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ABSTRACT

NEAR CAPACITY OPERATING PRACTICAL TRANSCEIVERS FOR WIRELES
FADING CHANNELS

Guvensen, Gokhan Muzaffer
M.S., Department of Electrical and Electronics Engineggrin

Supervisor : Assoc. Prof. Dr. ADzgur Yilmaz

February 2009, 90 pages

Multiple-input multiple-output (MIMO) systems have reeedl much attention due to their
multiplexing and diversity capabilities. It is possible abtain remarkable improvement
in spectral efficiency for wireless systems by using MIMOdzhschemes. However, so-
phisticated equalization and decoding structures ardraatjtor reliable communication at
high rates. In this thesis, capacity achieving practiGatsgceiver structures are proposed for
MIMO wireless channels depending on the availability ofrale state information at the

transmitter (CSIT).

First, an adaptive MIMO scheme based on the use of quanti&@ &hd reduced precoding
idea is proposed. With the help of a very tight analytical emipound obtained for limited
rate feedback (LRF) MIMO capacity, it is possible to constran adaptive scheme varying
the number of beamformers used according to the average @NR.vIt is shown that
this strategy always results in a significantly higher agdide rate than that of the schemes
which does not use CSIT, if the number of transmit antenngseiater than that of receive

antennas.



Secondly, it is known that the use of CSIT does not bring §igamt improvement over
capacity, when similar number of transmit and receive arderare used; on the other hand,
it reduces the complexity of demodulation at the receiverdawerting the channel into non-
interfering subchannels. However, it is shown in this théisat it is still possible to achieve
a performance very close to the outage probability and éxble space-frequency diversity
benefits of the wireless fading channel without comprongisire receiver complexity, even
if the CSIT is not used. The proposed receiver structure sedan iterative forward and
backward filtering to suppress the interference both in taime space followed by a space-
time decoder. The rotation of multidimensional constita for block fading channels and
the single-carrier frequency domain equalization (SC-}@Ehnique for wideband MIMO

channels are studied as example applications.

Keywords: Limited rate feedback, MIMO channel, diversitgrative decision feedback

equalization, block fading channel



Oz

KABLOSUZ SONUMLEMEL | KANALLAR ICIN KAPASITEYE YAKIN CALISAN
PRATIK ALICI-VER ICi YAPILARI

Guvensen, Gokhan Muzaffer

Tez Yoneticisi : Dog. Dr. AliOzgiir Yilmaz

Subat 2009, 90 sayfa

Cok-girdili cok-ciktil (MIMO) sistemler sahip oldukh cogullama ve cesitleme kapasite-
leri nedeniyle ilgi cekmektedirler. MIMO tabanli habegtae tekniklerinin kullaniimasi ile
birlikte, telsiz iletiminde kayda de@er spektral veriliklkazanclari elde etmek mumkindur.
Yuksek haberlesme hizlarinda giivenilir haberlesnpaldmek icin gelismis denklestirme
ve kod ¢ozme yontemlerinin kullaniimasi gerekmekteBir tez calismasinda, MIMO telsiz
haberlesme kanallar icin, kanal bilgisinin verici tanda bulunup bulunmamasina bagli

olarak kapasiteye yakin basarim gosteren alici-veapilgri dnerilmistir.

Ik olarak, nicemlenmis kanal bilgisinin verici tarafiadkullaniimasina ve indirgenmis on
kodlama yontemine dayanan uyarlanir MIMO haberlesmesyamerilmistir. Sinirli hizda

geribeslemeli (LRF) MIMO kanal kapasitesi icin elde edileok siki bir st sinirin kul-

laniimasi ile dn-kodlayici sayisini ortalama isaretidtii-oranina (SNR) bagh olarak degis-
tiren uyarlamali bir MIMO yapisi tasarlamak mumkindierici tarafinda bulunan anten
sayisinin alici tarafindaki anten sayisindan fazla olrdasumunda, Onerilen bu yapinin,
kanal bilgisinin vericide kullaniimadigi sistemlererg@nemli kapasite kazanglari elde ettigi

gorulmustar.

Vi



Ikinci olarak, kanal durum bilgisinin verici tarafinda kamilmasi ile MIMO kanall, birbir-
leriyle girisimde bulunmayan paralel alt kanallara ayakwe bu sayede kip ¢cozme karmasik-
hgini azaltmak mimkindir. Fakat, kanal bilgisinintigece@i kapasite kazanclari, benzer
saylda verici ve alici anten durumunda sinirli kalmaktddolayisiyla, ikinci kisimda kanal
bilgisini verici tarafinda kullanmadan bile, alici karmidsyini makul tutarak, kanal kesinti
olasihigina yakin basarim gosteren yapilar {izerindeulchustur. Onerilen alici yapilari
dongulu ileri ve geri beslemeli denklestirme ve koozigie tekniklerine dayanmaktadir.
Bu yapilarin, MIMO kanalin varolan uzay ve frekans cesgitesini etkin bir bicimde kul-
landiklar ve kapasiteye yakin bir basarim elde edildi@itilmektedir. Blok sonimlemeli
kanallarda ¢ok boyutlu isaret yildiz kiimelerinin dénglmesi ve MIMO genis bantli kanal-
lar icin Onerilen tek tasiyicili-frekans uzayinda deiskirme (SC-FDE) teknigi ornek uygu-

lamalar olarak ele alinmistir.

Anahtar Kelimeler: Sinirli hizda geribesleme, MIMO kangdsitleme, yinelemeli karar

geribeslemeli denklestirme, blok soniimlemeli kanal

Vii
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The wireless radio channel is a challenging medium for comigation. This is not only

due to its susceptibility to noise, interference, and otthemnel impediments but also due
to the unpredictable variation of these impediments ovee s a result of user movement
and environment dynamics. In wireless channels, the rededignal power varies over
large distances due to path loss and shadowing. Also, gvaner short distances due to
the constructive and destructive addition of signal congmés coming from different paths
in a random manner [22]. This small-scale variation of thanttel is called fading and

it makes the wireless channel completely different fromwised counterpart where the

channel impulse response is often constant and deterininist

The main performance criterion of interest, while evahgtihe different types of receiver
structures, is the packet error probability or packet erate (PER) when the focus is on
data communication. Fading can cause a dramatic increaB&mRand thus puts a large
power penalty on receiver performance over wireless cHan@ne of the best techniques
to mitigate the effects of fading is diversity combining nflependently fading signal paths.
Diversity combining exploits the fact that independennsigpaths have a low probability of
experiencing deep fades simultaneously. Thus, the ideadeéliversity is to send the same
data over independent fading paths. These independers gathbe combined in ways that

fading of the resultant signal is reduced significantly [45]

Multiple-input multiple-output (MIMO) systems can be affwely utilized to improve per-

formance through diversity since it is possible to create melependent signaling paths
in space by using multiple antennas at the transmitter amdéeiver sides. In addition to
their diversity capabilities, MIMO systems can also be uethcrease data rates through

multiplexing. That is to say, there is another mechanismpfmformance gain called the



multiplexing gain when both the transmitter and receivefehaultiple antennas. The mul-
tiplexing gain of a MIMO system results from the fact that aNM channel can be decom-
posed into a numbeR of parallel independent channels, one can gdRafold increase in
data rate in comparison to single-input single-output (18/stems [45]. Therefore, MIMO
systems attract much attention due to their high multiplgxand diversity capabilities men-
tioned. They can potentially multiply the transmissionegatvhile preserving the desired
reliability in wireless systems. MIMO based structured Wwihction as the backbone of fu-
ture wireless systems. However, sophisticated equalizatnd decoding structures or the
knowledge of channel at the transmitter side are requirexidar to capitalize the diversity

and multiplexing benefits of the MIMO channels.

The focus of this thesis work is in general on capacity aéhgetransceiver structures with
reasonable complexity in wireless fading channels witlcsppeemphasis on MIMO and
block fading channels. First, we consider the case wherelthenel knowledge is assumed
to be known both at the receiver and transmitter side. Ingase, the MIMO channel can
be converted into non-interfering parallel subchannelsis Teduces the demodulation and
decoding complexity significantly. We later consider theecéhat the channel knowledge
is available only at the receiver side. In this case, it if ptissible to achieve the full
diversity order of the channel without compromising the tipléxing gain and the receiver
complexity as shown in the subsequent chapters of the thesshort, we propose various
low complexity transmitter and receiver architectureqetaling on the availability of the
channel state information at the transmitter side, whidwsh very close performance to the
channel capacity. Moreover, we study the tradeoffs betiteeapectral efficiency, diversity,
accuracy of the channel state information at the transn{i@&IT) along with issues such as

constellation size and complexity of the proposed schemes.

1.2 Outline and Contribution of the Thesis

In the first part of the thesis comprising of Chapter 2, thetéohrate feedback (LRF) capac-
ity of the MIMO channel will be investigated. The capacitytbé MIMO channel will be
investigated when the channel knowledge is available atdmsmitter with finite precision.
The ergodic capacity of a channel is the probabilistic ayeraf the channel mutual infor-

mation over all possible fading states [22]. We used thedicgrapacity as the performance



measure throughout Chapter 2. It is shown that the numbegarhbormers used in spatial
multiplexing can be adaptively varied depending on theayeisignal-to-noise ratio (SNR)
value and equal power can be allocated to the selected subealsa This strategy is suffi-
cient to achieve the MIMO channel capacity and allows efficigilization of the feedback
bits required to quantize precoders (beamformers). In ©h&y our main contribution is
the development of a very tight analytical upper bound ferltRF capacity of the MIMO
channel under a wide class of vector quantization methotiss dpper bound can be used
to determine the SNR regions specified for the operationunfistl incremental precoding

scheme.

In the second part of the thesis including Chapters 3 andpoity achieving receiver struc-
tures with reduced complexity are investigated for MIMOmhels. It is observed that all of
the sub channels (or degrees of freedom) of a MIMO channed twmabe used to maximize
the spectral efficiency for moderate and high SNR valuesesine actual capacity is not
affected by the availability of CSIT. In this case, the us€8iT is useful only for reducing
the receiver complexity due to the parallelization of tharufel. However, we show that
one may attain without CSIT a very close performance to agpadthout compromising
receiver complexity. In this part, information outage pabliity is the capacity measure.
In capacity with outage, the transmitter fixes a transmissate and the outage probability
associated with this rate is the probability that the chihas mutual information less than
this given rate [22]. Outage probability is useful for penfi@nce evaluation of the proposed
receiver structures in a slow fading scenario, where thareldas constant over a relatively

long transmission time and then changes to a new value.

Without CSIT, the traditional transmission scheme can navert MIMO channel into non-
interfering SISO channels and the decoding complexity i{goarntial in the number of
independent symbols transmitted over the multiple trahamiennas in this case. On the
other hand, we propose a reduced complexity iterative vecstructure based on feedfor-
ward and feedback filtering process for equalization andesgiane decoding for general
vector channels as given in Fig. 1.1. The forward and badkditiers within the equalizer
are jointly optimized according to minimum mean square reflMMSE) criterion to miti-
gate the effect of inter-symbol-interference (ISI) and tinaiiray interference (MAI) since
the signal streams from the multiple transmit antennasransmitted at the same time and

frequency, thus they introduce both MAI and ISI in widebantM® communication. The



joint optimization of the forward and backward filters byngsithe reliability information
given by the decoder at each iteration makes our proposectste different from the tradi-

tional iterative equalization and decoding techniquesénliterature.

Recerved signal

J L

. MIMO :
L) - ,|  MMSE Equalizer .lLe(x)

Interleaver Deinterleaver
. L——
Lac) : Space-time/ L L(c)
Channel Decoder P

L

Estimated Data

Figure 1.1: Iterative equalization and decoding

Our proposed receiver architecture is based on the infeomé#teoretically optimum re-
ceiver operation in [23]. We show that this idea can be dffelst utilized for the receiver
operation of practical MIMO systems. We apply our structiarélifferent practical scenar-
ios in which sophisticated equalization and decoding #ires are necessary to achieve a

performance close to capacity.

In Chapter 3, we apply our proposed scheme to the decodingtaittd constellations over
block fading channels [17] which resemble the MIMO chanhelChapter 4, we apply the
same iterative equalization and decoding idea to the witttBIMO system in conjunction

with single-carrier frequency domain equalization (SCHyBechnique [36]. In both cases,



it is observed that the proposed structure exploits theispath and space diversity sources
of the channel effectively such that performance very ctosritage probability is achieved.
As a side contribution, it is noted that the rotation of ndittiensional constellation is an
effective technique to combat fading over block fading cle&ds. Moreover, we can say that
the SC-FDE technique poses itself as a strong alternatiegitbing orthogonal frequency
division multiplexing (OFDM) based techniques with the aé@roposed receiver architec-
ture. Our proposed receiver structure recovers from therextial decoding complexity
by parallelizing the channel similar to the quantizing jpder’s idea in Chapter 2. There-
fore, the computation complexity of the likelihood infortizen, necessary for the decoding
stage, is reduced significantly. Different than the use of & $he transmitter with limited
feedback, the proposed structure realizes this withoutgusny CSIT but with the help of

effective equalization and interference suppressiomigcies studied herein.

Finally, Chapter 5 is devoted to conclusions which providesummary of our work and

related future studies.



CHAPTER 2

AN UPPER BOUND FOR LIMITED RATE FEEDBACK MIMO
CAPACITY

2.1 Introduction

Capacity gains promised by multi-input multi-output (MINI®ystems often require an ac-
curate knowledge of the channel at transmitter and recsides especially in quest to cap-
italize these possible gains in practical systems. An aoyuproblem arises when channel
state information (CSI) has to be transmitted from the kexeio the transmitter. It is ob-
vious that CSI cannot be transmitted with infinite precisidrlimited rate feedback (LRF)
channel is usually available for this communication and #ats a limit for the accuracy of

CSIl at the transmitter side.

It was shown that the MIMO channel is interference-limitedew the channel estimation
is imperfect [54]. It was further observed in [54] that ing&neous feedback, even if im-
perfect, gives large capacity gains in low SNR and is usefliigh SNR, especially when
the number of transmit antennag)(is larger than that of receive antennasg) (6]. In [39],
guantization rules and corresponding quantizer desidgeriziwere proposed to be used in
MISO (multiple-input single-output) and MIMO channels. &uization of beamformers
were investigated under a Grassmannian line packing framkewith regard to quantization

codebook size, capacity-SNR loss, and outage performar{éd,i35].

We investigate the capacity of point-to-point MIMO charmi this chapter as opposed to
the broadcast channel settings in aforementioned stugigsAlthough the capacity is less
affected by the lack of CSI on the transmitter side at high $MNR, its availability is very
important both at low SNR and in designing practical systémscan operate close to the
capacity as in adaptively modulated MIMO schemes [56], esitte complex task of joint

detection and decoding is avoided. Furthermore, the cgpadtrictly smaller withn; > n,



if no CSl is available at transmitter [6]. We concentrate dimie rate feedback scenario in
which precoders obtained by the singular value decompasiif the MIMO channel [22]

are fed back to the transmitter side.

A capacity loss bound for covariance matrix based qualizatas presented in [13] and
a capacity loss bound was proposed in [38] for designingirmgtrantization based code-
books. We herein focus on quantizing the columns of the gliegomatrix obtained from
singular value decomposition (SVD). The channel is quasalfelized by separately quan-
tizing precoders and well-known adaptive modulation ardirmptechniques can be utilized
as stated in [6]. Covariance matrices generated randonily wmiform distribution on the
unit sphere were used in [13], that is, random matrix quatitim was studied. On the other
hand, our main contribution in this chapter of the thesidhéderivation of a capacity up-
per bound expression that is valid for a wide range of vecéseld quantization schemes.
The proposed upper bound turns out to be quite tight mainky tduthe exact evaluation
of the expected value of matrix determinant as opposed titesistudies using Hadamard
inequality to upper bound the determinant as in [13] andguapproximate density function
of determinant expression and partition cell approxinmaiio [38], [41]. As a byproduct,
an absolute upper bound to LRF MIMO capacity using precobtamed quantization is also
herein derived by utilizing a bounding distribution for Gsanannian beamforming [40]. Fi-
nally, we propose a simple quantization method known asymtotbde vector quantization
(PCVQ) [21] which can be quite useful to achieve rates quitsecto the channel capacity

in practice, even for a small number of feedback bits.

2.2 System Model

The following notation is used throughout this chapter.d8@te lower and upper-case letters
denote column vectors and matrices, respectively. Scatardenoted by plain lower-case
letters. The superscript){ denotes the complex conjugate for scalars and conjugats-tra
pose for vectors and matrices. The absolute value of a sisadnown by| - |. Thenxn
identity matrix is shown by,. The trace operator and determinant are denoteu(Byand
| - |, respectively. The autocorrelation matrix for a randomteea is R, = E[aa‘], where

E[-] stands for the expected value operator. Tih@{' element of a matri is denoted by

Aj.



The general expression for a point-to-point MIMO channeghwi receive antennas amg
transmit antennas is given fy= HX + W, wherey is the received vectoH is then, x n
channel matrixX is the transmitted vector, anil is the zero-mean circularly symmetric
complex Gaussian (ZMCSCG) white (spatially and tempoyaityise with normalized vari-
ance 1. The channel matitkis comprised of independent ZMCSCG random variables with
variance 1. Considering a block fading model, the channdfixnia assumed to be constant
during a coherence interval significantly larger than syldooation. A fixed average power

is allotted for each transmission which corresponds tanggtit(Ry) < P (Sec. 10.3 in [22]).

In the case that perfect channel information is availablth st the transmitter and re-
ceiver, singular value decomposition (SVD) is applied tocamepose the MIMO channel
into min(n;, n;) parallel subchannels over which multiple streams may dmestnitted [32].

The following equivalent expression is obtained for theereed vector when SVD is per-

formed to attaird = UDV":
Uy = DV*%+ UMW 2.1)

The entries oD are taken to be decreasing without loss of generality. Tarestnitted vector
can be written in general as = PAx whereP is a precoding matrixA is a diagonal
matrix used to distribute power among subchannels xaadhe original information vector
assumed to hav& = I minn,,ny)- If the precoding matrix is chosen to Be= V, by the unitary

property of the precoding matriX/(V =)
y = DAX +w, (2.2)

wherey = U*§ andw = U*W. Since bothD and A are diagonal an®,, = I, the channel
is decomposed into parallel subchannels. The capacityhiewsd byA obtained through
the waterfilling procedure [32] with the constraint thefA2) < P. We note here that the
columns of matrixX/ are isotropically distributed on thg—dimensional complex unit circle
when considered over the realizations-hf When there is only a partial CSI at transmitter
due to finite rate feedback, one has imperfect precoding ameipdistribution matrices

denoted by; andA;, respectively. Egn. (2.2) now becomes
y = DV*ViAsfx + W (2.3)

which suggests that subchannels now interfere with eadr sthceV*Vs # I, in general.

We will investigate the capacity of LRF MIMO channels based?.3).



In order to reduce the rate of the feedback channel, the ileedaced precoding can be
used [33]. In this scheme, the number of beamformers usedpaté@l multiplexing system
is adaptively varied in order to minimize probability of slgal vector error or to maximize
capacity by allocating equal powaﬁg = %In) to selected subchannels [33], [38]. Trans-
mitting only the precoding vectors corresponding to thersgest subchannels will suffice
to maximize communication rate over MIMO channels. Thus, strategy allows efficient

utilization of the feedback bits by quantizing only releivarecoders.

The analytical bound for limited rate feedback MIMO capadd be obtained in Section
2.4 can be used to determine the number of precoders to beatissath average SNR
value in order to maximize the spectral efficiency. The ideeeduced precoding and the
utilization of feedback for precoders are not only usefubat SNR values but also at high

SNR especially for MIMO systems witty > n; [6].

2.3 Capacity with Limited Rate Precoding

Eqgn. (2.3) can be written with an equivalent channel madrix DV*V; as in

y = HAsX + w. (2.4)

One can calculate the achievable rate of the LRF scheme®dtited precoding by calculat-
ing the mutual information betweenandy for a Gaussian input alphabet with equal power
distribution among selected subchannels as done in [22MitdMO channels. Through-
out this thesis, we refer to the maximum achievable rate @syhtem capacity for a given
scheme, whereas the term channel capacity is reservecefoapacity of the channel itself.

Noting tha'[Af2 = EI n, the capacity of this scheme which makes usa pfecoders is given

by

C-pre = E {log, det(1n + EHH*)}. (2.5)



and can be achieved with MMSE estimation and successiveargace cancellation [26,

27,42] where the equivalent channel matr>xcan be written as

H = DV'V;
(a0 ... 0 |[v]
0 d ... 0]|v
= : : . . : Vi ... Vnf
0 0 dn || v

(2.6)

The equivalent channel matrit has its {, j)th element add; j = div;'vjt, wherev; is theit

column ofV and,vj; is the j" column of V. DefiningVij = v;vjt, one can evaluate

(HH?); ; = did; [Z VikV}‘k}. (2.7)
P

Evaluation of the capacity in (2.5) requires the probapititstributions ofVj; = v/'vj; for
i,j €1{1,2,...,n} and hence the quantization rule used for limited rate fegdbas to be

specified.

A set of 2V vectors{qs, o, . . ., . } generated to construct the quantization codebook are
defined whereéN; stands for the number of feedback bits per precoding veQioantization
vectors are lengtiy complex vectors on the;-dimensional complex unit circle and the
guantization while obtaining the precoding vectors is aeieed by the following rule used
in LRF MIMO studies [1, 25, 34, 35]:

Vi =arg max f|vi*qj|2. (2.8)

g j=1....2"

Any quantization codebook can be used for this purpose asiet tis no prerequisite on
the construction of the codebook. The codebooks are alaitaith at the transmitter and
receiver. The indey, corresponding to the selected quantization vector, i fsem the

receiver to the transmitter side and thus the transmitteiessout the beamforming operation

by using the precoding vectors with proper indices.

The MIMO channel can be quasi-parallelized by using thergiyeantization rule since the
precoders are separately quantized in this case and focisoffnumber of feedback bits,

spatial interference between the subchannels is very simathis case, the demodulation
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complexity is significantly reduced and well known adaptimedulation and coding tech-

niques for parallel block fading channels can be easilyripe@ted in our LRF system.

There are two types of random variables in (2.5) whose Hdigions and dependence prop-
erties have to be determined in order to evall@tepre. First, the cumulative distribution
function (cdf) of Vi = vi'vt is peculiar to the given quantization codebook and rule,ve&d
will investigate the cdf ol for two different quantization methods in Section 2.5. More
over, the cdf forvjj’s for i # j is needed. In [1, 34, 35], the cdf of the squared absoluterinne

product between two isotropically distributed lengthcomplex unit vectors is given as

1-1-x"! 0<x<1
Fo'(X) = 0 ,x<0 (2.9)
1 ,X> 1

The same result and hence cdf hold for the case of one fixedrvaot an isotropically
distributed vector, since one of them being isotropicaltributed is sufficient for the result
[34]. Bearing in mind tha¥;vjs corresponds to projection of ontovjt, the following holds
by orthogonality ofv;’s in our problem
k-1
Vi Vs = Vi {Vlf - Z (vj*vlf)vj] (2.10)
=1
fork =2,...,n. Definingvys’ = vis — Z'j‘j (vj*vlf)vj, the vectowvy¢’ is in the null space of
vi's,i =1,...,k—1, where the null space has dimensiop< k + 1). The squared norm of
vii’ is (Vaf’)*vay’ = 1— Z'j‘j |vj*v1f|2 =1- Z'j‘j IVj1|?. Considering the projection of a fixed
vectorvi onto an isotropically distributed vectei;” which is of dimensionr§ — k + 1), one

obtains the following conditional probability distribati function for|v’|2v1f|2 by using (2.9):

FroeOd 1 Vvarl? = @, i = 1. k- 1) = Fj~* [%} (2.11)
(1-zi a)

fork = 2,...,n. The expectation in (2.5) is over the channel malttior equivalently, over
Vij’s. For a given channel realizatiown,s are fixed and the quantized precoding vectgrs
are chosen independently of each other as the rule giverBnd@tates directly. Hence;'s
are independent of each other on the conditionifistare given. One should note thatV
product involvesyj; terms and the phase ¥f; becomes relevant in this case. Recalling that
the vectors are isotropically distributed, the phasesldhalrandom variables corresponding

to the projections of the precoders onto quantized presaaterindependent and uniformly
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distributed in [Q2r], since the quantization rule in (2.8) is blind to multigiton of all
the entries of a quantization vector by a complex numbef unity amplitude aga*b|* =
lea*bl?. To summarize, it holds true thef; has a uniformly distributed phase in @r) and
it is independent oY for all k # j andVj; for all | # i for givenv;’s, since knowingy; only

is sufficient to determing; for the given rule in (2.8).

Isotropical distribution implies thav;|? = |vi*vif|2’s fori = 1,...,n are identically dis-
tributed and independent random variables. Similarly,reesponding distribution holds for

IViijl? = Vv 12 and its cdf has a form identical to that given in (2.11).

2.4 A Capacity Upper Bound

The capacity expression in (2.5) is impractical to be usqatactical system design since it
needs the distribution df;;’s and the expectation ovéf;’s distributions. We will obtain a
very tight analytical upper bound for capacity of thgrecoder scheme and this analytical
bound needs only the expectatioBs, = E[V11> andE»; = E|V,1[? to be evaluated. The
expected values will be denoted willy = E|Vjj |2 andE;’s are the same for ails and can
be evaluated for a given quantization codebook. When thevafE 1 is given, the value of
E»1 can be calculated easily as follows. Due to the isotropitstidution ofv;’s, Ej; is the

same a%,; for all i # . The value ofE»; can be found in terms d#;; by using (2.11) as

E[IVa1’] = E|[E[Vail | V1]

[ [ Xy 2(X | V12l = @) fyy,,p(a)dxda

[: (fol_a X((T—_ az))(1 "1 i( a)nt_3dx) fivyye(@)da

“l-a 1-E1x
j: mfwlﬂz(a)da: nt—l (212)

(&9

This result in (2.12) is intuitive since, after projecting on vy, n; — 1 orthonormal vec-
tors {vo,vs,..., vy} are left. Due to isotropical distribution, the power in thertpof vis

orthogonal tov; is distributed equally betwean — 1 orthonormal vectors in average.

The capacity for th@—precoder scheme can be upper bounded by using Jensen’slibequ

} < Iogz(E{

12

such that

= P
Iy + —HH* In+ —HH"
n n

E {|092 }) . (2.13)



The capacity bound of theprecoder case given in (2.13) can be written in terms;gfand
E12 by using the result of the lemma given in Appendix A as

n k
P
Copre < 10g(1+ Y > (=) E|[(cayly - da)?].
k=1 SkePx

Z (Eayj, Eagi)) (2.14)

(J1€S) (j2€S, j2#j1)  (ik€S, jk# s jk-1)

where

Ei1= E|IVi1?| ifa =i
11 [l 11|] a = Ji } (2.15)

- 2] =
B = E Vil _{ Eio= E[Vig?| ifa %
S=1{12,...,n}, Sk ={a,...,a}; andPy is the set containing all possibla, k) combina-
tions of S. The termy j,es) - * X(jees, jutjs. i) (Easjy - - - Eacji) does not depend on which
k—element combinationag, ay, . .., a) chosen from sePy is used in (2.14) sincg;’s for
i = 1,2,...,kare chosen from the s& = {1,2,...,n}. Using this fact, one can further
simplify the capacity bound given in (2.14) by selectiiag, 6o, ...,ak) as (12,...,Kk) such
that

n k
P
Co-pre < logz(1+ )" (5} E{ > (ay e, - ..dak)z}
k=1

SkePx

(Exjy -+~ Exj) )- (2.16)
(J1€S) (j2€S, j2#j1)  (ik€S, jk# s jk-1)

E {Zs.ep(dayda, - da)?}'s for k = 1., n are required to evaluate the capacity bound in
(2.16) and one does not need to calculatéds, d, - - - d,)?| for all possible . k) combi-
nations &, ..., a) from setS separately. Instead, the expectation of the sum of all plessi
joint moments are necessary. Hence, only the expectatitre gum of all possible joint mo-
mentsE {Zskepk(dalda2 e dak)z} has to be found. This can be found by using Monte Carlo
simulations or analytically by using the currently avaiéabkesults for the joint ordered mo-
ments in a closed form presented in [24] and this makes theopeal bound completely

analytical.

As will be seen in Section 2.6, the capacity bound in (2.16)eiy tight and can be used
for practical purposes. With the help of this analytical bduone can design an adaptive
MIMO system that can change the number of precoders and ¢abdek rate according to
the current average SNR value. The bound given in (2.16)id fa@ many vector quantiza-
tion methods as long a4; = v;'vjs has a distribution such that the phase/gfis uniformly

distributed in (02r) which is independent o¥ for all k # j andV;; for all | #i. Hence,
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this uniform phase distribution ofj; is a sufficient condition and the quantization rule in
(2.8) satisfies it. Thus, the results of this section can Ipdieghto a wide variety of quan-
tization schemes. Moreover, the bound is also valid for nantjgation cases and we can
easily construct an upper bound for the exact capacity of M®bkystem that uses of its

strongest subchannels by simply settieig = 1 andEi> = 0 in (2.16).

2.5 Bounding Distribution and RVQ

In this section, we will present two example quantizatiorthnds that will be used to pro-
duce some numerical results in Section 2.6. The first methoahidom vector quantization
(RVQ) in which a quantization codebook is generated rangi@ntl the closest vector in the
codebook is conveyed to the transmitter according to tleegiven in (2.8) [1]. Quantization
vectors are lengthn; complex vectors which are independently chosen from thieoigiz

distribution on then;.—dimensional complex unit sphere. The performance of RVQis i
spected as averaged over many codebooks that are genexatinty. The use of RVQ
as a vector quantization scheme allows simpler analysiscandbe helpful in designing
practical limited rate feedback MIMO systems. The cdf\af|® has been readily obtained
in [1, 34, 35] by using the standard probability evaluatienhnique for maximum of"2

independent random variables with the distribution give(Ri9) as
Nt 2Nf
Fivavp(¥) = (Fo'(X)” . (2.17)

The phase oV;; is independent of its magnitude and uniformly distributedq, 2z]. The

expected value of a random variable distributed with (2i4 valuated in [1] as

My (2.18)

E[IV114] = E1 = 1 - 2V B2\
[IV11l°] = Ena ( ho1

whereB(x,y) = FF((XiES)’) is the Beta function and the Gamma function is givenripy) =

5 e 'dtwhile E1, = E|V12]? can be calculated from (2.12).

The second method is the one that maximizes the capacity dogasing the projection
power, namelyV;1|?. By defining a random variableasz = 1 |v;v¢[?, we can say that for

a good beamformer, the expected value bés to be as close as possible to zero. An upper
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bound for thecd f of z, F(2), is given in [40] such tha,(2) < F,(2) for 0 < z< 1 and
1
N1 g<z< (A) B
) ,0< 5

1
1 0D
1 ,Z2> (sz)

F.2 = (2.19)
A good beamformer shall try to come as close as possible sodiktribution which we
refer to as the bounding distribution hereafter [40]. Foypdthetical quantization method
that attains this bounding distribution, we can evaluateBh and E;, values in order to
construct an upper bound to the capacity of limited ratelfjaed MIMO scheme that none

of the quantization methods can excekg, can be found as given below

Epp=1-E[]=1-2% (”tr; 1) (Z_if)(m) (2.20)

andEj» by (2.12). The value oE;; obtained by this bounding distribution in (2.20) is the

maximum value ofE;; that can be achieved among all quantization codebooks tiseng

guantization rule in (2.8) for giveN andn; values.

2.6 Numerical Results

In this section, the capacity upper bound obtained for LRIMRIgiven in (2.16) is eval-
uated for RVQ and the bounding distribution. Random vaesldre generated by the in-
version method [14] in simulations and placed in (2.5) tcagbthe ergodic capacity. The
random variablegV;i|>'s are generated first, while the others are drawn based odistre

bution given in (2.11) and each data point is obtained by igetimg) 10 000 realizations.

In Fig. 2.1, the ergodic capacity of a>63 MIMO scheme that uses 2 precoders with
Nt = 6,12 for RVQ and bounding distribution is compared with the 8 MIMO channel
capacity obtained with waterfilling (WF) that uses a shertrt power constraint (Sec. 10.3
in [22]). The equipower scheme that does not use CSIT anda#le equal power among
the transmit antennas is also depicted for comparison. SN&kén as the average received
SNR. It can be observed that reduced precoding is an effiar@hteasonable technique since
itis better than the equipower scheme up to 14 dB and it matitleeMIMO channel capacity
with WF and full CSIT up to 3 dB in case of no quantization evetih\& precoders. As SNR
increases, achievable rates with thgoBecoder scheme diverge from the 8 capacity since

all degrees of freedom are not utilized. By increasing thmlmer of precoders used as SNR
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increases, the system can operate close to the channeltgapacN; increases, the losses
are quite tolerable for the reduced precoding scheme butabacity of equipower scheme
without CSIT does not match the ergodic channel capacity G8IT case) even at high
SNR. In high SNR regimes, there is algqm) = Ioglo(g) = 3 dB difference between
the MIMO channel capacity and the equipower scheme with@&IfTGnd this difference

becomes more significant especially for MIMO systems wijtk n;.

22

6x3 MIMO capacity with WF, no quantization

= = = 6x3 capacity without CSIT

—<— 2 precoders equipower, no quantization

—+— 2 precoders, bounding distribution with Nf =12 simulation

20

18
— % 2 precoders, RVQ with Nf =12 simulation

16| o 2 precoders, bounding distribution with N, =6 simulation

% - 2 precoders, RVQ with Nf =6 simulation
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N

=
N
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[
o

0 | | | |
10 15 20

5
Average SNR (dB)

Figure 2.1: 6x 3 MIMO capacities for 2-precoder LRF scheme. RVQ and boundistri-
bution are used withNs = 6, 12.
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Another observation is that the quantization is not tooinetntal when compared to broad-
cast MIMO channels studied in [25]. The number of bitsto perform close to the capacity
is relatively small when compared with the pessimistic itsguresented for broadcast chan-
nels in [25] with the basic statement that quite a large nunhjeis necessary for perfor-

mance close to capacity with ideal precoding.

In Fig. 2.2, 6x 3 MIMO system capacity under limited rate feedback with = 8 is
evaluated by using RVQ and the bounding distribution for @ asprecoder schemes, where
the capacity bound given in (2.16) is also found by usifig and E;» values for these
schemes. Itis seen in the figure that the capacity upper biswraty tight. Itis 0.3-0.5 dB
away from the 6< 3 LRF MIMO capacities. It is further observed that the RVQestie is
almost optimal since RVQ and bounding distribution capegiare quite close to each other.
There is a 0.2 dB difference between these two capacitiehance we can say that RVQ
can be used as a practical quantization technique thatstiaies quite close to the capacity
with tolerableN¢ values. This also justifies its use in the literature for gsial purposes.
Moreover, when compared to the MIMO channel capacity obthiwith waterfilling (WF)
that uses a short-term power constraint (Sec. 10.3 in [##¥)e is a 1.3 dB loss in limited
feedback incremental precoding scheme that uses RVQNyith 8 which is well predicted

by the proposed bound at high SNR.
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* —o— Upper capacity bound using bounding distribution with Nf =8 for 3 precoders
—+— Upper capacity bound using RVQ with Nf =8 for 3 precoders
—+— Capacity simulation using bounding distribution with Nf =8 for 3 precoders /9
20 _,__ Capacity simulation using RVQ with Nf =8 for 3 precoders
—o— - Upper capacity bound using bounding distribution with Nf =8 for 2 precoders
—«— - Upper capacity bound using RVQ with Nf =8 for 2 precoders P
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Figure 2.2: 6x 3 MIMO capacities and upper bounds for 2 and 3-precoder LRErses.
RVQ and bounding distribution are used with = 8.
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In Fig. 2.3, RVQ is used as a quantization technique and thaati#zes ofn—precoder 8 4
MIMO schemes are evaluated with their corresponding bodimidbl; = 12 andn = 2,3,
and 4. The scheme wihout CSIT that allocates equal power githentransmit antennas is
also depicted for comparison. It can be observed that thectigdounds evaluated with the
E1; value of RVQ forN¢ = 12 is quite fine and 0.15-0.4 dB away from the ergodic system
capacity withn = 2,3, and 4. Furthermore, it is seen that the 2-precoder capadity w
N; = 12 is better than the scheme without CSIT up to 6dB, 3-pracsedeeme is better up
to 13.5 dB. The 4-precoder scheme that uses all the degréegdbm in the system always
has higher capacity than the scheme that does not use CSHigiAENR, there is a 1.6 dB
difference between the 4-precoder and equipower schenteesuwwiCSIT. When compared
to the channel capacity with WF, there is a 1.4 dB loss in &ghifeedback incremental
precoding scheme at high SNR and this can be compensatedrbgsmgNs. Ny = 12 may
seem to be large for practical systems but this large valdeado the large transmit antenna
number (; = 8). In contrast, a reasonakllg value is sufficient to reach the capacity for a

small size MIMO system (smati; value).
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Figure 2.3: 8< 4 MIMO capacities and upper bounds for 2, 3 and 4-precoder $dREmes.
RVQ is used withN; = 12.
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In case of limited feedback, the losses are approximatelgleq the SNR loss due to quanti-
zation 10 Iogo(Eill) dB. Intuitively speaking, the instantaneous effectiveRsi the channel

for single precoder case B- |V11/2 and hence there occurs-40 log;o E11 dB SNR loss in

the LRF scenario. This holds approximately true for the game-precoder scheme. As¢
increasesk1 asymptotically becomes 1 as observed in (2.18) and (2.20jesthe capacity

of LRF MIMO approaches to the channel capacity with no quaititbtn. The capacity upper
bound in (2.16) is maximized &;, = 1 andE;» = 0, thus a good quantization scheme
should have &3, value which is as close to 1 as possible for a given numbereafifack
bits. Among the given vector quantization techniques Bipdthe best quantization code-
book is the one that gives the high&sh value and thus, it has the greatest capacity bound

value in (2.16).

As a result, we can use the capacity bound given in (2.16) atuate the performance of
different quantization schemes. For a given quantizatarese, it can be used to deter-
mine the number of precoders to be used at each average SMR \al other words, for
a given MIMO system and the quantization technique withvalue, one calculates the
E1; value of the quantization and the expectation of the sum gbipée joint moments
E { Y5, (dayOs, -+ - da)?} in (2.16) only once. After that, these two values can be used t
construct the bound in (2.16) easily. With the help of thismd it is possible to determine
the SNR regions in which the number of precoders to be usednmze system capacity
are specified during the operation of the studied increnh@négoding scheme. For our ex-
ample quantization in Fig. 2.3, itis seen that using 2 precodp to 0 dB, using 3 precoders
between 0 and 5 dB, and using 4 precoders above 5 dB maxinfieesapacity and this
strategy always results in significantly higher capacigntithe equipower MIMO scheme

without CSIT, especially fon; > n;.

The main conclusion is that the tightness of the proposeddigiestablished. The upper
bound can be applied to many LRF MIMO schemes and also to ptiobtems where the

exact evaluation of the expected value of the determinamtesied.
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2.7 A \Vector Quantization Method Based on Product Codes

We observed in the previous section that good performanoebeaattained by the RVQ
method for quantization of precoders. However, RVQ is notacfical scheme since an
averaging over the quantization codebooks have to be pegfibito enjoy its good perfor-
mance. Meanwhile there are various vector quantizatiomaastin literature which can be
used for quantization of precoders [21]. In such methodseaqaer is usually compared
to a large codebook and the best matching vector is declardieaquantized vector. This
matching operation which corresponds to the search of thwv@ the codebook closest
to the given vector constitutes a major disadvantage espefor large codebooks. In con-
trast, each entry of the precoder could be quantized withakisquantizer. When all the
guantized entries are combined, an overall quantized veotaes up which represents the
quantization of the precoder. This sort of quantizationohs based on scalar quantization
is referred to as product codes in quantization literat@dg. [Allocating a fixed number of
guantization bits for each dimension, the search time inlatter method is linear in the

number of dimensions, whereas it is exponential for vect@andjzation.

Since each entry of a precoder will be quantized indepehdentall the others in this
method, the probability density function for this complexdom variable is required. The
probability density function obviously depends on the disienalityn;. As an example, all
entries should have absolute value equal to 1 whenl, whereas this is not necessarily so
for ny = 2. Due to lack of an expression for the aforementioned priétyatiensity function,
we resort to the widely used technique of training-basegd.@gorithm [21] with the dis-
tortion measure of squared absolute value. The training ggtnerated by first generating
isotropically distributedn-dimensional unit-norm vectors and then placing all theiest
of vectors in a sequence. The initial codebook is generaedamly and after a sufficient
number of iterations, the Lloyd algorithm produces a cod&bmose to the optimum quan-
tizer belonging to the probability distribution of a singletry of the isotropically distributed

n.-dimensional unit norm vectors for a givepand bits per dimension.

Specifying the number of codewords in the scalar quantimatihe algorithm is run and
results similar to in Fig. 2.4 are obtained. The codebookg@ation invariant since phases
of entries are uniformly distributed by the isotropic distition of the precoders and hence

the codebook is a constellation with an arbitrary rotatidio optimization for the initial
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codebook or the resultant codebook has been performed thie@m is to show that even
a non-optimally designed codebook will perform quite goamhf a capacity point of view.

We refer to this coding scheme as product code vector quaiatiz(PCVQ).

nt:4, 50 iterations nt:4, 50 iterations

1 1

o 0.5 o 0.5
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Figure 2.4: Codewords generated for different codebooéssand dimensionality. Each
codebook is generated by 50 iterations of the Lloyd algorith
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Let the quantized form of the precoder be denotedfy;). This quantized vector is
not necessarily a unit-norm vector. Hence, the finite ragequler vector fed back to the
transmitter side is scaled first to keep the transmitted pawestant and then used as the
precoder vector. Hence, in PCVQ

_ QW)
IRV I

1f (2.21)

The method of quantization does not naturally alter theesgstnodel and (2.3) holds in
the case of PCVQ. Then, for different realizations of thencieh matrixH, one can obtain
the quantization of the precoding matrix by using the cod&boUsing these quantized

precoders for each realization, one can evaluatetpeecoder capacity given in (2.5).

In Fig. 2.5 and 2.6, The capacity of RvQ and PCVQ MIMO systeme @ompared for
different number of used precoders. The capacity curvestaesned by 10,000 point Monte
Carlo simulation. When the scalar codebooks of sizes (numibectors in the codebook)
2 and 4 are closely inspected, one can see that the coristellasymmetric around 0 and
hence there will be a reduction of 2 bits for the codebookz# diand a reduction of 1 bit for
the codebook of size 2 in the total number of bits used for gziag a precoder. This is due
to the fact that the precoders are invariant under mulfiibn by scalars. This enables the
entry of the first (or one of the other) dimension to be fixederEffore, we have to compare
PCVQ using 2 bits per dimension witly = 14 RVQ for 8x8 MIMO and PCVQ using 1 bit
per dimension witiN; = 7 RVQ for 8x 8 MIMO. For 8 x 8 MIMO scheme, there is a loss
by PCVQ about 0.5 dB when only two bits are alloted to each dsiom. By increasing the

bits alloted to each dimension, the loss can be significaatlyced.
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Figure 2.5: Average communication rates fon-arecoder RVQ and PCVQ 8 8 MIMO
systems fon = 2 and 4 withN¢ = 7 bits.
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Figure 2.6: Average communication rates fon-precoder RVQ and PCVQ 8 8 MIMO
systems fon = 2 and 4 withN¢ = 14 bits.
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Actually, one does not need to operate Lloyd algorithm ferdhse of 2 bits per dimension
since the distribution of the precoding vectors are isatsoquantization points must be
symetric around 0 and hence the optimal codebook i§ H1;—]], when 2 bits are allotted
to each dimension in PCVQ. However, for the general caseyskeof Lloyd algorithm is

necessary to obtain optimum quantizer for PCVQ.

In order to evaluate the upper bound given in (2.16) for PCW®& need to knowE;; and
E1o values. E1; is found by simulation, i.e., by using different realizaisoof isotropically
distributedn;-dimensional unit norm vectors, a codebook is constructedsing Lloyd al-
gorithm described above and 10,000 point Monte Carlo sitimulayives the expectation of
|v’£v1f|2. For practical system design, we only need to calcuiateonce, then we can use it
as a design parameter. In Fig. 2.7, PCVQ MIMO system caphoitymd obtained by using
(2.16) is shown and it is very tight (0.1 dB different from tREVQ MIMO system capac-
ity). Also it is observed that PCVQ operates close to the upppacity bound obtained by
using bounding distribution given in (2.19) (within 0.6 dB)
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Figure 2.7: Average communication rates farprecoder & 8 PCVQ MIMO system with
its bound and the upper capacity boundrics 2 and 4.
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According to the results, we can say that the fine performahndom vector quantization
can be matched even with very simple quantization methods as PCVQ. Therefore,

PCVQ can be quite helpful to achieve rates quite close toradarapacity in practice.

2.8 Conclusion

We developed a tight upper bound to point-to-point LRF MIM&pacity that is valid for
a large set of vector quantization schemes. Using the upmemdodeveloped, the num-
ber of precoders to be used in a practical system for any giakre of average SNR can
be determined. We furthermore evaluated the upper boumdy @ssbounding distribution
from Grassmannian beamforming which resulted in the olaserv that the simple RVQ
technique performs quite close to capacity upper bound.eMa@r, we proposed a simple
guantization method in which each entry of a precoder is tigeoh independently. Along
with its practicality, PCVQ performs very close to RVQ wittgard to achieving rates close
to capacity and hence poses a viable solution in enabling taigg MIMO communications
systems. Perfect channel estimation at the receiver isresbin this study. Future studies
will include the consideration of imperfect channel estimaand its delayed transmission
to the transmitter side within a limited rate feedback sdena a mobile system. Also,
practical quantization methods for MIMO systems will bedstigated within the frame-

work developed in this thesis.
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CHAPTER 3

ITERATIVE DECISION FEEDBACK EQUALIZATION AND
DECODING FOR ROTATED MULTIDIMENSIONAL
CONSTELLATIONS IN BLOCK FADING CHANNELS

3.1 Introduction

The block-fading model is a useful model for transmissiorrasiowly varying channels,

such as orthogonal frequency division multiplexing (OFDivi¥low time-frequency-hopped
systems [45]. In this chapter, we investigate block-fadihgnnel with rotated constellations
as example study and propose a practical receiver aralniéebtiving performance close to

the capacity.

Rotated multidimensional constellations with uncoded ofaiibn has been studied and
shown to be an effective way to attain full-rate and fullafisity transmission in fading
channels [9], [19], [31]. Even random multidimensionaktains are shown to exhibit good
diversity distributions to combat channel fading for uneddransmission in [31]. The prob-
lem of constructing general coded modulation schemes owudtidimensional signal sets
obtained by rotating classical complex-plane signal ailagions has recently been studied

in [17] for block fading channels witB fading blocks.

Despite the benefits of rotation over &lfading blocks, a large decoding complexity is
imposed due to the inter-stream interference (ISI) caugedthted constellations. A prob-
lem here is related to the complexity of optimum decodirgy, maximum likelihood (ML)
receiver interfaces exhibit a complexity that grows expoiadly asO(|S|B) with the mod-
ulation size|S| and the dimension of rotatioB, and becomes quickly unpractical when
either parameter is large. In [31], a suboptimal MMSE egealivith decision feedback is
proposed and is shown to achieve good performance withaitoyéng the high diversity

order in the rotated constellation. In [49], sphere deagdéremployed to avoid exhaustive
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search over all candidate points. However, the structur§sli] and [49] were proposed for
uncoded rotations. When coded modulation is used, the cellis structure has to be incor-
porated and soft information should be provided to the degaghich further complicates
the problem. As a remedy to this problem, in [17], the use tdtions with a dimension
smaller than the number of fading blocks was considered. ifitaition behind this idea
is that the channel code itself can help to achieve full digrand sometimes rotations of
a smaller dimension might be sufficient. However, for somnie values and constellation
sizes, using rotations with small dimensions may not be@eifi to achieve the optimal
rate-diversity tradeoff, i.e., the rotations of large ditsi®ns might be necessary to attain
full diversity order and the decoding complexity has stdpenential dependence on the
dimension of rotation. Soft-output sphere decoding temimifor rotated constellation was

proposed in [8], but it still shows some undesirable liniitas in practice.

In this chapter, we propose an iterative receiver struciuite reasonable complexity for
coded modulation schemes with rotated constellations. prbposed detector is based on
iterative forward and backward filtering followed by a chahdecoder that works by using
preliminary soft values of the coded symbols. Since thaldlty of coded symbols from the
decoding process are used in deriving the jointly optimaliérd and backward filters, the
filters employed in this work have a different structure frtorase of previous interference-
cancellation based turbo equalizers, such as [7], [29]. [Blhas been observed that the
proposed scheme yields a very close performance to themptabability with reasonable
complexity for rotated constellations. The benefits th&tion brings in terms of diversity
exponent is justified without compromising the decoding plaxity when compared to the

optimal ML based structures with exponential complexity.

3.2 System Model

The following notation is used throughout Chapters 3 and dldf&ce upper-case letters
denote matrices and scalars are denoted by plain loweneses. The superscripd){ de-
notes the complex conjugate for scalars ajifdl denotes the conjugate transpose for vectors
and matrices. The x n identity matrix is shown witH,. The autocorrelation matrix for

a random vectoa is R, = E{aa} whereE{-} stands for the expected value operator. The

(i, )" element of a matrix is denoted byA(i, j) and thei™ element of a vectaa is denoted
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by a'.

In this chapter, we consider block-based transmission f,ifi7], [36]. During the trans-
mission of one block, the channel is assumed to be constahnit ahanges independently
from block to block. Without dealing with the channel esttima problem, the channel is

assumed to be perfectly known at each block transmission.

Assuming symbol rate sampling, the discrete time basebaguidadent model of the point-
to-point single-input single-output block fading chanwgh B fading blocks can be written
as [16], [30],

Yk = Dag + ng, k=0,1,...,N-1, 3.1

whereN is the codeword length (block length) abBds a diagonaB x B matrix with main
entries,d;, i = 1,...,B,i.e.,D = diag@s....,ds). a = [a},...,af]" is the portion of the
transmitted codeword at timeandyy = [y;....,yg]" is the corresponding received vector
at timek. The main diagonal entries @, d;’s, are the fading coefficients which are inde-
pendent zero-mean circularly symmetric complex GausddhGSCG) random variables
with variance 1. The block fading model is considered and tha channel matrices are as-
sumed to be constant during a coherence interval significkmger than a duration needed
for the transmission of one block [22] and channel staterin&dion at transmitter (CSIT) is
not available. Noise vectorg are also taken as ZMCSCG white (spatially and temporally)
noise with variancéNg. The block-fading channel is a useful model for transmissieer
slowly varying channels, such as orthogonal frequencysdiai multiplexing (OFDM) or

slow time-frequency-hopped systems [45].
We consider thady’s are obtained via the rotation of the symbols, i.e.,
a = VX, k=0,1,...,N-1, (3.2)

wherexy = [xt, ..., xP]" is the vector of complex-plane signal constellation syrsitioét is
rotated by theB x B rotation matrixV. The rotation matrix is unitary, i.e\V" = 15 and

applied uniformly throughout a transmitted block.

The codewordsX = [Xo,...,Xn-1] form a coded modulation schemec C®N. In par-
ticular, we consider that is obtained as the concatenation of a binary code ofrrated a
modulation over the signal constellati&e C with M = log, |S| (See Fig. 3.1). The rate in

bits per channel use of this schemdris- rM. After the transmitted signal block has been
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rotated, one obtains an equivalent model from (3.1) ang &€& 2n
yk:ka+nk, k=0,1,...,N—l, (3.3)

whereH = DV. This form resembles the baseband equivalent form of a MIM@énnoel.
Therefore, we will call our structure as space-time dect@eeafter and construct our re-

ceiver based on (3.3) in Section 3.3.

Rotation Channel Input
Info. Coded np= /:;.;9' whoxt o kT Tl ol ek,
pits | Modulation I V I
%._ ‘E'UB .z‘lﬂ cen _!‘E,_l N ﬂgg af afl_,

Figure 3.1: Block diagram for coded modulation with rotateshstellations with rotation
matrix V (Transmitter side).

Block diversityd, of a coded modulation schenges CB*N consisting ofB blocks of length
N symbols from an alphab& is defined as the minimum number of nonzero rowX efX’
for any pair of codeword¥X’” # X € y. As it is shown in [30], this distance metric is the
principle asymptotic indicator of pairwise-error-prolayp for any coding scheme and it
determines the slope of the error-rate curve. When one \iea/sl symbol transmitted in
the same block as a super-symbol 088 d, is simply the Hamming distance BN for the

non-binary block code with a block leng

When no rotations are used, the optimal diversity relipbékponent is given by the Single-

ton bound for a given ratR (bits per channel use) and signal constellafidras [16], [30]
. R
d: = 1+{B(1—M)J (3.4)

for B Rayleigh faded blocks. This value is an upper bound for tlekodiversity of any
coded modulation schemec CB*N with rateR and constellatiors € C with M = log, |S|.

A code is block-wise maximum-distance separable (MDS¥kthieves the maximum diver-
sity order given in (3.4) [16], [17]. As can be seen from (3vEry large symbol alphabets
may be required in order to achieve high asymptotic divefsit high rates R > 2 bits/dim).
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For example, withB = 8 andR = 3 bits/dim, a 16point constellation can only achieve a

diversity ofd; = 3. To achieved; = 7 a constellation with 4096 points is needed.

Different from the finite constellation case, the diversitger is not affected by the rate when
codebooks from Gaussian alphabets are used [30]. Moreibverstill possible to attain
full diversity order without compromising rate or incraagiconstellation size by rotating
traditional complex-plane signal constellations such A8/ ver fading blocks. The idea
of rotating a finite constellation is shown to increase theidiity order by spreading the
information contained in each symbol over several indepenthding blocks [31], and thus
it can be seen as an effective way to combat channel fadingvast shown in [17] that
the optimal diversity reliability exponent achieved by dam Gaussian codes can also be
achieved by random coded modulation schemes concatendted full-diversity rotation

of dimensionB whenR < M. In this case, the optimal reliability exponent is given by

d =B (3.5)

which is the available degrees of freedom in the channel. Brdenensional rotation takes
care of achieving full diversity while the coding gain istl& the outer coded modulation

scheme ove$ and the MDS constraint on the code is relaxed for rotatednsekgl17].

The diversity order of a coded modulation scheme CBN with rotated constellations
is the minimum number of nonzero rows ¥f(X — X’) matrix for any pair of codewords
X’ # X € y and unitary rotatiorV from (3.2). If the rotation matrice¥ is full-diversity

rotation, i.e.V satisfies

V(s-8)#0, V¥sseSBsx¢ (3.6)

componentwise like Kriskemper or cyclotomic rotationg][&ll the rows ofV (X — X’) are
nonzero for all distinc, X’ pairs and the scheme achieves the optimal reliability espbn
B. However, as it will be seen in Section 3.5, simple rotatilikes DFT which is not a full-
diversity rotation may be sufficient to reach the optimakdsity orderB in coded schemes,
since the code itself helps achieve maximum reliabilityaangnt. In other words, the optimal
diversity order in (3.5) is achieved by a combination of abdedulation and rotation in this

case.
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3.3 lterative Decision Feedback Equalization (DFE) for Roated Constella-

tions

Iterative equalization and decoding (also known as turh@akzpation) was well studied in
the literature for SISO ISI channels such as in [46], [47] &iweas applied to multiuser and
MIMO systems in [51], [29] and [43]. This technique yields chibetter performance than
that of traditional equalization methods as shown in theges. The equalizer and decoder
exchange soft information in terms of likelihood values loé transmitted data iteratively
to improve their performance in this case. The soft-in soft-decoder produces likelihood
information of each coded bit and it can be in the form of a otutional, block or space-
time trellis decoder depending on the encoding structure dqualizer coefficients can be
updated by using the likelihood information of transmittida given by the decoder at each

iteration.

We consider iterative space-time decoder with soft deciedback in this chapter. Since
both equalization and decoding processes can be perforeedfaiteration, turbo principle
can be applied as done in [7], [29], [51]. In Fig. 3.2, an exkmpreceiver structure is

shown for iterative decision feedback equalizer (DFE).

S Forward ™ N Channel
Received Filtering / T Decoder
Vector Signal 1
T Soft Fstimate
of the Coded Symbols
| | Feedback |
Filtering A

Figure 3.2: Iterative Decision Feedback Equalization (D&&d decoding for rotated con-
stellations
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One can write the output from the DFE for tki8 vector in the block in thé" iteration as
% = (WO)yy - (FO)gE™ (37

fork =0,...,N—-1. WO's andF®'s are forward and feedback filters both of sBex B

- (i-1)s
respectively and,

s are soft decisions from the previous iteration. When ther§ are
designed based on the MMSE criterion and the informatiomifig@aignals are Gaussian,
this structure is information theoretically optimum agestkin [23]. The first term in (3.7)
is actually the feedforward estimate of tk transmitted vector. In (3.7RE‘1)’S are the
soft feedback decisions from the previous iteration ang Hre utilized at the feedback
filtering process to improve the estimatexgf The forward and backward filter matrices are
jointly optimized and found according to the MMSE criterigien byE {Z:(\I:_Ol ||>~<E) - xk||2}

presented in [5], [36].

The n" component of the estimation is not used in the feedback eatiah of thent
component of the received vector, and so we impose the flpaondition on the feedback

filter

FO(hn=0n=1...8 (3.8)

since, by imposing this constraint, one can avoid selffagtibn of the desired symbol by its
previous estimate. The joint optimization of the forwardl dbackward filters at each itera-
tion by taking the reliability of the decoded symbols usefégdback into account makes our
proposed structure different from the traditional iteratequalizers. Also, the mitigation of
inter-stream interference induced by the rotation is dgutar@lly with this structure. This
differs from previous studies which use spatial interfeeesuppression techniques based on

successive interference cancellation (SIC).

The Lagrange multiplier method can be used to obtain thenaptfilter coefficients. La-
grangian vectors and the corresponding scalar constihiatgangian function) can be writ-

ten as

B
10 = diag[r{..... Y] B LagrangiarT®) = " (FO(n.n) T, (3.9)
n=1

Due to an interleaving operation both in time and space, \weasaume that
E{xk(x)"} = Eslndk, fork,1=0,...,N-1, (3.10)
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wheredy is the delta function which is 0 for ak butk = |. Some important correlation

matrices used by the forward and feedback filters are deforetiéi™ iteration as
PO = Epx&{ )M B = ER{VET)) (3.11)

fork =0,...,N-1. To simplify the computation of the filter coefficients, dback decisions
are assumed to be independent. Furthermore, due to thieavieg operation of the coded
symbols, feedback decisions are assumed to be uncorreléttedthe symbols transmitted
at different block or symbol time. It is further assumed ttieg reliability matrices of the

decision feedback are the same forlali.e.,
E ™) =0, ERITVEED)H) =0, fork # | (3.12)

E{XE]()A(E)*} = PmOmn, E{)A(Eq(f(ﬂ)*} = BmOmn (3.13)

formn = 1,...,B and the expectations are independent of symbol ikdeken, we can

write

PO = diag[ps, ...,ps], BY = diag[gs,....Bs]. (3.14)

This assumption makes the forward and backward filters iewiégnt of time indeX, so
the block processing on each received signal can be impledheaffectively. This can be
achieved by simply averaging the correlations of soft fee#tdecisions from the previous
iteration as will be done in Section 3.4. These are standaddreasonable assumptions
as stated in [7], [36], [51], since the average symbol errobability is approximately the
same for each symbol in a large block with quasi-static fad@alculation of the correlation

matricesP®) andB® will be done in Section 3.4.

After taking the gradient of the MMSE cost function and thetaamgian with respect to the
rows of WH and ED)H, equating the gradients to the zero vector, taking exgeosat
and combining vectors into single matrix equations fioe 1,..., B, one can obtain the

following matrix equations giving the optimal forward anadiward filter matrices

RyW® = H[Edlg + POFO] (3.15)
BOFO = (PO)H [HHWO — 1] - 10 (3.16)

where
Ry = E{yk(yk)""} = (HH"Es + Nol g) (3.17)
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andI'®) can be obtained from the constraint in (3.8). By substitutt®) into (3.16) and
using the constraint, the Lagrangian terms given in (3.8)mackward filter matrices can be

readily found after some calculations as

0o [AO(n, )DO(:, m)] )

(- AT n=1....B (3.18)
FO = AO[DO - 10], (3.19)
where
A = B0 - (p(n)HHHR;al(i)]—l, (3.20)
DO = (POHHHRITHES - (PO, (3.21)

A0(n,:) is then—th row of AQ, DO(:, n) is then—th column ofD® and forward filterw®

can be obtained from (3.15).

3.4 lterative Decoding

In this section, we will calculate the log-likelihood ragigLLR) and soft decisions of the
coded symbols to be used in decision feedback. BPSK modnlatiassumed for simplicity,
but the extension to other M-ary or M-PSK modulations isigtrdiorward. At each iteration,
extrinsic information is extracted from detection and dkeg stages and is then used as a
priori information in the next iteration, just as in turboodeling. The soft output from the

DFE in theit" iteration after (3.7) can be written as,
%O = Qx4 O (3.22)

fork =0,...,N-1andm = 1,...,B. In this case, the equalized channel in (3.22) can
be considered as a quasi-parallelized channel and the Lt Rdan™ component of th&"

transmitted symbol can be written as

PR O)xm = +1
L"® = log 1% ) (3.23)

“PEMOxn = —1)’

The LLR termL} © is the extrinsic information that can be obtained from thaatiger

output. An a priori probability ratid_[("(p) (log, E—Ef{:}g) is given by the decoder as the

intrinsic information obtained from the previous iteratif86], [51] and used to construct
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a soft estimate of the coded symbgl. The extrinsic information given in (3.23) can be

expressed as, _ _
Lm© 4Ret<u$:2:5;“('>} 3.2
E{lm 19
by using the equivalent complex amplitudéi? of X" at the output of the equalizer and
the residual interference poweE{mE"(i)F}. These values can be easily found in terms of
channel matrices, forward and backward filter coefficient$ @rrelation matrices as done
for the SISO systems in [36], [51]. While computing the LLR& resort to simplification
of the decoding algorithm by neglecting the correlatiorsng between the residual noise
terms, i.e., thez;k 's are taken as uncorrelated for= 1, ..., B as done in the decoding stage
of [7] for flat fading MIMO channel and the residual interfaoe is further approximated by
a Gaussian distribution as in [36], [51]. It can be shown,ﬂrﬁiéand E{|nE‘ (i)lz} values do not
depend on symbol time inddx so these values are calculated only once for the decoding of

one block in each iteration, which reduces the complexiyificantly.

Soft feedback decisions{"Yor the DFE equals tar(t% LL“('“)) forEs=1,m=1,...,B
andk = 0,...,N—-1asin[7], [36], [51]. The non-zero diagonal entries of tloerelation
matricesP®) andB® in (3.11) used by the forward and backward filters can be tatleti by

using the following approximation,

prm 2 EDQEN ) = E(EEN) = K012 (3.25)
1 N-1
pm=Bm = épkm (3.26)

E{x{(“} was taken as<k”T and this is a common assumption in various turbo detection-te

niques as done in [36], [51] and [46].

Correct estimation oP® andB®"’s is important, since our proposed DFE takes into account
the reliability of the feedback decisions and thereforewadites the error propagation prob-
lem different than the original DFE studies assuming peffisedback decisions. In the first
iteration,P®) andB® can be taken a8z, i.e., reliable feedback decisions are not available.

As the number of iterations increases, both metrics apprtiecasymptotic valueEgl g.

The proposed decoding architecture posses the same lewelngilexity as the one for
MIMO channels in [7]. A detailed complexity comparison beem the iterative MMSE
and ML-based receiver architectures was made in [7]. It vaed in [7] that although there

may be variations between the complexity of two receivetsiims of required addition and

39



multiplications during equalization, decoding stagest-decision feedback computations;
the overall complexity is moderately sensitive to thesei@sland the most critical part that
affects the complexity is the computation of LLR for eacheddit in the codeword before
the decoding stages. It was evaluated that the ML recei&®dM B|S|®) complexity and

the MMSE receiver ha®(N MB|S|) complexity [7]. Then, one can say that due to the ex-
ponential dependence of the complexity on the number ohéatllocksB, the complexity

of ML-based receiver can not be affordable for moderateesaf constellation sizZ&| and
number of fading block8. However, the proposed MMSE based receiver here recovers
from this problem by parallelizing the rotated channel amastreduces the complexity of
LLR computation significantly. Therefore, it shows lineapendence ofg| andB. Even

for moderate values ¢8| andB, the complexity difference between two schemes is tremen-
dous. For example, 15| = 8 (8-PSK modulation an®l = log,|S| = 3) andB = 6, the
complexity of ML-based receiver is approximaté%':E = 8—86 ~ 3.3 x 10* times larger than

that of the MMSE receiver for the same block length

Our analysis and proposed decoding architecture are disd@athe schemes in which the
rotations of dimension smaller thdhare used. Rotation with smaller sizes was proposed
in[17] in order to establish the tradeoff between the trassion rate, diversity, constellation
size and complexity induced by the rotations. In this casedecoding complexity is still
exponential with the dimension of rotation, thus our praabstructure will be useful in

reducing the complexity.

3.5 Simulation Results

3.5.1 Outage Probability Calculations

For sufficiently large block lengti, the packet error probability of any coding scheme is
lower bounded by the information outage probability [22].this section, we will compare
the performance of our proposed decoding structure witledneesponding constrained out-
age probability of rotated and unrotated schemes. Thereomstl capacity can be found for
the system model in (3.3) given the complex vectorysef cardinality|S|B = (2M)B (e.g.,

M-ary or M-PSK modulations) similar to the derivations fdotk fading channels in [16]
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and rotated schemes in [17] as

X 1571 :
Crotated = N Z E I (Xk! yk|H)

H - X 2 2
Z|S|B|ogZZeXp( IH (X xlzl:nn £ )}3.27)

XkEY Xiexy

log, S| - EE” {

wheren is a ZMCSCG vector and the corresponding outage probals#itybe written as

rotated $% (R)

OUt

{ rotated < R} (3'28)

Constrained outage probabilities will be used for perfarogaevaluation in the next part.

3.5.2 Performance Results

In Fig. 3.3, simulation results are depicted for block fadahannels with 3 fading blocks.
Each block is Rayleigh faded with unity power. The packebreprobability of rotated and

unrotated systems with QPSK modulation and their corredipgnoutage probabilities are
shown. Also, the outage probability for Gaussian input uraerage power constraint is
drawn. A full block diversity attaining blockwise conca#tad convolutional code (BCCC)
based on bit-interleaved coded modulation (BICM) is usedeftcoding for both rotated

and unrotated cases as adapted from [16]. The outer codeats-% convolutional code

and the inner codes are 3 trivial rate-1 accumulators. Tieenration block length, i.e., the
information bits entering the outer encoder is taken as B48rpme and the rate in bits per
channel use of this schemeRs=rM = %2 = 1. A DFT matrix with size 3 is used to rotate
discrete QPSK inputs. Number of iterations inside the TBB&C decoder is set to 10 and
the number of equalizer iterations at which the forward amckivard filters are updated by

using the reliability matrices is taken as 3.

41



10
. = = = Qutage (Gaussian)
= + = Qutage, DFT rotation (R= 1 bits per channel use, QPSK)
—+— DFT rotation, DFE-soft (3 iterations)
; —&— DFT rotation, linear MMSE filtering (no iteration)
&~
107 : N - JC = © = Unrotated outage (R= 1 bits per channel use, QPSK)
SRR : :;9: Unrotated, code performance
3 s X3
c
2
<
-2

§ 10 o
= s
k)
4
[8]
©
o

10°F

10

5

SNR (Es/No, dB)

Figure 3.3: Performance comparison of iterative DFE andgrifor rotated and unrotated
constellationsB = 3
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As it is seen from the outage probabilities, rotation eralbecapture the largest possible
reliability exponent achieved by Gaussian inputs, nardeky B = 3, while unrotated inputs
haved; = 2. It has been observed that there is approximately 2 dBreiffes between the
outage probability with rotated inputs and the performaaicdecision feedback equalizer
(DFE) with 3 iterations. This gap from the outage is simitathe gap between the outage
and coded performance of unrotated inputs and iterative BdsEalso similar performance
gap from the outage with the ML-based receiver given in [1Then, one can say that
the spatial interference and the error propagation prolokerent in decision feedback are
almost eliminated and it is possible to attain optimal diitgrof the block fading channel by
using the proposed space-time equalizer. These resulis thlad the theoretical benefit of
rotation can be materialized by the proposed practical dlagostructure with significantly
reduced complexity. Moreover, it is seen that the simple Bdtation is sufficient to attain
the optimal diversity order in coded schemes since the dedk helps achieve full diversity
different than the uncoded rotations in which the full dsigrrotations are necessary to get

the optimal exponent.

Furthermore, it is interesting to note that the performangaovement of the iterative DFE
with soft feedback over the linear MMSE filtering without ¢&an feedback is about 3 dB at
PER=0.0001. There is also a loss in diversity as observdteindduced PER slope without
decision feedback. The suboptimality of linear equalizergnts the system achieving high
diversity orders. One can say that the proposed equalizes geore diversity in comparison
to the linear forward MMSE filtering by a careful design of e forward and backward

filters.

In Fig. 3.4, simulations are repeated for 6 fading blocks euége probabilities are con-
structed for Gaussian inputs, BPSK inputs and rotated BPpKt$s with DFT rotation of
size 6. The same BCCC structure is used with a %amﬂer convolutional encoder and 6
inner rate-1 accumulators. The information block leng#n, the number of information bits
entering the encoder is taken as 238. Similar results tetimoBig. 3.3 are obtained and the
optimal reliability exponent” = 6 is achieved by coded modulation scheme with simple
DFT rotation, while unrotated inputs haug = 4 from the singleton bound. The optimal di-
versity order and a close performance to outage probabiflitgtated scheme at rale= 0.5

bits per channel use within 2 dB are achieved by our praaieabding structure.
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Figure 3.4: Performance comparison of iterative DFE andgrifor rotated and unrotated
constellationsB = 6
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Fig. 3.5 shows the benefits of rotations by comparing theopednce of the proposed
iterative DFE for rotated QPSK inputs and unrotated cod®pmances for 8 fading blocks.
DFT rotation and BCCC structure with rageeuter convolutional encoder and 8 inner rate-
1 accumulators are used. The information block length israks 318. The maximum
diversity order, namelg* = 8 is achieved by the iterative DFE with soft feedback, siee t
performance of iterative DFE shows the same slope as outdlgg3aussian inputs, while
the code performances with unrotated inputs candget 5. However, the gap between
rotated and unrotated schemes may not be so significant arated®ER values and even
performance of the rotated scheme with the use of suboptioraiterative MMSE equalizer
is below the performance of unrotated schemes. Therefmrehfinnels with large diversity
order, one may not observe a considerable benefit of rotatestallations over some PER
values. One has to be careful in choosing the decoding aothit, since the use of non-
iterative suboptimal structures may destroy the high ditsebenefits induced by rotated

constellations due to residual spatial interference.
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3.5.3 Diversity Comparison

In Table 3.1 and Table 3.2, the distribution of the diversélability exponent of the coded
modulation schemes with rotated and unrotated constaigiire shown for different num-
ber of fading blocksB and information block lengti. Monte Carlo simulations were run,
where 18 and 16 codewords are randomly generated among thelifferent codewords
and the number of nonzero rowsdf(X — X) matrix, namely, block diversity, is recorded
for each generated codeword. The BCCC encoding structurerat'e-% outer encoder and
inner rate-1 accumulators with QPSK modulation are usethagal X is the corresponding
codeword of all zero information bits. The block length canitten asN = § [2452) + 1

including termination bits in the outer convolutional edeoand inner accumulators.
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Table 3.1: Empirical diversity distribution for rotateddannrotated schemes for different
information block lengttK values, number of fading block&is 4

B=4

diversity 1] 2 3 4
K=12
DFT rotation and coded modulatigr0 | O | 68 99932
Unrotated coded modulation | 0| 25| 3060| 96915
K =20
DFT rotation and coded modulatigrd | 0 | 31 | 999969
Unrotated coded modulation | 0| 5 | 2435| 997560
K=32
DFT rotation and coded modulatiqr) 1000000
Unrotated coded modulation [0] O | 31 | 999969

diversity 1 2 3 4
Uncoded DFT rotation 425 | 4300| 18508| 76767

(@)
o

Table 3.2: Empirical diversity distribution for rotateddannrotated schemes for different
information block lengthK values, number of fading bloci&is 6

B=6

diversity 112| 3 4 5 6

K=13

DFT rotation and coded modulatigrD 20 93 99887
Unrotated coded modulation | 0| 0| 52| 1629| 15290| 83029
K=19

DFT rotation and coded modulatigrdo | 0| O 0 69 999931
Unrotated coded modulation | 0 48| 1214 | 44403| 954333
K=31

o
o

N

DFT rotation and coded modulatiorO | 0| O 0 0 1000000
Unrotated coded modulation |00 | O 9 2940 | 997051
diversity 112 3 4 5 6

Uncoded DFT rotation 2 | 62 | 444 | 1741| 7904 | 89847

Table 3.1 and 3.2 show the distribution of the number of nomeews indicating the diver-

sity order of the given schemes. It is observed that theresigraficant difference between
the diversity order of rotated and unrotated schemes. Bokldading channels, it is known
that both the block diversity and the product distance betwibe codeword pairs affect the
packet error probability, i.e., the pairwise error proligbbetween the codeword matrices

X; and X is determined by the number of nonzero rowsvofX; — X;) and the squared
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product distance betweefy andX; [45]. Morover, it was observed experimentally that the
codeword pairs with smaller diversity order also have popreduct distance values. Thus,
one can say that the codeword pairs with minimum block dityedetermines the packet
error rate and maximizing diversity order is the best wayettuce the error probability on

Rayleigh fading channels.

At first glance, it is seen that the number of codewords witlallen diversity order is di-
minished for unrotated case as the block length increaseg\er, the number of randomly
generated codewords @Qluring the simulations is very small compared to the actuat-
ber of codewords () for K = 31 andK = 32. Hence, there exist a lot of codeword pairs
with smaller diversity gain and the product distance whiahse significant performance
degradation when compared to the rotated schemes achieptitgal diversity ordeB as

confirmed by the simulation results.

Moreover, it is seen from the tables that DFT rotation showsrgr diversity distribu-
tion for uncoded transmissions, but it achieves the petdoige of full diversity rotations
(Kruskemper) and the full reliability expone®, when used with the coded modulation
schemes, since the code itself helps rotation achieve tikémen diversity order. There-
fore, we can say that both coded modulation and rotation exad@ to attain the maximum
achievable diversity order in practical situations, whire full diversity rotations are not

used, i.e., simple rotations like DFT or rotations of dimensmaller tharB are used.

3.6 Conclusion

We have studied the block-fading channels with rotatedasigonstellations. Although ro-
tated schemes can provide large diversity to combat fadiegyodulation is prohibitive for
large number of fading blocks and combined with coded mdituls. We have proposed
an iterative MMSE type decoding structure based on softsamtifeedback without expo-
nential complexity (with linear complexity). The proposathitecture shows a very close
performance to the outage probability with rotated inpuis achieves the optimal diversity
order attained by Gaussian inputs. Therefore, the theaidienefit of rotated constellations

is captured by the proposed structure with significantlyuoed complexity.

49



CHAPTER 4

ITERATIVE FREQUENCY DOMAIN EQUALIZATION FOR
SINGLE-CARRIER WIDEBAND MIMO CHANNELS

4.1 Introduction

In this chapter, we investigate wideband MIMO channel asmga study and propose
practical receiver structure in conjunction with singberter frequency domain equaliza-

tion (SC-FDE) technique.

Multiple-input multiple-output (MIMO) systems have reeedl much attention due to their
multiplexing and diversity capabilities and potentialgncoffer tens of megabits per second
transmission rates in future wireless systems. Howevehisticated equalization and de-
coding schemes are required for reliable communicatiomet sigh rates. While OFDM
based schemes are well recognized candidates as a broadlivalesds technology, single-
carrier (SC) technology based on frequency domain equiaiz§~DE) has also started to
gain considerable attention due its comparable complexity OFDM. It has been shown
in [18] that frequency domain equalization (FDE) can be itgagbplied to SC transmission
to yield similar performance as OFDM. Since OFDM sufferarirbigh peak-to-average
power ratio (PAPR), SC technigues leading to more efficieset of power amplifiers are
more suitable for uplink channels [18], [4]. It is known tHaFDM and SC techniques
are similar in terms of spectral efficiency and that OFDM osityfts the multipath fading
problem from the time domain to the frequency domain [22]tuatly, OFDM breaks the
frequency diversity and channel coding is needed to reclaas opposed to the SC-based

systems, where multipath diversity can be attained witlsbathnel coding.

Due to the attractive features of SC-FDE, it has been viewsed atrong alternative to
OFDM-based systems recently and its importance is cleawigeband channels. Block

iterative FDE was proposed for uncoded single-input shogigut (SISO) multipath chan-
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nels in [5] and, block iterative FDE was considered in [3@]ether with channel decoding.
Reliability metrics for uncoded and coded symbols areadtiliin SISO systems to prevent

the error propagation problem of decision feedback proicel§g§ and [36], respectively.

Iterative equalization schemes for wideband MIMO chanmadse considered in [29]. Au-
thors consider minimum mean squared error (MMSE) type foiiigtering and successive
interference cancellation (SIC) to mitigate the intenfee in time domain. Turbo equal-
ization with MMSE type filtering in frequency domain was dedlin [53], but it does not
consider the use of decision feedback filters or SIC operatial thus can not achieve the
total multipath diversity gain of the channel as will be simolater. Recently, iterative fre-
guency domain equalization techniques have been condidej28] and [48]. They are both
based on soft interference cancellation and MMSE forwatetifilg followed by a maximum
a posteriori probability (MAP) detector. In [57], a hybriduealization scheme is proposed,
where forward filtering is performed in frequency domaingkyeard filtering is performed
in time domain, and a further SIC operation is utilized toigaite inter-stream interference.
All these studies consider V-BLAST type architectures, rgheach stream transmitted over
different antennas is coded separately without paying aggrd to the possible diversity
gains by careful coding across transmit antennas as in[[B&]]Jand D-BLAST based struc-

tures.

In this chapter, iterative FDE with decision feedback isligjto MIMO wideband systems.
Actually, our analysis and results are not only valid for MIMchemes but also can be ap-
plied to other multipath vector channels such as asyncluisnuwiltipath multi-user CDMA
or systems which have the same discrete time model afterlsanas MIMO schemes. Our
work here is a generalization of the FDE technique from Si&@dre general system mod-
els. A novel low-complexity iterative frequency domain atiger utilizing soft frequency
domain decision feedback from the multi-stream space-tithdO decoder is proposed
and the performance of this equalizer is shown to achievaypethetical matched filtering
bound (MFB) performance [3] that upper bound the performamicany MIMO receiver.
It is also shown that the proposed equalization scheme cmdhbiith the capacity achiev-
ing coding-multiplexing based techniques for paralleckléading channels [30], [16] has a
close performance to the outage probability of the MIMO-®f&cheme and the maximum
diversity of the multipath vector channel can be attainedheyproposed equalization and

decoding structure.

51



Iterative frequency domain equalizers proposed in our wanktain two separate filters,
namely; the forward and the backward filters, which are igioptimized in each iteration
to minimize both the inter-symbol-interference (ISI) viittstreams and interference across
streams. Since reliability of coded symbols from the detgglirocess are used in deriving
the optimal forward and backward filters, the filters emptbye this work have a differ-
ent structure from that of previous interference-cantieliabased MIMO turbo equalizers,
such as [28], [48] and [57]. Our proposed equalization teglenfor multivariate ISI chan-
nels here is actually mathematically equivalent to therimftion theoretically optimum
approach stated in [23]. Hence, the proposed structuretisiom if the channel symbols
are drawn from a Gaussian alphabet and otherwise performpshlase to the corresponding

input alphabet constrained outage probability of MIMO-QWBystems.

The contribution of the thesis in this chapter is threefalde first show that SC-FDE with
both forward and backward filters can be generalized fronOStBvector channels, which
includes MIMO as a special case. We, furthermore, derivgdimly optimal forward and
backward filters in the frequency domain so that the compleag@lvantage of FDE is not
compromised. The error propagation problem in decisiodldaek is eliminated by taking
the reliability of the decisions into account in each itenat Third, the MIMO wideband
channel can be quasi-parallelized with the help of our psedospace-time equalizer and
so the code construction techniques achieving optimaldiaersity tradeoff given by the
singleton bound for block-fading channels [30], [16] caneffectively used such that the
proposed equalization scheme combined with this type oingostructures yields a very
close performance to the MIMO-OFDM outage probability. fdiere, we can say that
the proposed SC-FDE based scheme could be a promising esadid wideband MIMO

systems as an alternative to MIMO-OFDM schemes.

4.2 System Model

In this chapter, we consider block based transmission a36jhgnd [5]. During the trans-
mission of one block, the channel is assumed to be constahit ahanges independently
from block to block. Without dealing with the channel esttima problem, the channel is
assumed to be perfectly known at each block transmissiortlicCyrefix (CP) is used to

prevent inter-block interference with length larger or &go maximum channel length.)
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as explained in [22]. The signal for a transmitted block witR is a sequence of vectors:

[XOa Xl’ DR XN—15 XOa R XL—l] n1><(N+L)-

Assuming symbol rate sampling, the discrete time basebguidaent model of the point-
to-point MIMO wideband channel with, receive antennas amgtransmit antennas can be
written as [6],
L-1
Yk = ) HiXk-l + Nk, k=0,1,...,N-1, (4.1)
1=0
whereH;’s,| = 0,...,L — 1, aren; x n; complex channel matrices comprised of indepen-

dent zero-mean circularly symmetric complex Gaussian (B@G) random variables with
variance given by the power delay profile of each channel [Bijck fading model is con-
sidered and thus the channel matrices are assumed to barmwhsting a coherence interval
significantly larger than a duration needed for the transimisof one block [22] and chan-
nel state information at transmitter (CSIT) is not avadaldNoise vectors are also taken
as ZMCSCG white (spatially and temporally) noise with vac@Ny. Only BPSK modula-
tion is considered during the analysis and simulation ssidExtension to other M-ary or

M-PSK modulations is straightforward.

If we define the DFT operation a& = % Yg ane 1ZN for k = 0,...,N - 1, where
a, and A¢ are the time domain sequence and its frequency domain segjuespectively,
then after the DFT operation to each elemenypfn (4.1), we can obtain the following

expression in the frequency domain as done in [57]
Y = AxXi + Ni, k=0,...,N-1 4.2)

whereAy is ann, x n; matrix representing the channel frequency response &tiene
with the entries [57]
L-1

(k) = > Hi(i, myer 2N, (4.3)
1=0

fori=1,...,npandm=1,...,nandH,(i,m) is a scalar and defined as then@)th element

of the channel matri¥,. In (4.2), Xk is the DFT of a vector sequen¢e} with
Xic = [Xg - X7 (4.4)

fork=0,...,N -1 as adapted from [57}).(|‘( is the DFT of the sequence transmitted at the

it antenna at th&'" frequency bin such that

N-1

. 1 .

Xi=—= % xelZN"j-1 n. (4.5)
N;
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Similarly, Yli( and N|i< are the DFT of the corresponding received and noise segsiahtfes™
receive antenna at thé" frequency bin foii = 1,...,n,. The expression in (4.2) is the fre-
guency domain equivalent of the channel in (4.1) and willfegdiently used in the remain-
der of this chapter. As observed in (4.2), the channel gdiar @ FDM system are converted
from scalars in SISO to matrices in MIMO due to multiple tnaitsand receive antennas.
Also, DFT operation is performed by usim = ﬁe‘jzﬂm”/’\‘ formn=0,1,....N-1

hereafter.

4.3 lterative Frequency Domain Equalization for Wideband MIMO channels

We consider iterative frequency domain equalization (FIdEh both time and frequency
domain decision feedback in this chapter. Since both ezptaln and decoding processes
can be performed in each iteration, the turbo principle caafplied as done in [36], [51].
According to the turbo principle, log-likelihood ratiosl(R) of the coded bits can be ob-
tained from the channel equalizer and this information isdusy the decoder. The de-
coder produces LLR of the coded symbols and the soft estinwdithe coded symbols are
constructed based on them to be used in feedback processt déenation as explained in

Chapter 3.

The decoding scheme based on the BCJR algorithm [2] withatotiwnal codes may be
used as the decoding scheme for each substream and V-BLABIBWwAST type archi-

tectures on which MIMO systems are built can be used for tngsson of each coded
substream. V-BLAST and D-BLAST are widely used in MIMO sclesrsince they do
not require CSIT and streams are separately demodulatednby sort of filtering such as
MMSE and then decoded [22], [52], [20]. In Fig. 4.1, an exesmplreceiver structure is

shown for frequency domain decision feedback (FDDF) case.
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As opposed to previous works in MIMO systems [28], [48] and][$orward and feedback
filters are jointly optimized in our approach to minimize batter-symbol-interference (ISI)
and interference from other streams. As it will be obserme8idgction 4.6, the combined mul-
tipath and space enriched diversity of the channel is etquiddy decision feedback equal-
izer effectively such that the performance obtained by tla¢ched filtering bound (MFB)

is approximately achieved and a close performance to tregeutf MIMO-OFDM can be

obtained when the proposed equalization scheme is comiiiteccoding structures that

achieve the optimal rate-diversity tradeoff [16].

4.3.1 Frequency Domain Equalization with Time Domain Deci®n Feedback (FDE-

TDDF)

To start with,Yj’s for j = 0,...,N - 1 can be easily shown to be uncorrelated from (4.2).
We can further say that; is a sufficient statistic to estimade; when it is Gaussian. As
similar to the SISO case in [36], we can write the output fréve EDE-TDDF for thek

vector in the block in thé" iteration as,
] N-1 ] N-1 ] )
X = D @)WY = 3 FO T moa (4.6)
j=0 j=0

fork = 0,...,N -1 W%s andF"'s are forward and feedback filters with sizasx

n, and ny x ng, respectively. When the filters are designed on the MMSEenit, this
structure is information theoretically optimum as statefPB8] whenxy’s are Gaussian. The
first summation is actually the feedforward estimate ofdfidransmitted vector. First, the
feedforward equalization is done at i frequency tone by multiplying an x n, matrix
(W?))H with the input vectorY ;. Then, one can get the feedforward estimate at the time
domain by converting the equalized frequency tones to the tilomain with inverse DFT

as done in the first summation in (4.6). In (4.%}',‘1)’3 are the soft feedback decisions from
the previous iteration and they are utilized at the feedlfgtgking process to improve the

estimate ofk.

For the iterative FDE-TDDF operation, we consider feediagkithe entire block of inter-
fering vectors. Thus, there aie feedback filter matrices but it is possible to use only a
number ofL nonzero feedback filters to reduce computational compleitind F?)’s. On

the contrary, our scheme here is operating on a block bdmsefore it cancels both the
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pre-cursor and the post-cursor ISI while eliminating ifgegnce from other streams.

The forward and backward filter matrices are jointly optiesizand found according to the
MMSE criterion presented in [36], [5]. The total mean squarer in one block, conditioned
on the channel matrices and the results of the previougigaraan be expressed as,
N-1 N-1 n _ _
J=E {Z IXE - xk||2} = D D EEY X O - Xy 4.7)
k=0 k=0 m=1

wherex‘;‘(i) is the estimate of th" symbol transmitted an™ antenna ait" iteration.

The following constraint on backward filtﬁ(ji) in (4.6) is necessary in order to avoid self-

subtraction of the desired symbol by its previous estimate.
Fdnm =0 n=1,....n. (4.8)

Since the signal streams are transmitted from the multiglesmit antennas at the same
time and frequency, they introduce both multi-array irgeghce (MAI), i.e., other antenna
stream'’s spatial interference and inter symbol interfeegihSI) in wideband MIMO commu-
nication. However, the mitigation of inter-stream inteeigce originated from other antenna
stream’s spatial interference and ISl resulted from fregyeselectivity is done optimally
with this structure. This differs from previous MIMO studiehich use spatial interference
suppression techniques based on successive interferancellation (SIC) in [28], [48]
and [57]. In SIC based techniques, the decoded streams latracted from the received
signal without any regard to their reliability and use ofdback filtering. Moreover, the
joint update of the forward and backward filters at each fi@neby using the reliability in-
formation given by the decoder makes our proposed strudiffexrent from the traditional

iterative MIMO equalizers.

The Lagrange multiplier method can be used to obtain thenaptfilter coefficients. La-
grangian vectors and the corresponding scalar constihiaggangian function) can be writ-
ten as

Nt ) )
Lagrangiar(T'®) = Z(Fg)(n, )Ty (4.9)
n=1

r® = diag[rg), S th)](ntxﬂt) ’

By taking the gradient of the cost function and the Lagramgiath respect to rows of

(W?))H, the following is obtained

N-1 N-1 N-1
VI = E{g(q.k)*vl[_zo YW (g - Z(])(k?k;?) moa 0 F (M) = 0T} (4.10)
= j= j=
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forl =0,...,N—21andn = 1,...,n. When the gradient is taken with respect to rows of
(F)",
N— N-1
Vo) = Z K4 g JZ v WO )l Z(x?kf,g moa N FOM) =0T+ > Teno
i k(zé(l).ll)
forl =0,...,N—-1andn=1,...,n whereW(ji)(n) and F?)(n) are then™ column ofW(ji)

~

and Fﬁi) respectively.s; is the delta function which is O for allbutl = 0 ande, denotes a

n--dimensional vector of all zeros except for thié element which is 1.

We now define some important metrics used in equalizatioogs® Similar definitions are
made in Chapter 2, but we give the same definitions again heoeder not to break the
completeness of this chapter. Due to an interleaving operdbth in time and space, we

can assume that,

E{xk(x)"} = Eslndk, fork,1=0,...,N-1. (4.12)

Some important correlation matrices used by the forwardeadback filters are defined for

theit iteration as
PO = Ep ™)), B = ERIV &) (4.13)

fork =0,...,N-1. To simplify the computation of the filter coefficients, dbdack decisions
are assumed to be independent. Furthermore, due to inMi@deaperation of the coded
symbols, feedback decisions are assumed to be uncorrelittedthe symbols transmitted
at different antenna or symbol time. Itis further assumed tine reliability matrices of the

decision feedback are same forlli.e.,
E™)H =0, ERITVEEDH) =0, fork # | (4.14)

E{Xk( )} = pmémn, E ( )"} = Bmdmn (4.15)

formn=1,...,n and the expectations are independent of symbol ikdekhen, we can

write

PO = diag[p1.....on ], BY = diag[Bs,....Bn]- (4.16)

These are standard and reasonable assumptions as sta84], ifb1], since the average
symbol error probability is approximately the same for eagimbol in a large block with

guasi-static fading. This approximation should not lead significant loss in performance.
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The vector filtersw?) and ng) can be calculated by equating the gradients to zero vectors
in (4.10) and (4.11). Expectations required to find filterfioents can be calculated easily

from vector DFT operation and (4.2) as follows,

E{Xk(X1)™} = Efx(x)"} = Eslndi (4.17)
E{Nk(N)™} = E{ni(n) ™} = Noln, 6 (4.18)
E(Y(Y)N) = (XkXE Eq+ N0|n,)5k| = Ry, (4.19)
E{Yl()?g:(;lj)) mod 071 = APV mod (4.20)
E{Y1(x)"} = AIEsl, : (4.21)

After equating the gradients to zero vector, taking exgixta by using the above equations
and combining vectors into single matrix equationstios 1,...,n;, one can obtain the

following matrix equations providing the optimal forwarddabackward filter matrices

N-1
Ry,W{ = X} |Edln + VNPO 3" ghF{) (4.22)
m=0
forj=0,...,N-1,
o_ 1N Hyp0)
BOFY = — ) (g (POYHA WS (4.23)

forl=1,...,N-1and

N-1
BOFY) = % 3 (@) PO R — (PO) - 10, (4.24)
m=0

By substitutingwﬂ?’s into (4.23) and (4.24), the backward filter matrices carrdseily
found after some manipulations. After some calculus, onaineb the following matrix

equations anGI(i)’s can be found from the solution of the given equations.

N-1
BOFY - Z TONFY =v(@), 1=1,... ,N-1 (4.25)
n=0
BOFY - > Tn)FY = v(0) - (P - 10 (4.26)
n=0
where
N-1 o o
T, = > (@ (PO AnR AnPO, (4.27)
m=0
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N-1
V() = % Z(q{“)*(P(i))HX:R;i]KmES (4.28)
m=0

forl,n=0,...,N - 1. Optimal feedback filter matriceE,(ji)’s can be found as a solution of
the above equations by using the constraint given in (4.8)farward fiIters,W?)’s can be

obtained from (4.22).

As seen in (4.25) and (4.26), the computation of feedbackiceatrequires the inversion
of a Hermitian block Toeplitz matrix with sizbrn, x Nn, similar to the SISO cases in [36].
However, this matrix inversion burden for time domain diecisfeedback filters will be

significantly reduced when we switch to the frequency dond&icision feedback case and

thus, the computational simplicity of SC FDE technique Wwélobserved.

Soft feedback decisions of the coded symbols can be obtdipassing the information
given by the decoder. Using these soft decisions, it is ptes$d approximate correlation
matricesP) and B() as done for the SISO case in [36]. Correct estimatioP8fand
B®'s is important, since FDE-TDDF and FDE-FDDF take into actoine reliability of
the feedback decisions and therefore alleviates the eropagation problem different than
the original FDE studies in [18] and [4] assuming perfecdfsgck decisions. In the first
iteration,P" andB(®) can be taken a8,, i.e, reliable feedback decisions are not available.
As the number of iterations increases, both metrics apprtiae asymptotic valueEsl, .

Calculation of these correlation matrices will be done ioti®oa 4.4.

4.3.2 Frequency Domain Equalization with Frequency DomairDecision Feedback
(FDE-FDDF)

The iterative frequency domain equalizer with hard and dettision feedback in the fre-
guency domain is studied in [4], [5] and [36] for the SISO eyss. We derive the filter
matrices based on the MMSE criterion like the FDE-TDDF caSice, FDE-TDDF de-
scribed in the previous section and FDE-FDDF are both basdldeossame MMSE criterion
in the time domain, both structures are actually equival@uitput of the FDE-FDDF for the

K" vector in the block (for thé" iteration) can be expressed as,
j=0
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fork =0,...,N-1. Wﬁi)’s and C?)’s are forward and feedback filters both in frequency
domain with size® x ny andn; x n; respectively ancf(gi‘l)’s are the DFT's of soft decisions
from the previous iteration. Since, the proposed FDE-TDB# RDE-FDDF structures are
equivalent, one can find a relation between the time domaidbiack fiItersFﬁi) and the

frequency domain feedback filte@gi). It can be shown that

N-1
FDymn) = >y (m etz N (4.30)
=0

formn = 1,...,nr andk = 0,...,N — 1 where (n,n)" element of cﬁ‘))H and F?’)H

are defined as@’)"(m n) and €{’)"(m. n) respectively. Since the optimization problem
for FDE-FDDF case is mathematically equivalent to FDE-TD{Slection 4.3.1) with the
constraintF?)(n, n =0 n=1...,n, we can set the constraint for frequency domain

feedback filters from (4.30) as

N-1
FOm=>cmn=0n=1..n (4.31)
1=0

With this constraint, one can avoid self-subtraction of desired symbol by its previous
estimate. The Lagrange multiplier method can be used oraia sgobtain optimal forward
and backward frequency domain filters. Lagrangian vectodsthe corresponding scalar
constraints (Lagrangian function) can be written as

r0 = diag[r{,....r{| . Lagrangiar(r<'>):Z‘{Z)(C?)(n,n))*rﬂ). (4.32)
n=1 j=

By taking the gradient of the cost function and the Lagramgigth respect to the rows of
(W?))H and @Ei))H, the following are obtained

N-1 N-1 . » .
V) = E{g(q.k)*vl[Z)(Y,-“w(,-')(n)q,k - XM - 09 (4.33)
= ]=

N-1 N-1 N-1
Vi = E{kZO —(q.k)*f<.“‘1>[J_Zoor,-”w(,-”(n)q,k - (K{T)ReD ) - ()1 + kZO rYen
(4.34)
forl=0,...,N=-1andn=1,...,n whereW(ji)(n) andC?)(n) are then™ column ofW(ji)
andCﬁi) respectively. Expectations required to find filter coeffitéecan be calculated easily

from vector DFT operation and (4.2) as follows

E(Y (X)) = A POy (4.35)
EX VX)) = BOsg (4.36)
ECXE V00 = PO (4.37)
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After equating the gradients to zero vector, taking expexta by using the equations above
and combining vectors into single matrix equationstioe 1,...,n;, one can obtain the
following matrix equations giving out the optimal forwarddabackward filter matrices in
the frequency domain
RijEi) =Aj[Edn + P(i)C?)] (4.38)
BOCH = (PO)H [K'fw?’ - m] 0 (4.39)

for j=0,...,N -1, andl’®) can be obtained from the constraint:
N-1
Z cnm=0n=1.n (4.40)
=0

By substitutingw?)’s into (4.39) and using the constraint, the Lagrangian seginen in
(4.32) and backward filter matrices can be readily found afbene calculus as,

25 AP (. )DPen)]

) = [Z}i‘olAﬁi)(n, n)] =1,...,n (4.41)
c0 = AQ D0 10, (4.42)

where
AD = [0 - (PO)'R] Ry AP0 (4.43)
Dgi) _ (P(i))HX'J_" R\_(:}'KjEs_ (POYH, (4.44)

Aﬁi)(n, }) is then-th row ofA(ji), D?)(:, n) is then—th column ofDﬁi) andW?)’s are obtained
from (4.38) forj=0,...,N - 1.

It is seen that the computational complexity to obtain faxvand feedback filters is con-
siderably reduced for SC FDE-FDDF case in comparison to FDB¥, since onlyn, x n,
andn; x n; matrix inversions are needed as can be seen from (4.41)}(@l sizes of these
matrices are independent of the block lendth like OFDM based systems. Therefore, the
complexity of SC FDE-FDDF technique for MIMO wideband chalsnis comparable to
MIMO-OFDM systems.

4.4 Ilterative Decoding

In this section, we will calculate the log-likelihood ragidLLR) and soft decisions of the
coded symbols for FDE with frequency domain decision feekl§gDDF). BPSK modula-

tion is assumed for simplicity, but the extension to otheai-or M-PSK modulations is
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straightforward in principle. At each iteration, extriagnformation is extracted from detec-
tion and decoding stages and is then used as a priori infmmiatthe next iteration, just as
in turbo decoding. The soft output from the FDE-FDDF in iHdteration after (4.29) can

be written as,

m

%O = Qx4 O (4.45)
fork=0,...,N-1andm=1,...,n. Inthis case, the equalized MIMO channel in (4.45)
can be considered as a quasi-parallelized channel and fRédrlthek™ symbol transmitted
atm" antenna can be written as

P V1xn = +1)

L™® = og
‘ TP O = 1)

(4.46)

The LLR term LE‘ © is the extrinsic information that can be obtained from thaatiger
output. An a-priori probability ratid_rk"(p) (log, EEXXE 1)) is given by the decoder as the
intrinsic information obtained from the previous iteratif86], [51] and used to construct a

soft estimate of the coded symbol transmittedi&tantenna fok™" vector.

The equivalent complex amplltudp(') of the symbol transmitted from the" antenna at
the output of the equalizer and the residual interferenweptf{lnﬂ‘ (i)lz} can be computed
by using (4.29) as follows,

N-

ER OO /Es = Y, SIWPm)A; - (COm)" (PO) e
j=0

|_\

W) -

MZ

%(W?Rm»HX,-em (@.47)
j=0

andE{l" V1) = B4 OR) - Edul)I? where

N Ot (0) N 0y H RO 0
WO )Ry, WOm) + > Z(CPm)"BOCH m)

j=0

E(Z"OP) = 1
4N

J:

Z
|_\

%Re{(W?’(m))HX,-P(i>c§‘)(m)} (4.48)

i
o

form=1,...,n, WhereW?)(m) andCﬁi)(m) are them™ column of\Nﬁi) andC?) respectively.

It is important to note thamﬂq) and E{|nE‘ (i)|2} values do not depend on symbol time index
k, so these values are calculated only once for the decodingeblock in each iteration.
The inputs to the decoder in terms of the LLR for each codeshsircan be calculated

by knowing the optimal filter coefficients. The residual ifiéeence at the output from the
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equalizer is well approximated by a Gaussian distribut®m§36], [51]. Then, the extrinsic
information given in (4.46) can be expressed as

me AR L)

L == — (4.49)

E{ln"?)

Soft feedback decisions for the FDE-FDDF can be expressttrims of the extrinsic infor-

mation provided by the decoder as follows [51]:

P[x]] £ P[xl = bj] = % 1+b; tanh(%Lﬂ((p))], bj € {+1, -1} (4.50)
o 1m
=B = > XK = tanh(ELk “”) (4.51)
XMe(+1,-1)

forEs =1, m=1...,npandk = 0,...,N — 1. The non-zero diagonal entries of the
correlation matrice®® andB( in (4.13) used by the forward and backward filters can be

calculated by using the following approximation,

Prem 2 EOCRT)) = E(E(XTHRT)*) = K072 (4.52)
=
Pm=Pm= N épk,m (4.53)

E{x{(“} was taken as<k”T and this is a common assumption in various turbo detection-te

niques as done in [36], [51] and [46].

This structure recovers from the exponential decoding dexity of the optimal maximum
likelihood (ML) receiver by parallelizing the channel aetbqualization stage. Therefore,
the complexity of LLR computation which is the most compiatadlly demanding part of
the receiver is significantly reduced in this case and it shiovear dependence on the num-

ber of transmit antennas and constellation size.

4.5 Asymptotic Performance Analysis

At each iteration, forward and feedback filters approachothténal coefficients in case of
perfect feedback with the help of improved log a-postenabability (APP) ratio of each

coded symbol obtained from the decoder. At later iteratidesdback decisions become
more and more reliable and correlation matrices approagtasymptotic valuesP®) —

Eoln andB® — Edl,,. Signal-to-interference-noise-ratio’s (SINR) of eachaielized
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channel in (4.45) after equalization are evaluated in AdpeB for the asymptotic case and

given as

L-1 n

SINRn=22|H|(i,m)|2§—Z, form=1,....n (4.54)

=0 i=1

It is seen from (4.54) that one can achieve the full divergiyn (0 x L) at each of the

parallelized channels. If transmit diversity schemes anftirm of coding across antennas
such as universal space-time codes [45] or other codingptaxing based techniques [16]
are utilized, the maximum potential diversity gain of & n; x L) can be achieved by the

proposed equalization scheme here.

A scheme is approximately universal if it is in deep fade amhen the channel itself is in
outage [45]. D-BLAST architecture satisfies this critertmyp appropriate choice of code-
words and being approximately universal is sufficient foclaesne to achieve the diversity-
multiplexing tradeoff of the channel [55], [45]. Transm@@sschemes based on D-BLAST
can achieve the full diversity gain of the flat fading MIMO dim&l| (0, x ), if the temporal
coding with stream rotation is capacity-achieving (Gaassiode books with infinite block
sizeT). Moreover, the D-BLAST system can achieve the maximum capavith outage,

if the wasted space-time dimensions along the diagonaleegkected [45]. Therefore, by
incorporating these types of coding structures in our psedoequalizer, one can achieve
the diversity-multiplexing tradeoff of the frequency selee MIMO channel. However, this

pursuit is beyond the scope of this thesis.

In our case, we have used simple coding structures thatwactiie optimal rate-diversity
tradeoff given by the singleton bound for block-fading amels in [30]. As it will be seenin
Section 4.6, one can get a very close performance to the@ptapability of MIMO-OFDM

scheme.

We can calculate the asymptotic outage of our MIMO SC-FDHcstire approximately
by assuming independent identically distributed chanags tin (4.1) and using (4.54) as
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follows,

Nt
Poat R = P{CE3E ook < {Z 092(1+S|NRn)<R}
m=1

L-1 nf
Py omax Iogz[ ZZ; H|(i,m)|2]< R}

0
L-1 n Nt
IP>{|og2 [1 + =S Z Z IH(i, 1)|2] < R}J
| i=1
P Hi(i, 1)]2 2R1nt—]P>ESH112 2R1ntan
{nl]anN_ol (DR < }) —( {N—O| oL 1P < 2R - })

nene L R _ q1yxnL
1-exp KWN%J? ~ &
(Es/NO)ntan

IA

IA

(4.55)

|
|
|

where standard probability evaluation techniques for maxn of independent random vari-
ables are employed. It is observed from (4.55) that the eutagbability has a decay rate in
the order of f; x n; x L) similar to MIMO-OFDM scheme and this outage is approximate

achieved by our practical SC-FDE scheme as will be seen itidBet.6.

4.6 Simulation Results

4.6.1 Outage Probability and MFB Calculations

In this section, we will compare the performance of our peggbequalizer with the hy-
pothetical matched filtering bound (MFB) performance araldbrresponding constrained
outage probability of MIMO-OFDM system. The constraineghaeity can be found for

the system model in (4.2) given the complex vectorysef cardinality M™ (e.g.,M-ary or
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M-PSK modulations) as follows

N-1
1 —
CMiMo-_oFom = N j:z(:) L(X; YilA))
1= _ _
=N (H(XjIA) = HOX Y . A))

1 1
SN (|092 =By, {|092 [ P(X1|Yj)]})

1= Zxiey POYjIX) = Xi)]}
= lo - = Ex. vy . {lo '
R =R { gz[ p(Y §1X5)
1\ Sxier €XP(=NY ) = AjXill2/No
= |ng vl — N E)(j Eyjp(j Iogz[ X ( a - )
= exp(-1Yj = AjX;I12/No)

1\t 1 —[IA;(Xk = Xi) + NjlI + [INj|[?
= Iy IOgZ(M) — N ENj {Z W |ng Z exp( J IN0 J J

Xkex Xiexy
(4.56)

whereN is the number of OFDM subcarriers. Then, the correspondirigge probability
can be written as

pMMO-OFPM xRy = ]P){C)I{IIIMO—OFDM < R}' (4.57)

out

Itis well known that the SC-MMSE receiver reduces to a chamatched filter if the perfect
a priori information of the all transmitted symbols leadiiaglSI| and inter-stream interfer-
ence is available at the receiver and all the interferencariselled [51]. Therefore, an upper
bound to the packet error rate (PER) referred to as the ndidter bound (MFB) of the

receiver can be obtained by assuming perfect decision &&dB].

Alternatively, we can define a different MFB for wideband MIMchannels. This second
MFB for wideband MIMO channels can be constructed such tiasystem is kept silent
after one symbol vector transmission for a time duratioreeging the delay spread until
the last echo is received. The receiver optimally combitlesbaerved echoes coming from
different multipaths belonging to the same symbol. Thea,dhuivalent MFB channel can
be written as,

Yk = Hequ + Nk (4.58)

where
[T T T T 9
Heq = [HO HI ... H,__l] . (4.59)
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In this case, one can construct a nearly optimal iterativé®Ireceiver structure based
on the channel in (4.58). The nearly optimal decoder cansitproducing the posterior
probabilities of the binary coded symbols, and then feedirege probabilities to an ML
decoder for the given binary code over the resulting binapyt continuous-output channel.
One can calculate the extrinsic information given by the N hulti-stream detector to the

SISO channel decoder exactly such that

plykIxg' = +1)
L@ — o, 2K ¢ 4.60
: % BT = ) (4.60)
ot XK ) PO XM = +1
_ . Zxext, PYKIXi) p( kIXrn ) (4.61)
Dxexm POYKIXi) pXKlXg = —1)
g, Dt exp| ~llyk — Heqxl?/No| [Tjm PIx] “62)
* Seexss €XP[ =k = Hetl2/No| [Tjm PIX] '
m=1,...,n, where BPSK modulation is used for simplicity and
XI’TI’\ é {(b]_, cees bm_l, +1, bm+1, ceey bnt) b] € {+1, _1}’ J ?& m} ° (463)
P[x/] 2 P[X = bj], bj € {+1,-1}. (4.64)

Similarly y;, is defined. This scheme is particularly effective if usedanjanction with bit-
interleaved coded modulation (BICM) [10], but it suffersrn tremendous computational
complexity which is exponential in constellation size, mwhel length and the number of
transmit antennas as explained in [51] for multiuser sch;eﬁ’{eqj(]‘s are the a priori proba-
bilities of the coded symbols obtained by the decoder as.BOj4ork = 0,...,N -1 and

j = 1,....n. Constrained outage probability and two MFBs obtained héltdoe used for

evaluation purposes in the next part.

4.6.2 Code Construction and Performance Results

The code construction used in our work is similar to the $tmecfor random-like codes
adapted to the block-fading channel based on blockwiseatenation and on bit-interleaved
coded modulation (BICM) in [16]. The presented coded mditraconstruction in [16]
systematically yields singleton-bound achieving turize-icodes defined over an arbitrary
signal set. As such, any other coding architecture thabped well in parallel block fad-
ing channels can be used in our system. We have used the saodirgnand decoding

structures as in [16] and [30] in simulations.
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A sample coding structure used in simulations is shown in &ig. Here, the outer code is
a simple repetition code of rate= 1/n; and the inner codes are rate-1 accumulators which
is referred to as the repeat and blockwise accumulate (RBéé ¢16]. Fig. 4.3 shows the
performance of the proposed FDE-FDDF for:a4tMIMO system with the use of full block
diversity attaining RBA code of rate= 1/4. The channel model described in Section 4.2 is
assumed and typical COST207 channel with exponential pdedary profile for suburban
and urban areas [37] is used. BPSK modulation is used forlisitypbut other M-ary or
M-PSK modulations combined with BICM [10] can be applied to proposed structure.
Symbol duration is taken asilsecond, and the channel lengtlequals 8. The first channel
tap is taken as unity power. The information block leng#, ithe information bits entering
the outer encoder is taken Ks= 250, then the block lengtN is equal toK/(r-ny)+1 = 251
including termination bits. The number of iterations imsithe turbo RBA decoder is set
to 10 and the number of equalizer iterations at which the &dwand backward filters are

updated by using the reliability matrices is taken as 3.
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Figure 4.2: RBA Encoding and Decoding structure for 4 MIMO channel withr = 1/4
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Itis seen from Fig. 4.3 that the performance of FDE-FDDF3dB away from MFB. There
is approximately 1.5 dB difference between the outage fitibaof the MIMO-OFDM at
rateR = n;-r = 1 bits/sec/Hz and this gap from the outage is similar to tips gétained with
RBA in parallel block fading channels in [16]. Then, one cag that the ISI, the substream
interference, and the error propagation problem in detiféedback is almost eliminated
since the perfect decision feedback performance (MFB) psagmately achieved. More-
over, it is seen that the performance of FDE-FDDF shows threesdope as MIMO-OFDM
outage and so it is possible to attain the maximum divergitg@MIMO broadband channel
by using the proposed space-time equalizer and codingatiassmit antennas. Further-
more, SC-FDE based schemes could be a promising candidateizband MIMO systems
as an alternative to MIMO-OFDM schemes and if one takes tb dioie to PAPR problem
in OFDM based systems into consideration, the performaifterehce between SC-FDE
based MIMO schemes and the MIMO-OFDM systems will be moreiaant.
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Figure 4.3: Performance comparison of frequency domairalezgtion techniques with
matched filter bound and with outage probability fox4t MIMO system,Ts = 1u sec,
COST 207 typical suburban exponential chanhek 8 and RBA code is used Wi'[kl code
rate.
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In Fig. 4.4, simulation results are depicted for code rate, 1/2. A full block diversity
attaining blockwise concatenated code (BCC) is used fooding as adapted from [16].
The outer code is a rak% convolutional code and the inner codes artrivial rate-1 accu-
mulators. The information block lengt is taken as 248. Similar results are obtained and
a close performance to MIMO-OFDM outage at rRte- n; - r = 2 bits/sec/Hz is achieved

within 2 dB.
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Figure 4.4: Performance comparison of frequency domairalezgion techniques with
matched filter bound and with outage probability fox4t MIMO system,Ts = 1u sec,
COST 207 typical suburban exponential chanhet, 8 and BCC is used witl% code rate.
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Our proposed SC-FDE can also be applied to classical SISGhisinels. In Fig. 4.5, we
compared the performance of iterative SC-FDE-FDDF-seftifmck with that of the outage
of an OFDM scheme and BPSK modulation is used. A convolutienaoder withr = 1/2
serially concatenated (SC) to a rate-1 accumulator is ustédniormation block lengthK =
123. At first glance, it is surprising to note that the coriesgd OFDM outage probability
is surpassed by the iterative FDE-FDDF, but as stated in 5@ capacity of wideband
channels under non-Gaussian alphabets is an open probt®@FDM is not the capacity
achieving scheme for non-Gaussian input alphabets. Manictuersity order achieved by
OFDM is given by the singleton-bound and this diversity ifolethe diversity order of the
channel for BPSK modulation at= 1/2. However, SC-FDE does not necessitate coding
or Gaussian alphabet to attain maximum potential diveisitier of the channel in SISO

systems.
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Figure 4.5: Performance comparison of frequency domairalezgion techniques with
matched filter bound and with outage probability for OFDMtews, Ts = 0.5u sec, COST
207 typical suburban exponential channek 15 and SC code is used wig']code rate.

76



Furthermore, it is interesting to note that the performangerovement of the FDE-FDDF
scheme over the linear FDE without decision feedback istbaB at PER=0.0001 for all
simulation results. There is also a loss in diversity as degkin the reduced PER slope
without decision feedback. One can say that the proposezkgpae equalizer gains more
diversity in comparison to linear FDE by a careful design athithe forward and backward

filters.

4.7 Conclusion

In this chapter, we extended the SC-FDE mechanism from Sk&Dnels to more gen-
eral vector-based models which include MIMO as a specia.céée have also shown that
capacity-achieving jointly optimal forward and backwairltefing operations can be effec-
tively performed in the frequency domain. It is observed #r@or performance close to
the outage probability can be attained by careful codingssctransmit antennas without
compromising computational complexity. Therefore, owpased iterative SC FDE tech-
nigue for MIMO wideband channels can be viewed as a stroegrative to MIMO-OFDM

schemes with similar complexity.
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions

In this thesis, we proposed various transmitter and recanahitectures which yield a close
performance to channel capacity for the cases with and witB&IT. In Chapter 2, an adap-
tive scheme based on the reduced precoding idea is propos#teflimited rate feedback
(LRF) MIMO channel. Our main contribution in Chapter 2 is ttherivation of an upper

bound expression for the ergodic capacity that is valid faevide range of vector based
guantization schemes. The tight analytical bound can be tesdetermine the number of
precoders to be used at each average SNR value in order toimesthe spectral efficiency
for a given accuracy of the CSIT. This strategy brings largpacity improvements espe-
cially whenn; > n, and decoding complexity reduction due to the paralleliraidf the

MIMO channel when compared with no CSIT schemes.

In Chapters 3 and 4, we propose a practical receiver artlnieeover coded modulation
schemes that exhibits a close performance to the informaiidage for MIMO and block
fading channels, when CSIT is not available. It is known thatavailability of CSIT does
not have an observable effect over ergodic capacity, whés not much larger thamn,.
Thus, the only advantage coming from CSIT is the ease of diegatiie to the conversion
of the MIMO channel into non-interfering SISO channels. Hwer, we show that it is still
possible to exploit the total diversity benefits of the chelnwhen the channel knowledge is

only available at receiver, without compromising the reeecomplexity.

Our proposed receiver structure is actually informatiogotietically optimal and based on
the iterative equalization and decoding idea. The feedlackfeedforward filters in the
equalization stage are jointly optimized to mitigate thieiference by using the reliability

information given by the decoder.
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In Chapter 3, the proposed receiver architecture is aptitite decoding of rotated multidi-
mensional constellation over block fading channels. Ibisesved that the optimal reliability
exponent attained by Gaussian inputs and the correspoodiage probability is achieved
by the proposed structure with finite input alphabets. Tioeee we can say that the the-
oretical benefits of multidimensional rotations are effedy materialized by the proposed
practical receiver. As a side contribution, we can say timapke rotations like DFT are

sufficient to get full diversity performance when the progstructure is used. In Chap-
ter 4, we applied our proposed receiver architecture to wadd MIMO channels without

CSIT in cooperation with the SC-FDE technique. It is obsérrat the proposed receiver
exploits the multipath and space diversity sources of ttechl effectively such that very
close performance to the outage probability is possible.aAgle conclusion, we can say
that this structure can be viewed as a strong alternative M®AOFDM based schemes.
Both equalizer structures in Chapter 3 and 4 reduce thevexceomplexity, mainly, the

complexity of LLR computation before the decoding staggnisicantly by parallelizing the

channel effectively.

In Chapter 2, we considered only the adaptive precodingnsehia which the number of
beamformers used is changed based on the average SNR vaheximize spectral effi-

ciency. However, adaptive modulation and coding strusturewhich the constellation size
for non-Gaussian alphabets and code rates are changed/alyapan easily be incorporated

into our proposed scheme.

In Chapters 3 and 4, the proposed schemes based on rotatstelledions and SC-FDE
technique are studied for fixed rate and coding scenariogolgpower or rate adaptation
schemes useful for block fading channels can be applied teymiem easily. Therefore,
the proposed schemes are suitable for slow time-varyingrais, in which the adaptive

modulation techniques are used to keep the desired outabelplity constant.

To sum up, SC-FDE and rotated constellation based schemeshbgve a very close perfor-
mance to the outage and exploit full diversity by using affecequalization and interference
suppression techniques different than the CSIT-basedrseheln case of CSIT, the quan-
tized form of channel realization at the receiver is fed baxrkhe transmitter in order to

parallelize the channel.

One has to take the number of antennas at the receiver andattseitter, the number of
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feedback bits used to quantize beamformers, availabilitieofeedback channel, imperfec-
tions due to quantization, mobility, the channel estinraigsues and required complexity
into account while choosing between the proposed schenesleriding whether to use
CSIT or not.

5.2 Future Studies

In the slow fading channel model assumed throughout theystuel mentioned the power
adaptation based on short-term power constraint. Althpitghknown that the selection of
short-term and long-term power constraints does not havebaarvable effect on ergodic
capacity, its effect on the outage is remarkable for the $hmling channels in which one
codeword sees only a finite number of channel states [11].refdre, power adaptation
schemes based on long-term power constraint will be inya&tstd and incorporated into our

proposed structures.

Future studies will also include the consideration of infigetr channel estimation at the
receiver on the performance of the proposed structurestendelayed transmission of the

CSl to the transmitter side within a limited rate feedbadknsaio.
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APPENDIX A

PROOF OF (2.14)

Define a matrixB = EHH* with elementsB; ; = 2did; (27, Vikvjfkk) and another matrix
A = |, +B. For the capacity bound of the-precoder MIMO scheme, the determinant of the

nx nmatrix A is necessary in evaluating (2.14) and it can be found by lizflonmula [12]:

det@) = l_[ Ai,(rk(i)] -SgN(Zk), (A1)

(keS™ k=1,....n!) ( i=1

wheredX(i) is thei" element ofgy which is thek™ element of the permutation gro@,
andS* includes all possible permutations of the Set {1, 2,...,n}. There aren! different
permutations ofS and hence5* is composed oh! permutations. The functiofsgn of
permutations in the permutation gro@p returns+1 or —1 for even and odd permutations,

respectively [15].

Recalling thatAj; equalsB;; for i # j and 1+ B;j; otherwise, one can write the determinant
expression in a compact form in termsgf’s directly from (A.1) after a careful inspection
as

n

det@d) =1+ )
k=1 Sk=(ay.....ak)€Px

k
2 {n Ba,o'(i)-sgn(zl‘)} : (A.2)
)

(zkes;. 1=1.... k1) \i=1

wherePy is the set containing all possible, k) combinations of1,2,...,n}. Sk includes
all possible permutations &y = {ai,a,...,a} and there ard! different permutations
in S;. In the above expression, the setkefelement combination frons = {1,2,...,n}

thei™ element ofzk which is thel™ element of the permutation gro. Recalling that

Bij = %didj (Zﬂzl Vikvjfkk), one can puBj into det@) expression given in (A.2) and obtain
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the following:

det@)=1+i Z(Zﬁ[

k=1 SkePk skes; i=
P n
[ﬁda doigy D, (Vam) (Vi mm)*] sgn(zf)). (A-3)
m=1

The above expression can be simplified as follows. DefiSipg {a, ..., ax} and a partition
sk.sk,..., S'g c Sk which are disjoint sets that satisBf USKuU. . .US'g =S ={a,...,a,
$(j) is the j™ element inSK so thats(j), j = 1,...,ISK, are the elements belonging &
where|Sik| is the cardinality oiSik fori=1,2,...,p (1< p<Kk). Although there are many
terms in (A.3), the only terms that have nonzero mean arerths all composed of squared
forms|Vij|2. This is due to the reason thd; has a uniformly distributed phase in, @),
which is independent d&f for all k # j andV; for all | # i. This uniform phase distribution
will result in a zero expected value for any term which has@-sguared form o¥j;. Using
this fact and after a few straightforward steps, the follmyvsimplified expression can be

obtained from (A.3) after taking expectation

Eldeta)) = E1+ Y Y ((—) (e, -~ 0.

k=1 SkePg

[ﬁ i

i=1 z=1 j=1

|V§k(J)Z | ] sgn(Z:‘))},

(A.4)

wherezy # 2, # ... # zp, If = (ZK(1),...,ZX(p)), and S is the permutation group that

includes all possible permutations of the eIementShnln the above equationSf]P=1-k

is the set that includes all possibte-element partitionisk,sk, . .,S") of the setSy for

.....

p=1...,k Therefore, the summaﬂoﬁ((sk Sk Sk)e[Sk P-1..k) Z(Zk(t)esk* t=1 p) in (A.4)

ond summationz(zlk(t)estk*,t:l ) is taken over all different permutations of the chosen

.....

partition of Sx. Actually, the summatiorﬁ(zk(t)esk* t=1...p) is the shorthand notation of

.....

Z(Zk(l)gsk*) Z(Zk(z)esk Z(Ek(p)esk ) andsgn(zk) takes values-1 or—1 depending on whether

2K = (ZK(),...,ZK(p)) is an even or odd permutation.
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Lemmal The expression given in (A.4) can be simplified as

E(det@)) = 1+ZZ( )(daldaz - da,)?.

k=1 SkePx

2 2
(lvaljll T |Vakjk| )}
(j2€S) (j2€S, j2#j1)  (Ik€S, k#j1seik-1)

(A.5)

Proof: The lemma suggests that the only remaining terms in (A.d)tlae terms result-
ing from the partition of 5'{,...,8[")) with p = k. The only possible partition is then
SK = {a1),SK = {a),....S{ = {a, and|SK = 1 for all i's. Eqn. (A.4) reduces to
(A5)forp = kandzy #  # ... # z. Any term included within the summation

Z((Sk SK.....SK)e[Si] LK) Z(zk(t)esk t=1....p) in (A.4) but not in (A.5) can also be written as

.....

ISK

p
[ [V J)Z| (A.6)

i=1 j=1

for any givenzy, z, . ..,z, between 1 and wherez; # 2z # ... # z, (the terms with the
samez’s are already in another partition &). #<(j) is the j element ofSik as defined
before. For the above term, at least one of$ﬁB has cardinalitysﬂ greater than or equal
to 2 for somei sincep < k, i.e., maﬁsisp(lsﬁ) > 2. Note that the terms in (A.5) have
ISk =1fori=12...,pandp=k.

The terms in the form given in (A.6) originate from the ternaegi below in (A.4)

ISK]

[lﬂliﬂ|\/ﬁkmz| ] sgn(zf) (A7)

i=1 z=1 j=1

Now focus on the summation in (A.4) over permutatidi{fst) e Sfort =1,...,p. Fix
21,....2p (1 # 2 # ... # zy mandated by (A.6)) and all the(1), =(2), ..., ZK(p) permu-

tations except for one of t}ﬁ((c) with |S(‘§| > 2. Then, (A.6) can be written as

p ISK ISK|
[I_H_HV#(»J] 1_[|V§(J)zc| 59”( ) (A.8)

i#zc j=1

along with the permutation sign. By taking the summatiorrmiﬁerentzl‘(c) permutations,
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one can get

ISk

p
sgn(Zf(t). t=1...., pandt # c). l—[ l—[ |V§k(j)z|2-
i#c j=1
ISK| ,
2 |1 1 Vaial ]-Sgn(zlk(C)) =0, (A.9)
zK()esk =1

since there are equal number of even and odd permutatidissett if|SX| > 2 with opposite

signs [15]. In other words, in the above equati;gr(zl‘(c)) is +1 for % times and-1 for

'825“ times again. Therefore, the expression in (A.9) goes to aatbthis can be done for

other={(1),...,ZK(p) permutations. The terms presented in (A.6) cancel ea@ otH{A.4)
and (A.4) reduces to the equation given in (AQ)E.D.

The simplified form of the capacity bound in (A.5) is importtasince
E[IVayjsl -+ Vaci?] = E [Vayjs ] -~ E | Vail?] (A.10)

by the independence &y, j,12,. . .,[Vaj? Since the distribution oV, [*'s are identical
and same as the distribution|9%4/2 if & = j; and equal to the distribution §f12/2 if & # ji,
one need only the expected Va|lEPV11|2] = E;; andE [|V12|2] = E;,in order to calculate

the expression given in (A.5).
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APPENDIX B

ASYMPTOTIC SINR CALCULATION

If PO = BY = Eglp, one can writeA in (4.43) as
Ho1v |
A= [Eslnt _EZA R;JiA,-] (B.1)

By using Matrix Inversion Lemma, one can get

1 1 — — 1 —H] T 1 — —
= gln+ I EZA] [RYJ —AjE_IntEgAT] Aig = Es'ln + A NgYnA; (B.2)

Aj E.

and
Dj =—(A)™" (B.3)
is written from (4.44). Lagrangian terms in (4.32) can benbas

N AN
a ZN‘lA-(n n) a N-1 EsxM A
o Ay [1+ EX (n)Aj(n)]

,h=1,...,n (B.4)

Iy

by using (4.41) and (B.2) and further noting tdt (n, )D® (-, n) = (AYD{)(n.n) = -1 by

(B.3). Defining
N-1

5>

=0

E<— —
1+ —A"(MA;M)]. (B.5)
No
feedback filter matrices can be obtained as
Cj=-ln—-AT (B.6)

from (4.42) and (B.3). One can obtain the columns of feedljdigk matrices by putting
(B.2) and (B.4) into (B.6) such that

N Es—H—
Ci(N) = —en+ =— |&n + —A[ Aj() (B.7)
En NO
and forward filter can be found as
-
= NA(n)
N j
n

forj=0,...,N-1,n=1,...,n from (4.38) and (B.7).
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In this case, the soft estimate xjf is a scaled version of the matched filter output after ideal
interference cancellation in the frequency domain. SIN&'®ach parallelized channels
after equalization can be found after some manipulationdiygu(4.47) and (4.48) for the

asymptotic case as follows,

o AT A )

- B.9
HMn > ( )
and 2 )
N-1 2 yN-L [5 NA: (n)K-(n)]
S ES N N j=0 | No j i
EI? = 5 D, |1+ w5 — 2 | + (B.10)
k N = Ao In 32
: N-1[E2 N At vk
En?) = EsEn— NI [ NA, (”)AJ(”)] - 2o [N—ONA,- (n)Aj(n)]
— Edunl? =
T ¥2 32 sltn 57
(B.11)
forn=1,...,n.
The SINR can then be evaluated as
N—
|#m| Es _ 1 _ K
SINR, = e NZO m)A,(m)N—0 (B.12)

from (4.45), and one can obtain the following based on Pafsaelation by using (4.3)
1 N— E ny 1 Ny N-1 L-1 ny

_ - =S 2 = (i 2 2

SINRn = Z N Z; ()P = 21] Z NIH;j (i, m)| ZZMO mP

i (B.13)

form=1,...,n
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