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Supervisor,Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Yalçın Tanık
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ABSTRACT

NEAR CAPACITY OPERATING PRACTICAL TRANSCEIVERS FOR WIRELESS
FADING CHANNELS

Güvensen, Gökhan Muzaffer

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. AlïOzgür Yılmaz

February 2009, 90 pages

Multiple-input multiple-output (MIMO) systems have received much attention due to their

multiplexing and diversity capabilities. It is possible toobtain remarkable improvement

in spectral efficiency for wireless systems by using MIMO based schemes. However, so-

phisticated equalization and decoding structures are required for reliable communication at

high rates. In this thesis, capacity achieving practical transceiver structures are proposed for

MIMO wireless channels depending on the availability of channel state information at the

transmitter (CSIT).

First, an adaptive MIMO scheme based on the use of quantized CSIT and reduced precoding

idea is proposed. With the help of a very tight analytical upper bound obtained for limited

rate feedback (LRF) MIMO capacity, it is possible to construct an adaptive scheme varying

the number of beamformers used according to the average SNR value. It is shown that

this strategy always results in a significantly higher achievable rate than that of the schemes

which does not use CSIT, if the number of transmit antennas isgreater than that of receive

antennas.
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Secondly, it is known that the use of CSIT does not bring significant improvement over

capacity, when similar number of transmit and receive antennas are used; on the other hand,

it reduces the complexity of demodulation at the receiver byconverting the channel into non-

interfering subchannels. However, it is shown in this thesis that it is still possible to achieve

a performance very close to the outage probability and exploit the space-frequency diversity

benefits of the wireless fading channel without compromising the receiver complexity, even

if the CSIT is not used. The proposed receiver structure is based on iterative forward and

backward filtering to suppress the interference both in timeand space followed by a space-

time decoder. The rotation of multidimensional constellations for block fading channels and

the single-carrier frequency domain equalization (SC-FDE) technique for wideband MIMO

channels are studied as example applications.

Keywords: Limited rate feedback, MIMO channel, diversity,iterative decision feedback

equalization, block fading channel
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ÖZ

KABLOSUZ SÖNÜMLEMELİ KANALLAR İÇİN KAPASİTEYE YAKIN ÇALIŞAN
PRAṪIK ALICI-VER İCİ YAPILARI

Güvensen, Gökhan Muzaffer

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. AliÖzgür Yılmaz

Şubat 2009, 90 sayfa

Çok-girdili çok-çıktılı (MIMO) sistemler sahip oldukları çoğullama ve çeşitleme kapasite-

leri nedeniyle ilgi çekmektedirler. MIMO tabanlı haberleşme tekniklerinin kullanılması ile

birlikte, telsiz iletiminde kayda değer spektral verimlilik kazançları elde etmek mümkündür.

Yüksek haberleşme hızlarında güvenilir haberleşme yapabilmek için gelişmiş denkleştirme

ve kod çözme yöntemlerinin kullanılması gerekmektedir. Bu tez çalışmasında, MIMO telsiz

haberleşme kanalları için, kanal bilgisinin verici tarafında bulunup bulunmamasına bağlı

olarak kapasiteye yakın başarım gösteren alıcı-verici yapıları önerilmiştir.

İlk olarak, nicemlenmiş kanal bilgisinin verici tarafında kullanılmasına ve indirgenmiş ön

kodlama yöntemine dayanan uyarlanır MIMO haberleşme yapısı önerilmiştir. Sınırlı hızda

geribeslemeli (LRF) MIMO kanal kapasitesi için elde edilen çok sıkı bir üst sınırın kul-

lanılması ile ön-kodlayıcı sayısını ortalama işaret-g¨urültü-oranına (SNR) bağlı olarak değiş-

tiren uyarlamalı bir MIMO yapısı tasarlamak mümkündür.Verici tarafında bulunan anten

sayısının alıcı tarafındaki anten sayısından fazla olmasıdurumunda, önerilen bu yapının,

kanal bilgisinin vericide kullanılmadığı sistemlere göre önemli kapasite kazançları elde ettiği

görülmüştür.
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İkinci olarak, kanal durum bilgisinin verici tarafında kullanılması ile MIMO kanalı, birbir-

leriyle girişimde bulunmayan paralel alt kanallara ayırmak ve bu sayede kip çözme karmaşık-

lığını azaltmak mümkündür. Fakat, kanal bilgisinin getireceği kapasite kazançları, benzer

sayıda verici ve alıcı anten durumunda sınırlı kalmaktadır. Dolayısıyla, ikinci kısımda kanal

bilgisini verici tarafında kullanmadan bile, alıcı karmasıklıgını makul tutarak, kanal kesinti

olasılığına yakın başarım gösteren yapılar üzerinde durulmuştur. Önerilen alıcı yapıları

döngülü ileri ve geri beslemeli denkleştirme ve kod ç¨ozme tekniklerine dayanmaktadır.

Bu yapıların, MIMO kanalın varolan uzay ve frekans çeşitlemesini etkin bir biçimde kul-

landıkları ve kapasiteye yakın bir başarım elde edildiğigörülmektedir. Blok sönümlemeli

kanallarda çok boyutlu işaret yıldız kümelerinin döndürülmesi ve MIMO geniş bantlı kanal-

lar için önerilen tek taşıyıcılı-frekans uzayında denkleştirme (SC-FDE) tekniği örnek uygu-

lamalar olarak ele alınmıştır.

Anahtar Kelimeler: Sınırlı hızda geribesleme, MIMO kanal,çeşitleme, yinelemeli karar

geribeslemeli denkleştirme, blok sönümlemeli kanal
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acknowledged. I would like to appreciate the opportunity presented by ASELSAN Inc. and

I gain a lot of experience as a member of the aforementioned research team. I would also
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The wireless radio channel is a challenging medium for communication. This is not only

due to its susceptibility to noise, interference, and otherchannel impediments but also due

to the unpredictable variation of these impediments over time as a result of user movement

and environment dynamics. In wireless channels, the received signal power varies over

large distances due to path loss and shadowing. Also, it varies over short distances due to

the constructive and destructive addition of signal components coming from different paths

in a random manner [22]. This small-scale variation of the channel is called fading and

it makes the wireless channel completely different from itswired counterpart where the

channel impulse response is often constant and deterministic.

The main performance criterion of interest, while evaluating the different types of receiver

structures, is the packet error probability or packet errorrate (PER) when the focus is on

data communication. Fading can cause a dramatic increase inPER and thus puts a large

power penalty on receiver performance over wireless channels. One of the best techniques

to mitigate the effects of fading is diversity combining of independently fading signal paths.

Diversity combining exploits the fact that independent signal paths have a low probability of

experiencing deep fades simultaneously. Thus, the idea behind diversity is to send the same

data over independent fading paths. These independent paths can be combined in ways that

fading of the resultant signal is reduced significantly [45].

Multiple-input multiple-output (MIMO) systems can be effectively utilized to improve per-

formance through diversity since it is possible to create new independent signaling paths

in space by using multiple antennas at the transmitter and/or receiver sides. In addition to

their diversity capabilities, MIMO systems can also be usedto increase data rates through

multiplexing. That is to say, there is another mechanism forperformance gain called the
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multiplexing gain when both the transmitter and receiver have multiple antennas. The mul-

tiplexing gain of a MIMO system results from the fact that a MIMO channel can be decom-

posed into a numberR of parallel independent channels, one can get anR−fold increase in

data rate in comparison to single-input single-output (SISO) systems [45]. Therefore, MIMO

systems attract much attention due to their high multiplexing and diversity capabilities men-

tioned. They can potentially multiply the transmission rates while preserving the desired

reliability in wireless systems. MIMO based structures will function as the backbone of fu-

ture wireless systems. However, sophisticated equalization and decoding structures or the

knowledge of channel at the transmitter side are required inorder to capitalize the diversity

and multiplexing benefits of the MIMO channels.

The focus of this thesis work is in general on capacity achieving transceiver structures with

reasonable complexity in wireless fading channels with special emphasis on MIMO and

block fading channels. First, we consider the case where thechannel knowledge is assumed

to be known both at the receiver and transmitter side. In thiscase, the MIMO channel can

be converted into non-interfering parallel subchannels. This reduces the demodulation and

decoding complexity significantly. We later consider the case that the channel knowledge

is available only at the receiver side. In this case, it is still possible to achieve the full

diversity order of the channel without compromising the multiplexing gain and the receiver

complexity as shown in the subsequent chapters of the thesis. In short, we propose various

low complexity transmitter and receiver architectures, depending on the availability of the

channel state information at the transmitter side, which show a very close performance to the

channel capacity. Moreover, we study the tradeoffs betweenthe spectral efficiency, diversity,

accuracy of the channel state information at the transmitter (CSIT) along with issues such as

constellation size and complexity of the proposed schemes.

1.2 Outline and Contribution of the Thesis

In the first part of the thesis comprising of Chapter 2, the limited rate feedback (LRF) capac-

ity of the MIMO channel will be investigated. The capacity ofthe MIMO channel will be

investigated when the channel knowledge is available at thetransmitter with finite precision.

The ergodic capacity of a channel is the probabilistic average of the channel mutual infor-

mation over all possible fading states [22]. We used the ergodic capacity as the performance

2



measure throughout Chapter 2. It is shown that the number of beamformers used in spatial

multiplexing can be adaptively varied depending on the average signal-to-noise ratio (SNR)

value and equal power can be allocated to the selected sub channels. This strategy is suffi-

cient to achieve the MIMO channel capacity and allows efficient utilization of the feedback

bits required to quantize precoders (beamformers). In Chapter 2, our main contribution is

the development of a very tight analytical upper bound for the LRF capacity of the MIMO

channel under a wide class of vector quantization methods. This upper bound can be used

to determine the SNR regions specified for the operation of studied incremental precoding

scheme.

In the second part of the thesis including Chapters 3 and 4, capacity achieving receiver struc-

tures with reduced complexity are investigated for MIMO channels. It is observed that all of

the sub channels (or degrees of freedom) of a MIMO channel have to be used to maximize

the spectral efficiency for moderate and high SNR values since the actual capacity is not

affected by the availability of CSIT. In this case, the use ofCSIT is useful only for reducing

the receiver complexity due to the parallelization of the channel. However, we show that

one may attain without CSIT a very close performance to capacity without compromising

receiver complexity. In this part, information outage probability is the capacity measure.

In capacity with outage, the transmitter fixes a transmission rate and the outage probability

associated with this rate is the probability that the channel has mutual information less than

this given rate [22]. Outage probability is useful for performance evaluation of the proposed

receiver structures in a slow fading scenario, where the channel is constant over a relatively

long transmission time and then changes to a new value.

Without CSIT, the traditional transmission scheme can not convert MIMO channel into non-

interfering SISO channels and the decoding complexity is exponential in the number of

independent symbols transmitted over the multiple transmit antennas in this case. On the

other hand, we propose a reduced complexity iterative receiver structure based on feedfor-

ward and feedback filtering process for equalization and space-time decoding for general

vector channels as given in Fig. 1.1. The forward and backward filters within the equalizer

are jointly optimized according to minimum mean square error (MMSE) criterion to miti-

gate the effect of inter-symbol-interference (ISI) and multi-array interference (MAI) since

the signal streams from the multiple transmit antennas are transmitted at the same time and

frequency, thus they introduce both MAI and ISI in wideband MIMO communication. The

3



joint optimization of the forward and backward filters by using the reliability information

given by the decoder at each iteration makes our proposed structure different from the tradi-

tional iterative equalization and decoding techniques in the literature.

Figure 1.1: Iterative equalization and decoding

Our proposed receiver architecture is based on the information theoretically optimum re-

ceiver operation in [23]. We show that this idea can be effectively utilized for the receiver

operation of practical MIMO systems. We apply our structureto different practical scenar-

ios in which sophisticated equalization and decoding structures are necessary to achieve a

performance close to capacity.

In Chapter 3, we apply our proposed scheme to the decoding of rotated constellations over

block fading channels [17] which resemble the MIMO channel.In Chapter 4, we apply the

same iterative equalization and decoding idea to the wideband MIMO system in conjunction

with single-carrier frequency domain equalization (SC-FDE) technique [36]. In both cases,

4



it is observed that the proposed structure exploits the multi-path and space diversity sources

of the channel effectively such that performance very closeto outage probability is achieved.

As a side contribution, it is noted that the rotation of multidimensional constellation is an

effective technique to combat fading over block fading channels. Moreover, we can say that

the SC-FDE technique poses itself as a strong alternative toexisting orthogonal frequency

division multiplexing (OFDM) based techniques with the useof proposed receiver architec-

ture. Our proposed receiver structure recovers from the exponential decoding complexity

by parallelizing the channel similar to the quantizing precoder’s idea in Chapter 2. There-

fore, the computation complexity of the likelihood information, necessary for the decoding

stage, is reduced significantly. Different than the use of CSI at the transmitter with limited

feedback, the proposed structure realizes this without using any CSIT but with the help of

effective equalization and interference suppression techniques studied herein.

Finally, Chapter 5 is devoted to conclusions which providesa summary of our work and

related future studies.
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CHAPTER 2

AN UPPER BOUND FOR LIMITED RATE FEEDBACK MIMO

CAPACITY

2.1 Introduction

Capacity gains promised by multi-input multi-output (MIMO) systems often require an ac-

curate knowledge of the channel at transmitter and receiversides especially in quest to cap-

italize these possible gains in practical systems. An accuracy problem arises when channel

state information (CSI) has to be transmitted from the receiver to the transmitter. It is ob-

vious that CSI cannot be transmitted with infinite precision. A limited rate feedback (LRF)

channel is usually available for this communication and this sets a limit for the accuracy of

CSI at the transmitter side.

It was shown that the MIMO channel is interference-limited when the channel estimation

is imperfect [54]. It was further observed in [54] that instantaneous feedback, even if im-

perfect, gives large capacity gains in low SNR and is useful in high SNR, especially when

the number of transmit antennas (nt) is larger than that of receive antennas (nr ) [6]. In [39],

quantization rules and corresponding quantizer design criteria were proposed to be used in

MISO (multiple-input single-output) and MIMO channels. Quantization of beamformers

were investigated under a Grassmannian line packing framework with regard to quantization

codebook size, capacity-SNR loss, and outage performance in [34,35].

We investigate the capacity of point-to-point MIMO channels in this chapter as opposed to

the broadcast channel settings in aforementioned studies [25]. Although the capacity is less

affected by the lack of CSI on the transmitter side at high SNR[44], its availability is very

important both at low SNR and in designing practical systemsthat can operate close to the

capacity as in adaptively modulated MIMO schemes [56], since the complex task of joint

detection and decoding is avoided. Furthermore, the capacity is strictly smaller withnt > nr
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if no CSI is available at transmitter [6]. We concentrate on afinite rate feedback scenario in

which precoders obtained by the singular value decomposition of the MIMO channel [22]

are fed back to the transmitter side.

A capacity loss bound for covariance matrix based quantization was presented in [13] and

a capacity loss bound was proposed in [38] for designing matrix quantization based code-

books. We herein focus on quantizing the columns of the precoding matrix obtained from

singular value decomposition (SVD). The channel is quasi-parallelized by separately quan-

tizing precoders and well-known adaptive modulation and coding techniques can be utilized

as stated in [6]. Covariance matrices generated randomly with uniform distribution on the

unit sphere were used in [13], that is, random matrix quantization was studied. On the other

hand, our main contribution in this chapter of the thesis is the derivation of a capacity up-

per bound expression that is valid for a wide range of vector based quantization schemes.

The proposed upper bound turns out to be quite tight mainly due to the exact evaluation

of the expected value of matrix determinant as opposed to similar studies using Hadamard

inequality to upper bound the determinant as in [13] and using approximate density function

of determinant expression and partition cell approximation in [38], [41]. As a byproduct,

an absolute upper bound to LRF MIMO capacity using precodingbased quantization is also

herein derived by utilizing a bounding distribution for Grassmannian beamforming [40]. Fi-

nally, we propose a simple quantization method known as product code vector quantization

(PCVQ) [21] which can be quite useful to achieve rates quite close to the channel capacity

in practice, even for a small number of feedback bits.

2.2 System Model

The following notation is used throughout this chapter. Boldface lower and upper-case letters

denote column vectors and matrices, respectively. Scalarsare denoted by plain lower-case

letters. The superscript (·)∗ denotes the complex conjugate for scalars and conjugate trans-

pose for vectors and matrices. The absolute value of a scalaris shown by| · |. Then × n

identity matrix is shown byIn. The trace operator and determinant are denoted bytr(·) and

| · |, respectively. The autocorrelation matrix for a random vector a is Ra = E[aa∗], where

E[·] stands for the expected value operator. The (i, j)th element of a matrixA is denoted by

Ai, j .
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The general expression for a point-to-point MIMO channel with nr receive antennas andnt

transmit antennas is given byỹ = H̃x̃ + w̃, whereỹ is the received vector,̃H is thenr × nt

channel matrix,̃x is the transmitted vector, and̃w is the zero-mean circularly symmetric

complex Gaussian (ZMCSCG) white (spatially and temporally) noise with normalized vari-

ance 1. The channel matrix̃H is comprised of independent ZMCSCG random variables with

variance 1. Considering a block fading model, the channel matrix is assumed to be constant

during a coherence interval significantly larger than symbol duration. A fixed average power

is allotted for each transmission which corresponds to setting tr(Rx̃) ≤ P (Sec. 10.3 in [22]).

In the case that perfect channel information is available both at the transmitter and re-

ceiver, singular value decomposition (SVD) is applied to decompose the MIMO channel

into min(nr , nt) parallel subchannels over which multiple streams may be transmitted [32].

The following equivalent expression is obtained for the received vector when SVD is per-

formed to attainH̃ = UDV
∗
:

U∗ỹ = DV∗x̃ + U∗w̃. (2.1)

The entries ofD are taken to be decreasing without loss of generality. The transmitted vector

can be written in general as iñx = PΛx whereP is a precoding matrix,Λ is a diagonal

matrix used to distribute power among subchannels, andx is the original information vector

assumed to haveRx = Imin(nr ,nt). If the precoding matrix is chosen to beP = V, by the unitary

property of the precoding matrix (V∗V = I )

y = DΛx + w, (2.2)

wherey = U∗ỹ andw = U∗w̃. Since bothD andΛ are diagonal andRw = I , the channel

is decomposed into parallel subchannels. The capacity is achieved byΛ obtained through

the waterfilling procedure [32] with the constraint thattr(Λ2) ≤ P. We note here that the

columns of matrixV are isotropically distributed on thent−dimensional complex unit circle

when considered over the realizations ofH̃. When there is only a partial CSI at transmitter

due to finite rate feedback, one has imperfect precoding and power distribution matrices

denoted byVf andΛf , respectively. Eqn. (2.2) now becomes

y = DV∗VfΛf x + w (2.3)

which suggests that subchannels now interfere with each other sinceV∗Vf , I , in general.

We will investigate the capacity of LRF MIMO channels based on (2.3).
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In order to reduce the rate of the feedback channel, the idea of reduced precoding can be

used [33]. In this scheme, the number of beamformers used in aspatial multiplexing system

is adaptively varied in order to minimize probability of symbol vector error or to maximize

capacity by allocating equal power (Λ2
f =

P
n In) to selected subchannels [33], [38]. Trans-

mitting only the precoding vectors corresponding to the strongest subchannels will suffice

to maximize communication rate over MIMO channels. Thus, this strategy allows efficient

utilization of the feedback bits by quantizing only relevant precoders.

The analytical bound for limited rate feedback MIMO capacity to be obtained in Section

2.4 can be used to determine the number of precoders to be usedat each average SNR

value in order to maximize the spectral efficiency. The idea of reduced precoding and the

utilization of feedback for precoders are not only useful atlow SNR values but also at high

SNR especially for MIMO systems withnt > nr [6].

2.3 Capacity with Limited Rate Precoding

Eqn. (2.3) can be written with an equivalent channel matrixH = DV∗Vf as in

y = HΛf x + w. (2.4)

One can calculate the achievable rate of the LRF scheme with reduced precoding by calculat-

ing the mutual information betweenx andy for a Gaussian input alphabet with equal power

distribution among selected subchannels as done in [22] forMIMO channels. Through-

out this thesis, we refer to the maximum achievable rate as the system capacity for a given

scheme, whereas the term channel capacity is reserved for the capacity of the channel itself.

Noting thatΛ2
f =

P
n In, the capacity of this scheme which makes use ofn precoders is given

by

Cn−pre = E
{

log2 det
(

In +
P
n

HH ∗
)}

. (2.5)
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and can be achieved with MMSE estimation and successive interference cancellation [26,

27,42] where the equivalent channel matrixH can be written as

H = DV∗Vf

=






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














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






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




















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v∗1

v∗2
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v∗n
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






















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























[

v1f . . . vnf

]

.

(2.6)

The equivalent channel matrixH has its (i, j)th element asHi, j = div∗i vjf , wherevi is theith

column ofV and,vjf is the jth column ofVf . DefiningVi j = v∗i vjf , one can evaluate

(HH ∗)i, j = did j

















n
∑

k=1

VikV∗jk

















. (2.7)

Evaluation of the capacity in (2.5) requires the probability distributions ofVi j = v∗i vjf for

i, j ∈ {1, 2, . . . , n} and hence the quantization rule used for limited rate feedback has to be

specified.

A set of 2Nf vectors{q1, q2, . . . , q2Nf } generated to construct the quantization codebook are

defined whereNf stands for the number of feedback bits per precoding vector.Quantization

vectors are length-nt complex vectors on thent-dimensional complex unit circle and the

quantization while obtaining the precoding vectors is determined by the following rule used

in LRF MIMO studies [1,25,34,35]:

vif = arg max
qj , j=1,...,2Nf

|v∗i qj |2. (2.8)

Any quantization codebook can be used for this purpose and there is no prerequisite on

the construction of the codebook. The codebooks are available both at the transmitter and

receiver. The indexj, corresponding to the selected quantization vector, is sent from the

receiver to the transmitter side and thus the transmitter carries out the beamforming operation

by using the precoding vectors with proper indices.

The MIMO channel can be quasi-parallelized by using the given quantization rule since the

precoders are separately quantized in this case and for sufficient number of feedback bits,

spatial interference between the subchannels is very small. In this case, the demodulation
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complexity is significantly reduced and well known adaptivemodulation and coding tech-

niques for parallel block fading channels can be easily incorporated in our LRF system.

There are two types of random variables in (2.5) whose distributions and dependence prop-

erties have to be determined in order to evaluateCn−pre. First, the cumulative distribution

function (cdf) ofVii = v∗i vif is peculiar to the given quantization codebook and rule, andwe

will investigate the cdf ofVii for two different quantization methods in Section 2.5. More-

over, the cdf forVi j ’s for i , j is needed. In [1,34,35], the cdf of the squared absolute inner

product between two isotropically distributed length-nt complex unit vectors is given as

Fnt
o (x) =



































1− (1− x)nt−1 , 0 ≤ x ≤ 1

0 , x < 0

1 , x > 1.

(2.9)

The same result and hence cdf hold for the case of one fixed vector and an isotropically

distributed vector, since one of them being isotropically distributed is sufficient for the result

[34]. Bearing in mind thatv∗i vjf corresponds to projection ofvi ontovjf , the following holds

by orthogonality ofvi ’s in our problem

v∗kv1f = v∗k



















v1f −
k−1
∑

j=1

(v∗j v1f)vj



















(2.10)

for k = 2, . . . , n. Definingv1f
′
= v1f −

∑k−1
j=1 (v∗j v1f)vj , the vectorv1f

′ is in the null space of

vi ’s, i = 1, . . . , k − 1, where the null space has dimension (nt − k+ 1). The squared norm of

v1f
′ is (v1f

′)∗v1f
′
= 1−

∑k−1
j=1 |v∗j v1f |2 = 1−

∑k−1
j=1 |V j1|2. Considering the projection of a fixed

vectorvk onto an isotropically distributed vectorv1f
′ which is of dimension (nt − k+ 1), one

obtains the following conditional probability distribution function for|v∗kv1f |2 by using (2.9):

F|v∗kv1f |2(x| | v
∗
i v1f |2 = ai , i = 1, . . . , k− 1) = Fnt−k+1

o

















x
(

1−
∑k−1

i=1 ai

)

















(2.11)

for k = 2, . . . , n. The expectation in (2.5) is over the channel matrixH or equivalently, over

Vi j ’s. For a given channel realization,vi ’s are fixed and the quantized precoding vectorsvif ’s

are chosen independently of each other as the rule given in (2.8) dictates directly. Hence,vif ’s

are independent of each other on the condition thatvi ’s are given. One should note thatV∗Vf

product involvesVi j terms and the phase ofVi j becomes relevant in this case. Recalling that

the vectors are isotropically distributed, the phases of all the random variables corresponding

to the projections of the precoders onto quantized precoders are independent and uniformly
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distributed in [0, 2π], since the quantization rule in (2.8) is blind to multiplication of all

the entries of a quantization vector by a complex numberα of unity amplitude as|a∗b|2 =

|αa∗b|2. To summarize, it holds true thatVi j has a uniformly distributed phase in (0, 2π) and

it is independent ofVik for all k , j andVl j for all l , i for givenvi ’s, since knowingvi only

is sufficient to determinevif for the given rule in (2.8).

Isotropical distribution implies that|Vii |2 = |v∗i vif |2’s for i = 1, . . . , n are identically dis-

tributed and independent random variables. Similarly, a corresponding distribution holds for

|Vk j|2 = |v∗kvjf |2 and its cdf has a form identical to that given in (2.11).

2.4 A Capacity Upper Bound

The capacity expression in (2.5) is impractical to be used inpractical system design since it

needs the distribution ofVi j ’s and the expectation overVi j ’s distributions. We will obtain a

very tight analytical upper bound for capacity of then-precoder scheme and this analytical

bound needs only the expectationsE11 = E|V11|2 andE21 = E|V21|2 to be evaluated. The

expected values will be denoted withEi j = E|Vi j |2 andEii ’s are the same for alli’s and can

be evaluated for a given quantization codebook. When the value ofE11 is given, the value of

E21 can be calculated easily as follows. Due to the isotropical distribution ofvi ’s, Ei j is the

same asE21 for all i , j. The value ofE21 can be found in terms ofE11 by using (2.11) as

E[|V21|2] = E
[

E[|V21|2 | |V11|2]
]

=

∫ ∞

−∞

∫ ∞

−∞
x f|V21|2(x | |V11|2 = a) f|V11|2(a)dxda

=

∫ ∞

−∞

(∫ 1−a

0
x
(nt − 2)
(1− a)

(

1− x
1− a

)nt−3
dx

)

f|V11|2(a)da

=

∫ ∞

−∞

1− a
nt − 1

f|V11|2(a)da=
1− E11

nt − 1
(2.12)

This result in (2.12) is intuitive since, after projectingv1f on v1, nt − 1 orthonormal vec-

tors {v2, v3, . . . , vnt } are left. Due to isotropical distribution, the power in the part of v1f

orthogonal tov1 is distributed equally betweennt − 1 orthonormal vectors in average.

The capacity for then−precoder scheme can be upper bounded by using Jensen’s inequality

such that

E
{

log2

∣

∣

∣

∣

∣

In +
P
n

HH ∗
∣

∣

∣

∣

∣

}

≤ log2

(

E
{

∣

∣

∣

∣

∣

In +
P
n

HH ∗
∣

∣

∣

∣

∣

})

. (2.13)
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The capacity bound of then-precoder case given in (2.13) can be written in terms ofE11 and

E12 by using the result of the lemma given in Appendix A as

Cn−pre ≤ log2( 1+
n

∑

k=1

∑

Sk∈Pk

(P
n

)k

E
[

(da1da2 · · · dak)
2
]

.

∑

( j1∈S)

∑

( j2∈S, j2, j1)

· · ·
∑

( jk∈S, jk, j1,..., jk−1)

(

Ea1 j1 · · ·Eak jk

)

) (2.14)

where

Eai ji = E
[

|Vai ji |2
]

=



















E11 = E
[

|V11|2
]

if ai = j i

E12 = E
[

|V12|2
]

if ai , j i



















, (2.15)

S = {1, 2, . . . , n}, Sk = {a1, . . . , ak}; andPk is the set containing all possible (n, k) combina-

tions ofS. The term
∑

( j1∈S) · · ·
∑

( jk∈S, jk, j1,..., jk−1)

(

Ea1 j1 · · ·Eak jk

)

does not depend on which

k−element combination (a1, a2, . . . , ak) chosen from setPk is used in (2.14) sincej i ’s for

i = 1, 2, . . . , k are chosen from the setS = {1, 2, . . . , n}. Using this fact, one can further

simplify the capacity bound given in (2.14) by selecting (a1, a2, . . . , ak) as (1, 2, . . . , k) such

that

Cn−pre ≤ log2( 1+
n

∑

k=1

(P
n

)k

E



















∑

Sk∈Pk

(da1da2 · · · dak)
2



















.
∑

( j1∈S)

∑

( j2∈S, j2, j1)

· · ·
∑

( jk∈S, jk, j1,..., jk−1)

(

E1 j1 · · ·Ek jk

)

). (2.16)

E
{

∑

Sk∈Pk
(da1da2 · · ·dak)

2
}

’s for k = 1, . . . , n are required to evaluate the capacity bound in

(2.16) and one does not need to calculateE
[

(da1da2 · · · dak)
2
]

for all possible (n, k) combi-

nations (a1, . . . , ak) from setS separately. Instead, the expectation of the sum of all possible

joint moments are necessary. Hence, only the expectation ofthe sum of all possible joint mo-

mentsE
{

∑

Sk∈Pk
(da1da2 · · · dak)

2
}

has to be found. This can be found by using Monte Carlo

simulations or analytically by using the currently available results for the joint ordered mo-

ments in a closed form presented in [24] and this makes the proposed bound completely

analytical.

As will be seen in Section 2.6, the capacity bound in (2.16) isvery tight and can be used

for practical purposes. With the help of this analytical bound, one can design an adaptive

MIMO system that can change the number of precoders and the feedback rate according to

the current average SNR value. The bound given in (2.16) is valid for many vector quantiza-

tion methods as long asVi j = v∗i vjf has a distribution such that the phase ofVi j is uniformly

distributed in (0, 2π) which is independent ofVik for all k , j andVl j for all l , i. Hence,
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this uniform phase distribution ofVi j is a sufficient condition and the quantization rule in

(2.8) satisfies it. Thus, the results of this section can be applied to a wide variety of quan-

tization schemes. Moreover, the bound is also valid for no quantization cases and we can

easily construct an upper bound for the exact capacity of a MIMO system that usesn of its

strongest subchannels by simply settingE11 = 1 andE12 = 0 in (2.16).

2.5 Bounding Distribution and RVQ

In this section, we will present two example quantization methods that will be used to pro-

duce some numerical results in Section 2.6. The first method is random vector quantization

(RVQ) in which a quantization codebook is generated randomly and the closest vector in the

codebook is conveyed to the transmitter according to the rule given in (2.8) [1]. Quantization

vectors are length−nt complex vectors which are independently chosen from the isotropic

distribution on thent−dimensional complex unit sphere. The performance of RVQ is in-

spected as averaged over many codebooks that are generated randomly. The use of RVQ

as a vector quantization scheme allows simpler analysis andcan be helpful in designing

practical limited rate feedback MIMO systems. The cdf of|V11|2 has been readily obtained

in [1, 34, 35] by using the standard probability evaluation technique for maximum of 2Nf

independent random variables with the distribution given in (2.9) as

F|v∗1v1f |2(x) =
(

Fnt
o (x)

)2Nf
. (2.17)

The phase ofVi j is independent of its magnitude and uniformly distributed in [0, 2π]. The

expected value of a random variable distributed with (2.17)is evaluated in [1] as

E[|V11|2] = E11 = 1− 2Nf B(2Nf ,
nt

nt − 1
), (2.18)

whereB(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Beta function and the Gamma function is given byΓ(x) =

∫ ∞
0 tx−1e−tdt while E12 = E|V12|2 can be calculated from (2.12).

The second method is the one that maximizes the capacity by increasing the projection

power, namely|V11|2. By defining a random variablezasz= 1− |v∗1v1f |2, we can say that for

a good beamformer, the expected value ofzhas to be as close as possible to zero. An upper
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bound for thecd f of z, Fz(z), is given in [40] such thatFz(z) ≤ F̃z(z) for 0 ≤ z≤ 1 and

F̃z(z) =



























2Nf .znt−1 , 0 ≤ z<
(

1
2Nf

) 1
(nt−1)

1 , z≥
(

1
2Nf

) 1
(nt−1)

. (2.19)

A good beamformer shall try to come as close as possible to this distribution which we

refer to as the bounding distribution hereafter [40]. For a hypothetical quantization method

that attains this bounding distribution, we can evaluate the E11 andE12 values in order to

construct an upper bound to the capacity of limited rate feedback MIMO scheme that none

of the quantization methods can exceed.E11 can be found as given below

E11 = 1− E[z] = 1− 2Nf

(

nt − 1
nt

) (

1

2Nf

)

(

nt
nt−1

)

(2.20)

andE12 by (2.12). The value ofE11 obtained by this bounding distribution in (2.20) is the

maximum value ofE11 that can be achieved among all quantization codebooks usingthe

quantization rule in (2.8) for givenNf andnt values.

2.6 Numerical Results

In this section, the capacity upper bound obtained for LRF MIMO given in (2.16) is eval-

uated for RVQ and the bounding distribution. Random variables are generated by the in-

version method [14] in simulations and placed in (2.5) to obtain the ergodic capacity. The

random variables|Vii |2’s are generated first, while the others are drawn based on thedistri-

bution given in (2.11) and each data point is obtained by generating 10, 000 realizations.

In Fig. 2.1, the ergodic capacity of a 6× 3 MIMO scheme that uses 2 precoders with

Nf = 6, 12 for RVQ and bounding distribution is compared with the 6× 3 MIMO channel

capacity obtained with waterfilling (WF) that uses a short-term power constraint (Sec. 10.3

in [22]). The equipower scheme that does not use CSIT and allocates equal power among

the transmit antennas is also depicted for comparison. SNR is taken as the average received

SNR. It can be observed that reduced precoding is an efficientand reasonable technique since

it is better than the equipower scheme up to 14 dB and it matches the MIMO channel capacity

with WF and full CSIT up to 3 dB in case of no quantization even with 2 precoders. As SNR

increases, achievable rates with the 2−precoder scheme diverge from the 6×3 capacity since

all degrees of freedom are not utilized. By increasing the number of precoders used as SNR
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increases, the system can operate close to the channel capacity. As Nf increases, the losses

are quite tolerable for the reduced precoding scheme but thecapacity of equipower scheme

without CSIT does not match the ergodic channel capacity (full CSIT case) even at high

SNR. In high SNR regimes, there is a log10(
nt

min(nr ,nt)
) = log10(

6
3) = 3 dB difference between

the MIMO channel capacity and the equipower scheme without CSIT and this difference

becomes more significant especially for MIMO systems withnt > nr .
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16



Another observation is that the quantization is not too detrimental when compared to broad-

cast MIMO channels studied in [25]. The number of bitsNf to perform close to the capacity

is relatively small when compared with the pessimistic results presented for broadcast chan-

nels in [25] with the basic statement that quite a large number Nf is necessary for perfor-

mance close to capacity with ideal precoding.

In Fig. 2.2, 6× 3 MIMO system capacity under limited rate feedback withNf = 8 is

evaluated by using RVQ and the bounding distribution for 2 and 3-precoder schemes, where

the capacity bound given in (2.16) is also found by usingE11 and E12 values for these

schemes. It is seen in the figure that the capacity upper boundis very tight. It is 0.3-0.5 dB

away from the 6× 3 LRF MIMO capacities. It is further observed that the RVQ scheme is

almost optimal since RVQ and bounding distribution capacities are quite close to each other.

There is a 0.2 dB difference between these two capacities andhence we can say that RVQ

can be used as a practical quantization technique that attains rates quite close to the capacity

with tolerableNf values. This also justifies its use in the literature for analysis purposes.

Moreover, when compared to the MIMO channel capacity obtained with waterfilling (WF)

that uses a short-term power constraint (Sec. 10.3 in [22]),there is a 1.3 dB loss in limited

feedback incremental precoding scheme that uses RVQ withNf = 8 which is well predicted

by the proposed bound at high SNR.
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In Fig. 2.3, RVQ is used as a quantization technique and the capacities ofn−precoder 8× 4

MIMO schemes are evaluated with their corresponding boundsfor Nf = 12 andn = 2, 3,

and 4. The scheme wihout CSIT that allocates equal power among the transmit antennas is

also depicted for comparison. It can be observed that the capacity bounds evaluated with the

E11 value of RVQ forNf = 12 is quite fine and 0.15-0.4 dB away from the ergodic system

capacity withn = 2, 3, and 4. Furthermore, it is seen that the 2-precoder capacity with

Nf = 12 is better than the scheme without CSIT up to 6dB, 3-precoder scheme is better up

to 13.5 dB. The 4-precoder scheme that uses all the degrees offreedom in the system always

has higher capacity than the scheme that does not use CSIT. Athigh SNR, there is a 1.6 dB

difference between the 4-precoder and equipower schemes without CSIT. When compared

to the channel capacity with WF, there is a 1.4 dB loss in limited feedback incremental

precoding scheme at high SNR and this can be compensated by increasingNf . Nf = 12 may

seem to be large for practical systems but this large value isdue to the large transmit antenna

number (nt = 8). In contrast, a reasonableNf value is sufficient to reach the capacity for a

small size MIMO system (smallnt value).
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In case of limited feedback, the losses are approximately equal to the SNR loss due to quanti-

zation 10 log10(
1

E11
) dB. Intuitively speaking, the instantaneous effective SNR of the channel

for single precoder case isP · |V11|2 and hence there occurs a−10 log10 E11 dB SNR loss in

the LRF scenario. This holds approximately true for the general n−precoder scheme. AsNf

increases,E11 asymptotically becomes 1 as observed in (2.18) and (2.20) sothat the capacity

of LRF MIMO approaches to the channel capacity with no quantization. The capacity upper

bound in (2.16) is maximized atE11 = 1 andE12 = 0, thus a good quantization scheme

should have aE11 value which is as close to 1 as possible for a given number of feedback

bits. Among the given vector quantization techniques andNf , the best quantization code-

book is the one that gives the highestE11 value and thus, it has the greatest capacity bound

value in (2.16).

As a result, we can use the capacity bound given in (2.16) to evaluate the performance of

different quantization schemes. For a given quantization scheme, it can be used to deter-

mine the number of precoders to be used at each average SNR value. In other words, for

a given MIMO system and the quantization technique withNf value, one calculates the

E11 value of the quantization and the expectation of the sum of possible joint moments

E
{

∑

Sk∈Pk
(da1da2 · · ·dak)

2
}

in (2.16) only once. After that, these two values can be used to

construct the bound in (2.16) easily. With the help of this bound, it is possible to determine

the SNR regions in which the number of precoders to be used to maximize system capacity

are specified during the operation of the studied incremental precoding scheme. For our ex-

ample quantization in Fig. 2.3, it is seen that using 2 precoders up to 0 dB, using 3 precoders

between 0 and 5 dB, and using 4 precoders above 5 dB maximizes the capacity and this

strategy always results in significantly higher capacity than the equipower MIMO scheme

without CSIT, especially fornt > nr .

The main conclusion is that the tightness of the proposed bound is established. The upper

bound can be applied to many LRF MIMO schemes and also to otherproblems where the

exact evaluation of the expected value of the determinant isneeded.
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2.7 A Vector Quantization Method Based on Product Codes

We observed in the previous section that good performance can be attained by the RVQ

method for quantization of precoders. However, RVQ is not a practical scheme since an

averaging over the quantization codebooks have to be performed to enjoy its good perfor-

mance. Meanwhile there are various vector quantization methods in literature which can be

used for quantization of precoders [21]. In such methods, a precoder is usually compared

to a large codebook and the best matching vector is declared as the quantized vector. This

matching operation which corresponds to the search of the vector in the codebook closest

to the given vector constitutes a major disadvantage especially for large codebooks. In con-

trast, each entry of the precoder could be quantized with a scalar quantizer. When all the

quantized entries are combined, an overall quantized vector comes up which represents the

quantization of the precoder. This sort of quantization which is based on scalar quantization

is referred to as product codes in quantization literature [21]. Allocating a fixed number of

quantization bits for each dimension, the search time in thelatter method is linear in the

number of dimensions, whereas it is exponential for vector quantization.

Since each entry of a precoder will be quantized independently of all the others in this

method, the probability density function for this complex random variable is required. The

probability density function obviously depends on the dimensionalitynt. As an example, all

entries should have absolute value equal to 1 whennt = 1, whereas this is not necessarily so

for nt = 2. Due to lack of an expression for the aforementioned probability density function,

we resort to the widely used technique of training-based Lloyd algorithm [21] with the dis-

tortion measure of squared absolute value. The training setis generated by first generating

isotropically distributednt-dimensional unit-norm vectors and then placing all the entries

of vectors in a sequence. The initial codebook is generated randomly and after a sufficient

number of iterations, the Lloyd algorithm produces a codebook close to the optimum quan-

tizer belonging to the probability distribution of a singleentry of the isotropically distributed

nt-dimensional unit norm vectors for a givennt and bits per dimension.

Specifying the number of codewords in the scalar quantization, the algorithm is run and

results similar to in Fig. 2.4 are obtained. The codebooks are rotation invariant since phases

of entries are uniformly distributed by the isotropic distribution of the precoders and hence

the codebook is a constellation with an arbitrary rotation.No optimization for the initial
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codebook or the resultant codebook has been performed sincethe aim is to show that even

a non-optimally designed codebook will perform quite good from a capacity point of view.

We refer to this coding scheme as product code vector quantization (PCVQ).
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Figure 2.4: Codewords generated for different codebook sizes and dimensionality. Each
codebook is generated by 50 iterations of the Lloyd algorithm.
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Let the quantized form of the precoder be denoted byQ(V1). This quantized vector is

not necessarily a unit-norm vector. Hence, the finite rate precoder vector fed back to the

transmitter side is scaled first to keep the transmitted power constant and then used as the

precoder vector. Hence, in PCVQ

V1f =
Q(V1)
‖Q(V1)‖

. (2.21)

The method of quantization does not naturally alter the system model and (2.3) holds in

the case of PCVQ. Then, for different realizations of the channel matrixH̃, one can obtain

the quantization of the precoding matrix by using the codebook. Using these quantized

precoders for each realization, one can evaluate then−precoder capacity given in (2.5).

In Fig. 2.5 and 2.6, The capacity of RVQ and PCVQ MIMO systems are compared for

different number of used precoders. The capacity curves areobtained by 10,000 point Monte

Carlo simulation. When the scalar codebooks of sizes (number of vectors in the codebook)

2 and 4 are closely inspected, one can see that the constellation is symmetric around 0 and

hence there will be a reduction of 2 bits for the codebook of size 4 and a reduction of 1 bit for

the codebook of size 2 in the total number of bits used for quantizing a precoder. This is due

to the fact that the precoders are invariant under multiplication by scalars. This enables the

entry of the first (or one of the other) dimension to be fixed. Therefore, we have to compare

PCVQ using 2 bits per dimension withNf = 14 RVQ for 8×8 MIMO and PCVQ using 1 bit

per dimension withNf = 7 RVQ for 8× 8 MIMO. For 8× 8 MIMO scheme, there is a loss

by PCVQ about 0.5 dB when only two bits are alloted to each dimension. By increasing the

bits alloted to each dimension, the loss can be significantlyreduced.
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Actually, one does not need to operate Lloyd algorithm for the case of 2 bits per dimension

since the distribution of the precoding vectors are isotropic, quantization points must be

symetric around 0 and hence the optimal codebook is [1;j;−1;− j], when 2 bits are allotted

to each dimension in PCVQ. However, for the general case, theuse of Lloyd algorithm is

necessary to obtain optimum quantizer for PCVQ.

In order to evaluate the upper bound given in (2.16) for PCVQ,we need to knowE11 and

E12 values.E11 is found by simulation, i.e., by using different realizations of isotropically

distributednt-dimensional unit norm vectors, a codebook is constructed by using Lloyd al-

gorithm described above and 10,000 point Monte Carlo simulation gives the expectation of

|v∗1v1f |2. For practical system design, we only need to calculateE11 once, then we can use it

as a design parameter. In Fig. 2.7, PCVQ MIMO system capacitybound obtained by using

(2.16) is shown and it is very tight (0.1 dB different from thePCVQ MIMO system capac-

ity). Also it is observed that PCVQ operates close to the upper capacity bound obtained by

using bounding distribution given in (2.19) (within 0.6 dB).
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According to the results, we can say that the fine performanceof random vector quantization

can be matched even with very simple quantization methods such as PCVQ. Therefore,

PCVQ can be quite helpful to achieve rates quite close to channel capacity in practice.

2.8 Conclusion

We developed a tight upper bound to point-to-point LRF MIMO capacity that is valid for

a large set of vector quantization schemes. Using the upper bound developed, the num-

ber of precoders to be used in a practical system for any givenvalue of average SNR can

be determined. We furthermore evaluated the upper bound using a bounding distribution

from Grassmannian beamforming which resulted in the observation that the simple RVQ

technique performs quite close to capacity upper bound. Moreover, we proposed a simple

quantization method in which each entry of a precoder is quantized independently. Along

with its practicality, PCVQ performs very close to RVQ with regard to achieving rates close

to capacity and hence poses a viable solution in enabling high rate MIMO communications

systems. Perfect channel estimation at the receiver is assumed in this study. Future studies

will include the consideration of imperfect channel estimation and its delayed transmission

to the transmitter side within a limited rate feedback scenario in a mobile system. Also,

practical quantization methods for MIMO systems will be investigated within the frame-

work developed in this thesis.
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CHAPTER 3

ITERATIVE DECISION FEEDBACK EQUALIZATION AND

DECODING FOR ROTATED MULTIDIMENSIONAL

CONSTELLATIONS IN BLOCK FADING CHANNELS

3.1 Introduction

The block-fading model is a useful model for transmission over slowly varying channels,

such as orthogonal frequency division multiplexing (OFDM)or slow time-frequency-hopped

systems [45]. In this chapter, we investigate block-fadingchannel with rotated constellations

as example study and propose a practical receiver architecture having performance close to

the capacity.

Rotated multidimensional constellations with uncoded modulation has been studied and

shown to be an effective way to attain full-rate and full-diversity transmission in fading

channels [9], [19], [31]. Even random multidimensional rotations are shown to exhibit good

diversity distributions to combat channel fading for uncoded transmission in [31]. The prob-

lem of constructing general coded modulation schemes over multidimensional signal sets

obtained by rotating classical complex-plane signal constellations has recently been studied

in [17] for block fading channels withB fading blocks.

Despite the benefits of rotation over allB fading blocks, a large decoding complexity is

imposed due to the inter-stream interference (ISI) caused by rotated constellations. A prob-

lem here is related to the complexity of optimum decoding, i.e., maximum likelihood (ML)

receiver interfaces exhibit a complexity that grows exponentially asO(|S|B) with the mod-

ulation size|S| and the dimension of rotationB, and becomes quickly unpractical when

either parameter is large. In [31], a suboptimal MMSE equalizer with decision feedback is

proposed and is shown to achieve good performance without destroying the high diversity

order in the rotated constellation. In [49], sphere decoding is employed to avoid exhaustive
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search over all candidate points. However, the structures in [31] and [49] were proposed for

uncoded rotations. When coded modulation is used, the code trellis structure has to be incor-

porated and soft information should be provided to the decoder, which further complicates

the problem. As a remedy to this problem, in [17], the use of rotations with a dimension

smaller than the number of fading blocks was considered. Theintuition behind this idea

is that the channel code itself can help to achieve full diversity and sometimes rotations of

a smaller dimension might be sufficient. However, for some rate values and constellation

sizes, using rotations with small dimensions may not be sufficient to achieve the optimal

rate-diversity tradeoff, i.e., the rotations of large dimensions might be necessary to attain

full diversity order and the decoding complexity has still exponential dependence on the

dimension of rotation. Soft-output sphere decoding technique for rotated constellation was

proposed in [8], but it still shows some undesirable limitations in practice.

In this chapter, we propose an iterative receiver structurewith reasonable complexity for

coded modulation schemes with rotated constellations. Theproposed detector is based on

iterative forward and backward filtering followed by a channel decoder that works by using

preliminary soft values of the coded symbols. Since the reliability of coded symbols from the

decoding process are used in deriving the jointly optimal forward and backward filters, the

filters employed in this work have a different structure fromthose of previous interference-

cancellation based turbo equalizers, such as [7], [29], [51]. It has been observed that the

proposed scheme yields a very close performance to the outage probability with reasonable

complexity for rotated constellations. The benefits that rotation brings in terms of diversity

exponent is justified without compromising the decoding complexity when compared to the

optimal ML based structures with exponential complexity.

3.2 System Model

The following notation is used throughout Chapters 3 and 4. Boldface upper-case letters

denote matrices and scalars are denoted by plain lower-caseletters. The superscript (·)∗ de-

notes the complex conjugate for scalars and (·)H denotes the conjugate transpose for vectors

and matrices. Then × n identity matrix is shown withIn. The autocorrelation matrix for

a random vectora is Ra = E{aaH} whereE{·} stands for the expected value operator. The

(i, j)th element of a matrixA is denoted byA(i, j) and theith element of a vectora is denoted
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by ai .

In this chapter, we consider block-based transmission as in[5], [7], [36]. During the trans-

mission of one block, the channel is assumed to be constant and it changes independently

from block to block. Without dealing with the channel estimation problem, the channel is

assumed to be perfectly known at each block transmission.

Assuming symbol rate sampling, the discrete time baseband equivalent model of the point-

to-point single-input single-output block fading channelwith B fading blocks can be written

as [16], [30],

yk = Dak + nk, k = 0, 1, . . . ,N − 1, (3.1)

whereN is the codeword length (block length) andD is a diagonalB× B matrix with main

entries,di , i = 1, . . . , B, i.e.,D = diag(d1, . . . , dB). ak = [a1
k, . . . , a

B
k ]T is the portion of the

transmitted codeword at timek andyk = [y1
k, . . . , y

B
k ]T is the corresponding received vector

at timek. The main diagonal entries ofD, di ’s, are the fading coefficients which are inde-

pendent zero-mean circularly symmetric complex Gaussian (ZMCSCG) random variables

with variance 1. The block fading model is considered and thus the channel matrices are as-

sumed to be constant during a coherence interval significantly larger than a duration needed

for the transmission of one block [22] and channel state information at transmitter (CSIT) is

not available. Noise vectorsnk are also taken as ZMCSCG white (spatially and temporally)

noise with varianceN0. The block-fading channel is a useful model for transmission over

slowly varying channels, such as orthogonal frequency division multiplexing (OFDM) or

slow time-frequency-hopped systems [45].

We consider thatak’s are obtained via the rotation of the symbols, i.e.,

ak = Vxk, k = 0, 1, . . . ,N − 1, (3.2)

wherexk = [x1
k, . . . , x

B
k ]T is the vector of complex-plane signal constellation symbols that is

rotated by theB × B rotation matrixV. The rotation matrix is unitary, i.e.,VV H
= I B and

applied uniformly throughout a transmitted block.

The codewordsX = [x0, . . . , xN−1] form a coded modulation schemeχ ⊂ C
B×N. In par-

ticular, we consider thatχ is obtained as the concatenation of a binary code of rater and a

modulation over the signal constellationS ∈ C with M = log2 |S| (See Fig. 3.1). The rate in

bits per channel use of this scheme isR = rM . After the transmitted signal block has been
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rotated, one obtains an equivalent model from (3.1) and (3.2) as in

yk = Hxk + nk, k = 0, 1, . . . ,N − 1, (3.3)

whereH = DV. This form resembles the baseband equivalent form of a MIMO channel.

Therefore, we will call our structure as space-time decoderhereafter and construct our re-

ceiver based on (3.3) in Section 3.3.

Figure 3.1: Block diagram for coded modulation with rotatedconstellations with rotation
matrix V (Transmitter side).

Block diversitydχ of a coded modulation schemeχ ∈ C
B×N consisting ofB blocks of length

N symbols from an alphabetS is defined as the minimum number of nonzero rows ofX−X′

for any pair of codewordsX′ , X ∈ χ. As it is shown in [30], this distance metric is the

principle asymptotic indicator of pairwise-error-probability for any coding scheme and it

determines the slope of the error-rate curve. When one viewsthe N symbol transmitted in

the same block as a super-symbol overSN, dχ is simply the Hamming distance inSN for the

non-binary block code with a block lengthB.

When no rotations are used, the optimal diversity reliability exponent is given by the Single-

ton bound for a given rateR (bits per channel use) and signal constellationM as [16], [30]

d∗χ = 1+
⌊

B
(

1− R
M

)⌋

(3.4)

for B Rayleigh faded blocks. This value is an upper bound for the block diversity of any

coded modulation schemeχ ⊂ C
B×N with rateRand constellationS ∈ C with M = log2 |S|.

A code is block-wise maximum-distance separable (MDS) if itachieves the maximum diver-

sity order given in (3.4) [16], [17]. As can be seen from (3.4), very large symbol alphabets

may be required in order to achieve high asymptotic diversity for high rates (R> 2 bits/dim).
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For example, withB = 8 andR = 3 bits/dim, a 16−point constellation can only achieve a

diversity ofd∗χ = 3. To achieved∗χ = 7 a constellation with 4096 points is needed.

Different from the finite constellation case, the diversityorder is not affected by the rate when

codebooks from Gaussian alphabets are used [30]. Moreover,it is still possible to attain

full diversity order without compromising rate or increasing constellation size by rotating

traditional complex-plane signal constellations such as QAM over fading blocks. The idea

of rotating a finite constellation is shown to increase the diversity order by spreading the

information contained in each symbol over several independent fading blocks [31], and thus

it can be seen as an effective way to combat channel fading. Itwas shown in [17] that

the optimal diversity reliability exponent achieved by random Gaussian codes can also be

achieved by random coded modulation schemes concatenated with a full-diversity rotation

of dimensionB whenR< M. In this case, the optimal reliability exponent is given by

d∗ = B (3.5)

which is the available degrees of freedom in the channel. TheB-dimensional rotation takes

care of achieving full diversity while the coding gain is left to the outer coded modulation

scheme overS and the MDS constraint on the code is relaxed for rotated schemes [17].

The diversity order of a coded modulation schemeχ ⊂ C
B×N with rotated constellations

is the minimum number of nonzero rows ofV (X − X′) matrix for any pair of codewords

X′ , X ∈ χ and unitary rotationV from (3.2). If the rotation matricesV is full-diversity

rotation, i.e.,V satisfies

V
(

s− s′
)

, 0, ∀s, s′ ∈ SB, s, s′ (3.6)

componentwise like Krüskemper or cyclotomic rotations [17], all the rows ofV (X − X′) are

nonzero for all distinctX,X′ pairs and the scheme achieves the optimal reliability exponent

B. However, as it will be seen in Section 3.5, simple rotationslike DFT which is not a full-

diversity rotation may be sufficient to reach the optimal diversity orderB in coded schemes,

since the code itself helps achieve maximum reliability exponent. In other words, the optimal

diversity order in (3.5) is achieved by a combination of coded modulation and rotation in this

case.
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3.3 Iterative Decision Feedback Equalization (DFE) for Rotated Constella-

tions

Iterative equalization and decoding (also known as turbo equalization) was well studied in

the literature for SISO ISI channels such as in [46], [47] andit was applied to multiuser and

MIMO systems in [51], [29] and [43]. This technique yields much better performance than

that of traditional equalization methods as shown in these papers. The equalizer and decoder

exchange soft information in terms of likelihood values of the transmitted data iteratively

to improve their performance in this case. The soft-in soft-out decoder produces likelihood

information of each coded bit and it can be in the form of a convolutional, block or space-

time trellis decoder depending on the encoding structure. The equalizer coefficients can be

updated by using the likelihood information of transmitteddata given by the decoder at each

iteration.

We consider iterative space-time decoder with soft decision feedback in this chapter. Since

both equalization and decoding processes can be performed at each iteration, turbo principle

can be applied as done in [7], [29], [51]. In Fig. 3.2, an exemplary receiver structure is

shown for iterative decision feedback equalizer (DFE).

Figure 3.2: Iterative Decision Feedback Equalization (DFE) and decoding for rotated con-
stellations
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One can write the output from the DFE for thekth vector in the block in theith iteration as

x̃(i)
k = (W(i))Hyk − (F(i))H x̂(i−1)

k (3.7)

for k = 0, . . . ,N − 1. W(i)’s andF(i)’s are forward and feedback filters both of sizeB × B

respectively and̂x(i−1)
k ’s are soft decisions from the previous iteration. When the filters are

designed based on the MMSE criterion and the information bearing signals are Gaussian,

this structure is information theoretically optimum as stated in [23]. The first term in (3.7)

is actually the feedforward estimate of thekth transmitted vector. In (3.7),̂x(i−1)
k ’s are the

soft feedback decisions from the previous iteration and they are utilized at the feedback

filtering process to improve the estimate ofxk. The forward and backward filter matrices are

jointly optimized and found according to the MMSE criteriongiven byE
{

∑N−1
k=0 ||x̃

(i)
k − xk||2

}

presented in [5], [36].

The nth component of the estimation is not used in the feedback equalization of thenth

component of the received vector, and so we impose the following condition on the feedback

filter

F(i)(n, n) = 0, n = 1, . . . , B (3.8)

since, by imposing this constraint, one can avoid self-subtraction of the desired symbol by its

previous estimate. The joint optimization of the forward and backward filters at each itera-

tion by taking the reliability of the decoded symbols used infeedback into account makes our

proposed structure different from the traditional iterative equalizers. Also, the mitigation of

inter-stream interference induced by the rotation is done optimally with this structure. This

differs from previous studies which use spatial interference suppression techniques based on

successive interference cancellation (SIC).

The Lagrange multiplier method can be used to obtain the optimal filter coefficients. La-

grangian vectors and the corresponding scalar constraints(Lagrangian function) can be writ-

ten as

Γ
(i)
= diag

[

Γ
(i)
1 , . . . , Γ

(i)
B

]

(B×B)
, Lagrangian(Γ(i)) =

B
∑

n=1

(F(i)(n, n))∗Γ(i)
n . (3.9)

Due to an interleaving operation both in time and space, we can assume that

E{xk(xl)
H} = EsIntδkl, for k, l = 0, . . . ,N − 1, (3.10)
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whereδkl is the delta function which is 0 for allk but k = l. Some important correlation

matrices used by the forward and feedback filters are defined for theith iteration as

P(i)
= E{xk(x̂

(i−1)
k )H}, B(i)

= E{x̂(i−1)
k (x̂(i−1)

k )H} (3.11)

for k = 0, . . . ,N−1. To simplify the computation of the filter coefficients, feedback decisions

are assumed to be independent. Furthermore, due to the interleaving operation of the coded

symbols, feedback decisions are assumed to be uncorrelatedwith the symbols transmitted

at different block or symbol time. It is further assumed thatthe reliability matrices of the

decision feedback are the same for allk, i.e.,

E{xk(x̂
(i−1)
l )H} = 0, E{x̂(i−1)

k (x̂(i−1)
l )H} = 0, for k , l (3.12)

E{xm
k (x̂n

k)∗} = ρmδmn, E{x̂m
k (x̂n

k)∗} = βmδmn (3.13)

for m, n = 1, . . . , B and the expectations are independent of symbol indexk. Then, we can

write

P(i)
= diag

[

ρ1, . . . , ρB
]

, B(i)
= diag

[

β1, . . . , βB
]

. (3.14)

This assumption makes the forward and backward filters independent of time indexk, so

the block processing on each received signal can be implemented effectively. This can be

achieved by simply averaging the correlations of soft feedback decisions from the previous

iteration as will be done in Section 3.4. These are standard and reasonable assumptions

as stated in [7], [36], [51], since the average symbol error probability is approximately the

same for each symbol in a large block with quasi-static fading. Calculation of the correlation

matricesP(i) andB(i) will be done in Section 3.4.

After taking the gradient of the MMSE cost function and the Lagrangian with respect to the

rows of (W(i))H and (F(i))H , equating the gradients to the zero vector, taking expectations

and combining vectors into single matrix equations forn = 1, . . . , B, one can obtain the

following matrix equations giving the optimal forward and backward filter matrices

RyW(i)
= H

[

EsI B + P(i)F(i)
]

(3.15)

B(i)F(i)
= (P(i))H

[

HHW(i) − I B

]

− Γ(i) (3.16)

where

Ry = E{yk(yk)
H} =

(

HH HEs + N0I B

)

(3.17)
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andΓ(i) can be obtained from the constraint in (3.8). By substituting W(i) into (3.16) and

using the constraint, the Lagrangian terms given in (3.9) and backward filter matrices can be

readily found after some calculations as

Γ
(i)
n =

[

A(i)(n, :)D(i)(:, n)
]

A(i)(n, n)
, n = 1, . . . , B (3.18)

F(i)
= A(i)

[

D(i) − Γ(i)
]

, (3.19)

where

A(i)
=

[

B(i) − (P(i))HHHR−1
y HP(i)

]−1
, (3.20)

D(i)
= (P(i))HHHR−1

y HEs− (P(i))H , (3.21)

A(i)(n, :) is then−th row of A(i), D(i)(:, n) is then−th column ofD(i) and forward filterW(i)

can be obtained from (3.15).

3.4 Iterative Decoding

In this section, we will calculate the log-likelihood ratios (LLR) and soft decisions of the

coded symbols to be used in decision feedback. BPSK modulation is assumed for simplicity,

but the extension to other M-ary or M-PSK modulations is straightforward. At each iteration,

extrinsic information is extracted from detection and decoding stages and is then used as a

priori information in the next iteration, just as in turbo decoding. The soft output from the

DFE in theith iteration after (3.7) can be written as,

x̃m (i)
k = µ

(i)
m xm

k + η
m (i)
k (3.22)

for k = 0, . . . ,N − 1 andm = 1, . . . , B. In this case, the equalized channel in (3.22) can

be considered as a quasi-parallelized channel and the LLR for themth component of thekth

transmitted symbol can be written as

Lm (e)
k = loge

P(x̃m (i)
k |xm

k = +1)

P(x̃m (i)
k |xm

k = −1)
. (3.23)

The LLR termLm (e)
k is the extrinsic information that can be obtained from the equalizer

output. An a priori probability ratioLm (p)
k (loge

P(xm
k =+1)

P(xm
k =−1)) is given by the decoder as the

intrinsic information obtained from the previous iteration [36], [51] and used to construct
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a soft estimate of the coded symbolxm
k . The extrinsic information given in (3.23) can be

expressed as,

Lm (e)
k =

4Re{(µ(i)
m )∗ x̃m (i)

k }
E{|ηmk |2}

(3.24)

by using the equivalent complex amplitude,µ(i)
m of xm

k at the output of the equalizer and

the residual interference power,E{|ηm (i)
k |2}. These values can be easily found in terms of

channel matrices, forward and backward filter coefficients and correlation matrices as done

for the SISO systems in [36], [51]. While computing the LLRs,we resort to simplification

of the decoding algorithm by neglecting the correlation existing between the residual noise

terms, i.e., theηmk ’s are taken as uncorrelated form= 1, . . . , B as done in the decoding stage

of [7] for flat fading MIMO channel and the residual interference is further approximated by

a Gaussian distribution as in [36], [51]. It can be shown thatµ
(i)
m andE{|ηm (i)

k |2} values do not

depend on symbol time indexk, so these values are calculated only once for the decoding of

one block in each iteration, which reduces the complexity significantly.

Soft feedback decisions, ˆxm
k for the DFE equals tanh

(

1
2Lm (p)

k

)

for Es = 1, m = 1, . . . , B

andk = 0, . . . ,N − 1 as in [7], [36], [51]. The non-zero diagonal entries of the correlation

matricesP(i) andB(i) in (3.11) used by the forward and backward filters can be calculated by

using the following approximation,

ρk,m , E{xm
k (x̂m

k )∗} = E{E{xm
k }(x̂

m
k )∗} = |x̂m

k |
2 (3.25)

ρm = βm =
1
N

N−1
∑

k=0

ρk,m. (3.26)

E{xm
k } was taken as ˆxm

k and this is a common assumption in various turbo detection tech-

niques as done in [36], [51] and [46].

Correct estimation ofP(i) andB(i)’s is important, since our proposed DFE takes into account

the reliability of the feedback decisions and therefore alleviates the error propagation prob-

lem different than the original DFE studies assuming perfect feedback decisions. In the first

iteration,P(i) andB(i) can be taken as0B, i.e., reliable feedback decisions are not available.

As the number of iterations increases, both metrics approach the asymptotic value:EsI B.

The proposed decoding architecture posses the same level ofcomplexity as the one for

MIMO channels in [7]. A detailed complexity comparison between the iterative MMSE

and ML-based receiver architectures was made in [7]. It was stated in [7] that although there

may be variations between the complexity of two receivers interms of required addition and
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multiplications during equalization, decoding stages, soft-decision feedback computations;

the overall complexity is moderately sensitive to these values and the most critical part that

affects the complexity is the computation of LLR for each coded bit in the codeword before

the decoding stages. It was evaluated that the ML receiver hasO(NMB|S|B) complexity and

the MMSE receiver hasO(NMB|S|) complexity [7]. Then, one can say that due to the ex-

ponential dependence of the complexity on the number of fading blocksB, the complexity

of ML-based receiver can not be affordable for moderate values of constellation size|S| and

number of fading blocksB. However, the proposed MMSE based receiver here recovers

from this problem by parallelizing the rotated channel and thus reduces the complexity of

LLR computation significantly. Therefore, it shows linear dependence on|S| andB. Even

for moderate values of|S| andB, the complexity difference between two schemes is tremen-

dous. For example, let|S| = 8 (8-PSK modulation andM = log2 |S| = 3) andB = 6, the

complexity of ML-based receiver is approximately|S|
B

|S| =
86

8 ≈ 3.3 × 104 times larger than

that of the MMSE receiver for the same block lengthN.

Our analysis and proposed decoding architecture are also valid for the schemes in which the

rotations of dimension smaller thanB are used. Rotation with smaller sizes was proposed

in [17] in order to establish the tradeoff between the transmission rate, diversity, constellation

size and complexity induced by the rotations. In this case, the decoding complexity is still

exponential with the dimension of rotation, thus our proposed structure will be useful in

reducing the complexity.

3.5 Simulation Results

3.5.1 Outage Probability Calculations

For sufficiently large block lengthN, the packet error probability of any coding scheme is

lower bounded by the information outage probability [22]. In this section, we will compare

the performance of our proposed decoding structure with thecorresponding constrained out-

age probability of rotated and unrotated schemes. The constrained capacity can be found for

the system model in (3.3) given the complex vector setχ of cardinality |S|B = (2M)B (e.g.,

M-ary or M-PSK modulations) similar to the derivations for block fading channels in [16]
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and rotated schemes in [17] as

Cχrotated =
1
N

N−1
∑

k=0

1
B

I (xk; yk|H)

= log2 |S| −
1
B

En















∑

xk∈χ

1
|S|B

log2

∑

xi∈χ
exp

(

−‖H(xk − xi) + n‖2 + ‖n‖2

N0

)















(3.27)

wheren is a ZMCSCG vector and the corresponding outage probabilitycan be written as

Protated, χ
out (R) = P

{

Cχrotated< R
}

. (3.28)

Constrained outage probabilities will be used for performance evaluation in the next part.

3.5.2 Performance Results

In Fig. 3.3, simulation results are depicted for block fading channels with 3 fading blocks.

Each block is Rayleigh faded with unity power. The packet error probability of rotated and

unrotated systems with QPSK modulation and their corresponding outage probabilities are

shown. Also, the outage probability for Gaussian input under average power constraint is

drawn. A full block diversity attaining blockwise concatenated convolutional code (BCCC)

based on bit-interleaved coded modulation (BICM) is used for encoding for both rotated

and unrotated cases as adapted from [16]. The outer code is a rate-12 convolutional code

and the inner codes are 3 trivial rate-1 accumulators. The information block length, i.e., the

information bits entering the outer encoder is taken as 148 per frame and the rate in bits per

channel use of this scheme isR= rM = 1
22 = 1. A DFT matrix with size 3 is used to rotate

discrete QPSK inputs. Number of iterations inside the TurboBCCC decoder is set to 10 and

the number of equalizer iterations at which the forward and backward filters are updated by

using the reliability matrices is taken as 3.
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Figure 3.3: Performance comparison of iterative DFE and outage for rotated and unrotated
constellations,B = 3
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As it is seen from the outage probabilities, rotation enables to capture the largest possible

reliability exponent achieved by Gaussian inputs, namelyd∗ = B = 3, while unrotated inputs

haved∗χ = 2. It has been observed that there is approximately 2 dB difference between the

outage probability with rotated inputs and the performanceof decision feedback equalizer

(DFE) with 3 iterations. This gap from the outage is similar to the gap between the outage

and coded performance of unrotated inputs and iterative DFEhas also similar performance

gap from the outage with the ML-based receiver given in [17].Then, one can say that

the spatial interference and the error propagation probleminherent in decision feedback are

almost eliminated and it is possible to attain optimal diversity of the block fading channel by

using the proposed space-time equalizer. These results show that the theoretical benefit of

rotation can be materialized by the proposed practical decoding structure with significantly

reduced complexity. Moreover, it is seen that the simple DFTrotation is sufficient to attain

the optimal diversity order in coded schemes since the code itself helps achieve full diversity

different than the uncoded rotations in which the full diversity rotations are necessary to get

the optimal exponent.

Furthermore, it is interesting to note that the performanceimprovement of the iterative DFE

with soft feedback over the linear MMSE filtering without decision feedback is about 3 dB at

PER=0.0001. There is also a loss in diversity as observed in the reduced PER slope without

decision feedback. The suboptimality of linear equalizer prevents the system achieving high

diversity orders. One can say that the proposed equalizer gains more diversity in comparison

to the linear forward MMSE filtering by a careful design of both the forward and backward

filters.

In Fig. 3.4, simulations are repeated for 6 fading blocks andoutage probabilities are con-

structed for Gaussian inputs, BPSK inputs and rotated BPSK inputs with DFT rotation of

size 6. The same BCCC structure is used with a rate-1
2 outer convolutional encoder and 6

inner rate-1 accumulators. The information block length, i.e., the number of information bits

entering the encoder is taken as 238. Similar results to those in Fig. 3.3 are obtained and the

optimal reliability exponentd∗ = 6 is achieved by coded modulation scheme with simple

DFT rotation, while unrotated inputs haved∗χ = 4 from the singleton bound. The optimal di-

versity order and a close performance to outage probabilityof rotated scheme at rateR= 0.5

bits per channel use within 2 dB are achieved by our practicaldecoding structure.
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Figure 3.4: Performance comparison of iterative DFE and outage for rotated and unrotated
constellations,B = 6
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Fig. 3.5 shows the benefits of rotations by comparing the performance of the proposed

iterative DFE for rotated QPSK inputs and unrotated code performances for 8 fading blocks.

DFT rotation and BCCC structure with rate-1
2 outer convolutional encoder and 8 inner rate-

1 accumulators are used. The information block length is taken as 318. The maximum

diversity order, namelyd∗ = 8 is achieved by the iterative DFE with soft feedback, since the

performance of iterative DFE shows the same slope as outage with Gaussian inputs, while

the code performances with unrotated inputs can getd∗χ = 5. However, the gap between

rotated and unrotated schemes may not be so significant at moderate PER values and even

performance of the rotated scheme with the use of suboptimalnon-iterative MMSE equalizer

is below the performance of unrotated schemes. Therefore, for channels with large diversity

order, one may not observe a considerable benefit of rotated constellations over some PER

values. One has to be careful in choosing the decoding architecture, since the use of non-

iterative suboptimal structures may destroy the high diversity benefits induced by rotated

constellations due to residual spatial interference.
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Figure 3.5: Performance comparison of iterative DFE and outage for rotated and unrotated
constellations,B = 8
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3.5.3 Diversity Comparison

In Table 3.1 and Table 3.2, the distribution of the diversityreliability exponent of the coded

modulation schemes with rotated and unrotated constellations are shown for different num-

ber of fading blocksB and information block lengthK. Monte Carlo simulations were run,

where 105 and 106 codewords are randomly generated among the 2K different codewords

and the number of nonzero rows ofV (X − X0) matrix, namely, block diversity, is recorded

for each generated codeword. The BCCC encoding structure with rate−1
2 outer encoder and

inner rate-1 accumulators with QPSK modulation are used again andX0 is the corresponding

codeword of all zero information bits. The block length can be written asN = 1
2

[

2(K+2)
B + 1

]

including termination bits in the outer convolutional encoder and inner accumulators.
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Table 3.1: Empirical diversity distribution for rotated and unrotated schemes for different
information block lengthK values, number of fading blocksB is 4

B = 4
diversity 1 2 3 4
K = 12

DFT rotation and coded modulation0 0 68 99932
Unrotated coded modulation 0 25 3060 96915

K = 20
DFT rotation and coded modulation0 0 31 999969

Unrotated coded modulation 0 5 2435 997560
K = 32

DFT rotation and coded modulation0 0 0 1000000
Unrotated coded modulation 0 0 31 999969

diversity 1 2 3 4
Uncoded DFT rotation 425 4300 18508 76767

Table 3.2: Empirical diversity distribution for rotated and unrotated schemes for different
information block lengthK values, number of fading blocksB is 6

B = 6
diversity 1 2 3 4 5 6
K = 13

DFT rotation and coded modulation0 0 0 20 93 99887
Unrotated coded modulation 0 0 52 1629 15290 83029

K = 19
DFT rotation and coded modulation0 0 0 0 69 999931

Unrotated coded modulation 0 2 48 1214 44403 954333
K = 31

DFT rotation and coded modulation0 0 0 0 0 1000000
Unrotated coded modulation 0 0 0 9 2940 997051

diversity 1 2 3 4 5 6
Uncoded DFT rotation 2 62 444 1741 7904 89847

Table 3.1 and 3.2 show the distribution of the number of nonzero rows indicating the diver-

sity order of the given schemes. It is observed that there is asignificant difference between

the diversity order of rotated and unrotated schemes. For block fading channels, it is known

that both the block diversity and the product distance between the codeword pairs affect the

packet error probability, i.e., the pairwise error probability between the codeword matrices

X i and X j is determined by the number of nonzero rows ofV
(

X i − X j

)

and the squared
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product distance betweenX i andX j [45]. Morover, it was observed experimentally that the

codeword pairs with smaller diversity order also have poorer product distance values. Thus,

one can say that the codeword pairs with minimum block diversity determines the packet

error rate and maximizing diversity order is the best way to reduce the error probability on

Rayleigh fading channels.

At first glance, it is seen that the number of codewords with smaller diversity order is di-

minished for unrotated case as the block length increases; however, the number of randomly

generated codewords (106) during the simulations is very small compared to the actualnum-

ber of codewords (2K) for K = 31 andK = 32. Hence, there exist a lot of codeword pairs

with smaller diversity gain and the product distance which cause significant performance

degradation when compared to the rotated schemes achievingoptimal diversity orderB as

confirmed by the simulation results.

Moreover, it is seen from the tables that DFT rotation shows poorer diversity distribu-

tion for uncoded transmissions, but it achieves the performance of full diversity rotations

(Krüskemper) and the full reliability exponentB, when used with the coded modulation

schemes, since the code itself helps rotation achieve the maximum diversity order. There-

fore, we can say that both coded modulation and rotation cooperate to attain the maximum

achievable diversity order in practical situations, wherethe full diversity rotations are not

used, i.e., simple rotations like DFT or rotations of dimension smaller thanB are used.

3.6 Conclusion

We have studied the block-fading channels with rotated signal constellations. Although ro-

tated schemes can provide large diversity to combat fading,demodulation is prohibitive for

large number of fading blocks and combined with coded modulations. We have proposed

an iterative MMSE type decoding structure based on soft decision feedback without expo-

nential complexity (with linear complexity). The proposedarchitecture shows a very close

performance to the outage probability with rotated inputs and achieves the optimal diversity

order attained by Gaussian inputs. Therefore, the theoretical benefit of rotated constellations

is captured by the proposed structure with significantly reduced complexity.
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CHAPTER 4

ITERATIVE FREQUENCY DOMAIN EQUALIZATION FOR

SINGLE-CARRIER WIDEBAND MIMO CHANNELS

4.1 Introduction

In this chapter, we investigate wideband MIMO channel as example study and propose

practical receiver structure in conjunction with single-carrier frequency domain equaliza-

tion (SC-FDE) technique.

Multiple-input multiple-output (MIMO) systems have received much attention due to their

multiplexing and diversity capabilities and potentially can offer tens of megabits per second

transmission rates in future wireless systems. However, sophisticated equalization and de-

coding schemes are required for reliable communication at such high rates. While OFDM

based schemes are well recognized candidates as a broadbandwireless technology, single-

carrier (SC) technology based on frequency domain equalization (FDE) has also started to

gain considerable attention due its comparable complexitywith OFDM. It has been shown

in [18] that frequency domain equalization (FDE) can be readily applied to SC transmission

to yield similar performance as OFDM. Since OFDM suffers from high peak-to-average

power ratio (PAPR), SC techniques leading to more efficient use of power amplifiers are

more suitable for uplink channels [18], [4]. It is known thatOFDM and SC techniques

are similar in terms of spectral efficiency and that OFDM onlyshifts the multipath fading

problem from the time domain to the frequency domain [22]. Actually, OFDM breaks the

frequency diversity and channel coding is needed to reclaimit as opposed to the SC-based

systems, where multipath diversity can be attained withoutchannel coding.

Due to the attractive features of SC-FDE, it has been viewed as a strong alternative to

OFDM-based systems recently and its importance is clear forwideband channels. Block

iterative FDE was proposed for uncoded single-input single-output (SISO) multipath chan-
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nels in [5] and, block iterative FDE was considered in [36] together with channel decoding.

Reliability metrics for uncoded and coded symbols are utilized in SISO systems to prevent

the error propagation problem of decision feedback processin [5] and [36], respectively.

Iterative equalization schemes for wideband MIMO channelswere considered in [29]. Au-

thors consider minimum mean squared error (MMSE) type forward filtering and successive

interference cancellation (SIC) to mitigate the interference in time domain. Turbo equal-

ization with MMSE type filtering in frequency domain was studied in [53], but it does not

consider the use of decision feedback filters or SIC operation and thus can not achieve the

total multipath diversity gain of the channel as will be shown later. Recently, iterative fre-

quency domain equalization techniques have been considered in [28] and [48]. They are both

based on soft interference cancellation and MMSE forward filtering followed by a maximum

a posteriori probability (MAP) detector. In [57], a hybrid equalization scheme is proposed,

where forward filtering is performed in frequency domain, backward filtering is performed

in time domain, and a further SIC operation is utilized to mitigate inter-stream interference.

All these studies consider V-BLAST type architectures, where each stream transmitted over

different antennas is coded separately without paying any regard to the possible diversity

gains by careful coding across transmit antennas as in [30],[16] and D-BLAST based struc-

tures.

In this chapter, iterative FDE with decision feedback is applied to MIMO wideband systems.

Actually, our analysis and results are not only valid for MIMO schemes but also can be ap-

plied to other multipath vector channels such as asynchronous multipath multi-user CDMA

or systems which have the same discrete time model after sampling as MIMO schemes. Our

work here is a generalization of the FDE technique from SISO to more general system mod-

els. A novel low-complexity iterative frequency domain equalizer utilizing soft frequency

domain decision feedback from the multi-stream space-timeMIMO decoder is proposed

and the performance of this equalizer is shown to achieve thehypothetical matched filtering

bound (MFB) performance [3] that upper bound the performance of any MIMO receiver.

It is also shown that the proposed equalization scheme combined with the capacity achiev-

ing coding-multiplexing based techniques for parallel block fading channels [30], [16] has a

close performance to the outage probability of the MIMO-OFDM scheme and the maximum

diversity of the multipath vector channel can be attained bythe proposed equalization and

decoding structure.
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Iterative frequency domain equalizers proposed in our workcontain two separate filters,

namely; the forward and the backward filters, which are jointly optimized in each iteration

to minimize both the inter-symbol-interference (ISI) within streams and interference across

streams. Since reliability of coded symbols from the decoding process are used in deriving

the optimal forward and backward filters, the filters employed in this work have a differ-

ent structure from that of previous interference-cancellation based MIMO turbo equalizers,

such as [28], [48] and [57]. Our proposed equalization technique for multivariate ISI chan-

nels here is actually mathematically equivalent to the information theoretically optimum

approach stated in [23]. Hence, the proposed structure is optimum if the channel symbols

are drawn from a Gaussian alphabet and otherwise performs very close to the corresponding

input alphabet constrained outage probability of MIMO-OFDM systems.

The contribution of the thesis in this chapter is threefold.We first show that SC-FDE with

both forward and backward filters can be generalized from SISO to vector channels, which

includes MIMO as a special case. We, furthermore, derive thejointly optimal forward and

backward filters in the frequency domain so that the complexity advantage of FDE is not

compromised. The error propagation problem in decision feedback is eliminated by taking

the reliability of the decisions into account in each iteration. Third, the MIMO wideband

channel can be quasi-parallelized with the help of our proposed space-time equalizer and

so the code construction techniques achieving optimal rate-diversity tradeoff given by the

singleton bound for block-fading channels [30], [16] can beeffectively used such that the

proposed equalization scheme combined with this type of coding structures yields a very

close performance to the MIMO-OFDM outage probability. Therefore, we can say that

the proposed SC-FDE based scheme could be a promising candidate for wideband MIMO

systems as an alternative to MIMO-OFDM schemes.

4.2 System Model

In this chapter, we consider block based transmission as in [36] and [5]. During the trans-

mission of one block, the channel is assumed to be constant and it changes independently

from block to block. Without dealing with the channel estimation problem, the channel is

assumed to be perfectly known at each block transmission. Cyclic prefix (CP) is used to

prevent inter-block interference with length larger or equal to maximum channel length (L)
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as explained in [22]. The signal for a transmitted block withCP is a sequence of vectors:

[x0, x1, . . . , xN−1, x0, . . . , xL−1]nt×(N+L).

Assuming symbol rate sampling, the discrete time baseband equivalent model of the point-

to-point MIMO wideband channel withnr receive antennas andnt transmit antennas can be

written as [6],

yk =

L−1
∑

l=0

H lxk−l + nk, k = 0, 1, . . . ,N − 1, (4.1)

whereH l ’s, l = 0, . . . , L − 1, arenr × nt complex channel matrices comprised of indepen-

dent zero-mean circularly symmetric complex Gaussian (ZMCSCG) random variables with

variance given by the power delay profile of each channel [37]. Block fading model is con-

sidered and thus the channel matrices are assumed to be constant during a coherence interval

significantly larger than a duration needed for the transmission of one block [22] and chan-

nel state information at transmitter (CSIT) is not available. Noise vectorsnk are also taken

as ZMCSCG white (spatially and temporally) noise with varianceN0. Only BPSK modula-

tion is considered during the analysis and simulation studies. Extension to other M-ary or

M-PSK modulations is straightforward.

If we define the DFT operation asAk =
1√
N

∑N−1
n=0 ane− j2πnk/N for k = 0, . . . ,N − 1, where

an andAk are the time domain sequence and its frequency domain sequence, respectively,

then after the DFT operation to each element ofyk in (4.1), we can obtain the following

expression in the frequency domain as done in [57]

Yk = ΛkXk + Nk, k = 0, . . . ,N − 1 (4.2)

whereΛk is annr × nt matrix representing the channel frequency response at thekth tone

with the entries [57]

λi
m(k) =

L−1
∑

l=0

H l(i,m)e− j2πkl/N , (4.3)

for i = 1, . . . , nr andm= 1, . . . , nt andH l(i,m) is a scalar and defined as the (i,m)th element

of the channel matrixH l. In (4.2),Xk is the DFT of a vector sequence{xk} with

Xk = [X1
k , . . . ,X

nt
k ]T (4.4)

for k = 0, . . . ,N − 1 as adapted from [57].Xi
k is the DFT of the sequence transmitted at the

ith antenna at thekth frequency bin such that

Xi
k =

1
√

N

N−1
∑

l=0

xi
le
− j2πkl/N , i = 1, . . . , nt. (4.5)
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Similarly, Yi
k andNi

k are the DFT of the corresponding received and noise sequences at theith

receive antenna at thekth frequency bin fori = 1, . . . , nr . The expression in (4.2) is the fre-

quency domain equivalent of the channel in (4.1) and will be frequently used in the remain-

der of this chapter. As observed in (4.2), the channel gains of an OFDM system are converted

from scalars in SISO to matrices in MIMO due to multiple transmit and receive antennas.

Also, DFT operation is performed by usingqm
n =

1√
N

e− j2πmn/N for m, n = 0, 1, . . . ,N − 1

hereafter.

4.3 Iterative Frequency Domain Equalization for Wideband MIMO channels

We consider iterative frequency domain equalization (FDE)with both time and frequency

domain decision feedback in this chapter. Since both equalization and decoding processes

can be performed in each iteration, the turbo principle can be applied as done in [36], [51].

According to the turbo principle, log-likelihood ratios (LLR) of the coded bits can be ob-

tained from the channel equalizer and this information is used by the decoder. The de-

coder produces LLR of the coded symbols and the soft estimates of the coded symbols are

constructed based on them to be used in feedback process at next iteration as explained in

Chapter 3.

The decoding scheme based on the BCJR algorithm [2] with convolutional codes may be

used as the decoding scheme for each substream and V-BLAST orD-BLAST type archi-

tectures on which MIMO systems are built can be used for transmission of each coded

substream. V-BLAST and D-BLAST are widely used in MIMO schemes since they do

not require CSIT and streams are separately demodulated by some sort of filtering such as

MMSE and then decoded [22], [52], [20]. In Fig. 4.1, an exemplary receiver structure is

shown for frequency domain decision feedback (FDDF) case.
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Figure 4.1: Iterative FDE with frequency domain decision feedback (FDDF)
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As opposed to previous works in MIMO systems [28], [48] and [57], forward and feedback

filters are jointly optimized in our approach to minimize both inter-symbol-interference (ISI)

and interference from other streams. As it will be observed in Section 4.6, the combined mul-

tipath and space enriched diversity of the channel is exploited by decision feedback equal-

izer effectively such that the performance obtained by the matched filtering bound (MFB)

is approximately achieved and a close performance to the outage of MIMO-OFDM can be

obtained when the proposed equalization scheme is combinedwith coding structures that

achieve the optimal rate-diversity tradeoff [16].

4.3.1 Frequency Domain Equalization with Time Domain Decision Feedback (FDE-

TDDF)

To start with,Y j ’s for j = 0, . . . ,N − 1 can be easily shown to be uncorrelated from (4.2).

We can further say thatY j is a sufficient statistic to estimateX j when it is Gaussian. As

similar to the SISO case in [36], we can write the output from the FDE-TDDF for thekth

vector in the block in theith iteration as,

x̃(i)
k =

N−1
∑

j=0

(qk
j )
∗(W(i)

j )HY j −
N−1
∑

j=0

(F(i)
j )H x̂(i−1)

(k+ j) mod N (4.6)

for k = 0, . . . ,N − 1. W(i)
j ’s and F(i)

j ’s are forward and feedback filters with sizesnr ×

nt and nt × nt, respectively. When the filters are designed on the MMSE criterion, this

structure is information theoretically optimum as stated in [23] whenxk’s are Gaussian. The

first summation is actually the feedforward estimate of thekth transmitted vector. First, the

feedforward equalization is done at thejth frequency tone by multiplying annt × nr matrix

(W(i)
j )H with the input vectorY j. Then, one can get the feedforward estimate at the time

domain by converting the equalized frequency tones to the time domain with inverse DFT

as done in the first summation in (4.6). In (4.6),x̂(i−1)
k ’s are the soft feedback decisions from

the previous iteration and they are utilized at the feedbackfiltering process to improve the

estimate ofxk.

For the iterative FDE-TDDF operation, we consider feeding back the entire block of inter-

fering vectors. Thus, there areN feedback filter matrices but it is possible to use only a

number ofL nonzero feedback filters to reduce computational complexity to find F(i)
j ’s. On

the contrary, our scheme here is operating on a block basis, therefore it cancels both the
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pre-cursor and the post-cursor ISI while eliminating interference from other streams.

The forward and backward filter matrices are jointly optimized and found according to the

MMSE criterion presented in [36], [5]. The total mean squareerror in one block, conditioned

on the channel matrices and the results of the previous iteration, can be expressed as,

J = E















N−1
∑

k=0

||x̃(i)
k − xk||2















=

N−1
∑

k=0

nt
∑

m=1

E{(x̃m (i)
k − xm

k )(x̃m (i)
k − xm

k )∗} (4.7)

wherex̃m (i)
k is the estimate of thekth symbol transmitted atmth antenna atith iteration.

The following constraint on backward filterF(i)
j in (4.6) is necessary in order to avoid self-

subtraction of the desired symbol by its previous estimate.

F(i)
0 (n, n) = 0, n = 1, . . . , nt. (4.8)

Since the signal streams are transmitted from the multiple transmit antennas at the same

time and frequency, they introduce both multi-array interference (MAI), i.e., other antenna

stream’s spatial interference and inter symbol interference (ISI) in wideband MIMO commu-

nication. However, the mitigation of inter-stream interference originated from other antenna

stream’s spatial interference and ISI resulted from frequency selectivity is done optimally

with this structure. This differs from previous MIMO studies which use spatial interference

suppression techniques based on successive interference cancellation (SIC) in [28], [48]

and [57]. In SIC based techniques, the decoded streams are subtracted from the received

signal without any regard to their reliability and use of feedback filtering. Moreover, the

joint update of the forward and backward filters at each iteration by using the reliability in-

formation given by the decoder makes our proposed structuredifferent from the traditional

iterative MIMO equalizers.

The Lagrange multiplier method can be used to obtain the optimal filter coefficients. La-

grangian vectors and the corresponding scalar constraints(Lagrangian function) can be writ-

ten as

Γ
(i)
= diag

[

Γ
(i)
1 , . . . , Γ

(i)
nt

]

(nt×nt)
, Lagrangian(Γ(i)) =

nt
∑

n=1

(F(i)
0 (n, n))∗Γ(i)

n (4.9)

By taking the gradient of the cost function and the Lagrangian with respect to rows of

(W(i)
j )H, the following is obtained

∇(W(i)
l (n))H J = E{

N−1
∑

k=0

(qk
l )
∗Y l[

N−1
∑

j=0

YH
j W(i)

j (n)qk
j −

N−1
∑

j=0

(x̂(i−1)
(k+ j) mod N)HF(i)

j (n) − (xn
k)∗]} (4.10)

57



for l = 0, . . . ,N − 1 andn = 1, . . . , nt. When the gradient is taken with respect to rows of

(F(i)
j )H,

∇(F(i)
l (n))H J = E{

N−1
∑

k=0

−x̂(i−1)
(k+l) mod N[

N−1
∑

j=0

YH
j W(i)

j (n)qk
j−

N−1
∑

j=0

(x̂(i−1)
(k+ j) mod N)HF(i)

j (n)−(xn
k)∗]}+

N−1
∑

k=0

Γ
(i)
n enδl

(4.11)

for l = 0, . . . ,N − 1 andn = 1, . . . , nt whereW(i)
j (n) andF(i)

j (n) are thenth column ofW(i)
j

andF(i)
j respectively.δl is the delta function which is 0 for alll but l = 0 anden denotes a

nt-dimensional vector of all zeros except for thenth element which is 1.

We now define some important metrics used in equalization process. Similar definitions are

made in Chapter 2, but we give the same definitions again here in order not to break the

completeness of this chapter. Due to an interleaving operation both in time and space, we

can assume that,

E{xk(xl)
H} = EsIntδkl, for k, l = 0, . . . ,N − 1. (4.12)

Some important correlation matrices used by the forward andfeedback filters are defined for

the ith iteration as

P(i)
= E{xk(x̂

(i−1)
k )H}, B(i)

= E{x̂(i−1)
k (x̂(i−1)

k )H} (4.13)

for k = 0, . . . ,N−1. To simplify the computation of the filter coefficients, feedback decisions

are assumed to be independent. Furthermore, due to interleaving operation of the coded

symbols, feedback decisions are assumed to be uncorrelatedwith the symbols transmitted

at different antenna or symbol time. It is further assumed that the reliability matrices of the

decision feedback are same for allk, i.e.,

E{xk(x̂
(i−1)
l )H} = 0, E{x̂(i−1)

k (x̂(i−1)
l )H} = 0, for k , l (4.14)

E{xm
k (x̂n

k)∗} = ρmδmn, E{x̂m
k (x̂n

k)∗} = βmδmn (4.15)

for m, n = 1, . . . , nt and the expectations are independent of symbol indexk. Then, we can

write

P(i)
= diag

[

ρ1, . . . , ρnt

]

, B(i)
= diag

[

β1, . . . , βnt

]

. (4.16)

These are standard and reasonable assumptions as stated in [36], [51], since the average

symbol error probability is approximately the same for eachsymbol in a large block with

quasi-static fading. This approximation should not lead toa significant loss in performance.
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The vector filtersW(i)
j andF(i)

j can be calculated by equating the gradients to zero vectors

in (4.10) and (4.11). Expectations required to find filter coefficients can be calculated easily

from vector DFT operation and (4.2) as follows,

E{Xk(X l)
H} = E{xk(xl)

H} = EsIntδkl (4.17)

E{Nk(Nl)
H} = E{nk(nl)

H} = N0Inrδkl (4.18)

E{Yk(Y l)
H} =

(

ΛkΛ
H
k Es+ N0Inr

)

δkl = RYkδkl (4.19)

E{Y l(x̂
(i−1)
(k+ j) mod N)H} = ΛlP(i)ql

(k+ j) mod N (4.20)

E{Y l(xk)
H} = ΛlEsq

l
k . (4.21)

After equating the gradients to zero vector, taking expectations by using the above equations

and combining vectors into single matrix equations forn = 1, . . . , nt, one can obtain the

following matrix equations providing the optimal forward and backward filter matrices

RY j W
(i)
j = Λ j

















EsInt +

√
NP(i)

N−1
∑

m=0

q j
mF(i)

m

















(4.22)

for j = 0, . . . ,N − 1,

B(i)F(i)
l =

1
√

N

N−1
∑

m=0

(qm
l )∗(P(i))H

Λ
H
mW(i)

m (4.23)

for l = 1, . . . ,N − 1 and

B(i)F(i)
0 =

1
√

N

N−1
∑

m=0

(qm
0 )∗(P(i))H

Λ
H
mW(i)

m − (P(i))H − Γ(i). (4.24)

By substitutingW(i)
m ’s into (4.23) and (4.24), the backward filter matrices can bereadily

found after some manipulations. After some calculus, one obtains the following matrix

equations andF(i)
l ’s can be found from the solution of the given equations.

B(i)F(i)
l −

N−1
∑

n=0

T(l, n)F(i)
n = V(l), l = 1, . . . ,N − 1 (4.25)

B(i)F(i)
0 −

N−1
∑

n=0

T(0, n)F(i)
n = V(0)− (P(i))H − Γ(i) (4.26)

where

T(l, n) =
N−1
∑

m=0

(qm
l )∗(P(i))H

Λ
H
mR−1

Ym
ΛmP(i)qm

n , (4.27)
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V(l) =
1
√

N

N−1
∑

m=0

(qm
l )∗(P(i))H

Λ
H
mR−1

Ym
ΛmEs (4.28)

for l, n = 0, . . . ,N − 1. Optimal feedback filter matrices,F(i)
j ’s can be found as a solution of

the above equations by using the constraint given in (4.8) and forward filters,W(i)
j ’s can be

obtained from (4.22).

As seen in (4.25) and (4.26), the computation of feedback matrices requires the inversion

of a Hermitian block Toeplitz matrix with sizeNnt × Nnt similar to the SISO cases in [36].

However, this matrix inversion burden for time domain decision feedback filters will be

significantly reduced when we switch to the frequency domaindecision feedback case and

thus, the computational simplicity of SC FDE technique willbe observed.

Soft feedback decisions of the coded symbols can be obtainedby using the information

given by the decoder. Using these soft decisions, it is possible to approximate correlation

matricesP(i) and B(i) as done for the SISO case in [36]. Correct estimation ofP(i) and

B(i)’s is important, since FDE-TDDF and FDE-FDDF take into account the reliability of

the feedback decisions and therefore alleviates the error propagation problem different than

the original FDE studies in [18] and [4] assuming perfect feedback decisions. In the first

iteration,P(i) andB(i) can be taken as0nt , i.e, reliable feedback decisions are not available.

As the number of iterations increases, both metrics approach the asymptotic value:EsInt .

Calculation of these correlation matrices will be done in Section 4.4.

4.3.2 Frequency Domain Equalization with Frequency DomainDecision Feedback

(FDE-FDDF)

The iterative frequency domain equalizer with hard and softdecision feedback in the fre-

quency domain is studied in [4], [5] and [36] for the SISO systems. We derive the filter

matrices based on the MMSE criterion like the FDE-TDDF case.Since, FDE-TDDF de-

scribed in the previous section and FDE-FDDF are both based on the same MMSE criterion

in the time domain, both structures are actually equivalent. Output of the FDE-FDDF for the

kth vector in the block (for theith iteration) can be expressed as,

x̃(i)
k =

N−1
∑

j=0

(qk
j )
∗
[

(W(i)
j )HY j − (C(i)

j )HX̂(i−1)
j

]

(4.29)
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for k = 0, . . . ,N − 1. W(i)
j ’s andC(i)

j ’s are forward and feedback filters both in frequency

domain with sizesnr ×nt andnt ×nt respectively and̂X(i−1)
j ’s are the DFT’s of soft decisions

from the previous iteration. Since, the proposed FDE-TDDF and FDE-FDDF structures are

equivalent, one can find a relation between the time domain feedback filtersF(i)
j and the

frequency domain feedback filtersC(i)
j . It can be shown that

(F(i)
k )∗(m, n) =

N−1
∑

l=0

(C(i)
l )∗(m, n)ej2πkl/N (4.30)

for m, n = 1, . . . , nt and k = 0, . . . ,N − 1 where (m, n)th element of (C(i)
j )H and (F(i)

j )H

are defined as (C(i)
j )∗(m, n) and (F(i)

j )∗(m, n) respectively. Since the optimization problem

for FDE-FDDF case is mathematically equivalent to FDE-TDDF(Section 4.3.1) with the

constraintF(i)
j (n, n) = 0, n = 1, . . . , nt, we can set the constraint for frequency domain

feedback filters from (4.30) as

(F(i)
0 )∗(n, n) =

N−1
∑

l=0

(C(i)
l )∗(n, n) = 0, n = 1, . . . , nt (4.31)

With this constraint, one can avoid self-subtraction of thedesired symbol by its previous

estimate. The Lagrange multiplier method can be used once again to obtain optimal forward

and backward frequency domain filters. Lagrangian vectors and the corresponding scalar

constraints (Lagrangian function) can be written as

Γ
(i)
= diag

[

Γ
(i)
1 , . . . , Γ

(i)
nt

]

(nt×nt)
, Lagrangian(Γ(i)) =

nt
∑

n=1

N−1
∑

j=0

(C(i)
j (n, n))∗Γ(i)

n . (4.32)

By taking the gradient of the cost function and the Lagrangian with respect to the rows of

(W(i)
j )H and (C(i)

j )H, the following are obtained

∇(W(i)
l (n))H J = E{

N−1
∑

k=0

(qk
l )
∗Y l[

N−1
∑

j=0

(YH
j W(i)

j (n)qk
j − (X̂(i−1)

j )HC(i)
j (n)qk

j ) − (xn
k)∗]} (4.33)

∇(C(i)
l (n))H J = E{

N−1
∑

k=0

−(qk
l )
∗X̂(i−1)

l [
N−1
∑

j=0

(YH
j W(i)

j (n)qk
j − (X̂(i−1)

j )HC(i)
j (n)qk

j )− (xn
k)∗]}+

N−1
∑

k=0

Γ
(i)
n en

(4.34)

for l = 0, . . . ,N − 1 andn = 1, . . . , nt whereW(i)
j (n) andC(i)

j (n) are thenth column ofW(i)
j

andC(i)
j respectively. Expectations required to find filter coefficients can be calculated easily

from vector DFT operation and (4.2) as follows

E{Y l(X̂
(i−1)
k )H} = ΛlP(i)δkl (4.35)

E{X̂(i−1)
k (X̂(i−1)

l )H} = B(i)δkl (4.36)

E{X̂(i−1)
k (xl)

H} = qk
l (P

(i))H . (4.37)
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After equating the gradients to zero vector, taking expectations by using the equations above

and combining vectors into single matrix equations forn = 1, . . . , nt, one can obtain the

following matrix equations giving out the optimal forward and backward filter matrices in

the frequency domain

RY j W
(i)
j = Λ j

[

EsInt + P(i)C(i)
j

]

(4.38)

B(i)C(i)
j = (P(i))H

[

Λ
H
j W(i)

j − Int

]

− Γ(i) (4.39)

for j = 0, . . . ,N − 1, andΓ(i) can be obtained from the constraint:

N−1
∑

j=0

C(i)
j (n, n) = 0, n = 1, . . . , nt (4.40)

By substitutingW(i)
j ’s into (4.39) and using the constraint, the Lagrangian terms given in

(4.32) and backward filter matrices can be readily found after some calculus as,

Γ
(i)
n =

[

∑N−1
j=0 A(i)

j (n, :)D(i)
j (:, n)

]

[

∑N−1
j=0 A(i)

j (n, n)
] , n = 1, . . . , nt (4.41)

C(i)
j = A(i)

j

[

D(i)
j − Γ

(i)
]

, (4.42)

where

A(i)
j =

[

B(i) − (P(i))H
Λ

H
j R−1

Y j
Λ jP(i)

]−1
, (4.43)

D(i)
j = (P(i))H

Λ
H
j R−1

Y j
Λ jEs− (P(i))H , (4.44)

A(i)
j (n, :) is then−th row of A(i)

j , D(i)
j (:, n) is then−th column ofD(i)

j andW(i)
j ’s are obtained

from (4.38) for j = 0, . . . ,N − 1.

It is seen that the computational complexity to obtain forward and feedback filters is con-

siderably reduced for SC FDE-FDDF case in comparison to FDE-TDDF, since onlynr × nr

andnt × nt matrix inversions are needed as can be seen from (4.41)-(4.44) and sizes of these

matrices are independent of the block length (N) like OFDM based systems. Therefore, the

complexity of SC FDE-FDDF technique for MIMO wideband channels is comparable to

MIMO-OFDM systems.

4.4 Iterative Decoding

In this section, we will calculate the log-likelihood ratios (LLR) and soft decisions of the

coded symbols for FDE with frequency domain decision feedback (FDDF). BPSK modula-

tion is assumed for simplicity, but the extension to other M-ary or M-PSK modulations is
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straightforward in principle. At each iteration, extrinsic information is extracted from detec-

tion and decoding stages and is then used as a priori information in the next iteration, just as

in turbo decoding. The soft output from the FDE-FDDF in theith iteration after (4.29) can

be written as,

x̃m (i)
k = µ

(i)
m xm

k + η
m (i)
k (4.45)

for k = 0, . . . ,N − 1 andm = 1, . . . , nt. In this case, the equalized MIMO channel in (4.45)

can be considered as a quasi-parallelized channel and the LLR for thekth symbol transmitted

at mth antenna can be written as

Lm (e)
k = loge

P(x̃m (i)
k |xm

k = +1)

P(x̃m (i)
k |xm

k = −1)
. (4.46)

The LLR termLm (e)
k is the extrinsic information that can be obtained from the equalizer

output. An a-priori probability ratioLm (p)
k (loge

P(xm
k =+1)

P(xm
k =−1)) is given by the decoder as the

intrinsic information obtained from the previous iteration [36], [51] and used to construct a

soft estimate of the coded symbol transmitted atmth antenna forkth vector.

The equivalent complex amplitude,µ(i)
m of the symbol transmitted from themth antenna at

the output of the equalizer and the residual interference power, E{|ηm (i)
k |2} can be computed

by using (4.29) as follows,

µ
(i)
m = E{x̃m (i)

k (xm
k )∗}/Es =

N−1
∑

j=0

1
N

[(W(i)
j (m))H

Λ j − (C(i)
j (m))H(P(i))H]em

=

N−1
∑

j=0

1
N

(W(i)
j (m))H

Λ jem (4.47)

andE{|ηm (i)
k |2} = E{|x̃m (i)

k |2} − Es|µ(i)
m |2 where

E{|x̃m (i)
k |2} =

N−1
∑

j=0

1
N

(W(i)
j (m))HRY j W

(i)
j (m) +

N−1
∑

j=0

1
N

(C(i)
j (m))HB(i)C(i)

j (m)

−
N−1
∑

j=0

2
N

Re
{

(W(i)
j (m))H

Λ jP(i)C(i)
j (m)

}

(4.48)

for m= 1, . . . , nt, whereW(i)
j (m) andC(i)

j (m) are themth column ofW(i)
j andC(i)

j respectively.

It is important to note thatµ(i)
m andE{|ηm (i)

k |2} values do not depend on symbol time index

k, so these values are calculated only once for the decoding ofone block in each iteration.

The inputs to the decoder in terms of the LLR for each coded stream can be calculated

by knowing the optimal filter coefficients. The residual interference at the output from the

63



equalizer is well approximated by a Gaussian distribution as in [36], [51]. Then, the extrinsic

information given in (4.46) can be expressed as

Lm (e)
k =

4Re{(µ(i)
m )∗ x̃m (i)

k }
E{|ηmk |2}

(4.49)

Soft feedback decisions for the FDE-FDDF can be expressed interms of the extrinsic infor-

mation provided by the decoder as follows [51]:

P[x j
k] , P[x j

k = b j ] =
1
2

[

1+ b j tanh

(

1
2

L j (p)
k

)]

, b j ∈ {+1,−1} (4.50)

x̂m
k = E{xm

k } =
∑

xm
k ∈{+1,−1}

xm
k P[xm

k ] = tanh

(

1
2

Lm (p)
k

)

(4.51)

for Es = 1, m = 1, . . . , nt and k = 0, . . . ,N − 1. The non-zero diagonal entries of the

correlation matricesP(i) andB(i) in (4.13) used by the forward and backward filters can be

calculated by using the following approximation,

ρk,m , E{xm
k (x̂m

k )∗} = E{E{xm
k }(x̂

m
k )∗} = |x̂m

k |
2 (4.52)

ρm = βm =
1
N

N−1
∑

k=0

ρk,m (4.53)

E{xm
k } was taken as ˆxm

k and this is a common assumption in various turbo detection tech-

niques as done in [36], [51] and [46].

This structure recovers from the exponential decoding complexity of the optimal maximum

likelihood (ML) receiver by parallelizing the channel at the equalization stage. Therefore,

the complexity of LLR computation which is the most computationally demanding part of

the receiver is significantly reduced in this case and it shows linear dependence on the num-

ber of transmit antennas and constellation size.

4.5 Asymptotic Performance Analysis

At each iteration, forward and feedback filters approach theoptimal coefficients in case of

perfect feedback with the help of improved log a-posterioriprobability (APP) ratio of each

coded symbol obtained from the decoder. At later iterations, feedback decisions become

more and more reliable and correlation matrices approach the asymptotic values:P(i) →

EsInt and B(i) → EsInt . Signal-to-interference-noise-ratio’s (SINR) of each parallelized
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channel in (4.45) after equalization are evaluated in Appendix B for the asymptotic case and

given as

S INRm =

L−1
∑

l=0

nr
∑

i=1

|Hl(i,m)|2
Es

N0
, for m= 1, . . . , nt (4.54)

It is seen from (4.54) that one can achieve the full diversitygain (nr × L) at each of the

parallelized channels. If transmit diversity schemes in the form of coding across antennas

such as universal space-time codes [45] or other coding-multiplexing based techniques [16]

are utilized, the maximum potential diversity gain of (nr × nt × L) can be achieved by the

proposed equalization scheme here.

A scheme is approximately universal if it is in deep fade onlywhen the channel itself is in

outage [45]. D-BLAST architecture satisfies this criterionby appropriate choice of code-

words and being approximately universal is sufficient for a scheme to achieve the diversity-

multiplexing tradeoff of the channel [55], [45]. Transmission schemes based on D-BLAST

can achieve the full diversity gain of the flat fading MIMO channel (nr × nt), if the temporal

coding with stream rotation is capacity-achieving (Gaussian code books with infinite block

sizeT). Moreover, the D-BLAST system can achieve the maximum capacity with outage,

if the wasted space-time dimensions along the diagonals areneglected [45]. Therefore, by

incorporating these types of coding structures in our proposed equalizer, one can achieve

the diversity-multiplexing tradeoff of the frequency selective MIMO channel. However, this

pursuit is beyond the scope of this thesis.

In our case, we have used simple coding structures that achieve the optimal rate-diversity

tradeoff given by the singleton bound for block-fading channels in [30]. As it will be seen in

Section 4.6, one can get a very close performance to the outage probability of MIMO-OFDM

scheme.

We can calculate the asymptotic outage of our MIMO SC-FDE structure approximately

by assuming independent identically distributed channel taps in (4.1) and using (4.54) as
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follows,
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(4.55)

where standard probability evaluation techniques for maximum of independent random vari-

ables are employed. It is observed from (4.55) that the outage probability has a decay rate in

the order of (nr × nt × L) similar to MIMO-OFDM scheme and this outage is approximately

achieved by our practical SC-FDE scheme as will be seen in Section 4.6.

4.6 Simulation Results

4.6.1 Outage Probability and MFB Calculations

In this section, we will compare the performance of our proposed equalizer with the hy-

pothetical matched filtering bound (MFB) performance and the corresponding constrained

outage probability of MIMO-OFDM system. The constrained capacity can be found for

the system model in (4.2) given the complex vector setχ of cardinality Mnt (e.g.,M-ary or
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M-PSK modulations) as follows

CχMIMO−OFDM =
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whereN is the number of OFDM subcarriers. Then, the corresponding outage probability

can be written as

PMIMO−OFDM, χ
out (R) = P

{

CχMIMO−OFDM < R
}

. (4.57)

It is well known that the SC-MMSE receiver reduces to a channel matched filter if the perfect

a priori information of the all transmitted symbols leadingto ISI and inter-stream interfer-

ence is available at the receiver and all the interference iscancelled [51]. Therefore, an upper

bound to the packet error rate (PER) referred to as the matched filter bound (MFB) of the

receiver can be obtained by assuming perfect decision feedback [3].

Alternatively, we can define a different MFB for wideband MIMO channels. This second

MFB for wideband MIMO channels can be constructed such that the system is kept silent

after one symbol vector transmission for a time duration exceeding the delay spread until

the last echo is received. The receiver optimally combines all observed echoes coming from

different multipaths belonging to the same symbol. Then, the equivalent MFB channel can

be written as,

yk = Heqxk + nk (4.58)

where

Heq =
[

HT
0 HT

1 . . . HT
L−1

]T
. (4.59)
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In this case, one can construct a nearly optimal iterative MIMO receiver structure based

on the channel in (4.58). The nearly optimal decoder consists of producing the posterior

probabilities of the binary coded symbols, and then feedingthese probabilities to an ML

decoder for the given binary code over the resulting binary-input continuous-output channel.

One can calculate the extrinsic information given by the MIMO multi-stream detector to the

SISO channel decoder exactly such that

Lm (e)
k = loge

p(yk|xm
k = +1)

p(yk|xm
k = −1)

(4.60)

= loge

∑

xk∈χ+m p(yk|xk)p(xk|xm
k = +1)

∑

xk∈χ−m p(yk|xk)p(xk|xm
k = −1)

(4.61)

= loge

∑

xk∈χ+m exp
[

−‖yk − Heqxk‖2/N0

]

∏

j,m P[x j
k]

∑

xk∈χ−m exp
[

−‖yk − Heqxk‖2/N0

]

∏

j,m P[x j
k]

(4.62)

m= 1, . . . , nt, where BPSK modulation is used for simplicity and

χ+m ,
{

(b1, . . . , bm−1,+1, bm+1, . . . , bnt ) : b j ∈ {+1,−1}, j , m
}

, (4.63)

P[x j
k] , P[x j

k = b j ], b j ∈ {+1,−1}. (4.64)

Similarly χ−m is defined. This scheme is particularly effective if used in conjunction with bit-

interleaved coded modulation (BICM) [10], but it suffers from tremendous computational

complexity which is exponential in constellation size, channel length and the number of

transmit antennas as explained in [51] for multiuser schemes. P[x j
k]’s are the a priori proba-

bilities of the coded symbols obtained by the decoder as in (4.50) for k = 0, . . . ,N − 1 and

j = 1, . . . , nt. Constrained outage probability and two MFBs obtained herewill be used for

evaluation purposes in the next part.

4.6.2 Code Construction and Performance Results

The code construction used in our work is similar to the structure for random-like codes

adapted to the block-fading channel based on blockwise concatenation and on bit-interleaved

coded modulation (BICM) in [16]. The presented coded modulation construction in [16]

systematically yields singleton-bound achieving turbo-like codes defined over an arbitrary

signal set. As such, any other coding architecture that performs well in parallel block fad-

ing channels can be used in our system. We have used the same encoding and decoding

structures as in [16] and [30] in simulations.
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A sample coding structure used in simulations is shown in Fig. 4.2. Here, the outer code is

a simple repetition code of rater = 1/nt and the inner codes are rate-1 accumulators which

is referred to as the repeat and blockwise accumulate (RBA) code [16]. Fig. 4.3 shows the

performance of the proposed FDE-FDDF for a 4×4 MIMO system with the use of full block

diversity attaining RBA code of rater = 1/4. The channel model described in Section 4.2 is

assumed and typical COST207 channel with exponential powerdelay profile for suburban

and urban areas [37] is used. BPSK modulation is used for simplicity, but other M-ary or

M-PSK modulations combined with BICM [10] can be applied to our proposed structure.

Symbol duration is taken as 1µ second, and the channel lengthL equals 8. The first channel

tap is taken as unity power. The information block length, i.e., the information bits entering

the outer encoder is taken asK = 250, then the block lengthN is equal toK/(r ·nt)+1 = 251

including termination bits. The number of iterations inside the turbo RBA decoder is set

to 10 and the number of equalizer iterations at which the forward and backward filters are

updated by using the reliability matrices is taken as 3.
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Figure 4.2: RBA Encoding and Decoding structure for 4× 4 MIMO channel withr = 1/4
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It is seen from Fig. 4.3 that the performance of FDE-FDDF is 0.3 dB away from MFB. There

is approximately 1.5 dB difference between the outage probability of the MIMO-OFDM at

rateR= nt ·r = 1 bits/sec/Hz and this gap from the outage is similar to the gaps obtained with

RBA in parallel block fading channels in [16]. Then, one can say that the ISI, the substream

interference, and the error propagation problem in decision feedback is almost eliminated

since the perfect decision feedback performance (MFB) is approximately achieved. More-

over, it is seen that the performance of FDE-FDDF shows the same slope as MIMO-OFDM

outage and so it is possible to attain the maximum diversity of the MIMO broadband channel

by using the proposed space-time equalizer and coding across transmit antennas. Further-

more, SC-FDE based schemes could be a promising candidate for wideband MIMO systems

as an alternative to MIMO-OFDM schemes and if one takes the loss due to PAPR problem

in OFDM based systems into consideration, the performance difference between SC-FDE

based MIMO schemes and the MIMO-OFDM systems will be more significant.
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Figure 4.3: Performance comparison of frequency domain equalization techniques with
matched filter bound and with outage probability for 4× 4 MIMO system,Ts = 1µ sec,
COST 207 typical suburban exponential channel,L = 8 and RBA code is used with14 code
rate.
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In Fig. 4.4, simulation results are depicted for code rate,r = 1/2. A full block diversity

attaining blockwise concatenated code (BCC) is used for encoding as adapted from [16].

The outer code is a rate−1
2 convolutional code and the inner codes arent trivial rate-1 accu-

mulators. The information block lengthK is taken as 248. Similar results are obtained and

a close performance to MIMO-OFDM outage at rateR = nt · r = 2 bits/sec/Hz is achieved

within 2 dB.
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Figure 4.4: Performance comparison of frequency domain equalization techniques with
matched filter bound and with outage probability for 4× 4 MIMO system,Ts = 1µ sec,
COST 207 typical suburban exponential channel,L = 8 and BCC is used with12 code rate.

74



Our proposed SC-FDE can also be applied to classical SISO ISIchannels. In Fig. 4.5, we

compared the performance of iterative SC-FDE-FDDF-soft feedback with that of the outage

of an OFDM scheme and BPSK modulation is used. A convolutional encoder withr = 1/2

serially concatenated (SC) to a rate-1 accumulator is used with information block lengthK =

123. At first glance, it is surprising to note that the constrained OFDM outage probability

is surpassed by the iterative FDE-FDDF, but as stated in [50], the capacity of wideband

channels under non-Gaussian alphabets is an open problem and OFDM is not the capacity

achieving scheme for non-Gaussian input alphabets. Maximum diversity order achieved by

OFDM is given by the singleton-bound and this diversity is below the diversity order of the

channel for BPSK modulation atr = 1/2. However, SC-FDE does not necessitate coding

or Gaussian alphabet to attain maximum potential diversityorder of the channel in SISO

systems.
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Figure 4.5: Performance comparison of frequency domain equalization techniques with
matched filter bound and with outage probability for OFDM system,Ts = 0.5µ sec, COST
207 typical suburban exponential channel,L = 15 and SC code is used with12 code rate.
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Furthermore, it is interesting to note that the performanceimprovement of the FDE-FDDF

scheme over the linear FDE without decision feedback is about 2 dB at PER=0.0001 for all

simulation results. There is also a loss in diversity as observed in the reduced PER slope

without decision feedback. One can say that the proposed space-time equalizer gains more

diversity in comparison to linear FDE by a careful design of both the forward and backward

filters.

4.7 Conclusion

In this chapter, we extended the SC-FDE mechanism from SISO channels to more gen-

eral vector-based models which include MIMO as a special case. We have also shown that

capacity-achieving jointly optimal forward and backward filtering operations can be effec-

tively performed in the frequency domain. It is observed that error performance close to

the outage probability can be attained by careful coding across transmit antennas without

compromising computational complexity. Therefore, our proposed iterative SC FDE tech-

nique for MIMO wideband channels can be viewed as a strong alternative to MIMO-OFDM

schemes with similar complexity.
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CHAPTER 5

CONCLUSIONS

5.1 Conclusions

In this thesis, we proposed various transmitter and receiver architectures which yield a close

performance to channel capacity for the cases with and without CSIT. In Chapter 2, an adap-

tive scheme based on the reduced precoding idea is proposed for the limited rate feedback

(LRF) MIMO channel. Our main contribution in Chapter 2 is thederivation of an upper

bound expression for the ergodic capacity that is valid for awide range of vector based

quantization schemes. The tight analytical bound can be used to determine the number of

precoders to be used at each average SNR value in order to maximize the spectral efficiency

for a given accuracy of the CSIT. This strategy brings large capacity improvements espe-

cially when nt > nr and decoding complexity reduction due to the parallelization of the

MIMO channel when compared with no CSIT schemes.

In Chapters 3 and 4, we propose a practical receiver architecture over coded modulation

schemes that exhibits a close performance to the information outage for MIMO and block

fading channels, when CSIT is not available. It is known thatthe availability of CSIT does

not have an observable effect over ergodic capacity, whennt is not much larger thannr .

Thus, the only advantage coming from CSIT is the ease of decoding due to the conversion

of the MIMO channel into non-interfering SISO channels. However, we show that it is still

possible to exploit the total diversity benefits of the channel, when the channel knowledge is

only available at receiver, without compromising the receiver complexity.

Our proposed receiver structure is actually information theoretically optimal and based on

the iterative equalization and decoding idea. The feedbackand feedforward filters in the

equalization stage are jointly optimized to mitigate the interference by using the reliability

information given by the decoder.
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In Chapter 3, the proposed receiver architecture is appliedto the decoding of rotated multidi-

mensional constellation over block fading channels. It is observed that the optimal reliability

exponent attained by Gaussian inputs and the correspondingoutage probability is achieved

by the proposed structure with finite input alphabets. Therefore, we can say that the the-

oretical benefits of multidimensional rotations are effectively materialized by the proposed

practical receiver. As a side contribution, we can say that simple rotations like DFT are

sufficient to get full diversity performance when the proposed structure is used. In Chap-

ter 4, we applied our proposed receiver architecture to wideband MIMO channels without

CSIT in cooperation with the SC-FDE technique. It is observed that the proposed receiver

exploits the multipath and space diversity sources of the channel effectively such that very

close performance to the outage probability is possible. Asa side conclusion, we can say

that this structure can be viewed as a strong alternative to MIMO-OFDM based schemes.

Both equalizer structures in Chapter 3 and 4 reduce the receiver complexity, mainly, the

complexity of LLR computation before the decoding stage, significantly by parallelizing the

channel effectively.

In Chapter 2, we considered only the adaptive precoding scheme in which the number of

beamformers used is changed based on the average SNR value tomaximize spectral effi-

ciency. However, adaptive modulation and coding structures, in which the constellation size

for non-Gaussian alphabets and code rates are changed adaptively, can easily be incorporated

into our proposed scheme.

In Chapters 3 and 4, the proposed schemes based on rotated constellations and SC-FDE

technique are studied for fixed rate and coding scenarios. Various power or rate adaptation

schemes useful for block fading channels can be applied to our system easily. Therefore,

the proposed schemes are suitable for slow time-varying channels, in which the adaptive

modulation techniques are used to keep the desired outage probability constant.

To sum up, SC-FDE and rotated constellation based schemes can achieve a very close perfor-

mance to the outage and exploit full diversity by using effective equalization and interference

suppression techniques different than the CSIT-based schemes. In case of CSIT, the quan-

tized form of channel realization at the receiver is fed backto the transmitter in order to

parallelize the channel.

One has to take the number of antennas at the receiver and the transmitter, the number of
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feedback bits used to quantize beamformers, availability of the feedback channel, imperfec-

tions due to quantization, mobility, the channel estimation issues and required complexity

into account while choosing between the proposed schemes and deciding whether to use

CSIT or not.

5.2 Future Studies

In the slow fading channel model assumed throughout the study, we mentioned the power

adaptation based on short-term power constraint. Although, it is known that the selection of

short-term and long-term power constraints does not have anobservable effect on ergodic

capacity, its effect on the outage is remarkable for the slowfading channels in which one

codeword sees only a finite number of channel states [11]. Therefore, power adaptation

schemes based on long-term power constraint will be investigated and incorporated into our

proposed structures.

Future studies will also include the consideration of imperfect channel estimation at the

receiver on the performance of the proposed structures and the delayed transmission of the

CSI to the transmitter side within a limited rate feedback scenario.
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APPENDIX A

PROOF OF (2.14)

Define a matrixB = P
nHH ∗ with elementsBi, j =

P
ndid j

(

∑n
k=1 VikV∗jk

)

and another matrix

A = In+B. For the capacity bound of then−precoder MIMO scheme, the determinant of the

n×n matrixA is necessary in evaluating (2.14) and it can be found by Leibniz formula [12]:

det(A) =
∑

(Σk∈S∗, k=1,...,n!)















n
∏

i=1

Ai,σk(i)















.sgn(Σk), (A.1)

whereσk(i) is the ith element ofΣk which is thekth element of the permutation groupS∗,

andS∗ includes all possible permutations of the setS = {1, 2, . . . , n}. There aren! different

permutations ofS and henceS∗ is composed ofn! permutations. The function′sgn′ of

permutations in the permutation groupS∗ returns+1 or−1 for even and odd permutations,

respectively [15].

Recalling thatAi j equalsBi j for i , j and 1+ Bi j otherwise, one can write the determinant

expression in a compact form in terms ofBi j ’s directly from (A.1) after a careful inspection

as

det(A) = 1+
n

∑

k=1

∑

Sk=(a1,...,ak)∈Pk






















∑

(Σk
l ∈S

∗
k, l=1,...,k!)

















k
∏

i=1

Bai ,σl (i).sgn
(

Σ
k
l

)







































, (A.2)

wherePk is the set containing all possible (n, k) combinations of{1, 2, . . . , n}. S∗k includes

all possible permutations ofSk = {a1, a2, . . . , ak} and there arek! different permutations

in S∗k. In the above expression, the set ofk−element combination fromS = {1, 2, . . . , n}

is determined first. Considering theΣ(a1,...,ak)∈Pk term in the summation in (A.2),σl(i) is

the ith element ofΣk
l which is thelth element of the permutation groupS∗k. Recalling that

Bi j =
P
ndid j

(

∑n
k=1 VikV∗jk

)

, one can putBi j into det(A) expression given in (A.2) and obtain
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the following:

det(A) = 1+
n

∑

k=1

∑

Sk∈Pk

(
∑

Σ
k
l ∈S

∗
k

k
∏

i=1














P
n

dai dσl (i)

n
∑

m=1

(Vaim)(Vσl (i)m)∗














.sgn
(

Σ
k
l

)

). (A.3)

The above expression can be simplified as follows. DefiningSk = {a1, . . . , ak} and a partition

Sk
1,S

k
2, . . . ,S

k
p ⊂ Sk which are disjoint sets that satisfySk

1∪Sk
2∪. . .∪Sk

p = Sk = {a1, . . . , ak},

sk
i ( j) is the jth element inSk

i so thatsk
i ( j), j = 1, . . . , |Sk

i |, are the elements belonging toSk
i

where|Sk
i | is the cardinality ofSk

i for i = 1, 2, . . . , p (1 ≤ p ≤ k). Although there are many

terms in (A.3), the only terms that have nonzero mean are the ones all composed of squared

forms |Vi j |2. This is due to the reason thatVi j has a uniformly distributed phase in (0, 2π),

which is independent ofVik for all k , j andVl j for all l , i. This uniform phase distribution

will result in a zero expected value for any term which has a non-squared form ofVi j . Using

this fact and after a few straightforward steps, the following simplified expression can be

obtained from (A.3) after taking expectation

E{det(A)} = E{1+
n

∑

k=1

∑

Sk∈Pk

(
(P
n

)k

(da1da2 · · ·dak)
2.

∑

((Sk
1,S

k
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k
p)∈[Sk]p=1,...,k)

∑

(Σk
l (t)∈S

k∗
t , t=1,...,p)
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∏
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i |
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∣

∣
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i ( j)zi
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∣

∣
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



.sgn
(

Σ
k
l

)

)},

(A.4)

wherez1 , z2 , . . . , zp , Σk
l = (Σk

l (1), . . . ,Σk
l (p)), andSk∗

t is the permutation group that

includes all possible permutations of the elements inSk
t . In the above equation, [Sk]p=1,...,k

is the set that includes all possiblep−element partitions
(

Sk
1,S

k
2, . . . ,S

k
p

)

of the setSk for

p = 1, . . . , k. Therefore, the summation
∑

((Sk
1,S

k
2,...,S

k
p)∈[Sk]p=1,...,k)

∑

(Σk
l (t)∈Sk∗

t , t=1,...,p) in (A.4)

is over all different permutations of all possible
(

Sk
1,S

k
2, . . . ,S

k
p

)

partitions, i.e., the sum-

mation shows thatp−element partition is chosen from [Sk]p=1,...,k first and then, the sec-

ond summation
∑

(Σk
l (t)∈Sk∗

t , t=1,...,p) is taken over all different permutations of the chosen

partition of Sk. Actually, the summation
∑

(Σk
l (t)∈Sk∗

t , t=1,...,p) is the shorthand notation of
∑

(Σk
l (1)∈Sk∗

1 )
∑

(Σk
l (2)∈Sk∗

2 ) · · ·
∑

(Σk
l (p)∈Sk∗

p ) andsgn
(

Σ
k
l

)

takes values+1 or−1 depending on whether

Σ
k
l = (Σk

l (1), . . . ,Σk
l (p)) is an even or odd permutation.
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Lemma 1 The expression given in (A.4) can be simplified as

E{det(A)} = E{1+
n

∑

k=1

∑

Sk∈Pk

(P
n

)k

(da1da2 · · ·dak)
2.

∑

( j1∈S)

∑

( j2∈S, j2, j1)

· · ·
∑

( jk∈S, jk, j1,..., jk−1)

(|Va1 j1 |2 · · · |Vak jk |2)}.

(A.5)

Proof : The lemma suggests that the only remaining terms in (A.4) are the terms result-

ing from the partition of (Sk
1, . . . ,S

k
p) with p = k. The only possible partition is then

Sk
1 = {a1},Sk

2 = {a2}, . . . ,Sk
k = {ak}, and |Sk

i | = 1 for all i’s. Eqn. (A.4) reduces to

(A.5) for p = k and z1 , z2 , . . . , zk. Any term included within the summation
∑

((Sk
1,S

k
2,...,S

k
p)∈[Sk] p=1,...,k)

∑

(Σk
l (t)∈Sk∗

t , t=1,...,p) in (A.4) but not in (A.5) can also be written as

p
∏

i=1

|Sk
i |

∏

j=1

∣

∣

∣

∣

Vsk
i ( j)zi

∣

∣

∣

∣

2
(A.6)

for any givenz1, z2, . . . , zp between 1 andn wherez1 , z2 , . . . , zp (the terms with the

samezi ’s are already in another partition ofSk). sk
i ( j) is the jth element ofSk

i as defined

before. For the above term, at least one of theSk
i ’s has cardinality|Sk

i | greater than or equal

to 2 for somei since p < k, i.e., max1≤i≤p(|Sk
i |) ≥ 2. Note that the terms in (A.5) have

|Sk
i | = 1 for i = 1, 2, . . . , p andp = k.

The terms in the form given in (A.6) originate from the term given below in (A.4)

E











































p
∏

i=1

n
∑

zi=1

|Sk
i |

∏

j=1

∣

∣

∣

∣

Vsk
i ( j)zi

∣

∣

∣

∣

2





















.sgn
(

Σ
k
l

)























. (A.7)

Now focus on the summation in (A.4) over permutationsΣk
l (t) ∈ Sk∗

t for t = 1, . . . , p. Fix

z1, . . . , zp (z1 , z2 , . . . , zp mandated by (A.6)) and all theΣk
l (1),Σk

l (2), . . . ,Σk
l (p) permu-

tations except for one of theΣk
l (c) with |Sk

c| ≥ 2. Then, (A.6) can be written as


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)

. (A.8)

along with the permutation sign. By taking the summation over differentΣk
l (c) permutations,

87



one can get

sgn
(

Σ
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l (t), t = 1, . . . , p andt , c

)

.
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∣Vsk
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
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.sgn
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Σ
k
l (c)
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= 0, (A.9)

since there are equal number of even and odd permutations ofSk
c set if |Sk

c| ≥ 2 with opposite

signs [15]. In other words, in the above equationsgn(Σk
l (c)) is +1 for |S

k
c|!
2 times and−1 for

|Sk
c|!
2 times again. Therefore, the expression in (A.9) goes to zeroand this can be done for

otherΣk
l (1), . . . ,Σk

l (p) permutations. The terms presented in (A.6) cancel each other in (A.4)

and (A.4) reduces to the equation given in (A.5).Q.E.D.

The simplified form of the capacity bound in (A.5) is important, since

E
[

|Va1 j1 |2 · · · |Vak jk |2
]

= E
[

|Va1 j1 |2
]

· · ·E
[

|Vak jk |2
]

(A.10)

by the independence of|Va1 j1 |2, . . . , |Vak jk |2. Since the distribution of|Vai ji |2’s are identical

and same as the distribution of|V11|2 if ai = j i and equal to the distribution of|V12|2 if ai , j i,

one need only the expected valuesE
[

|V11|2
]

= E11 andE
[

|V12|2
]

= E12 in order to calculate

the expression given in (A.5).
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APPENDIX B

ASYMPTOTIC SINR CALCULATION

If P(i)
= B(i)

= EsInt , one can writeA j in (4.43) as

A j =

[

EsInt − E2
sΛ

H
j R−1

Y j
Λ j

]−1
(B.1)

By using Matrix Inversion Lemma, one can get

A j =
1
Es

Int +
1
Es

Int E
2
sΛ

H
j

[

RY j − Λ j
1
Es

Int E
2
sΛ

H
j

]−1

Λ j
1
Es
= E−1

s Int + Λ
H
j N−1

0 InrΛ j (B.2)

and

D j = −(A j)
−1 (B.3)

is written from (4.44). Lagrangian terms in (4.32) can be found as

Γn =
−N

∑N−1
j=0 A j(n, n)

=
−EsN

∑N−1
j=0

[

1+ Es
N0
Λ

H
j (n)Λ j(n)

] , n = 1, . . . , nt (B.4)

by using (4.41) and (B.2) and further noting thatA(i)
j (n, :)D(i)

j (:, n) = (A(i)
j D(i)

j )(n, n) = −1 by

(B.3). Defining

Σn =

N−1
∑

j=0

[

1+
Es

N0
Λ

H
j (n)Λ j(n)

]

, (B.5)

feedback filter matrices can be obtained as

C j = −Int − A jΓ (B.6)

from (4.42) and (B.3). One can obtain the columns of feedbackfilter matrices by putting

(B.2) and (B.4) into (B.6) such that

C j(n) = −en +
N
Σn

[

en +
Es

N0
Λ

H
j Λ j(n)

]

(B.7)

and forward filter can be found as

W j(n) =
Es
N0

NΛ j(n)

Σn
(B.8)

for j = 0, . . . ,N − 1, n = 1, . . . , nt from (4.38) and (B.7).
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In this case, the soft estimate ofxm
k is a scaled version of the matched filter output after ideal

interference cancellation in the frequency domain. SINR’sof each parallelized channels

after equalization can be found after some manipulation by using (4.47) and (4.48) for the

asymptotic case as follows,

µn =

∑N−1
j=0

[

Es
N0
Λ

H
j (n)Λ j(n)

]

Σn
(B.9)

and

E{|x̃n
k|

2} = Es

N

N−1
∑

j=0

[

1+
N2

Σ
2
n
− 2

N
Σn

]

+

∑N−1
j=0

[

E2
s

N0
NΛ

H
j (n)Λ j(n)

]

Σ
2
n

(B.10)

E{|ηnk|
2} =

Es [Σn − N]2

Σ
2
n

+

∑N−1
j=0

[

E2
s

N0
NΛ

H
j (n)Λ j(n)

]

Σ
2
n

− Es|µn|2 =

∑N−1
j=0

[

E2
s

N0
NΛ

H
j (n)Λ j(n)

]

Σ
2
n

(B.11)

for n = 1, . . . , nt.

The SINR can then be evaluated as

S INRm =
|µm|2Es

E{|ηmk |2}
=

1
N

N−1
∑

j=0

Λ
H
j (m)Λ j(m)

Es

N0
(B.12)

from (4.45), and one can obtain the following based on Parseval’s relation by using (4.3)

S INRm =
1
N

N−1
∑

j=0

Es

N0

nr
∑

i=1

|λi
m( j)|2 =

1
N

nr
∑

i=1

Es

N0

N−1
∑

j=0

N|H j(i,m)|2 =
L−1
∑

l=0

nr
∑

i=1

|Hl(i,m)|2
Es

N0

(B.13)

for m= 1, . . . , nt.
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