
ABDUCTIVE PLANNING APPROACH FOR AUTOMATED WEB SERVICE
COMPOSITION USING ONLY USER SPECIFIED INPUTS AND OUTPUTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ESAT KAAN KUBAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2009

Approval of the thesis:

ABDUCTIVE PLANNING APPROACH FOR AUTOMATED WEB SERVICE

COMPOSITION USING ONLY USER SPECIFIED INPUTS AND OUTPUTS

submitted byESAT KAAN KUBAN in partial fulfillment of the requirements for the degree
of
Master of Science in Computer Engineering Department, Middle EastTechnical Uni-
versity by,

Prof. Dr. Canan̈Ozgen
Dean, Graduate School ofNatural and Applied Sciences

Prof. Dr. Müslim Bozyĭgit
Head of Department,Computer Engineering

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Supervisor,Department of Computer Engineering

Examining Committee Members:

Assoc.Prof.Dr. Ali Dŏgru
Computer Engineering Dept., METU

Assoc.Prof.Dr. Nihan Kesim Çiçekli
Computer Engineering Dept., METU

Asst.Prof.Dr. Pınar Şenkul
Computer Engineering Dept., METU

Asst.Prof.Dr. Aysu Betin Can
Information Systems Dept., METU

Assoc.Prof.Dr. Ahmet Coşar
Computer Engineering Dept., METU

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ESAT KAAN KUBAN

Signature :

iii

ABSTRACT

ABDUCTIVE PLANNING APPROACH FOR AUTOMATED WEB SERVICE
COMPOSITION USING ONLY USER SPECIFIED INPUTS AND OUTPUTS

Kuban, Esat Kaan

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Nihan Kesim Çiçekli

February 2009, 76 pages

In recent years, web services have become an emerging technology for communication and

integration between applications in many areas such as business to business(B2B) or business

to commerce (B2C). In this growing technology, it is hard to compose web services manually

because of the increasing number and compexity of web services. Therefore, automation of

this composition process has gained a considerable amount of popularity. Automated web

service composition can be achieved either by generating the composition plandynamically

using given inputs and outputs, or by locating the correct services if an abstract process model

is given. This thesis investigates the former method which is dynamicly generating the com-

position by using the abductive planning capabilities of the Event Calculus. Event calculus

axioms in Prolog language, are generated using the available OWL-S web service descrip-

tions in the service repository, values given to selected inputs from ontologies used by those

semantic web services and desired output types selected again from the ontologies. Abductive

Theorem Prover which is the AI planner used in this thesis, generates composition plans and

execution results according to the generated event calculus axioms. In thisthesis, it is shown

that abductive event calculus can be used for generating web services composition plans au-

tomatically, and returning the results of the generated plans by executing the necessary web

iv

services.

Keywords: Automatic Web Service Composition, OWL-S, Abductive Event Calculus, Se-

mantic Web Services

v

ÖZ

SADECE KULLANICI TARAFINDAN BEL İRTİLEN GİRDİLER VE ÇIKTILAR
KULLANILARAK ANLAMSAL ÖRÜN SERV̇ISLEṘINİN OTOMATİK BİRLEŞ̇IM İNE

ÇIKARIMSAL PLANLAMA YAKLAŞIMI

Kuban, Esat Kaan

Yüksek Lisans, Bilgisayar M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç Dr. Nihan Kesim Çiçekli

Şubat 2009, 76 sayfa

Son yıllarda,örün ăgı servisleriİşletmedeṅIşletmeye vėIşletmeden T̈uketiciye gibi birçok

alandaki uygulamalar arasında iletişim ve bütünleşme için ortaya çıkan bir teknoloji oldu. Bu

büyüyen teknolojide, artan̈orün ăgı servisi sayısı ve karmaşıklığı yüzündenörün ăgı servis-

lerinin elle birleşimi oldukça zordur. Dolayısıyla, bu birleşim işleminin otomatikleştirilmesi

kayda dĕger bir pop̈ulerlik kazandı. Otomatik̈orün ăgı servis birleşimi, ya birleşim planının

verilen girdi ve çıktılar kullanılarak dinamik bir şekilde yaratılmasıyla, ya daözet s̈ureç mod-

eli verildiyse dŏgru servisleri bularak başarılabilir. Bu tez, olay cebirinin çıkarımsal yetenek-

leri kullanılarak birleşim planının dinamik oluşturulması olan ilk metodu araştırmaktadır.

Prolog dilindeki olay cebiri aksiyomları, servis havuzundaki mevcut OWL-S örün ăgı servis

tanımları, bu havuzdaki servisler tarafından kullanılan ontolojiler arasındanseçilen girdilere

verilen dĕgerler ve yine bu ontolojiler arasından seçilmiş istenen çıktı tipleri kullanılarak

oluşturulur. Bu tezde kullanılan yapay zeka planlayıcısı olan Çıkarımsal Teoremİspatlayıcı

birleşim planlarını ve uygulama sonuçlarını sağlanan bu olay cebiri aksiyomlarına göre oluşturur.

Bu tezde,̈orün ăgı servislerinin birleşim planlarının otomatik oluşturulmasında ve oluşturulan

planların gerekliörün ăgı servisleri icra edilerek sonuçlarının dönd̈urülmesinde çıkarımsal

vi

olay cebirinin kullanılabilecĕgi gösterilmiştir.

Anahtar Kelimeler: Otomatik̈Orün Servisi Birleşimi, OWL-S, Çıkarımsal Olay Cebiri, An-

lamsalÖrün Ağları

vii

Dedicated to my parents.

viii

ACKNOWLEDGMENTS

I wish to thank all those who helped me. Without them, I could not have completedthis thesis.

I would like to acknowledge Assoc. Prof. Dr. Nihan Kesim Çiçekli who not only supported

me as my supervisor but also encouraged and guided me throughout my academic program.

I would like to thank my committee members Assoc.Prof.Dr. Ali Doğru, Asst.Prof.Dr. Pınar

Şenkul, Dr. Aysu Betin Can and Assoc.Prof.Dr. Ahmet Coşar for theirinvaluable comments

to improve this thesis.

I especially want to thank my family for their love, support and motivation. I want to thank

my friends for their endless supports.

I also want to thank TUBITAK-BIDEB for their financial support.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATON . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xii

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND & RELATED WORK . 4

2.1 WEB SERVICES . 4

2.2 OWL-S . 6

2.3 WEB SERVICE COMPOSITION 7

2.3.1 AUTOMATED WEB SERVICE COMPOSITION 8

2.3.1.1 WORKFLOW BASED COMPOSITION TECH-
NIQUES . 8

2.3.1.2 AI BASED COMPOSITION TECHNIQUES 9

2.4 EVENT CALCULUS . 13

2.5 ABDUCTIVE EVENT CALCULUS 15

3 AUTOMATED WEB SERVICE COMPOSITION WITH THE EVENT CAL-
CULUS . 18

3.1 REPRESENTATION OF WEB SERVICES IN THE EVENT CAL-
CULUS . 18

3.1.1 TRANSLATION OF WEB SERVICE DESCRIPTIONS . 18

3.1.2 TRANSLATION OF INPUTS 21

3.1.3 TRANSLATION OF OUTPUTS 22

x

3.2 PLAN GENERATION WITH ATP 22

3.3 EXAMPLE . 24

4 PRECONDITIONS AND OUTPUT CONSTRAINTS 30

4.1 PRECONDITIONS . 30

4.2 USER DEFINED OUTPUT CONSTRAINTS 34

5 IMPLEMENTATION . 38

5.1 TECHNOLOGIES . 38

5.2 SYSTEM ARCHITECTURE . 39

5.2.1 INTERACTION WITH GUI 40

5.2.2 COMMUNICATION VIA JPL 42

5.2.3 REPRESENTATION OF RESULTS 46

5.3 CASE STUDY: FINDING THE CLOSEST PREFERRED RESTAU-
RANT . 48

5.4 INTEGRATION WITH WORKFLOW FRAMEWORK 53

6 CONCLUSION . 56

REFERENCES . 69

APPENDICES

A ABDUCTIVE THEOREM PROVER . 70

B TRAVEL ONTOLOGY . 72

xi

LIST OF FIGURES

FIGURES

Figure 2.1 Web Service Framework. .. 5

Figure 2.2 Essential event calculus predicates. 14

Figure 5.1 System Architecture. .39

Figure 5.2 Input and output selection window. 40

Figure 5.3 Input Values Tab. .. 42

Figure 5.4 Output Constraints Tab. .42

Figure 5.5 Create Instance Tab. .. 43

Figure 5.6 Graphical representation of generated composition plans. 47

Figure 5.7 Detailed representation of output results. 47

Figure 5.8 Input and output selection screen for the case study. 50

Figure 5.9 Giving the input values for the case study. 52

Figure 5.10 Creating an instance of “Address” class. 52

Figure 5.11 Generated composition plan and its JUNG representation. 53

Figure 5.12 Google Map API used for map representation. 54

Figure 5.13 The method selection screen. .. 54

xii

CHAPTER 1

INTRODUCTION

Web services are business functions that operate over the Internet viaplatform and program-

ming language independent interfaces. With the increase in the Internet usage, the number of

created and published web services also increase every day. Today most of the companies do

business with their partners, and supply customers’ needs using web services. This is because

of the fact that, integration and interaction among business applications can be done easily

using web services. However, in this growing technology, finding the correct services, satis-

fying user needs and integrating more services in order to serve a purpose of one business are

the major difficulties besides their advantages.

Although web services are very generic, there are three specific standards that are widely

used as the core of web services technology. The first is the Web Services Description Lan-

guage (WSDL) [17], a format for specifying the operations that a web service publishes, the

transport mechanisms through which the service publishes these operations, and where the

service is located. The next is SOAP [35], a protocol that specifies the structure of a message

in XML. The last of these is The Universal Description Discovery and Integration (UDDI)

[86], a platform free registry standard used to publish and discover services over the Internet.

Unfortunately, even with such technologies, the integration of services stilldepends largely

on human experts.

In such a dynamic and flourishing domain, the primary attention is shifted from creating new

web services to re-using and composing existing services in order to discover new functional-

ities. Sometimes, no single web service can satisfy the user requirements. In such situations,

more than one web service should be combined and executed to achieve a specified goal.

Given a repository of service descriptions and a service request, the web service composition

1

problem involves finding multiple web services that can be put together in a correct order of

execution to obtain the desired service [6]. The composition plan can be modeled manually

using static service declarations in the composition plan. This approach, composing services

manually, has some drawbacks such that the amount of available web services are too much

and they can be changed in both operational and semantic manners or completely deleted on

the fly. The systems using manual composition techniques should keep track of used services

to be informed the services’ current states. In such a dynamic world, it is not possible to

achieve this. Thus, automation of web services composition process is unavoidable.

Because of this emerging need for web services composition, there are some languages pro-

posed to describe the composition such as BPML [3], IBM’s Web ServicesFlow Language

(WSFL) [37, 48], Microsoft’s XLANG [85], and Business Process Execution Language for

Web Services (BPEL4WS) [1]. These languages are based on SOAP,WSDL, and UDDI.

Web service composition, on the other hand, requires more dynamic functionality and se-

mantic information than SOAP, WSDL, and UDDI can provide. These languages are used in

manual service compositions. They do not generate a dynamic composition, but coordinate

the created manual composition plan from the point of data and control flow.

In spite of all these approaches, automated web service composition is still a hard problem.

One approach in this context that has been proposed to accomplish web service composition is

AI planning. In AI planning domain, planning is seen as finding a set of activities to achieve a

certain goal. There arestates in this context, describing the world at a certain point in time and

actions having effects on the world by changing these states. In AI planning methodology, in

order to solve a planning problem; a description of possible actions, a description of the initial

state of the world and a description of a desired goal state should be provided. Web services

can now be specified in this planning context as actions, inputs and outputs of web services

can be regarded as preconditions and effects of actions, user specified inputs and outputs can

describe the initial state of the world and the goal state, respectively. And the AI planning can

be used to generate a composite service (plan) that achieves the given goal. The automation

of web services composition can be done either generating the plan automatically, or finding

the correct services if an abstract process model is given [68]. In this thesis we are concerned

with creating composition plan automatically without any abstract model is given.

There is a considerable amount of work to solve automated web service composition problem

2

using AI planning methods [47, 54, 55, 63, 65, 68]. The techniques introduced in these re-

searches are using the situation calculus, the Planning Domain Definition Language (PDDL),

rule-based planning, the theorem proving and others. As mentioned in [65], the event calculus

[16] is one of the suitable techniques for the automated composition of web services.

In this thesis our aim is to contribute the research along this direction by proposing a formal

framework that shows how semantic web services are represented in the event calculus frame-

work to produce user specific composition plans for the requested goals.The web services

are described using OWL-S which provides the semantic information about services’ process

models. To generate composition plans as a result of abductive planning, the semantic web

services are translated into event calculus axioms using their input, output, precondition and

effect parameters defined in their OWL-S descriptions. In the event calculusframework, in-

stead of parameter names of web services, ontological parameter types facilitated by OWL-S

definitions are used in order to prevent the problem of matching the input/output parameters

to find web services in a given repository. The outputs desired by the user are modeled as

the goal state and given as a query to the abductive planner, which in turngenerates the com-

position plans including necessary web services to achieve the goal and returns the results of

those web services.

The rest of the thesis is organized as follows. Chapter 2 reviews related work and gives

information about web services, OWL-S, event calculus and the web service composition

problem and techniques used to solve the problem. In Chapter 3, we introduce how the event

calculus and its abductive implementation can be used as a method for automated web service

composition. Also methods to translate OWL-S service descriptions to the eventcalculus

axioms are presented. In chapter 4, we give a description of how preconditions and user

defined output constraints are used in our system. The implementation details ofthe proposed

system and a case study are presented in Chapter 5. Finally, Chapter 6 gives conclusions and

possible future work.

3

CHAPTER 2

BACKGROUND & RELATED WORK

2.1 WEB SERVICES

A new paradigm, web services, are introduced to build distributed web applications. The

W3C defines web services as software systems designed to support interoperable machine-

to-machine interaction over a network [13]. Web services are programmaticinterfaces that

enable communication among applications. Using these published interfaces, the other appli-

cations can communicate with these web services.

Web services are mostly categorized according to the task they are designed to perform.

Information-Providing Web Services and World-Altering Web Services are two categories

falling into this group. Information-Providing Web Services are the web services that do not

alter any state defined in the world and only return information about the current state of

the queried content such as weather forecast services, travel information providers, and book

information providers. On the other hand, World-Altering Web Services are defined as the

services that, when executed, have an effect on their domain [5]. Examples of such services

are flight-booking programs and a variety of e-commerce and business-to-business services.

The main reason behind the fact that web services are the key technologyin application com-

munication and integration is that, web services do not depend on the runningplatform and

the implementation language. In order to provide these independencies, somestandards are

defined on web services. Three technologies that roughly correspondto HTML, HTTP, and

URIs in 3W architecture are core to defining Web Services [25]:

1. WSDL (Web Services Description Language) is a language based on XML that is a

4

Figure 2.1: Web Service Framework.

standardized way to describe service structures such as operations, messages types,

bindings to protocols, and endpoints [17]. In the context of WSDL, web services are

regarded as software components that encapsulate and provide a set of closely related

operations associated with a set of resources.

2. SOAP (Simple Object Access Protocol) [35] is a protocol specification that defines a

uniform way of exchanging XML data in the implementation of Web Services.

3. UDDI (Universal Description, Discovery and Integration) [86] is aplatform indepen-

dent registry that allows the software developers to discover available Web Services

that are listed.

There are three different kinds of agents shown in Figure 2.1, namely service provider, service

requestor, and service registry. Between the agents, three kinds of interactions are defined.

“Find” is a service discovery which is performed by a service requestor. “Publish” is the op-

eration of storing a service description into a registry agent, performed bya service provider.

“Bind” is the name of the step used by service requestor in order to connect to a web service

at a particular web location (endpoint) and start interacting with the service [73].

By the end of 2006, the public UDDI registries, which were considered asthe global solution

for service discovery, were shut down blowing the idea of UDDI. The main reasons for that

5

are; the need for keywords, service name and manual selection of discovered services, lack

of coverage of the web services available publicly and the simplicity of the available search

tools [7].

2.2 OWL-S

According to W3C, OWL (Web Ontology Language) is a semantic markup language for pub-

lishing and sharing ontologies on the World Wide Web [9]. OWL-S (formerly DAML-S) is

an ontology in OWL for describing web services semantically. It has been developed within

the DARPA/DAML program and currently is a W3C recommendation. So OWL-S is an at-

tempt to combine the representational technologies of the Semantic Web such asRDF and

OWL with the dominant Web services standards, such as WSDL.

OWL-S consists of the following ontologies [57]: The topmost level consistsof a Service

ontology. The Service is described in terms of a ServiceProfile, ServiceModel and a Service-

Grounding ontology, which are as follows:

1. The service presents a ServiceProfile which has a subclass Profile.The Profile specifies

what a service does. It is used to enable advertising, construction of service requests,

and matchmaking. Profile contains a representation to characterize properties of the

service provider, functional properties of the service like Inputs, Outputs, Effects and

Preconditions (IOPEs) and non-functional properties of the service.After the selection

and engagement of service, the profile becomes useless; the process model will be the

basis of interaction among the requester and provider.

2. The service is described by a ServiceModel which has a subclass called Process. The

Process model describes how a service works. The Process consistsof all the func-

tional properties of the service; the Profile on the other hand need not include all the

functional properties. The process model is a specification of the ways aclient may

interact with a service. In the process model, there are three subclassesof the root

class Process. These are Atomic process, Composite process and Simple process. As

the name suggests, atomic processes are executed in one atomic step when invoked by

the service requesters and return a message to the requester. Composite processes are

compounds of simpler processes and can be decomposed through the control structures

6

such as Sequence, If-then-else, Split, Split-Join, and Repeat-Until. These control struc-

tures define the paths that the service requester can perform by sending and receiving

messages. In contrast to the other subclasses, Simple processes can not be invoked,

only constituting abstractions which can be realized either by an atomic process or a

composite process. A simple process can be used as a perspective to other processes,

and can provide a way to perform specific tasks, such as service composition.

3. The service supports a ServiceGrounding, which has a subclass called Grounding. The

Grounding provides an interface to plug in WSDL descriptions and describes how to

use a service. Grounding indicates how each atomic service can be invoked using a

WSDL operation.

2.3 WEB SERVICE COMPOSITION

Today, with the increase in the number and usage of web services, findingand executing cor-

rect web services fulfilling the user needs become more difficult and critical. If there is a

single web service which can satisfy the request alone, then locating that service is referred as

web service discovery problem. However, when it is not possible to satisfy the functionalities

requested by the user with a single web service, selecting and combining available web ser-

vices in a correct order of execution in order to achieve that requestedfunctionalities of user

is referred as web service composition problem. There is a considerable amount of research

in this web service composition problem [68].

Manual, semi-automated and automated solutions are proposed to web services composition

problem. In manual solution composition takes place in the design process. User choses the

web services, generates the workflow and then execute the generated manual composition.

This solution may work fine as long as the web services in the created composition workflow

do not change. Changes in web services may be a change of information provided by the

service, unavailability of the web service, change in the location of the web service or change

in the function names in the interface of the web service. In any one of thesecases, it is un-

avoidable to change manual composition definition. In semi-automated solutions,again user

constructs a workflow for the composition but in execution time, user is askedto select one

of the alternative actual web services or asked to give constraints to filterthe found services.

In automated solutions, selection, composition and execution of web servicesare done in or-

7

der to satisfy user goals automatically. In this thesis, the focus is on automated web service

composition.

2.3.1 AUTOMATED WEB SERVICE COMPOSITION

Automated web service composition is highly desirable since manual composition isa very

complex and a challenging task. One reason for this is that the number of services available

over the web has been increasing dramatically resulting in huge web servicerepositories to

be searched [68]. Another reason is that web services are prone to frequent on the fly updates,

thus the composition system needs to be informed about the update at runtime and the decision

should be made based on the up to date information. Moreover, there does not exist a universal

language to define and evaluate the web services since there are different models used to

describe the services. Therefore, building composite web services with an automated tool is

a very critical issue. There are two main approaches in automated web service composition

which are namely, workflow based methods and AI planning based methods.

2.3.1.1 WORKFLOW BASED COMPOSITION TECHNIQUES

In web service composition, the work done is actually defining the control and data flow

between web services which is very similar to workflow specifying the flow ofwork items.

From this point, workflow management is proposed as a solution to web service composition

problem. Static workflow generation and dynamic workflow generation are two methods used

in workflow based web service composition.

Static workflow generation requires the abstract process model, most commonly as a graph, to

be provided by the user before the start of planning. The abstract process model is composed

of a set of tasks and their data dependencies. During the planning process, the query clause

of each task in the abstract process model is used to find actual atomic web services in order

to achieve the task. In this technique, the only part automatically performed is the selection

and binding of atomic web services.

On the other hand, in dynamic composition technique, in addition to selection of atomic

services, the process model creation is performed automatically too. The user only needs to

specify constraints or preferences of the composition. More information on this technique can

8

be found in [23, 59].

2.3.1.2 AI BASED COMPOSITION TECHNIQUES

Planning problem is usually represented as finding the inner states betweenan initial state and

a goal state. Given a set of goals and a set of process specifications,it is possible to derive a

sequence of process instances which can accomplish those goals using AI planning methods.

AI planning methods are widely used for the web service composition problem.The elements

of solutions are represented as a set of available activities. Web Services can now be seen as

activities and the planning can be used to create a composite service (plan) that satisfies the

goals of a service requestor. Therefore, AI planning and web services composition problems

are very similar, since both seek a (possibly partially) ordered set of operations that would

lead to the goal starting from an initial state (or situation).

In order to apply AI planning methods to automated web service composition problem, ser-

vices are represented as actions having parameters, preconditions, results and effects; and

service composition is treated like a planning problem. With this approach each web service

is first translated to a planning operator and the objective is expressed asa logical condition.

Then the planner generates a plan which is essentially a sequence of web service instances;

that is, a sequential composition that causes the goal condition to be true upon execution [78].

The AI planning methods are generally used when the user has no process model but has a

set of constraints and preferences; hence the process model can begenerated automatically

by the program [68]. Using AI planning techniques for web services composition introduces

some challenges [47] one of which is related to closed world assumption. Thetraditional

planning systems assume that the planner begins with complete information aboutthe world.

However, in web service composition problem, most of the information (if it is available) must

be acquired from the web services, or may require prior use of such information-providing

services. In many cases, however, it is not feasible or practical to execute all the information-

providing services up front to form a complete initial state of the world. Otherchallenges can

be found in [78].

Considering the composition problem as an AI planning problem, different planners are pro-

posed for the solution. A good survey about planning algorithms and their applications to

9

web service composition problem can be found in [65, 68].

Estimated-regression is a planning technique in which the situation space is searched with the

guide of a heuristic that makes use of backward chaining in a relaxed problem space [54]. In

this approach, the composition problem is seen as a PDDL planning problem. Toapply this

method to composition domain, an estimated-regression planner translates the composition

problem to a PDDL planning problem and tries to solve it. A translator has beenwritten

which translates DAML-S and PDDL into each other [24]. In estimated regression planning

approach Web Services are considered as actions of the planning domain. During the plan

generation, a regression graph is constructed for each state starting from the initial situation,

on which minimum cost heuristic is applied and the most feasible action whose preconditions

are satisfied is selected.

Hierarchical Task Network (HTN) planning has been applied to the composition problem to

find a collection of atomic processes that achieve the task [80, 79]. In these works, SHOP2

[60] is used as a domain-independent Hierarchical Task Network planning system that creates

plans by iteratively decomposing the bigger tasks into smaller subtasks, until primitive tasks

are found that can be performed directly. This approach is based on therelationship between

OWL-S used for describing web services and Hierarchical Task Networks as in HTN Plan-

ning. OWL-S processes are translated into tasks to be achieved by the SHOP2 planner, and

SHOP2 generates a sequence of the atomic services that achieves the desired functionality.

Graph search is another AI planning approach which relies on building a graph representation

of all services available. The Graphplan [12] is the first general-purpose planner using graph

search algorithms. Given a problem statement, Graphplan generates the graph using two

kinds of levels, namely state levels and service levels. Service levels consist of the possible

actions that have preconditions satisfied from the previous state level. Statelevels consist

of the possible effects from the actions in previous service level. The graph is extended by

state levels and service levels until all goal states are satisfied. After the graph is generated,

Graphplan uses a backward search to extract a plan and allows for partial ordering among

actions.

In [93], a graph based approach is proposed to achieve web servicecomposition using inputs

and outputs. In this work the nodes of the graph represent the available services and the

edges of the graph encode whether one of the outputs of a service may serve another service

10

as one of its inputs. Edges are weighted according to a function of the execution time and

the semantic similarity value of the associated input and output. The Bellman-Fordshortest-

path dynamic programming algorithm is used to find the shortest path from the inputs of the

user to the expected outputs which represent the best composition. The same idea has been

investigated in an earlier work [50]. In this work, services are only allowed to have a single

input and a single output to make the graph search simple. These approaches are similar to our

approach such that they also generate the composition plan using inputs andoutputs specified

by the user. However, the major problem of these approaches is that theyare not scalable with

the number of available services.

The idea of using the event calculus in the context of web services has been investigated in

some researches [70, 82, 91, 16, 29]. In [70] the event calculus has been used in verifying

composed web services. Web services are coordinated by a composition process expressed

in WSBPEL. In this work, an event-based approach is proposed for checking consistency of

a business process, for mining the business process events, and for analyzing the process ex-

ecution. WSBPEL constructs are translated into their corresponding Event calculus axioms

in order to check its consistency for at both design time (static analysis) and runtime (dy-

namic analysis). In static verification, the WSBPEL process model is translated into Event

Calculus predicates in order to check its consistency. This offers the ability to discover the

potential flaws of such a process such as deadlocks, or unused branches in the control flow.

Some interactions between web services may be dynamically specified at runtime, causing

unpredictable interactions. In dynamic verification, verifying deviations withrespect to the

observed behavior of the process should be done in run-time. To provide this verification, the

events that occur dynamically have been logged during the process execution, translated into

event calculus predicates and verified. This approach is different from our approach, because

here the aim is to verify a composed service, not generating the composition itself.

The work in [82] attempts to establish a link between agent societies and semanticweb-

services. In this work, issues of competence checking for agents operating in a global artificial

society whose purpose is to organize complex services have been investigated. A controller

agent performs a test which is formulated in order to decide a candidate agent should join a

society according to a provided abstract description of their communicativecompetence. The

event calculus which avoids abduction and stick to normal logic programs has been used for

the competence checking.

11

In [91] an approach for formally representing and reasoning about commitments in the event

calculus is developed. This approach is applied and evaluated in the context of protocols,

which represent the interactions allowed among communicating agents. Traditionally, proto-

cols have been specified using formalisms such as finite state machines, or Petri Nets, that only

capture the legal orderings of actions. An approach for protocol specification that embodies

the commitments of agents to one another has been developed in this work, sincethe semantic

content of the actions is not captured, and the agents cannot reason about their actions. It is

demonstrated that, agents that follow the specified protocols can decide on the actions they

want to take by generating protocol runs with a planner. Event calculus isused for reasoning

about actions and commitments. The changes of the world through the actions ina proto-

col, commitments, operations on them, and reasoning rules about them are represented using

event calculus. In this approach, event calculus planner has been used to determine flexible

execution paths that respect the given protocol specifications as a finitestate machine, while

in our approach event calculus is used to generate the web services composition automatically

without giving an abstract composition plan or a workflow model.

In [16], the event calculus is used to model the coordination of web services in an already

given specific web service composition by formally describing the interactions between the

web services. In this work an event-based architecture is proposed for specifying and rea-

soning about composite events, which facilitates the detection of several inconsistencies that

may arise when the coordinated web services are executed at run-time. Onthe other hand, in

our approach, we use the abductive event calculus to generate the composition itself automat-

ically.

An approach that uses the event calculus, like in our thesis, was proposed in [29]. In this

work, automated web service composition was achieved by supplying a generic web service

process definition. The generic processes are defined in OWL-S similar toa workflow def-

inition. The generic process model is a compositions of atomic or composite services via

control constructs such as Sequence, If-Then-Else, Split-Join, etc.According to these control

constructs, the generic process is translated to the event calculus axioms.The inputs needed

by the composition are asked to the user. Then, with the inputs supplied by the user, the trans-

lated event calculus axioms are given to the abductive theorem prover in order to generate

the composition plans. The generated plans are presented to the user and the user executes

by selecting one of the generated plans. This work is very close to our work with respect to

12

the used technologies and system the architecture. However, in our approach, web service

composition is achieved by using only user specified inputs and outputs without any generic

composition definition.

2.4 EVENT CALCULUS

The event calculus is a first-order logic framework that can be used to specify properties of

dynamic systems which change over time. Such properties are specified in terms of events

and fluents. An event in event calculus is something that occurs at a specific point in time and

may change the state of a system. Fluents are conditions regarding the state ofa system and

are initiated and terminated by events [45]. The formulation of the event calculus is defined

in first order predicate logic like the situation calculus. In situation calculus [53], a changing

world is represented by a discrete ordered sequence of “snapshots”, each representing the

overall state of the world at a given instant. Because of this structure of situation calculus,

it is very difficult to represent continuous change in world and concurrent events.This is the

major difference between situation calculus and event calculus.

In the event calculus, every theory is composed of axioms which can havethe main predicates

listed in Figure 2.2. In a specific problem domain, an event calculus theory isdefined with

event axioms which actually include the descriptions of the initial states of the fluents, the

effects of actions and which fluents hold at what times.

Initiates and terminates axioms are used to describe that a fluent is initiated or terminated

by an event. Initially axiom is used to indicate the initial state of a fluent. The predicate

clipped defines if a fluentF was terminated during a given time interval. Similarlydeclipped

defines if a fluentF was initiated during a given time interval. These axioms can be defined

as follows:

clipped(T1, F,T4)↔

(∃E,T2,T3)[happens(E,T2,T3)∧ terminates(E, F,T2)∧ T1 < T3∧ T2 < T4]

declipped(T1, F,T4)↔

(∃E,T2,T3)[happens(F,T2,T3)∧ initiates(E, F,T2)∧ T1 < T3∧ T2 < T4]

13

Figure 2.2: Essential event calculus predicates.

The holds At axiom is used to query whether a fluent holds at a specific time. It defines

whether or not a fluent holds since the initial state as follows:

holds At(F,T)← initially(F) ∧ ¬clipped(T0, F,T)

holds At(¬F,T)← initially(¬F) ∧ ¬declipped(T0, F,T)

Theholds At axiom defines whether or not a fluent holds at a given time as follows:

holds At(F,T)←

happens(E,T1,T2)∧ initiates(E, F,T1)∧ ¬clipped(T1, F,T) ∧ T2 < T

holds At(¬F,T)←

happens(E,T1,T2)∧ terminates(E, F,T1)∧ ¬declipped(T1, F,T) ∧ T2 < T

If the initially axioms describing the initial states of the fluents,happens axioms describing

the times of events and theinitiates and terminates axioms describing the effects of events

are known, it is possible to query whether a fluent holds at a given time byholds At predicate.

For example, let us assume the following axioms are given:

happens(ei,t1,t1). initiates(ei,f,t1).

happens(et,t2,t2). terminates(et,f,t2).

14

In these axioms fluentf is initiated by eventei at timet1, and fluentf is terminated by event

et at time t2. Let us also assume thatt1 < t2 is also given. It can be deducted that fluent f

holds at time t whent1 < t ≤ t2. It can also be deducted that fluent¬ f holds at timet when

t2 < t. Sinceinitially axiom is not given in this example, none of fluentsf or ¬ f holds at

time t whent ≤ t1.

2.5 ABDUCTIVE EVENT CALCULUS

Event calculus can be used, in both abductive and deductive reasoning. In deduction, “what’s

true when” is required given the “what happens when” and “what actions do” [77]. In ab-

duction, on the other hand, “what happens when” is required given the“what actions do” and

“what’s true when”. Event calculus has been used mainly for deductivereasoning especially

in database applications. The use of event calculus for planning using abduction was first

proposed by Kave Eshghi [28]. Then it was Shanahan who encodedthe event calculus ax-

ioms in meta-level and wrote a meta-interpreter planning system in Prolog language in [74].

Shanahan’s planning system, which is described as an abductive theorem prover (ATP), is a

second order logical prover and will be used in this thesis to perform automated web service

composition [5, 74].

For generating plans, ATP takes a list of goal clauses and tries to solve thegoal list one by one

using abduction. During the resolution, abducible predicates, before and happens, are stored

in a residue to keep the record of the narrative. The narrative is a sequence of time-stamped

events, and the residue keeping a record of the narrative is the plan.

In this thesis, the predicateabduct is used to denote the theorem prover. It takes a list of goal

clauses and tries to find out a residue that contains the narrative. For each specific object level

axiom of the event calculus, a meta-level abduct solver rule is written.

For example an object level axiom, in which AH is the head of the axiom and AB1to ABN is

the body definition of the axiom, in the form:

AH ← AB1∧ AB2∧ ... ∧ ABN

is translated to the following predicate form for the ATP:

15

axiom(AH, {AB1, AB2, ..., ABN})

During the resolution process axiom bodies are resolved by theabduct which populates the

abducibles inside the residue. The used version of abduct solver in this thesis can be found in

Appendix A. A simplified version is as follows:

abduct([],RL,RL,NL).

abduct([A|GL],CurrRL,RL,NL) <- abducible(A),

NewRL = [A|CurrRL], consistent(NL,NewRL), abduct(GL,NewRL,RL,NL).

abduct([A|GL],CurrRL,RL,NL) <- axiom(A,AL),

append(AL,GL,NewGL), abduct(NewGL,CurrRL,RL,NL).

abduct([not(A)|GL],CurrRL,RL,NL) <- irresolvable(A,CurrRL),

abduct(GL,CurrRL,RL,[A(|)NL]).

In this definition GL, RL, NL, A and AL represent the goal list, the residue list, the residue of

negated literals, axiom head and axiom body, respectively. The predicate abducible checks if

the axiom is abducible. If an axiom is abducible, it is added to the residue; otherwise its body

is inserted into the goal list to be resolved with the other axioms.

Negation as failure (NAF) technique is used for proving negative literals.When literals added

to the residue, previously proved negated goals may no longer be provable. This situation

may occur when negative literals were proven due to the absence of contradicting evidence;

however the newly added literals might now allow the proof of the positive of literals, inval-

idating the previous negative conclusions. So, previously proven negated literals should be

rechecked each time the residue is modified.

Whether the negated literal is resolvable or not is checked usingirresolvable predicate. The

negative literal in the query might also include a predicate which is not abducible. In this case

it needs to be resolved with the axioms not the residue. This situation is explained in [74].

The consistent predicate is used for checking that none of the negated literals is resolvable

with the current narrative residue using the predicateirresolvable for each negated literal.

For example, let us assume that we have the following specific axioms for a simple problem.

axiom(happens(e,T,T), []).

axiom(initiates(e,f,T), []).

16

These axioms mean that there is an instantaneous evente and that event initiates the fluentf

when it occurs. We may submit queryabduct(holds At(f , t),RL) to investigate under which

conditions the fluentf holds at timet. The residue list RL is bound to [happens(e, t1, t1), t1 < t]

which is a possible scenario in which the fluentf holds at timet.

17

CHAPTER 3

AUTOMATED WEB SERVICE COMPOSITION WITH THE

EVENT CALCULUS

In this chapter we give a description of how the event calculus can be used as a method for

automated web service composition. In order to generate the composition plan and get the

desired outputs from web service executions, we need to create event calculus axioms and

run the Abductive Theorem Prover (ATP). In the following sections, wemention about the

representation of semantic web services in event calculus and plan generation using ATP.

3.1 REPRESENTATION OF WEB SERVICES IN THE EVENT CALCULUS

3.1.1 TRANSLATION OF WEB SERVICE DESCRIPTIONS

Semantic web services described by OWL-S ontology have inputs, outputs,preconditions and

effects. In order to use abductive theorem prover successfully, all available web services in the

repository must be translated into events descriptions. Inputs and outputs of the web service

become the parameters of the translated event. In this translation, the general attitude is using

the input and output names as event parameters. This is because fully semantic web services

are not widely used and most of the services today are described by WSDL specification. This

usage prevents us from understanding that most of the inputs and outputsare actually have

the same semantic meaning even though they have different syntactic names. For example,

let us assume that there are two web services namely ZipCodeFinder and FindZipCode. Zip-

CodeFinder has inputs with names NameOfTheCity and NameOfTheStreet respectively, and

an output ZipCode. The second web service FindZipCode have two inputsCityName and

StreetName and an output ZipCode. In non-semantic web services it is not possible to realize

18

that these two services serves the same purpose and have actually the sametype of inputs

unless some extra language processing techniques are applied. Moreover, such an extra effort

will not be guaranteed to result in successful matchings. At this point, types of inputs and

outputs become very important to understand their semantic meaning.

Semantic web service descriptions using OWL-S, gives us the opportunity toknow that those

two zip code finder services do the same job and have the same type of inputs and outputs,

by defining the types ontologically. So in our system, while generating events from web

service descriptions, we use input and output types as event parameters if they are ontologi-

cally described. Let us assume that there is an ontology called GeographicalTerms and it has

a class called Address, dataTypeProperties streetName, cityName, zipCode associated with

Address class. In the above zip code finding example, according to our system design, the

parameters of the generated events become streetName, cityName and zipCode instead of

NameOfTheStreet, NameOfTheCity, ZipCode or CityName, StreetName, ZipCode. Thus our

abductive theorem prover knows that these two services are semanticallysame and can be an

alternative of each other.

Each web service call is treated as an event and it is represented with ahappens predicate. The

parameters of the event get their actual values by jpl method predicate which is a precondition

of the event and a call to the real web service. Every time the ATP resolvesthat event while

generating the plans, the precondition jpl method is called and the inputs and outputs are

retrieved by the actual web service call. How ATP makes that actual web service call using

jpl method will be described in Chapter 5.

In addition to event occurrence axioms, the profile of the web service is translated into a set

of effect axioms. While event axioms describe the execution and preconditions ofthe web

service, effect axioms describe the behavior of the web service. In other words, wedescribe

which parameters are inputs, which parameters are outputs. For example, let us assume a

simple web service which returns the zip code of a given city and street. Theexample web

service description in OWL-S and its corresponding event calculus modelis as follows:

OWL-S description:

<process:AtomicProcess rdf:ID="FindZipCodeProcess">

<service:describes rdf:resource="#FindZipCodeService"/>

<process:hasInput rdf:resource="#streetName"/>

19

<process:hasInput rdf:resource="#cityName"/>

<process:hasOutput rdf:resource="#zipCode"/>

</process:AtomicProcess>

<process:Input rdf:ID="streetName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&ontology;#StreetName

</process:parameterType>

<rdfs:label>Name of the Street</rdfs:label>

</process:Input>

<process:Input rdf:ID="cityName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&ontology;#CityName

</process:parameterType>

<rdfs:label>Name of the City</rdfs:label>

</process:Input>

<process:Output rdf:ID="zipCode">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&ontolgy;#ZipCode

</process:parameterType>

<rdfs:label>Zip Code</rdfs:label>

</process:Output>

Event Calculus representation:

axiom(happens(pFindZipCode(StreetName, CityName, ZipCode), T1, TN),

[

jpl_pFindZipCode(StreetName, CityName, ZipCode)

]).

axiom(initiates(pFindZipCode(StreetName, CityName, ZipCode),

known(zipCode, ZipCode), T),

[

holds_at(known(streetName, StreetName), T),

holds_at(known(cityName, CityName), T)

]).

20

In the above effect axiom, it is described that, if we know the inputs, which are streetName

and cityName in this case, the findZipCode service makes the parameter ZipCode known. In

the translation, there will be a separate effect axiom for every output of the web service. or

instance if the web service has three outputs there will be three effect axioms for each output

parameter. In order to resolve literals which are non-axiomatic assertions such as conditions

or external calls abduct is extended to contain the following rule [6]:

abduct([G|GL], CurrRL, RL, NL) <- not(axiom(G,_)), G, abduct(GL, CurrRL, RL, NL)

In this rule G, GL, RL and NL denote, respectively, the non-axiomatic literal,the goal list, the

narrative residue and the negation residue. By doing this, we say that theabductive theorem

prover directly tries to prove the literal, when a non-axiomatic literal is encountered and if it

is successful it continues with the rest of the goal list.

3.1.2 TRANSLATION OF INPUTS

In the proposed system, the user selects input types from a defined ontology list in order to get

the desired outputs. The ontology list is populated from the web service descriptions in the

repository. The ontologies which are used to declare input and output types of web services

are retrieved while parsing the OWL-S descriptions to generate the event calculus axioms.

The details of this process will be mentioned in Chapter 5. After selecting the inputs, the

user supplies the values of those inputs. The selected inputs are ontologically defined, so

that the user enters the values of these inputs according to their ontology definitions. The

user can select an ontology class, a data value property or an object property from the listed

ontology elements. If the user selects a data value property as an input, thenthe values of

that property can be one of boolean, float, int, string, date, dateTime or time types. There is

an “any” type, which is handled in our framework as string type. If the selected input is an

object property, the user must select an instance of that object’s rangeclass. For example user

selects an object property of “Book” class, called “author”, which hasa range class “Author”,

then he or she must select one of the “Author” instances. If there is no “Author” instance in

the defined ontology, user can create an instance of that type, by entering the necessary fields

of that class. Another input type can be an ontology class, and in this case, the user again

has to select an instance of that class or creates an instance then selects that instance. The

21

supplied input values are translated into event calculus axioms and these axioms describe the

initial state of the world. Theinitially predicate is used in these event calculus axioms.

For instance, if the user selects cityName and streetName ontology data type properties, which

have string type range values, as the input types and enters the values ofthese inputs like

“Ankara” as cityName and “Koru” as streetName, the event calculus framework generates the

following axioms:

axiom(initially(known(cityName, Ankara)), []).

axiom(initially(known(streetName, Koru)), []).

3.1.3 TRANSLATION OF OUTPUTS

Abductive theorem prover generates composition plans according to a goal state. Just like

inputs, the user selects the output types from the ontology list, which s/he wants to get re-

sults of after the executions of web services. The selected outputs are translated into event

calculus axioms and they are given as a query to ATP. The query consistsof conjunctions of

holds at statements including the desired output parameters. For example, if the user wants

to know two outputs namely outputA and outputB, the goal state created by the framework is

as follows:

abdemo([holds_at(known(outputA,OutputA), t), holds_at(known(outputB,OutputB), t)], R).

ATP generates plans and returns the results of actual web service executions as OutputA and

OutputB if the effect axioms are satisfied by the domain knowledge created by web service

descriptions in the repository and the initial states supplied by the user as input values.

3.2 PLAN GENERATION WITH ATP

In our event calculus framework, after the web service descriptions are translated into cor-

responding axioms, the user specifies the values for inputs that s/he selected. In order to

generate plans, the abductive theorem prover needs a goal state whichis a conjunction of

known axioms that are translated from the outputs selected by the user. Now our framework

22

returns the composition results according to the goal state. ATP resolves theevent calculus

axioms one by one and proves the goal state in order to generate the desired composition

plan. To achieve this, there must be a parameter binding method that decides which services’

outputs become which services’ inputs. ATP does this binding using parameter names. Thus,

the naming of axiom parameters becomes very important in order to generate correct com-

position plans. In every step during the resolution process, translated event axioms of web

services with the actual web service calls as preconditions are executed.These web service

calls are done by jpl methods for each web service. In other words, during the plan gener-

ation phase, actual web service executions are also done and the resultsof those executions

are populated as parameters of the corresponding event axioms. ATP produces the plans as

happens andbe f ore predicates. Multiple plans can be generated by the backtracking facility

of Prolog. A plan is something like the following:

happens(service1([Inputs1], [Output1]), T1),

happens(service2([Inputs2], [Output2]), T2),

before(T1, T2), before(T2, T)

which means that in order to satisfy the goal state, service1 should be calledfirst and then

service2 should be called with their inputs. In totally ordered set of events,the service flow

becomes sequential like in the above example. ATP can generate concurrent set of events, if

the timestamps of events are equal.

happens(service1([Inputs1], [Output1]), T1),

happens(service2([Inputs2], [Output2]), T1), before(T1, T)

ATP can also generate partially ordered set of events, in which there is norelative ordering

between the timestamps of events. In such a case, those events are assumedconcurrent. In

the following example, there is no ordering between T2 and T3, so service2and service3 are

considered as concurrent.

happens(service1([Inputs1], [Output1]), T1),

happens(service2([Inputs2], [Output2]), T2),

happens(service3([Inputs3], [Output3]), T3),

before(T1, T2), before(T1, T3), before(T2, T), before(T3, T)

23

If services return more than one result as their outputs, then ATP generates a different plan

for each output result. Also while processing step by step, if there are more than one alter-

native solutions for one step, ATP generates different plans for each alternative service. For

instance assume the user wants to find hotels close to his/her place and the price of one night

accommodation for each hotel found. Assume that two hotels namely “Hilton” and “Hol-

idayInn” are found by executing one web service FindHotels, and two web services return

one night hotel accommodation prices for given hotels, respectively “FindHotelPrice1” and

“FindHotelPrice2”. In this situation, ATP generates four different plans, which are as follows:

1.FindHotels --> "Hilton" and FindHotelPrice1 --> 100$

2.FindHotels --> "Hilton" and FindHotelPrice2 --> 105$

3.FindHotels --> "HolidayInn" and FindHotelPrice1 --> 130$

4.FindHotels --> "HolidayInn" and FindHotelPrice2 --> 135$

3.3 EXAMPLE

In this section, we will give an illustrative example to explain how the abductiveevent calcu-

lus framework can be used to solve a composition problem. The problem is learning the TL

price of a book, giving only the name of the book. Let us assume there arefour web services in

our repository, which are namely BookFinder, BookPriceDollar, BookPriceTL and PriceCon-

verterFromDollarToTL. BookFinder service gets the name of a book as input and returns the

desired Book instance. BookPriceDollar service gets a Book instance asinput and returns the

dollar price of that book, similarly BookPriceTL service also gets a Book instance and returns

the TL price of that book. PriceConverterFromDollarToTL service gets the dollar amount and

converts it to its TL amount. The input and output parts of the OWL-S descriptions of these

web services are as follows:

<process:AtomicProcess rdf:ID="BookFinderProcess">

<service:describes rdf:resource="#BookFinderService"/>

<process:hasInput rdf:resource="#BookName"/>

<process:hasOutput rdf:resource="#BookInfo"/>

</process:AtomicProcess>

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

24

&book;#bookName

</process:parameterType>

<rdfs:label>Book Name</rdfs:label>

</process:Input>

<process:Output rdf:ID="BookInfo">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&book;#Book

</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

</process:Output>

<process:AtomicProcess rdf:ID="BookPriceDollarProcess">

<service:describes rdf:resource="#BookPriceDollarService"/>

<process:hasInput rdf:resource="#BookInfo"/>

<process:hasOutput rdf:resource="#BookPriceDollar"/>

</process:AtomicProcess>

<process:Input rdf:ID="BookInfo">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&book;#Book

</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

</process:Input>

<process:Output rdf:ID="BookPriceDollar">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&price;#DollarPrice

</process:parameterType>

<rdfs:label>Book Price Dollar</rdfs:label>

</process:Output>

<process:AtomicProcess rdf:ID="BookPriceTLProcess">

<service:describes rdf:resource="#BookPriceTLService"/>

<process:hasInput rdf:resource="#BookInfo"/>

<process:hasOutput rdf:resource="#BookPriceTL"/>

</process:AtomicProcess>

<process:Input rdf:ID="BookInfo">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&book;#Book

</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

25

</process:Input>

<process:Output rdf:ID="BookPriceTL">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&price;#TLPrice

</process:parameterType>

<rdfs:label>Book Price</rdfs:label>

</process:Output>

<process:AtomicProcess rdf:ID="PriceConverterFromDollarToTLProcess">

<service:describes

rdf:resource="#PriceConverterFromDollarToTLService"/>

<process:hasInput rdf:resource="#DollarPrice"/>

<process:hasOutput rdf:resource="#TLPrice"/>

</process:AtomicProcess>

<process:Input rdf:ID="DollarPrice">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&price;#DollarPrice

</process:parameterType>

<rdfs:label>Dollar Price</rdfs:label>

</process:Input>

<process:Output rdf:ID="TLPrice">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&price;#TLPrice

</process:parameterType>

<rdfs:label>TL Price</rdfs:label>

</process:Output>

The corresponding event calculus axioms for the above services in Prolog are:

axiom(happens(pBookPriceDollar(Book, DollarPrice), T1, TN),

[

jpl_pBookPriceDollar(Book, DollarPrice)

]).

axiom(happens(pBookPriceTL(Book, TLPrice), T1, TN),

[

jpl_pBookPriceTL(Book, TLPrice)

]).

26

axiom(happens(pBookFinder(BookName, Book), T1, TN),

[

jpl_pBookFinder(BookName, Book)

]).

axiom(happens(pPriceConverterFromDollarToTL(DollarPrice, TLPrice), T1, TN),

[

jpl_pPriceConverterFromDollarToTL(DollarPrice, TLPrice)

]).

In addition to these axioms, effect axioms of the web services are generated by our event

calculus framework. The generated effect axioms of these web services are as follows:

axiom(initiates(pBookPriceDollar(Book, DollarPrice),

known(dollarPrice, DollarPrice), T),

[

holds_at(known(book, Book), T)

]).

axiom(initiates(pBookPriceTL(Book, TLPrice),

known(tLPrice, TLPrice), T),

[

holds_at(known(book, Book), T)

]).

axiom(initiates(pBookFinder(BookName, Book),

known(book, Book), T),

[

holds_at(known(bookName, BookName), T)

]).

axiom(initiates(pPriceConverterFromDollarToTL(DollarPrice, TLPrice),

known(tLPrice, TLPrice), T),

[

holds_at(known(dollarPrice, DollarPrice), T)

]).

27

In order to generate compositions, we need to provide the initial situation with thehelp of

user specified input values. In this case, the only input is book name. Because the bookName

is a string type property, the user enters the name of the book. The given input value is

translated into event calculus axiom. Let us assume user enters “Hamlet” as book name, then

the generated axiom is as follows:

axiom(initially(known(bookName, Hamlet)), []).

The last thing that should be done is to create the goal state which will be the query to ATP. In

our example, the user wants to know the dollar and the TL price of book Hamlet.The query

including goal state in this case is created as:

abdemo([holds_at(known(dollarPrice, DollarPrice), t),

holds_at(known(tLPrice, TLPrice), t)], R).

After the query is generated, ATP runs and returns the results according to the given event

calculus axioms. In this example, ATP returns the prices and plans in a form of timestamped

events as follows:

DollarPrice = 25 Dollar

TLPrice = 45 TL

happens(pBookPriceTL(’HamletInstance’, ’45 YTL’), t1, t2)

happens(pBookFinder(Hamlet, ’HamletInstance’), t3, t4)

happens(pBookPriceDollar(’HamletInstance’, ’25 Dollar’), t5, t6)

before(t2, t)

before(t4, t1)

before(t6, t)

before(t4, t5)

and,

DollarPrice = 25 Dollar

TLPrice = 43 TL

28

happens(pPriceConverter(’25 Dollar’, ’43 TL’), t11, t12)

happens(pBookPriceDollar(’HamletInstance’, ’25 Dollar’), t13, t14)

happens(pBookFinder(Hamlet, ’ HamletInstance’), t15, t16)

before(t12, t)

before(t14, t11)

before(t16, t13)

before(t14, t)

ATP returns two different plans for the given inputs and outputs in this case. In the first

plan, the BookFinder service is executed with the input “Hamlet” and returnsthe Book in-

stance of Hamlet, HamletInstance. Then this output becomes the inputs of two other services,

BookPriceDollar and BookPriceTL and these two services are called concurrently due to the

absence of relative timestamped ordering between them. These services return 25 Dollar and

45 TL respectively, thus the goal state is reached and results are represented to the user. On

the other hand, in the second plan, again BookFinder service is executedfirst in order to find

the Book instance from a given name which is “Hamlet” in this example. Then the output

of BookFinder service becomes the input of only BookPriceDollar service. BookPriceDollar

service returns the dollar price, 25 Dollar, and one of the user desired output types becomes

satisfied. The TL price is calculated as 43 TL by executing PriceConverterservice with 25

Dollar which is the output of BookPriceDollar service. The goal state is again satisfied and

results are shown to the user. In order to make the generated plans more readable, a user

interface is implemented, in which the flow of web service executions are shown as a graph.

The graphical representation of generated plans will be described in Chapter 5.

In this chapter, using event calculus as a solution to automated web service composition prob-

lem is explained. In order to generate the composition plan, the initial state of theworld,

defined actions and their effects in the problem domain and the required goal state should

be known. Our framework gets these definitions from OWL-S descriptionsof available web

services in the repository and the user defined inputs and outputs. Then our system trans-

lates these definitions to event calculus axioms as described in this chapter. The translated

axioms are given to abductive planner in Prolog and composition plans are generated using

backtracing. An example that explains the translation and plan generation phases is given.

29

CHAPTER 4

PRECONDITIONS AND OUTPUT CONSTRAINTS

In this chapter, we give a description of how preconditions and user defined output con-

straints are included in our system. In the semantic web, web services are described with

OWL-S which is an ontology for web services. In this ontology, web services have input,

output, precondition and effects (IOPEs) which define the process model of a web service. In

other words, IOPEs describe how to interact with the web service in detail. In the following

sections, first we describe the usage of preconditions in semantic web services and how our

system translates them into event calculus axioms. Then, we describe how users can define

their output constraints and present the translation of those constraint definitions to the event

calculus framework.

4.1 PRECONDITIONS

In a web service description, it must be specified how the web service will interact with clients

or other software agents. The information transformation of this interaction isdescribed by

Input and Output properties. Inputs specify the types of instances to besent to the service, and

Outputs specify the types of responses to be sent by the service. However it is not possible to

describe under which circumstances the web service provides its servicewith only inputs and

outputs.

Preconditions are conditions that must be true for the web service in orderto be executed.

In most of the cases, preconditions are used to check whether the giveninputs satisfy some

conditions which are necessary for the service execution. This type of usage is generally seen

in information providing services. For example, the “CurrencyConverter” service might have

30

a precondition which checks whether the given currency type is valid. But in world altering

services, preconditions can be used to control the information space whether the required state

is satisfied. An example of this kind of world altering service precondition canbe a validation

of the user’s login state. In most of the e-commerce services, before the payment process, it

is controlled whether the user is logged in; if s/he is, service goes on with the payment, if not,

user is asked to log in. In OWL-S definition, Inputs and Outputs are subclasses of Parameter

and their definitions in a semantic web service description are as follows:

<process:Input rdf:ID="InputID">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&ontology;#InputClass

</process:parameterType>

</process:Input>

<process:Output rdf:ID="OutputID">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&ontology;#OutputClass

</process:parameterType>

</process:Output>

However, preconditions do not have any specific format or class. They are kind of Expression

properties. In OWL-S, they are treated as literals [51]. There are some formats that can

be embedded into OWL language to define preconditions, such as SWRL (Semantic Web

Rule Language) [39], KIF (Knowledge Interchange Format) [44] or PDDL (Planning Domain

Description Language) [49]. Among these languages, SWRL is preferably used because of

its more understandable grammar and built-in conditional operations. In our framework, we

handled only SWRL expressions, but the others can also be handled in a similar approach.

For example, let us assume a web service “CalculateNumberOfDays” whichtakes startDate

and finishDate as inputs, and returns the number of days between those twodates. In this

service, there must be a control which compares input dates and returnstrue if the finishDate

is greater than or equal to startDate. The service description should be asfollows:

<process:AtomicProcess rdf:ID="CalculateNumberOfDaysProcess">

<service:describes rdf:resource="#CalculateNumberOfDaysService"/>

<process:hasInput rdf:resource="#StartDate"/>

31

<process:hasInput rdf:resource="#FinishDate"/>

<process:hasOutput rdf:resource="#Days"/>

<process:hasPrecondition rdf:resource="#compareDates"/>

</process:AtomicProcess>

<process:Input rdf:ID="StartDate">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&date;#StartDate

</process:parameterType>

<rdfs:label>Start Date</rdfs:label>

</process:Input>

<process:Input rdf:ID="FinishDate">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&date;#FinishDate

</process:parameterType>

<rdfs:label>Finish Date</rdfs:label>

</process:Input>

<process:Output rdf:ID="days">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&date;#NumberOfDays

</process:parameterType>

<rdfs:label>Number Of Days</rdfs:label>

</process:Output>

<expr:SWRL-Condition

rdf:ID="compareDates">

<rdfs:label>compareDates</rdfs:label>

<rdfs:comment>compares two dates</rdfs:comment>

<expr:expressionBody

rdf:parseType="Literal">

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:builtin rdf:resource="&swrlb;#greaterThanOrEqual" />

<swrl:arguments>

<rdf:List>

<rdf:first rdf:resource="&date;#FinishDate" />

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource="&date;#StartDate" />

32

<rdf:rest rdf:resource="&rdf;#nil" />

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

</swrl:BuiltinAtom>

</rdf:first>

<rdf:rest rdf:resource="&rdf;#nil" />

</swrl:AtomList>

</expr:expressionBody>

</expr:SWRL-Condition>

This SWRL rule states that, startDate can not be greater than finishDate. TheSWRL pre-

conditions are translated as jpl methods with its owner service. So if a web service has a

precondition, its corresponding event axiom has two jpl methods as preconditions. The first

method handles the precondition and if the condition holds, it returns true. The second jpl

method handles the real web service call, if the result of the first method is true. The trans-

lated methods in Prolog are as follows:

axiom(happens(pCalculateNumberOfDays(StartDate, FinishDate, NumberOfDays), T1, TN),

[

jpl_pCalculateNumberOfDaysCondition(’StartDate’, ’FinishDate’),

jpl_pCalculateNumberOfDays(StartDate, FinishDate, NumberOfDays)

]).

The precondition method defined in Prolog, gets inputs from the parameters of happens ax-

iom and the validation operator from SWRL expression. It then makes a jpl call to the as-

sociated Java method to carry out the operation with supplied inputs. We do this operation

in Java, because in our system all IOPEs are described with ontologies, so they are complex

objects and can not be handled in Prolog. These Java methods will be mentioned in Chapter

5. The precondition method created in Prolog is as follows:

jpl_pCalculateNumberOfDaysCondition(Icondition1, Icondition2) :-

jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSIa),

jpl_call(WSIa, controlConstraint,

33

[Icondition1, ’greater than or equals to’, Icondition2], OutputArraya),

jpl_is_true(OutputArraya).

4.2 USER DEFINED OUTPUT CONSTRAINTS

Semantic web service descriptions using OWL-S, can have preconditions inorder to control in

which circumstances the service should be invoked. But sometimes users want to restrict the

generated plans according to their needs. In this case, even if the preconditions are satisfied,

return values may not be what users really want. In addition to this, returned plans and their

output values might include lots of irrelevant results that users do not want to see. To illustrate

this, suppose the user wants to learn about the hotels close by and their prices. On the other

hand, s/he wants to see the hotels and their prices if the found hotel’s one night accommo-

dation price is less than 100$. By giving this constraint, hotels which have accommodation

price more than 100$ will not be presented to the user.

After the user selects the outputs s/he wants, according to their data type, s/he can specify a

constraint on them, like specifying the inputs, the user can select a class, data type property

or object property types as outputs. In our system, there are pre-defined operations for each

type of output.

If the selected output is of type object property, the user can select either “equals to” or “not

equals to” as an operation from the list and an instance of the range class of the selected object

property. For example, let us assume the user wants to learn the price of a book by giving the

name of the book. The ontology class of book has an object property called “author” which

has a range class Author and the user wants to get the price of the book which has the author

specified by her. In this case, the user can learn the price of the book written by, let us say

Ayse Kulin, by giving an “equals to” constraint on the “author” object property and selecting

“Ayse Kulin” from the Author instances.

If the type of the selected output is of data type property, according to the range of that

property, operations differ. Such as, if the range of the selected property is string then the

supported operations are “equals to”, “not equals to”, “starts with”, “ends with”, “contains”

and “not contains”. If the range of the selected property is an int or float then the supported

operations are “equals to”, “not equals to”, “less than”, “greater than”, “less than or equals

34

to” and “greater than or equals to”. Finally, if it is one of the date, dateTime ortime types

then the operations are “equals to”, “not equals to”, “before” and “after”. These cases can

be illustrated with examples, such as movies which have “Alien” in their name by using

“contains” operation, movies which are made before 1987 by using “before” operation or

movies which last more than 3 hours by using “greater than” operation.

If the selected output is of class type, then for each property of that class there becomes

a constraint row with the operations described above. For example, assume that there is a

Hotel class which has an object property “address” and a data type property “name”. Object

property “address” has a range class Address and data type property “hasName” has a range

of string. So the user can either give a constraint on “address” property with the operations

described for object property types, or can give a constraint on “name” data type property

with string range by using the operations for string data type properties, oron both.

As in the SWRL preconditions defined in the OWL-S description of web services, we handle

these type of output constraints given by the user in a similar approach. Wetranslate output

constraints as postconditions to event axioms of web services. But in this case, there might be

more than one web service which will include the created jpl method as a postcondition. As

an example, if the user gives an output constraint on TL price of a book;let us say “less than

30 TL”, there can be one or more services that has “TLPrice” as an output parameter which

will be included in the generated composition plan. Because the executions ofweb services

take place while ATP is processing, we have to check the result returned by the web service

whether it satisfies the given constraint or not. So the difference of this type of condition is

that, it is located after the web service execution jpl method,

axiom(happens(pBookPriceTL(Book, TLPrice), T1, TN),

[

jpl_pBookPriceTL(Book, TLPrice),

jpl_pBookPriceTLCondition(’BookPriceTL.TLPrice.amount’,’30’)

]).

axiom(happens(pPriceConverter(DollarPrice, TLPrice), T1, TN),

[

jpl_pPriceConverter(DollarPrice, TLPrice),

jpl_pPriceConverterCondition(’PriceConverter.TLPrice.amount’,’30’)

35

]).

When the user gives a TLPrice constraint, twohappens axioms include the postcondition be-

cause in our web service repository there are two web services having TLPrice as output. The

reason behind the location of postcondition after the actual web service call is that, in this case

we control the outputs instead of the inputs. So we have to know the returnedoutput values

before the constraint control. The input parameters passed to the postcondition method is a bit

different in this case. ’BookPriceTL.TLPrice.amount’ and ’PriceConverter.TLPrice.amount’

are passed with the user constraint ’30’. Our system makes the web service calls in the

Java part, retrieve the results and sends them back to Prolog. The implementation details are

described in Chapter 5. The results of web service executions are also kept in the system

in order to achieve the constraint control. When the constraint control method is invoked

with the parameters ’PriceConverter.TLPrice.amount’, ’less than’ and ’30’, the system gets

the amount attribute of the TLPrice instance returned by the PriceConverterweb service and

checks whether the amount is less than 30. If it is, it returns true and the ATP goes on with its

resolution. If it is false, then the wholehappens axiom returns false because of this postcon-

dition, and this service does not take place in the composition plan. The preconditions and

the postconditions have the same method declaration which is as follows:

jpl_pServiceNameCondition(Icondition1, Icondition2) :-

jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSIa),

jpl_call(WSIa, controlConstraint,

[Icondition1, ’operation’, Icondition2], OutputArraya),

jpl_is_true(OutputArraya).

In the event calculus framework proposed in this thesis, the descriptions of the web services

that are available in the repository are translated to the event calculus axiomsbefore the abduc-

tive theorem prover starts to generate the composition plan. In addition to service descriptions,

the inputs and the output constraints provided by the user are translated to the corresponding

event calculus axioms. The translated event calculus axioms using servicedescriptions do

not change unless the web services in the repository change. On the contrary, the event cal-

culus axioms that are translated using inputs and outputs specified by the user change each

time the user wants to find out a composition plan. Therefore, in the proposedevent calculus

36

framework, the Prolog code including the service descriptions, can be generated once and

updated each time the user supplies inputs and output constraints dynamically,instead of gen-

erating whole Prolog code in every run. This facility can improve the system performance by

reducing the translation costs. This problem can be handled as a future work.

The OWL-S descriptions of web services can have preconditions defined as expressions.

There are different expression languages that can be used in OWL-S descriptions such as

SWRL, KIF, PDDL. In this chapter, we show how SWRL preconditions arehandled in the

event calculus framework. They are translated as preconditions of webservice axioms in

Prolog. If the given precondition is satisfied, then the web service execution takes place. In

addition to preconditions of OWL-S descriptions, users can supply outputconstraints as well.

The supplied constraints are also translated into the event calculus axioms aspostconditions.

37

CHAPTER 5

IMPLEMENTATION

In this chapter, we give a description of the implementation details of the proposed event

calculus framework. The proposed system is expected to generate composition plans using

user specified inputs and outputs only. Our approach is to make the user select inputs that s/he

will enter to the system and outputs that s/he wants to get as results by using our user-friendly

composition tool. First, we present the used technologies and libraries. Second, we represent

the details of our tool and the usage of technologies in it. Then we give a case study in

order to show the usage of our system. Finally, we explain how two web service composition

algorithms are integrated in our event calculus framework.

5.1 TECHNOLOGIES

The event calculus framework is designed as a web-based application and implemented in

Java and Prolog languages. The client side is implemented in JSF technology.In JSF codes,

Ajax components are also used which help us partial rerendering of pages and doing some

changes in client side without posting pages. In business tier, Java and Prolog languages

are used together. All modules are implemented in a Web Project and deployedin a J2EE

compatible application server, JBoss.

As open-source projects or libraries, MindSwap’s OWL-S API is used for OWL-S and On-

tology parsing, Java Universal Network/Graph Framework (JUNG) is used for the graphical

visualization of the generated composition plans, JPL library is used for implementing the

communication between Java and Prolog codes, JBoss’ RichFaces component library is used

for user-interface design.

38

Figure 5.1: System Architecture.

5.2 SYSTEM ARCHITECTURE

In this section, the modules of our event calculus framework are presented. The user inter-

acts with our system via interactive graphical user interface module. Users select the inputs

and outputs, give constraints on selected outputs by using this GUI module. Moreover, the

generated composition plans are presented to the user with this module. The event calculus

translation module handles the translations of OWL-S descriptions to the eventcalculus ax-

ioms and the translations of user specified inputs and outputs to the event calculus axioms.

The generated event calculus axioms are supplied to the abductive theorem prover (ATP) mod-

ule for planning. The JPL module serves as the interaction module between service execution

module which is implemented in Java and the ATP module which is implemented in Prolog.

Web services are executed in service execution module and results of these service executions

are returned to the ATP module via JPL module. Figure 5.1 shows the our system architecture

graphically.

39

Figure 5.2: Input and output selection window.

5.2.1 INTERACTION WITH GUI

Since our application is a web-based application, users can access our application via their

Internet browsers. When the user starts our application, using OWL-S API, all web service

descriptions available in our repository are parsed and the ontologies thatare used to declare

input or output types in those service descriptions are retrieved. For example, if parsed OWL-

S description of a web service has an input declaration as follows:

<process:Input rdf:ID="BookInfo">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&book;#Book

</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

</process:Input>

then, our system adds the book ontology if it is not added before. After all service descriptions

are parsed, found ontologies are parsed too using again OWL-S API, and they are presented

to the user in a tree view as shown in Figure 5.2.

In the first page, the user can select the input and output types by drag&drop facility of

RichFaces components. When the number of service descriptions in the repository increases,

40

the ontology resources will also increase. For this reason, there is a filtering mechanism on

the ontology classes, which helps users to find ontology classes easily. The classes are filtered

with the entered filter text.

The nodes in the ontology tree can be classes, object properties and datatype properties. The

nodes can have their subclasses or subproperties. The distinction between these types is done

with image labels in front of the tree nodes. The yellow ones represent classes, the green ones

represent data type properties and the blue ones represent object properties.

After selecting the inputs and the outputs, the user can continue with the next page in order

to provide input values and output constraints by clicking the next button onthe upper right

corner of the page. Our application has a wizard style usage logic. Userscan pass over pages

by using next and previous buttons.

In the second page, it is expected from the user to supply the input values according to the

selected input types and to give constraints on the selected output types if itis necessary. This

page is split into three tabbed parts namely, “Input Values”, “Output Constraints” and “Create

Instance” tabs. In the Input Values tab, the user can enter or select input values according to

their types as shown in Figure 5.3. If the selected input is a class type input, then the user must

select one of the instances of that class from a drop-down list. If the selected input is an object

property type, again the user must select an instance of the object property range class from

a drop-down list. If the selected input is a data type property, then the userenters the input

value to that input’s value field. In this type of inputs, in order to become more user-friendly,

different field types can appear in the page. When the selected data type property has int or

float range values, the user enters in a number field which is shorter in length and the cursor

is aligned to right. If selected data type property has string range value, then user enters the

string into a standard text field. When selected data type property has date,dateTime or time

range value, user can pick a date from a date field or can enter the value manually. When the

selected data type property has a boolean range value, then user supplies the value by using a

checkBox.

The second tab contains output constraint fields. There are selected outputs in a tree repre-

sentation on the left side of the page. When the user clicks on an output node, the constraint

fields appear on the right side of the page dynamically as shown in Figure 5.4. How users can

define output constraints was described in Chapter 4.

41

Figure 5.3: Input Values Tab.

Figure 5.4: Output Constraints Tab.

The last tab includes components in order to create instances of ontology classes. In semantic

web services, parameter types are ontologically defined and in semantic environments such

as our framework, everything is actually done with class instances. Theseinstances are used

in communication with the abductive theorem prover. Users supply input values in order to

define the initial state of the world. If the user selects a class type input, s/he must provide an

instance of the selected class. In this event calculus framework, users can create instances by

using this tab as shown in Figure 5.5.

After these steps, the user can run the ATP to generate the composition plan and return corre-

sponding results. When the user presses the run button, the event calculus axioms in Prolog

are generated and ATP starts to prove the goal state. In the resolution process of ATP, the

happens axioms, which describe the web service execution steps, have jpl methods as pre-

conditions in order to invoke the actual web services and return the results. In the following

section, we describe how the communication between Prolog and Java is achieved.

5.2.2 COMMUNICATION VIA JPL

Java Interface to Prolog (JPL), is a library which handles the communicationbetween Java

and Prolog. Using JPL, we can execute Prolog codes from Java and get the results, and can

invoke Java methods from Prolog and again get the results and use them in the next steps. In

42

Figure 5.5: Create Instance Tab.

our event calculus framework, we use Prolog to Java calls in three caseswhich are invoking

the web services and getting the results, controlling the preconditions defined with SWRL

in the OWL-S description of web services and controlling the output constraints specified

by user with the web service execution results. Web services in our repository, if it has

no precondition or output constraint, is translated into their correspondingevent axioms as

follows:

axiom(happens(pServiceName(Input, Output), T1, TN),

[

jpl_pServiceName(Input, Output)

]).

The jpl method definition is as follows:

jpl_pServiceName(Input, Output) :-

jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSI),

jpl_list_to_array([Input], InputArray),

jpl_call(WSI,invokeService,[’pServiceName’,InputArray],OutputArray),

(OutputArray == @(null) -> OutputList = [] ;

jpl_array_to_list(OutputArray, OutputList)),

[A] = OutputList,

(A == @(null) -> TempList1 = [] ;

jpl_array_to_list(A, TempList1)),

43

WholeList = [TempList1],

member([Output], WholeList),

true.

In jpl pServiceName method, web service has an input and an output. These parameters are

passed to the jpl method as arguments. The first row of the jpl method definitionis for cre-

ating an instance of WebServiceInvocation Java class with constructor taking no arguments

and the created object is assigned to a Prolog variable called WSI. These are done via using

jpl new method of JPL library. Then the input (which is only “Input” in our case), is popu-

lated into a Java array by using jpllist to array method. Then the invokeService method of

WebServiceInvocation java class is invoked with the serviceName and InputArray via jpl call

method. This invokeService method does the actual web service invocation and returns the

results. The results are populated into OutputArray which is an argument ofjpl call method.

Then this OutputArray is converted into a Prolog list by jplarray to list method. Finally the

converted output list is enumerated against the output of the service (which is only “Output”

in this case), by using member operator. The whole jplpServiceName method returns true

because it is a precondition of the abovehappens axiom and by returning true, it makes ATP

to add this service into composition plan and to go on with resolution.

However, if the web service has a precondition defined in SWRL rule language in its descrip-

tion or has an output constraint given by the user, then in thehappens axiom of the service,

there becomes more than one precondition different from the above execution jpl method. Let

us assume the user gives a constraint on the “Output” which is an int type output, such that it

can not be greater than 10. Then the generatedhappens axiom becomes as follows:

axiom(happens(pServiceName(Input, Output), T1, TN),

[

jpl_pServiceName(Input, Output),

jpl_pServiceNameCondition(Output, ’10’)

]).

And the jpl method which handles the constraint validation is defined as follows:

jpl_pServiceNameCondition(Condition1, Condition2) :-

jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSI),

44

jpl_call(WSI, controlConstraint,

[Condition1, ’less than or equals to’, Condition2], ResultValue),

jpl_is_true(ResultValue).

In this method definition, again an object instance of Java class “WebServiceInvocation” is

created first via jplnew method. Then the “controlConstraint” method of WebServiceInvoca-

tion class is invoked with three arguments and the returned result is assignedto ResultValue

variable. The arguments are, the operation which is “less than or equals to”in this example,

and the two values that will be controlled according to the given operation, Output and 10 in

this case. After the controlConstraint method is executed and ResultValue is retrieved, this

ResultValue is converted to Prolog boolean type by using jplis true method and this boolean

is returned from jplpServiceNameCondition. If it is true, ATP takes this service as a proved

axiom, and goes on with other axioms.

This usage of jpl method describes from Prolog to Java communications and method calls.

When ATP runs, these methods are necessary in order to do some jobs on Java side. But

to start ATP and pass dynamically generated event calculus codes in Prolog, we also need

interaction from Java to Prolog. JPL library also provides this facility. Afterall event axioms

generated from service definitions and user inputs are completed, abductive theorem prover

and these Prolog codes are consulted to a Prolog session. Now we can query this session from

Java with the help of jpl. The query including the goal state, which is a conjunction of known

predicates, is created using the outputs selected by the user and is fed to jpl.Then calling

“allSolutions” method of the query object, JPL produces all possible composition plans for

the desired outputs and these plans are put into a hash table for visualizationprocesses. The

Prolog calls from Java with the help of JPL are as follows:

Query consultATP =

new Query("consult", new Term[] { new Atom(eventCalculusPlanner.getAbsolutePath()) });

consultATP.query();

Query consultDynamicAxioms =

new Query("consult", new Term[] { new Atom(dynamicProlog.getAbsolutePath()) });

consultDynamicAxioms.query();

Query query = new Query(goalStateQuery);

results = query.allSolutions();

45

5.2.3 REPRESENTATION OF RESULTS

The results returned in the hash table are outputs of web services,happens axioms andbe f ore

axioms. Thebe f ore axioms declare the ordering of web services according to their invocation

time. An example of a returned composition plan is as follows:

happens(service1([Inputs1], [Output1]), T1),

happens(service2([Inputs2], [Output2]), T2),

before(T1, T2),

before(T2, T)

This plan states that if service1 is first executed with inputs1, and then service2 is executed

with inputs2, the desired outputs can be obtained. However this format probably would not

be clear to end users. So, our framework shows the generated composition plans in a very

user-friendly graphical representation. In this graphical representation, The Java Universal

Network/Graph framework (JUNG) is used. JUNG is a very powerful graph representation

library for Java. After we parse the generated plan, our system generates vertex objects for

each web service in the plan with their timestamp values. After the vertices are created,

using a time ordering algorithm as a post-processing, the edges between those vertices are

also created. The mentioned algorithm starts with end vertices which are outputs in our case,

and solves the time ordering between services in a backward processing.A sample plan

representation is illustrated in Figure 5.6.

If the parameter passed between services is a class instance, the name of that instance appears

on the edges in the generated graph. This is because, we pass method parameters from Java

to Prolog with their names. In our framework, there can be very complex class definitions

declared with their reference ontologies. In such a case, it is much more complex to represent

those class instances in Prolog language than an object-oriented Java language. In our early

example of finding a book, the web service BookFinder returns a book instance with a sup-

plied book name. In that example, BookFinder returned a book object, butthe name of the

object instance was passed to Prolog. We bind those objects in our system, by keeping them

in the resulting hash table. By doing this, we do not lose any data, and we canget the object

instance anytime we need via retrieving it from the resulting hash table. Userscan see only

the instance names on the generated graph, but if they want to see all fieldsof the returned

46

Figure 5.6: Graphical representation of generated composition plans.

Figure 5.7: Detailed representation of output results.

instance, a different tab which is namely “Output Fields” is used. In this tab, there is a tree

representation of outputs selected by the user. For each output node, the web services, which

return that output value, are listed in the tree. To illustrate, in our example of finding a book,

the user selected TLPrice as an output to find out the TL price of the foundbook. But there

were two different services which returned TLPrice as their outputs. In our framework, when

the user expands the TLPrice node in the output tree, s/he sees the two alternative services.

Then by clicking on those web services, the user can see all fields of thatinstance as shown

in Figure 5.7.

47

5.3 CASE STUDY: FINDING THE CLOSEST PREFERRED RESTAURANT

In this section, we aim to solve a composition problem given in [63] using our event calculus

framework. The problem is about finding directions to the closest restaurant according to the

user’s food preference and also finding a map from the user’s hotel address to found restaurant.

Since there is no atomic web service that generates the desired outputs with the given inputs,

there should be a composition of some services that satisfies the user needs. Assume that

there are two available web services in our repository. One returns the address and name

of the closest restaurant according to user supplied zip code and foodpreference. The other

returns a map instance and direction, given start and finish addresses.IOPE parts of the web

services’ OWL-S descriptions are shown as:

<process:Input rdf:ID="ZipCode">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#zipCode

</process:parameterType>

<rdfs:label>Zip Code</rdfs:label>

</process:Input>

<process:Input rdf:ID="FoodPreference">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#foodPreference

</process:parameterType>

<rdfs:label>Food Preference</rdfs:label>

</process:Input>

<process:Output rdf:ID="RestaurantName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#restaurantName

</process:parameterType>

<rdfs:label>Restaurant Name</rdfs:label>

</process:Output>

<process:Output rdf:ID="RestaurantAddress">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#Address

</process:parameterType>

<rdfs:label>Restaurant Address</rdfs:label>

48

</process:Output>

<process:Input rdf:ID="FromAddress">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#fromAddress

</process:parameterType>

<rdfs:label>From Address</rdfs:label>

</process:Input>

<process:Input rdf:ID="ToAddress">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#Address

</process:parameterType>

<rdfs:label>To Address</rdfs:label>

</process:Input>

<process:Output rdf:ID="Direction">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#Direction

</process:parameterType>

<rdfs:label>Direction</rdfs:label>

</process:Output>

<process:Output rdf:ID="Map">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&travel;#Map

</process:parameterType>

<rdfs:label>Map</rdfs:label>

</process:Output>

In this case study, the ontologies used in service descriptions are retrieved as the initial prepro-

cessing step. Then the user selects the inputs that s/he provides the values of and the outputs

s/he wants to find out. So the user will select, foodPreference which is a datatype property of

Dinner class, zipCode which is a data type property of Address class andfromAddress which

is an object property of Direction class as inputs. The input and output selections are shown

in Figure 5.8. Map and Direction classes are the outputs of this example. All these classes

and properties are defined in the “travel” ontology and can be found in Appendix B.

49

Figure 5.8: Input and output selection screen for the case study.

Thehappens axioms generated from those two web services are as follows:

axiom(happens(pFindDirection(Address, FromAddress, Map, Direction), T1, TN),

[

jpl_pFindDirection(Address, FromAddress, Map, Direction)

]).

axiom(happens(pFindRestaurant(FoodPreference, ZipCode, Address, RestaurantName), T1, TN),

[

jpl_pFindRestaurant(FoodPreference, ZipCode, Address, RestaurantName)

]).

Theinitiates axioms of those web services are created as follows:

axiom(initiates(pFindDirection(Address, FromAddress, Map,_),

known(map, Map), T),

[

holds_at(known(address, Address), T),

holds_at(known(fromAddress, FromAddress), T)

]).

axiom(initiates(pFindDirection(Address, FromAddress, _,Direction),

known(direction, Direction), T),

50

[

holds_at(known(address, Address), T),

holds_at(known(fromAddress, FromAddress), T)

]).

axiom(initiates(pFindRestaurant(FoodPreference, ZipCode, Address,_),

known(address, Address), T),

[

holds_at(known(foodPreference, FoodPreference), T),

holds_at(known(zipCode, ZipCode), T)

]).

axiom(initiates(pFindRestaurant(FoodPreference, ZipCode, _, RestaurantName),

known(restaurantName, RestaurantName), T),

[

holds_at(known(foodPreference, FoodPreference), T),

holds_at(known(zipCode, ZipCode), T)

]).

After selecting inputs and outputs, now the user can give values to the inputparameters.

Assume that, user is in Istanbul and stays at Swiss Hotel and wants to go to theclosest Italian

restaurant. But s/he does not know where it is and how to go to that restaurant from Swiss

Hotel. Therefore, the user also wants to get the map and direction between Swiss Hotel and

the closest Italian restaurant. According to these expectations, the user fills the input fields as

“italian” for foodPreference, “34544” for zipcode. FromAddress isan object type property

so the user should create an Address instance which is Swiss Hotel’s address in this case

as shown in Figure 5.10 and should select this created instance as fromAddress as shown in

Figure 5.9.

The initially axioms which define the initial state of world are created with inputs provided

by the user, as follows:

axiom(initially(known(fromAddress, addressofswisshotel)), []).

axiom(initially(known(foodPreference, italian)), []).

axiom(initially(known(zipCode, 34544)), []).

51

Figure 5.9: Giving the input values for the case study.

Figure 5.10: Creating an instance of “Address” class.

When the user clicks the run button, abductive theorem prover and dynamically created Prolog

codes including the above event calculus axioms are consulted via JPL. The query is generated

from the user specified outputs. Then the query is executed on the Prologsession to generate

the composition plan. The query for finding the closest preferred restaurant problem is as

follows:

abdemo([holds_at(known(map,Map), t), holds_at(known(direction,Direction), t)], R).

With the given inputs and outputs, ATP results in one composition plan which hasthe follow-

ing happens andbe f ore axioms.

happens(pFindDirection(’addressofmezzaluna’, addressofswisshotel,

’mapofmezzaluna’, ’directionfromswisshoteltomezzaluna’), t1, t2)

happens(pFindRestaurant(italian, 34544, ’Mezzaluna’, ’addressofmezzaluna’), t3, t4)

before(t2, t)

before(t4, t1)

52

Figure 5.11: Generated composition plan and its JUNG representation.

This plan shows us if we first call FindRestaurant with given inputs and then call FindDirec-

tion with given Swiss Hotel address input and generated Mezzaluna address output, we can

get the desired map and direction results. This plan is represented with JUNGas in Figure

5.11.

In this graphical representation we can see the input output parameters as labels on the edges.

But as we mentioned before, if the output is a class instance then only the nameof the instance

appears on the edges. We can see the detailed output results in the “OutputFields” tab. In

this case study, the map has two float type properties, namely latitude and longitude. If the

selected output is a Map type output, the user can see the visual map in a modalpanel appears

on the screen. In this map representation, we used Google Map API to showit in a detailed

manner as shown in Figure 5.12.

5.4 INTEGRATION WITH WORKFLOW FRAMEWORK

The event calculus has been used for automated web service composition problem before [29].

In that work, generating composition plans using generic web service composition templates

described in OWL-S has been investigated. In this thesis, generating composition plans using

only the user specified inputs and outputs is investigated. Both frameworks use abductive

event calculus in order to solve the automated web service composition problem. In this thesis,

we integrated both approaches under one application by adding one levelabstraction on these

two composition tools. The user can select which one s/he wants to use as a composition

53

Figure 5.12: Google Map API used for map representation.

Figure 5.13: The method selection screen.

approach (see Figure 5.13). If the user has a generic composition definition in a local file and

wants to explore actual web services and their return results according tosupplied inputs, s/he

selects the choice “Web Service Composition by Selecting Generic Composition Description

File” and clicks on next button. If the user wants to make web service composition by giving

a generic composition definition URL and wants to explore actual web services and their

return results according to supplied inputs, s/he selects the choice “Web Service Composition

by Giving Generic Composition Description URL” and clicks on next button. Finally, if

the user wants get composition plans and execution results using only inputs and outputs

without supplying any generic composition file or URL, s/he selects the choice “Web Service

Composition by Selecting Inputs & Outputs” and clicks on next button. According to the

selected composition choice, system goes on with our tool or the tool definedin [29].

The system architecture and the implementation details of our event calculus framework are

presented in this chapter. The input and output selection, supplying the input values and giving

54

constraints on the outputs are explained in detail. The web service descriptions and the inputs

and outputs supplied by the user are translated to the event calculus axioms.Then, abductive

theorem prover resolves the given query and returns the composition plan. The generated

plans are presented to the user with a graph which shows the necessary web services to fulfill

the user requirements and their input and output parameters using verticesand directed edges.

These steps are explained with the help of graphical user interfaces andthe event calculus

axioms. Furthermore, an illustrating case study is given in this chapter which isa composition

problem given in [63]. Finally, the integration of our system with the tool proposed in [29] is

presented.

55

CHAPTER 6

CONCLUSION

In this thesis, we have presented the usage of the event calculus as a method for the solution of

automated web service composition problem. Given only the inputs and outputs specified by

the user, our system can generate all possible composition plans with respect to the available

services in the repository. Users can also give constraints on outputs in order to narrow down

the created composition plans.

Web services are described using OWL-S in our system. The process model of OWL-S de-

scriptions have the necessary information to achieve the proposed automated web service

composition. The input, output, precondition and effect parameters of services described in

the process model are used in order to represent events and their effects in the problem do-

main. The profile model of OWL-S descriptions are commonly used for service discovery. In

our framework we assume all relevant services have been discoveredand their service descrip-

tions are in our local repository. The grounding part of OWL-S is used for service executions

which are simulated in this thesis.

In this thesis it is shown that, when a goal state is given, the event calculus can find proper

plans as web service compositions with the use of the abductive theorem prover. The event

calculus is used as a logical formalism to describe the actions (web services) and their effects.

The OWL-S descriptions of available web services in the repository are translated into corre-

sponding event axioms in Prolog language. In this translation phase, instead of using input

and output parameter names, parameter types are used with the help of semantic definition of

OWL-S. In a fully semantic environment as assumed in this thesis, web services have param-

eter types as ontology resources such as properties or classes defined by the corresponding

ontology files. In this approach, we can describe services via semantic meanings of input/out-

56

put parameters instead of their syntactic declarations. These ontology classes and properties

used in web service descriptions are presented to the user in the input/output selection phase.

The specified input values to the selected input types are then translated intoevent axioms

that define the initial state of the world. Likewise, selected output types by user are converted

to a goal state as conjunctions of event calculus predicates and given to the abductive plan-

ner. Then, the planner generates composition plans to reach the given goal state. In this plan

generation phase, the abductive planner communicates with the execution module to call the

actual web services and use the returned results in the remaining resolutionsteps. This exe-

cution part is simulated, due to the lack of those fully semantic web services published in the

Internet. The generated composition plans are presented to the user as a graphical representa-

tion for ease of understanding and the details of results corresponding touser selected outputs

are presented as form type fields.

In the planning and execution phases, the preconditions defined in the OWL-S service de-

scriptions are also considered. These preconditions are added to converted event axioms in

Prolog as preconditions of events on input parameters. If the preconditions of a service are

satisfied, then the service is executed and takes place in the plan. In additionto service defined

preconditions, users can give output constraints according to their needs in our system. After

selecting the output types, users can define constraints on outputs and also on the attributes

of outputs. While giving constraints, output types are taken into consideration and according

to those types, users can select constraint operations such as “less than” for int type output,

“before” for date type output or “starts with” for string type output. Theseconstraints are

added to event calculus axioms as postconditions on output parameters.

We also propose a complete event calculus framework for automated web service composi-

tions, by integrating our tool with a previous work done in [29]. In that research, abductive

capabilities of event calculus are also used to describe composition problemas a planning

problem. The difference is that, an OWL-S description which includes generic composition

model is provided to system, and actual web services are located to generate the composition

plan in that method. Users can enter the input values of found services and execution takes

after the planning. The integrated framework provides alternative composition approaches to

users and they select one of the given methods. If the user has a composition model and wants

to see the generated plan according to that model, he or she selects that option and goes on

with the tool proposed in [29]. If the user does not have a generic composition plan and wants

57

to get a composition plan with respect to user specified inputs and outputs, heor she selects

that option and uses our tool.

In this thesis, we showed that it is possible to represent web services which are described in

OWL-S, in the event calculus domain. In the event calculus, properties ofdynamic systems

which change over time can be expressed easily. Because of this facility ofthe event calculus,

concurrency and temporal ordering between events can be modeled easily. With the help

of abductive planning capability, the event calculus is a suitable solution forweb service

composition problem.

As a future work, the simulated web service execution module can be replaced with the actual

execution module. Also in our method, the execution of web services take place during the

planning process. This is not a problem for information-retrieving services such as the ones

we used in our case study, because execution phase is either during or after the planning

process does not matter. However, in world-altering services, there might be cases that the

user does not want to happen during composition steps. Thus, separating the planning and

execution parts from each other and letting the user select and execute generated compositions

after showing the alternative plans, is another future work.

The OWL-S descriptions of web services in the repository are translated into corresponding

event axioms in Prolog language. The performance of the system can be tested when there

are plenty of OWL-S descriptions in the repository.

When presenting the generated plans, the cost of the plans according to some benchmarks

such as, the number of services in the plan or the execution time of the plan, can be considered

and plans can be listed in an increasing order of cost. So, the user can see the plans with low

costs on the top. When the number of plans are too much, how they can be optimized and

presented to the user is another future work related with the presentation ofplans.

58

REFERENCES

1. Andrews, T., Curbera, F., Dholakia, H., and Goland, Y., Business Process
Execution Language for Web Services, Version
http://www.ibm.com/developerworks/library/specification/ws-bpel/, 2003.

2. Arkin A., Askary S., Fordin S., Jekeli W., Kawaguchi K., Orchard D., Pogliani S.,
Riemer K., Struble S., Takaci-Nagy P., Trickovic I., and Zimek S., Web Service
Choreography Interface (WSCI) 1.0. Published on the World Wide Web by BEA
Systems, Intalio, SAP, and Sun Microsystems, 2002.

3. Arkin, A., Business Process Modeling Language, Version 1.0, Business
Management Initiative, http://www.bpmi.org/, January 2009.

4. Au, T.C., Kuter, U., and Nau, D., Web Service Composition with Volatile
Information, International Semantic Web Conference, 2005.

5. Aydin, O., Automated Web Services Composition with the Event Calculus, M.S.
Thesis, METU, 2005.

6. Aydin, O., Cicekli, N.K., Cicekli, I., Automated Web Services Composition with
Event Calculus, Proceedings of the 8th International Workshop in \Engineering
Societies in the Agents World" (ESAW07), 2007.

7. Bachlechner, D., Lausen, H., Siorpaes, K., Fensel, D., Web Service Discovery-A
Reality Check, Third Annual European Semantic Web Conference ESWC'06, 2006.

8. Baresi, Luciano, and Elisabetta Di Nitto. Test and Analysis of Web Services.
Berlin [Germany] ; New York: Springer, pp. 266-303, 2007.

9. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-

59

http://www.ibm.com/developerworks/library/specification/ws-bpel/

Schneider, P.F., and Stein, L.A., OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004, W3C Technical Reports and Publications.

10. Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., and Dumas, M., Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web Services, Proc. of the
18th Int. Conf. on Data Engineering (ICDE'02), 2002.

11. Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web, Scientific
American Magazine, 2001.

12. Blum, A., and Furst, M., Fast Planning Through Planning Graph Analysis,
Proceedings of the 14th International Joint Conference on Artificial Intelligence -
IJCAI95, pp. 1636–1642, 1995.

13. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and
Orchard, D., Web Services Architecture, W3C Working Group Note 11 February
2004, W3C Technical Reports and Publications, http://www.w3.org/TR/ws-arch/,
January 2009.

14. Carnegie Mellon University OWL-S API,
http://projects.semwebcentral.org/projects/owl-s-api/, January 2009.

15. Casati, F., Ilnicki, S., and Jin, L., Adaptive and Dynamic Service Composition in
eFlow, Proceedings of 12th Int. Conference on Advanced Information Systems
Engineering(CAiSE), 2000.

16. Chen L., Yang X., Applying AI Planning to Semantic Web Services for
workflow Generation, Proc. of the 1st Intl. Conf. on Semantics, Knowledge and
Grid (SKG 2005).

17. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., Web Services
Description Language (WSDL) 1.1, W3C Note 15 March 2001, W3C Technical
Reports and Publications.

18. Curbera F., Goland Y., Klein J., Leymann F., Roller D, Thatte S., and

60

Weerawarana S., Business Process Execution Language for Web Service
(BPEL4WS) 1.0., Published on the World WideWeb by BEA Corp., IBM Corp. and
Microsoft Corp., August 2002.

19. D. Tidwell, "Web Services—The Web's Next Revolution," IBM tutorial, 29 Nov.
2000

20. DAML’s Bravo Air Process Example for OWL-S 1.1,
http://www.daml.org/services/owl-s/1.1/BravoAirProcess.owl, January 2009.

21. DAML’s Bravo Air Profile Example for OWL-S 1.1,
http://www.daml.org/services/owl-s/1.1/BravoAirProfile.owl, January 2009.

22. David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew
McDermott, Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika
Solanki, Naveen Srinivasan, and Katia Sycara. Bringing Semantics to Web Services:
The OWL-S Approach. In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC 2004), San
Diego, California, USA, 2004. URL: http://www.daml.org/services/owl-s/OWL-S-
SWSWPC2004-CameraReady.doc.

23. Davulcu, H., Kifer, M., Pokorny, L., Ramakrishnan, C.R., Ramakrishnan, I.V.,
and Dawson, S., Modelling and Analysis of Interactions in Virtual Enterprises,
RIDE, pp. 12-18, 1998.

24. Dejing Dou, Drew McDermott and Peishen Qi. Ontology Translation on the
Semantic Web , Journal on Data Semantics II, Springer-Verlag Lecture Notes in
Computer Science no. 3360, Springer-Verlag, pp. 35-57 , 2005.

25. Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework
WSMF. Electronic Commerce Research and Applications, 1:113–137(25), Summer
2002. URL: http://www.swsi.org/resources/wsmf-paper.pdf.

26. Dustdar, S., and Schreiner, W., A Survey on Web Services Composition, Int. J.
Web Grid Serv. 1 (1), pp. 1–30, 2005.

61

http://www.swsi.org/resources/wsmf-paper.pdf
http://www.springerlink.com/content/105633/?p=23204e70d86f4e8a8ae96899c42dc66d&pi=0
http://www.springerlink.com/content/105633/?p=23204e70d86f4e8a8ae96899c42dc66d&pi=0
http://www.springerlink.com/content/n4vyd6a1u856/?p=23204e70d86f4e8a8ae96899c42dc66d&pi=0
http://www.springerlink.com/content/?Author=Peishen+Qi
http://www.springerlink.com/content/cedad9pnjt7v1773/?p=bdb602406eae429aad0f943743480560&pi=1
http://www.springerlink.com/content/cedad9pnjt7v1773/?p=bdb602406eae429aad0f943743480560&pi=1
http://www.springerlink.com/content/?Author=Peishen+Qi
http://www.springerlink.com/content/?Author=Drew+McDermott
http://www.springerlink.com/content/?Author=Dejing+Dou
http://www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraReady.doc
http://www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraReady.doc

27. eCl@ss, The International Standard for the Classification of Products and
Services, http://www.eclass-online.com/, January 2009.

28. Eshghi, K., Abductive Planning with Event Calculus, Proceedings of the 5th
International Conference and Symposium on Logic Programming, MIT Press, pp.
562--579, 1988.

29. Esra Kırcı, Automatic Composition of Semantic Web Services with the
Abductive Event Calculus, Masters Thesis, METU, September 2008

30. Fikes, R. E. and Nilsson, N. J., STRIPS: a new approach to the application of
theorem proving to problem solving, Artificial Intelligence, 2(3-4): pages 189-208,
1971.

31. Fujii, K., and Suda, T., Component Service Model with Semantics (CoSMoS): A
new Component Model for Dynamic Service Composition, Proceedings of
Applications and the Internet Workshops (SAINTW’04), pp. 348-355, 2004.

32. Gardner, T., An Introduction to Web Services, Ariadne Issue 29,
http://www.ariadne.ac.uk/issue29/gardner, January 2009.

33. Garofalakis, J., Panagis, Y., Sakkopoulos, E., and Tsakalidis, A., Web Service
Discovery Mechanisms: Looking for a Needle in a Haystack, International
Workshop on Web Engineering, 2004.

34. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D., PDDL: The Panning Domain Definition Language,
AIPS-98 Planning Committee, 1998.

35. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F.,
Karmarkar, A., and Lafon, Y., SOAP Version 1.2 Part 1: MessagingFramework
(Second Edition), W3C Recommendation 27 April 2007, W3C Technical Reports and
Publications, http://www.w3.org/TR/soap12-part1/, January 2009.

62

36. Haas, H., and Brown, A., Web Services Glossary, W3C Working Group Note 11
February 2004, W3C Technical Reports and Publications,
http://www.w3.org/TR/ws-gloss/, January 2009

37. Huang, Y., and Walker, D.W., Extensions to Web Service Techniques for
Integrating Jini into a Service-Oriented Architecture for the Grid, ICCS 2003,
LNCS2659, pp. 254-263, 2003.

38. Hull, R., Hill, M., and Berardi, D., Semantic Web Services Usage Scenario: e-
Service Composition in a Behavior based Framework,
http://www.daml.org/services/use-cases/language/, January 2009

39. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
Swrl: A semantic web rule language combining owl and ruleml, 2003. Available at
http://www.daml.org/2003/11/swrl/.

40. JPL - Java Interface to Prolog,
http://www.swiprolog.org/packages/jpl/java_api/index.html, January 2009.

41. JUNG - Java Universal Network/Graph Framework, http://jung.sourceforge.net/,
January 2009.

42. Karagoz, F., Application of Schema Matching Methods to Semantic Web Service
Discovery, M.S. Thesis, Dept. of Computer Engineering, METU, Ankara, 2006.

43. Kautz, H., and Selman, B., Planning as satisfiability, In Proceedings of the 10th
European Conference on Artificial Intelligence, 359–363. Wiley, 1992.

44. KIF. Knowledge Interchange Format: Draft proposed American National
Standard (dpans). Technical Report 2/98-004, ANS, 1998. Also at
http://logic.stanford.edu/kif/dpans.html.

45. Kowalski, R. A., and Sergot, M.J., A Logic-Based Calculus of Events, New
Generation Computing, Vol. 4(1), pp. 67-95, 1986.

63

http://logic.stanford.edu/kif/dpans.html
http://www.swiprolog/
http://www.daml.org/2003/11/swrl/

46. Kuster, U., Stern, M., and Konig-Ries, B., A Classification of Issues and
Approaches in automatic Service Composition, 1st Int. Workshop on Engineering
Service Compositions (WESC05) at ICSOC, 2005.

47. Kuter, U., Sirin, E., Parsia, B., Nau, D., and Hendler, J., Information Gathering
During Planning for Web Service Composition, Proc. of ICAPS-P4WGS 2004,
2004.

48. Leymann, F., Web Service Flow Language (WSFL 1.0), IBM Software
Group, http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001.

49. M. Ghallab et al. PDDL-The Planning Domain Definition Language V. 2.
Technical Report, report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control, 1998.

50. Mao, Z.M., Brewer, E.A., Katz, R.H.: Fault-tolerant, scalable, wide-area internet
service composition. Technical Report UCB//CSD-01-1129, University of Califor-
nia, Berkeley, USA (2001)

51. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and
Sycara, K., OWL-S: Semantic Markup for Web Services, W3C Member Submission
22 November 2004, Acknowledged Member Submissions to W3C,
http://www.w3.org/Submission/OWL-S/, January 2009

52. Maryland Information and Network Dynamics Lab, Semantic Web Agents
Project (MindSwap) OWL-S API, http://www.mindswap.org/2004/owl-s/api/,
January 2009.

53. McCarthy, J., Situations, Actions and Casual Laws, Stanford Artificial
Intelligence Project: Memo 2, 1963.

54. McDermott, D., Estimated-Regression Planning for Interactions with Web
Services, Sixth International Conference on AI Planning and Scheduling, AAAI

64

Press, 2002.

55. McIlraith, S. A., and Son, T.C., Adapting Golog for Composition of Semantic
Web Services, Proceedings of Eighth International Conference on Principles of
Knowledge Representation and Reasoning, pp. 482-493, 2002.

56. Miller, R., and Shanahan, M., Some Alternative Formulations of the Event
Calculus, Computational Logic: Logic Programming and Beyond, Springer-Verlag,
pp. 452-490, 2002.

57. Mithun Sheshagiri, "Automatic Composition and Invocation of Semantic Web
Services", MastersThesis, UMBC, August 2004

58. Mueller, Erik T., Commonsense Reasoning, pp. 42-43, 2006.

59. Mueller, R., Greiner, U., and Rahm, E., Agentwork: A Workflow System
Supporting Rule-Based Workflow Adaptation, Journal of Data and Knowledge
Engineering, 2004.

60. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., and Yaman, F.,
SHOP2: An HTN Planning System, JAIR Volume 20, pp. 379–404, 2003.

61. North American Industry Classification System, NAICS, http://www.census.gov/
epcd/www/naics.html, January 2009.

62. OASIS, Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org/, January 2009.

63. Oh, S.C., Lee, D., and Kumara, S., A Comparative Illustration of AI Planning-
based Web Service Composition, ACM SIGecom Exchanges, 5(5), pp. 1-10, 2006.

64. Peer, J., A PDDL Based Tool for Automatic Web Service Composition, PPSWR’
04: Proceedings of Second International Workshop on Principles and Practice of
Semantic Web Reasoning, pp. 149–163, 2004.

65

http://ebiquity.umbc.edu/person/html/Mithun/Sheshagiri/
http://ebiquity.umbc.edu/person/html/Mithun/Sheshagiri/

65. Peer, J., Web Service Composition as AI Planning - a Survey, Technical report,
Univ. of St. Gallen, March 2005.

66. Pistore, M., Bertoli, P., Barbon, F., Shaparau, D., and Traverso, P., Planning and
Monitoring Web Service Composition, Proc. of the 14th Int. Conf. on Automated
Planning and Scheduling (ICAPS 2004), 2004.

67. Process Ontology for OWL-S 1.1,
http://www.daml.org/services/owls/1.1/Process.owl, January 2009.

68. Rao, J., and Su, X., A Survey of Automated Web Service Composition Methods,
Proceedings of First International Workshop on Semantic Web Services and Web
Process Composition, pp 43-54, 2004.

69. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., A Scalable
Content-Addressable Network, Proceedings of ACM SIGCOMM`01 Conference, pp.
161–172, 2001.

70. Rouached M., Perrin O., Godart C., Towards formal verification of web service
composition, 4th Intl. Conference on Business Process Management, BPM 2006.

71. Rouached, M., and Godart, C., An Event Based Model for Web Service
Coordination, 2nd International Conference on Web Information Systems and
Technologies - WEBIST 2006, 2006.

72. Rowstron, A., and Druschel, P., Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems, Lecture Notes In
Computer Science, 2001.

73. Seppo Törma, Jukka Villstedt, Ville Lehtinen, Ian Oliver, Vesa Luukkala.
Semantic Web Services — A Survey. Helsinki University of Technology, Laboratory
of Software Technology, Helsinki, Finland, 2008

66

http://www.daml.org/services/owls/

74. Shanahan, M.P., An Abductive Event Calculus Planner, The Journal of Logic
Programming, Vol. 44(1-3), pp. 207--240, 2000.

75. Shanahan, M.P., Event Calculus Planning Revisited, Proceedings 4th European
Conference on Plannning (ECP 97), Springer-Verlag Lecture Notes in Artificial
Intelligence no. 1348, pages 390-402, 1997.

76. Shanahan, M., Representing Continuous Change in the Event Calculus,
Proceedings of ECAI'90 Conference, Stockholm, pp. 598-603, 1990.

77. Shanahan, M.P., The Event Calculus Explained, Artificial Intelligence Today,
Springer-Verlag Lecture Notes in Artificial Intelligence no. 1600, Springer-Verlag,
pp. 409--430, 1999.

78. Sirin E., Combining Description Logic Reasoning with AI Planning for
Composition of Web Services, PhD Thesis, Faculty of the Graduate School of the
University of Maryland, , 2006.

79. Sirin E., Hendler J., Parsia B. Semi-automatic Composition of Web Services
using Semantic Descriptions. Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS2003, 2002.

80. Sirin E., Parsia, B., Wu, D., Hendler, J., and Nau, D., HTN planning for web
Service Composition Using SHOP2, Journal of Web Semantics, pp. 377–396, 2004.

81. Srinivasan, N., Paolucci, M., and Sycara, K., An Efficient Algorithm for
OWL-S Based Semantic Search in UDDI, Lecture Notes in Computer Science, 2005.

82. Stathis K., Lekeas G., Kloukinas C., Competence checking for the global e-
service society using games, In Proceedings of Engineering Societies in the Agents
World (ESAW06), G. O'Hare, M. O'Grady, O. Dikinelli, and A Ricci (Eds).

83. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H., Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, Proceedings of
ACM SIGCOMM’01 Conference, pp. 149–160, 2001.

67

84. Su, X., and Rao, J., A Survey of Automated Web Service Composition Methods,
In Proceedings of First International Workshop on Semantic Web Services and Web
Process Composition, SWSWPC 2004, pp. 43-54, 2004.

85. Thatte, S., XLANG: Web Services for Business Process Design, Microsoft
Corporation, http://www.gotdotnet.com/team/xmlwsspecs/xlang-c/default.htm,
2001.

86. UDDI, Universal Description, Discovery and Integration, The UDDI Technical
White Paper, September 2000,
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf, January 2009.

87. Verma, K., Sheth, A., Miller, J., and Aggarwal, R., Semantic Web Services Usage
Scenario: Dynamic QoS based Supply Chain, http://www.daml.org/services/use-
cases/architecture/, January 2009.

88. Web Ontology Language,
http://en.wikipedia.org/wiki/Web_Ontology_Language, January 2009.

89. Wilk, J., Russo, A., and Cunningham, M.J., Dynamic Workflow Pulling the
Strings, Distinguished Project (MEng), Department of Computing, Imperial Collage
London, 2004.

90. WonderWeb OWL Ontology Validator,
http://www.mygrid.org.uk/OWL/Validator/, January 2009.

91. Yolum P., Singh M., Reasoning About Commitments in the Event Calculus: An
Approach for Specifying and Executing Protocols, Annals of Mathematics and AI,
Vol:42(1-3), 2004.

92. Zhang, J.F., and Kowalczyk, R., Agent-based Dis-graph Planning Algorithm for
Web Service Composition, International Conference on Computational Inteligence
for Modelling Control and Automation and International Conference on Intelligent
Agents Web Technologies and International Commerce (CIMCA'06), pp. 258, 2006.

68

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

93. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic
web services. In: Proc. of the 2003 Int. Conf. on Web Services (ICWS'03), Las
Vegas, NV, USA. (2003)

69

APPENDIX A

ABDUCTIVE THEOREM PROVER

The Abductive Theorem Prover [5] used in this thesis is provided below.

abduct(GL, RL) <- abduct(GL, [], RL, []).

abduct([], RL,RL,N).

abduct([holdsAt(F,T) | GL], CurrRL, RL, NL) <-

not(F=neg(_)), axiom(initially(F), AL),

irresolvable(clipped(0,F,T), CurrRL, NL),

append(AL, GL, NewGL),

abduct(NewGL, CurrRL, RL, [clipped(0, F, T) | NL]).

abduct([holdsAt(neg(F), T) | GL], R1, R3, N1, N4) <-

axiom(initially(neg(F)), AL),

irresolvable(declipped(0, F, T), CurrRL, NL),

append(AL, GL, NewGL),

abduct(NewGL, CurrRL, RL, [declipped(0, F, T) | NL]).

abduct([holdsAt(F, T) | GL], CurrRL, RL, NL) <-

not(F=neg(_)), axiom(happens(E, T1, T2), GLHappens),

axiom(initiates(E, F, T1), GLInitiates),

consistent(happens(E, T1, T2), CurrRL, NL, R1),

consistent(<(T2, T), R1, NL, NewRL),

irresolvable(clipped(T1, F, T), NewRL, NL),

append(GLInitiates, GL, GL1), append(GLHappens, GL1, NewGL),

abduct(NewGL, NewRL, RL, [clipped(T1, F, T) | NL]).

abduct([holdsAt(neg(F), T) | GL], CurrRL, RL, NL) <-

axiom(happens(E, T1, T2), GLHappens),

axiom(terminates(E, F, T1), GLTerminates),

consistent(happens(E, T1, T2), CurrRL, NL, R1),

70

consistent(<(T2, T), R1, NL, NewRL),

irresolvable(declipped(T1, F, T), NewRL, NL),

append(GLTerminates, GL, GL1), append(GLHappens, GL1, NewGL),

abduct(NewGL, NewRL, RL, [declipped(T1, F, T) | NL]).

abduct([G | GL], CurrRL, RL, NL) <-

abducible(G), axiom(G, AL),

consistent(G, CurrRL, NL, NewRL),

append(AL, GL, NewGL),

abduct(NewGL, NewRL, RL, NL).

abduct([G | GL], CurrRL, RL, NL) <-

not(abducible(G)), axiom(G, AL),

append(AL, GL, NewGL),

abduct(NewGL, CurrRL, RL, NL).

abducible(<(_, _)).

abducible(happens(_, _, _)).

71

APPENDIX B

TRAVEL ONTOLOGY

<?xml version="1.0" ?>

- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/travel.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/travel.owl">

- <owl:Ontology rdf:about="">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

An example ontology for tutorial purposes.

</rdfs:comment>

<owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

1.0 by Holger Knublauch (holger@smi.stanford.edu)

</owl:versionInfo>

</owl:Ontology>

- <owl:Class rdf:ID="Accommodation">

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

A place to stay for tourists.

</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="Activity" />

<owl:Class rdf:ID="Direction" />

- <owl:Class rdf:ID="BunjeeJumping">

- <rdfs:subClassOf>

<owl:Class rdf:ID="Adventure" />

72

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Address" />

- <owl:Class rdf:ID="Sightseeing">

- <owl:disjointWith>

<owl:Class rdf:ID="Sports" />

</owl:disjointWith>

- <owl:disjointWith>

<owl:Class rdf:ID="Relaxation" />

</owl:disjointWith>

- <owl:disjointWith>

<owl:Class rdf:about="#Adventure" />

</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Activity" />

</owl:Class>

- <owl:Class rdf:about="#Sports">

<rdfs:subClassOf rdf:resource="#Activity" />

- <owl:disjointWith>

<owl:Class rdf:about="#Adventure" />

</owl:disjointWith>

- <owl:disjointWith>

<owl:Class rdf:about="#Relaxation" />

</owl:disjointWith>

<owl:disjointWith rdf:resource="#Sightseeing" />

</owl:Class>

- <owl:Class rdf:ID="Surfing">

<rdfs:subClassOf rdf:resource="#Sports" />

</owl:Class>

- <owl:Class rdf:ID="Hiking">

<rdfs:subClassOf rdf:resource="#Sports" />

</owl:Class>

- <owl:Class rdf:ID="Dinner">

<rdfs:subClassOf rdf:resource="#Activity" />

</owl:Class>

- <owl:Class rdf:ID="Pub">

<rdfs:subClassOf rdf:resource="#Dinner" />

</owl:Class>

73

<owl:Class rdf:ID="Map" />

- <owl:Class rdf:ID="Museums">

<rdfs:subClassOf rdf:resource="#Sightseeing" />

</owl:Class>

- <owl:Class rdf:ID="Sunbathing">

- <rdfs:subClassOf>

<owl:Class rdf:about="#Relaxation" />

</rdfs:subClassOf>

</owl:Class>

- <owl:Class rdf:about="#Relaxation">

<rdfs:subClassOf rdf:resource="#Activity" />

<owl:disjointWith rdf:resource="#Sports" />

<owl:disjointWith rdf:resource="#Sightseeing" />

- <owl:disjointWith>

<owl:Class rdf:about="#Adventure" />

</owl:disjointWith>

</owl:Class>

- <owl:Class rdf:ID="Safari">

- <rdfs:subClassOf>

<owl:Class rdf:about="#Adventure" />

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Sightseeing" />

</owl:Class>

- <owl:Class rdf:ID="Yoga">

<rdfs:subClassOf rdf:resource="#Relaxation" />

</owl:Class>

- <owl:Class rdf:ID="Hotel">

<rdfs:subClassOf rdf:resource="#Accommodation" />

- <owl:disjointWith>

<owl:Class rdf:ID="BedAndBreakfast" />

</owl:disjointWith>

- <owl:disjointWith>

<owl:Class rdf:ID="Campground" />

</owl:disjointWith>

</owl:Class>

- <owl:Class rdf:about="#BedAndBreakfast">

<owl:disjointWith rdf:resource="#Hotel" />

74

- <owl:disjointWith>

<owl:Class rdf:about="#Campground" />

</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Accommodation" />

</owl:Class>

- <owl:Class rdf:ID="Restaurant">

<rdfs:subClassOf rdf:resource="#Dinner" />

</owl:Class>

- <owl:Class rdf:about="#Campground">

<rdfs:subClassOf rdf:resource="#Accommodation" />

<owl:disjointWith rdf:resource="#BedAndBreakfast" />

<owl:disjointWith rdf:resource="#Hotel" />

</owl:Class>

- <owl:Class rdf:about="#Adventure">

<rdfs:subClassOf rdf:resource="#Activity" />

<owl:disjointWith rdf:resource="#Sports" />

<owl:disjointWith rdf:resource="#Sightseeing" />

<owl:disjointWith rdf:resource="#Relaxation" />

</owl:Class>

- <owl:ObjectProperty rdf:ID="toAddress">

<rdfs:domain rdf:resource="#Direction" />

<rdfs:range rdf:resource="#Address" />

</owl:ObjectProperty>

- <owl:ObjectProperty rdf:ID="address">

<rdfs:range rdf:resource="#Address" />

- <rdfs:domain>

- <owl:Class>

- <owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Activity" />

<owl:Class rdf:about="#Accommodation" />

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

- <owl:ObjectProperty rdf:ID="fromAddress">

<rdfs:domain rdf:resource="#Direction" />

<rdfs:range rdf:resource="#Address" />

75

</owl:ObjectProperty>

- <owl:DatatypeProperty rdf:ID="latitude">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />

<rdfs:domain rdf:resource="#Map" />

</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="longitude">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />

<rdfs:domain rdf:resource="#Map" />

</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="foodPreference">

<rdfs:domain rdf:resource="#Dinner" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="street">

<rdfs:domain rdf:resource="#Address" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="hotelName">

<rdfs:domain rdf:resource="#Hotel" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</owl:DatatypeProperty>

- <owl:DatatypeProperty rdf:ID="restaurantName">

<rdfs:domain rdf:resource="#Restaurant" />

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

</owl:DatatypeProperty>

- <owl:FunctionalProperty rdf:ID="city">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

<rdfs:domain rdf:resource="#Address" />

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty" />

</owl:FunctionalProperty>

- <owl:FunctionalProperty rdf:ID="zipCode">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

<rdfs:domain rdf:resource="#Address" />

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty" />

</owl:FunctionalProperty>

</rdf:RDF>

76

