis of the slug 

motion along the horizontal part of the pipeline, performed previously by Bozkuş [2] 

as presented in Chapter III. In the analysis, the final values for the hydraulic 

parameters obtained from the horizontal pipe calculations that corresponds to the 

arrival time of the slug front face at the entrance section of the elbow, were utilized 

as the initial values of the elbow and the vertical extension segment calculations 

given in this chapter.  

As the domain over which the Reynolds Equations were solved, that portion 

of the elbow and the vertical extension segment of the system occupied by the liquid 

slug at any instant during its motion was selected. With this selection of the solution 

domain, the downstream boundary condition for the pressure value was taken as the 

atmospheric pressure that occurs at the slug front face. By using this downstream 

boundary condition, the average pressure values were calculated starting from the 

exit of the vertical extension segment towards upstream up to the entrance section of 

the elbow. While calculating the average pressure distribution along the elbow, the 

local impact pressures that occur at the top point of each cross-section of the elbow 

were also calculated with another application of 1-D Reynolds Equations applied in 

the direction of radius of curvature of the elbow this time, starting from the center 

point up to the top point of the same cross-section. During these radial calculations, 

the local pressure boundary condition at center point of the each cross-section was 

accepted to be equal to the average pressure that occurs at the same cross-section as 

an assumption. While calculating the pressure values, 1-D Reynolds Equations in 

cartesian coordinates were used in the calculations that were made for the vertical 

extension segment, whereas 1-D cylindrical polar Reynolds Equations were utilized 

for the elbow part calculations. The pressure values were solved from these Reynolds 

Equations by using an assumed axial velocity profile function having a skewed 3-D 

shape, and the shape of this velocity profile was allowed to change along the elbow 

and the vertical extension segment by means of a calibration process.    

The actual pressure distribution along the elbow and the vertical extension 
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segment has a time dependent pattern due to the transient nature of the liquid slug 

motion in the system and; therefore, the above mentioned pressure distribution 

calculations were repeated for each time step of the slug motion along the elbow and 

the following vertical extension segment. During these calculations, the time 

dependent average velocity of the liquid slug was found from a set of slug dynamics 

equations applied on that part of the slug remaining in the horizontal part of the 

pipeline as proposed by Bozkuş [2]. The value for the average velocity calculated 

from the slug dynamics equations were then, taken to be same along that length of 

the slug remaining horizontal pipeline, elbow and the vertical extension segment due 

to incompressibility assumption made for the flow of the liquid slug. 

 

4.3.1 Simplifying Assumptions 

A set of assumptions were made to simplify the numerical procedure for the 

solution of Reynolds Equations in the domain of the elbow and the vertical extension 

segment of the system. These assumptions are; 

a) Slug front is planar but the shape of the axial velocity profile of the liquid 

slug is three-dimensional: 

Accepting that the slug front face is always a plane surface permitted the 

application of 1-D Reynolds Equations to solve for the pressure distribution along 

the elbow and the vertical extension segment. While making these 1-D solutions, the 

3-D skewed shape of the axial velocity profile of the liquid slug was also considered 

with the aid of an assumed and calibrated 3-D axial velocity profile function.  

b) Flow is incompressible:  

Although during the motion of the liquid slug along the horizontal pipeline 

the compressibility effects of high pressure gas from the pressurizer was taken into 

account; in the part of the calculations for the motion of the slug along the elbow and 

the vertical extension segment, the gas which drives the slug was accepted as 

incompressible by neglecting gas dynamics effects in the calculations. The flow of 

the liquid slug was also accepted as incompressible during its whole motion in the 

system. As a result of this incompressible flow assumption for the liquid slug, and 

the continuity principle; the discharge of the slug flow was taken as constant in all 

parts of the pipeline it occupies at given time step of the slug motion. However, the 
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3-D skewed shape of an assumed and the calibrated axial velocity profile function 

was allowed to change for the slug flow in the elbow and the vertical extension 

segment with the aid of a calibration function.  

c) The liquid slug was accepted as having a constant density during its 

motion. 

d) The pipe material was accepted to be rigid, and the pipe was taken to 

fixed at its place so that it does not move in any direction and does not 

vibrate.   

e) One phase flow assumption was made for the liquid slug (water) and 

therefore, gas (air) entrainment into the slug was neglected. 

f) Shear resistance to the gas and liquid slug flow was considered by 

assuming that the flow is steady, fully developed and incompressible.   

g) No hold up was considered to occur during the motion of the slug in the 

elbow and the vertical extension segment of the pipeline.   

h) Reduction of the air pressure between the exit of the pressurizer tank and 

the slug upstream face was taken to be a constant value and is equal to 

that which occurs at instant of arrival time of the slug front face at the 

entrance section of the elbow, during the elbow and the vertical extension 

segment calculations.   

i) Frictional resistance and dynamics of the air downstream the slug front 

face was neglected. 

j) The axial velocity profile function with a 3-D skewed shape was assumed 

to be composed two cone equations as given previously in Chapter IV.  

k) Average pressure at any section of the elbow was assumed to be equal to 

the local pressure value at the center point of the same cross-section.  

The planar slug front face assumption given in item (a) above was made in 

order to avoid the difficulties in the solution that would have arisen due to 

consideration of the deformation of the slug front shape during its motion through the 

elbow and the vertical extension segment of the pipeline. Neglecting the deformation 

of the slug front face and accepting the front face as planar brought adopting of a 1-D 

numerical solution technique for the elbow and the vertical extension segment 

calculations as was the case also for the horizontal part calculations of the pipeline. 
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Selection of a 1-D solution procedure for Reynolds Equations in the elbow 

and the vertical extension segment of the present study can be considered as a 

continuation of 1-D approach used for the horizontal pipe calculations performed by 

Bozkuş [2]. Also, adopting a 1-D solution technique can be thought to be a suitable 

choice since the experimental data for the peak pressures at the elbow are available 

only at single points for the locations of transducer #1 and #2 from Bozkuş’s study.   

As a part of the simplification process, some dependent variables in the 

cartesian and cylindrical polar Reynolds Equations were eliminated while obtaining 

the formulas given in this section. The incompressible Reynolds Equations in 

cartesian coordinates are given below as presented by Bird and et. al. [8]: 

 

In x -direction: 
           
 
 
 
 
                  (4.11)         
 
 
 

In y -direction: 
 
  
         
           
 
                  (4.12) 
 
  

In z -direction: 
 

  

 

 

        (4.13) 

 

The Reynolds Equations in cartesian coordinates given by (4.11), (4.12) and 

(4.13) were used for the analysis of the flow of the slug in the vertical extension 
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segment of the pipeline in Bozkuş’s setup given in Figure 2.2, with the selection 

pattern of the coordinate axes x , y  and z  shown in Figure  4.5. In these equations, 

the meanings of the symbols are as; 

xV , yV , zV  : ensemble average local velocities respectively in x , y  and z  

directions,  

xV  , yV  , zV   : turbulent fluctuations of the velocity components respectively 

in x , y  and z  directions, 

p  : ensemble average local pressure, 

 : symbol indicating ensemble averaging, 

xg , yg , zg  : components of gravitational acceleration respectively in x , y  

and z directions. 

The calculation of the average pressure distribution along the vertical 

extension segment was made by solving the Reynolds Equation which was written in 

y -direction given in (4.12). For this purpose; firstly, the Reynolds Equation in (4.12) 

was taken and three of the unknown velocity components xV , yV , zV  in this equation 

were reduced to one by eliminating xV  and zV  making use of Gauss’ Divergence 

Theorem and continuity condition (Ger and Holley [5]; Quarteroni and Valli [6]). 

Also replacing the term including the Reynolds Stresses and the term for the laminar 

shear stresses, which are respectively the second and the third terms on the right-

hand side of Equation (4.12), with the Darcy-Weishbach friction force formula 

(Munson [3]); an expression in terms of the dependent variables of the pressure and 

the axial velocity, yV , was obtained. For the axial velocity component yV , an 

assumed and calibrated axial velocity profile function with a skewed 3-D shape was 

utilized. Thus, by using this 1-D Reynolds Equation written in only y -direction, it 

became possible to calculate the pressure values in that direction as the only 

unknowns, by using the known values of the axial velocity profile function, the 

necessary initial and boundary conditions and also the value of the average slug 

velocity through the pipeline at any given time. The average velocity value was used 

for the determination of some parameters of the assumed and calibrated axial 

velocity profile function, for finding the value of the friction factor in the Darcy-
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Weishbach Equation and also for the calculation of the unsteady term in Reynolds 

Equation. The average velocity value at any time step was calculated from slug 

dynamics equations of Bozkuş [2] applied on that length of the slug remaining in the 

horizontal part of the pipeline, which were coupled with the Reynolds Equations.       

In the present study, the incompressible Reynolds Equations in cylindrical 

polar coordinates were used for those part of the calculations that account for the 

motion of the slug flow in the elbow part of the Bozkuş’s [2] system setup given by 

Figure 2.2. The incompressible cylindrical polar Reynolds Equations are as given 

below as stated by Bird and et. al. [8] and Davidson [15]: 

 
In r -direction: 
 

          
 
 
 
 
 
 

                                (4.14)
  

 
 In  -direction: 
 
    
 
 
 
 
 

                                (4.15) 
 

 
 
 In z -direction: 
 
                    
 
 
 
 
 

        (4.16) 
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The cylindrical polar coordinate system used for the incompressible 

cylindrical polar Reynolds Equations given by (4.14), (4.15) and (4.16) is shown in 

Figure 4.5 together with the placement pattern of r ,   and z axes of this coordinate 

system over the elbow. In Equations (4.14), (4.15) and (4.16); the symbols are as: 

rV , V  : ensemble average local velocities respectively in r  and    

directions, 

rV  , V   : turbulent fluctuations of the velocity components respectively in  r  

and   directions, 

rg , g  : components of gravitational acceleration respectively in r  and   

directions.  

For the average pressure distribution along the axis of the elbow, the 

Reynolds Equation in  -direction given by (4.15) was taken and the terms including 

the dependent variable rV  were eliminated from this equation by proper use of 

Gauss’ Divergence Theorem and the continuity equation. During the elimination 

process, an integral expression derived from continuity equation for the variation of 

rV  in terms of the dependent variable, V , and the independent variable, r , was also 

utilized. In addition, the variable zV  was removed from (4.15) by making use of the 

symmetry of the domain for the elbow, with respect to a vertical plane of 0z   as 

the plane of symmetry. By replacing the friction terms on the right-hand side of 

(4.15) with the Darcy-Weishbach friction formula, an expression for the pressure in 

terms of the axial velocity V  was obtained and the average pressure values along the 

axis of the elbow were solved from a 1-D application of this equation as was done in 

the case of the vertical extension segment given above.   

The local pressure at the top point of each cross-section of the elbow was also 

calculated with again a 1-D application of the Reynolds Equation but in the r -

direction this time as given in (4.14), by eliminating rV and zV  respectively with the 

use of continuity expression and using the symmetry of the domain of the elbow with 

respect to the plane of 0z . 
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4.3.2 Pressure Distribution Equations 

As the physical domain over which the pressure distribution calculations were 

made in the present study, the elbow and the following vertical extension segment of 

the system developed by Bozkuş [2] was taken as shown in Figure 2.2. Selection of 

the computational domain over this elbow and the vertical extension segment is 

given in Figure 4.5. In this computational domain, a cartesian coordinate system was 

chosen for the analysis of the slug flow in the vertical extension segment and a 

cylindrical polar coordinate system was taken for the analysis of that part of the flow 

of the slug in the elbow. The computational solution domain at a given time 

consisted of the volume occupied by the slug in the elbow and the vertical extension 

segment, and the solution for the pressure distributions were made with the Reynolds 

Equations starting from the front face of the slug towards upstream up to the entrance 

section of the elbow. After the front face of the liquid slug exited past the end section 

of the vertical extension segment to the atmosphere from the pipeline, the solution 

domain for the Reynolds Equations was taken as the whole region inside the elbow 

and the vertical extension segment. The calculations were stopped when the 

upstream face of the liquid slug came to very close locations of the entrance section 

of the elbow to avoid some unstable oscillations that would have appeared due to the 

liquid slug being unstable. Here, the instability of the liquid slug was caused by the 

driving and retarding forces acting of the slug having very close values to each other. 

The formulas for the calculation of average pressure distributions along the 

axes of the vertical extension segment and the elbow, and the expresion for finding 

the local impact pressures at the top point of each cross-section of the elbow are 

given in the following subsections.      

 

4.3.2.1 Average Pressure Distribution along the Vertical Extension 

Segment 

The calculation of average pressures along the vertical extension segment was 

made along that part of the s -curve extending in the vertical extension segment and 

remaining inside the volume occupied by the liquid slug at any given time. The 

solution for this purpose was made by using incompressible cartesian Reynolds 

Equations written in the vertical direction along the y  axis given in Equation (4.12) 
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above (Bird and et. al. [8]). 

By integrating the Reynolds Equation given by (4.12) over the volume 

element shown in Figure 4.6 and simplifying some of the terms in the equation, the 

following average pressure distribution equation was obtained: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Sample   volumetric   pipe  element  on  the  s-curve,  in the 

vertical extension segment. 

 

 

 

                            (4.17) 

 

  

The procedure for obtaining (4.17) is presented in Appendix A.3.1. 

 In this equation; 

su  : assumed and calibrated axial velocity profile function given in Section 

4.2, at any cross-section of the vertical extension segment of the pipe, 

su  : average value of the assumed and calibrated axial velocity profile 
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function at any cross-section of the vertical extension segment of the pipe, 

s  : curvilinear coordinate shown in Figure 4.5, 

g  : gravitational acceleration. 

According to Equation (4.17), it can be said that for a given constant value of 

t
u s




 at any given time nt , one can get a differential relation that is valid over that 

portion of the  curve s  remaining in the vertical extension segment, in the form of an 

ordinary differential equation because in that case the only independent variable will 

be the s . 

The derivative expression in the first term in parenthesis on the right-hand 

side of Equation (4.17) was discretized by using first order backward finite 

differences as; 
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where 

st  : time increment at any time step of the elbow and the vertical extension 

segment calculations, 

  And, superscripts n  and 1n  in indicates the time levels for the finite 

difference approximation.  

 n
su and   1n

su  terms in (4.18) were taken from another part of the computer 

program coded by Bozkuş [2], which used slug dynamics equations, to be able to 

utilize Equation (4.17) as a closed form expression. Bozkuş’s formulations here are 

related with the motion of the slug remaining within that part of the pipe at the 

upstream side of the elbow, and the velocity values obtained from that part are also 

valid for that continued length of the liquid slug in the elbow and the vertical 

extension segment of the pipe. The set of slug dynamics equations for that upstream 

part of the liquid slug from Bozkuş’s study are given in Section 4.3.3. 

In the second term in parenthesis on the right-hand side of Equation (4.17), 

su  is the velocity profile function in the direction of s -curve, which is actually the 
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assumed and then calibrated velocity profile given in Section 4.2. Since that velocity 

profile function introduces difficulty in taking the integral in the expression given by 

(4.17), that term was numerically integrated with a numerical integration process 

over the pipe cross-section. Velocity profile function su  in the integral expression 

here, changes depending on location on curve s and on time t, according to where 

and when the calculation is being made in the computational domain. Variation of 

the velocity profile along the curve s  at any time t, was allowed by the change in 

value of the calibration function,  s , with s since the discharge of the slug was 

taken to be constant along the pipe at any time t.    

 

4.3.2.2 Average Pressure Distribution along the Elbow 

To calculate the average pressure distribution along the axis of the elbow, the 

incompressible Reynolds Equation in cylindrical polar coordinates written in  - 

direction was utilized as given in Equation (4.15) (Bird and et. al. [8]; and Davidson 

[15]). As the computational domain of average pressure calculations with Equation 

(4.15) at the elbow, that part of the s -curve shown in Figure 4.5, extending in the 

elbow and remaining within the volume occupied by the liquid slug at any time step 

was taken.  

The Reynolds Equation in  -direction given by (4.15) was integrated over 

the volume element in the elbow shown in Figure 4.7, and after some simplifications, 

the following average pressure distribution equation along the axis of the elbow was 

obtained.  

 

 

 

 

 

                                                              (4.19) 

 

 

The details of obtaining (4.19) are given in Appendix A.3.2. 
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u  : average value of the velocity profile function in the elbow, in   

direction, 

u  : average value of the velocity profile function in the elbow, in   

direction, 

0R  : radius of curvature of the elbow, 

  : incremental angle of curvature over the infinitesimal element in the 

elbow as shown in Figure 4.6, 

mK  : minor loss coefficient at the elbow,   

elbL  : the central arc length of the elbow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Sample volumetric pipe element along the 

 s-curve, for the elbow part. 
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The first term in parenthesis on the right-hand side of the equation above can 

calculated as was done for Equation (4.17) for the vertical extension segment of the 

pipe in Section 4.3.2.1. The equation to be used for this purpose for the current case 

of elbow calculations is given below. 
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The cross-sectional-average velocity values  nu )(   and 1)( nu  at time levels 

n  and 1n  for the elbow part here are to be determined in the same manner as was 

done for the vertical extension segment of the pipeline in Section 4.3.2.1. 

 

4.3.2.3 Calculation of Impact Pressures at the Convex Side of the Elbow 

For the impact pressure calculations at the elbow, the r -component of 

incompressible Reynolds Equations in cylindrical polar coordinates was used as 

given in (4.14). 

For the calculation of impact pressure distribution at the convex side of the 

elbow, the computational domain was selected as the line mesh starting from the 

center point O  of each cross-section at the elbow up to the top point C   on the 

convex side of the cross-section as shown in Figure 4.8. Here, the location of 

coordinate axes over the elbow is the same as shown in Figure 4.5.  In Figure 4.8, 

MLPRSS  : number of nodes for the line mesh used for the impact pressure 

calculation.  

Making some simplifications on the r -component of the Reynolds Equation 

given by (4.14), the following equation for the local pressure calculation at the 

convex side of the elbow was obtained:  
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Figure 4.8 1-D radial mesh at a cross-section of the elbow. 
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The procedure for finding the expression in (4.21) is given in Appendix 

A.3.3. 

In Equation (4.21), 

t  : turbulent eddy viscosity of the fluid.  

For the determination of the turbulent eddy viscosity, t , in Equation (4.21); 

the mixing length theory as a zero-equation turbulence model was utilized as 

suggested in Chen and Jaw [36]. The resulting expressions from this theory are given 

below from (4.22) to (4.24) and the mathematical procedure for reaching those form 

of the equations is given in Appendix A.3.3.  
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In above equations,  

ml  : mixing length, 

mg  : a parameter. 

The turbulent eddy viscosity, t , here can be calculated by using (4.22), 

(4.23) and (4.24) at any point in the elbow, given the radial distance from the pipe 

centerline,  , of that point, while the local pressure distribution is being solved from 

the pressure distribution equation (4.21). 

The impact pressures at the convex side of the elbow were calculated for each 

cross-section of the elbow selected and for each time step of the calculations, by 

solving the differential equation (4.21) along the radial line CO   shown in Figures 

4.8 and 4.9, as an ordinary differential equation by using the assumed axial velocity 

profile  function  for  u   given  in  Section 4.2.  During these  calculations, the  only  
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Figure 4.9 1-D radial mesh selection at elbow cross-sections, with the line meshes 

located in the vertical, mid yx   plane of the elbow. 
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independent variable was taken as r , with other variables t ,   and z  being 

constants at that time step and along the line of integration at a cross-section shown 

in Figure 4.8. The seventh term in parenthesis on the right-hand side of (4.21) was 

calculated with the finite difference method, as was done for the other terms 

including derivatives; with central differences along lines of constant 0z , with a 

certain incremental length used for z  in the finite difference formula. For the 

boundary values needed for the solution of the differential equation in (4.21), the 

local pressure at the center point of each cross-section was taken as an equal value to 

the average pressure for that cross-section calculated in Section 4.3.2.2.  

 

4.3.3 Calculations for that Part of the Slug in the Horizontal Pipe   

To solve for the velocity of the slug during its motion along the elbow and the 

vertical extension segment, a set of slug dynamics equations were used, which were 

developed by Bozkuş [2] previously for a writing a computer code BOZKUŞ-1. 

These slug dynamics equations govern the motion of that part of the liquid slug 

remaining in the horizontal part of the pipeline, and the average velocity value, U , 

calculated from this part is also valid all along the whole length of the slug extending 

into the elbow and the vertical extension segment due to the continuity principle and 

the incompressible flow assumption. The slug dynamics equations utilized for this 

part of the calculations are as follows: 

 

                            
L
PPU

D
f

dt
dU EDf




 2

2
                           (4.25) 

 

                                          U
dt
dL

                                              (4.26) 

 

In above equations, 

DP  : driving air pressure acting on the slug upstream face, 

EP  : average liquid pressure retarding the motion of that part of the slug in 

the horizontal part of the pipeline, and acting at the entrance section of the elbow, 

L  : slug length remaining within the horizontal part of the elbow. 
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The difference between Bozkuş’s equations and the ones given above is that, 

in Bozkuş’s study, the retarding pressure effect at the elbow was not considered by 

taking the pressure as atmospheric there. However, in the current study the 

retardation of the motion of the slug in the horizontal part of the pipe was also taken 

into account by subtracting the EP  value from the air pressure driving the liquid slug, 

DP ,  as in Equation (4.25). 

For the elbow and the vertical extension segment calculations, no hold up was 

assumed to exist for the whole volume of the liquid slug during its motion in these 

parts of the pipeline. As another assumption, the difference between the timely 

decreasing instantaneous value of the tank pressure and the driving air pressure, P , 

at the upstream face of the liquid slug was taken to be constant and equal to the value 

that occurred when the slug front face reached at the entrance section of the elbow. 

This constant value was calculated from the final pressure values obtained from the 

horizontal pipe calculations given in Chapter III, as  

 

                                            finalDfinalT PPP  .                (4.27) 

 

Here, 

finalTP  : final tank pressure value from horizontal pipe calculations at the 

instant that the slug front face reaches the entrance section of the elbow,   

finalDP  : final driving air pressure value at the upstream face of the slug from 

horizontal pipe calculations at the instant that the slug front face reaches the entrance 

section of the elbow. 

Then, the driving pressure, DP , at the upstream face of the slug at any time 

step during the elbow and the vertical extension segment calculations was obtained 

with the formula; 

 

                                                             PPP TD .                  (4.28)  

 

The U value computed from the system given by (4.25) and (4.26) was equated   to    
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su    ( UUuu aves   )   to   be   used   in  the  pressure  distribution calculations 

in the elbow and the vertical extension segment performed in Section 4.3.2, due to 

the continuity principle and the incompressible flow assumption all along the liquid 

slug in the pipe. The calculated average velocity values, aveU , which were constant 

along the slug in the horizontal part of the pipeline, and in the elbow and the vertical 

extension segment of the pipe at any given time step, were also utilized  in  the  

determination  of the  assumed and  calibrated axial  velocity  profile function  for  

the slug flow at any cross-section of the elbow and vertical extension segment along 

the s -curve given in Section 4.2.  

Since U  is always positive, in other words, slug is always moving towards 

the downstream end of the pipeline, it can be deduced from (4.26) that  
dt
dL  is always 

negative. Therefore, the length of the slug remaining within the horizontal part of the 

pipeline, L , continuously decreases from its initial value to 0, and the computation is 

stopped when the back face of the slug reaches at very close locations of the entrance 

section of the elbow which means that L  becomes very close to 0. 

 

4.3.4 The Initial and the Boundary Conditions 

For the solution of average pressure distribution equations given by (4.17) 

and (4.19), the computational domain for the elbow and the vertical extension 

segment was taken as that length of the s -curve shown in Figure 4.10, which 

remains within the volume occupied by the liquid slug at a given time step during the 

numerical solution of the equations. In this figure, 

NLFF  : nodal number corresponding to the location of the slug front face 

along the s -curve,  

NELBW  : number of nodes along the axis of the elbow, 

NBOUND  : point on the s -curve at the boundary of the elbow and the 

vertical extension segment, 

NSTOT  : total number of nodal points along the s -curve.  

The solution of the equations was made by using a FORTRAN subroutine 

with the name DVERK written by Hull and et. al. [25], and Jackson and et. al. [35], 

which was utilized as a part of the main program KAYHAN developed in the present  
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Figure 4.10 Computational domain with the nodal numbering  

along the s -curve given.   
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study. The subroutine DVERK is an ordinary differential equation solver which 

utilizes Runge-Kutta-Verner fifth and the sixth order method. Equations (4.17) and 

(4.19) were solved with the subroutine DVERK by using the necessary initial and 

boundary conditions for the elbow and the vertical extension segment calculations in 

the present study. Since these equations are in the form of ordinary differential 

equations of the first order at a given time step, only one boundary condition together 

with the initial conditions were required for the solution of each equation. The initial 

and the boundary conditions for Equations (4.17) and (4.19) are given in Table 4.1. 

Here, 

 finalU  : final slug velocity obtained from horizontal pipe calculations, 

 NLFFP  : atmospheric pressure at the front face of the liquid slug, 

NBOUNDP  : average pressure at the connection boundary of the elbow and the 

vertical extension segment. 

In Table 4.1, the boundary conditions for the elbow and the vertical extension 

segment calculations are given for two main cases. The first one is the case that the 

slug front face is within the elbow which means that 

 

 NBOUNDNLFF 0 . 

 

The other case is that the slug front face is in the vertical extension segment of the 

pipeline or exited from the that part which means that 

 

          1 NSTOTNLFFNBOUND . 

 

For both of these cases, the position of the front face of the liquid slug on the 

s -curve at any time step was determined from the equations given by (4.29) and 

(4.30) below: 

 

             totsave
n

frolsave
n

frol
n

frol LtUsiftUss   11            (4.29) 

 

                       totsave
n

froltot
n

frol LtUsifLs  1                      (4.30) 



 

 

Table 4.1 Initial and the boundary conditions for the elbow and the vertical extension segment calculations. 

 Equation 

(4.17) 

Equation 

(4.19) 

Equation 

(4.21) 

Equations 

(4.25)  

and  

(4.26) 

 

Initial Conditions 

 

finals Uu   

 

finalUu   

 

finalUu   
finalUU   

finalDD PP   

0EP  

finalLL   

 

NBOUNDNLFF 0  

 

_ 

 

0 NLFFPP  

 

calcO Ppp    
 PPP TD  

calcEE PP   

 

Boundary 

Conditions 
 

1 NSTOTNLFFNBOUND  

 

0 NLFFPP  

 

NBOUNDPP   

 

calcO Ppp    
 PPP TD  

calcEE PP   
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In these equations; 
n

frols  : slug front face location on the s -curve at ant time step n , 

totL  : total axial length of the elbow and the vertical extension segment.   

Then, the node number NLFF  corresponding to the location of the front face 

of the slug, n
frols , on the s -curve was taken as the largest node number the location 

of which remained just upstream the slug front face location at any given time step. 

The average pressure equation in cartesian coordinates given by (4.17) was 

solved along s -curve in the vertical extension segment if the slug front face was at a 

stage of progressing in this part of the pipeline or the slug front exited to the 

atmosphere from this part. If the first case was valid that the slug front face was 

moving in the vertical extension segment, the boundary condition for (4.17) was used 

as the atmospheric zero gage pressure at the node for the current slug front face 

location, NLFF , according to Table 4.1 and the general slug front face location 

pattern shown in Figure 4.10. Then, the average pressure values along the vertical 

extension segment were calculated stating from this point towards upstream until 

calculating the average pressure value at the boundary section of the elbow and the 

vertical extension segment, NBOUND . If on the other hand the second case was 

valid that the slug front has exited from the end section of the vertical extension 

segment, the same calculations were made but starting from the section 1NSTOT  

this time and by using the zero atmospheric pressure at this section as the boundary 

condition.  

Equation (4.19), which is the average pressure distribution equation in 

cylindrical polar coordinates, was solved along that part of the s -curve remaining in 

the elbow. In case the slug front face was moving in the elbow towards downstream, 

the boundary condition was selected as the zero atmospheric pressure at the node for 

the slug front face location, NLFF , as given in Table 4.1 and according to the 

general form for the location of the slug front face depicted in Figure 4.10.  

However, if the slug front passed the connection boundary of the elbow and the 

vertical extension segment, NBOUND ; Equation (4.19) was solved starting from the 

connection section, NBOUND , towards upstream up the entrance section of the 

elbow. In this case, the boundary value for the average pressure at section, 
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NBOUND , was taken from the final average pressure value obtained from the 

vertical extension segment calculations. 

The above procedure of finding the average pressures was repeated for every 

time step of slug motion during the calculations. 

For Equation (4.21), which was used for the impact pressure calculation at the 

top point of each cross-section of the elbow, the computational domain is as given in 

Figure 4.8. The initial and the boundary conditions for this equation is presented in 

Table 4.1, where 

Op   :  local pressure at the center point O  of the elbow cross-section, 

calcP  : calculated average pressure value at the elbow cross-section. 

The boundary condition given here for Equation (4.21) was taken as the local 

pressure, 'Op , at the center point of the each cross-section of the elbow, and the  

local pressure at this point was taken as equal to the calculated average pressure 

value for that cross-section as an assumption. The solution of (4.21) here was also 

made with the subroutine DVERK by using the indicated boundary condition. 

By using the boundary condition at point O  and the initial conditions, 

Equation (4.21) was solved at every time step of the calculations along the radius of 

the each cross-section of the elbow upstream the liquid slug front face, starting from 

point O  up to the top point of the cross-section at the convex side of the elbow, C  , 

shown in Figure 4.8 with aim of calculating the local impact pressure value p  at 

point C  .  

 The solution for the system of slug dynamics equations given by (4.25) and 

(4.26) were again made with the subroutine DVERK by utilizing the initial and the 

boundary conditions stated in Table 4.1.  In the table the meanings of the symbols are 

as: 

 finalL  : final length of the slug remaining in the horizontal part of the pipeline 

obtained from horizontal pipe calculations,  

 calcEP  : calculated average liquid pressure retarding the motion of that part of 

the slug in the horizontal part of the pipeline, and acting at the entrance section of the 

elbow. 

 The system of slug dynamics equations given by (4.25) and (4.26) were 
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solved at each time step of the calculations to find U  and L  values at the current 

time step. The calculated average slug velocity, U , values were then utilized in 

determining the unsteady terms in (4.17) and (4.19), and also in finding the unknown 

parameters of the assumed and calibrated axial velocity profile function used in 

equations (4.17), (4.19) and (4.21). The length of the slug remaining in the horizontal 

part of the pipeline, L , values were used in determining final stage at which the 

calculations were stopped, when L  approached 0.      

  

4.4 Transient Force Calculations at the Elbow Part 

In the present study, the transient forces acting on the elbow and the 

following vertical extension segment of Bozkuş’s [2] system setup given in Figure 

2.2 were calculated with a set of control volume analyses by applying conservation 

momentum principle over the elbow and the vertical extension segment. For this 

purpose, two types of control volumes were selected as small elements in the elbow 

and the vertical extension segment. The volume elements in the elbow had a shape in 

the form of a segment of a torus while the elements in the vertical extension segment 

were in the shape of a slice of a cylinder. Applying the conservation of momentum 

principle over these volume elements, the horizontal and the vertical components of 

the reaction forces acting  on each of the elements  were calculated. Then,  by adding 

up these force components, the total horizontal and the vertical forces acting on the 

elbow and the vertical extension segment were calculated. 

During the transient force calculations at the elbow and the vertical extension 

segment of the system, the values for forces acting on the volume elements in the 

direction of the pipe axis were found by using the calculated average pressure values 

along the s -curve, given in Section 4.3.2.1 and 4.3.2.2. And, the momentum fluxes 

over the surfaces of the volume elements perpendicular to the flow direction were 

calculated with the aid of the assumed and calibrated axial velocity profile function 

given in Section 4.2.  

The formulas for the calculation of the transient forces acting on the elbow 

and the vertical extension segment are given in the following sections.   
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4.4.1 Calculations at the Elbow    

The computational domain for the calculation of transient forces applied by 

the liquid slug on the elbow while the slug is passing through the elbow and the 

vertical extension segment is given in Figure 4.11. The control volumes at the elbow 

were selected during the calculations within the volume occupied by the liquid slug 

at the elbow at any instant while the slug front is at a stage of advancing in the 

elbow. If the slug front passed into the vertical extension segment; then, the control 

volumes were selected all along the axis of the elbow. By applying the conservation 

of momentum principle in integral form over these control volumes, the horizontal 

and the vertical transient force distributions along the axis of the elbow were 

obtained for every time step of the liquid slug motion in the elbow and the vertical 

extension segment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Control volume for the transient force calculations at the elbow. 
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The derivation of the formulas for calculation of the horizontal and the 

vertical components of the transient forces acting of the volume elements along the 

elbow are presented in the following subsections.  

 

4.4.1.1 Horizontal Transient Force Distribution at the Elbow  

For the purpose of finding the distribution of horizontal transient forces acting 

on the volume elements along the axis of the elbow, the conservation of momentum 

principle in its integral form as given below was taken as the starting point. 

 

                             





FdAnVVdV
t

CSC


                            (4.31) 

 

In Equation (4.31); 

V


 : velocity vector at any point of the flow, 

F


 : force vector acting on the control volume, 

C  : control volume, 

CS  : control surface. 

 

By applying the conservation of momentum equation over the control volume 

selected in the elbow as shown in Figure 4.11, the horizontal transient force acting on 

the volume element was calculated as the following: 
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The details of the mathematical procedure for deriving Equation (4.32) above 

are presented in Appendix A.4.1.   

In Equation (4.32), 

mS  : area of the mid-plane of the volume element perpendicular to pipe axis. 

uS  : upstream pipe cross-sectional area for the control volume, 

dS  : downstream pipe cross-sectional area for the control volume, 

xF  : horizontal reaction force applied by the pipe on the control volume, 

 uP  : average pressure acting at the upstream face of the control volume, 

 dP  : average pressure acting at the downstream face of the control volume,

 u  : reference angle for the upstream face of the control volume, 

d  : reference angle for the downstream face of the control volume. 

uu  and du  : assumed and calibrated axial velocity profile functions 

evaluated at respectively the upstream and downstream faces of the control volume. 

Having known the values for the average pressures at the center points ip  of 

the control volume elements, which were calculated with the formula (4.19) given in 

Section 4.3.2.2, the uP   and dP  values at the upstream and the downstream faces of 

the volume elements were calculated with the linear interpolation formulas as given 

below in Equations (4.33) and (4.34). 

 

         mu
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mu ss
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PP

PP 
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                                    (4.33) 

 

                                 pd
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







                                    (4.34) 

 

In Equations (4.33) and (4.34), the symbols are as; 

ds , us  : location of respectively the downstream and the upstream faces of 

the current volume element at node ip , on the s -curve, 
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Figure 4.12 Selection for the location of the P  values along the s -curve, for the 

procedure of interpolation at the faces of the volume elements. 
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ps , ms  and ns  : location of the center points of respectively the previous, 

current and next volume elements on the s -curve, 

pP , mP  and nP  : average pressures at the center points of respectively the 

previous, current and next volume elements on the s -curve, 

The location of the average pressure, P , values and the coordinates, s , on 

the s -curve, which were used in (4.33) and (4.34) are also shown in Figure 4.12.     

To find the horizontal transient force distribution along the axis of the elbow, xF  

values were calculated at each time step with the expression given by (4.32) over the 

same computational domain as was used for the average pressure distribution 

calculations at the elbow given in Section 4.3.2.2. During the calculations, in case the 

slug front face is at a stage of advancing along the elbow axis; that contribution to 

the transient force by the volume element at the downstream boundary NLFF , 

which is half  filled with the  liquid slug as  shown in  Figure 4.10, was neglected. 

 

4.4.1.2 Vertical Transient Force Distribution at the Elbow 

The vertical transient force distribution acting on the volume elements in the 

elbow was found by applying the conservation of momentum equation over the 

volume element selected in the elbow shown in Figure 4.11. 

 The resulting expression for the transient force acting on the volume element 

is as given below:   

                                                         

 

 

 

 

 

 

 

 

 

                                        (4.35) ARgAsinPAsinP

dAusinucosdr
u

r

dAusinucosdr
u

r

dAsinucosdr
u

rt
RF

dduu

S

dddd

r

zRR

d

u

S

uuu

r

zRR

u

S

r

zRR

y

d

u

m



















































































































































 

 

 







0

0

22
0

22
0

22
0

1

1

1



 
 
 
 

 
67 

 

 Here, 

yF  : vertical reaction force applied by the pipe on the control volume, 

Equation (4.35) can be solved over the same computational domain in which 

(4.32) was applied, at each time step of the calculations. While using (4.35), the same 

simplifying assumption is also valid that in case the slug front is inside the elbow, the 

vertical transient force contribution from the volume element at the downstream slug 

front face boundary, which was half filled with the liquid slug, is neglected. 

 

4.4.2 Calculations at the Vertical Extension segment 

The computational domain used for the calculating the distribution of 

transient force applied by the liquid slug, along the axis of the vertical extension 

segment of the pipeline is given in Figure 4.13. If the slug front is at a stage of 

propagating in the vertical extension segment, the computational domain was 

selected as that volume of the vertical extension segment occupied by the liquid slug 

at that time step of the calculations. However, if the slug front reached or passed the 

downstream end section of the vertical extension segment; then, the whole volume of 

the vertical extension segment was used as the computational domain. The horizontal 

and the vertical transient force distributions along the vertical extension segment 

were calculated by applying the conservation of momentum equation over the 

volume elements selected in the vertical extension segment, for every time step of 

the calculations during the motion of the liquid slug in this part of the pipeline.    

 

4.4.2.1 Horizontal Transient Force Distribution at the Vertical Extension 

Segment  

For calculating the distribution of horizontal transient forces acting on the 

volume elements selected along the axis of the vertical extension segment, the 

conservation of momentum equation given by (4.31) was applied in x -direction over 

the control volume selected in the vertical extension segment as shown in Figure 

4.13. The resulting expression for the transient force obtained is as given in (4.36).  
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Figure 4.13 Control volume for the transient force calculations at the  

vertical extension segment. 

 

 

 

 

 

 

                                                                        (4.36) 

 

 

Here, 

suu  and sdu  : axial velocity profile functions at the upstream and the 

downstream faces of the volume element.  

The mathematical procedure for obtaining Equation (4.36) is given Appendix 

A.4.3. 
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Equation (4.36) can be solved over the same computational domain as was 

used for the average pressure distribution calculations at the vertical extension 

segment of the pipeline given in Section 4.3.2.1, at each time step of the slug motion. 

During the calculations, the horizontal transient force contribution by the volume 

element which is half filled by the liquid slug at the downstream boundary location 

of the slug front face in the vertical extension segment was neglected as in the case 

of elbow part calculations given in Sections 4.4.1.1 and 4.4.1.2.   

  

4.4.2.2 Vertical  Transient Force Distribution at the Vertical Extension 

Segment  

For the calculation of vertical transient force distribution along the axis of the 

vertical extension segment, the conservation of momentum equation given by (4.31) 

was written in y -direction over the control volume selected in the vertical extension 

segment, which is shown in Figure 4.13. This application of the conservation of 

momentum principle results in the expression for the vertical component of the 

transient force acting on the volume element as given by Equation (4.37).  

 

    AsgAPAPdAudAu
t
QsF du

S

sd

S

suy

du





   22              (4.37)     

  

 The details for obtaining the expression given by (4.37) are presented in 

Appendix A.4.4.                                                                                                 

Equation (4.37) can be solved over the same computational domain that was 

indicated for the average pressure distribution calculations at the vertical extension 

segment given in Section 4.3.2.1, at each time step of the calculations. The uP  and 

dP  values in (4.37) were calculated from the interpolation equations (4.33) and 

(4.34). And, the calculated average pressure values from Equation (4.17) at the 

center points of the volume elements shown in Figure 4.13 were utilized in 

interpolating these uP  and dP  values at the upstream and downstream faces of the 

volume elements. 

The vertical transient force yF  acting on the volume element at the 
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downstream solution boundary at the slug front face location inside the vertical 

extension segment, which is half filled by the liquid slug, was again neglected as in 

the case of other transient force calculations given in previous sections.   

 

4.4.3 Total Horizontal and the Vertical Transient Forces 

By using the distribution of the horizontal and the vertical transient forces 

acting on the volume elements along the axes of elbow and the vertical extension 

segment of the pipeline calculated at each time step, the time dependent variation of 

the horizontal and the vertical components of the total transient force acting on the 

elbow and the vertical extension segment was found with a summation procedure as 

indicated below: 

      





1

1

NLFF

ip

xx FF                         (4.38) 

                                         





1

1

NLFF

ip

yy FF                                                  (4.39) 

 

 In Equations (4.38) and (4.39); 

 xF  and yF  : x  and y  components of the total transient force acting on the 

elbow and the vertical extension segment, respectively, 

 ip  : indice for the node number. 

 The summations in (4.38) and (4.39) are to be made starting from the first 

volume element at the entrance of the elbow up to the element previous to the one at 

the downstream boundary at the slug front face location if the slug front is at a stage 

of advancing in the elbow and the vertical extension segment according to Figure 

4.10. If the slug front reached the exit section of the vertical extension segment or in 

case the liquid slug started to exit to the atmosphere from that exit section; then, the 

summations in (4.38) and (4.39) were carried out starting from the first volume 

element at the entrance of the elbow up to the final element at the exit of the vertical 

extension segment.  

 The calculations for the transient forces acting on the elbow and the vertical 

extension segment were stopped when the slug upstream face in the horizontal 
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pipeline reached at very close locations upstream the entrance section of the elbow. 

 

4.5 Numerical Integrations 

In order to calculate the area integrals of the form given in Equations (4.17), 

(4.19), (4.32), (4.35), (4.36) and (4.37); a numerical method for taking double 

integrals in polar coordinates was developed. And, for taking the line integrals that 

appear (4.19), (4.21), (4.32), (4.35) and (4.36); a numerical line integration procedure 

was also utilized. In the following subsections, the formulas used for these 

integration processes, both for area and line integrals, are given. 

 

4.5.1 Double Integration in Polar Coordinates 

The second term in parenthesis on the right-hand side of Equation (4.17); the 

second and the third terms in parenthesis on the right-hand side of (4.19); the first, 

second and third terms on the right-hand side of (4.32), (4.35) and (4.36); and the 

second and third terms on the right-hand side of (4.37) involve area integrals over the 

pipe cross-section that are not possible to be integrated analytically. Therefore, a 

numerical double integration method was needed to utilize to calculate those terms.  

The general form of the area integral to be taken can be stated as 

 

                                           dAfI
A

A   ,                  (4.40) 

 

or 

                                         ddrfI
A

A  ,                  (4.41) 

 

according to the polar coordinate system for the pipe cross-section given in Figure 

4.14. In these equations,   ,f  stands for any function that is to be integrated over 

the circular domain of integration.  
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Figure 4.14 Circular mesh over the pipe cross-section. 
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In the present study, the integrals of the form given by (4.41) were taken by 

2-D Gauss Quadrature in cartesian coordinates, by using a transformation procedure 

of the integral from polar to cartesian coordinates.  

For the part of the area integral over the mesh elements except central region 

of the circular domain, the formulas resulting from the transformation process are as 

follows: 

  

                                    





 

 sfg m 2
,, 

                                   (4.42) 

                              

    538642297311,; 4
gwggggwggggwI nmA 




             (4.43)   

 

The details of the mathematical procedure for deriving these equations are 

given in Appendix A.5.1. 

In these equations;  

m  : value of   at the center point of 9-point mesh element as in Figure 4.15, 

nmAI ,;  : value of area integration over the mesh element with the center point 

at node nm, ; and with the mesh element being selected inside the region of circular 

area A  as shown in Figure 4.15. 

In these equations,  

s , t  : cartesian coordinates used for coordinate transformation, 

 ,   : incremental mesh spacings that are taken in the polar coordinate 

system respectively in the radial and the circumferential directions as shown in 

Figure 4.15. 

In Equation (4.43),  

1w , 2w  and 3w  are the weighting coefficients as 
81
25

1 w , 
81
40

2 w , 
81
64

3 w ; and 

the parameters ig   with the subscript i  ranging from 1 to 9 stand for the values of the 

function given in (4.42) evaluated at the corresponding locations of the grid points 

shown in Figure 4.16. 
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Figure 4.15 9-point mesh element selected for double integration 

in polar coordinates. 

 

 

For that part of the area integral over the mesh elements at the central region 

of the circular domain, the transformation procedure gives the following equations: 

 

                                   





 




 sfg c 22
,, 
                                 (4.44)         

   

    538642297311,;
4 cccccccccnmA

c gwggggwggggwI 



        

                                              (4.45) 

 

The details for the derivation of the formulas in (4.44) and (4.45) are given in 

Appendix A.5.1. 
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Figure 4.16 9-point mesh element for 2-D Gauss Quadrature 

in cartesian coordinates. 
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Here, 

nmA
cI ,;  : integral over the mesh element at the central part of the circular 

domain of area A  shown in Figure 4.17, with center point of the mesh element 

located at the node nm, . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Mesh element for the center point of the circular  

domain in polar coordinates. 

 

 

In (4.45), parameter cig   with the subscript i  ranging between values of 1 to 9 

represents the values of the expression   ,cg   evaluated at the location of the nodal 

points depicted in Figure 4.18.     

Now, by using the circular mesh taken over the pipe cross-section, which is 

shown in Figure 4.14, the area integral in (4.40) can be expressed numerically as 

                           

                               
 


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M

m

nmAA III
1 1

,1;
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,; .                            (4.46) 
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In Equation (4.46); 

M  and N  : number of mesh elements in the radial and the circumferential 

directions of the pipe cross-section, respectively. 

 

4.5.2 Evaluation of Numerical Line Integrals  

The evaluation of the second term in parenthesis on the right-hand side of the 

momentum equation given by (4.19); and of the first, second and third terms on the 

right-hand side of (4.32), (4.35) and (4.36) includes the process of taking an area 

integral over the area A  with the integrand itself including a line integral in the 

radial direction r of the cylindrical coordinate system given in Figure 4.5.  There are 

also some other line integrals on the right-hand side of Equation (4.21) which are to 

be evaluated during the pressure distribution calculations at the convex side of the 

elbow. The evaluation of these line integrals were performed numerically by using 1-

D Gauss Quadrature in the present study. 

A clustered mesh generation was also made for the application of the 1-D 

Gauss Quadrature to take the line integrals. In Section 4.5.2.1 below; firstly, the 

formulas for the generation of the clustered mesh are given; then, in Section 4.5.2.2, 

application of 1-D Gauss Quadrature over the clustered mesh is presented. 

 

4.5.2.1 Generation of 1-D Clustered Mesh 

The general pattern of selected 1-D meshes for 1-D numerical line 

integrations is given in Figure 4.18. In this figure, the coordinate axes z and r  were 

rotated clockwise by 90° with respect to those shown in Figure 4.5 (c) and (d).  

In this general case, the line integral is taken from point A  to K   over the 

selected clustered mesh elements. The purpose of using clustered mesh in Figure 

4.18 is to have mesh spacing small enough to be able to evaluate line integrals in 

case the point K   is very close to the concave side of the computational domain of 

the elbow cross-section, but at the same time reduce the simulation time with the 

advantage of using larger line mesh elements in the direction of r  axis, with 

increasing r  values.  
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Figure 4.18 Line mesh for a given point K on the elbow cross-section.  

 

If the line integrals are to be taken on the cross-section of the vertical 

extension segment of the pipeline and in the direction of x - axis as in the case of 

Equation (4.36); then, the only change in Figure 4.18 must be that r -axis is replaced 

with the axis x . 

The generation of the clustered 1-D mesh was made by using the formulation 

given in this section, over the diameter of the elbow cross-section in the direction of 

r  axis, which is actually the largest span length for a line integral. Then, in case the 

point K   was somewhere inside the circular domain during a line integration, the 

part of this generated clustered line mesh was used in a left justified way such that 

the left end of the line mesh matched point A , and that length of the line mesh 

extending up to point K   was utilized. During this left justification of the clustered 

mesh, the rightmost mesh element was selected having a smaller length so as to 

complete the span length without exceeding past the point K   on the right end of the 
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domain. 

The sizes of the mesh elements on the line mesh were calculated with the 

formula given below in (4.47), and the derivation of this formula is given in 

Appendix A.5.2.1.    

                                       
  1

1
1 




 q
rM

r

r
q c

c
cDr

L
                                          (4.47) 

 

In Equation (4.47), subscript q  is the indicial variable used for the nodes of 

the clustered line mesh elements, and  

qr : length of the clustered line mesh element at node q , 

LM : total number of clustered line mesh elements in case the domain of line 

integral is the whole diameter of the cross-section of the elbow, in r  direction, 

rc  : mesh clustering ratio. 

 

4.5.2.2 Application of 3-Point Gauss Quadrature Method  

The general form of the 1-D numerical integrals that are taken in the present 

study is as given below:  

 

                                            






K

A

L drhI  ,  ,                                         (4.48)  

 

where LI  indicates the line integral, being taken over the line mesh between points  

A  and K   shown in Figure 4.18. The integrand h  in (4.48) is any function in terms 

of the independent variables   and   as defined before. 

In Equation (4.48), K   is any point in the circular computational domain of 

the elbow cross-section, and is located at the points of upper boundaries of the line 

integrals that are taken in Equations (4.19), (4.21), (4.32), (4.35) and (4.36). And, 

point A  is the projected location of point K   on the concave side of the elbow 

cross-section which is a sample point of lower boundary of the line integrals.    

The point  npm zrK ,,  shown in Figure 4.18 is actually a given point 
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 nm zr ,  in the circular domain of the elbow cross-section such that the elbow cross-

section is taken at an angle p  according to the cylindrical coordinate system given 

in Figure 4.5.   

To evaluate the line integral given in (4.48), 3-point Gauss Quadrature 

Method was utilized with the required parameters for the method given in Figure 

4.19 (Mathews, [16]). The sample Gauss element given in Figure 4.19, is actually 

located on the clustered 1-D mesh in Figure 4.18 with the center point qO  of the 

Gauss element matching the center point q  of any element in the clustered mesh.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 Parameters used for the 3-point Gauss Quadrature Method. 

 

The line integral over any Gauss element was calculated by using the formula 

given in (4.51) below, with the function h  evaluated at the nodal points of the Gauss 

element having coordinates   ,  as calculated with Equations (4.49) and (4.50). 
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                                             312211, 2
hwhwhw

r
I q

qL 


  ,                              (4.51) 

 

where 

qLI ,  : expression for the line integral over the line mesh element with the 

mesh element’s center point located at node q . 

The mathematical derivation for obtaining Equation (4.51) is presented in 

Appendix A.5.2.2. 

Then, the line integral given in (4.48) can be calculated with the summation 

given by  

                                                





KQ

q

qLL II
1

,  ,                                          (4.52)                                         

where  

KQ  : mesh size of the 1-D clustered line mesh shown in Figure 4.18.   

 

4.6 Calibration Function for the Velocity Profile 

A calibration function for the change of skew of the assumed axial velocity 

profile function with 3-D shape in the elbow and the vertical extension segment was 

proposed in the present study. The calibration function is of the form )s(cc    as 

indicated previously by Equation (4.6). The functional parameter c  of the assumed 

velocity profile function was also shown previously in Figures 4.3 and 4.4. 

In the present study, a linear variation of the calibration function, c , was 

assumed, and the general shape of the calibration function is given in Figure 4.20.  

In this figure; 

entc  : c  value at the entrance section of the elbow, 

extc  : c  value at the exit section of the vertical extension segment, 
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Figure 4.20 Shape of the calibration function c . 

 

maxc  : maximum value of c  along the s -curve, 

maxs  : location on s -curve where the maximum value of c  occurs, 

elbs  : location on s -curve for the exit section of the elbow, 

exts  : location on s -curve for the exit section of the vertical extension 

segment, 

cO  : origin of the coordinate system for the calibration function, c , 

1cm , 2cm  : slopes of the calibration function, c , before and after its point 

of maximum, respectively. 

According to Figure 4.20, the value of the calibration function, c , increases 

linearly starting from the entrance section of the elbow and then, after a maximum 

value is attained at a location maxs  in the elbow, a linear reduction in c  values occur 

up to the exit location exts  of the vertical extension segment.  

The maxs  value shown in Figure 4.20 was selected in the present study, as the 

point on s -curve where the transducer #2 was located in Bozkuş’s [2] setup shown 

in Figure 2.2. Thus, it was supposed that the maximum skew of the assumed axial 
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velocity profile function occurred at this point on the s -curve within the elbow. 

Then, given a maxc  value, which was actually determined by correlation of 

peak pressures at the elbow with experimental data later on, the only unknowns for 

the calibration function, c ,  left are the  slopes 1cm  and 2cm . The slopes 1cm  and 

2cm  were determined from the formulas  

 

                         max
max

maxc
c ssif

Ds
m 




751


                                  (4.53) 

 

                   max
maxelb

maxc
c ssif

sDs
m 




752


                            (4.54) 

 

according to Figure 4.20.  

The distances which are equal to D75  in Figure 4.20 as measured along the 

axis s  from the entrance and the exit sections of the elbow up to the points cA  and 

cB , where the function c  cuts the s -axis were determined according to some 

experimental data given by Laribi, et. al. [38].  

In that study performed by Laribi, et. al. [38]; it is indicated that the swirl, 

asymmetries and the turbulence distortions after a pipe bend continues up to 80 to 

100 pipe diameters downstream the pipe bend. Also, according to the results of an 

experiment conducted in the same study, it was stated that the swirl in a pipe flow 

after a double 90° elbows extending in perpendicular planes, the fully developed 

flow profile was reached after about 90 pipe diameters downstream the elbow.  

In Laribi, et. al.’s study, the swirl in the pipe flow is actually an indication of 

unsymmetrical properties of the axial velocity profile. And, the attaining of the fully 

developed flow conditions here can be considered as the state that the flow profile 

becomes symmetrical. Therefore, in the present study, it was assumed that the axial 

velocity profile function becomes completely symmetrical at D75  upstream the 

entrance section of the elbow, and D75  downstream of the cross-section for the exit 

of the elbow as an approximation. Since c  0 for the symmetric case of the 
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assumed velocity profile function according to the general shape shown in Figure 

4.4, the c  values at these locations D75  upstream and downstream of the entrance 

and the exit sections of the elbow, respectively, were taken as zero as shown in 

Figure 4.20. 

The c  values for the cases that maxss 0  and extmax sss   were 

calculated with the expressions: 

 

      maxmax
max

maxc
maxcc ssifss

Ds



 0

75


              (4.55) 

 

          extmaxmax
maxelb

maxc
maxcc sssifss

sDs





75


          (4.56) 

 

 the derivations of which are given in Appendix A.6.  

By knowing the values of elbs  and maxs  from pipe geometry, and for a given 

value of maxc , which was correlated later on in the present study as given in 

Appendix B; c  values can be calculated along the s -curve as a function of s  

utilizing the expressions given by (4.55) and (4.56). By using the calculated values 

for the calibration angle, c , along the s -curve, such a variation of the shape of the 

axial velocity profile function, su , along the curve s , as depicted in Figure 4.21, is 

possible to obtain.  

In Figure 4.21, the change in shape of the axial velocity profile function along 

the s -curve over the vertical, mid symmetry plane of the elbow and the vertical 

extension segment is given. This variation of the assumed axial velocity profile 

function along the s -curve is an instantaneously given one, and the variation of the 

shape here itself is also supposed to change with time as the value of the discharge, 

Q , changes; due to continuity condition.   
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Figure 4.21 General variation of the shape of the assumed axial  

velocity profile along the s –curve. 
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4.7 Non-Dimensionalization of the Equations 

The equations derived in the in the present study were non-dimensionalized 

by using the scaling factors given below: 

 

             1stt                               (4.57) 

 

           
m

elb

K
LL 2

                                      (4.58) 

 

                
t
LU



                                         (4.59) 

 

In above equations, 

t  , L  and U   : scaling factors for time, length and velocity, respectively, 

1st  : first time increment value used for the elbow and the vertical extension 

segment calculations. 

The formula for the calculation of 1st  is given later in Section 4.9. 

 By using the scaling factors given by (4.57) to (4.59), the dimensionless 

variables to used can be given as the following: 
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In above expressions, the superscript * indicates non-dimensional variable.  

Using the non-dimensional parameters given by (4.60), the equations used in 

the present study were non-dimensionalized as given below: 

Calculation of the location of the slug front face: 

Equation (4.29):  
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Equation (4.30):      
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Formulas for the calculation of the angle for the friction slope at a point very 

close ( 250R /  distance ) to the pipe wall: 

Equation (A.36): 
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Equation (A.39): 
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      Formulas for the calibration angle for the velocity profile that occurs along the 

s -curve: 

Equation (4.55): 
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Equation (4.56): 
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 Calculation of the parameters for the axial velocity profile that has a skewed 

3-D shape along the s -curve:     

Equation (A.34): 
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Equation (4.7): 
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Equation (4.9): 
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Equation (4.10): 
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Axial velocity profile equation along the s -curve that has 3-D skewed shape:   

Equation (4.2): 
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Equation (4.4): 
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Calculation of the time derivative terms: 

Equation (4.18): 
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Equation (4.20): 
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Differential equation for the average pressure variation along the elbow part 

of the s -curve: 

Equation (4.19): 
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Equations for the turbulent Eddy Viscosity calculation at the elbow:  

Equation (4.22): 
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Differential equation in radial direction of the cylindrical coordinate system, 

for the impact pressure calculation at the convex side of the elbow:   

Equation (4.21):             
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Linear interpolation equations for the calculation of the average pressure at 

the upstream and downstream call faces:  

Equation (4.33):             
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Expression for the calculation of the horizontal components of the transient 

forces acting on the cell elements in the elbow part ( Equation (4.32) ): 
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Expression for the calculation of the vertical components of the transient 

forces acting on the cell elements in the elbow part ( Equation (4.35) ):  
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Differential equation for the average pressure variation along the vertical 

extension segment of the s -curve: 

Equation (4.17): 
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Expression for the calculation of the horizontal component of the transient 

forces acting on the volume elements in the vertical extension segment: 

Equation (4.36): 
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Expression for the calculation of the vertical component of the transient 

forces acting on the volume elements in the vertical extension segment: 

Equation (4.37): 
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Formulas for the calculation of the horizontal and the vertical components of 

the total transient force acting on the elbow and the vertical extension segment: 

Equation (4.38): 
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Equation (4.39): 
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Criteria to stop the simulation procedure: 

Equation (4.   ): 
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4.8 Discretization of the Equations 

The differential expressions in some of the above equations were discretized 

by using finite differences. The discretization procedure at any time step n  of the 

calculations is as follows: 
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Here, the indices are 

i , j , k  : incremental grid location in r ,   and z  directions, respectively; 

according to Figure 4.5. 

The derivative expressions in the first, second and the third terms on the 

right-hand side of  (4.81) were discretized by using (4.96), (4.97) and (4.99). 

And the derivatives in the first and the second terms on the right-hand side of 

Equation (4.90) were discretized by (4.100) and (4.102) below, respectively.   
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In Equations (4.101), the subscript j  stands for the incremental grid location 

in s -direction in the vertical extension segment shown in Figure 4.5 . 

The first up to sixth terms on the right-hand side of (4.85) can be calculated 

by using the expressions given by (4.103) to (4.118). 
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The derivative expressions in the seventh and the eight terms on the right-

hand side of (4.85) can be calculated with Equation (4.97). 

The derivative term in Equation (4.84) was discretized as follows: 
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4.9 Evaluation of Local Peak Pressures   

As s result of the proper selection of the calibration function given in Section 

4.6, the calculated local peak value of the impact pressure distribution along the 

convex side of the elbow came out to be at a point where the transducer #2 was 

located in Bozkuş’s [2] setup. The impact pressure distribution at this point had a 

high gradient and a discontinuous shape as discussed in Section 5.5. To predict the 

value of the peak pressure at this discontinuous region, the impact pressures were 

extrapolated by using the following second order forward finite difference expression 

 

                    1
321

1 2
43




 










 ipip

ipipip
ipip ss

s
ppp

pp              (4.120) 

    

Here, 

ipp  : maximum impact pressure on the convex side of the elbow 

corresponding to node ip  shown in Figure 4.10, 

ips  : location on s -curve at node ip . 

The variable ips  in Equation (4.120) was taken as 
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4.10 Neglecting of Some Terms  

To fasten the simulation speed of program KAYHAN, some terms in pressure 

distribution and transient force distribution equations developed in the present study 

were neglected.    

Considering the average pressure distribution equation given in (4.81), the 

values of the six terms on the right-hand side of the equation are given in Table 4.2, 

for initial slug length, 221.Lin   m (4 ft); initial tank pressure, 91680 .P   kPa (10 

psi); and time, 758600.t   s. 

 

 

Table 4.2 Values for the terms in Equation (4.81). 
s (m) TERM 1 TERM 2 TERM 3 TERM 4&5 TERM 6 TOTAL 

TOTAL
2TERM100  

0.0379 4.946E-8 -1.831E-7 -1.041E-7 -1.401E-6 1.800E-8 -1.621E-06 11.30 
0.0386 4.946E-8 -1.913E-7 -1.102E-7 -1.401E-6 1.825E-8 -1.635E-06 11.70 
0.0394 4.946E-8 -2.000E-7 -1.168E-7 -1.401E-6 1.851E-8 -1.650E-06 12.12 
0.0400 4.946E-8 -2.094E-7 -1.239E-7 -1.401E-6 1.876E-8 -1.666E-06 12.57 
0.0407 4.946E-8 -2.194E-7 -1.317E-7 -1.401E-6 1.900E-8 -1.684E-06 13.03 

 

 

From this table, it can be seen that the ratio of the 2nd term on the right-hand 

side of Equation (4.81) to the total value of the terms is around 13 % and therefore, 

this term was neglected in the calculations.  

Then Equation (4.81) becomes 
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Another equation in which some terms were neglected is the impact pressure 

distribution equation given by Equation (4.85). The values of the terms on the right-

hand side of this equation is  given  in Table 4.3 for initial slug length  , 221.Lin   m  
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Table 4.3 Values for the terms in Equation (4.85). 

 

 

 

 

 

 

 

 

 

 

r TERM 1 TERM 2 TERM 3 TERM 4 TERM 5 TERM 6 TERM 7 TERM 8 TERM 9 TERM 10 TOTAL 
0.0508 1.152E-12 -5.195E-10 -6.013E-08 1.734E-05 -4.229E-10 7.403E-11 2.442E-10 -1.974E-11 4.550E-12 -2.609E-08 1.725E-05 
0.0531 1.205E-12 -4.027E-10 -4.317E-08 1.672E-05 -3.494E-10 5.007E-11 3.384E-10 -1.340E-11 3.222E-12 -2.609E-08 1.665E-05 
0.0554 1.255E-12 -2.284E-10 -2.592E-08 1.616E-05 -2.619E-10 2.776E-11 4.552E-10 -7.488E-12 1.871E-12 -2.609E-08 1.611E-05 
0.0577 1.300E-12 -1.491E-12 -8.589E-09 1.565E-05 -1.602E-10 8.198E-12 5.262E-10 -2.303E-12 5.855E-13 -2.609E-08 1.562E-05 
0.0600 1.342E-12 2.735E-10 -8.687E-09 1.517E-05 -4.383E-11 7.699E-12 5.682E-10 -1.916E-12 -5.435E-13 -2.609E-08 1.515E-05 

101 



 
 
 
 

 
102 

 

(4 ft); initial tank pressure, 91680 .P   kPa (10 psi); time, 756420.t   s. and for 

location on the s -curve of  0003480.s   m. 

By considering that the 5th, 6th and 7th terms require high simulation time and 

are smaller with respect to the total value of the terms, these three terms were 

neglected in the computations. Then, Equation (4.85) becomes      
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Some terms in transient force equations given by (4.88), (4.89) and (4.91) 

were also neglected to speed up the simulation time of program KAYHAN. In Table 

4.4; rV , V , 
t

Vr


 , 

t
V


   values are given at time 756660.t  s and location on s -

curve, 005220.s   m for different   and   values on the pipe cross-section. From 

this table, it can be seen that radial velocities in the pipeline are much smaller than 

axial velocities, and the time derivatives of radial velocities are also negligibly 

smaller than the time derivatives of axial velocities. Therefore, the terms in 

Equations (4.88), (4.89) and (4.91) which include those smaller quantities were 

neglected and the resulting expressions are as given in Equations (4.124), (4.125) and 

(4.126), respectively. 
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Table 4.4 Radial and axial velocities with their time derivatives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the elbow: 
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At the elbow: 
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0.008128 28.8° 0.049830 18.255616 -0.000223 -3.856782 
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At the vertical extension segment: 
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xF                                                   (4.126) 

 

 

4.11 Input Data, Mesh Sizes and Error Analyses 

By using the formulations given in Chapters III and IV, a computer code with 

the name KAYHAN was written in FORTRAN Language in the present study for the 

calculation of impact pressures and the transient forces acting on the elbow and the 

vertical extension segment, by improving the code BOZKUŞ-2 previously written by 

Bozkuş [2]. The input data for program KAYHAN used in the current study is given 

in Section 4.11.1. In addition, the error analysis and the mesh size for numerical area 

integrals, for numerical line integrals with clustered mesh; error analysis for the 

determination of optimum mesh size along the s -curve, and for uniform mesh size 

for impact pressure calculation are given in subsections 4.11.2 to 4.11.5.  

 

4.11.1 Input Data for Program KAYHAN 

The input data used for program KAYHAN in the present study are given in 

Table 4.5.  

The meanings of the symbols in Table 4.5 are as; 

ktanN  : number of tank pressure data points, 

PO  : atmospheric pressure, 

inU  : initial slug velocity, 

inX  : initial slug position, 

extL  : length of the vertical extension segment after the elbow, 

gagePO  : atmospheric gage pressure, 

rtm  : Ratio of the circumferential mesh size to the radial one, at any cross-

section of the pipe, 

LM  : Number of nodes for the line integrals, for the case of integrating along 

the pipe diameter as the largest span length. 
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Table 4.5 Input data for program KAYHAN 

Explanation for the Parameter Symbol Value 

Number of tank pressure data points  Ntank 10001 

Roughness height of the pipe wall (m) ε 0.00001 

Pipe diameter (m) D 0.0508 

Density of air (kg/m3) ρa 1.23 

Density of water (kg/m3) ρw 1000 

Dynamic viscosity of air (Ns/m2) fa 0.0000179 

Dynamic viscosity of water (Ns/m2) ffw 0.00112 

Length of the horizontal pipe (m) Lp 9.4488 

Temperature (C°) T 18 

Atmospheric pressure (Pa) PO 101300 

Initial slug velocity (m/s) Uin 0 

Initial slug position (m) Xin 0.05 

Initial slug length (m) Lin 1.22, 1.52, 2.13, 2.74, 3.35 

(4 ft, 5 ft, 7 ft, 9 ft, 11 ft) 

Initial tank pressure (kPa) P0 68.91, 137.82, 206.73, 275,64 

(10psi, 20 psi, 30 psi, 40 psi) 

Radius of curvature of the elbow (m) R0 0.0508 

Gravitational acceleration (m/s2) g 9.81 

Length of the vertical extension segment after the elbow 

(m) 

Lext 0.4 

Minor loss coefficient at the elbow Km 0.26 

Atmospheric gage pressure (Pa) POgage 0 

Radial mesh size of the pipe cross-section, the 

circumferential one being automatically generated 

M 25 

Ratio of the circumferential mesh size to the radial one, 

at any cross-section of the pipe 

mrt 1.0 

Number of nodes for the line integrals, for the case of 

integrating along the pipe diameter as the largest span 

length 

ML 16 

Mesh clustering ratio for the line integrals cr 1.4 

Number of nodes for the uniform line mesh, along the 

pipe radius, to be used for impact pressure calculation at 

the pipe wall 

MLPRSS 12 

Number of volume elements corresponding to the slug 

length at the beginning of impact, mesh along s-curve 

being automatically generated 

Nslug 1750 

Coordinate on curve-s, where the maximum shift of the 

velocity profile occurs (m) 

smax 0.0532 
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The computer code KAYHAN was run for different initial slug lengths of 

1.22 m, 1.52 m, 2.13 m, 2.74 m and 3.35 m (or 4 ft, 5 ft, 7 ft, 9 ft, 11 ft); and 

different initial tank pressures of 68.91 kPa, 137.82 kPa, 206.73 kPa and 275.64 kPa 

(or 10 psi, 20 psi, 30 psi, 40 psi) for the determination of peak pressures and the 

transient forces acting on the elbow and the vertical extension segment in the present 

study.  

The mesh sizes M , LM , MLPRSS  and slugN  in Table 4.5 were determined 

with error analyses conducted as given in the following sections. 

 

4.11.2 Error Analysis and Mesh Size for Area Integrals 

For the error analyses of the area integrals of the form (4.40) as given below  

 

                                                      dAfI
A

A   ,  

 

and the function   ,f  was chosen as 

 

                                                           ,u,f s                                           (4.127) 

 

where su  is the assumed axial velocity profile function with 3-D shape. Then, the 

numerically calculated value of the discharge calQ   can be expressed as  

 

                

A A

sscalA dd,udA,uQI          (4.128)   

 

 

By taking c 89.84˚, f  89.9971˚ and mU =32.32059 m/s as the 

parameters of the assumed velocity profile function su , the numerically calculated 

discharge , calQ , values were obtained for different mesh sizes NM  over the pipe 

cross-section. And the percentage error corresponding to each mesh size was 
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calculated with the formula                 

                  

                                                 
Q
QQ

error% cal
 100                                     (4.129) 

 

where Q  is the analytically calculated discharge value found as the volume under the 

assumed axial velocity profile function, su .  

      Plots for the percentage error calculated by Equation (4.129), vs. total mesh 

size, NM  , for different rtm  values defined as  

 

                          
M
Nmrt                                                     (4.130) 

 

are given from Figures  4.22 to 4.27. 

   

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.22 Percentage error vs. total mesh size, for 10.mrt   
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Figure 4.23 Percentage error vs. total mesh size, for 250.mrt   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 Percentage error vs. total mesh size, for 50.mrt   
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Figure 4.25 Percentage error vs. total mesh size, for 750.mrt   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26 Percentage error vs. total mesh size, for 01.mrt   
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Figure 4.27 Percentage error vs. total mesh size, for 51.mrt   

 

From these figures, it can be concluded that for a total mesh size of  

625 NM  and 01.mrt  , the percentage error remains below 0.06 % as given in 

Figure 4.26. Therefore, 25M  and 25N  was chosen for the mesh size over the 

pipe cross-section, which was accepted to give enough accuracy. 

Although mesh sizes with 01.mrt   requires smaller mesh size for the same 

accuracy as seen in Figures 4.23 to 4.25, they were not chosen since in that case the 

N  values would be smaller which requires finer clustered line meshes for line 

integrals to be taken later on, causing larger simulation times as mentioned in Section 

4.5.2.1.       

    

4.11.3 Error Analysis and Mesh Size for Line Integrals 

The size of the clustered line meshes used for the evaluation of numerical line 

integrals of the type given by Equation (4.48) as given below 

 

                                            






K

A

L dr,hI   

 

were determined by an error analysis presented in this section.  
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The integrand   ,h  in Equation (4.48) given above was selected as  

 

                                                        


 






u
,h                                               (4.131) 

 

as commonly encountered in pressure distribution equations and transient force 

calculations in Sections 4.3.2 and 4.4 of the present study, respectively.   

 Then, the integral to be used in the error analysis in (4.48) can be given as  

 

                                                      








K

A

L dr
u

I



1                                               (4.132) 

 

where 

 1LI  : integral expression. 

 For the error analysis, the location of point K   was selected on the pipe cross-

section shown in Figure 4.18 as  

 

                                







2
018470 

 ,.K,K                                   (4.133) 

   

with   in meters, and the pipe cross-section on the s -curve shown in Figure 4.5 was 

chosen at location m.s 016370 .   

 During the computer runs for the analysis, initial slug length, inL , was taken 

as 1.21 m (4 ft) and initial tank pressure, 0P , was used as 68.91 kPa (10 psi), together 

with other data given in Table 4.5. The 1LI  values at time 757230.t  s were used 

for the analysis. 

In the error analysis, the calculated values of 1LI  for 30LM  gives 

0138401 .I L   m2/s as a constant value with 5 digits accuracy after the decimal point.  

 Then the percentage error for the line integral 1LI  was calculated by the 

formula 
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013840

013840
100 1

.
I.

error% L
                                    (4.134) 

 

 The variation of percentage error calculated by (4.134), with the size of the 

clustered line mesh, LM , is given in Figure 4.28. 
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Figure 4.28 Variation of percentage error vs. node number, LM . 

 

According to Figure 4.28, the size of the clustered line mesh was chosen as  

16LM  for which the percentage error remains below 1 %. 

 

4.11.4 Mesh Size and Error Analysis for the Line Mesh along s -Curve 

For the elbow and the vertical extension part calculations, the mesh spacing 

along the s -curve shown in Figure 4.5 was calculated by using the formula given by   

 

                                               
slug

imps

N
L

s                                                  (4.135) 

 

Here,  

impsL  : slug length at the instant that the slug front enters the elbow, 
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slugN  : number of nodes selected over the slug length, impsL . 

And, the time increment at each time step of the slug motion in the elbow and 

the vertical extension segment was calculated from the formula 

 

                                           1





s
UtCr aves                                          (4.136) 

 

given by Tannehill et. al. [39].    

In Equation (4.136), 

 n
st  : time increment at any time step, n , 

 n
aveU  : average slug velocity at any time step, n , 

 Cr  : Courant number. 

 Equation (4.136) is called as the Courant number condition, which is used as 

the stability requirement of hyperbolic partial differential equations.  

 Since the pressure distribution equations given by (4.17), (4.19) and (4.21) to 

be solved in the elbow and the vertical extension segment of the pipeline are of 

integral type equations, which are unconditionally stable, the Courant number in 

(4.136) can be taken as     

                   

                                                                  1Cr                                                 (4.137) 

 

as being equal to the upper limit.  

 Then, the time increment, st , can be calculated from Equation (4.136) as 

follows: 

 

         n
ave

n
s U

st 
                                                (4.138)  

   

 

 In non-dimensional form, the equations (4.135) and (4.138) can be expressed 

as 
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slug

simp

NL
L

s


 *                                                 (4.139) 

 

                                                     n*
ave

*n*
s

U

st 
                                                 (4.140) 

 

Then, time value at any time step of elbow and the vertical extension segment 

calculations, can be calculated with the expression 

 

                                         n*
s

n*n* ttt  1                                            (4.141) 

 

by using the final value for time *t  for the horizontal pipe calculations as the initial 

condition for the elbow and the vertical extension segment calculations.   

The number of nodes, slugN   in Equation (4.139), selected on that length of 

the slug at the instant that the slug front reaches the entrance section of the elbow 

was found by an error analysis. 

Since the peak pressure at the point on the convex side of the elbow at the 

location of transducer #2 in Bozkuş’s [2] setup, is the parameter which is mostly 

affected by the mesh size  slugN  in the present study, the error analysis was made by 

considering the variation of this peak pressure with mesh size. 

The error analysis was made for slug lengths of 211.Lin   m (4 ft) and initial 

tank pressures of 91690 .P   kPa (10 psi). In the analysis, it was seen that the peak 

pressures attained a constant value of 82. psi (or 565 kPa in SI units) with two 

decimal places of accuracy. Therefore, the percentage error was calculated with the 

expression 

 

                                
82

82
100 peakp

error%


                                         (4.142) 
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Here, 

peakp  : peak pressure from program KAYHAN at the location of transducer  

#2. 

The variation of percentage error given by Equation (4.142), with respect to 

mesh size, slugN , is given in Figure 4.29.  
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Figure 4.29 Variation of percentage error vs. node number, slugN  .  

 

According to the variation of error in Figure 4.29, the mesh size slugN  was 

chosen as 1750, which gives percentage error for peakp  as less that 10 %. Larger  

slugN  values were not selected in order not to slow down the simulation speed.  

 

4.11.5 Error Analysis and the Mesh Size for Impact Pressure 

Calculation 

The size of the line mesh MLPRSS  along the radius of the pipe cross-section 

at the elbow shown in Figure 4.8, used for the calculation of impact pressures at the 

convex side of the elbow, was determined with an error analysis given in this section.  

For the analysis, the impact pressure, p , values were calculated for initial 
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slug lengths, 132.Lin   m (7 ft), initial tank pressures, 91680 .P   kPa (10 psi), at 

time, 922770.t   s and with other input parameters being as in Table 4.5. 

It was seen that the impact pressure, p , values remain constant up to 3 digits 

of  accuracy at a value of 20.2 psi (or 139 kPa in SI units) for node number values of 

30MLPRSS , and therefore, the percentage error was calculated with the 

expression given below: 

 

                                  
220

220
100

.
p.

error%


                                        (4.143) 

 

The variation of percentage error calculated by (4.143), with respect to node 

number MLPRSS  is given in Figure 4.30. 
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Figure 4.30 Variation of percentage error vs. node number MLPRSS . 

 

According to the variation of the percentage error in Figure 4.30, the node 

number, MLPRSS , for impact pressure calculation at the convex side of the elbow 

was  taken as 12MLPRSS . For this mesh size selection it can be seen from Figure 

4.30 that the percentage error remains below 0.3 %.  
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CHAPTER V 

 

 

RESULTS AND DISCUSSION 

 

 

5.1 Introduction  

In this chapter, the results obtained from the computer simulations with 

program KAYHAN, which was developed in the present study, are presented and 

discussed. Comparisons of the obtained results from program KAYHAN with the 

previous studies are also given.  

The computer simulations with KAYHAN were made with 4 different initial 

tank pressures of 68.91 kPa, 137.82 kPa, 206.73 kPa, 275.64 kPa (10, 20, 30 and 40 

psi.) For each of these initial tank pressures, simulations with 5 different initial slug 

lengths of 1.22 m, 1.52 m, 2.13 m, 2.74 m and 3.35 m (4, 5, 7, 9 and 11 ft) were 

performed. Other data as input parameters are as given in Table 4.5. 

The input data used for the computer programs and the data used in the 

experiments both in the present study and of previous studies are presented in units 

of International System (SI) together with their equivalents in British Gravitational 

System (BG) given in parenthesis. The results of the computer programs and the 

experiments for the pressure values are tabulated and plotted in BG System.      

In Section 5.2, the normalized peak pressures at the elbow vs. the normalized 

slug travel distances as obtained from program KAYHAN are given and comparisons 

with some experimental and numerical results from Bozkuş’s [2] study are made. In 

Section 5.3, the pressure-time history plots from program KAYHAN of the present 

study are compared with Bozkuş’s [2] experimental results. The transient force-time 

history plots obtained from program KAYHAN are given in Section 5.4, and a 

comparison of the normalized peak horizontal transient force values vs. the 

dispersion distances at the elbow and the vertical extension segment are made with 

those from previous studies performed by Fenton [26], Bozkuş [2] and Baran [27]. A 
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set of plots for the impact pressure distribution at the convex side of the elbow at 

projected nodal points from the axial s -curve of the elbow are also given in Section 

5.5.        

 

5.2 Peak Pressures at the Elbow 

The time dependent impact pressure distribution at the convex side of the 

elbow was calculated with program KAYHAN by using the formulation given in 

Section 4.3.2.3 in the present study. From this pressure distribution, the impact 

pressure value at nodal point C   on the convex side of the elbow shown in Figure 

4.10 at a location 2/3 of the total axial length of the elbow distance away from the 

entrance of the elbow was taken, as also being the maximum impact pressure value at 

the elbow. This location at the elbow actually corresponds approximately to the same 

point where the transducer #2 was located in Bozkuş’s [2] setup shown in Figure 2.2. 

In the present study, the maximum impact pressure value was at this location of the 

transducer #2 because the maximum shift of the assumed and calibrated axial 

velocity profile function with 3-D shape was also here as a result of a proper 

selection of the related calibration parameter of the calibration function for the 

velocity profile.       

   By taking the time-peak of the maximum impact pressure values calculated 

with program KAYHAN in the present study, which corresponds to the location of 

transducer #2 on the elbow in Figure 2.2, the plot given in Figure 5.1 were prepared. 

In Figure 5.1, the variation of the peak pressures at the elbow normalized with 

respect to the initial tank pressure vs. the slug travel distances as normalized with 

respect to the initial slug lengths are plotted. In this plot, the results from the 

computer programs KAYHAN, BOZKUŞ-2 [2], and Bozkuş’s [2] experimentally 

obtained findings are given together. Totally 6 different hold up coefficients for 

BOZKUŞ-2 are involved in this plot ranging from no hold up to 5% hold up.  

As can be deduced from Figure 5.1, it can be said the normalized pressures 

from program KAYHAN has a sinusoidal variation which provides a better 

approximation to Bozkuş’s experimentally obtained values than the values from the 

program BOZKUŞ-2. This superiority of the program KAYHAN can be attributed 

mainly to two different correlation  functions used  for obtaining the  functional  hold    



    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Normalized peak pressures vs. inp L/L . 
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up coefficient and the for calculating a parameter of the calibration function for the 

assumed velocity profile in the present study.   

For 1.22 m (4 ft) slugs, which are at the right end of the data range of the 

plots, it can be seen from Figure 5.1 that the normalized peak pressures from 

program KAYHAN, and from program BOZKUŞ-2 with no hold up are in excellent 

agreement with the experimental findings of Bozkuş. For 2.13 m (7 ft) slugs, which 

are shown at the mid region of the data range, it can be said that the normalized peak 

pressure values are overestimated with program KAYHAN but for these slugs, the 

values from program BOZKUŞ-2 for all hold up values remain below the 

experimental data. For 3.35 m (11 ft) slugs, which are located at the left end of the 

data range in the plots, it can be concluded that the normalized peak pressures from 

program KAYHAN match with Bozkuş’s experimental data well and the normalized 

peak pressures from program BOZKUŞ-2 remain slightly below the experimental 

data. For 1.52 m (5 ft) slugs, the results from program BOZKUŞ-2 with no hold up 

are closer to experimental data than the results are from program KAYHAN. 

However, for 2.74 m (9 ft) slugs, program KAYHAN gives better approximation to 

the experimental data than program BOZKUŞ-2 for all hold up values.           

 A tabulated output for the peak pressures at the location of transducer #2 on 

the elbow shown in Figure 2.2 is also given in Table 5.1. In this table the peak 

pressures obtained from programs BOZKUŞ-1, BOZKUŞ-2 and KAYHAN are 

presented together with the experimental data for different initial slug lengths and 

initial tank pressures. Explanations for the functions of these programs, and a 

flowchart and the computer code written in FORTRAN Language for program 

KAYHAN are given in Appendix C. In the last column of Table 5.1, the Joukowsky 

pressure rise values for a fictitious case of sudden valve closure at the elbow location 

are presented, and these values are referred later on in Section 5.6.     

 

5.3 Pressure-Time History Plots  

  The variation of the impact pressures with time from program KAYHAN at 

the point on the convex side of the elbow where the transducer #2 in Bozkuş’s [2] 

setup was located, was plotted to obtain pressure –time history plots at the elbow.   



 
Table 5.1 Peak pressures at the elbow (psig). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

BOZKUŞ-1 

 

BOZKUŞ-2 

Bozkuş’s 

Experiment 

Α α 

 

Slug 

Length 

 

 

Tank 

Pressure 

 1.00 0.99 0.98 0.97 0.96 0.95 1.00 0.99 0.98 0.97 0.96 0.95 

 

KAYHAN 

1st 

peak 

2nd 

peak 

 
Joukowsky 

Pressure 
Rise 

68.91 kPa (10 psi) 48.95 57.98 70.54 88.84 117.11 164.27 48.88 57.84 70.36 89.08 119.32 174.43 73.82 49±14 - - 
137.82 kPa (20 psi) 105.36 124.37 150.77 189.17 248.40 347.05 104.86 123.23 149.68 187.98 249.70 365.33 112.55 137±62 - 1106.85 

206.73 kPa (30 psi) 161.38 190.32 230.48 288.89 398.75 528.88 159.82 188.01 226.95 284.89 377.12 557.67 148.80 142±31 - 730.94 

 

1.22 m 

(4 ft) 

275.64 kPa (40 psi) 220.22 259.44 313.87 392.98 514.90 717.77 218.22 254.50 307.13 384.67 509.85 718.71 183.37 217±119 - 1291.32 

68.91 kPa (10 psi) 38.25 43.76 50.93 60.53 73.84 93.10 38.25 43.72 50.98 60.87 74.98 96.52 46.28 28±6 - 537.64 

137.82 kPa (20 psi) 83.20 94.90 110.08 130.38 158.47 199.07 83.02 94.43 109.77 130.24 159.73 204.70 72.16 131±48 - 992.78 

206.73 kPa (30 psi) 127.80 145.64 168.79 199.72 242.52 304.36 126.99 144.74 167.33 198.45 242.72 310.55 104.98 - - - 

 

1.52 m 

(5 ft) 

275.64 kPa (40 psi) 174.93 199.16 230.60 272.59 330.66 414.53 173.65 196.85 227.30 269.82 328.44 419.83 133.50 - - - 

68.91 kPa (10 psi) 26.16 28.11 32.00 35.92 40.81 47.03 26.23 28.88 32.11 36.15 41.37 48.17 99.71 96±17 79±9 1556.22 

137.82 kPa (20 psi) 58.08 63.75 70.60 78.99 89.45 102.75 58.06 63.79 70.64 79.38 90.35 104.89 138.34 135±35 151±18 2067.02 

206.73 kPa (30 psi) 89.66 98.35 108.83 121.67 137.66 157.99 89.52 98.06 108.72 121.87 138.47 160.57 168.29 139±27 222±41 990.26 

 

2.13 m 

(7 ft) 

275.64 kPa (40 psi) 123.40 135.25 149.54 167.03 188.42 216.50 122.76 134.69 148.94 166.45 189.20 219.03 220.62 173±32 264+31 1098.88 

68.91 kPa (10 psi) 19.56 21.09 22.87 24.96 27.43 30.39 19.64 21.18 22.96 25.13 27.93 30.96 59.26 56±11 71±6 1495.37 

137.82 kPa (20 psi) 44.25 47.57 51.43 55.95 61.30 67.72 44.34 47.66 51.58 56.33 61.96 68.96 89.17 78±16 131±5 1039.14 

206.73 kPa (30 psi) 68.64 73.74 79.66 86.60 94.81 104.65 68.68 73.82 79.76 86.94 95.76 106.29 129.59 - - - 

 

2.74 m 

(9 ft) 

275.64 kPa (40 psi) 94.93 101.91 110.01 119.50 130.72 144.16 94.83 101.78 109.87 119.63 131.60 146.10 164.57 - - - 

68.91 kPa (10 psi) 14.53 15.42 16.42 17.56 18.86 20.35 15.51 16.48 17.61 18.92 20.47 22.30 32.49 38±4 65±7 692.80 

137.82 kPa (20 psi) 33.64 35.60 37.80 40.30 43.15 46.40 33.76 35.71 37.96 40.59 43.62 47.18 62.34 63±14 124±8 775.83 

206.73 kPa (30 psi) 52.48 55.49 58.89 62.73 67.12 72.17 52.62 55.63 59.08 63.09 67.83 73.30 90.82 104±42 171±12 687.15 

 

3.35 m 

(11 ft) 

275.64 kPa (40 psi) 73.00 77.14 81.00 87.08 93.11 100.03 73.06 77.17 81.91 87.43 93.91 101.51 120.78 126±40 207±16 725.70 
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The pressure-time history plots as obtained from program KAYHAN in the 

present study together with Bozkuş’s [2] experimental results are shown in Figures 

5.2 to 5.13.  

In pressure – time history plots in Figures 5.2 to 5.13, the times for the 

starting point of the pressure peaks from program KAYHAN and from Bozkuş’s 

experimental results show some differences. For example, in Figure 5.2, the peak 

pressure from program KAYHAN occurs earlier then the pressure peak from 

Bozkuş’s experimental result by some amount. As another example, in Figure 5.3, 

program KAYHAN gives the peak pressure at a later time point than the 

experimental time value. The time value for the start of the pressure peak here is 

actually a very close value to the slug arrival time at the elbow and this time value 

was calculated in program KAYHAN by utilizing a modified version of computer 

code BOZKUŞ-2 developed by Bozkuş. The slug arrival time at the elbow here was 

calculated in program KAYHAN as a final result of the calculations at the horizontal 

section of the pipeline in the present study, and the mathematical development for 

this part was given in Chapter III.    

The peak pressure values from program KAYHAN for shorts slugs as 1.22 m 

(4 ft) and 1.52 m (5 ft) initial length, are sometimes approximately half the 

experimental peak pressure value or twice the experimental peak as can be seen in 

Figures 5.2 to 5.5, which can be considered as a high deviation from the 

experimental pressure peaks.  However, for medium and long slugs having initial 

lengths of 2.13 m, 2.74 m and 3.35 m (7, 9 and 11 ft); the pressure peaks from 

program KAYHAN are very close to the first peaks obtained experimentally by 

Bozkuş as in Figures 5.6 to 5.13. The higher deviation of the pressure peaks here 

obtained from program KAYHAN in the case of short slugs can be explained by the 

existence of more air entrainment effect that occurs for short slugs than the case of 

medium and long slugs.    

 As explained in Section 4.3.3, after the slug front face has entered the elbow, 

the driving air pressure acting at the upstream face of the slug was taken to be 

decreasing at the same rate as the tank pressure in program KAYHAN. Thus, the 

compressibility effect of the air column and therefore, the waterhammer effects that 

take place in the pipeline were neglected during the  motion of the  slug in the  elbow 
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Figure 5.2 Pressure-time history plots at the elbow for 221.Lin   m (4 ft) and 

821370 .P   kPa (20 psig). 

 

 

 

 

 
Figure 5.3 Pressure-time history plots at the elbow for 221.Lin   m (4 ft) and 

732060 .P   kPa (30 psig).  
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Figure 5.4 Pressure-time history plots at the elbow for 221.Lin   m (4 ft) and 

642750 .P   kPa (40psig). 

 

 

 

 

 
Figure 5.5 Pressure-time history plots at the elbow for 521.Lin   m (5 ft)  

and 91680 .P   kPa (10 psig). 
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Figure 5.6 Pressure-time history plots at the elbow for 132.Lin   m (7 ft)  

and 91680 .P   kPa (10 psig). 

 

 

 

 

 
Figure 5.7 Pressure-time history plots at the elbow for 132.Lin   m (7 ft)  

and 821370 .P   kPa (20 psig). 
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Figure 5.8 Pressure-time history plots at the elbow for 132.Lin   m (7 ft)  

and 642750 .P   kPa (40 psig). 

 

 

 

 

 
Figure 5.9 Pressure-time history plots at the elbow for 742.Lin   m (9 ft)  

and 91680 .P   kPa (10 psig). 
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Figure 5.10 Pressure-time history plots at the elbow for 353.Lin   m (11 ft) 

 and 91680 .P   kPa (10 psig). 

 

 

 

 

 
Figure 5.11 Pressure-time history plots at the elbow for 353.Lin   m (11 ft)  

and 821370 .P   kPa (20 psig). 
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Figure 5.12 Pressure-time history plots at the elbow for 353.Lin   m (11 ft)  

and 732060 .P   kPa (30 psig). 

 

 

 

 

 
Figure 5.13 Pressure-time history plots at the elbow for 353.Lin   m (11 ft) 

and 642750 .P   kPa (40 psig). 
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and  the   vertical   extension   segment.   Neglecting  the  waterhammer  effects  here  

together with discarding the effect of air entrainment as a simplification, can be said 

to be the reasons that the pressure-time history diagrams from program KAYHAN 

does not reflect the wavy pattern seen in Bozkuş’s experimental plots. However, the 

general shape of the tail regions of the pressure – time history plots are still in close 

agreement with the experimental data especially for 3.35 m (11 ft) slugs as shown in 

Figures  5.10 to 5.13.      

 The tail region of pressure-time history plots for 3.35 m (11 ft) slugs from 

program KAYHAN, shown in Figures 5.10 to 5.13 are in well agreement with 

Bozkuş’s experimental findings. However, for slugs with initial length of 1.22 m, 

1.52 m, 2.13 m and 2.74 m (4, 5, 7 and 9 ft); the tail region of the plots from the 

present study has a general tendency to remain above the experimental values of 

Bozkuş. This discrepancy of the values in the tail region of the pressure – time 

history plots in the cases of shorter slug lengths can be attributed to the existence of 

more air entrainment for shorter slugs.  

  

5.4 Transient Forces at the Elbow 

The horizontal and the vertical components of the transient forces acting on 

the elbow and the vertical extension segment were calculated by program KAYHAN 

in the present study according to the formulation derived in Section 4.4. 

The variation of the horizontal and the vertical transient force components, 

xF  and yF , acting on the elbow and the vertical extension segment are given from 

Figures 5.14 to 5.19 for different initial slug lengths and the initial tank pressures. As 

a general characteristic property, it can be said the there is an initial and sharp 

increasing part of the transient force components in all the plots which corresponds 

to the period that the slug front is at a stage of advancing within the elbow and the 

vertical extension segment. Then, after a peak value is attained for both force 

components, the transient force values start to decline with a relatively milder slope. 

This declining region of the plots can be said to be due to the reduction in slug speed 

under the effect of retarding forces applied by the elbow and the vertical extension 

segment on the liquid slug.     
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Figure 5.14 Transient force components for 221.Lin   m (4 ft) and  

91680 .P   kPa (10 psig). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.15 Transient force components for 221.Lin   m (4 ft) and  

821370 .P   kPa (20 psig). 
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Figure 5.16 Transient force components for 132.Lin   m (7 ft) and  

91680 .P   kPa (10 psig). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 Transient force components for 132.Lin   m (7 ft) and  

821370 .P   kPa (20 psig). 
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Figure 5.18 Transient force components for 353.Lin   m (11 ft) and  

821370 .P   kPa (20 psig). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 Transient force components for 353.Lin   m (11 ft) and  

642750 .P   kPa (40 psig). 
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  Implementation of a 1-D solution technique by considering that the slug front 

is planar in the elbow and the vertical extension segment, and also accepting that the 

liquid slug is incompressible are the factors that prevents the consideration of the 

further deformation of the shape of the slug body during its motion. This fact can be 

thought to be a reason for the calculated transient forces to have a tendency towards 

an overestimation. 

The plot for the normalized force values, *F , vs. dispersion distances, *D , is 

given in Figure 5.20. Here, 

 

                                                            
m

p*

F
F

F                                                       (5.1) 

 

                                                            
in

t*

L
LD                                                       (5.2) 

 

In (5.1) and (5.2); 

pF  : experimentally obtained peak force at the elbow, 

mF  : predicted force at the elbow with the numerical model,  

tL  : travel distance of the slug. 

Results for the normalized forces from 4 different studies are presented in 

Figure 5.20. These are Fenton’s [26], Bozkuş’s [2] and Baran’s [27] results, and the 

results of the present study. Fenton’s results are shown with vertical solid lines, and 

the vertical dash lines show Bozkuş’s results. The small circles on the vertical dash 

lines symbolize the average values for each data group presented, and short 

horizontal dashes indicate extreme values. The extreme values for Baran’s results are 

indicated with cross signs with also the mean values shown by solid squares. The 

mean values for the present study in which the mF  values were found from 

conservation of momentum principle applied on volume elements along the elbow 

are given by solid triangles and the extremes are shown by long, horizontal single 

dashes (results named as Kayhan-1). The mean values for the present study in which 

the mF  values were found from    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 Values of *F vs. *D  (Bozkuş’s [2] 1st peaks were used for normalization). 
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                                                         ApF peakm   

 

are given by solid circles and the extremes are shown by hollow squares (results 

named as Kayhan-2).  

 The horizontal line at 1*F  in *F  vs. *D  plot in the current study indicates 

the values of *F  at which the experimentally obtained peak forces at the elbow are 

equal to the peak forces obtained from the numerical model. 

The normalized forces, *F , for the present study were obtained dividing 

Bozkuş’s experimentally found peak forces, by the peak values of the numerically 

calculated horizontal transient forces of the present study. 

In Figure 5.20,  *F  vs. *D  values are presented in which the *F  values of 

Bozkuş, Kayhan-1 and Kayhan-2 were calculated; by using the values of the first 

pressure peaks in experimental pressure-time history plots of Bozkuş [2], for pF . In 

this figure, the *F  values from the present study have the same data range as 

Bozkuş’s data. From these two data set, it can be seen that the results from the 

present study of Kayhan-1 and Kayhan-2 are closer to unity with respect to Bozkuş’s 

values for 6*D . For dispersion distance, *D , values around 4; the normalized 

forces, *F , from Kayhan-1 of the present study remain slightly below Fenton’s and 

Baran’s data. This can be explained by the fact that in Fenton’s and Baran’s 

numerical models, the mass loss from the liquid slug during the slug motion was 

neglected. It can also be said that the results from Kayhan-1 can be considered to be  

more correct than Kayhan-2 because in that the case of Kayhan-1, analytical transient 

force value is calculated by integration of forces over the whole volume of the elbow, 

rather that using a fixed point for peak pressure as in the case of  Kayhan-2.   

In Figure 5.21,  *F  vs. *D  values were plotted in which the *F  values of 

Bozkuş, Kayhan-1 and Kayhan-2 were calculated; by using the values of the second 

pressure peaks in pressure-time history plots of Bozkuş [2], for pF . The symbols for 

each data group here are the same as in the previous plot given by Figure 5.20. From 

5.21, it can be deduced that *F  values of Bozkuş, Kayhan-1 and Kayhan-2 are in 

close  agreement   for  4*D .   According  to   the plot in  Figure 5.21; for  4*D ,  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Values of *F vs. *D  (Bozkuş’s [2] 2nd peaks were used for normalization). 
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results from Kayhan-1 are smaller than Bozkuş’s values as was also the case in 

Figure 5.20. Also, from Figure 5.21, it can be seen that the values from Bozkuş, 

Kayhan-1, and Kayhan-2 are higher than Fenton’s [26] and Baran’s [27] data which 

can be attributed to the fact that in Figure 5.21, *F  values were calculated with 

respect to the second pressure peaks in Bozkuş’s experimental pressure-time history 

plots having higher values than the first peaks.    

 

5.5 Impact Pressure Distribution at the Elbow 

During the simulation of the liquid slug motion, the time dependent impact 

pressure distribution at the convex side of the elbow at projected locations C   (see 

Figure 4.9) from the axial s -curve  of the elbow were calculated with the related 

expression given in Section 4.3.2.3 for every time step of the slug motion in the 

elbow and the vertical extension segment.  

Some sample dynamic impact pressure distributions along the elbow are 

given from Figures 5.22 to 5.24 at different time, t , values; and for different initial 

slug lengths and initial tank pressures. The pressure distributions are given with 

respect to the node numbers, ip , along the s -curve. The total number of nodes along 

the elbow NELBW  here were determined with respect to the initial slug lengths. In 

these plots, the dynamic pressure values start with a decreasing pattern due to 

existence of friction and minor losses in the elbow. Then, the impact pressures start 

to increase as a result of the effect of the skewed shape of the axial velocity profile. 

This increase in pressure continues up to a point where the maximum shift of the 

velocity profile occurs. This point actually corresponds to the location for the 

occurrence of the maximum calibration angle, maxc , of the calibration function, c . 

After the point for the maximum value of the impact pressure distribution curve, the 

impact pressures start to decrease where the axial velocity profile is at a stage of 

attaining its symmetrical shape towards to downstream reaches of the elbow.           

In impact pressure distribution plots given by Figures 5.22 to 5 24, it can be 

seen that there is a discontinuity prior to the point of maximum pressure in each plot. 

The discontinuous regions in the plots correspond to the unsmooth maximum point 

of the calibration function used in calibrating the axial velocity profile. At these 

points, the direction of change in shape of the  axial velocity  profile shows an abrupt 
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Figure 5.22 Dynamic pressure distribution for 221.Lin  m (4 ft),  

821370 .P  kPa (20 psi), t 0.539 s and NELBW 115. 
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Figure 5.23 Dynamic pressure distribution for 221.Lin   m (4 ft),  

642750 .P   kPa (40 psi), t 0.375 s and NELBW 115. 
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Figure 5.24 Dynamic pressure distribution for 132.Lin   m (7 ft),  

91680 .P  kPa (10 psi), t 0.942 s and NELBW 90. 

  

variation and this abrupt change results in some fictitious calculated impact pressure 

values while evaluating the second derivatives in the differential equations. 

Therefore, the impact pressure values in those regions consisting of two nodal points 

were left and the resulting impact pressure distribution plots were formed as having 

discontinuous shapes.  

 Since it can be expected that the maximum impact pressure value occurs at 

the point along the s -curve, where maxcc   , the maximum value of the impact 

pressure was calculated by making an extrapolation from the downstream side of the 

discontinuous region using backward differences. maxc  value corresponds to the 

location of the nodal point just before the right end of the discontinuous region and it 

was possible to calculate the maximum impact pressure at this nodal point by 

extrapolating the impact pressures in the backward direction. 
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5.6 A Discussion on the Existence of Waterhammer Event 

The validity of the assumption that waterhammer effects were neglected 

during the calculations for the slug in motion elbow and the vertical extension 

segment of the pipeline system was also checked in the present study. For this 

purpose, Bozkuş’s [2] experimentally obtained peak pressures at the elbow were 

compared with Joukowsky pressure rise (Streeter and Wylie [33]) values for the 

fictitious case of a sudden valve closure at the elbow location. The Joukowsky 

pressure rise formula for the case of a shock wave travelling towards upstream is as 

follows: 

 

                                            UaPWH                                                (5.3) 

 

In Equation (5.3); 

WHP  : pressure rise due to sudden valve closure, 

a  : wave speed, 

U  : change in slug velocity. 

By taking the final slug velocity as zero, Equation (5.3) can be written as 

 

               )U(aP pasWH  0                                         (5.4) 

 

 Here,  

 pasU  : slug passage velocity through the elbow. 

The expression given by (5.4) can now be expressed as 

  

                                             pasWH UaP                                               (5.5) 

 

The slug passage velocity through the elbow, pasU , can be calculated with the 

equation 

                                            
pas

fin
pas t

L
U


                                                     (5.6) 
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In Equation (5.6), 

past  : slug passage time through the elbow. 

The finL   values were taken from program KAYHAN as the slug length at the 

instant that the slug front face reaches the elbow. And the past  values were found 

from Bozkuş’s experimentally obtained pressure-time history plots in Figures 5.2 to 

5.13, by measuring the time period from the time of the occurrence of the first 

pressure peak up to the time that the pressure rise at the elbow falls to the initial tank 

pressure level. 

The wave speed, a , in the PVC pipeline used in the current study was taken 

as  438 m/s as calculated by Bozkuş [2] with a spectral analysis. Also, the density of 

water,  , was taken as 500 kg/m3 as an approximation, by considering the reduction 

in the value of the liquid density due to air entrainment effect.  

Then, the Joukowsky pressure rise values were calculated from Equation 

(5.5) and (5.6), and the results are presented in the last column of Table 5.1. 

By comparing Bozkuş’s [2] experimentally obtained peak pressures with 

Joukowsky pressure rise values in Table 5.1, it can be said the experimental peak 

pressures at the elbow are much lower than the values that would occur in the 

hypothetical case of sudden valve closure. Since the experimentally obtained peak 

pressures are much lower, it can be concluded that a waterhammer event does not 

take place during the impact of the liquid slug at the elbow probably due to rather 

smoothly curved shape of the elbow.    
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

 

6.1 Summary 

In the present study, the transient force applied by the impact of an individual 

transient liquid slug on an elbow and on a vertical extension segment after the elbow, 

at the end of an initially voided horizontal line was solved numerically. The liquid 

slug was propelled in the pipeline system under the driving effect of pressurized air 

in a tank located at the upstream end of the pipeline. 

The numerical calculations in the present study were made in two parts. In the 

first part of the calculations, the slug motion in the horizontal part of the pipeline was 

analyzed by using a previously written computer code BOZKUŞ-2 developed by 

Bozkuş [2]. As an improvement of this part of the calculations, the Swamee-Jain 

formula was used for finding the friction factor, and also a functional hold up 

coefficient concept was developed in the present study. Then, in the second stage of 

calculations, a 1-D numerical analysis of slug motion in the elbow and the vertical 

extension segment was made with the aid of an assumed and calibrated axial velocity 

profile function with 3-D shape, and along a curved line mesh. The shape of assumed 

axial velocity profile function was allowed to sway towards the convex side of the 

elbow along the curved line mesh with the aid of a calibration tool. 

In the analysis of the elbow and the vertical extension segment, the impact 

pressure distribution at the convex side of the elbow was found by solving Reynolds 

Equations in 1-D. Also the horizontal and the vertical components of the transient 

forces acting on the elbow and the following vertical extension segment were found 

with the application of conservation of momentum principle over the selected 

volume elements along the curved line mesh and summing up the results for the 
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forces acting on each volume element. 

The calculation of impact pressure distribution at the elbow and the transient 

forces acting on the elbow and the vertical extension segment were made for each 

time step of the slug motion in the elbow and the vertical extension segment. 

During the impact pressure and transient force calculations, a correlation 

function was utilized for the determination of one of the unknown parameters of the 

calibration function used for the assumed velocity profile function with 3-D shape. 

To obtain the correlation function, the peak pressures obtained from the present study 

were correlated with Bozkuş’s [2] experimentally obtained peak pressures. The 

correlation function obtained here is in the form of a function in terms of normalized 

initial slug length; and this correlation function is valid for all of data ranges of initial 

slug lengths and the initial tank pressures. 

In the thesis, the obtained impact pressures and the transient forces at the 

elbow and the vertical extension segment were also compared with the results of the 

previous studies.      

 

6.2 Concluding Remarks 

Some comparisons of the peak pressures, pressure-time history plots and the 

transient forces from program KAYHAN of the present study were made with the 

results of some previous studies. 

First of all, it can be said that the sinusoidal variation of the peak pressures at 

the elbow obtained from program KAYHAN of the present study was seen to 

provide a better approximation to Bozkuş’s [2] experimentally obtained values than 

the values obtained from program BOZKUŞ-2 [2]. The advantage here brought by 

program KAYHAN can be attributed mainly to two different correlation functions 

used for obtaining the functional hold up coefficient,  , and for calculating the 

parameter maxc  of the calibration function for the assumed velocity profile in the 

present study. 

Some differences were seen in the time values for the starting point of peak 

pressures in the pressure-time history plots from program KAYHAN and from 

Bozkuş’s [2] experimental results. Since the time for the first peak can be considered 

as a very close value to the slug arrival time at the elbow, the differences in the time 
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values for the peak pressures were indicated to be related mainly with the horizontal 

pipe calculations performed by the improved version of the program BOZKUŞ-2 [2]. 

The waterhammer effects and air entrainment were neglected during the 

elbow and the vertical extension segment calculations of program KAYHAN in the 

present study,  and this case was thought to be the reason for not seeing the wavy 

pattern in pressure-time history plots from program KAYHAN differing from 

Bozkuş’s [2] experimental results.        

The tail region of pressure-time history plots for 3.35 m (11 ft) slugs from 

program KAYHAN in the present study were seen to be in well agreement with 

Bozkuş’s [2] experimental data. However, the tail regions from program KAYHAN 

in the case of 1.22 m, 1.52 m, 2.13 m and 2.74 m (4, 5, 7 and 9 ft) slugs remained 

above Bozkuş’s experimental values. This case can be explained by neglecting the 

air entrainment effect in program KAYHAN of the present study. 

The calculated horizontal component of the transient forces from program 

KAYHAN has come out to be greater than the vertical component of the transient 

forces, and this case can be stated to be due to the air pressure driving the slug acting 

in the horizontal direction from upstream.            

The obtained normalized force, *F , values from the present study were 

compared with Fenton’s [22], Baran’s [27] and Bozkuş’s [2] data. From these 

comparisons, for *D  values around 4, it was seen that *F  values from Fenton’s and 

Baran’s study were slightly above the values from the present study. This case was 

attributed to the fact that in Fenton’s and Baran’s numerical model, the mass loss 

from the liquid slug during the slug motion was neglected. It was also seen that *F  

values from the present study were closer to unity as compared to Bozkuş’s values 

for 6* D . 

It can be said that the well approximation of the peak pressures from the 

present study to the experimentally obtained pressure peaks from Bozkuş’s data, 

program KAYHAN of the present study can be used in practice to predict the peak 

pressures at the elbow. In addition, due to *F  values obtained in the present study 

being close to unity, it can be suggested that a correct prediction of the transient 

forces at the elbow can be made with the formulation developed in the current study, 

at least within the domain of initial slug lengths and initial tank pressures used.       
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APPENDIX A 

 

 

MATHEMATICAL DERIVATION OF THE EQUATIONS  

 

 

 

A.1 Functional Hold up Coefficient Determination 

To obtain a functional hold up coefficient; first of all, a formulation was made 

to get an expression for the average slug length that occurs during the travel of the 

slug. Then, the average slug length in this expression was replaced with the 

instantaneous slug length as an approximation. After that, by using this new 

expression and the results of the computer program BOZKUŞ-2 together with the 

experimental values for the peak pressures of Bozkuş [2], a set of  hold up coefficient 

vs. the approximated instantaneous slug length values were tabulated. With these set 

of values, a correlation function was obtained at the end, which related the hold 

coefficient to the normalized travel distance of the slug with respect to the 

instantaneous slug length. This correlation function was used as the new functional 

hold up coefficient which allows the change of the value of the hold up coefficient 

with the slug length during the simulation of the slug motion along the horizontal 

part of the pipeline. 

 

A.1.1 Formulation for the Average Slug Length 

In this section, an expression for the average slug length in terms of the initial 

length of the slug and the corresponding hold up value is obtained. 

For this purpose, the following differential expression derived by Bozkuş [2] 

was taken as the starting point for the formulation:  

 

                                        F
s U

dt
dL







  11


                  (A.1) 
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In Equation (A.1), 

FU  : slug front velocity, 

  : hold up coefficient, 

sL  : instantaneous slug length. 

Equation (A.1) can also be written as 

 

                                       dtUdL Fs 





  11


                   (A.2)  

 

Integrating both sides of the differential expression in (A.2) from the time for 

beginning of slug motion to the instant of impact at the elbow, the expression 

becomes  

                                         dtUdL F

L

L

t

t

s

fin

in

fin

in

  





  11


                  (A.3) 

 

In Equation (A.3), limits of the integration are as 

inL  : initial slug length, 

finL  : final slug length of the horizontal pipe calculations, 

int  : initial time of slug motion, 

fint  : final time of slug motion. 

After the integration, (A.3) becomes 

 

                                     

 

fin

in

t

t

Finfin dtULL 11


                          (A.4) 

 

which can also be written as  

 

                                           pinfin LLL 





  11


                             (A.5) 
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where 

pL  : length of the horizontal part of the pipeline. 

Then, taking sL  as the whole change in slug length during the travel of the 

slug from the pressurizer tank up to the elbow, (A.5) can be written as 

 

                                             ps LL 





  11


                   (A.6) 

 

 

And the average length of the slug aveL  that occurs during the motion of the 

slug along the horizontal part of the pipeline can be expressed with a linear 

interpolation, 

 

                                             
2

s
inave

LLL 
                    (A.7) 

 

which can also be written by using (A.6) as 

 

                                           
2

11 p
inave

L
LL 






 


                                     (A.8) 

 

With this expression, an average slug length can be calculated for a given 

initial slug length, inL , and a given fixed value of hold up coefficient , .  

 

A.1.2 Correlation between the Hold up and the Instantaneous Slug          

          Length 

A correlation function between the hold up coefficient,  , and the  

normalized travel distance of the slug with respect to the instantaneous slug length 

was obtained by using the results of the computer program BOZKUŞ-2 coded by 

Bozkuş [2], and his experimental data as  given in  Figure A.1. The second column of 

Table A.1 was filled in according to the crossing point of the curves for the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Normalized peak pressures vs. inp LL /  from program BOZKUŞ-2 and from the experimental data (Bozkuş [2]). 
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Table A.1 Calculation steps for avep LL /  ( .4488.9 mLp  ). 

Hold up 
Coefficient 

(α) 

Lp/Lin Lin 

(m) 

Lave 

(m) 

(Eq. A.8) 

Lp/Lave 

1.00 6.8 1.3895 1.3895 6.8000 
0.99 6.0 1.5748 1.5271 6.1875 
0.98 5.7 1.6577 1.5613 6.0520 
0.97 5.3 1.7828 1.6367 5.7732 
0.96 5.1 1.8527 1.6559 5.7063 
0.95 4.8 1.9685 1.7198 5.4940 

 

 

normalized peak pressures from BOZKUŞ-2 and for the experimental results as 

shown in this figure. These crossing points actually give the optimum values of 

normalized travel distances of the slug with respect to the initial slug length, inp LL / , 

for the corresponding hold up coefficient values that Bozkuş [2] used in his study. By 

taking the length of the horizontal part of the pipeline as .4488.9 mLp   (or 

.31 ftLp  ), and using the equation given by (A.8), the remaining 3 columns of 

Table A.1 were also completed. 

The travel distance values normalized with respect to the average slug length, 

avep LL / , in Table A.1 were taken as an equivalent value to the travel distance values 

normalized with respect to the instantaneous slug length, sp LL /  as an 

approximation. Then, the hold up coefficient,  , vs. the sp LL /  values were plotted 

as given in Figure A.2.  

By using the correlation function shown in Figure A.2, the following 

continuous function was obtained for the hold up, as given by Equation (3.54) in the 

main text. 
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Figure A.2 Variation of hold up coefficient,  , as a function of sp LL / . 

 

 

65196494057439003850 .L/L.if.)L/L(.)L/L( spspsp      

                                                                                                                                

and                                                                                                                          

             spsp L/L.if.)L/L(  651961                                   

 

The boundaries of the function in (3.54) were arranged such that the 

maximum value of the function )/( sp LL is 1. as a limiting condition brought by the 

definition of hold up. 

 

A.2 Derivations for the Assumed Velocity Profile Function 

In this section, the mathematical procedure for the derivation of assumed 

axial velocity profile function with 3-D shape in the elbow and the vertical extension 

segment of the pipeline are given. The procedures for the determination of the 

unknown parameters of the assumed velocity profile function are also presented.  

A.2.1 Derivation of Bottom Cone Equation 
To be able to obtain an equation for the assumed velocity profile function, 

two coordinate systems were combined as shown in Figure A.3, the upper coordinate  

 α(Lp/Ls)= 0.0385(Lp/Ls) + 0.7439
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Figure A.3 Two coordinate systems combined together for the general oblique 

 and symmetric cone equations. 
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system being for the oblique cone and the bottom one for the symmetric truncated 

cone.  

The equation of the bottom symmetrical truncated cone can be obtained by 

using the general cone equation given in (4.1) with the parameters for this equation 

shown in Figure 4.2. 

For the bottom cone equation, the parameters must be selected as follows 

according to Figures 4.2, A.3 and 4.4: 

00 x ,  00 y  because for the symmetric cone, the projection of the apex 

point on the base circle falls on the origin. 

0z  can be determined as 

 

                                                     3210 hhhz                                (A.9) 

or 

                                   fRz tan0                  (A.10) 

and 

                   RR                (A.11) 

 

Also by taking suz  , where su  is the assumed velocity profile function, the 

following equation was obtained: 

 

      22222222 )tan(tantan fsff RuRyRxR                (A.12) 

 

or 

             22222 )tan(tantan fsff Ruyx                        (A.13) 

 

su  can be solved from (A.13) as 

 

               fs yxRu tan2
1

22







                                (A.14) 

 



 
 
 
 

 
158 

 

By substituting in (A.14);  

 

                          cosx                           (A.15) 

and 

                                                        siny                (A.16) 

 

where   is the radial distance and   is the angular coordinate over the pipe cross-

section as shown in Figure 4.5, the following expression was obtained for su : 

 

                           fs Ru  tan       

 

as expressed previously in (4.2) 

Equation given by (4.2) is valid for the domain of the bottom cone which is 

defined by  

 

                              Ry  1           

 

according to the polar coordinate system given for the cross-sectional view of the 

elbow in Figure 4.5, and considering the placement pattern of the bottom cone in the 

cartesian coordinate system shown in Figure 4.4. 

 

A.2.2 Derivation of Upper Cone Equation 

For the derivation of the upper oblique cone equation, Equation (4.1) for the 

general case together with its parameters given in Figure 4.2 was considered again. 

  Equation (4.1) can be written for the upper oblique cone in Figure A.3 as 

 

            2
0

22
00

2
00 zzRzyzyzxzx                   (A.17) 

 

In the equation given by (A.17) the symbols are as, 

x  , y  , z   : coordinate axes of the upper coordinate system, 

0x  , 0y  , 0z   : coordinates of the apex of the oblique cone with respect to the 
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upper coordinate system, 

R   : radius of the bottom circle of the oblique upper cone,    

O   : origin of the upper cartesian coordinate system 

as given in Figure A.3. 

A coordinate transformation between the upper and the lower coordinate 

system can be made in the following manner: 

 

          xx                    (A.18)  

          yy                   (A.19) 

        2hzz                   (A.20) 

 

Also according to Figure 4.4, with the values for the parameters: 00 x ,  

mRy 0 ,  10 hz  ,   1yR  ; (A.17) can be written as 

 

        2
12

2
1

2
12

22
1 hhzyyhhzRxh m                (A.21) 

 

Using suz  , (A.21) becomes 

 

        2
12

2
1

2
12

22
1 hhuyyhhuRxh ssm                     (A.22) 

 

su  can be solved from (A.22) as  

 

 
 











 
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

2
1

22
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2
1

22
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1

2
1

2
1

222
1

22
1

2
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2
2
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2
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2

1
22

1

2

1
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hyhRyhRhy
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u

mmm

mm

m
s

         (A.23) 

 

The function given in (A.23) can be written in polar coordinates by using 

(A.15) and (A.16) as; 
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 



      










 
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

2
1

22
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2
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which was previously given by (4.4). 

The velocity profile function in (4.4) for the upper oblique cone part shown in 

Figure 4.4 is valid over that region of the pipe cross-section defined by 

 

10 y            

 

according to the polar coordinate system for the cross-section of the elbow given in 

Figure 4.5. 

 

A.2.3 Calculation of Unknown Parameters 

mU  values in (4.7) to (4.10) can be calculated in above equations from 

continuity principle that 

 

                                    
A

s dAuQ                  (A.24) 

where 

A  : cross-sectional area of the elbow, perpendicular to the flow direction 

and 

Q  : discharge along the pipe. 

  Discharge Q  in this study was taken constant along the pipe at any given 

time during the slug motion, due to continuity principle and the incompressible flow 

condition imposed. The value of Q  in (A.24) is actually the volume under the 

velocity profile function over the domain of whole pipe cross-section. This volume 

can be calculated analytically as the addition of two volumes under the symmetric 

bottom cone, 1 , and the oblique upper cone, 2 , as seen in Figure  4.4: 
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                                     21 Q                (A.25) 

or 
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3
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
                (A.26) 

 

, which can also be written as 

 

                  1
2
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2

1321
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3
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3
1

3
1 hyhyhyhhhRQ              (A.27) 

 

Canceling second and third terms on the right-hand side,  

 

                                3
2

1321
2

3
1 hyhhhRQ              (A.28) 

 

Using  

                   fRhhh tan321                  (A.29) 

 

and 

             mf URh  tan3                                         (A.30) 

 

according to Figure 4.4, (A.28) can be written as 

 

                     mff URyRQ   tantan
3
1 2

1
3            (A.31) 

 

Substituting (4.8) in (A.31) and arranging, 

 

                       
   

  03tan
tantantan

tantantan 3
22

23











 QR
RU

f
fcf

fcfm        (A.32) 

 



 
 
 
 

 
162 

 

From (A.32), mU  can be solved as: 
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From (A.33); mU , for any cross-section of the pipe and for any time step, can 

be solved for a given Q  value at any instant in time, for an angle f  for the gradient 

of the velocity profile at the pipe wall, and a c  value for that cross-section which 

can be taken from the calibration function. The discharge, Q , here was calculated by 

using the expression  

 

                      AUQ ave               (A.34) 

 

where  

aveU  : average velocity of the slug along the pipe at any given time, t . 

The average velocity aveU  here is to be calculated from a set of slug dynamics 

equations that are given in Section 4.3.3. 

In order to get f  values, (i.e. the angle for the gradient of the velocity profile 

at the pipe wall) that occur during the motion of the slug through the elbow and the 

vertical extension segment; firstly, the Swamee-Jain formula (Walski [11]; Swamee 

and Jain [12]) together with an expression for the calculation of wall shear stress 

were utilized as given respectively in (3.14) and (3.13). The expressions for the 

Reynolds number and the wall shear stress can be rewritten as given below: 

 

                    


 DU
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                               2
0 8

1
avef Uf                    (A.36) 

 

The Swamee-Jain formula which is a functional representation of the Moody 

chart is valid for steady, fully developed and incompresible pipe flows (Munson [3], 

Walski [11]) and this formula was used for calculating the Darcy-Weishbach friction 

factor, ff , here in this study, where the flow is actually unsteady and not fully 

developed, for simplification.   

The Swamee-Jain formula given in Equation (3.14) is valid over a wide range 

of Reynods numbers between  

 

      83 101Re104                (A.37)  

 

and for relative roughness, 
D
 , having values between  

                26 101101  
D
                  (A.38) 

 

Having calculated the wall friction, 0 , for a given average velocity over the 

pipe cross-section, aveU , at any instant from Equations (A.35), (3.14) and (A.36); the 

gradient of the velocity profile at the pipe wall can be calculated by using the 

following equations given in Schlichting [10]:  
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               wyl 4.0               (A.40) 
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where 

  : shear stress value at wy  distance away from the wall of the circular pipe 

wall, 

wy  : distance from the pipe wall, 

l  : mixing length, 

wdy
du : gradient of  the velocity profile at point wy . 

 

In (A.39), (A.40) and (A.41), the distance wy  from the pipe wall can be 

expressed as 

                      Ryw                  (A.42) 

 

where   is the radial distance of the selected point from the origin of the circular 

pipe cross-section.  

Equation (A.40) is valid for very small distances of wy  from the pipe wall 

and in this study 250/Ryw   was taken to calculate gradient value 
wdy

du  from 

(A.41). This value of the gradient calculated at a very small value of wy  distance 

away from the pipe wall was then accepted as equal to the gradient of the velocity 

profile at the pipe wall as an approximation. 

Then, the angle for the gradient of the velocity profile at the pipe wall f  can 

be calculated as 

 

                      )(tan 1

w
f dy

du                 (A.43)  

 

with 
wdy

du  evaluated at 250/Ryw   distance away from the pipe wall. 

The same average f  value was utilized at all the points of the circumference 

of the pipe cross-section at the elbow and the vertical extension segment as it would 
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be for the case of a straight pipe, here as an approximation. The f  value was also 

taken as constant along the elbow and the vertical extension segment at any instant 

since the discharge was taken as the same along the pipeline at any given time due to 

incompressible flow assumption and continuity principle. 

 

A.3. Derivations for the Pressure Distribution Equations 

In this section, firstly, the procedures for the derivation of average pressure 

distribution equations along the axis of the vertical extension segment and of the 

elbow are given. Then, the derivation for the equation of impact pressure distribution 

at the convex side of the elbow is presented.  

 

A.3.1 Derivation of Average Pressure Distribution Equation at the   

          Vertical Extension Segment 

For the derivation of the average pressure distribution equation at the vertical 

extension segment, the Reynolds Equation in y -direction given by (4.12) was taken.  

The turbulent and the laminar friction terms in (4.12), which are the second 

and the third terms on the right-hand side of this Reynolds Equation, can be written 

in a combined form as in the following expression:     

 

    

                              (A.44) 

 

 

In Equation (A.44), the symbols are as;  

  : kinematic viscosity of the liquid, 

t  : turbulent eddy viscosity of the liquid, 

and  

   : divergence operator. 

For the simplification of the differential expression given in Equation (A.44), 

a method utilized previously by Ger and Holley [5] was adopted in the present study. 

As a first step of the simplification of process, the friction term in the differential 
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equation given by Equation (A.44) was replaced by Darcy Weishbach friction 

formula (Munson [3]), and (A.44) was integrated over an infinitesimal volumetric 

pipe element shown in Figure 4.6. The integral equation is given with the expression 

in (A.45). 

 

 

 

           

                    (A.45) 

 

 

Here, 

yV : average axial velocity in y -direction, 

and 

  : volume of the pipe element selected in the vertical extension segment. 

Equation (A.45) can also be written as 

 

 

          

 

                                                     (A.46) 

  

 Now, this volume integral was converted to a combination of volume and 

surface integrals by applying Divergence Theorem of Gauss, and also using the 

continuity equation for the case of incompressible flow given in (A.47).  
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V zyx                 (A.47) 

 

The combination of Gauss Theorem and Equation (A.47) yields the integral 

equation in (A.48) (Ger and Holley [5]; Quarteroni and Valli [6]). 
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            (A.48) 

 

In this equation, iu  and ix  are the indicial velocities and coordinates for 

i 1, 2 and 3, and S  is the surface area of the volumetric element.  

Then, by using the expression in (A.48), the left-hand side of equation (A.46) 

can be rewritten in terms of surface integrals in the following manner; 

     
 

                

       

              (A.49) 

              

 

 In Equation (A.49), 3A  and 4A  are the areas of the pipe cross-section and the 

pipe wall over the infinitesimal volumetric pipe element shown in Figure 4.6, 

respectively.  

The summation of the second and the fourth terms on the left-hand side of 

Equation (A.49) is actually equal to the momentum flux through the pipe wall, and it 

is equal to zero due to no flow boundary condition at the wall. Eliminating these two 

terms, the expression becomes: 
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where 

 

       dzdydxd  .             (A.51) 

 

Then, Equation (A.50) can be written as 










 



y
ywetf

A

y
y g

A
VPf

d
y
pdzdxVd

t
V


8

2
2

3
















 





y
ywetf

A A

yzyy

A

yx
y

g
A
VPf

d
y
p

dydxVVdzdxVVdydzVVd
t

V





8

2
3 44

0 0 



 
 
 
 

 
168 

 

           

                                (A.52) 

 

 

or, considering also that the density of liquid,  , is constant, 

   

                  (A.53) 

 

 

Dividing both sides of the resulting equation by y , while y  is approaching 

to 0 at the limit, the following equation is obtained: 

 

 

 

                    (A.54) 

 

In (A.54), replacing 3A  with A , imposing the continuity condition that 
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and using the transformation equations 
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                   gg y              (A.59) 

 

with the differentiated form of Equation (A.56);  

 






 



y
ywetf

AA

y
y g

A
VPf

dzdxpdzdxVd
t

V


8

2
2

33






 



y
ywetf

AA

y
y g

A
VPf

dApdAVd
t

V


8

2

11
2

33

y
g

yA
VPf

dAp
y

dAV
y

d
t

V
y

yywetf

AA

y
y






















 






8

2

11
2

33



 
 
 
 

 
169 

 

                                dsdy                  (A.60) 

 

on the s  axis along the vertical extension segment, and also making some 

simplifications on Equation (A.54), the resulting equation becomes: 

 

  

         .            (A.61) 

 

 

In expression given by (A.61), Q  is the discharge of the slug flow in s -

direction at any section of pipe and at any instant during the slug motion. The 

discharge for the slug was taken as constant along the horizontal part of the pipeline, 

elbow and the vertical extension segment at any instant due to incompressible flow 

assumption for the liquid slug and the continuity principle.   

Now, by using the equalities that 

 

             AuQ s                  (A.62) 

and 
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Equation (A.61) can also be written as 

 

                                 (A.64) 

 

 

Dividing both sides of Equation (A.64) by A  and rearranging the terms, the 

expression below was obtained as given previously in (4.17):  
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The derivative expression in the first term in parenthesis on the right-hand 

side of Equation (4.17) was discretized by using first order backward finite 

differences as; 
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as given previously in (4.18). 

  

 A.3.2 Derivation of Average Pressure Distribution Equation at the Elbow 

 The mathematical formulation for the derivation of average pressure 

distribution equation along the axis of the elbow is given in this section. To make 

formulations; firstly, the second and the third terms on the right-hand side of 

Equation (4.15) which stand respectively for the turbulent and the laminar frictional 

effects can be stated in a combined manner, also expressing the   component of 

gravitational acceleration in terms of g  according to Figure 4.5 with   

  

 cosgg   ,                               (A.65) 

 

as: 
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Taking the volume integral of both sides of (A.66) over an infinitesimal 

volumetric element selected in the elbow as shown in Figure 4.7, the following 

equation was obtained:   
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                                   (A.67) 

  

 

In Equation (A.67); 

  : volume of the element selected in the elbow, 

V  : average axial velocity in  -direction, 

The expression given by (A.67) can also be written as 

 

   

 

 

                             (A.68)      

 

 

To simplify the left-hand side of Equation (A.68), the following expression 

E  can be taken as an appropriately chosen starting point, to obtain a similar integral 

expression as was used for the cartesian coordinate system given by Equation (A.48) 

in Section A.3.1. 
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Taking the derivatives of multiplications, the expression in (A.69) becomes 
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Arranging the terms, 
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                                                                                                          (A.71) 

 

The expression in parenthesis in (A.71) is equal to zero due to continuity 

condition for incompressible flow. Then, (A.71) becomes 
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Now, (A.69) can also be rewritten here as; 
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By using the divergence operator 


 in cylindrical polar coordinates (Bird 

and et.al. [8]) given below 
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(A.73) can be written as 
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Using the Gauss’ Divergence Theorem (Kreyszig [7]) that 

 

                                       dSnFdF
S

vecvec  




                          (A.76) 



































 d
z

V
V

V
r

V
r

V
V

r
VV

z
VV

rr
V

r
V

VE zr
rzrr 

 
1

0 



 
 
 
 

 
173 

 

and taking vecF


 here, as 
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with 
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Equation (A.75) becomes 
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Combining Equations (A.72) and (A.79), the following equality was 

obtained: 
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over the selected infinitesimal volume element.   

Now, using the equality given in (A.80), the left-hand side of Equation in 

(A.68) can be written by using three area integrals as follows:  
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Introducing, according to Figure 4.5; 
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, where u  is the function type variable for the assumed and then calibrated axial 

velocity profile in the flow direction (in positive  -direction), and also using 
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obtained by differentiating both sides of Equation (A.82);  Equation (A.81) becomes 
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Addition of the third and the fifth terms in parenthesis on the left-hand side of 

(A.85) is equal to the momentum flux through the pipe wall, and this momentum flux 

is equal to zero because of the no flow boundary condition at the pipe wall. 

Therefore, eliminating these two terms and using (A.78), Equation (A.85) can be 

written as; 
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With dA  being written as in (A.87) below over the pipe cross-sectional area 

A  as 

 

                                                           dzdrdA                           (A.87) 

 

(A.86) can be expressed as: 

 

 

 

                

             (A.88) 

 

                                                                                   

Taking the integral average of the first term in parenthesis on the left-hand 

side of (A.88) over the infinitesimal volume element, and integrating the first term on 

the right-hand side the expression becomes 
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Here, the discharge Q  was taken as constant at any time step nt  along that 

length of the s -curve remaining inside the liquid slug as the computational domain 

as a result of continuity principle together with the incompressible flow assumption, 

and therefore the derivative quantity 
t
Q

  in Equation (A.89) at any time step nt  was 

also accepted as constant within the computational domain. 

Replacing Q  in Equation (A.89) with its equal as given below, 
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and multiplying both sides of (A.89) by 
A

1  as 0lim  , the following 

expression was obtained:  
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By using (A.83) and (A.84), Equation (A.94) can be written as 
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Equation (A.95) can integrated over the pipe cross-section as below: 
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Rewriting (A.96) as,             

 

                                                                             

                                                         (A.97)       

 

 

the second integral is zero due to symmetry over the pipe cross-section. Then, it can 

be written that 
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which can also be written as 
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Integrating both sides of (A.100) with respect to r , and solving for rV ; 

Equation (A.101) was  obtained. 
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The line integral in Equation in (A.101) is to be taken along a given line of 

constant z  which is parallel to r -axis, starting from the pipe wall up to the point 

where the value of rV  is desired to calculated, at a given cross-section of the pipe 

(Figure 4.5). The lower boundary of the integral here is always zero due to no slip 

condition at the pipe wall.   

Then, Equation (A.93) can be written with u  as the only velocity 

component, by using (A.101), as given below: 
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Dividing both sides of (A.102) by 0R ,  
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and solving for 
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  from the equation above, with 
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The first term in parenthesis on the right hand side of (4.19) was calculated 

with the finite difference expression given below, as expressed previously in (4.20):  
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A.3.3 Derivation of the Equation for the Pressure at the Convex Side of          

          the Elbow 

The formula for the calculation of local pressure distribution at the convex 

side of the elbow was obtained by simplifying r -component of the Reynolds 

Equation given by (4.14).  

It is indicated in Bird and et. al. [8] that in turbulent flows, the value of 

turbulent eddy viscosity is much higher than the molecular viscosity outside the 

viscous sublayer away from the pipe wall and; therefore, the third term on the right-

hand side of Equation (4.14), which stands for the laminar friction effects was 

cancelled as an approximation. Then, the resulting equation becomes: 
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For the Reynolds Stresses in (A.106), the following expressions can be used 

as given in Mathieu and Scott [34]: 
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Substituting (A.107), (A.108) and (A.109) into Equation (A.106), the 

Reynolds Equation becomes 
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as suggested by Barhaghi and Davidson [1]. 

By using (A.82), (A.83), (A.84) and Equation (A.111) below according to 

Figure 4.5, 
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 side as: 

 

                                   

    ,     (A.113) 

 

 

where RHS  is the integral of the right-hand side of Equation (A.112) with respect to 

r . In (A.113), the volume integral of the fifth term in parenthesis is equal to zero 

due to the symmetry of the volume element and of the assumed and calibrated axial 

velocity profile with respect to the vertical plane of 0z  according to Figures 4.5, 

4.8 and 4.4. 

Equation (A.113) can now be differentiated back with respect to r  remove 

the integral as 

 

 

 

 

            

          (A.114) 

 

 

Since the impact pressures were intended to find at the convex side of the 

elbow at points along a curved line, where this part of the pipe wall and the vertical 

plane of 0z  through the elbow centerline intersects, in the present study; the 

Equation given with (A.114) was utilized along the vertical radiuses of the cross-

sections of the elbow shown in Figure 4.8. Therefore, using the expression for rV  

given by (A.101) and taking 0z  for the terms that do not contain a derivative with 

respect to z , the expression (A.115) was obtained as given below:  
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          (A.115) 

 

Then, 
r
p

  can be solved from the above equation as:     

 

 

 

 

 

 

 

 

 

                     (A.116) 

 

The turbulent eddy viscosity, t  , in (A.116) was calculated by using Prandtl 

mixing-length theory with the formula   
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In Equation (A.117), the mixing length ml  is calculated from the expression 

 

                                42 060080140 mm
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given previously by (4.23), where 
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In the present study, the axial velocity in the elbow can be defined as, 

 

                                                  uVaxial                                               (A.119) 

 

Then, (A.117) can be expressed as follows: 
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as stated previously in (4.24).           

Also, using the expression for the distance from the pipe wall given by 

(A.42), Equation (A.118) becomes  
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as expressed previously by Equation (4.22)                                       

The turbulent eddy viscosity, t , can be calculated by using (4.22), (4.23) and 

(4.24) at any point in the elbow, given the radial distance from the pipe centerline,  , 

of that point. 
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A.4 Derivations for the Transient Force Calculations at the Elbow Part  

In this section, the mathematical procedures for the derivation of horizontal 

and the vertical components of the transient forces acting on the elbow and the 

vertical extension segment of the pipeline are presented. 

 

A.4.1 Derivations  for the  Horizontal Transient Force Distribution at the     

          Elbow  

For calculating the horizontal transient force distribution at the elbow, 

conservation of momentum equation given by (4.31) was applied over the sample 

control volume shown in Figure 4.11, and in the horizontal x -direction; 
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 Here xF  is force acting on the volumetric element in the horizontal x -

direction.  

Since the momentum flux through the pipe wall is zero due to no flow 

condition, Equation (A.120) can be written in terms of the surface integrals over the 

surfaces of the pipe cross-sectional areas uS  and dS  of the control volume shown in 

Figure 4.11, as 

 

AcosPAcosPFdAVVdAVVdV
t dduux

S

dxdu

S

xux

du

  

 



   

      (A.121) 

 

In Equation (A.121);  

xuV  : local velocity in x -direction at the upstream face of the control volume,  

uV  : local axial velocity at the upstream face of the control volume, 

xdV  : local velocity in x -direction at the downstream face of the control 

volume, 
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dV  : local axial velocity at the downstream face of the control volume.     

 In (A.121), the components of the axial forces acting on the control volume, 

which are the second and third terms on the right-hand side, were written according 

to Figure A.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 Control volume at the elbow with the components of the forces  

and the velocities shown. 

 

Also, from Figure A.4; xV , xuV  and xdV  can be expressed as follows: 
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dddrdxd cosVsinVV                                  (A.124) 

  

 In equations (A.122), (A.123) and (A.124) given above, 

 ruV  : local radial velocity at the upstream face of the control volume, 

 rdV  : local radial velocity at the downstream face of the control volume. 

 Substituting Equations (A.122), (A.123) and (A.124) into the expression 

given by (A.121), the following equation was obtained: 

 

 

 

 

      (A.125)  

 

By using the expression given by (A.101) for the values of rV  , ruV  and rdV ; 

and also substituting the value of the assumed and calibrated axial velocity profile 

function u   for V  as below 

 

                                                    uV                                                 (A.126) 

 

the Equation (A.125) becomes 
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  The first term on the left-hand side of Equation (A.127) is a volume integral 

and it can be written as an area integral over the mid-plane of the volumetric element 

perpendicular to the pipe axis, shown in Figure A.4, by using 

 

             dARd  0                                           (A.128) 

 

  Also, solving for the horizontal reaction force, xF , from (A.127), the 

resulting equation becomes 
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 Equation (A.129) can also be written as 
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The above expression for the horizontal component of the transient force 

acting on the volume element in the elbow was previously stated by Equation (4.32).   

 

A.4.2 Derivations  for the  Vertical  Transient  Force  Distribution  at  the  

          Elbow  

To find the vertical transient forces acting on the volume elements at the 

elbow, Equation (4.31) was applied over a control volume selected at the elbow as 

shown in Figure 4.11, and was written in the direction of y -axis as given below: 
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In this equation; 

yF  : force acting on the volumetric element in y -direction. 

Taking the momentum flux through the pipe wall as being zero, the surface 

integral term in (A.130) was written as two separate integral terms over the surfaces 

of the pipe cross-sectional areas uS  and dS  of the control volume depicted in Figure 

4.11: 

 

                                    

 

                                                                                                                            (A.131)                                                                                                                                                                         

 

 Here, 

yuV  and ydV  : local velocities in y -direction at respectively the upstream and 

the downstream faces of the control volume,  

W  : weight of the control volume. 

On the right-hand side of (A.131), the forces acting on the volume element 

were written according to Figure A.4.  

From Figure A.4; yV , yuV  and ydV  can be expressed as follows: 
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    sinVcosVV ry           (A.132) 

uuuruyu sinVcosVV                                  (A.133) 

dddrdyd sinVcosVV                                  (A.134) 

  

Substituting (A.132), (A.133) and (A.134) into Equation (A.131);  

 

 

 

 

 

                                                                                                     (A.135) 

 

For the values of rV  , ruV  and rdV  in Equation (A.135); the expression for the 

radial velocity given by (A.101) can be used. Also, the assumed and calibrated axial 

velocity profile function, u ,  can be substituted for the value of V  as stated in 

(A.126). Then, Equation (A.135) becomes  
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   

 

WAsinPAsinPF

dAVsinVcosV

dAVsinVcosVdsinVcosV
t

dduuy

S

ddddrd

u

S

uuurur

d

u
























WAsinPAsinPF

dAusinucosdr
u

r

dAusinucosdr
u

r

dsinucosdr
u

rt

dduuy

S

dddd

r

zRR

d

u

S

uuu

r

zRR

u

r

zRR

d

u

























































































































 

 

 





 





















22
0

22
0

22
0

1

1

1



 
 
 
 

 
190 

 

 

 

 

 

 

 

 

 

 

 

 

                                      (A.137) 

 

 

 yF  can be solved from Equation (A.137) as 
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Substituting (A.139) below into Equation (A.138) and using (A.92), 
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the resulting expression becomes: 

                                                         

 

 

 

 

 

 

 

 

 

         

    

 The expression for the vertical component of the transient force acting on the 

volume element above was given previously in (4.35).  

 

 A.4.3 Derivations for the Horizontal Transient Force Distribution at the  

          Vertical Extension Segment   

The horizontal component of the transient force acting on the volume element 

in the vertical extension segment shown in Figure 4.13 was calculated by using the 

conservation of momentum principle in x -direction given by (A.120).  

 By writing the surface integral term in (A.120) as two integral terms over the 

areas of the pipe cross-section uS  and dS  of the selected control volume shown in 

Figure 4.13, the equation becomes  
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To find an expression for xV  in (A.140) in terms of the axial velocity profile 

function su , the incompressible continuity equation was used as given below. 
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 By using (A.56) and (A.57) for the values of y  and yV , the continuity 

equation in (A.141) becomes 
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 Equation (A.142) can be integrated over the pipe cross-section as 
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or  

  

                                                                                                                            (A.144) 

 

  

 The second integral on the left-hand side of (A.144) is equal to zero because 

of the symmetric shape of the assumed axial velocity profile function and symmetry 

of the domain with respect to the plane of 0z  according to Figure 4.5. 

 Then, (A.144) can be written as; 
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By writing the expression given in (A.146)  as 
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and integrating both sides of the equation with respect to x , 
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 For the calculation of the velocity xV  with the expression (A.148) at a given 

point on a cross-section of the vertical extension segment, the line integral in 

Equation (A.148) is to be taken at the given cross-section along a given line of 

constant z  which is parallel to x -axis, starting from the pipe wall up to the given 

point at which the value of  xV  is to be calculated (Figure 4.5 (b) and (d)). 

 Substituting the expression given by (A.148) into Equation (A.140), the 

following equation was obtained:  

 

 

 

 

 

                                      (A.149) 

 

 

 The first integral on the left-hand side of Equation (A.149), which is a volume 

integral, can be transformed to an area integral written over the mid-plane of the 

cross-section of the volume element perpendicular to pipe axis by using 
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as given below:   

 

 

 

 

 

                                                                       (A.151) 

 

 

 Here, 

 s  : axial length of the volume element. 

 xF  can be solved from (A.151) as; 

 

 

 

 

 

       

 

 

 The above expression was also given previously by Equation (4.36). 

 

 A.4.4 Derivations  for   the  Vertical  Transient   Force  Distribution  at      

                      the Vertical Extension Segment 

  The vertical transient force distribution at the vertical extension segment of 

the pipeline was found by applying the conservation of momentum principle in y -

direction given by (A.130) over the control volume shown in Figure 4.13. 

Substituting in (A.130) the equivalent of yV   given by (A.57), the expression 

becomes 
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According to the control volume given in Figure 4.13, Equation (A.152) can 

be written as  
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or by  substituting the equal of d  given by (A.150), the equation becomes 
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 Also, using Equation (A.139), and (A.155) below; 
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 the expression given by (A.154) can be written as  
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By using (A.24), yF  can be solved from Equation (A.156) as;   
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 The expression for yF  above was given by previously in (4.37). 
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A.5 Derivations for Numerical Integration Formulas 

In this section the mathematical procedures for the derivation of numerical 

area and line integrals developed in the present study are given.  

 

A.5.1 Derivations for Double Integrals in Polar Coordinates   

The transformation procedure for the evaluation of numerical area integrals 

from polar coordinates to the cartesian coordinates are given in this section.  

The general form of the area integral to be taken is of the form 
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or 
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A  ,                   

 

which were also given previously by (4.40) and (4.41), respectively; according to the 

polar coordinate system for the pipe cross-section given in Figure 4.14. 

For the transformation process; firstly, the integrant   ,f  can be integrated 

over a selected 9-point polar mesh element shown in Figure 4.15, as given below.  

 

                            















2

2

2

2

,; ,















n

n

m

m

ddfI nmA               (A.157) 

 

Next, the variables of the polar coordinate system,   and  , can be written in 

terms of  the cartesian coordinates s  and t  , respectively as 
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where 

 

         11  s                (A.160) 

 

and    

                                             11  t                 (A.161) 

 

Here, 

m , n  : values of   and   at the center point of 9-point mesh element as in 

Figure 4.15. 

By differentiating (A.158) and (A.159), the differential expressions 
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are obtained for d  and d . 

Then, by using Equations (A.158) to (A.163), the integral given by (A.157) 

can be written as 
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By letting  
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which was given previously by (4.42), the expression in (A.164) becomes 
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Now the integral nmAI ,;  has been put in a form of that which is in cartesian 

coordinates and can be integrated numerically by 2-D Gauss Quadrature Method for 

cartesian coordinate system, with the location of nodal points and the corresponding 

weighting coefficients for the Gauss Method being given in Figure 4.16 (Zwillinger, 

[4]). 

 

To apply 2-D Gauss Quadrature formula for taking the integral in (A.165), 

the following discrete expression is utilized:  
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which was previously stated by (4.43). 

In Equation (4.43),  

1w , 2w  and 3w  are the weighting coefficients as 
81
25

1 w , 
81
40

2 w , 

81
64

3 w , and the parameters ig   with the subscript i  ranging from 1 to 9 stand for 

the values of the function given in (4.42) evaluated at the corresponding locations of 

the grid points shown in Figure 4.16.  

A separate formulation is required to treat the center point of the circular 

domain over which the area integral given in (4.40) is taken. For this central part, 

mesh elements as given in Figure 4.17 were considered. Integration given by (4.40) 

over this triangular mesh element can be expressed as 



 
 
 
 

 
199 

 

 

                                  











2

2
0

,; ,











n

n

ddfI nmA
c               (A.166) 

 

Then, a transformation from the polar variables   and   can be made, 

respectively to cartesian variables s and t  , with the expressions given below. 

 

        s





22
             (A.167)                                                                             

          tn 


2
                                            (A.168) 

with 

  

             11  s                                               (A.169) 

 

and     

 

                                                 11  t                                               (A.170) 

 

Differentiating (A.167) and (A.168) the following equations are obtained  

 

          sdd 
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2
                                               (A.171)                         

          tdd 


2
                                               (A.172) 

 

Then, by using (A.171) and (A.172), the equation in (A.166) can be written as 
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And using 
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which was also stated in Equation (4.44), the expression in (A.173) becomes 

 

                                tdsdgI cnmA
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2-D Gauss Quadrature was applied on (A.174) to take the integral 

numerically which gave the following expression: 

   

    538642297311,;
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
        

 

The above expression was also previously given in (4.45).  

In Equation (4.45), parameter cig   with the subscript i  ranging between 

values of 1 to 9 represents the values of the expression   ,cg   evaluated at the 

location of the nodal points depicted in Figure 4.16.     

Now, by using the circular mesh taken over the pipe cross-section, which is 

shown in Figure 4.14, the area integral in (4.40) can be expressed numerically as 
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which was also given previously by Equation (4.46). 

 

A.5.2 Derivations for the Line Integrals 

In this section, the mathematical procedures for the derivation of the formulas 

used in 1-D clustered mesh generation, and for the application of 3-Point Gauss 
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Quadrature Method are presented.   

 

A.5.2.1 Derivations for 1-D Clustered Mesh Generation 

For the generation of the clustered line mesh; firstly, the following condition 

that 

                                              



LM

q

q Dr
1

                                            (A.175) 

 

was imposed. 

Equation (A.175) indicates that the addition of the lengths of the generated 

mesh elements in the whole clustered line mesh is equal to the length of the diameter 

of the circular cross-section of the elbow since the clustered line mesh is generated 

along the diameter. 

The expression in (A.175) can also be written as  

 

                             Drrrr
LM  ............321 .                       (A.176) 

 

To have clustered mesh elements increase in size with increasing nodal 

number, q , values; a mesh ratio of the following form was utilized. 

 

            qrq rcr  1                                      (A.177)    

 

with 

 

     .1rc                                           (A.178) 

 

Then, Equation (A.176) can be written as 
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or 

 

                              Dcccr LM
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1 ............1                       (A.180)  

 

The expression given in (A.180) can also be written after some algebra, as 
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From here, 1r  can be solved as 
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Using the relation given in (A.177), qr  can be expressed as 

 

                                      1
1

 q
rq crr    .                                    (A.183) 

 

and substituting for 1r  in Equation (A.183), the expression given by (A.182); the 

size of all the mesh elements in the clustered mesh can be calculated with formula 
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as given previously in (4.47).                                    

 

 A.5.2.2 Derivations for 3-Point Gauss Quadrature Method  

 The application of 3-Point Gauss Quadrature for the evaluation of line 

integrals in the present study are given in this section. 

The line integral given previously in (4.48) as stated below  
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evaluated over any Gauss element shown in Figure 4.19 can be expressed as 
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where 

qr  : radial location of the center point Gauss element over the clustered mesh, 

with respect to the cylindrical coordinate system. 

To apply the three point Gauss Quadrature the following transformation can 

be made as 

 

                                           a
r

rr q
q 


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2
                                             (A.185) 

 

where 

 

                                             11  a .                                                (A.186) 

 

In above equations, a  is the coordinate axis used as the transformation 

parameter.   

By differentiating (A.185), the relation that 

                                               ad
r

dr q 



2

                                            (A.187)  

 

is obtained. 

Then, by using the differential relation in (A.187), the expression for the line 

integral given by Equation (A.184) can be rewritten as 
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 The   and   values here can be calculated with expressions 
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while evaluating the line integral, which were derived from geometry depicted in 

Figure 4.18, and given previously by Equations (4.49) and (4.50), respectively. 

Using 3-point Gauss Quadrature, the line integral given in (A.188) over any 

Gauss element can be expressed as  
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where the weighting coefficients are 
9
5

1 w , 
9
8

2 w ; and 1h , 2h  and 3h  are the 

values of the integrand function   ,h  in Equation (4.48), as evaluated at the 

locations for the nodal points of the Gauss element shown in Figure 4.19. 

Finally, according to the above formulation, the original line integral given in 

(4.48) becomes   
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given previously in (4.52). The summation in (4.52) is to be taken over the elements 

of the 1-D clustered line mesh between the points A  and K   as given in Figure 

4.18. 

 

A.6 Derivations for the Calibration Function 

In this section, the mathematical derivations for the calibration function c  is 

given, which was used for the variation of the skewed 3-D shape of the assumed 

axial velocity profile along the s -curve, in the elbow and the vertical extension 

segment of the pipeline. 

For the case that maxss 0 , by using the equation of a straight line, it can 

be written according to Figure 4.20 that: 

 

                                   maxcmaxcc ssm  1                                    (A.189) 

 

And c  can be solved by substituting (4.53) for 1cm , in Equation (A.189) as   
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max

maxc
maxcc ssifss

Ds



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75

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which was given previously in Equation (4.55).       

For the case that extmax sss  , the straight line equation can be written as  

 

         maxcmaxcc ssm  2                                      (A.190) 

 

Substituting Equation (4.54) for 2cm , into the expression given by (A.190), 

c  can be solved as  

                extmaxmax
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maxc
maxcc sssifss

sDs

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75

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which was also expressed in Equation (4.56).  
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APPENDIX B 

 

 

CORRELATION FUNCTION FOR THE MAXIMUM 

CALIBRATION ANGLE 

 

 

 

 To obtain a correlation function for the maximum calibration angle, maxc , of 

the assumed axial velocity profile function with 3-D shape, a total number of 120 

runs were made with the computer program KAYHAN-nc in the present study. The 

program KAYHAN-nc is actually the same computer code as program KAYHAN 

except that the correlation function for  maxc  itself, which will be obtained here is 

not included in KAYHAN-nc. Therefore, program KAYHAN-nc calculates the 

corresponding impact pressures at the elbow and finds the transient forces, for 

different arbitrarily given maxc  values and for different initial slug lengths and initial 

tank pressures. The calculated peak pressure values from program KAYHAN-nc 

were then, correlated with Bozkuş’s [2] experimental data for getting a correlation 

function for maxc   in terms of the normalized slug travel distance inp L/L . 

 The peak pressures obtained from KAYHAN-nc for different maximum 

calibration angle, maxc , values and for different initial slug lengths and initial tank 

pressures are given in Table B.1. Bozkuş’s [2] experimental data for the peak 

pressures are also given in this table.  

 By normalizing the peak pressures from program KAYHAN-nc given in 

Table B.1 with respect to initial tank pressures, the graphs presented in Figures B.1 

to B.6 were plotted. In Figures B.1 to B.6, the normalized peak pressures from 

program KAYHAN-nc and from Bozkuş’s [2] experimental data are given together.    
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Table B.1. Peak pressures used for correlating maxc  (all in psig). 

 

KAYHAN-nc 

Bozkuş’s 

Experiment 

θc max 

Initial 

Slug 

Length 

 

Initial 

Tank 

Pressure 

 89.60° 89.70° 89.75° 89.77° 89.80° 89.82° 

1st 

peak 

2nd 

peak 

68.91 kPa (10 psi)  30.08 38.13 48.11 54.86 70.97 86.25 49±14 - 

137.82 kPa (20 psi) 58.14 68.99 81.80 85.58 109.67 129.77 137±62 - 

206.73 kPa (30 psi) 85.28 97.90 112.70 122.40 144.91 162.83 142±31 - 

 

1.22 m 

(4 ft) 

275.64 kPa (40 psi) 112.87 127.11 143.51 154.28 179.09 205.63 217±119 - 

68.91 kPa (10 psi)  25.26 33.83 42.86 48.91 63.18 74.47 28±6 - 

137.82 kPa (20 psi) 51.37 61.32 72.90 71.21 99.38 114.69 131±48 - 

206.73 kPa (30 psi) 75.10 86.68 100.05 108.73 128.65 139.39 - - 

 

1.52 m 

(5 ft) 

275.64 kPa (40 psi) 100.03 113.09 127.98 137.68 159.72 183.01 - - 

68.91 kPa (10 psi)  28.09 35.77 45.08 51.34 66.19 79.45 96±17 79±9 

137.82 kPa (20 psi) 55.71 65.79 77.36 84.88 97.13 123.49 135±35 151±18 

206.73 kPa (30 psi) 82.24 94.05 107.59 116.32 136.20 157.14 139±27 222±41 

 

2.13 m 

(7 ft) 

275.64 kPa (40 psi) 109.64 123.05 138.15 147.90 170.08 193.30 173±32 264+31 

68.91 kPa (10 psi)  28.47 35.97 45.11 51.23 65.69 79.28 56±11 71±6 

137.82 kPa (20 psi) 57.06 67.06 78.45 85.82 92.61 124.43 78±16 131±5 

206.73 kPa (30 psi) 84.77 96.56 109.98 118.60 138.18 158.71 - - 

 

2.74 m 

(9 ft) 

275.64 kPa (40 psi) 113.82 127.30 142.42 152.13 174.24 197.32 - - 

68.91 kPa (10 psi)  26.70 34.35 43.08 48.91 62.63 75.19 38±4 65±7 

137.82 kPa (20 psi) 55.12 64.70 75.48 82.39 88.50 115.40 63±14 124±8 

206.73 kPa (30 psi) 82.27 93.61 106.40 114.54 132.91 152.01 104±42 171±12 

 

3.35 m 

(11 ft) 

275.64 kPa (40 psi) 110.97 123.97 138.42 147.65 168.50 190.09 126±40 207±16 
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Figure B.1 Normalized peak pressures at the elbow for maxc 89.60°. 
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Figure B.2 Normalized peak pressures at the elbow for maxc 89.70°. 
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Figure B.3 Normalized peak pressures at the elbow for maxc 89.75°. 
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Figure B.4 Normalized peak pressures at the elbow for maxc 89.77°. 
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Figure B.5 Normalized peak pressures at the elbow for maxc 89.80°. 
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Figure B.6 Normalized peak pressures at the elbow for maxc 89.82°. 
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 Then, the maximum calibration angle maxc  values vs. the normalized slug 

travel distances inp L/L  , at the cross points of the curves for the peak pressures from 

program KAYHAN-nc and Bozkuş’s [2] experimental data given in Figures B.1 to 

B.6 were tabulated  in Table B.2.  

 

 

Table B.2 maxc  values vs. inp L/L  used for  

correlation procedure.  

θc max Lp/Lin 

89.60° 2.6 
89.70° 2.8 
89.75° 3.1 
89.77° 3.2 
89.80° 3.6 
89.80° 5.7 
89.80° 7.7 
89.82° 4.2 
89.82° 4.8 

 

 

Using the values given in Table B.2, a correlation function was obtained for 

maxc  in terms of the normalized slug travel distance inp L/L  as depicted in Figure 

B.7.  

 This function for maxc  can be expressed as 

 

      95187100112072001240 23 .L/L.L/L.L/L. inpinpinpmaxc               (B.1) 

  

 The correlation function for maxc  given by Equation (B.1) is valid for all the 

data range of initial slug lengths and the initial tank pressures used in the analysis. 

This function was used in program KAYHAN for calculating the unknown parameter 

maxc  of the calibration function c  of the assumed axial velocity profile function 

with 3-D shape, given in Section 4.6.   
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Figure B.7 Correlation function for maxc  vs. inp L/L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 θcmax= 0.0124(Lp/Lin)3 - 0.2072(Lp/Lin)2 + 1.1001(Lp/Lin) + 87.951

89.50

89.55

89.60

89.65

89.70

89.75

89.80

89.85

89.90

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Lp/Lin

θ c
 m

ax



 
 
 
 

 
213 

 

 

 

APPENDIX C 

 

 

COMPUTER PROGRAMS 

 

 

 

C.1 Explanations for the Functions of the Computer Programs 

BOZKUŞ-1: This program is composed of two parts. In the first part, the 

program simulates the motion of a liquid slug which is moving along a horizontal 

pipeline under the pushing effect of high pressure gas from an upstream pressurizer. 

The mass loss from the liquid slug due to interaction of liquid slug with the pipe wall 

during the slug motion is considered with the aid of a calibration parameter. The time 

dependent decrease in the value of the pressure of the gas supplied by the pressurizer 

that occurs during the slug motion is also taken into account in the program. For the 

gas region upstream the slug, no gas dynamics effects are considered in this program, 

so the timely decreasing gas pressure value from the pressurizer is taken directly as 

equal to the gas pressure at the upstream face of the slug without any waterhammer 

effects, during the slug motion. The boundary conditions for the slug dynamics 

equations that govern the motion of the slug are composed of the driving gas 

pressure at the upstream face of the slug and the atmospheric pressure at the 

downstream slug face. With these boundary conditions for the pressure values, slug 

moves along the horizontal pipeline from zero initial velocity, to a final impact speed 

at the time the front face of the slug reaches the elbow located at the end of the 

horizontal pipe. The solution for the slug dynamics equations is made with Runge-

Kutta-Verner 5th and 6th order method by using a subroutine with the name DVERK 

developed by Hull and et. al. [25]. At the time the front face of the slug reaches the 

entrance section of the elbow, an impact pressure value is calculated by using a 

formula derived for the calculation of forcing function at the elbow.   

When the front face of the slug reaches the elbow, a second part of the 
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program starts. In this part, the event that the slug exits from the elbow to the 

atmosphere is simulated to get the forcing function acting on the elbow during that 

exiting period of the slug. No mass loss from the slug is considered to occur in this 

part of the program. For the flow in the gas region upstream the slug, again no gas 

dynamics effects are considered as in the case of the first part of the program. 

Pressure boundary conditions for the slug dynamics equations are also the same as in 

the first part except that the location for the downstream boundary condition of the 

slug is fixed at the elbow with zero atmospheric pressure value there. The tank 

pressure and slug velocity values at the end of the first part of the program are used 

as initial values at the beginning of the second part of the simulation. Also, different 

from the previous part of the program, a new set of slug dynamics equations that 

considers no mass loss from the slug is utilized here in the second part. These set of 

equations are again solved with Runge-Kutta-Verner 5th and 6th order method as in 

the previous case. The impact pressure value at the elbow is calculated at each time 

step, and the simulation is stopped when the slug length remaining in the horizontal 

part of the pipeline becomes less that 0.05 m., which  is a previously defined value 

(Bozkuş, [2]).        

 

BOZKUŞ-2: This program simulates the motion of a liquid slug that is 

moving along a horizontal pipeline under the effect of a driving high pressure gas 

from an upstream pressurizer. The mass loss from the liquid slug is considered with a 

calibration parameter as in the case of the program BOZKUŞ-1. The decrease in the 

pressure of the gas supplied by the pressurizer with time during the slug motion is 

also taken into account. For the gas region upstream the slug, gas dynamics effects 

are considered in this program, and thus, the pressure variations due to waterhammer 

effects between the pressurizer and the upstream face of the slug are taken into 

account during the slug motion. Parameters for the fluid flow in the gas region are 

solved with method of characteristics. Upstream boundary conditions for the solution 

in this region consists of the value of the pressure at the pressurizer tank which 

decreases with time, and the downstream boundary conditions are determined by the 

kinematics of the liquid slug which is moving along the horizontal pipeline. The 

motion of the liquid slug is governed by a set of slug dynamics equations. For the 
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boundary conditions of the slug dynamics equations, gas pressure value at the 

upstream face of the liquid slug and zero atmospheric pressure at the downstream 

face of the slug are utilized. The initial slug velocity is taken as zero and the liquid 

slug accelerates from zero initial velocity to a final impact speed at the elbow during 

the simulation. When the front face of the slug reaches the elbow, the peak pressure 

at the elbow is calculated with a formula developed to calculate the forcing function 

at the elbow, and the simulation is stopped (Bozkuş, [2]).  

 

KAYHAN: In this program, the simulation for the motion of a liquid slug 

along a horizontal pipeline and then, along a following 90° elbow and a vertical 

extension part, is performed. The liquid slug moves with the driving effect of a high 

pressure gas from an upstream pressurizer. For the part of the simulation along the 

horizontal part of the pipeline, the computer code BOZKUŞ-2 developed by Bozkuş 

[2], which takes into account the gas dynamics effects, is utilized. The slug length, 

slug velocity and the value for the magnitude of the gas pressure driving the liquid 

slug, from program BOZKUŞ-2 at the instant the slug front face reaches the entrance 

section of the elbow, is used as the initial conditions for the elbow and vertical 

extension part calculations of program KAYHAN.  

In program KAYHAN, a modification was made on program BOZKUŞ-2 

such that during the simulation along the horizontal part of the pipeline, the 

calibration parameter that accounts for the mass loss from the slug is calculated with 

a correlation function which was determined by using experimental data for the peak 

pressures in Bozkuş’s study [2].  This correlation function which determines the 

mass loss from the liquid slug is expressed in terms of the normalized travel distance 

of the slug with respect to the initial slug length. Another change that was made on 

program BOZKUŞ-2 is the use of Swamee-Jain formula (Walski [11]; and Swamee-

Jain [12]) to calculate the friction factor for the flow of gas and the liquid slug, 

instead of using fixed value. 

In the elbow and the vertical extension part calculations of program 

KAYHAN, the incompressible cylindrical polar Reynolds Equations are solved over 

the elbow, and incompressible 1-D cartesian Reynolds Equation is solved along the 

axis of the vertical extension part (Figure 4.5). The solution domain for the Reynolds 
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Equations is taken as the region between the entrance section of the elbow and 

location of the front face of the liquid slug if the slug front face is at a stage of 

advancing in the elbow or the vertical extension part, and the domain is selected as 

the whole region within the elbow and the vertical extension part if the slug front has 

exited to the atmosphere from the end section of the vertical extension part. For the 

solution of the average pressure values in the elbow and the vertical extension part, 

the downstream boundary condition is taken as zero atmospheric pressure at the slug 

front face location or at the cross-section at the exit of the vertical extension part, and 

the average pressure values are solved towards upstream up to the entrance section of 

the elbow shown in Figure 4.10 with backward differences and using a subroutine 

DVERK, developed by Hull and et. al. [25], which is an ordinary-differential-

equation-solver that uses Runge-Kutta-Verner 5th and 6th order method. The solution 

for the average pressure distribution along the elbow and the vertical extension part 

is made at every time step, and the location of the front face of the slug needed as 

downstream boundary condition for this procedure is calculated at the beginning of 

each time step by using the kinematics of the liquid slug. The slug kinematics is 

determined at the beginning of each time step by solving the slug velocity from 

Bozkuş’s [2] slug dynamics equations as applied on that part of the slug remaining in 

the horizontal part of the pipeline. While calculating the velocity from these 

equations, the retarding average pressure value at the entrance section of the elbow is 

also considered in program KAYHAN. During the elbow part calculations, after the 

calculation of the average pressure at a cross-section, the cylindrical polar Reynolds 

Equation written in the direction of radius of curvature of the elbow is solved with 

DVERK along a line mesh starting from the center point of the elbow cross-section 

up to the top point of that cross-section on the convex side of the elbow, to find the 

local impact pressures at these top points (Figure 4.8). Here, the starting local 

pressure value as the boundary condition at the center point of the cross-section is 

taken as equal to the average pressure at the same cross-section of the elbow as an 

assumption. The horizontal and vertical components of the transient forces acting on 

the center points of the volume elements along the axes of the elbow and the vertical 

extension part are also found by using the calculated average pressure values at the 

upstream and downstream faces of the volume elements and with the application of 
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conservation of momentum principle on these volume elements. In this way, a set of 

values for the impact pressure distribution along the elbow and another set of 

transient force values acting on the volume elements along the elbow and the vertical 

extension part were obtained for each time step of the calculations. The discharge 

through the pipe was taken as constant at any time step all along the horizontal pipe, 

elbow and the vertical extension parts due to incompressible flow assumption made 

for the liquid slug. However, the variation of the shape of the velocity profile along 

the elbow and the vertical extension parts are taken into consideration. During the 

solution of the Reynolds Equations, an axial velocity profile function is assumed for 

the flow of the liquid slug in the elbow and the vertical extension part, and the 

variation of 3-D shape of this axial velocity profile along the elbow and the vertical 

extension part is calibrated with the aid of a calibration function. Parameters of the 

calibration function is determined based on a set of experimental data for the peak 

pressures at the elbow, given in Bozkuş’s [2] study. When the upstream face of the 

slug, which is advancing in the horizontal part of the pipeline comes to very close 

locations before the entrance section of the elbow, the simulation is stopped to leave 

the calculations with unstable oscillations that would arise due to slug’s being 

unstable under the effect of driving and retarding forces reaching very close values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

 
218 

 

C.2 Flow-Chart for the Computer Code KAYHAN 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulate of the motion of the slug from the 
pressurizer up to the entrance of the elbow, along 
the horizontal pipe-line with BOZKUŞ-WH using 
Equations (3.38) to (3.53) , to calculate U , DP , 
L  and t  at the time the  front face of the slug is 

at the entrance of the elbow,  as being initial 
conditions for elbow and vertical extension part  

calculations of KAYHAN-WH.  

Calculate the size of the mesh increments, 
*s , along the s -curve, shown in Figure 

4.5, from Equation  (4.121),  and also 
calculate the mesh size over the circular pipe 

cross-section. 

Start. 

Input the required 
parameters. 

 

Calculate scaling factors L ,U  and t   
from (4.57), to (4.59) for the non-

dimensionalization of the variables to, 
be used in the elbow and the vertical 

extension part calculations.  

Calculate the initial values for *U ,  
*

DP , *L  and *t  with slug front face at 
the entrance of the elbow  using set of 

Equations in (4.60) and  U , DP , L  and 
t  calculated above from BOZKUŞ-WH. 

Calculate the maximum calibration 
angle of the velocity profile, cmax , with 
the correlation function given by (B.1) 
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Calculate the node number pmaxN on the part of 
the s -curve remaining in the elbow, 

corresponding to the location of the point of 
maximum calibration angle, cmax . 

1 

Calculate the current time step size, 
n*

st , 
from Equation (4.122) and  find the current 
time value n*t  from (4.123) at time level n .  

Calculate friction factor, ff , using (3.15) and 
Swamee-Jain Formula given by (3.14).   

 

Solve Bozkuş’s equations (3.25) and (3.26) 
to calculate U and L values at the current 

time step, by using DVERK.  

Calculate *U  and *L  by using the 
corresponding formulas in the equation set 

(4.60). 

Set 0EP  for the initial case of elbow and the 
vertical extension part calculations that the front 

face of the slug is the entrance section of the 
elbow. 

Calculate the current location of the slug 
front face on the s -curve from (4.61) and 

(4.62). 

2 
3 
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2 

Set the downstream boundary condition as 
0*P  at the location of front face of the 

slug on the s -curve, at node NLFF  (Figure 
4.10); for the pressure calculations to be 

made towards upstream up to the entrance 
section of the elbow. 

Set NLFFIP   

Calculate the angle for the friction slope, f , at 
the pipe wall from Equation (4.63) to (4.68). 

Find the value of the calibration angle, c , at 
node IP  on the s -curve, for the slope of the 
axial velocity profile having 3-D shape, from 

(4.69) and (4.70). 

Find the values of the parameters *y1 , *
mR , *h1 ,  

*h2 required to determine the 3-D shape of the 
axial velocity profile at node IP  by using 

Equations (4.71) to (4.76). 

3 

Determine the axial velocity profile function 
*

su having 3-D shape at node IP from (4.77) and 
(4.78). 

4 5 6 

Calculate the time derivative terms in (4.79) and 
(4.80) by using the time step size in (4.122).  
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If  
NBOUNDIP 1

(Figure 4.10) 
 

4 5 6 

Calculate the 
average pressure 

*P at node 1IP  
solving Equation 

(4.81) (as an 
ordinary 

differential 
equation with 
*s being the only 
independent 

variable at a given 
time step) by 

DVERK. 

Calculate the components of the 
transient force acting on the volume 

element at node IP , xF and yF with 
equations (4.86), (4.87), (4.88) and 

(4.89). 

Calculate local peak pressure, *p , at the 
top point on the convex side of the 
elbow, on the cross-section at node 

1IP , by calculating Eddy Viscosity 
*

t  with  (4.82), (4.83) and (4.84) and 

then solving *p  by using  (4.85) (as an 

ordinary differential equation with *r  
being the only independent variable at a 
given time step) in *r  direction starting 
from center point of the cross-section up 
to the top point on the convex side of the 

elbow, by DVERK (with 1-D mesh 
shown in Figure 4.8).  

Set boundary condition for local 
pressure *p  in (4.85) as *

ave
* Pp   at 

the center point of the cross-section at 
node 1IP .  

7 

YES 

NO 

8
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If 
1 NSTOTIPNBOUND  

(Figure 4.10) 
 

7 8
 

9 

Calculate y  component of 
the transient force, yF , 

acting on the volume 
element at node IP , with 
equations (4.86), (4.87) 

and (4.92). ( xF =0 at node 
IP ) 

Calculate the average 
pressure *P at node 

1IP  solving Equation 
(4.90) (as an ordinary 

differential equation with 
*s being the only 

independent variable at a 
given time step) by 

DVERK. 

YES 

NO 

Set the value for the pressure at the 
entrance section of the elbow, *

EP , 
which retards to motion of the slug in 
the horizontal part of the pipeline, by 

equating  **
E PP   there. 

Set n*n* tt 1  

Store n*
su  

10
 

11
 

12 
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11
 

12 10
 

Write the results at node IP  to the 
screen.  

If 
1IP  

1 IPIP  

YES 

NO 

If the slug upstream face has 
reached the entrance section 

of the elbow (i.e. 
050.L  m.) or driving or 

retarding forces acting on the 
slug are very close to each 

other.  

Write results to the screen, and output 
data file for the current time step. 

NO 

YES 

Stop. 

Go to the next 
time step 

Calculate the components of the total 
transient force xF  and yF  acting on 
the elbow and the vertical extension 

part from (4.93) and (4.94). 



 
 
 
 

 
224 

 

 C.3 Computer Code KAYHAN in FORTRAN Language 
C     KAYHAN.F 
CCCCCCCCCCCCCCCCCCCCCCCC   PROGRAM DESCRIPTION   CCCCCCCCCCCCCCCCC 
C 
C 
C     This program simulates the experimental model used to 
C     investigate the hydro-dynamics of a liquid slug motion. The 
C     experimental model consists of an air tank and water storage tank 
C     at the upstream. Attached to the air tank is a 31 ft long, 2" 
C     diameter, transparent, horizontal pipe. At the downstream section of 
C     an elbow is attached to the piping, a dynamic pressure transducer 
C     located on this elbow is used to measure the pressures during 
C     the impact of the liquid slug on the elbow. A certain length of a liquid 
C     slug is generated at the upstream section by filling a segment of 
C     the pipe by gravity through a hose connected to the water storage tank. 
C     The U/S end of the segment now filled with water can be pressurized 
C     by simply pressurizing the air tank to which the segment is connected. 
C     The only mechanism keeping the liquid slug in place is a quick opening 
C     ball valve located at the D/S end of the segment. The motion is started 
C     by quickly opening this ball valve. The liquid slug then moves into 
C     the initially empty pipe. During the impact around the elbow, the dynamic 
C     pressure is recorded. 
C 
C     It is the objective of this program to simulate numerically the above 
C     described phenomenon with an acceptable accuracy by taking into 
C     account the gas dynamics behind the slug. The program employes the 
C     method of characterictics for the gas dynamics using the U/S air tank as 
C     the upstream boundary and treating the slug hydro-dynamics as the moving 
C     downstream boundary condition. The static pressure variation in the 
C     U/S air tank is measured initially by a differential pace tranducer, 
C     this data will be put in the program as part of the U/S boundary 
C     conditions. The theory behind the program assumes that the ideal gas law 
C     holds in the system. Isothermal gas law is assumed during the entire 
C     motion. The fact that slug loses some mass during its motion in the 
C     pipe due to frictional effects, is considred by using a coefficient 
C     called void ratio coeff. in the slug hydro-dynamics equations. 
C 
C     The program will compute air velocity, air pressure, air density 
C     slug velocity, slug length, slug positon, and time at which those 
C     variables are computed. 
C 
C     At the time slug impacts the elbow, the peak pressure caused by the 
C     momontum change will be computed from the velocity, density of the 
C     slug. (i.e. (Rho)*u**2) 
C 
C     Written by Zafer Bozkus, in May-June 1990. 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
C     THE PRESSURE DISTRIBUTION CALCULATIONS AT THE ELBOW ARE MADE AS AN 
C     INITIAL VALUE PROBLEM USING THE IMSL LIBRARY SUBROUTINE WITH THE 
C     NAME Dverk, IT IS A DIFFERENTIAL EQUATION SOLVER - RUNGE KUTTA - 
C     VERNER FIFTH AND SIXTH ORDER METHOD. 
C     HERE IS HOW TO COMPILE THE SOURCE FILE FOR THIS PROGRAM ON VAX/VMS 
C     USING THE OLD VERSION OF THE IMSL LIBRARY. 
C 
C     FOR FILENAME                                (NO EXTENSION!) 
C     LINK FILENAME, LOCAL:[IMSL.V92]IMSL/LIB     (NO EXTENSION!) 
C     RUN FILENAME                                (NO EXTENSION!) 
C 
C     LAST MODIFIED ON April 5, 1990 (CORRECTED MOMENTUM EQUATION) 
C     LAST MODIFIED ON JUNE 26, 1990 (ELBOW MODELING ADDDED) 
C                              (NO HOLDUP AT THE ELBOW CONSIDERED) 
C 
C----------------------------------------------------------------------- 
C     ON November 15, 2007 A NUMERICAL ANASYSIS PART WAS ADDED FOR THE 
C     DETERMINATION OF THE PRESSURE DISTRIBUTION AT THE ELBOW AND AT THE 
C     EXTENSION PART DOWNSTREAM THE ELBOW, BY BÜLENT ABBAS KAYHAN. 
C----------------------------------------------------------------------- 
C     ON May 24, 2008 PRESSURE DISTRIBUTION CALCULATIONS AT THE ELBOW 
C     AND THE VRTICAL EXTENSION PART WERE DEVELOPED BY USING A 
C     CYLINDRICAL COORDINATE SYSTEM FOR THE ELBOW PART, 2-D GAUSS 
C     QUADRATURE FOR NUMERICAL INTEGRATION, AND A CORRELATION FUNCTION 
C     FOR THE HOLD UP COEFFICIENT, BY BÜLENT ABBAS KAYHAN. 
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C----------------------------------------------------------------------- 
C     PART OF THE DRIVER PROGRAM WRITTEN BY ZAFER BOZKUS ON September 
C     18, 1989; WAS INSERTED IN THIS CODE BY BÜLENT ABBAS KAYHAN ON July 
C     14, 2008 FOR THE ELBOW PART CALCULATIONS. 
C----------------------------------------------------------------------- 
C     DeltaFy AND DeltaFy VALUES AT THE ELBOW AND THE VERTICAL 
C     EXTENSION PART ALONG THE S-CURVE WERE CALCULATED BY MAKING A 
C     CONTROL VOLUME ANALYSIS AND ADDED TO THE CODE ON October 15, 2008. 
C----------------------------------------------------------------------- 
C     A CRITERIA WAS INCORPORATED TO THE CODE TO STOP THE CALCULATIONS 
C     JUST BEFORE UNSTABLE OSCILLATIONS START TO APPEAR DURING THE 
C     SIMULATION, ON November 15, 2008 
C----------------------------------------------------------------------- 
CCCCCCCCCCCCCCCCCCCCCCC   VARIABLE IDENDIFICATION  CCCCCCCCCCCCCCC 
C 
C 
C     V       Gas velocity, m/sec. AND/OR Slug velocity, m/sec. 
C     P       Gas pressure, Pa abs. 
C     LSS     Slug length, m. 
C     X       Slug position, m. 
C     PLL     Pipe length, m. 
C     T       Time , sec. 
C     DT      Time increment used in the U/S boundary computations, sec. 
C     DT1     Time increment used in the D/S boundary computations, sec. 
C     DT2     Time increment used in the D/S boundary computations, sec. 
C     DA      Density of gas (air), kg/m3 
C     DW      Density of liquid (water), kg/m3 
C     VF      Void fraction coefficient, 0 < AL <1.0 
C     C       Speed of gas presssure wave, m/sec. 
C     FA      Friction factor for gas (air). 
C     FW      Friction factor for liquid (water). 
C     FDA     A constant used in the equations, defined in the program 
C     FDW     A constant used in the equations, defined in the program 
C     RTO     A constant used in the equations, defined in the program 
C     PP      A constant defined in the program 
C     EP      Elbow Location= Pipe length +Initial Slug Length 
C     A,  B   Abbreviated expressions used in the equations, defined in 
C             the program 
C     S, L and R, Subscripts for initial, U/S and D/S conditions respect. 
C 
CCCCCCCCCCCCCCCCCCCCCCCCC   PROCESS BLOCK   CCCCCCCCCCCCCCCCCCCCCCCCCC 
C 
      PARAMETER(N1=10010,N3=10010,N4=2000) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      REAL*8 LR,LS,LSS,EP,LSTAR,LO,LOO,SPPE,PPE,SAT,ELLOC 
      REAL*8 MUA,MUW 
      REAL*8 MOM(N1),LOC(N1) 
      CHARACTER*15 FINP,FDAT,FOUT,FDAT2,FDAT3,FPLOT,FDIM,ANSW,ANS,ANS2 
      DIMENSION PL(N1),VL(0:N1),TL(N1),DAL(N1),DAS(0:N1),TS(0:N1), 
     *VS(0:N1),PT(N1) 
      DIMENSION PS(0:N1),XS(0:N1),LS(0:N1),PR(N1),VR(N1),XR(N1),LR(N1), 
     *T(N1) 
      DIMENSION TR(N1),XL(N1) 
      REAL*8 DRCLST(N4) 
      REAL*8 PP 
      INTEGER N,IND,NW,IER,K,L,N2 
      INTEGER NELBW,NUM,MR,MC,ML,MLD,MSHSZ,NEXTSN,NSTOT,IP,NLBF,NLFF,NB 
      INTEGER NSLUG 
      INTEGER MLPRSS 
      REAL*8 Y(1:3),C(24),W(3,9),X,TOL,XEND,SST,TM 
      REAL*8 C1,C2,C3,F,D,PB,A,RO,TI,TIIN,MP(N1),IMPULSE 
      REAL*8 R0,R,KM,G,MU,TCD,TFD,PI,TC,TF,MRT,UAVE,Q,QST 
      REAL*8 LELBW,LEXTSN,LSLIMP,LTOT,ACRSS,PWET,TPR,LPR,UPR,UM,UMST 
      REAL*8 UM1ST,UM2ST,RM1ST,RM2ST,TC1,TC2 
      REAL*8 RM,RMST,DKSI,DKSIST,DETA,EMELRT,DSC,DSLAST,DSCST,DSCLST 
      REAL*8 DBELST,DSLAS1,DSLST1 
      REAL*8 TCDMAX,TCLMAX 
      REAL*8 TCMAX,SCMAX,SCELB,BS,BSL,BSU,AS,HS 
      REAL*8 DBETA,SCST,SCEDST,UAVEST,DTUAST,MOMFL1,MOMFL2 
      REAL*8 C4,C6,C7,C8 
      REAL*8 C9,C10,C11,C12 
      REAL*8 DRDIST 
      REAL*8 BETA 
      REAL*8 UST,DBUST,TRARLN,UP2ST 
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      REAL*8 PAVE(1),PCNVX(1),PAVEST(1),PCVXST(1) 
      REAL*8 QPRETS,QPTSST 
      REAL*8 EPSLN,UAVEI 
      REAL*8 TI1,PAVE1 
      REAL*8 SAV,SALR,SAPR,SAPT,SAPRG,SAPTG 
      REAL*8 XOUT(N3), Y1OUT(0:N3), Y2OUT(N3), SSOUT(N3), PDOUT(N3,N4) 
      REAL*8 DFXOUT(N3,N4),DFYOUT(N3,N4) 
      REAL*8 FXOUT(N4),FYOUT(N4) 
      REAL*8 CLSTRT 
      REAL*8 DSCST1,DBETA1 
      REAL*8 PAVNST,PAVUST,PAVMST,PAVDST,PAVPST 
      REAL*8 SCNST,SCUST,SCMST,SCDST,SCPST 
      REAL*8 FXST,FYST,FX,FY 
      REAL*8 SCSTCP 
      REAL*8 SNMST,PNMST,PNM1ST,PNM2ST,PPEAST 
      COMMON/ COEFFS/ C1, C2, C3 
      COMMON/ CONST/PB,RO,PAVE,MU 
      CHARACTER CC*15 
      EXTERNAL UST,DBUST,TRARLN,UP2ST,PDS1ST,PDS2ST,PCTFST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS3/ DKSIST,DETA 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /PRMTS5/ MR,MC,ML 
      COMMON /PRMTS6/ EMELRT 
      COMMON /PRMTS7/ TCMAX,SCMAX,SCELB 
      COMMON /PRMTS8/ BSL,BSU,NB 
      COMMON /PRMTS13/ QPTSST,TIST 
      COMMON /PRMTS14/ EPSLN,D,F 
      COMMON /PRMTS15/ DRCLST 
      COMMON /PRMTS16/ DSCST1,DBETA1 
      COMMON /PRMTS17/ UM1ST,UM2ST,RM1ST,RM2ST,TC1,TC2 
      COMMON /PRMTS18/ PAVUST,PAVDST 
      COMMON /PRMTS19/ SCUST,SCMST,SCDST 
      COMMON /PRMTS20/ ACRSS 
      COMMON /PRMTS21/ SCSTCP 
      COMMON /TERMS2/ C4,C6,C7,C8 
      COMMON /TERMS3/ C9,C10,C11,C12 
      COMMON /TERMS4/ DRDIST,MLD 
      COMMON /TERMS6/ BETA,G 
      COMMON /W/ C15 
      COMMON /DBDVR/ IP,IPD 
      EXTERNAL FCN2 
C----- 
C 
C  ------------------------    ENTER INPUT DATA   ------------------------ 
C 
C----- 
      WRITE(*,33)  
33    FORMAT (' PLEASE ENTER NAME OF INPUT FILE:',$) 
      READ(5,'(A)') FINP 
      OPEN(UNIT=1,FILE=FINP,FORM='FORMATTED',STATUS='OLD') 
      READ(1,271) N 
271   FORMAT(//,I10) 
      WRITE(*,66) 
66    FORMAT(' ENTER NAME OF TANK PRESSURE DATA FILE:',$) 
      READ(*,'(A)') FDAT 
      OPEN(UNIT=3,FILE=FDAT,FORM='FORMATTED',STATUS='OLD') 
      DO 6 M=1, N 
      READ(3,*) T(M) , PL(M) 
6     CONTINUE 
      PRES=PL(1) 
      PRI=PRES 
      WRITE(*,67) 
67    FORMAT(' ENTER THE NAME OF THE PEAK PRESSURE TIME HISTORY OUTPUT D 
     *ATA FILE:',$) 
      READ(*,'(A)') FDAT2 
      OPEN(UNIT=7,FILE=FDAT2,FORM='FORMATTED',STATUS='NEW') 
      WRITE(*,68) 
68    FORMAT(' ENTER THE NAME OF THE TIME HISTORIES OUTPUT DATA FILE FOR 
     * Fx AND Fy:',$) 
      READ(*,'(A)') FDAT3 
      OPEN(UNIT=8,FILE=FDAT3,FORM='FORMATTED',STATUS='NEW') 
C----------------------------------------------------------- 
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      READ(1,273) EPSLN,D 
      READ(1,273) DA,DW 
      READ(1,273) MUA,MUW 
      READ(1,274) PLL 
      READ(1,274) TEMP 
      READ(1,274) PO 
      READ(1,273) VF,XI 
      READ(1,274) LSS 
      READ(1,274) R0 
      READ(1,274) G 
      READ(1,274) LEXTSN 
      READ(1,274) KM 
      READ(1,274) PAVE(1) 
      READ(1,275) MR 
      READ(1,274) MRT 
      READ(1,275) ML 
      READ(1,274) CLSTRT 
      READ(1,275) MLPRSS 
      READ(1,275) NSLUG 
      READ(1,274) SCMAX 
272   FORMAT(/,F16.7,F16.7,F16.7) 
273   FORMAT(/,F16.7,F16.7) 
274   FORMAT(/,F16.7) 
275   FORMAT(/,I10) 
      CLOSE(UNIT=1) 
      WRITE(*,35) EPSLN,D,DA,DW,MUA,MUW,PLL,TEMP,PO,VF,XI,LSS,PRES,N 
      WRITE(*,36) R0,G,LEXTSN,KM,PAVE(1),MR,MRT,ML,NSLUG,SCMAX 
35    FORMAT(/,4X,' EPSLN=',F12.8,2X,' D=',F7.4,2X,' DA=',F8.2,2X,' DW=' 
     +,F8.2,/,4X,' MUA=',F10.8,2X,' MUW=',F10.8,2X,' PLL=',F7.3,2X, 
     +' TEMP=',F5.1,/,4X,' PO=',F10.1,2X,' VF=',F7.4,2X,' XI=',F6.2,2X, 
     +' LSS=',F7.3,/,4X,' PRES=',F10.4,2X,' N=',I7/) 
36    FORMAT(4X,' R0=',F7.4,2X,' G=',F6.4,2X,' LEXTSN=',F8.4,2X,' KM=', 
     +F6.2,2X,/,4X,' Boundary value for PAVE(1)=',F14.4,/,4X,' MR=',I6, 
     +2X,' MRT=',F6.2,2X,' ML=',I6,2X,' NSLUG=',I5,2X,' SCMAX=',F7.3) 
C------------------------------------------------------------- 
      WRITE(*,98) 
98    FORMAT(' PLEASE ENTER NAME FOR SCREEN OUTPUT DATA FILE:',$) 
      READ(*,'(A)') FPLOT 
      OPEN(UNIT=2,FILE=FPLOT,FORM='FORMATTED',STATUS='NEW') 
C-------------------- 
      WRITE(2,35) EPSLN,D,DA,DW,MUA,MUW,PLL,TEMP,PO,VF,XI,LSS,PRES,N 
      WRITE(2,36) R0,G,LEXTSN,KM,PAVE(1),MR,MRT,ML,NSLUG,SCMAX 
C-------------------- 
      WRITE(*,93) 
93    FORMAT(' WOULD YOU LIKE TO CREATE A DIMENSIONLESS PARAMETER FILE F 
     +OR THE HORIZONTAL',/,' PART OF THE PIPE LINE ? TYPE (Y) ES OR (N) 
     +O:',$) 
      READ(*,'(A)') ANSW 
C------------------------------------------------------------- 
      IF(ANSW(1:1).EQ.'Y'.OR.ANSW(1:1).EQ.'y') THEN 
               SAYI=1. 
               WRITE(*,94) 
94    FORMAT (' Enter Name for Dimensionless Output File:',$) 
                READ(*,'(A)') FDIM 
      OPEN(UNIT=4,FILE=FDIM,FORM='FORMATTED',STATUS='NEW') 
      ENDIF 
C----------------------------------------------------------- 
C---------------------------------- 
      DO 7 I = 1, N 
C converting the U/S gage pressure in psi to abs. pressure in pascals) 
      PL(I) = ((PL(I)/14.7) + 1.)*PO          !Equation (3) U/S 
C setting the U/S boundary position equal to zero. 
              XL(I) = 0. 
7     CONTINUE 
C---------------------------------- 
C--------COMPUTATION COEFFICIENTS----------------------------- 
C------------------------------------------------------------- 
      TABS=TEMP+273 
      CWS = SQRT(287.0*TABS)                     !Equation (5) 
C---------------- 
      PP = 2*PLL + XI      !computation of stopping criterion value 
      EP = PLL+ LSS       !computation of slug location 
      ELLOC=EP 
C---------------- 
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      WRITE(*,34) TABS,CWS,PP,EP 
      WRITE(2,34) TABS,CWS,PP,EP 
34    FORMAT(/,4X,' TABS=',F7.2,2X,' CWS=',F11.5,2X,' PP=',F9.4,2X, 
     *'EP=',F9.4,/) 
C----- 
C----- 
C------------------------------------------------------------- 
C------------BOUNDARY CONDITIONS------------------------------ 
C-- The initial conditions or known values at the earlier time 
C-- steps have the subscript, S. 
C-- The unkowns at U/S boundary have the subscript, L. 
C-- The unkowns at D/S boundary have the subscript, R. 
C------------------------------------------------------------- 
C 
999   IF (PLL/LSS.LE.6.6519) THEN 
      VF1=0.0385*(PLL/LSS)+0.7439 
      ELSE 
      VF1=1. 
      ENDIF 
C     ABOVE EQUATION IS A CORRELATION FUNCTION USED FOR VOID COEFICIENT 
C     CALCULATION 
      RTO=2*(1-VF1)/VF1 
      AA = 0.5*RTO 
C---------------------------------------------------------- 
C setting the initial conditions 
      XS(0) = XI 
      LS(0) = LSS 
      VS(0) = 0. 
      TS(0) = 0. 
      PS(0) = PL(1) 
      ALPHA = 0. 
      DT1 = 0. 
      DAS(0)=PL(1)/CWS**2 
      COUNT=0. 
C--------------------------------------------------------------------- 
C 
C----------------------------------------------------------------------- 
      WRITE(*,108) 
      WRITE(2,108) 
108   FORMAT(//,1X,'TR(sec.)',1X,'PR(psi)',1X,'VR(m/s)',1X,'LR(m)',2X, 
     +'LOC(m)',1X,'MOM(psi)',1X,'TL(sec)',1X,'PL(psi)',1X,'VL(m/s)', 
     +1X,'dP/dx') 
C------------------------------------------------------------------- 
      IF (SAYI.EQ.1.0) THEN 
      WRITE(4,777) 
777   FORMAT('  TSTAR       PSTAR       LSTAR       XSTAR       VSTAR') 
      ENDIF 
C------------------------------------------------------------------- 
C 
      VL(0)=0. 
C------------- ACTUAL COMPUTATIONS --------------------------------- 
      DO 20 I=0,N 
      J=I+1 
      K=J+1 
C 
      IF (PLL/LS(I).LE.6.6519) THEN 
      VF=0.0385*(PLL/LS(I))+0.7439 
      ELSE 
      VF=1. 
      ENDIF 
      RTO=2*(1-VF)/VF 
C------------------------------------------------------------------- 
      IF (VL(J-1).NE.0.) THEN 
      CALL FCAL(ABS(VL(J-1)),DA,MUA,EPSLN,D,FA) 
      ELSE 
      FA=0. 
      ENDIF 
      FDA = FA/(2*D) 
C------------------------------------------------------------------- 
C     ABOVE EQUATION IS A CORRELATION FUNCTION USED FOR VOID COEFICIENT 
C     CALCULATION 
C---------UPSTREAM BOUNDARY COMPUTATIONS---------------------------- 
C 
      TL(J) = TS(I) + (XL(J)-XS(I))/(VS(I)-CWS)     !Equation (2) U/S 
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      DT = TL(J) - TS(I)                            !Equation (6) U/S 
C----- 
      ALPHA = TL(J) 
      CALL LINEAR(T,PL,N,ALPHA,S) 
      PT(J)=S 
C      PL(J) = S 
      DAL(J) = S/CWS**2                             !Equation (4) U/S 
C----- 
      R= (CWS*DAS(I)*(FDA*VS(I)*DT+1.0)) 
      VL(J)=(S-PS(I)+CWS*DAS(I)*VS(I))/R            !Equation (1) U/S 
C 
C--------- DOWNSTREAM BOUNDARY COMPUTATIONS------------------------- 
C 
C------------------------------------------------------------------- 
      IF (VS(I).NE.0.) THEN 
      CALL FCAL(VS(I),DA,MUA,EPSLN,D,FA) 
      ELSE 
      FA=0. 
      ENDIF 
      IF (VS(I).NE.0.) THEN 
      CALL FCAL(VS(I),DW,MUW,EPSLN,D,FW) 
      ELSE 
      FW=0. 
      ENDIF 
      FDW = FW/(2*D) 
      FDA = FA/(2*D) 
C------------------------------------------------------------------- 
C..........Following Equation is equation (8) D/S.................... 
      XR(K) =((VS(I)*DT+XS(I))*(VL(J)+CWS)-XL(J)*VS(I))/((VL(J)+ 
     *CWS)-VS(I)) 
      DT1 = (XR(K) - XL(J))/(VL(J)+CWS)               !Equation (2) D/S 
      TR(K) = TL(J) + DT1                           !Equation (2)  D/S 
      DT2 = TR(K) - TS(I)                           !Equation (4) D/S 
      LR(K) = LS(I)-0.5*RTO*VS(I)*DT2               !Equation (5) D/S 
      A = (FDA*VL(J)*DT1 + 1)*DAL(J)*CWS 
      B = 1+(FDW - RTO/LS(I))*VS(I)*DT2 
      PR(K) = S+DAL(J)*CWS*VL(J) - 
     2(A/B)*((1./DW)*((PS(I)-PO)/LS(I))*DT2 + VS(I))      !Equation (1) D/S 
      VR(K) = ((1./DW)*((PS(I)-PO)/LS(I))*DT2 + VS(I))/B  !Equation (6) D/S 
C--------------PRINTING DATA FOR PLOTS--------------------------------------- 
      MOM(K)=(DW*VR(K)**2)/6891.1565              !RHO*V**2 Term in psi. 
      LOC(K)=XR(K)+LR(K)-XI                        !Front Loc. from U/S elbow 
C--------------------------------------------------------------------------- 
C--- Computation of slug arrival time and paek pressure at the elbow, using 
C--- interpolation. 
      IF(COUNT.EQ.0.AND.LOC(K).GE.EP) THEN 
      SAT = TR(K-1) + ((TR(K)-TR(K-1))*(EP-LOC(K-1)))/(LOC(K)-LOC(K-1)) 
      SAV = VR(K-1) + ((VR(K)-VR(K-1))*(EP-LOC(K-1)))/(LOC(K)-LOC(K-1)) 
      PPE = MOM(K-1)+((MOM(K)-MOM(K-1))*(EP-LOC(K-1)))/(LOC(K)-LOC(K-1)) 
      SALR = LR(K-1) + ((LR(K)-LR(K-1))*(EP-LOC(K-1)))/(LOC(K)-LOC(K-1)) 
      SAPR = PR(K-1) + ((PR(K)-PR(K-1))*(EP-LOC(K-1)))/(LOC(K)-LOC(K-1)) 
      SAPT = PT(J-1) + ((PT(J)-PT(J-1))*(EP-LOC(K-1)))/(LOC(K)-LOC(K-1)) 
      COUNT=1 
      ENDIF 
C--------------------------------------------------------------------------- 
      PSK=(PR(K)-PO)/6891.1565               !Gage press. behind slug 
      PSJ=(S-PO)/6891.1565                !Gage press.in the tank 
C--------- 
      PX=(PSJ-PSK)/TR(K) 
C--------- 
      WRITE(*,109)TR(K),PSK,VR(K),LR(K),LOC(K),MOM(K),TL(J),PSJ,VL(J),PX 
      WRITE(2,109)TR(K),PSK,VR(K),LR(K),LOC(K),MOM(K),TL(J),PSJ,VL(J),PX 
109   FORMAT(1X,F7.5,2X,F6.3,1X,F7.3,1X,F6.4,1X,F6.3,1X,F7.2,2X, 
     2F8.6,2X,F6.3,1X,F6.3,1X,F7.5) 
C------ 
C------------------------------------------------------------------- 
C---- COMPUTE THE SCALED PARAMETERS TO BE USED LATER. 
      IF (I.EQ.0) THEN 
      CALL FCAL(VR(K),DW,MUW,EPSLN,D,FW) 
      LO=  (2*D/FW)*(1-AA)                !Length Scaling Parameter 
      VO = SQRT((PRES*6891.1565)/DW)   !Velocity Scaling Parameter 
      TO  = LO/VO                      !Time Scaling Parameter 
      ENDIF 
C------COMPUTE AND PRINT DIMENSIONLESS PARAMETERS 
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C------ 
      IF(SAYI.EQ.1.0) THEN 
      VSTAR = VR(K)/VO                    !Scaled Slug Velocity 
      PSTAR = PSK/PRES                    !Scaled Driving Pressure 
      LSTAR = LR(K)/LO                    !Scaled Slug Length 
      TSTAR = TR(K)/TO                    !Scaled Time 
      XSTAR = LOC(K)/LO                   !Scaled Slug Position 
      WRITE(4,110) TSTAR, PSTAR, LSTAR, XSTAR, VSTAR 
110   FORMAT(F10.6,2X,F10.7,2X,F10.7,2X,F10.5,2X,F10.5) 
      ENDIF 
C------------------------------------------------------------------- 
C--------------------------- 
C        STOPPING CRITERIA 
C        WHEN INPUT DATA TIME RANGE WAS PASSED/OR THE SLUG PASSED THE 
C     ELBOW BY PLL AND/OR SLUG LENGTH REDUCES TO ZERO. 
      IF(TR(K).GT.(0.98*T(N)).OR.XR(K).GE.PP.OR.LR(K).LE.0.10) THEN 
888   WRITE(*,106) 
C     WRITE(3,106) 
106   FORMAT( ' SLUG LENGTH HAS APPROACHED ZERO!',/, 
     +        ' OR SLUG TRAVELLED THE SPECIFIED DISTANCE!',/, 
     +        ' OR INPUT DATA TIME RANGE WAS PASSED!!!') 
      WRITE(*,111)SAT,PPE,EP 
      WRITE(2,111)SAT,PPE,EP 
111   FORMAT( ' Slug arrived at the elbow at ',1X,F7.5,1X,'sec.',/, 
     +        ' peak pressure due to momentum was ',F8.2,1X,'psig',/, 
     +        ' Elbow location is ',1X,F6.3,1X,'meters',///) 
      GO TO 200 
      ELSE 
      CONTINUE 
      ENDIF 
C 
C  SLUG Subscript Adjustments 
      TS(I+1) = TR(K) 
      VS(I+1) = VR(K) 
      PS(I+1) = PR(K) 
      XS(I+1) = XR(K) 
      LS(I+1) = LR(K) 
      DAS(I+1) =PR(K)/CWS**2 
C 
20    CONTINUE 
C 
C---Compute scaled arrival time, peak pressure,and elbow location 
C 
C------------------------------- 
200   IF(SAYI.EQ.1.0) THEN 
      SAT=SAT/TO 
      PPE = PPE/PRES 
      EP = EP/LO 
      WRITE(4,112)SAT,PPE,EP 
      WRITE(4,113)TO,VO,LO,PRES 
      WRITE(*,112)SAT,PPE,EP 
      WRITE(*,113)TO,VO,LO,PRES 
      ENDIF 
C----------------------------------------------------------------------- 
112   FORMAT( //' Scaled Arr. Time  at the elbow is ',1X,F9.5,/, 
     +        ' Scaled Peak Pres. at the elbow is ',F8.4,/, 
     +        ' Scaled Elbow Location is ',1X,F6.3,//) 
C----------------------------------------------------------------------- 
113   FORMAT( ' Scaling parameter for time was T =',2x,F7.5,1x,'sec.',/, 
     +        ' Scaling parameter for vel. was V =',2x,F10.2,1x,'m/s',/, 
     +        ' Scaling parameter for length was L =',2x,F10.7,1x,'m',/, 
     +        ' Scaling parameter for pressure was Pi=', F7.3,1x,'psig') 
C----------------------------------------------------------------------- 
      Y1OUT(0)=SAV 
C--------------------------------------------------------- 
C----------------CALCULATIONS FOR THE ELBOW--------------- 
C--------------------------------------------------------- 
      N2=N 
199   CONTINUE 
      WRITE(*,202) 
202   FORMAT(1X,'Initializations for the arrays are being made...') 
      DO 201 II=1,N3 
      DO 201 JI=1,N4 
      PDOUT(II,JI)=0. 
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      DFXOUT(II,JI)=0. 
      DFYOUT(II,JI)=0. 
201   CONTINUE 
      WRITE(*,203) 
203   FORMAT(1X,'Initializations for the arrays were completed.',///) 
      DO 198 I = 1, N2 
C converting th U/S abs. pressure in pascals to gage pressure in pascals 
      PL(I) = PL(I)-PO 
198   CONTINUE 
      MU=MUW 
      RO=DW 
      PI=4.*ATAN(1.) 
      R=D/2. 
      QPRETS=Y1OUT(0)*PI*R**2 
      PWET=2*PI*R 
      ACRSS=PI*R**2 
      LELBW=1/4.*2*PI*R0 
C     Derived Lengths 
      LSLIMP=SALR 
      DSC=LSLIMP/NSLUG 
      TIIN=DSC/SAV 
      WRITE(*,232) 'Space increment along the s-curve, DSC (m.) :',DSC 
      WRITE(2,232) 'Space increment along the s-curve, DSC (m.) :',DSC 
  232 FORMAT(1X,A45,F12.8) 
      TPR=TIIN 
      LPR=2*LELBW/KM 
      UPR=LPR/TPR 
      QPTSST=QPRETS/(UPR*LPR**2) 
C         For the elements of the computational mesh at any cross- 
C     section of the pipe: 
C     MR= number of mesh elements radial direction; MC= number of mesh 
C     elements in the circumferential direction. 
      MC=MR*MRT 
      MSHSZ=MR*MC 
      WRITE(*,230) "Mesh size over the pipe cross-section: MR x MC=",MR, 
     *"  x",MC 
      WRITE(2,230) "Mesh size over the pipe cross-section: MR x MC=",MR, 
     *"  x",MC 
230   FORMAT(/,1X,A47,I5,A3,I5) 
      DKSI=R/MR 
      DKSIST=DKSI/LPR 
      DETA=2*PI/MC 
C--------------------------------- 
      WRITE(*,233) "Maximum mesh size for the line integrals at any cros 
     *s-section: ML=",ML 
      WRITE(2,233) "Maximum mesh size for the line integrals at any cros 
     *s-section: ML=",ML 
233   FORMAT(1X,A66,I5,A3,I5) 
C--------------------------------- 
C--------------------------------- 
C         For the nodal points of the computational mesh along the 
C     elbow: 
C         The starting node at the upstream end of the elbow is NODE 1. 
      EMELRT=1./100 
C     EMERLT: End Mesh Element Lentgth Ratio 
      NELBW=LELBW/DSC+1 
      DSLAS1=LELBW-(NELBW-1)*DSC 
      DSLST1=DSLAS1/LPR 
C         The criteria here in this IF statement above was also used 
C     for the starting node (NSTOT) of the backward calculational 
C     procedure along the curve s. 
      IF (DSLST1.LE.DSC*EMELRT) THEN 
      NELBW=NELBW-1 
      DSLST1=0. 
      ENDIF 
      NEXTSN=LEXTSN/DSC+1 
      DSLAST=LEXTSN-(NEXTSN-1)*DSC 
C         The criteria here in this IF statement above was also used 
C     for the starting node (NSTOT) of the backward calculational 
C     procedure along the curve s. 
      IF (DSLAST.LE.DSC*EMELRT) THEN 
      NEXTSN=NEXTSN-1 
      DSLAST=0. 
      ENDIF 
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      DSCST=DSC/LPR 
      DSCLST=DSLAST/LPR 
      NSTOT=NELBW+NEXTSN 
      LTOT=LELBW+LEXTSN 
      LTOTST=LTOT/LPR 
      SCEXT=LTOT 
      SCENT=0. 
      DBETA=DSC/R0 
      DBELST=DSLST1/R0 
      NLBF=0 
      NLFF=0 
      WRITE(*,262) NELBW 
      WRITE(2,262) NELBW 
262   FORMAT(1X,'Total number of volume elements along the elbow: NELBW= 
     *',I5) 
      WRITE(*,261) NSTOT 
      WRITE(2,261) NSTOT 
261   FORMAT(1X,'Total number of volume elements along the total s-curve 
     *: NSTOT=',I5) 
      WRITE(*,270) MLPRSS 
      WRITE(2,270) MLPRSS 
270   FORMAT(1X,'Mesh size along the pipe radius for local pressure calc 
     *ulation at the',/,1X,'pipe wall: MLPRSS=',I5,/) 
C         Clustering of the line mesh for the line integral. 
      CALL MCLSTR(R,ML,CLSTRT,DRCLST) 
C--------------------------------- 
C        An initial calculation for the value of the friction angle TF. 
      UAVEI=SAV 
      IF (UAVEI.NE.0.) THEN 
      CALL TFCAL(UAVEI) 
      ELSE 
      F=0. 
      ENDIF 
C--------------------------------- 
      TCLMAX=TF*180/PI 
      TCDMAX=0.0124*(PLL/LSS)**3-0.2072*(PLL/LSS)**2+1.1001*(PLL/LSS) 
     *+87.951 
      WRITE(*,269) TCDMAX 
      WRITE(2,269) TCDMAX 
269   FORMAT(1X,"Maximum calibration angle of the velocity profile in de 
     *grees that occurs along",/," the s-curve: TCDMAX=",F9.5,/) 
      IF (TCDMAX.GT.TCLMAX) THEN 
      WRITE(*,281) TCLMAX 
      WRITE(2,281) TCLMAX 
281   FORMAT(1X,'The calculated maximum calibration angle TCDMAX is grea 
     *ter than',F9.4,/,' degree, which is the maximum allowable value.') 
      WRITE(*,282) 
      WRITE(2,282) 
282   FORMAT(/,1X,'Program failed to continue...') 
      STOP 
      ENDIF 
      SCELB=LELBW 
      TCMAX=TCDMAX/180*PI 
C--------------------------------- 
C        The nodal point on the elbow axis, for which the maximum 
C     presure at the convex side of the elbow occurs, is calculated 
C     here. 
      NMAXP=INT((SCMAX/LPR-DSCST/2.)/DSCST+0.5+0.5)+1 
      WRITE(7,13) 'NMAXP=',NMAXP 
13    FORMAT(1X,A6,I5,//) 
      WRITE(7,12) 'Time(s)','Peak Pressure(psi)' 
12    FORMAT(4X,A7,12X,A18) 
C--------------------------------- 
      WRITE(8,17) 'Time(s)','Fx (N)','Fy (N)' 
17    FORMAT(4X,A7,8X,A6,8X,A6) 
C--------------------------------- 
      WRITE(*,15) 'Output for the Pressure Distribution at each Time Ste 
     *p:' 
15    FORMAT(//,1X,A55) 
      WRITE(2,14) 
14    FORMAT(//,1x,'T (sec.)',3X,'VF (m/s)',3X,'LSS (m)' 
     *,2X,'Tank (psi)',5X, 'Rise ',3x,'Scaled Rise'/) 
C--------------------------------- 
      J=0 
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      FROLST=0. 
      XEND=SAT 
      XPRE=XEND 
      Y(1)=SAV 
      Y(2)=SALR 
      SAPRG=SAPR-PO 
      SAPTG=SAPT-PO 
C---------------------------------------------------------- 
      DO 16 I = K, N2 
C--------------------------------- 
      TI=DSC/Y(1) 
      UAVE=Y(1) 
      IF (UAVE.NE.0.) THEN 
      CALL TFCAL(UAVE) 
      ELSE 
      F=0. 
      ENDIF 
      FXST=0. 
      FYST=0. 
      C1 = (F/(2*D)) 
C--------------------------------- 
C     SET INITIAL FLAGS 
C--------------------------------- 
      NW = 3 
      N = 2 
      X =XEND 
      TOL = 0.0001 
      IND=1 
            XEND = XEND+TI 
C------------------------------- 
            J=J+1 
            ALPHA=XEND 
            CALL LINEAR(T,PL,N2,ALPHA,S) 
            PB=S-(SAPTG-SAPRG) 
C        Above substruction for tank pressure was made for the head loss 
C     along the part of the pipeline filled with air. PB here is the 
C     driving gage presure applied by the air at the upstream side of 
C     the slug. 
            SS = PB/6891.1565 
C-------------------------------- 
            CALL DVERK(N,FCN2,X,Y,XEND,TOL,IND,C,NW,W) 
            MP(I) = RO*Y(1)**2 
            PSI = MP(I)/6891.1565 
            PPE = PSI/PRI 
C-------------------------------- 
      XOUT(J)=X 
      Y1OUT(J)=Y(1) 
      Y2OUT(J)=Y(2) 
      SSOUT(J)=SS 
      WRITE(*,21) 'For T=',XOUT(J),'sec:' 
21    FORMAT(1X,A6,F8.5,1X,A4) 
      WRITE(*,22) 'VF=',Y1OUT(J),'m/s','LSS=',Y2OUT(J),'m','Driving Pr.= 
     *',SSOUT(J),'psi' 
22    FORMAT(1X,A3,F9.4,1X,A3,2X,A,F6.3,1X,A1,2X,A12,F8.4,1X,A3) 
      WRITE(*,18) 'NODE','PRESSURE RISE (psi)','deltaFx (N)', 
     *'deltaFy (N)' 
18    FORMAT(1X,A4,3X,A19,10X,A11,6X,A11) 
C--------------------------------- 
C     Parameters for the subroutine DVERK defined again 
      NW=1 
      N=1 
      SCST=0. 
      TOL=0.0001 
      IND=1 
C--------------------------------------------------- 
      UAVE=Y1OUT(J) 
      UAVEST=UAVE/UPR 
      Q=UAVE*PI*R**2 
      QST=Q/(UPR*LPR**2) 
      TIST=TI/TPR 
C------------------------------------------------------------------ 
C        Calculating the boundary values at the exit of the vertical 
C     extension part. 
      PAVE(1)=0. 



 
 
 
 

 
234 

 

      PAVEST(1)=PAVE(1)/(RO*UPR**2) 
      PAVMST=0. 
C------------------------------------------------------------------ 
      FROLST=FROLST+UAVEST*TIST 
      IF (FROLST.LT.DSCST/2.) THEN 
      NLFF=0 
      ELSE IF (FROLST.GE.DSCST/2. .AND.FROLST.LE.LELBW/LPR+DSCST/2. 
     *.AND.DBELST.LE.EMELRT*DBETA) THEN 
      NLFF=1+INT((FROLST-DSCST/2.)/DSCST) 
      ELSE IF (FROLST.GE.DSCST/2. .AND.FROLST.LT.LELBW/LPR-DSLST1. 
     *AND.DBELST.GT.EMELRT*DBETA) THEN 
      NLFF=1+INT(FROLST/DSCST) 
      ELSE IF (FROLST.GE.LELBW/LPR-DSLST1.AND.FROLST.LT.LELBW/LPR- 
     *DSLST1/2. .AND.DBELST.GT.EMELRT*DBETA) THEN 
      NLFF=1+INT((FROLST-DSLST1/2.)/DSCST) 
      ELSEIF (FROLST.GE.LELBW/LPR-DSLST1/2. AND.FROLST.LT.LELBW/ 
     *LPR .AND. DBELST.GT.EMELRT*DBETA) THEN 
      NLFF=NELBW 
      ELSE IF (FROLST.GE.LELBW/LPR.AND.FROLST.LT.LTOT/LPR-DSCST/2. 
     *.AND.DSCLST.LT.DSCST*EMELRT) THEN 
      NLFF=NELBW+INT((FROLST-LELBW/LPR)/DSCST) 
      ELSE IF (FROLST.GE.LELBW/LPR.AND.FROLST.LT.LTOT/LPR-DSCLST/2. 
     *.AND.DSCLST.GT.DSCST*EMELRT) THEN 
      NLFF=NELBW+INT((FROLST-LELBW/LPR)/DSCST) 
      ELSE IF (FROLST.GE.LTOT/LPR-DSCST/2. .AND.FROLST.LT.LTOT/LPR 
     *.AND.DBELST.LT.EMELRT*DBETA) THEN 
      NLFF=NSTOT 
      ELSE IF (FROLST.GE.LTOT/LPR-DSCLST/2. .AND.FROLST.LT.LTOT/LPR 
     *.AND.DBELST.GT.EMELRT*DBETA) THEN 
      NLFF=NSTOT 
      ELSE IF (FROLST.GE.LTOT/LPR) THEN 
      NLFF=NSTOT+1 
      ENDIF 
      DTUAST=(Y1OUT(J)/UPR-Y1OUT(J-1)/UPR)/TIST 
      C4=-DTUAST 
      C9=C4 
C        Calculations for average pressure are being made by using 
C     backward differences at point IP-1 (at coordinate SCEND on 
C     curve s). 
C        Calculations for deltaFx and deltaFy are being made at point 
C     IP using control volume approach. 
      DO 220 IP=NLFF,NLBF+1,-1 
      IND=1 
      IF (IP.LE.NELBW) THEN 
C---------------- 
      IF ((IP.LT.NELBW.OR.DBELST.LE.EMELRT*DBETA).AND.IP.EQ.NLBF+1) THEN 
      SCST=(IP-1)*DSCST+DSCST/2. 
      SCEDST=(IP-1)*DSCST 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-1)+DBETA/2. 
      C8=LPR*G/UPR**2*SIN(BETA) 
C        SCEND MUST BE SMALLER THAN SC BECAUSE THE COMPUTATION 
C     IS BEING MADE BACKWARDS HERE, ALONG THE 1-D MESH, WITH 
C     SUBROUTINE DVERK. 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCUST=(IP-1)*DSCST 
      SCMST=(IP-1)*DSCST+DSCST/2. 
      SCDST=(IP-1)*DSCST+DSCST 
      SCPST=(IP-1)*DSCST+DSCST+DSCST/2. 
      PAVUST=PAVEST(1) 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFELBW(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF (IP.LT.NELBW) THEN 
      SCST=(IP-1)*DSCST+DSCST/2. 
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      SCEDST=(IP-2)*DSCST+DSCST/2. 
      DSCST1=DSCST 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-1)+DBETA/2. 
      C8=LPR*G/UPR**2*SIN(BETA) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=(IP-2)*DSCST+DSCST/2. 
      SCUST=(IP-2)*DSCST+DSCST/2.+DSCST/2. 
      SCMST=(IP-1)*DSCST+DSCST/2. 
      SCDST=(IP-1)*DSCST+DSCST/2.+DSCST/2. 
      SCPST=(IP-1)*DSCST+DSCST/2.+DSCST/2.+DSCST/2. 
      IF (IP.EQ.NELBW-1 .AND.DBELST.GT.EMELRT*DBETA) SCPST=(IP-1)*DSCST+ 
     *DSCST/2.+DSCST/2.+DSLST1/2. 
      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFELBW(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NELBW.AND.DBELST.LE.EMELRT*DBETA.AND.IP.GT.1) THEN 
      SCST=(IP-2)*DSCST+DSCST/2.+DSCST/2.+DSCST/2. 
      SCEDST=(IP-2)*DSCST+DSCST/2. 
      DSCST1=DSCST 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-2)+DBETA/2.+DBETA/2.+DBETA/2. 
      C8=LPR*G/UPR**2*SIN(BETA) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=(IP-2)*DSCST+DSCST/2. 
      SCUST=(IP-2)*DSCST+DSCST/2.+DSCST/2. 
      SCMST=(IP-2)*DSCST+DSCST/2.+DSCST/2.+DSCST/2. 
      SCDST=(IP-1)*DSCST+DSCST/2.+DSCST/2. 
      SCPST=(IP-1)*DSCST+DSCST/2.+DSCST/2.+DSCST/2. 
      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFELBW(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NELBW.AND.DBELST.GT.EMELRT*DBETA.AND.IP.GT.1) THEN 
      SCST=(IP-2)*DSCST+DSCST/2.+DSCST/2.+DSLST1/2. 
      SCEDST=(IP-2)*DSCST+DSCST/2. 
      DSCST1=DSCST/2.+DSLST1/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-2)+DBETA/2.+DBETA/2.+DBELST/2. 
      C8=LPR*G/UPR**2*SIN(BETA) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=(IP-2)*DSCST+DSCST/2. 
      SCUST=(IP-2)*DSCST+DSCST/2.+DSCST/2. 
      SCMST=(IP-2)*DSCST+DSCST/2.+DSCST/2.+DSLST1/2. 
      SCDST=(IP-2)*DSCST+DSCST/2.+DSCST/2.+DSLST1 
      SCPST=(IP-2)*DSCST+DSCST/2.+DSCST/2.+DSLST1+DSCST/2. 
      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
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      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFELBW(DFXST,DFYST) 
      ENDIF 
      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NELBW+1 .AND.DBELST.LE.EMELRT*DBETA.AND.NLFF.NE. 
     *NELBW+1) THEN 
C        Here, the average pressure value at the last node of the 
C     of the elbow is calculated. 
C     (Point NELBW+1 corresponds to the connection boundary of the 
C     elbow and the vertical extension part as a special case here.) 
      SCST=LELBW/LPR 
      SCEDST=LELBW/LPR-DSCST/2. 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-1) 
      C8=LPR*G/UPR**2*SIN(BETA) 
      PAVUST=PAVEST(1) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCUST=LELBW/LPR 
      SCMST=LELBW/LPR+DSCST/2. 
      SCDST=LELBW/LPR+DSCST 
      SCPST=LELBW/LPR+DSCST+DSCST/2. 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFEXTN(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF(IP.EQ.NELBW+1 .AND.DBELST.GE.EMELRT*DBETA.AND.NLFF.NE. 
     *NELBW+1) THEN 
C        Here, the average pressure value at the last node of the 
C     of the elbow is calculated. 
      SCST=LELBW/LPR 
      SCEDST=LELBW/LPR-DSLST1/2. 
      DSCST1=DSLST1/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-3)+DBETA/2.+DBETA/2.+DBELST 
      C8=LPR*G/UPR**2*SIN(BETA) 
      PAVUST=PAVEST(1) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCUST=LELBW/LPR 
      SCMST=LELBW/LPR+DSCST/2. 
      SCDST=LELBW/LPR+DSCST 
      SCPST=LELBW/LPR+DSCST+DSCST/2. 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFEXTN(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NELBW+1 .AND.DBELST.LE.EMELRT*DBETA.AND.NLFF.EQ. 
     *NELBW+1) THEN 
      SCST=LELBW/LPR+DSCST/2. 
      SCEDST=LELBW/LPR 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
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      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      CONTINUE 
      IND=1 
      PAV1ST=PAVEST(1) 
      MOMFL2=MOMFL1 
      SCST=LELBW/LPR 
      SCEDST=LELBW/LPR-DSCST/2. 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-1) 
      C8=LPR*G/UPR**2*SIN(BETA) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      PBOUST=PAVEST(1) 
      PAVEST(1)=PAV1ST 
C---------------- 
      ELSE IF(IP.EQ.NELBW+1 .AND.DBELST.GE.EMELRT*DBETA.AND.NLFF.EQ. 
     *NELBW+1) THEN 
      SCST=LELBW/LPR+DSCST/2. 
      SCEDST=LELBW/LPR 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      CONTINUE 
      IND=1 
      PAV1ST=PAVEST(1) 
      MOMFL2=MOMFL1 
      SCST=LELBW/LPR 
      SCEDST=LELBW/LPR-DSLST1/2. 
      DSCST1=DSLST1/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C6=-LPR**3/(R0*ACRSS)*(MOMFL2-MOMFL1)/DBETA1 
      C7=-LPR*(F*PWET/(8*ACRSS))*UAVEST**2-UAVEST**2 
      BETA=DBETA*(IP-3)+DBETA/2.+DBETA/2.+DBELST 
      C8=LPR*G/UPR**2*SIN(BETA) 
      CALL DVERK(N,PDS1ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      PBOUST=PAVEST(1) 
      PAVEST(1)=PAV1ST 
C---------------- 
      ELSE IF (IP.GT.NELBW.AND.IP.EQ.NELBW+2) THEN 
      SCST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2. 
      SCEDST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      DSCST1=DSCST 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=LELBW/LPR+DSCST/2. 
      SCUST=LELBW/LPR+DSCST 
      SCMST=LELBW/LPR+DSCST+DSCST/2. 
      SCDST=LELBW/LPR+DSCST+DSCST 
      SCPST=LELBW/LPR+DSCST+DSCST+DSCST/2. 
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      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFEXTN(DFXST,DFYST) 
      ENDIF 
      CONTINUE 
      IND=1 
      PAV1ST=PAVEST(1) 
      MOMFL2=MOMFL1 
C        Calculating the pressure value at the connection point of the 
C     elbow and the vertical extension part. 
      SCST=LELBW/LPR+DSCST/2. 
      SCEDST=LELBW/LPR 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      PBOUST=PAVEST(1) 
      PAVEST(1)=PAV1ST 
C---------------- 
      ELSE IF (IP.LT.NSTOT.AND.IP.GT.NELBW+2) THEN 
      SCST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2. 
      SCEDST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      DSCST1=DSCST 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      SCUST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2.+DSCST/2. 
      SCMST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2. 
      SCDST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2.+DSCST/2. 
      SCPST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2.+DSCST/2.+DSCST/2. 
      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
      CALL PINTER(PAVDST,SCDST,PAVMST,PAVPST,SCMST,SCPST) 
      CALL DFEXTN(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NSTOT.AND.DSCLST.LE.DSCST*EMELRT.AND.IP.GT.NELBW+1) 
     *THEN 
      SCST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2. 
      SCEDST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      DSCST1=DSCST 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      SCUST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2.+DSCST/2. 
      SCMST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2. 
      SCDST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCST/2.+DSCST/2. 
      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
      PAVDST=0. 
      CALL DFEXTN(DFXST,DFYST) 
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      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NSTOT.AND.DSCLST.GT.DSCST*EMELRT.AND.IP.GT.NELBW+1) 
     *THEN 
      SCST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2.+DSCST/2.+DSCLST/2. 
      SCEDST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      DSCST1=DSCST/2.+DSCLST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      IF (IP.LE.NSTOT.AND.IP.LT.NLFF) THEN 
      SCNST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2. 
      SCUST=LELBW/LPR+(IP-NELBW-2)*DSCST+DSCST/2.+DSCST/2. 
      SCMST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCLST/2. 
      SCDST=LELBW/LPR+(IP-NELBW-1)*DSCST+DSCLST/2.+DSCLST/2. 
      PAVNST=PAVEST(1) 
      CALL PINTER(PAVUST,SCUST,PAVNST,PAVMST,SCNST,SCMST) 
      PAVDST=0. 
      CALL DFEXTN(DFXST,DFYST) 
      ENDIF 
C---------------- 
      ELSE IF (IP.EQ.NSTOT+1 .AND.DSCLST.LE.DSCST*EMELRT.AND.IP.GT. 
     *NELBW+1) THEN 
      SCST=LTOT/LPR 
      SCEDST=LTOT/LPR-DSCST/2. 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
C---------------- 
      ELSE IF (IP.EQ.NSTOT+1 .AND.DSCLST.GT.DSCST*EMELRT.AND.IP.GT. 
     *NELBW+1) THEN 
      SCST=LTOT/LPR 
      SCEDST=LTOT/LPR-DSCLST/2. 
      DSCST1=DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      CALL UMSTCL(SCST) 
      IF (IP.EQ.NLFF) CALL INCRAR(SCST,UP2ST,MOMFL2) 
      CALL UMSTCL(SCEDST) 
      CALL INCRAR(SCEDST,UP2ST,MOMFL1) 
      C10=-LPR**2/ACRSS*(MOMFL2-MOMFL1)/DSCST1 
      C11=-F*PWET/(8*ACRSS)*LPR*UAVEST**2 
      C12=G*LPR/UPR**2 
      CALL DVERK(N,PDS2ST,SCST,PAVEST,SCEDST,TOL,IND,C,NW,W) 
      ENDIF 
C---------------- 
      MOMFL2=MOMFL1 
      IF (IP.EQ.1) PAVE(1)=PAVEST(1)*RO*UPR**2 
      IF (IP.LE.NELBW+1.AND.IP.GE.1) THEN 
      IF (IP.GT.1) THEN 
      DSCST1=DSCST 
      DBETA1=DSCST1*LPR/R0 
C        SCST values are recalculated here because above application of 
C     the subroutine DVERK changes the value of this variable. 
      SCST=DSCST/2.+DSCST*(IP-1) 
      CALL UMSTCL(SCST-DSCST1) 
      UM2ST=UMST 
      RM2ST=RMST 
      TC2=TC 
      CALL UMSTCL(SCST) 
      UM1ST=UMST 
      RM1ST=RMST 
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      TC1=TC 
      IF (IP.EQ.NELBW.AND.IP.GE.2 .AND.DBELST.GE.EMELRT*DBETA) THEN 
      DSCST1=DSLST1/2.+DSCST/2. 
      DBETA1=DSCST1*LPR/R0 
      SCST=DSCST/2.+DSCST*(IP-2)+DSCST/2.+DSLST1/2. 
      CALL UMSTCL(SCST-DSCST1) 
      UM2ST=UMST 
      RM2ST=RMST 
      TC2=TC 
      CALL UMSTCL(SCST) 
      UM1ST=UMST 
      RM1ST=RMST 
      TC1=TC 
      ENDIF 
      PAVE(1)=PAVEST(1)*RO*UPR**2 
      PCVXST(1)=PAVEST(1) 
      MLD=MLPRSS-1 
      DRDIST=(R/LPR)/MLD 
      DO 40 IPD=1,MLD 
      RDIST=R0/LPR+DRDIST*(IPD-1) 
      RDEDST=RDIST+DRDIST 
      SCSTCP=SCEDST 
      IND=1 
      CALL DVERK(N,PCTFST,RDIST,PCVXST,RDEDST,TOL,IND,C,NW,W) 
  40  CONTINUE 
      PCNVX(1)=PCVXST(1)*RO*UPR**2 
      PDOUT(J,IP-1)=PCNVX(1) 
      ENDIF 
      IF (IP.LT.NLFF.AND.IP.NE.NSTOT+1) THEN 
      DFXOUT(J,IP)=DFXST*RO*UPR**2*LPR**2 
      DFYOUT(J,IP)=DFYST*RO*UPR**2*LPR**2 
      FXST=FXST+DFXST 
      FYST=FYST+DFYST 
      ENDIF 
      IF (IP.NE.NELBW+1) THEN 
      IF (IP.EQ.NMAXP-1 .OR.IP. EQ.NMAXP-2) THEN 
      WRITE(*,249) IP,PDOUT(J,IP)/6891.1565,'cnvx. (ind.)', 
     *DFXOUT(J,IP),DFYOUT(J,IP) 
      GOTO 44 
      ENDIF 
      WRITE(*,250) IP,PDOUT(J,IP)/6891.1565,'cnvx.', 
     *DFXOUT(J,IP),DFYOUT(J,IP) 
      ELSE IF (IP.EQ.NELBW+1) THEN 
      IF (IP.EQ.NMAXP-1 .OR.IP. EQ.NMAXP-2) THEN 
      WRITE(*,249) IP,PDOUT(J,IP)/6891.1565,'cnvx. (ind.)', 
     *DFXOUT(J,IP),DFYOUT(J,IP) 
      GOTO 44 
      ENDIF 
      WRITE(*,251) IP,PDOUT(J,IP)/6891.1565,'avg.', 
     *DFXOUT(J,IP),DFYOUT(J,IP) 
      ENDIF 
  44  CONTINUE 
      IF (IP.EQ.1) THEN 
      FX=FXST*RO*UPR**2*LPR**2 
      FY=FYST*RO*UPR**2*LPR**2 
      WRITE(*,43) FX,FY 
  43  FORMAT(32X,'FX=',F9.2,1X,'N',3X,'FY=',F9.2,1X,'N') 
      FXOUT(J)=FX 
      FYOUT(J)=FY 
      ENDIF 
      IF (IP-1 .EQ.NMAXP.AND.IP+1 .LT.NLFF) THEN 
      SNMST=SCEDST 
      PNMST=PDOUT(J,IP-1)/(RO*UPR**2) 
      PNM1ST=PDOUT(J,IP)/(RO*UPR**2) 
      PNM2ST=PDOUT(J,IP+1)/(RO*UPR**2) 
      CALL PEAKCL(SNMST,DSCST,PNMST,PNM1ST,PNM2ST,SCMAX,PPEAST) 
      PPEAK=PPEAST*RO*UPR**2 
      WRITE(7,41) X,PPEAK/6891.1565 
  41  FORMAT(1X,F10.5,5X,F12.2) 
      ENDIF 
      ELSE IF (IP.GT.NELBW.AND.IP.GE.2) THEN 
      IF (IP.LT.NLFF.AND.IP.NE.NSTOT+1) THEN 
      DFXOUT(J,IP)=DFXST*RO*UPR**2*LPR**2 
      DFYOUT(J,IP)=DFYST*RO*UPR**2*LPR**2 



 
 
 
 

 
241 

 

      FXST=FXST+DFXST 
      FYST=FYST+DFYST 
      ENDIF 
      PAVE(1)=PAVEST(1)*RO*UPR**2 
      PDOUT(J,IP-1)=PAVE(1) 
      IF (IP.LT.NSTOT+1) THEN 
      WRITE(*,251) IP,PDOUT(J,IP)/6891.1565,'avg.', 
     *DFXOUT(J,IP),DFYOUT(J,IP) 
      ENDIF 
      IF (IP-1 .EQ.NMAXP) WRITE(7,42) X,PDOUT(J,IP-1)/6891.1565 
  42  FORMAT(1X,F10.5,5X,F12.2) 
      ENDIF 
249   FORMAT(1X,I5,3X,F8.2,1X,A12,2X,F12.2,5X,F12.2) 
250   FORMAT(1X,I5,3X,F8.2,1X,A5,9X,F12.2,5X,F12.2) 
251   FORMAT(1X,I5,3X,F8.2,1X,A4,10X,F12.2,5X,F12.2) 
      PAVPST=PAVMST 
      PAVMST=PAVEST(1) 
      IF (IP.EQ.NELBW+2 .OR. (IP.EQ.NELBW+1 .AND.NLFF.EQ.NELBW+1)) 
     *PAVEST(1)=PBOUST 
220   CONTINUE 
      QPTSST=QST 
      WRITE(*,*) "  " 
C--------------------------------- 
C------------ 
      ITSTP=J 
      IF (ITSTP.EQ.1) THEN 
      WRITE(2,296) 'Output for the Pressure Distribution at each Time St 
     *ep:' 
296   FORMAT(1X,A55) 
      ENDIF 
      WRITE(2,291) 'For T=',XOUT(ITSTP),'sec:' 
291   FORMAT(1X,A6,F8.5,1X,A4) 
      WRITE(2,292) 'VF=',Y1OUT(ITSTP),'m/s','LSS=',Y2OUT(ITSTP),'m', 
     *'Driving Pr.=',SSOUT(ITSTP),'psi' 
292   FORMAT(1X,A3,F9.4,1X,A3,2X,A4,F6.3,1X,A1,2X,A12,F8.4,1X,A3) 
      WRITE(2,294) 'NODE','PRESSURE RISE (psi)','deltaFx (N)', 
     *'deltaFy (N)' 
294   FORMAT(1X,A4,3X,A19,10X,A11,6X,A11) 
      DO 300 INPTS=NLBF,NSTOT 
      IF (INPTS.LE.NELBW) THEN 
      IF (INPTS .EQ.NMAXP-1 .OR.INPTS. EQ.NMAXP-2. AND.INPTS.NE.0) THEN 
      WRITE(2,249) INPTS,PDOUT(ITSTP,INPTS)/6891.1565,'cnvx. (ind.)', 
     *DFXOUT(ITSTP,INPTS),DFYOUT(ITSTP,INPTS) 
      GOTO 308 
      ENDIF 
      IF (INPTS.NE.0) WRITE(2,250) INPTS,PDOUT(ITSTP,INPTS)/6891.1565,'c 
     *nvx.',DFXOUT(ITSTP,INPTS),DFYOUT(ITSTP,INPTS) 
308   CONTINUE 
      ELSE IF (INPTS.GT.NELBW) THEN 
      WRITE(2,251) INPTS,PDOUT(ITSTP,INPTS)/6891.1565,'avg.', 
     *DFXOUT(ITSTP,INPTS),DFYOUT(ITSTP,INPTS) 
      ENDIF 
      IF (INPTS.EQ.NSTOT) THEN 
      WRITE(2,299) FXOUT(ITSTP),FYOUT(ITSTP) 
299   FORMAT(32X,'FX=',F9.2,1X,'N',3X,'FY=',F9.2,1X,'N') 
      WRITE(8,306) XOUT(ITSTP),FXOUT(ITSTP),FYOUT(ITSTP) 
306   FORMAT(1X,F10.5,5X,F9.2,5X,F9.2) 
      ENDIF 
300   CONTINUE 
      WRITE(2,*) ' ' 
307   CONTINUE 
C-------------------------------- 
C        Here a ratio Rs, expressing the stability of the slug, is used 
C     in the criteria to stop the simulation. 
      Y1ST=Y(1)/UPR 
      Y2ST=Y(2)/LPR 
      PBST=PB/(RO*UPR**2) 
      RS=ABS((-F*Y2ST*LPR*ACRSS*Y1ST**2/(2*D)+ 
     *PBST*ACRSS-PAVEST(1)*ACRSS)/(PBST*ACRSS)) 
C-------------------------------- 
             IF (RS.LT.0.15 .AND.NLFF.GT.NELBW) THEN 
             WRITE(*,303) 
             WRITE(2,303) 
303          FORMAT (//,1X," Now the driving and the retarding forces ac 
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     *ting on the slug",/,1X," has become very close to each other and s 
     *imulation stopped",/,1X," to leave calculations with unstable osci 
     *llations!",/) 
             GO TO 19 
             ELSE IF (Y(2).LE.0.05) THEN 
             WRITE(*,11) 
             WRITE(2,11) 
11           FORMAT(1X,' THE SLUG HAS EXITED HORIZONTAL PIPE!'//) 
             GO TO 19 
             ENDIF 
16    CONTINUE 
C------------ 
C----- 
C----- 
19    CONTINUE 
      WRITE(*,310) 
310   FORMAT(/,1X,' Hope this was a pleasant simulation for you!') 
      WRITE(2,305) 
305   FORMAT(/,1X,' This is the end of output data file.') 
      CLOSE(UNIT=2) 
      CLOSE(UNIT=7) 
      CLOSE(UNIT=8) 
      STOP 
      END 
C------------------------------------------------------------------------- 
      SUBROUTINE FCN2(N,X,Y,YPRIME) 
      INTEGER N 
      REAL*8 Y(N),YPRIME(N),X,C1,C2,C3,PB,RO,PAVE(1),MU 
      COMMON/ COEFFS/ C1, C2, C3 
      COMMON/ CONST/PB,RO,PAVE,MU 
      YPRIME(1) = -C1*Y(1)**2 + PB/(RO*Y(2))-PAVE(1)/(RO*Y(2)) 
      YPRIME(2) = -Y(1) 
      RETURN 
      END 
C------------------------------------------------------------------------- 
C----------------------SUBROUTINE LINEAR---------------------------------- 
C------------------------------------------------------------------------- 
C GIVEN ARRAYS T AND PL, EACH LENGTH N, AND GIVEN A VALUE T, THIS 
C ROUTINE RETURNS A VALUE PL, BY LINEAR INTERPOLATION. 
C 
C     N:      AN INTEGER FOR THE DIMENSION OF ARRAYS; 
C     T(I):   N-DIMENSIONAL INDEPENDENT VARIABLE ARRAY; 
C     PL(I):   N-DIMENSIONAL DEPENDENT VARIABLE ARRAY; 
C     ALPHA: A T VALUE AT WHICH VALUE OF PL IS DESIRED. 
C 
C-------------------------------------------------------------------------- 
C-------------------------------------------------------------------------- 
      SUBROUTINE LINEAR(T,PL,N,ALPHA,S) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION T(10010),PL(10010) 
      REAL*8 H,ALPHA,S 
      CALL LOCATE(T,N,ALPHA,J) 
      H=T(J+1)-T(J) 
      S=PL(J)+(ALPHA-T(J))*(PL(J+1)-PL(J))/H 
C     WRITE(3,1)J,ALPHA,S 
C     WRITE(*,1)J,ALPHA,S 
1     FORMAT(2X,'INTEGER=',I4,5X,'ALPHA=',2X,F9.7,3X,'PRES. IS =',F10.0) 
      RETURN 
      END 
C 
      SUBROUTINE LOCATE(T,N,ALPHA,J) 
C Given an array T of length N, and given a value ALPHA, returns a value J 
C such that ALPHA is between T(J) and T(J+1). T must be monotonic, either 
C increasing or decreasing. J=0 or J=N is returned to indicate that ALPHA 
C is out of range. 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION T(10010) 
      REAL*8 ALPHA 
      JL=0                         !Initialize lower 
      JU=N+1                       !and upper limits 
10    IF((JU-JL).GT.1)THEN         !if we are not yet done, 
         JM=(JU+JL)/2              !compute a midpoint, 
C 
         IF((T(N).GT.T(1)).EQV.(ALPHA.GT.T(JM)))THEN 
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C 
            JL =JM               !and replace either the lower limit 
         ELSE 
            JU = JM              !or the upper limit, as appropriate. 
         ENDIF 
      GO TO 10                   !Repeat until 
      ENDIF                      !the test condition 10 is satisfied 
      J=JL                       !Then set the output 
      RETURN                     !and return. 
      END 
       
      SUBROUTINE BISECT(X,XL,XU,NB,IER,F) 
C         This subroutine is given in Antia,2002. Numerical Methods for 
C     Scientists and Engineers. Birkhauser, Verlag. 
      IMPLICIT REAL*8(A-H,O-Z) 
 
      IF(NB.LE.0) THEN 
        IER=401 
        RETURN 
      ENDIF 
 
      FL=F(XL) 
      FU=F(XU) 
      IER=-1 
C If the function value is zero at either point then quit 
      IF(FL.EQ.0.0) THEN 
        X=XL 
        RETURN 
      ELSE IF(FU.EQ.0.0) THEN 
        X=XU 
        RETURN 
      ENDIF 
 
      IF(FL.GT.0.0.EQV.FU.GT.0.0) THEN 
C If the function has the same sign at both end points then quit 
        IER=421 
        RETURN 
      ENDIF 
 
C Loop for bisection 
      DO 1000 K=1,NB 
        X=(XL+XU)/2. 
        FX=F(X) 
C If function is zero then quit 
        IF(FX.EQ.0.0) RETURN 
        IF(FX.GT.0.0.EQV.FU.GT.0.0) THEN 
          XU=X 
          FU=FX 
        ELSE 
          XL=X 
          FL=FX 
        ENDIF 
1000  CONTINUE 
 
C linear interpolation between XL and XU 
      X=(XL*FU-XU*FL)/(FU-FL) 
      IER=0 
      END 
       
      SUBROUTINE FCAL(UAVE1,RO1,MU1,EPSLN1,D1,F1) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 UAVE1,RO1,MU1,EPSLN1,D1,RE1,F1 
      RE1=RO1*UAVE1*D1/MU1 
      F1=1.325/(LOG(EPSLN1/(3.7*D1)+5.74/RE1**0.9))**2 
      RETURN 
      END 
       
      SUBROUTINE TFCAL(UAVE) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 EPSLN,D 
      REAL*8 PB,RO,PAVEST,MU 
      REAL*8 R,TC,TF,QST,PI 
      REAL*8 UAVE,F,RE 
      REAL*8 YW,TAU,TAU0,LMX,FRSLP 
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      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS14/ EPSLN,D,F 
      COMMON/ CONST/PB,RO,PAVEST,MU 
      RE=RO*UAVE*D/MU 
      F=1.325/(LOG(EPSLN/(3.7*D)+5.74/RE**0.9))**2 
      TAU0=1/8.*F*RO*UAVE**2 
C         The ratio of 1/250. below was selected such that the distance 
C     YW=R*(1/250.) is very close to the pipe wall. 
      YW=R/250. 
      TAU=TAU0*(1.-YW/R) 
      LMX=0.4*YW 
      FRSLP=1./LMX*(TAU/RO)**.5 
      TF=ATAN(FRSLP) 
      RETURN 
      END 
 
      SUBROUTINE UMSTCL(SCST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,SCST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /TERMS4/ DRDIST,MLD 
      CALL TCCAL(SCST) 
      UMST=-1/UPR*(-(((3*QST*UPR*LPR**2/PI)-R**3*TAN(TF))*TAN(TF)**2*( 
     *TAN(TC)-TAN(TF))**2/(TAN(TC)+TAN(TF))**2))**(1./3)+R/UPR*TAN(TF) 
      RMST=R/LPR-UMST/(TPR*TAN(TF)) 
      RETURN 
      END 
 
      FUNCTION UST(KSIST,SCST,ETA) 
C        This subprogram calculates UST at a cross-section of the elbow 
C     or the extension part, where angle BETA or location on the 
C     S-curve, S, is constant. 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,KSIST,SCST,ETA 
      REAL*8 Y1ST,H1ST,Y2ST,H2ST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      CALL TCCAL(SCST) 
      Y1ST=1./LPR*(UMST*UPR-R*TAN(TF))*(TAN(TC)+TAN(TF))/(TAN(TF)*(TAN 
     *(TC)-TAN(TF))) 
      H1ST=(UMST*UPR-R*TAN(TF))/(TAN(TC)-TAN(TF))*2*TAN(TC)/LPR 
      Y2ST=(2*R*TAN(TC)*TAN(TF)-UMST*UPR*(TAN(TC)+TAN(TF)))/(TAN(TF)*( 
     *TAN(TC)-TAN(TF))*LPR) 
      H2ST=Y2ST*TAN(TF) 
      IF (KSIST.LT.Y1ST) THEN 
      UST=TPR/(Y1ST**2-RMST**2)*(Y1ST**2*H1ST+Y1ST**2*H2ST- 
     *RMST**2*H2ST-RMST*H1ST*KSIST*SIN(ETA)- 
     *(-2.*Y1ST**2*H1ST**2*RMST*KSIST*SIN(ETA)+ 
     *RMST**2*Y1ST**2*H1ST**2- 
     *(RMST**2*H1ST**2-Y1ST**2*H1ST**2)*COS(ETA)**2*KSIST**2+ 
     *Y1ST**2*H1ST**2*SIN(ETA)**2*KSIST**2)**.5) 
      ELSE IF (KSIST.GE.Y1ST) THEN 
      UST=LPR/UPR*(R/LPR-KSIST)*TAN(TF) 
      ENDIF 
      END 
 
      FUNCTION UP2ST(KSIST,SCST,ETA) 
C        This subprogram calculates U**2 at a cross-section of the elbow 
C     or the extension part, where angle BETA or location on the 
C     S-curve, S, is constant. 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,KSIST,SCST,ETA 
      REAL*8 Y1ST,H1ST,Y2ST,H2ST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      CALL TCCAL(SCST) 
      Y1ST=1./LPR*(UMST*UPR-R*TAN(TF))*(TAN(TC)+TAN(TF))/(TAN(TF)*(TAN 
     *(TC)-TAN(TF))) 
      H1ST=(UMST*UPR-R*TAN(TF))/(TAN(TC)-TAN(TF))*2*TAN(TC)/LPR 
      Y2ST=(2*R*TAN(TC)*TAN(TF)-UMST*UPR*(TAN(TC)+TAN(TF)))/(TAN(TF)*( 
     *TAN(TC)-TAN(TF))*LPR) 
      H2ST=Y2ST*TAN(TF) 
      IF (KSIST.LT.Y1ST) THEN 
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      UST=TPR/(Y1ST**2-RMST**2)*(Y1ST**2*H1ST+Y1ST**2*H2ST- 
     *RMST**2*H2ST-RMST*H1ST*KSIST*SIN(ETA)- 
     *(-2.*Y1ST**2*H1ST**2*RMST*KSIST*SIN(ETA)+ 
     *RMST**2*Y1ST**2*H1ST**2- 
     *(RMST**2*H1ST**2-Y1ST**2*H1ST**2)*COS(ETA)**2*KSIST**2+ 
     *Y1ST**2*H1ST**2*SIN(ETA)**2*KSIST**2)**.5) 
      ELSE IF (KSIST.GE.Y1ST) THEN 
      UST=LPR/UPR*(R/LPR-KSIST)*TAN(TF) 
      ENDIF 
      UP2ST=UST**2 
      END 
 
      SUBROUTINE TCCAL(SCST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 R,TC,TF,QST,PI 
      REAL*8 RMST,UMST,LPR,UPR,TPR 
      REAL*8 TCMAX,SCMAX,SCELB 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS7/ TCMAX,SCMAX,SCELB 
      COMMON /PRMTS14/ EPSLN,D,F 
      IF (SCST.LT.SCMAX/LPR) THEN 
      TC=TCMAX+TCMAX/(SCMAX+75*D)*(SCST*LPR-SCMAX) 
      ELSE IF (SCST.GE.SCMAX/LPR) THEN 
      TC=TCMAX-TCMAX/(SCELB+75*D-SCMAX)*(SCST*LPR-SCMAX) 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE INCRAR(SCST,FNCTN,INTEG) 
      IMPLICIT REAL*8(A-H,O-Z) 
      INTEGER MR,MC,ML,ICRAR,JCRAR 
      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,DKSIST,DETA 
      REAL*8 R0,DBETA,DSCST 
      REAL*8 KSIST,SCST,ETA,KSISTM,ETAN,INTEG,INTEG1,INTEG2 
      REAL*8 W1,W2,W3,SPRC,TPRC 
      REAL*8 G1PR,G2PR,G3PR,G4PR,G5PR,G6PR,G7PR,G8PR,G9PR 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS3/ DKSIST,DETA 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /PRMTS5/ MR,MC,ML 
      INTEG1=0. 
      INTEG2=0. 
      W1=25./81 
      W2=40./81 
      W3=64./81 
      SPRC=(3./5)**.5 
      TPRC=(3./5)**.5 
      DO 10 ICRAR=2,MR 
      KSISTM=DKSIST/2+DKSIST*(ICRAR-1) 
      DO 10 JCRAR=1,MC 
      ETAN=DETA/2+DETA*(JCRAR-1) 
      KSIST=KSISTM+DKSIST/2*SPRC 
      ETA=ETAN+DETA/2*TPRC 
      G1PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM 
      ETA=ETAN+DETA/2*TPRC 
      G2PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM-DKSIST/2*SPRC 
      ETA=ETAN+DETA/2*TPRC 
      G3PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM+DKSIST/2*SPRC 
      ETA=ETAN 
      G4PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM 
      ETA=ETAN 
      G5PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM-DKSIST/2*SPRC 
      ETA=ETAN 
      G6PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM+DKSIST/2*SPRC 
      ETA=ETAN-DETA/2*TPRC 
      G7PR=FNCTN(KSIST,SCST,ETA)*KSIST 
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      KSIST=KSISTM 
      ETA=ETAN-DETA/2*TPRC 
      G8PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM-DKSIST/2*SPRC 
      ETA=ETAN-DETA/2*TPRC 
      G9PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      INTEG1=INTEG1+(DKSIST*DETA/4)*(W1*(G1PR+G3PR+G7PR+G9PR)+W2*(G2PR+ 
     *G4PR+G6PR+G8PR)+W3*G5PR) 
  10  CONTINUE 
C     For the central point of the circular domain 
      KSISTM=DKSIST/2 
      DO 20 JCRAR=1,MC 
      ETAN=DETA/2+DETA*(JCRAR-1) 
      KSIST=KSISTM+DKSIST/2*SPRC 
      ETA=ETAN+DETA/2*TPRC 
      G1PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM 
      ETA=ETAN+DETA/2*TPRC 
      G2PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM-DKSIST/2*SPRC 
      ETA=ETAN+DETA/2*TPRC 
      G3PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM+DKSIST/2*SPRC 
      ETA=ETAN 
      G4PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM 
      ETA=ETAN 
      G5PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM-DKSIST/2*SPRC 
      ETA=ETAN 
      G6PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM+DKSIST/2*SPRC 
      ETA=ETAN-DETA/2*TPRC 
      G7PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM 
      ETA=ETAN-DETA/2*TPRC 
      G8PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      KSIST=KSISTM-DKSIST/2*SPRC 
      ETA=ETAN-DETA/2*TPRC 
      G9PR=FNCTN(KSIST,SCST,ETA)*KSIST 
      INTEG2=INTEG2+(DKSIST*DETA/4)*(W1*(G1PR+G3PR+G7PR+G9PR)+W2*(G2PR+ 
     *G4PR+G6PR+G8PR)+W3*G5PR) 
  20  CONTINUE 
      INTEG=INTEG1+INTEG2 
      END 
 
      FUNCTION DBUST(KSIST,SCST,ETA) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,R0,DBETA,DSCST 
      REAL*8 KSIST,SCST,ETA 
      REAL*8 DSCST1,DBETA1 
      REAL*8 UM1ST,UM2ST,RM1ST,RM2ST,TC1,TC2 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /PRMTS16/ DSCST1,DBETA1 
      COMMON /PRMTS17/ UM1ST,UM2ST,RM1ST,RM2ST,TC1,TC2 
      UMST=UM1ST 
      RMST=RM1ST 
      TC=TC1 
      UST1=UST(KSIST,SCST+DSCST1,ETA) 
      UMST=UM2ST 
      RMST=RM2ST 
      TC=TC2 
      UST2=UST(KSIST,SCST,ETA) 
      DBUST=(UST1-UST2)/DBETA1 
      RETURN 
      END 
 
      SUBROUTINE INTLIN(KSIST,SCST,ETA,FNCTNL,INTEGL) 
C        This subprogram takes an integral along a straight line between 
C     given boundaries by using 3-point Gauss Quadrature. 
      IMPLICIT REAL*8(A-H,O-Z) 
      INTEGER MR,MC,ML,MLNEW,IML 
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      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,DKSIST,DETA 
      REAL*8 R0,DBETA,DSCST,EMELRT,DRST,RST 
      REAL*8 H1PRST,H2PRST,H3PRST 
      REAL*8 W1,W2,APRC,RSTR,ZST,RSTL 
      REAL*8 KSIST,ETA,INTEGL 
      REAL*8 DRCLST(2000) 
      REAL*8 SPLGST,DRSTP 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS3/ DKSIST,DETA 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /PRMTS5/ MR,MC,ML 
      COMMON /PRMTS6/ EMELRT 
      COMMON /PRMTS15/ DRCLST 
      INTEGL=0. 
      W1=5./9 
      W2=8./9 
      APRC=(3./5)**.5 
      RSTR=R0/LPR+KSIST*SIN(ETA) 
      ZST=-KSIST*COS(ETA) 
      RSTL=R0/LPR-(R**2/LPR**2-ZST**2)**.5 
      SPLGST=0. 
      IML=0 
  30  SPLGST=SPLGST+DRCLST(IML+1) 
      IF (SPLGST.LE.RSTR-RSTL) THEN 
      IML=IML+1 
      GOTO 30 
      ENDIF 
      MLNEW=IML 
      SPLGST=SPLGST-DRCLST(MLNEW+1) 
      DO 10 ILINT=1,MLNEW 
C     ------------------ 
      IF (ILINT.EQ.1) THEN 
      RST=RSTL+DRCLST(ILINT)/2 
      DRST=DRCLST(ILINT) 
      ELSE 
      RST=RST+DRCLST(ILINT-1)/2+DRCLST(ILINT)/2 
      DRST=DRCLST(ILINT) 
      ENDIF 
C     ------------------ 
  20  KSIST=(ZST**2+(RST-DRST/2*APRC-R0/LPR)**2)**.5 
      CALL ETAC(ZST,RST-DRST/2*APRC,ETA) 
      H1PRST=FNCTNL(KSIST,SCST,ETA) 
C     ------ 
      KSIST=(ZST**2+(RST-R0/LPR)**2)**.5 
      CALL ETAC(ZST,RST,ETA) 
      H2PRST=FNCTNL(KSIST,SCST,ETA) 
C     ------ 
      KSIST=(ZST**2+(RST+DRST/2*APRC-R0/LPR)**2)**.5 
      CALL ETAC(ZST,RST+DRST/2*APRC,ETA) 
      H3PRST=FNCTNL(KSIST,SCST,ETA) 
C     ------ 
      INTEGL=INTEGL+(DRST/2)*(W1*H1PRST+W2*H2PRST+W1*H3PRST) 
      IF (((RSTR-RSTL)-SPLGST)/DRST.GT.EMELRT .AND.ILINT.EQ.MLNEW) 
     *THEN 
      DRSTP=DRST 
      DRST=(RSTR-RSTL)-SPLGST 
      RST=RST+DRSTP/2+DRST/2 
      MLNEW=MLNEW+1 
      GOTO 20 
      ENDIF 
  10  CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE MCLSTR(R,ML,CLSTRT,DRCLST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 R,CLSTRT,DRCL(2000),DRCLST(2000) 
      INTEGER N4,ML 
      REAL*8 RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      DO 10 I=1,ML+2 
      DRCL(I)=2*R*(CLSTRT-1)/(CLSTRT**ML-1)*CLSTRT**(I-1) 
 10   DRCLST(I)=DRCL(I)/LPR 
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      RETURN 
      END 
 
      SUBROUTINE PDS1ST(N,SCST,Y,YPRIME) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 Y(N),YPRIME(N),SCST,C4,C6,C7,C8 
      INTEGER N 
      COMMON/ TERMS2/ C4,C6,C7,C8 
      YPRIME(1)=C4+C6+C7+C8 
      RETURN 
      END 
 
      SUBROUTINE PDS2ST(N,SCST,Y,YPRIME) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 Y(N),YPRIME(N),SCST,C9,C10,C11,C12 
      INTEGER N 
      COMMON/ TERMS3/ C9,C10,C11,C12 
      YPRIME(1)=C9+C10+C11+C12 
      RETURN 
      END 
 
      SUBROUTINE PCTFST(N,RDIST,Y,YPRIME) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 Y(N),YPRIME(N),SCEDST,C13,C14,C15,C17,C18,C19,C20,C21 
      REAL*8 YPR1,YPR2,YPR3,YPR4,YPR5,YPR6,YPR7,YPR8,YPR9,YPR10 
      REAL*8 KSIST,KSISTM,ETA,RDIST,RDISTM,SCSTL,ETAN,ZST,ZSTK,DZST 
      REAL*8 RMST,UMST,LPR,UPR,TPR,RO,MU,SCMAX,AS,BS,HS,BETA 
      REAL*8 R,TC,TF,QST,PI 
      REAL*8 Q1ST,QPTSST 
      REAL*8 PAVE(1) 
      REAL*8 EPSTST,E11,E12,E21,E22,E31,E32 
      REAL*8 UM1ST,UM2ST,RM1ST,RM2ST,TC1,TC2 
      INTEGER N,NUM 
      EXTERNAL DBUST,ust 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /PRMTS7/ TCMAX,SCMAX,SCELB 
      COMMON /PRMTS13/ QPTSST,TIST 
      COMMON /PRMTS16/ DSCST1,DBETA1 
      COMMON /PRMTS17/ UM1ST,UM2ST,RM1ST,RM2ST,TC1,TC2 
      COMMON /PRMTS21/ SCEDST 
      COMMON /TERMS4/ DRDIST,MLD 
      COMMON/ CONST/PB,RO,PAVE,MU 
      COMMON /TERMS6/ BETA,G 
      COMMON /W/ C15 
      COMMON /DBDVR/ IP,IPD 
      DZST=DRDIST 
      ZST=0. 
      ZSTK=ZST 
      RDISTM=RDIST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST 
      CALL UMSTCL(SCSTL) 
      UM2ST=UMST 
      RM2ST=RMST 
      TC2=TC 
      CALL UMSTCL(SCSTL+DSCST1) 
      UM1ST=UMST 
      RM1ST=RMST 
      TC1=TC 
      CALL INTLIN(KSISTM,SCSTL,ETAN,DBUST,C13) 
      Q1ST=QST 
      QST=QPTSST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST 
      CALL UMSTCL(SCSTL) 
      UM2ST=UMST 
      RM2ST=RMST 
      TC2=TC 
      CALL UMSTCL(SCSTL+DSCST1) 
      UM1ST=UMST 
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      RM1ST=RMST 
      TC1=TC 
      CALL INTLIN(KSISTM,SCSTL,ETAN,DBUST,C14) 
      QST=Q1ST 
      ZSTK=ZST 
      RDISTM=RDIST+DRDIST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST 
      CALL UMSTCL(SCSTL) 
      UM2ST=UMST 
      RM2ST=RMST 
      TC2=TC 
      CALL UMSTCL(SCSTL+DSCST1) 
      UM1ST=UMST 
      RM1ST=RMST 
      TC1=TC 
      CALL INTLIN(KSISTM,SCSTL,ETAN,DBUST,C15) 
      ZSTK=ZST 
      RDISTM=RDIST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST+DSCST1 
      CALL UMSTCL(SCSTL) 
      UM2ST=UMST 
      RM2ST=RMST 
      TC2=TC 
      CALL UMSTCL(SCSTL+DSCST1) 
      UM1ST=UMST 
      RM1ST=RMST 
      TC1=TC 
      CALL INTLIN(KSISTM,SCSTL,ETAN,DBUST,C16) 
      ZSTK=ZST 
      RDISTM=RDIST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST 
      CALL UMSTCL(SCSTL) 
      C21=UST(KSISTM,SCSTL,ETAN) 
C----------------------------------------------------------------------- 
C         Calculation of the terms in the differential ordinary 
C     differential equation to be used for the calculation of the 
C     impact pressure at the outer-most point at the convex side of the 
C     elbow. 
      YPR1=1./RDIST*(C13-C14)/TIST 
C--------- 
      YPR2=1./2*((1/(RDIST+DRDIST)*C15)**2-(1/RDIST*C13)**2)/DRDIST 
C--------- 
      YPR3=C21/RDIST**2*(C16-C13)/DBETA1 
C--------- 
      YPR4=C21**2/RDIST 
C--------- 
      ZSTK=ZST 
      RDISTM=RDIST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST 
      CALL UMSTCL(SCSTL) 
      CALL EDDY(KSISTM,SCSTL,ETAN,EPSTST) 
      YPR8=EPSTST/RDIST**3*C13 
C--------- 
      ZSTK=ZST 
      RDISTM=RDIST 
      KSISTM=(ZSTK**2+(RDISTM-R0/LPR)**2)**.5 
      CALL ETAC(ZSTK,RDISTM,ETAN) 
      SCSTL=SCEDST 
      CALL UMSTCL(SCSTL) 
      CALL EDDY(KSISTM,SCSTL,ETAN,EPSTST) 
      YPR9=2*EPSTST/RDIST**2*(C16-C13)/DBETA1 
C--------- 
      YPR10=LPR/UPR**2*G*COS(BETA-DBETA1) 
C---------- 
C----------------------------------------------------------------------- 
      YPRIME(1)=YPR1+YPR2+YPR3+YPR4+YPR8-YPR9+YPR10 
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      RETURN 
      END 
 
      SUBROUTINE ETAC(ZST,RCST,ETA) 
      IMPLICIT REAL*8(A-H,O-Z) 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UM,LPR,UPR,TPR 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      REAL*8 ZST,RCST,ETA 
      REAL*8 R,TC,TF,QST,PI,RMST,UMST,LPR,UPR,TPR,R0,DBETA,DSCST 
      IF (ZST.EQ.0. .AND. RCST-R0/LPR.EQ.0) THEN 
      ETA=PI/2 
      ELSE IF (ZST.EQ.0. .AND. RCST-R0/LPR.GT.0)  THEN 
      ETA=PI/2. 
      ELSE IF (ZST.EQ.0. .AND. RCST-R0/LPR.LT.0) THEN 
      ETA=3*PI/2. 
      ELSE 
      ETA=ATAN((R0/LPR-RCST)/ZST) 
      IF (RCST-R0/LPR.LT.0. .AND. ZST.LT.0.) THEN 
      ETA=ETA+2*PI 
      ELSE 
      IF (ZST.GT.0.) ETA=ETA+PI 
      ENDIF 
      ENDIF 
      RETURN 
      END 
 
      SUBROUTINE PEAKCL(SNMST,DSCST,PNMST,PNM1ST,PNM2ST,SCMAX,PPEAST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 SNMST,DSCST,PNMST,PNM1ST,PNM2ST,SCMAX,PPEAST 
      REAL*8 RMST,UM,LPR,UPR,TPR 
      COMMON /PRMTS2/ RMST,UM,LPR,UPR,TPR 
C        Finite difference method with second order forward differences 
C     were used here. 
      PPEAST=PNMST+(-3*PNMST+4*PNM1ST-PNM2ST)/(2*DSCST)*(SCMAX/LPR 
     *-SNMST) 
      RETURN 
      END 
 
      SUBROUTINE PINTER(PST,SCST,P1ST,P2ST,SC1ST,SC2ST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 PST,SCST,P1ST,P2ST,SC1ST,SC2ST 
C        This subroutine is used for calculating the average presssure 
C     values at the intermediary faces of the volume elements, along the 
C     elbow and the vertical extension part. 
      PST=P2ST+(P2ST-P1ST)/(SC2ST-SC1ST)*(SCST-SC2ST) 
      RETURN 
      END 
 
      SUBROUTINE DFELBW(DFXST,DFYST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 DFXST,DFYST,LPR,R0,DBETAV,QST,QPTSST,TIST 
      REAL*8 BETAU,BETAM,BETAD,IBUST,IBDST,PAVUST,PAVDST,ACRSS 
      REAL*8 PAVNST,PAVMST,PAVPST 
      REAL*8 SCUST,SCDST,SCNST,SCMST,SCPST 
      EXTERNAL UP2ST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /TERMS6/ BETA,G 
      COMMON /PRMTS13/ QPTSST,TIST 
      COMMON /PRMTS18/ PAVUST,PAVDST 
      COMMON /PRMTS19/ SCUST,SCMST,SCDST 
      COMMON /PRMTS20/ ACRSS 
      BETAU=SCUST*LPR/R0 
      BETAM=SCMST*LPR/R0 
      BETAD=SCDST*LPR/R0 
      DBETAV=BETAD-BETAU 
      CALL UMSTCL(SCUST) 
      CALL INCRAR(SCUST,UP2ST,IBUST) 
      CALL UMSTCL(SCDST) 
      CALL INCRAR(SCDST,UP2ST,IBDST) 
      DFXST=-1./LPR*R0*DBETAV*COS(BETAM)*(QST-QPTSST)/TIST+ 
     *COS(BETAU)*IBUST-COS(BETAD)*IBDST+ 
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     *1./LPR**2*PAVUST*COS(BETAU)*ACRSS- 
     *1./LPR**2*PAVDST*COS(BETAD)*ACRSS 
      DFYST=1./LPR*R0*DBETAV*SIN(BETAM)*(QST-QPTSST)/TIST- 
     *SIN(BETAU)*IBUST+SIN(BETAD)*IBDST- 
     *1./LPR**2*PAVUST*SIN(BETAU)*ACRSS+ 
     *1./LPR**2*PAVDST*SIN(BETAD)*ACRSS- 
     *G*R0*DBETAV*ACRSS/(LPR**2*UPR**2) 
      RETURN 
      END 
       
      SUBROUTINE DFEXTN(DFXST,DFYST) 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 DFYST,LPR,R0,DSCVST,QST,QPTSST,TIST 
      REAL*8 ISUST,ISDST,PAVUST,PAVDST,ACRSS 
      REAL*8 PAVNST,PAVMST,PAVPST 
      REAL*8 SCUST,SCDST,SCNST,SCMST,SCPST 
      EXTERNAL UP2ST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /PRMTS4/ R0,DBETA,DSCST 
      COMMON /TERMS6/ BETA,G 
      COMMON /PRMTS13/ QPTSST,TIST 
      COMMON /PRMTS18/ PAVUST,PAVDST 
      COMMON /PRMTS19/ SCUST,SCMST,SCDST 
      COMMON /PRMTS20/ ACRSS 
      DSCVST=SCDST-SCUST 
      CALL UMSTCL(SCUST) 
      CALL INCRAR(SCUST,UP2ST,ISUST) 
      CALL UMSTCL(SCDST) 
      CALL INCRAR(SCDST,UP2ST,ISDST) 
      DFXST=0. 
      DFYST=DSCVST*(QST-QPTSST)/TIST- 
     *ISUST+ISDST- 
     *1./LPR**2*PAVUST*ACRSS+ 
     *1./LPR**2*PAVDST*ACRSS- 
     *G*R0*DSCVST*ACRSS/(LPR**2*UPR**2) 
      RETURN 
      END 
       
      SUBROUTINE EDDY(KSIST,SCST,ETA,EPSTST) 
C        This subroutine calculates Eddy Viscosity at any point in the 
C     elbow by using Mixing Length Theory given in Chen, C. J. and Yaw 
C     S. Y. 1997. Fundamentals of Turbulence Modeling. Taylor and 
C     Francis Ltd. New York. 
      IMPLICIT REAL*8(A-H,O-Z) 
      REAL*8 KSIST,SCST,ETA,EPSTST,GM,LPR,R,LMST,DKSXST 
      COMMON /PRMTS1/ R,TC,TF,QST,PI 
      COMMON /PRMTS2/ RMST,UMST,LPR,UPR,TPR 
      COMMON /TERMS4/ DKSXST,MLD 
      GM=KSIST*LPR/R 
      LMST=R/LPR*(0.14-0.08*GM**2-0.06*GM**4) 
      EPSTST=LMST**2*ABS((UST(KSIST+DKSXST,SCST,ETA)-UST(KSIST,SCST, 
     *ETA))/DKSXST) 
      RETURN 
      END 
       
      subroutine dverk (n, fcn, x, y, xend, tol, ind, c, nw, w) 
      integer n, ind, nw, k 
      double precision x, y(n), xend, tol, c(24), w(nw,9), temp 
c 
c*********************************************************************** 
c                                                                      * 
c note added 11/14/85.                                                 * 
c                                                                      * 
c if you discover any errors in this subroutine, please contact        * 
c                                                                      * 
c        kenneth r. jackson                                            * 
c        department of computer science                                * 
c        university of toronto                                         * 
c        toronto, ontario,                                             * 
c        canada   m5s 1a4                                              * 
c                                                                      * 
c        phone: 416-978-7075                                           * 
c                                                                      * 
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c        electronic mail:                                              * 
c        uucp:   {cornell,decvax,ihnp4,linus,uw-beaver}!utcsri!krj     * 
c        csnet:  krj@toronto                                           * 
c        arpa:   krj.toronto@csnet-relay                               * 
c        bitnet: krj%toronto@csnet-relay.arpa                          * 
c                                                                      * 
c dverk is written in fortran 66.                                      * 
c                                                                      * 
c the constants dwarf and rreb -- c(10) and c(11), respectively -- are * 
c set for a  vax  in  double  precision.  they  should  be  reset,  as * 
c described below, if this program is run on another machine.          * 
c                                                                      * 
c the c array is declared in this subroutine to have one element only, * 
c although  more  elements  are  referenced  in this subroutine.  this * 
c causes some compilers to issue warning messages.  there is,  though, * 
c no  error  provided  c is declared sufficiently large in the calling * 
c program, as described below.                                         * 
c                                                                      * 
c the following external statement  for  fcn  was  added  to  avoid  a * 
c warning  message  from  the  unix  f77 compiler.  the original dverk * 
c comments and code follow it.                                         * 
c                                                                      * 
c*********************************************************************** 
c 
      external fcn 
c 
c*********************************************************************** 
c                                                                      * 
c     purpose - this is a runge-kutta  subroutine  based  on  verner's * 
c fifth and sixth order pair of formulas for finding approximations to * 
c the solution of  a  system  of  first  order  ordinary  differential * 
c equations  with  initial  conditions. it attempts to keep the global * 
c error proportional to  a  tolerance  specified  by  the  user.  (the * 
c proportionality  depends  on the kind of error control that is used, * 
c as well as the differential equation and the range of integration.)  * 
c                                                                      * 
c     various options are available to the user,  including  different * 
c kinds  of  error control, restrictions on step sizes, and interrupts * 
c which permit the user to examine the state of the  calculation  (and * 
c perhaps make modifications) during intermediate stages.              * 
c                                                                      * 
c     the program is efficient for non-stiff systems.  however, a good * 
c variable-order-adams  method  will probably be more efficient if the * 
c function evaluations are very costly.  such a method would  also  be * 
c more suitable if one wanted to obtain a large number of intermediate * 
c solution values by interpolation, as might be the case  for  example * 
c with graphical output.                                               * 
c                                                                      * 
c                                    hull-enright-jackson   1/10/76    * 
c                                                                      * 
c*********************************************************************** 
c                                                                      * 
c     use - the user must specify each of the following                * 
c                                                                      * 
c     n  number of equations                                           * 
c                                                                      * 
c   fcn  name of subroutine for evaluating functions - the  subroutine * 
c           itself must also be provided by the user - it should be of * 
c           the following form                                         * 
c              subroutine fcn(n, x, y, yprime)                         * 
c              integer n                                               * 
c              double precision x, y(n), yprime(n)                     * 
c                      *** etc ***                                     * 
c           and it should evaluate yprime, given n, x and y            * 
c                                                                      * 
c     x  independent variable - initial value supplied by user         * 
c                                                                      * 
c     y  dependent variable - initial values of components y(1), y(2), * 
c           ..., y(n) supplied by user                                 * 
c                                                                      * 
c  xend  value of x to which integration is to be carried out - it may * 
c           be less than the initial value of x                        * 
c                                                                      * 
c   tol  tolerance - the subroutine attempts to control a norm of  the * 
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c           local  error  in  such  a  way  that  the  global error is * 
c           proportional to tol. in some problems there will be enough * 
c           damping  of  errors, as well as some cancellation, so that * 
c           the global error will be less than tol. alternatively, the * 
c           control   can   be  viewed  as  attempting  to  provide  a * 
c           calculated value of y at xend which is the exact  solution * 
c           to  the  problem y' = f(x,y) + e(x) where the norm of e(x) * 
c           is proportional to tol.  (the norm  is  a  max  norm  with * 
c           weights  that  depend on the error control strategy chosen * 
c           by the user.  the default weight for the k-th component is * 
c           1/max(1,abs(y(k))),  which therefore provides a mixture of * 
c           absolute and relative error control.)                      * 
c                                                                      * 
c   ind  indicator - on initial entry ind must be set equal to  either * 
c           1  or  2. if the user does not wish to use any options, he * 
c           should set ind to 1 - all that remains for the user to  do * 
c           then  is  to  declare c and w, and to specify nw. the user * 
c           may also  select  various  options  on  initial  entry  by * 
c           setting ind = 2 and initializing the first 9 components of * 
c           c as described in the next section.  he may also  re-enter * 
c           the  subroutine  with ind = 3 as mentioned again below. in * 
c           any event, the subroutine returns with ind equal to        * 
c              3 after a normal return                                 * 
c              4, 5, or 6 after an interrupt (see options c(8), c(9))  * 
c              -1, -2, or -3 after an error condition (see below)      * 
c                                                                      * 
c     c  communications vector - the dimension must be greater than or * 
c           equal to 24, unless option c(1) = 4 or 5 is used, in which * 
c           case the dimension must be greater than or equal to n+30   * 
c                                                                      * 
c    nw  first dimension of workspace w -  must  be  greater  than  or * 
c           equal to n                                                 * 
c                                                                      * 
c     w  workspace matrix - first dimension must be nw and second must * 
c           be greater than or equal to 9                              * 
c                                                                      * 
c     the subroutine  will  normally  return  with  ind  =  3,  having * 
c replaced the initial values of x and y with, respectively, the value * 
c of xend and an approximation to y at xend.  the  subroutine  can  be * 
c called  repeatedly  with new values of xend without having to change * 
c any other argument.  however, changes in tol, or any of the  options * 
c described below, may also be made on such a re-entry if desired.     * 
c                                                                      * 
c     three error returns are also possible, in which  case  x  and  y * 
c will be the most recently accepted values -                          * 
c     with ind = -3 the subroutine was unable  to  satisfy  the  error * 
c        requirement  with a particular step-size that is less than or * 
c        equal to hmin, which may mean that tol is too small           * 
c     with ind = -2 the value of hmin  is  greater  than  hmax,  which * 
c        probably  means  that the requested tol (which is used in the * 
c        calculation of hmin) is too small                             * 
c     with ind = -1 the allowed maximum number of fcn evaluations  has * 
c        been  exceeded,  but  this  can only occur if option c(7), as * 
c        described in the next section, has been used                  * 
c                                                                      * 
c     there are several circumstances that will cause the calculations * 
c to  be  terminated,  along with output of information that will help * 
c the user determine the cause of  the  trouble.  these  circumstances * 
c involve  entry with illegal or inconsistent values of the arguments, * 
c such as attempting a normal  re-entry  without  first  changing  the * 
c value of xend, or attempting to re-enter with ind less than zero.    * 
c                                                                      * 
c*********************************************************************** 
c                                                                      * 
c     options - if the subroutine is entered with ind = 1, the first 9 * 
c components of the communications vector are initialized to zero, and * 
c the subroutine uses only default values  for  each  option.  if  the * 
c subroutine  is  entered  with ind = 2, the user must specify each of * 
c these 9 components - normally he would first set them all  to  zero, * 
c and  then  make  non-zero  those  that  correspond to the particular * 
c options he wishes to select. in any event, options may be changed on * 
c re-entry  to  the  subroutine  -  but if the user changes any of the * 
c options, or tol, in the course of a calculation he should be careful * 
c about  how  such changes affect the subroutine - it may be better to * 
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c restart with ind = 1 or 2. (components 10 to 24 of c are used by the * 
c program  -  the information is available to the user, but should not * 
c normally be changed by him.)                                         * 
c                                                                      * 
c  c(1)  error control indicator - the norm of the local error is  the * 
c           max  norm  of  the  weighted  error  estimate  vector, the * 
c           weights being determined according to the value of c(1) -  * 
c              if c(1)=1 the weights are 1 (absolute error control)    * 
c              if c(1)=2 the weights are 1/abs(y(k))  (relative  error * 
c                 control)                                             * 
c              if c(1)=3 the  weights  are  1/max(abs(c(2)),abs(y(k))) * 
c                 (relative  error  control,  unless abs(y(k)) is less * 
c                 than the floor value, abs(c(2)) )                    * 
c              if c(1)=4 the weights are 1/max(abs(c(k+30)),abs(y(k))) * 
c                 (here individual floor values are used)              * 
c              if c(1)=5 the weights are 1/abs(c(k+30))                * 
c              for all other values of c(1), including  c(1) = 0,  the * 
c                 default  values  of  the  weights  are  taken  to be * 
c                 1/max(1,abs(y(k))), as mentioned earlier             * 
c           (in the two cases c(1) = 4 or 5 the user must declare  the * 
c           dimension of c to be at least n+30 and must initialize the * 
c           components c(31), c(32), ..., c(n+30).)                    * 
c                                                                      * 
c  c(2)  floor value - used when the indicator c(1) has the value 3    * 
c                                                                      * 
c  c(3)  hmin specification - if not zero, the subroutine chooses hmin * 
c           to be abs(c(3)) - otherwise it uses the default value      * 
c              10*max(dwarf,rreb*max(weighted norm y/tol,abs(x))),     * 
c           where dwarf is a very small positive  machine  number  and * 
c           rreb is the relative roundoff error bound                  * 
c                                                                      * 
c  c(4)  hstart specification - if not zero, the subroutine  will  use * 
c           an  initial  hmag equal to abs(c(4)), except of course for * 
c           the restrictions imposed by hmin and hmax  -  otherwise it * 
c           uses the default value of hmax*(tol)**(1/6)                * 
c                                                                      * 
c  c(5)  scale specification - this is intended to be a measure of the * 
c           scale of the problem - larger values of scale tend to make * 
c           the method more reliable, first  by  possibly  restricting * 
c           hmax  (as  described  below) and second, by tightening the * 
c           acceptance requirement - if c(5) is zero, a default  value * 
c           of  1  is  used.  for  linear  homogeneous  problems  with * 
c           constant coefficients, an appropriate value for scale is a * 
c           norm  of  the  associated  matrix.  for other problems, an * 
c           approximation to  an  average  value  of  a  norm  of  the * 
c           jacobian along the trajectory may be appropriate           * 
c                                                                      * 
c  c(6)  hmax specification - four cases are possible                  * 
c           if c(6).ne.0 and c(5).ne.0, hmax is taken to be            * 
c              min(abs(c(6)),2/abs(c(5)))                              * 
c           if c(6).ne.0 and c(5).eq.0, hmax is taken to be  abs(c(6)) * 
c           if c(6).eq.0 and c(5).ne.0, hmax is taken to be            * 
c              2/abs(c(5))                                             * 
c           if c(6).eq.0 and c(5).eq.0, hmax is given a default  value * 
c              of 2                                                    * 
c                                                                      * 
c  c(7)  maximum number of function evaluations  -  if  not  zero,  an * 
c           error  return with ind = -1 will be caused when the number * 
c           of function evaluations exceeds abs(c(7))                  * 
c                                                                      * 
c  c(8)  interrupt number  1  -  if  not  zero,  the  subroutine  will * 
c           interrupt   the  calculations  after  it  has  chosen  its * 
c           preliminary value of hmag, and just before choosing htrial * 
c           and  xtrial  in  preparation for taking a step (htrial may * 
c           differ from hmag in sign, and may  require  adjustment  if * 
c           xend  is  near) - the subroutine returns with ind = 4, and * 
c           will resume calculation at the point  of  interruption  if * 
c           re-entered with ind = 4                                    * 
c                                                                      * 
c  c(9)  interrupt number  2  -  if  not  zero,  the  subroutine  will * 
c           interrupt   the  calculations  immediately  after  it  has * 
c           decided whether or not to accept the result  of  the  most * 
c           recent  trial step, with ind = 5 if it plans to accept, or * 
c           ind = 6 if it plans to reject -  y(*)  is  the  previously * 
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c           accepted  result, while w(*,9) is the newly computed trial * 
c           value, and w(*,2) is the unweighted error estimate vector. * 
c           the  subroutine  will  resume calculations at the point of * 
c           interruption on re-entry with ind = 5 or 6. (the user  may * 
c           change ind in this case if he wishes, for example to force * 
c           acceptance of a step that would otherwise be rejected,  or * 
c           vice versa. he can also restart with ind = 1 or 2.)        * 
c                                                                      * 
c*********************************************************************** 
c                                                                      * 
c  summary of the components of the communications vector              * 
c                                                                      * 
c     prescribed at the option       determined by the program         * 
c           of the user                                                * 
c                                                                      * 
c                                    c(10) rreb(rel roundoff err bnd)  * 
c     c(1) error control indicator   c(11) dwarf (very small mach no)  * 
c     c(2) floor value               c(12) weighted norm y             * 
c     c(3) hmin specification        c(13) hmin                        * 
c     c(4) hstart specification      c(14) hmag                        * 
c     c(5) scale specification       c(15) scale                       * 
c     c(6) hmax specification        c(16) hmax                        * 
c     c(7) max no of fcn evals       c(17) xtrial                      * 
c     c(8) interrupt no 1            c(18) htrial                      * 
c     c(9) interrupt no 2            c(19) est                         * 
c                                    c(20) previous xend               * 
c                                    c(21) flag for xend               * 
c                                    c(22) no of successful steps      * 
c                                    c(23) no of successive failures   * 
c                                    c(24) no of fcn evals             * 
c                                                                      * 
c  if c(1) = 4 or 5, c(31), c(32), ... c(n+30) are floor values        * 
c                                                                      * 
c*********************************************************************** 
c                                                                      * 
c  an overview of the program                                          * 
c                                                                      * 
c     begin initialization, parameter checking, interrupt re-entries   * 
c  ......abort if ind out of range 1 to 6                              * 
c  .     cases - initial entry, normal re-entry, interrupt re-entries  * 
c  .     case 1 - initial entry (ind .eq. 1 or 2)                      * 
c  v........abort if n.gt.nw or tol.le.0                               * 
c  .        if initial entry without options (ind .eq. 1)              * 
c  .           set c(1) to c(9) equal to zero                          * 
c  .        else initial entry with options (ind .eq. 2)               * 
c  .           make c(1) to c(9) non-negative                          * 
c  .           make floor values non-negative if they are to be used   * 
c  .        end if                                                     * 
c  .        initialize rreb, dwarf, prev xend, flag, counts            * 
c  .     case 2 - normal re-entry (ind .eq. 3)                         * 
c  .........abort if xend reached, and either x changed or xend not    * 
c  .        re-initialize flag                                         * 
c  .     case 3 - re-entry following an interrupt (ind .eq. 4 to 6)    * 
c  v        transfer control to the appropriate re-entry point.......  * 
c  .     end cases                                                  .  * 
c  .  end initialization, etc.                                      .  * 
c  .                                                                v  * 
c  .  loop through the following 4 stages, once for each trial step .  * 
c  .     stage 1 - prepare                                          .  * 
c***********error return (with ind=-1) if no of fcn evals too great .  * 
c  .        calc slope (adding 1 to no of fcn evals) if ind .ne. 6  .  * 
c  .        calc hmin, scale, hmax                                  .  * 
c***********error return (with ind=-2) if hmin .gt. hmax            .  * 
c  .        calc preliminary hmag                                   .  * 
c***********interrupt no 1 (with ind=4) if requested.......re-entry.v  * 
c  .        calc hmag, xtrial and htrial                            .  * 
c  .     end stage 1                                                .  * 
c  v     stage 2 - calc ytrial (adding 7 to no of fcn evals)        .  * 
c  .     stage 3 - calc the error estimate                          .  * 
c  .     stage 4 - make decisions                                   .  * 
c  .        set ind=5 if step acceptable, else set ind=6            .  * 
c***********interrupt no 2 if requested....................re-entry.v  * 
c  .        if step accepted (ind .eq. 5)                              * 
c  .           update x, y from xtrial, ytrial                         * 
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c  .           add 1 to no of successful steps                         * 
c  .           set no of successive failures to zero                   * 
c**************return(with ind=3, xend saved, flag set) if x .eq. xend * 
c  .        else step not accepted (ind .eq. 6)                        * 
c  .           add 1 to no of successive failures                      * 
c**************error return (with ind=-3) if hmag .le. hmin            * 
c  .        end if                                                     * 
c  .     end stage 4                                                   * 
c  .  end loop                                                         * 
c  .                                                                   * 
c  begin abort action                                                  * 
c     output appropriate  message  about  stopping  the  calculations, * 
c        along with values of ind, n, nw, tol, hmin,  hmax,  x,  xend, * 
c        previous xend,  no of  successful  steps,  no  of  successive * 
c        failures, no of fcn evals, and the components of y            * 
c     stop                                                             * 
c  end abort action                                                    * 
c                                                                      * 
c*********************************************************************** 
c 
c     ****************************************************************** 
c     * begin initialization, parameter checking, interrupt re-entries * 
c     ****************************************************************** 
c 
c  ......abort if ind out of range 1 to 6 
         if (ind.lt.1 .or. ind.gt.6) go to 500 
c 
c        cases - initial entry, normal re-entry, interrupt re-entries 
         go to (5, 5, 45, 1111, 2222, 2222), ind 
c        case 1 - initial entry (ind .eq. 1 or 2) 
c  .........abort if n.gt.nw or tol.le.0 
    5       if (n.gt.nw .or. tol.le.0.d0) go to 500 
            if (ind.eq. 2) go to 15 
c              initial entry without options (ind .eq. 1) 
c              set c(1) to c(9) equal to 0 
               do 10 k = 1, 9 
                  c(k) = 0.d0 
   10          continue 
               go to 35 
   15       continue 
c              initial entry with options (ind .eq. 2) 
c              make c(1) to c(9) non-negative 
               do 20 k = 1, 9 
                  c(k) = dabs(c(k)) 
   20          continue 
c              make floor values non-negative if they are to be used 
               if (c(1).ne.4.d0 .and. c(1).ne.5.d0) go to 30 
                  do 25 k = 1, n 
                     c(k+30) = dabs(c(k+30)) 
   25             continue 
   30          continue 
   35       continue 
c           initialize rreb, dwarf, prev xend, flag, counts 
            c(10) = 2.d0**(-56) 
            c(11) = 1.d-35 
c           set previous xend initially to initial value of x 
            c(20) = x 
            do 40 k = 21, 24 
               c(k) = 0.d0 
   40       continue 
            go to 50 
c        case 2 - normal re-entry (ind .eq. 3) 
c  .........abort if xend reached, and either x changed or xend not 
   45       if (c(21).ne.0.d0 .and. 
     +                        (x.ne.c(20) .or. xend.eq.c(20))) go to 500 
c           re-initialize flag 
            c(21) = 0.d0 
            go to 50 
c        case 3 - re-entry following an interrupt (ind .eq. 4 to 6) 
c           transfer control to the appropriate re-entry point.......... 
c           this has already been handled by the computed go to        . 
c        end cases                                                     v 
   50    continue 
c 
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c     end initialization, etc. 
c 
c     ****************************************************************** 
c     * loop through the following 4 stages, once for each trial  step * 
c     * until the occurrence of one of the following                   * 
c     *    (a) the normal return (with ind .eq. 3) on reaching xend in * 
c     *        stage 4                                                 * 
c     *    (b) an error return (with ind .lt. 0) in stage 1 or stage 4 * 
c     *    (c) an interrupt return (with ind  .eq.  4,  5  or  6),  if * 
c     *        requested, in stage 1 or stage 4                        * 
c     ****************************************************************** 
c 
99999 continue 
c 
c        *************************************************************** 
c        * stage 1 - prepare - do calculations of  hmin,  hmax,  etc., * 
c        * and some parameter  checking,  and  end  up  with  suitable * 
c        * values of hmag, xtrial and htrial in preparation for taking * 
c        * an integration step.                                        * 
c        *************************************************************** 
c 
c***********error return (with ind=-1) if no of fcn evals too great 
            if (c(7).eq.0.d0 .or. c(24).lt.c(7)) go to 100 
               ind = -1 
               return 
  100       continue 
c 
c           calculate slope (adding 1 to no of fcn evals) if ind .ne. 6 
            if (ind .eq. 6) go to 105 
               call fcn(n, x, y, w(1,1)) 
               c(24) = c(24) + 1.d0 
  105       continue 
c 
c           calculate hmin - use default unless value prescribed 
            c(13) = c(3) 
            if (c(3) .ne. 0.d0) go to 165 
c              calculate default value of hmin 
c              first calculate weighted norm y - c(12) - as specified 
c              by the error control indicator c(1) 
               temp = 0.d0 
               if (c(1) .ne. 1.d0) go to 115 
c                 absolute error control - weights are 1 
                  do 110 k = 1, n 
                     temp = dmax1(temp, dabs(y(k))) 
  110             continue 
                  c(12) = temp 
                  go to 160 
  115          if (c(1) .ne. 2.d0) go to 120 
c                 relative error control - weights are 1/dabs(y(k)) so 
c                 weighted norm y is 1 
                  c(12) = 1.d0 
                  go to 160 
  120          if (c(1) .ne. 3.d0) go to 130 
c                 weights are 1/max(c(2),abs(y(k))) 
                  do 125 k = 1, n 
                     temp = dmax1(temp, dabs(y(k))/c(2)) 
  125             continue 
                  c(12) = dmin1(temp, 1.d0) 
                  go to 160 
  130          if (c(1) .ne. 4.d0) go to 140 
c                 weights are 1/max(c(k+30),abs(y(k))) 
                  do 135 k = 1, n 
                     temp = dmax1(temp, dabs(y(k))/c(k+30)) 
  135             continue 
                  c(12) = dmin1(temp, 1.d0) 
                  go to 160 
  140          if (c(1) .ne. 5.d0) go to 150 
c                 weights are 1/c(k+30) 
                  do 145 k = 1, n 
                     temp = dmax1(temp, dabs(y(k))/c(k+30)) 
  145             continue 
                  c(12) = temp 
                  go to 160 
  150          continue 
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c                 default case - weights are 1/max(1,abs(y(k))) 
                  do 155 k = 1, n 
                     temp = dmax1(temp, dabs(y(k))) 
  155             continue 
                  c(12) = dmin1(temp, 1.d0) 
  160          continue 
               c(13) = 10.d0*dmax1(c(11),c(10)*dmax1(c(12)/tol,dabs(x))) 
  165       continue 
c 
c           calculate scale - use default unless value prescribed 
            c(15) = c(5) 
            if (c(5) .eq. 0.d0) c(15) = 1.d0 
c 
c           calculate hmax - consider 4 cases 
c           case 1 both hmax and scale prescribed 
               if (c(6).ne.0.d0 .and. c(5).ne.0.d0) 
     +                                    c(16) = dmin1(c(6), 2.d0/c(5)) 
c           case 2 - hmax prescribed, but scale not 
               if (c(6).ne.0.d0 .and. c(5).eq.0.d0) c(16) = c(6) 
c           case 3 - hmax not prescribed, but scale is 
               if (c(6).eq.0.d0 .and. c(5).ne.0.d0) c(16) = 2.d0/c(5) 
c           case 4 - neither hmax nor scale is provided 
               if (c(6).eq.0.d0 .and. c(5).eq.0.d0) c(16) = 2.d0 
c 
c***********error return (with ind=-2) if hmin .gt. hmax 
            if (c(13) .le. c(16)) go to 170 
               ind = -2 
               return 
  170       continue 
c 
c           calculate preliminary hmag - consider 3 cases 
            if (ind .gt. 2) go to 175 
c           case 1 - initial entry - use prescribed value of hstart, if 
c              any, else default 
               c(14) = c(4) 
               if (c(4) .eq. 0.d0) c(14) = c(16)*tol**(1./6.) 
               go to 185 
  175       if (c(23) .gt. 1.d0) go to 180 
c           case 2 - after a successful step, or at most  one  failure, 
c              use min(2, .9*(tol/est)**(1/6))*hmag, but avoid possible 
c              overflow. then avoid reduction by more than half. 
               temp = 2.d0*c(14) 
               if (tol .lt. (2.d0/.9d0)**6*c(19)) 
     +                            temp = .9d0*(tol/c(19))**(1./6.)*c(14) 
               c(14) = dmax1(temp, .5d0*c(14)) 
               go to 185 
  180       continue 
c           case 3 - after two or more successive failures 
               c(14) = .5d0*c(14) 
  185       continue 
c 
c           check against hmax 
            c(14) = dmin1(c(14), c(16)) 
c 
c           check against hmin 
            c(14) = dmax1(c(14), c(13)) 
c 
c***********interrupt no 1 (with ind=4) if requested 
            if (c(8) .eq. 0.d0) go to 1111 
               ind = 4 
               return 
c           resume here on re-entry with ind .eq. 4   ........re-entry.. 
 1111       continue 
c 
c           calculate hmag, xtrial - depending on preliminary hmag, xend 
            if (c(14) .ge. dabs(xend - x)) go to 190 
c              do not step more than half way to xend 
               c(14) = dmin1(c(14), .5d0*dabs(xend - x)) 
               c(17) = x + dsign(c(14), xend - x) 
               go to 195 
  190       continue 
c              hit xend exactly 
               c(14) = dabs(xend - x) 
               c(17) = xend 
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  195       continue 
c 
c           calculate htrial 
            c(18) = c(17) - x 
c 
c        end stage 1 
c 
c        *************************************************************** 
c        * stage 2 - calculate ytrial (adding 7 to no of  fcn  evals). * 
c        * w(*,2), ... w(*,8)  hold  intermediate  results  needed  in * 
c        * stage 3. w(*,9) is temporary storage until finally it holds * 
c        * ytrial.                                                     * 
c        *************************************************************** 
c 
            temp = c(18)/1398169080000.d0 
c 
            do 200 k = 1, n 
               w(k,9) = y(k) + temp*w(k,1)*233028180000.d0 
  200       continue 
            call fcn(n, x + c(18)/6.d0, w(1,9), w(1,2)) 
c 
            do 205 k = 1, n 
               w(k,9) = y(k) + temp*(   w(k,1)*74569017600.d0 
     +                                + w(k,2)*298276070400.d0  ) 
  205       continue 
            call fcn(n, x + c(18)*(4.d0/15.d0), w(1,9), w(1,3)) 
c 
            do 210 k = 1, n 
               w(k,9) = y(k) + temp*(   w(k,1)*1165140900000.d0 
     +                                - w(k,2)*3728450880000.d0 
     +                                + w(k,3)*3495422700000.d0 ) 
  210       continue 
            call fcn(n, x + c(18)*(2.d0/3.d0), w(1,9), w(1,4)) 
c 
            do 215 k = 1, n 
               w(k,9) = y(k) + temp*( - w(k,1)*3604654659375.d0 
     +                                + w(k,2)*12816549900000.d0 
     +                                - w(k,3)*9284716546875.d0 
     +                                + w(k,4)*1237962206250.d0 ) 
  215       continue 
            call fcn(n, x + c(18)*(5.d0/6.d0), w(1,9), w(1,5)) 
c 
            do 220 k = 1, n 
               w(k,9) = y(k) + temp*(   w(k,1)*3355605792000.d0 
     +                                - w(k,2)*11185352640000.d0 
     +                                + w(k,3)*9172628850000.d0 
     +                                - w(k,4)*427218330000.d0 
     +                                + w(k,5)*482505408000.d0  ) 
  220       continue 
            call fcn(n, x + c(18), w(1,9), w(1,6)) 
c 
            do 225 k = 1, n 
               w(k,9) = y(k) + temp*( - w(k,1)*770204740536.d0 
     +                                + w(k,2)*2311639545600.d0 
     +                                - w(k,3)*1322092233000.d0 
     +                                - w(k,4)*453006781920.d0 
     +                                + w(k,5)*326875481856.d0  ) 
  225       continue 
            call fcn(n, x + c(18)/15.d0, w(1,9), w(1,7)) 
c 
            do 230 k = 1, n 
               w(k,9) = y(k) + temp*(   w(k,1)*2845924389000.d0 
     +                                - w(k,2)*9754668000000.d0 
     +                                + w(k,3)*7897110375000.d0 
     +                                - w(k,4)*192082660000.d0 
     +                                + w(k,5)*400298976000.d0 
     +                                + w(k,7)*201586000000.d0  ) 
  230       continue 
            call fcn(n, x + c(18), w(1,9), w(1,8)) 
c 
c           calculate ytrial, the extrapolated approximation and store 
c              in w(*,9) 
            do 235 k = 1, n 
               w(k,9) = y(k) + temp*(   w(k,1)*104862681000.d0 



 
 
 
 

 
260 

 

     +                                + w(k,3)*545186250000.d0 
     +                                + w(k,4)*446637345000.d0 
     +                                + w(k,5)*188806464000.d0 
     +                                + w(k,7)*15076875000.d0 
     +                                + w(k,8)*97599465000.d0   ) 
  235       continue 
c 
c           add 7 to the no of fcn evals 
            c(24) = c(24) + 7.d0 
c 
c        end stage 2 
c 
c        *************************************************************** 
c        * stage 3 - calculate the error estimate est. first calculate * 
c        * the  unweighted  absolute  error  estimate vector (per unit * 
c        * step) for the unextrapolated approximation and store it  in * 
c        * w(*,2).  then  calculate the weighted max norm of w(*,2) as * 
c        * specified by the error  control  indicator  c(1).  finally, * 
c        * modify  this result to produce est, the error estimate (per * 
c        * unit step) for the extrapolated approximation ytrial.       * 
c        *************************************************************** 
c 
c           calculate the unweighted absolute error estimate vector 
            do 300 k = 1, n 
               w(k,2) = (   w(k,1)*8738556750.d0 
     +                    + w(k,3)*9735468750.d0 
     +                    - w(k,4)*9709507500.d0 
     +                    + w(k,5)*8582112000.d0 
     +                    + w(k,6)*95329710000.d0 
     +                    - w(k,7)*15076875000.d0 
     +                    - w(k,8)*97599465000.d0)/1398169080000.d0 
  300       continue 
c 
c           calculate the weighted max norm of w(*,2) as specified by 
c           the error control indicator c(1) 
            temp = 0.d0 
            if (c(1) .ne. 1.d0) go to 310 
c              absolute error control 
               do 305 k = 1, n 
                  temp = dmax1(temp,dabs(w(k,2))) 
  305          continue 
               go to 360 
  310       if (c(1) .ne. 2.d0) go to 320 
c              relative error control 
               do 315 k = 1, n 
                  temp = dmax1(temp, dabs(w(k,2)/y(k))) 
  315          continue 
               go to 360 
  320       if (c(1) .ne. 3.d0) go to 330 
c              weights are 1/max(c(2),abs(y(k))) 
               do 325 k = 1, n 
                  temp = dmax1(temp, dabs(w(k,2)) 
     +                             / dmax1(c(2), dabs(y(k))) ) 
  325          continue 
               go to 360 
  330       if (c(1) .ne. 4.d0) go to 340 
c              weights are 1/max(c(k+30),abs(y(k))) 
               do 335 k = 1, n 
                  temp = dmax1(temp, dabs(w(k,2)) 
     +                             / dmax1(c(k+30), dabs(y(k))) ) 
  335          continue 
               go to 360 
  340       if (c(1) .ne. 5.d0) go to 350 
c              weights are 1/c(k+30) 
               do 345 k = 1, n 
                  temp = dmax1(temp, dabs(w(k,2)/c(k+30))) 
  345          continue 
               go to 360 
  350       continue 
c              default case - weights are 1/max(1,abs(y(k))) 
               do 355 k = 1, n 
                  temp = dmax1(temp, dabs(w(k,2)) 
     +                             / dmax1(1.d0, dabs(y(k))) ) 
  355          continue 
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  360       continue 
c 
c           calculate est - (the weighted max norm of w(*,2))*hmag*scale 
c              - est is intended to be a measure of the error  per  unit 
c              step in ytrial 
            c(19) = temp*c(14)*c(15) 
c 
c        end stage 3 
c 
c        *************************************************************** 
c        * stage 4 - make decisions.                                   * 
c        *************************************************************** 
c 
c           set ind=5 if step acceptable, else set ind=6 
            ind = 5 
            if (c(19) .gt. tol) ind = 6 
c 
c***********interrupt no 2 if requested 
            if (c(9) .eq. 0.d0) go to 2222 
               return 
c           resume here on re-entry with ind .eq. 5 or 6   ...re-entry.. 
 2222       continue 
c 
            if (ind .eq. 6) go to 410 
c              step accepted (ind .eq. 5), so update x, y from xtrial, 
c                 ytrial, add 1 to the no of successful steps, and set 
c                 the no of successive failures to zero 
               x = c(17) 
               do 400 k = 1, n 
                  y(k) = w(k,9) 
  400          continue 
               c(22) = c(22) + 1.d0 
               c(23) = 0.d0 
c**************return(with ind=3, xend saved, flag set) if x .eq. xend 
               if (x .ne. xend) go to 405 
                  ind = 3 
                  c(20) = xend 
                  c(21) = 1.d0 
                  return 
  405          continue 
               go to 420 
  410       continue 
c              step not accepted (ind .eq. 6), so add 1 to the no of 
c                 successive failures 
               c(23) = c(23) + 1.d0 
c**************error return (with ind=-3) if hmag .le. hmin 
               if (c(14) .gt. c(13)) go to 415 
                  ind = -3 
                  return 
  415          continue 
  420       continue 
c 
c        end stage 4 
c 
      go to 99999 
c     end loop 
c 
c  begin abort action 
  500 continue 
c 
      write(6,505) ind, tol, x, n, c(13), xend, nw, c(16), c(20), 
     +      c(22), c(23), c(24), (y(k), k = 1, n) 
  505 format( /// 1h0, 58hcomputation stopped in dverk with the followin 
     +g values - 
     +   / 1h0, 5hind =, i4, 5x, 6htol  =, 1pd13.6, 5x, 11hx         =, 
     +          1pd22.15 
     +   / 1h , 5hn   =, i4, 5x, 6hhmin =, 1pd13.6, 5x, 11hxend      =, 
     +          1pd22.15 
     +   / 1h , 5hnw  =, i4, 5x, 6hhmax =, 1pd13.6, 5x, 11hprev xend =, 
     +          1pd22.15 
     +   / 1h0, 14x, 27hno of successful steps    =, 0pf8.0 
     +   / 1h , 14x, 27hno of successive failures =, 0pf8.0 
     +   / 1h , 14x, 27hno of function evals      =, 0pf8.0 
     +   / 1h0, 23hthe components of y are 



 
 
 
 

 
262 

 

     +   // (1h , 1p5d24.15)                                           ) 
c 
      stop 
c 
c  end abort action 
c 
      end 
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