ABDUCTIVE PLANNING APPROACH FOR AUTOMATED WEB SERVICE
COMPOSITION USING ONLY USER SPECIFIED INPUTS AND OUTPUTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ESAT KAAN KUBAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

FEBRUARY 2009

Approval of the thesis:

ABDUCTIVE PLANNING APPROACH FOR AUTOMATED WEB SERVICE
COMPOSITION USING ONLY USER SPECIFIED INPUTS AND OUTPUTS

submitted byESAT KAAN KUBAN in partial fulfillment of the requirements for the degree
of

Master of Science in Computer Engineering Department, Middle EasfTechnical Uni-
versity by,

Prof. Dr. CanarOzgen
Dean, Graduate School bfatural and Applied Sciences

Prof. Dr. Muslim Bozyit
Head of Departmenomputer Engineering

Assoc. Prof. Dr. Nihan Kesim Cicekili
SupervisorDepartment of Computer Engineering

Examining Committee Members:

Assoc.Prof.Dr. Ali D@ru
Computer Engineering Dept., METU

Assoc.Prof.Dr. Nihan Kesim Cigekli
Computer Engineering Dept., METU

Asst.Prof.Dr. Pinar Senkul
Computer Engineering Dept., METU

Asst.Prof.Dr. Aysu Betin Can
Information Systems Dept., METU

Assoc.Prof.Dr. Ahmet Cosar
Computer Engineering Dept., METU

Date:

| hereby declare that all information in this document has been obt&ned and presented
in accordance with academic rules and ethical conduct. | also declarthat, as required
by these rules and conduct, | have fully cited and referenced all ntarial and results that

are not original to this work.

Name, Last Name: ESAT KAAN KUBAN

Signature

ABSTRACT

ABDUCTIVE PLANNING APPROACH FOR AUTOMATED WEB SERVICE
COMPOSITION USING ONLY USER SPECIFIED INPUTS AND OUTPUTS

Kuban, Esat Kaan
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Nihan Kesim Cicekli

February 2009, 76 pages

In recent years, web services have become an emerging technologyniaunication and
integration between applications in many areas such as business to b(BR#ssr business
to commerce (B2C). In this growing technology, it is hard to compose welxssrmanually
because of the increasing number and compexity of web services.fdtegr@utomation of
this composition process has gained a considerable amount of populadtymated web
service composition can be achieved either by generating the compositiodyplamically
using given inputs and outputs, or by locating the correct services listreat process model
is given. This thesis investigates the former method which is dynamicly gergethércom-
position by using the abductive planning capabilities of the Event CalculusntEalculus
axioms in Prolog language, are generated using the available OWL-S wetesgescrip-
tions in the service repository, values given to selected inputs from otgslaged by those
semantic web services and desired output types selected again fromdlogims. Abductive
Theorem Prover which is the Al planner used in this thesis, generatesosdop plans and
execution results according to the generated event calculus axioms. thesis, it is shown
that abductive event calculus can be used for generating web secdo®osition plans au-

tomatically, and returning the results of the generated plans by executingd¢bssary web

iv

services.

Keywords: Automatic Web Service Composition, OWL-S, Abductive Evealt@us, Se-

mantic Web Services

Oz

SADECE KULLANICI TARAFINDAN BEL IRTILEN GIRDILER VE CIKTILAR
KULLANILARAK ANLAMSAL ORUN SERVISLERININ OTOMATIK BIRLESIMINE
CIKARIMSAL PLANLAMA YAKLASIMI

Kuban, Esat Kaan
Yiiksek Lisans, Bilgisayar Ehendislgi Bolum

Tez Yoneticisi : Dog Dr. Nihan Kesim Cicekli

Subat 2009, 76 sayfa

Son yillarda,6riin &1 servislerilsletmedenisletmeye velsletmeden Tiketiciye gibi birgok
alandaki uygulamalar arasinda iletisim viglmlesme icin ortaya cikan bir teknoloji oldu. Bu
buylyen teknolojide, artaiiriin &1 servisi sayisi ve karmasigliyizindenorin a1 servis-
lerinin elle birlesimi olduk¢a zordur. Dolayisiyla, bu birlesim isleminin otomagkrilmesi
kayda d@er bir pojiilerlik kazandi. Otomatikriin a1 servis birlesimi, ya birlesim planinin
verilen girdi ve c¢iktilar kullanilarak dinamik bir sekilde yaratiimasiyla, yadet sire¢ mod-
eli verildiyse d@yru servisleri bularak basarilabilir. Bu tez, olay cebirinin ¢ikarimsteyek-
leri kullanilarak birlesim planinin dinamik olusturulmasi olan ilk metodu araskiakr.
Prolog dilindeki olay cebiri aksiyomlari, servis havuzundaki mevcut G8vriin &1 servis
tanimlari, bu havuzdaki servisler tarafindan kullanilan ontolojiler arasis€égiten girdilere
verilen déerler ve yine bu ontolojiler arasindan secilmis istenen ¢ikti tipleri kullaaklar
olusturulur. Bu tezde kullanilan yapay zeka planlayicisi olan Cikarinesaemispatlayici
birlesim planlarini ve uygulama sonuclaringman bu olay cebiri aksiyomlarinég olusturur.

Bu tezdepriin & servislerinin birlesim planlarinin otomatik olusturulmasinda ve olusturulan

Vi

olay cebirinin kullanilabilecgi gosterilmistir.

Anahtar Kelimeler: OtomatilOriin Servisi Birlesimi, OWL-S, Cikarimsal Olay Cebiri, An-

lamsalOriin Aglari

Vii

Dedicated to my parents.

viii

ACKNOWLEDGMENTS

I wish to thank all those who helped me. Without them, | could not have comlatethesis.

I would like to acknowledge Assoc. Prof. Dr. Nihan Kesim Cicekli what anly supported

me as my supervisor but also encouraged and guided me throughout neyrac@dogram.

| would like to thank my committee members Assoc.Prof.Dr. Aligbg Asst.Prof.Dr. Pinar
Senkul, Dr. Aysu Betin Can and Assoc.Prof.Dr. Ahmet Cosar for fhealuable comments

to improve this thesis.

| especially want to thank my family for their love, support and motivation. Ittarthank

my friends for their endless supports.

| also want to thank TUBITAK-BIDEB for their financial support.

TABLE OF CONTENTS

ABSTRACT e e v
OZ . . e Vi
DEDICATON e e e viii
ACKNOWLEDGMENTS e e e e e e iX
TABLE OF CONTENTS e e e s e e e e X
LISTOFFIGURES s e e e e Xii
CHAPTERS
1 INTRODUCTION s s e e e e s 1
2 BACKGROUND & RELATEDWORK 4
2.1 WEB SERVICES 4
2.2 OWL-S e 6
2.3 WEB SERVICECOMPOSITION 7
2.3.1 AUTOMATED WEB SERVICE COMPOSITION 8

2.3.1.1 WORKFLOW BASED COMPOSITION TECH-
NIQUES . . o v oo 8

2.3.1.2 Al BASED COMPOSITION TECHNIQUES 9
2.4 EVENT CALCULUS 13
2.5 ABDUCTIVE EVENT CALCULUS 15

3 AUTOMATED WEB SERVICE COMPOSITION WITH THE EVENT CAL-
CULUS . . . 18

3.1 REPRESENTATION OF WEB SERVICES IN THE EVENT CAL-
CULUS . . . 18

3.1.1 TRANSLATION OF WEB SERVICE DESCRIPTIONS . 18
3.1.2 TRANSLATION OF INPUTS 21
3.1.3 TRANSLATION OF QUTPUTS 22

3.2 PLAN GENERATIONWITHATP 22

3.3 EXAMPLE 24
4 PRECONDITIONS AND OUTPUT CONSTRAINTS 30
4.1 PRECONDITIONS e 30
4.2 USER DEFINED OUTPUT CONSTRAINTS 34
5 IMPLEMENTATION e e 38
5.1 TECHNOLOGIES 38
5.2 SYSTEM ARCHITECTURE 39
5.2.1 INTERACTIONWITHGUI 40
5.2.2 COMMUNICATIONVIAJPL 42
5.2.3 REPRESENTATION OF RESULTS 46
5.3 CASE STUDY: FINDING THE CLOSEST PREFERRED RESTAU-
RANT . . 48
5.4 INTEGRATION WITH WORKFLOW FRAMEWORK 53
6 CONCLUSION 56
REFERENCES 69
APPENDICES
A ABDUCTIVE THEOREMPROVER 70
B TRAVELONTOLOGY e e 72

Xi

LIST OF FIGURES

FIGURES
Figure 2.1 Web Service Framework. 5
Figure 2.2 Essential event calculus predicates. 14
Figure 5.1 System Architecture. 39
Figure 5.2 Input and output selectionwindow. 40
Figure5.3 InputValuesTab. e 42
Figure 5.4 Output Constraints Tab. 42
Figure 5.5 CreatelnstanceTab. 43
Figure 5.6 Graphical representation of generated composition plans. 47
Figure 5.7 Detailed representation of outputresults. 47
Figure 5.8 Input and output selection screen for the case study. 50
Figure 5.9 Giving the input values for the casestudy. 52
Figure 5.10 Creating an instance of “Address”class. 52
Figure 5.11 Generated composition plan and its JUNG representation. 53
Figure 5.12 Google Map API used for map representation. 54
Figure 5.13 The method selectionscreen. 54

Xii

CHAPTER 1

INTRODUCTION

Web services are business functions that operate over the Intern@atf@m and program-
ming language independent interfaces. With the increase in the Inteaugt, Uke number of
created and published web services also increase every day. Todagfitite companies do
business with their partners, and supply customers’ needs using witesefT his is because
of the fact that, integration and interaction among business applicationsecaone easily
using web services. However, in this growing technology, finding theecbservices, satis-
fying user needs and integrating more services in order to serve agguspone business are

the major dificulties besides their advantages.

Although web services are very generic, there are three specificastinthat are widely
used as the core of web services technology. The first is the Web &sDascription Lan-
guage (WSDL) [17], a format for specifying the operations that a veebice publishes, the
transport mechanisms through which the service publishes these opgratichwhere the
service is located. The next is SOAP [35], a protocol that specifiedriingtisre of a message
in XML. The last of these is The Universal Description Discovery artédration (UDDI)

[86], a platform free registry standard used to publish and discoveices over the Internet.
Unfortunately, even with such technologies, the integration of serviceslefignds largely

on human experts.

In such a dynamic and flourishing domain, the primary attention is shifted freating new
web services to re-using and composing existing services in order tovdrsuew functional-
ities. Sometimes, no single web service can satisfy the user requiremenishligitiations,
more than one web service should be combined and executed to achiegeifeedpgoal.

Given a repository of service descriptions and a service requestginsevvice composition

problem involves finding multiple web services that can be put together immact@rder of
execution to obtain the desired service [6]. The composition plan can beedadanually
using static service declarations in the composition plan. This approachpsomgservices
manually, has some drawbacks such that the amount of available webeseaxéctoo much
and they can be changed in both operational and semantic manners ortetyrgeéeted on
the fly. The systems using manual composition techniques should keep tizsddoservices
to be informed the services’ current states. In such a dynamic world, gtipossible to

achieve this. Thus, automation of web services composition process isidaie.

Because of this emerging need for web services composition, thereraeelaoguages pro-
posed to describe the composition such as BPML [3], IBM’'s Web Serktms Language
(WSFL) [37, 48], Microsoft's XLANG [85], and Business ProcessEution Language for
Web Services (BPEL4WS) [1]. These languages are based on S®@8BL, and UDDI.
Web service composition, on the other hand, requires more dynamic fuaidyoand se-
mantic information than SOAP, WSDL, and UDDI can provide. These laregiate used in
manual service compositions. They do not generate a dynamic composittacgdrdinate

the created manual composition plan from the point of data and control flow.

In spite of all these approaches, automated web service composition is stifll gitoblem.
One approach in this context that has been proposed to accomplishrwiele semposition is

Al planning. In Al planning domain, planning is seen as finding a set ofities to achieve a
certain goal. There agtatesin this context, describing the world at a certain point in time and
actions having dfects on the world by changing these states. In Al planning methodology, in
order to solve a planning problem; a description of possible actions, dptestof the initial
state of the world and a description of a desired goal state should be @dowdeb services
can now be specified in this planning context as actions, inputs and oufpuebservices
can be regarded as preconditions affdas of actions, user specified inputs and outputs can
describe the initial state of the world and the goal state, respectively. Andllfblanning can

be used to generate a composite service (plan) that achieves the gatefige automation

of web services composition can be done either generating the plan autdiypatictinding

the correct services if an abstract process model is given [68]idhésis we are concerned

with creating composition plan automatically without any abstract model is given.

There is a considerable amount of work to solve automated web servic@siimp problem

using Al planning methods [47, 54, 55, 63, 65, 68]. The techniquesdated in these re-
searches are using the situation calculus, the Planning Domain Definitionaga@PDDL),
rule-based planning, the theorem proving and others. As mentioned jnijé®vent calculus

[16] is one of the suitable techniques for the automated composition of wabeser

In this thesis our aim is to contribute the research along this direction by girmpa formal
framework that shows how semantic web services are represented uettiealculus frame-
work to produce user specific composition plans for the requested gbiaésweb services
are described using OWL-S which provides the semantic information abouites’ process
models. To generate composition plans as a result of abductive planrenggriantic web
services are translated into event calculus axioms using their input, outpconglition and
effect parameters defined in their OWL-S descriptions. In the event caltalugwork, in-
stead of parameter names of web services, ontological parameter tgpiestéal by OWL-S
definitions are used in order to prevent the problem of matching the/oaptit parameters
to find web services in a given repository. The outputs desired by threansaenodeled as
the goal state and given as a query to the abductive planner, which igdnenates the com-
position plans including necessary web services to achieve the goattandsrthe results of

those web services.

The rest of the thesis is organized as follows. Chapter 2 reviews relaigdd amd gives
information about web services, OWL-S, event calculus and the weliceezomposition
problem and techniques used to solve the problem. In Chapter 3, we ioérbdw the event
calculus and its abductive implementation can be used as a method for autorabtseirvice
composition. Also methods to translate OWL-S service descriptions to the ealentus
axioms are presented. In chapter 4, we give a description of how rpigicms and user
defined output constraints are used in our system. The implementation dethdgpobposed
system and a case study are presented in Chapter 5. Finally, Chaptes @gnclusions and

possible future work.

CHAPTER 2

BACKGROUND & RELATED WORK

2.1 WEB SERVICES

A new paradigm, web services, are introduced to build distributed web apiphs. The
W3C defines web services as software systems designed to suppapantdrie machine-
to-machine interaction over a network [13]. Web services are programimggitaces that
enable communication among applications. Using these published interfacetheh appli-

cations can communicate with these web services.

Web services are mostly categorized according to the task they are desaperform.
Information-Providing Web Services and World-Altering Web Servicestao categories
falling into this group. Information-Providing Web Services are the webices that do not
alter any state defined in the world and only return information about therustate of
the queried content such as weather forecast services, travehatfon providers, and book
information providers. On the other hand, World-Altering Web Servicesdafined as the
services that, when executed, have fir@ on their domain [5]. Examples of such services

are flight-booking programs and a variety of e-commerce and busindgssitoess services.

The main reason behind the fact that web services are the key techmolkagylication com-
munication and integration is that, web services do not depend on the ryslaifiiym and
the implementation language. In order to provide these independenciesstordards are
defined on web services. Three technologies that roughly corregpadti@dML, HTTP, and

URIs in 3W architecture are core to defining Web Services [25]:

1. WSDL (Web Services Description Language) is a language basedviintixat is a

4

——what_ i ofion |
/‘ SN Service description e

(WSDL) what find

where
— bind
[SOAP

Figure 2.1: Web Service Framework.

standardized way to describe service structures such as operatissages types,
bindings to protocols, and endpoints [17]. In the context of WSDL, wehises are
regarded as software components that encapsulate and providef @lssety related

operations associated with a set of resources.

2. SOAP (Simple Object Access Protocol) [35] is a protocol specificatiandéfines a

uniform way of exchanging XML data in the implementation of Web Services.

3. UDDI (Universal Description, Discovery and Integration) [86] iplatform indepen-
dent registry that allows the software developers to discover availabltle S&evices

that are listed.

There are three fferent kinds of agents shown in Figure 2.1, namely service provideiceer
requestor, and service registry. Between the agents, three kinds raiciines are defined.
“Find” is a service discovery which is performed by a service requedtaiblish” is the op-

eration of storing a service description into a registry agent, performadskeyvice provider.
“Bind” is the name of the step used by service requestor in order to cotmaaveb service

at a particular web location (endpoint) and start interacting with the sefi@le [

By the end of 2006, the public UDDI registries, which were considerddeaglobal solution

for service discovery, were shut down blowing the idea of UDDI. Thenm@asons for that

5

are; the need for keywords, service name and manual selection oYeliedoservices, lack
of coverage of the web services available publicly and the simplicity of thiéable search

tools [7].

2.2 OWL-S

According to W3C, OWL (Web Ontology Language) is a semantic markup kgnegtor pub-
lishing and sharing ontologies on the World Wide Web [9]. OWL-S (forme\ML-S) is

an ontology in OWL for describing web services semantically. It has beeelaped within

the DARPADAML program and currently is a W3C recommendation. So OWL-S is an at-
tempt to combine the representational technologies of the Semantic Web sR&+asnd

OWL with the dominant Web services standards, such as WSDL.

OWL-S consists of the following ontologies [57]: The topmost level congibs Service
ontology. The Service is described in terms of a ServiceProfile, SeradeMind a Service-

Grounding ontology, which are as follows:

1. The service presents a ServiceProfile which has a subclass Prb&l@rofile specifies
what a service does. It is used to enable advertising, constructiomideseequests,
and matchmaking. Profile contains a representation to characterize tmremdrthe
service provider, functional properties of the service like Inputs, @atEfects and
Preconditions (IOPEs) and non-functional properties of the seriiter the selection
and engagement of service, the profile becomes useless; the proakdsaitidoe the

basis of interaction among the requester and provider.

2. The service is described by a ServiceModel which has a subcliéesd Paocess. The
Process model describes how a service works. The Process carisafitshe func-
tional properties of the service; the Profile on the other hand need rotéall the
functional properties. The process model is a specification of the walisrd may
interact with a service. In the process model, there are three subctses root
class Process. These are Atomic process, Composite process and SoopkspAs
the name suggests, atomic processes are executed in one atomic step wked iy
the service requesters and return a message to the requester. Compositsgs are

compounds of simpler processes and can be decomposed throughttioéstaunctures

6

such as Sequence, If-then-else, Split, Split-Join, and Repeat-Untde Toatrol struc-
tures define the paths that the service requester can perform by g@mdimeceiving
messages. In contrast to the other subclasses, Simple processes barimoked,
only constituting abstractions which can be realized either by an atomic proces
composite process. A simple process can be used as a perspectiver torotiesses,

and can provide a way to perform specific tasks, such as service sdinpo

3. The service supports a ServiceGrounding, which has a subclest@aounding. The
Grounding provides an interface to plug in WSDL descriptions and deschibw to
use a service. Grounding indicates how each atomic service can be dnuekey a

WSDL operation.

2.3 WEB SERVICE COMPOSITION

Today, with the increase in the number and usage of web services, fiattihgxecuting cor-
rect web services fulfilling the user needs become moftecdit and critical. If there is a
single web service which can satisfy the request alone, then locatingethiatesis referred as
web service discovery problem. However, when it is not possible to gétisffunctionalities
requested by the user with a single web service, selecting and combinifabbv/aveb ser-
vices in a correct order of execution in order to achieve that requéstetonalities of user
is referred as web service composition problem. There is a considerablmaof research

in this web service composition problem [68].

Manual, semi-automated and automated solutions are proposed to websseovigeosition
problem. In manual solution composition takes place in the design processchises the
web services, generates the workflow and then execute the generatedl mamposition.
This solution may work fine as long as the web services in the created compaegitikflow

do not change. Changes in web services may be a change of informatvideal by the
service, unavailability of the web service, change in the location of the emfce or change
in the function names in the interface of the web service. In any one of tasss, it is un-
avoidable to change manual composition definition. In semi-automated solwgais, user
constructs a workflow for the composition but in execution time, user is askselect one
of the alternative actual web services or asked to give constraints tdligtdound services.

In automated solutions, selection, composition and execution of web seavecdsne in or-

7

der to satisfy user goals automatically. In this thesis, the focus is on automakesemice

composition.

2.3.1 AUTOMATED WEB SERVICE COMPOSITION

Automated web service composition is highly desirable since manual compositaorery
complex and a challenging task. One reason for this is that the numbewvmfeseavailable
over the web has been increasing dramatically resulting in huge web segpigsitories to
be searched [68]. Another reason is that web services are pramegteeht on the fly updates,
thus the composition system needs to be informed about the update at rurdithe decision
should be made based on the up to date information. Moreover, thereat@sst a universal
language to define and evaluate the web services since thereffererti models used to
describe the services. Therefore, building compaosite web services nvéghtamated tool is
a very critical issue. There are two main approaches in automated webtesepmposition

which are namely, workflow based methods and Al planning based methods.

2.3.1.1 WORKFLOW BASED COMPOSITION TECHNIQUES

In web service composition, the work done is actually defining the contmbldata flow
between web services which is very similar to workflow specifying the flowark items.
From this point, workflow management is proposed as a solution to web seamcposition
problem. Static workflow generation and dynamic workflow generation arertethods used

in workflow based web service composition.

Static workflow generation requires the abstract process model, most cdynes@ graph, to
be provided by the user before the start of planning. The abstraésgonodel is composed
of a set of tasks and their data dependencies. During the planningsprdice query clause
of each task in the abstract process model is used to find actual atomiewates in order
to achieve the task. In this technique, the only part automatically performed getlction

and binding of atomic web services.

On the other hand, in dynamic composition technique, in addition to selection micato
services, the process model creation is performed automatically too. €henlg needs to

specify constraints or preferences of the compaosition. More informatiahis technique can

8

be found in [23, 59].

2.3.1.2 AIBASED COMPOSITION TECHNIQUES

Planning problem is usually represented as finding the inner states betwaegtial state and
a goal state. Given a set of goals and a set of process specificéitisrsyssible to derive a
sequence of process instances which can accomplish those goals uplag#ing methods.
Al planning methods are widely used for the web service composition profdleenelements
of solutions are represented as a set of available activities. Web Secaoeow be seen as
activities and the planning can be used to create a composite service (@lasatikfies the
goals of a service requestor. Therefore, Al planning and web ssreiemposition problems
are very similar, since both seek a (possibly partially) ordered set oatipes that would

lead to the goal starting from an initial state (or situation).

In order to apply Al planning methods to automated web service compositiduhepnpser-
vices are represented as actions having parameters, preconditsults eand &ects; and
service composition is treated like a planning problem. With this approach eszlevvice
is first translated to a planning operator and the objective is expresseldgisal condition.
Then the planner generates a plan which is essentially a sequence oémwiele snstances;

that is, a sequential composition that causes the goal condition to be tmexgution [78].

The Al planning methods are generally used when the user has no prooceel but has a
set of constraints and preferences; hence the process model gamédrated automatically
by the program [68]. Using Al planning techniques for web servicespmsition introduces
some challenges [47] one of which is related to closed world assumption trddigonal
planning systems assume that the planner begins with complete informatiortfaautrid.
However, in web service composition problem, most of the information (if itadlalle) must
be acquired from the web services, or may require prior use of suchmation-providing
services. In many cases, however, it is not feasible or practical tuexall the information-
providing services up front to form a complete initial state of the world. Qthallenges can

be found in [78].

Considering the composition problem as an Al planning problefferéint planners are pro-

posed for the solution. A good survey about planning algorithms and thplications to

9

web service composition problem can be found in [65, 68].

Estimated-regression is a planning technique in which the situation spacecisestwith the
guide of a heuristic that makes use of backward chaining in a relaxeteprapace [54]. In
this approach, the composition problem is seen as a PDDL planning probleappiothis
method to composition domain, an estimated-regression planner translatesnihesitmn
problem to a PDDL planning problem and tries to solve it. A translator has \eien

which translates DAML-S and PDDL into each other [24]. In estimated ssipa planning
approach Web Services are considered as actions of the planning ddinaing the plan
generation, a regression graph is constructed for each state staotim¢ghie initial situation,
on which minimum cost heuristic is applied and the most feasible action whosenglidons

are satisfied is selected.

Hierarchical Task Network (HTN) planning has been applied to the coitnpogroblem to
find a collection of atomic processes that achieve the task [80, 79]. Ia theks, SHOP2
[60] is used as a domain-independent Hierarchical Task Network iplgusgistem that creates
plans by iteratively decomposing the bigger tasks into smaller subtasks, umitiye tasks
are found that can be performed directly. This approach is based oel#tienship between
OWL-S used for describing web services and Hierarchical Task N&saas in HTN Plan-
ning. OWL-S processes are translated into tasks to be achieved by thR2Sblénhner, and

SHOP2 generates a sequence of the atomic services that achievesréatfdestionality.

Graph search is another Al planning approach which relies on buildingpdgepresentation

of all services available. The Graphplan [12] is the first generalgsaplanner using graph
search algorithms. Given a problem statement, Graphplan generatesfeusing two
kinds of levels, namely state levels and service levels. Service levels tohtie possible
actions that have preconditions satisfied from the previous state level. |Stake consist

of the possible #ects from the actions in previous service level. The graph is extended by
state levels and service levels until all goal states are satisfied. Afterdpb g generated,
Graphplan uses a backward search to extract a plan and allows f@l padering among

actions.

In [93], a graph based approach is proposed to achieve web seorggosition using inputs
and outputs. In this work the nodes of the graph represent the avaikabviees and the

edges of the graph encode whether one of the outputs of a service naayasether service

10

as one of its inputs. Edges are weighted according to a function of thetexetime and
the semantic similarity value of the associated input and output. The Bellmarskorist-
path dynamic programming algorithm is used to find the shortest path from this iofpthe
user to the expected outputs which represent the best composition. Mbddsa has been
investigated in an earlier work [50]. In this work, services are only altbveehave a single
input and a single output to make the graph search simple. These apgs@aelsimilar to our
approach such that they also generate the composition plan using inputstpats specified
by the user. However, the major problem of these approaches is tharthegt scalable with

the number of available services.

The idea of using the event calculus in the context of web services leasiteestigated in
some researches [70, 82, 91, 16, 29]. In [70] the event calcukibden used in verifying
composed web services. Web services are coordinated by a compostamspexpressed
in WSBPEL. In this work, an event-based approach is proposed @mkahg consistency of
a business process, for mining the business process events, andlfa@ireg the process ex-
ecution. WSBPEL constructs are translated into their corresponding Eskilus axioms
in order to check its consistency for at both design time (static analysis)uatidne (dy-
namic analysis). In static verification, the WSBPEL process model is tradstete Event
Calculus predicates in order to check its consistency. Thiegothe ability to discover the
potential flaws of such a process such as deadlocks, or unusethbsan the control flow.
Some interactions between web services may be dynamically specified at rucginsang
unpredictable interactions. In dynamic verification, verifying deviations vagpect to the
observed behavior of the process should be done in run-time. To pritu&verification, the
events that occur dynamically have been logged during the processiexetranslated into
event calculus predicates and verified. This approacHtisrdint from our approach, because

here the aim is to verify a composed service, not generating the composiéiin its

The work in [82] attempts to establish a link between agent societies and serwaiftic
services. In this work, issues of competence checking for agentatoygein a global artificial
society whose purpose is to organize complex services have been iatexdtig controller
agent performs a test which is formulated in order to decide a candidate sgmild join a
society according to a provided abstract description of their communicatimpetence. The
event calculus which avoids abduction and stick to normal logic programbéden used for

the competence checking.

11

In [91] an approach for formally representing and reasoning almutdtments in the event
calculus is developed. This approach is applied and evaluated in the tohgotocols,

which represent the interactions allowed among communicating agents. Tmatijtigproto-

cols have been specified using formalisms such as finite state machines NeBsg that only

capture the legal orderings of actions. An approach for protocalifigetion that embodies
the commitments of agents to one another has been developed in this workhsiseenantic
content of the actions is not captured, and the agents cannot reamdrtlzddr actions. It is
demonstrated that, agents that follow the specified protocols can decide antibns they
want to take by generating protocol runs with a planner. Event calculigeis for reasoning
about actions and commitments. The changes of the world through the actiansato-

col, commitments, operations on them, and reasoning rules about themr@seregpd using
event calculus. In this approach, event calculus planner has bedriaidetermine flexible
execution paths that respect the given protocol specifications as astatiternachine, while
in our approach event calculus is used to generate the web servicegsitompautomatically

without giving an abstract composition plan or a workflow model.

In [16], the event calculus is used to model the coordination of web s=can already
given specific web service composition by formally describing the interecti@bween the
web services. In this work an event-based architecture is proposepédoifying and rea-
soning about composite events, which facilitates the detection of sevevabistencies that
may arise when the coordinated web services are executed at run-tintiee Gther hand, in
our approach, we use the abductive event calculus to generate thesibamitself automat-

ically.

An approach that uses the event calculus, like in our thesis, was gapn$29]. In this
work, automated web service composition was achieved by supplying agemd service
process definition. The generic processes are defined in OWL-S simaawtokflow def-
inition. The generic process model is a compositions of atomic or compositeesema
control constructs such as Sequence, If-Then-Else, Split-JoirAetording to these control
constructs, the generic process is translated to the event calculus aXibensputs needed
by the composition are asked to the user. Then, with the inputs supplied byahé¢he trans-
lated event calculus axioms are given to the abductive theorem proveden @ generate
the composition plans. The generated plans are presented to the usee aisértlexecutes

by selecting one of the generated plans. This work is very close to olrwith respect to

12

the used technologies and system the architecture. However, in owaappmeb service
composition is achieved by using only user specified inputs and outputs withgweneric

composition definition.

2.4 EVENT CALCULUS

The event calculus is a first-order logic framework that can be usedetifgproperties of
dynamic systems which change over time. Such properties are specifiechsndeevents
and fluents. An event in event calculus is something that occurs at ficpeit in time and
may change the state of a system. Fluents are conditions regarding the statgstédm and
are initiated and terminated by events [45]. The formulation of the eventlual@idefined
in first order predicate logic like the situation calculus. In situation calcul8f fochanging
world is represented by a discrete ordered sequence of “snapshatdi representing the
overall state of the world at a given instant. Because of this structuriguatien calculus,
it is very difficult to represent continuous change in world and concurrent evEnisis the

major diference between situation calculus and event calculus.

In the event calculus, every theory is composed of axioms which cartivaweain predicates
listed in Figure 2.2. In a specific problem domain, an event calculus theaisfiised with
event axioms which actually include the descriptions of the initial states of thetfuthe

effects of actions and which fluents hold at what times.

Initiates andterminates axioms are used to describe that a fluent is initiated or terminated
by an event.Initially axiom is used to indicate the initial state of a fluent. The predicate
clipped defines if a fluenF was terminated during a given time interval. Similaatiscli pped

defines if a fluenF was initiated during a given time interval. These axioms can be defined

as follows:

clipped(T1,F, T4) &
(AE, T2, T3)[happens(E, T2, T3) A terminates(E, F, T2)AT1 < T3A T2 < T4]
declipped(TL1,F, T4) &
(3E, T2, T3)[happens(F, T2, T3) A initiates(E, F, T2) A T1 < T3A T2 < T4]

13

Predicate Meaning

initiates(E.F,T) Fluent F holds after event E at time T
terminates(E,F,T) | Fluent F does not hold after event £ at time T
initially(F) Fluent F holds from the time of the initial state
initially(—F) Fluent F does not hold from the time of the initial state

happens(E,T1,T3) Event (action) E starts at time 77 and ends at time 7, where
T;= T>. Two argument version of happens predicate can be
used for instantaneous events where

happens(E,T) = happens(E,T,T)
holdsAt(F,T) Fluent F holds at time T
foldsdt(—F, T) Fluent F does not hold at time T
clipped(T1,F,T>) Fluent F is terminated between times T;and T
declipped(T1,F,T:) | Fluent F is initiated between times Tyand 7>

Figure 2.2: Essential event calculus predicates.

The holds_At axiom is used to query whether a fluent holds at a specific time. It defines

whether or not a fluent holds since the initial state as follows:

holds_At(F, T) « initially(F) A =clipped(TO, F, T)
holds_At(—F, T) « initially(=F) A —declipped(TO, F, T)
Theholds_At axiom defines whether or not a fluent holds at a given time as follows:

holds_ At(F, T) «

happens(E, T1, T2) A initiates(E, F, T1) A =clipped(TL F,T) AT2< T
holds At(=F, T) «
happens(E, T1, T2) A terminates(E, F, T1) A ~declipped(TLF, T)AT2< T

If the initially axioms describing the initial states of the fluemappens axioms describing
the times of events and theitiates andterminates axioms describing thefkects of events
are known, it is possible to query whether a fluent holds at a given tinhelldg_At predicate.

For example, let us assume the following axioms are given:

happens(ei,tl,tl). initiates(ei,f,tl).

happens(et,t2,t2). terminates(et,f,t2).

14

In these axioms fluent is initiated by evengl at timetl, and fluentf is terminated by event
et at timet2. Let us also assume thidt < t2 is also given. It can be deducted that fluent f
holds at time t whenl < t < t2. It can also be deducted that fluent holds at timet when

t2 < t. Sinceinitially axiom is not given in this example, none of flueriter —f holds at

timet whent < t1.

2.5 ABDUCTIVE EVENT CALCULUS

Event calculus can be used, in both abductive and deductive regsémuheduction, “what’s
true when” is required given the “what happens when” and “what astan” [77]. In ab-

duction, on the other hand, “what happens when” is required givetwihat actions do” and
“what’s true when”. Event calculus has been used mainly for dedutasoning especially
in database applications. The use of event calculus for planning usthgt&n was first
proposed by Kave Eshghi [28]. Then it was Shanahan who endbéeglvent calculus ax-
ioms in meta-level and wrote a meta-interpreter planning system in Prolog Gagu§/4].

Shanahan’s planning system, which is described as an abductiverthpareer (ATP), is a
second order logical prover and will be used in this thesis to performraaiteal web service

composition [5, 74].

For generating plans, ATP takes a list of goal clauses and tries to solgedhkst one by one
using abduction. During the resolution, abducible predicates, befarbappens, are stored
in a residue to keep the record of the narrative. The narrative is & segwf time-stamped

events, and the residue keeping a record of the narrative is the plan.

In this thesis, the predicatdduct is used to denote the theorem prover. It takes a list of goal
clauses and tries to find out a residue that contains the narrative. ¢gfosgecific object level

axiom of the event calculus, a meta-level abduct solver rule is written.

For example an object level axiom, in which AH is the head of the axiom andt&BBN is

the body definition of the axiom, in the form:

AH «— AB1 A AB2 A ... A ABN

is translated to the following predicate form for the ATP:

15

axiom(AH, {AB1, AB2, ..., ABN})

During the resolution process axiom bodies are resolved bghiflect which populates the
abducibles inside the residue. The used version of abduct solver ingBis ttan be found in

Appendix A. A simplified version is as follows:

abduct([],RL,RL,NL).
abduct([A|GL],CurrRL,RL,NL) <- abducible(A),
NewRL = [A|CurrRL], consistent(NL,NewRL), abduct(GL,NewRL,RL,NL).
abduct([A|GL],CurrRL,RL,NL) <- axiom(A,AL),
append (AL, GL,NewGL), abduct(NewGL,CurrRL,RL,NL).
abduct([not(A) |GL],CurrRL,RL,NL) <- irresolvable(A,CurrRL),
abduct (GL,CurrRL,RL, [AC|)NL]).

In this definition GL, RL, NL, A and AL represent the goal list, the residug fiee residue of
negated literals, axiom head and axiom body, respectively. The ptedhmhucible checks if
the axiom is abducible. If an axiom is abducible, it is added to the residuervate its body

is inserted into the goal list to be resolved with the other axioms.

Negation as failure (NAF) technique is used for proving negative litevdlen literals added
to the residue, previously proved negated goals may no longer be fgovhis situation
may occur when negative literals were proven due to the absence ofdiotittg evidence;
however the newly added literals might now allow the proof of the positive ahlgeinval-

idating the previous negative conclusions. So, previously provertetdjterals should be

rechecked each time the residue is modified.

Whether the negated literal is resolvable or not is checked luisiegplvable predicate. The
negative literal in the query might also include a predicate which is not @flduén this case

it needs to be resolved with the axioms not the residue. This situation is expiaified].

The consistent predicate is used for checking that none of the negated literals is relolvab

with the current narrative residue using the predicatesolvable for each negated literal.

For example, let us assume that we have the following specific axioms for &egingblem.

axiomChappens(e,T,T), [1).

axiom(initiates(e,f,T), [1).

16

These axioms mean that there is an instantaneous et that event initiates the flueht
when it occurs. We may submit queaipduct(holds_At(f, t), RL) to investigate under which
conditions the fluent holds at time. The residue list RL is bound tb@ppens(e, t1,t1), t1 < t]

which is a possible scenario in which the fludrtolds at timd.

17

CHAPTER 3

AUTOMATED WEB SERVICE COMPOSITION WITH THE
EVENT CALCULUS

In this chapter we give a description of how the event calculus can lteassa method for
automated web service composition. In order to generate the compositionnalageathe
desired outputs from web service executions, we need to create @leunlus axioms and
run the Abductive Theorem Prover (ATP). In the following sections,mention about the

representation of semantic web services in event calculus and plaraienersing ATP.

3.1 REPRESENTATION OF WEB SERVICES IN THE EVENT CALCULUS

3.1.1 TRANSLATION OF WEB SERVICE DESCRIPTIONS

Semantic web services described by OWL-S ontology have inputs, oytpetsnditions and
effects. In order to use abductive theorem prover successfully, dhblaweb services in the
repository must be translated into events descriptions. Inputs and oufghésweeb service
become the parameters of the translated event. In this translation, thel getiteide is using
the input and output names as event parameters. This is because fulljtisemsdh services
are not widely used and most of the services today are described by \8{fification. This
usage prevents us from understanding that most of the inputs and oatpastually have
the same semantic meaning even though they halereint syntactic names. For example,
let us assume that there are two web services namely ZipCodeFinder aZipklode. Zip-
CodeFinder has inputs with names NameOfTheCity and NameOfTheStreettiesly, and
an output ZipCode. The second web service FindZipCode have two iQiytdame and

StreetName and an output ZipCode. In non-semantic web services it iesgible to realize

18

that these two services serves the same purpose and have actually thiysamieinputs
unless some extra language processing techniques are applied. Btpsemh an extraffort
will not be guaranteed to result in successful matchings. At this pointstgpeputs and

outputs become very important to understand their semantic meaning.

Semantic web service descriptions using OWL-S, gives us the opportutkityte that those
two zip code finder services do the same job and have the same type of indutsitauts,
by defining the types ontologically. So in our system, while generating evemts Web
service descriptions, we use input and output types as event paraifi¢iery are ontologi-
cally described. Let us assume that there is an ontology called GeogHjghins and it has
a class called Address, dataTypeProperties streetName, cityName, eip€stiated with
Address class. In the above zip code finding example, according toystemns design, the
parameters of the generated events become streetName, cityName ancezipsgedd of
NameOfTheStreet, NameOfTheCity, ZipCode or CityName, StreetName, ZgpCbds our
abductive theorem prover knows that these two services are semardgealdyand can be an

alternative of each other.

Each web service call is treated as an event and it is representedhaipipens predicate. The
parameters of the event get their actual values by jpl method predicate isligrecondition
of the event and a call to the real web service. Every time the ATP resthlgesvent while
generating the plans, the precondition jpl method is called and the inputs gmasare
retrieved by the actual web service call. How ATP makes that actual weltseall using

jpl method will be described in Chapter 5.

In addition to event occurrence axioms, the profile of the web servicenslatad into a set
of effect axioms. While event axioms describe the execution and preconditicdhe wfeb

service, &fect axioms describe the behavior of the web service. In other worddesaibe

which parameters are inputs, which parameters are outputs. For example,dssume a
simple web service which returns the zip code of a given city and streetexXdraple web
service description in OWL-S and its corresponding event calculus nwdslfollows:

OWL-S description:

<process:AtomicProcess rdf:ID="FindZipCodeProcess">
<service:describes rdf:resource="#FindZipCodeService" />

<process:hasInput rdf:resource="#streetName"/>

19

<process:hasInput rdf:resource="#cityName"/>
<process:hasOutput rdf:resource="#zipCode"/>

</process:AtomicProcess>

<process:Input rdf:ID="streetName'">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&ontology;#StreetName
</process:parameterType>
<rdfs:label>Name of the Street</rdfs:label>
</process:Input>
<process:Input rdf:ID="cityName'>
<process:parameterType rdf:datatype="&xsd;#anyURI">
&ontology;#CityName
</process:parameterType>
<rdfs:label>Name of the City</rdfs:label>
</process:Input>
<process:Output rdf:ID="zipCode">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&ontolgy;#ZipCode
</process:parameterType>
<rdfs:label>Zip Code</rdfs:label>

</process:Output>

Event Calculus representation:

axiom(happens(pFindZipCode (StreetName, CityName, ZipCode), T1, TN),

[
jpl_pFindZipCode(StreetName, CityName, ZipCode)

D.

axiom(initiates(pFindZipCode(StreetName, CityName, ZipCode),

known(zipCode, ZipCode), T),

[
holds_at (known(streetName, StreetName), T),
holds_at (known(cityName, CityName), T)

D.

20

In the above ffect axiom, it is described that, if we know the inputs, which are streetName
and cityName in this case, the findZipCode service makes the parameter ZigGman. In

the translation, there will be a separafteet axiom for every output of the web service. or
instance if the web service has three outputs there will be thfeet@exioms for each output
parameter. In order to resolve literals which are non-axiomatic assertichsas conditions

or external calls abduct is extended to contain the following rule [6]:

abduct([G|GL], CurrRL, RL, NL) <- not(axiom(G,_)), G, abduct(GL, CurrRL, RL, NL)

In this rule G, GL, RL and NL denote, respectively, the non-axiomatic litémalgoal list, the
narrative residue and the negation residue. By doing this, we say thalbduetive theorem
prover directly tries to prove the literal, when a non-axiomatic literal is enesed and if it

is successful it continues with the rest of the goal list.

3.1.2 TRANSLATION OF INPUTS

In the proposed system, the user selects input types from a definedgynistan order to get
the desired outputs. The ontology list is populated from the web serviceiptesns in the
repository. The ontologies which are used to declare input and outpu tfpeeb services
are retrieved while parsing the OWL-S descriptions to generate the esfendus axioms.
The details of this process will be mentioned in Chapter 5. After selecting thesinihe
user supplies the values of those inputs. The selected inputs are onttyodéfaned, so
that the user enters the values of these inputs according to their ontolbgiiales. The
user can select an ontology class, a data value property or an olipeetriyrfrom the listed
ontology elements. If the user selects a data value property as an inputhéhealues of
that property can be one of boolean, float, int, string, date, dateTime or tpas.tyhere is
an “any” type, which is handled in our framework as string type. If thecseteinput is an
object property, the user must select an instance of that object’s ctagge For example user
selects an object property of “Book” class, called “author”, whichdeange class “Author”,
then he or she must select one of the “Author” instances. If there is othtX” instance in
the defined ontology, user can create an instance of that type, by grteginecessary fields
of that class. Another input type can be an ontology class, and in this tbesaser again

has to select an instance of that class or creates an instance then seleictstdimce. The

21

supplied input values are translated into event calculus axioms and thesesadescribe the

initial state of the world. Thénitially predicate is used in these event calculus axioms.

For instance, if the user selects cityName and streetName ontology datadpeetigs, which
have string type range values, as the input types and enters the valiesefinputs like
“Ankara” as cityName and “Koru” as streetName, the event calculus framegenerates the

following axioms:

axiom(initially(known(cityName, Ankara)), []).

axiom(initially(known(streetName, Koru)), []).

3.1.3 TRANSLATION OF OUTPUTS

Abductive theorem prover generates composition plans according talasigbe. Just like
inputs, the user selects the output types from the ontology list, wifiehvgants to get re-
sults of after the executions of web services. The selected outputs astatea into event
calculus axioms and they are given as a query to ATP. The query coolisjunctions of
holds_at statements including the desired output parameters. For example, if thearssr w
to know two outputs namely outputA and outputB, the goal state created byathevirork is

as follows:

abdemo ([holds_at (known(outputA,OutputAd), t), holds_at(known(outputB,OutputB), t)], R).

ATP generates plans and returns the results of actual web serviagiersas OutputA and
OutputB if the d¢fect axioms are satisfied by the domain knowledge created by web service

descriptions in the repository and the initial states supplied by the user dvaipes.

3.2 PLAN GENERATION WITH ATP

In our event calculus framework, after the web service descriptiansranslated into cor-
responding axioms, the user specifies the values for inputs Amatselected. In order to
generate plans, the abductive theorem prover needs a goal stateisvhidonjunction of

known axioms that are translated from the outputs selected by the user. Novamework

22

returns the composition results according to the goal state. ATP resolvesehecalculus
axioms one by one and proves the goal state in order to generate theldesitposition
plan. To achieve this, there must be a parameter binding method that debidbsservices’
outputs become which services’ inputs. ATP does this binding using paramaetes. Thus,
the naming of axiom parameters becomes very important in order to genereget@com-
position plans. In every step during the resolution process, translated aioms of web
services with the actual web service calls as preconditions are exedutesge web service
calls are done by jpl methods for each web service. In other words)gdtire plan gener-
ation phase, actual web service executions are also done and the oésludtse executions
are populated as parameters of the corresponding event axioms. ad&cps the plans as
happens andbefore predicates. Multiple plans can be generated by the backtracking facility

of Prolog. A plan is something like the following:

happens(servicel([Inputsl], [Outputl]), T1),
happens(service2([Inputs2], [Output2]), T2),
before(T1l, T2), before(T2, T)

which means that in order to satisfy the goal state, servicel should be figdteghd then
service2 should be called with their inputs. In totally ordered set of evidrgservice flow
becomes sequential like in the above example. ATP can generate conaatref events, if

the timestamps of events are equal.

happens(servicel([Inputsl], [Outputl]), T1),
happens(service2([Inputs2], [Output2]), T1), before(T1l, T)

ATP can also generate partially ordered set of events, in which thereridative ordering
between the timestamps of events. In such a case, those events are assucoecnt. In
the following example, there is no ordering between T2 and T3, so seraimt2ervice3 are

considered as concurrent.

happens(servicel([Inputsl], [Outputl]), T1),
happens(service2([Inputs2], [Output2]), T2),
happens(service3([Inputs3], [Output3]), T3),
before(T1l, T2), before(T1l, T3), before(T2, T), before(T3, T)

23

If services return more than one result as their outputs, then ATP desexaliferent plan
for each output result. Also while processing step by step, if there are than one alter-
native solutions for one step, ATP generate®edéent plans for each alternative service. For
instance assume the user wants to find hotels closefftehiglace and the price of one night
accommodation for each hotel found. Assume that two hotels namely “Hiltoth™ldlol-
idaylnn” are found by executing one web service FindHotels, and twwo seevices return
one night hotel accommodation prices for given hotels, respectiveldHotelPricel” and

“FindHotelPrice2”. In this situation, ATP generates fouffelient plans, which are as follows:

1.FindHotels --> "Hilton" and FindHotelPricel --> 100$
2.FindHotels --> "Hilton" and FindHotelPrice2 --> 105%
3.FindHotels --> "HolidayInn" and FindHotelPricel --> 130$%
4.FindHotels --> "HolidayInn" and FindHotelPrice2 --> 135%

3.3 EXAMPLE

In this section, we will give an illustrative example to explain how the abduetiest calcu-
lus framework can be used to solve a composition problem. The problemngnigdhne TL
price of a book, giving only the name of the book. Let us assume thefewareeb services in
our repository, which are namely BookFinder, BookPriceDollar, Bowed L and PriceCon-
verterFromDollarToTL. BookFinder service gets the name of a book ag anul returns the
desired Book instance. BookPriceDollar service gets a Book instanepuwsand returns the
dollar price of that book, similarly BookPriceTL service also gets a Bodlaime and returns
the TL price of that book. PriceConverterFromDollarToTL service getsltiilar amount and
converts it to its TL amount. The input and output parts of the OWL-S ddsmmgpof these

web services are as follows:

<process:AtomicProcess rdf:ID="BookFinderProcess">
<service:describes rdf:resource="#BookFinderService"/>
<process:hasInput rdf:resource="#BookName"/>
<process:hasOutput rdf:resource="#BookInfo"/>
</process:AtomicProcess>

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

24

&book ; #bookName
</process:parameterType>
<rdfs:label>Book Name</rdfs:label>
</process:Input>
<process:Output rdf:ID="BookInfo">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&book ; #Book
</process:parameterType>
<rdfs:label>Book Info</rdfs:label>
</process:Qutput>
<process:AtomicProcess rdf:ID="BookPriceDollarProcess">
<service:describes rdf:resource="#BookPriceDollarService"/>
<process:hasInput rdf:resource="#BookInfo"/>
<process:hasOutput rdf:resource="#BookPriceDollar"/>
</process:AtomicProcess>
<process:Input rdf:ID="BookInfo">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&book ; #Book
</process:parameterType>
<rdfs:label>Book Info</rdfs:label>
</process:Input>
<process:Output rdf:ID="BookPriceDollar">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&price;#DollarPrice
</process:parameterType>
<rdfs:label>Book Price Dollar</rdfs:label>
</process:Output>
<process:AtomicProcess rdf:ID="BookPriceTLProcess">
<service:describes rdf:resource="#BookPriceTLService"/>
<process:hasInput rdf:resource="#BookInfo"/>
<process:hasOutput rdf:resource="#BookPriceTL"/>
</process:AtomicProcess>
<process:Input rdf:ID="BookInfo">
<process:parameterType rdf:datatype="~&xsd;#anyURI">
&book ; #Book
</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

25

</process:Input>
<process:Output rdf:ID="BookPriceTL">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&price;#TLPrice
</process:parameterType>
<rdfs:label>Book Price</rdfs:label>
</process:Output>
<process:AtomicProcess rdf:ID="PriceConverterFromDollarToTLProcess">
<service:describes
rdf:resource="#PriceConverterFromDollarToTLService"/>
<process:hasInput rdf:resource="#DollarPrice"/>
<process:hasOutput rdf:resource="#TLPrice"/>
</process:AtomicProcess>
<process:Input rdf:ID="DollarPrice">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&price;#DollarPrice
</process:parameterType>
<rdfs:label>Dollar Price</rdfs:label>
</process:Input>
<process:Output rdf:ID="TLPrice">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&price;#TLPrice
</process:parameterType>
<rdfs:label>TL Price</rdfs:label>

</process:Qutput>

The corresponding event calculus axioms for the above serviceslogRue:

axiom(happens (pBookPriceDollar(Book, DollarPrice), T1, TN),

[
jpl_pBookPriceDollar(Book, DollarPrice)

D.
axiom(happens (pBookPriceTL (Book, TLPrice), T1l, TN),
[
jpl_pBookPriceTL(Book, TLPrice)
D.

26

axiom(happens (pBookFinder (BookName, Book), T1, TN),

[
jpl_pBookFinder (BookName, Book)

D.

axiom(happens (pPriceConverterFromDollarToTL(DollarPrice, TLPrice), T1, TN),

[
jpl_pPriceConverterFromDollarToTL (DollarPrice, TLPrice)

D.

In addition to these axioms{fect axioms of the web services are generated by our event

calculus framework. The generateffieet axioms of these web services are as follows:

axiom(initiates(pBookPriceDollar(Book, DollarPrice),
known(dollarPrice, DollarPrice), T),
[
holds_at (known(book, Book), T)
D.
axiom(initiates(pBookPriceTL(Book, TLPrice),
known(tLPrice, TLPrice), T),
[
holds_at (known(book, Book), T)
D.
axiom(initiates(pBookFinder (BookName, Book),
known(book, Book), T),
[
holds_at (known(bookName, BookName), T)
D.
axiom(initiates(pPriceConverterFromDollarToTL(DollarPrice, TLPrice),
known(tLPrice, TLPrice), T),
[
holds_at (known(dollarPrice, DollarPrice), T)

D.

27

In order to generate compositions, we need to provide the initial situation withetipeof
user specified input values. In this case, the only input is book nameuBethe bookName
is a string type property, the user enters the name of the book. The gipehvalue is
translated into event calculus axiom. Let us assume user enters “Hamleblasséme, then

the generated axiom is as follows:

axiom(initially(known(bookName, Hamlet)), []).

The last thing that should be done is to create the goal state which will be g tgQuATP. In
our example, the user wants to know the dollar and the TL price of book Hamtietquery

including goal state in this case is created as:

abdemo([holds_at (known(dollarPrice, DollarPrice), t),
holds_at (known(tLPrice, TLPrice), t)], R).

After the query is generated, ATP runs and returns the results acgdaihe given event
calculus axioms. In this example, ATP returns the prices and plans in a fdimestamped

events as follows:

DollarPrice = 25 Dollar
TLPrice = 45 TL

happens (pBookPriceTL (’HamletInstance’, ’45 YTL’), tl, t2)
happens (pBookFinder (Hamlet, ’HamletInstance’), t3, t4)

happens (pBookPriceDollar(’HamletInstance’, ’25 Dollar’), t5, t6)
before(t2, t)

before(t4, tl1)

before(t6, t)

before(t4, t5)

and,

DollarPrice = 25 Dollar
TLPrice = 43 TL

28

happens (pPriceConverter(’25 Dollar’, ’'43 TL’), tl1, tl12)

happens (pBookPriceDollar(’HamletInstance’, ’25 Dollar’), tl13, tl4)
happens (pBookFinder (Hamlet, ’ HamletInstance’), tl5, t16)
before(t12, t)

before(t14, t11)

before(t1l6, t13)

before(tl14, t)

ATP returns two dierent plans for the given inputs and outputs in this case. In the first
plan, the BookFinder service is executed with the input “Hamlet” and rethen8o0ok in-
stance of Hamlet, Hamletinstance. Then this output becomes the inputs of Bvsethices,
BookPriceDollar and BookPriceTL and these two services are callecuc@mtly due to the
absence of relative timestamped ordering between them. These sertice2eeDollar and
45 TL respectively, thus the goal state is reached and results arseaped to the user. On
the other hand, in the second plan, again BookFinder service is exdrataead order to find
the Book instance from a given name which is “Hamlet” in this example. Thenutpub
of BookFinder service becomes the input of only BookPriceDollar senBookPriceDollar
service returns the dollar price, 25 Dollar, and one of the user desitpdtaypes becomes
satisfied. The TL price is calculated as 43 TL by executing PriceConvetgice with 25
Dollar which is the output of BookPriceDollar service. The goal state isnasgtisfied and
results are shown to the user. In order to make the generated plans radables a user
interface is implemented, in which the flow of web service executions arershew graph.

The graphical representation of generated plans will be describedaipt&tb.

In this chapter, using event calculus as a solution to automated web seympesition prob-

lem is explained. In order to generate the composition plan, the initial state @fdhe,
defined actions and theifffects in the problem domain and the required goal state should
be known. Our framework gets these definitions from OWL-S descriptibasailable web
services in the repository and the user defined inputs and outputs. Thexysiem trans-
lates these definitions to event calculus axioms as described in this chapeetramslated
axioms are given to abductive planner in Prolog and composition plansaszaied using

backtracing. An example that explains the translation and plan generaiseis given.

29

CHAPTER 4

PRECONDITIONS AND OUTPUT CONSTRAINTS

In this chapter, we give a description of how preconditions and usenetefhutput con-
straints are included in our system. In the semantic web, web servicessamibdd with
OWL-S which is an ontology for web services. In this ontology, web sesritave input,
output, precondition andiects (IOPEs) which define the process model of a web service. In
other words, IOPEs describe how to interact with the web service in detathelfollowing
sections, first we describe the usage of preconditions in semantic webteseand how our
system translates them into event calculus axioms. Then, we describesbosvcan define
their output constraints and present the translation of those constrémtides to the event

calculus framework.

4.1 PRECONDITIONS

In a web service description, it must be specified how the web service teitbict with clients
or other software agents. The information transformation of this interactidessribed by
Input and Output properties. Inputs specify the types of instancesserti¢o the service, and
Outputs specify the types of responses to be sent by the service. kloiviswnot possible to
describe under which circumstances the web service provides its seithoenly inputs and

outputs.

Preconditions are conditions that must be true for the web service in mrder executed.
In most of the cases, preconditions are used to check whether theigjugs satisfy some
conditions which are necessary for the service execution. This tymageus generally seen

in information providing services. For example, the “CurrencyConvestawvice might have

30

a precondition which checks whether the given currency type is validirBuorld altering
services, preconditions can be used to control the information spadkeritiee required state
is satisfied. An example of this kind of world altering service preconditiorbesa validation
of the user’s login state. In most of the e-commerce services, beforayimegmt process, it
is controlled whether the user is logged in;/tig is, service goes on with the payment, if not,
user is asked to log in. In OWL-S definition, Inputs and Outputs are sigedaxf Parameter

and their definitions in a semantic web service description are as follows:

<process:Input rdf:ID="InputID">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&ontology;#InputClass
</process:parameterType>
</process:Input>
<process:Output rdf:ID="OutputID">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&ontology;#0utputClass
</process:parameterType>

</process:Qutput>

However, preconditions do not have any specific format or classy dteekind of Expression
properties. In OWL-S, they are treated as literals [51]. There are someafs that can
be embedded into OWL language to define preconditions, such as SWRiai8e Web
Rule Language) [39], KIF (Knowledge Interchange Format) [44]@DR (Planning Domain
Description Language) [49]. Among these languages, SWRL is pi#yeused because of
its more understandable grammar and built-in conditional operations. ImaaeWork, we

handled only SWRL expressions, but the others can also be handlednilaa approach.

For example, let us assume a web service “CalculateNumberOfDays” wakeh startDate
and finishDate as inputs, and returns the number of days between thos@t®go In this
service, there must be a control which compares input dates and retugrithe finishDate

is greater than or equal to startDate. The service description shoulddloas:

<process:AtomicProcess rdf:ID="CalculateNumberOfDaysProcess">
<service:describes rdf:resource="#CalculateNumberOfDaysService" />

<process:hasInput rdf:resource="#StartDate"/>

31

<process:hasInput rdf:resource="#FinishDate"/>
<process:hasOutput rdf:resource="#Days"/>
<process:hasPrecondition rdf:resource="#compareDates"/>

</process:AtomicProcess>

<process:Input rdf:ID="StartDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&date;#StartDate
</process:parameterType>
<rdfs:label>Start Date</rdfs:label>

</process:Input>

<process:Input rdf:ID="FinishDate">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&date;#FinishDate
</process:parameterType>
<rdfs:label>Finish Date</rdfs:label>
</process:Input>
<process:Output rdf:ID="days">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&date;#NumberOfDays
</process:parameterType>
<rdfs:label>Number Of Days</rdfs:label>
</process:Output>
<expr:SWRL-Condition
rdf:ID="compareDates">
<rdfs:label>compareDates</rdfs:label>
<rdfs:comment>compares two dates</rdfs:comment>
<expr:expressionBody
rdf:parseType="Literal">
<swrl:AtomList>
<rdf:first>
<swrl:BuiltinAtom>
<swrl:builtin rdf:resource="&swrlb;#greaterThanOrEqual" />
<swrl:arguments>
<rdf:List>
<rdf:first rdf:resource="&date;#FinishDate" />
<rdf:rest>
<rdf:List>

<rdf:first rdf:resource="&date;#StartDate" />

32

<rdf:rest rdf:resource="&rdf;#nil" />
</rdf:List>
</rdf:rest>
</rdf:List>
</swrl:arguments>
</swrl:BuiltinAtom>
</rdf:first>
<rdf:rest rdf:resource="&rdf;#nil" />
</swrl:AtomList>
</expr:expressionBody>

</expr:SWRL-Condition>

This SWRL rule states that, startDate can not be greater than finishDateSWR& pre-
conditions are translated as jpl methods with its owner service. So if a weltceséias a
precondition, its corresponding event axiom has two jpl methods asrgtitioms. The first
method handles the precondition and if the condition holds, it returns true.s@tond jpl
method handles the real web service call, if the result of the first methodeis The trans-

lated methods in Prolog are as follows:

axiom(happens(pCalculateNumberOfDays(StartDate, FinishDate, NumberOfDays), T1, TN),
[
jpl_pCalculateNumberOfDaysCondition(’StartDate’, ’FinishDate’),
jpl_pCalculateNumberOfDays(StartDate, FinishDate, NumberOfDays)
D.

The precondition method defined in Prolog, gets inputs from the paraméteappens ax-
iom and the validation operator from SWRL expression. It then makes aljplocthe as-
sociated Java method to carry out the operation with supplied inputs. We dq#ristion
in Java, because in our system all IOPEs are described with ontologittgysare complex
objects and can not be handled in Prolog. These Java methods will be neenitic@hapter

5. The precondition method created in Prolog is as follows:

jpl_pCalculateNumberOfDaysCondition(Iconditionl, Icondition2) :-
jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSIa),

jpl_call(WSIa, controlConstraint,

33

[Iconditionl, ’greater than or equals to’, Icondition2], OutputArraya),

jpl_is_true(OutputArraya).

4.2 USER DEFINED OUTPUT CONSTRAINTS

Semantic web service descriptions using OWL-S, can have preconditiorgeinto control in
which circumstances the service should be invoked. But sometimes usarwestrict the
generated plans according to their needs. In this case, even if thengitimas are satisfied,
return values may not be what users really want. In addition to this, retyria@s and their
output values might include lots of irrelevant results that users do ndtteraee. To illustrate
this, suppose the user wants to learn about the hotels close by and thes:. @ic the other
hand, ghe wants to see the hotels and their prices if the found hotel’s one nighthatwo
dation price is less than 100$. By giving this constraint, hotels which hax@anodation

price more than 100$ will not be presented to the user.

After the user selects the outpufiies wants, according to their data typghescan specify a
constraint on them, like specifying the inputs, the user can select a ciasyge property
or object property types as outputs. In our system, there are preedefperations for each

type of output.

If the selected output is of type object property, the user can select taiipeals to” or “not
equals to” as an operation from the list and an instance of the range ttheselected object
property. For example, let us assume the user wants to learn the priceak &ygiving the
name of the book. The ontology class of book has an object property ¢alliéhor” which
has a range class Author and the user wants to get the price of the bavkhels the author
specified by her. In this case, the user can learn the price of the baé&naly, let us say
Ayse Kulin, by giving an “equals to” constraint on the “author” objeaipperty and selecting

“Ayse Kulin” from the Author instances.

If the type of the selected output is of data type property, according to tigeraf that
property, operations fler. Such as, if the range of the selected property is string then the
supported operations are “equals to”, “not equals to”, “starts withridsewith”, “contains”

and “not contains”. If the range of the selected property is an int ot flt@n the supported

operations are “equals to”, “not equals to”, “less than”, “greater’thdess than or equals

34

to” and “greater than or equals to”. Finally, if it is one of the date, dateTim@ne types
then the operations are “equals to”, “not equals to”, “before” antktaf These cases can
be illustrated with examples, such as movies which have “Alien” in their name img us
“contains” operation, movies which are made before 1987 by using f&efgperation or

movies which last more than 3 hours by using “greater than” operation.

If the selected output is of class type, then for each property of thas these becomes
a constraint row with the operations described above. For examplenadbat there is a
Hotel class which has an object property “address” and a data typenpydname”. Object
property “address” has a range class Address and data type fyrdmesName” has a range
of string. So the user can either give a constraint on “address” gyopéh the operations
described for object property types, or can give a constraint oméfialata type property

with string range by using the operations for string data type properties, ooth.

As in the SWRL preconditions defined in the OWL-S description of web sesyiwe handle
these type of output constraints given by the user in a similar approaclrawéate output
constraints as postconditions to event axioms of web services. But in sgstbare might be
more than one web service which will include the created jpl method as a pdiatoonAs
an example, if the user gives an output constraint on TL price of a bebls say “less than
30 TL”, there can be one or more services that has “TLPrice” as ambpgzameter which
will be included in the generated composition plan. Because the executiovebagervices
take place while ATP is processing, we have to check the result retuynt veb service
whether it satisfies the given constraint or not. So tlEeince of this type of condition is

that, it is located after the web service execution jpl method,

axiom(happens (pBookPriceTL (Book, TLPrice), T1, TN),

[
jpl_pBookPriceTL(Book, TLPrice),

jpl_pBookPriceTLCondition(’BookPriceTL.TLPrice.amount’,’30’)
D.

axiom(happens(pPriceConverter(DollarPrice, TLPrice), T1, TN),
[
jpl_pPriceConverter(DollarPrice, TLPrice),

jpl_pPriceConverterCondition(’PriceConverter.TLPrice.amount’,’30’)

35

When the user gives a TLPrice constraint, fwappens axioms include the postcondition be-
cause in our web service repository there are two web services havPigc€ as output. The
reason behind the location of postcondition after the actual web senlicetbat, in this case
we control the outputs instead of the inputs. So we have to know the retautedt values
before the constraint control. The input parameters passed to the pdistmo method is a bit
different in this case. 'BookPriceTL.TLPrice.amount’ and 'PriceConvéit&rice.amount’
are passed with the user constraint '30". Our system makes the weibesealls in the
Java part, retrieve the results and sends them back to Prolog. The impleomedédails are
described in Chapter 5. The results of web service executions are egsankthe system
in order to achieve the constraint control. When the constraint controlatiéshinvoked
with the parameters 'PriceConverter. TLPrice.amount’, ’less than’ and tB@ system gets
the amount attribute of the TLPrice instance returned by the PriceConwerteservice and
checks whether the amount is less than 30. If it is, it returns true and tAeyd&s on with its
resolution. If it is false, then the whol@ppens axiom returns false because of this postcon-
dition, and this service does not take place in the composition plan. Thengligoas and

the postconditions have the same method declaration which is as follows:

jpl_pServiceNameCondition(Iconditionl, Icondition2) :-
jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSIa),
jpl_call(WSIa, controlConstraint,
[Iconditionl, ’operation’, Icondition2], OutputArraya),

jpl_is_true(OutputArraya).

In the event calculus framework proposed in this thesis, the descriptidhe web services
that are available in the repository are translated to the event calculus @eadons the abduc-
tive theorem prover starts to generate the composition plan. In additiorvicesdescriptions,
the inputs and the output constraints provided by the user are translateddortbsponding
event calculus axioms. The translated event calculus axioms using sdegcegptions do
not change unless the web services in the repository change. On tinargotihe event cal-
culus axioms that are translated using inputs and outputs specified by thehasge each

time the user wants to find out a compaosition plan. Therefore, in the progesaticalculus

36

framework, the Prolog code including the service descriptions, can herafed once and
updated each time the user supplies inputs and output constraints dynarnwistlyd of gen-
erating whole Prolog code in every run. This facility can improve the systafopnance by

reducing the translation costs. This problem can be handled as a futtke wo

The OWL-S descriptions of web services can have preconditions defiseexpressions.
There are dferent expression languages that can be used in OWL-S descriptiomsasu
SWRL, KIF, PDDL. In this chapter, we show how SWRL preconditionstaedled in the
event calculus framework. They are translated as preconditions ofsemice axioms in
Prolog. If the given precondition is satisfied, then the web service éradakes place. In
addition to preconditions of OWL-S descriptions, users can supply ootmstraints as well.

The supplied constraints are also translated into the event calculus axipostesnditions.

37

CHAPTER 5

IMPLEMENTATION

In this chapter, we give a description of the implementation details of the pedpogent
calculus framework. The proposed system is expected to generate sitiorpplans using
user specified inputs and outputs only. Our approach is to make the lesgigguts that e

will enter to the system and outputs thdteswants to get as results by using our user-friendly
composition tool. First, we present the used technologies and librariesn@ege represent
the details of our tool and the usage of technologies in it. Then we giveeastady in
order to show the usage of our system. Finally, we explain how two weltegromposition

algorithms are integrated in our event calculus framework.

5.1 TECHNOLOGIES

The event calculus framework is designed as a web-based applicaiomplemented in
Java and Prolog languages. The client side is implemented in JSF techriold@F codes,
Ajax components are also used which help us partial rerendering of @angkedoing some
changes in client side without posting pages. In business tier, Javaralugd) Panguages
are used together. All modules are implemented in a Web Project and dejogelREE

compatible application server, JBoss.

As open-source projects or libraries, MindSwap’s OWL-S API is ugsedWL-S and On-
tology parsing, Java Universal Netwg@taph Framework (JUNG) is used for the graphical
visualization of the generated composition plans, JPL library is used for imptérgehe
communication between Java and Prolog codes, JBoss’ RichFaces anhfilorary is used

for user-interface design.

38

INTERACTIVE
GUI
MODULE

CALCULLS
TRANSLATION
MODULE

JAVA-PROLOG
COMMUMICATION
MODULE

SERVICE REPOSITORY

SERVICE
EXECUTION
MODULE

Figure 5.1: System Architecture.

5.2 SYSTEM ARCHITECTURE

In this section, the modules of our event calculus framework are presente user inter-
acts with our system via interactive graphical user interface module .sdséct the inputs
and outputs, give constraints on selected outputs by using this GUI modaeoiér, the
generated composition plans are presented to the user with this module. Tiheadealus
translation module handles the translations of OWL-S descriptions to the @lentus ax-
ioms and the translations of user specified inputs and outputs to the evartsagioms.
The generated event calculus axioms are supplied to the abductiverthgraneer (ATP) mod-
ule for planning. The JPL module serves as the interaction module betwwaesxecution
module which is implemented in Java and the ATP module which is implemented in Prolog.
Web services are executed in service execution module and resultse§éreke executions
are returned to the ATP module via JPL module. Figure 5.1 shows the oumsgisthitecture
graphically.

39

$ Hext

¢ Ontologies

~ & Book
@ ISBN
W author
@ bookName
W@ publishYear

» & Author

& Er\ce BT OUTPUTS
@ TLPrice
@ DollarPrice @ bookName Y
@ EuroPrice
@ scale
@ amount

» & Accommodation

v d Activity

+ & Address

» & Map

» & Direction

W TLPrice

€

W@ DolarPrice Qo

Figure 5.2: Input and output selection window.

5.2.1 INTERACTION WITH GUI

Since our application is a web-based application, users can accesgpticaton via their
Internet browsers. When the user starts our application, using OWPISall web service
descriptions available in our repository are parsed and the ontologiesr¢hased to declare
input or output types in those service descriptions are retrieved. Bon@e, if parsed OWL-

S description of a web service has an input declaration as follows:

<process:Input rdf:ID="BookInfo">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&book ; #Book
</process:parameterType>
<rdfs:label>Book Info</rdfs:label>

</process:Input>

then, our system adds the book ontology if it is not added before. Afsgraice descriptions
are parsed, found ontologies are parsed too using again OWL-S AdPthay are presented

to the user in a tree view as shown in Figure 5.2.

In the first page, the user can select the input and output types bgdhay facility of

RichFaces components. When the number of service descriptions in tstoepincreases,

40

the ontology resources will also increase. For this reason, there is mfjlteechanism on
the ontology classes, which helps users to find ontology classes eaglyglaBses are filtered

with the entered filter text.

The nodes in the ontology tree can be classes, object properties artgpdapeoperties. The
nodes can have their subclasses or subproperties. The distinctiorebhahgse types is done
with image labels in front of the tree nodes. The yellow ones represeseslabe green ones

represent data type properties and the blue ones represent objeetti@s.

After selecting the inputs and the outputs, the user can continue with the aggxtip order
to provide input values and output constraints by clicking the next buttchenpper right
corner of the page. Our application has a wizard style usage logic. thesass over pages

by using next and previous buttons.

In the second page, it is expected from the user to supply the input valoeslang to the
selected input types and to give constraints on the selected output typesigdessary. This
page is splitinto three tabbed parts namely, “Input Values”, “Output €aings” and “Create
Instance” tabs. In the Input Values tab, the user can enter or selettvalpes according to
their types as shown in Figure 5.3. If the selected input is a class type inpoithi user must
select one of the instances of that class from a drop-down list. If thetedlgput is an object
property type, again the user must select an instance of the objectiyrogpege class from
a drop-down list. If the selected input is a data type property, then thecugens the input
value to that input’s value field. In this type of inputs, in order to become msegefuiendly,
different field types can appear in the page. When the selected data typéetytas int or
float range values, the user enters in a number field which is shorter ithland the cursor
is aligned to right. If selected data type property has string range valueyses enters the
string into a standard text field. When selected data type property hasldes€ime or time
range value, user can pick a date from a date field or can enter the vatuwaligaWhen the
selected data type property has a boolean range value, then userstipplialue by using a

checkBox.

The second tab contains output constraint fields. There are seledfrdsoin a tree repre-
sentation on the left side of the page. When the user clicks on an outpeit thedconstraint
fields appear on the right side of the page dynamically as shown in Figurel&wusers can

define output constraints was described in Chapter 4.

41

¢ Previous @ Run

Selectinputs | Output Constraints | Creste Instance

baokhame [hamlet

Figure 5.3: Input Values Tab.

Gl Previous -
Selectinputs | Output Constraints | Crests Instance @
"1 ‘Su‘tl';I]_LIJ:"Smce scale |equalsta v~ \—nu
@ DollarPrice amount[lessthanorequalstc v 3

Figure 5.4: Output Constraints Tab.

The last tab includes components in order to create instances of ontologgsclas semantic
web services, parameter types are ontologically defined and in semariticnements such
as our framework, everything is actually done with class instances. Tissaces are used
in communication with the abductive theorem prover. Users supply inpuésatuorder to
define the initial state of the world. If the user selects a class type injpetpsust provide an
instance of the selected class. In this event calculus framework, @secsaate instances by

using this tab as shown in Figure 5.5.

After these steps, the user can run the ATP to generate the compositiomglegtan corre-
sponding results. When the user presses the run button, the evetigaxioms in Prolog
are generated and ATP starts to prove the goal state. In the resoluticesprof ATP, the
happens axioms, which describe the web service execution steps, have jpl methquae-a
conditions in order to invoke the actual web services and return the rebuttse following

section, we describe how the communication between Prolog and Java igeachie

5.2.2 COMMUNICATION VIA JPL

Java Interface to Prolog (JPL), is a library which handles the communica¢gittveen Java
and Prolog. Using JPL, we can execute Prolog codes from Java atitegesults, and can

invoke Java methods from Prolog and again get the results and use theamextrsteps. In

42

& Previous @ Run

Selectinputs | Output Constraints | Create Instance

= ¢ Ontology Classes
W Book

@ Author Instance Name |hamistinstance |
» & Price ISBN |647458-UFAR-765 |
» & Accommodation authar [ol | EBE
! ﬁﬁ;g\:gg bookName [Hamlet [
ublistvear| |
::g\é:gcuon ’ ‘m »ix

Sun Wan Tue Wed Thu Fri Sat

1|28 27|, |2

2 2| e|a)s|s |8
3|8 1011 |12 [13 |44 |45
4 1817 |18 |19 [; |21 |22
52324 |25 |% |7 |5 B
6 |80 31| 1 |2

Taday

Figure 5.5: Create Instance Tab.

our event calculus framework, we use Prolog to Java calls in three wésels are invoking
the web services and getting the results, controlling the preconditions diefitie SWRL
in the OWL-S description of web services and controlling the output canitrapecified
by user with the web service execution results. Web services in ouriteqypsf it has

no precondition or output constraint, is translated into their corresporadiagt axioms as

follows:

axiom(happens(pServiceName (Input, Output), T1, TN),
[

jpl_pServiceName (Input, Output)
D.

The jpl method definition is as follows:

jpl_pServiceName(Input, Output) :-
jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSI),
jpl_list_to_array([Input], InputArray),
jpl_call(WSI,invokeService, ['pServiceName’,InputArray],OutputArray),
(OutputArray == @(null) -> OutputList = [] ;
jpl_array_to_list(OutputArray, Outputlist)),
[A] = OutputList,
(A == @(null) -> TemplListl = [] ;

jpl_array_to_list(A, TempListl)),

43

WholeList = [TempListl],
member ([Output], WholeList),

true.

In jpl_pServiceName method, web service has an input and an output. Thesemsare
passed to the jpl method as arguments. The first row of the jpl method defisitioncre-
ating an instance of WebServicelnvocation Java class with constructog taé arguments
and the created object is assigned to a Prolog variable called WSI. Titeederse via using
jpl_new method of JPL library. Then the input (which is only “Input” in our gase popu-
lated into a Java array by using jlt_to_array method. Then the invokeService method of
WebServicelnvocation java class is invoked with the serviceName antiimpy via jpl_call
method. This invokeService method does the actual web service invocatiot@rns the
results. The results are populated into OutputArray which is an argum@it cdll method.
Then this OutputArray is converted into a Prolog list by gotay to_list method. Finally the
converted output list is enumerated against the output of the serviceh(vghaaly “Output”

in this case), by using member operator. The wholegfpérviceName method returns true
because it is a precondition of the abdappens axiom and by returning true, it makes ATP

to add this service into composition plan and to go on with resolution.

However, if the web service has a precondition defined in SWRL rule kEggin its descrip-
tion or has an output constraint given by the user, then irhéppens axiom of the service,
there becomes more than one preconditidgfedent from the above execution jpl method. Let
us assume the user gives a constraint on the “Output” which is an int tgpetpsuch that it

can not be greater than 10. Then the generbéggbens axiom becomes as follows:

axiom(Chappens(pServiceName (Input, Output), T1l, TN),
[
jpl_pServiceName (Input, Output),
jpl_pServiceNameCondition(Output, ’10°)
D.

And the jpl method which handles the constraint validation is defined as follows

jpl_pServiceNameCondition(Conditionl, Condition2) :-

jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSI),

44

jpl_call(WSI, controlConstraint,
[Conditionl, ’less than or equals to’, Condition2], ResultValue),

jpl_is_true(ResultValue).

In this method definition, again an object instance of Java class “Web8kwication” is
created first via jphew method. Then the “controlConstraint” method of WebServicelnvoca-
tion class is invoked with three arguments and the returned result is assigRegultValue
variable. The arguments are, the operation which is “less than or equaitsttos example,
and the two values that will be controlled according to the given operatiotpu®and 10 in

this case. After the controlConstraint method is executed and ResultValegieved, this
ResultValue is converted to Prolog boolean type by usingsjpiue method and this boolean

is returned from jplpServiceNameCondition. If it is true, ATP takes this service as a proved

axiom, and goes on with other axioms.

This usage of jpl method describes from Prolog to Java communications ahddells.
When ATP runs, these methods are necessary in order to do some jobgsaoside. But
to start ATP and pass dynamically generated event calculus codes iy Praacalso need
interaction from Java to Prolog. JPL library also provides this facility. Adteevent axioms
generated from service definitions and user inputs are completed,teledheorem prover
and these Prolog codes are consulted to a Prolog session. Now weetgihigsi session from
Java with the help of jpl. The query including the goal state, which is a cotifumaf known
predicates, is created using the outputs selected by the user and is fed Thgpl.calling
“allSolutions” method of the query object, JPL produces all possible compogitams for
the desired outputs and these plans are put into a hash table for visualfpai@sses. The

Prolog calls from Java with the help of JPL are as follows:

Query consultATP =
new Query("consult", new Term[] { new Atom(eventCalculusPlanner.getAbsolutePath()) });

consultATP.query();

Query consultDynamicAxioms =
new Query("consult", new Term[] { new Atom(dynamicProlog.getAbsolutePath()) 1});

consul tDynamicAxioms.query();

Query query = new Query(goalStateQuery);

results = query.allSolutions();

45

5.2.3 REPRESENTATION OF RESULTS

The results returned in the hash table are outputs of web serki&ggsens axioms andefore
axioms. Thebeforeaxioms declare the ordering of web services according to their invocation

time. An example of a returned composition plan is as follows:

happens(servicel([Inputsl], [Outputl]), T1),
happens(service2 ([Inputs2], [Output2]), T2),
before(T1, T2),

before(T2, T)

This plan states that if servicel is first executed with inputsl, and theits2ng executed
with inputs2, the desired outputs can be obtained. However this formaafgyotvould not
be clear to end users. So, our framework shows the generated compp&ins in a very
user-friendly graphical representation. In this graphical reptaten, The Java Universal
Network'Graph framework (JUNG) is used. JUNG is a very powerful graphesntation
library for Java. After we parse the generated plan, our system @feserertex objects for
each web service in the plan with their timestamp values. After the vertices eatedy
using a time ordering algorithm as a post-processing, the edges betwsenvirtices are
also created. The mentioned algorithm starts with end vertices which argutur case,
and solves the time ordering between services in a backward procegsisgmple plan

representation is illustrated in Figure 5.6.

If the parameter passed between services is a class instance, the naaténstéimce appears
on the edges in the generated graph. This is because, we pass metmoetpardrom Java
to Prolog with their names. In our framework, there can be very complex defénitions
declared with their reference ontologies. In such a case, it is much maongeoto represent
those class instances in Prolog language than an object-oriented Javagann our early
example of finding a book, the web service BookFinder returns a botdnics with a sup-
plied book name. In that example, BookFinder returned a book objecthéutame of the
object instance was passed to Prolog. We bind those objects in our sygtkegding them
in the resulting hash table. By doing this, we do not lose any data, and wgetdme object
instance anytime we need via retrieving it from the resulting hash table. dasersee only

the instance names on the generated graph, but if they want to see albfi¢hasreturned

46

-~
@ Previous ® Kapat

Cutput Paths Output Fields

BNPricePrafile DaollarPrice="24 Dalar'

‘25 Dolar*

Inputs hookMame BookFinderProfile

O &
bookiame hamlet

ENPriceYTLProfile TLPrice="45vTL"

PRt

DaollarPrice="24 Dalar'

Inputs hookMame BookFinderProfile ENPricePrafile

bookiame \ J hamlet hamletinstance

- PriceConwerterProfile
28 Datgy

53

Figure 5.6: Graphical representation of generated composition plans.

@ Previous ® Kapat

Quitput Paths Output Fields:

~ J Output Results
- & TLPrice
@ BNPriceYTLProfile scalo [0 ‘
@ PriceConverterProfile
» & DollarPrice

amount |45

Figure 5.7: Detailed representation of output results.

instance, a dierent tab which is namely “Output Fields” is used. In this tab, there is a tree
representation of outputs selected by the user. For each output nedelirservices, which
return that output value, are listed in the tree. To illustrate, in our examplaedih§ a book,

the user selected TLPrice as an output to find out the TL price of the foaokl. But there
were two diferent services which returned TLPrice as their outputs. In our framkgwen

the user expands the TLPrice node in the output trée, sees the two alternative services.
Then by clicking on those web services, the user can see all fields ahgthabce as shown

in Figure 5.7.

a7

5.3 CASE STUDY: FINDING THE CLOSEST PREFERRED RESTAURANT

In this section, we aim to solve a composition problem given in [63] usingwemtecalculus

framework. The problem is about finding directions to the closest restaaccording to the

user’s food preference and also finding a map from the user’s tatetss to found restaurant.

Since there is no atomic web service that generates the desired outputs witrethaguts,

there should be a composition of some services that satisfies the user desdsne that

there are two available web services in our repository. One returns thressdand name

of the closest restaurant according to user supplied zip code angfefatence. The other

returns a map instance and direction, given start and finish addré@$4s parts of the web

services’ OWL-S descriptions are shown as:

<process:Input rdf:ID="ZipCode">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel;#zipCode
</process:parameterType>
<rdfs:label>Zip Code</rdfs:label>

</process:Input>

<process:Input rdf:ID="FoodPreference">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel ;#foodPreference
</process:parameterType>
<rdfs:label>Food Preference</rdfs:label>

</process:Input>

<process:Output rdf:ID="RestaurantName'>
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel ;#restaurantName
</process:parameterType>
<rdfs:label>Restaurant Name</rdfs:label>

</process:Output>

<process:Output rdf:ID="RestaurantAddress">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel ;#Address

</process:parameterType>

<rdfs:label>Restaurant Address</rdfs:label>

48

</process:Output>

<process:Input rdf:ID="FromAddress">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel ;#fromAddress
</process:parameterType>
<rdfs:label>From Address</rdfs:label>

</process:Input>

<process:Input rdf:ID="ToAddress">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel;#Address
</process:parameterType>
<rdfs:label>To Address</rdfs:label>

</process:Input>

<process:Output rdf:ID="Direction">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel ;#Direction
</process:parameterType>
<rdfs:label>Direction</rdfs:label>

</process:Output>

<process:Output rdf:ID="Map">
<process:parameterType rdf:datatype="&xsd;#anyURI">
&travel ; #Map
</process:parameterType>
<rdfs:label>Map</rdfs:label>

</process:Output>

In this case study, the ontologies used in service descriptions are rdtagtee initial prepro-

cessing step. Then the user selects the inputs thafsovides the values of and the outputs

g/he wants to find out. So the user will select, foodPreference which is ayget@roperty of

Dinner class, zipCode which is a data type property of Address clads@andddress which

is an object property of Direction class as inputs. The input and outfedtsms are shown

in Figure 5.8. Map and Direction classes are the outputs of this example. A# tHasses

and properties are defined in the “travel” ontology and can be found peAgix B.

49

$ Hext

-] Ontologies
» & Book
» & Author
» & Price
+ & Accommodation
v & Activity
» & Adventure
+ &% Relaxation
= & Dinner HPUTS
» & Restaurant OUTPUTS
@ Pub @ foodPreference
W@ foodPreference @ zipCode
» & Spors @ fromaddress
» & Sightseeing
- & Address
@ city
@ strest
@ zipCode
r & Map
- & Direction
@ toAddress
W fromAddress

W Direction [%]
W@ Map

©|0¢
€

Figure 5.8: Input and output selection screen for the case study.

Thehappens axioms generated from those two web services are as follows:

axiom(happens(pFindDirection(Address, FromAddress, Map, Direction), T1, TN),
[

jpl_pFindDirection(Address, FromAddress, Map, Direction)
D.

axiom(happens(pFindRestaurant (FoodPreference, ZipCode, Address, RestaurantName), T1, TN),

[

jpl_pFindRestaurant (FoodPreference, ZipCode, Address, RestaurantName)
D.

Theinitiates axioms of those web services are created as follows:

axiom(initiates(pFindDirection(Address, FromAddress, Map,_),

known(map, Map), T),

L
holds_at (known(address, Address), T),
holds_at (known(fromAddress, FromAddress), T)

1).

axiom(initiates(pFindDirection(Address, FromAddress, _,Direction),

known(direction, Direction), T),

50

holds_at (known(address, Address), T),
holds_at (known(fromAddress, FromAddress), T)
1).

axiom(initiates(pFindRestaurant (FoodPreference, ZipCode, Address,_),

known(address, Address), T),

[
holds_at (known(foodPreference, FoodPreference), T),
holds_at (known(zipCode, ZipCode), T)

1.

axiom(initiates(pFindRestaurant (FoodPreference, ZipCode, _, RestaurantName),

known(restaurantName, RestaurantName), T),

[
holds_at (known(foodPreference, FoodPreference), T),
holds_at (known(zipCode, ZipCode), T)

1).

After selecting inputs and outputs, now the user can give values to the papaieters.

Assume that, user is in Istanbul and stays at Swiss Hotel and wants to gactogest Italian

restaurant. But/ee does not know where it is and how to go to that restaurant from Swiss

Hotel. Therefore, the user also wants to get the map and direction betwess Fotel and

the closest Italian restaurant. According to these expectations, thellssefinput fields as

“italian” for foodPreference, “34544” for zipcode. FromAddressisobject type property

so the user should create an Address instance which is Swiss Hotelssaddrthis case

as shown in Figure 5.10 and should select this created instance as froes8dd shown in

Figure 5.9.

Theinitially axioms which define the initial state of world are created with inputs provided

by the user, as follows:

axiom(initially(known(fromAddress, addressofswisshotel)), []).
axiom(initially(known(foodPreference, italian)), []).

axiom(initially(known(zipCode, 34544)), []).

51

@ Previous @ Run

Selectinpits | Output Constraints Creste Instance

foodPreference [talian]

zipCode 34544 |

fromAddress |addressOfSwissHatel v
o

Figure 5.9: Giving the input values for the case study.

¢ Previous @ Run

Selectinputs | Output Constraints | Creste Instance

+ ¢l Ontology Classes

Book

@ Author Instance Name addressOfSwissHotel
+ & Price

ci Istenbul

» & Accommodation [l | q‘]j
+ & Activity strest |Caddebosian |

@ Address zipCode [34544 |

@ Map

@ Direction

Figure 5.10: Creating an instance of “Address” class.

When the user clicks the run button, abductive theorem prover andrdgaldy created Prolog
codes including the above event calculus axioms are consulted via J®fu€hy is generated
from the user specified outputs. Then the query is executed on the Besdsipn to generate
the composition plan. The query for finding the closest preferred mestaproblem is as

follows:

abdemo ([holds_at (known(map,Map), t), holds_at(known(direction,Direction), t)], R).

With the given inputs and outputs, ATP results in one composition plan whicthbdsllow-

ing happens andbefore axioms.

happens(pFindDirection(’addressofmezzaluna’, addressofswisshotel,

"mapofmezzaluna’, ’'directionfromswisshoteltomezzaluna’), tl, t2)
happens(pFindRestaurant(italian, 34544, ’Mezzaluna’, ’addressofmezzaluna’), t3, t4)
before(t2, t)
before(t4, tl1)

52

¢ Previous w Kapat

Outpud Paths Outpu Fields

zipGode

FindRestaurantProfile Map="MapOMezzaluna’

Inputs

i)
“Q‘weiﬁlyamnn:ﬁlvemnnmeSwwssHme\TnMaz
R

0
bnFramGwissHotelToMezaluna’ .

Figure 5.11: Generated composition plan and its JUNG representation.

This plan shows us if we first call FindRestaurant with given inputs anad ¢bh# FindDirec-
tion with given Swiss Hotel address input and generated Mezzalunassldutput, we can
get the desired map and direction results. This plan is represented with dgiGFigure

5.11.

In this graphical representation we can see the input output parametalsets on the edges.
But as we mentioned before, if the output is a class instance then only theoh#menstance
appears on the edges. We can see the detailed output results in the “Betgst tab. In
this case study, the map has two float type properties, namely latitude and dangitihe
selected output is a Map type output, the user can see the visual map in goanecppears
on the screen. In this map representation, we used Google Map API toisimosvdetailed

manner as shown in Figure 5.12.

5.4 INTEGRATION WITH WORKFLOW FRAMEWORK

The event calculus has been used for automated web service compasibtenpbefore [29].
In that work, generating composition plans using generic web serviceasitigm templates
described in OWL-S has been investigated. In this thesis, generating sitimp@lans using
only the user specified inputs and outputs is investigated. Both framewsekahductive
event calculus in order to solve the automated web service compositionmrdhblthis thesis,
we integrated both approaches under one application by adding onaleedction on these

two composition tools. The user can select which ofiie svants to use as a composition

53

@
[Map [Satolite [Hybrid]

Figure 5.12: Google Map API used for map representation.

© Web Service Composition By Giving Generic Composition Description URL
© Web Service Composition By Selecting Generic Composition Description Fils
© Web Service Composition By Selecting Inputs & Outputs

Figure 5.13: The method selection screen.

approach (see Figure 5.13). If the user has a generic compositioitidefin a local file and
wants to explore actual web services and their return results accordngptied inputs,/fe
selects the choice “Web Service Composition by Selecting Generic Composégunription
File” and clicks on next button. If the user wants to make web service cdtigroBy giving

a generic composition definition URL and wants to explore actual web seraice their
return results according to supplied inpuibesselects the choice “Web Service Composition
by Giving Generic Composition Description URL" and clicks on next buttornaly, if

the user wants get composition plans and execution results using only imglisugputs
without supplying any generic composition file or UR|[he& selects the choice “Web Service
Composition by Selecting Inputs & Outputs” and clicks on next button. Adogrtb the

selected composition choice, system goes on with our tool or the tool défifize].

The system architecture and the implementation details of our event calcauswork are

presented in this chapter. The input and output selection, supplying tievelpes and giving

54

constraints on the outputs are explained in detail. The web service deswiatid the inputs
and outputs supplied by the user are translated to the event calculus aXtoens.abductive
theorem prover resolves the given query and returns the composition Plae generated
plans are presented to the user with a graph which shows the necessesgwices to fulfill
the user requirements and their input and output parameters using vartitdsected edges.
These steps are explained with the help of graphical user interfacethe@mdent calculus
axioms. Furthermore, an illustrating case study is given in this chapter whaatoisposition
problem given in [63]. Finally, the integration of our system with the toopped in [29] is

presented.

55

CHAPTER 6

CONCLUSION

In this thesis, we have presented the usage of the event calculus as d foethe solution of
automated web service composition problem. Given only the inputs and oupeaified by
the user, our system can generate all possible composition plans witktrespgee available
services in the repository. Users can also give constraints on outputieinto narrow down

the created composition plans.

Web services are described using OWL-S in our system. The process ofddWL-S de-
scriptions have the necessary information to achieve the proposed awdowetieservice
composition. The input, output, precondition arfteet parameters of services described in
the process model are used in order to represent events andftheis én the problem do-
main. The profile model of OWL-S descriptions are commonly used for sediscovery. In
our framework we assume all relevant services have been discauaidleir service descrip-
tions are in our local repository. The grounding part of OWL-S is usegdrvice executions

which are simulated in this thesis.

In this thesis it is shown that, when a goal state is given, the event cal@nuiéncl proper
plans as web service compositions with the use of the abductive theoresr.pidie event
calculus is used as a logical formalism to describe the actions (web sé¢azbtheir &ects.
The OWL-S descriptions of available web services in the repository arslétaed into corre-
sponding event axioms in Prolog language. In this translation phase,drsteaing input
and output parameter names, parameter types are used with the help dicdefartion of
OWL-S. In a fully semantic environment as assumed in this thesis, web sehage param-
eter types as ontology resources such as properties or classesl dfitiee corresponding

ontology files. In this approach, we can describe services via semantigngsaf inputout-

56

put parameters instead of their syntactic declarations. These ontologe<kasd properties
used in web service descriptions are presented to the user in thgounput selection phase.
The specified input values to the selected input types are then translatexvémipaxioms
that define the initial state of the world. Likewise, selected output typesdayans converted
to a goal state as conjunctions of event calculus predicates and givem abdhctive plan-
ner. Then, the planner generates composition plans to reach the gadestage. In this plan
generation phase, the abductive planner communicates with the executiafertwdall the
actual web services and use the returned results in the remaining resaslefisn This exe-
cution part is simulated, due to the lack of those fully semantic web servicdisipadbin the
Internet. The generated composition plans are presented to the useapbiad representa-
tion for ease of understanding and the details of results correspondisgitgelected outputs

are presented as form type fields.

In the planning and execution phases, the preconditions defined in the ®¥étvice de-
scriptions are also considered. These preconditions are added terteshevent axioms in
Prolog as preconditions of events on input parameters. If the precorgliioa service are
satisfied, then the service is executed and takes place in the plan. In atilgewice defined
preconditions, users can give output constraints according to thelis ireeur system. After
selecting the output types, users can define constraints on outputs arahdlse attributes
of outputs. While giving constraints, output types are taken into considerand according
to those types, users can select constraint operations such as “lgsfothat type output,

“before” for date type output or “starts with” for string type output. Thesestraints are

added to event calculus axioms as postconditions on output parameters.

We also propose a complete event calculus framework for automated vwetessomposi-
tions, by integrating our tool with a previous work done in [29]. In thatessh, abductive
capabilities of event calculus are also used to describe composition prallenplanning
problem. The dierence is that, an OWL-S description which includes generic composition
model is provided to system, and actual web services are located to fgetheraomposition
plan in that method. Users can enter the input values of found servidesxaoution takes
after the planning. The integrated framework provides alternative catiggpapproaches to
users and they select one of the given methods. If the user has a ¢bompoedel and wants
to see the generated plan according to that model, he or she selects thatamgkigoes on

with the tool proposed in [29]. If the user does not have a generic csitqroplan and wants

57

to get a composition plan with respect to user specified inputs and outpuisshe selects

that option and uses our tool.

In this thesis, we showed that it is possible to represent web serviceb at@described in
OWL-S, in the event calculus domain. In the event calculus, propertidgramic systems
which change over time can be expressed easily. Because of this faciliy efent calculus,
concurrency and temporal ordering between events can be modelsd &sish the help

of abductive planning capability, the event calculus is a suitable solutiowébr service

composition problem.

As a future work, the simulated web service execution module can be rdplétbethe actual
execution module. Also in our method, the execution of web services take glaig the
planning process. This is not a problem for information-retrieving sesvatich as the ones
we used in our case study, because execution phase is either durifigraha planning
process does not matter. However, in world-altering services, therd begtases that the
user does not want to happen during composition steps. Thus, segahatiplanning and
execution parts from each other and letting the user select and exenetatgel compositions

after showing the alternative plans, is another future work.

The OWL-S descriptions of web services in the repository are translatedanresponding
event axioms in Prolog language. The performance of the system castéé tehen there

are plenty of OWL-S descriptions in the repository.

When presenting the generated plans, the cost of the plans accordingédbemchmarks
such as, the number of services in the plan or the execution time of the pheve cansidered
and plans can be listed in an increasing order of cost. So, the userectdreggans with low
costs on the top. When the number of plans are too much, how they can be eptiamid

presented to the user is another future work related with the presentaptanef

58

REFERENCES

1. Andrews, T., Curbera, F., Dholakia, H., and Goland, Y., Business Process
Execution Language for Web Services, Version
http://www.ibm.com/developerworks/library/specification/ws-bpel/, 2003.

2. Arkin A., Askary S., Fordin S., Jekeli W., Kawaguchi K., Orchard D., Pogliani S.,
Riemer K., Struble S., Takaci-Nagy P., Trickovic 1., and Zimek S., Web Service
Choreography Interface (WSCI) 1.0. Published on the World Wide Web by BEA
Systems, Intalio, SAP, and Sun Microsystems, 2002.

3. Arkin, A., Business Process Modeling Language, Version 1.0, Business
Management Initiative, http://www.bpmi.org/, January 2009.

4. Au, T.C., Kuter, U., and Nau, D., Web Service Composition with Volatile
Information, International Semantic Web Conference, 2005.

5. Aydin, O., Automated Web Services Composition with the Event Calculus, M.S.
Thesis, METU, 2005.

6. Aydin, O., Cicekli, N.K., Cicekli, 1., Automated Web Services Composition with
Event Calculus, Proceedings of the 8th International Workshop in \Engineering
Societies in the Agents World" (ESAWO07), 2007.

7. Bachlechner, D., Lausen, H., Siorpaes, K., Fensel, D., Web Service Discovery-A
Reality Check, Third Annual European Semantic Web Conference ESWC'06, 2006.

8. Baresi, Luciano, and Elisabetta Di Nitto. Test and Analysis of Web Services.
Berlin [Germany] ; New York: Springer, pp. 266-303, 2007.

9. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, 1., McGuinness, D.L., Patel-

59

http://www.ibm.com/developerworks/library/specification/ws-bpel/

Schneider, P.F., and Stein, L.A., OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004, W3C Technical Reports and Publications.

10. Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., and Dumas, M., Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web Services, Proc. of the
18th Int. Conf. on Data Engineering (ICDE'02), 2002.

11. Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web, Scientific
American Magazine, 2001.

12. Blum, A., and Furst, M., Fast Planning Through Planning Graph Analysis,
Proceedings of the 14th International Joint Conference on Artificial Intelligence -
IJCAI9S, pp. 16361642, 1995.

13. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and
Orchard, D., Web Services Architecture, W3C Working Group Note 11 February
2004, W3C Technical Reports and Publications, http://www.w3.org/TR/ws-arch/,
January 2009.

14. Carnegie Mellon University OWL-S API,
http://projects.semwebcentral.org/projects/owl-s-api/, January 2009.

15. Casati, F., Ilnicki, S., and Jin, L., Adaptive and Dynamic Service Composition in
eFlow, Proceedings of 12th Int. Conference on Advanced Information Systems
Engineering(CAiSE), 2000.

16. Chen L., Yang X., Applying Al Planning to Semantic Web Services for
workflow Generation, Proc. of the Ist Intl. Conf. on Semantics, Knowledge and
Grid (SKG 2005).

17. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., Web Services
Description Language (WSDL) 1.1, W3C Note 15 March 2001, W3C Technical
Reports and Publications.

18. Curbera F., Goland Y., Klein J.,, Leymann F., Roller D, Thatte S., and

60

Weerawarana S., Business Process Execution Language for Web Service
(BPEL4WS) 1.0., Published on the World WideWeb by BEA Corp., IBM Corp. and

Microsoft Corp., August 2002.

19. D. Tidwell, "Web Services—The Web's Next Revolution," IBM tutorial, 29 Nov.
2000

20. DAML’s Bravo Air Process Example for OWL-S 1.1,
http://www.daml.org/services/owl-s/1.1/BravoAirProcess.owl, January 2009.

21. DAML’s Bravo Air Profile Example for OWL-S 1.1,
http://www.daml.org/services/owl-s/1.1/BravoAirProfile.owl, January 2009.

22. David Martin, Massimo Paolucci, Sheila Mcllraith, Mark Burstein, Drew
McDermott, Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika
Solanki, Naveen Srinivasan, and Katia Sycara. Bringing Semantics to Web Services:
The OWL-S Approach. In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC 2004), San
Diego, California, USA, 2004. URL: http://www.daml.org/services/owl-s/OWL-S-
SWSWPC2004-CameraReady.doc.

23. Davulcu, H., Kifer, M., Pokorny, L., Ramakrishnan, C.R., Ramakrishnan, L.V.,
and Dawson, S., Modelling and Analysis of Interactions in Virtual Enterprises,
RIDE, pp. 12-18, 1998.

24. Dejing Dou, Drew McDermott and Peishen Qi. Ontology Translation on the

Semantic Web .Journal on Data Semantics II, Springer-Verlag Lecture Notes in

Computer Science no. 3360, Springer-Verlag, pp. 35-57 , 2005.

25. Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework
WSMEF. Electronic Commerce Research and Applications, 1:113—-137(25), Summer
2002. URL: http://www.swsi.org/resources/wsmf-paper.pdf.

26. Dustdar, S., and Schreiner, W., 4 Survey on Web Services Composition, Int. J.
Web Grid Serv. 1 (1), pp. 1-30, 2005.

61

http://www.swsi.org/resources/wsmf-paper.pdf
http://www.springerlink.com/content/105633/?p=23204e70d86f4e8a8ae96899c42dc66d&pi=0
http://www.springerlink.com/content/105633/?p=23204e70d86f4e8a8ae96899c42dc66d&pi=0
http://www.springerlink.com/content/n4vyd6a1u856/?p=23204e70d86f4e8a8ae96899c42dc66d&pi=0
http://www.springerlink.com/content/?Author=Peishen+Qi
http://www.springerlink.com/content/cedad9pnjt7v1773/?p=bdb602406eae429aad0f943743480560&pi=1
http://www.springerlink.com/content/cedad9pnjt7v1773/?p=bdb602406eae429aad0f943743480560&pi=1
http://www.springerlink.com/content/?Author=Peishen+Qi
http://www.springerlink.com/content/?Author=Drew+McDermott
http://www.springerlink.com/content/?Author=Dejing+Dou
http://www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraReady.doc
http://www.daml.org/services/owl-s/OWL-S-SWSWPC2004-CameraReady.doc

27. eCl@ss, The International Standard for the Classification of Products and
Services, http://www.eclass-online.com/, January 2009.

28. Eshghi, K., Abductive Planning with Event Calculus, Proceedings of the 5th

International Conference and Symposium on Logic Programming, MIT Press, pp.
562--579, 1988.

29. Esra Kirci, Automatic Composition of Semantic Web Services with the
Abductive Event Calculus, Masters Thesis, METU, September 2008

30. Fikes, R. E. and Nilsson, N. J., STRIPS: a new approach to the application of
theorem proving to problem solving, Artificial Intelligence, 2(3-4): pages 189-208,
1971.

31. Fujii, K., and Suda, T., Component Service Model with Semantics (CoSMoS): A
new Component Model for Dynamic Service Composition, Proceedings of
Applications and the Internet Workshops (SAINTW’04), pp. 348-355, 2004.

32. Gardner, T., An Introduction to Web Services, Ariadne Issue 29,
http://www.ariadne.ac.uk/issue29/gardner, January 2009.

33. Garofalakis, J., Panagis, Y., Sakkopoulos, E., and Tsakalidis, A., Web Service
Discovery Mechanisms: Looking for a Needle in a Haystack, International
Workshop on Web Engineering, 2004.

34, Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M.,
Weld, D., and Wilkins, D., PDDL: The Panning Domain Definition Language,
AIPS-98 Planning Committee, 1998.

35. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F,,
Karmarkar, A., and Lafon, Y., SOAP Version 1.2 Part 1: MessagingFramework
(Second Edition), W3C Recommendation 27 April 2007, W3C Technical Reports and
Publications, http://www.w3.org/TR/soap12-partl/, January 2009.

62

36. Haas, H., and Brown, A., Web Services Glossary, W3C Working Group Note 11
February 2004, W3C Technical Reports and Publications,
http://www.w3.org/TR/ws-gloss/, January 2009

37. Huang, Y., and Walker, D.W., Extensions to Web Service Techniques for
Integrating Jini into a Service-Oriented Architecture for the Grid, ICCS 2003,
LNCS2659, pp. 254-263, 2003.

38. Hull, R., Hill, M., and Berardi, D., Semantic Web Services Usage Scenario: e-
Service Composition in a Behavior based Framework,
http://www.daml.org/services/use-cases/language/, January 2009

39. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
Swrl: A semantic web rule language combining owl and ruleml, 2003. Available at
http://www.daml.org/2003/11/swrl/.

40. JPL - Java Interface to Prolog,
http://www.swiprolog.org/packages/jpl/java_api/index.html, January 2009.

41. JUNG - Java Universal Network/Graph Framework, http://jung.sourceforge.net/,
January 2009.

42. Karagoz, F., Application of Schema Matching Methods to Semantic Web Service
Discovery, M.S. Thesis, Dept. of Computer Engineering, METU, Ankara, 2006.

43. Kautz, H., and Selman, B., Planning as satisfiability, In Proceedings of the 10th
European Conference on Artificial Intelligence, 359-363. Wiley, 1992.

44. KIF. Knowledge Interchange Format: Draft proposed American National
Standard (dpans). Technical Report 2/98-004, ANS, 1998. Also at
http://logic.stanford.edu/kif/dpans.html.

45. Kowalski, R. A., and Sergot, M.J., A Logic-Based Calculus of Events, New
Generation Computing, Vol. 4(1), pp. 67-95, 1986.

63

http://logic.stanford.edu/kif/dpans.html
http://www.swiprolog/
http://www.daml.org/2003/11/swrl/

46. Kuster, U., Stern, M., and Konig-Ries, B., 4 Classification of Issues and
Approaches in automatic Service Composition, 1st Int. Workshop on Engineering
Service Compositions (WESCO05) at ICSOC, 2005.

47. Kuter, U., Sirin, E., Parsia, B., Nau, D., and Hendler, J., Information Gathering
During Planning for Web Service Composition, Proc. of ICAPS-PAWGS 2004,
2004.

48. Leymann, F., Web Service Flow Language (WSFL 1.0), IBM Software
Group, http://www.ibm.com/software/solutions/webservices/pdf/WSFL.pdf,
2001.

49. M. Ghallab et al. PDDL-The Planning Domain Definition Language V. 2.
Technical Report, report CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control, 1998.

50. Mao, Z.M., Brewer, E.A., Katz, R.H.: Fault-tolerant, scalable, wide-area internet
service composition. Technical Report UCB//CSD-01-1129, University of Califor-
nia, Berkeley, USA (2001)

51. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and
Sycara, K., OWL-S: Semantic Markup for Web Services, W3C Member Submission
22 November 2004, Acknowledged Member Submissions to W3C,
http://www.w3.org/Submission/OWL-S/, January 2009

52. Maryland Information and Network Dynamics Lab, Semantic Web Agents
Project (MindSwap) OWL-S API, http://www.mindswap.org/2004/owl-s/api/,
January 2009.

53. McCarthy, J., Situations, Actions and Casual Laws, Stanford Artificial
Intelligence Project: Memo 2, 1963.

54. McDermott, D., Estimated-Regression Planning for Interactions with Web
Services, Sixth International Conference on Al Planning and Scheduling, AAAI

64

Press, 2002.

55. Mcllraith, S. A., and Son, T.C., Adapting Golog for Composition of Semantic
Web Services, Proceedings of Eighth International Conference on Principles of
Knowledge Representation and Reasoning, pp. 482-493, 2002.

56. Miller, R., and Shanahan, M., Some Alternative Formulations of the Event

Calculus, Computational Logic: Logic Programming and Beyond, Springer-Verlag,
pp. 452-490, 2002.

57. Mithun Sheshagiri, "Automatic Composition and Invocation of Semantic Web
Services", MastersThesis, UMBC, August 2004

58. Mueller, Erik T., Commonsense Reasoning, pp. 42-43, 2006.

59. Mueller, R., Greiner, U., and Rahm, E., Agentwork: A Workflow System
Supporting Rule-Based Workflow Adaptation, Journal of Data and Knowledge
Engineering, 2004.

60. Nau, D., Au, T.C., llghami, O., Kuter, U., Murdock, W., Wu, D., and Yaman, F.,
SHOP2: An HTN Planning System, JAIR Volume 20, pp. 379—404, 2003.

61. North American Industry Classification System, NAICS, http://www.census.gov/
epcd/www/naics.html, January 2009.

62. OASIS, Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org/, January 2009.

63. Oh, S.C., Lee, D., and Kumara, S., A Comparative Illustration of Al Planning-
based Web Service Composition, ACM SIGecom Exchanges, 5(5), pp. 1-10, 2006.

64. Peer, J., A PDDL Based Tool for Automatic Web Service Composition, PPSWR’
04: Proceedings of Second International Workshop on Principles and Practice of
Semantic Web Reasoning, pp. 149-163, 2004.

65

http://ebiquity.umbc.edu/person/html/Mithun/Sheshagiri/
http://ebiquity.umbc.edu/person/html/Mithun/Sheshagiri/

65. Peer, J., Web Service Composition as Al Planning - a Survey, Technical report,
Univ. of St. Gallen, March 2005.

66. Pistore, M., Bertoli, P., Barbon, F., Shaparau, D., and Traverso, P., Planning and
Monitoring Web Service Composition, Proc. of the 14™ Int. Conf. on Automated
Planning and Scheduling (ICAPS 2004), 2004.

67. Process Ontology for OWL-S 1.1,
http://www.daml.org/services/owls/1.1/Process.owl, January 2009.

68. Rao, J., and Su, X., 4 Survey of Automated Web Service Composition Methods,
Proceedings of First International Workshop on Semantic Web Services and Web
Process Composition, pp 43-54, 2004.

69. Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S., 4 Scalable
Content-Addressable Network, Proceedings of ACM SIGCOMM'01 Conference, pp.
161-172, 2001.

70. Rouached M., Perrin O., Godart C., Towards formal verification of web service
composition, 4th Intl. Conference on Business Process Management, BPM 2006.

71. Rouached, M., and Godart, C., An Event Based Model for Web Service
Coordination, 2nd International Conference on Web Information Systems and
Technologies - WEBIST 2006, 2006.

72. Rowstron, A., and Druschel, P., Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems, Lecture Notes In
Computer Science, 2001.

73. Seppo Torma, Jukka Villstedt, Ville Lehtinen, Ian Oliver, Vesa Luukkala.
Semantic Web Services — A Survey. Helsinki University of Technology, Laboratory
of Software Technology, Helsinki, Finland, 2008

66

http://www.daml.org/services/owls/

74. Shanahan, M.P., An Abductive Event Calculus Planner, The Journal of Logic
Programming, Vol. 44(1-3), pp. 207--240, 2000.

75. Shanahan, M.P., Event Calculus Planning Revisited, Proceedings 4" European
Conference on Plannning (ECP 97), Springer-Verlag Lecture Notes in Artificial
Intelligence no. 1348, pages 390-402, 1997.

76. Shanahan, M., Representing Continuous Change in the Event Calculus,
Proceedings of ECAI'90 Conference, Stockholm, pp. 598-603, 1990.

77. Shanahan, M.P., The Event Calculus Explained, Artificial Intelligence Today,
Springer-Verlag Lecture Notes in Artificial Intelligence no. 1600, Springer-Verlag,
pp. 409--430, 1999.

78. Sirin E., Combining Description Logic Reasoning with Al Planning for
Composition of Web Services, PhD Thesis, Faculty of the Graduate School of the
University of Maryland, , 2006.

79. Sirin E., Hendler J., Parsia B. Semi-automatic Composition of Web Services
using Semantic Descriptions. Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS2003, 2002.

80. Sirin E., Parsia, B., Wu, D., Hendler, J., and Nau, D., HTN planning for web
Service Composition Using SHOPZ2, Journal of Web Semantics, pp. 377-396, 2004.

81. Srinivasan, N., Paolucci, M., and Sycara, K., An Efficient Algorithm for
OWL-S Based Semantic Search in UDDI, Lecture Notes in Computer Science, 2005.

82. Stathis K., Lekeas G., Kloukinas C., Competence checking for the global e-
service society using games, In Proceedings of Engineering Societies in the Agents
World (ESAWO06), G. O'Hare, M. O'Grady, O. Dikinelli, and A Ricci (Eds).

83. Stoica, 1., Morris, R., Karger, D., Kaashoek, F., and Balakrishnan, H., Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications, Proceedings of
ACM SIGCOMM’01 Conference, pp. 149-160, 2001.

67

84. Su, X., and Rao, J., 4 Survey of Automated Web Service Composition Methods,
In Proceedings of First International Workshop on Semantic Web Services and Web
Process Composition, SWSWPC 2004, pp. 43-54, 2004.

85. Thatte, S., XLANG: Web Services for Business Process Design, Microsoft
Corporation, http://www.gotdotnet.com/team/xmlwsspecs/xlang-c/default.htm,
2001.

86. UDDI, Universal Description, Discovery and Integration, The UDDI Technical
White Paper, September 2000,
http://'www.uddi.org/pubs/lru_UDDI Technical White Paper.pdf, January 2009.

87. Verma, K., Sheth, A., Miller, J., and Aggarwal, R., Semantic Web Services Usage
Scenario: Dynamic QoS based Supply Chain, http://www.daml.org/services/use-
cases/architecture/, January 2009.

88. Web Ontology Language,
http://en.wikipedia.org/wiki/Web_Ontology Language, January 2009.

89. Wilk, J., Russo, A., and Cunningham, M.J., Dynamic Workflow Pulling the
Strings, Distinguished Project (MEng), Department of Computing, Imperial Collage
London, 2004.

90. WonderWeb OWL Ontology Validator,
http://www.mygrid.org.uk/OWL/Validator/, January 2009.

91. Yolum P., Singh M., Reasoning About Commitments in the Event Calculus: An
Approach for Specifying and Executing Protocols, Annals of Mathematics and Al,
Vol:42(1-3), 2004.

92. Zhang, J.F., and Kowalczyk, R., Agent-based Dis-graph Planning Algorithm for
Web Service Composition, International Conference on Computational Inteligence
for Modelling Control and Automation and International Conference on Intelligent
Agents Web Technologies and International Commerce (CIMCA'06), pp. 258, 2006.

68

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

93. Zhang, R., Arpinar, 1.B., Aleman-Meza, B.: Automatic composition of semantic
web services. In: Proc. of the 2003 Int. Conf. on Web Services (ICWS'03), Las
Vegas, NV, USA. (2003)

69

APPENDIX A

ABDUCTIVE THEOREM PROVER

The Abductive Theorem Prover [5] used in this thesis is provided below.

abduct(GL, RL) <- abduct(GL, [], RL, [1).

abduct([], RL,RL,N).
abduct([holdsAt(F,T) | GL], CurrRL, RL, NL) <-
not(F=neg(_)), axiom(initially(F), AL),
irresolvable(clipped(®,F,T), CurrRL, NL),
append (AL, GL, NewGL),
abduct (NewGL, CurrRL, RL, [clipped(®, F, T) | NL]).
abduct([holdsAt(neg(F), T) | GL], R1, R3, N1, N4) <-
axiom(initially(neg(F)), AL),
irresolvable(declipped(®, F, T), CurrRL, NL),
append (AL, GL, NewGL),
abduct (NewGL, CurrRL, RL, [declipped(®, F, T) | NL]).
abduct([holdsAt(F, T) | GL], CurrRL, RL, NL) <-
not(F=neg(.)), axiomChappens(E, T1l, T2), GLHappens),
axiom(initiates(E, F, T1), GLInitiates),
consistent Chappens(E, T1, T2), CurrRL, NL, R1),
consistent(<(T2, T), R1, NL, NewRL),
irresolvable(clipped(T1, F, T), NewRL, NL),
append(GLInitiates, GL, GL1), append(GLHappens, GL1, NewGL),
abduct (NewGL, NewRL, RL, [clipped(T1l, F, T) | NL]).
abduct([holdsAt(neg(F), T) | GL], CurrRL, RL, NL) <-
axiomChappens(E, T1, T2), GLHappens),
axiom(terminates(E, F, T1), GLTerminates),

consistent Chappens(E, T1, T2), CurrRL, NL, R1),

70

consistent(<(T2, T), R1, NL, NewRL),
irresolvable(declipped(T1, F, T), NewRL, NL),
append(GLTerminates, GL, GL1), append(GLHappens, GL1, NewGL),
abduct (NewGL, NewRL, RL, [declipped(T1, F, T) | NL]).
abduct([G | GL], CurrRL, RL, NL) <-
abducible(G), axiom(G, AL),
consistent(G, CurrRL, NL, NewRL),
append (AL, GL, NewGL),
abduct (NewGL, NewRL, RL, NL).
abduct([G | GL], CurrRL, RL, NL) <-
not (abducible(G)), axiom(G, AL),
append (AL, GL, NewGL),
abduct (NewGL, CurrRL, RL, NL).

abducible(<(_, _)).
abducibleChappens(_, _, _)).

71

APPENDIX B

TRAVEL ONTOLOGY

<?xml version="1.0" 7>
- <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/travel.owl#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:daml="http://www.daml.org/2001/03/daml+oil#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xml :base="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/travel.owl">
- <owl:Ontology rdf:about="">
<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
An example ontology for tutorial purposes.
</rdfs:comment>
<owl:versionInfo rdf:datatype="http://www.w3.0org/2001/XMLSchema#string">
1.0 by Holger Knublauch (holger@smi.stanford.edu)
</owl:versionInfo>
</owl:0Ontology>
- <owl:Class rdf:ID="Accommodation">
<rdfs:comment rdf:datatype="http://www.w3.0org/2001/XMLSchema#string">
A place to stay for tourists.
</rdfs:comment>
</owl:Class>
<owl:Class rdf:ID="Activity" />
<owl:Class rdf:ID="Direction" />
- <owl:Class rdf:ID="BunjeeJumping">
- <rdfs:subClassOf>

<owl:Class rdf:ID="Adventure" />

72

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Address" />

<owl:Class rdf:ID="Sightseeing">
<owl:disjointWith>

<owl:Class rdf:ID="Sports" />
</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Relaxation" />
</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Adventure" />
</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Activity" />
</owl:Class>

<owl:Class rdf:about="#Sports">
<rdfs:subClassOf rdf:resource="#Activity" />
<owl:disjointWith>

<owl:Class rdf:about="#Adventure" />
</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:about="#Relaxation" />
</owl:disjointWith>

<owl:disjointWith rdf:resource="#Sightseeing" />
</owl:Class>

<owl:Class rdf:ID="Surfing">
<rdfs:subClassOf rdf:resource="#Sports" />
</owl:Class>

<owl:Class rdf:ID="Hiking">

<rdfs:subClassOf rdf:resource="#Sports" />
</owl:Class>

<owl:Class rdf:ID="Dinner">

<rdfs:subClassOf rdf:resource="#Activity" />
</owl:Class>

<owl:Class rdf:ID="Pub">

<rdfs:subClassOf rdf:resource="#Dinner" />

</owl:Class>

73

<owl:Class rdf:ID="Map" />

<owl:Class rdf:ID="Museums">

<rdfs:subClassOf rdf:resource="#Sightseeing" />
</owl:Class>

<owl:Class rdf:ID="Sunbathing">
<rdfs:subClassOf>

<owl:Class rdf:about="#Relaxation" />
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Relaxation">
<rdfs:subClassOf rdf:resource="#Activity" />
<owl:disjointWith rdf:resource="#Sports" />
<owl:disjointWith rdf:resource="#Sightseeing" />
<owl:disjointWith>

<owl:Class rdf:about="#Adventure" />
</owl:disjointWith>

</owl:Class>

<owl:Class rdf:ID="Safari">

<rdfs:subClassOf>

<owl:Class rdf:about="#Adventure" />
</rdfs:subClassO0f>

<rdfs:subClassOf rdf:resource="#Sightseeing" />
</owl:Class>

<owl:Class rdf:ID="Yoga">

<rdfs:subClassOf rdf:resource="#Relaxation" />
</owl:Class>

<owl:Class rdf:ID="Hotel">

<rdfs:subClassOf rdf:resource="#Accommodation" />
<owl:disjointWith>

<owl:Class rdf:ID="BedAndBreakfast" />
</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Campground" />
</owl:disjointWith>

</owl:Class>

<owl:Class rdf:about="#BedAndBreakfast">

<owl:disjointWith rdf:resource="#Hotel" />

74

<owl:disjointWith>

<owl:Class rdf:about="#Campground" />
</owl:disjointWith>

<rdfs:subClassOf rdf:resource="#Accommodation" />
</owl:Class>

<owl:Class rdf:ID="Restaurant'>

<rdfs:subClassOf rdf:resource="#Dinner" />
</owl:Class>

<owl:Class rdf:about="#Campground">
<rdfs:subClassOf rdf:resource="#Accommodation" />
<owl:disjointWith rdf:resource="#BedAndBreakfast" />
<owl:disjointWith rdf:resource="#Hotel" />
</owl:Class>

<owl:Class rdf:about="#Adventure">
<rdfs:subClassOf rdf:resource="#Activity" />
<owl:disjointWith rdf:resource="#Sports" />
<owl:disjointWith rdf:resource="#Sightseeing" />
<owl:disjointWith rdf:resource="#Relaxation" />
</owl:Class>

<owl:0ObjectProperty rdf:ID="toAddress">
<rdfs:domain rdf:resource="#Direction" />
<rdfs:range rdf:resource="#Address" />
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="address">
<rdfs:range rdf:resource="#Address" />
<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Activity" />

<owl:Class rdf:about="#Accommodation" />

</owl :unionOf>

</owl:Class>

</rdfs:domain>

</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="fromAddress">
<rdfs:domain rdf:resource="#Direction" />

<rdfs:range rdf:resource="#Address" />

75

</owl:0bjectProperty>

<owl:DatatypeProperty rdf:ID="latitude">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float" />
<rdfs:domain rdf:resource="#Map" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="longitude">

<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#float" />
<rdfs:domain rdf:resource="#Map" />

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="foodPreference">

<rdfs:domain rdf:resource="#Dinner" />

<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"” />
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="street">

<rdfs:domain rdf:resource="#Address" />

<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="hotelName">

<rdfs:domain rdf:resource="#Hotel" />

<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema#string" />
</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="restaurantName">

<rdfs:domain rdf:resource="#Restaurant" />

<rdfs:range rdf:resource="http://www.w3.0rg/2001/XMLSchema#string" />
</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="city">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
<rdfs:domain rdf:resource="#Address" />

<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypeProperty" />
</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="zipCode">

<rdfs:range rdf:resource="http://www.w3.0org/2001/XMLSchema#string" />
<rdfs:domain rdf:resource="#Address" />

<rdf:type rdf:resource="http://www.w3.0rg/2002/07/owl#DatatypeProperty" />
</owl:FunctionalProperty>

</rdf:RDF>

76

