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ABSTRACT

MODELLING DAMAGE FOR ELASTOPLASTICITY

Soyarslan, Celal

Ph.D., Department of Civil Engineering

Supervisor : Assoc. Prof. Dr. Uğurhan Akyüz

Co-Supervisor : Prof. Dr. A. Erman Tekkaya

December 2008, 183 pages

A local isotropic damage coupled hyperelastic-plastic framework is formulated in prin-

cipal axes where thermo-mechanical extensions are also addressed. It is shown that, in

a functional setting, treatment of many damage growth models, including ones orig-

inated from phenomenological models (with formal thermodynamical derivations),

micro-mechanical models or fracture criteria, proposed in the literature, is possible.

Quasi-unilateral damage evolutionary forms are given with special emphasis on the

feasibility of formulations in principal axes. Local integration procedures are sum-

marized starting from a full set of seven equations which are simplified step by step

initially to two and finally to one where different operator split methodologies such

as elastic predictor-plastic/damage corrector (simultaneous plastic-damage solution

scheme) and elastic predictor-plastic corrector-damage deteriorator (staggered plastic-

damage solution scheme) are given. For regularization of the post peak response with

softening due to damage and temperature, Perzyna type viscosity is devised. Analyt-

ical forms accompanied with algorithmic expressions including the consistent material

tangents are derived and the models are implemented as UMAT and UMATHT subrou-

tines for ABAQUS/Standard, VUMAT subroutines for ABAQUS/Explicit and UFINITE

iv



subroutines for MSC.Marc. The subroutines are used in certain application problems

including numerical modeling of discrete internal cracks, namely chevron cracks, in

direct forward extrusion process where comparison with the experimental facts show

the predicting capability of the model, isoerror map production for accuracy assess-

ment of the local integration methods, and development two novel necking triggering

methods in the context of a damage coupled environment.

Keywords: continuum damage mechanics, ductile damage, finite elements, thermo-

mechanics, extrusion cracks

v



ÖZ

ELASTOPLASTİSİTE İÇİN HASAR MODELLENMESİ

Soyarslan, Celal

Doktora, İnşaat Mühendisliğ Bölümü

Tez Yöneticisi : Doç. Dr. Uğurhan Akyüz

Ortak Tez Yöneticisi : Prof. Dr. A. Erman Tekkaya

Aralık 2008, 183 sayfa

İzotrop hasarla eşleşmiş yerel bir hiperelastik plastik çatı, termo-mekanik eklentil-

erle, asal eksenlerde formüle edilmiştir. Gösterilmiştir ki, fonksiyonel bir ortamda,

fenomenolojik modelleri (termodinamik türetmeli), mikro-mekanik modelleri ya da

kırılma kriterlerini orijin alan literatürde geçen bir çok hasar evrim modelini kullan-

mak olasıdır. Yarı-tek yönlü hasar evrim formları, asal eksenlerde formülasyonlarının

elverişliliği işaret edilerek sunulmuştur. Lokal entegrasyon usulleri, elastik kestirim-

hasarlı plastik düzeltim (eş-zamanlı hasar ve plastisite çözüm metodu) ve elastik

kestirim-plastik düzeltim-hasar hesabı (bindirmeli hasar ve plastisite çözüm metodu)

gibi farklı operatör ayırma metodları da verilerek, yedi denklemden oluşan tam setin

önce ikiye ve nihayetinde bire indirgenerek çözümüyle özetlenmiştir. Hasar ve termal

etkiler nedeni ile yumuşamalı doruk sonrası tepkinin regülarizasyonunda Perzyna

tipi vizkozite kullanılmıştır. Analitik formlarla birlikte tutarlı malzeme tanjantlarını

da içeren algoritmik ifadeler türetilmiş ve modeller ABAQUS/Standart için UMAT

ve UMATHT, ABAQUS/Explicit için VUMAT ve MSC.Marc için UFINITE altyordamları

olarak programlanmıştır. Altyordamlar, direkt ileriye ekstruzyonda, v-şeklinde kırık
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da denilen, ayrık içsel kırıkların modellenmesi, ki deneysel sonuç karşılaştırmaları mod-

elin kestirim kabiliyetini sergilemektedir, lokal entegrasyon yöntemlerinin kesinliğini

değerlendiren eşhata haritasının oluşturulması, ve hasarla eşleşmiş bir ortamda iki yeni

boyun verme tetikleyicisi metodun geliştirilmesini de içeren çeşitli uygulama problem-

lerinde kullanılmıştır.

Anahtar Kelimeler: sürekli ortamlar hasar mekaniği, sünek hasar, sonlu elemanlar,

termo-mekanik, ekstruzyon kırıkları
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Disturbance of the material integrity in metal forming processes results in defected

products. This, once seen in engineering structures under service loads, may result

in catastrophic consequences. In the context of ductile fracture, material failure is

a progressive process. This is to say, the soundness of the material under applied

loads experiences a gradual reduction, where an initially intact material results in a

ruptured one. Explanation of this complete history including the post cracking with

propagation of occurred crack does not only constitute an academic motivation but

also helps understanding the defected element behavior under service loads. It should

also be noted that, although in metal forming crack propagation is of no importance,

since a product with cracks has no use, there exist manufacturing technologies like

machining and orthogonal cutting where the violation of the material integrity is

intentionally introduced into the system.

Thus process design and life prediction of structural members requires a strong behav-

ioral definition of the materials utilized. Since most engineering problems invariably

include complexities that preclude use of analytical methods which result in closed

form solutions, a rational definition of the material behavior does suffice only when

accompanied with a numerical setup where the algorithmic forms makes the models

accessible.
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1.2 Aim and Scope

With this motivation, the aim of this study is to present a theoretical and numerical

framework for ductile damage modeling for metal plasticity. The treatment is con-

tent with directional independence in material response which excludes any initial or

deformation induced anisotropy. Besides it does not assume particular restrictions

on the extent of strains. The theoretical side follows principles of thermodynamics,

where purely mechanical (isothermal) and thermo-mechanical derivations are sepa-

rately presented. Formulation of nonlinear isotropic hardening plasticity and com-

bined nonlinear isotropic/linear kinematic hardening plasticity are given. As a post

peak regularizer of the softening response, an over-stress type viscous formulation is

discussed. The presentations are accompanied with intuitive application problems,

involving those with discrete crack formations.

1.3 Modeling Material Weakening

Plasticity and damage are two softening mechanisms that differ on micro-mechanical

foundations. The former entails crystal slip through dislocation movements. The lat-

ter, in the context of ductile damaging materials, requires a progressive deterioration

process, which shows itself in three steps, namely nucleation, growth and coalescence

of micro-voids. Nucleation of micro-voids results in free surface development and

occurs around secondary phase particles or impurities with stress concentrations un-

der plastic flow conditions by particle-matrix debonding, or by inclusion cracking.

Positive hydrostatic stresses cause growth of nucleated and/or already existing micro-

voids to decrease material homogenized stiffness and strength. Under increased loads

the enlarged micro-voids tend to coalesce to form unified macro-crack (failure). This

explains the fact that compressive stress fields promote deformation range whereas tri-

axial stress fields lead premature cracks, see e.g. [149] and [142]. The steps involved

in the deterioration process are illustrated in Figure 1.1. A broad review of governing

mechanisms to give account for material deterioration can be found in [103].
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Figure 1.1: Progressive deterioration micro-mechanism depending on void nucleation,
growth and coalescence.

The failure concept, which can be summarized as the complete loss of load carrying

capacity, has been worked by three different approaches, which are fracture mechanics

(FM), micro-based damage mechanics (MDM) and meso-based damage mechanics (i.e.

continuum damage mechanics (CDM)). For an overview of the methods, the reader is

referred to [24] and the references therein.

1.3.1 FM Models

FM takes into account an accumulated plastic work threshold for material failure.

There are various models proposed in the literature, see e.g. [135] for Oyane cri-

terion, [58] for Freudenthal criterion, [46] for Cockroft Latham criterion and

finally [30] for Brozzo criterion, among others, which are listed in Table 1.1. On the

table, σ represents the Cauchy stress tensor whose maximum principal component is

denoted by σ1. The pressure is given by p. α̇ stands for the rate of equivalent plastic

strain whereas A stands for a material parameter. B1, B2, B3, B4 represent material

dependent fracture thresholds. According to the criteria, once the accumulated plastic

work reaches one of these predefined critical values, fracture occurs.
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Table 1.1: Certain fracture criteria.

Name Equivalent plastic work Threshold
Oyane

∫ [
p /
√

σ : σ + A
]

α̇ dt B1

Freudenthal
∫ √

σ : σ α̇ dt B2

Cockroft-Latham
∫

σ1 α̇ dt B3

Brozzo
∫

2 σ1/[ 3 (σ1 − p) ] α̇ dt B4

The computation of the given integrals is not coupled to deformation, thus may be

explicitly computed. This uncoupled nature gives rise to practical implementation of

the models into existing FE software without any effort. No additional equations to

be satisfied incrementally/iteratively are introduced to the system, thus, mere burden

becomes the trivial explicit integration of the plastic work, which provides algorith-

mic efficiency. Besides, the non-softening material behavior keeps the numerical setup

well-posed. However, same uncoupled character constitutes the disadvantage as well.

The deformation-damage uncoupling precludes mimicking the already mentioned pro-

gressive structure of the deterioration. In other words, throughout the deformation

history, neither the load carrying capacity nor the stiffness of the material is lost up

to rupture. This setting results in a binary material deterioration behavior, by which

a material point is either intact or failed, which is not realistic on physical grounds.

1.3.2 MDM Models

MDM models are derived from analysis on isolated unit cells involving idealized defects

as cracks, voids or second phase particles. A homogenization procedure is required

to map gathered micro-mechanical behavior to continuum scale, by which it is pos-

sible to materialize the model in structural analysis. Gurson’s damage model, [68],

is a MDM model, based on a voided rigid plastic matrix. With the proposed mod-

ified plastic potential, the homogenized behavior stands for porous plasticity, where

the physically obvious damage indicator variable is the void volume fraction (usually

denoted by f). [186], modified this model to give account for the increase in the

void growth rate with void coalescence, to create what is known today as Gurson-

Tvergaard-Needleman model (hereafter GTN). Another MDM model, which is

thermodynamically consistent and which is utilized largely in the literature can be

given as Rousselier model, [152]. The advantage of the MDM models are their clear
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micro-mechanical motivations reflecting the complete physical phenomena. However,

there are certain disadvantages noted in the literature. The determination of the ma-

terial parameters is impractical 1. Their primarily hydrostatic stress dependent struc-

ture cannot predict shear dominated failure, see e.g. [73]. [64] and more recently [126]

constitute attempts to extent Gurson’s damage model to shear-dominated failure.

Although the shrinkage of the yield locus is reflected which results in the decrease in

load carrying capacity with damage extent, the elastic stiffness degradation in unload-

ing is not captured. Besides, the local conventional setting of MDM formulations give

rise to spurious mesh dependence and nonphysical localization problems in numerical

treatment of the post peak responses. Finally, the micro-mechanical construction of

the formulation constitutes a barrier in transferability of the model to the materials

having different micro-structures.

1.3.3 CDM Models

CDM, which constitutes the main subject matter of this thesis, making use of internal

state variable theory of thermo-mechanics, solves the problem of material weakening

with mathematical phenomenological constructs (i.e. damage variable) which stand

for the internal variables responsible for irreversible micro-structural deterioration.

With its thermodynamic soundness and relative simplicity, the method has been ex-

tensively used to quantify many deterioration types such as elastic, plastic, brittle,

ductile, creep and fatigue, for small and finite strains including directional, thermal

and rate effects. Besides, nonlocal extensions based on integral averaging or gradient

formulations have been proposed to cure the unphysical localization and pathological

mesh dependency of the post peak response, in numerical simulations. The nature of

the approach allows algorithmic treatment in a strain driven framework, which gives

account for a convenient integration into existing nonlinear mechanical solvers, [35].

Such attempts, in the context of isotropic damage coupled finite plasticity, have been

made by [165], [85], [86], [87], [181], [171], [61], [174], [107], [153]; and more recently

with nonlocal extensions by [7], [5] and [116)]. Isotropic damage assumption takes

at hand a randomly and statistically homogeneously distributed, shaped and oriented

1 Calibration of material parameters are relatively easy for three parameter Rousselier damage
model.
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micro-void cluster. This postulate of damage isotropy, has proved validity and effi-

ciency for ductile damaging materials. In a general setting, distributed micro-cracks,

i.e. damage, even in a homogeneous and isotropic body create induced anisotropic

and inhomogeneous character of the overall response, [92]. For cases where the pro-

portional loading conditions are violated, anisotropy is favored, [98]. Recently, in the

finite strain context, thermodynamics based anisotropic formulations depending on

multiplicative decomposition of metric transformation tensor are given in [31] and

with nonlocal extensions in [32]. Frameworks with introduction of fictitious undam-

aged configurations are proposed by [117], [53] and [118] to resolve damage induced

anisotropy. Another noteworthy framework, treating anisotropic (visco)damage cou-

pled with (visco)plasticity and its nonlocal extensions can be found in [2] and [189],

respectively. Recently, proposing functional forms for inelastic hardening variables in

damage and plasticity, [190] resolves the coupled problem including directional effects.

The advantage of CDM is the existence of consistent derivation through thermody-

namics of irreversible processes. Besides, these models are capable to reflect both

the shrinkage of the admissible stress space and the elastic stiffness degradation with

material deterioration. Like in the case of MDM models, this softening behavior in

turn creates an ill-posed initial boundary value problem, with the loss of ellipticity

for quasi-static cases, and loss of hyperbolicity for dynamic problems, where spuri-

ous mesh dependence and nonphysical localization problems are due for post peak

responses.

The literature on CDM has reached to a mature level. Reader may refer to the texts

of [98], [92], [169], and [99]. Additional references having chapters on the subject are

[97], [50], [38] and [154].

1.3.3.1 Fundamental Hypotheses of Utilized Phenomenological Damage

Models

In the current presentation, the formulations are based on the concept of effective

stress and the principle of strain equivalence. In order to illustrate these members

of the foundation, a geometrical insight into the meaning of the damage variable is

possible by considering a one dimensional tensile test specimen which is represented
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in two spaces one of which is physical and the other is fictitious, as given in Figure

1.2. Physical space stands for the actual case where the effect of micro-cracks and

micro-voids persist, whereas the fictitious space is assumed to be defect-free.

Figure 1.2: Effective stress concept.

Considering the cross section of the specimen, the nominal area, which takes place in

the physical space, is represented by A, and the defect-free area, which takes place

in the effective space, is represented by Ã. Once the damaged area, AD = A − Ã, is

scaled with A, one reaches an objective measure for damage, which verbally stands

for the ratio of the damaged area to the total area, at the plane of interest,

D =
AD

A

with D ∈ [0, 1], where the lower bound, D = 0, represents the intact material without

any damage, and the upper bound, D = 1, represents complete rupture2.

2 A noteworthy point is that, although CDM provides a strong coupling environment where the
progressive deterioration of the material is resolved, for high strength and low ductility materials
(like high carbon steels), critical damage values (which denotes the local material failure) can be
considerably small (Dcr can even be in the order of 0.05, see e.g. [188]. The micro-mechanical picture
is in correlation to this fact, the critical void volume fraction for element failure is taken as f = 0.05
to f = 0.2, where f = 1.0 is never practically reached, [61]). This may lead to a FM-like uncoupled
application. However, the model produced should be applicable to larger extent of materials together
with less mathematical restrictions and provide soundness on physical grounds. Thus, in this study
a fully coupled progressive deterioration mechanism is presented in chevron prediction.
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The Cauchy stress acting in the physical space is named as the nominal stress,

whereas the effective Cauchy stress, σ̃, acts at the undefected material sub-scale, i.e.

in the effective space. This phenomenological approach has the roots from the works

of [88] and [144], where the creep rupture in metals is considered.

Once nominal-effective separation is introduced to the field variables, the construction

of the constitutive setup in between dual forms constitutes the central problem. For

this purpose, in the literature, certain equivalence principles, such as strain equiva-

lence, stress equivalence and energy equivalence, are proposed. These have certain

advantages and disadvantages over each-other, investigation of which is beyond the

aim of the current work3. The strain equivalence principle, [95], as illustrated in Fig-

ure 1.3, states the equivalence of the strain under actual nominal stresses with the

strain computed at the fictitious undamaged state under effective stresses. In other

words, it assumes the validity of canonical constitutive forms, once the stress measure

is selected in terms of the effective one.

Figure 1.3: Principle of strain equivalence.

3 We content with noting that, the principle of energy equivalence is especially utilized together
with anisotropic damage modeling.
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1.4 Organization of the Thesis

The thesis is organized in the form of a collection of the following self-contained

chapters,

In Chapter 2, a local, isotropic damage coupled hyperelastic-plastic framework is for-

mulated in principal axes using an eigenbases representation. It is shown that, in a

functional setting, treatment of many damage growth models, including ones orig-

inated from phenomenological models (with formal thermodynamical derivations),

micro-mechanics or fracture criteria, proposed in the literature, is possible. Quasi-

unilateral damage evolutionary forms are given with special emphasis on the fea-

sibility of formulations in principal axes. Moreover local integration procedures are

summarized starting from a full equation set which are simplified step by step initially

to two and finally to one. Also different operator split methodologies such as elas-

tic predictor-plastic/damage corrector (simultaneous plastic-damage solution scheme)

and elastic predictor-plastic corrector-damage deteriorator (staggered plastic-damage

solution scheme) are given. Besides possible extensions to involve linear kinematic

hardening are formulated in a thermodynamically consistent manner. To this end

regarding consistent material moduli are derived. The model is implemented as a user

defined material subroutine UMAT for ABAQUS/Standard and UFINITE MSC.Marc and

tested for a set of sample problems evaluating the accuracy and predictive capabilities

of the developed algorithms in a purely mechanical setting.

In Chapter 3, a thermo-mechanical framework for damage-coupled finite (visco) plas-

ticity with nonlinear isotropic hardening is presented in an eigenvalue representation.

The formulation makes use of the internal variable theory of thermodynamics and,

following in the footsteps of [162], introduces inelastic entropy as an additional state

variable. It is shown that, given a temperature dependent damage dissipation po-

tential, the evolution of inelastic entropy assumes a split form relating to plastic and

damage portions, respectively. For regularization of the doubly induced softening due

to damage and temperature, a simple Perzyna type viscosity is devised. Analyti-

cal forms, which provide an account of the effect of damage on heat conduction, and

provide a thermo-mechanical framework accompanied by algorithmic forms for a stag-

gered scheme based on the so-called isothermal split, are derived. A possible setting
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for the adiabatic formulation is also presented. The model is implemented as UMAT

and UMATHT subroutines for ABAQUS/Standard and used in a set of application prob-

lems, among which, two novel necking triggering methods (similar to the thermal and

geometric imperfection methods) are introduced in the context of a damage coupled

environment.

In Chapter 4, materializing Continuum Damage Mechanics (CDM), numerical model-

ing of discrete internal cracks, namely central bursts, in direct forward extrusion pro-

cess is presented. For this purpose, a thermodynamically consistent Lemaitre-variant

damage model with quasi-unilateral evolution which is coupled with hyperelastic-

plasticity is utilized. With VUMAT subroutine combined with an element deletion

method and with a UMAT subroutine combined with an appropriately implemented

ramped element degradation method, the model is used in the simulation of central

crack formations in forward extrusion of 100Cr6 with single reduction and Cf53 with

double reduction, using explicit and implicit FE schemes, respectively. On the physi-

cal side, relative predictive performances are observed. The investigations reveal that,

in application of the quasi-unilateral conditions, the crack closure parameter has an

indispensable effect on the damage accumulation zones by determining their internal

or superficial character. Combining a suitably selected crack closure parameter with

the element deletion procedure, discrete cracks are obtained. The periodicity of the

cracks shows well accordance with the experimental facts. Besides, investigations on

the effect of many process parameters on the final distribution of mechanical fields are

presented. Moreover, it is demonstrated that, application of counter pressure intro-

duces a marked decrease in the central damage accumulation, which in turn increases

the formability of the material through keeping the tensile triaxiality in tolerable lim-

its. It is also shown that, for a crack involving process, through systematic increase

of the counter pressure, the crack sizes diminish; where at a certain level of counter

pressure chevron cracks can be completely avoided.

Finally, Chapter 5 shortly summarizes the thesis work and addresses the future per-

spectives.
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1.5 A Word on Notation

Throughout the thesis, following notations will be used. Assuming a, b, and c as three

second order tensors, together with the Einstein’s summation convention on repeated

indices, c = a • b represents the product with [c]ik = [a]ij [b]jk. d = a : b represents

the inner product with d = [a]ij [b]ij where d is a scalar. E = a ⊗ b, F = a⊕ b and

G = a 	 b represent the tensor products with [E]ijkl=[a]ij [b]kl, [F]ijkl=[a]ik[b]jl and

[G]ijkl=[a]il[b]jk, where E, F and G represent fourth order tensors. [F]t and [F]−1

denote the transpose and the inverse of [F], respectively. DIV[F], GRAD[F] and

div[F], grad[F] respectively designate the divergence and gradient operators with re-

spect to the coordinates in the reference and current configurations. [F]sym and [F]skw

are associated with the symmetric and skew-symmetric parts of [F] respectively, with

[F] = [F]sym + [F]skw.
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CHAPTER 2

ISOTHERMAL FORMULATION

2.1 Introduction

The purpose of this Chapter is to present, in an Euclidean setting, a sound finite

strain hyperelastic-plastic framework coupled with local isotropic damage, formulated

in the principal axes. For this purpose, using the concepts of effective stress, [88]

and [144], and principle of strain equivalence, [95], a strongly coupled plasticity and

damage formulation is followed through a single yield function. With this, damage

occurrence is strictly accompanied by plastic flow which is realistic for ductile damage.

The computational features of the current framework that are worth mentioning can

be listed as follows:

• Presented framework in principal axes provides convenience in formulation of

the damage coupled finite hyperelastic-plasticity reducing the tensorial differen-

tials to simple scalar differentials, [80]. This simplicity is especially apparent in

consistent linearization of the problem,

• The principal axes representation of the damage (pseudo)conjugate variable can

readily be extended to give account for the formulation of the active-passive

conditions, which serves handiness compared to tensorial representations,

• There are no particular restrictions on the forms of the governing functions of

plasticity in terms of nonlinear isotropic hardening,

• With the proposed functional setting, there are also no particular restrictions

on the damage evolutionary forms as well. Possible forms, that can be treated
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in this setting, include damage models derived from various damage dissipation

potentials. Besides, exploiting the proportionality of the plastic multiplier and

the equivalent plastic strain rate for a class of plasticity models, without violat-

ing the second principle of thermodynamics, it is possible to expand the existing

set of damage models together with a broad range of possible progressive dete-

rioration formulations, including fracture criteria based and micro-mechanically

based ones.

• The complete numerical setting is constructed on eigen-bases rather then eigen-

vectors, which is more efficient, as far as especially the fourth order tangent

moduli computations are concerned, [119].

• The local integration schemes, which results in different operator-split method-

ologies such as elastic predictor-plastic/damage corrector type (simultaneous

plastic/damage solution scheme) and elastic predictor-plastic corrector-damage

deteriorator type (staggered plastic/damage solution scheme), are thoroughly

presented. These schemes are supported with systematic reductions applied to

the total number of governing equations at the local stress update problem.

This chapter has the following outline. Local constitutive forms are derived in § 2.2

in a thermodynamic consistency and a functional damage rate form, which unifies

the ductile damage models utilized in the literature, is proposed. In § 2.2.3, a model

problem with J2 plasticity and a Lemaitre variant damage model is presented to-

gether with unilateral damage evolutionary forms formulated in principal stress space.

Numerical aspects, including the algorithmic forms and the consistent tangent moduli

are given in § 3.3. The example problems take place in § 2.4.

2.2 Theory

2.2.1 Multiplicative Factorization

With reference to Figure 2.1, let x ∈R3 and X ∈R3designate the positions of the

particle in the current configuration, B ⊂ R3, and the reference configuration, ϕ(B) ⊂

R3, respectively. F is the deformation gradient via F =∂Xx. The motion ϕ(X, t) :
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B× R → R3 is responsible for the mapping x = ϕ(X, t).

Figure 2.1: Description of motion and configurations.

The multiplicative framework, according to the kinematics of [94], is micro-mechanically

justified in [11] for single crystals, where the same setup preserves validity for the

use together with the macroscopic phenomenological theory of polycrystalline media

due to similarity of deformation mechanisms between single and polycrystals, [140].

Multiplicative kinematics postulates the local multiplicative decomposition of the de-

formation gradient into elastic and plastic portions as 1,

F = Fe • Fp. (2.1)

The illustration of this decomposition, together with valid Eulerian and Lagrangian

strain measures is given in Figure 2.2. The local character of this factorization is re-

flected by the circles which represent the neighborhood of the regarding placements.

1 Arguments on the non-uniqueness of this decomposition, stemming from the arbitrariness of
the intermediate configuration, can be found in e.g. [50, p. 398], [106, pp. 455–456] and [163, pp.
337–338] among others. The definition of proper state variables to give account for an appropriate
finite strain multiplicative framework, supplying the invariance requirement, is a rather much debated
issue and it is beyond the scope of the current study. Here, merely, the exploitation of [163, pp. 337–
338] is followed. Accordingly, together with the isotropy condition the orientation of the intermediate
configuration is irrelevant. Thus the non-uniqueness of the decomposition does not arise as a problem
in this context and does not affect the derivations once the stored energy is constructed in terms of
be. A recent investigation on the internal dissipation inequalities for finite strain constitutive laws
together with their theoretical and numerical consequences is given in [102].
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Figure 2.2: Multiplicative kinematics of Lee.

For numerical modeling of this formulation, to give account for finite strain elasto-

plastic formulation, see e.g. [158], [159], [161] and [164] among others. The principal

axes formulation of finite (visco)plasticity, in manifold and Euclidean settings2, can

be found in [79], [80], [81] and the references therein.

2.2.2 Thermodynamic Framework

In coupling isotropic damage with plasticity using multiplicative kinematics, it is

started with the definition of free energy potentials, where isotropic hardening plastic-

ity is taken into account only. Expansion of the current setting to kinematic hardening

is given in the following pages. Merging the finite strain plasticity framework of [163]

and thermodynamics of internal variables, [98], in definition of damage including pro-

cesses, an additively decoupled total free energy, Ψ, in terms of elastic and isotropic

hardening plastic portions, i.e. Ψe and Ψp,iso, respectively, is selected as follows,

Ψ(be, α,D) = Ψe(be, D) + Ψp,iso(α), with Ψe(be, D) = (1−D) Ψ̃e(be). (2.2)

In Equation 2.2, be and α denote the elastic left Cauchy-Green deformation tensor

and the isotropic hardening (strain like) internal variable, respectively. D ∈ [0, 1],

2 Advantage of a manifold formalism, together with a coordinate free representation, where the
framework is equipped with a metric, is obvious (e.g. for space curved membranes and shells). Eu-
clidean setting, where 3D, 2D plane stress, plane strain and axi-symmetric formulations of continuum
are due, constitutes a particular choice of coordinate representation where the metric boils down to a
unit tensor.

15



represents the isotropic damage variable and has a clear geometrical definition as the

damaged area density at the plane of attention, [88]. Effective elastic potential, i.e.

Ψ̃e(be), is the free elastic energy of the fictitious undamaged continuum. In this setting

damage is coupled to elasticity with state coupling.

In pure local mechanical form, a non-negative dissipation, which is the difference

between the local stress power and the local rate of change of free energy, according

to the second principle of thermodynamics, can be set as follows,

Ω = τ : d− {∂tΨe + ∂tΨp,iso}︸ ︷︷ ︸
=∂tΨ

≥ 0, (2.3)

with ∂t [F] := ∂ [F] /∂t, and d := sym [l] representing the rate of deformation tensor

which is the work conjugate of the Kirchhoff stress tensor, where l := ∂tF • F−1

denotes the spatial velocity gradient. (2.3) gives the state equations between dual

variables, after proper modifications,

τ = 2 (1−D) ∂beΨ̃e • be, (2.4)

q = −∂αΨ = −∂αΨp,iso, (2.5)

Y d = −∂DΨ = Ψ̃e. (2.6)

where, q is responsible for isotropic hardening, in the form of yield locus expansion,

and Y d is the thermodynamically formal damage conjugate variable, in the form of

the elastic strain energy energy release rate. This form is in accordance with the

canonical Lemaitre damage model. Using the effective Kirchhoff stress definition

as, τ̃ = τ/(1−D), it is seen that, due to the strain equivalence principle, the effective

stresses do not depend explicitly on D. Substituting (2.4), (2.5) and (2.6) in (2.3),

the following dissipation potential expression is carried out,

Ω = −τ : [
1
2
£vbe • be,−1] + [−∂αΨp,iso]︸ ︷︷ ︸

=:q

∂tα + [−∂DΨ]︸ ︷︷ ︸
=:Y d

∂tD, (2.7)

where £v [F] stands for the objective Lie derivative of [F], [109]. The evolutionary

forms are defined postulating a combined loading function, in an additively decoupled

combination of the plastic potential, i.e. φ̃, and a damage dissipation potential, i.e.

φd,

φt(τ, q, Y d;α, D) = φ̃(τ̃ , q) + φd(Y d;α, D). (2.8)
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The plastic flow is physically possible at undamaged material sub-scale, which corre-

sponds to the formulation of φ̃ in the effective Kirchhoff stress space. Following the

hypothesis of generalized standard materials, which proposes the existence of normal-

ity rules, [111], one derives the plastic flow rule and the rate expressions for α and D

as,

£vbe = −2
γ̇

(1−D)
∂τ̃ φ̃ • be, (2.9)

∂tα = γ̇ ∂qφ̃, (2.10)

∂tD = γ̇ ∂Y dφd, (2.11)

which are conventional, associative evolutionary rules. In the following, plastic isotropic

hardening and many damage softening forms are unified within respective functional

settings.

2.2.2.1 Functional Isotropic Hardening Forms

Selection of the form for the plastic potential will naturally yield a set of state equa-

tions for isotropic hardening plasticity. For (2.5), a generalized function, K ′ (α) :=

−∂αΨp,iso with q = K ′ (α), can be defined using various forms proposed in the

literature as given in Table 2.1.

Table 2.1: Plasticity isotropic hardening models in the functional setting.

ID Name K ′ (α)
A. Linear K α
B. Saturation K α + (τ∞ − τ0) (1− exp [−δ α])
C. Swift τ0 [(c + α)− 1]
D. Ramberg-Osgood K αn

E. Logarithmic τ0 [ ln (c + α)− 1]

On the table, K stands for the linear hardening parameter, whereas τ0 and τ∞ repre-

sent yield stress and saturation stress, respectively. δ and c constitute other material

constants.
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2.2.2.2 Functional Damage Rate Forms

Following thermodynamics of internal variables, and using the effective stress concept,

strain equivalence principle, state coupling with elasticity and kinematic coupling with

plasticity, different isotropic damage evolutionary models can be postulated propos-

ing different damage dissipation potentials, i.e. φd. Eventual integration of the de-

rived rate forms supplies diverse patterns for damage curves with increasing plastic

strain. Together with proposing an exponential ductile continuum damage model, [39]

presents a comparative study showing relative performances of some damage models

utilized in literature. The models such as Lemaitre damage model, [96], Tai’s dam-

age model, [182], Chandrakanth and Pandey’s damage model, [39] and [40], are

capable of reflecting concave-up type damage evolution with plastic strain. On the

other hand, there are more general damage models, by taking into account the de-

pendence of damage dissipation potential on equivalent plastic strains, give rise to a

potential of mimicking a larger range of nonlinear damage evolutionary forms, ranging

from concave-down to concave-up. The model of Tie-Jun, [184], and the model of

Bonora, [23], later validated in [24] for low alloy steels under various triaxialities

and in [25] for ferritic steels, are of this kind. [23] shows that for Al2024 and Al-

Li alloys, where the damage evolution rate is dominated by the nucleation process,

which includes nucleation of multiple voids, damage accumulation patterns other than

concave-up are observed.

Derivation of a dissipation potential may not seem to be an easy task. Without for-

mally tracking the scheme given in § 2.2.2, a consistent definition of damage rate,

which does not violate the Clausius Duhem inequality, is possible (i.e. no damage

healing, Ḋ > 0). This gives rise to a broad range of progressive damage evolution-

ary forms such as the three invariant damage model, given in [97], also used in [155]

for chevron predictions in cold axi-symmetric extrusion or those based on fracture

criteria or some micro-mechanical damage models. An example for the fracture cri-

teria based CDM model may be given as the triaxiality dependent damage model of

[63], also used in [116)], which proposes the progressive deterioration counterpart of

the Oyane’s ductile fracture criterion originally proposed in [136]. For this class of

models, as progressive counterparts of accumulated plastic work dependent models,
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it is possible to exploit Freudenthal criterion, [58], Cockroft Latham criterion,

[46], or Brozzo criterion, [30]. The phenomenological CDM version of the micro-

mechanically based void growth model of [149], given in [65] and also used in [51],

constitutes an example for the micro-mechanically based CDM model.

The possibility of collecting the mentioned damage forms in a unified framework,

together with a functional setting, suitable for the current finite plasticity in principal

axes, forms the main motivation of this section. This has the apparent advantage of

robust implementation of a user defined material routine for a broad range of damage

models with minimum effort.

To set the stage, in the internal variable setting, damage growth models are postulated

to have the following generalized functional form, without specifying any particular

damage potential, i.e. φd,

Ḋ = f(τ ; ξ, D), (2.12)

where ξ represents the vector of hardening internal variables (possibly together with

their rates) in the form of scalars/tensors (e.g. isotropic/kinematic hardening vari-

ables respectively). In the present strong plastic-damage coupled environment, in the

absence of kinematic hardening, following modification of (2.12) holds, making use of

the proportionality of γ̇ and α̇,

Ḋ = γ̇ g(Y ;α, D), with Y = Y (τ̃). (2.13)

Additional function Y may seem superfluous, however the form (2.13) is proposed

to catch an accordance with the thermodynamically formally derived damage rate

form given in (2.11), together with g = ∂Y dφd/∂qφ̃, and Y = Y d. Hence (2.13)

covers all thermodynamically consistent damage models where φd = φd(Y d;α, D),

including those mentioned at the beginning of the section. Moveover, (2.13) may

emerge as many functional forms in Y , where Y , an isotropic function of τ̃3, is not

necessarily a formal damage work conjugate variable4. Table 2.2 lists some of the

damage growth rules used in the literature in the context of ductile damage mentioned

in the previous paragraphs, which are modified to fit (2.13), in the current finite strain

framework. Model E constitutes a generalization of the model proposed in [65]. The
3 Thus, Y can be represented in terms of principal stresses, i.e. τ̃1, τ̃2, τ̃3, and it is feasible to be

tackled in a principal axes formulation.
4 Y , where Y 6= −∂DΩ, is named as damage pseudo-conjugate variable.
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components p̃, τ̃1 and τ̃eq represent the effective Kirchhoff type pressure, maximum

principal Kirchhoff stress and equivalent von Mises stress respectively. All the

other variables except for Y , α and D refer to the appropriate material parameters

defined in the original references.

2.2.3 Application to A Model Problem

2.2.3.1 Spectral Representations

Starting with, the link between the tensorial forms and the principal values are con-

structed through the following spectral decompositions,

be =
3∑

A=1

be
A mA, εe =

3∑
A=1

εe
A mA, τ =

3∑
A=1

τA mA, s =
3∑

A=1

sA mA, (2.14)

where εe denotes the elastic logarithmic strain tensor and s represents the deviatoric

Kirchhoff stress tensor together with the respective eigenvalues (principal values) as

εe
A and sA. Thanks to isotropy, among the tensors given in (2.14), identical eigen-bases,

i.e. mA = νA ⊗ νA, are shared, where νA represents the corresponding eigenvectors

with (A = 1, 2, 3). The principal values of the logarithmic elastic strains are defined in

terms of elastic principal stretches, i.e. λe
A, as, εe

A = log[λe
A]. The deviatoric portion

of λe
A =

√
be
A and εe

A are represented by λ̄e
A and ε̄e

A. respectively.

In what follows, the presented framework is specialized for a specific model including a

hyperelastic potential quadratic in logarithmic elastic strains represented by principal

stretches, von Mises plasticity represented in principal effective stress space and a

quasi-unilaterally evolving Lemaitre variant damage model. Initially the derivations

are made for mere isotropic hardening plasticity. Formulations for kinematic hardening

follow for the sake of completeness.
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2.2.3.2 Free Energies and Regarding State Laws

For isothermal conditions, one postulates the following deviatoric volumetric split for

the effective elastic potential,

Ψ̃e(be) := Ψ̃e,vol(Je) + Ψ̃e,dev(λ̄e
A), (A = 1, 2, 3), (2.15)

where the frame invariance lets one use the principals of the tensor arguments in

representation of the isotropic functions,

Ψ̃e,vol(Je) :=
1
2

H log[Je]2, (2.16)

Ψ̃e,dev(λ̄e
A) := µ (log[λe

1]
2 + log[λe

2]
2 + log[λe

3]
2)

= µ (ε̄e,2
1 + ε̄e,2

2 + ε̄e,2
3 ). (2.17)

This quadratic form, although preserves validity for a large class of materials up

to moderately large deformations [3], [4], does not satisfy the polyconvexity condition

[102]. For the plastic portion, following isotropic hardening potential is common which

is associated with the combined linear and saturation type hardening,

Ψp,iso(α) :=
1
2
K α2 + (K∞ −K0) (δ + exp[−δα]/δ). (2.18)

Accordingly, one finds the following state equation for τ ,

τ = (1−D)[H{tr[ε e]}︸ ︷︷ ︸
=:p̃

1 + 2µ ε̄e︸ ︷︷ ︸
=:̃s

], (2.19)

where p̃ = (τ̃1 + τ̃2 + τ̃3)/3. One also may derive,

q = K α + (K∞ −K0) (1− exp[−δα]), (2.20)

Y d = Ψ̃e,vol(Je) + Ψ̃e,dev(λ̄e
A). (2.21)

2.2.3.3 Dissipation Potentials and Regarding Evolutionary Forms

The definition of the yield potential, which is of von Mises type, is made in the

effective Kirchhoff stress space in terms of the principal values of the effective

Kirchhoff stresses, as,

φ̃(τ̃A, q) :=

√
2
3

(τ̃2
1 + τ̃2

2 + τ̃2
3 − τ̃1 τ̃2 − τ̃1 τ̃3 − τ̃2 τ̃3)

1
2 −

√
2
3

y(q) ≤ 0, (2.22)
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where y(q) = (τ0 + q) represents the hardening/softening function for isothermal

conditions, and τ0 is the initial yield stress of the virgin material. Using this weakly5

coupled potential, the expressions for ∂τ̃ φ̃ and ∂qφ̃, taking place in (2.9) and (2.10)

respectively, can be derived as follows,

∂τ̃ φ̃ =
3∑

A=1

ñA νA ⊗ νA ⇒ £vbe = −2
γ̇

(1−D)
(

3∑
A=1

ñA νA ⊗ νA) • be, (2.23)

∂qφ̃ =

√
2
3

⇒ ∂tα = γ̇

√
2
3
, (2.24)

where ñA = ∂τ̃A φ̃ = sA/ 2
√

s2
1 + s2

2 + s2
3. Pay attention to the fact that the eigen-bases

for the effective and the homogenized stresses are equivalent, i.e. mA = νA ⊗ νA ≡

m̃A = ν̃A ⊗ ν̃A.

2.2.3.4 A Lemaitre Variant Damage Model

For the damage evolutionary form, preserving generality g(Y ;α, D) with Y = Y d, i.e.

the formal damage conjugate variable defined in (2.6), is selected, as in the case of

Lemaitre damage model. (2.21), which is given in elastic logarithmic strains, can be

reformulated in the effective principal Kirchhoff stress space together with (2.19),

to give Y d(τ̃A), (A = 1, 2, 3) as follows,

Y d(τ̃A) =
1 + ν

2E
(τ̃2

1 + τ̃2
2 + τ̃2

3 )− ν

2E
(τ̃1 + τ̃2 + τ̃3)2, (2.25)

or shortly

Y d(τ̃A) =
1 + ν

2E
(τ̃2

1 + τ̃2
2 + τ̃2

3 )− 9ν

2E
p̃2, (2.26)

where p̃ = (τ̃1 + τ̃2 + τ̃3)/3. This form involves the effect of triaxiality intrinsically as

follows

Y d =
τ̃2
eq Rv

2E
, (2.27)

where Rv is the triaxiality function,

Rv =
2
3

(1 + ν) + 3 (1− 2ν)
(

p̃

τ̃eq

)
, (2.28)

5 Here, weakly coupled refers to no hardening-damage coupling, where merely the effective stress
contributions take place in the yield function but not the effective counterparts of the hardening
variables, [20]. The plasticity-damage coupling is referred to as strong on the other hand due to the
use of a single plastic potential coupled to damage, restricting damage by not allowing its growth
without accompanying plastic flow. Comparison of possible coupling mechanisms can be found in
[107].
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and τ̃eq is the equivalent von Mises stress which is defined in terms of principal

components as τ̃eq = (τ̃2
1 + τ̃2

2 + τ̃2
3 − τ̃1 τ̃2 − τ̃1 τ̃3 − τ̃2 τ̃3)1/2.

Remark 2.2.1 In the original Lemaitre damage model, the conjugate damage force,

Y d, is defined as, [98]

Y d =
1 + ν

2E(1−D)2
τ : τ − ν

2E(1−D)2
tr[τ ]2,

which is identical to (2.25) with the effective stress definition.

2.2.3.5 Quasi-Unilateral Damage Evolution

Physical facts show that, the damage evolution is amplified in tensile conditions

whereas under compressive loads the rates of deterioration dramatically reduce. This

is due to the partial micro-crack closure. Accordingly, quasi-unilateral damage takes

into account evolution fully in tension and partially (or none) in compression. For a

3D stress state, the tensile and the compressive characters of the tensor components

may not be apparent. For this purpose, two common resolutions are due.

The former, being a rather simplistic approach, proposed in [178] and [141] where

the damage accumulation rate for cyclic plasticity is analyzed, relies on the character

of the triaxiality (or equivalently the hydrostatic stress component). Hence, damage

accumulates under positive (tensile) hydrostatic stresses where the damaged mate-

rial stiffness is utilized. For negative triaxialities on the other hand, neither damage

accumulates (not even partially), nor a reduction in the tangent is given account for.

In the latter more rigorous method, decision is made using the distinct principal ten-

sor (stress or strain) components. Accordingly, the tensile and compressive principal

tensor components are sought, where, for the extraction of these components, use of

projection operators are proposed, see, e.g. [104] and [92], as well as spectral decom-

positions, see, e.g. [199]. In view of that, the damage conjugate variable definitions

are refined to support quasi-lateral damage evolutionary forms, fully contributed by

tensile stresses and partially contributed by compressive stresses, parameterized by

the crack closure parameter.

Two methods have relative advantages and disadvantages. The form given in [178] and
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[141] is very efficient and supplies rapid qualification of the evolutionary conditions.

Besides, it does not require a crack closure parameter. However, this simplicity may be

seen as a drawback of the method, where there is no space for partial damage evolution

under compressive hydrostatic stresses. As far as the void nucleation with shear

decohesion under compressive stresses is taken into account, this requirement may be

seen over-restrictive. The principal stress/strain projection method on the other hand

intrinsically takes into account these mechanisms to a certain level governed by the

crack closure parameter. However, the method results in a more complicated algorithm

as far as the computation of the evolutionary forms and the material tangents are

concerned.

The advantage of the current framework using the principal stress space formulation

comes to scene at this stage with its ease of application of the quasi-unilateral dam-

age evolutionary forms (i.e. active/passive damage evolutionary conditions). Since

the existing formulation is already a principal axes one, it is naturally devised for

the active/passive conditions, thus does not necessitate an additional labor for ex-

tracting the principal tensile and principal compressive portions of stress tensors with

projection operators or spectral decompositions. Accordingly, one may propose the

following refined damage conjugate variable to give account for the quasi-lateral dam-

age evolution, with fully contributed by tensile stresses and partially contributed by

compressive stresses as,

Y d,+(τ̃A) =
1 + ν

2E
(〈τ̃1〉2 + 〈τ̃2〉2 + 〈τ̃3〉2)−

9ν

2E
〈p̃〉2

+
h (1 + ν)

2E
(〈−τ̃1〉2 + 〈−τ̃2〉2 + 〈−τ̃3〉2)−

9h ν

2E
〈−p̃〉2,

(2.29)

where 〈F〉 is the Macauley bracket with 〈F〉 := 1/2 (F + |F|) and h ∈ [0, 1] is

the crack closure parameter. The two extremes where h = 0 and h = 1 correspond

to complete and no crack closure respectively, where for steels h is generally taken

as 0.2, [98]. The use of effective principal Kirchhoff stresses highly simplifies not

only the form of the expressions, but also the consequent derivations. This apparent

simplicity is applicable to all of the isotropic damage models given in Table 2.2, where

Y (τ̃) is reformulated as Y (τ̃A) with (A = 1, 2, 3) . In the current framework, unlike

[99, p. 105], identical damage independent effective stress definition for elasticity and

plasticity is used.
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Application of the quasi-unilateral conditions with anisotropic damage is prone to

certain anomalies, which is beyond the purpose of the current study. For a general

perspective, the reader is referred to [38] and the references therein.

2.2.4 Expansion to Kinematic Hardening

Inclusion of kinematic hardening is made in the simplest manner by introducing an

additional term to the plastic free energy in (2.2). Accordingly, an additively decou-

pled form into isotropic, i.e. Ψp,iso, and kinematic, i.e. Ψp,kin, portions are assumed,

such as,

Ψp(α, z) = Ψp,iso(α) + Ψp,kin(z), (2.30)

where an additional dissipation term due to the kinematic hardening, Ωp,kin, is added

to the pure local mechanical inequality,

Ω = τ : [−1
2
£vbe • be,−1] + Ωp,kin(z) + q ∂tα + Y d ∂tD ≥ 0, (2.31)

with z and β being kinematic hardening strain-like and stress-like variables, respec-

tively. β is also called the backstress, associated with the center of the yield surface,

i.e. elastic range. Geometrical interpretation of the isotropic, kinematic and combined

isotropic/kinematic hardening models are respectively given in Figure 2.3.a, Figure

2.3.b and Figure 2.3.c in the Π plane, defined at the effective Kirchhoff stress space,

for an initially virgin yield locus, given by the dashed circles. More complicated hard-

ening models can be developed by distorting the locus by accompanied plastic flow.

For kinematic hardening, in the context of multiplicative kinematics, two possible

approaches that are proposed in the literature, which are named as Model A and

Model B, are utilized. Model A is due to [81] and Model B is due to [102], where the

details are in Table 2.3.
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Figure 2.3: Yield locus evolution in Π plane, a) Isotropic hardening, b) Kinematic
hardening, c) Combined isotropic/kinematic hardening.

Table 2.3: Utilized kinematic hardening models.

Expression Model A Model B
β 2∂zΨ • z ∂zΨ

Ωp,kin β :
[
−1

2£vz • z−1
]

β :
[
−
4
ξ

]
Objective rate £vz = ż− l • z− z • lt

4
z =

3∑
A=1

żA νA ⊗ νA

In both of the formulations, it is hypothesed that, be is coaxial with z, (equivalently,

so are τ and β). Also z and β are deviatoric and symmetric tensors. Accordingly

following expressions are valid,

z =
3∑

A=1

zA νA ⊗ νA; zA = γ2
A, (2.32)

β =
3∑

A=1

βA νA ⊗ νA. (2.33)

In Model A, the form of the Kirchhoff type kinematic hardening stress like variable is

analogous to the Kirchhoff stress definition. The dissipation potential is constructed

in terms of Lie derivative of z. This form is direct extension of the dissipation potential

to give account for damage derived in the reference configuration in [81], as,

0 ≤ Ω := −S :
1
2
C • ∂tGp •Gp,−1 −A :

1
2
C • ∂tΞ •Ξ−1 + q ∂tα + Y d ∂tD, (2.34)
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where z = F •Ξ • Ft, β = F •A • Ft, be = F •Gp • Ft. Accordingly one finds

∂tbe − l • be−be • lt︸ ︷︷ ︸
=:£vbe

= F • ∂tGp • Ft, (2.35)

∂tz− l • z− z • lt︸ ︷︷ ︸
=:£vz

= F • ∂tΞ • Ft. (2.36)

Except for the trivial case of q ∂tα ≡ q ∂tα, Y d ∂tD ≡ Y d ∂tD, for scalars, one can

derive the following equivalences to complete the case,

−S :
1
2
C • ∂tGp •Gp,−1 ≡ τ : [−1

2
£vbe • be,−1], (2.37)

−A :
1
2
C • ∂tΞ •Ξ−1 ≡ β :

[
−1

2
£vz • z−1

]
, (2.38)

where the details of the derivations are given in Appendix C. In Model B, the con-

ventional form of the state laws is utilized, where the objective rate of the strain like

variable in the dissipation potential expression is in a corotational rate form. As seen

in both of the models, the definition for the back stress, with 2∂zΨ • z or ∂zΨ for

Model A and B, respectively, strictly depends on the form of Ψp,kin(z).

The flow rules are carried out through the dissipation potentials which involve the

back stress, β, as an additional argument,

φt(τ, β, q, Y d;α, D) = φ̃(τ̃ ,β, q) + φd(Y d;α, D). (2.39)

Existing flow equations does not alter, whereas the evolutionary forms for z, in Model

A and Model B yield two objective rate forms. For Model A, together with the

normality condition, one derives

£vz = −2 γ̇ ∂βφ̃ • z, (2.40)

whereas for Model B, one carries out,

4
z= −γ̇ ∂βφ̃. (2.41)

2.2.4.1 Model Free Energies and Dissipation Potentials

As model free energy definitions, for Model A, a form, quadratic in logarithmic kine-

matic hardening strains, i.e. κ = log [γ] is utilized, where γA =
√

zA stands for

the kinematic hardening stretch with the deviatoric portion represented, [81]. For
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Model B a form quadratic in kinematic hardening strain-like variable, z, is selected,

[102]. These two forms are generalizations of the Prager-Ziegler type of kinematic

hardening to the finite strain regimes,

Ψp,kin(γA) =

 1
3C (log[γ1]2 + log[γ2]2 + log[γ3]2); Model A;
1
3C(γ4

1 + γ4
2 + γ4

3), with z2
A = γ4

A; Model B.
(2.42)

Accordingly one finds the following state equations for β,

β =

 2
3C κ; Model A;
2
3C z; Model B.

(2.43)

The definition of the yield potential, which is of von Mises type, is made in the

effective Kirchhoff stress space in terms of the principal values of the effective

Kirchhoff stresses and Kirchhoff type back-stress as,

φ̃(s̃A, βA, q) := [(s̃1 − β1)2 + (s̃2 − β2)2 + (s̃3 − β3)2]1/2 −
√

2
3

y(q) ≤ 0. (2.44)

Utilizing above form, evolutionary forms can be handled as follows,

∂τ̃ φ̃ =
3∑

A=1

ñA νA ⊗ νA ⇒ £vbe = −2
γ̇

(1−D)
(

3∑
A=1

ñA νA ⊗ νA) • be, (2.45)

∂βφ̃ =
3∑

A=1

ñA νA ⊗ νA ⇒


£vz = −2 γ̇ (

3∑
A=1

ñA νA ⊗ νA) • z; Model A;

4
z = − γ̇

3∑
A=1

ñA νA ⊗ νA; Model B.
(2.46)

where ñA = ∂τ̃A φ̃ = ξA/ 2
√

ξ2
1 + ξ2

2 + ξ2
3 , with ξA = s̃A − βA. Pay attention to the fact

that the eigen-bases for the effective and the homogenized stresses are equivalent, i.e.

mA = νA ⊗ νA ≡ m̃A = ν̃A ⊗ ν̃A.

2.3 Numerical Implementation

2.3.1 FE Formulation of the Coupled IBVP

In an Eulerian description, the local equation of motion is constructed as,

div σ + ρζ = ργ. (2.47)

where σ denotes the Cauchy stress tensor defined at current configuration. ρ is the

density, whereas ζ and γ are the body forces and accelerations respectively.
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Following a (Bubnov-)Galerkin approach, both sides are multiplied by a sufficiently

smooth virtual displacement field, η, integrate at the current configuration and apply

the divergence theorem to carry out a weak statement of the quasi static (global)

equilibrium of the body, where accelerations are neglected (i.e. γ = 0),

g(ϕ,η) =
∫

ϕ(B)
σ : [gradη]sym dv −

∫
ϕ(B)

ρζ • η dv −
∫

ϕ(∂Bσ)
t̄ • η da = 0, (2.48)

where t̄ denotes the surface tractions. Linearization of the given weak form, for only

the internal virtual work, in the direction of ϕ, i.e. Dg(ϕ,η)•dϕ is,

Dg(ϕ,η) • dϕ =
∫

ϕ(B)
[gradη]sym : c : [gradϕ]sym dv

+
∫

ϕ(B)
gradη • σ • gradϕ dv.

(2.49)

On the right hand side, the first term is due to material stiffness and the second term

is due to geometric stiffness. A consistent derivation of c, i.e. spatial material tangent,

is vital for quadratic convergence quality of the Newton-Raphson method, which is

listed in §2.3.3.

2.3.2 Algorithmic Treatment of the Time Discrete Forms

In the following, isotropic damage coupled hyperelastic-plastic framework formulated

in principal axes, local integration procedures are summarized starting from a full set

of seven equations which are simplified systematically at first to two and finally to

one. In addition, possible operator-split methodologies, which emanate from product

formulas, such as elastic predictor-plastic/damage corrector (simultaneous plastic-

damage solution scheme) and elastic predictor-plastic corrector-damage deteriorator

(staggered plastic-damage solution scheme) are given. Isoerror maps, listed in § 2.4,

are utilized for the accuracy and stability evaluation taking into account the effect of

various process parameters.

The accessibility of any mathematical material model to the engineering practice in the

solution of random complex problems is possible invariably through implementing user

material subroutines into existing finite element software. For a quasi static problem,

these subroutines require stress, internal variable and material tangent matrix updates

at the end of the time step. This scheme is generally named as the return mapping,
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which boils down to a radial return for isotropic von Mises type yield loci, [93]. Such a

scheme generally requires simultaneous satisfaction of a set of differential equations, in

the form of the rates of inelastic variables, mostly of nonlinear character which requires

satisfaction of B-stability, [160]. A general approach for solving this set is application

of the Newton-Raphson method together with a backward-Euler integration. For

quasi-static problems, this helps definition of the global algorithmic moduli also, which

may not be the case for different integration methods, such as those belonging to RK

family, [194]. On the local integration schemes for inelasticity, there is a vast amount

of literature. Among others, [93] and [131] can be given as examples which studies

local integration schemes for pure plasticity. [163] includes an indepth treatment of

the subject. [170], [194] and [128] constitute examples for damage coupled plasticity.

For a larger evaluation of the methods, user is referred to [194] and the references

therein. The Newton-Raphson method requires the analytical derivation of local

system Jacobian which may not be possible for complicated material models. As

the mathematical rigor in the material model is increased, certain justifications may

be possible from the accuracy. Accordingly, numerical evaluation of the Jacobian is

possible, see e.g. [120] or [138]. Another option is application of quasi-Newton type

methods, [54]. Making use of staggered routines which falls into the class of product

formulas, [45], is one remedy which has certain advantages:

• Since the staggering breaks up the coupled environment of the system, the off-

diagonal terms in the Jacobian are not computed. This subtracts from the

local computational load for the integration, which results in a considerable

time gain in staggered schemes. This is more apparent in the dynamic explicit

analysis where the global tangent is not utilized in the analysis thus the pure

computational time depends on the performance of the local integration routines.

• For the staggered portions, different time steps and different numerical integra-

tion methods can be devised among staggered integration steps,

• It is easy to implement a staggered routine into the existing return mapping

routines. Unlike the monolithic schemes the modifications are decreased to min-

imum where the code changes are limited to explicit implementations (like in-

dependent function additions) rather than implicit ones. 6,
6 For example, in the adiabatic processes where high velocity loading is due, the heat cannot find
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• In the context of damage mechanics, where isotropic damage variable is due, the

advantage of staggering the plastic correction and damage deterioration may

not be apparent, where two scalar nonlinear equations are due. However as far

as anisotropy is concerned, the efficiency is obvious, where the dimension of the

problem is significantly increased due to additional tensorial components, see

e.g. [54].

Besides the having proved the mentioned advantages, staggered routines are only

conditionally stable thus require accuracy and stability analysis. The accuracy re-

quirements may need smaller time steps, compared to monolithic schemes. The aim

of this study is to assess the stability and accuracy of the staggered routines in con-

tinuum damage mechanics for finite strains. The stability and the accuracy of the

use of product formulas in the context of simultaneous differential equation solutions

were investigated by [45]. In the context of damage coupled plasticity, such stag-

gered algorithms are proposed by[165], [85], [86] for isotropic damage models where

multi-surface damage-plasticity models are utilized. For anisotropic damage models,

[54] investigates the performance of staggered schemes. [128] also applies another ap-

proach in damage integration. As a tool to evaluate the numerical accuracy, isoerror

maps are utilized, which are known to lack the mathematical rigor however show rea-

sonable performance. Isoerror analysis is used by [93] and [131] for pure plasticity

and [170] and [194] for damage coupled plasticity. The presentation in [194] utilizes

a small strain framework. Besides none of these studies involve the application of a

staggered approach. In the present study, for a finite strain hyperelastic plastic model

coupled to a Lemaitre variant damage model, the parametric effects, such as degree

of nonlinearity of the damage function (where the concave up and down models are

diagnosed), the effect of the initial damage in the system, on the accuracy and sta-

bility of the staggered integration are evaluated. The latter is of special importance.

Although the physical evidences prove that failure may occur far below the upper

time to conduct or convect over the problem domain. This lack of conduction leads to a simplified
case of solution in the local integration in the expense of increasing number of equations handled at
the radial return. The heat equation is treated now at its strong form where the derivation of the
weak form is not required. Such schemes, which are implemented in the dynamic explicit codes, once
treated by staggered routines, this amount to four step elastic predictor/plastic corrector/damage
deteriorator/temperature deteriorator type algorithm. Whereas the physics of the problem is compli-
cated, once a plastic return map routine is available, expansion to damage and thermal coupling is a
matter addition of two uncoupled initial value problems.
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mathematical limit of damage which is D = 1, numerical instabilities may occur for

D ≥ 0.80, [99]. A functional damage framework is utilized which gives the possibility

to observe the response of different damage models.

These methods emerge as a special form of the closest point projection which boils

down to the radial return mapping when von Mises yield surface is utilized, [164],

[93]. The radial return map in a damage coupled framework takes place in the effective

Kirchhoff stress space. Using the effective Kirchhoff stress definition as, τ̃ =

τ/(1−D), it is seen that, due to the strain equivalence principle, the effective stresses

do not depend explicitly on D.

[F]n and [F]n+1 give the definitions of any state variable denoted by [F], at times tn

and tn+1 respectively. It is assumed that the state variables at time tn are known and

using the deformation computed at ∆t = tn+1 − tn, the state at time tn+1 is sought

for. Using a strain driven process, an elastic trial left Cauchy Green deformation

tensor, b e, tri, at time tn+1, can be defined making use of relative deformation gradient

tensor at current step, i.e. fn+1, with fn+1 = Fn+1 • F−1
n , and elastic left Cauchy

Green deformation tensor of the previous step, i.e. b e
n, as follows,

b e, tri
n+1 = fn+1 • b e

n • f t
n+1. (2.50)

The spectral decomposition of b e, tri
n+1 reads, with b e

n+1, A = λe, tri, 2
n+1, A,

b e, tri
n+1 =

3∑
A=1

λe, 2
tri, A mtri, A

n+1 . (2.51)

Following [167], the eigen-bases, mtri, A
n+1 , can be explicitly given as,

mtri, A
n+1 =

be, tri
n+1 • be, tri

n+1 − (I1 − λe, tri, 2
n+1, A)b e, tri

n+1 + I3 λe, tri,−2
n+1, A 1

DA
, (2.52)

where 1 is the second order identity tensor. DA is defined as,

DA = 2λe, tri, 4
n+1, A − I1λ

e, tri 2
n+1, A + I3λ

e, tri,−2
n+1, A , (2.53)

using the following invariant definitions for I1, I2 and I3,

I1 = λe, tri, 2
n+1, 1 + λe, tri, 2

n+1, 2 + λe, tri, 2
n+1, 3 , (2.54)

I2 = λe, tri, 2
n+1, 1 λe, tri, 2

n+1, 2 + λe, tri, 2
n+1, 1 λe, tri, 2

n+1, 3 + λe, tri, 2
n+1, 2 λe, tri, 2

n+1, 3 , (2.55)

I3 = λe, tri, 2
n+1, 1 λe, tri, 2

n+1, 2 λe, tri, 2
n+1, 3 . (2.56)

33



(2.52) is restricted to the case of discrete eigenvalues, i.e. λe, tri
n+1, 1 6= λe, tri

n+1, 2 6= λe, tri
n+1, 3.

The case of coincident or nearly coincident eigenvalues are treated with the perturba-

tion technique presented in § 2.3.3. The algorithmic counterpart of the flow rule (2.9)

is,

£vb e
n+1 = −2

γ̇n+1

(1−Dn+1)
∂τ̃ φ̃

∣∣∣
n+1

• b e
n+1, (2.57)

where for a typical time step ∆t, using ∆γ := ∆t γ̇ n+1 , the exponential mapping

approximation for integration of flow rule, as a solution of the first order differential

equation (2.57), yields7,

b e
n+1 = exp

[
−2

∆γ

(1−Dn+1)
∂τ̃ φ̃

∣∣∣
n+1

]
• b e, tri

n+1 . (2.58)

Rewriting (2.58) to constitute the principal stretches, one carries out,

λ e
n+1, A = exp

[
− ∆γ

(1−Dn+1)
∂φ̃

∂τ̃A

∣∣∣∣∣
n+1

]
λ e, tri

n+1, A. (2.59)

Taking the natural logarithms of both sides,

ε e
n+1, A = ε e, tri

n+1, A −
∆γ

(1−Dn+1)
∂φ̃

∂τ̃A

∣∣∣∣∣
n+1

, (2.60)

gives rise to the following form,

ε e
n+1, A = ε e, tri

n+1, A −∆ε p
n+1, A, (2.61)

where the principal logarithmic plastic strain increments are defined as follows,

∆ε p
n+1, A =

∆γ

(1−Dn+1)
∂φ̃

∂τ̃A

∣∣∣∣∣
n+1

. (2.62)

It is noteworthy that, making use of the Hencky model, from a multiplicative de-

composition of the deformation gradient into elastic and plastic portions one comes

up with the damage coupled counterpart of the canonical stress-space return mapping

algorithm of the small strain elasto-plasticity. Using (2.57), the plastic/damage cor-

rection of trial elastic logarithmic strains in (2.60) furnishes the following definitions

for the current total effective principal Kirchhoff stresses,

τ̃n+1, A = τ̃ tri
n+1, A − 2µ

∆γ

(1−Dn+1)
nn+1, A, with τ̃ tri

n+1, A = p̃ + s̃ tri
n+1, A, (2.63)

and for the corrected current deviatoric effective principal Kirchhoff stresses,

s̃n+1, A = s̃ tri
n+1, A − 2µ

∆γ

(1−Dn+1)
nn+1, A, with s̃ tri

n+1, A = 2µ ε̄ e, tri
n+1, A. (2.64)

7 See Appendix C.2.5 as a reminder, for a general treatment for the exponential mapping.
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2.3.2.1 Simultaneous Local Integration Schemes

In what follows, the coupled nonlinear equation set of the local integration problem, for

a known constant displacement increment, is presented. The solution results in a two-

step operator-split with a simultaneous plastic/damage correction for a given elastic

prediction, i.e. (2.50). Table 2.7 shows the schematic illustration of the problem.

Table 2.4: Two-step operator-split with a simultaneous plastic/damage correction.

Total Elastic Predictor Plastic/Damage Corrector
∂tε 6= 0
£vbe 6= 0
∂tα 6= 0
∂tD 6= 0

=


∂tε 6= 0
£vbe = 0
∂tα = 0
∂tD = 0

+


∂tε = 0
£vbe 6= 0
∂tα 6= 0
∂tD 6= 0

 .

Techniques, used in reduction of totally seven coupled equations, initially to two and

finally to one, are also given. For this purpose, one necessitates the subsequent defi-

nition of the yield function computed at the current step,

φ̃n+1 := ‖s̃n+1‖ −
√

2
3

y (qn+1) = 0. (2.65)

Defining a family of generalized mid-point integration rules parameterized in θ, as,

[F]n+1 = [F]n + ∆t [Ḟ]n+θ, with [Ḟ]n+θ = (1 − θ) [Ḟ]n + θ [Ḟ]n+1, for an arbitrary

variable denoted by [F], one may supply the rather trivial integration of the scalars

α and D. This method is second order accurate for θ = 1/2, [110], whereas θ = 1

gives account for the first order accurate and unconditionally stable backward Euler

method which is highly efficient in the integration of α, in computational plasticity,

[83], and utilized in this section. The techniques, used in reduction of totally seven

coupled equations, initially to two and finally to one, are also given. In the simulta-

neous local integration schemes, implicit backward Euler method is utilized for both

plasticity and damage, which reads,

αn+1 = αn + ∆t α̇n+1 = αn +

√
2
3

∆γ, (2.66)

Dn+1 = Dn + ∆t Ḋn+1 = Dn + ∆γ gn+1, (2.67)
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with gn+1 = g(Y d,+
n+1;αn+1, Dn+1), where, Y d,+

n+1 = Y d,+
n+1(αn+1, Dn+1). In a residual

setting, using the effective stresses definition with (2.63), for the current and the trial

principal stress components, the complete simultaneous set of equations can be given

as,

rn+1 = rn+1(xn+1) =



τn+1, 1 − τ tri
n+1, 1 + 2µ∆γ nn+1,1

τn+1, 2 − τ tri
n+1, 2 + 2µ∆γ nn+1,2

τn+1, 3 − τ tri
n+1, 3 + 2µ∆γ nn+1,3

αn+1 − αn −
√

2
3 ∆γ

qn+1 −K ′ (αn+1)

φ̃n+1 := ‖s̃n+1‖ −
√

2
3 y (qn+1)

Dn+1 −Dn −∆γ gn+1



; xn+1



τn+1, 1

τn+1, 2

τn+1, 3

∆γ

Dn+1

αn+1

qn+1



.

(2.68)

where rn+1(xn+1) = 0. The array of unknowns is represented by xn+1. This set of

nonlinear equations can be treated with the standard Newton-Raphson solution

scheme. Accordingly the linearized version of the equations can be given as drn+1 =

Drn+1 • dxn+1, where the Jacobian of the system is denoted by Drn+1, with,

Drn+1 =



∂r1, n+1

∂τn+1, 1

∂r1, n+1

∂τn+1, 2

∂r1, n+1

∂τn+1, 3

∂r1, n+1

∂∆γ
∂r1, n+1

∂Dn+1

∂r1, n+1

∂αn+1

∂r1, n+1

∂qn+1

∂r2, n+1

∂τn+1, 1

∂r2, n+1

∂τn+1, 2

∂r2, n+1

∂τn+1, 3

∂r2, n+1

∂∆γ
∂r2, n+1

∂Dn+1

∂r2, n+1

∂αn+1

∂r2, n+1

∂qn+1

∂r3, n+1

∂τn+1, 1

∂r3, n+1

∂τn+1, 2

∂r3, n+1

∂τn+1, 3

∂r3, n+1

∂∆γ
∂r3, n+1

∂Dn+1

∂r3, n+1

∂αn+1

∂r3, n+1

∂qn+1

∂r4, n+1

∂τn+1, 1

∂r4, n+1

∂τn+1, 2

∂r4, n+1

∂τn+1, 3

∂r4, n+1

∂∆γ
∂r4, n+1

∂Dn+1

∂r4, n+1

∂αn+1

∂r4, n+1

∂qn+1

∂r5, n+1

∂τn+1, 1

∂r5, n+1

∂τn+1, 2

∂r5, n+1

∂τn+1, 3

∂r5, n+1

∂∆γ
∂r5, n+1

∂Dn+1

∂r5, n+1

∂αn+1

∂r5, n+1

∂qn+1

∂r6, n+1

∂τn+1, 1

∂r6, n+1

∂τn+1, 2

∂r6, n+1

∂τn+1, 3

∂r6, n+1

∂∆γ
∂r6, n+1

∂Dn+1

∂r6, n+1

∂αn+1

∂r6, n+1

∂qn+1

∂r7, n+1

∂τn+1, 1

∂r7, n+1

∂τn+1, 2

∂r7, n+1

∂τn+1, 3

∂r7, n+1

∂∆γ
∂r7, n+1

∂Dn+1

∂r7, n+1

∂αn+1

∂r7, n+1

∂qn+1


. (2.69)

Using Dr−1
n+1•drn+1 = dxn+1, the solution for xn+1, which constitutes the local return

mapping realized at each Gauss point, can be carried out with the following iterative

scheme,

x(k+1)
n+1 = x(k)

n+1 − δ(k) Dr−1, (k)
n+1 • r(k)

n+1, (2.70)

where δ(k) ∈ (0, 1] is the proper line-search parameter.

The linearization of the global FE equilibrium equations requires a slight difference in
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the definition of the vector of residuals and the vector of unknowns as,

rn+1 = rn+1(x̂n+1) = 0; x̂n+1



εn+1, 1

εn+1, 2

εn+1, 3

τn+1, 1

τn+1, 2

τn+1, 3

∆γ

Dn+1

αn+1

qn+1



. (2.71)

With this current manipulation, the total differential of rn+1 with drn+1 = 0, yields

the consistent tangent. At this level, the number of the components of the Jacobian

for governing equations is considerable. Further refinements are possible with little

effort.

Reduction to Two Equations: Following [166], the local governing equations col-

lected in (2.68) can be reduced, particularly for the chosen yield criterion, making use

of the substitution, s̃n+1, A = ‖s̃n+1‖ nn+1, A

‖s̃n+1‖ nn+1, A =
∥∥s̃ tri

n+1

∥∥ n tri
n+1, A − 2µ

∆γ

(1−Dn+1)
nn+1, A. (2.72)
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Table 2.5: Scheme for the elastic predictor.

1. Database at x ∈ B, be
n, αn, Dn

2. Given the current one, i.e. Fn+1, compute the relative deformation gradient,
fn+1 = Fn+1 • F−1

n

3. Compute the trial elastic left Cauchy Green deformation tensor,

b e, tri
n+1 = Fn+1 • be

n • Ft
n+1

4. Apply the spectral decomposition,

btri, A
n+1 =

3∑
A=1

b e, tri
n+1, A mtri, A

n+1 , with λ e, tri
n+1, A = (b e, tri

n+1, A)1/2

with the following definition for eigen-bases,

mtri, A
n+1 =

be, tri
n+1 • be, tri

n+1 − (I1 − λe, tri, 2
n+1, A)be, tri

n+1 + I3 λe, tri,−2
n+1, A 1

DA

which is computed for perturbed eigen-values for sufficiently close principal
stretches.
5. Compute the trial elastic logarithmic strains,

ε e, tri
n+1, A = ln(λ e, tri

n+1, A)

6. Compute the effective principal Kirchhoff stress predictions,

τ̃ tri
n+1, A = p̃n+1 + s̃ tri

n+1, A

p̃n+1 = H log [Jn+1]
s̃ tri

n+1, A = 2µ ε̄ e, tri
n+1, A.

Applying the following arrangements,(
‖s̃n+1‖+ 2µ

∆γ

(1−Dn+1)

)
nn+1, A =

∥∥s̃ tri
n+1

∥∥ n tri
n+1, A, (2.73)

and exploiting the condition of collinear flow and the trial Kirchhoff stress tensor,

where, nn+1 ≡ n tri
n+1, [166], the uniqueness of the spectral decomposition yields,

n tri
n+1, A mtri, A

n+1 = nn+1, A mA
n+1, (2.74)

which gives mtri, A
n+1 ≡ mA

n+1 and nn+1, A ≡ n tri
n+1, A. Utilizing this equivalence one can

write,

‖s̃n+1‖+ 2µ
∆γ

(1−Dn+1)
=
∥∥s̃ tri

n+1

∥∥ . (2.75)

Finally, representing the hardening/softening function definition in terms of the plastic
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multiplier, yields the following reduced form, with rn+1 = rn+1(xn+1),

rn+1 =



√
2
3 {τ0 + K ′(αn +

√
2
3 ∆γ )}−

−
∥∥s̃ tri

n+1

∥∥+ 2µ
∆γ

(1−Dn+1)

Dn+1 −Dn −∆γ gn+1

 ; (2.76)

κn+1 =

 ∆γ

Dn+1

 . (2.77)

where, for the local return mapping problem, rn+1(xn+1) = 0, with the number of

unknowns, reduced from 7 to 2. The iterative scheme given in (2.70) is used in the

solution of the reduced nonlinear problem with the following Jacobian definition,

Drn+1 =


∂r1, n+1

∂∆γ

∂r1, n+1

∂Dn+1
∂r2, n+1

∂∆γ

∂r2, n+1

∂Dn+1

 . (2.78)

For the more general global problem,

rn+1 = rn+1(x̂n+1) = 0; x̂n+1



εn+1, 1

εn+1, 2

εn+1, 3

∆γ

Dn+1


. (2.79)

with the vanishing total differential, drn+1 = 0,

dr1, n+1 =
3∑

A=1

∂r1, n+1

∂εn+1, A
dεn+1, A +

∂r1, n+1

∂∆γ
d∆γ +

∂r1, n+1

∂Dn+1
dDn+1 = 0, (2.80)

dr2, n+1 =
3∑

A=1

∂r2, n+1

∂εn+1, A
dεn+1, A +

∂r2, n+1

∂∆γ
d∆γ +

∂r2, n+1

∂Dn+1
dDn+1 = 0. (2.81)

with dεn+1, A/dεn+1, B = δAB, one carries out,
∂r1, n+1

∂εn+1, A
∂r2, n+1

∂εn+1, A

 = −Drn+1 •


d∆γ

dεn+1, A
dDn+1

dεn+1, A

 , (2.82)

to give the following expression to be used in the algorithmic tangent moduli of the

linearized global equilibrium problem,
d∆γ

dεn+1, A
dDn+1

dεn+1, A

 = −Dr−1
n+1 •


∂r1, n+1

∂εn+1, A
∂r2, n+1

∂εn+1, A

 . (2.83)
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Derivations for the components of the local Jacobian, i.e. Drn+1, are listed in

Appendix C, preserving the functional setting. The algorithmic treatment of the

simultaneous approach with reduced two equation system is summarized in Table 2.6.

Table 2.6: Scheme for the return-mapping algorithm for two-step operator-split (Elas-
tic predictor-plastic/damage corrector type algorithm).

1. Process Table 2.5. (Elastic predictor),
2. Check for plastic-damage loading on effective Kirchhoff stress space,

φ̃tri
n+1 = {(s̃tri

n+1, 1)
2 + (s̃tri

n+1, 2)
2 + (s̃tri

n+1, 3)
2}1/2 −

√
2
3
{τ0 + K(αn)}

IF φ̃tri
n+1 ≤ 0 THEN

Set (•)n+1 = (•)tri
n+1, EXIT. (Elastic step)

ELSE
GOTO 3. (Plastic-damage corrector)
ENDIF
3. Find the plastic multiplier and the damage, ∆γ (0) = 0, D

(0)
n+1 = Dn, with line-

search,{
∆γ (k+1)

D
(k+1)
n+1

}
=

{
∆γ (k)

D
(k)
n+1

}

− δ(k)

∆(k)
n+1


(

∂r2, n+1

∂Dn+1

)(k)

−
(

∂r1, n+1

∂Dn+1

)(k)

−
(

∂r2, n+1

∂∆γ

)(k) (
∂r1, n+1

∂∆γ

)(k)

 •
{

r
(k)
1, n+1

r
(k)
2, n+1

}

with ∆(k)
n+1 = det(Dr(k)

n+1) and δ(k) ∈ (0, 1] which denotes the proper line-search
parameter. 4. Return map with the plastic/damage correction,

s̃n+1, A = s̃ tri
n+1, A − 2µ

∆γ

(1−Dn+1)
s̃ tri

n+1, A∥∥s̃ tri
n+1

∥∥
αn+1 = αn +

√
2
3

∆γ

5. Find the homogenized total Kirchhoff stresses,

τn+1, A = (1−Dn+1) (s̃n+1, A + p̃n+1)

6. Update the intermediate configuration,

b e
n+1, A = J

2
3 exp

[
s̃n+1, A

µ

]
, with be

n+1 =
3∑

A=1

b e
n+1, A mtri, A

n+1
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Reduction to a Single Equation: Following [172], one can further reduce the

number of equations, making use of the condition where, Dn+1 can explicitly be

represented in terms of ∆γ , as follows,

Dn+1(∆γ ) = 1− 2µ∆γ
1∥∥s̃ tri

n+1

∥∥−√2
3 {τ0 + K ′(αn +

√
2
3 ∆γ )}

. (2.84)

Substituting (2.84) in (2.67), one may carry out a single highly nonlinear equation, in

the residual form,

rn+1 = Dn+1(∆γ )−Dn −∆γ g(Dn+1(∆γ ), Yn+1(∆γ )), (2.85)

where rn+1 = rn+1(κn+1) = 0. The local problem is solved following similar steps as

before, with κn+1 = ∆γ and drn+1 = (∂rn+1/∂∆γ ) dκn+1. For the global problem,

rn+1 = rn+1(x̂n+1) = 0; x̂n+1



εn+1, 1

εn+1, 2

εn+1, 3

∆γ


. (2.86)

the vanishing total differential, drn+1 = 0, reads,

drn+1 =
3∑

A=1

∂rn+1

∂εn+1, A
dεn+1, A +

∂rn+1

∂∆γ
d∆γ = 0, (2.87)

which gives the following expression, used in the algorithmic material tangent moduli,

d∆γ

dεn+1, A
= −(∂rn+1∂∆γ )−1 ∂rn+1

∂εn+1, A
, (2.88)

where the derivation of dDn+1/dεn+1, A requires the application of the chain rule of

differentiation, using (2.84), as follows,

dDn+1

dεn+1, A
=

∂Dn+1

∂∆γ

∂∆γ

∂εn+1, A
, (2.89)

which concludes the simultaneous plasticity-damage solution schemes.

2.3.2.2 Staggered Local Integration Schemes

The plastic/damage corrector phase can be taken in a staggered approach where an

initial plastic correction is done without damage evolution and damage is realized

under frozen plasticity conditions. The result is a three-step, elastic predictor, plastic
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corrector and damage deteriorator type algorithm, which results in a quite handy

code. This is because simultaneous satisfaction of the whole equation set, given in

(2.68), is not required. The efficiency of such an approach, by bypassing the obligation

of concurrent fulfillment of two nonlinear equations, is also mentioned in [85], in the

context of a two surface damage coupled plasticity model.

To solve the system of equations in a staggered manner, one has to numerically de-

couple the plastic correction and the damage deterioration steps. Below setting shows

the schematic illustration of the problem.

Table 2.7: Three-step operator-split with a staggered plastic/damage correction.

Total Elastic Predictor Plastic Corrector Damage Deteriorator
∂tε 6= 0
£vbe 6= 0
∂tα 6= 0
∂tD 6= 0

 =


∂tε 6= 0
£vbe = 0
∂tα = 0
∂tD = 0

+


∂tε = 0
£vbe 6= 0
∂tα 6= 0
∂tD = 0

+


∂tε = 0
£vbe = 0
∂tα = 0
∂tD 6= 0

 .

Accordingly the plastic correction under frozen damage conditions, i.e. D = Dn,

reads,

rn+1 = rn+1(xn+1)



τn+1, 1 − τ tri
n+1, 1 + 2µ∆γ nn+1,1

τn+1, 2 − τ tri
n+1, 2 + 2µ∆γ nn+1,2

τn+1, 3 − τ tri
n+1, 3 + 2µ∆γ nn+1,3

αn+1 − αn −
√

2
3 ∆γ

qn+1 −K ′(αn+1)

φ̃n+1 := ‖s̃n+1‖ −
√

2
3 y (qn+1)


; xn+1



τn+1, 1

τn+1, 2

τn+1, 3

∆γ

αn+1

qn+1


.

(2.90)

where rn+1(xn+1) = 0. Following the solution of this set, the damage integration

under constant plastic flow, for the recently found ∆γ , takes place, with the following

modified general mid-point integration,

Dn+1 = Dn + ∆γ [(1− θ) gn + θ gn+θ] , (2.91)

where gn = g(Y d,+
n ;αn+1, Dn) with Y d,+

n = Y d,+
n (αn+1, Dn), and gn+θ = g(Y d,+

n+θ;

αn+1, Dn+θ) with Y d,+
n+θ = Y d,+(αn+1, Dn+θ). In these forms, the requirement of the
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use of the currently converged equivalent plastic strains, i.e. αn+1, of the plastic cor-

rection step, should be emphasized. (2.91) is merely solved for Dn+1. As a final stage,

damage deterioration is applied to the plastically corrected homogenized principal

stresses, exploiting the effective stress definition as follows,

τn+1, A = (1−Dn+1)
τn+1, A

(1−Dn)
. (2.92)

Reducing the number of equations, the decoupled residuals for plastic correction and

damage integration can be simply written as follows,

rn+1 =


√

2
3 {τ0 + K ′(αn +

√
2
3 ∆γ )} −

∥∥s̃ tri
n+1

∥∥+ 2µ ∆γ
(1−Dn)

Dn+1 −Dn −∆γ [(1− θ) gn + θ gn+θ]

 , (2.93)

where rn+1 = 0. With the uncoupled nature of the staggered approach, plasticity

evolves under constant damage and damage evolves under the recently converged

constant plastic multiplier. The linearized version can be given in a compact form as

follows,

 dr1, n+1

dr2, n+1

 =


∂r1, n+1

∂∆γ

∣∣∣∣
D=Dn

0

0
∂r2, n+1

∂Dn+1

∣∣∣∣
α=αn+1

 •
 d∆γ

dDn+1

 . (2.94)

For the global more general problem, using (2.83) together with (2.94) reveals the fol-

lowing explicitly derived forms, which will be used in the algorithmic material tangent

computations,


d∆γ

dεn+1, A
dDn+1

dεn+1, A

 = −



(
∂r1, n+1

∂∆γ

)−1 ∂r1, n+1

∂εn+1, A

∣∣∣∣∣
D=Dn(

∂r2, n+1

∂Dn+1

)−1 ∂r2, n+1

∂εn+1, A

∣∣∣∣∣
α=αn+1

 . (2.95)

The algorithmic treatment of the staggered approach is summarized in Table 2.8. The

efficiency of the use of staggered approach together with an explicit damage integra-

tion, with significantly reduced number of operations, is apparent for the explicit FE

solution procedures, where the process time is controlled mainly by the local integra-

tion computations. Now, the algorithmic moduli derivations for the global solution

schemes, which supplies the quadratic convergence of the iterative procedure once the

sufficiently close initial guess is realized, [166], are visited.
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Table 2.8: Scheme for the return-mapping algorithm for staggered scheme with three-
step operator-split (Elastic predictor-plastic corrector-damage deteriorator type algo-
rithm).

1. Process Table 2.5. (Elastic predictor),
2. Check for plastic loading on effective Kirchhoff stress space,

φ̃tri
n+1 = {(s̃tri

n+1, 1)
2 + (s̃tri

n+1, 2)
2 + (s̃tri

n+1, 3)
2}1/2 −

√
2
3
{τ0 + K(αn)}

IF φ̃tri
n+1 ≤ 0 THEN

Set (•)n+1 = (•)tri
n+1, EXIT. (Elastic step)

ELSE
GOTO 3. (Plastic corrector)
ENDIF
3. Find the plastic multiplier, ∆γ (0) = 0,

∆γ (k+1) = ∆γ (k) − ∂r1, n+1

∂∆γ

∣∣∣∣(k)

D=Dn

r1, n+1|(k)
D=Dn

4. Correct plastically the effective Kirchhoff stresses,

s̃n+1, A = s̃ tri
n+1, A − 2µ

∆γ

(1−Dn)
s̃ tri

n+1, A∥∥s̃ tri
n+1

∥∥
αn+1 = αn +

√
2
3

∆γ

5. Find the current damage, D
(0)
n+1 = Dn, with line-search,

D
(m+1)
n+1 = D

(m)
n+1 − δ(m) ∂r2, n+1

∂Dn+1

∣∣∣∣(m)

α=αn+1

r2, n+1|(m)
α=αn+1

with δ(m) ∈ (0, 1], which denotes the proper line-search parameter.
6. Apply the damage deterioration,

τn+1, A = (1−Dn+1) (s̃n+1, A + p̃n+1)

7. Update the intermediate configuration,

b e
n+1, A = J

2
3 exp

[
s̃n+1, A

µ

]
, with be

n+1 =
3∑

A=1

b e
n+1, A mtri, A

n+1 .

2.3.3 Consistent Tangent Moduli

In the global more general problem, τ = τ (ε,∆γ (ε), D(ε)), where the spectral decom-

position of the homogenized Kirchhoff stress tensor, i.e. τn+1 = (1 −Dn+1) τ̃n+1,
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for t = tn+1 is,

τn+1 =
3∑

A=1

τn+1, A mtri, A
n+1 . (2.96)

Following relation gives the definition of the spatial elasto-plastic-damage tangent

moduli, [161],

cijkl = 2FiI FjJ FkK FlL
∂SIJ

∂CKL
, (2.97)

which is a push-forward transformation of material tangent. S = F−1 • τ • F−T ,

is the Second Piola Kirchhoff stress tensor, i.e. the pull-back transform of the

Kirchhoff stress tensor and C is the right Cauchy-Green deformation tensor. An

explicit representation of the tensor can be given as,

C =
3∑

A=1

3∑
B=1

aepd
n+1, AB mtri, A

n+1 ⊗mtri, B
n+1 + 2

3∑
A=1

τn+1, AĈtri,A
n+1 . (2.98)

Starting with the first part of (3.84), aepd
n+1, AB is the following 3× 3 matrix 8,

aepd
n+1, AB =

dτn+1, A

dεtri
n+1, B

, (2.99)

the computation of which requires the following chain rule of differentiation,

dτn+1, A

dεtri
n+1, B

=
∂τn+1, A

∂εtri
n+1, B

+
∂τn+1, A

∂∆γ

∂∆γ

∂εtri
n+1, B

+
∂τn+1, A

∂Dn+1

∂Dn+1

∂εtri
n+1, B

, (2.100)

with

∂τn+1, A

∂εtri
n+1, B

= (1−Dn+1)
∂τ tri

n+1, A

∂εtri
n+1, B

− 2µ∆γ
∂nn+1, A

∂εtri
n+1, B

(2.101)

∂τn+1, A

∂∆γ
= −2µnn+1, A (2.102)

∂τn+1, A

∂Dn+1
= −τ tri

n+1, A. (2.103)

Using δdev
AB = δAB− 1

3 , with δAB representing the Kronecker delta which is given as,

δAB =

 1, if A = B;

0, otherwise.
(2.104)

one can find,

∂τ tri
n+1, A

∂εtri
n+1, B

= H + 2µδdev
AB, (2.105)

∂nn+1, A

∂εtri
n+1, B

=
2µ∥∥s̃ tri
n+1

∥∥ {δdev
AB − nn+1, A nn+1, B}. (2.106)

8 Taking the differential of the trial logarithmic elastic strains, i.e. ε e, tri
n+1 = ε n+1− ε p

n, will result

in, dε e, tri
n+1 = dε n+1 − dε p

n. Since for t = tn+1, dε p
n = 0, dε e, tri

n+1 = dε n+1.
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In § 2.3.2.1 and § 2.3.2.2, the expressions, ∂∆γ /∂εn+1 and ∂Dn+1/∂εn+1 in principal

components, are already supplied for different integration schemes. Exploiting the

previously derived dε e, tri
n+1 = dεn+1, the outcomes for ∂∆γ /∂ε e, tri

n+1 and ∂Dn+1/∂ε e, tri
n+1

can be found. Accordingly, making use of (2.83) for the simultaneous scheme with two

equations, (2.88) and (2.89) for the simultaneous scheme with a single equation, and

finally (2.95) for the staggered approach with two equations, with the substitution

∂εn+1 → ∂ε e, tri
n+1 , is sufficient. Unreduced sets involve rather lengthy derivations,

which are not included here.

It is noteworthy that, in case of no damage coupling, aepd
n+1 boils down to aep

n+1 given in

[161], for nonlinear isotropic hardening finite plasticity formulated in principal axes.

Coming to the second part of (3.84), Ĉtri,A
n+1 is the spectral direction variation in the

form of eigen-dyad derivatives with respect to the Eulerian metric tensor (rota-

tion of the eigen-bases). The derivation reveals the following expression with eigen-

projections9, see, e.g. [167] and [161].

Ĉtri,A
n+1 =

1
DA

[Ib
e, tri
n+1 − b e, tri

n+1 ⊗ b e, tri
n+1 + I3 λe, tri,−2

n+1, A (1⊗ 1− I)]

+
1

DA
[λe, tri, 2

n+1, A (b e, tri
n+1 ⊗mtri, A

n+1 + mtri, A
n+1 ⊗ b e, tri

n+1 )

− 1
2
D′

A λe, tri
n+1, Amtri, A

n+1 ⊗mtri, A
n+1 ]

− 1
DA

[I3 λe, tri,−2
n+1, A (1⊗mtri, A

n+1 + mtri, A
n+1 ⊗ 1)],

(2.107)

where,

I =
1
2
(1⊕ 1 + 1	 1), (2.108)

Ib
e, tri
n+1 =

1
2
(be, tri

n+1 ⊕ be, tri
n+1 + be, tri

n+1 	 be, tri
n+1 ), (2.109)

and,

D′
A = 8λe, tri, 3

n+1, A − 2I1λ
e, tri
n+1, A − 2I3λ

e, tri,−3
n+1, A . (2.110)

(2.73) and (2.107) require computation of DA, which is given in (2.53). An explicit

designation of DA may be furnished as, DA = (λe, tri, 2
n+1, A − λe, tri, 2

n+1, B) (λe, tri, 2
n+1, A − λe, tri, 2

n+1, C),

where an even permutation of indices (1, 2, 3) is denoted by (A,B, C), [167]. (2.73)

and (2.107), suffer from singularities or ill-conditioning, for equal or nearly equal

9 The fourth order tensor can also be computed using eigenvectors. [121] shows that an use of
eigen-bases ends up with a faster computation.

46



eigenvalues, respectively, with DA → 0. In treatment of such cases, different methods,

analytical or numerical, are suggested. As an analytical approach, [130, pp. 338–

341], in the context of eigen-vector formulation, uses systematic application of the

L’Hospital rule to create special expressions for diverse situations. Coming to the

numerical methods, the use of perturbation schemes are common, where equal or

numerically close eigenvalues are perturbed to have distinct values. This enables

treatment of these special cases in the general class of distinct eigenvalues, making

use of (2.73) and (2.107). In the current study, due to its feasibility, this latter

approach is used. Accordingly for sufficiently close λe, tri
n+1, A and λe, tri

n+1, B, the following

perturbation scheme is applied, [119],
λe, tri

n+1, A

λe, tri
n+1, B

λe, tri
n+1, C

 =


(1 + δ) λe, tri

n+1, A

(1− δ) λe, tri
n+1, B

1/[(1 + δ)(1− δ)]λe, tri
n+1, C

 , with δ � 1. (2.111)

2.3.4 Expansion to Kinematic Hardening

For the sake of completeness, the algorithmic forms for the simultaneous scheme are

involved for combined isotropic kinematic hardening plasticity coupled with damage.

Accordingly, the definition of the trial state additionally requires,

z tri
n+1 = zn. (2.112)

The spectral decomposition of z tri
n+1, A read, z tri

n+1, A = γ tri, 2
n+1, A = γ 2

n, A, for both Model

A and Model B,

z tri
n+1 =

3∑
A=1

γ tri, 2
n+1, A νtri, A

n+1 ⊗ νtri, A
n+1 , (2.113)

where the algorithmic counterpart of the evolution equation of the kinematic hardening

strain like variable is,

£vzn+1 = −2 γ̇n+1 ∂βφ̃
∣∣∣
n+1

• zn+1; Model A;
4
z n+1 = −γ̇n+1 ∂βφ̃

∣∣∣
n+1

; Model B.
(2.114)

Utilizing exponential mapping and backward Euler method for integration of Model

A and Model B, respectively, one has,

zn+1 = exp
[
2 ∆γ ∂βφ̃

∣∣∣
n+1

]
• z tri

n+1; Model A;

zn+1 = z tri
n+1 + ∆γ ∂βφ̃

∣∣∣
n+1

; Model B.
(2.115)
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Refining (2.115) to constitute the principal stretches, one carries out,

γn+1, A = exp
[
∆γ ∂φ̃

∂βA

∣∣∣
n+1

]
γ tri

n+1, A; Model A;

γn+1, A = γ tri
n+1, A + ∆γ ∂φ̃

∂βA

∣∣∣
n+1

; Model B.
(2.116)

For Model A, taking the natural logarithms of both sides, one obtains the following

relation,

κn+1, A = κ tri
n+1, A + ∆γ

∂φ̃

∂βA

∣∣∣∣∣
n+1

, (2.117)

Eventually one has,

κn+1, A = κ tri
n+1, A −∆κn+1, A; Model A;

zn+1, A = z tri
n+1, A −∆z p

n+1, A; Model B.
(2.118)

where the principal strain corrections read,

∆κn+1, A = ∆γ ∂φ̃
∂βA

∣∣∣
n+1

; Model A;

∆zn+1, A = ∆γ ∂φ̃
∂βA

∣∣∣
n+1

; Model B.
(2.119)

In the current setting, since the back stress and the stress tensors commute, the

exponential mapping is exactly satisfied, [57], and the use of the principal components

rather than tensorial descriptions become available. Unless the coaxiality is presumed,

the reduction of the forms to the principal space is not possible.

It is noteworthy that since the stress corrections in the deviatoric Kirchhoff stress

space for the back stress give identical results for Model A and Model B, such as,

βn+1, A = β tri
n+1, A +

2
3
C ∆γ nn+1, A. (2.120)

Final equation to be satisfied is the yield function computed at the current step,

φ̃n+1 := ‖ξ n+1‖ −
√

2
3

y (qn+1) = 0. (2.121)

In a residual setting, using the effective stresses definition with (2.63), for the current

and the trial principal stress components, the complete simultaneous set of equations
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can be given as,

rn+1 =



τn+1, A − τ tri
n+1, A + 2µ∆γ nn+1, A

βn+1, A − β tri
n+1, A − (2/3)C(θ) ∆γ nn+1, A

αn+1 − αn −
√

2
3 ∆γ

qn+1 −K ′ (αn+1)

φ̃n+1 := ‖ξ n+1‖ −
√

2
3 y (qn+1)

Dn+1 −Dn −∆γ gn+1


; xn+1



τn+1, A

βn+1, A

∆γ

Dn+1

αn+1

qn+1


.

(2.122)

with (A = 1, 2, 3). where rn+1(xn+1) = 0. Following [166], the local governing equa-

tions collected in (2.122) can be reduced, particularly for the chosen yield criterion,

making use of the substitution, ξn+1, A = ‖ξ n+1‖ nn+1, A

s̃n+1−βn+1 = s̃ tri
n+1−β tri

n+1 −
{

2µ
∆γ

(1−Dn+1)
+

2
3
C ∆γ

}
nn+1, (2.123)

‖ξ n+1‖ nn+1, A =
∥∥ξ tri

n+1

∥∥ n tri
n+1, A (2.124)

−
{

2µ
∆γ

(1−Dn+1)
+

2
3
C ∆γ

}
nn+1, A.

Applying the following arrangements,(
‖ξ n+1‖+ 2µ

∆γ

(1−Dn+1)
+

2
3
C ∆γ

)
nn+1, A =

∥∥ξ tri
n+1

∥∥ n tri
n+1, A, (2.125)

and exploiting the condition of collinear flow and the trial Kirchhoff stress tensor,

where, nn+1 ≡ n tri
n+1, [166], the uniqueness of the spectral decomposition yields,

n tri
n+1, A mtri, A

n+1 = nn+1, A mA
n+1, (2.126)

which gives mtri, A
n+1 ≡ mA

n+1 and nn+1, A ≡ n tri
n+1, A. Utilizing this equivalence, one can

write,

‖ξ n+1‖+ 2µ
∆γ

(1−Dn+1)
+

2
3
C ∆γ =

∥∥ξ tri
n+1

∥∥ . (2.127)

Finally, representing the hardening/softening function definition in terms of the plastic

multiplier, yields the following reduced form,

rn+1 = rn+1(xn+1) =



√
2
3 {τ0 + K ′(αn +

√
2
3 ∆γ )}

−
∥∥ξ tri

n+1

∥∥+ 2µ
∆γ

(1−Dn+1)
+

2
3
C ∆γ

Dn+1 −Dn −∆γ gn+1

 ;(2.128)

xn+1 =

 ∆γ

Dn+1

 . (2.129)
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where, for the local return mapping problem follows identical steps with the previously

proposed simultaneous routines.

2.4 Application Problems

The given framework is implemented as a user defined material subroutines, UMAT for

ABAQUS/Standard, VUMAT for ABAQUS/Explicit and UFINITE10, for MSC.Marc,

for return mapping in the company of reduced equation couple, together with the

simultaneous and the staggered solution schemes which are listed in Table 2.6 and

Table 2.8. The staggered solution schemes are supplied with forward (explicit) and

backward (implicit) Euler integration for the D. The codes are materialized in

accuracy and efficiency assessment of the integration routines and in the simulation of

a set of axi-symmetric application problems. Throughout the simulations, a saturation

type isotropic hardening function is utilized for plasticity, which is given as,

K ′ (α) = K α + (K∞ −K0) (1− exp [−δ α]) .

For damage evolution, following simplified Lemaitre model is selected,

g(Y ;α, D) =
a

(1−D)
Y,

with Y = Y d, +.

2.4.1 Geometrical Interpretation and Accuracy and Efficiency Assess-

ment of the Return Map Algorithms

In this first set of application problems, the geometrical insight into the simultaneous

and staggered return mapping algorithms is presented. Moreover accuracy and effi-

ciency assessment studies are given which shows relative reliability and performance

of the methods for a given strain increment.

10 UFINITE serves a suitable environment for isotropic finite strain elasto-plasticity defined by
principal stretches. Implementation details of UFINITE are well documented in [125, Chp. 3, pp.
280–282].
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2.4.1.1 Geometrical Interpretation

Damage softening and isotropic plastic hardening are in competition for a damage

coupled plasticity. A geometrical insight into the problem may be supplied by pre-

senting the iterative return map for a given trial stress state on the Π plane. For this

purpose, following hypothetical material properties given in Table 2.9, which gives

geometrically clear resultants, are selected. Besides, an initial 1D stress state on the

yield surface is selected, free of any initial plastic strains or damage.

Table 2.9: Material parameters for the example problem.

Parameter Symbol Magnitude Unit
Bulk modulus H 175 GPa
Shear modulus µ 80.7692 GPa
Flow stress τ0 0.750 GPa
Saturation stress τ∞ 5 GPa
Linear hardening K 0.1 GPa
Hardening exponent δ 10 -
Damage multiplier a 30 -

Resultant return mapping patterns for a set of strain increments on the Π plane are

given for the simultaneous integration algorithm in Figure 2.4. It is seen that an

arbitrary elastic trial state is followed by a single plastic/damage correction step. The

first observation is the radial character of the return map, where any trial stress state

is mapped with a direction normal to the circular yield locus. A noteworthy fact is

that, the yield locus on the effective stress space is expanding with plastic hardening

whereas damage effect results in a shrinkage on the yield locus represented at the

homogenized stress space.

Once the same problem is repeated for the staggered routine, the pattern given in

Figure 2.5 is carried out. This time, the radial return requires two additional steps,
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Figure 2.4: Geometrical representation of the return map for the simultaneous inte-
gration scheme.

named as plastic correction and damage deterioration, for an arbitrary elastic trial

state. Other observations follows the previous solution’s results where the difference

in between Figure 2.4 and Figure 2.5 is hardly observed which shows the performance

of a staggered routine which assumes uncoupled plasticity and damage.

Figure 2.5: Geometrical representation of the return map for the staggered integration
scheme.
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2.4.1.2 Accuracy Assessment - Isoerror Maps

Isoerror maps lack mathematical rigor however they are very effective in evaluation of

the accuracy of the integration routines. The effect of damage integration approaches,

such as simultaneous or staggered implicit/explicit, damage functional degree of non-

linearity and initial damage on the effect of integration accuracies, is investigated.

The material parameters utilized are in variance with those of the previous case where

τ∞=1 GPa and a=1.5 are utilized.

Use of isoerror maps goes back to [93]. An example use may be seen in [131] among

others. In damage mechanics, use of isoerror maps is seen in [194]. In the current

context, the method is applied for a 3D case. Test point locations are shown Figure

2.6 for the effective Kirchhoff stress space where totally four conditions, namely

I-A, I-B, II-A and II-B, are analyzed.

Figure 2.6: Representation of the test points on the Π plane.

I stands for the stress states for no initial pressure and II stands for the pressurized

initial state, as seen in selected planes in Haigh-Westergaard space in Figure

2.6.a. Pressurized cases are to investigate the effect of initial pressure on damage

evolution. Figure 2.6.b represents the yield locus on the Π plane, where the marked
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point A stands for the uniaxial stress state whereas point B stands for the state with

pure shear condition. Deviatoric loads, on the Π plane, tangential and normal to

the circular yield locus, as shown in Figure 2.6.b, are applied for the test points and

regarding isoerror maps are plotted. Any point on the Π plane on the yield locus can

be uniquely defined for a given pressure, Lode angle and yield stress. Depending on

the x and y coordinates of the point on the yield locus, the initial principal stress state

definition given in (2.130) can be derived for a given pressure, p, and yield stress, τ0,

[76, p. 18],

τ̃ p = W • v, (2.130)

where following definitions are valid

τ̃ p =


τ̃1

τ̃2

τ̃3

 , W =


−1/2 −1/6 1

1/2 −1/6 1

0 1/3 1

 , (2.131)

together with the specialized v values, vA and vB, for points A and B, respectively,

which are given as,

vA =


0

2τ0

p

 , vB =


2τ0/

√
3

0

p

 . (2.132)

Accordingly, for points I-A, I-B, II-A, II-B, the initial stress and strain states are

quantitatively given in Table 2.10, for τ0 = 750 MPa,

Table 2.10: Initial conditions of the selected points.

Test Point τ̃ =
{

τ̃1, τ̃2, τ̃3

}t
εe=

{
εe
1, εe

2, εe
3

}t

I-A


−250
−250

500




−1.547619047619048e-003
−1.547619047619048e-003

3.095238095238095e-003


I-B


−4.330127018922194e+002

4.330127018922194e+002
0




−2.680554821237549e-003
2.680554821237549e-003

0


II-A


0
0

750




−1.071428571428571e-003
1.071428571428571e-003
3.571428571428571e-003


II-B


−1.830127018922193e+002

6.830127018922194e+002
2.500000000000000e+002




−2.204364345047072e-003
3.156745297428025e-003
4.761904761904762e-004


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As seen for cases of I no initial pressure is due and for II initial pressure with τ0/3 is

assigned. Since the loads applied lie on the deviatoric Π plane, they also are deviatoric.

In numerical accuracy assessment of the integration algorithms, true percent relative

errors are computed for different fields. For the stress field, the definition of the error

in stress, ERRτ , follows as,

ERRτ =

√
[τexact − τapproximate] : [τexact − τapproximate]√

τexact : τexact
× 100. (2.133)

Error is also computed for D and α, which is the radial location of the point on the

circular yield surface. For these scalar fields, error formulation utilizes the conventional

form. Accordingly for [F] representing any one of D or α, the error ERRF becomes,

ERRF =
|Fexact−Fapproximate|

|Fexact|
× 100. (2.134)

In above computations approximate values are computed with a single step application

of the algorithm for the given loading whereas the exact values utilizes 1000 steps,

following the common approach in the literature. A 5 percent error can be taken as

an acceptable threshold in evaluation of the results. Resultant isoerror maps are given

in Figures 2.7, 2.8, 2.9 and 2.10 for test points I-A, II-A, I-B and II-B, respectively.

In the representations, columns 1 to 3, respectively designate the isoerror plots for

effective stress, equivalent plastic strain and damage errors. Coming to the rows,

simultaneous, staggered implicit and staggered explicit schemes are respectively given

in row a, b and c.

The difference in the results for difference test points is hardly recognizable. Among

the results for integration routines, it is seen that for small strain increments the differ-

ence is not obvious however for large strain increments the difference gets importance.

Thus one should utilize staggered explicit routines only for small strain increments.

In this setting, increasing the number of steps to gain accuracy may increase the com-

putational time thus tempting staggered routine may not be so efficient. However, the

result is problem specific. It is shown that once the coupling in between damage and

plasticity is omitted, the implicit integration of damage can only increase the damage

integration quality to a certain level especially for large loading steps.
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Figure 2.7: Isoerror maps for accuracy assessment of integration algorithms for case
I-A.
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Figure 2.8: Isoerror maps for accuracy assessment of integration algorithms for case
II-A.
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Figure 2.9: Isoerror maps for accuracy assessment of integration algorithms for case
I-B.
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Figure 2.10: Isoerror maps for accuracy assessment of integration algorithms for case
II-B.
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2.4.1.3 Efficiency Assessment - Convergence Tests

In this section, the concentration is devoted to the number of iterations required in

different solution algorithms for a given initial condition and applied load step. For a

point lying on the yield locus a logarithmic strain based loading with a magnitude of

0.015 in radial and tangential directions are applied, which for an exact solution cre-

ates, a final equivalent plastic strain of 0.018925584826 and damage of 0.033566948053.

In the solutions, a convergence threshold of 10e-6 is utilized.

Table 2.11 lists of the equivalent plastic strain and damage values at each iteration

for the simultaneous scheme with two reduced equations. As seen, desired precision

is satisfied at the sixth iteration.

Table 2.11: Convergence of equivalent plastic strain and damage through iterations,
simultaneous scheme.

Iteration α D

1 4.706284481469381E-003 0.621381030670264
2 1.459249815639381E-002 2.202923716197214E-002
3 1.863027071136262E-002 8.214544668329469E-003
4 1.819276851166353E-002 3.457503808154121E-002
5 1.819101038280528E-002 3.458794550210217E-002
6 1.819101021947922E-002 3.458795530809459E-002

The residuals of the reduced equations are given in Table 2.12 from which the quadratic

convergence quality of the local integration scheme is observed.

Table 2.12: Convergence of the residuals through iterations, simultaneous scheme.

Iteration r1 r2

1 -1674.96750537952 0.334483800874814
2 -1015.13544326820 -0.157043547448021
3 -14.1780168970472 -2.787756928654985E-002
4 0.406715354483822 2.728864735388609E-005
5 -5.422106369223911E-006 -1.037531647402057E-008
6 -9.094947017729282E-013 -1.387778780781446E-017
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For the same problem, once a staggered routine is utilized, plastic integration is fol-

lowed by damage integration. Accordingly, the plastic correction, which is identical for

implicit and explicit damage integration, results in the convergence behavior, which

requires only three iterations for convergence, due to the character of hardening plas-

ticity models, as given in Table 2.13.

Table 2.13: Convergence of the equivalent plastic strain and residual through itera-
tions, plastic correction phase of the staggered scheme.

Iteration α r1

1 1.882513792587752E-002 -3.40026247673541
2 1.883826792142717E-002 -1.457530743209645E-006
3 1.883826792705538E-002 0.000000000000000E+000

With an implicit damage integration, convergence is captured in three iterations as

given in Table 2.14.

Table 2.14: Convergence of the damage and residual through iterations, damage de-
terioration phase of the staggered scheme.

Iteration D r2

1 2.339278937801977E-002 -5.682196415299837E-004
2 2.378950956521546E-002 -1.997380615348376E-007
3 2.378964911673556E-002 -2.477532068390076E-014

For explicit damage integration, obviously the first line of the implicit damage inte-

gration may be taken, which stands for a forward damage integration. The results

show that, maximum error in damage is observed in the explicit damage integration

together with the staggered routine. Since number of iterations is a direct measure

of number of floating point calculations, it has an indispensable effect on the overall

computational time required thus the efficiency. However, although total number of

iterations seems identical in simultaneous and staggered routine with implicit damage

integration, number of floating point operations of the simultaneous routine is larger

due to the requirement for additional computations of the off diagonal members of the
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Jacobian. It should be noted that, although their implementation is much easier, as

the coupled terms of the Jacobian are not computed, there is a trade off between

accuracy and efficiency for staggered routines. Thus, the selection of whether a fully

coupled or uncoupled solution scheme depends on the problem nature which is related

to the degree of nonlinearity of the damage function, and degree of coupling between

plasticity and damage. As the results represent, for favorable conditions staggered

routines with explicit integration may be quite efficient. This property is valid espe-

cially for dynamic explicit problems where the time steps in global solution may be

quite small which satisfies the conditional stability of the global problem.

2.4.2 Necking of an Axi-symmetric Bar

This example is well documented in the literature, see, e.g. [181], [161]. The problem

illustrates the necking of an axi-symmetric bar with a total length of 53.334 and radius

of 6.413. In order to trigger necking a total 98.2% radial reduction is introduced to the

center, which is linearly distributed throughout the length of the bar. This way, the

bifurcation problem, where the necking can emanate at any section, is transferred into

a limit load problem, [80]. The geometry of the modeled quarter, 20x10 FE mesh (20

elements on longitudinal direction, 10 elements on radial direction) and the boundary

conditions can be seen in Figure 2.11. It should be noted that, this problem does not

reflect the active-passive conditions of damage evolution, as it is mainly an overall

tensile processes.

The problem is solved for damage coupled and no damage (plain von Mises plastic-

ity) cases where damage coupled simulations are conducted using simultaneous and

staggered solution schemes with two local equations, presented in the previous sec-

tions. For the staggered schemes, explicit and implicit damage integration procedures

are followed. In the simulations, 250 load steps are applied for a total top displace-

ment of ∆u=7.68. Premature failure (termination before increment 250) is observed

in damage coupled models, whereas for the no damage case all load increments are

successfully applied.
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Figure 2.11: 20x10 mesh, boundary conditions and the geometry for the simulation of
necking of an axi-symmetric bar.

A large strain, updated Lagrange formulation is selected where multiplicative de-

composition is set as a plasticity procedure. Mechanical Element 10, with a selective

integration scheme is used for axi-symmetric analyses 11.

The material parameters, fully compatible with [181], are given in Table 2.15. Unless

otherwise stated, these parameters apply for all the other example problems.

Table 2.15: Material parameters for the example problem.

Parameter Symbol Magnitude Unit
Bulk modulus H 164.206 GPa
Shear modulus µ 80.1938 GPa
Flow stress τ0 0.450 GPa
Saturation stress τ∞ 0.715 GPa
Linear hardening K 0.12914 GPa
Hardening exponent δ 16.93 -
Damage multiplier a 200 -

11 It should be noted that the derivations of this chapter are made within the context of standard
FE formulations. The plastic incompressibility acts as an over-constraint on the pressure field which
results in locking of the standard finite elements. MSC.Marc, utilizes a mixed formulation, to be
more specific a two-field, perturbed Lagrangian form of a variational principle, for treatment of
quasi-incompressibility, in the multiplicative framework. The formulations are well documented in
[124, Chp. 5, pp. 158–162]. Since proposing a variational structure is beyond the scope of this thesis,
we are contented with a suitable application of the exactly derived forms to the given framework in
the space of approximation errors.
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Damage and equivalent plastic strain distributions, just before the fracture, at ∆u=4.9152,

computed with the simultaneous scheme, are given in Figure 2.12. At the mid zone

of the bar, due to the localized deformation together with necking, equivalent plastic

strains and damage shows a marked accumulation. Moreover, it is observed that the

distribution of highly localized damage has a central character which causes the local

failure. This finding is in correlation with the actual experimental facts, where cen-

ter constitutes the zone of ductile failure initiation (cup-cone fracture). Unlike [181],

where a deviatoric variant of Lemaitre damage model is utilized, the patterns of

damage and equivalent plastic strains show a certain deviation. This is due to domi-

nating effect of the triaxiality in the current model. For metal plasticity, disregarding

the volumetric response is not realistic on physical grounds.

Figure 2.12: Contour plots for the damage coupled model at ∆u=4.9152 (simultane-
ous two equation solution scheme), (top) Damage distribution, (bottom) Equivalent
plastic strain distribution.

The load-displacement curves in Figure 2.13 show that, introduction of damage cou-

pling results in a steeper post peak response with a premature termination of the anal-

ysis at smaller strains. This anticipated result with a considerable loss in ductility, is

due to the strength loss of the material with damage deterioration. The same figure

also shows that, the resultant responses for the simulated local integration schemes,
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such as simultaneous, staggered with explicit damage integration and staggered with

implicit damage integration, do not deviate from each other. This is primarily due to

the selected functional forms for plasticity and damage and used material parameters,

which govern the mathematical character of the problem at the space of unknowns,

in terms of the degrees of functional nonlinearities. Besides, utilized sufficiently large

number of loading steps has a stabilizing effect by improving the accuracy of the ex-

plicit damage integration steps. Use of implicit plastic integration as a first step for

both of the staggered cases helps as well. The excessive number of tests conducted by

the researchers show that, simultaneous scheme and the damage implicit integration

in the staggered scheme should be supplied with appropriately defined line-searches

and backtracking. For this purpose, Table 2.6 and Table 2.8 use particular Newton

iteration steps, scaled with a line-search parameter, regarding these cases.

Figure 2.13: Load-displacement curves for damage coupled and non-damaged plastic-
ity models.
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2.4.3 Axi-symmetric Tension of a Notched Specimen

This example includes a notched specimen under tensile loading. The notch creates a

radius dependent nonuniform stress state, which affects the damage deriving mecha-

nisms. The geometry is the one utilized in [37] and [187]. Dimensions, the FE mesh

and the imposed boundary conditions are given in Figure 2.14. In the simulations 250

load steps are applied for a total top displacement of ∆u=1.00. Just like the previous

one, this problem is also solved for damage coupled (with simultaneous and staggered

schemes) and no damage cases. Due to its overall tensile character, this problem also

does not reflect the effect of quasi-unilateral damage evolution.

Figure 2.14: Mesh, boundary conditions and the geometry for the simulation of axi-
symmetric tension of a notched specimen.

The results follow a similar fashion with the ones recorded in the literature as far

as the damage evolution throughout the tensile process is taken into account. An

initially notch concentrated damage, tends to slowly move towards the center and

localize. This triaxiality dependent trend throughout the deformation history, given

in Figure 2.15, is in complete accordance with the experimental evidences showing

central failure initiation for certain notch geometries, [74].

The load-displacement curves in Figure 2.16 (left) show that, deteriorative mecha-

nism of damage results in a softer response for damage coupled models compared to

no damage case. The deviation between damage coupled and no damage cases’ curves
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Figure 2.15: Contour plots of the Damage distribution at different steps (simulta-
neous two equation solution scheme), (top row, from left to right) ∆u=0.032, 0.052
and 0.104, (bottom row, from left to right) ∆u=0.440, 0.800 and 0.916.

increase with increasing damage accumulation controlled by the plastic deformation.

The response curves for the utilized local integration schemes are in complete corre-

lation within each other with the identical reasons listed for the previous example.

Figure 2.16 (right) shows the damage histories computed at the notch center with dif-

ferent integration schemes, which also are in perfect harmony. The curves get steeper,

with a concave up structure, towards the local failure point, where damage reaches

the limit value, i.e. D = 1. This marked increase in damage increments near failure

creates numerical difficulties in implicit schemes, [187], where the use of line-search

becomes indispensable.
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Figure 2.16: History plots, (left) Load-displacement curves for damage coupled and
non-damaged plasticity models, (right) Damage evolution at center for various local
integration schemes.

2.4.4 Upsetting of an Axi-symmetric Billet

Final problem is concerned with the upsetting of an axi-symmetric billet, which aims

to investigate the effect of crack closure effect on the resultant damage distributions.

For this purpose, on a cylindrical billet with a total undeformed length of 30.0 and

radius of 10.0, two simulations are realized one of which involves the crack closure

effect with the crack closure parameter, h = 0.01, and the other does not give account

for the quasi-unilateral damage evolution. The geometry, mesh and imposed boundary

conditions are given in Figure 2.17. At the die-billet interface, tangential movement

is completely restrained using the glue contact option. A similar problem is studied

for isotropic porous plasticity in [174]. The material parameters are the ones listed in

Table 2.15, with a slight difference with a = 2.0. In determination of the results, the

simultaneous local integration scheme with two equations, is utilized.

The upsetting is realized for over 60% height reduction. With the applied friction

conditions, which provides a perfect stick at the die-billet interface, barreling occurs.

Figure 2.18 (left) shows the deformed FE mesh at ∆u=9.126. The equivalent plastic
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Figure 2.17: Mesh, boundary conditions and the geometry for the simulation of up-
setting of an axi-symmetric billet.

strain contours plotted for two simulations, with and without crack closure effect,

show a complete accordance as seen in Figure 2.18 (right) and (middle) respectively.

With J2 theory, the plastic flow and the accumulated equivalent plastic strains, which

stands for the numerical construct for the micro-mechanical dislocation pile-ups, are

functions of the distortional elastic energies. In the damage coupled framework, the

plasticity is assumed to perform on the effective material subscale. Mathematically,

this is realized by the damage free effective stress space formulation of plasticity, where

for low levels of damage, the effective isochoric energies do not deviate considerably,

which reveals the correlation of these plots.

A marked difference, in terms of intensity and distribution, is observed in the final

damage contours between two simulations as seen in Figure 2.19. The reason for the

difference in intensities, where the damage model without quasi-unilateral conditions

has a peak damage value of more than 15 times of the model with crack closure

effect for ∆u=9.126, is apparent. Without incorporation of the crack closure effect,

the intensity of damage increments utilize complete elastic energy release without

making distinction about the governing stress terms’ compressive or tensile characters,

which results in a higher rate of accumulation. With crack closure effect however,
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Figure 2.18: Resultants at ∆u=9.126 (simultaneous two equation solution scheme),
(left) Deformed mesh, (middle) Equivalent plastic strain distribution without crack
closure effect, (right) Equivalent plastic strain distribution with crack closure effect,
h = 0:01.

Figure 2.19: Contour plots of the Damage distribution at ∆u=9.126 (simultaneous
two equation solution scheme), (left) without crack closure effect, (right) with crack
closure effect, h = 0:01.

although the involvement of the energy release due to tensile principal stresses is

complete, for compressive principal stresses it is only partial, where the extent of its

contribution is scaled by the selected crack closure parameter. On the deviation in
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distributions, following comments can be made. As Figures 2.18 and 2.19 reveal, the

damage distribution primarily follows a pattern similar to the ones of the equivalent

plastic strains, in the absence of the crack closure effect. This anticipated result is

due to the strong-coupled plasticity-damage framework.

Figure 2.20, which shows the stress state, at ∆u=9.126, in terms of three principal

components of Cauchy type, is helpful in evaluation of the case with crack closure

effect. Comparison of the zones of the positive principal stresses, which are purposely

highlighted in Figure 2.20, and the damage accumulations given in Figure 2.19 (right),

one may conclude that, in the advancing steps of frictional upsetting, together with

barreling, the tensile pressures at the equator line has a dominating role on the dam-

age evolution if the crack closure effect is incorporated. Occurrence of surface cracks

due to barreling in frictional upsetting processes is a known experimental fact. Conse-

quently, recalling previously mentioned ductile damage micro-mechanism, formed of

micro-voids nucleation, growth and coalescence, use of quasi-unilateral evolutionary

conditions is motivated. Accordingly, in engineering practice, utilizing a combined

experimental-numerical procedure, in the definition of an appropriate crack closure

parameter is vital. Utilizing this fact, one may also make a final remark on the ob-

vious role of friction on the eventual damage distributions, [174]. For the frictionless

upsetting where a homogeneous deformation is due, a quasi-unilaterally evolving dam-

age model with the current utilization predicts a homogeneous damage accumulation,

which is merely due to partially contributed uniform compressive stresses, where the

extent of this contribution depends solely on the selected crack closure parameter.

2.5 Conclusion

In this chapter, a local, damage coupled isotropic finite strain hyperelastic-plastic

framework is formulated in the principal axes, in a Euclidean setting. The unified

functional framework for the governing functions of isotropic hardening plasticity and

damage does not assume particular restrictions on the forms. This gives rise to im-

plementation of a broad range of isotropic hardening plasticity and damage models,
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Figure 2.20: Positive portions of the maximum, intermediate and minimum (from left
to right) Cauchy type principal stresses, at ∆u=9.126 (simultaneous equation solution
scheme.

strongly coupled through a single yield surface. Extensions to include linear kinematic

hardening plasticity is also presented. It is shown that, principal axes formulation pro-

vides convenience not only in finite hyperelastic-plastic framework, reducing tensorial

differentials to simple differentials with respect to scalars, but also in active-passive

damage evolutionary conditions. In addition, simultaneous and staggered local inte-

gration algorithms are presented, which results in two and three-step operator-split

methodologies. The framework is supplied with consistently derived material moduli

and implemented as a user defined material subroutine for MSC.Marc, which is used in

a set of example problems. On physical grounds, simulation results designating frac-

ture initiation zones in tensile dominant processes with the effect of triaxiality, and

in frictional upsetting with incorporation of the quasi-unilateral conditions, follow the

experimental facts on ductile failure mechanisms.

On numerical grounds, isoerror maps are produced to evaluate the accuracy of the pro-

posed algorithms. The correlation of the results between simultaneous and staggered

schemes for selected damage model for sufficiently small time steps, motivates the

use of numerically cheaper staggered local integration approach with explicit damage

integration. An apparent gain in terms of computation time can be obtained, partic-
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ularly in the context of explicit FE procedures, where the overall computational time

is dominantly governed by the local return mapping at integration points. This possi-

bility is investigated by the researchers for bulk metal forming simulations, conducted

with the developed subroutines for explicit commercial FE solvers in which powerful

contact algorithms are available. An apparent gain in terms of computation time can

be obtained, particularly in the context of explicit FE procedures, where the overall

computational time is dominantly governed by the local return mapping at integration

points. This possibility is investigated by the researchers for bulk metal forming simu-

lations, conducted with the developed subroutines for explicit commercial FE solvers

in which powerful contact algorithms are available.
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CHAPTER 3

THERMO-INELASTIC FORMULATION

3.1 Introduction

In a thermo-mechanical problem, heat is produced by dissipated mechanical work in

addition to external heat sources if any exist. Produced heat is conducted/convected

over the problem domain where rate sensitivity is applicable even to rate-independent

models due to the time-dependence of heat flux, [198]. In order to solve the cou-

pled problem for deformation and temperature one has to take into account a set of

complicated mutual interactions among fields. In the absence of damage, problems

of interest in thermoplasticity often display a two sided coupling, which according to

[162] exhibits the following effects:

• The influence of the thermal field on the mechanical field

– Thermal expansion

– Temperature induced elastic softening, temperature dependence of elastic

material properties

– Temperature induced plastic softening, yield locus shrinkage

• The influence of the mechanical field on the thermal field

– Geometric coupling on heat flux

– Heat generation by plastic dissipation

– Structural elastic heating (Gough-Joule Effect)
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In the current context, plasticity and damage accounts for the irreversible dissipative

processes. In addition to the mentioned above, conditions that must be analyzed in

the presence of damage include:

• The action of the damage field on the other mechanical fields

– Damage induced elastic softening, deteriorated elastic stiffness

– Damage induced yield locus shrinkage

• The influence of the damage field on the thermal field

– Heat generation by damage dissipation

– Damage dependent heat flux

• The influence of the thermal field on the damage field

– Direct effect through temperature dependence of the damage dissipation

functions,

– Indirect effect through reconstruction of other damage deriving mechanical

fields (e.g. triaxiality).

This highly complicated picture is the norm rather than the exception for many en-

gineering applications. In the context of isotropic damage coupled finite plasticity,

different numerical models are presented by [165], [85], [86], [87], [181], [171], [107],

[5], among others. These frameworks, however, are presented in a purely isothermal

setting. [48] presents a damage coupled finite strain thermoplastic framework utiliz-

ing Gurson damage model, whereas Lemaitre damage model is presented in [154],

[155] and [100]. These involve the hypoelastic formulations relying on objective stress

integrators. Formulations based on multiplicative framework are given in [59] where

a continuum sensitivity method is developed for porous metal plasticity using Gur-

son damage model. In the mentioned applications, the effect of damage on the heat

conduction is not reflected. However, at micro-scale the deterioration of the material

continuity through void nucleation, growth and coalescence inherently affects con-

duction quality. At the extreme where D = 1 the conduction is naturally precluded

whereas the convection on the produced free surface is due. Mathematically this is

supplied by a damage dependent heat conduction coefficient, [60].
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Bracketing anisotropy and reducing the symmetry class to simple isotropy, the current

chapter aims to formulate a consistent thermodynamic framework for finite multiplica-

tive thermoplasticity coupled with damage which gives account for the listed mutual

effects. Recently, in the finite strain context depending on pure mechanical theory,

thermodynamics based anisotropic formulations depending on multiplicative decom-

position of metric transformation tensor are given in [31]. Frameworks with introduc-

tion of fictitious undamaged configurations are proposed by [117], [53]. [118]. Present

formulation expands on representation of the damage-coupled framework given in

[173] (which uses a dynamic explicit setup) to include thermal coupling together with

a quasi-static formulation. Finite strain kinematics utilizes multiplicative split of the

deformation gradient into elastic and plastic portions. A principal axes formulation

is used based on a hyperelastic potential quadratic in Hencky strains and nonlinear

isotropic hardening von Mises plasticity (which is typical for metals). This way, the

stress from properly articulated definition of elastic potential supplies a precise elas-

tic prediction. The total hyperelastic relations for the stress, have proved reliability

for the cases where small elastic strain assumption may fall short, like in the case of

high velocity impact and explosion, in which high elastic dilatations may be observed.

Besides, hypoelastic stress formulations lead dissipation for even elastic cycles, [196].

The treatment of scalars rather than tensors, together with the principal axes formu-

lation, serves handiness. The present formulation of finite kinematics is resolved in

eigenvectors rather than eigenbases. In eigenbases representation, the determination

of discrete eigenvalues are not required as the closed form solution for the eigenbases

is due, [161], whereas in the eigenvalue solution, eigenvalues have to be computed uti-

lizing the eigenvalue problem, [148]. In resolution of damage, conventional isotropic

Lemaitre damage model is selected, where the effective stress concept, [88] and [144],

together with strain equivalence principle, [95], form the bases.

The thermodynamic framework is formed along the same lines with [162]. Exploiting

the additivity or extensive property of the entropy, its decomposition into the elastic

and inelastic portions is postulated. It is shown that, together with temperature

dependent plastic and damage dissipation potentials, the internal variable inelastic

entropy has a natural split form in plastic and damage portions. This amounts to

a generalization of the postulated results suggested by [162] to the case of damage
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coupling. Consequently, not only the plastic structural changes but also the damage

structural changes are consistently linked to their regarding entropies. [14] also argues

thermo-mechanical resolutions along the same lines with [162], however for anisotropic

concrete damage. An interesting irreversible thermodynamics theory is presented in

[16], where the entropy production is utilized as a metric for damage evolution, and

consequently phenomenological damage potential definitions are bypassed, unlike the

present study.

The numerical resolution of the thermo-mechanical problem is addressed as well, where

a staggered scheme with the so-called isothermal split is utilized. Accordingly, the

mechanical problem is realized under fixed temperature and the thermal problem

under fixed configuration, both utilizing the other’s result as their own boundary

conditions. Although the isothermal split is practically implemented into the exist-

ing codes and serves certain numerical advantages such as adoption of different time

scales to uncoupled mechanical and thermal steps; it, however, is, at its best, only

conditionally stable. Another staggered resolution, the adiabatic split, based on an

isentropic mechanical step, overcomes this problem of conditionality. For a detailed

analysis involving the comparison of staggered and simultaneous thermo-mechanical

resolutions, the reader may refer to [198], [162], [9], [10] and the references therein.

A covariant principal axis formulation of the same framework is given in [81]. More

recently, [34] expands the formulations and application problems to give account for

temperature dependent elastic properties. Thermoplasticity with kinematic harden-

ing is investigated in [69]. These applications exclude the void growth mechanism,

i.e. damage, and accompanying softening in metallic materials. A thermo-plastic

framework with a staggered resolution is presented in [70)] for porous plasticity. [176]

addresses the numerical consequences isothermal and isentropic split for a nonlocal

thermo-damage model. Finally, [133, pp. 637–672] supplies detailed information on

the various methodologies of the solution of thermo-mechanical problems.

Numerical solution of the post-peak responses of material models including soften-

ing regimes via finite element procedures is prone to mesh sensitivity and related

nonphysical localization. This is described as the loss of ellipticity in the context of

quasi-static problems. In this regard, for a physically admissible solution, the material

models should be enhanced with localization limiters, which keep the numerical prob-
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lem well-posed. In the current study, strain hardening effects are in competition with

a doubly softening mechanism induced by damage and temperature. Thus, a simple

Perzyna type viscous regularization is adopted into the existing framework in the

spirit of [147] and [168]. Accordingly, the initial boundary value problem subjected to

this doubly softening mechanism is kept well-posed. The effect of devising material

rate dependence on the change of the character of the governing differential equation

is presented in [127], in which it is shown that, in the context of quasi-static problems,

the ellipticity loss is precluded by the incorporation of the viscosity and the patholog-

ical mesh sensitivity is thus healed. However, as shown in the application problems,

this localization limitation property of the viscous regularization schemes is limited

to certain deformation levels. More advanced models, such as gradient type localiza-

tion limiters, are presented, in a pure mechanical setting, by [7], [37] and [116)] for

isotropic damage models. [32] expands the nonlocal framework to anisotropic models.

Treatment of anisotropic (visco)damage coupled with (visco)plasticity can be found in

[2]. With nonlocal extensions, an isotropic Gurson damage model coupled thermo-

plastic framework is presented in [70)]. More general thermo-mechanical frameworks

with viscous and nonlocal enhancements accompanying anisotropic damage take place

in [189] and [190].

This chapter has the following outline. Local constitutive forms are derived in § 3.2

in a thermodynamic consistency. Numerical aspects, including the FE formulation of

the coupled thermo-mechanical problem, algorithmic forms and the consistent tangent

moduli are given in § 3.3. § 3.4 constructs the formulations for adiabatic conditions.

The example problems take place in § 3.5. Two damage triggering methods depending

on the imposed conditions on damage field are presented, which, to the authors knowl-

edge, haven’t been presented in the literature yet. Besides the localization prevention

characteristics of the viscous regularization in existence of two softening mechanism

are investigated. ABAQUS implementation details are presented in Appendix B.

3.2 Theory

Based on the kinematic assumptions presented in Chapter 2, and following the ratio-

nal thermodynamics approach followed by [162], the internal energy, e(Fe, ξ, ηe), is
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postulated where ηe stands for the elastic entropy associated with the lattice and ξ

denotes the vector of strain like internal variables responsible for irreversible mech-

anisms. For thermo-mechanical applications, an additively decoupled form of total

entropy, η, with η = ηe + ηpd is claimed, utilizing its extensive property. ηpd is the

inelastic (configurational) entropy, which stands for the scalar internal variable, conju-

gate to the temperature, associated with the dissipative mechanisms such as plasticity,

hardening and damage. Through the associative evolutionary forms emanating from

conventional normality conditions together with a temperature dependent damage

dissipation potential, one ends up with a natural additive split, ηpd = ηp + ηd, where

the inelastic entropy is found as the summation of the plastic, ηp, and damage, ηd,

entropies. With this phenomenological statement, the interpretation of the evolution

of inelastic entropy is made in terms of the flow stress changes in a plastic process, and

the damage dissipation potential changes, which is a nonlinear function of the elastic

energy release rate, in a damage process, with respect to temperature. By this way,

the framework given in [162] is expanded to give account for damage induced effects.

Hence, ηp is linked to the irreversible plastic structural changes, such as dislocation

motion and lattice defects and ηd is linked to the dissipative micro-structural changes

accompanied by nucleation, growth and coalescence of micro-voids and micro-cracks.

Both of ηp and ηd do involve inputs to the total entropy which are not covered by the

inputs of the mechanical dissipation.

In the current context, the vector of strain like internal variables is defined as ξ =

{α, D}t, with α and D ∈ [0, 1] being responsible for isotropic hardening and damage,

respectively. Invariance requirements for constitutive model under arbitrary rigid

body rotations on the intermediate configuration motivate the use of e(Fe, ξ, ηe) 7→

e(be, ξ, ηe), where be represents the elastic left Cauchy-Green deformation ten-

sor, with be = Fe • Fe,t. One may apply the Legendre transformation to derive,

e(be, ξ, ηe) = Ψ(be, ξ, θ) + θηe, in which Ψ(be, ξ, θ) represents the Helmholtz free

energy, which is set in terms of the absolute temperature, θ, instead of elastic entropy.

An additively decoupled form of Ψ(be, ξ, θ) reads

Ψ(be, ξ, θ) := Ψe(be, D) + Ψtd(Je, θ,D) + Ψt(θ) + Ψp(α, θ), (3.1)

where Ψe(be, D) denotes the damage affected pure elastic free energy1. Ψp(α, θ) stands
1 To supply this form, for the sake of simplicity, temperature independent elastic material param-
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for the plastic free energy blocked in the dislocations. Ψt(θ) is associated with the

purely thermal entropy. Elastic structural entropy is constructed through the thermo-

dilatational potential, Ψtd(Je, θ,D). The relations between the nominal (homogenized)

and the effective free energies follow

Ψe(be, D) = (1−D) Ψ̃e(be), (3.2)

Ψtd(Je, θ,D) = (1−D) Ψ̃td(Je, θ), (3.3)

with,
[
F̃
]

:= [F] /(1 − D), where
[
F̃
]

and [F] are associated with the effective

and nominal forms of any tensorial or scalar quantity. Effective forms act on the

intact material subscale whereas nominal forms reflect mathematically homogenized

behavior under the influence of damage deterioration.

3.2.1 Equations of State

The second principle of thermodynamics for a thermo-mechanical problem postulates

a nonnegative difference between the local stress power and the local rate of change

of free energy. This, as a measure for the thermodynamic admissibility, supplies the

following so-called the Clausius-Duhem inequality,

0 ≤ Ω = τ : d+θ
∂η

∂t
− ∂e

∂t
− 1

θ
q • g, (3.4)

where τ is the Kirchhoff stress tensor which is the work conjugate of the spatial

rate of deformation tensor, d := sym [l] , with l := ∂F/∂t • F−1 denoting the spatial

velocity gradient. q stands for the Kirchhoff type heat flux, analogous with the

weighted Cauchy stress. g is associated with the spatial gradient of θ with g := ∇θ.

This inequality can be split into two more restrictive inequalities, namely, the local

thermo-mechanical, i.e reduced Clausius-Planck form, and the conductive thermal,

i.e. Fourier Form,

Ω = Ωlthm + Ωcth ≥ 0, Ωlthm ≥ 0, Ωcth ≥ 0. (3.5)

where the respective dissipation potentials are denoted by Ωlthm and Ωcth, with

Ωlthm := τ : d + θ
∂η

∂t
− ∂e

∂t
, (3.6)

Ωcth := −1
θ
q • g. (3.7)

eters are assumed, µ(θ) 7→ µ, H(θ) 7→ H. For a treatment including temperature dependent elastic
constants for thermoplasticity, see [34].
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Natural satisfaction of the condition, Ωcth ≥ 0, is supplied with (3.55) of § 3.2.5. The

remaining inequality, Ωlthm ≥ 0, postulates a stronger form of the original setup. By

making appropriate substitutions for Ωlthm and using previously postulated Legen-

dre transformation, one has,

∂e

∂t
=

∂Ψ
∂t

+
∂θ

∂t
ηe +

∂ηe

∂t
θ. (3.8)

Using the main inequality, (3.5.b) supplies,

0 ≤ Ωlthm = τ : d+θ

[
∂η

∂t
− ∂ηe

∂t

]
︸ ︷︷ ︸

= ∂ηpd

∂t

−∂Ψ
∂t

− ∂θ

∂t
ηe. (3.9)

Applying the chain rule of differentiation

∂Ψ
∂t

=
∂Ψ
∂be

:
∂be

∂t
+

∂Ψ
∂ξ

• ∂ξ

∂t
+

∂Ψ
∂θ

∂θ

∂t
, (3.10)

with
∂be

∂t
= £vbe + l • be + be • lt, (3.11)

where £v [F] stands for the objective Lie derivative of [F] via,

£vbe = F • ∂Gp

∂t
• Ft, (3.12)

in which Gp := Cp,−1 = Fp,−1 • Fp,−t, [109]. Cp is the plastic right Cauchy-Green

deformation tensor whose inverse is designated by Gp. Substituting (3.11) back into

(3.9), together with certain manipulations, one finds,

0 ≤ Ωlthm =
[
τ−2

∂Ψ
∂be •b

e

]
︸ ︷︷ ︸

=0

: d + 2
∂Ψ
∂be •b

e︸ ︷︷ ︸
=:τ

:
[
−1

2
£vbe • be,−1

]
+ θ

∂ηpd

∂t

+
[
−∂Ψ

∂ξ

]
• ∂ξ

∂t
+
[
−∂Ψ

∂θ
− ηe

]
︸ ︷︷ ︸

=0

∂θ

∂t
.

(3.13)

Accordingly following state equations are derived,

τ =
∂Ψ
∂be • be, ς = −∂Ψ

∂ξ
, ηe = −∂Ψ

∂θ
, (3.14)

where elastic entropy is found out to be the conjugate variable of the temperature. ς is

the vector of stress like internal variables which are dual with ξ, where ς = {q, Y d}t. q

is responsible for isotropic hardening in the form of yield locus expansion whereas Y d is

the thermodynamically formal damage conjugate variable. Substitution of the derived
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state equations yields the following reduced dissipation inequality, whose maximization

furnishes the base for state variable evolution equations,

0 ≤ Ωlthm = τ :
[
−1

2
£vbe • be,−1

]
+
[
−∂Ψ

∂α

]
︸ ︷︷ ︸

=:q

∂α

∂t
+
[
−∂Ψ

∂D

]
︸ ︷︷ ︸

=:Y d

∂D

∂t
+ θ

∂ηpd

∂t
, (3.15)

Specified additively decoupled potentials given in (3.1) result in the following explicit

representations for the state equations2,

τ = (1−D)

[
∂Ψ̃e

∂be +
∂Ψ̃td

∂be

]
• be, (3.16)

q = −∂Ψp

∂α
, (3.17)

Y d = Ψ̃e + Ψ̃td, (3.18)

ηe = −(1−D)
∂Ψ̃td

∂θ
− ∂Ψt

∂θ
− ∂Ψp

∂θ
. (3.19)

Due to its dependence on Ψ̃td, the definition of total Kirchhoff stress tensor gives

account for additional temperature dependent dilatational terms, compared to the

isothermal solution. Also in this setting, damage conjugate variable includes ther-

mally motivated portions, as an extension of the canonical Lemaitre damage model.

Meanwhile, the strain equivalence principle gives that the effective Kirchhoff stress,

i.e. τ̃ = τ/(1−D), does not explicitly depend on D.

2 A remarkable fact is that, once the temperature dependence of the elasticity parameters are
taken into account, one has Ψ̃e = Ψ̃e(be, θ), and

ηe = −(1−D)

[
∂Ψ̃e

∂θ
+

∂Ψ̃td

∂θ

]
− ∂Ψt

∂θ
− ∂Ψp

∂θ
.
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3.2.2 Equations of Evolution

The local thermo-mechanical dissipation, Ωlthm, that should be maximized, can be

split into mechanical, Ωmech, and thermal, Ωther, portions3, [47],

0 ≤ Ωlthm := τ :
[
−1

2
£vbe • be,−1

]
+ q

∂α

∂t
+ Y d ∂D

∂t︸ ︷︷ ︸
=:Ωmech

+ θ
∂ηpd

∂t︸ ︷︷ ︸
=:Ωther

. (3.20)

The evolutionary forms exploit the standard arguments of the maximization of the

inelastic dissipation, [105], where the plastic yield potential as a constraint function is

now modified to involve the damage dissipation potential as well. The hypothesis of

generalized standard materials, which proposes the existence of normality rules, [111],

applies equally valid. Accordingly, a loading function, φt, additively decoupled into

a temperature dependent plastic potential, φ̃, and a temperature dependent damage

dissipative potential, φd, is postulated,

φt(τ , q, Y d;D, θ) = φ̃(τ̃ , q; θ) + φd(Y d;D, θ). (3.21)

Owing to the fact that the plastic flow is physically possible at undamaged material

sub-scale, the formulation of φ̃ takes place in the effective Kirchhoff stress space.

Within the context of isotropy, associated plasticity is recovered, where the plastic

flow represented by the flow rule is coaxial with the Kirchhoff stress,

£vbe = −2
γ̇

(1−D)
∂φ̃

∂τ̃
• be, (3.22)

3 Utilizing Ωmech = Ωmech,p + Ωmech,d, with,

Ωmech,p = τ :

[
−1

2
£vb

e • be,−1

]
+ q

∂α

∂t
,

and

Ωmech,d = Y d ∂D

∂t
,

this form accounts for

Ωlthm + Ωmech,p + Ωmech,d ≥ 0.

which is implied by the additive decomposition η = ηe + ηp + ηd, and which is in accordance with
Equation 29 of [189].
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where γ̇ is the single plastic multiplier. Coming to the rates of the scalar internal

variables, α, D and ηpd, one derives,

∂α

∂t
= γ̇

∂φ̃

∂q
, (3.23)

∂D

∂t
= γ̇

∂φd

∂Y d
, (3.24)

∂ηpd

∂t
= γ̇

[
∂φ̃

∂θ
+

∂φd

∂θ

]
. (3.25)

which are conventional, associative evolutionary rules. Since the growth of both α

and D depend on γ̇, damage concurrently occurs with plasticity. In the context of

inelastic dissipation maximization postulate, multi-surface damage-plasticity models,

which give account for separate plastic and damage multipliers, in the form of La-

grange multipliers, damage evolution in absence of plastic flow is possible, [75)].

Current treatment supplies the source of kinematic coupling between plasticity and

damage. Such an application has proved convenient in ductile metal damage, where

the dislocation pile-ups supply as a void nucleation source. This definition also pos-

tulates that the evolution of the inelastic entropy depends on both the plasticity and

the damage dissipation potentials, which is an expanded version of [162], in which no

damage mechanism is taken into account. It is remarkable that, one may represent

the inelastic entropy production in an additive form in terms of plastic and damage

parts as follows,

∂ηpd

∂t
=

∂ηp

∂t
+

∂ηd

∂t
,

∂ηp

∂t
= γ̇

∂φ̃

∂θ
,

∂ηd

∂t
= γ̇

∂φd

∂θ
. (3.26)

For the sake of completeness, Kuhn-Tucker optimality conditions end this section.

γ̇ ≥ 0, φ̃(τ̃ , q; θ) ≤ 0, γ̇φ̃(τ̃ , q; θ) = 0. (3.27)

3.2.3 Viscous Regularization and the Penalty Method

It is a well known fact that softening regimes are prone to numerical difficulties.

These difficulties show themselves as non-uniqueness of the solution or mesh-non-

objectivity which is frequently pronounced as pathological mesh dependency. These

can be regularized, however partially, through encountering viscosity. In the context

of damage-coupled plasticity, using Perzyna type rate dependence, single surface

overstress type viscous forms are utilized by [147] and [168] among others. It is
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notable that taking a viscous plasticity model affects the structure of the damage

evolutionary form through a single plastic potential and enforces it to have a viscous

character also. In this method, the viscoplastic multiplier, γ̇vp , is not found via the

consistency condition, ∂φ̃/∂t = 0, but computed through an overstress form,

γ̇vp =
〈φ̃〉
η

,

with 〈F〉 standing for the Macaulay brackets where 〈F〉 = 1/2 [F+ |F|]. The vis-

cosity parameter, η, should be selected as sufficiently small positive number to mimic

instantaneous plasticity with care, not to create numerical difficulties. This formu-

lation of plasticity falls in the class of penalty formulations rather than Lagrange

multiplier methods. For η 7→ 0 inviscid plasticity is recovered, whereas instantaneous

elasticity is obtained for η 7→ ∞4. From now on, the evolutionary forms are subjected

to the modification γ̇ 7→ γ̇vp, to involve regularizing rate effects.

3.2.4 The Temperature Evolution Equation

Following temperature evolution equation constitutes the boundary value problem for

temperature,

Cv
∂θ

∂t
= Ωmech − H− Jdiv

[q
J

]
+ R, (3.28)

where Cv denotes the specific heat and H denotes the elastic-plastic-damage structural

heating which is related to the latent (non-dissipative) elastic and inelastic structural

changes. R and q represent the heat source and the Kirchhoff type heat flux,

respectively, both of which are omitted in adiabatic processes. The temperature evo-

lution equation can be found through the local energy balance equation, i.e. the first

principle of thermodynamics,

−Jdiv
[q
J

]
+ R ≥ ∂e

∂t
− τ : d. (3.29)

Substituting the local thermo-mechanical dissipation definition

Ωlthm := τ : d+θ
∂η

∂t
− ∂e

∂t
⇒ ∂e

∂t
− τ : d = −Ωlthm + θ

∂η

∂t
, (3.30)

4 Treatment of creep can be carried out the same setting, exploiting the equivalence of both
elastoviscoplastic and creep formulations. Creep may be seen as a special case of viscoplasticity
where the elastic domain is null, [179].
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and using Ωlthm = Ωmech+Ωther, where Ωther = θ
[
∂ηpd/∂t

]
, and [∂η/∂t] = [∂ηe/∂t]+[

∂ηpd/∂t
]
, one has,

∂e

∂t
− τ : d = −Ωmech + θ

[
∂η

∂t
− ∂ηpd

∂t

]
. (3.31)

Since ηe = η − ηpd = −∂Ψ/∂θ and [∂Ψ/∂t] = τ : d − Ωmech + [∂θ/∂t] ηe, one carries

out,

θ

[
∂η

∂t
− ∂ηpd

∂t

]
=
[
−θ

∂

∂θ

[
τ : d− Ωmech

]]
︸ ︷︷ ︸

=:H

+
∂θ

∂t

[
−θ

∂2Ψ
∂θ2

]
︸ ︷︷ ︸

=:Cv

. (3.32)

Note that, (3.32) checks with [162]. However in the preceding form, Ωmech inherently

involves damage effects. Moreover H is found as,

H = −θ

{
∂

∂θ

[
∂Ψ
∂be

]
:
∂be

∂t
+

∂

∂θ

[
∂Ψ
∂α

]
∂α

∂t
+

∂

∂θ

[
∂Ψ
∂D

]
∂D

∂t

}
. (3.33)

3.2.5 Application to a Model Problem

In this section the potentials are specified in order to derive the explicit represen-

tations of the state laws and the evolutionary equations. For elasticity, one may

postulate a deviatoric-volumetric split for the effective elastic potential, Ψ̃e(be) =

Ψ̃e,vol(Je) + Ψ̃e,dev(λ̄e
A), (A = 1, 2, 3), where use of the principals of the tensor argu-

ments in representation of the isotropic tensor functions is possible,

Ψ̃e,vol(Je) :=
1
2

H log[Je]2, (3.34)

Ψ̃e,dev(λ̄e
A) := µ (log[λ̄e

1]
2 + log[λ̄e

2]
2 + log[λ̄e

3]
2) (3.35)

= µ (ε̄e,2
1 + ε̄e,2

2 + ε̄e,2
3 ).

with H and µ being the bulk and the shear modulus, respectively. λe
A =

√
be
A stands

for the principal elastic stretch with the deviatoric portion represented by λ̄e
A. εe

denotes the elastic logarithmic strain tensor with principals represented by εe
A. This

quadratic form in terms of Hencky measure of elastic strains although preserves

validity for a large class of materials up to moderately large deformations, [196],

does not satisfy the polyconvexity condition [102]. The deviatoric contribution of the

elastic logarithmic strain tensor and its principal components are denoted by, ε̄e and

ε̄e
A, respectively.
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For the plastic portion, following isotropic hardening potential is common which is

associated with a combined linear and saturation type. In the presence of thermal

coupling, this potential reads,

Ψp,iso(α, θ) =
1
2
K(θ) α2 + τ0,∞(θ)

[
δ +

exp[−δα]
δ

]
, (3.36)

with, τ0,∞(θ) := τ∞(θ) − τ0(θ), where and τ0(θ) and τ∞(θ) denote the initial and

the final yield stress of the material at temperature θ, respectively. Following [162],

linear thermal softening, with hardening softening parameter, ωh, acting on plasticity

parameters is assumed,

τ0(θ) = τ0(θ0) [1− ωh(θ − θ0)] , (3.37)

K(θ) = K(θ0) [1− ωh(θ − θ0)] ,

τ0,∞(θ) = τ0,∞(θ0) [1− ωh(θ − θ0)] .

Volumetric elastic deformation is associated with the thermal effects through the fol-

lowing thermo-dilatational potential,

Ψ̃td(Je, θ) = −3 H αt log[Je]
Je

(θ − θ0). (3.38)

Pure thermal potential is defined as

Ψt(θ) = Cv

[
(θ − θ0)− θ log

[
θ

θ0

]]
, (3.39)

which satisfies the condition, −Cv =
[
∂2Ψ̃t/∂θ2

]
. These definitions let one find the

following state equation for the homogenized Kirchhoff stress,

τ = (1−D)

H

{
tr[ε e] − 3 αt(θ − θ0)

1− log[Je]
Je

}
︸ ︷︷ ︸

=:p̃

1 + 2µ ε̄e︸ ︷︷ ︸
=:̃s

 , (3.40)

where p̃ = (τ̃1+ τ̃2+ τ̃3)/3 and s̃ represent the temperature dependent effective Kirch-

hoff type hydrostatic stress and the deviatoric effective Kirchhoff stress tensor,

respectively. The eigenvalues of the latter is denoted by s̃A. Thanks to isotropy, εe

and s̃ are coaxial thus share identical eigenbases, mA = νA⊗νA, where νA represents

the corresponding eigenvectors with (A = 1, 2, 3). As a consequence of the preceding
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definitions, the rest of the state equations read,

q = −K(θ) α− [τ∞(θ)− τ0(θ)] [1− exp[−δα]] , (3.41)

Y d =
1
2

H log[Je]2 + µ (ε̄e,2
1 + ε̄e,2

2 + ε̄e,2
3 )− 3 H αt log[Je]

Je
(θ − θ0), (3.42)

ηe =
1
2
ωhK(θ0) α2 + ωhτ0,∞(θ0)

[
δ +

exp[−δα]
δ

]
(3.43)

+(1−D)3 H αt log[Je]
Je

+ Cv log
[

θ

θ0

]
.

The damage conjugate variable, Y d, is associated with the temperature dependent

total thermo-elastic energy release rate. The expression for ηe is in accordance with

the one given in [81, Equation 70], except for the fact that it includes the damage

effect at the third term on the right hand side of equivalence. The definition of the

yield potential, which is of J2 type, is made in the effective Kirchhoff stress space in

terms of the principal values of the effective Kirchhoff stress and a two parameter

simple damage dissipation potential, chosen as a power function in Y d, is utilized for

the damage dissipation, which read,

φ̃(s̃A, q; θ) := [s̃2
1 + s̃2

2 + s̃2
3]

1/2 −
√

2
3

y(q, θ) ≤ 0, (3.44)

φd(Y d;D, θ) :=
a(θ)

(s + 1)
1

(1−D)

[
Y d

a(θ)

]s+1

, (3.45)

with y(q, θ) = [τ0(θ) − q(α, θ)] representing the hardening/softening function for

thermo-coupled conditions. A linear temperature dependence is chosen for the damage

parameter, a(θ), via

a(θ) = a(θ0) [1− ωd(θ − θ0)] . (3.46)

Consequently, with the definition of ∂φ̃/∂τ̃ , the plastic flow rule can be defined,

∂φ̃

∂τ̃
=

3∑
A=1

ñA νA ⊗ νA ⇒ £vbe = −2
γ̇vp

(1−D)

[
3∑

A=1

ñA νA ⊗ νA

]
• be, (3.47)

where ñA = ∂φ̃/∂τ̃A = s̃A/ 2
√

s̃2
1 + s̃2

2 + s̃2
3. It is notable that the eigenbases for the

effective and the homogenized stresses are equivalent, i.e. νA ⊗ νA ≡ ν̃A ⊗ ν̃A. The

rates of the scalar strain like variables, α and D, read,

∂φ̃

∂q
= −

√
2
3

⇒ ∂α

∂t
= −γ̇vp

√
2
3
,

∂φd

∂Y d
=

1
(1−D)

[
Y d

a(θ)

]s

⇒ ∂D

∂t
= γ̇vp 1

(1−D)

[
Y d

a(θ)

]s

.

(3.48)
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Following similar arguments, the growth of the plastic portion of the inelastic entropy

reads,

∂ηp

∂t
= γ̇vp

√
2
3

[ω0τ0(θ0)− ωhq(α, θ0)] , (3.49)

which is identical to [162]. The growth of the inelastic entropy associated with damage

is,

∂ηd

∂t
= γ̇vp 1

(1−D)

[
Y d

a(θ)

]s [
ωda(θ0)

Y d

a(θ)
− 3 H αt log[Je]

Je

]
. (3.50)

The details of these derivations are given in Appendix C. The expressions add up

to the rate of total inelastic entropy production, ∂ηpd/∂t, utilizing (3.26). The sec-

ond principle of thermodynamics places a restriction on the definition of the thermal

dissipation via Ωther = θ
[
∂ηpd/∂t

]
≥ 0. Accordingly one may suggest two stronger

inequalities, such as ∂φ̃/∂θ ≥ 0 and ∂φd/∂θ ≥ 0. The former is naturally satisfied,

where in the view of (3.37) thermal softening of the plastic potential, is addressed5.

This condition, also named as the yield locus contraction with temperature, reflects

the experimental evidences.

Following simplification, introduced in [162], is invariably valid for the current damage-

coupled plasticity,

Ωmech,p = γ̇vp

√
2
3
τ0(θ),

where the details of this derivation can be found in Appendix C. Together with the

definition of damage dissipation,

Ωmech,d := Y d ∂D

∂t︸︷︷︸
γ̇ ∂φd

∂Y d

= γ̇vp a(θ)
(1−D)

[
Y d

a(θ)

]s+1

, (3.51)

5 For two-surface damage coupled plasticity models, where independent plasticity-damage evo-
lution can be observed, analogical to the plasticity, damage softening amounts for the thermal con-
traction of the separately defined damage surface which is related to the free surface energy of the
micro-void/micro-crack formation.
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one may find the following total mechanical dissipation6, Ωmech,

Ωmech = Ωmech,p + Ωmech,d = γ̇vp

[√
2
3
τ0(θ) +

a(θ)
(1−D)

[
Y d

a(θ)

]s+1
]

. (3.52)

This expression has a crucial importance in the current thermo-inelastic framework.

Besides constituting the heat source, it also accounts for the term that is used in

linearization of the weak form of the thermal problem.

Coming to the time sensitive thermal dissipation analysis, a damage affected potential,

Φ, is utilized, [60],

Φ = (1−D)Φ̃; Φ̃ = −1
2
k g • g, (3.53)

where k is the (isotropic) heat conduction coefficient. This equation eventually defines

the following damage affected heat flux vector, which is in the form of the classical

Fourier’s linear heat flow equation,

q = −∂Φ
∂g

= −(1−D)k g ⇒ q = −(1−D)k g. (3.54)

Substituting the values in the conductive thermal Fourier inequality, supplies,

Ωcth = −1
θ
q • g = (1−D)

1
θ
k g • g ≥ 0. (3.55)

It is clearly seen that this inequality is unconditionally satisfied for a positive heat

conduction coefficient, k> 0.

3.3 Numerical Implementation

3.3.1 FE Formulation of the Coupled IBVP

Let P := τ • F−t stand for the first (unsymmetric) Piola-Kirchhoff stress and

Q := F−1 • q stand for the heat flux of equivalent type, analogically. Utilizing the
6 In the presence of damage, since Ωmech,d � Ωmech,p, it may be advocated that, Y d ∂D/∂t ≈ 0.

With this cancelation one has,
Ωmech ≈ Ωmech,p.

Also, following the experimental observations of [183], for instantaneous plasticity, one may construct
a modified plastic mechanical dissipation, Ωmech 7−→ Ω̆mech,p, in terms of the plastic power,

Ω̆mech,p := κ

[
γ̇vp

√
2

3
y(q, θ)

]
.

where the so-called Taylor-Quinney empirical constant, κ ∈ [0, 1], defines the extent of the plastic
power which is defined as the plastic dissipation. κ is commonly selected in the range 0.85 ≤ κ ≤ 0.95.
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Piola transform, one has Jdiv [q/J ] 7→DIV[Q] and Jdiv [τ/J ] 7→DIV[P] , with J =

det[F]. The primary unknowns of the thermo-mechanical problem, {ϕ,v, θ}t , with v

denoting the velocity vector, are resolved at the global solution stage by considering the

following coupled differential equation set constructed at the reference configuration,
∂ϕ/∂t− v

DIV [P] + ζ − ρ0v̇

Cv [∂θ/∂t]− Ωmech + H + DIV [Q]−R

 = 0. (3.56)

Apart from the trivial velocity vector definition given in the first row; in a residual

setting, the second and third rows stand for the local equation of motion and the first

law of thermodynamics, which supplies the equation for thermal condition. v̇ is the

acceleration vector and ρ0 is the referential density. ζ denotes the body forces. The

boundary conditions for the problem can be listed as follows,

ϕ = ϕ̄ at ∂Bϕ;

θ = θ̄ at ∂Bθ;

T̄ = P •N at ∂Bσ;

Q̄ = Q •N at ∂Bq;

∂Bϕ ∩ ∂Bσ = ∅;

∂Bθ ∩ ∂Bq = ∅;

∂Bϕ ∪ ∂Bσ = ∂B.

∂Bθ ∪ ∂Bq = ∂B.

(3.57)

with N being the outward unit normal to the boundary, ∂B, in the reference con-

figuration ∂Bϕ ⊂ ∂B and ∂Bθ ⊂ ∂B denote the parts of the boundary on which

the Dirichlet boundary conditions are specified with the prescribed displacements,

ϕ̄, and temperatures, θ̄, respectively. With the prescribed tractions, T̄, and the out-

ward normal heat flux, Q̄, Neumann type boundary conditions respectively act on

the boundary parts ∂Bσ ⊂ ∂B and ∂Bq ⊂ ∂B. The conditions satisfied on these

boundary parts are given in (3.57). In the current context, temperature increase is

merely associated with the mechanical dissipation due to irreversible processes such

as plasticity and damage. Accordingly, the heat source and the temperature varia-

tions due to elastic loading are omitted, by canceling R and H respectively, to give

Cv [∂θ/∂t]− Ωmech+DIV[Q] = 0.

(3.56) can be solved in a monolithic or a staggered manner. Monolithic scheme stands

for concurrent satisfaction of the equation set to describe the unknowns, where the

system is solved in a fully coupled manner. For this approach, see e.g. [8] and [162].

For the simultaneous solution of the global problem, consequent numerically costly

tangent stiffness matrix of thermoplasticity is usually not symmetric. Besides since

the difference of the orders of the thermal and mechanical problems, it is not well-
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conditioned and needs post processing. In the staggered approach, the coupling is

split into mechanical and thermal branches and corresponding equations are solved

with successive decrease of mechanical and thermal residuum, where the linear mo-

mentum and the energy conservation requirements are satisfied, respectively. If the

former mechanical step is realized under constant temperature, then the split is called

an isothermal split. The isothermal staggered approaches are numerically cheaper at

the expense of numerical instability risk. Unconditionally stable algorithms may be

produced by following an isentropic mechanical step, in which the total entropy is held

constant. The code may take advantage of using different time scales for the split me-

chanical and thermal steps which is not possible with monolithic approaches. Details

of the staggered split algorithms may be found in [162] and the follow-up studies [198],

[9], [10]. For kinematic hardening thermoplasticity, staggered approach is utilized by

[69]. Similar generalizations of the staggered approach to damage involved analysis

can be found in [174] and [70)]. It should be noted that, the quadratic convergence

quality of the Newton-Raphson scheme is preserved only for the simultaneous ap-

proach, whereas the staggered algorithm does provide only super-linear convergence,

[162], [198].

3.3.1.1 Staggered Solution Scheme

In solution of the above problem, an isothermal staggered solution scheme is followed,

where an isothermal mechanical step is followed by a thermal step on fixed configura-

tion.

Mechanical Step For the mechanical problem, the equation is modified as follows

in order to preclude the temperature evolution,
∂ϕ/∂t− v

DIV [P] + ζ − ρ0v̇

Cv [∂θ/∂t]

 = 0, (3.58)

Following a Galerkin approach, both sides are multiplied by a sufficiently smooth

virtual displacement field, ηu, and integrate at the reference configuration. Applying

integration by parts followed by the divergence theorem gives the following internal
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part of the mechanical weak statement,

gint
ηu

(ηu;ϕ) =
∫

B0

τ : [gradηu]sym dV, (3.59)

Linearization of the internal virtual work in the direction of displacement increment

u, i.e. Dg(ϕ,ηu)[u] , reads,

Dgint
ηu

(ηu;ϕ)[u] :=
d
dε

∣∣∣∣
ε=0

gint
ηu

(ηu;ϕ + εu). (3.60)

Time discrete forms of the above split at the quasi-static limit with, ρ0 7→ 0, is

constructed through a backward-Euler scheme. In the following, [F]n and [F]n+1

give the definitions of any variable denoted by [F], at time tn and tn+1 respectively.[
F̌
]
n+1

stands for the regarding definition at the end of the isothermal mechanical

step. It is assumed that the state variables at time tn are known and using the

deformation and temperature computed at ∆t = tn+1 − tn, through a split scheme,

the state at time tn+1 is sought for. Accordingly, the isothermal mechanical step

realized under constant temperature, θ̌n+1 7→ θn, reads


ϕ̌n+1 −ϕn − un+1

DIV
[
P̌n+1

]
+ ζn+1

θ̌n+1 − θn

 = 0. (3.61)

Consequently, one carries out the following linearization, for the internal part of the

mechanical weak form,

KMM (ηu,un+1) := Dgint
ηu

=
∫

B
[gradηu]sym : cMM,n+1 : [gradun+1]

sym dV

+
∫

B
gradηu • τn+1 • gradun+1 dV,

(3.62)

which gives the isothermal stiffness matrix, with the assembly following a spatial

discretization. On the right hand side, the first term is due to material stiffness and

the second term is due to geometric stiffness. A consistent derivation of cMM,n+1,

the spatial material tangent matrix, is vital for quadratic convergence quality of the

Newton-Raphson method. Together with the solution of this step, appropriate

updates are realized to give, {be
n, ξn, θn} 7→

{
b̌e

n+1, ξ̌n+1, θ̌n+1

}
.
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Thermal Step After isothermal mechanical convergence is supplied, the thermal

step is solved for 
v

v̇

Cv [∂θ/∂t]− Ωmech + DIV [Q]

 = 0, (3.63)

Analogically to the mechanical problem under fixed temperature, the weak statement7

for the thermal problem can be carried out by multiplying both sides of the thermal

equation with a continuous temperature field, η%. Following similar steps as given

in the preceding equations, the weak statement for the internal part of the energy

balance is carried out,

gint
η%

(η%; θ) =
∫

B
η%Cv

∂θ

∂t
dV −

∫
B

η%ΩmechdV +
∫

B
η% • k∇θ dV. (3.64)

This expression is consistently linearized in the direction of temperature change %, to

give

Dgint
η%

(η%; θ)[%] :=
d
dε

∣∣∣∣
ε=0

gint
η%

(η%; θ+ε%). (3.65)

Introducing the time discretization for the thermal step at fixed configuration, together

with backward-Euler method, one has,
ϕn+1 − ϕ̌n+1

vn+1 − v̌n+1

Cv

[
θn+1 − θ̌n+1

]
/∆t− Ωmech

n+1 + DIV [Qn+1]

 = 0. (3.66)

Together with this setting, the linearization of the internal part yields,

KTT (η%, %n+1) := Dgint
η%

=
∫

B
η%

[
Cv

∆t
−

∂Ωmech
n+1

∂θn+1

]
%n+1 dV

+
∫

B
∇η% • k∇%n+1 dV,

(3.67)

where dΩmech
n+1 /dθn+1 =: cTT,n+1 is called the thermo-inelastic coupling modulus. The

derivation of this term is crucial for application of the Newton-Raphson scheme for

the thermal portion of the problem. At this step, the variable update is realized with,{
b̌e

n+1, ξ̌n+1, θ̌n+1

}
7→
{
be

n+1, ξn+1, θn+1

}
.

7 It should be noted that, for an adiabatic case which is assumed for processes taking place
in a very short time duration, the heat source and the heat dissipation through conduction are
omitted. Consequently, the thermal resolution can be made at material level, at an expense of an
increased dimension of the local unknowns array. This is conducted utilizing the strong form of the
energy balance equation without a need for tracking a Galerkin approach. The usual trend is the
application of the backward-Euler method in the integration of the temporal evolutionary forms.
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Throughout the preceding global solution scheme, switching between the split prob-

lems, mutual effects of thermal and mechanical fields on each other are reflected.

Accordingly temperature change induced by inelastic dissipative mechanisms such

as plasticity and damage are taken into account as well as softening and expansion

induced by temperature. Besides heat conduction is affected by deformation and

damage.

3.3.2 Return Mapping

Update of the state variables with local integration follows a two-step operator-split

with a simultaneous plastic/damage correction for a given elastic prediction. Using a

strain driven process, elastic trial left Cauchy-Green deformation tensor, b e, tri, can

be defined at time tn+1, making use of relative deformation gradient tensor at current

step, i.e. fn+1, with fn+1 = Fn+1 •F−1
n , and elastic left Cauchy-Green deformation

tensor of the previous step, i.e. b e
n, as follows,

b e, tri
n+1 = fn+1 • b e

n • f t
n+1; where b e, tri

n+1 =
3∑

A=1

λe, tri, 2
n+1, A νtri, A

n+1 ⊗ νtri, A
n+1 . (3.68)

Construction of the algorithmic counterpart of the continuum equations and applying

the exponential mapping approximation for flow rule integration, utilizing the coaxi-

ality of the plastic flow and the elastic trial state, yields the following plastic-damage

correction on trial elastic principal strains, where the strain corrections in the form of

the principal plastic strain increments, ∆ε p
n+1, A, are defined as follows,

ε e
n+1, A = ε e, tri

n+1, A −
∆γ

(1−Dn+1)
∂φ̃

∂τ̃A

∣∣∣∣∣
n+1︸ ︷︷ ︸

∆ε p
n+1, A

, (3.69)

with ∆γ = ∆t γ̇vp
n+1. For α and D, implicit backward-Euler method yields,

αn+1 = αn +

√
2
3

∆γ , (3.70)

Dn+1 = Dn + ∆γ
1

(1−Dn+1)

[
Y d

n+1

a(θn+1)

]s

. (3.71)

The components of the inelastic entropy also exploit the backward-Euler method.

Accordingly the plastic portion reads,

ηp
n+1 = ηp

n + ∆γ

√
2
3

[ω0τ0(θ0)− ωhq(αn+1, θ0)] , (3.72)
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and the damage portion reads,

ηd
n+1 = ηd

n + ∆γ
1

(1−Dn+1)

[
Y d

n+1

a(θn+1)

]s [
ωda(θ0)

Y d
n+1

a(θn+1)
− 3 H αt log[Je

n+1]
Je

n+1

]
,

(3.73)

which add up to ηpd
n+1 = ηp

n+1 + ηd
n+1. It is remarkable that, the local integration

expressions for ηp
n+1 and ηd

n+1have explicit representations in ∆γ and Dn+1. Thus,

setting the inelastic entropy as an additional internal variable does not complicate the

local integration scheme and conventional finite thermoplastic algorithmic structure

presented in [162], even for damage-coupled conditions. Resultant plastic/damage

correction of principal Kirchhoff stresses yield,

τ̃n+1, A = τ̃ tri
n+1, A − 2µ

∆γ

(1−Dn+1)
nn+1, A, with τ̃ tri

n+1, A = p̃ + s̃ tri
n+1, A. (3.74)

Plastic potential, which forms the constraint condition reads,

φ̃n+1 := ‖s̃n+1‖ −
√

2
3

y (qn+1, θn+1) = 0. (3.75)

3.3.2.1 Solution of Equations of Local Integration

Following [166], local governing equations collected so far can be reduced, particularly

for the chosen yield criterion, making use of the substitution, s̃n+1, A = ‖s̃n+1‖ nn+1, A,

and exploiting the condition of collinear flow and the trial Kirchhoff stress tensor,

finally, representing the hardening/softening function definition in terms of the plastic

multiplier, to reach,

rn+1(xn+1) =



√
2
3

[
τ0(θn+1) + K ′(αn +

√
2
3

∆γ , θn+1)

]
−
∥∥s̃ tri

n+1

∥∥+ 2µ
∆γ

(1−Dn+1)
+

η

∆t
∆γ

Dn+1 −Dn −∆γ
1

(1−Dn+1)

[
Y d

n+1

a(θn+1)

]s


, (3.76)

where rn+1 = rn+1(xn+1) = 0. In above, −q = K ′ (α, θ) = ∂K (α, θ) /∂α|θ is utilized.

The array of unknowns is represented by xn+1 = {∆γ, Dn+1}t. (3.76) can be treated

with the standard Newton-Raphson solution scheme. Accordingly, the linearized

version of the equations is given as drn+1 = Drn+1•dxn+1, where Drn+1 denotes the
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Jacobian of the system which reads,

Drn+1 =


∂r1, n+1

∂∆γ

∂r1, n+1

∂Dn+1
∂r2, n+1

∂∆γ

∂r2, n+1

∂Dn+1

 , (3.77)

where the component derivations are given in the Appendix C. Using Dr−1
n+1•drn+1 =

dxn+1, the solution for xn+1, which constitutes the local return mapping realized at

each Gauss point, can be carried out with the following iterative scheme,

x(k+1)
n+1 = x(k)

n+1 − δ(k) Dr−1, (k)
n+1 • r(k)

n+1, (3.78)

where δ(k) ∈ (0, 1] is the proper line-search parameter.

3.3.3 Algorithmic Tangent Matrices

For the monolithic solution of the global equilibrium problem of coupled thermo-

mechanical analysis, one has,

rn+1 = rn+1(x̂n+1) = 0; x̂n+1



εn+1, A

θn+1

∆γ

Dn+1


. (3.79)

where ∆γ = ∆γ(εn+1, θn+1) and Dn+1 = Dn+1(εn+1, θn+1). A mechanical-thermal

staggered approach introduces following simplifications into the solution scheme.

3.3.3.1 Mechanical Pass

Mechanical pass is realized under constant temperature, where θn+1 = θ̌ which results

in ∆γ = ∆γ(εn+1)|θ=θ̌ and Dn+1 = D(εn+1)|θ=θ̌. For this stage,

rn+1 = rn+1(x̂n+1) = 0; x̂n+1


εn+1, A

∆γ

Dn+1


∣∣∣∣∣∣∣∣∣
θn+1=θ̌

. (3.80)

with the vanishing total differential, dr = 0, yields
d∆γ

dεn+1, A
dDn+1

dεn+1, A

 = −Dr−1
n+1 •


∂r1, n+1

∂εn+1, A
∂r2, n+1

∂εn+1, A

 . (3.81)
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Accordingly the computation of the mechanical tangent matrix, in the form of the

spatial elastoplastic-damage tangent moduli, [161], reads

cMM, ijkl = 2FiI FjJ FkK FlL CIJKL, (3.82)

which is a push-forward transformation of Lagrangian constitutive moduli, CIJKL,

which is defined by,

CIJKL =
∂SIJ

∂CKL
, (3.83)

where S = F−1 • τ •F−t, is the second Piola Kirchhoff stress tensor, i.e. the pull-

back transform of the Kirchhoff stress tensor and C is the right Cauchy-Green

deformation tensor. An explicit representation of cMM,n+1 can be given as,

cMM,n+1Jn+1 =
3∑

A=1

3∑
B=1

aepd
n+1, AB νtri, A

n+1 ⊗ νtri, A
n+1 ⊗ νtri, B

n+1 ⊗ νtri, B
n+1

−
3∑

A=1

2(1−D)τ̃n+1, Aνtri, A
n+1 ⊗ νtri, A

n+1 ⊗ νtri, A
n+1 ⊗ νtri, A

n+1

+
3∑

A=1

3∑
B=1
A6=B

ϑABνtri, A
n+1 ⊗ νtri, B

n+1 ⊗ νtri, A
n+1 ⊗ νtri, B

n+1 .

(3.84)

Utilizing the condition dεn+1 7→dε e, tri
n+1 , aepd

n+1, AB is posed as the following 3×3 matrix,

aepd
n+1, AB =

dτn+1, A

dεe, tri
n+1, B

. (3.85)

Since the mechanical step in the staggered approach assumes

τn+1(εn+1, θn+1,∆γ (εn+1, θn+1), D(εn+1, θn+1))

7→ τn+1(εn+1,∆γ (εn+1), D(εn+1))|θ=θ̌ ,
(3.86)

the computation of aepd
n+1, AB requires the following chain rule of differentiation,

dτn+1, A

dεe, tri
n+1, B

=
∂τn+1, A

∂εe, tri
n+1, B

+
∂τn+1, A

∂∆γ

d∆γ

dεe, tri
n+1, B

+
∂τn+1, A

∂Dn+1

dDn+1

dεe, tri
n+1, B

, (3.87)

where the details of the derivation are given in Appendix C and the definitions for

d∆γ/dεtri
n+1, B and dDn+1/dεtri

n+1, B require (3.81). The designation of ϑAB is given as

ϑAB = 2
τn+1, Aλe, tri, 2

n+1, B − τn+1, Bλe, tri, 2
n+1, A

λe, tri, 2
n+1, A − λe, tri, 2

n+1, B

, (3.88)

which suffers from singularity or ill-conditioning, for equal or nearly equal eigen-

values, respectively, where λe, tri
n+1, A − λe, tri

n+1, B 7→ 0. [130, pp. 338–341] includes an
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analytical treatment of such cases in the context of finite elasticity materializing

L’Hospital rule. Accordingly, as also shown in [22, pp. 138–138, p. 202], for

λe
n+1, A = λe

n+1, B, the definition of ϑAB boils down to ϑAB = 2µ − 2τn+1, A. How-

ever, for inelasticity, the application of the L’Hospital rule is not straightforward

and requires significant computational time. Thus, numerical perturbation technique

serves an efficient substitute. Consequently, equal or numerically close eigenvalues

with, λe, tri
n+1, A ' λe, tri

n+1, B, are perturbed with a perturbation factor8, δ � 1, which gives

λe, tri
n+1, A 7→ (1 + δ) λe, tri

n+1, A, λe, tri
n+1, B 7→ (1 − δ) λe, tri

n+1, B, and for volumetric consistency

λe, tri
n+1, C 7→ 1/[(1 + δ)(1− δ)]λe, tri

n+1, C , [119].

3.3.3.2 Thermal Pass

Coming to the second pass, the configuration is held fixed, εn+1, A = ε̌A, which results

in ∆γ = ∆γ(θn+1)|ε=ε̌ and Dn+1 = D(θn+1)|ε=ε̌ . Consequently one has,

rn+1 = rn+1(x̂n+1) = 0; x̂n+1


θ

∆γ

Dn+1


∣∣∣∣∣∣∣∣∣
εn+1, A=ε̌A

. (3.89)

Analogous to the mechanical step, exploitation of the condition, dr = 0, reads,
d∆γ

dθn+1
dDn+1

dθn+1

 = −Dr−1
n+1 •


∂r1, n+1

∂θn+1
∂r2, n+1

∂θn+1

 . (3.90)

It should be noted that, in both the mechanical pass and the thermal pass the internal

variables are changing. The thermal portion is due only if there exists plastic flow and

induced damage. Accordingly the Jacobian for the thermal problem, cTT , becomes,

cTT,n+1 :=
dΩmech

n+1

dθn+1
, (3.91)

where the mechanical dissipation at the current increment is,

Ωmech
n+1 =

∆γ

∆t

√2
3
τ0(θn+1) +

a(θn+1)
(1−Dn+1)

[
Y d

n+1

a(θn+1)

]s+1
 . (3.92)

Since the thermal step is realized under fixed configuration, one assumes,

Ωmech
n+1 (εn+1, θn+1,∆γ (εn+1, θn+1), D(εn+1, θn+1))

7→ Ωmech
n+1 (θn+1,∆γ (θn+1), D(θn+1))

∣∣∣
ε=ε̌

.
(3.93)

8 δ=1.0e-12 constitutes a reasonable assumption.
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Accordingly one has,

cTT,n+1 :=
∂Ωmech

∂θn+1
+

∂Ωmech

∂∆γ

d∆γ

dθn+1
+

∂Ωmech

∂Dn+1

dDn+1

dθn+1
. (3.94)

The details of the derivation are given in Appendix C and the definitions for d∆γ/dθn+1

and dDn+1/dθn+1 require (3.90). This concludes the numerical setup.

3.4 Adiabatic Conditions

For processes which takes place in very small time zones, such as high velocity impact

or explosion, heat cannot find time to be conducted over the problem domain. Besides

large dilatational changes may occur due to high pressures, [196], which makes use

of total hyperelastic stress formulation more reasonable compared to hypoelasticity.

When the heat flux is omitted, system can be modeled under adiabatic conditions.

Accordingly, since no boundary value problem for temperature is due, the heat equa-

tion can be solved in material level. The only difference is that the local equations

become a bit more rigorous, [133]. Accordingly, the reduced set of two local equations

is increased to three, to become,

rn+1 = rn+1(xn+1) =



√
2
3 {τ0(θn+1) + K ′(αn +

√
2
3 ∆γ )}

−
∥∥s̃ tri

n+1

∥∥+ 2µ ∆γ
(1−Dn+1)

Dn+1 −Dn −∆γ 1
(1−Dn+1)m

(
Y d

n+1

S

)s

θn+1 − θn − 1
ρc∆t χ(ρẇn+1)


; (3.95)

xn+1 =


∆γ

Dn+1

θn+1

 . (3.96)

where the solution of simultaneous equations require a systematic application of the

Newton-Raphson method where

Drn+1 =


∂r1, n+1

∂∆γ

∂r1, n+1

∂Dn+1

∂r1, n+1

∂θn+1
∂r2, n+1

∂∆γ

∂r2, n+1

∂Dn+1

∂r2, n+1

∂θn+1
∂r3, n+1

∂∆γ

∂r3, n+1

∂Dn+1

∂r3, n+1

∂θn+1
.

 (3.97)

It should be noted that, for high velocity processes, such as machining or impact

and penetration problems, strain rate dependence should be involved in the material
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formulation. Accordingly, strain rate hardening is taken into account. As a conse-

quence, the macroscopic material behavior gives account for a competing mechanism

in between strain hardening, strain rate hardening, thermal softening and damage

softening. A damage coupled version of the Johnson-Cook model, [84], which is

an expansion of already utilized hardening/softening function, y(q, θ), to give account

for the thermal and strain rate effects is a widely used alternative for this choice9.

In the current context, to include strain rate effects, previously presented harden-

ing/softening form can be modified to involve strain rate hardening effects as follows,

y(q, θ) = [τ0(θ)− q(α)]
[
1 + Clog

[
α̇

α̇0

]] [
1− (θ − θ0)

(θm − θ0)

]
, (3.98)

where C is a material parameter scaling the strain rate effect. α̇0 denotes the ref-

erence plastic strain rate. θ0 and θm represent reference and melting temperatures,

respectively.

3.5 Application Problems

Preceding algorithmic resolutions are implemented as ABAQUS subroutines where

the implementation details are included in Appendix B. In what follows, a set of

example problems solved with these subroutines are given.

3.5.1 Necking of an Axi-symmetric Bar

Necking of an axi-symmetric bar is investigated in the context of damage-coupled

thermoplastic framework. Contrary to the common idea, in the FE simulations with

a typical free contracting (shear-free grip conditions) tensile test specimen of a certain

gauge length, central refinement of the mesh does not suffice to transform the bifurca-

tion problem, where the necking can emanate at any section, to a limit load problem.

This is due to the fact that, necking emanation requires the break up of the stress

uniformity. For this purpose, two necking triggering methods widely used in the liter-

ature are the geometric imperfection method and the thermal triggering method. The

9 Such an approach is utilized by many researchers, see e.g. [28] and [29], for an application
on a projectile penetration into steel plate problem. Another application for the Johnson-Cook
model may be given as the hard machining simulations, where large strains, high strain rates and
high temperatures are experienced, see e.g. [66] and [67].
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former requires a reduction of the central area, linearly varied over the half-length as

utilized in [181], [161] and [80], among others. In the latter, fixed temperature bound-

ary conditions applied at both ends are utilized as a necking triggering mechanism,

which was first studied by [198], then repeated in [162], [81] and [34], among others.

Fixing the temperature at the boundary nodes precludes further thermal softening at

specimen end regions, and with the softening in internal regions stress uniformity is

broken down10.

Inspired by these two methods, two additional necking triggering methodologies which

relies on the imposed conditions on the damage field over the problem domain, are

proposed. Accordingly, either the elements at the central band are deteriorated by a

slight initial appropriately selected damage value, or the ones at the boundary bands

are assigned to non-increasing and zero damage. The former is analogically similar

to the geometric imperfection method whereas in the latter case, with the absence of

damage evolution, the boundary band elements boil down to plain thermoplastic ones.

Thus it is analogous to the thermal triggering method where the damage softening

at the boundary elements is precluded and due to further damage softening in the

internal elements the stress uniformity is lost.

In the following analyses, four of the methods mentioned above are utilized. Figure

3.1 shows the geometrical setup and boundary conditions where only one quarter

is modeled exploiting symmetry and axi-symmetry. In the geometrical imperfection

method the radius of face B is selected as 98.2% of the radius of face A. A displacement

controlled simulation is performed where the displacement, ∆u, is assigned to face A

as seen in Figure 3.1.b. For the thermal boundary conditions the heat flux is blocked

at the faces. The elements are assumed to have a reference absolute temperature of

θ0 =293 (K). For the thermal triggering method only, as seen in Figure 3.1.c, face A

is assigned with a fixed temperature of 293 (K) equal to the reference temperature.

Figure 3.2 shows 10×20 (10 elements in radial direction and 20 elements in longitu-

10 Restraining the extraction of the specimen end faces (grip conditions with shear) is another way
to overcome the uniform stress distribution.
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Figure 3.1: Geometry and the boundary conditions for the tensile tests.

dinal direction) mesh composed of element CAX4T, which is a 4-node axi-symmetric

thermally coupled quadrangular element with bilinear displacement and temperature

interpolations. For the central damage deterioration method (hereafter damage trig-

gering type 1), an initial nonzero damage field, smoothly varied over a certain length, is

introduced at the central zone. Accordingly, the regions numbered with n = 1, 2, 3, 4, 5

in Figure 3.2.a are deteriorated by an initial damage of, D = 2(1−n) × 10−6. The rest

of the domain has zero initial damage. For the necking triggering method which relies

on the imposed damage conditions at support regions (hereafter damage triggering

type 2), the Gauss points at the elements of zone 6, seen in Figure 3.2.b, are selected

as purely thermoplastic; that is to say, uncoupled to damage.

Figure 3.2: The regions, on 10x20 mesh, on which the damage conditions are imposed,
for regarding necking triggering methods.

103



The material parameters used in the analyses are given in Table 3.1, where for mere

thermoplasticity the damage deterioration effect is cancelled.

Table 3.1: Material parameters for the example problem.

Parameter Symbol Magnitude Unit
Bulk modulus H 164.206 GPa
Shear modulus µ 80.1938 GPa
Flow stress τ0 0.450 GPa
Saturation stress τ∞ 0.715 GPa
Linear hardening K 0.12914 GPa
Hardening exponent δ 16.93 -
Density ρ 7.8×109 Ns2/mm2

Damage multiplier a 0.1 -
Damage exponent s 1.0 -
Coefficient of thermal expansion αt 1×10−5 K−1

Conductivity k 45.0 N/sK
Specific capacity Cv 0.46×109 mm2/s2K
Hardening softening wh 0.002 K−1

Damage softening wd 0.002 K−1

Figure 3.3.a, b, c and d, respectively show the resultant deformed mesh profiles and

the damage contours of the geometric imperfection, thermal triggering, damage trig-

gering type 1 and type 2 methods for ∆u=6 (mm). Starting with, it can be observed

that, proposed necking triggering methods are capable of successfully developing the

neck by means of breaking up the stress uniformity over the problem domain. Central

damage accumulation is due for all of the models. Maximum radial thinning occurs in

the geometric imperfection method with 3.61 (mm) where the minimum occurs in the

damage triggering type 1 with 2.38 (mm). Specimens belonging to thermal triggering

and damage triggering type 2 methods experience a thinning of 3.07 (mm) and 2.07

(mm), respectively. The differences in the radial reductions are accompanied by differ-

ent central damage intensities. As expected, maximum damage accumulation is seen

in the geometric imperfection method. The rest follows the order of the magnitude of

the experienced radial reductions, which changes the effective stress contributions to

damage accumulation considerably.
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Figure 3.3: Contour plots of the damage distribution at ∆u=6, a) Geometric im-
perfection method, b) Thermal triggering method, c) Damage triggering type 1, d)
Damage triggering type 2.

Figure 3.4.a and b show, respectively, the resultant load-displacement and central

temperature increase history curves. Due to considerable initial central area loss in the

geometric imperfection method, regarding load values of the load-displacement curve

follows a considerably lower trend compared to the other cases. Besides, the peak is

reached at an earlier displacement state. The latest peak is reached by the damage

triggering type 1 where the given initial centrally distributed damage is considerably

small. These results are compatible with the maximum and minimum central thinning

of the geometric imperfection and damage triggering type 1 methods, illustrated in

Figure 3.3. These results are in accordance with the radial thinning values given.

The model with the earlier neck emanation experiences further radial thinning and

damage accumulation for a given time at the domain of post peak response. The

slopes of the central temperature history curves experience an increase at the point

where the peak load response is reached. Besides the apparent shift of the bifurcation

points among the curves of different necking triggering methods, the similarity of the
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post peak trends of both the load-displacement diagrams and the temperature history

diagrams is noteworthy.

Figure 3.4: History plots for damage-coupled axi-symmetric necking problem, a) Load-
displacement curves, b) Temperature increment evolution at center.

3.5.2 Localization of a Plane Strain Strip

This part is composed of two case studies based on tension of a plane strain strip.

Initially a validation study is performed which relies on the comparison of the current

thermoplastic material model with the built in model in ABAQUS. Then, the obser-

vation of mesh dependence in the localization of deformation and damage together

with the investigation of the performance of the viscous regularization take place.

For both of the problems, the geometry, displacement and thermal boundary condi-

tions are the same as those in the previous section (Figure 3.1) where in the current

case the quarter is assumed for a plane strain case. Unless otherwise stated, the ma-

terial parameters are the ones given in Table 3.1. Element CPE4T is used, which is

4-node plane strain thermally coupled quadrilateral with bilinear displacement and

temperature interpolations. In the models thermal triggering method is utilized.
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3.5.2.1 Validation of the Thermoplastic Code

Mere heat source is assumed to be the plastic work with the Taylor-Quinney em-

pirical constant as, χ = 0.90. Damage evolution is bypassed for this set of analyses.

In two additional analyses Perzyna type viscous regularization11 is utilized with

η = 500 and η = 1000. A fixed 10×20 mesh is used.

The load-displacement and the central temperature increment history plots are given

in Figure 3.5.a and b respectively. As seen the curves of the ABAQUS built-in model

which utilizes the corotational formulation and current hyperelastic thermoplastic

results are in perfect correlation. The effect of viscosity is also illustrated in the plots.

The abrupt loss in the load carrying capacity together with necking is precluded in

the viscously regularized solutions.

Figure 3.5: History plots for thermoplastic plane strain strip tension problem, a)
Load-displacement curves, b) Temperature increment evolution at center.

In Figure 3.6.a, b, c and d deformed meshes together with temperature contour plots

can be seen. Figure 3.6.a and b belong to ABAQUS built-in model and present

thermoplastic model respectively. Figure 3.6.c and d respectively belong to the results

for thermo-viscoplastic solutions with η = 500 and η = 1000 utilizing the developed

subroutine.

11 In the most general case, instantaneous elasticity and inviscid plasticity bound the expansion of
the damage affected yield surface with 0 ≤ η ≤ ∞.
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Figure 3.6: Contour plots of temperature distribution at ∆u=8.

The same order is valid also for the equivalent plastic strain contour plots given in

Figure 3.7. All results belong to ∆u= 8 (mm). As seen again, ABAQUS built-in

model and the thermoplastic code that was implemented in this study, give perfectly

matching results where the extremes are located at the center, as expected. The figures

show that together with the inclusion of viscosity, highly localized behavior of the rate

independent analyses diffuse; that is, the deformation localized at the elements of the

central band is distributed over a wider band. This also decreases the radius reduction

at the center. In the inviscid analyses, intensities of both the maximum equivalent

plastic strain and the temperature are higher than those of viscous analysis.

3.5.2.2 Mesh Dependency and Viscous Regularization of the Softening

Response

In the second problem, the mesh dependency of the doubly induced softening mecha-

nism due to temperature and damage is tested together with the regularization effect

of viscosity, where η = 500. 10×20, 15×30 and 20×40 meshes, shown in Figure 3.8.a,
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Figure 3.7: Contour plots of equivalent plastic strain distribution at ∆u=8.

b and c, respectively, are used. The heat source is the one presented in the current

thesis which is composed of plastic and damage dissipation contributions.

Figure 3.8: FE meshes, a) 10x20, b) 15x30 and c) 20x40.

Figure 3.9.a and b show load-displacement curves for inviscid and viscous solutions,
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respectively. In the non-regularized behavior the branching among solutions start just

after the peak whereas in the viscously regularized softening behavior, the branching

is delayed considerably until which the mesh dependence is postponed and completely

healed. Thus, one may conclude that, the viscous regularization cannot cure the

pathological mesh dependence for the whole range of deformation, which means it

only works partially. This is parallel to the observations in the literature on viscous

regularization, [195]. In the rate independent solution, together with the refined mesh

the analysis is terminated at a lower load level at smaller deformations. Besides, the

post peak response has a sharper decrease compared to the rate dependent solution.

Figure 3.9: Load-displacement curves for damage-coupled plane strain strip tension
problem, a) Rate independent solution, b) Viscous solution.

Figure 3.10 and 3.11 show damage contour plots, respectively, for inviscid and viscous

solutions at ∆u= 4 (mm) for different mesh refinement levels. For the non-regularized

solution given in Figure 3.10, together with mesh refinement, both the intensity and

the pattern of the damage becomes strongly mesh dependent, where a localized defor-

mation, in the form of a shear band having an orientation of 45◦ with respect to the

vertical axis, is observed. The width of this band is primarily a function of mesh size.
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Figure 3.10: Contour plots of damage distribution at ∆u=4, Rate independent solu-
tion.

Together with the introduction of viscosity, this localized deformation problem is

transformed into a diffuse necking problem as seen in Figure 3.11. Accordingly, both

the distribution and the intensities of the damage field and the deformation pattern at

∆u= 4 (mm) are in perfect correlation, which is confirmed by the load-displacement

plots given in Figure 3.9.

Figure 3.11: Contour plots of damage distribution at ∆u=4, Viscous solution.
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3.6 Conclusion

In this chapter, an extension of [162] and its follow up works [9], [10], to the damage-

coupled thermo-mechanical response is proposed. It is shown that, once the extensive

property of the entropy is exploited, together with a temperature dependent damage

dissipation potential, its decomposition into elastic, plastic and damage portions is

possible, which depend on their regarding structural changes. Besides it is shown

that, in addition to those mutual interactions of the mechanical and thermal fields

presented in [162], there exists damage induced effects on thermal and other me-

chanical fields besides their effects on damage fields. Adiabatic formulations are also

presented. The framework utilizes a principal axes formulation where the stresses are

derived utilizing a hyperelastic potential quadratic elastic Hencky strains. This sup-

plies handiness in derivations and implementation of the framework. The resulting

thermo-mechanical problem is solved for a staggered approach with the isothermal

split where the derived forms are implemented as ABAQUS UMAT and UMATH sub-

routines and utilized in a set of example problems. The problems reveal that, for a

quasi-static analysis, doubly softening mechanism is prone to the problem of spurious

mesh dependence due to the loss of ellipticity of the IBVP. The use of Perzyna type

viscous regularizations however is efficient to an extent for the purpose of localization

limitation. Two necking triggering methods in addition to the proposed ones in the

literature are also added to the example problems, which are analogically linked to

the geometrical imperfection method and thermal boundary fix methods which are

already presented in the literature.
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CHAPTER 4

MODELING CHEVRON CRACKS

4.1 Introduction

In metal forming processes, the aim is not to exhaust the formability reserve of the

material. Once the reserve is exhausted, the physical properties are degraded or even

cracks occur resulting in a defected product. The forming design aims defining ap-

propriate kinematics, and predicting forces and stresses which do not induce excessive

damage accumulation. This requires the knowledge on micro-mechanism of the ma-

terial weakening.

In the present chapter, numerical damage analysis including discontinuous crack for-

mation in the process of direct axi-symmetric extrusion with explicit FEM, is aimed.

Besides, devising FEM as an economical and practical tool for manufacturing safe

products without defects, by means of systematic construction of chevron free pro-

duction curves or conduction of counter pressure, is presented1.

By definition, direct axi-symmetric extrusion, classified as a massive metal forming

process, is an area reduction method where a round billet is forced by a ram through

a conical die. The process geometry is given in Figure 4.1. Two deterioration zones,

as possible crack emanation regions, are typical for an extrusion process, which are

surface and center. The cracks occurred accordingly are named as surface cracks

(also named as snake skin, or fir-tree) or central bursts (also named as chevrons),

respectively. The driving parameters affecting the mechanism of failure through re-

distribution of the mechanical and thermal fields are semi-cone die angle, i.e. α, area

1 A part of the analysis results of this section can also be found in [173].
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reduction, i.e. 1 − [d1/d0]
2, lubrication (friction), temperature, and mechanical and

micro-structural quality of the raw material2. Resultant surface damage accumula-

tions are due to surface tearing/shearing in the die exit zones where unloading strains

(elastic) form tensile residual pressures. Central damage accumulations are due to

positive central hydrostatic pressures in die reduction zones accompanied by plastic

flow. This internal cracks result in a drastic reduction in the service capacity of the

product. Investigation of these hidden cracks, to avoid the faulty product transfer

to market, requires, nondestructive ultrasonic testing on every one of products, [201],

which is neither practical nor cheap. Thus, proper investigation is required on the

governing mechanisms of damage accumulation in extrusion.

Figure 4.1: Geometry of the forward extrusion process.

The defect formations in extrusion processes have been of interest since early ex-

perimental investigations of [82]. Analytical works of [13] materialized upper bound

theorem to separate safe and unsafe regions on the plane of semi-cone die angle and

area reduction ratio. [200] expanded this work to give account for hardening. With-

out specific reference to the material, [175] created a similar diagram for spherical dies

2 Like grain size and morphology, non-metallic inclusion content, [89], see e.g. [101] for inclusion
of particulate reinforcement.
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making use of numerical analysis3. According to these studies, the favorable central

bursting conditions are the ones with low area reductions and high semi-cone angles,

see e.g. [89], [6], [201], among others. Usually, increasing area reduction together

with friction has an effect of damage transfer from interior to billet face, motivating

superficially dominated deterioration and surface cracks, [101].

For a practising engineer, such forming limit diagrams are quite useful in avoiding

defected products. In this context, the macro crack emanation and its propagation

may seem to be of second interest, compared to investigating damage accumulation

mechanisms to define barriers between safe and unsafe, [89]. However, the prediction

and control of cracks gains importance expanding the application area to include

deteriorative processes such as machining, orthogonal cutting or blanking, [36]. In

the literature, considerable labor is devised for numerical prediction of damage in

forward extrusion. Table 4.1 summarizes a number of up to date chronologically

ordered numerical damage analysis of extrusion and drawing4 processes. In Table 4.1,

the listed references are evaluated according to the investigated process (extrusion or

drawing, abbreviated as ext. or drw., respectively), damage model utilized, inclusion

of the thermal and friction effects in the analysis, and finally macro crack formation

and the method of crack modeling in use. The deletion procedures utilized are element

deletion (Elem. Del.), element degradation (Elem. Deg.) and node separation (Node

Sep.). The methods have relative advantages and disadvantages.

In presenting the periodic central bursts, the present work utilizes a Lemaitre-variant

local isotropic damage strongly coupled to a physically sound finite strain hyperelastic-

plastic framework through a single von Mises yield potential. A principal axes for-

mulation, which provides convenience in active-passive damage evolutionary forms,

besides in formulation of finite plasticity (the detailed evaluation of the principal

stress space formulation for finite plasticity is elsewhere, [80]), is constructed in an

Euclidean setting. It is shown that the active-passive evolutionary conditions con-

trolled by the crack closure parameter have an important effect on the damage ac-

3 See also e.g. [101] in which the [201] diagram is reproduced for reinforced metal matrix composites
where strain hardening and friction is neglected, or the envelope curves plotted in [89] utilizing a FM
model which is Cockroft Latham model.

4 Drawing is very similar to extrusion where the driving force is applied to the front tip of the
billet creating a tension dominated zone unlike extrusion where the force is applied from the rear tip
to result in mainly a compression dominated zone, this gives rise to higher possibility of central crack
formation increasing the extent of material regions subjected to positive hydrostatic stresses.
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cumulation zones. In the case of complete crack closure, the internal character is

amplified rather than the superficial one.

Both explicit and implicit FE solution schemes are conducted, where crack propagation

and contact conditions are efficiently resolved. The discrete crack formations are

carried out applying element deletion procedure5, where the elements whose Gauss

points have reached the critical damage threshold are eliminated from the analysis, for

the explicit procedure and ramped stiffness degradation, where the elastic properties

of the Gauss points which have reached the critical damage threshold are degraded,

for the implicit procedure.

The outline of the rest of this chapter is as follows. Utilizing identical theoretical steps

for mathematical material model development as in the case for isothermal theory,

numerical treatment of the algorithmic forms in the explicit finite element solution

environment is given in § 4.2. A detailed analysis of the discrete chevron predictions

under the effect of certain process and material parameters is given in § 4.3.

5 The element deletion procedure is served as a built in procedure in many widely used commercial
packages, see e.g., ABAQUS/Explicit, MSC.Marc and Deform2D, among others.
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4.2 Explicit FE Formulation

The generalized momentum balance in an Eulerian description, so-called the strong

form, reads,

div σ + ρζ = ργ, (4.1)

where σ denotes the Cauchy stress tensor defined at current configuration. ρ is the

density, whereas ζ and γ are the body forces and accelerations respectively. Mul-

tiplying both sides by a sufficiently smooth virtual velocity field, η, integrating at

the current configuration and applying the divergence theorem, one carries out the

following weak statement of the (global) equilibrium of the body,

g(ϕ,η) =
∫

ϕ(B)
σ : gradη dv −

∫
ϕ(B)

ρζ • η dv −
∫

ϕ(∂Bσ)
t̄ • η da

+
∫

ϕ(B)
ρ γ • η dv = 0,

(4.2)

in which η satisfies the condition, η = 0, at ϕ(∂Bu), where ϕ(∂Bu) ⊂ ϕ(∂B)

denotes the part of the boundary, ϕ(∂B), on which the Dirichlet boundary con-

ditions are specified with the prescribed displacements, ū. Neumann type bound-

ary conditions acts on ϕ(∂Bσ) ⊂ ϕ(∂B) with the tractions, t̄ = σ • n, where

n denotes the spatial normal vector. The boundary parts satisfy the conditions,

ϕ(∂Bu)
⋃

ϕ(∂Bσ) = ϕ(∂B) and ϕ(∂Bu)
⋂

ϕ(∂Bσ) = Ø. In a compact setting,

(4.2) stands for the principle of virtual power,

P = δPint − δPext + δPkin = 0, (4.3)

where δP, δPint, δPext and δPkin respectively denote virtual total, virtual internal,

virtual external and virtual kinetic (inertial) power, with

δPint =
∫

ϕ(B)
σ : [gradη]sym dv, (4.4)

δPext =
∫

ϕ(B)
ρζ • η dv +

∫
ϕ(∂Bσ)

t̄ • η da, (4.5)

δPkin =
∫

ϕ(B)
ρ γ • η dv. (4.6)

with σ : [gradη]skw = 0, due to symmetry of σ. Application of the finite element

discretization, with the subdivision of the domain, i.e. B, into non-overlapping sub-

domains (elements), i.e. Be, where B = A
nel

e=1
Be, and representing the vector of
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approximation functions with Ne, and discrete gradient operator (strain displacement

matrix) with Be, one obtains the following semi-discrete momentum equation6,

Fint − Fext + M • ü = 0, (4.7)

in which Fint, Fext and M denote the internal loads, externally applied loads and

the mass matrix respectively. Explicit definitions for Fint and Fext can be given as

follows,

Fint =
nel

A
e=1

[∫
ϕ(Be)

Be, t • σedve

]
, (4.8)

Fext =
nel

A
e=1

[∫
ϕ(Be)

Ne, t • ρζ dve +
∫

ϕ(∂Be
σ)

Ne, t • t̄ dae

]
. (4.9)

(4.10)

Finally M reads,

M =
nel

A
e=1

[∫
ϕ(Be)

ρNe, t •Nedve

]
. (4.11)

Solution of the resultant problem is possible through implicit or explicit procedures.

Making use of an explicit FE procedure, serves advantages for the problems involv-

ing severe discontinuities, where an implicit solution scheme may fail to converge.

Besides, the resolution of the complicated contact conditions are more efficiently han-

dled compared to implicit procedures. The memory saving behavior for very large

problems and amenability to parallelization are other apparent advantages of the ex-

plicit codes. Moreover, since the momentum iterations are irrelevant, the procedure

does not require computation of the material tangent matrix. This is advantageous

for especially the mathematically complicated material models, where a closed form

expression for the material consistent moduli is not available7. Although there exists

a minimum for the time step which preserves conditional stability, [77], in the context

of slow (quasi-static) processes, where the inertia effects can be discarded, increasing

the density (mass scaling), or the loading rate, artificially, may help expanding this

6 A denotes the assembly operator, [78].
7 It should be noted that, once closed form solution is not available, a material independent

numerical means of computation of the algorithmic tangent moduli, which depends on the sensitivity
analysis of the algorithmic stress terms with respect to the change in the deformation measures is
possible, see e.g. [120] or [138], among others. The performance of such approximations depends on
the selected step size; such that, convergence qualities close to the quadratic one, handled with the
analytically computed tangent moduli, may be supplied.

119



limitation, which accelerates the process solution. For explicit FE applications in bulk

metal forming, reader may refer to [151] and [150].

For the temporal discretization, a notation where, [F]n−1/2, [F]n, [F]n+1/2 and

[F]n+1 give the definitions of any variable denoted by [F], at times tn−1/2, tn, tn+1/2

and tn+1, respectively, is followed. Using an explicit time integration scheme, the

kinematics can be integrated with central differences as

un+1 = u̇n + ∆tn+1 u̇n+1/2, (4.12)

where

u̇n+1/2 = u̇n−1/2 +
∆tn+1 + ∆tn

2
ün, (4.13)

ün = M−1 • (Fint
n − Fext

n ), (4.14)

with u, u̇ and ü representing displacement, velocity and acceleration vectors, respec-

tively. The algorithmic setting requires the determination of the current state at time

tn+1, from a presumably known state at time tn. As a first step, in a strain driven

procedure, un+1, i.e. the deformation at ∆t = tn+1 − tn, is integrated using (4.12),

where the local integration algorithms follow the ones presented in Chapter 2, thus

are not involved here.

4.3 Predicting Chevron Cracks

The given framework in Chapter 2 is implemented as a user defined material subrou-

tine, VUMAT, for ABAQUS/Explicit, for return mapping in the company of reduced

equation couple, together with the simultaneous solution scheme listed in Table 2.6.

The code is materialized in the simulation of a set of damage accumulation stud-

ies in axi-symmetric forward extrusion, for a single pass reduction of the billet. A

large strain explicit solution procedure is followed. CAX4R elements, which stand for

4-node bilinear axi-symmetric quadrilateral elements with reduced integrations, are

utilized together with a combined stiffness-viscous hourglass control (where the weight

factor is selected as 0.5). The friction at the interfaces are modeled with Coulomb

friction with µf denoting the coefficient of friction. A double precision computation

is sought, with second order accuracy and distortion control. The conducted simula-

tions aim to investigate the effects of certain phenomena, such as friction and crack
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closure parameter, on damage accumulation zones, and frequency and morphology of

the obtained crack.

4.3.1 Single Pass Reduction of 100Cr6

4.3.1.1 Explicit FE approach

The problem geometry and the boundary conditions are given in Figure 4.2, where

a mesh size of 0.2 mm is utilized in the simulations. A velocity controlled loading is

applied.

Figure 4.2: Problem dimensions, mesh and the boundary conditions of the single pass
axi-symmetric extrusion problem, mesh size=0.2 mm.

Bearing steel 100Cr6 is selected as a material, for which the experimental chevron

outputs are available. For the material plasticity parameters, the outcomes of the

standard upsetting experiments are utilized, as given in Table 4.2. Neglecting dam-

age accumulation with void nucleation as a consequence of shear decohesion under
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Table 4.2: Material parameters for 100Cr6.

Parameter Symbol Magnitude Unit
Bulk modulus H 175.0 GPa
Shear modulus µ 80.7692 GPa
Linear hardening K 0.1151 GPa
Saturation stress τ∞ 0.9879 GPa
Flow stress τ0 0.752 GPa
Saturation parameter δ 14.3 -
Damage parameter a 0.3 -

compressive stresses with the presumption of perfect frictionless upsetting conditions,

damage is assumed not to affect the parameter identification for plasticity, with the

aid of complete crack closure effect. Coming to damage, for the simplest possible dam-

age rate form, in the crack propagation problems, the single parameter, a, is selected

as a = 0.3 as also given in Table 4.2. Damage coupled and uncoupled flow curves

are given in Figure 4.3 (left) for the selected material parameters for the simple plane

strain loading of a unit square shown on the figure, utilizing a single finite element

having a single Gauss point. Figure 4.3 (right) shows the concave-up nature of the

damage-equivalent plastic strain curve for the whole range of damage accumulation.

Admittedly, at this stage of preliminary studies, in the selection of the damage pa-

rameter a, the obtained cracks patterns are utilized assuming complete crack closure

effect with h = 0, where the cracks are supplied with removal of the elements with

integration points, satisfying D ≥ Dcr. Without detailed reference to the underlying

micro-structure, Dcr = 0.27 is selected, taking into account the listed critical damage

values of certain materials, [99]. Proper selection of h, a and Dcr requires further

experimental studies. Besides, more complicated damage evolutionary forms, which

are nonlinear in Y , may be selected, which can be adapted into the listed framework

easily.
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Figure 4.3: (left) Flow curve for 100Cr6, (right) Damage-equivalent plastic strain
curve.

Figures 4.4 and 4.5 belong to the frictionless extrusion simulations, where the critical

damage value is relaxed to Dcr = 1.0, which is never actually reached, not to create

cracks. Neglecting friction at this stage, aims, isolating the system from additional

effects of external agencies in addition to precluding any additional punch force de-

mands. Accordingly, selecting the crack closure parameter, h, as, h = 0, the damage

deriving stress mechanisms are investigated. Figure 4.4 shows the positive portions of

the principal stresses which contribute to the evolution of damage.

Figure 4.4: From left to right, tensile portions of max, mid and min principal and
hydrostatic stresses. An intermediate step of simulations without crack formation,
mesh size=0.2 mm., µf=0.
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The central damage accumulation given in Figure 4.5 reveals that, although at the

die exit surface involves considerable amount of tensile residual stresses, damage is

centrally located where equivalent plastic strain rate at the reduction zone meets with

positive tensile principal stress components. In the current geometry, the maximum

principal stress seems to be the mere damage source. The hydrostatic stress field plots

also show the central location of the tensile triaxial stress field.

Figure 4.5: Damage and equivalent plastic strain accumulation. Final step of simula-
tions without crack formation, mesh size=0.2 mm., µf=0.

The given damage accumulation is utilized to produce cracks by simply reducing Dcr,

from 1.0 to 0.27, and applying element deletion for the elements where the damage

accumulation on the Gauss point comes out to be higher than the threshold. Removal

of a finite element from the existing mesh affects the mass matrix and the internal force

vector with elimination of the regarding Gauss point from the computational stack.

Accordingly, the mass and the internal force contributions of the deleted element

are not assembled8. The obtained cracks, together with damage and equivalent strain

fields are listed in Figures 4.6 and 4.7 throughout the process history. As seen in Figure

4.6, after the occurrence of any free surface by production of a crack, the accumulation

of the central damage to produce another crack requires a certain period. This time

to accumulation creates the periodicity of the discrete crack formation.

8 Adaptive element sizing gains importance at this point for a smooth solution, where the desta-
bilizing effects of the element removable are scaled by the element size.
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Figure 4.6: Damage accumulation that generate cracks throughout the process history,
mesh size=0.2 mm., µf=0.

Figure 4.7 shows that, the distribution of the equivalent plastic strains are affected by

the central bursts. The crack tip experiences a considerable plastic strain concentra-

tion.

Figure 4.7: Equivalent plastic strain accumulation throughout the process history,
mesh size=0.2 mm., µf=0.
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A comparison between the simulations with crack formation and the ones without

crack formation is quite intuitive. Figure 4.8 shows the punch displacement versus

punch force demand curves for crack producing and non-producing simulations. Com-

parison of the plotted curve trends reveals that, the frequency of the oscillations of the

force-displacement curve of the crack involving simulation is in accordance with the

crack periodicity. The emanation of the force reduction after every oscillatory peak is

coincident with the discrete central macro-crack nucleation. The force-displacement

curve of the crack-free simulation, on the other hand, follows a constant trend at the

steady state, which is typical for a frictionless axi-symmetric extrusion test.

Figure 4.8: Punch force as a function of (normalized) punch displacement, mesh
size=0.2 mm, µf=0.

The element deletion procedure is criticized for its violation of mass conservation.

Figure 4.9, which shows the deleted elements for the frictionless analysis mapped on

the undeformed mesh, is used to clarify the extent of this violation. This is to show

that, in the meridian plane the large crack gap is not completely due to the deleted

elements, but it is primarily due to the separation (displacement, falling apart) of

the produced free surfaces, under the redistribution of stress fields. Consequently,

together with the efficiency served by element deletion in crack propagation problems,

one concludes that, this violation is justifiable. Besides, the deleted material percent
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can be calibrated through proper damage controlled adaptive remeshing schemes,

which allocate the smallest possible element size to the maximum damage area, see

e.g. [27] and [155].

Figure 4.9: Extent of deleted elements, shown on the undeformed mesh, mesh size=0.2
mm, µf=0.

Figure 4.10 shows the periodic character of the radial displacement response of the

top surface, for the frictionless simulation. This phenomenon stands for the bamboo

lines observed on the surface of the extruded specimens which involve internal cracks.

For crack-free extrudates, such radial surface oscillations are irrelevant.

The effect of the crack closure parameter, h, is investigated utilizing 0.4 mm. mesh,

and frictionless conditions. Simulations are conducted for h = 0.0, h = 0.1, h = 0.2,

h = 1.0 where the resultant radial extrudate damage accumulations are plotted on

a logarithmic scale. To observe the full extent of the closure parameter, the damage

rate multiplier a is selected as a = 0.003, where damage growth is significantly de-

celerated. The results, given in Figure 4.10, show the major effect of crack closure

parameter on damage accumulation zones. For complete crack closure, i.e. h = 0,

central accumulation governs whereas making use of standard Lemaitre form, i.e.

h = 1.0, surface damage dominates. For h = 0.10 the central and surfacial damage

accumulations are nearly equal9. In obtaining the cracks carried out in the current

9 The works of [72] has the applications of standard Lemaitre model where significant dam-
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research, a complete crack closure is assumed. Moreover, for h = 0.20, which is the

proposed crack closure parameter for most of the metals, [98], surfacial rather than

central cracks can be carried out as shown in the plot. Thus, proper determination of

the crack closure parameter as a material constant requires significant research.

Figure 4.10: Radial displacement at the billet surface, mesh size=0.2 mm, µf=0.

Figure 4.11: Effect of the crack closure parameter on extrudate radial damage distri-
bution (steady state), mesh size=0.4 mm, µf=0.

age accumulation is observed for even not very steep die angles. The main reason, as reveals this
observation, is dematerialized crack closure effect.
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The effect of friction at the die-billet interface is also investigated. For this purpose, a

set of simulations for a set of friction coefficients, such as µf = 0, µf = 0.02, µf = 0.04,

µf = 0.06 and µf = 0.08, are utilized. The resultant crack patterns are given in Figure

4.12. Accordingly, it can be concluded that, wider and more frequent central cracks

are due, with the reduction of friction. These results are in complete accordance with

those listed in [155].

Figure 4.12: Effect of friction on discrete crack morphologies and frequencies, mesh
size=0.2 mm.

Figure 4.13 shows that, the periodicity of the discrete cracks, for µf = 0.04, are

compatible with the experimental observations. This represents the predictive perfor-

mance of the selected damage model.

Figure 4.13: Comparison of the handled discrete crack periodicity, mesh size=0.2 mm,
µf=0.04.
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The effect of friction on central and surfacial damage formations can more clearly be

seen in Figures 4.14, where observations for µf = 0 and µf = 0.08 are compared.

Also, for these simulations, the variations of the observed damage distributions follow

a similar frequency pattern with the observed cracks. Besides, with increased friction,

an anticipated increase in the surface damage formation occurs.

Figure 4.14: Effect of friction on damage distributions, a) center, b) surface, mesh
size=0.2 mm.

In order to observe the effect of isotropic hardening regime on damage accumulation

profile in extrusion, a set of simulations are run for a mere saturation type hardening

plasticity model with different exponents. The yield stress is assumed to be 750 MPa

whereas the saturation stress is taken as 950 MPa. Selected exponents define how fast

the hardening curve levels off to the saturation stress. Related hardening curves are

shown in Figure 4.15.
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Figure 4.15: Hardening curves for the selected saturation paramers.

Resulting steady state radial damage and equivalent plastic strain distributions are

given in Figure 4.16.a and b respectively, for frictionless simulations. It is observed

that, although the differences among radial equivalent plastic strain distributions are

hardly observed, there occurs a marked disparity among radial damage distributions.

Accordingly, central damage accumulation is increased for plastic hardening regimes

with rapid saturation. This is due to the stress field distributions over the problem

domain under the effect of further resistance to flow together with a rapidly governed

plastic hardening. The experiences of the author show that, once the material has a

mild hardening regime, the surface flow governs whereas a nonuniform equivalent plas-

tic strain distribution occurs for steady state sections. For steeper hardening regimes,

a more uniform flow distribution may be carried out with enhanced central flow. The

consequence of this observation shows itself in occurrence of various extrudate tip

shapes which can take a form in between concave or convex morphologies.

4.3.1.2 Implicit FE approach

Current section involves an attempt for the resolution of the presented problem in

the preceding section, using the implicit finite element setup proposed in Chapter

2. In accordance with the previous section, the problem is first solved for no crack

formation, and the results of the implicit scheme are utilized in comparison studies
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Figure 4.16: Steady state radial distributions of, a) Damage, b) Equivalent plastic
strain, µf=0.

with those of explicit scheme. Admitting the apparent difference in element tech-

nologies, utilizing different numerical integration order for ABAQUS/Standard and

ABAQUS/Explicit10, to the author’s knowledge, this is the first implicit/explicit com-

parison study for damage accumulation and crack formation in extrusion processes.

In the second part, cracks are carried out by assignment of a critical damage limit,

together with the so-called element degradation method11. The outcomes are also

compared with those carried out with the explicit scheme results which are realized

using the element deletion technique using ABAQUS/Explicit. In order to appropri-

ately12 supply stiffness and load carrying capacity degradation, a ramped degradation

of the elastic constants is applied, where at every iteration in a load increment, which

is sufficiently small, the elasticity modulus of a failed Gauss point is reduced to 50%

of the previous step. At the end, an elastic Gauss point persists where the elastic

stiffness is about 1e-3 of its initial value, which is a sufficiently close approximation.

10 In the analyses, for ABAQUS/Standard, CAX4 elements are employed which are 4-node bi-
linear axi-symmetric quadrilaterals with full integration, whereas for ABAQUS/Explicit CAX4R
elements which stand for reduced integration 4-node bilinear axi-symmetric quadrangulars with a
combined stiffness-viscous hourglass control are utilized. Element type CAX4 is not available in
ABAQUS/Explicit, for ABAQUS Version 6.5-1.

11 For variants of the current utilization of the element degradation method, see e.g. [112] and
[113].

12 A built in element deletion procedure together with the implicit solution scheme is not supported.
Thus the deletion requires multiple restart analysis together with MODEL CHANGE and REMOVE
ELEMENT commands. Although by scripting this can be achieved without user intervention, element
deletion does not guarantee convergence. For certain cases, zero pivoting may occur as a result of
under-constrained degrees of freedom. Stiffness degradation is relatively fast compared to element
deletion due to no necessity for termination of the analysis upon element failure. However abrupt
stiffness and stress drop may introduce ill-conditioning to the system.
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Since the degrees of freedoms are still supplied with a small but nonzero stiffness, zero

pivoting due to under-constraints does not occur.

Frictionless interface conditions are assumed. The problem geometry and the bound-

ary conditions are the ones given in the previous section. Mesh size of 0.30 mm is

utilized in both of the ABAQUS/Standard and ABAQUS/Explicit simulations. A

velocity controlled loading is applied. The crack closure parameter is selected as,

h = 0, where only the positive (tensile) portions of the principal stresses are assumed

to contribute to damage evolution.

Figure 4.17.a and b show the damage distributions for implicit and explicit analyses

for crack free simulations, respectively. It is notable that, the contours are in perfect

correlation where the halves appear as the mirror images of each other. This corre-

lation is a clue for the correction of the implemented codes in implicit and explicit

simulations.

Figure 4.17: Damage contour plots, a) ABAQUS/Standard + UMAT, b)
ABAQUS/Explicit + VUMAT.

Figure 4.18.a and b, respectively show the radial distributions of the equivalent plastic

strain and damage at a certain section which has reached the steady state, for implicit

and explicit analyses. As seen, the outcomes are in a good correlation, where the slight

differences seem to emerge due to the different element technologies and global solution

scheme differences of CAX4 of ABAQUS/Standard and CAX4R of ABAQUS/Explicit.
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Figure 4.18: Steady state radial distributions of, a) Equivalent plastic strains, b)
Damage.

The force demand curves for implicit and explicit analyses are given in Figure 4.19.

Due to the boundary condition discontinuity, the curved die surface cannot be traced

by the quadrilateral elements exactly. This is the reason for the element size dependent

oscillatory load response in the implicit solution, [197]. Due to the sensitivity of the

explicit analysis for such discontinuities, although the trend is similar, the kinks in

the diagram are larger. In both of the analyses, the driving load saturates to a steady

state which is expected for a friction-free extrusion.

Figure 4.19: Punch force-normalized process time curves for implicit and explicit
analyses without crack formation.
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The given damage accumulation is utilized to produce cracks by simply applying a

critical damage threshold, Dcr = 0.27, and applying element degradation for implicit

analysis and element deletion for explicit analysis to the Gauss points which violate

the critical limit. Figure 4.20 shows the mechanism of crack occurrence, where the left

halves demonstrate the positive portions of the hydrostatic stresses over the deformed

mesh and the right halves show the accumulated damage contours. The discontinuous

accumulation of the damage is in accordance with the crack periodicity.

Figure 4.20: Distributions of positive portions of the hydrostatic pressures (left halves)
and accumulated damage (right halves) throughout the process history.

The respective chevron patterns of implicit and explicit schemes are given in Figure

4.21.a and b. For a detailed comparison, Figure 4.21.c and d are included which

correspond to the crack patterns for undeformed and deformed meshes, in which left

halves belong to the implicit and right halves to the explicit solution schemes. As

seen in Figure 4.21.a, the periodicity and the morphology of the chevron cracks are

well-captured. This proves the capability of the ramped element stiffness degradation

method in crack propagation problems. The comparison between results belonging

to implicit and explicit schemes shows that, although the emanation of the very first
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cracks coincides in both solution schemes, there occurs an accumulated gap in between

every successive chevron. This is a result of the difference in the crack tip propagation

of the implicit and explicit schemes, where, in the implicit scheme, in which the

stiffness degradation is utilized, the extent of the crack tip propagation is larger in both

radial and longitudinal direction, which is due to the difference in element technologies

besides the macro-crack simulation techniques. Accordingly, in the implicit scheme,

each crack is delayed in an accumulated manner, due to the fact that, the extension

of free surface by means of further propagated crack tip postpones central damage

accumulation. It is also notable that, with the element deterioration method, the

extent of deteriorated elements has a larger proportion as compared to the deleted

elements of explicit schemes, which makes use of element deletion. This may be one

of the reasons for the further crack tip extension in the implicit scheme.

Figure 4.21: Crack morphologies, a) ABAQUS/Standard + UMAT, b)
ABAQUS/Explicit + VUMAT, c) Mirror comparison of implicit (left) and ex-
plicit (right) analyses results on deformed mesh, d) Mirror comparison of implicit
(left) and explicit (right) analyses results on undeformed mesh.

Figure 4.22 shows the punch load-normalized process time diagrams for implicit solu-

tions. This figure clearly demonstrates the characteristic differences between the force

demand curves of chevron-free and chevron-involving extrusions. Once the sizes of the
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central cracks are considerable, there occurs apparent oscillations whose periodicities

match with those of discrete cracks.

A final note is on the comparison of the force demand, and radial deformation of the

billet surface curves of implicit and explicit schemes. The oscillatory behavior is also

observed in the radial deformation of the billet surface, which is in correlation with

the experimental facts. Besides, the observations listed in the previous paragraphs

agree well with the force demand curves given in Figure 4.23.a and b, where the

propagating shifts between the oscillations of both the force demand curves and the

radial deformation of the billet surface curves of implicit and explicit solutions are

respectively given. For a better match between the crack patterns carried out, the

methods of crack simulation should be refined. Besides, certain enhancements such as

adaptive mesh refinement can be devised.

Figure 4.22: Punch force-normalized process time curves for implicit analyses with
and without crack formation.

4.3.2 Double Pass Reduction of Cf53

This section is devoted to the simulation of double pass reduction of Cf53, where the

material parameters are listed in Table 4.3.
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Figure 4.23: Oscillations in a) Punch force-normalized process time curves, b) Radial
deformation of the billet surface curves, of implicit and explicit analyses.

Table 4.3: Material parameters for Cf53.

Parameter Symbol Magnitude Unit
Bulk modulus H 175.0 GPa
Shear modulus µ 80.7692 GPa
Linear hardening K 0.0223 GPa
Saturation stress τ∞ 0.9354 GPa
Flow stress τ0 0.6259 GPa
Saturation parameter δ 10.1 -
Damage parameter a 0.7 -

Figure 4.24 gives the geometrical setting of the problem. In the analysis CAX4R

elements are utilized where the details are the ones given for the single pass simulations

with explicit framework.

Figure 4.24: Problem dimensions and the mesh of the double pass axi-symmetric
extrusion problem, mesh size=0.4 mm.
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The simulations show that, in both of the passes, for the damage model which merely

gives account for damage occurrence driven by tensile principle stress states, central

damage accumulation is due. The crack threshold is not satisfied at the first pass.

However in the second pass, with further damage accumulation, the cracks can be

carried out. Figure 4.25 shows how the mechanism of damage accumulation is realized.

Figure 4.25: Damage accumulation and crack propagation at different stages of double
reduction of Cf53.

Equivalent plastic strain distributions at various stages of the simulation are given in

Figure 4.26. Together with crack occurrence, significant plastic strain concentration

occurs at the crack tip, as anticipated and observed from the previously given single

extrusion of 100Cr6 simulations with cracks.

The punch force demand curve is given in Figure 4.27, where the central crack occur-

rence instances are also marked. It is seen that although the simulation is conducted

making use of an explicit scheme, the scatters of the graphs are in tolerable ranges.

Together with the comparison of the internal strain energy and kinetic energy curves,
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Figure 4.26: Equivalent plastic strain accumulation and crack propagation at different
stages.

it is seen that the inertia effects are sufficiently decreased, thus the quasi-static analysis

is safely and physically realistically realized.

Figure 4.27: Punch force as a function of normalized process time.
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Figure 4.28 shows that, crack periodicities carried out for a mesh size of 0.4 mm,

Dcr=0.57, h=0.0 and µf=0.03 are in well accordance with the experimental outputs.

Figure 4.28: Comparison of the experimental and numerical cracks.

4.4 Avoiding Chevron Cracks

4.4.1 Numerical Chevron-Free Production Curves

Through a set of simulations for different semi-cone die angles and area reduction ra-

tios, an Avitzur-like chevron-free production curve can be produced. Accordingly, by

means of simulations materializing CDM, admissible die angle-area reduction combi-

nations can be identified without need for repeated experiments. As stated previously,

such diagrams are quite valuable for a practising engineer by accelerating the process

geometry decision step considerably. As far as the production costs are concerned, a

numerical method supplies a much more economical solution.

Figure 4.29.a shows iso-curves for maximum steady state central damage values that

occur in frictionless extrusion of 100Cr6, which is carried out by scanning a pre-

defined grid at the die angle-area reduction plane for certain combinations through

simulations. An explicit FE procedure is utilized in the simulations. It is seen that,
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most desirable conditions with smallest central damage accumulation occur for small

die angles and high area reduction ratios. Critical damage threshold is satisfied for

cases where high reduction ratios meet with high die angles. Figure 4.29.b shows the

scanned grid points on the plane where safe (without crack formation) and unsafe

(with crack formation) simulations are also marked.

Figure 4.29: a) Iso-damage contours for maximum central damage accumulation at
steady-state, b) Simulations with and without cracks, µf=0.

4.4.2 Avoiding Chevrons by Means of Counter Pressure

In this section it is demonstrated that, application of counter pressure introduces a

marked decrease in the central damage accumulation, which in turn increases the

formability of the material through keeping the central tensile triaxiality in tolerable

limits. It is also shown that, for a crack involving process, through systematic increase

of the counter pressure, the crack sizes diminish; where at a certain level of counter

pressure chevron cracks can be completely avoided. Since, in avoiding cracks, the main

motivation is to obtain a hydrostatic compression at the forming zone, for fixed die

geometry and process parameters one could supply additional central compression by

means of employing counter pressure at the extruded nose part of the workpiece. The
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experimental studies of [191], [192], [193] show that, application of counter pressure

promotes material formability in extrusion by which it becomes possible to extrude

even relatively brittle materials, like MMC of aluminum alloy matrix with SiC par-

ticles, similar to low carbon steels, where the cracks are suppressed. Moreover, it is

demonstrated in these studies that, counter pressure application results in decreased

die exit residual tensile stresses and more homogeneous plastic deformation distribu-

tions at the extrudate where strain gradients are lowered. Besides its advantages,

counter pressure increases the punch force demand of the process and thus has certain

limits governed by the allowable punch and die stresses13.

To the author’s knowledge, there exist no numerical studies on the use of counter pres-

sure to give account for defect-free extrusion. Accordingly, in this follow up section,

the aim is to investigate what (explicit) finite element method suggests on the role of

counter pressure in suppressing crack formations in axi-symmetric forward extrusion.

For this purpose, for single pass reduction of 100Cr6, it is shown that, proper appli-

cation of counter pressure suppresses central crack formation completely, by keeping

the forming zone hydrostatic stress levels in tolerable limits. The deviations of crack

morphologies and sizes with counter pressure application are also examined. Fig-

ure 4.30 shows the employed axi-symmetric model boundary conditions, where for

counter pressure a rather simplistic approach, in which a compressive normal traction

is applied at the workpiece nose with an opposing direction to the punch movement

direction, is pursued. Such an application of the counter pressure in the form of nor-

mal compressive surface pressure deviates from the actual practice where a counter

punch is utilized. However, various trials of the authors show that, simulations in-

volving a counter pressure applied through a counter deformable body increases the

computational time considerably due to additional contact iterations, where, although

the nose deformation pattern may depart at high pressure levels in between two meth-

ods, these differences diminish at distances sufficiently far away from the nose due to

Saint-Venant’s principle.

13 Counter pressure application is also employed as a precision extrusion method, where the under-
filling defects are eliminated, [132]. However this type of utilization falls beyond the context of this
study.
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Figure 4.30: Application of the counter pressure.

Starting with, frictionless workpiece-die interface is assumed for a clear demonstration

of the central damage accumulation mechanism. Without any counter pressure, with

the aid of positive triaxial stress state which meets with plastic flow at the forming

zone, a localized damage growth is observed, as demonstrated in Figure 4.31.a, b and c,

which respectively represent the iso-curves for positive hydrostatic stress, equivalent

plastic strain rate and damage rate, one step before the first element deletion, i.e.

occurrence of the first crack. At the die exit, there exists a small amount of surface

deterioration due to residual tensile stresses. At Figure 4.31.d and e, total equivalent

plastic strain and total damage iso-curves are given, respectively. As seen, central

damage rates accumulate to create a continuous damage zone at the central region.

It is not hard to guess that, when this value exceeds the critical threshold, together

with coalescence of micro-voids, macro-crack formations in the form of chevrons take

place.

Figure 4.31: Isomaps for no counter pressure, µf=0.
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When a counter pressure of 200 MPa is applied to the frictionless simulation, a decrease

is observed in both the intensity and area extent of the central positive hydrostatic

stresses, for the same time increment, as seen in Figure 4.32.a. This amounts for a no-

ticeable decrease in the damage rates, as seen in Figure 4.32.c, where the effectiveness

of the counter pressure application is clearly observed.

Figure 4.32: Isomaps for counter pressure=200 MPa, µf=0.

For the same time step, hydrostatic stress and damage growth distributions for a

certain path defined at the axis of symmetry on the forming zone are respectively

given in Figure 4.33.a and b, for different counter pressure values. Figure 4.33.a shows

that, for a counter pressure of 400 MPa, triaxial stress distribution over the path is

kept compressive through the anticipated stress increase in the central zone in the

compressive direction by means of counter pressure employment. Consequent damage

rates, given in Figure 4.33.b, although show a considerable decrease with increasing

counter pressure, do not boil down to zero for 400 MPa counter pressure. This is

due to the fact that, in the selected mathematical damage model, damage evolution

depends on the sign of each principal stress component but not merely the sign of the

pressure.
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Figure 4.33: Central line, a) hydrostatic stress, b) damage rate values, for different
counter pressure levels, µf=0.

In order to further evaluate the effectiveness of intensity of the counter pressure,

analyses for different counter pressure magnitudes, ranging from 0 to 200 MPa, are

conducted for frictionless and frictional conditions. As given in Figure 4.34, for fric-

tionless conditions, it is seen that, a counter pressure of 200 MPa suffices to suppress

crack formation. This finding is analogous to the experimental findings of Wagener

and his colleagues which show the efficiency of the counter pressure in promotion of the

material formability in cold extrusion. It should be noted that, damage accumulation

at the center is not completely bypassed however decreased under the crack threshold,

where the material integrity at the macro-scale is preserved. The experiences of the

author show that, for the selected damage model, the counter pressure values that

should completely withdraw the central damage accumulation should be considerable,

which in turn require unreasonable punch force demands and thus become impracti-

cal. Besides, die and punch stress limitations act as the main obstacles for excessive

amplification of counter pressures. Figure 4.34 also represents the effect of the counter

pressure intensity on crack morphologies. Accordingly, the outputs suggest that, the

crack opening and the crack half width, measured as the arithmetic mean of first three

cracks, show a monotonic decrease with increased counter pressure, which is physically

reasonable, thus anticipated. It is notable that, unlike friction, counter pressure does

not seem to have an effect on the periodicity of the cracks.
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Figure 4.34: Mean crack dimensions and crack patterns for various counter pressure
levels, µf=0.

For frictionless simulations, the punch force-normalized process time curves are given

in Figure 4.35 for the analyses without counter pressure and with counter pressure of

100 MPa and 200 MPa. Crack involving simulations experience an oscillatory behav-

ior whereas in the simulation without any cracks, no oscillations are observed where

a steady trend is captured in the absence of friction. Moreover, the extent of the

oscillations is strictly dependent on the internal crack size, where in the simulations

with larger cracks, oscillations become more dominant compared to those with smaller

cracks. The anticipated increase in the punch force demand with increasing counter

pressure values reminds one that, in the actual applications, reasonable counter pres-

sure values should be selected for feasibility.

Once a friction of µf=0.04 is applied at die-workpiece interface, crack patterns for
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Figure 4.35: Punch force demand curves for different counter pressure levels, µf=0.

different counter pressure values take the form demonstrated in Figure 4.36. A re-

markable point is that, in the presence of friction, the counter pressure required for

the crack-free simulations decreases considerably from 200 MPa to 125 MPa. This

is due to the fact that both friction and counter pressure act analogically similar, as

a counter force agent which works in opposite direction with respect to the applied

external pressure of the punch. Another point is that, with the increase of friction,

damage accumulation zones are carried over to the surface rather than center. Thus

under frictional conditions, cracks can be healed with employment of a reduced counter

pressure. The change of the crack sizes as a function of the applied counter pressure

follows a similar trend with the frictionless simulations.

For the frictional conditions, the punch force-normalized process time diagrams are

given in Figure 4.37, for the analyses without counter pressure and with counter

pressure for 75 and 125 MPa, respectively. In accordance with the previous outcomes,
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Figure 4.36: Mean crack dimensions and crack patterns for various counter pressure
levels, µf=0.04.

the crack size dependent oscillations in the force demand diminish with smaller cracks.

In addition to the counter pressure, the effect of friction also increases the peak load

levels for analyses. Besides, due to friction, the steady trend of the frictionless force

demand curve now experiences a monotonic drop off with the reduction of contacting

surfaces.

Figure 4.38 is to compare the crack morphologies for frictional and frictionless anal-

ysis, at different counter pressure values. The dimensions of the cracks in frictional

simulations come out to be considerably small compared to frictionless simulation

results, which is anticipated.
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Figure 4.37: Punch force demand curves for different counter pressure levels, µf=0.04.

Figure 4.38: Mean crack dimensions for various counter pressure levels and friction
coefficients.

As previously shown in Figure 4.33.a and b, employment of counter pressure, although

heals crack occurrence for certain intensities, does not necessarily eliminate the cen-
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tral damage accumulation completely. Figure 4.39 shows the damage iso-error plots

for certain counter pressure levels in frictionless and frictional simulations. As seen,

for both µf=0, and µf=0.04, once the counter pressure is 100 MPa, discontinuous

chevron crack formations arise. For these cases, damage iso-curves have a discontinu-

ous structure, similar to the crack patterns, where maximum damage values occur at

the crack free-surfaces. The cracks are eliminated for a counter pressure of 200 MPa,

at both of the frictional conditions. It is remarkable that, this time central damage

accumulation has a continuous distribution. Another notable point is that, central

damage intensities in the frictional case are less than those seen in the frictionless

simulation, which is in agreement with the previously stated observations.

Figure 4.39: Damage contours, a) counter pressure=100 MPa, µf=0, b) counter pres-
sure=200 MPa, µf=0, c) counter pressure=100 MPa, µf=0.04, d) for counter pres-
sure=200 MPa, µf=0.04.

Our final attempt is investigation of the steady state radial damage and equivalent

plastic strain distributions for chevron-free simulations subjected to frictionless and

frictional conditions, as given in Figure 4.40 and 4.41 respectively. Damage plots, given

in Figure 4.40, reveal that, for both frictionless and frictional simulations, counter

pressure decreases damage accumulation in both center and surface considerably. A

comparison of Figure 4.40.a and b shows that, for equal levels of counter pressure,
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frictional interface conditions result in lower central however higher surface damage

accumulations, compared to the frictionless conditions which is in accordance with

the previous observations.

Figure 4.40: Radial damage distribution for different counter pressure levels (steady
state), a) µf=0, b) µf=0.04.

Coming to Figure 4.41, current employment of counter pressure introduces a difference

in central equivalent plastic strain accumulations for both frictionless and frictional

experiments, where with the increase of applied pressure, central plastic flow is pro-

moted which, although slightly, decreases the overall radial equivalent plastic strain

gradients. This is also in accordance with the experimental findings of Wagener and

his colleagues, where uniform equivalent plastic strain distributions are carried out

with the aid of counter pressure employment. Besides, it is shown that, unlike center,

friction introduces a marked increase in the plastic strain intensities at the surface

region. Accordingly the distribution of equivalent plastic strain has a steeper trend

at the half radial distance closer to the surface.
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Figure 4.41: Radial equivalent plastic strain distribution for different counter pressure
levels (steady state), a) µf=0, b) µf=0.04.

4.5 Conclusion

In this chapter, numerical prediction of the periodic central bursts in the direct

axi-symmetric extrusion is presented. For this purpose, a framework, based on a

Lemaitre-variant (in its simplest form) local isotropic damage strongly coupled to

a physically sound finite strain hyperelastic-plastic formulation through a single von

Mises yield potential, is derived. The derived forms are implemented as VUMAT user

defined material subroutines, for ABAQUS/Explicit code, and UMAT subroutines for

ABAQUS/Standard. Discrete crack formation in single pass reduction of 100Cr6 and

in double pass reduction of Cf53 is modeled by making use of element deletion proce-

dure supported by ABAQUS/Explicit and a developed ramped stiffness degradation

method implemented in ABAQUS/Standard. It is shown that, supplied central bursts

are in correlation with the experimental facts. The investigations of the researchers

show that, the crack closure parameter, controlling the quasi-unilateral evolutionary

forms damage, has an important affect on the damage accumulation zones determining

the central or superficial character. Besides, the effect of many process parameters,

like friction, die geometry, material hardening regime, on damage distribution is in-

vestigated. Two promising and economic methods for avoiding chevron cracks are

proposed in the context of FE analysis, which are creation of numerically handled

chevron free production curves and application of counter pressure. Clearly, for in-

dustrial use, the numerical production of the defect free production curves, taking

153



the change of many previously mentioned process parameters into account, is pos-

sible. It is shown that, chevron crack formations can be prevented at the expense

of increased load demand, not mentioning the mechanism complications, by devising

counter pressure, which helps keeping the tensile triaxial stress fields under tolerable

limits. Further micro-mechanical and experimental research should be conducted for

proper determination of the material parameters of the actual material together with

more advanced damage rate forms.
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CHAPTER 5

CLOSURE and FUTURE PERSPECTIVES

5.1 Closure

An extensive theoretical and numerical study on modeling isotropic ductile damage for

finite strain plasticity is presented. For this purpose a framework for damage coupled

hyperelastic-(visco)plasticity is presented in principal axes in an Euclidean setting

in a local basis. The unified functional framework for the governing functions of plas-

ticity and damage does not assume particular restrictions on the forms. This gives

rise to implementation of a broad range of damage and plasticity models, strongly

coupled through a single yield surface. It is shown that, principal axes formulation

provides convenience in active-passive damage evolutionary conditions which depends

on eigen-projections besides finite hyperelastic-plastic framework, reducing tensorial

differentials to simple differentials with respect to scalars. Inclusion of thermal effects

is also presented. Unilateral damage evolutionary forms are given with special em-

phasis on the practicality and efficiency of formulations in principal axes. Moreover

local integration procedures are summarized starting from a full equation set which

are simplified step by step initially to two and finally to one. Also different operator

split methodologies such as elastic predictor-damage plastic corrector (simultaneous

plastic-damage solution scheme) and elastic predictor-plastic corrector-damage dete-

riorator (staggered plastic-damage solution scheme) are given. To this end regarding

consistent material moduli are derived. The models are implemented as user defined

material subroutines for ABAQUS and MSC.Marc. The efficiency and the predictive

performances of the models are studied with a set of sample problems.
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5.2 Future Perspectives

Following topics constitute current and future research interests,

• Extension of the thermo-mechanical setting to include material anisotropy, where

damage induced anisotropic behavior together with hyperelastic and plastic

anisotropies will also be developed.

• Investigations on additional damage models, which are micro-mechanically based.

• Nonlocal material modelling with special emphasis of the ellipticity and hyper-

bolicity loss in the IBVPs of quasi static and dynamic frameworks, respectively.

Besides, investigation of localization limiting properties of the integral and gra-

dient localizers.

• Evaluation of local integration algorithms together with efficiency and accuracy

observations.

• Use of adaptive mesh refinement methods with consistent error measures for

crack propagation.

• Extension of the explicit adiabatic framework to cope with impact and projectile

penetration problems.

• Material parameter identification through inverse methods.
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[83] Jirásek, M.; Bažant, Z. [2001]: Inelastic Analysis of Structures, John Wiley
and Sons, England.

[84] Johnson, G. R.; Cook, H. W [1985]: “Fracture Characteristics of Three
Metals Subjected to Various Strains, Strain Rates, Temperature and Pressures”,
Engineering Fracture Mechanics, Vol. 21(1), 31–48.

162



[85] Ju, J. W. [1989a]: “Energy-based coupled elastoplastic damage models at finite
strains”, Journal of Engineering Mechanics, Vol. 115, 2507–2525.

[86] Ju, J. W. [1989b]: “On energy-based coupled elastoplastic damage theories:
constitutive modelling and computational aspects”, International Journal for
Solids and Structures, Vol. 25, 803–833.

[87] Ju, J. W. [1990]: “Isotropic and anisotropic damage variables in continuum
damage mechanics”, Journal of Engineering Mechanics, Vol. 116, 283–287.

[88] Kachanov, L. M. [1958]: “Time of the rupture process under creep condi-
tions”, Izv. Akad. Nauk. SSR, Vol. 8, 26–31.

[89] Ko, D.; Kim, B. [2000]: “The prediction of central burst defects in extrusion
and wire drawing”, Journal of Materials Processing Technology , Vol. 102, 19–24.

[90] Komori, K. [1999]: “Simulation of chevron crack formation and evolution in
drawing”, International Journal of Mechanical Sciences, Vol. 41, 1499–1513.

[91] Komori, K. [2003]: “Effect of ductile fracture criteria on chevron crack forma-
tion and evolution in drawing”, International Journal of Mechanical Sciences,
Vol. 45, 141–160.

[92] Krajcinovic, D. [1996]: Damage Mechanics, Elsevier, Amsterdam.

[93] Krieg, R. D.; Krieg, D. B. [1977]: “Accuracies of numerical solution methods
for the elastic-perfectly plastic model”, J. Pressure Vessel Tech., A.S.M.E., Vol.
99, 510–515.

[94] Lee, E. H. [1969]: “Elasto-plastic deformation at finite strains”, ASME Journal
of Applied Mechanics, Vol. 36, 1–6.

[95] Lemaitre, J. [1971]: Evaluation of dissipation and damage in metals. In: Pro-
ceedings of I.C.M. 1, Kyoto, Japan.

[96] Lemaitre, J. [1985]: “A continuous damage mechanics model for ductile
fracture”, Journal of Engineering Materials and Technology, Transactions of
ASME , Vol. 107, 83–89.

[97] Lemaitre, J.; Chaboche, J. [1990]: Mechanics of Solid Materials, Cambridge
University Press, Cambridge.

[98] Lemaitre, J. [1996]: A Course on Damage Mechanics, Springer-Verlag, Berlin.

[99] Lemaitre, J.; Desmorat, R. [2005]: Engineering Damage Mechanics,
Springer-Verlag, Berlin Heidelberg.

[100] Lestriez, P.; Saanouni, K.; Mariage, J. F.; Cherouat, A. [2004]: “Nu-
merical prediction of ductile damage in metal forming proceses including thermal
effects”, International Journal of Damage Mechanics, Vol. 13, 59–80.

[101] Lim, L. G.; Dunne, F. P. E. [1997]: “Modelling central bursting in the extru-
sion of particulate reinforced metal matrix composite materials”, Int. J. Mach.
Tools Manufact., Vol. 37, 901–915.

163



[102] Lin R. C.; Brocks W.; Betten J. [2006]: “On internal dissipation inequali-
ties and finite strain inelastic constitutive laws: Theoretical and numerical com-
parisons”, International Journal of Plasticity , Vol. 22, 1825–1857.

[103] Lin, J.; Liu, Y.; Dean, T. A. [2005]: “A review on damage mechanisms,
models and calibration methods under various deformation conditions”, Inter-
national Journal of Damage Mechanics, Vol. 14, 299–319.

[104] Lubarda, V. A.; Krajcinovic, D.; Mastilovic, S. [1994]: “Damage model
for brittle elastic solids with unequal tensile and compressive strength”, Engi-
neering Fracture Mechanics, Vol. 49, 681–697.

[105] Lubliner, J. [1984]: “A maximum-dissipation principle in generalized plastic-
ity”, Acta Mechanica, Vol. 52, 225–237.

[106] Lubliner, J. [1990]: Plasticity Theory , Macmillan Publishing Company, New
York.

[107] Lämmer, H.; Tsakmakis, Ch. [2000]: “Discussion of coupled elastoplasticity
and damage constitutive equations for small and finite deformations”, Interna-
tional Journal of Plasticity , Vol. 16, 495–523.

[108] Mackerle, J. [2006]: “Finite element modelling and simulation of bulk mate-
rial forming”, International Journal for Computer-Aided Engineering and Soft-
ware, Vol. 23, 250–342.

[109] Marsden, J. E.; Hughes, T. J. R. [1994]: Mathematical Foundations of
Elasticity , Dover, New York.

[110] Mathews, J. H.; Fink, K. D. [1999]: Numerical Methods Using MATLAB ,
Prentice Hall, Upper Saddle River, NJ.

[111] Maugin, G. A. [1992]: The Thermomechanics of Plasticity and Fracture, Cam-
bridge University Press, Cambridge.

[112] McAllen, P. J.; Phelan, P. [2005]: “Ductile fracture by central bursts in
drawn 2011 aliminium wire”, International Journal of Fracture, Vol. 135, 19–33.

[113] McAllen, P. J.; Phelan, P. [2007]: “Numerical analysis of axisymmetric wire
drawing by means of a coupled damage model”, Journal of Materials Processing
Technology , Vol. 183, 210–218.

[114] McVeigh, C.; Liu, W. K. [2006]: “Prediction of central bursting during ax-
isymmetric cold extrusion of a metal alloy containing particles”, International
Journal of Solids and Structures, Vol. 43, 3087–3105.

[115] Mediavilla, J. [2005]: Continuous and discontinuous modelling of ductile frac-
ture, PhD thesis, Technische Universiteit Eindhoven.

[116)] Mediavilla, J.; Peerlings, R. H. J.; Geers, M. G. D. [2006]: “A non-
local triaxiality-dependent ductile damage model for finite strain plasticity”,
Computer Methods in Applied Mechanics and Engineering , Vol. 195, 4617–4634.

164



[117] Menzel, A.; Steinmann, P. [2001]: “A theoretical and computational frame-
work for anisotropic continuum damage mechanics at large strains”, Interna-
tional Journal of Solids and Structures, Vol. 38, 9505–9523.

[118] Menzel, A.; Ekh, M.; Runesson, K.; Steinmann, P. [2005]: “A frame-
work for multiplicative elastoplasticity with kinematic hardening coupled to
anisotropic damage”, International Journal of Plasticity , Vol. 21, 397–434.

[119] Miehe, Ch. [1994]: “Aspects of the formulation and finite element implemen-
tation of large strain isotropic elasticity”, International Journal for Numerical
Methods in Engineering , Vol. 37, 1981–2004.

[120] Miehe, Ch. [1996]: “Numerical application of algorithmic (consistent) tangent
moduli in large-strain computational inelasticity”, Computer Methods in Applied
Mechanics and Engineering , Vol. 134, 223–240.

[121] Miehe, Ch. [1998]: “Comparison of two algorithms for the computation of
fourth-order isotropic tensor functions”, Computers and Structures, Vol. 66,
37–43.

[122] Moritoki, H.; Okuyama, E. [1998]: “Prediction of central bursting in extru-
sion”, Journal of Materials Processing Technology , Vol. 80-81, 579–584.

[123] Mousavi, S. A. A. A.; Feizi, H.; Madoliat, R. [2007]: “Investigations on
the effects of ultrasonic vibrations in extrusion process”, Journal of Materials
Processing Technology , Vol. 187-188, 657–661.

[124] MSC.Marc Volume A: Theory and User Information, [2006]: MSC.Software Cor-
poration.

[125] MSC.Marc Volume D: User Subroutines and Special Routines, [2006]:
MSC.Software Corporation.

[126] Nahshon, K.; Hutchinson, J. W. [2008]: “Modification of the Gurson Model
for shear failure ”, European Journal of Mechanics - A/Solids, Vol. 27, 1–17.

[127] Needleman, A. [1988]: “Material rate dependence and mesh sensitivity in lo-
calization problems”, Computer Methods in Applied Mechanics and Engineering ,
Vol. 67, 69–85.

[128] Nesnas, K.; Saanouni, K. [2002]: “Integral formulation of coupled damage
and viscoplastic constitutive equations”, International Journal of Damage Me-
chanics, Vol. 11, 367–397.

[129] Norasethasopon, S.; Yoshida, K. [2008]: “Prediction of chevron crack ini-
tiation in inclusion copper shaped-wire drawing”, Engineering Failure Analysis,
Vol. 15, 378–393.

[130] Ogden, R. W. [1984]: Non-Linear Elastic Deformations, Ellis Horwood Lim-
ited, Chichester.

[131] Ortiz, A.; Popov, E. P. [1985]: “Accuracy and stability of integration al-
gorithms for elastoplastic constitutive relations”, International Journal for Nu-
merical Methods in Engineering, Vol. 21, 1561–1576.

165



[132] Osakada, K.; Matsumoto, R.; Otsu, M.; Hanami, S. [2005]: “Precision
extrusion methods with double axis servo-press using counter pressure”, Annals
of the CIRP, Vol. 1, 245–248.

[133] Ottosen, N. S.; Ristinmaa, M. [2005]: The Mechanics of Constitutive Mod-
elling , Elsevier.

[134] Ottosen, N., S.; Runesson, K. [1991]: “Acceleration waves in elasto-
plasticity”, International Journal of Solids and Structures, Vol. 28, No. 2, 135–
159.

[135] Oyane, M. [1972]: “Criteria of ductile fracture strain”, Bulletin of JSME , Vol.
15, 1507–1513.

[136] Oyane, M.; Sato, T.; Okimoto, K.; Shima, S. [1979]: “Criteria for ductile
fracture and their applications”, J. Mech. Work. Technol., Vol. 4, 65–81.

[137] Peng, X.; Qin, Y.; Balendra, R. [2003]: “FE analysis of springback and
secondary yielding effect during forward extrusion”, Journal of Materials Pro-
cessing Technology , Vol. 135, 211–218.
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APPENDIX A

EXPONENTIAL MAPPING

Let y be a function of time, and take a linear ODE in the standard form as,

dy

dt
+ p(t) y = q(t). (A.1)

Specify an IVP as a combination of the given ODE with q(t) = 0 and an initial value

defined at time t = 0,

dy

dt
+ p(t) y = 0, where y(0) = ytri. (A.2)

The solution of the ODE is to be found by applying an integrating factor of exp[
∫

p(t)dt]

and multiplying both sides following form is carried out,

0 = exp[
∫

p(t)dt]
dy

dt
+ exp[

∫
p(t)dt] p(t) y

= exp[
∫

p(t)dt]
dy

dt
+

d

dt

[
exp[

∫
p(t)dt]

]
y

=
d

dt

[
exp[

∫
p(t)dt] y

]
.

(A.3)

Integrating both sides will yield,

exp[
∫

p(t)dt] y = C, (A.4)

where C is the constant of integration and will trivially be found using the following

form,

exp[
∫ t

0
p(t)dt] y(t) = C, (A.5)

and specifying for t = 0 by substituting y(0) = ytri

C = exp[
∫ 0

0
p(t)dt] y(0)

= exp[0] ytri

= ytri.

(A.6)
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Substituting the final form in A.4 we find the solution as

y(t) = exp[−
∫

p(t)dt] ytri. (A.7)

Using
∫

p(t)dt ≈ p(t)∆t for a typical time step ∆t, we can finalize the integration by

exponential mapping as follows,

y(∆t) = exp[−p(t)∆t] ytri. (A.8)

If the ODE is defined in a nonconventional setting as commonly seen in rate definitions

as,

dy

dt
= r(t) y, (A.9)

then the solution will require a simple sign change which may seem to be a minor

modification however drastically changes the picture if mistakenly handled,

y(∆t) = exp[r(t)∆t]. ytri (A.10)
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APPENDIX B

ABAQUS IMPLEMENTATION

Current framework is implemented into UMAT and UMATH subroutines for ABAQUS.

A detailed representation of implementation conventions can be found in [1]. For the

thermo-mechanical resolution of the problem, the derived staggered approach stands

for the SEPERATE solution flag in ABAQUS. For the mechanical problem update of

stresses, STRESS, and material tangent matrix, DDSDDE, is crucial. For the thermal

problem, definitions of the mechanical dissipation, RPL, and the thermal tangent,

DRPLDT, suffice. These definitions are supplied with appropriate update of state vari-

ables which monitor the irreversible micro-structural processes. Below, mapping is

supplied among already derived expressions and ABAQUS subroutine variables.

For continuum elements ABAQUS requires Jaumann rate form for stress integrations,

for which the proper material tangent matrix DDSDDE should be introduced. In the

above derived forms, the consistent material tangent supports the Oldroyd rate of

the Kirchhoff stress. Accordingly a modification is required for the currently derived

Oldroyd type tangent, cMM , to reach the Jaumann type operator,
O

cMM , in order

to supply compatibility. Table B.1 gives this conversion where
◦
τ and

∇
τ stand for the

objective Oldroyd and Jaumann rates of the Kirchhoff stress tensor respectively,

Table B.1: Objective rates expressions and related constitutive tensor transformations.

Objective Rate Explicit Form Material Tangent Moduli
◦
τ :=cMM : d τ̇ − τ • lt − l • τ [cMM ]ijkl
∇
τ :=

O
cMM : d τ̇ − τ • w −w • τ [

O
cMM ]ijkl = [cMM ]ijkl + [τ ]ik[1]jl + [1]ik[τ ]lj

174



Final attempt should be applied to the standard arguments to gather the matrix form

for DDSDDE from the tensorial expression
O

cMM .

For the thermal part of the problem, RPL stands for the mechanical dissipation, Ωmech.

DRPLDT is cTT indeed. Through UMATH the linear Fourier heat conduction with

damage deterioration is implemented.
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APPENDIX C

AUXILIARY DERIVATIONS

C.1 Isothermal Conditions

C.1.1 Local Tangent

Components for the local Jacobian, for the simultaneous local integration scheme, can

be given as,

∂r1, n+1

∂∆γ
=

2
3

K ′′(αn+1) + 2µ
1

(1−Dn+1)
, (C.1)

∂r1, n+1

∂Dn+1
= 2µ

∆γ

(1−Dn+1)2
, (C.2)

∂r2, n+1

∂∆γ
= −gn+1 −∆γ

gn+1

∂∆γ
, (C.3)

∂r2, n+1

∂Dn+1
= 1−∆γ

gn+1

∂Dn+1
, (C.4)

where K ′′(α) = ∂2K(α)/∂α2.

C.1.2 Global Tangent

Derivations required for the global tangent are,

∂r1, n+1

∂εtri
n+1, B

= −2µnn+1, B, (C.5)

∂r2, n+1

∂εtri
n+1, B

= −∆γ
∂gn+1

∂εtri
n+1, B

. (C.6)

For a general damage rate form, g = g(Yn+1;αn+1, Dn+1). In the current setting

one may use g = g(Yn+1(εtri
n+1, A;∆γ ,Dn+1),∆γ ,Dn+1), together with chain rule of
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differentiation, to reach the following expressions,

∂gn+1

∂εtri
n+1, B

= g′n+1

∂Yn+1

∂εtri
n+1, B

, (C.7)

∂gn+1

∂∆γ
=

∂gn+1

∂∆γ
+ g′n+1

∂Yn+1

∂∆γ
, (C.8)

∂gn+1

∂Dn+1
=

∂gn+1

∂Dn+1
+ g′n+1

∂Yn+1

∂Dn+1
, (C.9)

where, g′ = ∂g/∂Yn+1. Derivations of the following partial differentials are also re-

quired,

∂τ̃n+1, A

∂εtri
n+1, B

= H + 2µ δdev
AB − 2µ { ∆γ

(1−Dn+1)
2µ∥∥s̃ tri
n+1

∥∥ [δdev
AB (C.10)

−nn+1, A nn+1, B]}
∂τ̃n+1, A

∂∆γ
= −2µ

1
(1−Dn+1)

nn+1, A, (C.11)

∂τ̃n+1, A

∂Dn+1
= −2µ

∆γ

(1−Dn+1)2
nn+1, A. (C.12)

C.1.3 Derivations for, Y = Y d,+

In the present context, the specific damage conjugate variable is selected as the ther-

modynamically consistent one with the crack closure effect, given in (2.29). Hence

any of the following,

∂Y d,+
n+1

∂εtri
n+1, B

,
∂Y d,+

n+1

∂∆γ
,

∂Y d,+
n+1

∂Dn+1
, (C.13)

will exploit the chain rule as follows,

∂Y d,+
n+1

∂(•)
=

3∑
A=1

∂Y d,+
n+1

∂τ̃n+1, A

∂τ̃n+1, A

∂(•)
, (C.14)

where (•) represents one of εtri
n+1, B, ∆γ or Dn+1. Accordingly one may derive the

following,

∂Y d,+
n+1

∂τ̃n+1, A
=

(1 + ν)
E

〈τ̃n+1, A〉 −
3ν

E
〈p̃〉+ h

(1 + ν)
E

〈−τ̃n+1, A〉 − h
3ν

E
〈−p̃〉, (C.15)

which concludes the formulations.

177



C.1.4 Kinematic Hardening

Analogical to the rate expression for the left Cauchy-Green deformation tensor,

∂tbe = ∂tF •Gp • Ft + F • ∂tGp • Ft + F •Gp • ∂tFt

= ∂tF • F−1 • F •Gp • Ft + F • ∂tGp • Ft + F •Gp • Ft • F−t • ∂tFt

= l • be + F • ∂tGp • Ft + be • lt. (C.16)

one can construct the rate expression for the strain like expression responsible for the

kinematic hardening,

∂tz = ∂tF •Ξ • Ft + F • ∂tΞ • Ft + F •Ξ • ∂tFt

= ∂tF • F−1 • F •Ξ • Ft + F • ∂tΞ • Ft + F •Ξ • Ft • F−t • ∂tFt

= l • z + F • ∂tΞ • Ft + z • lt. (C.17)

This parallelism in between derivations can be captured for the Lagrangean dissi-

pation expressions. Accordingly for plastic dissipation one has,

S :
1
2
C • ∂tGp •Gp,−1 =

[
F−1 • τ • F−t

]
:
1
2
[
Ft • F

]
•
[
F−1 •£vbe

• F−t
]
•
[
F−1 • be • F−t

]−1

= F−1 • τ • F−t :
1
2
Ft • F • F−1︸ ︷︷ ︸

=I

•£vbe

•F−t • Ft︸ ︷︷ ︸
=I

•be,−1 • F

= F−1 • τ • F−t :
1
2
Ft •£vbe • be,−1 • F

= tr
[
F−1 • τ • F−t • 1

2
Ft •£vbe • be,−1 • F

]

= tr

F−1 • τ • 1
2

F−t • Ft︸ ︷︷ ︸
=I

•£vbe • be,−1 • F


= tr

[
τ • 1

2
£vbe • be,−1

]
= τ :

[
−1

2
£vbe • be,−1

]
, (C.18)
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whereas for the kinematic hardening counterpart one has,

A :
1
2
C • ∂tΞ •Ξ−1 =

[
F−1 • β • F−t

]
:
1
2
[
Ft • F

]
•
[
F−1 •£vz

• F−t
]
•
[
F−1 • z • F−t

]−1

= F−1 • β • F−t :
1
2
Ft • F • F−1︸ ︷︷ ︸

=I

•£vz

•F−t • Ft︸ ︷︷ ︸
=I

•z−1 • F

= F−1 • β • F−t :
1
2
Ft •£vz • z−1 • F

= tr
[
F−1 • β • F−t • 1

2
Ft •£vz • z−1 • F

]

= tr

F−1 • β • 1
2

F−t • Ft︸ ︷︷ ︸
=I

•£vz • z−1 • F


= tr

[
β • 1

2
£vz • z−1

]
= β :

[
−1

2
£vz • z−1

]
. (C.19)

C.2 Thermo-coupled Conditions

C.2.1 Mechanical Tangent Moduli

For a given principal stress component, τn+1, A, one has,

∂τn+1, A

∂εe, tri
n+1, B

= (1−Dn+1)
∂τ tri

n+1, A

∂εe, tri
n+1, B

− 2µ∆γ
∂nn+1, A

∂εe, tri
n+1, B

, (C.20)

∂τn+1, A

∂∆γ
= −2µnn+1, A, (C.21)

∂τn+1, A

∂Dn+1
= −τ tri

n+1, A. (C.22)

Using δdev
AB = δAB− 1

3 , with δAB representing the Kronecker delta which is given as,

δAB =

 1, if A = B;

0, otherwise.
(C.23)

Accordingly one can find,

∂τ tri
n+1, A

∂εtri
n+1, B

= H

[
1− 3 αt(θ − θ0)

log[Je]− 2
Je

]
+ 2µδdev

AB, (C.24)

∂nn+1, A

∂εtri
n+1, B

=
2µ∥∥s̃ tri
n+1

∥∥ [δdev
AB − nn+1, A nn+1, B

]
. (C.25)
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C.2.2 Thermal Tangent Modulus

In the view of (3.92), for a given inelastic dissipation, Ωmech
n+1 ,one has,

∂Ωmech
n+1

∂θn+1
=

∆γ

∆t

[√
2
3
τ ′0(θn+1) + κa′(θn+1)

]
+

∂Ωmech
n+1

∂Y d
n+1

∂Y d
n+1

∂θn+1
, (C.26)

∂Ωmech
n+1

∂∆γ
=

1
∆t

[√
2
3
τ0(θn+1) + κa(θn+1)

]
+

∂Ωmech
n+1

∂Y d
n+1

∂Y d
n+1

∂∆γ
, (C.27)

∂Ωmech
n+1

∂Dn+1
= κ

∆γ

∆t

a(θn+1)
(1−Dn+1)

+
∂Ωmech

n+1

∂Y d
n+1

∂Y d
n+1

∂Dn+1
, (C.28)

with

κ =
1

(1−Dn+1)

[
Y d

n+1

a(θn+1)

]s+1

, (C.29)

∂Ωmech
n+1

∂Y d
n+1

=
∆γ

∆t

(s + 1)
(1−Dn+1)

[
Y d

n+1

a(θn+1)

]s

, (C.30)

and τ ′0(θn+1) = −w0τ0(θ0), and a′(θn+1) = −wda(θ0). For the local tangent, additional

derivations include the following,

∂r1, n+1

∂θn+1
=

√
2
3

[
τ ′0(θn+1) +

∂K ′
n+1

∂θn+1

]
, (C.31)

∂r2, n+1

∂θn+1
= −∆γs

1
(1−Dn+1)

a′(θn+1)
a(θn+1)

[
Y d

n+1

a(θn+1)

]s

+
∂r2, n+1

∂Y d
n+1

∂Y d
n+1

θn+1
, (C.32)

and
∂Y d

n+1

θn+1
=

∂Ψ̃td(Je
n+1, θn+1)

∂θn+1
= −3 H αt log[Je]

Je
. (C.33)

C.2.3 Rate of Inelastic Entropies

In view of the given dissipation potentials, φ̃ and φd, one has,

∂φ̃

∂θ
= −

√
2
3

∂y(q, θ)
∂θ

, (C.34)

∂φd

∂θ
=

∂φd

∂θ

∣∣∣∣
Y d

+
∂φd

∂Y d

∂Y d

∂θ
(C.35)

=
ωda(θ0)
(1−D)

[
Y d

a(θ)

]s+1

+
1

(1−D)

[
Y d

a(θ)

]s
∂Y d

∂θ
,

where,
∂y(q, θ)

∂θ
=

∂

∂θ
[τ0(θ)− q(α, θ)] = − [ω0τ0(θ0)− ωhq(α, θ0)] , (C.36)
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and
∂Y d

∂θ
=

∂Ψ̃td

∂θ
= −3 H αt log[Je]

Je
, (C.37)

Accordingly following time rate of change of the plastic entropy is carried out,

∂ηp

∂t
= γ̇ vp

√
2
3

[ω0τ0(θ0)− ωhq(α, θ0)] , (C.38)

which is identical to [162]. The growth of the inelastic entropy associated with damage

is,
∂ηd

∂t
=

ωda(θ0)
(1−D)

[
Y d

a(θ)

]s+1

− 3 H αt 1
(1−D)

[
Y d

a(θ)

]s log[Je]
Je

. (C.39)

C.2.4 Plastic Dissipation

Using the proposed von Mises yield potential, one may derive the following equivalence

for the plastic portion of the dissipation expression,

Ωmech,p = τ :
[
−1

2
£vbe • be,−1

]
︸ ︷︷ ︸

γ̇ ∂φ̃
∂τ̃

+q
∂α

∂t︸︷︷︸
γ̇ ∂φ̃

∂q

(C.40)

= τ :
[

γ̇

(1−D)
s̃
‖s̃‖

]
+ q(α, θ)

[√
2
3
γ̇vp

]

= γ̇vp ‖s̃‖+

√
2
3
γ̇vpq(α, θ)

= γ̇vp

√
2
3
τ0(θ),

with γ̇vpφ̃ = 0 also τ̃ = τ/(1 − D), τ̃ = p̃1 + s̃ and p̃1 : s̃ = 0, and consequently

[τ/(1−D)] : s̃ = s̃ : s̃ = ‖s̃‖2 .

C.2.5 Thermal State

For the given potentials Ψtd(Je, θ) and Ψt(θ), one may derive the following expressions,

∂Ψ̃td(Je
n+1, θn+1)

∂θn+1
= −3 Hαt log[Je]

Je
, (C.41)

∂Ψt(θn+1)
∂θn+1

= −Cv log
[

θ

θ0

]
. (C.42)
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