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ABSTRACT

IMAGE SEGMENTATION BASED ON VARIATIONAL TECHNIQUES

Altınoklu, Metin Burak

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Zafer Ünver

Co-Supervisor: Prof. Dr. Kemal Leblebicioğlu

February 2009, 115 pages

In this thesis, the image segmentation methods based on the Mumford–Shah

variational approach have been studied. By obtaining an optimum point of the

Mumford-Shah functional which is a piecewise smooth approximate image and

a set of edge curves, an image can be decomposed into regions. This piece-

wise smooth approximate image is smooth inside of regions, but it is allowed to

be discontinuous region wise. Unfortunately, because of the irregularity of the

Mumford Shah functional, it cannot be directly used for image segmentation. On

the other hand, there are several approaches to approximate the Mumford-Shah

functional. In the first approach, suggested by Ambrosio-Tortorelli, it is regular-

ized in a special way. The regularized functional (Ambrosio-Tortorelli functional)

is supposed to be gamma-convergent to the Mumford-Shah functional. In the

second approach, the Mumford-Shah functional is minimized in two steps. In

the first minimization step, the edge set is held constant and the resultant func-

tional is minimized. The second minimization step is about updating the edge

set by using level set methods. The second approximation to the Mumford-Shah

functional is known as the Chan-Vese method. In both approaches, resultant

PDE equations (Euler-Lagrange equations of associated functionals) are solved
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by finite difference methods. In this study, both approaches are implemented in

a MATLAB environment. The overall performance of the algorithms has been

investigated based on computer simulations over a series of images from simple

to complicated.

Keywords: Image segmentation, variational techniques, Mumford-Shah functional,

image smoothing, level set methods, texture segmentation, diffusion filters, curve

evolution.
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ÖZ

DEĞİSİMSEL TEKNİKLERE DAYALI GÖRÜNTÜ BÖLÜTLEME

Altınoklu, Metin Burak

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Zafer Ünver

Ortak Tez Yöneticisi: Prof. Dr. Kemal Leblebicioğlu

Şubat 2009, 115 sayfa

Bu tezin konusu, Mumford-Shah fonksiyonelini temel alan yöntemlerle görüntü

bölütleme problemini çözmektir. Mumford-Shah enerji fonksiyonelinin parçalı

pürüzsüz görüntü fonksiyonu ve kenar kümesine göre enazlanmasıyla, görüntü

çeşitli bölgelere ayrılır. Parçalı pürüzsüz görüntü fonksiyonu, bölge içlerinde

pürüzsüzdür fakat farklı bölgeler arasında kesintilidir. Ne yazık ki, Mumford-

Shah fonksiyoneli düzenli olmadığı için, doğrudan görüntü bölütleme problemine

uygulanamaz. Öte yandan, Mumford-Shah fonksiyoneline yaklaşamaya daya-

lı iki ayrı yöntemle görüntü bölütleme problemi çözülebilir. Birinci yöntem,

Mumford-Shah fonksiyoneli yerine ona gamma yaklaşan düzenli bir fonksiyonel

olan Ambrosio-Tortorelli fonksiyonelini kullanmaktır. Chan-Vese yötemi olarak

bilinen ikinci yöntem ise, Mumford-Shah fonksiyonelini iki aşamada enazlayamaya

dayanır. İlk enazlama adımında, kenar kümesi sabit tutularak, parçalı pürüzsüz

görüntü fonksiyonuna göre enazlama yapılır. İkinci enazlama adımında ise, seviye

kümeleri yöntemiyle kenarlara göre fonksiyonel enazlanır. Sonlu fark şemaları ile

elde edilen kısmi türevsel denklemler (fonksiyonellerin Euler-Lagrange denklem-

leri) çözülür. Bu tez çalışmasında, her iki yöntem için de MATLAB ortamında

yazılım geliştirilmiştir. Bilgisayarda yapılan benzetim çalışmalarıyla, hem basit
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görüntüler için hem de karmaşık görüntüler için algoritmaların genel başarımı

sınanmıştır.

Anahtar Kelimeler: Görüntü bölütleme, değişimsel teknikler, Mumford-Shah fonk-

siyoneli, görüntü yumuşatma, seviye kümesi yöntemleri, difüzyon süzgeçleri, eğri

evrimi.
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CHAPTER 1

INTRODUCTION

Image segmentation is a fundamental problem of low level image processing. It is

the process of decomposing an image into areas corresponding to different objects

in the observed scene. In high level image processing applications, the accuracy

of image segmentation step is very critical. Some application areas of image

segmentation are medical imaging, thermal imaging, locating objects in satellite

images (roads, forests, etc.), face recognition, automated detection of targets in

synthetic aperture radar imagery, and machine vision.

Edge detection by local derivatives of intensity is a naive way to perform image

segmentation. The primary difficulty in edge detection is that image smoothing

dislocates the edges but without image smoothing it is very hard to determine

the edges due to noise. In addition, edge detection algorithms do not enclose

the objects in the image by closed contours. In the last 25 years, computer

vision community has produced a number of sophisticated segmentation methods.

Geman and Geman [1] suggested an efficient image segmentation method via

Markov random field model based discrete energy functional minimization. In

this approach, an image is segmented concurrently with image smoothing. Later,

Mumford-Shah [2] put the energy of Geman and Geman into a continuous form.

Another efficient image segmentation technique is the graph-based normalized

cuts method [3] that uses approximate spectral analysis techniques.

This thesis is focusing its attention on variational and partial differential equa-

tions (PDEs)-based image segmentation techniques. In a variational approach,

image segmentation problem is posed in the form of minimizing an energy func-

tional. The minimizer of the energy functional is given by a differential equation
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(the Euler-Lagrange equation). One can try to find a local minimum of this energy

functional by applying steepest decent algorithm in the distributed sense. The

resultant set of PDE equations can be solved approximately using finite difference

schemes.

One of the useful variational methods for localizing objects in the image is

classical active contour (snakes) method of Kaas et al [4]. By this technique, a

closed curve called the Active Contour is evolved until it encloses the object in

the image. The evolution of the active contour is based on the minimization of

a boundary-based energy functional which consists of three terms. The exter-

nal term measures how near the curve is located to the vicinity of high image

gradients. The two internal energy terms measure the smoothness of the closed

curve. However, there are some limitations of the classical active contour method

like poor convergence into boundaries of non-convex objects and dependency on

initial contour placement. In order to overcome these difficulties, an extension

of classical active contour technique known as the gradient vector flow (GVF)

method [5] has been proposed. In the GVF method, the external energy term is

replaced with a GVF field which is equal to edge map when gradient is large, but

it is forced to be slowly varying in homogeneous regions. These approaches are

also known as parametric active contour methods since the contour curve is repre-

sented explicitly in a parametric form and the snake is composed of a set of control

points. The main disadvantages of parametric active contours are dependency on

the parametrization and impossibility to handle topology changes.

The level set method (LSM) invented by Osher and Sethian [6] is a powerful

numerical technique for capturing boundaries or tracking interfaces. An active

contour method implemented by the level set methods is called geometric active

contour method. Curves are represented by embedding them as the zero level set

of a two-dimensional auxiliary level set function. Implementation of the level set

methods is quite easy and topology changes are automatically handled. The main

disadvantage of level set methods is the increased computational time. Therefore,

it can be advantageous to use parametric active contour methods in real time
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applications. Furthermore, computational complexity of the level set methods

can be decreased by so called narrow band algorithms in which a closed curve

is evolved only on regions whose level set function value stays in a narrow band

around the closed curve. An example of geometric active contour methods is the

geodesic active contour method [7], where the curve length is defined in a different

way: it is weighted by an edge detector function.

The main variational model for image segmentation is the Mumford-Shah(MS)

model in which image smoothing is done simultaneously with image segmenta-

tion. The MS model approximates the original image with a piecewise smooth

function and boundary set such that the original image is decomposed into ho-

mogeneous regions in terms of intensity. This piecewise smooth function varies

smoothly in each sub domain but it is allowed to be discontinuous from domain

to domain. It is a new cartoon image with edges drawn sharply and the objects

are drawn smoothly without texture. Such cartoons are perceived correctly as a

simplification of the scene containing most of its essential features. The aim of

the MS model can be achieved by minimizing the MS functional which consists

of three terms. The first term measures how well the piecewise smooth function

approximates the original function. The second term measures the smoothness

of the piecewise smooth function in each sub domain. The third term requires

that the length of the edge set should be as short as possible. The MS model is a

region-based model since the terms in the MS functional integrate certain quan-

tities over the whole image domain to control the evolution of the curve. Being a

region-based model, there are some advantages of using the MS model in image

segmentation like robustness with respect to noise and initial contour placement;

as opposed to the boundary-based active contour methods which depend only on

local gradient information to stop the curve evolution.

The MS functional is irregular due to the existence of unknown edge set of

lower dimension thus one cannot obtain the Euler-Lagrange equation directly.

There are two approaches to obtain an approximation of the MS functional.
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In the first approach, the MS functional is minimized in a two step proce-

dure. The first step consists of minimizing the MS functional with respect to the

piecewise smooth approximating function while holding the edge set fixed. In the

second step, the piecewise smooth function is fixed but the closed curve is updated

by level set methods. After the first step, in each region optimal estimation PDEs

are obtained. Solving these PDE equations, a piecewise smooth approximation

to the original image is obtained in each sub-domain. There are two ways for

minimization of the MS functional with respect to boundary set. The first way

is called the Chan-Vese(CV) method which is based on a variational formulation

in terms of level sets [8]. The second way is the method proposed by Tsai. et.

al., which finds the curve evolution equation by computing the first variation of

a MS like functional and then derives the curve evolution PDEs in terms of level

set function [9]. Even though both ways are quite similar, rather than using the

piecewise smooth MS model as in [9], in the CV model a piecewise constant ap-

proximating term is constructed. In the piecewise constant model, approximating

term is assumed to be constant in each region and the optimal constants are given

by intensity means in the corresponding regions. Piecewise constant model sim-

plifies the implementation of the problem and reduces the computational cost. In

[9], it is noted that detecting objects with different intensity sub regions is easier

by using the piecewise smooth model. However, the piecewise smooth version of

CV model and the piecewise constant version of Tsai et. al.’s model, are also

proposed in [10] and [9], respectively. If the same versions of both methods are

used, the only difference between them is that the Dirac function used in the CV

method is replaced with the magnitude of the gradient function in Tsai et. al.’s

method. For segmentation of images with two regions with separate intensities

only one level set is needed. This is known as the two-phase approach. Two-phase

approach is not successful for segmentation of complex images with more than two

regions. Multiphase level set method proposed in [10] or hierarchical approaches

proposed in [9, 11] should be used for segmentation of these type of images. In

the multiphase approach, multiple level sets are used and a region is represented
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by a vector holding signs of level set functions. It decomposes the image into an

arbitrary number of regions in such a way that no neighbouring regions receive

the same vector. In a four–phase segmentation, two level set functions are used.

Theoretically, two level set functions are enough to segment the image into an

arbitrary number of regions. The reason behind that is the Four Color Theorem.

In the hierarchical approaches, image is segmented into two regions; these regions

are further segmented if necessary, in a recursive way.

Second approach consists of using Γ- convergence framework [12] to approxi-

mate the MS functional by a regular functional in which the edge set is represented

by a boundary function of the same type as the image function. The most well-

known such functional is the Ambrosio-Tortorelli(AT) functional introduced in

[13]. In the AT functional, unknown edge set is represented by a boundary func-

tion taking values between zero and one such that at the edges boundary function

is near zero and otherwise it is near one. Since the AT functional is regular, the

coupled PDE equations which minimize the AT functional with respect to image

and boundary functions can be obtained by standard variational techniques.

The MS model segments images based on the piecewise smoothness assump-

tion: distinct objects have different mean intensities. The main limitation of the

MS model is that an image is accurately segmented only if piecewise smoothness

assumption holds. This assumption generally holds for medical images. However,

methods based on the MS model are not applicable to the segmentation of some

textured natural images, for which piecewise smoothness assumption does not

hold.

Another limitation of the MS model is the elimination of textural part of the

image by smoothing. The model assumes that noise corresponds to the high-

frequency part and the denoised image is piecewise smooth. However, this as-

sumption fails for textured natural images, e.g., textures are as oscillatory as the

noise. As a result, the texture is wiped out by the MS image smoothing and

segmentation model. In order to overcome these problems, texture-preserving

denoising models are suggested are based on the Rudin-Osher-Fatemi (ROF) [14]
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image denoising model which consists of data fidelity and smoothness terms. Re-

cently, some methods [15, 16] are developed by replacing the L2 norm in data

fidelity term of the ROF model with suitable norms for describing the textural

part. These methods denoise the image with texture preservation by decom-

posing the image into three parts: cartoon representation of the original image,

textural part and noise. A different variational formulation for texture-preserving

denoising has been proposed in [17]. In this formulation, spatially varying fidelity

term controls the extent of denoising over image regions based on local variance

measures.

Another possibility for image smoothing is to use a PDE-based method which

starts directly with a PDE equation without considering any energy functional.

The oldest example of PDE-based methods is the linear diffusion filtering in

which the image is smoothed linearly with heat equation. In fact, this procedure

is almost equivalent to linear Gaussian filtering. In nonlinear diffusion filtering,

smoothing is space dependent such that image is smoothed in each homogeneous

region but smoothing is inhibited at edges. In isotropic nonlinear diffusion [18, 19]

edges are detected only by magnitude of gradient, but in anisotropic nonlinear

diffusion [20, 21] gradient orientation is also taken into account for edge detection.

Interestingly, idea and performance of nonlinear diffusion filters are very similar

to optimal estimation PDEs in the active contour implementations of the MS

model.

In this thesis, mainly image segmentation methods based on the MS model are

studied. The MS active contour methods are tested using noisy synthetic images

and lowly textured natural images. These images are successfully segmented.

However, applying the CV active contour method to some highly textured nat-

ural images does not give us satisfactory results. In this case, using nonlinear

diffusion as a pre-filtering scheme in the CV active model, textured images which

can be separated by intensity variation is accurately segmented. Unfortunately,

pre-filtering scheme did not help segmentation of textured images which does not

consist of objects with distinct mean intensities. In addition, some segmentation
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experiments with Gabor-based extensions of the CV model [22] and the geodesics

active contour model [23] are done on textured images. In the former case, seg-

mentation results are unsatisfactory, but in the latter case, satisfactory results are

obtained. The other effective approximation of the MS model, namely the AT

model is also studied. Experiments show that using the intensity homogeneity

requirement is not sufficient for segmentation of the textured images. In order to

obtain better segmentation results for textured and noisy images, a modification

is proposed by treating the edge and image function as states and adding feed-

back terms to right hand side of the AT PDE equations. However, we did not get

satisfactory results and we concluded that unless constructing the feedback term

using a higher level information than simply the image gradient, this operation

does not bring better results.

The work is organized as follows. In Chapter 2, the MS functional is analyzed.

In Chapter 3, implementation of the MS model by active contour methods is

investigated and some results are shown. In chapter 4, image smoothing by

diffusion filters is analyzed and experimental results are shown. In chapter 5,

textured image segmentation by active contour methods and their extensions is

analyzed and the results are shown. In Chapter 6, the AT model is analyzed and

some experimental results are shown. Finally, in Chapter 7, the conclusions are

provided.
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CHAPTER 2

MUMFORD-SHAH FUNCTIONAL

Let u0: Ω → R denote the given gray level image where Ω ⊂ R2 denotes the

domain of the given image. The solution of the image segmentation problem can

be found by the minimization of the MS functional that constructs a piecewise

smooth approximation of u0. The piecewise smooth function (u) can be modeled

by a set of smooth functions defined on a set of disjoint regions Ωi covering Ω.

Each disjoint region has a piecewise smooth boundary. The edge set of image

Γ ⊂ Ω is given by entire boundary of Ωi’s inside Ω. The image domain Ω is

decomposed into m regions and the boundary set by Ω = Ω1∪...∪Ωm∪Γ such that

u varies smoothly within each region Ωi but it is allowed to be discontinuous across

boundaries of Ωi inside Ω. The pair (u, Γ) can be interpreted as a cartoon of actual

image in which edges are drawn sharply and precisely and the objects surrounded

by edges are drawn smoothly without textures [2]. Image segmentation is achieved

by finding the pair (u, Γ) which minimizes the MS functional given in equation

2.1.

EMS(u,Γ) = β

ˆ
Ω

(u− u0)2dxdy + α

ˆ
Ω\Γ
|∇u|2dxdy + ν|Γ| (2.1)

The first term of the MS functional measures how well the u fits u0. The

second term measures the piecewise smoothness of u in each Ωi. The third term

requires that the length of edge set |Γ| should be as short as possible. If any of

the three terms is omitted, then trivial solutions are obtained. The pair (u, Γ)

give the solution of image segmentation problem only if all three terms are kept.

The entities in the MS functional are weighted by the non-negative parameters
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α, β and ν. The larger the parameter of any term in the MS functional, the more

that term accomplishes its aim. Of course, one of these three parameters can be

set to 1.

The two optimization variables are of different kind. The first variable u

belongs to B (Ω \ Γ)(appropriate Banach space of functions defined on Ω \ Γ).

Edge set Γ is removed from the domain of integration for the second integral

allowing u to be discontinuous across boundaries of Ωi inside Ω. For Γ, there is

not an underlying Banach space structure as noted by [24].

The minimization of the MS functional is not straightforward. Since the

domain of integration is defined on Ω \ Γ, standard methods of the calculus of

variations cannot be applied directly. However, by holding Γ fixed, the functional

can be minimized with respect to u and the differential equation that u satisfies

on Ω \ Γ can be found by standard variational techniques. Let δu represent a

function of the same type as u. Then,

EMS(u+ tδu,Γ)− EMS(u,Γ) = t

[
β

ˆ
2δu · (u− u0) dxdy + α

ˆ
2 (∇u · ∇δu) dxdy

]
+ t2

[
β

ˆ
(δu)2 dxdy + α

ˆ
‖∇δu‖2 dxdy

]
Therefore,

δE

δu
(u,Γ) = lim

t→0

EMS(u+ tδu,Γ)− EMS(u,Γ)

t

= β

ˆ
2δu · (u− u0) dxdy + α

ˆ
2 (∇u · ∇δu) dxdy

By Green’s formula [12],
´

(∇u · ∇δu) dxdy = −
´

(∇2u · δu) dxdy+
´
B
δu∂u

∂n
ds

where B is the entire boundary of Ω\Γ, i.e., ∂Ω and each side of Γ. Outer normal

to the boundary B is denoted by n. Thus we obtain

1

2

δEMS

δu
(u,Γ) =

ˆ
δu
(
β (u− u0)− α∇2u

)
dxdy +

ˆ
B

αδu
∂u

∂n
ds.

Taking δu as a test function which is non-zero near one point of Ω \ Γ , zero

elsewhere taking limit over such δu, we obtain optimal estimation PDEs that u

satisfies on Ω \ Γ given in equation 2.2.

∇2u =
β

α
(u− u0) (2.2)
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Now, taking δu to be nonzero near one point of B and zero elsewhere, taking

limit over such δu, we obtain Neumann boundary conditions on ∂Ω and two sides

of Γ given in equation 2.3.
∂u

∂n
= 0 (2.3)

Finding the differential equation that u satisfies on Ω \ Γ eliminates u from

the functional, then next step is to minimize functional with respect to the edge

set Γ. But this is not possible by standard optimization methods since there is

no underlying Banach space structure for Γ. Minimizing the MS functional with

respect to Γ with u fixed is a shape optimization problem. The problem can

be solved by evolving the boundary with level set methods which is an effective

numerical technique for tracking shapes.

There is another possibility for the numerical minimization of the MS func-

tional by modifying it into a form in which Γ does not appear explicitly. A

popular example is the approximation of the MS functional by elliptic function-

als obtained by [13]. In this approximation, the edge set is approximated in terms

of a functional variable, v ∈ B (Ω) which takes values between zero and one. This

variable depends on a parameter ρ such that the elliptic functional Γ- converges

to EMS as ρ→ 0. Since this functional is regular, standard variational techniques

are applicable.

In order to simplify the implementation of the MS method, a reduced (piece-

wise constant) MS model is also proposed in [2]. In this model, the image u is

equal to constant ai in the ith region. The reduced MS model is given in equation

2.4.

EMS,reduced(u,Γ) =
∑
i

βi

ˆ
Ωi

(u− ai)2 dxdy + +ν|Γ| (2.4)

It is straightforward to see that reduced MS functional is minimized when

ai =

´
Ωi
udxdy

|Ωi| .
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CHAPTER 3

MUMFORD-SHAH ACTIVE CONTOUR METHOD

Even though, the MS model is an effective model for image segmentation, mini-

mization of it is not straightforward as discussed in Chapter 2. Recently, active

contour techniques are used for the implementation of the MS model for image

segmentation by Chan-Vese in [8] and Tsai. et. al. in [9]. The aim of active

contour methods is object detection in images, by curve evolution. Starting from

an initial curve, the active contour moves toward the object based on a energy

minimization until it encloses the object and it partitions the image into two re-

gions: “object” and background”. In this chapter, these techniques are reviewed

and some implementation results are shown.

The active contour methods are developed by the original work of Kass et.

al in [4]. In these methods, a curve is evolved to minimize the boundary-based

snake energy which consists of internal and external energy terms. The curves

are located near high image gradients, i.e., edges by external energy term and

the curves are smoothed by internal energy terms. However, there are some

limitations of boundary-based active contour methods. Main limitation of the

boundary based active contour methods is that, one must place the starting curve

near the object to be detected; otherwise the active contour cannot enclose the

object. In addition, it is very hard to extract objects with smooth or discontinuous

boundaries; since discrete gradients are bounded and the external energy term is

not always minimized at the edges of these objects.

The CV active contour model is a region based active contour model, since it

is the implementation region-based MS image segmentation model within a level

set framework. Since the CV active contour method is less local than edge-based
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active contours, it is less dependent on the starting curve. In addition, having

the property that its stopping criterion is not dependent on image gradients, it

is possible to extract objects with smooth or discontinuous boundaries with the

CV active contour method.

3.1 LEVEL SET METHOD

Implementation of the curve evolution PDE equations of the MS active contour

models are done by the level set method which is proposed in [6] for capturing

boundaries or tracking interfaces. An active contour model implemented by the

level set method is called geometric or implicit active contour model, since the

curve Γ is represented implicitly by the zero level set of a scalar Lipschitz con-

tinuous function φ(x, y) : Ω → R where Ω ⊂ R2. The level set function φ(x, y)

satisfies the following:

φ(x, y) > 0 in ω(inside of Γ)

φ(x, y) < 0 in Ω \ ω(outside of Γ) (3.1)

φ(x, y) = 0 on ∂ω, (∂ω = Γ)

The curve is represented by a auxiliary level set function holding 3.1. In the

numerical implementations, level set function is initialized as a signed Euclidean

distance to the curve since this level set function evolves fast. Signed distance

functions can be created by using MATLAB function bwdist.

There are two ways of finding the partial differential equation that evolves the

level set. In the first way, the curve evolution equation is found by calculus of

variations and it is transformed it into a level set equation as done in [9]. In the

second way (the CV Method), the PDE equation is found by formulating a energy

functional that involves the level set function and by solving the Euler-Lagrange

equations which minimizes this functional with a gradient descent technique.
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Until convergence, the level-set evolution equations are solved. The curve

is found by solving Γ = {(x, y)|φ(x, y) = 0} only after the convergence of the

algorithm.

The advantage of the level set method is that topological changes in the curve

are easily performed. Also, one can perform numerical computations without con-

tour parametrization and control point regridding which are needed in parametric

active contour models. The main disadvantage of level set method is the increased

computational cost due to representation of the edge set by a two-dimensional

function Ω→ R.

3.2 CHAN-VESE METHOD

There are two different CV models. The first model which is known as the

piecewise constant CV model [8] is equivalent to the reduced MS model. The

second model which is known as the piecewise smooth CV model [10] is equivalent

to the MS model.

3.2.1 Piecewise Constant Chan-Vese Model

The MS functional is given in equation 2.1. The piecewise constant CV model is

equivalent to the reduced MS model which is obtained as follows: u is restricted to

be constant in the regions. Optimally, value of u in the ith region is given by mean

of u0 (ci) in that region. The CV energy functional is proposed in [8, 10] and it is

given in equation 3.2. The CV functional has two terms, one term measures how

well ci approximates u in region i and second term is a length penalty term which

keeps the curve length short. Since the optimal estimates of u in each region is

computed by averaging at every iteration, smoothing term α
´

Ω\Γ |∇u|
2dx in the

MS functional is omitted. The parameters are, βi for ith phase |u − ci|2 term, ν

for the length term and they are fixed to a suitable value experimentally.

ECV (u,Γ) =
∑
i

ˆ
Ωi

βi|u− ci|2dxdy + ν|Γ| (3.2)
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3.2.1.1 Two-Phase Piecewise Constant Chan-Vese Model

In the two-phase piecewise constant CV model, two segments (phases) are repre-

sented by one level function. This model is only suitable for images that do not

contain triple junctions. In this simple case, the image domain is partitioned into

two open sets ω (inside of the curve) and Ω \ ω (outside of the curve). u is equal

to mean of the pixel values (c1) on ω and it is equal to mean of the pixel values

(c2) on Ω\ω. Keeping the length term in the functional, the two-phase piecewise

constant CV functional is given by

ECV2(c1, c2,Γ) =

ˆ
ω

|u0 − c1|2dxdy +

ˆ
Ω\ω
|u0 − c2|2dxdy + ν|Γ|. (3.3)

Numerical minimization of this functional is implemented via the level set

method. The curve Γ is represented implicitly by the zero level set of a scalar

function φ(x, y) which is given by:

φ(x, y) > 0 in ω(inside of Γ)

φ(x, y) < 0 in Ω \ ω(outside of Γ)

φ(x, y) = 0 on ∂ω, (∂ω = Γ)

When represented by level set function φ, the CV energy is equivalent to

ECV2(c1, c2,Γ) =

ˆ
φ>0

|u0 − c1|2dxdy +

ˆ
φ<0

|u0 − c2|2dxdy + ν|Γ|. (3.4)

Using Heaviside function H as a characteristics function where H(z) = 1 if

z > 0 and H(z) = 0 otherwise, the functional is expressed in a different form. In

this form, the domain of integration is Ω as given in equation 3.5.

ˆ
φ>0

|u0 − c1|2dxdy =

ˆ
Ω

|u0 − c1|2H(φ)dxdy (3.5)
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In distributional sense, the curve length term of the functional is represented

by |Γ| =
´

Ω
|∇H(φ)|=

´
Ω
δ(φ)|∇φ|. In order to get a numerical implementation,

all terms of the functional should be Gateaux differentiable (see Appendix A).

Therefore, undifferentiable Heaviside and Dirac functions in the CV functional

should be replaced by C1 approximations Hε and δε. Regularized versions of

Heaviside and Dirac functions are given in equations 3.6 and 3.7, respectively. If

the parameter ε is chosen as h = 1, then the Dirac and Heaviside functions shown

in Figure 3.1 are obtained. The differentiable two-phase piecewise constant CV

functional is given in equation 3.8.

Hε (x) =
1

2

[
1 +

2

π
arctan

(x
ε

)]
(3.6)

δε (x) = H ′ε (x) =
1

π

ε

ε2 + x2
(3.7)

ECV2(c1, c2,Φ) =

ˆ
Ω

|u0 − c1|2Hε(φ) + |u0 − c2|2(1−Hε(φ))dxdy

+ µ

ˆ
Ω

δε(φ)|∇φ|dxdy
(3.8)

(a) (b)

Figure 3.1: Regularized (a)Heaviside and (b)Dirac functions.
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By formal methods of calculus of variations, the associated Euler-Lagrange

equations which minimize the two-phase constant CV energy functional can be

found. First, φ is keep fixed and the functional is minimized with respect to c1,

c2. Then, c1, c2 are kept fixed and the functional is minimized with respect to

φ. The Gateaux derivative of functional with respect to φ can be found and the

Euler-Lagrange equations can be deduced. Gateaux derivative of Fε in direction

ψ is defined as: limt→0
Fε(φ+tψ,c1,c2)−Fε(φ,c1,c2)

t
, where ψ is a test function of the

same type as φ. Details of the derivation are given in Appendix C.

Euler-Lagrange equations of the CV functional are given below with associated

Neumann boundary conditions:

δε(φ)
(
µ∇ •

(
∇φ
|∇φ|

)
− λ1 |u0 − c1|2 + λ2 |u0 − c2|2

)
= 0 in Ω

µ δε(φ)
|∇φ|

∂φ
∂n

= 0 on ∂Ω

Euler-Lagrange equations are solved by a gradient descent technique, where

c1 and c2 are given by mean intensities in the two regions. Curve evolution PDE

equation for the two-phase constant CV model is given in 3.9.

∂φ

∂t
= δε(φ)

[
µdiv

(
∇φ
|∇φ|

)
− |u0 − c1|2 + |u0 − c2|2

]
(3.9)

The initial and boundary conditions are given by:

φ(x, y, 0) = φ0(x, y) in Ω (3.10)

∂φ

∂n
= 0 on ∂Ω (3.11)

3.2.1.2 Multi-Phase Piecewise Constant Chan-Vese Model

Two-phase approach is not sufficient for segmentation of images which cannot

be reduced to two regions, or images with edges like triple junctions with 120o

angle. A multi-phase level set approach is proposed by Chan-Vese in [10] for

segmentation of these type of images. By considering phases as colors and using

only four phases, each image region can be represented by one of four different
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colors. It is possible to segment the image into an arbitrary number of regions

in such a way that no neighbouring regions receive the same color based on the

four-color theorem. However, in practice more phases can be needed. In the

experiments throughout the thesis, the four-phase model is used for complicated

images.

The algorithm needs log2n level set functions for n phases. I represents a class,

there are totally n = 2m phases, where m is the number of level set functions.

Introducing a characteristic function χI , where cI is the mean of u0 in each

class, the reduced form of MS functional is obtained in equation 3.12, where Φ=

φ1, ..., φm. Using a regularized Heaviside function as a characteristics function,

the CV functional can be constructed with any number of phases.

EMS(c,Φ) =
∑

1<I<n

ˆ
Ω

|u0 − cI |2dxdy + υ
∑

1<I<n

ˆ
Ω

|∇χI | (3.12)

The four-phase CV energy functional is given by equation 3.13, where Heav-

iside and Dirac functions are to be replaced with regularized versions in imple-

mentations. Two level set functions are denoted by Φ = φ1, φ2 and four phases

are denoted by c = (c11, c10, c01, c00) in our work. In equations 3.14a-3.16, the

associated coupled Euler-Lagrange equations obtained after Gateaux differentia-

tion of the functional in equation 3.13 with respect to c = (c11, c10, c01, c00) and

Φ = φ1, φ2 are shown.

ECV4(c,Φ) =

ˆ
Ω

{
|u0 − c00|2(1−H(φ1))(1−H(φ2)) + |u0 − c11|2H(φ1)H(φ2)

+ |u0 − c10|2H(φ1)(1−H(φ2))dx+ |u0 − c01|2(1−H(φ1))H(φ2)

+υ [|∇H(φ1)|+ |∇H(φ2)|]} dxdy
(3.13)
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c11 = mean(u0) in {φ1 > 0, φ2 > 0} (3.14a)

c10 = mean(u0) in {φ1 > 0, φ2 < 0} (3.14b)

c01 = mean(u0) in {φ1 < 0, φ2 > 0} (3.14c)

c00 = mean(u0) in {φ1 < 0, φ2 < 0} (3.14d)

∂φ1

∂t
= δε(φ1)

{
υdiv

(
∇φ1

|∇φ1|

)
−
[(

(u0 − c11)2 − (u0 − c01)2)H(φ2)

−
(
(u0 − c10)2 − (u0 − c00)2) (1−H(φ2))

]} (3.15)

∂φ2

∂t
= δε(φ2)

{
υdiv

(
∇φ2

|∇φ2|

)
−
[(

(u0 − c11)2 − (u0 − c01)2)H(φ1)

−
(
(u0 − c10)2 − (u0 − c00)2) (1−H(φ1))

]} (3.16)

3.2.2 Piecewise Smooth Chan-Vese Model

3.2.2.1 Two-Phase Piecewise Smooth Chan-Vese Model

In the two-phase piecewise smooth CV model, a piecewise smooth approximation

u of u0 and an edge set Γ is computed by minimizing the CV functional given

in equation 3.17. Image is segmented into two regions and u is equal to u+

inside the curve and u− outside the curve . Unknown edge set is represented by

Γ = {(x, y)|φ(x, y) = 0} in level set framework.

inf
u+,u−,Γ

{
ECV 2s

(
u+, u−,Γ

)
=

ˆ
Ω

|u− − u0|2(1−H(φ))dxdy

+

ˆ
Ω

|u+ − u0|2H(φ)dxdy + β

ˆ
Ω

|∇u+|2H(φ)dxdy

+β

ˆ
Ω

|∇u−|2(1−H(φ))dxdy + ν

ˆ
|∇H(φ)|

}
(3.17)

By minimizing 3.17, using the formal methods of calculus of variations, the

Euler-Lagrange equations are obtained as given in 3.18, 3.19, 3.20. The dif-

ferential equations for u+, u− are called damped Poisson equations, or optimal
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estimation PDE’s and they have a denoising effect on the image u0 inside each re-

gion, but not across the edges. But, solving these equations are computationally

not efficient, its denoising capability is not perfect.

u+ − u0 = β4u+ in {(x, y) : φ(t, x, y) < 0}
∂u+

∂~n
= 0 in {(x, y) : φ(t, x, y) = 0} ∪ ∂Ω

(3.18)

u− − u0 = β4u− in {(x, y) : φ(t, x, y) > 0}
∂u−

∂~n
= 0 in {(x, y) : φ(t, x, y) = 0} ∪ ∂Ω

(3.19)

∂φ

∂t
= δε (φ)

[
ν∇
(
∇φ
|∇φ|

)
− |u+ − u0|2 − β|∇u+|2 + |u− − u0|2 + β|∇u−|2

]
(3.20)

3.2.2.2 Multi-Phase Piecewise Smooth Chan-Vese Model

The multi-phase piecewise smooth CV Model is also obtained in [10]. Like the

multi-phase piecewise constant CV Model, an image is divided into 2n regions,

with n level set functions. The only difference between the two models is that

mean intensities are calculated in each region in the piecewise smooth case and

optimal estimation PDEs are solved in each region in the piecewise smooth case.

3.3 TSAI ET. AL.’S METHOD

In [9], Tsai et. al. independently proposed a very similar approach to the

piecewise-smooth CV model for the implementation of the MS image segmen-

tation method by level set methods. In the simplified functional proposed by

Tsai et. al. shown in equation 3.21, the smoothing term is kept and the gen-

eral term representing length of edge set |Γ| is replaced by
�

Γ
ds since a curve

embedded in level set is automatically smooth.
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inf
u+,u−,Γ

{
E
(
u+, u−,Γ

)
=

ˆ
φ<0

|u− − u0|2dxdy

+

ˆ
φ>0

|u+ − u0|2dxdy + β

ˆ
φ>0

|∇u+|2dxdy

+ β

ˆ
φ<0

|∇u−|2dxdy + ν

‰
Γ

ds

} (3.21)

Minimizing the functional with respect to smooth functions u− and u+, the

optimal estimation PDEs are obtained as given in 3.18 and 3.19.

The curve evolution equation is obtained by minimizing the functional with

respect to boundary set. Let H be of same type as u0 and n denote the outer

normal of the curve. There are five different terms in the functional. The first four

terms in 3.21 are of type
´
D
Hdxdy and the gradient flow that minimizes these

functionals found as Γt = −Hn. Details of derivations are given in Appendix

D. This derivation is originally provided in [25]. The fifth term is the arc length

of the curve and the gradient flow that minimizes it is found as Γt = −κn. As

examined in Appendix B, κ denotes the curvature of the curve. This gradient flow

is derived in Appendix E. This derivation follows the derivation of the gradient

flow of functionals of type
´
D
Hdxdy. Curve evolution equation Γt = F • n, can

be implemented by level set methods as:

φ (Γ (t) , t) = 0 (3.22)

∂Γ

∂t
= F • n (3.23)

d

dt
φ (Γ (t) , t) = ∇φ∂Γ

∂t
+
∂φ

∂t
= ∇φF • n+

∂φ

∂t
= 0 (3.24)

n =
∇φ
|∇φ|

∂φ

∂t
= − |∇φ|F (3.25)
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Obtained PDE equation in Tsai et. al’s method and in the piecewise-smooth

CV model are the same, except in the Euler- Lagrange equations (equation 3.20)

of Tsai’s method, δε(φ) is replaced with |∇φ|. If δε(φ) in equation 3.20 is replaced

with |∇φ|, then obtained PDE equation is called the MS gradient flow.

It is noted that using smooth regions, it is easier to find objects with different

intensity sub regions. It is also noted that solving optimal estimation PDE’s at

every iteration is not efficient and some approximations are proposed. Taking

several iterations of optimal estimation PDE equation and few iterations of curve

evolution PDE equation is enough to get an estimate without convergence at

each step. At the final step, optimal estimation PDE equation are solved until

convergence to find the piecewise smooth image.

For images with more complex edges and multiple regions, a hierarchical ap-

proach to implement the MS model by active contours is used in [9] instead of

resorting to the coupled multiphase level set functions as proposed by Chan-Vese.

In the hierarchical approach, an image is segmented into two regions by the MS

active contour method. This segmentation is followed by user’s selection of the

regions in which further segmentation is needed. Then, the selected regions are

segmented by the MS active contour method again. Hierarchical implementations

are further developed by Gao and Bui in [11].

The PDE equations for two-phase image segmentation by Tsai et.al.’s method’s

are given below:

u+ − u0 = β4u+ in {(x, y) : φ(t, x, y) < 0}
∂u+

∂~n
= 0 in {(x, y) : φ(t, x, y) = 0} ∪ ∂Ω

(3.26)

u− − u0 = β4u− in {(x, y) : φ(t, x, y) > 0}
∂u−

∂~n
= 0 in {(x, y) : φ(t, x, y) = 0} ∪ ∂Ω

(3.27)

∂φ

∂t
= |∇φ|

[
ν∇
(
∇φ
|∇φ|

)
− |u+ − u0|2 − β|∇u+|2 + |u− − u0|2 + β|∇u−|2

]
(3.28)
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These PDE equations can be transformed into piecewise constant case if u is

restricted to take constant values in each region similar to the approach in the

piecewise constant CV model.

3.4 NUMERICAL SCHEMES

The PDE equation in 3.9 is solved by a semi-implicit numerical scheme. The

scheme in the ROF model [14] is used for the discretization of the divergence

term.

Let h = 4x = 4y be the space steps, let 4t be the time step, ε = h. In our

experiments, we choose h = 1 and 4t = 0.1. We recall the following notations:

(xi, yj) = (ih, jh) for 1 ≤ i ≤M, 1 ≤ j ≤ N (3.29)

u0i,j = u0 (xi, yj) (3.30)

φni,j = φ(n4t, xi, yj) (3.31)

4x
±φi,j = ± (φi±1,j − φi,j) (3.32)

4y
±φi,j = ± (φi,j±1 − φi,j) (3.33)

4x
0φi,j = ± (φi+1,j − φi−1,j) /2 (3.34)

4y
0φi,j = ± (φi,j+1 − φi,j−1) /2 (3.35)

Constant values c1 and c2 corresponding to the regions inside the curve and

outside the curve respectively are estimated by the mean intensities of that re-

gions:

c1(φ) =

´
u0Hε(φ)dx´
Hε(φ)dx

= average(u0) in φ > 0 (3.36)

c2(φ) =

´
u0(1−Hε(φ))dx´
(1−Hε(φ))dx

= average(u0) in φ < 0 (3.37)
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Using the numerical scheme in the ROF model[14], the discrete form of the

Euler-Lagrange equation of the CV functional can be obtained as:

φn+1
i, j − φni, j
4t

= δε
(
φni, j
) [ µ

h2
4x
− ·

(
4x

+φ
n+1
i, j(

4x
+φ

n
i, j

)2
/h2 +

(
4y

0φ
n
i, j

)2
/ (2h)2

)

+
µ

h2
4y
− ·

(
4y

+φ
n+1
i, j(

4x
0φ

n
i, j

)2
/ (2h)2 +

(
4y

+φ
n
i, j

)2
/h2

)
− λ1 (u0i,j − c1)2 + λ2 (u0i,j − c2)2

]
(3.38)

In the piecewise constant case of the MS Gradient Flow, δε(φ) in equation

3.38 is replaced with |∇φ| and there is no other difference between them.

After evolving for many iterations, level set function becomes flat, therefore

gradient may blow up or vanish. In order to prevent instabilities caused by the

blowing up or vanishing of gradient, reinitialization of the level set function to a

signed distance distance function after some iterations is necessary in numerical

implementations. Level set is re-initialized by solving equation 3.39. After solving

this equation for 10-20 iterations, φ is replaced by a signed distance level set

function ψ. However, reinitialization step is not necessary in some images for

which only a few iterations of level set evolutions are performed.

ψt = sign(φ(t))(1− |∇ψ|) (3.39)

ψ(0, .) = φ(t, :)
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3.5 RESULTS

The two-phase constant CV model can be implemented by using Algorithm 1. In

general, after solving the CV PDE equations for 10 iterations, the re-initialization

PDE equation is solved for 10 iterations. For gradient flows method, the same

algorithm is used, but in the PDE equations, δε(φ) is replaced with |∇φ|. The

MS image segmentation methods are implemented in a MATLAB environment.

Algorithm 1 Chan-Vese Algorithm (Two-phase piecewise constant case)

1. First construct level set function as Euclidean distance to a given initial curve.

2. Compute c1, c2 by equations 3.36 and 3.37.

3. Solve PDE equation 3.38.

4. If, a suitable segmentation is found, stop iterations and draw the final curve

using final level set function.

Else, return to step 2. (At every 10 or 20 iterations, reinitialize the level set

function before returning to step 2.)

Although, the CV model is less dependent on initialization than the boundary

based active contour methods, it is still dependent on initialization. In the CV

model based image segmentation, there are two different ways of initialization.

In one way, user draws the initial curve user near to the object to be segmented.

In our implementation, initially user places a rectangle near the objects in the

image. But, if the initial curve is not suitable, then algorithm converges to an

undesirable local minima. There are ways to reduce the dependency on initial

contour placement, like the seed initialization technique proposed by Chan-Vese

in [10]. In this technique, algorithm starts with small circles equally distributed

around the image. An example of a level set function which is created by calcu-

lating the distance of each point in the image to curve is given in Figure 3.2, in

which the initial curve is created by small circles distributed equally on the image

plane.
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(a) (b)

Figure 3.2: (a) Seed initialization of the curve. (b)Starting level set function.

Some experiments are done on some geometric test images with the CV active

contour method. Experiments are done on a Pentium 4, 3 Ghz, 512 MB RAM

desktop computer. Reinitialization is not used in many of these experiments, and

algorithm still works.

3.5.1 Experiments on Simple Geometric Piecewise Constant Images

Some experiments are done with geometric piecewise smooth images. This section

starts with experiments done for testing the CV method’s dependency on initial

curve placement. In Figure 3.3, a rectangle outside all 3 objects is used, in

Figure 3.4, a rectangle inside one of the objects is used, and in Figure 3.5, a

rectangle around 2 objects is used. Result in the first one is satisfactory, but in

the second one, algorithm is stuck into an undesired local minima, and it cannot

find 3 objects even at 1000 iterations. Best performance is observed in Figure 3.5,

in which active contour does not find any noisy image spikes in the final contour.

The result of the one-phase CV active contour method is given in Figure 3.7

for a simple geometric image with 50 iterations. Notice that in this case, seed

initialization technique is used for initial curve placement. As seen in Figure 3.7,

results are satisfactory, and algorithm does not find any noisy spikes as objects.

In order to find big objects, but not to find small noisy image spikes, µ should be

kept large (for example, µ = 3000 in this experiment).
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Next, the effect of reinitialization on the CV Method is tested. Reinitialization

at every 10 iterations, is used in this experiment. Algorithm run time increased

from 0.9 s in implementation without reinitialization shown in Figure 3.6 (60

iterations were performed), to 4.4 s in implementation with reinitialization (60

iterations were performed). Result of the case with reinitialization is shown in

Figure 3.7. In this test image, algorithm is successful even without reinitialization

procedure.

Piecewise constant case of Tsai et. al.’s method is implemented and some

experiments are done. In our implementation, we do not solve optimal estimation

PDEs but the values of u in each region are calculated by the mean intensity of

that region assuming that image is composed of piecewise constant regions. In

Figure 3.8, we show the satisfactory result after 50 iterations for the same image.

More iterations do not make the result better, and a noisy image spike is still

found by active contour for example, at 300 iterations as seen in Figure 3.8. If

iterations exceeds a certain number, level set function is bigger than zero in all

image, and the contour is not drawn on the image as also noted by Duramaz in

[26]. Thus, if 550 iterations are done, the level set function becomes greater than

zero on the whole image domain, the curve is outside of the image. Therefore,

the curve is not plotted by MATLAB. Since the level set function evolves faster

with the MS gradient flow, iteration number should not be kept as high as the

iteration number of the CV model. Otherwise, the curve disappears.
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(a)

(b)

(c)

(d)

Figure 3.3: One-phase CV result (α = 1, µ = 3000, no re-initialization).

(a) Initial contour. (b)- (c)- (d) 47, 94, 140 iterations (4.36 s).
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(a)

(b)

(c)

(d)

Figure 3.4: One-phase CV result (α = 1, µ = 3000, 1000 iterations, no re-

initialization). (a) Initial contour (b)- (c)- (d) 333, 666, 1000 iterations (18.9 s).
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(a)

(b)

(c)

(d)

Figure 3.5: One-phase CV result (α = 1, µ = 3000, 60 iterations, no re-

initialization). (a) Initial contour (b)- (c)- (d) 20, 40, 60 iterations (1.15 s).
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(a)

(b)

(c)

(d)

Figure 3.6: One-phase CV result (α = 1, µ = 3000, no re-initialization).

(a) Initial contour (b)- (c)- (d) 20, 40, 60 iterations (0.88 s).
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(a)

(b)

(c)

(d)

Figure 3.7: One-phase CV result (α = 1, µ = 3000, re-initialization at every 10

iterations). (a) Initial contour. (b)- (c)- (d) 17, 33, 50 iterations (4.36 s).
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(a)

(b)

(c)

(d)

(e)

Figure 3.8: One-phase GF result (α = 1, µ = 3000, 40 iterations, no re-

initialization). (a) Initial contour (b)- (c)- (d) 13, 27, 40 iterations (3.672 s).

(e) 300 iterations (7.922 s).
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3.5.2 Experiments on Complicated Geometric Piecewise Constant Im-

ages

A four-phase CV active contour method is used for a more complicated 354*287

image which does not consist of only 2 regions with distinct mean intensities.

Results are given in Figure 3.9 and Figure 3.10 after different initializations for

500 and 600 iterations, respectively. In the first case, segmentation is perfect; but

in the second case, algorithm does not find the white object properly.

Seed initialization is also used, but with given initial conditions, objects are

not found as shown in Figure 3.11. When seed initialization is used with a different

initial condition, objects are properly found as shown in Figure 3.12. It can be

concluded that even in automatic initialization, objects are not always found

depending on the initial contour placement.

Finally, in Figure 3.13, a satisfactory result with piecewise constant gradient

flows method is shown.
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(a)

(b)

(c)

(d)

Figure 3.9: Two-phase CV result (α = 1, υ = 0.0165 ∗ 357 ∗ 265), 500 iterations.

(a) Initial contour. (b)- (c)- (d) 167, 334, 500 iterations (161.50 s).
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(a)

(b)

(c)

Figure 3.10: Two-phase CV result (α = 1 υ = 0.0165 ∗ 357 ∗ 265). (a) Initial

contour. (b)- (c) 500 and 600 iterations (407.6 s).
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(a)

(b)

Figure 3.11: Two-phase CV result (α = 1, υ = 0.0165 ∗ 357 ∗ 265).

(a) Initial contour. (b) 1533 iterations.
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(a)

(b)

(c)

(d)

Figure 3.12: Two-phase CV result (α = 1, υ = 0.033 ∗ 357 ∗ 265, 329 s).

(a) Initial contour. (b)- (c)- (d) 333, 666, 1000 iterations.
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(a)

(b)

(c)

(d)

Figure 3.13: Two-phase GF result (α = 1, υ = 0.033 ∗ 357 ∗ 265).

(a) Initial contour. (b)- (c)- (d) 67, 134, 200 iterations (87.4 s).
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3.5.3 Experiments on Natural Images

A natural image which consists of uniform intensity regions is input to the CV

active contour method. Segmentation result shown in Figure 3.14 is satisfactory

except some small mistakes of the final contour. Parameters are µ = 3000 and

α = 1 and 1800 iterations are done.

(a) (b)

(c) (d)

Figure 3.14: Segmentation by the CV method, plane image. (a) Initial contour.

(b)- (c)- (d) 800, 1400, 1800 iterations (1211 s).
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A natural bird image is input to the CV method. The segmentation result

shown in Figure 3.15 is satisfactory. Parameters are µ = 3000 and α = 1 and

1500 iterations are performed.

(a) (b)

(c) (d)

Figure 3.15: Segmentation by the CV method, bird image. (a) Initial contour.

(b) 666, 1167, 1500 iterations (424 s).
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CHAPTER 4

DIFFUSION FILTERS

4.1 HEAT EQUATION

Diffusion filters are PDE based techniques for image smoothing. The most basic

type of diffusion filters is based on the heat equation. Images are smoothed ho-

mogeneously by solving the heat equation. This approach is also called the linear

diffusion filtering. Linear diffusion equation is shown in equation 4.1, with initial

and boundary conditions. Input image is denoted by u0, filtered image is denoted

by u (x, t) and image domain is denoted by Ω ⊆ R2, spatial coordinate is denoted

by x ∈ Ω and the boundary of image is denoted by Γ = ∂Ω. Outer normal to

boundaries of image domain is denoted by n. Time, t can be seen as scale pa-

rameter and linear diffusion filtering can be seen as a scale-space representation

of the denoised image. The solution of heat equation is equivalent to convolving

the image with two dimensional Gaussian kernel of blurring radius σ =
√

2t [12].

Since solving the heat equation denoises the image in the same way as Gaussian

smoothing, the edges are blurred.

∂u

∂t
= div(∇u) on Ω× (0,∞) (4.1)

u (x, 0) = u0 (x)

∂u

∂n
= 0 on Γ× (0,∞)
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4.2 ISOTROPIC NONLINEAR DIFFUSION FILTERS

The smoothing is done homogeneously on the entire image domain in heat equa-

tion approach. In order to make smoothing spatially adaptive, PDEs are con-

trolled by an edge detector function such that the image is smoothed only inside

of each region. Therefore, an edge detector function which is small at the bound-

aries but large inside of the regions enclosed by the boundaries is used. Ideally,

at edges (where |∇u|2 → ∞) g = 0 and at pixels which are not on boundary

(where|∇u|2 = 0) g = 1. The edge detector function used in our experiments is

g (s) = 1/
(
1 + s

λ

)
. Nonlinear diffusion as proposed by Perona and Malik in [18]

is given in equation 4.2 with initial and boundary conditions.

∂u

∂t
= div(g

(
|∇u|2

)
∇u) on Ω× (0,∞) (4.2)

u (x, 0) = u0 (x)

∂u

∂n
= 0 on Γ× (0,∞)

Contrary to the claim of the authors [18], this approach is not anisotropic since

it does take the orientation of the edge into account. Nonlinear diffusion filtering

approach of Perona and Malik removes noise inside regions, however it does not

remove noise along the edges since diffusion is inhibited at edges regardless of the

orientation of the edge. 1

One disadvantage of Perona-Malik equation is that it is ill-posed. In [19], a

regularization of Perona-Malik model is proposed by using Gaussian smoothed

image uσ in the edge detector function. This model has a unique solution due

to the fact that ∇uσ remains bounded. This regularization brings well-posedness

and robustness against noise. Regularized Perona-Malik equations are shown in

equation 4.3.

1The anisotropic nonlinear diffusion [20, 21] is invented by Weickert. Anisotropic nonlinear

diffusion equation inhibits diffusion across edges while allowing diffusion along the edges by

using the edge direction information.
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∂u

∂t
= div(g

(
|∇uσ|2

)
∇u) on Ω× (0,∞) (4.3)

u (x, 0) = u0 (x)

∂u

∂n
= 0 on Γ× (0,∞)

Indeed, idea and performance of nonlinear diffusion filters are similar to opti-

mal estimation PDE’s in the level set implementations of the MS functional based

image segmentation. The scheme which solves the Perona-Malik equation is the

same as the scheme used in the discretization of the divergence term in the AT

PDE equation of u.
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4.3 RESULTS

Original Lena image and its noisy version are shown in Figure 4.1.

(a) (b)

Figure 4.1: (a) Original Lena image. (b) Noisy Lena image.

The results of diffusion filters are shown in Figure 4.2. It is clear that noise is

filtered out but edges are blurred by linear diffusion filtering. Result of nonlinear

diffusion is better than linear diffusion filtering since it smoothes the image with

edge preservation as it can be shown form Figure 4.2. λ is the contrast param-

eter, at pixels ∇u > λ edges are enhanced and ∇u < λ small scale details are

eliminated. Increasing λ, lesser pixels are regarded as edges and blurring prob-

lem starts to occur. The results of regularized nonlinear diffusion are similar to

nonlinear diffusion.
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(a)

(b) (c)

(d) (e)

Figure 4.2: Diffusion filtering on noisy Lena image. (a) Linear diffusion filtered

version (42 s). (b) Nonlinear diffusion filtered version (λ = 2). (c) Nonlinear

diffusion filtered version (λ = 3) (45s). (d) Regularized nonlinear diffusion filtered

version (λ = 2). (e)Regularized nonlinear diffusion filtered version (λ = 3) (45s).
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CHAPTER 5

TEXTURE IMAGE SEGMENTATION BY ACTIVE

CONTOURS

Textured image segmentation is a challenging problem. Object boundaries at

textured images cannot be detected by gradient modulus since gradient value

is high even inside of the objects. Objects in highly textured images does not

consist of one region with distinct mean but it consists of many small regions

with different mean intensities. Hence, neither boundary-based active contour

models (for example, the geodesic active contours method) nor region-based active

contour models (for example, the CV method) are directly applicable to textured

image segmentation. However, there are some extensions of the CV method

and the geodesic active contours method for texture segmentation by creating a

Gabor-based image feature space in the literature. In this chapter of the thesis,

these techniques are analyzed. Experimentally, it is observed that the extension

of the CV method for textured image segmentation provides quite satisfactory

results. However, the extension of geodesic active contours method for textured

image segmentation does not provide satisfactory results.

5.1 CHAN-VESE ACTIVE CONTOUR METHOD

As being a model based on the MS model, the CV method draws a cartoon ap-

proximation of the original images with objects drawn without textures. Quality

of segmentation of non-textured images or lowly textured images by this method

is satisfactory. However, the CV method is not applicable to segmentation of

textured images if a textured region consists of different homogeneous regions in
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terms of intensity. The CV functional is given in equation 3.3. The results of the

model for some textured images given in this section show that the CV method

fails for texture segmentation.

5.1.1 Experiment I

The performance of the model is not perfect for segmentation of the textured

zebra image in Figure 5.1. Not the zebra but the black stripes inside of the zebra

is found as the object by the CV method. Parameters are µ = 8000 and α = 1.

(a) (b)

(c) (d)

Figure 5.1: Zebra-1 image, CV method. (a) Initial contour. (b)- (c)- (d) 83, 167,

250 iterations (190 s).
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5.1.2 Experiment II

In Figure 5.2, another textured zebra image is segmented. The CV method finds

the zebra as the object in the scene but it also finds some of the white stripes

inside of zebra as background. Parameters are µ = 12000 and α = 1.

(a) (b)

(c) (d)

Figure 5.2: Zebra-2 image, CV method. (a) Initial contour. (b)- (c)- (d) 2000,

4000, 6200 iterations (1490 s).
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5.1.3 Experiment III

In Figure 5.3, a highly textured house image is segmented. Parameters of the CV

model are adjusted to µ = 4000 and α = 1. The method segments the image into

two regions by mean intensity difference but it does not detect the object in the

scene.

(a) (b)

(c) (d)

Figure 5.3: House image, CV method. (a) Initial contour. (b)- (c)- (d) 667, 1333,

2000 iterations. (255 s).
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5.1.4 Experiment IV

In Figure 5.4, a textured cheetah image is segmented. Since the mean values

of object and background are near to each other, the image is not successfully

segmented by the CV method. Parameter of the model are µ = 50 and α = 1.

(a) (b)

(c) (d)

Figure 5.4: Cheetah image, CV method. (a) Initial contour. (b)- (c)- (d) 67, 133,

200 iterations (176 s).
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5.2 EFFECT OF PRE-FILTERING IN ACTIVE CONTOURS

Nonlinear diffusion filtering is an effective method to smooth images while pre-

serving edges. Using nonlinear diffusion filtering as a pre-filtering scheme, small

scale details in textured regions are smoothed out so that the performance of the

CV active contour method increases for textured images which can be decom-

posed into regions with distinct mean intensities.

5.2.1 Experiment I

The performance of the CV method with nonlinear diffusion filtering as a pre-

filtering scheme is tested with a zebra image. Performance is better than the

case where we only used the CV method, i.e., method does not fail at striped of

zebra. Parameters are λ = 200, µ = 1000 and 100 iterations of nonlinear diffusion

and 600 iterations of the CV method are performed. The only inaccuracy of the

segmentation is at the upper part of the zebra. The result is shown in Figure 5.5.
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(a)

(b) (c)

(d) (e)

Figure 5.5: Effect of pre-filtering, zebra-1 image. (a) Nonlinear diffusion filtered

image. (b) Initial contour. (c)- (d)- (e) 200, 400, 600 iterations (126.96 s).
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5.2.2 Experiment II

The performance of the CV method with nonlinear diffusion filtering as a pre-

filtering scheme is tested on another zebra image. Performance is better than the

case where the image is segmented directly with the CV method. Parameters are

chosen as µ = 6000 and λ = 250. 100 iterations of nonlinear diffusion and 1200

iterations of the CV model are performed. The result is shown in Figure 5.6.
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(a)

(b) (c)

(d) (e)

Figure 5.6: Effect of pre-filtering, zebra-2 image. (a) Nonlinear diffusion filtered

image. (b) Initial contour. (c)- (d)- (e) 400, 800, 1200 iterations (527.3 s).
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5.2.3 Experiment III

The performance of the CV method with nonlinear diffusion filtering used as a

pre-filtering scheme is tested on a very highly textured house image. Neither this

method nor the CV method could segment this image successfully. Parameters

are µ = 3000 and λ = 50. 100 iterations of nonlinear diffusion and 1000 iterations

of the CV method are performed. The result is shown in Figure 5.7.

(a)

(b) (c)

(d) (e)

Figure 5.7: Effect of the pre-filtering scheme, house image. (a) Filtered image.

(b) Initial contour. (c)- (d)- (e) 333, 666, 1000 iterations (123.1 s).
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5.2.4 Experiment IV

The performance of the CV method with nonlinear diffusion filtering used as a

pre-filtering scheme is tested on a very textured cheetah image. In this image,

the object is not different from the background in terms of intensity but it has

a different texture. Since there is not a great difference between mean values of

object and background, neither this algorithm nor the CV method could segment

this image successfully. Parameters are µ = 200 and λ = 50. 100 iterations

of nonlinear diffusion and 1000 iterations of the CV model are performed. The

result is shown in Figure 5.8.
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(a)

(b) (c)

(d) (e)

Figure 5.8: Effect of the pre-filtering scheme, cheetah image. (a) Filtered image.

(b) Initial contour. (c)- (d)- (e) 250, 500, 750 iterations (157 s).
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5.3 GABOR SPACE CHAN-VESE ACTIVE CONTOURS

5.3.1 Method

An extension of the CV method is proposed in [22] in order to segment textured

images. Textures are discriminated by constructing a Gabor feature space of the

image. Firstly, the image function is convolved with different Gabor functions.

Gabor functions of different frequencies, scales and orientation f , σ, θ are used to

obtain different channels. Then some of the channels are selected by the user. The

automatic selection technique of [22] is used in our implementation. In this tech-

nique, channels with maximum difference between object and background mean

intensities are selected. Then, vector valued Chan-Vese method [27] segments the

image. Even if some edges are missing at some channels, CV method extracts the

object by using multi-channel information. Input to N-channel CV method are

Gabor responses denoted by u = u(1), u(2), ..., u(N). Multi channel CV method

is given in equation 5.1. Parameters of the method are ν, w1(1), w1(2), ..., w1(N)

and w2(1), w2(2), ..., w2(N).

ECV (c1, c2,Γ) =

ˆ
ω

1

N
w1(i)

N∑
i=1

|u(i)− c1(i)|2dxdy (5.1)

+

ˆ
Ω\ω

1

N
w2(i)

N∑
i=1

|u(i)− c2(i)|2dxdy + ν|Γ|

A Gabor filter with frequency f , scale σ and orientation θ is given below:

h (x, y) = g (x′, y′) exp (2πiFx′) (5.2)

where

(x′, y′) = (x cos (φ) + y sin (φ) ,−x sin (φ) + y cos (φ)) (5.3)

and

g (x, y) =
1

2πσ2
exp

(
− x2

2λ2
Gσ

2
− y2

2σ2

)
. (5.4)
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A feature space of the image is obtained by convolving the image u0 with

Gabor function as

W = h ? u0. (5.5)

Magnitude of the Gabor transforms will be used as the Gaborian feature space.

The parameter λG shows the aspect ratio of the elliptic Gaussian window and it

is chosen as 2 in the experiments.

5.3.2 Experiments

5.3.2.1 Experiment I

Parameters of Gabor filters are chosen as follows: for 1st channel, f = 0.0012,

σ = 3.0096, θ = 1.83 rad, for 2nd channel, f = 0.3800, σ = 0.6991, θ = 1.83 rad,

for 3rd channel, f = 0.3800, σ = 0.6991, θ = 2.36 rad and for 4th channel, f = 0.1,

σ = 4.011, θ = 3.07 rad. Gabor responses are shown in Figure 5.9.

(a) (b)

(c) (d)

Figure 5.9: 4 channels of Gabor transforms.
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The result of the image segmentation by the CV active contour method which

is initialized with seeds is shown in Figure 5.10 (the parameters of the CV model

are µ = 4000, w1 = [0.8, 4, 4, 2] and w2 = [0.7, 3.5, 3.5, 1.75]). The result is

almost satisfactory. Only inaccuracy of the method is that the found object by

the final contour widens unnecessarily at legs of the zebra. Convolution of the

image with Gabor filters is responsible for this widening effect.

(a) (b)

Figure 5.10: Gabor space CV method, zebra-1 image. (a) Initial curve.

(b) 1800 iterations.
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5.3.2.2 Experiment II

An experiment is done on another textured zebra image. Selected angle, fre-

quency, and scale of Gabor functions in the experiment are as follows: for 1st

channel, f = 0.7952, σ = 1.3784, θ = 1.3784 rad, for 2nd channel, f = 0.6463, σ =

2.9852, θ = 2.9852 rad, for 3rd channel, f = 0.6463, σ = 1.3784, θ = 1.3784 rad,

for 4th channel, f = 0.2238, σ = 7.5127, θ = 2.0581 rad and for 5th channel

f = 0.4733, σ = 3.5166, θ = 1.3784 rad. The parameters of the CV active contour

method are adjusted to w1 = [1, 1, 2, 3, 0.8, 0.8], w2 = [0.8, 0.8, 1.6, 1.6, 0.6, 0.6]

and µ = 2400. First 5 channels are Gabor responses and last channel is the orig-

inal image. Segmentation result is satisfactory and the active contour is not

misguided at the stripes of the zebra. First 5 channels of Gabor responses are

shown in Figure 5.11. Initial and final contours are shown in Figure 5.12.

(a) (b)

(c) (d)

(e)

Figure 5.11: 5 channel Gabor Responses.
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(a)

(b)

Figure 5.12: Gabor space CV method, zebra-2 image. (a)Initial contour.

(b) 1400 iterations.
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5.3.2.3 Experiment III

Some experiments are done on a textured house image. Selected angle, frequency,

and scale of Gabor functions in the experiment are as follows: for 1st channel,

f = 0.8693, σ = 2.8985, θ = 0.8288 rad, for 2nd channel, f = 0.5499, σ = 0.7248,

θ = 0.5713 rad, for 3rd channel, f = 0.0351, σ = 2.5662, θ = 0.4275 rad, for 4th

channel, f = 0.7922, σ = 4.7975, θ = 1.5249 rad. It is seen that a large part of

house object in the image is found by the active contour. The result is better

than results of all other methods for this house image. Parameters are adjusted to

w1 = [4, 4, 0.8, 2.4, 2.4], w2 = [3, 3, 0.6, 1.8, 1.8] and µ = 8000. Gabor responses

are shown in Figure 5.13. The initial and final contours are shown in Figure 5.14.

(a) (b)

(c) (d)

Figure 5.13: 4 channel Gabor Responses.
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(a)

(b)

Figure 5.14: Gabor space CV method, house image. (a)Initial contour.

(b) 2920 iterations.

64



5.3.2.4 Experiment IV

Some experiments are done on a textured cheetah image. The result is quite

satisfactory such that only the tail of the zebra is missing at the final contour.

The parameters of the CV model are adjusted to w1 = [1, 4 , 8], w2 = [0.75, 3, 6]

and µ = 16000. Gabor responses are shown in Figure 5.15. The initial and final

contours are shown in Figure 5.16.

(a) (b)

(c)

Figure 5.15: 3 channel Gabor responses.
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(a)

(b)

Figure 5.16: Gabor space CV method, cheetah image. (a)Initial contour.

(b) 1200 iterations.
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5.4 GABOR-SPACE GEODESICS ACTIVE CONTOURS

In edge-based image segmentation methods, edges are detected by a positive de-

creasing function which is low at edges, and high at inside of objects. In non

textured images, gradient modulus is high at edges and low inside of objects.

Therefore, edge detector function is defined as inversely proportional to gradient

modulus. In textured image segmentation, gradient of image does not always in-

dicate the presence of an edge. At textured regions, misguided by fine structures,

gradient is high even inside of the object. The idea of [23] for textured image

segmentation is to define a Gabor-space based edge detector function replacing

the edge detector function which depend on image gradient in the geodesics active

contour method.

5.4.1 Gabor Based Edge Detector

Local coordinates of image is denoted by (x, y). A Gabor filter with frequency f ,

scale σ and orientation θ is given in equation 5.2. In the Beltrami framework, a

gray value image is viewed as a surface (2-dimensional manifold) embedded in a

3-dimensional space. Similarly, feature spaces of images, i.e., the Gaborian space

can be also considered as a surface embedded in a higher dimensional space. The

image is convolved with Gabor filters of different scale and orientation. Further-

more, the Gaborian feature space can be seen as a 2-D manifold embedded in

7-dimensional space (x, y, θ, σ, f, R, J) where θ, σ and f are the direction, scale

and frequency for which a maximal Gabor response has been obtained and R and

J denote the real and imaginary parts of the maximal magnitude Gabor response.

The metric g of embedding space is obtained by multiplying the transpose of

the Jacobian of the mapping by itself. That is g = JTJ . Inverse of this metric’s

determinant can be used as an edge detector since the metric shows the rate of

change of metric in a specific direction. The higher the metric of a pixel is, the

bigger chance of getting an edge there one has.
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In 2-dimensional images, an edge detector function is given by inverse of de-

terminant of this metric:

g =

 1 + Ix2 IxIy

IxIy 1 + Iy2

 .
In [28], an energy functional is proposed as S(x, y, I) =

´
det (g) dxdy for

the aim of image smoothing. By applying a gradient descent process to this

energy functional, a PDE equation, known as the Beltrami flow is obtained. The

Beltrami flow serves as an directional edge preserving diffusion filter.

In the Gabor-space geodesic active contours method, the first step is filtering

each feature channel of the Gabor feature space by the Beltrami flow so that

textured edges can be more easily found by Gabor based edge detectors.

In the Gabor feature space of images, F i denotes ith channel of (θ, σ, f, R, J)

and edge detector function is given by the inverse of the determinant of this

metric:

g =

 1 +
∑

i Fx
iFxi

∑
i Fx

iFyi∑
i Fx

iFyi 1 +
∑

i Fy
iFyi

 .
5.4.2 Geodesics Active Contour Method

A popular active contour implemented by the level set method is the geodesic

active contour model [3], where a new definition of curve length is introduced: it

is weighted by an edge detector function. Replacing the edge detector function in

the geodesic active contours method with the Gabor based edge detector denoted

by E, a suitable scheme for textured image segmentation is obtained as given in

equation 5.6.

∂φ

∂t
= |∇φ| div

(
E
∇φ
|∇φ|

)
(5.6)
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One may add an additional force that comes from an area minimization term

known as the balloon force to this active contour method in order to direct the

curve towards the objects. The PDE equation of the geodesics active contour

method with additional balloon force is given in the equation 5.7. The weight of

the balloon force is denoted by αB.

∂φ

∂t
= |∇φ|

(
div

(
E
∇φ
|∇φ|

)
+ αBE

)
(5.7)

5.4.3 Experiments

5.4.3.1 Experiment 0

A simple experiment is done with a simple geometric test image to test the

geodesic active contours method. In this experiment, Gabor based edge detector

is not used. Parameters are chosen as follows: balloon force constant α = 0.5000,

the time step 4t = 0.1. 1800 iterations are done. Geodesic active contours

method captures the object accurately as shown in Figure 5.17.

(a)

(b) (c)

Figure 5.17: Geodesics active contour method, a simple noisy geometric image.

(a) Edge detector function. (b) Initial contour. (c) 1800 iterations.
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5.4.3.2 Experiment I

The parameter set of the Gabor filters which are convolved with the zebra image

is chosen as follows: f = 0.4, σ = [0.9803, 0.9901, 1, 1.01, 1.0201, 1.0303], and

θ = [0, π/12, 2π/12, 3π/12, 4π/12, 5π/12, 6π/12, 7π/12, 8π/12, 9π/12, 10π/12, 11π/12]

respectively. In Figure 5.19, the initial curve is rectangle and the active contour

does not converge to the legs of zebra. In Figure 5.20, the curve is initialized close

to the object by subtracting some rectangles from it, however the final curve is

not as close to the object boundaries as required.

Figure 5.18: Edge detector function, zebra-1 image.
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(a) (b)

Figure 5.19: Gabor-space geodesics active contour method, zebra-1 image.

(a) Initial contour. (b) 18000 iterations. (αB = 0.125).

(a) (b)

Figure 5.20: Gabor-space geodesics active contour method, zebra-1 image.

(a) Initial contour. (b) 12000 iterations. (αB = 0.125).
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5.4.3.3 Experiment II

Another zebra image is segmented. The Gabor filter parameters are f = 0.0828,

θ = [0, π/6, 2 ∗ π/6, 3 ∗ π/6, 4 ∗ π/6, 5 ∗ π/6] and σ = [0.7946, 1.2040]. Edge

detector function is shown in Figure 5.21, the result of the active contour method

is shown in Figure 5.22.

Figure 5.21: Edge detector function, zebra-2 image.

(a) (b)

Figure 5.22: Gabor-space geodesics active contour method, zebra-2 image.

(a) Initial contour. (b) 4000 iterations.
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5.4.3.4 Experiment III

A highly textured house image is segmented. The frequency of Gabor filters are

f = 0.2, θ = [0, π/6, 2π/6, 3π/6, 4π/6, 5 ∗ π/6] and this set of scales (σ) are

chosen as [0.7333, 0.8147, 0.8962, 0.9777]. Edge detector function is shown in

Figure 5.23, the result of active contour method is shown in Figure 5.24.

Figure 5.23: Edge detector function, house image.

(a) (b)

Figure 5.24: Gabor-space geodesics active contour method, house image.

(a) Initial contour. (b) 2000 iterations.
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5.4.3.5 Experiment IV

A highly textured cheetah image is input. The parameters of Gabor filters are

f = 0.2, θ = [0, 0.37, 1.56, 1.93] (rad) and σ = [0.8965, 0.9961, 1.0957, 1.1954].

Edge detector function is shown in Figure 5.25, the unsuccessful segmentation

result is shown in Figure 5.26.

Figure 5.25: Edge detector function, cheetah image.

(a) (b)

Figure 5.26: Gabor-space geodesics active contour method, cheetah image.

(a) Initial contour. (b) 2020 iterations (αB = 0.2).
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5.4.4 Discussion

From the experiments, it can be concluded that segmentation results of the Gabor-

space based geodesic active contours method are not satisfactory. In some exper-

iments, the active contour does not detect all of the boundaries of the image, and

in others, the active contour passes through the object without enclosing it.

It appears from the experiments that the edge detector function based on the

Gabor-space fails to represent the object boundaries, perfectly. The fundamental

reason of its failure that selection of maximal orientation and scale for which

Gabor response is maximal does not help texture discrimination. In addition, the

performance of different Gabor feature channels in the discrimination of textures

varies as some of the feature channels does not satisfy the property of homogeneity

within regions. An added difficulty of this method is the selection of suitable

Gabor filter parameters. With different selections of the Gabor filter parameters,

the performance of Gabor filters in discrimination of textures varies greatly.

Furthermore, there are some limitations of geodesic active contours method

which create difficulties for enclosing the objects by the active contour. The

capture range of geodesic active contours method is short and the curve cannot

converge to the narrow concave parts of the boundary. This is due to the fact

that the term which is responsible for locating the curve to the boundaries, is

localized near the boundary. Therefore, one should add a balloon force to the

geodesic active contours method to expand and shrink the curve. But, in this

case, the contour is moved towards the objects boundaries by the balloon force

and it stops at the low values of the edge detector function. Since the edge

detector function obtained by this method is imperfect, the active contour does

not converge to the boundaries.
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CHAPTER 6

AMBROSIO - TORTORELLI APPOACH

6.1 AMBROSIO - TORTORELLI FUNCTIONAL

Due to the irregularity of the MS functional, it is impossible to minimize it in

a straight forward way. To overcome the difficulties in the minimization process

of the MS functional, it should be approximated by a regular functional in Γ-

convergence framework. One such functional is given in equation 6.1: the AT

functional. This functional Γ-converges to the MS functional as ρ goes to zero.

limρ→0EAT (u, v) = EMS(u,Γ)

EAT (u, v) =

ˆ
Ω

(
β (u− u0)2 + α

(
ν2|∇u|2

)
+

1

2

(
ρ|∇v|2 +

(1− v)2

ρ

))
dxdy

(6.1)

In the AT approach, the discontinuity set Γ is removed from the functional

and the edges are represented by a boundary function, v taking values between

zero and one. If (x, y) ∈ Γ then v(x, y) = 0 and if (x, y) /∈ Γ then v(x, y) = 1.

As usual, the piecewise smooth function is represented by u. The AT functional

is a regular functional, therefore standard techniques of calculus of variations are

applicable for minimization of it.

The interpretation of AT functional is as follows: v is close to 0 if |∇u|2 is

large, and 1 otherwise. The edge detector variable v is smoothed by the third

term (
´

Ω
ρ|∇v|2dxdy) in the functional. Edge detector variable v controls the

selective smoothing of image such that u is smoothed when v = 1 or |∇u|2 is
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small, smoothing is prevented when v = 0 or |∇u|2 is large. Thus, the AT

functional smoothes the image with edge preservation.

The calculus of variations provides the Euler–Lagrange equation of the AT

functional and the gradient descent method gives the PDE equation that mini-

mizes the functional as fast as possible, where t is an artificial time parameter

(more details are given in Appendix F). The PDE equation for minimizing AT

functional with respect to u is given in equation 6.2 and where equation 6.3 is the

Neumann boundary condition and equation 6.4 is the initial condition. The PDE

equation for minimizing AT functional with respect to v is given in equations 6.5

and where equation 6.6 is the Neumann boundary condition and equation 6.7 is

the initial condition. The image segmentation problem is solved by alternating

between the PDE equations associated with u and v.

∂u

∂t
= ∇ • (v2∇u)− β

α
(u− u0) (6.2)

∂u

∂n

∣∣∣∣
∂Ω

= 0 (6.3)

u(x, y, 0) = u0 (6.4)

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− v − 1

ρ2
(6.5)

∂v

∂n

∣∣∣∣
∂Ω

= 0 (6.6)

v(x, y, 0) =
1

1 + 2αρ|∇u0|2
(6.7)

The weights that control the balance between different entities of the func-

tional are α, β. One of the parameters in the MS model, ν is eliminated by setting

it to 1.
√

α
β

can be seen as the smoothing radius σ. If α and β is increased at the

same time, the weight of the length penalty term in the MS functional is decreased

and longer edges are found, hence a more detailed segmentation is obtained. At
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steady state, ∇2v (the term which is responsible for smoothing of edge detector

variable) does not effect the equation 6.5 much as noted by [29]. Ignoring the

smoothing, we can get from 6.5 that v = 1
1+2αρ|∇u|2 . Therefore, it is a good idea

to initialize edge detector function as in 6.7. Comparing the Perona-Malik and

the AT equations, it is clear that the contrast parameter λ in the AT model is

given by
√

1
2αρ

.

6.2 NUMERICAL SCHEMES

The AT equations are implemented with a suitable numerical scheme which is

neither implicit, nor explicit. A 4 point scheme is used discretization of divergence

term in [30], similar to numerical scheme in [14, 8]. But, in this study, 8 point

scheme from [12] is used in the discretization of the divergence term.

Let h = 4x = 4y be the space steps, let 4t be the time step. Let the image

be M by N . The following notations are used:

(xi, yj) = (ih, jh) for 1 ≤ i ≤M, 1 ≤ j ≤ N (6.8)

u0, i, j = u0 (xi, yj) (6.9)

uni,j = u(n4t, xi, yj) (6.10)

vni,j±1/2 =
vni,j±1 + vni,j

2
(6.11)

vni±1/2,j =
vni±1,j + vni,j

2
(6.12)(

|grad|2
)n

=
1

4

((
uni,j+1 − uni,j−1

)2
+
(
uni+1,j − uni−1,j

)2
)

(6.13)

A discrete form of Euler-Lagrange equations of the AT model is given in equations

6.14 and 6.15.
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un+1
i, j − uni, j
4t

= α
(
lp ∗ vni+1/2,j

(
uni+1,j − uni,j

)
+ lp ∗ vni−1/2,j

(
uni−1,j − uni,j

)
lp ∗ vnppi,j+1/2

(
uni,j+1 − uni,j

)
+ lp ∗ vni,j−1/2

(
uni,j−1 − uni,j

)
ld ∗ vni+1/2,j+1/2

(
uni−1,j+1 − uni,j

)
+ ld ∗ vni−1/2,j−1/2

(
uni−1,j−1 − uni,j

)
ld ∗ vni+1/2,j+1/2

(
uni+1,j+1 − uni,j

)
+ ld ∗ vni+1/2,j−1/2

(
uni+1,j−1 − uni,j

))
− β ·

( (
un+1
i,j − u0i,j

))
(6.14)

vn+1
i, j − vni, j
4t

=
((
vni+1,j − vni,j

)
+
(
vni−1,j − vni,j

)
(
vni,j+1 − vni,j

)
+
(
vni,j−1 − vni,j

))
− 2α

ρ
·
(
|grad|2

)n
vn+1
i,j

−
(
vn+1
i,j − 1

)
ρ2

(6.15)

In the experiments, we choose h = 1 as usual. The condition on the time

step for numerical stability is 4t ≤ 0.25 and in experiments we choose 4t = 0.25

unless otherwise stated. In addition, in order to obtain a stable numerical scheme,

lp + 2 ∗ ld = 1 condition should be satisfied. In numerical experiments, lp and ld

are chosen as lp = 0.5 and ld = 0.25.

6.3 SHAH’S UNIFIED FUNCTIONAL

Shah proposed a functional given in equation 6.17 in [31] as a Γ−convergent

approximation to a Total Variation minimization [14] variant given in equation

6.16. In this functional, an edge exists if (v ∼= 1) and Ju represents the intensity

jump across Γ .

ESHAH(u,Γ) =
β

α

ˆ
Ω

|u− u0| dxdy +

ˆ
Ω\Γ
||∇u|| dxdy +

ˆ
Γ

Ju
1 + αJu

ds (6.16)

ESHAH,ρ(u, v) =

ˆ
Ω

(
β |u− u0|+ α

(
(1− v)2 ||∇u||

)
+

1

2

(
ρ ||∇v||2 +

v2

ρ

))
dxdy

(6.17)
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Although this functional is very similar to the MS functional, one significant

property Shah’s functional has: shocks form in u and the set of discontinuities

correspond to the object boundaries without being heavily misguided by the noise

or the texture. This is due to usage of robust L1 norm instead of L2 norm in

the data fidelity term. Optimum point of this functional is found via the half-

quadratic minimization technique [32].

6.4 RESULTS

The AT model and the Shah model are tested on a real textured house image

from [33] and noisy couple image from [30].

Using Shah’s functional, the noisy couple image is smoothed and segmented.

If parameters are chosen as α = 0.7, β = 0.007, ρ = 0.02; the constructed edge

set is detailed, noise is eliminated from the image and lady’s head is separated

from the background. In order to reduce the details, the parameters are chosen

as α = 0.5, β = 0.005, ρ = 0.02 and the lady’s leg is lost in the background.

The experiment is shown in Figure 6.1. Both of the segmentations have some

unnecassary details like segmentation of the ground of the house into 3 parts.
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(a)

(b) (c)

(d) (e)

Figure 6.1: Segmentation by the Shah functional, couple image. (a) Input image.

(b)- (c) Smoothed image and edge set (α = 0.7, β = 0.007, ρ = 0.02).

(d)- (e) Smoothed image and edge set (α = 0.5, β = 0.005, ρ = 0.02).
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The noise is not completely eliminated by the AT model if parameters are

chosen as α = 1, β = 0.001, ρ = 0.02 and 10000 iterations are performed. The

only solution is to increase the blurring radius by selecting α = 1, β = 0.00075,

ρ = 0.02; however in this case the lady’s upper body part is lost after 1200

iterations of the AT method. The experiment is shown in Figure 6.2. Comparing

the results, it seems that Shah’s functional better segments noisy images without

being effected by noise much.

(a) (b)

(c) (d)

Figure 6.2: Segmentation by the AT model, couple image.

(a)- (b) Smooth image, edges (α = 1, β = 0.001, ρ = 0.02, 1000 iterations).

(c)- (d) Smooth image, edges (α = 0.7, β = 0.00075, ρ = 0.02, 1200 iterations).
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A highly textured house image is input to the AT and Shah’s unified segmen-

tation models. In each case, the edge at the right side of the house is not found

since the intensity discontinuity passes from inside of the house. With Shah’s

unified model, the cartoon limit is reached as shown in Figure 6.3.

(a)

(b) (c)

(d) (e)

Figure 6.3: Segmentation by the Shah model, house image. (a) Original image.

(b)- (c) Smooth image and edges (α = 0.5, β = 0.0005, ρ = 0.02).

(d)- (e) Smooth image and edges (α = 0.5, β = 0.0001, ρ = 0.02).

83



The results of segmentation of the house image with the AT model are shown

in Figure 6.4. At (a-b), smoothing radius is too large so that most of the edges

are lost. The segmentation at (c-d) is detailed and some scale details of the image

are not smoothed out. The least detailed segmentation is shown in (e-f).

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Segmentation by the AT model, house image (ρ = 0.02 for all).

(a)- (b) α = 0.5, β = 0.0005, 284 s. (c)- (d) α = 1, β = 0.01, 405 s.

(e)- (f) α = 0.5, β = 0.005, 220 s.
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It can be concluded from the experimental results that the Shah model that

uses L1 norm is better than the AT model that uses L2 norm at segmentation

without being misguided by textures at the image.

6.5 LOCAL FEEDBACK INTO AT EQUATIONS

We propose to insert local neighbourhood information to right hand side of u and v

PDE equations for segmentation of images which cannot be accurately segmented

by the MS model. This operation is named as the local state feedback.

6.5.1 Local Feedback into u PDE equation

Euler-Lagrange equations which minimize the AT energy with respect to u with

feedback added to right hand side of the equation are given below:

∂u

∂t
= ∇ • (v2∇u)− β

α
(u− u0) +Ku (uRef − u) (6.18)

∂u

∂n
|∂Ω= 0 (6.19)

Local state feedback into u PDE equation is inserted to increase the smoothing

of u function. Based on the control theory, a local operation by sliding neigh-

bourhood operations which is similar to proportional feedback is used as local

feedback. A 3-by-3 neighborhood block slides over the image and the reference

value (uRef) for the center in each 3-by-3 block is taken as the average of pixel

values in this block. The proportional feedback term for the PDE equation as-

sociated with u is given by: Kp ∗ (uRef(i, j) − u(i, j)) where Kp is a suitable

constant, u(i, j) is the value of the pixel (i, j) and uRef(i, j) is the mean intensity

of this pixel’s 3-by-3 neighborhood.

Some experiments are done to test the method. Obtained images with AT

and local feedback are shown in Figure 6.5 for ∆t = 0.10 and ∆t = 0.20. The

parameters in the AT functional are adjusted to α = 0.5, ρ = 0.01, β = 0.005,

Ku = 8 and 40 iterations are done. If ∆t = 0.10, numerical scheme is stable.
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Increasing ∆t, numerical scheme becomes unstable. As seen in Figure 6.5, after

inserting local feedback term, smoothing in the textured regions are increased and

algorithm does not find some of the false edges in the textured regions. Filtered

images contain inter-regional blurring since feedback term which does not depend

on v, smooth the image without preventing smoothing across edges.

(a) (b)

(c) (d)

Figure 6.5: AT model with local feedback into u. (a)- (b) u, v (∆t = 0.10, 32 s).

(c)- (d) u, v (∆t = 0.20, 34 s).

In fact, a similar operation to this feedback operation is also included in

AT approach:
´

Ω
α (v2|∇u|2) dx term averages the values of 8 neighbours of the

center pixel in 3-by-3 windows if v is taken 1 in the entire image. The result

of multiplication of a 3-by-3 discrete normalized identity matrix (I) by Ku is

denoted by IK. Note that the center of the matrix is taken away. A discrete

form of AT PDE equations of u with feedback is given in equation 6.20.
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un+1
i, j − uni, j
4t

= β ·
(
u0i,j − un+1

i,j

)
+ α

((
vni+1/2,j + IKi+1,j

) (
uni+1,j − uni,j

)
+
(
vni−1/2,j + IKi−1,j

) (
uni−1,j − uni,j

)
+
(
vni,j+1/2 + IKi,j+1

) (
uni,j+1 − uni,j

)
+
(
vni,j−1/2 + IKi,j−1

) (
uni,j−1 − uni,j

)
+
(
vni−1/2,j+1/2 + IKi−1,j+1

) (
uni−1,j+1 − uni,j

)
+
(
vni−1/2,j−1/2 + IKi−1,j−1

) (
uni−1,j−1 − uni,j

)
+
(
vni+1/2,j+1/2 + IKi+1,j+1

) (
uni+1,j+1 − uni,j

)
+
(
vni+1/2,j−1/2 + IKi+1,j−1

) (
uni+1,j−1 − uni,j

))

(6.20)

The only difference between the scheme with feedback and without feedback

is that in feedback operation 8 neighbours of center pixel in each 3-by-3 window is

averaged equally without depending on v. Therefore, we expect to obtain similar

results to AT with feedback operation if we take v = 1 in whole image domain and

choose ∆t = 0.20 in PDE equation associated with u without using the feedback

term. The results of this case can be seen in Figure 6.6.

(a) (b)

Figure 6.6: Segmentation by the AT model without control of u by v. (a) u.

(b) v at ∆t = 0.20 (40 iterations) (18.5s).

In the local feedback operation, averaging results in regularization without

edge preservation and this causes inter-regional blurring. In the experiments,
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average pixel values of 3 by 3 neighbourhood of each pixel is used as a feedback

term, that is equivalent to taking Ku = 8 and I =


1/9 1/9 1/9

1/9 1/9

1/9 1/9 1/9

 in equation

6.20. But, if we take Ku = 8 and I =


1/32 1/16 1/32

1/16 1/16

1/32 1/16 1/32

 we can see that

numerical scheme of the modified form of the AT PDE equation associated with

u is nothing but numerical minimization of this functional:

E(u, v) =

ˆ
Ω

(
β (u− u0)2 + α

([
v2 + 1

]
|∇u|2

)
+

1

2

(
ρ|∇v|2 +

(1− v)2

ρ

))
dxdy.

If |∇u|2 is large at any pixel, v = 0 and the AT model inhibits diffusion around

that pixel, but (v2 + 1) = 1 and the AT model with the feedback scheme allows

diffusion around that pixel. Regularization without edge preservation is not an

appropriate idea generally, because of the dislocation of the edge set by blurring.

Another experiment is done on the noisy couple image. At this image, the

edge set is not located properly because of the blurring at edges as shown in

Figure 6.7. The result of segmentation with the AT model is shown in Figure 6.2.

(a) (b)

Figure 6.7: Segmentation by the AT model with feedback operation, noisy couple

image. (a) u (b) v (α = 0.3, ρ = 0.005, β = 0.005) (150 iterations, 21.25 s).
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6.5.2 Local Feedback into v PDE Equation

In the local feedback operation for the PDE equation associated with v, finding

edges in local neighbourhood as lines and adding this information as a local

state feedback to right hand side of v PDE equation is considered. An artificial

reference (vRef function) is obtained from each 5-by-5 neighborhood block of v

function. Our method consists of dividing each 5-by-5 block into 2 regions using

gradient direction at the center pixel. In every 5-by-5 block, feedback term at

the pixels considered as edges are set to 0 and feedback term at remaining pixels

is set to 1. We calculate 5-by-5 vRef function as follows: The pixel values in

the line perpendicular to gradient are set to 0 and values of other pixels in the

window are set to 1. Similar to proportional feedback, we obtain 5-by-5 feedback

term for v as: vRef−v. We should obtain feedback term for only the center pixel

in the 5-by-5 block, therefore we multiply 5-by-5 vRef − v by a 5-by-5 Gaussian

kernel, element by element to emphasize the center pixel. Then, this value is

multiplied by a suitable constant Kv and the elements of the resultant matrix

is summed. At the summing operation, directional edge information is lost. We

generally adjust 1/ρ2 and Kv equal or near to each other.

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− v − 1

ρ2
+Kv (vRef − v) (6.21)

∂v

∂n
|∂Ω= 0 (6.22)

Some experiments are done on the house image by using the 5-by-5 feedback

term for v: vRef−v. In Figure 6.8, u function, v function at previous step, vRef

function, feedback term and v function at next step at the 1st iteration are shown

respectively. In Figure 6.9 results at the 11th iteration, in Figure 6.10 results at

the 21st iteration are shown. In Figure 6.11, obtained u and v functions after 40

iterations are shown.
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(a) (b)

(c) (d)

(e)

Figure 6.8: 1st iteration of the AT equation with u and v feedback. (a) un+1.

(b) vn. (c) vRef . (d) Feedback term. (e) vn+1.
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(a) (b)

(c) (d)

(e)

Figure 6.9: 11th iteration of the AT equation with u and v feedback. (a) un+1.

(b) vn. (c) vRef . (d) Feedback term. (e) vn+1.
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(a) (b)

(c) (d)

(e)

Figure 6.10: 21st iteration of the AT equation with u and v feedback. (a) un+1.

(b) vn. (c) vRef . (d) Feedback term. (e) vn+1.
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(a) (b)

Figure 6.11: AT segmentation with both u and v feedback (40 iterations).

(a) un+1. (b) vn+1 (α = 1, β = 0.01, Ku = 10, Kv = 10000) (431 s).

Since the directional information is lost in the feedback term associated with

v variable, changing the orientation of the feedback kernel around a pixel does

not change the feedback term at that pixel. Consequently, the feedback term

does not serve as a local edge detector and meaningless segmentation results are

obtained.
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CHAPTER 7

CONCLUSION

In this thesis study, variational image segmentation methods have been studied.

In a variational method, the image segmentation problem is posed in the form

of minimizing an energy functional. The main variational model used for image

segmentation in this study is the MS model. In this model, an image is decom-

posed into a set of regions by the requirement of homogeneity within regions. By

minimizing the MS energy, a curve representing the edge set and an approxima-

tion of the original image, which is region-wise smooth, is computed. It is not

straightforward to minimize the MS functional due to the existence of unknowns

of different natures. On the other hand, there are two different kind of approxi-

mations to the MS functional which can be used in image segmentation: active

contour implementations of the MS model and the AT functional.

The first approximation (the MS active contour method) minimizes the MS

functional in two steps. In the first step, one eliminates the unknown approxi-

mating function from the functional by minimizing the functional with respect

to the unknown approximating function while holding the edge set fixed. Then,

the only unknown remaining in the functional is the edge set and minimization

of the functional with respect to the edge set is a shape optimization problem

which can be solved by level set methods. The CV method and the Tsai et. al.’s

method are two good examples of this kind of MS approximations. Two-phase

CV method simply decomposes the image into two regions with distinct mean

intensities. For segmentation of complex images that consist of more than two

regions in terms of mean intensity or that contain T-junctions, a four-phase CV

scheme is used.
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The CV active contour method is tested on synthetic and natural images.

From the experiments, it can be concluded that the CV method is robust with

respect to noise. Although, the CV active contour method is known to be better

than edge-based active contour methods with respect to dependency on initial-

ization; it is still affected by initial contour placement and may converge to an

undesired local minima. The possibility of getting an undesired local minima is

decreased by the initialization of the active contour with regularly spaced seeds.

However, the CV model may stuck to an undesired local minima even in this case.

Another result that can be obtained from the experiments is as follows: The as-

sumption that image consists of two scales of intensity are not always satisfied in

practice. Therefore in natural images, the performance of the algorithm is not as

good as the performance in synthetic images.

Since the MS model segments the image by making use of the requirement of

homogeneity within regions, active contour methods based on the MS model is not

suitable for segmentation of textured images in which the piecewise smoothness

assumption fails. Some extensions of active contour methods for textured image

segmentation are also analyzed in this thesis study. Using nonlinear diffusion as a

pre-filtering scheme for the CV active contour method, textures are smoothed out.

For textured images which can be separated by image homogeneity requirement,

results obtained using the pre-filtering scheme are better than the results obtained

without using the pre-filtering scheme. However, if the objects belong to different

texture classes but they have similar mean intensities, then the CV active contour

method is unsuccessful for image segmentation even if the pre-filtering scheme is

used.

In literature, there is an active contour method for texture segmentation based

on the CV model and Gabor filters. In this method, a Gabor feature space of the

image is constructed and a vector-valued CV active contour method segments the

textured image. Even though, the selection Gabor filter parameters is not easy,

automatic selection is possible by choosing the Gabor channels with maximum

difference in terms of mean intensities of regions separated by the initial curve.
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Textured image segmentation is not possible by the geodesic active contour

method in which the edge detector function is defined as the inverse of the image

gradient. However, there is an improved method in which the image is considered

as a surface embedded in a 7-dimensional space constructed by Gabor filtering.

Inverse of the determinant of the embedding space’s metric can be used as an

edge detector since this metric shows the rate of change of image intensity in

a specific direction. But we did not get satisfactory results at this case. This

is due to the low performance of this edge detector function on catching object

boundaries.

The second technique is to use the Γ- convergence framework to approximate

the MS functional with a functional which can be minimized in a standard way.

One such functional is the AT functional. The lower dimensional variable repre-

senting the boundaries does not explicitly appear in this functional, instead the

boundaries are represented by an edge detector function v which is near zero at

edges and near one elsewhere.

Image segmentation experiments are done on noisy and textured images by us-

ing the AT model. As an approximation to the MS model, the difficulty of texture

segmentation with the AT model is encountered when experiments on textured

images are done. The reason behind that is the failure of piecewise smoothness

assumption for these images. For an image containing salt and pepper noise,

noise is eliminated by increasing smoothing radius of the AT model while losing

some of the edges. The Shah’s unified functional is used for image segmentation

and smoothing and the effectiveness of the Shah’s functional for obtaining objects

boundaries without being misguided by noise in the image is observed. However,

the edge set obtained by the Shah model has some unintuitive details.

In this thesis, some new ideas are proposed in order to increase the perfor-

mance of the AT model especially on textured images. These ideas are based

on the control theory. The variables in PDE equations of the AT model can

be treated as states and with an artificial feedback term, this equations can be

controlled. An artificial input is fed back to the PDE equations in each pixel
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and input minus the pixel value of u or v at that iteration is added to the right

hand side of equation of u or v. The PDE equation associated with u function is

controlled with a term that increases smoothing. The artificial input is the mean

intensity of the 3-by-3 neighborhood of that pixel in this equation. If proportion-

ality constant is chosen suitably, this approach is very similar to increasing v value

in the PDE equation associated with u by 1. This approach eliminates some false

edges at textured regions. However, it causes inter-regional blurring because real

edges are also blurred by the increased smoothing. In addition, a simple scheme

for controlling the PDE equation associated with v function is proposed. In this

scheme, the reference function is a local edge detector. However, some difficulties

are encountered. We should insert a feedback term only for the center pixel of the

local neighborhood but by a local edge detector which simply depends on gradi-

ent, a 3-by-3 matrix is obtained. This matrix is multiplied element-by-element

with a 3-by-3 Gaussian function. Then the sum of the resultant matrix’s elements

is used as the feedback term of the center pixel. This operation emphasizes feed-

back term’s value at the center pixel; but, it does not keep the orientation of the

matrix. As a result, the feedback value is obtained regardless of the orientation

of the edge in local neighbourhood. The second problem is that by obtaining a

local edge detector, it is very hard to discriminate texture. Experiments show

the difficulty in controlling the AT equations to discriminate texture by simple

local derivative operators. Therefore, it can be concluded that the usage of high-

level information from the image is necessary for the usage of feedback operation

effectively.

As a future work, some applications of image segmentation schemes can be

investigated. For example, buildings on aerial images can be identified by the

variational image segmentation methods studied in the thesis. In addition, the

performance of the textured image segmentation method can be improved by

the combination of the state-of-art methods for texture segmentation with the

framework of active contour methods.
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APPENDIX A

CALCULUS OF VARIATIONS

Calculus of variations is a branch of optimization dealing with the minimization

of functionals. A functional is a mapping from set of functions to real numbers.

In general, functionals are defined by definite integrals. In contrast, the aim of

calculus is to find a point that minimizes a function.

In the calculus of variations, the differential equation (Euler-Lagrange equa-

tion) whose solution gives the extremal point of the given functional is derived

from the optimality condition that the so called Gâteaux derivative must vanish

for all test functions at the extremal point. The Gâteaux Derivative is defined as

below in [12].

Definition: Gâteaux Derivative

Let X be a Banach space and F : X → R. The directional derivative of F

at u in the direction v is given by:

F ′ (u, v) = lim
λ→0+

F (u+ λv)− F (u)

λ

if the limit exists. If there exists ũ ∈ X ′ such that F ′ (u, v) = ũ (v), ∀v ∈ X,

then F is Gâteaux differentiable at u and we write F ′ (u) = ũ. If F is Gâteaux

differentiable and if the problem infv∈X F (v) has a solution u, then we have

F ′ (u) = 0. F ′ (u) = 0 is called the Euler-Lagrange equation. If F is convex, the

solution u of F ′ (u) = 0 is a solution of the minimization problem.
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APPENDIX B

CURVATURE

Curvature is the rate of turning of the tangential vector. The mathematical

definitions are taken from [12].

B.1 Parametrized Curves

Curvature is defined for parametrized curves regardless of parametrization. Let

C(p) = (x1(p), x2(p)) be a regular parametrized curve in R2, where p parametrizes

the set of points on the curve where 0 ≤ p ≤ 1.

Tangent vector is given by T (p) = (x′1(p), x′2(p)) and normal vector is given

by N(p) = (−x′2(p), x′1(p)). Arc length is given by:

s(p) =

ˆ p

0

√
(x′1(r))2 + (x′2(r))2 dr (B.1)

To properly define curvature, for parametrization of the curve by s, we have

|T (s)| = 1. The curvature tensor is defined by dT (s)
ds

= d2x
ds2

(s). It can be shown

that curvature tensor is collinear to N(s)
|N(s)| , i.e., dT (s)

ds
= κ(s) N(s)

|N(s)| , where κ(s) is

the curvature and the radius of curvature is given by 1
κ(s)

.

Since |T (s)| = 1 we obtain the expression for curvature:

κ(p) =
x′1(p)x′′2(p)− x′2(p)x′′1(p)

(x′1(p)2 + x′2(p)2)3/2
(B.2)

Since Tp = |Cp|Ts, we obtain:

1∣∣∣∂C(p)
∂p

∣∣∣ ∂∂p
 ∂C(p)

∂p∣∣∣∂C(p)
∂p

∣∣∣
 = κ(p)

N(p)

|N(p)|
(B.3)
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B.2 Curves as Isolevel of a Function u

Let x(s) be parametrized by its curvilinear abscissa such that it is k-level of

function u : R2 → R, that is: x(s) = {x1(s), x2(s) ; u (x1(s), x2(s)) = k}.

By differentiating u (x1(s), x2(s)) = k with respect to s we obtain:

x1′(s)ux1 , x2′(s)ux2 = 0 (B.4)

where ux1denotes ∂u
∂xi

(x1(s), x2(s)). Therefore, the vectors (x1′(s), x2′(s)) and

(−ux2 , ux1) are collinear. For some λ, we havex1′(s) = −λux2

x2′(s) = λux1 .
(B.5)

Therefore, the vectors (ux1 , ux2) and (−ux2 , ux1) are respectively normal and

tangent to the curve x(s). Differentiating again equation B.4 with respect to s

we have:

(x1′(s))2 ux2
1

+ (x2′(s))2 ux2
2

+ 2x′1 (s)x′2 (s)ux1x2 + x1′′(s)ux1 , x2′′(s)ux2 = 0

λ2
(
u2
x1
ux2

2
+ u2

x2
ux2

1
− 2ux1ux2ux1x2

)
+ 1

λ
(x1′′ (s)x2′ (s)− x2′′ (s)x1′ (s)) = 0

Since |x′(s)| = 1, we obtain form B.5 that λ2 = 1
|∇u|2 . With B.2, the expression

of curvature is finally obtained as:

κ =
(ux1)2 ux2

2
+ (ux2)2 ux2

1
− 2ux1ux2ux1x2(

(ux1)2 + (ux2)2)3/2
(B.6)

or equivalently:

κ = div

(
∇u
|∇u|

)
. (B.7)
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APPENDIX C

MINIMIZATION OF THE CHAN-VESE ENERGY

In this part of the Appendix, the Euler-Lagrange equations of the CV functional

are determined. The term ν
´
Hε(φ)dx which penalizes the area inside the curve is

added to the CV Functional, for the sake of completeness. The energy functional

which uses regularized versions of Heaviside and Dirac functions is given below:

ECV (c1, c2,Φ) = λ1

ˆ
Ω

|u0 − c1|2Hε(φ)dxdy + λ2

ˆ
Ω

|u0 − c2|2(1−Hε(φ))dxdy

+ µ(

ˆ
Ω

δε(φ)|∇φ|dxdy) + ν

ˆ
Ω

Hε(φ)dxdy

(C.1)

First step is trivial. In order to find c1, c2 values which minimize the above

functional, it is necessary that partial derivatives of ECV with respect to c1, c2

be equal to 0. We rewrite the functional in a suitable form for this purpose and

find the partial derivatives:

ECV (c1, c2,Φ) = µ(

ˆ
Ω

δε(φ)|∇φ|dxdy) + ν

ˆ
Hε(φ)dxdy

+ λ1

(
c2

1

ˆ
Ω

Hε(φ)dxdy − 2c1

ˆ
Ω

u0 Hε(φ)dxdy

+ λ1

ˆ
Ω

u2
0Hε(φ)dxdy

)
+ λ2

(
c2

2

ˆ
Ω

u0 (1−Hε(φ))dxdy − 2c2

ˆ
Ω

u0 (1−Hε(φ))dxdy

+ λ2

ˆ
Ω

u2
0 (1−Hε(φ))dxdy

)

∂ECV
∂c1

= 0 (C.2)
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2c1

´
Ω
Hε(φ)dx− 2

´
Ω
u0 Hε(φ)dxdy = 0⇒

c1(φ) =

´
Ω
u0Hε(φ)dxdy´

Ω
Hε(φ)dxdy

(C.3)

∂ECV
∂c2

= 0 (C.4)

2c2

´
Ω

(1−Hε(φ)) dx− 2
´

Ω
u0 (1−Hε(φ)) dxdy = 0⇒

c2(φ) =

´
Ω
u0 (1−Hε(φ)) dxdy´
Ω

(1−Hε(φ)) dxdy
(C.5)

Above equations show that the optimal values of c1 and c2 are given by mean

intensities in the corresponding regions.

In second step, ECV is minimized with respect to φ, keeping c1 and c2 fixed

by formal methods of calculus of variations. Let ψ be a test function of the same

type as φ. Gâteaux derivative of the terms in the functional in direction ψ are

easily obtained by using Taylor’s theorem as shown below:

limt→0ν

ˆ
Ω

(
Hε (φ+ tψ)−Hε (φ)

t

)
dxdy

= limt→0ν

ˆ
Ω

Hε (φ) + ∂Hε(φ)
∂φ
• tψ +O (t2)−Hε (φ)

t
dxdy

=

ˆ
Ω

Hε (φ) ′ψdxdy

limt→0λ1

ˆ
Ω

|u0 − c1|2
(
Hε (φ+ tψ)−Hε (φ)

t

)
dxdy

= limt→0λ1

ˆ
Ω

|u0 − c1|2
Hε (φ) + ∂Hε(φ)

∂φ
• tψ +O (t2)−Hε (φ)

t
dxdy

= λ1

ˆ
Ω

|u0 − c1|2Hε
′(φ)ψdxdy

limt→0λ2

ˆ
Ω

|u0 − c2|2
(

(1−Hε (φ+ tψ))− (1−Hε (φ))

t

)
dxdy

= limt→0λ1

ˆ
Ω

|u0 − c1|2
−Hε (φ)− ∂Hε(φ)

∂φ
• tψ −O (t2) +Hε (φ)

t
dxdy

= −λ2

ˆ
Ω

|u0 − c2|2Hε
′(φ)ψdxdy
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Gâteaux derivative of µ(
´

Ω
δε(φ)|∇φ|dx) in direction ψ is

limt→0µ

(´
δε (φ+ tψ) |∇ (φ+ tψ) |dxdy −

´
δε (φ) |∇ (φ) |dxdy

t

)
which is equivalent to

´
Ω (δε (φ+ tψ) |∇ (φ+ tψ) | − δε (φ) |∇ (φ+ tψ) |+ δε (φ) |∇ (φ+ tψ) | − δε (φ) |∇ (φ) |) dxdy

t
.

Gâteaux derivative of µ(
´

Ω
δε(φ)|∇φ|dx) is found by finding Gâteaux deriva-

tive of first two terms and last two last terms.

limt→0

ˆ
Ω

(
δε (φ+ tψ)− δε (φ)

t

)
|∇ (φ+ tψ) |dxdy

= limt→0

ˆ
Ω

δε (φ) + ∂δε(φ)
∂φ
• tψ +O (t2)− δε (φ)

t
|∇ (φ+ tψ) |dxdy

=

ˆ
δε′(φ)ψ|∇φ|dxdy

limt→0

ˆ
Ω

(
|∇ (φ+ tψ) | − |∇ (φ) |

t

)
δε (φ) dxdy

= limt→0

ˆ

Ω

|∇ (φ) |+ ∂|∇φ|
∂(∇φ)

• t∇ψ +O (t2)− |∇φ|
t

δε (φ) dxdy

=

ˆ

Ω

δε (φ)
〈∇φ,∇ψ〉
|∇φ|

dxdy

Therefore,

limt→0µ

(´
Ω
δε (φ+ tψ) |∇ (φ+ tψ) |dxdy −

´
Ω
δε (φ) |∇φ|dxdy

t

)
= µ

ˆ
Ω

(
δε′(φ)ψ|∇φ|+ δε (φ)

〈∇φ,∇ψ〉
|∇φ|

)
dxdy
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Applying Green’s formula 1 to convert the term containing ∇ψ to the form

involving ψ, where n represents the exterior unit normal to the boundary, ∂Ω we

get:

µ

ˆ
Ω

δ (φ)
〈∇φ,∇ψ〉
|∇φ|

dxdy =

ˆ
∂Ω

µ
δε(φ)

|∇φ|
∂φ

∂n
• ψds−

ˆ
Ω

µ∇
(
δε (φ)

∇φ
|∇φ|

)
ψdxdy.

(C.6)

Then, by expanding brackets in ∇ •
(
δε (φ) ∇φ|∇φ|

)
, we obtain

δε′ (φ) 〈∇φ,∇φ〉|∇φ| +δε (φ)∇•
(
∇φ
|∇φ|

)
, or δε′ (φ) |∇φ|+δε (φ)∇•

(
∇φ
|∇φ|

)
in the simplified

form. Then,

limt→0µ

(´
Ω
δε (φ+ tψ) |∇ (φ+ tψ) |dxdy −

´
Ω
δε (φ) |∇φ|dxdy

t

)
= µ

ˆ
Ω

(
−δε (φ)∇ •

(
∇φ
|∇φ|

))
ψdxdy

+

ˆ
∂Ω

µ
δε(φ)

|∇φ|
∂φ

∂n
• ψds

Hence, Gâteaux derivative of the CV functional is obtained as:
ˆ

Ω

δε(φ)

(
µ∇ •

(
∇φ
|∇φ|

)
+ ν − λ1 |u0 − c1|2 + λ2 |u0 − c2|2

)
ψdxdy+

ˆ
∂Ω

µ
δε(φ)

|∇φ|
∂φ

∂n
ψds = 0. (C.7)

Firstly, taking ψ to be nonzero near one point of Ω, zero elsewhere and tak-

ing limit over such ψ, secondly taking ψ to be nonzero near one point of ∂Ω,

zero elsewhere and taking limit over such ψ, the Euler-Lagrange equations for

the CV functional are derived as below with the associated Neumann boundary

conditions:

δε(φ)

(
µ∇ •

(
∇φ
|∇φ|

)
+ ν − λ1 |u0 − c1|2 + λ2 |u0 − c2|2

)
= 0 in Ω (C.8)

µ
δε(φ)

|∇φ|
∂φ

∂n
= 0 on ∂Ω (C.9)

1Let Ω ⊂ R2, c, u, v : Ω → R, and n denote the outer normal to ∂Ω. A useful formula for

integration by parts in two-dimensions is given by this form of Green’s formula (based on the

Green’s theorem) :
´

Ω
c 〈∇u,∇v〉 dx = −

´
Ω
v∇ • (c∇u) dx+

´
∂Ω

(
c ∂u

∂n

)
vds.
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APPENDIX D

FIRST VARIATION OF REGION INTEGRALS

In this part of Appendix, the variation of region integrals of the form

K =

ˆ
ω( ~C)

Hdxdy (D.1)

is determined, where ~C represents a closed curve, ω represents region inside of ~C

and H : R2 → R denotes a continuous scalar field. Let
−→
C =

−→
C (p, t) be a family

of closed curves where t parametrizes the family and p parametrizes the set of

points on the curve where 0 ≤ p ≤ 1. Since the curve is closed,
−→
C (0, t) =

−→
C (1, t)

and
−→
Ct(0, t) =

−→
Ct(1, t).

In order to derive first derivation of region integrals, we define
−→
F as,

−→
F =

 ´ x0 H (λ, y)dxdy´ y
0
H (x , λ)dxdy


so that ∇ ·

−→
F = 2H.

We rewrite equation (D.1) as

K =
1

2

ˆ
ω( ~C)

∇ ·
−→
F dxdy (D.2)

From the divergence theorem, the equation (D.2) is rewritten as

K(t) =
1

2

˛
C

〈−→
F,
−→
N
〉
ds. (D.3)

By relation ds =
∥∥∥−→Cp∥∥∥ dp between arc length term, ds and its parametrized

version, dp, the equation (D.3) is rewritten as a function of t along the integral

around
−→
C (p, t):
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K =
1

2

1ˆ

0

〈−→
F,
−→
N
∥∥∥−→Cp∥∥∥〉 dp (D.4)

Defining 90 degree rotation matrix Q as

Q =

 0 1

−1 0


and observing that Q

−→
Cp =

−→
N
∥∥∥−→Cp∥∥∥, a suitable form for further operations is

obtained and its derivative with respect to t is obtained as:

Kt =
1

2

1ˆ

0

(〈−→
Ft,Q
−→
Cp

〉
+
〈−→
F,Q
−→
Cpt

〉
dp
)

(D.5)

For second part integral above, we use integration by parts and use the prop-

erty that
−→
Ct(0, t) =

−→
Ct(1, t) and we obtain

Kt =
1

2

1ˆ

0

(〈−→
Ft,Q
−→
Cp

〉
−
〈−→
Fp,Q

−→
Ct

〉
dp
)

(D.6)

If we represent 2 by 2 Jacobian matrix by J , the first term of
−→
F by F1 and the

second term of by of
−→
F by F2, using the chain rule Ft and Fp can be expressed

as:

−→
Ft =

 ∂F1

∂x
∂x
∂t

+ ∂F1

∂y
∂y
∂t

∂F2

∂x
∂x
∂t

+ ∂F2

∂y
∂y
∂t

 = (J
−→
F )
−→
Ct (D.7)

−→
Fp =

 ∂F1

∂x
∂x
∂p

+ ∂F1

∂y
∂y
∂p

∂F2

∂x
∂x
∂p

+ ∂F2

∂y
∂y
∂p

 = (J
−→
F )
−→
Cp (D.8)
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Using (D.7) and (D.8), by rearrangements and simplifications, we obtain:

Kt =
1

2

1ˆ

0

〈
(J
−→
F )
−→
Ct, Q

−→
Cp

〉
−
〈

(J
−→
F )
−→
Cp, Q

−→
Ct

〉
dp

=
1

2

1ˆ

0

〈
−→
Ct,

[(
QT (J

−→
F )
)T
−
(
QT (J

−→
F )
)]−→

Cp

〉
dp (D.9)

=
1

2

1ˆ

0

〈
−→
Ct,

 −∂F2

∂x
∂F1

∂x

−∂F2

∂y
∂F1

∂y

−
 −∂F2

∂x
−∂F2

∂y

∂F1

∂x
∂F1

∂y

−→Cp〉 dp (D.10)

=
1

2

1ˆ

0

〈
−→
Ct,

(∂F1

∂x
+
∂F2

∂y

) 0 1

−1 0

−→Cp〉 dp (D.11)

=
1

2

1ˆ

0

〈−→
Ct,
(
∇ ·
−→
F
)
Q
−→
Cp

〉
dp (D.12)

By the relation ∇ ·
−→
F = 2H, further simplifications can be done and the

derivative of K with respect to t can be found as:

Kt =

1ˆ

0

〈−→
Ct,H

−→
N
〉∥∥∥−→Cp∥∥∥ dp

=

1ˆ

0

〈−→
Ct,H

−→
N
〉
ds (D.13)

It can be concluded from D.13 that K decreases most rapidly if
−→
Ct = −H

−→
N .
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APPENDIX E

FIRST VARIATION OF ARC-LENGTH

In this part of the Appendix, the variation of length functionals of the form

K(t) =

˛
−→
C

ds (E.1)

is determined, where ~C denotes a closed curve, and H : R2 → R denotes a

continuous scalar field. Let
−→
C =

−→
C (p, t) be a family of closed curves where t

parametrizes the family and p parametrizes the set of points on the curve where

0 ≤ p ≤ 1. Since the curve is closed, we assume that
−→
C (0, t) =

−→
C (1, t) and

−→
Ct(0, t) =

−→
Ct(1, t). If we denote unit normal to the curve by

−→
N , the integral in

(E.1) is equivalent to:

K(t) =

˛
C

〈−→
N,
−→
N
〉
ds (E.2)

By the relation ds =
∥∥∥−→Cp∥∥∥ dp between arc length term ds and its parametrized

version dp, we rewrite equation the (E.2) as a function of t along the integral

around
−→
C (p, t):

K =

1ˆ

0

〈−→
N,
−→
N
∥∥∥−→Cp∥∥∥〉 dp (E.3)

Using the same procedure and notation in Appendix E, Kt is found as

Kt =

1ˆ

0

〈−→
Ct,
(
∇ ·
−→
N
)−→
N
〉
ds. (E.4)

It can be concluded from E.4 that K decreases most rapidly if
−→
Ct = −

(
∇ ·
−→
N
)−→
N .

Since κ = div
(
∇φ
‖∇φ‖

)
,
−→
Ct = −κ

−→
N defines a gradient flow.
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APPENDIX F

MINIMIZATION OF AMBROSIO-TORTORELLI

ENERGY

In order to find the minimum of the AT energy functional with respect to u, the

Gâteaux derivative of the AT functional at u should be zero where δu represents

a function of the same type as u:

lim
t→0

EAT (u+ tδu, v)− EAT (u, v)

t
= 0. (F.1)

The Gâteaux derivative of the first term in the AT functional is given by

lim
t→0

ˆ
Ω

β
(
(u+ tδu− u0)2 − (u− u0)2) dx. (F.2)

Since (u+ tδu− u0)2 = (u− u0)2 + 2t (u− u0) δu + (tδu)2, taking limit we

get:

lim
t→0

ˆ
Ω

β
(
(u+ tδu− u0)2 − (u− u0)2)

t
dx = β

ˆ
Ω

2t (u− u0) δu. (F.3)

For the second term we find Gâteaux derivative by

lim
t→0

α

ˆ
Ω

(
v2
(
|∇u+∇ (tδu)|2 − |∇u|2

))
t

dx (F.4)

where |∇u+∇ (tδu)|2 = (ux + tδux)
2 + (uy + tδuy)

2 and |∇u|2 = u2
x + u2

y.

Expanding the squares, we get

lim
t→0

α

ˆ
Ω

(
v2
(
u2
x + 2tuxδux + t2δu2

x + u2
y + 2tuyδuy + t2δu2

y − u2
x − u2

y

))
t

dx (F.5)

Taking limit, we obtain α
´

Ω
2 〈v2∇u,∇δu〉 dx.
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Applying Green’s formula (see the footnote in Appendix C) where n denotes

the exterior normal to the boundary ∂Ω we get

α

ˆ
Ω

2
〈
v2∇u,∇δu

〉
dx = −2α

ˆ
Ω

∇ •
(
v2∇u

)
δudx+ 2α

ˆ
∂Ω

v2 ∂u

∂n
δuds. (F.6)

Other terms do not depend on u. For ∀δu, lim
t→0

EAT (u+tδu,v)−EAT (u,v)
t

= 0 holds,

therefore

∇ • (v2∇u)− β

α
(u− u0) = 0 in Ω (F.7)

∂u

∂n

∣∣∣∣
∂Ω

= 0. (F.8)

These equations are solved by using the gradient descent technique. The PDE

equation for minimizing the AT functional with respect to u is given in equation

F.9. In addition, the equation F.10 is the Neumann boundary condition and the

equation F.11 is the initial condition.

∂u

∂t
= ∇ • (v2∇u)− β

α
(u− u0) (F.9)

∂u

∂n

∣∣∣∣
∂Ω

= 0 (F.10)

u(x, y, 0) = u0 (F.11)

In order to find the minimum of the AT functional with respect to v, the

Gâteaux derivative of the AT functional at v should be zero where δv represents

a function of the same type as v:

lim
t→0

EAT (u, v + tδv)− EAT (u, v)

t
= 0. (F.12)
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The Gâteaux derivative of the second term in the AT functional at v is given

by:

lim
t→0

α

ˆ
Ω

(
|∇u|2

(
(v + tδv)2 − v2

))
t

dx = 2α

ˆ
Ω

(
|∇u|2 vδv

)
dx (F.13)

The Gateaux derivative of fourth term in the AT functional at v is given by:

lim
t→0

1

2ρ

ˆ
Ω

(
(1− v − tδv)2 − (1− v)2)

t
dx = α

ˆ
Ω

− (1− v) δvdx (F.14)

Repeating the same procedure used in derivation of F.6, the Gâteaux deriva-

tive of the third term in the AT functional at v is found as

lim
t→0

1

2
ρ

ˆ
Ω

(
|∇ (v + tδv)|2 − |∇v|2

)
dx = −ρ

ˆ
Ω

∇ • (∇v) δvdx+ ρ

ˆ
∂Ω

∂v

∂n
δvds

(F.15)

where n denotes the exterior normal to the boundary ∂Ω.

Since for ∀ δv, lim
t→0

EAT (u,v+tδv)−EAT (u,v)
t

= 0 should hold to get an extremal

point of the functional, the Euler-Lagrange equation is obtained as follows: In Ω,

ρ∇2v − 2α |∇u|2 v + 1
ρ

(1− v) = 0 and on ∂Ω, ∂v
∂n

= 0.

Applying the gradient descent technique, the PDE equation which minimizes

the AT functional with respect to v is obtained as given in equation F.16. The

chosen initial condition and boundary condition are given in equations F.17 and

F.18, respectively.

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− v − 1

ρ2
(F.16)

v(x, y, 0) =
1

1 + 2αρ |∇u0|2
(F.17)

∂v

∂n

∣∣∣∣
∂Ω

= 0 (F.18)
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