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ABSTRACT

TEXT CLASSIFICATON IN TURKISH MARKETING DOMAIN AND
CONTEXT-SENSITIVE AD DISTRIBUTION

Engin, Melih
M.S. Department of Computer Engineering
Supervisor: Assist. Prof. Dr. Tolga Can

February 2009, 53 pages

Online advertising has a continuously increasing popularity. Target audience of this
new advertising method is huge. Additionally, there is another rapidly growing and
crowded group related to internet advertising that consists of web publishers.
Contextual advertising systems make it easier for publishers to present online ads on
their web sites, since these online marketing systems automatically divert ads to web
sites with related contents. Web publishers join ad networks and gain revenue by
enabling ads to be displayed on their sites. Therefore, the accuracy of automated ad
systems in determining ad-context relevance is crucial.

In this thesis we construct a method for semantic classification of web site
contexts in Turkish language and develop an ad serving system to display context
related ads on web documents. The classification method uses both semantic and
statistical techniques. The method is supervised, and therefore, needs processed
sample data for learning classification rules. Therefore, we generate a Turkish
marketing dataset and use it in our classification approaches. We form successful
classification methods using different feature spaces and support vector machine

configurations. Our results present a good comparison between these methods.
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TURKCE PAZARLAMA ALANINDA TEKST SINIFLANDIRMASI VE ICERIK
DUYARLI REKLAM DAGITIMI

Engin, Melih
Yiiksek Lisans, Bilgisayar Miihendisligi Bolimii
Tez Yoneticisi: Yard. Dog. Dr. Tolga Can

Subat 2009, 53 sayfa

Giiniimiizde internet reklamcilifi hizla artan bir popiilerlige sahiptir. Internet
reklamlar biiylik kitlelere ulasabiliyor. Reklamlarin hedef kitleleri yanisira internet
reklamcilig1 ile yakindan ilgili diger bir grup da internet yayincilaridir. Otomatik
internet reklamcilig1 sistemlerinin gelismesi ve bu sistemlerin igerige gore reklamlari
sitelere dagitabilmeleri ile yayincilar kolayca sitelerinde reklamlar sunabilir hale
geldiler. Internet yaymcilar1 reklam aglarina katilip reklamlarin kendi sitelerinde de
yaymlanmasini saglayarak gelir elde edebiliyor. Bu noktada otomatik ¢alisan reklam
sistemlerinin igerik belirlemede sahip olduklar1 dogruluk yiizdesi ¢ok 6dnemli bir hal
almistir.

Bu tez calismasinda Tiirkce Internet sitesi iceriklerini anlamsal
siniflandirmak igin bir method ve Internet sayfalarina icerikle ilgili reklam dagitmak
icin bir sistem olusturuyoruz. Siniflandirma methodu anlamsal ve istatistiksel
teknikler kullanmaktadir. Ogrenmeye dayali bir simiflandirma ydntemi dnermekteyiz.
Smiflandirma kurallarinin 6grenilmesi i¢in islenmis bir 6rnek veri kiimesi gerekli.
Bu sebeple Tiirk¢e bir pazarlama verisi olusturduk ve bunu smiflandirma
yontemlerimizde kullandik. Farkli 6zellik uzaylar1 ve destek vektdr makinesi ayarlari
kullanarak basarili siiflandirma metotlart olusturduk. Aldigimiz sonuglar

olusturdugumuz bu metotlar arasinda iyi bir karsilastirma olanag sagladi.

vi



Anahtar Kelimeler: Metin Siniflandirmasi, Veri Madenciligi, Makine Ogrenimi,

Yapay Zeka, Bilgi Erisimi
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CHAPTER 1

INTRODUCTION

Massive online information, rapidly growing number of web documents on the Internet
has made data organization techniques very important in the past decade. There is a need
for elegant and specialized classification techniques for many domains in order to make
information more manageable and reachable. General approaches suffer in answering
localized needs. This statement is highly valid for learning methods like classification.
One important example of the need for classification of web documents is online
advertising. Limited budgets require using the most cost efficient systems on
advertising. Parameters like click through rate, conversion count have primary
importance in evaluating effectiveness [18, 19]. Systems taking these performance
parameters like pay per click (PPC) and pay per action (PPA) into account have gained
popularity in the past few years. The main reason is that these systems provide their
publishers the option of paying only for the portion of their advertising that meets its
objectives. These objectives are defined as an Internet user clicking on a banner or
completing a predefined action on the site that has been redirected to after clicking on
the banner. However these systems need to find related users for their banners in order to
increase the number of completed objectives. In finding real target audience on the
Internet, additional features like context sensitivity or behavioral targeting are crucial.
Context sensitive systems highly dominate online advertising in today's world
[20]. They deliver related advertisements according to content. In order to achieve this,

they periodically crawl online documents and classify them.

1.1 Problem Definition

Having stated the fact that general approaches suffer in answering localized needs, our
problem can be defined as developing a specialized approach for classifying Turkish
web documents in the marketing domain. We need to develop classification techniques

specialized for our target language and target domain to obtain a high performance and



accurate classifier. Our data consist of Turkish web documents in the marketing domain.
We should use characteristics of web documents such as weighting HTML tags like title,
meta and keyword tags. Since, we concentrate on the Turkish language, stemmers and
sentence rules for Turkish can be used. Additionally, marketing domain specific
characteristics can be highlighted by selecting data sources representing the domain best.

Our problem can be stated formally as follows: Given an input Turkish web
document d in the marketing domain and k£ merchandise classes, classify d as one of the
merchandise categories. This is a multi-class classification problem and in this thesis, we
propose to use a supervised learning framework. We also propose a variety of feature
extraction techniques which are specific to the studied language and domain. Note that

feature extraction is crucial to the success of any supervised learning technique.

1.2 Related Work

Classification of web documents can highly benefit from text classification, feature
extraction and web mining approaches. There have been many studies on these fields in
the past decade [4, 5, 21].

Text classification samples are mainly documents containing a large number of
words and sentences. These documents need to be transformed into a feature set
representation suitable for the learning algorithm of the classification method.
Information retrieval researches suggest that word stems (denoted as root features in the
rest of the thesis) work well as representation units and their ordering in a text is of
minor importance for many tasks [4]. Researches also provide both theoretical and
empirical evidence that Support Vector Machines (SVMs) are very well suited for text
categorization [4]. Theoretical analyses conclude that SVMs acknowledge the particular
properties of text: high dimensional feature spaces, few irrelevant features in a dense
concept vector, and sparse instance vectors [4].

A large feature set also limits the optimization capabilities due to performance
limitations no matter which classification method is used. Yildiz et al. worked on a new
feature extraction method on Turkish text documents to decrease the number of features
to the number of classes [1]. This study has shown that transforming root features into
class features through a weighting process does not decrease the accuracy of the

classification approach. In this thesis, we wanted to benefit from the results of this study



using a more general, larger dataset, with a more detailed weighting process. We
developed a successful classification method for comparison with other classification
methodologies we study in this thesis.

On the other hand there are studies that prove singular value decomposition
(SVD) is a successful method in reducing the number of features in text classification
[6]. SVD is a well-known literature method used for feature reduction [22]. SVD is a
good candidate for comparison with the method we mention in the previous paragraph.

Weighting process of word stems within the documents is a crucial step.
Weighting extracts semantic information on documents using statistical methods when
semantic methods are not affordable. Studies on information retrieval, extraction fields
show that traditional classification approaches augmented with linguistic information at
a suitable level increase success rates [3, 9]. There are also text categorization studies
showing that distribution of word stems within a document determine the level of its
semantic weight within the document [2]. These studies show that embedding statistical
methods with semantic ones at an affordable level is a must. A more complete
augmentation is possible using a semantic lexicon. WordNet [7] is a well known
semantic lexicon for the English language. A Turkish WordNet project within the
BalkaNet project also exists [8].

These studies state useful facts on text classification, information retrieval,
information extraction, machine learning, natural language processing, web mining and
other related fields. These results need to be organized with some additional work to
form building structures for a successful classification method. We aimed to combine
the important features of these works and to extend them by taking into account special

features of our specific problem domain.

1.3 Contributions and Outline of the Thesis

Our contribution in this these can be summarized as follows:
1. Existing feature extraction methods such as TF-IDF and distributional
features are enhanced with web document structure, sentence characteristics

of Turkish and additional weighting formulations.



2. Existing category feature extraction methods are re-implemented and
enhanced with a new category TF-IDF definition and category weighting
formulas.

3. Turkish marketing domain datasets in different feature spaces are built that
can be used in future work.

4. Performances of several SVM configurations are tested on different datasets

in terms of accuracy and speed.

The rest of the thesis is organized as follows. Chapter 2 gives theoretical
background on classification methods and the tools, packages we have used in the
implementation. Chapter 3 states issues we have considered in determining our data
sources, designing our applications and determining our limitations due to
performance. In Chapter 4, we list the main phases of our classification framework
and explain details of algorithms and implementations for each phase. In Chapter 5
we explain the tests we have run using the applications we have built in the
implementation part. Chapter 6 concludes with an overview of our study and

discussion of our results.



CHAPTER 2

CLASSIFICATION BACKGROUND

Our study mainly involves a feature extraction phase, training of a supervised classifier
phase and cooperative algorithms to optimize the feature space. Feature extraction is a
determinative phase on the success of a classification method. Text classification
procedures use words to form their features. Term frequency (TF), inverse document
frequency (IDF) parameters help in avoiding semantically ineffective words like stop
words. TF-IDF are explained in detail in the Methodologies subsection of this chapter.
The classification algorithm we used is Support Vector Machine (SVM) [4, 10]. SVMs
are also presented with their kernel functions and other key parameters. We also used a
feature space transformation technique called Principal Component Analysis (PCA) [22]
for comparison reasons. PCA and the factorization method of Singular Value
Decomposition (SVD) [22] underlying it are also described.

We also used various available applications in different phases of our
implementation. We used ZEMBEREK [16] tool in the feature extraction phase;
LIBSVM [12], LIBLINEAR [13] tools on the classification phase and investigated
WEKA, JAMA packages for feature space transformation tasks. These tools and

packages are also presented in the Tools subsection.

2.1 Methodologies

In this section, we describe the main methodologies we used in our thesis.

2.1.1 Support Vector Machines (SVMs)

SVM is a powerful supervised technique for data classification. Structural Risk
Minimization principle underlies the SVM approach [4]. This principle aims to find a
hypothesis that minimizes the true error [4]. Another important property of SVM is

preprocessing the data to represent patterns in a higher dimension. With an appropriate



nonlinear mapping function and a sufficiently high dimension, data from two categories
can always be separated by a hyperplane [11]. Training a SVM consists of finding the
optimal hyperplane, that is, the one with the maximum distance from the nearest training
patterns [11].

Given a training set of instance-label pairs (x;, /), i=1,...,/ where x;eR, and ye
{1,-1}, the support vector machines require the solution of the following optimization
problem;

!
1/2w'w+C ¢,
i=1
subject to y, (W' d(x,)+b)>1-¢, (1)

¢20,

Here training vectors x;‘s are mapped into a higher dimensional space by the function.
Then SVM finds a linear separating hyperplane with the maximal margin in this higher

dimensional space. C > 0 is the penalty parameter of the error term. Furthermore,
K (xl.,xj)z QD(xi )ch(xj) is called the kernel function [10]. Four most widely used

kernels are linear, polynomial, radial basis function and sigmoid kernels [12]. Note that
in this definition SVM solves a binary classification problem. However, there are a
number of techniques to use a number of binary SVM classifiers to solve a multi-class
classification problem [12].

SVMs can solve various classification problems successfully. The training
algorithm can learn a separating hyperplane independent of the dimensionality of the
feature space. The algorithm measure the complexity of hypotheses based on the margin
with which it separates the data without using the number of features [4]. In this way the
algorithm covers the case of large number of features, if the data is separable with a
margin using the kernel functions from the hypothesis space.

We made practical use of two kernel functions; linear and radial basis function.
Radial basis function (RBF) kernel is a successful standard kernel function. The RBF
kernel can transform instances to a higher dimensional space nonlinearly. This enables
the classifier to learn nonlinear relations between class labels and the features. It has
practical advantages on polynomial and sigmoid kernels. However, linear kernel is more
preferable than RBF kernel in case of large number of features [10]. Below we give

some standard kernel functions used in the literature.



Linear: K (xi X ) = xl.Tx_ ; )

Polynomial: K(xi,xj )= ( xl.ij + r)d, 7>0 3)
2
RBEF: K(xl.,xj)Z exp(— ;/Hxl. — X, H ) , >0 4)

Sigmoid: K(xi,xj ) = tanh(yxij + r) 5)
Here y, r and d are kernel parameters [10].

2.1.2  Singular Value Decomposition

SVD is a powerful technique used in matrix analyses [22]. Using SVD a matrix is
decomposed into a series of transformations like rotation, scaling. It can be used as a

data compression technique for rectangular matrices. The theorem is stated as;

A=USV" (6)

Here A € Ryxn, m > n, U€ Ry, VE Ry and S is a diagonal matrix of size R;x,. Both U
and V are orthogonal. This factorization is called the SVD of A. U contains a set of
orthonormal basis vector directions for A, S contains the singular values and V contains
the orthonormal analysis basis vector directions for A.

SVD is also used in various applications like solving least squares problems,

systems of linear equations, noisy signal filtering and time series analysis [23].

2.1.3  Principal Component Analysis

PCA is an unsupervised method to find the most efficient feature space for a dataset
[22]. It is a specialized version of SVD.

PCA transformation consists of some main steps. Suppose we have a dataset
De R™", firstly the dataset should be standardized. We compute the n dimensional

mean vector x4 containing column means of D and ¢ containing column standard



deviations of D. Then the elements of the dataset are mean adjusted using x4 and

reduced using o. Let a;€ D;
dy = (ai/' —Hy ) ; (7)

On the next step, nxn dimensional covariance matrix X is computed for
standardized version of D. The eigenvalues and the eigenvectors of X are evaluated
and sorted according to the eigenvalues. Sorted eigenvalues usually have a
significant gap that can be used to eliminate most of them. Finally, corresponding
eigenvectors of the selected eigenvalues are used as the new feature set. The process
transforms initial dataset into a new feature space with fewer dimensions. PCA

provides many classification applications a critical data compression.

2.1.4 Term Frequency and Inverse Document Frequency

TF and IDF are weighting parameters in text mining and information retrieval that
are usually used together [24]. In text classification our dataset mainly consists of
text documents containing collections of word stems. These two parameters mainly
determine how important a word is in a document and in the whole corpus.

TF is simply frequency of a word w; in document d,. Let D be our dataset and

d; be a set containing / words;

di €D, d;= {w;, wy, ..., wi}

count(wl. .d; )

0y == (8)
Zcount(wk,dj)

k=1

Here count(w; d;) is the number of occurrences of w;in d;
IDF presents how determinative a word is among the whole corpus. If the
percentage of the documents containing the term is high this means the word does

not occupy a significant semantic effect on the instances it occur. IDF; of w; is given

by;



2]
d,:wed,d, D

idf. = log ‘{ )]

Generally TF, IDF is used as a single variable TFIDF in weighting processes.

TFIDF of a word w; in document d; is simply;
tfidf; =tf; idf, (10)

2.2 Tools

Throughout different phases of our study we used and tested several tools. In this section

we will give brief information about these tools.

2.2.1 LIBSVM

LIBSVM is an integrated software for support vector classification (C-SVC, nu-SVC),
regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM) [12]. It
also supports multi-class classification. It is freely available for use provided that cited
properly. It has C++ and Java sources and has interfaces for Python, R, MATLAB, Perl,
Ruby, WEKA, Common LISP and LabVIEW. It is developed by Machine Learning
Group at National Taiwan University.

LIBSVM provides its users tools for preprocessing their dataset, training their
classifier, predicting test set labels and finding optimized parameters for their classifier.
LIBSVM training function has various options like setting different kernel functions,
different kernel function parameters, and termination criteria. It enables use of linear,
polynomial, radial basis function and sigmoid kernels. The tool also enables n-fold cross
validation. There are also functions for scaling the dataset, sampling the dataset. The
package also provides a grid function which searches for optimal training parameters for

the given dataset.

2.2.2 LIBLINEAR

LIBLINEAR is a linear classifier for data with millions of instances and features [13]. It



supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear
SVM [13]. LIBLINEAR has MATLAB/Octave and Java interfaces. LIBLINEAR is
developed by the same group as LIBSVM.
This package has similar usage with LIBSVM. LIBLINEAR gives better

performance than LIBSVM at certain situations;

e number of instances in the data set is much less than the number of features

¢ both number of instances and number of features are very large

e number of instances is very large and much larger than the number of

features

At these cases LIBLINEAR is stated to have better performance [12]. We
mainly used LIBLINEAR and LIBSVM in the classification phase of our study.

2.2.3 WEKA Package

Weka is a collection of machine learning algorithms for data mining tasks [14]. Weka
contains tools for data preprocessing, classification, regression, clustering, association
rules, and visualization. Weka provides a detailed user interface to facilitate use of the
various methods in it. Users can form tests from a series of different algorithms supplied
in Weka. These tests can be saved and used later on the study, processed data can be
visualized and the users can easily learn valuable information about the approaches they
use by the help of this useful interface. One drawback of this multi functional user
interface is that it has high performance requirements when working with a large dataset.
All functionalities in the interface can also be run using command line Java programs.
Weka can also be used as a Java package and can easily be embedded in Java projects.
Weka contains a wide range of classification and data transformation algorithms.
We investigated Weka functionality in the feature space transformation and
classification phases of our study. However, the size of our dataset caused severe

performance problems even if with excessive sampling and external feature elimination.

224 JAMA

JAMA is a basic linear algebra package for Java [15]. JAMA provides various

10



algorithms on matrix processing and analysis. In JAMA there are implementations for
Cholesky decomposition, LU decomposition, QR decomposition, singular value
decomposition and eigenvalue decomposition and many other matrix operations. JAMA
is a lower level package than Weka for matrix operations. It is more flexible in
embedding into our code and can give better performance by means of memory and

CPU usage. We mainly used JAMA in our PCA transformation implementation.

2.2.5 ZEMBEREK

Zemberek is an open source, platform independent, general purpose Natural Language
Processing (NLP) library and tool set designed for Turkic languages, especially Turkish
[16]. The project is developed with Java programming language and can be easily
embedded into Java projects using the jar files delivered with the package. Two .jar files
are needed for using Zemberek for Turkish language. One of them is zemberek-
cekirdek.jar which contains the main functions of the Zemberek library and the other is
zemberek-tr.jar which contains Turkish specific information and classes. With an
additional language .jar file, functionality for the Azerbaijan Turkish or another Turkic

language can be added.

11



CHAPTER 3

DESIGN ISSUES

Before proceeding with the implementation phase of our study, we considered some

issues in order to make a good design and stay focused on our problem and domain.

3.1 Domain Specifications

As presented in the previous sections, we want to classify web documents in Turkish in
the marketing domain. Therefore, we should analyze marketing domain in depth in order
to express this domain entirely in our dataset and utilize more characteristics in our
training algorithm. We should define the target documents that our classifier will
classify and accordingly we should decide the specifications of our corpus that will train
our algorithm best for this objective.

Online marketing domain encloses e-commerce sites, publisher networks,
affiliate systems and lead sites. These networks and site groups almost comprise the
entire content on the Internet except some governmental and educational sites.

E-commerce sites form a significant group in the online marketing domain. They
enable selling and buying of goods and services from almost all categories. They
participate in publisher networks and affiliate systems as the largest group of advertisers.
These factors provide e-commerce sites a dominant impact on our domain. Further
analysis on this site category can give significant information about the whole domain.

E-commerce sites can be used as two sources of information. First one is that
they can provide us the whole category tree of products and services that are bought and
sold on the Internet. These sites organize items they provide in a categorization.
Category trees from several e-commerce sites can form a highly complete tree of all
online items with a little manual matching. Secondly these sites form a great source of
content related to products. Product descriptions, meta tags, keywords, user comments
about products are very valuable for the training phase of a supervised classification

technique.

12



Another important group is Publisher networks. These systems consist of
publishers and advertisers. Advertisers in these systems are mainly e-commerce sites as
we mentioned above. They create banners related to their products or categories and hire
advertisement zones on publisher web sites for a given time frame. Publishers of these
networks can be any online content provider. They define advertisement zones on their
web sites and sell these zones on their own or in a publisher network.

Affiliate systems are an emerging group in online marketing. They become more
strategic as they highlight the importance of efficiency in marketing budgets for both
publishers and advertisers. Advertisers of affiliate systems are e-commerce sites and lead
sites. Lead sites aim a predefined action by the Internet user directed to their site from
one of their banners. This predefined action is called a lead. In fact E-commerce sites are
a special case in which the lead is defined as an online payment transaction. Publishers
of these networks can be every online content provider just like publisher networks.

In affiliate systems the process is as follows. Advertisers agree to share a certain
percentage of the profit they gain from the system with the system and the publisher that
provide a conversion to them. Then they load several banners to the system for
publishers to chose. Publishers chose banners to publish in their sites according to the
past statistics of the banners. Good publishers chose the banners with best earning
potential. To sum up this kind of systems provide an ideal “survival of the fittest”
environment for both their advertisers and publishers.

In both publisher networks and affiliate systems publishers can be any kind of
web site. This highly widens the borders of the marketing domain. A classifier for the

marketing domain should aim to classify web documents of any content.

3.2 Performance Issues

We have two objectives in this study. First one is forming a classification procedure in
the Turkish marketing domain. The other one is developing an ad distribution system.
Forming a classification procedure requires running several tests on a given
dataset. Different classification algorithms should be tested with different parameters. A
variety of preprocessing steps should be analyzed. Additionally, the classification step
generally requires sophisticated algorithms. Ready implementations, tools that require

different data formats as input are usually deployed. These factors require the design
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should be modular and flexible. Processing steps should be replaceable with one another.
Furthermore, the data should be kept in a flexible, easily accessible system.

There are also considerations brought by developing an ad distribution system. A
living context sensitive ad distribution system needs to crawl a certain subset of the web
approximately once in a month. According to the content that needs to be crawled, this
process should be continuously optimized. Therefore the crawler has to be well
separated from the whole system. Additionally, as the crawling size increases, we need a
large storage capacity.

Considering these issues we designed the system to be highly modular. There are
different processes for crawling, keyword extraction, keyword weighting and feature
extraction operations. These processes can be easily optimized and replaced with a better
version. For flexibility and accessibility of the raw dataset we stored preprocessed data
in a relational database. By this way we could organize and export our data in several
formats. We optimized our phases to be run on our deployment machine, which has an
AMD x86 64bit processor, 3GBs of memory and a 250GB harddisk. Our feature
extraction and classification training processes used nearly all processing power and
memory. Our whole study occupied nearly 80GBs of storage. Most of this data consist

of the raw dataset.
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CHAPTER 4

IMPLEMENTATION

We implemented our own processes in the data collection, feature extraction, data
transformation, classification and ad distribution system phases of our study. There
are several processes in each phase. We used Java programming language in our
implementation. Oracle JDeveloper is used as the development environment. We
used MySql 5 server for data storage. There are also bash scripts connecting our Java

processes and existing tools we used.
A brief review of our phases is as follows;

e The data collection and preprocessing phase consists of crawling web pages,

labeling crawled web documents and listing word stems in a web page.

e The feature extraction phase contains processes for evaluating TF-IDF and
compactness of word stems in web pages, evaluating TF-IDF of word stems
in predefined categories and finding weights of stems in each document and
category. In addition, there are processes for exporting processed data as

featured instances.

e The classification phase contains bash scripts for running several tests using

different tools.

¢ Finally, in the ad distribution system phase, there is a compound process that

acquires all of the steps in classifying an unlabeled crawled web document.

In this section we firstly give detailed information on our datasets then we explain
our implementation phases in order. Following diagrams visualize the phases in our

study.
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Figure 4. 1: Data Collection and Preprocessing Phase
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Figure 4. 3: Main Phases
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4.1 Data Content

In this section we explain our data sources. We give statistics on our raw data collection
and finalized datasets. Information given in this section aims to make our

implementation phases more comprehensible.

4.1.1 Data Sources

We presented two important considerations in Section 3.1. One of them stated that e-
commerce sites dominate the web marketing domain. They are good data sources for
categorization of products and product related content. The second consideration is that
a classifier designed for a practical ad distribution system should aim to classify any
kind of web document. Using these statements as a starting point we decided to form our
dataset from Turkish e-commerce sites. In order to keep generality and to train our
classifier suitable for any content we tried to use a high number of sites and content
pages in these sites. We compromised with the performance issues given in Section 3.2
at a certain level.

The web sites we have used as data sources are as follows: Gittigidiyor.com,
Hepsiburada.com, Akakce.com, Tio.com.tr, Koysepete.com, Hemdebufiyata.com,
Ereyon.com, Ucuzu.com.

These sites are selected among the most popular e-commerce sites in Turkey.

Popularities of these sites are assessed according to Alexa.com Rank parameter given by
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Alexa.com. Alexa.com is a widely accepted web statistics source that presents detailed

information about web site traffics freely.

4.1.2 Data Specifications and Datasets

In this section we will give some statistics about our raw corpus and processed datasets.

The following table summarizes general specifications about our raw dataset.

Table 4. 1: Raw Dataset Specifications

Specification Count
Sites crawled 8
Categories 20
Pages crawled 208146
Labeled pages 199077
All keywords 97615975
All keywords in labeled pages 96933425
All keyword stems 14375
Avg. roots in a page 200
Avg. keywords in a page 1000

In Table 4.1 we give the number of sites we have crawled as 8. There are 20
categories in our dataset. We have crawled 208,146 web pages and determined the
category of 199,077 of them to use in the training and test phases of our algorithms.
There are a total of 96,933,425 keywords in our labeled pages. These keywords are
originated from 14,375 word stems. A web page contains an average of 1,000
keywords and an average of 200 stems.

We have formed different datasets from this raw corpus. We have used different
feature extraction approaches. The first approach reduces the number of features to the
number of categories and projects weights of all stems as category weights. We formed
two datasets using this principle according to different formulas used in the weighting

processes. We used another dataset by forming instances directly from stem weights
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contained in them. We used different TFIDF limits to select which stems to use. The
following table summarizes our datasets. We also used randomly selected 20,000

instance versions of these datasets.

Table 4. 2: Datasets and Specifications

Dataset Name Method Samples Features Classes
DC1 Category Features + Formula 1 199077 20 20
DC2 Category Features + Formula 2 199077 20 20
DR 0.1 Root Features + TFIDF: 0.1 170325 3836 20
DR 0.2 Root Features + TFIDF: 0.2 160976 1716 20
DC1_20K Category Features + Formula 1 20000 20 20
DC2_20K Category Features + Formula 2 20000 20 20
DR_0.1 20K Root Features + TFIDF: 0.1 20000 3836 20
DR 0.2 20K Root Features + TFIDF: 0.2 20000 1716 20

We determined the categories of web pages with both automatic and manual processes.
Firstly a parser process specialized for each site extracted the label of every crawled
page for each site. Usually one or two slightly different parsers were enough for a single
site in order to label all of the crawled pages from that site. There were initially 119
categories most of which were closely related semantically. Then we projected all
categories to manually selected 20 categories. A few SQL update queries were enough to

achieve this in our database layout. Our final categories are given below in Table 4.3.
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Table 4. 3: Categories and Samples

Cat.Id Cat. Name Samples
1 Telefon-iletisim 2520
2 Taki & Miicevher 10316
3 Saglik-Bakim-Spor 20625
4 Pet Shop 1862
5 Oyun Hobi 1708
6 Oto Aksesuar 9190
7 Ofis & Kirtasiye 4997
8 Miizik 2011
9 Kitap 5632
10 Hediye ve Cigek 5602
11 Giyim ve Aksesuar 10239
12 Fotograf & Kamera 3659
13 Ev, Dekorasyon & Bahge 24821
14 Elektronik 18142
15 DVD, Film & TV 1835
16 Dogal Uriinler ve Gida 2195
17 Bilgisayar 49132
18 Beyaz Esya & Mutfak 12858
19 Antika & Sanat 305
20 Anne-Bebek 11428

4.2 Data Collection and Preprocessing

We have given the size and content statistics of our datasets in the previous section. We
can look further into phases that are used to construct these datasets. In this section, we
give detailed information on the collection and preprocessing steps that are used for

generating the datasets before weighting and feature extracting phases.
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4.2.1 Crawling Phase

In the crawling phase we developed a procedure for crawling sites from the Internet. The
procedure uses two important property files; AbortRegExp.list and RegExp.list.
AbortRegExp.list is a property file for eliminating URLs when crawling. It contains a
regular expression list. During the crawling process any URL matching these regular
expressions are not crawled. This file tells our process not to crawl file, FTP, mail,
Javascript, images or URLs directing to a different scroll on the same page. The content
of this file is given in Appendix A. The other property file, RegExp.list, is a site specific
regular expression list file. Every line in this list corresponds to a different URL format
in a given site. RegExp.list provides a mechanism to limit crawling only within the
target site. In Appendix A we give RegExp.list files for each of our sites.

A downloaded web page is stored in the page table in our database (DB) with its
type information according to the regular expression its URL matched, its URL, its path
in the file system and the site it belongs to. A site that is given to the crawler process is
also added to the site table in the DB. We give the DB layout used in our study in
Appendix C.

The process is run with the Crawler.sh bash script file whose contents are

given in Appendix B.

4.2.2 Labeling Phase

The crawler process crawls and forms our physical instances. However, we also need the
categories of these samples to form a corpus. In e-commerce sites there are mainly
category pages, subcategory pages and product pages. There is usually a single structural
format for these page types in a site and category information for every web document is
placed in the same place according to that format. A parsing process should get this
category information for every web page.

In our crawler process we give different regular expressions for every page type
in a site. In this way page type information is stored in the DB. We developed simple
parsers for every page type in every site. The number of parsers we developed is not
high. There is a maximum of three page types that are necessary for our use in every site

and in some sites different page types could be parsed with the same parser.
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We developed around 15 similar parsers.
Labeler.sh bash script file is used for starting this process. The content of this
file is given in Appendix B.

4.2.3 Keyword Extracting Phase

Keyword extractor process extracts the keywords in a page, logs information about the
location of the keyword in a page and finds stems of the keywords using the Zemberek
tool.

Firstly, the process parses a web document in order to get contents of the title
tag, meta description tag and the meta keywords tag. Keywords in these tags are logged
with their tag information. Rest of the keywords is also logged in the database (DB).
This process also aims to extract sentence structures. Punctuation marks “. ! ?”” are taken
as sentence ends. Position indexes of a keyword within a sentence and in a document are
also stored in the database. One crucial point in our study is that keyword stems are
found using the Zemberek tool in this step and stored in the DB. The keyword
information is in the page-keyword table in the DB.

All HTML code keywords and punctuation marks are eliminated. Special
encoded codes like &amp, &lt, .. are converted to their real values &, <,.. and
eliminated. Roots connected with items “ve”, “veya”, “yada”, “&” and “,” are also
logged to be semantically related, however this information is observed to be noisy
and 1s not used in the following steps of the study.

PageKeywordExtractor.sh bash script file is used for starting this process.
The contents of this file is given in Appendix B.

4.3 Feature Extraction

Feature Extraction is the most important phase of our study. We implemented many
techniques in order to construct a flexible framework for the classification phase. In this

section we give detailed information on the techniques used for feature extraction.
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4.3.1 Feature Extraction Approaches

4.3.1.1 Computation of TF-IDF

As previously mentioned TF-IDF determine how important a word is in a document and
in the whole corpus. TF and IDF parameters are related parameters. They determine
importance of a word within a document together.

We find TF of every word stem in each labeled web document. Our procedure
simply finds the number of all keywords and the number of occurrences of every word
stem in a document. These two numbers are divided and TF of every word stem is found
in a web page. This operation is repeated for every labeled page in our data collection.

We also calculate IDF of every word stem in the whole corpus. The number
of all pages containing the stem is divided by the number of all documents in the
corpus and the logarithm of that number is taken. Resulting number is the IDF of the
given word stem.

We defined a new term frequency parameter for categories in our study.
Category TF is found simply by dividing the number of occurrences of a word stem in a
category by the number of all keywords in that category.

We also defined a new inverse document frequency parameter for categories.
Category IDF is found by dividing the number of all categories by the number of
categories containing the given word stem and taking the logarithm of that number.

TF-IDF information between word stems and pages are stored in term_freq

table and category TF-IDF information are stored in term_freq_cat table in our DB.

4.3.1.2 Compactness of Word Occurrences

TF and IDF parameters are related to the frequency of a word within a document.
Although frequency related parameters give us useful information, they do not fully
express the importance of a term in a given text. Distributional features are stated to be
good alternatives to enhance feature extracting processes based on term frequencies.
Distributional features define words by expressing their distribution in a text document.

Experiments show that in contrast to using the traditional term frequency

features solely, including the distributional features requires only a little additional cost,
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while the categorization performance can be significantly improved [2]. Distributional
features we used in our study are compactness of the occurrences of a word and position
of the first appearance of the word within a document. We used the position of the first
appearance of the word in our weighting processes.

Compactness of the occurrences of a word expresses whether a word appears
in a partial zone in a document or it is spread over various parts of the document. If a
word appears in many different parts of a document this means it is more related to
the content of the document. In other words if the compactness of the occurrences of
a word is less then the semantic importance of the word is higher. Mathematical

formulation of the compactness we defined and used in our study is as follows:

i position(wl.)
centroid(w)= ! (11)
n

where 7 is the number of occurrences of word w in document d.

i (position(w,)— centroid(w))

compactness(w)= (12)
n

where position(w;) gives the position index of word i in document d.

Compactness information is stored in the term_freq table of our DB.

4.3.1.3 Page-Keyword Weight Assignment

We have evaluated TF, IDF and compactness values of word stems for a web
document and category TF and category IDF values of word stems for our dataset
classes. In our page-keyword weight assigning process we combine these values with
additional weighting parameters coming from web document characteristics, Turkish
language characteristics and different distributional feature considerations explained
in this section. Having all these considerations our weighting process finds weight
values for word stems in each document they occur in. And these weight values are

stored in term_freq table in our DB.

There are two additional weighting parameters in our page-keyword
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weighting process. One of them is page position coefficient. Keywords occurring in
the title, meta description and meta keyword tags are assigned with higher coefficient
values in the weighting formulas. Below you can see a table showing these

coefficients.

Table 4. 4: Page positions and their coefficients

Page Position Coefficient
Title Tag 10
Meta Description Tag 6
Meta Keywords Tag

Rest of the Page 1

Values in Table 4.4 are set manually.

The other additional weighting parameter is first appearance parameter. This parameter
is designed using position of the first occurrence parameter given in distributional
features and some well-known Turkish characteristics. Position of the first occurrence
parameter defined as a distributional feature [2] is not well suited for web documents in
its original form. Web pages are structured differently than normal text documents.
Words appearing in document title or meta tags would be always advantageous with the
original definition. In our study we have already given special treatment for these tags.
However, if we redefine first occurrence parameter within a sentence this can be more
helpful. We used the coefficient value 2 for the words in the first two occurrences of our
extracted sentences.

For our page-keyword extracting process we have defined 7 parameters so far.
These are page-stem TF, page-stem IDF, category-stem TF, category-stem IDF, page-
stem compactness, page-stem position and sentence-keyword first appearance. Below,

we give the mathematical formulation we used to combine these parameters.

TFIDF,, L

compactness,; ;=

W(r)= PC(r, ) FA(r,,) (13)
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Here W), is defined as weight of root &k in document j. TFIDF}; and compactnessy; are the
previously calculated values for the given root and the document. Root £ has n
occurrences in document j. We sum the product of position coefficients, PC, and first

appearance coefficients, /'4, for each occurrence of root k in document ;.

4.3.1.4 Category-Keyword Weight Assignment

We defined a similar weight value of keywords for categories. Category-Keyword
weights give an intuition of how occurrence of a keyword in a page directs the semantic

category of that page to a given category.
We, (r,)= TFIDF, * > W, (r,) (14)
i=0

Wey; 1s the weight of root & in category j. TFIDF}; is the category TFIDF of root k in
document j. Wy;(ry) is weight of root £ in document i. There are » documents in category
Jj. For all documents in category j we sum page weights of root & then the total value is
multiplied by the previously calculated category TFIDF parameter.

Data calculated by this process is stored in term_freq cat table of our DB.

4.3.1.5 Page-Category Weight Assignment

Our weighting process passed through many evaluation steps up to this point. We
embedded detailed information about distribution of word stems in our corpus among
pages and categories in our weight tables. We need a final process to extract a valid
dataset from this information. Page-Category weight assigning process finds total
category weights of word stems in a page for each category. In this way every page is
expressed as 20 weight values corresponding to each category in our dataset. Finally, we
can call these weight values our features. We used two slightly different formulas in

combining the category weights of word stems in a page.
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Formula 1:
k
Wpe,(p,)= D Wey(n) (15)
EP;

P, E¢;

Wpcii(pi) 1s the weight of category j in page i. Wey(ry) is the weight of root k for
category j. Weight of category j in page i is found by summation of category j

weights of all roots contained in page i.

Formula 2:
k
Wpe,(p,)= D2 Wey(n )W, () (16)
EP;

In Formula 2, Wpc;(p;) is again the weight of category j in page i. Wey,(ry) is the weight
of root k for category j. Wi(ri) is the weight of root k for page i. Weight of category j in
page i is found by summation of product of category j weights of all roots contained in
page i and page weights of each root k in page i.

Formula 1 finds page-category weights for a page p by simply summing the
category-keyword weights of all keywords roots in p. Formula 2 finds page-category
weights for a page p by summing the products of category-keyword weights and page-
keyword weights. Definition of Formula 1 assumes that page-keyword weights of
keyword roots are embedded in their category-keyword weights. On the other hand

Formula 2 uses page-keyword weights explicitly.

4.4 Classification Approaches

We have processed our data and stored it in a highly accessible format. This enabled us
to export our processed data as datasets with different formats and contents. We tried
different approaches and run several tests in our classification step. The main methods
we have used are:

1. Default classifier,

2. SVM with RBF kernel with class features and root features,
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3. SVM with linear kernel with class features and root features,

4. SVM with both kernels on PCA transformed root features dataset.

We used many parameter combinations in the algorithms we used in transformation and
classification steps to reach highest accuracy rates. We mainly used LIBSVM and
LIBLINEAR tools in the classification step. We run transformation tests with Weka
package. We implemented a PCA transformation process and some exporter processes at

this stage.

4.4.1 Default Classifier

In our feature extraction processes we used a feature extraction method that reduces
number of features from number of keyword stems to number of categories for text
classification. This process assigns 20 weight values for each category to every
document in our dataset. With a simple approach we can define a classifier that takes the
feature with the highest weight value as the final class of the given document. We
implemented this simple classifier and used it on our class feature datasets.

Our default classifier procedure gets the instances with 20 class features from the
page cat_weight table of our DB and assigns the category feature with highest value as

the class of the page.

442 SVM on Class Features

We run RBF kernel and linear kernel SVM algorithms on our class feature datasets. For
RBF kernel we used LIBSVM and for linear kernel we used LIBLINEAR.

A sample LIBSVM test is run as follows. We firstly export our data in LIBSVM
data format. We can export class features according Formula 1 or Formula 2 defined in
Section 4.3.1.5. Exported data is divided into training and test sets. Then the training and
test sets are scaled. The classifier is trained using the training set. Finally, the labels of
the instances in the test set are predicted and stored in an output file.

We also run tests on our class feature datasets using LIBLINEAR with linear
kernel. We conduct similar steps with the LIBSVM case. We store the labels of test

instances in a file for further processing.
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4.4.3 SVM on Root Features

We talked about LIBSVM and LIBLINEAR usage in the previous section. We also run
similar steps on our datasets with root features.

We extract our dataset with root features in LIBSVM data format as a text file.
In the extraction phase we determine the TF-IDF value to limit the number of roots to
take as a feature. Then we apply the LIBSVM and LIBLINEAR steps defined in the

previous section.

444 SVM, PCA on Root Features

Our first approach used our own feature reduction technique that reduces the number
of features to the number of classes. In this test we used an alternative well-known
feature reduction technique that is called PCA. We implemented a PCA
transformation algorithm and used this algorithm to reduce our features to different
numbers. Then we applied the LIBSVM and LIBLINEAR steps defined in Section
44.2.

4.5 Ad Distribution System

We developed an ad distribution system framework by using the procedures defined in
this chapter. This system extracts the category features of given crawled pages and
classify them. Assigned labels of classified pages are stored in DB and the ad serving
process send the related ads when this document is viewed in a browser.

The procedure takes the input path of the crawled pages and extracts their
features. It scales and classifies the resulting instances using LIBLINEAR and the model
file of the DR 0.1 dataset. This classifier achieves good accuracy in a reasonable
running time. Then the procedure determines the categories of crawled pages. When
these pages are viewed in a browser the JavaScript codes we have implemented call our
add distribution server. Our server sends the valid category information and the related
ads are displayed on these pages. Our ad distribution server is implemented using Java

Server Pages (JSP) and runs on a Tomcat application server.

29



CHAPTER 5

TEST RESULTS

In this section we give several results we have obtained in our study.

5.1 Default Classifier

We used our default classifier defined in Section 4.3.1 on our class feature datasets. We
did not have high accuracy values with this naive method. On our dataset with category
features formed with Formula 1, the classifier classified 74192 instances correctly over
199077 instances. This corresponds to an accuracy rate of 37.26%. And on our dataset
with category features formed with Formula 2 the classifier classified 74839 instances
correctly over 199077 instances; this corresponds to an accuracy rate of 37.59%. The
accuracy rates we obtained with the default classifier are much lower than the accuracy
rates obtained using SVM on class features that is given in the following section. This
means that class features express a sample document with a combination of all classes.
Class feature with the highest weight value does not determine the real category of the

sample document.

5.2 SVM on Class Features

In this phase we run SVM classification procedures on our category feature datasets.
We used full versions of our datasets and also 20000 sampled versions. We used
reduced versions of our datasets in order to have a valid comparison with the PCA
transformation phase. For performance reasons we could apply PCA transformations
on a dataset of maximum 20000 instances. Larger dataset transformations failed due

to memory limitations.

30



Table 5. 1: SVM on Class Features Results

Dataset Method Total Training Set  Test Set Accuracy

Name Samples Samples Samples (%)
DC1 LIBSVM, RBF, -c 8192 -g 2 199077 179077 20000 88.67
DC2 LIBSVM, RBF, -c 8192 -g 2 199077 179077 20000 84.725
DC1 20K  LIBSVM, RBF, ¢ 8192 -g 2 20000 18000 2000 86.6
DC2 20K  LIBSVM, RBF, ¢ 8192 -g 2 20000 18000 2000 824
DC1 LIBLINEAR, -c 2048 -e 0.01 199077 179077 20000 75.955
DC2 LIBLINEAR, -c 2048 -e 0.01 199077 179077 20000 67.28
DC1_ 20K  LIBLINEAR, -c 16 -¢ 0.01 20000 18000 2000 73.45
DC2 20K  LIBLINEAR, -c 16 -¢ 0.01 20000 18000 2000 61.1
DC1_20K  LIBLINEAR, -c 2048 -e 0.01 20000 18000 2000 74.45
DC2 20K  LIBLINEAR, -c 2048 -¢ 0.01 20000 18000 2000 65.4

For LIBSVM we searched for best parameters by using cross validation. For
LIBLINEAR we run several tests with different parameter combinations and pick the
successful ones.

As the cost parameter ¢ in the training command is assigned higher values the
computation time and the accuracy of the results increases. And as the gamma parameter
g in the command gets higher values, the computation time and the accuracy decrease.
We found the initial cost value 8192 and the gamma value 2 by applying cross
validation. Increasing the cost parameter would probably give slightly higher accuracy
rates however would also increase the computation time. The run resulting with 88.67%
accuracy classified 20000 instances in 45 minutes and 31 seconds.

Let us look at the results given in Table 5.1 in depth. Using class features enables
us to apply powerful SVM configurations on a large dataset. Class features with Formula
1 give higher accuracy rates. Datasets with higher number of samples train the classifier
better. The classifier can model the dataset with more detail and can extract more rules
when the number of features is higher. SVM with linear kernel is not good at classifying
category feature datasets. LIBLINEAR is not as successful as LIBSVM when the

number of features is low [10].
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5.3 SVM on Root Features

In this phase we run SVM classifications on our root feature datasets. We used
20000 sampled versions of our datasets in this phase again with the same reasons we
stated in the previous section. Reduction of the dimension of a feature space
decreases the success rates in a classification approach. Therefore, in order to be able
to test PCA against our manual feature reduction method, class features, we have to
find a classification procedure that uses root features of 20000 instances and is more

successful than class feature classifications given in the previous section.

Table 5. 2: SVM on Root Features Results

Training
Dataset Method TFiDF 1ot Set
Name Samples
Samples

Test Set Accuracy
Samples (%)

DR 0.1 LIBLINEAR, -c 2048 -¢ 0.01 0.1 170325 150325 20000 91.7
DR 0.1 LIBLINEAR, -c 64 -¢ 0.01 0.1 170325 150325 20000 96.58
DR 0.1 LIBLINEAR, -c 16 -¢ 0.01 0.1 170325 150325 20000 95.155
DR 0.2 LIBLINEAR, -c 16 -¢ 0.01 0.2 160976 140976 20000 81.46
DR _0.1_ 20K LIBLINEAR, -c 16 -¢ 0.01 0.1 20000 18000 2000 913
DR 0.1 20K LIBLINEAR, -c 64 -¢ 0.01 0.1 20000 18000 2000 92.9
DR 0.1 20K LIBLINEAR, -c 2048 -¢ 0.01 0.1 20000 18000 2000 94.35
DR 0.2 20K  LIBLINEAR, -c 4 -¢ 0.01 0.2 160976 140976 20000 78.905
DR 0.2 20K  LIBLINEAR,-c4-e0.1 0.2 160976 140976 20000 78.12
DR 0.2 20K LIBLINEAR, ¢ 1 -¢0.001 0.2 160976 140976 20000 74.09

We could not apply LIBSVM with RBF kernel on root features due to
performance limitations. However, we reached highest accuracy rates using
LIBLINEAR linear kernel SVM classifiers. We obtained the best accuracy rate as 97.7
in our study using root features with the linear kernel. The 20000 sampled version of the
dataset also reached an accuracy rate of 94.35% with the cost parameter set to 2048.

Computation times of most successful linear kernel classification approaches are given

in Table 5.3.
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Table 5. 3: SVM on Root Features Elapsed Times

Dataset Name Method Accuracy Time Elapsed
DR 0.1 LIBLINEAR, -c 2048 -¢ 0.01 97.7% 78 min. 12 sec.
DR 0.1 LIBLINEAR, -c 64 -¢ 0.01 96.58% 13 min. 58 sec.
DR 0.1 LIBLINEAR, -c 16 -¢ 0.01 95.155% 5 min. 41 sec.

Table 5.3 presents that SVM with linear kernel on root features gives the highest
accuracy rates in lowest elapsed times in our study. Root features express text
documents with higher detail than class features. In this way they provide the learning
phase of the classification scheme with more elaborate rules related to distribution of the
samples within the dataset. In addition, SVM with linear kernel is suitable for
classification in high dimensional feature spaces. Linear kernel learning algorithm can

construct accurate classification models in shorter time compared to the RBF kernel.

5.4 SVM, PCA on Root Features

We applied PCA transformation on our most successful 20K dataset with root features,
which is DR 0.1 20K. We reduced number of features using PCA method to different

numbers and tested our classification methods on the resulting feature spaces.

Table 5. 4: SVM on PCA Transformed Root Features Results

# of features Method Accuracy (%)
20 LIBSVM, RBF, -c 8192 -g 2 29.45
20 LIBSVM, RBF, -c 16 -g 0.05 26.8
20 LIBSVM, RBF, -c 1 -g0.05 26.8
200 LIBSVM, RBF, -c 8192 -g 2 19.65
200 LIBSVM, RBF, -c 16 -g 0.05 26.3
200 LIBSVM, RBF, -c 1 -g 0.05 26.3
2000 LIBSVM, RBF, -c 8192 -g 2 17.85
20 LIBLINEAR, -c 16 -¢ 0.01 4.5
200 LIBLINEAR, -c 16 -¢ 0.01 10.45
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Classification tasks we run on the PCA transformed versions of DR 0.1 20K
dataset did not give satisfactory accuracy values. We obtained the best result,
29.45%, using RBF kernel and PCA 20 feature dataset. This shows that PCA
transformation lose most of the data charactheristics contained in the root feature
dataset. PCA transformation is a common mathematical method in the literature. The
method is not specific to any domain or dataset. On the other hand the class feature
reduction method employs text classification related schemes like TF-IDF and use
weighting formulations specific to our data collection. Data specific properties of the
class features enable the method to give much better accuracy rates than the PCA

method.

5.5 Distinct Site Tests

Having determined the most successful classification schemes, we measure success
rate of our approaches in classifying totally new sites in test sets. We formed our
training and test sets with web documents from different web sites. Then we applied
SVM with RBF kernel on class features and SVM with linear kernel on root features.
Table 5.5 presents our approaches and results. Our training set is composed of web
documents from sites: Hepsiburada.com, Akakce.com, Tio.com.tr, Koysepete.com,
Hemdebufiyata.com, Ucuzu.com. And our test set consists of web documents from

sites: Gittigidiyor.com, Ereyon.com.tr.

Table 5. 5: Distinct Site Tests

Training
Method TFIDF Total Set Test Set Accuracy
Samples Samples (%)
Samples

LIBLINEAR, -c 16 -¢ 0.01 0.1 170325 148039 22286 44.23
LIBLINEAR, -c 2048 -¢ 0.01 0.1 170325 148039 22286 31.97
LIBSVM, -c 8192 -g 2 - 199077 176791 22286 3.84
LIBSVM, ¢ 16 -g 2 - 199077 176791 22286 7.86

These results show that our training dataset should be generalized in order to

make our classification approaches usable in a practical contextual advertising
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system. The class feature method gave low accuracy rates and was unsuccessful in
classifying web documents from different web sites. The root feature method gives
higher accuracy values and seems to be more adaptive in classifying different web
document structures. However a more generalized training set should be used with

both approaches.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we researched various feature extraction techniques for text classification
and combined these techniques for designing a classifier specific to the Turkish
marketing domain. We also tested several SVM classification techniques on datasets in
different feature spaces. Additionally, we designed and implemented a contextual ad
distribution system combining the phases in our study.

Weighting schemes defined in the feature extraction phase is the most crucial
step in this study. We used TFIDF, compactness as a distributional feature and position
index within a sentence as a modified distributional feature from a previous work done
in information extraction area. We enhanced these methods with weighting definitions
for different HTML tags and our weighting formulas for web pages and roots. We used a
different feature extraction technique that reduces the number of features to the number
of classes for text categorization. In this part of our study we contributed with new
TFIDF definitions for classes and new weighting formulas that relate roots and category
features.

After a detailed feature extraction phase we tried several SVM classification
methods listed in Chapter 5. We conclude that a dataset consisting of text documents is
best expressed with root feature methods. Feature reduction methods built on root
features reduce the performance in terms of accuracy and speed. SVM with linear kernel
on root features is the best classification technique in terms of accuracy and speed for
web documents.

Additionally, the category feature extraction method built on root feature
extraction method is a successful scheme for limiting the number of features in text
classification. Category features can keep the semantic content expressed by root
features at a high level. Datasets consisting of category features are classified better with
SVMs with RBF kernel. The procedure, as a whole with the feature extraction and
classification phases, reaches an adequate level of success in terms of speed and

accuracy.
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Moreover, the method gives far more accurate results than the standard feature reduction
method PCA.

SVM with linear kernel on root features and SVM with RBF kernel on category
features are two successful classification methods. SVM with linear kernel on root
features gives much better performance on our current dataset. However, our
classification methods may have lower success rates on web documents with different
structures and contents. Characteristics of web pages in e-commerce sites may not
express all web content at the same level. For this reason we may need to generalize our
training set and widen its size according to the classification task we have. Root features
scheme may suffer with larger datasets since larger dataset size means indefinitely larger
number of features. Larger number of features will increase the task completion time.
There is a trade off between higher accuracy and shorter processing time. Category
features method is more scalable with the dataset size since number of features does not
increase with dataset size.

Our conclusions in this thesis can be summarized as follows:

1. Special feature reduction methods can perform far better than standardized
methods like PCA.

2. Statistical feature extraction techniques enhanced with distributional features
give semantically accurate results on web text documents.

3. SVM with linear kernel function gives best performance in terms of accuracy

and speed on text documents expressed as keyword root features.

Our study in this thesis can be extended in two main areas. One of them is to
improve the feature extraction and classification phases. The other improvement is the
design and development of the ad distribution system as a practical mechanism.

In the feature extraction phase semantic and language processing techniques can
be added. A Turkish WordNet structure can be used to improve weighting procedures.
Named entity recognizers, part of speech taggers and language processing techniques to
extract sentence structures can be used.

In the classification phase the comparison between SVM with linear kernel on
root features and SVM with RBF kernel on category features can be further analyzed.
Scalability of root feature method can be tested with larger dataset sizes and the

performance border between two methods can be searched.
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On the ad distribution system side, our dataset can be generalized with new
labeled web documents that have different page structures and contents. A more
general training set can better express any kind of content on the web. In order to do
this new labeled content from different web site categories should be supplied or
created as we did in our labeling phase. Our current crawling, labeling and keyword
extracting procedures should be made more efficient to build a practical contextual
ad distribution system.

Finally, our datasets can be used in further studies. We have weight values of
thousands of words according to a category set. These weight values can be used to
define a relatedness measure among the word stems. The category set can also be
extended, a hierarchy of categories can be formed. A semantic network of several

levels can be built. A study on this path can lead to a Turkish Wordnet framework.
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APPENDIX A

PROPERTY FILES

Property Files

Database.properties
# properties file

database.driver=org.gjt.mm.mysql.Driver

database.url=jdbc:mysql://localhost:3306/thesis?7useUnicode=true&characterEncoding=
UTF-8

database.username=root
database.password=xxxxx123
AbortRegExp.list

#skip special hrefs
AB_1=(?s).*(file|ftpjmailto|javascript):(?s).*
#skip image etc. hrefs

AB_2=(?s).*.(gif|GIF|jpg|JPG|png/PNGlico[ICO|css|sit|eps|wmf]zip|pptimpg|x]Is|gz|rpm|tg
zlmov|MOV|exe|jpeg|JPEG|bmp|BMP)(?s).*

#skip query like hrefs
#AB 3=[7*1@=]
AB_ 3=(7s).*#(?s).*

RegExp.list Files

Hemdebufiyata.com.tr

HDBF_SUB_KAT=http://www.hemdebufiyata.com.tr/BrowseProducts(_)?.aspx\?Depar
tmentID=[0-9]+

HDBF_ANA KAT=http://www.hemdebufiyata.com.tr/.+.aspx\?Departmentld=[0-9]+
HDBF_ URUN=http://www.hemdebufiyata.com.tr/ShowProduct.aspx\?ID=[0-9]+
HDBF DEF=http://www.hemdebufiyata.com.tr/Default .aspx
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Akakce.com

AKK KAT=http://www.akakce.com/[-a-zA-Z0-9]+.(html|asp)

AKK KAT NUM=http://www.akakce.com/[-a-zA-Z0-9]+(,[-a-zA-ZO0-
91{1,2})+.(html|asp)

AKK URUN=http://www.akakce.com/[-a-zA-Z0-9]+/en-ucuz-[-a-zA-Z0-9]+-fiyati,[0-
91+.(html|asp)

Ereyon.com.tr

ERYN ANA KAT=http://www.ereyon.com.tr/KMdefault.aspx\?ctlid=[0-9]+(&ix=[0-
9]+)?

ERYN SUB_KAT=http://www.ereyon.com.tr/KMdefault.aspx\?ctrid=[0-9]+(&ix=[0-
9]+)?

ERYN_ URUN=http://www.ereyon.com.tr/store/ProductDetails.aspx\?productld=[0-9]+

Gittigidiyor.com
GTGD_URUN-=http://urun.gittigidiyor.com/[a-zA-Z0-9-\7=& .]+
GTGD_URUN=http://www.gittigidiyor.com/php/urun.php\?id=[0-9]+
GTGD_ANA KAT=http://[a-zA-Z]+.gittigidiyor.com(/)?

GTGD_ SUB_KAT=http://[a-vx-zA-VX-Z-]+.gittigidiyor.com/[a-zA-Z- |+

Hepsiburada.com
HB_ANA_ KAT=http://www.hepsiburada.com/department.aspx\?catid=[0-9]{1,5}

HB_SUB_KAT=http://www.hepsiburada.com/department.aspx\?CategorylD=[a-zA-Z0-
9-\?7=& \[]+

HB_URUN=http://www.hepsiburada.com/[a-zA-Z0-9-
N?=& .]*productdetails.aspx\?categoryid=[a-zA-Z0-9-\?=& .]+productid=[a-zA-Z0-9-
\7=& ]+

HB_DEF=http://www.hepsiburada.com/.*
Koysepete.com

KSP KAT=http://www .koysepete.com/en\+ucuz\+.+\+[0-9]-+\+[0-9]+\+listesi.aspx
KSP_URUN=http://www.koysepete.com/en\+ucuz\+.+\+[0-9]+.aspx
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Nevaria.com
NVR_ANA KAT=http://www.nevaria.com/kategoriler.asp\?CatID=[0-9]+

NVR _SUB_KAT=http://www.nevaria.com/arama_sonuc.asp\?cmd=search&CatID=[0-
o1+

NVR_URUN=http://www.nevaria.com/detay.asp\?1ID=[0-9]+

Tio.com.tr

TIO URUN=http://www .tio.com.tr/.+/(UrunDetay|UrunBilgileri|UrunY orum).aspx\?id=
+

TIO_ANA_ KAT=http://www.tio.com.tr/Kategori.aspx\?cid=[0-9]+

TIO_SUB_KAT _1=http://www.tio.com.tr/Kategori.aspx\?rcid=[0-9]+&cid=[0-
9+ (&cen=.+)?

TIO_SUB_KAT 2=http://www.tio.com.tr/.+/Urunler.aspx\?cid=[0-9]+
TIO _SUB_KAT 3=http://www.tio.com.tr/.+/urunliste.aspx\?cid=[0-9]+
#T1O_DEF=http://www.tio.com.tr/.*

Ucuzu.com
UCZ_KAT=http://www.ucuzu.com/.+/(0-.+.html)?
UCZ_URUN=http://www.ucuzu.com/.+/.+.html
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APPENDIX B

BASH SCRIPTS

Crawler.sh

cd /srv/thesis/thesis

nohup java -jar crawler jar http://www.hemdebufiyata.com.tr/ >& Crawler.hdbf.log &
DefClassifier.sh

cd /srv/thesis/thesis

nohup java -jar DefClassifier.jar 2 > DefClassifier.2.log &

ExtractFeatures.sh

nohup java -Xmx1024M -jar ExtractFeatures.jar combine btrns-1230055216862.txt dat-c-20K >

ExtractFeatures.com.log &
Labeler.sh
cd /srv/thesis/thesis

nohup java -jar labeler.jar /srv/thesis/thesis/crawledsites/hemdebufiyata >&

Labeler.hemdebufiyata.log &
PageKeywordExtractor.sh
cd /srv/thesis/thesis

nohup java -jar PageKeywordExtractor.jar /srv/thesis/thesis/crawledsites’/hemdebufiyata >&

PageKeywordExtractor.hdbf.log &

PCAcorr.sh

cd /srv/thesis/thesis

nohup java -Xmx2560M -jar PCAcorr.jar dat-f-20K >& PCAcorr.20K.log &
TFFinder.sh

cd /srv/thesis/thesis

nohup java -jar TFFinder jar idf >& TFFinder.idf.log
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APPENDIX C

DATABASE SQLs

create table site(

SITEID int(11) auto_increment,

NAME varchar(60),

URL varchar(255),

primary key (SITEID)

);

create table page(

PAGEID int(11) auto_increment,

SITEID int(11),

URL varchar(255),

PPATH varchar(255),

CATEGORY varchar(20),

LABEL varchar(255),

FINAL LABEL varchar(255) collate utf8 turkish ci,
primary key (PAGEID),

foreign key (SITEID) references site(SITEID)

)i

ALTER TABLE page CONVERT TO CHARACTER SET utf8§ COLLATE
utf8 turkish ci;

create table root(

ROOTID int(11) auto_increment,
ROOQOT varchar(255),

primary key(ROOTID)

);
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ALTER TABLE root CONVERT TO CHARACTER

utf8 turkish ci;

create table page keyword(

PAGE KEYWORDID int(11) auto_increment,
PAGEID int(11),

KEYWORD varchar(255),

ROOTID int(11),

IMPORTANCE int,

SENTENCE varchar(255),

PAGEPART varchar(60),

POSITION int,

SENTENCE_POS int,

primary key (PAGE_KEYWORDID),

foreign key (PAGEID) references page(PAGEID),
foreign key (ROOTID) references root(ROOTID)

);

ALTER TABLE page keyword CONVERT TO

COLLATE utf8 turkish ci;

create table term_freq(

TFID int(11) auto_increment,

PAGEID int(11),

ROOTID int(11),

TF float,

COMPACTNESS float,

IDF float,

WEIGHT double;

foreign key (PAGEID) references page(PAGEID),
foreign key (ROOTID) references root(ROOTID),
primary key(TFID)

)i
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create table term_freq cat(

TFID int(11) auto_increment,

CATID int(11),

ROOTID int(11),

TF float,

COMPACTNESS float,

idf float,

WEIGHT double,

foreign key (CATID) references categrory(CATID),
foreign key (ROOTID) references root(ROOTID),
primary key(TFID)

)i

create table category(

CATID int(11) auto_increment,

CATEGORY varchar(60) collate utf8 turkish ci,
primary key(CATID)

)

create table related roots(

LROOTID int(11),

RROOTID int(11),

primary key (LROOTID,RROOTID),

foreign key (LROOTID) references root(ROOTID),
foreign key (RROOTID) references root(ROOTID)

);
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create table page cat weight(

PCWID int(11) auto_increment,

PAGEID int(11),

CATID int(11),

WEIGHT double,

TYPE int,

foreign key (PAGEID) references page(PAGEID),
foreign key (CATID) references category(CATID),
primary key (PCWID)

)

CREATE INDEX tf root ON term_freq(ROOTID);
CREATE INDEX tf page ON term_freq(PAGEID);
CREATE INDEX pk_root ON page keyword(ROOTID);
CREATE INDEX pk page ON page keyword(PAGEID);

create table page categorized(

CZID int(11) AUTO_INCREMENT,

PAGEID int(11),

CATID int(11),

foreign key (PAGEID) references tc_page(PAGEID),
foreign key (CATID) references category(CATID),
primary key (CZID)

)

create table ad(

ADID int(11),

TARGETURL varchar2(255),

primary key(ADID)

)

create table ad category(
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ACID int(11),

ADID int(11),

CATID int(11),

foreign key (ADID) references ad(ADID),
foreign key (CATID) references category(CATID),
primary key (ACID)

)

create table tc_page(

PAGEID int(11) auto_increment,

SITEID int(11),

URL varchar(255),

PPATH varchar(255),

CATEGORY varchar(20),

LABEL varchar(255),

FINAL LABEL varchar(255) collate utf8 turkish_ci,
primary key (PAGEID),

foreign key (SITEID) references site(SITEID)
);

ALTER TABLE tc page CONVERT TO CHARACTER SET utf§ COLLATE
utf8 turkish ci;

create table tc_page keyword(

PAGE KEYWORDID int(11) auto_increment,
PAGEID int(11),

KEYWORD varchar(255),

ROOTID int(11),

IMPORTANCE int,

SENTENCE varchar(255),

PAGEPART varchar(60),

POSITION int,

SENTENCE_POS int,

primary key (PAGE _KEYWORDID),
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foreign key (PAGEID) references tc_page(PAGEID),
foreign key (ROOTID) references root(ROOTID)

);

ALTER TABLE tc page keyword CONVERT TO CHARACTER SET utf8
COLLATE utf8 turkish ci;

create table tc_term_freq(

TFID int(11) auto_increment,

PAGEID int(11),

ROOTID int(11),

TF float,

COMPACTNESS float,

IDF float,

WEIGHT double,

foreign key (PAGEID) references tc_page(PAGEID),
foreign key (ROOTID) references root(ROOTID),
primary key(TFID)

)i

create table tc_page cat weight(

PCWID int(11) auto_increment,

PAGEID int(11),

CATID int(11),

WEIGHT double,

TYPE int,

foreign key (PAGEID) references tc_page(PAGEID),
foreign key (CATID) references category(CATID),
primary key (PCWID)

);
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APPENDIX D

TOOL COMMANDS
LIBSVM Commands
A sample classification task:

> /subset.py ../../thesis/com-1230146036012.txt 2000 pca-2000-test pca-2000-train

We use subset.py to split a dataset into training and test sets. The above command splits
the “../../thesis/com-1230146036012.txt” dataset file as 2000 instances in the “pca-2000-
test” file and rest in the “pca-2000-train” file.

>/svm-scale -1 -1 -u 1 -s fe-1-20000-range tools/fe-1-20000-train > fe-1-20000-
train.scale

> /svm-scale -r fe-1-20000-range tools/fe-1-20000-test > fe-1-20000-test.scale

We use svm-scale command to scale features in training and test sets. First command
scales “tools/fe-1-20000-train™ training file. Scaled information is written into “fe-1-
20000-train.scale” file. And the scaling information is stored in “fe-1-20000-range” later
to be used when scaling the test file with the same ratio. And in the second command
“tools/fe-1-20000-test” is scaled with the information in “fe-1-20000-range”. Scaled data
is ready in the “fe-1-20000-test.scale” file.

Jsvm-train -s 0 -t 2 -¢ 8192 -g 2 tools/fe-1-1000-train.scale tools/fe-1-1000-train.model

After the scaling we use svm-train command to build a model file and extract
classification rules. In the above command -s 0 states we will use C-SVC [12] as SVM
type, -t 2 means we will use RBF kernel. -c 8192 sets our cost parameter and -g 2 sets

the gamma parameter in the RBF. Our training dataset is “tools/fe-1-1000-train.scale”

and our trained model is stored in ‘“tools/fe-1-1000-train.model” file. Most of our

classification work is done when we obtain the training model file.
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> /easy.py <train file> <test file>

The easy.py command gives the optimum c and g parameters for a given dataset.

> /svm-predict tools/pca-20-test pca-20.model predict-pca-20.output

Finally, we predict the labels of instances in our test set with the svm-predict command.
With this command, instances in the “tools/pca-20-test” file are classified according to
the “pca-20.model” file obtained in the previous step. Predicted labels are given in

“predict-pca-20.output” file.

LIBLINEAR Commands
A sample classification task:
> /train -s 4 -¢ 16 -e 0.01 rf-full-1712-train rf-full-1712.model

We use frain command to learn the classification rules from the training set. In the above
command we use 16 as cost parameter and 0.01 as tolerance of the stopping criterion

[13].

> /predict rf-full-1712-test rf-full-1712.model rf-full-1712.output

We predict the labels of instances in the test set with the predict command. Labels of test

instances are stored in rf-full-1712.output text file.
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