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ABSTRACT 

 

EFFECT OF SURFACE ROUGHNESS IN MICROCHANNELS ON HEAT 
TRANSFER 

 

Turgay, Metin Bilgehan 

                          M.Sc., Department of Mechanical Engineering 

                          Supervisor        : Asst. Prof. Dr. Almıla Güvenç Yazıcıoğlu 

                          Co-Supervisor : Prof. Dr. Sadık Kakaç 

 

December 2008, 118 pages 

 

 

In this study, effect of surface roughness on convective heat transfer and fluid 

flow in two dimensional parallel plate microchannels is analyzed by numerically. 

For this purpose, single-phase, developing, laminar fluid flow at steady state and 

in the slip flow regime is considered. The continuity, momentum, and energy 

equations for Newtonian fluids are solved numerically for constant wall 

temperature boundary condition. Slip velocity and temperature jump at wall 

boundaries are imposed to observe the rarefaction effect. Effect of axial 

conduction inside the fluid and viscous dissipation also considered separately. 

Roughness elements on the surfaces are simulated by triangular geometrical 

obstructions. Then, the effect of these roughness elements on the velocity field 

and Nusselt number are compared to the results obtained from the analyses of 

flows in microchannels with smooth surfaces. It is found that increasing surface 

roughness reduces the heat transfer at continuum conditions. However in slip flow 
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regime, increase in Nusselt number with increasing roughness height is observed. 

Moreover, this increase is found to be more obvious at low rarefied flows. It is 

also found that presence of axial conduction and viscous dissipation has 

increasing effect on heat transfer in smooth and rough channels. 

 

Key words: microchannel, slip flow, temperature jump, surface roughness, heat 

transfer. 
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ÖZ 

MİKROKANALLARDA YÜZEY PÜRÜZLÜLÜĞÜNÜN ISI TRANSFERİNE 
ETKİSİ 

 

Turgay, Metin Bilgehan 

                         Yüksek Lisans, Makine Mühendisliği Bölümü 

                         Tez Yöneticisi           : Asst. Prof. Dr. Almıla Güvenç Yazıcıoğlu 

                         Ortak Tez Yöneticisi : Prof. Dr. Sadık Kakaç 

 

Aralık 2008, 118 sayfa 

 

 

Bu çalışmada, iki boyutlu parallel plakalardan oluşan mikrokanallardaki yüzey 

pürüzlülüğünün konveksiyonla ısı transferine ve akışa etkisi numerik olarak 

incelenmiştirtir. Bunun için tek fazlı, ısıl ve hidrodinamik olarak gelişmekte olan 

kararlı rejimdeki kaygan akış ele alınmıştır. Newtonien akışkanlar için süreklilik, 

momentum ve enerji denklemleri sabit duvar sıcaklığı sınır şartı için numerik 

olarak çözülmüştür. Seyrelme etkisini incelemek için duvardaki hız kayması ve 

sıcaklık sıçraması göz önüne alınmıştır. Ayrıca akışkan içindeki eksenel ısı iletimi 

ve sürtünme kaybı da değerlendirilmiştir. Yüzey pürüzlülüğü üçgen geometrik 

elemanlar olarak simüle edilmiştir. Daha sonra pürüzlü kanal için elde edilen hız 

profili ve Nusselt sayıları, pürüzsüz kanal için elde edilen değerlerle 

karşılaştırılmıştır. Süreklilik şartlarında yüzey pürüzlülüğündeki artışın ısı 

tranferini azalttığı bulunmuştur. Fakat, kaygan akış şartlarında yüzey 

pürüzlülüğündeki artışın Nusselt sayısını da arttırdığı gözlemlenmiştir. Bu artışın 

az seyrelmiş akışlarde daha fazla olduğu saptanmıştır. Ayrıca, eksenel ısı 
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iletiminin ve sürtünme ısınmasının, pürüzlü kanallarda da düzgün yüzeyli 

kanallarda da ısı transferini arttırıcı etkisi olduğu bulunmuştur. 

 

Anahtar Kelimeler: mikrokanallar, kaygan akış, sıcaklık sıçraması, yüzey 

pürüzlülüğü, ısı transferi. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

With the rapid development of micro and nano fabrication in the last two decades, 

devices in micro- (1x10-6 m) and nano- (1x10-9 m) scale, which can be named as 

MEMS (Microelectromechanical Systems), NEMS (Nanoelectromechanical 

Systems), MFD (Micro flow devices), etc., became very popular for scientists, 

researchers, engineers, and various industrial companies. As a result, micro 

devices and systems such as micro actuators, micro motors, micro heat sinks, 

micro heat exchangers, micro pumps, lab-on-a-chip devices, micro total analysis 

systems (µTAS), micro propulsion devices, micro reactors, micro gears, micro 

valves, and micro sensors have been fabricated and used successfully [1]. 

Most of these micro devices and systems include fluid flow and heat transfer in 

micro-scale, which is an open and new field in scientific literature. This new and 

intriguing area of science and engineering brought very important advantages and 

developments, such as high efficiency in production, low costs per samples, very 

small dimensions of the resulting product, which improves portability and 

transport, much better accuracy and reliability, and in heat transfer area, increased 

convective and radiative heat transfer rates due to high surface area to volume 

ratios of heat sinks or heat exchangers. This development also brought its own 

unique problems, such as deviations from well known conventional theories. 
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Studies in micro flow started with Poiseuille, in 1846. He investigated the liquid 

flow in tubes with diameters ranging from 30 µm to 150 µm. Then, in 1909, 

Knudsen studied the rarefied gas flow in glass capillary tubes in transition and 

free molecular flow regimes [2]. Since then, various scientists performed research 

in this field and tried to understand the fundamentals of the micro-scale. Famous 

scientist Dr. Richard P. Feynman delivered two lectures in this area [3]. The first 

was in 1959 at the annual meeting of the American Physical Society, and named 

“There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of 

Physics” [4]. In this lecture, he proposed a vision of miniaturization. The second 

lecture was in 1983 at the Jet Propulsion Laboratory, and named “Infinitesimal 

Machinery” [5], in which he revisited his first lecture and anticipated some of 

today’s micro technologies [1, 2]. These two lectures were accepted as a 

touchstone in micro engineering. 

With the developing technology, many micro-scale devices became available for 

scientists, in late 1980s and early 1990s. Since then, experiments have been 

conducted systematically to better understand the flow and heat transfer behavior 

in micro-scale. It was seen from the experimental data that conventional 

continuum approach is not always valid in micro-scale, i.e., friction factors, 

Nusselt numbers, Poiseuille numbers differ from classical values, and early 

transition from laminar to turbulent flow can be observed. These differences were 

mainly addressed by the rarefaction effect. Furthermore, additional factors that 

can be negligible in macro gas flows, such as compressibility, viscous dissipation, 

and thermal creep become important in gas micro flows, due to extremely small 

dimensions. However, when the fluid is liquid, wetting of the solid boundaries, 

adsorption and electrokinetic effects near the solid-fluid interface become very 

important as well [2].  

In the macro world, the fluid is treated as a continuum (infinitely divisible 

substance). Related problems are solved using conservation of mass, momentum, 
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and energy equations with appropriate boundary conditions, which lead to a set of 

nonlinear partial differential equations called Navier-Stokes equations. The 

boundary conditions are mostly the “no-slip”, in which the velocity of the fluid 

molecules adjacent to the solid boundary is equal to zero, and the “no-temperature 

jump”, in which the temperature of the fluid molecules adjacent to the solid 

boundary is equal to the temperature to the solid boundary [6]. Also, in macro 

flow systems, flow regimes are mostly characterized by Reynolds number, Re, 

defined as 

𝑅𝑅𝑅𝑅 =
𝑈𝑈𝑐𝑐  𝐿𝐿𝑐𝑐
𝜗𝜗

 (1.1) 

where Uc is the characteristic fluid velocity, Lc is the characteristic length, and 𝜗𝜗 

is kinematic viscosity. 

However, continuum model fails as the characteristic length becomes comparable 

to the mean free path, λ, which is defined as the average distance traveled by the 

molecules without colliding with each other. This should be the case if the gas is 

at very low pressure (rarefied) or the characteristic length is very small as in 

micro- or nanochannels [7]. The ratio of the mean free path to the characteristic 

length, gives an important non-dimensional parameter known as the Knudsen 

number, Kn, which is a measure of the rarefaction, 

𝐾𝐾𝐾𝐾 =
𝜆𝜆
𝐿𝐿𝑐𝑐

 (1.2) 

Also, the relationship between Kn, Re and Mach (Ma) numbers is given as, 

𝐾𝐾𝐾𝐾 = �
𝛾𝛾𝛾𝛾
2
𝑀𝑀𝑀𝑀
𝑅𝑅𝑅𝑅

 (1.3) 

where γ is specific heat ratio of the fluid. In micro flow systems, flow regimes are 

characterized by the Knudsen number. Most commonly, when Knudsen number is 
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below 0.001, flow is considered as continuum and the Navier-Stokes and energy 

equations are valid with no-slip and no-temperature jump boundary conditions. 

When Knudsen number is between 0.001 and 0.1, flow is considered as in slip-

flow regime. From Knudsen 0.1 to 10 is the transition regime and above 10, flow 

becomes free molecular. This classification is shown in Figure (1.1) graphically. It 

should be noted that, this classification is not solid; it is based on empirical data 

and regime limits may depend on the problem geometry [2]. 

 

 

 

 

 

 

 

Figure 1.1: Knudsen number regimes. 

 

 

Slip-flow regime is important in micro-scale gas flows, because most micro 

fluidic devices operate in this regime. In slip-flow regime, the continuum based 

Navier-Stokes and energy equations are still valid with appropriate boundary 

conditions at the solid boundaries, which are tangential velocity slip and 

temperature jump boundary conditions. One of the most commonly used pair of 

slip/jump boundary conditions is the Maxwellian boundary conditions, which are 

first order in accuracy. The tangential velocity slip boundary condition is given as, 

Kn = 0.0001 0.001 0.0
 

0.1 1 10 100 

Continuum 
Flow Slip – Flow 

Regime 
(slightly rarefied) 

Transition 
Regime 

(moderately 
rarefied) 

Free-molecular 
Flow 
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𝑢𝑢𝑠𝑠 =
2 − 𝐹𝐹𝑀𝑀
𝐹𝐹𝑀𝑀

𝜆𝜆 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝐾𝐾
�
𝑤𝑤

+ 3�
𝑅𝑅𝑅𝑅
8𝛾𝛾

𝜆𝜆
𝑅𝑅
�
𝜕𝜕𝑅𝑅
𝜕𝜕𝐾𝐾
�
𝑤𝑤

 (1.3) 

 and the temperature jump boundary condition is given as, 

𝑅𝑅𝑠𝑠 − 𝑅𝑅𝑤𝑤 =
2 − 𝐹𝐹𝑅𝑅
𝐹𝐹𝑅𝑅

2𝛾𝛾
𝛾𝛾 + 1

𝜆𝜆
𝑃𝑃𝑃𝑃

�
𝜕𝜕𝑅𝑅
𝜕𝜕𝐾𝐾
�
𝑤𝑤

 (1.4) 

In these equations, FM is the tangential momentum accommodation coefficient, FT 

is the thermal accommodation coefficient, R is the gas constant, Pr is the gas 

Prandtl number, γ is the ratio of the specific heats, n is the coordinate normal to 

the wall [1, 7]. Additional slip boundary conditions such as, second and higher 

order accurate ones, can be found in Ref. [2]. The second term on the right hand 

side of Eq. (1.3) reflects the thermal creep effect, which is the fluid flow induced 

by the temperature gradient along the channel.  

The momentum accommodation coefficient FM represents the fraction of the 

molecules undergoing diffuse reflection. It is equal to zero for ideally smooth 

surfaces, where specular reflection occurs and molecules conserve their tangential 

momentum. It is equal to one for diffuse reflection where the tangential 

momentum is lost at the wall. It depends on fluid, solid and surface roughness of 

the channel. Experimental results show that its value is between 0.5 and 1.0, and 

in most of the engineering applications it is close to 1.0. Meanwhile, the thermal 

accommodation coefficient  𝐹𝐹𝑅𝑅  represents the fraction of the molecules reflected 

diffusively by the wall and accommodated their energy to the wall temperature. 

Its value varies between 0 and 1.0 [6]. 

When the gas micro flow is in slip-flow and early transition regime, continuum 

based solution methods are sufficient, that is governing Navier-Stokes and energy 

equations are solved with slip and jump boundary conditions, using one of the 

numerical methods such as finite element, finite volume, or finite difference, 
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when analytical solution is not possible. However when the flow is in late 

transition or free-molecular regime, an atomistic solution method, such as direct 

simulation Monte Carlo (DSMC), Boltzmann, Lattice Boltzmann, is required. 

When it comes to liquid micro flows, solution method mostly depends on the 

dimensions of the system. In mesoscopic scales, continuum approach with no-slip 

boundary condition suffices. However, in submicron dimensions, an atomistic 

solution method like molecular dynamics (MD), lattice Boltzmann, dissipative 

particle dynamics, is required [1, 2]. These conditions are summarized in Table 

(1.1). 

 

 

Table 1.1: Summary of flow regimes and solution methods [1, 5]. 

 

 

As stated before, experiments conducted in micro fluidic systems give different 

results than similar experiments conducted in macro size systems. These 

Regime Solution Method Kn Range 

Continuum 
Navier-Stokes and energy equations with 

no-slip / no-jump boundary conditions 
Kn < 0.001 

Slip – Flow 

Navier-Stokes and energy equations with 

slip / jump boundary conditions, (MD, 

DSMC… may be used for liquids) 

0.001 ≤ Kn < 0.1  

Transition 
BTE (Boltzmann transport equation), 

DSMC 
0.1 ≤ Kn < 10 

Free molecular BTE, DSMC Kn ≥ 10 
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differences are the results of neglected parameters and conditions described 

above. It is also possible that, some discrepancies belong to the experimental 

measurement uncertainties and other errors which might be expected when 

dealing with such small scales. In all circumstances, these anomalies between the 

results show the insufficient fundamental understanding and knowledge in this 

area. One of the problems faced in the understanding of these phenomena is the 

effect of the surface conditions of the microchannels, more specifically the surface 

roughness effect. 

Roughness characteristics of microchannels are strictly dependent on the 

manufacturing processes of these channels. Manufacturing methods can be 

classified as micromechanical machining, X-ray micromachining, surface and 

surface-proximity-micromachining, and photolithographic-based processes [8]. 

Since the photolithographic process is the most common method, there are several 

experiments in open literature conducted with such microchannels. These are 

mostly related to the silicon wafers that are widely used in micro systems such as 

in electronics as semiconductors. When the chemical (wet) etching is applied on 

the silicon substrate by using a KOH solution, specific cross-sectional shapes are 

obtained. These cross-sectional shapes of the microchannels depend on the 

crystallographic morphology of the silicon used. These are rectangular on <110> 

silicon, trapezoidal with an apex angle of 54.74° on <100> silicon, and triangular 

on <111> silicon, where the numbers between the “<…>” sign show the Miller 

indices of silicon morphology. In photolithographic process, surface roughness 

depends on the crystallographic morphology of the silicon used, the concentration 

and temperature of the etching solution, and the duration that the solution is 

applied. For example, when a silicon micro channel with trapezoidal cross-section 

is obtained by wet etching, it has smooth lateral faces while the base face has 

randomly distributed roughness elements that look like conical or triangular prism 

obstructions, which can be seen in Fig. (1.2). However, when the process is 

continued, the channel has a triangular cross-section. 
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Figure 1.2: Scanning electron microscopy images of a silicon trapezoidal 
microchannel produced by photolithography (a) channel at a distance (b) smooth 

sidewall (c) closer look at roughness elements at base [69]. 

 

Defining the roughness characteristics in micro-scale is very difficult. Its 

extremely small size and random distribution of peaks along the surface make the 

investigation of roughness effect very difficult among the other parameters. Thus, 

most of the investigators neglect this effect in their studies. Furthermore, when an 

unexpected deviation occurs, most researchers refer to the roughness effect, 

whether it is true or not. During the last decade, special attention has been paid to 

this effect due to its somewhat mystic and unresolved nature. However, there are 

still a limited numbers of publications, relative to other effects, in open literature. 
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This study focuses on the effect of roughness on convective heat transfer and fluid 

flow in microchannels with uniform inlet fluid velocity and constant wall 

temperature boundary condition. For this purpose, single-phase, incompressible, 

laminar and constant property fluid flows, at steady state and in the slip-flow 

regime, in parallel plate channel, is considered. Roughness effect is simulated by 

adding triangular obstructions along the channel wall. Since the flow is in slip-

flow regime, the Navier-Stokes and energy equations are solved numerically by 

imposing the velocity slip and temperature jump to boundary conditions. Also, 

since the fluid is assumed to have constant thermo-physical properties, Navier-

Stokes and energy equations can be decoupled. Therefore, Navier-Stokes 

equations are first solved along the channel, and then the velocities found are used 

in the energy equation to obtain the temperature profile and local Nusselt numbers 

along the channel. Numerical calculations are carried out both by taking the axial 

conduction and the viscous dissipation effects into account, and by neglecting 

their effects. Reduced integration penalty finite element method is chosen as the 

numerical method and the computer code is written in MATLAB by the author. 

The written code is verified by comparing the results obtained from analytical 

solutions for simplified smooth channel cases.  

In Chapter 2, review of the studies about micro-scale heat transfer and fluid flow 

in literature is given. Single phase flow and convective heat transfer in 

microchannels, especially with surface roughness, is considered. In Chapter 3, the 

case problem in is defined and governing equations are given. Then, numerical 

method, formulation, and solution procedure are described. Mesh convergence 

studies and results for both smooth and rough cases are given in Chapter 4 with a 

discussion. Then, the study is concluded with a summary and conclusion which 

forms Chapter 5. Also, further possible developments about this area are 

suggested in this chapter.  
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

Parallel to the technological development in micro engineering, especially in 

micro machining and construction, scientific research in the micro scale flow and 

heat transfer area has increased in last two decades. Thus, numerous studies have 

been conducted to understand the fundamentals; such as flow characteristics and 

heat transfer rates in simple geometries, as well as specific effects like rarefaction, 

viscous dissipation, channel geometries, electrokinetic effects, and surface 

roughness, and published in open literature. However, in this chapter, studies on 

single-phase flow and convective heat transfer in microchannels are reviewed. In 

particular, special interest is given to studies dealing with surface roughness 

effect, and they are taken into consideration in more detail. 

Yener et al. [9] described the fundamentals of single-phase forced convection in 

microchannels and presented an extensive review in this area. Bayazitoglu and 

Kakac [10] explained the flow regimes of single phase gaseous fluid flows in 

microchannels with different cross-sections, by giving the theoretical base and 

reviewing the analytical, experimental, and numerical studies. Bayazitoglu et al. 

[11] reviewed some analytical solutions of temperature distribution and leading 

Nu values of gaseous slip-flows in microchannels for different geometries. The 

reader is encouraged to refer to these reviews to construct a basic knowledge 

about micro scale flow and heat transfer phenomena. 
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Obot [12] reviewed the experimental results on pressure drop, heat and mass 

transfer studies, and laminar to turbulent transition of single phase flows, up to 

year 1998. The causes of inconsistencies in the results have been mostly related to 

the measurement errors by the author. Also, Sobhan and Garimella [13] reviewed 

the experimental results and theoretical predictions of fluid flow and heat transfer 

studies in micro- and mini-channels and microtubes, up to year 2000. They also 

presented them in tabular form and compared the single phase friction factor and 

Nu correlations with the correlations of conventional size channels. The authors 

stated that there is little agreement between the results of each investigator. The 

possible reasons of deviations are referred to entrance and exit effects, surface 

roughness, which is generally not considered, and uncertainties and errors in 

experimental setups and measurements. Both Refs. [12] and [13] stated the need 

for additional systematic studies with carefully chosen and measured parameters. 

Morini [8] reviewed the experimental studies on single phase convective heat 

transfer through microchannels chronologically, and tabulated and analyzed the 

results obtained for friction factor, laminar to turbulent transition, and Nu values. 

The author also stated that the results obtained from experiments deviate from 

conventional theories and are inconsistent with each other. The inconsistency in 

the experimental correlations for Nu for gas and liquid flows was shown 

graphically as well by the author in their work. These deviations are caused by 

rarefaction, compressibility, viscous dissipation, property variations, electro-

osmotic effects, surface conditions of microchannels, and experimental 

uncertainties. Furthermore, the author also stated that the deviations are 

decreasing as the reliability and accuracy of the experimental and measurement 

devices increase with the improvement in micro technology, but also expressed 

the need of further studies for fundamental understanding of micro flows and heat 

transfer. 
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More recently, Hestroni et al. [14] reviewed the experimental studies of laminar 

incompressible flows in microchannels with circular, rectangular, triangular, and 

trapezoidal cross-sections, and having hydraulic diameters from 1.01 µm to 4010 

µm. The authors compared the experimental data on pressure drop, Poiseuille 

number, friction factor, laminar to turbulent transition, and the effect of the 

viscous energy dissipation on flow parameters, of the flows in 0.001 ≤ Re ≤ Recr 

and 0.001 ≤ Re ≤ 0.4 region. In a subsequent study, Hestroni et al. [15] reviewed 

the experimental and theoretical studies of single phase heat transfer in circular, 

triangular, rectangular, and trapezoidal microchannels with hydraulic diameters of 

60 to 2000 µm. This time, the authors compared the experimental data on the 

effects of energy dissipation, axial conduction in the fluid and wall, geometrical 

properties and surface conditions of microchannels on heat transfer, to 

conventional theories. 

From all these reviews, several conflicting conclusions can be drawn. Some 

investigators reported laminar fully developed friction factors and Poiseuille 

numbers lower than the conventional values, some reported higher values, while 

some investigators reported agreement with conventional values. A similar 

conflict occurs in laminar to turbulent transition Re values. Reported Re values 

vary between 300 and 6000. Similar conclusions can be made about the laminar 

regime Nu and the effect of energy dissipation on heat transfer. However, it 

should also be noted that, as the precision and reliability of the experimental 

setups and measurement devices increase, the deviation margin of theoretical and 

experimental results obtained from similar experiments conducted by different 

investigators reduces. Nevertheless, as pointed out in Refs. [8-15], future research 

is still needed for fundamental understanding. 

Kavehpour et al. [16] investigated the effects of rarefaction and compressibility on 

the heat transfer and fluid flow characteristics in the entrance and fully developed 

regions for both uniform wall temperature and uniform wall heat flux thermal 
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boundary conditions. For this purpose the authors modeled a 2-D flow through a 

parallel plate in the slip-flow regime, 0.001< Kn <0.1, and then solved the 

compressible form of conservation of momentum and energy equations, and the 

equation of  state for an ideal gas, by imposing slip velocity and temperature jump 

into the boundary conditions. After non-dimensionalization, they used a numerical 

method based on control volume finite difference scheme (SIMPLE algorithm, 

power law scheme) to solve the equations. They compared their results with the 

continuum flows and found that Nu and friction coefficients were decreased. 

Furthermore, they showed that the compressibility effect is important for flows 

with higher Re, and the rarefaction effect is important for flows with lower Re. 

The entrance region was found to be longer for higher Kn values, the velocity and 

the temperature profile became flattened, and the axial pressure variation became 

nonlinear, compared to continuum flows. 

Hadjiconstantinou and Simek [17, 18] investigated the convective heat transfer 

characteristics of a hydrodynamically and thermally fully developed gaseous flow, 

between micro- and nano-scale parallel plates and in circular tubes, under the 

constant wall temperature boundary condition. The authors used the slip flow 

theory, with axial conduction, to calculate the Nu in the 0 ≤ Kn ≤ 0.2 range, and 

the DSMC method in the 0.02 < Kn < 2 range. Results were obtained for different 

Kn, Pe, and thermal accommodation coefficients. They found that the axial heat 

conduction increased the Nu in the slip-flow regime. However, the effect of axial 

conduction decreased as the Kn increased. They also found that the Nu decreased 

with increasing Kn. 

Aydın and Avcı [19] investigated the effect of Br and Kn values on Nu by solving 

the energy equation, analytically. For this purpose the authors considered a steady, 

hydrodynamically and thermally fully developed, laminar flow of a Newtonian 

fluid with constant properties, flowing in a parallel plate microchannel. Unlike 

Refs. [17, 18], they included viscous dissipation, but neglected axial conduction, 
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since Pe was large enough to neglect the axial conduction. They conducted their 

analysis for constant wall temperature and constant heat flux thermal boundary 

conditions separately, by imposing slip velocity and temperature jump effects at 

the wall. They observed singularities at the Br for each Kn, which was explained 

as the points where the heat supplied to the fluid is balanced with internal heat 

generation due to viscous heating. Similar to Refs. [17, 18], they found that as Kn 

increases, Nu decreases due to the increase in the temperature jump at the wall.  

Asako et al. [20] investigated the compressibility effect on gaseous flows in 

parallel plate microchannels. For this purpose, they modeled a two dimensional 

compressible steady flow of an ideal gas. Then, they solved the compressible form 

of momentum equations with uniform inlet velocity and no-slip boundary 

condition, and the energy equation by neglecting the heat conduction terms. After 

non-dimensionalization, they solved the equations numerically, in which the 

numerical methodology was based on the arbitrary-Lagrangian-Eulerian (ALE) 

method. They also obtained correlations for Darcy’s and Fanning’s friction 

factors, fd and ff respectively, which are functions of Re and Mach number. They 

found that (𝑓𝑓 ∙ 𝑅𝑅𝑅𝑅)  is a function of Mach number and different from 

incompressible flow values for the parallel plate channel. Also the effect of 

stagnation pressure and temperature on (𝑓𝑓 ∙ 𝑅𝑅𝑅𝑅) is found to be small. 

Jeong and Jeong [21] solved the Graetz problem, which is hydrodynamically 

developed at the entrance and thermally developing, in a parallel plate 

microchannel with uniform temperature and uniform heat flux boundary 

conditions, analytically. The authors included the rarefaction effects, which are 

slip velocity and temperature jump on the channel wall, axial conduction in the 

fluid, and viscous dissipation into their analysis. They solved the governing 

energy equation for various Kn and Br values, and for air as the working fluid, 

with the method of separation-of-variables, and used the eigenfunction series 

expansion for the temperature distribution. They found that Nu decreases as Kn or 
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Br increases and as Pe decreases. They also stated that, similar to Refs. [17, 18], 

which are hydrodynamically and thermally fully developed flow analyses, axial 

conduction increases the Nu compared to the solutions of Graetz problem without 

axial conduction. 

Tunc and Bayazitoglu [22] solved the same problem for microtubes analytically 

by using integral transform technique. They considered the fluid properties 

constant, included viscous dissipation, and also took the temperature jump and 

velocity slip at the wall into account. They analyzed both the uniform temperature 

and uniform heat flux boundary condition cases. The effect of viscous dissipation 

was studied for fluid heating and cooling, both. They showed the variation of Nu 

with Kn, Pr, and Br, and presented their results in tabular form for 0.6 ≤ Pr ≤ 1.0, 

0.0 ≤ Kn ≤ 0.12, and Br = 0.0, ±0.01. 

Larrodé et al. [23] also studied the Graetz problem, which is extended to the slip-

flow region, to define the effect of rarefaction on heat transfer in microtubes. They 

solved the energy equation considering temperature jump and velocity slip at the 

wall. By introducing a spatial rescaling factor, slip radius, which is a function of 

Kn and momentum accommodation factor, they reduced the slip-flow Graetz 

problem to a classical Graetz problem with a mixed boundary condition. They 

developed a uniform asymptotic approximation for the solution of the 

eigenfunction of the problem. They found that heat transfer is decreased when 

they considered the temperature jump compared to the continuum case. 

Cetin et al. [24] studied a two-dimensional, incompressible, constant property, 

hydrodynamically developed, thermally developing, single-phase laminar flow in 

microtubes and microchannels, and in the slip-flow regime at steady state. The 

authors neglected the axial conduction in the fluid, but included viscous 

dissipation and velocity slip and temperature jump conditions at the walls, into 

their analysis. They solved the energy equation for constant wall temperature and 

constant wall heat flux boundary conditions, numerically. They used a finite 
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difference scheme as the numerical method, and a fine mesh in their simulations. 

They verified the numerical method by comparing it with the continuum flow 

simulation results. They found that for the constant wall temperature case, Nu 

decreases as the Kn increases, as a result of increasing temperature jump, which 

reduces the heat transfer when Br is greater than zero. Also, Nu had greater values 

in the presence of viscous heating, compared to otherwise. 

In a subsequent study, Cetin et al. [25] solved the same Graetz problem in slip-

flow regime by considering the axial conduction, viscous dissipation, and 

rarefaction effects, for uniform wall temperature boundary condition in a 

microtube. They used a coordinate transformation for the energy equation and 

then solved it numerically by a finite difference scheme. They showed the 

variation of local Nu values with Kn, Pe, and Br along the channel. For this case, 

they found an increase in the thermal entrance length and fully developed Nu. 

Sun et al. [26] investigated the Graetz problem in slip-flow regime for constant 

wall heat flux, constant wall temperature and linear variation of wall temperature 

boundary conditions in a microtube. They considered viscous heating, but 

neglected axial conduction. Also, rarefaction effects, velocity slip and the 

temperature jump, were taken into account at boundaries. They solved the 

governing equations numerically by a finite volume-finite difference scheme. 

They obtained similar results as Ref. [24]. They stated that, the velocity slip and 

the temperature jump have inverse effects on heat transfer; while slip velocity 

increases convection along the surface, temperature jump reduces the temperature 

gradient and thus the heat transfer along the wall. 

Aydin and Avci [27] studied the forced convective heat transfer of 

hydrodynamically and thermally fully developed laminar, steady state gas flow in 

micropipes. They included viscous dissipation, velocity slip and temperature jump 

to their analysis. They solved the governing equations for constant heat flux and 

constant wall temperature boundary conditions, analytically. They showed the 
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combined effect of Kn and Br on Nu and temperature distribution. They also 

discussed the singularities on Br and Nu variations, and the modified Br. 

Koo and Kleinstreuer [28] investigated the viscous dissipation effect on 

temperature distribution and on the friction factor, by scale analysis and numerical 

simulations. They assumed steady laminar hydrodynamically fully developed 

incompressible flow in microchannels with circular and rectangular cross-

sections. In their analysis, they used water, methanol and iso-propanol as the 

working fluid, and assumed constant properties except viscosity, which varies 

with mean flow temperature. They found that viscous dissipation increases as the 

channel size decreases and the effect of viscous dissipation on friction factor also 

increase with the reduction of channel size. They concluded their analysis by 

stating that the viscous dissipation strongly depends on the Re, Pr, Eckert number, 

microchannel aspect ratio and the hydraulic diameter. 

Yu and Ameel [29] solved the energy equation for hydrodynamically fully 

developed, incompressible laminar flow of a constant property fluid flowing in a 

rectangular microchannel with constant wall temperature thermal boundary 

condition, analytically. They implemented the slip velocity and temperature jump 

at the wall and neglected the energy dissipation. Analytical method was a 

modified generalized integral transform technique due to the non-separable nature 

of the resulting eigenvalue problem. They found that, for a given aspect ratio, heat 

transfer is reduced always with increasing temperature jump. Also, increasing 

temperature jump reduced the thermal entrance length. Furthermore, fully 

developed normalized Nu decreased with increasing aspect ratio. 

Tunc and Bayazitoglu [30] analyzed thermally and hydrodynamically fully 

developed flow of a gas at steady-state in rectangular microchannels with axially 

and peripherally constant heat flux boundary conditions at the walls. They also 

included the slip velocity and temperature jump at the wall into their analysis, but 

neglected viscous dissipation. They obtained temperature profile and Nu for 
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varying values of the aspect ratio. They applied the integral transform technique 

to the incompressible momentum equation in axial direction, to obtain the fully 

developed velocity profile that includes the slip velocity at the walls. Then they 

used this velocity profile to solve the energy equation. To solve the energy 

equation they also used the integral transform technique. They verified their 

method by comparing the results obtained for the continuum solution. For high Re 

the effect of compressibility, for low Re the effect of rarefaction is found to be 

important. They found that when Kn increases, Nu decreases due to the increase in 

temperature jump. Also, the decrease in Nu is more significant for smaller aspect 

ratios, since as the channel size decreases, rarefaction effect increases. When 

temperature jump is not considered, Nu increases as Kn increases. This increment 

is larger for smaller channels due to the increase in the magnitude of the slip 

velocity. 

Hsieh et al. [31] investigated Nitrogen gas flow in a rectangular microchannel 

with an aspect ratio of 0.25 (50 µm D x 200 µm W x 24,000 µm L) and hydraulic 

diameter of 80 µm for low Re, experimentally and theoretically. The Re range was 

2.6 ≤ Re ≤ 89.4 and the Kn range was 0.001 ≤ Kn ≤ 0.02. The flow was considered 

isothermal. They compared their experimental results with analytical results, 

which were based on a two dimensional continuous flows with first order slip 

boundary condition. In this analytical solution, they solved the 2D Navier-Stokes 

and continuity equations and the equation of state for ideal gas with the 

assumptions of steady-state, isothermal, compressible slip flow, by a perturbation 

method. They also proposed a new complete momentum accommodation 

coefficient in terms of Kn, which was used in slip velocity equation. They found 

that the pressure drop has an unusual nonlinear behavior compared to larger 

channels, which was due to compressibility effect. Analytical results, with slip 

flow boundary condition, were in good agreement with experimental results and 

the flow seemed to never reach the fully developed condition under the 
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experimental conditions. Finally, it was found that the pressure drop is smaller 

than that for a conventional sized channel. 

Lee et al. [32] conducted experiments of single phase flow of deionized water, 

through rectangular microchannels, made of copper and having hydraulic 

diameters of 318 to 903 µm. The flow Re was ranging from 300 to 3500. The 

authors carried out the experiments over a range of flow rates. They found that, at 

a given flow rate, the heat transfer coefficient increased with decreasing channel 

size. They also made numerical simulations, which model the experimental setup, 

by commercial software package FLUENT, and compared the numerical results 

with the experimental ones. Their simulations both include the three dimensional 

conjugate heat transfer and simplified thin wall case, in which axial conduction 

was neglected. They obtained a good agreement with the experimental results. 

They stated that, when the boundary conditions and the entrance effects are 

coupled carefully with conventional theories, heat transfer in microchannels can 

be predicted satisfactorily, in the dimensional range of this experiment. 

Renksizbulut et al. [33] investigated the slip flow and heat transfer of a constant 

property gas flow in rectangular microchannels of various aspect ratios. They 

solved the incompressible form of three dimensional Navier-Stokes equations and 

energy equations with velocity slip and temperature jump boundary conditions, by 

using a numerical method based on control volume. They considered the axial 

conduction effect but neglected viscous dissipation. They considered 0.1 ≤ Re ≤ 

10 and Kn ≤ 0.1  range, and Pr = 1 case. They found large reductions in the 

friction factor and Nu in the entrance region of the channel, which they attributed 

to the rarefaction effects. They stated that the entrance lengths were only slightly 

affected by the rarefaction effects for the range of considered Re, but they 

displayed a highly nonlinear dependence on the channel aspect ratio. They also 

proposed friction factor and Nu correlations, which were functions of Re, Kn, and 

the side angle of the channel. The proposed correlations were approximately valid 
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for rectangular and trapezoidal channels. When the results obtained from these 

correlations were compared with experimental results, it was seen that 

correlations deviates about 6% at most from experimental results. 

Morini et al. [34] investigated the rarefaction effects on the pressure drop for an 

incompressible fully developed laminar flow in the slip flow regime 0.001 ≤ Kn ≤ 

0.1 with an average Mach number less than 0.3, through silicon microchannels 

having rectangular, trapezoidal and double-trapezoidal cross-sections and various 

aspect ratios. They treated the flow as steady state and two dimensional, and 

assumed that the fluid is Newtonian with constant physical properties. They also 

assumed that all channel walls were rigid and non-porous. They solved the 

conservation of momentum equation for the fluid by using first-order Maxwell 

slip boundary condition at the wall, numerically by a code written with the 

software package FlexPDE. According to the authors this software solves systems 

of partial differential equations by a Rayleigh-Ritz-Galerkin finite element 

method. As a result, they stated that for trapezoidal and double-trapezoidal 

microchannels, the effect of the aspect ratio on the friction factor reduction was 

strong only if the aspect ratio is less than 0.5. Additionally, for gas flows, the 

effect of gas rarefaction can be decoupled from the compressibility effects if the 

average Mach number is less than 0.3 and then, the flow can be analyzed by using 

the Navier-Stokes equation for incompressible fluids with a slip flow boundary 

condition at the channel wall if the Kn ranges between 0.001 and 0.1. 

Cao et al. [35] investigated the fully developed laminar flow and heat transfer in 

the slip-flow regime in trapezoidal microchannels. They also assumed the flow as 

laminar and steady-state, and neglected the viscous dissipation effect. To solve the 

governing equations, they first converted the physical trapezoidal cross-section to 

a computational plane of square cross-section via a coordinate transformation; 

then solved the resulting equations numerically by a finite difference scheme for 

uniform wall heat flux boundary condition. They discussed rarefaction and 
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geometrical effects on friction coefficient and Nu. They found that the friction 

coefficient was reduced in the slip-flow region and the effect of aspect ratio and 

base angle became less obvious at high Kn. They also stated that the influences of 

aspect ratio and base angle on heat transfer were negligible for large temperature 

jump. 

Kuddusi and Çetegen [36] studied the incompressible, hydrodynamically 

developed, thermally developing gaseous flow in trapezoidal microchannels with 

hydraulic diameters ranging from 1 to 100 µm, with various aspect ratios. To 

solve the Navier-Stokes and the energy equations, they used a coordinate 

transformation, in which the trapezoidal cross-section converted to a unit square 

cross-section. Then the resulting equations were solved by a finite difference 

scheme. They validated their method by comparing the obtained thermally 

developing and fully developed Nu values, and friction factors for various 

channels, with the existing data in the literature. They discussed the effects of 

aspect ratio and rarefaction and found that when rarefaction increases, friction 

factor decreases. A similar situation also occurs when aspect ratio increases. They 

also observed that at low rarefaction values the high heat transfer rate at the 

entrance diminished rapidly as the developing flow approached the fully 

developed condition, but at high rarefaction heat transfer did not exhibit 

considerable change along the channel. 

Barber et al. [37] considered the low Kn isothermal flows over curved surfaces 

and questioned the validity of the conventional Maxwell’s first order slip velocity 

equation, which is given in Eq. (1.3). They showed that, this equation is unable to 

capture important physical properties over curved or rotating surfaces, and 

demonstrated the limitations with some rarefied flow problems. They also 

reformulated the slip velocity boundary condition, with the use of the local wall 

shear stress, to make it suitable for generalized curved surfaces. For a two-

dimensional surface, the equation becomes; 
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Dongari et al. [38] investigated the gaseous slip-flow in a long, parallel plate 

microchannel. They assumed that the flow was steady, isothermal, two 

dimensional and locally fully developed with negligible viscous dissipation. They 

chose the channel long, so the entry and exit effects became negligible. Then, they 

solved the integral from of Navier-Stokes equations analytically by assuming a 

second order slip velocity. They also considered the change in axial momentum in 

their analysis. They validated their theory with the available experimental data 

and showed that second-order slip velocity gives better results in slip-flow region. 

Interest in the effect of surface roughness in micro fluidic systems increased in the 

last decade. Mala and Li [39] investigated water flow through fused silica and 

stainless steel microtubes with various diameters between 50 µm and 254 µm 

experimentally up to Re = 2500. The mean surface roughness heights of both 

tubes were ± 1.75 µm, but shapes and distributions of roughness elements were 

not known. They observed deviations from the predictions of conventional 

theories as higher friction factor and friction constant, and a possible early 

transition from laminar to turbulent flow. For a fixed volume flow rate, the 

pressure gradient was higher than that predicted by the conventional theory. For 

small Re, the conventional theory and the experimental data were in a rough 

agreement. However as the Re increases, deviation from the conventional theory 

was observed. The deviation increases as the diameter of the microtubes 

decreases. They also introduced a roughness-viscosity model (RVM) to explain 

the effects of surface roughness, which depends on the idea of increasing 

momentum near the wall (around the roughness elements) and zero at the center 

of the channel. This additional momentum was accounted for by an additional 

viscosity term in the momentum formulation, similar to eddy-viscosity in 

turbulent flow. Then the modified momentum equation was solved by a numerical 
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method. However, this formulation includes a constant that depends on 

experimental data and geometry of the channel, which makes its use limited. They 

also proposed an empirical formula for this constant depending on their 

experimental data, thus a good agreement was obtained between the numerical 

results and experimental results. Moreover, this model does not include the 

velocity slip at the wall, since it was developed for liquid flow in microchannel 

where no-slip condition holds, and its use for gas flows is questionable.  

Qu et al. [40] conducted experiments of deionized water flowing through 

trapezoidal silicon microchannels with hydraulic diameters ranging from 51 µm to 

169 µm and measured the flow rate and pressure drop along the channel at steady 

state. These microchannels were manufactured by anisotropic chemical etching, 

and have 0.8 µm and 2.0 µm average roughness heights. The physical properties 

of water involved in the calculations, such as density and dynamic viscosity, were 

determined from the measured water temperature and assumed to be independent 

of the pressure. They also modelled the experimental setup and solved with 

conventional theories. For this purpose, they transformed the two dimensional 

trapezoidal cross-section to a square computational cross-section by a coordinate 

transformation, and solved the governing equations with a finite difference 

scheme. They observed higher pressure gradient and flow friction than the 

conventional theories and Re dependent friction coefficient. They concluded their 

analysis by applying the RVM proposed by Ref. [39] with a new formula for the 

previously mentioned constant, and found good agreement for relatively low Re 

values. 

In a proceeding work, Qu et al. [41] investigated the heat transfer characteristics 

of deionized water flowing through trapezoidal silicon microchannels, which were 

also produced by anisotropic chemical etching. These microchannels had 

hydraulic diameters ranging from 62 µm to 169 µm and average roughness 

heights of 0.8 µm and 2.0 µm. The temperatures, flow rate and the pressure drop 
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along the microchannel were measured. They also solved the conjugate heat 

transfer problem, which combines heat conduction in the solid region and heat 

convection in the fluid region, numerically. They neglected the entrance effects, 

viscous dissipation and axial heat conduction, and assumed a laminar, fully 

developed flow at steady state in the trapezoidal microchannels. Then, momentum 

and energy equations were solved for no-slip and no temperature jump boundary 

conditions with a finite difference scheme. They observed smaller Nu values than 

the conventional theory, which was a result of surface roughness. They also 

applied the RVM that was modified for the trapezoidal microchannels [40] and 

proposed new modified Nu relationship. Good agreement between experimental 

Nu and modified Nu was obtained. 

Kandlikar et al. [42] experimentally investigated the effect of surface roughness 

on pressure drop and heat transfer by using stainless steel mini tubes having 1.032 

mm and 0.62 mm diameters, and distilled water as the working fluid. The 

roughness of the tubes was changed by etching them with an acid solution. Thus, 

they obtained relative roughness values of 0.00178 to 0.00281 for the tube having 

1.067 mm diameter, and 0.00161 to 0.00355 for the tube of 0.62 mm diameter. 

They conducted the experiments for a Re range of 500 to 2600 for the 1.067 mm 

tube and 900 to 3000 for 0.62 mm tube. They compared the experimental local Nu 

values with theoretical ones and showed that the agreement is within the 

experimental uncertainties. They found that the effect of surface roughness on 

pressure drop and heat transfer for the larger tube were negligible, but for the 0.62 

mm tube heat transfer and pressure drop showed dependence on the surface 

roughness, namely highest heat transfer and pressure drop occurred in the tube 

with highest relative roughness value. They concluded with the recommendation 

of further research on tubes with much smaller diameters. 

Sun and Faghri [43] numerically investigated the effects of relative surface 

roughness, roughness distribution, and gas rarefaction on nitrogen flow in a 
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parallel plate channel where the roughness was modeled by an array of 

rectangular obstructions placed on sides of channel. They used the DSMC method 

in slip-flow regime. They found that the friction coefficient increased as the 

roughness height increased, and also when the distance between the roughness 

modules decreased. They stated that the effect of surface roughness was more 

pronounced at low Kn, which was the result of reduced interaction between the 

gas molecules and channel walls at high Kn values. 

Hu et al. [44] investigated the effect of surface roughness, mainly effects of the 

roughness elements’ height, size, spacing and channel height, on velocity 

distribution and pressure drop. They considered a steady state pressure driven 

fully developed water flow in low Re regime (0.001 < Re < 10) in a microchannel 

formed by two parallel plates, and modeled the roughness elements as rectangular 

prisms on the surfaces. For simplicity, they neglected the turbulence and the wake 

between roughness elements, and the channel side wall effects. Then, they solved 

the three dimensional Navier-Stokes equations numerically with no-slip boundary 

condition for different heights, sizes and arrangements of roughness elements. The 

numerical method used was the finite volume method. They found that the 

pressure drop per unit length increases when roughness height increases or when 

the roughness size increases while keeping the spacing between the roughness 

elements constant. When the spacing increased or the channel height increased, 

pressure drop per unit length decreased. 

Later, Baviére et al. [45] studied the same geometry, properties and boundary 

conditions of Ref. [44] only by extending the Re range to 1 < Re < 200, both 

analytically and numerically. For numerical simulation they used the commercial 

CFD software FLUENT. Their analytical model was based on the method for 

predicting the rough-wall skin friction in turbulent flows. They found that the 

flow was independent of the Re in the considered range. 
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Another experimental work was proposed by Wu and Cheng [46]. They 

conducted experiments of laminar deionized water flow in 13 trapezoidal silicon 

microchannels, which had different geometric parameters, surface roughness and 

surface hydrophilic properties. Trapezoidal microchannels were formed by wet 

etching of the <100> silicon wafers in a solution of KOH. To study the effect of 

surface hydrophilic property on the flow and heat transfer, some of the channels 

were deposited by a thermal oxide layer to increase their surface hydrophilic 

capacity. They found that the Nu and the friction constant increased with 

increasing surface roughness and surface hydrophilic property, especially at high 

Re values. Heat transfer in microchannels having strong hydrophilic surfaces was 

enhanced, especially at high Re, with increase in pressure drop. However, they 

also stated that the geometric parameters have more effect on the performance of 

the microchannel than the surface roughness and surface hydrophilic property. 

Furthermore, they found sharp and almost linear increase in Nu with increasing Re 

for Re < 1 00 flows, but after that the increase was smooth. Moreover, they 

proposed two correlations for Nu for the Re ranges of 10 < Re < 100 and 100 < 

Re < 1500, and one for the apparent friction constant depending on their 

experimental results, as given below: 

For 10 < Re < 100:  

𝑁𝑁𝑢𝑢 = 𝐶𝐶1𝑅𝑅𝑅𝑅0.946𝑃𝑃𝑃𝑃0.488 �1 −
𝑊𝑊𝑏𝑏

𝑊𝑊𝑡𝑡
�

3.547

�
𝑊𝑊𝑡𝑡

𝐻𝐻
�

3.577

�
𝑘𝑘
𝐷𝐷ℎ
�

0.041

�
𝐷𝐷ℎ
𝐿𝐿
�

1.369

 (2.2) 

For 100 < Re < 1500:  

𝑁𝑁𝑢𝑢 = 𝐶𝐶2𝑅𝑅𝑅𝑅0.148𝑃𝑃𝑃𝑃0.163 �1 −
𝑊𝑊𝑏𝑏

𝑊𝑊𝑡𝑡
�

0.908

�
𝑊𝑊𝑡𝑡

𝐻𝐻
�

1.001

�
𝑘𝑘
𝐷𝐷ℎ
�
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�
𝐷𝐷ℎ
𝐿𝐿
�

0.798

 (2.3) 

For 10 < Re < 1500:  

𝑓𝑓𝑎𝑎𝑠𝑠𝑠𝑠 𝑅𝑅𝑅𝑅 = 𝐶𝐶3𝑅𝑅𝑅𝑅0.089 �1 −
𝑊𝑊𝑏𝑏

𝑊𝑊𝑡𝑡
�
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𝑊𝑊𝑡𝑡
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𝐷𝐷ℎ
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�
𝐷𝐷ℎ
𝐿𝐿
�

1.023

 (2.4) 
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where C1 = 6.7, C2 = 47.8, and C3 = 508.7 for silicon surfaces, and C1 = 6.6, C2 = 

54.4, and C3 = 540.5 for thermal oxide surfaces. Also, Wb is the bottom width of 

the channel, Wt is the top width of the channel, H is the height of the channel, k is 

the surface absolute roughness, Dh is the hydraulic diameter (thus k / Dh gives the 

surface relative roughness), and 𝐿𝐿 is the length of the channel. These equations are 

valid for 0 ≤ Wb / Wt ≤ 0.934, 0.038 ≤ H / Wt ≤ 0.648, 3.26x10-4 ≤ k / Dh ≤ 1.09x10-

2, 191.77 ≤ L / Dh ≤ 453.79, and 4.05 ≤ Pr ≤ 5.79  for Eq. (2.2) and 4.44 ≤ Pr ≤ 

6.05 for Eq. (2.3). According to the authors, range of deviations of these equations 

from experimental data is 20.3%, 19.8% and 19.3% for Eqns. (2.2), (2.3), and 

(2.4), respectively. 

Kleinstreuer and Koo [47] proposed the porous medium layer (PML) model to 

investigate the effects of surface roughness on the friction factor for liquid flows 

in micro-conduits. Roughness on the wall is considered as a porous medium and 

its effect is modeled by the resistance offered by this porous layer. They showed 

the application of this model for steady, laminar, fully developed liquid flows in 

two dimensional microchannels, microtubes, and micro-journal bearings. They 

stated that the model predicts the friction factor well compared with the 

experimental data in literature, where the relative roughness was significant. Koo 

and Kleinstreuer [48] extend their work by analyzing the effect of surface 

roughness on heat transfer in such conduits. They found that the surface 

roughness effect on heat transfer was less significant than on momentum transfer. 

Furthermore, the effect of Re on Nu was found to be negligible compared to its 

effect on friction factor. 

Turner et al. [49] conducted experiments to investigate laminar gas flow in 

microchannels. They used five smooth microchannels (relative roughness values 

were between 0.001 to 0.006) that were etched into <100> silicon wafers and had 

hydraulic diameters in the range 4.7 < Dh < 95 µm, and three rough microchannel 

etched into <110> silicon wafers with hydraulic diameters in the range 10 < Dh < 
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96 µm and relative roughness values of 0.02, 0.03, and 0.06. When relative 

roughness and Mach number were kept small, agreement between the measured 

friction factor and theoretical incompressible value was good for Kn < 0.01. 

Above this, friction factor decreased. When Kn reached a value of 0.15, the 

reduction in the friction factor was 50%. Also, for laminar gas flow they did not 

observe any significant effect of relative surface roughness on friction factor and 

obtained similar results to those obtained from Moody’s chart.  However, this 

observation is different from the other studies and needed to be verified. 

Moreover, they found that the friction factor was independent of surface 

roughness for rarefied gas flow, had minor influence in compressible flow, in the 

experimental surface roughness range. 

Croce and D’Agaro [50] performed numerical simulations of heat transfer and 

pressure loss in rough microtubes and microchannels, having diameters ranging 

from 50 µm to 150 µm and relative roughness height ranging from 0.0% to 5.3%, 

with a finite element CFD code. They assumed laminar incompressible fully 

developed flow of liquid R-114 at steady state and neglected viscous dissipation. 

They modeled the surface roughness as randomly generated rectangular and 

triangular peaks on the smooth surface. They found an increase in Poiseuille 

number relative to a smooth surface. They also stated that the effect of surface 

roughness on heat transfer depends on the roughness elements and channel 

geometry. In a proceeding work [51], they compared their results with the RVM 

by Mala and Li [39] and the PML by Koo and Kleinstreuer [47], and obtained 

reasonably good agreement. 

Wang et al. [52] introduced the method of regular perturbation to study the effect 

of wall roughness on Poiseuille flow in parallel plate microchannels. They 

considered a steady state laminar fully developed flow of a Newtonian fluid and 

solved the Navier-Stokes equation by introducing the stream function, with no-

slip boundary condition. The wall roughness was modeled by superimposing a 
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series of harmonic functions. They stated that the effect of roughness on friction 

factor depends on the energy dissipation of the fluid while the effect of the 

roughness on flow pattern depends on the kinetic energy of the main flow. 

To extend the understanding of the roughness effect and to characterize it, 

Kandlikar et al. [53] proposed three new roughness characterization parameters, 

namely the maximum profile peak height Rp, mean spacing of profile irregularities 

RSm, and floor distance to mean line Fp, which are shown in Fig. (2.1).  

 

 

 

Figure 2.1: Graphical representation of maximum profile peak height Rp, mean 
spacing of profile irregularities RSm, and floor distance to mean line Fp [53]. 

 

 

The authors also presented three additional parameters to consider the local 

hydraulic diameter variation: maximum, minimum, and average. With these new 

parameters, they defined the roughness height ε, constricted flow diameter Dcf, 

and related modified Re and friction factor as; 

𝜀𝜀 = 𝑅𝑅𝑠𝑠 + 𝐹𝐹𝑠𝑠  (2.5) 

𝐷𝐷𝑐𝑐𝑓𝑓 = 𝐷𝐷𝑡𝑡 − 2𝜀𝜀 (2.6) 
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𝑅𝑅𝑅𝑅𝑐𝑐𝑓𝑓 =
4�̇�𝑚

𝜋𝜋𝐷𝐷𝑐𝑐𝑓𝑓𝜇𝜇
 (2.7) 

𝑓𝑓𝐷𝐷𝑎𝑎𝑃𝑃𝑐𝑐𝜕𝜕 ,𝑐𝑐𝑓𝑓 =
64
𝑅𝑅𝑅𝑅𝑐𝑐𝑓𝑓

 (2.8) 

where �̇�𝑚 is the mass flow rate in kg/s, and µ is the dynamic viscosity in Ns/m2. 

Later, they modified the Moody’s diagram with these new parameters, as given in 

Fig (2.2). They also conducted some experiments with air and water in rectangular 

channels with hydraulic diameters ranging from 325 to 1819 µm, relative 

roughness values based on constricted flow diameter from 1% to 14%, Re values 

from 200 to 7200 for air and 200 to 5700 for water. They observed early laminar 

to turbulent transition with increasing relative roughness. This is a still-developing 

method and they stated that understanding the 3D effects of roughness is needed 

for future work. In a following study, Taylor et al. [54] discussed these new 

parameters as well as the historical development of surface roughness 

investigations. They also discussed the future work, standardization, and needs of 

this field.  

Celata et al. [55] investigated the effect of channel wall roughness and wall 

hydrophobicity in circular microchannels having diameters of 70 to 326 µm with 

relative roughness less than 1%, experimentally, as well as experiments conducted 

in smooth tubes with diameters of 31 to 259 µm. Test microtubes were made of 

fused silica, glass and Teflon. Rough tubes were obtained from smooth glass tubes 

by using fine-grain abrasive powder and liquid silicon oil. The working fluid was 

demineralised and degassed water. They did not observe any deviation from 

classical laws for the smooth cases. Moreover, they did not encounter any effect 

of slip flow due to hydrophobic channel walls and the cause of liquid slip flow 

observed in some researches was attributed to local desorption of dissolved gases. 

They did not observe any early transition to turbulent flow either. 
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Figure 2.2: Modified Moody’s friction factor chart [53]. 

 

Rawool et al. [56] performed a three-dimensional numerical simulation of air flow 

through a serpentine microchannel having square cross-section with designed 

roughness. Roughness elements were modeled as trapezoidal, rectangular and 

triangular obstructions placed along the channel wall. They used the commercial 

CFD software CFD-ACE+ for the simulation and solved the steady state Navier-

Stokes equations with no-slip boundary conditions for the Re range 4 0  < Re < 

200. They found that the friction factor was bigger for the rectangular and 

triangular obstruction cases than the trapezoidal obstruction case, and it increased 

as the obstruction heights increased. They also found that the pressure drop 

decreases as the obstruction pitch increases. 

Shen et al. [57] investigated single phase convective heat transfer in a compact 

heat sink consisting of 26 rectangular microchannels each having dimensions of 

300 µm width and 800 µm depth. Microchannels were made of copper and 
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relative roughness was 4-6%. They used deionized water as the working fluid in 

the experiments and conducted the test for the Re range of 162 < Re < 1257 with 

different water inlet temperatures and heating powers. They found higher 

Poiseuille numbers than the conventional values in high Re regimes, and an 

increase with increasing Re values. They also found significantly low local and 

average Nu and observed increase both in local and average Nu with increasing Re 

and Pr, which was attributed to surface roughness effect. Furthermore, they did 

not observe any early transition from laminar to turbulent flow. 

Ji et al. [58] investigated the effect of surface roughness on two dimensional, 

rarefied, compressible gas flow through a parallel plate microchannel, 

numerically. Simulated gas was nitrogen having constant thermophysical 

properties with inlet Mach number ranging from 0.0055 to 0.202 and Re ranging 

from 0.001 to 100. Roughness was modeled by rectangular slabs which were 

uniformly and symmetrically distributed on the plates. They solved the 

compressible form of the Navier-Stokes and the energy equations for constant 

wall temperature boundary condition with second order velocity slip and 

temperature jump at the walls. The numerical method was based on finite volume 

method. Numerical simulations were carried out for relative roughness heights 

from 0.1% to 6% where they defined the relative roughness height as the ratio of 

roughness height over channel height. They found that the effect of surface 

roughness on the flow was stronger for low Kn values. They also stated that the 

reduction in average Nu was more significant for rarefied flow compared to 

compressible flow, and the roughness affects the Poiseuille number more than the 

average heat transfer rate.  

Cao et al. [59] performed non-equilibrium molecular dynamics simulations to 

investigate the effect of surface roughness on rarefied gas flows. In their 

simulations, they assumed locally fully developed flow of gaseous argon flowing 

through submicron platinum channels with roughness. The roughness elements 
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were modeled as triangular, rectangular, sinusoidal, and randomly generated 

triangular waves. They found smaller slip length than the Maxwell model’s 

prediction, and higher friction coefficient compared to smooth channels. They 

also stated that the roughness geometry had great influence on the friction 

characteristics. 

Tang et al. [60] reviewed the experimental studies on friction factor and then 

conducted experiments to investigate the effects of compressibility, rarefaction 

and surface roughness on the friction factor of gaseous nitrogen and helium flow 

in microchannels. To investigate the surface roughness effect, they used fused 

silica microtubes, stainless steel microtubes and fused silica square microchannels 

with diameters ranging from 50 to 201 µm, 119 to 300 µm and hydraulic 

diameters from 52 to 100 µm, respectively. To investigate the rarefaction effect, 

they used fused silica microtubes with diameters from 10 to 20 µm. They 

observed much higher friction factors than the conventional theories in stainless 

steel tubes, which had the most dense roughness elements among the tested micro 

conduits. Friction factor for the fused silica tubes and channels agreed with the 

theoretical values. Tests with small diameter tubes showed reduction in friction 

factor that was attributed to the rarefaction effect. 

Wang and Wang [61, 62] studied the roughness effect by a regular perturbation 

method in two separate cases. In the first case [61], the flow was in microtubes 

where roughness was modeled by a two dimensional simple harmonic function. 

The relative roughness was from 0 to 0.05 and the flow Re range was 1 < Re < 

500. They included the effects of viscous dissipation, but neglected the velocity 

slip. They found an increase in pressure drop with the increase of relative 

roughness. In the second case [62], the flow was between parallel plates where 

they defined the roughness as a wave on the surfaces. They considered up to 10% 

relative roughness and Re range of 1 < Re < 200 in their computations. They 

solved the incompressible two dimensional Navier-Stokes equations with no-slip 



34 
 

boundary condition. For this purpose, they transformed the domain into a smooth 

one by coordinate transformation. Then, related equations were solved by a 

perturbation method. They found that the flows were viscous dominant for low Re 

flows and separation from surface occurred for large relative roughness values at 

high Re values. 

Recently, Croce et al. [63] extended their previous work [50] to three dimensions. 

They defined the roughness elements as three dimensional conical peaks on a 

plane microchannel that result the relative roughness ranging from 0.05% to 

2.65%. They considered laminar flow of an incompressible fluid with constant 

properties and neglected the viscous dissipation. They solved the related equations 

numerically with no-slip and constant wall temperature boundary conditions for 

different peak heights and different peak arrangements. The numerical simulation 

was based on a finite element method. They found that roughness had an 

important effect on pressure drop and less on heat transfer. Also, they stated the 

importance of the roughness elements’ geometrical properties on microchannel 

performance. 

Later, Croce et al. [64] performed a numerical analysis of compressibility and 

rarefaction effects on pressure drop in parallel plate microchannels with relative 

surface roughness from 0% to 2.65%. They modeled the roughness as triangular 

obstructions in a portion of the channel. They considered viscous dissipation in 

their analysis and assumed constant fluid physical properties. They solved the 

compressible form of the Navier-Stokes and energy equations with generalized 

Maxwell slip and constant temperature boundary conditions, but neglected the 

temperature jump at the walls. Resulting equations were solved with a hybrid 

finite volume-finite difference solver. They found great effect of rarefaction on 

Poiseuille number; however roughness geometry reduces this effect. Also, 

roughness effect was found to be stronger at high Kn. 
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In the light of above literature search, it was seen that most of the studies dealing 

with surface roughness effect were done with the continuum assumptions, which 

were no-slip and/or no temperature jump. Moreover, studies of gas flows in slip-

flow regime in rough microchannels are rare, especially for heat transfer analysis. 

As a result, very little data exists in the open literature, and studies considering 

roughness and channel geometrical properties as well as different flow conditions 

are still needed. Thus, in this study gas flow in the slip-flow regime in a rough 

microchannel is considered with laminar incompressible flow and constant fluid 

thermophysical properties assumptions. Then, Navier-Stokes and energy 

equations are solved with appropriate boundary conditions for two dimensional 

geometries. 
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CHAPTER – 3 

 

PROBLEM DEFINITION AND NUMERICAL METHOD 

 

 

For the 2D case, a laminar, viscous, incompressible, single-phase Newtonian flow 

at steady state between parallel plates with constant wall temperatures is 

considered. The fluid is assumed to have constant thermo-physical properties. The 

flow is assumed to have uniform velocity and temperature at the channel inlet and 

the flow is in slip-flow regime inside the channel. This slip effect is accounted for 

by imposing the slip velocity and temperature jump boundary conditions at the 

wall. The roughness is modeled by adding triangular obstructions along one of the 

channel walls. Then, the Navier-Stokes and energy equations are solved with 

appropriate boundary conditions, numerically. Since the fluid is assumed to have 

constant thermo-physical properties, Navier-Stokes and energy equations are 

solved separately. The numerical method is the Galerkin based reduced 

integration penalty finite element method for the Navier-Stokes equations, and 

standard Galerkin finite element method for the energy equation, which are 

explained in the following sections. Also, numerical calculations are carried out in 

an equivalent parallel plate channel with smooth surfaces to test the numerical 

code and to compare the results with those obtained from the rough channel. 
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3.1 – Problem Geometry and Boundary Conditions: 

Geometry of the smooth channel is given in Fig. (3.1), and the rough channel in 

Fig. (3.2), schematically. Also, the applied boundary conditions are shown on the 

figures. 

 

 

 

 

 

 

 

Figure 3.1: Schematic of the smooth channel. 

 

 

 

 

 

 

 

Figure 3.2: Schematic of the rough channel. 
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Boundary conditions can be summarized as follows: 

Inlet: 𝑢𝑢 = 𝑈𝑈𝑖𝑖 ,      𝑣𝑣 = 0,      𝑇𝑇 = 𝑇𝑇𝑖𝑖  

(3.1) 

Solid walls: 𝑣𝑣 = 0 

 𝑢𝑢𝑠𝑠 =
2 − 𝐹𝐹𝑀𝑀
𝐹𝐹𝑀𝑀

𝜆𝜆 �
𝜕𝜕𝑢𝑢𝑡𝑡
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢𝜕𝜕
𝜕𝜕𝑡𝑡

�
𝑤𝑤

 

 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑤𝑤 =
2𝛾𝛾
𝛾𝛾 + 1

2 − 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇

𝜆𝜆
𝑃𝑃𝑃𝑃

�
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝑤𝑤

 

Outlet: traction free 

 

Since the tangential momentum accommodation coefficient, FM and the thermal 

accommodation coefficient, FT is close to unity in most of the engineering 

applications, many of the numerical simulations in literature are carried out by 

selecting them as 1, if no special interest on their value is sought. Thus, in this 

study, they are selected as 1 to better compare the results. 

Relative roughness, ε, of the channel surface is defined as 

𝜀𝜀 =
𝑒𝑒
𝐷𝐷ℎ

 (3.2) 

where e is the average height of the roughness elements, and Dh is the hydraulic 

diameter of the channel. In most of the studies in literature, it is stated that silicon 

micro-channels generally have a relative roughness value between 0 – 4%. Thus, 

in this study, relative roughnesses of 1.325%, 2.0% and 2.65% are considered. 

The 2.65% relative roughness value is considered only in continuum regime to 

compare with literature. Geometrical properties of the roughness elements are 

shown in Fig. (3.3). Base angles of the triangular roughness elements are 45 

degrees and spacing between the peaks of roughness elements is 5 times of their 

height. Such kind of geometrical properties and spacing of roughness element is 

used in a case in Ref. [50] where incompressible flow with no-slip boundary 

conditions is investigated and in Ref. [64] where compressible flow is 
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investigated. These elements are replaced in the middle of the channel. There are a 

total of 30, 20, and 15 elements along the channel for the cases of 1.325%, 2.0% 

and 2.65% relative roughness, respectively. 

 

Figure 3.3: Geometrical properties of the roughness elements on the channel 

surface. 

 

 

3.2 – Governing Equations: 

Governing equations for two dimensional, steady, viscous flow of a Newtonian 

fluid with constant properties are the continuity, momentum, and energy 

equations. By neglecting the body forces, the continuity and momentum 

equations, and the energy equation with axial conduction and viscous dissipation, 

can be written in vectorial form in Cartesian coordinates as; 

 

Continuity: ∇. 𝒖𝒖��⃗  =0 (3.3) 

Momentum: 𝜌𝜌(𝒖𝒖��⃗ .𝛻𝛻𝒖𝒖��⃗ ) = −𝛻𝛻𝑝𝑝 + 𝛻𝛻 ∙ (𝜇𝜇[(𝛻𝛻𝒖𝒖��⃗ ) + (𝛻𝛻𝒖𝒖��⃗ )𝑇𝑇]) (3.4) 

Energy: 𝜌𝜌𝐶𝐶𝑃𝑃(𝒖𝒖 ���⃗ ∙ 𝛻𝛻𝑇𝑇) = 𝛻𝛻 ∙ (𝑘𝑘𝛻𝛻𝑇𝑇) + 𝛷𝛷 (3.5) 

 

45° e 

2e 3e 
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These equations can be written in non-dimensional form by using the following 

non-dimensional parameters; 

𝑢𝑢� =
𝑢𝑢
𝑈𝑈𝑚𝑚

 �̅�𝑣 =
𝑣𝑣
𝑈𝑈𝑚𝑚

 𝑥𝑥 =
𝑥𝑥
𝐷𝐷ℎ

 𝑦𝑦 =
𝑦𝑦
𝐷𝐷ℎ

 

(3.6) 
𝑃𝑃� =

𝑃𝑃
𝜌𝜌𝑈𝑈𝑚𝑚2

 𝜃𝜃 =
𝑇𝑇 − 𝑇𝑇𝑤𝑤
𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑤𝑤

 𝐾𝐾𝜕𝜕 =
𝜆𝜆
𝐻𝐻

 𝑅𝑅𝑒𝑒 =
𝜌𝜌𝑈𝑈𝑚𝑚𝐷𝐷ℎ
𝜇𝜇

 

𝜗𝜗 =
𝜇𝜇
𝜌𝜌

 𝛼𝛼 =
𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

 𝑃𝑃𝑃𝑃 =
𝜗𝜗
𝛼𝛼

 𝐵𝐵𝑃𝑃 =
𝜇𝜇𝑈𝑈𝑚𝑚2

𝑘𝑘(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑤𝑤) 

𝑃𝑃𝑒𝑒 = 𝑅𝑅𝑒𝑒𝑃𝑃𝑃𝑃    

 

where Um is the mean velocity, H is the channel height, ρ is the fluid density, µ is 

the fluid dynamic viscosity, 𝜗𝜗  is the fluid kinematic viscosity, α is the fluid 

thermal diffusivity, k is the fluid thermal conductivity, cp is the specific heat of the 

fluid at constant pressure, θ is the non-dimensional temperature, Tw is the constant 

channel wall temperature, Ti is the constant fluid inlet velocity, Kn is the Knudsen 

number, Re is the Reynolds number, Pr is the Prandtl number, Pe is the Peclet 

number, and Br is the Brinkman number. After substituting the non-dimensional 

parameters given in Eq. (3.6) into Eqs. (3.3) through (3.5) and the boundary 

condition set given in Eq. (3.1), and removing the bar signs over the non-

dimensional parameters for simplicity, the governing equations became: 

 

Continuity: ∇.  𝒖𝒖��⃗  =0 (3.7) 

Momentum: (𝒖𝒖��⃗ .𝛻𝛻𝒖𝒖��⃗ ) = −𝛻𝛻𝑝𝑝 +
1
𝑅𝑅𝑒𝑒

𝛻𝛻 ∙ [(𝛻𝛻𝒖𝒖��⃗ ) + (𝛻𝛻𝒖𝒖��⃗ )𝑇𝑇] (3.8) 

Energy: (𝒖𝒖 ���⃗ ∙ 𝛻𝛻𝜃𝜃) =
1
𝑃𝑃𝑒𝑒

{𝛻𝛻 ∙ (𝛻𝛻𝜃𝜃) + 𝛷𝛷} (3.9) 
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and 

x = 0: 𝑢𝑢 = 1,      𝑣𝑣 = 0,      𝜃𝜃 = 1 

(3.10) 
y = 0,  y = H: 𝑢𝑢𝑠𝑠 =

2 − 𝐹𝐹𝑀𝑀
𝐹𝐹𝑀𝑀

(𝐾𝐾𝜕𝜕) �
𝜕𝜕𝑢𝑢𝑡𝑡
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢𝜕𝜕
𝜕𝜕𝑡𝑡

�
𝑤𝑤

 

 𝜃𝜃𝑠𝑠 =
2𝛾𝛾
𝛾𝛾 + 1

2 − 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇

(𝐾𝐾𝜕𝜕)
𝑃𝑃𝑃𝑃

�
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕
�
𝑤𝑤

 

 

The local Nusselt number is defined as, 

𝑁𝑁𝑢𝑢𝑥𝑥 =
ℎ𝑥𝑥𝐷𝐷ℎ
𝑘𝑘

 (3.11) 

 

where hx is the local heat transfer coefficient and written as, 

ℎ𝑥𝑥 =
𝑘𝑘

(𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑤𝑤) �
𝜕𝜕𝑇𝑇
𝜕𝜕𝜕𝜕
�
𝑤𝑤

 (3.12) 

 

When the non-dimensional parameters given in Eq. (3.6) are used, Eq. (3.11) 

become, 

𝑁𝑁𝑢𝑢𝑥𝑥 =
𝐷𝐷ℎ
𝜃𝜃𝑚𝑚

�
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕
�
𝑤𝑤

 (3.13) 

 

where θm is the non-dimensional mean temperature and can be calculated by, 

𝜃𝜃𝑚𝑚 =
∫ 𝑢𝑢 𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑

∫ 𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑

 (3.14) 
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Also, the mean velocity along the channel can be calculated by, 

𝑢𝑢𝑚𝑚 =
∫ 𝑢𝑢 𝑑𝑑𝑑𝑑𝑑𝑑

∫ 𝑑𝑑𝑑𝑑𝑑𝑑

 (3.15) 

 

 

3.3 – Numerical Method: 

Governing equations are solved numerically by a Galerkin based Finite Element 

Method (FEM), explicitly the reduced integration penalty finite element method 

for the hydraulic part and standard Galerkin FEM for the energy part. FEM is a 

powerful method in comparison with the other methods such as finite volume or 

finite differences for problems involving complex geometries and boundary 

conditions [65]. Briefly, in FEM, first the computational domain is discretized 

into finite elements, which is also called mesh (or grid) generation. Mesh 

generation can be done by using either triangular or quadrilateral elements in two-

dimensional geometries, and tetrahedral, prism, or hexahedral (brick) elements in 

three-dimensional geometries. Then, the governing equations of the problem in 

interest are written in weighted integral sense (weak formulation) and by using 

this weak form, finite element model of the problem is developed. After the model 

development, elements used in the domain are assembled to obtain the global 

system of algebraic equations that define the problem. Finally, the equation set is 

solved after implementing the boundary conditions [66]. These steps will be 

shown in reasonable detail for the momentum and energy equations in the 

following subsections. Additional information can be obtained from Refs. [65] 

and [66]. 
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3.3.1 – Formulation of the Momentum Equations: 

Considering the momentum equations in open form, all nonzero expressions are 

taken to one side of the equality sign. Then, the resulting equations are multiplied 

with a weight (test) function δui, and integrated over the element domain Ωe to 

obtain the needed weighted integral statements (weak forms of the equations). 

 

x-momentum:  

� 𝛿𝛿𝑢𝑢𝑖𝑖 ��𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦
� −

2
𝑅𝑅𝑒𝑒 �

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2� −

1
𝑅𝑅𝑒𝑒

𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
� +

𝜕𝜕𝑃𝑃
𝜕𝜕𝑥𝑥
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 = 0

𝛺𝛺𝑒𝑒
 (3.16) 

y-momentum:  

� 𝛿𝛿𝑢𝑢𝑖𝑖 ��𝑢𝑢
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
� −

2
𝑅𝑅𝑒𝑒 �

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑦𝑦2� −

1
𝑅𝑅𝑒𝑒

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
� +

𝜕𝜕𝑃𝑃
𝜕𝜕𝑦𝑦
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 = 0

𝛺𝛺𝑒𝑒
 (3.17) 

 

Also, it is necessary to equally distribute the integration between the dependent 

variables and weight functions in the second order partial derivatives of these 

equations. For this purpose, one should use the integration by parts (Green-Gauss 

Theorem) in two dimensions. Resulting weak statements of these equations forms 

the variational problem subjected to a constrained which is continuity equation. In 

penalty function method, problem is reformulated as an unconstrained one. Since 

the velocity field constrained to satisfy the continuity equation, the weight 

functions of velocity components also satisfy the continuity equation,  

𝜕𝜕𝛿𝛿𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝛿𝛿𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦

= 0 
(3.18) 

As a result of this formulation, pressure does not appear explicitly in variational 

problem. Details of the formulation can be found in Ref. [66]. At last, weak forms 

are given as for x-momentum; 
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� 𝛿𝛿𝑢𝑢𝑖𝑖 �𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦
�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

+
1
𝑅𝑅𝑒𝑒

� �2
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
�� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

+ � 𝜖𝜖𝑝𝑝
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

= � 𝛿𝛿𝑢𝑢𝑖𝑖𝑡𝑡𝑥𝑥𝑑𝑑𝑑𝑑
𝑑𝑑𝑒𝑒

 

(3.19) 

where  

𝑡𝑡𝑥𝑥 = �
2
𝑅𝑅𝑒𝑒

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜖𝜖𝑝𝑝 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�� 𝜕𝜕𝑥𝑥 +

1
𝑅𝑅𝑒𝑒

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
� 𝜕𝜕𝑦𝑦  (3.20) 

 

 

and for y-momentum; 

� 𝛿𝛿𝑢𝑢𝑖𝑖 �𝑢𝑢
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

+
1
𝑅𝑅𝑒𝑒

� �2
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
�� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

+ � 𝜖𝜖𝑝𝑝
𝜕𝜕𝛿𝛿𝑢𝑢𝑖𝑖
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

= � 𝛿𝛿𝑢𝑢𝑖𝑖𝑡𝑡𝑦𝑦𝑑𝑑𝑑𝑑
𝑑𝑑𝑒𝑒

 

(3.21) 

 

where 
 

𝑡𝑡𝑦𝑦 =
1
𝑅𝑅𝑒𝑒

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
� 𝜕𝜕𝑥𝑥 + �

2
𝑅𝑅𝑒𝑒

𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

+ 𝜖𝜖𝑝𝑝 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�� 𝜕𝜕𝑦𝑦  (3.22) 
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Since the pressure term does not appear in momentum equations, it can be 

computed by the relation 

𝑃𝑃 =  −𝜖𝜖𝑝𝑝 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
� (3.23) 

In Eqs. (3.19-3.23), 𝜖𝜖𝑝𝑝  is the penalty parameter, which should be between 104 to 

1012 according to Ref. [66]. It is also stated that, magnitude of the penalty 

parameter depends on many other parameters such as mesh, computer capacity, 

and Re. When penalty parameter is too high, system matrix become singular and 

locking occurs. In this study, when penalty parameter was chosen as 1012, system 

matrix became singular. When it was chosen as 1010 and 1011, convergence 

problems occurred. Also, when it was selected as 109, convergence took an 

unnecessarily long time. Thus, penalty parameter is chosen as 108 in this study. As 

a result, pressure and continuity equation drop out from the system equation set. 

After solving the velocity field, pressure can be computed if needed with known 

velocities using Eq. (3.23) or by pressure Poisson equation, which can be obtained 

by differentiating x- and y-momentum equations with respect to x and y, 

respectively, and summing the resulting equations. 

In Eqs. (3.19-3.22), u and v are primary variables; tx and ty are secondary variables 

which define the total boundary stress. The line integrals in Eqs. (3.19) and (3.21) 

containing the secondary variables are called the boundary integrals and their 

solution procedure depends on the boundary conditions of the problem. Integrals 

in these equations will be evaluated numerically using 2x2 or 3x3 Gauss – 

Legendre quadrature, depending on the elements used in the finite element mesh. 

It is necessary to use at least 2x2 quadrature for bilinear elements (i.e., 4-node 

quadrilateral element), and 3x3 quadrature for quadratic elements (i.e., 9-node 

quadrilateral element).  
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Substituting the shape (approximation) functions, ψi, for the non-dimensional 

velocity components and the weight function, 

 

𝑢𝑢 = �𝑢𝑢𝑗𝑗Ψj(x, y)
𝜕𝜕

𝑗𝑗=1

 𝑣𝑣 = �𝑣𝑣𝑗𝑗Ψj(x, y)
𝜕𝜕

𝑗𝑗=1

 𝛿𝛿𝑢𝑢𝑖𝑖 = Ψi  (3.24) 

 

where n is the total node number used in the computational element, into the Eqs. 

(3.19-3.22), gives for the x-momentum: 

 

� �𝛹𝛹𝑖𝑖 �𝑢𝑢�
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

+ �̅�𝑣
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

� 𝑢𝑢𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � �
1
𝑅𝑅𝑒𝑒

�2
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

�𝑢𝑢𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � �
1
𝑅𝑅𝑒𝑒

�
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

� 𝑣𝑣𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � � 𝜖𝜖𝑝𝑝 �
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

�𝑢𝑢𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � � 𝜖𝜖𝑝𝑝 �
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

� 𝑣𝑣𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

= � 𝛹𝛹𝑖𝑖𝑡𝑡𝑥𝑥𝑑𝑑𝑑𝑑
𝑑𝑑𝑒𝑒

 

(3.25) 
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and for the y-momentum,  

 

� � 𝛹𝛹𝑖𝑖 �𝑢𝑢�
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

+ �̅�𝑣
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

� 𝑣𝑣𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � �
1
𝑅𝑅𝑒𝑒

�2
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

� 𝑣𝑣𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � �
1
𝑅𝑅𝑒𝑒

�
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

�𝑢𝑢𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � � 𝜖𝜖𝑝𝑝 �
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

�𝑢𝑢𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � � 𝜖𝜖𝑝𝑝 �
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

� 𝑣𝑣𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

= � 𝛹𝛹𝑖𝑖𝑡𝑡𝑦𝑦𝑑𝑑𝑑𝑑
𝑑𝑑𝑒𝑒

 

(3.26) 

 

 

Eqs. (3.28) and (3.29) can be written in matrix form as 

�
[𝐶𝐶11] [0]

[0] [𝐶𝐶11]� �
{𝑢𝑢}
{𝑣𝑣}�  +  �

[𝐾𝐾11] [𝐾𝐾12]
[𝐾𝐾21] [𝐾𝐾22]� �

{𝑢𝑢}
{𝑣𝑣}�  

+  �
[𝐿𝐿11] [𝐿𝐿12]
[𝐿𝐿21] [𝐿𝐿22]� �

{𝑢𝑢}
{𝑣𝑣}� = �

{𝑅𝑅𝑢𝑢}
{𝑅𝑅𝑣𝑣}� 

(3.27) 

 

where the matrix entries are defined as 

[𝐶𝐶11]𝑖𝑖𝑗𝑗 = � 𝛹𝛹𝑖𝑖 �𝑢𝑢�
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

+ �̅�𝑣
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.28) 
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[𝐾𝐾11]𝑖𝑖𝑗𝑗 = �
1
𝑅𝑅𝑒𝑒

�2
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.29) 

[𝐾𝐾12]𝑖𝑖𝑗𝑗 = �
1
𝑅𝑅𝑒𝑒

�
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.30) 

[𝐾𝐾21]𝑖𝑖𝑗𝑗 = �
1
𝑅𝑅𝑒𝑒

�
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.31) 

[𝐾𝐾22]𝑖𝑖𝑗𝑗 = �
1
𝑅𝑅𝑒𝑒

�2
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.32) 

[𝐿𝐿11]𝑖𝑖𝑗𝑗 = � �𝜖𝜖𝑝𝑝
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.33) 

[𝐿𝐿12]𝑖𝑖𝑗𝑗 = � �𝜖𝜖𝑝𝑝
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.34) 

[𝐿𝐿21]𝑖𝑖𝑗𝑗 = � �𝜖𝜖𝑝𝑝
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.35) 

[𝐿𝐿22]𝑖𝑖𝑗𝑗 = � �𝜖𝜖𝑝𝑝
𝜕𝜕𝛹𝛹𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦

�𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

 (3.36) 

{𝑅𝑅𝑢𝑢} = � 𝛹𝛹𝑖𝑖𝑡𝑡𝑥𝑥 𝑑𝑑Γ
Γe

 (3.37) 

{𝑅𝑅𝑣𝑣} = � 𝛹𝛹𝑖𝑖𝑡𝑡𝑦𝑦 𝑑𝑑Γ
Γe

 (3.38) 

 



49 
 

According to the reduced integration penalty finite element method, the [L] 

matrices, which are related to the penalty term, are calculated with one order less 

Gauss quadrature points than other matrices. For example, if 3x3 Gauss 

quadrature points are used to calculate the [C] and [K] matrices, then 2x2 Gauss 

quadrature points are used to calculate the [L] matrices. 

 

3.3.2 – Formulation of the Energy Equation: 

A similar procedure like the formulation of momentum equations should be 

followed for the formulation of energy equation. First, all nonzero expressions in 

the open form of the energy equation are taken to one side of the equality sign and 

the resulting equation is multiplied with a weight function δTi. Then the equation 

is integrated over the element domain Ωe to obtain the weighted integral statement 

of the equation. 

� 𝛿𝛿𝑇𝑇𝑖𝑖 ��𝑢𝑢
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝜃𝜃
𝜕𝜕𝑦𝑦
� −

1
𝑃𝑃𝑒𝑒

�
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2 +

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑦𝑦2�

𝛺𝛺𝑒𝑒

− 2
𝐵𝐵𝑃𝑃
𝑃𝑃𝑒𝑒

��
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�

2

+ �
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�

2

+
1
2
�
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦
�

2

−
1
3
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�

2
�� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 = 0 

(3.39) 

 

Next, integration by parts is applied to the second order derivatives to equally 

distribute the integration between the dependent variable and weight function in 

the second order partial derivatives which yields, 

 



50 
 

� 𝛿𝛿𝑇𝑇𝑖𝑖 �𝑢𝑢
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

+ 𝑣𝑣
𝜕𝜕𝜃𝜃
𝜕𝜕𝑦𝑦
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

+
1
𝑃𝑃𝑒𝑒

� � �
𝜕𝜕𝛿𝛿𝑇𝑇𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝛿𝛿𝑇𝑇𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕𝜃𝜃
𝜕𝜕𝑦𝑦
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝛺𝛺𝑒𝑒

− � 𝛿𝛿𝑇𝑇𝑖𝑖 �
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥 +
𝜕𝜕𝜃𝜃
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦� 𝑑𝑑Γ
Γe

�

− 2
𝐵𝐵𝑃𝑃
𝑃𝑃𝑒𝑒

� � 𝛿𝛿𝑇𝑇𝑖𝑖 ��
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�

2

+ �
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�

2

+
1
2
�
𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦
�

2

𝛺𝛺𝑒𝑒

−
1
3
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
�

2
� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦� = 0 

(3.40) 

 

Substituting the shape (approximation) functions, ψi, for the non-dimensional 

velocity components, temperature, and the weight function, δTi, 

 

𝑢𝑢 = �𝑢𝑢𝑗𝑗Ψj(x, y)
𝜕𝜕

𝑗𝑗=1

   , 𝑣𝑣 = �𝑣𝑣𝑗𝑗Ψj(x, y) 
𝜕𝜕

𝑗𝑗=1

 

(3.41) 

𝜃𝜃 = �𝜃𝜃𝑗𝑗Ψj(x, y)   ,
𝜕𝜕

𝑗𝑗=1

 𝛿𝛿𝑇𝑇𝑖𝑖 = Ψi 

 

where n is the total node number used in the computational element, into the Eq. 

(3.40), gives for the energy equation, 
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� � Ψ𝑖𝑖 ��Ψ𝑗𝑗𝑢𝑢𝑗𝑗 �
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

+ �Ψ𝑗𝑗 𝑣𝑣𝑗𝑗 �
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

� 𝜃𝜃𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+ � �
1
𝑃𝑃𝑒𝑒

�
𝜕𝜕Ψ𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

+
𝜕𝜕Ψ𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

�𝜃𝜃𝑗𝑗 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦
𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

−� � 2
𝐵𝐵𝑃𝑃
𝑃𝑃𝑒𝑒

Ψ𝑖𝑖 ��
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

𝑢𝑢𝑗𝑗�
2

+ �
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

𝑣𝑣𝑗𝑗�
2

𝛺𝛺𝑒𝑒

𝜕𝜕

𝑗𝑗=1

+
1
2
�
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

𝑣𝑣𝑗𝑗 +
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

𝑢𝑢𝑗𝑗�
2

−
1
3
�
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

𝑢𝑢𝑗𝑗 +
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

𝑣𝑣𝑗𝑗 �
2

�

= �
1
𝑃𝑃𝑒𝑒

Ψ𝑖𝑖𝑞𝑞𝜕𝜕𝑑𝑑Γ
Γe

 

(3.42) 

 

where 
 

𝑞𝑞𝜕𝜕 =
𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥 +
𝜕𝜕𝜃𝜃
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦  (3.43) 

 

 

Eq. (3.42) can also be written in matrix form as, 

[𝐾𝐾𝑇𝑇1]{𝜃𝜃} − {𝐾𝐾𝑇𝑇2} = {𝑅𝑅𝑡𝑡} (3.44) 

 

where 

[𝐾𝐾𝑇𝑇1]𝑖𝑖𝑗𝑗 = � �Ψ𝑖𝑖 ��Ψ𝑗𝑗 𝑢𝑢𝑗𝑗 �
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

+ �Ψ𝑗𝑗 𝑣𝑣𝑗𝑗 �
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

�
𝛺𝛺𝑒𝑒

+
1
𝑃𝑃𝑒𝑒

�
𝜕𝜕Ψ𝑖𝑖
𝜕𝜕𝑥𝑥

𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

+
𝜕𝜕Ψ𝑖𝑖
𝜕𝜕𝑦𝑦

𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

�� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 

(3.45) 
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{𝐾𝐾𝑇𝑇2}𝑖𝑖 = � 2
𝐵𝐵𝑃𝑃
𝑃𝑃𝑒𝑒

Ψ𝑖𝑖 ��
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

𝑢𝑢𝑗𝑗�
2

+ �
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

𝑣𝑣𝑗𝑗�
2

𝛺𝛺𝑒𝑒

+
1
2
�
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

𝑣𝑣𝑗𝑗 +
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

𝑢𝑢𝑗𝑗�
2

−
1
3
�
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑥𝑥

𝑢𝑢𝑗𝑗 +
𝜕𝜕Ψ𝑗𝑗
𝜕𝜕𝑦𝑦

𝑣𝑣𝑗𝑗�
2

� 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 

(3.46) 

{𝑅𝑅𝑡𝑡} = �
1
𝑃𝑃𝑒𝑒

Ψ𝑖𝑖𝑞𝑞𝜕𝜕𝑑𝑑Γ
Γe

 (3.47) 

 

 

3.3.3 – Numerical Integration: 

In this study, numerical integrations are carried out by Gauss quadrature. 

Quadrilateral elements with 4 nodes (shown in Fig. 3.4) are used as the master 

computational element. In this element, elemental node numbering is in 

counterclockwise direction and node coordinates are defined by means of 

elemental local coordinate system, ξ and η. The shape functions related to this 

computational element are tabulated in literature and also given here in Eq. (3.48). 

 

Figure 3.4: Quadrilateral element with 4 nodes as master computational element. 

ξ 

η 

1 2 

3 4 
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𝛹𝛹1 =
1
4

(1 − 𝜉𝜉)(1 − 𝜂𝜂) 𝛹𝛹3 =
1
4

(1 + 𝜉𝜉)(1 + 𝜂𝜂) 
(3.48) 

𝛹𝛹2 =
1
4

(1 + 𝜉𝜉)(1 − 𝜂𝜂) 𝛹𝛹4 =
1
4

(1 − 𝜉𝜉)(1 + 𝜂𝜂) 

 

It is necessary to evaluate the derivatives of the shape functions with respect to 

global coordinates x and y, to numerically integrate these equations. Since shape 

functions are defined with local coordinates (𝜉𝜉, 𝜂𝜂), transformation of the geometry 

from global coordinates (x, y) to computational coordinates (𝜉𝜉, 𝜂𝜂) is needed. This 

is done by defining, 

 

𝑥𝑥 = �𝑥𝑥𝑗𝑗Ψj(ξ, η)
𝜕𝜕

𝑗𝑗=1

 𝑦𝑦 = �𝑦𝑦𝑗𝑗Ψj(ξ, η)
𝜕𝜕

𝑗𝑗=1

 (3.49) 

 

Then, the derivatives of shape functions with respect to x and y, can be expressed 

in terms of local coordinates (𝜉𝜉, 𝜂𝜂) by means of this transformation. With the 

chain rule of partial differentiation, the first derivatives of the shape functions 

with respect to local coordinates can be written as in matrix form; 

 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜉𝜉
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜂𝜂 ⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥
𝜕𝜕𝜉𝜉

𝜕𝜕𝑦𝑦
𝜕𝜕𝜉𝜉

𝜕𝜕𝑥𝑥
𝜕𝜕𝜂𝜂

𝜕𝜕𝑦𝑦
𝜕𝜕𝜂𝜂⎦
⎥
⎥
⎥
⎤

⎩
⎨

⎧
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦 ⎭

⎬

⎫
= [𝒥𝒥]

⎩
⎨

⎧
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦 ⎭

⎬

⎫
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⎩
⎨

⎧
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑥𝑥
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝑦𝑦 ⎭

⎬

⎫
= [𝒥𝒥]−1

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜉𝜉
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜂𝜂 ⎭

⎪
⎬

⎪
⎫

 (3.50) 

 

where [𝒥𝒥] is the Jacobian matrix of the transformation and calculated by, 

 

[𝒥𝒥] =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑥𝑥
𝜕𝜕𝜉𝜉

𝜕𝜕𝑦𝑦
𝜕𝜕𝜉𝜉

𝜕𝜕𝑥𝑥
𝜕𝜕𝜂𝜂

𝜕𝜕𝑦𝑦
𝜕𝜕𝜂𝜂⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡�𝑥𝑥𝑗𝑗

𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜉𝜉

 
𝜕𝜕

𝑗𝑗=1

�𝑦𝑦𝑗𝑗
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜉𝜉

𝜕𝜕

𝑗𝑗=1

�𝑥𝑥𝑗𝑗
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜂𝜂

𝜕𝜕

𝑗𝑗=1

�𝑦𝑦𝑗𝑗
𝜕𝜕𝛹𝛹𝑗𝑗
𝜕𝜕𝜂𝜂

𝜕𝜕

𝑗𝑗=1 ⎦
⎥
⎥
⎥
⎥
⎤

 

[𝒥𝒥] =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝛹𝛹1

𝜕𝜕𝜉𝜉
𝜕𝜕𝛹𝛹2

𝜕𝜕𝜉𝜉
⋯⋯

𝜕𝜕𝛹𝛹1

𝜕𝜕𝜂𝜂
𝜕𝜕𝛹𝛹2

𝜕𝜕𝜂𝜂
⋯⋯

𝜕𝜕𝛹𝛹𝜕𝜕
𝜕𝜕𝜉𝜉
𝜕𝜕𝛹𝛹𝜕𝜕
𝜕𝜕𝜂𝜂 ⎦

⎥
⎥
⎥
⎤
�

𝑥𝑥1 𝑦𝑦1
𝑥𝑥 2
⋮
⋮
𝑥𝑥𝜕𝜕

𝑦𝑦 2
⋮
⋮
𝑦𝑦𝜕𝜕

� (3.51) 

 

 

3.3.4 – Imposing Boundary Conditions and Solution of the System Equation: 

Evaluation of boundary integrals (line integrals) {Ru}, {Rv}, and {Rt} in Eqs. 

(3.37), (3.38), and (3.47) respectively, depends on the boundary conditions of the 

problem. Three types of boundary conditions are generally used in numerical 

simulations. These are Dirichlet (essential), Neumann (natural), and mixed 

boundary conditions. 

If a Dirichlet type boundary condition, that is specified primary variables 

(specified velocity for momentum equations and specified temperature for energy 
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equation), is defined on a boundary, then it is not necessary to calculate the 

boundary integral on that boundary node. When this type of a boundary condition 

is defined on a boundary, specified value of the variable is directly placed into the 

appropriate location of the unknown vector after assembling the system equations. 

For example, consider an arbitrary system of equations with unknown primary 

variables {u} and secondary variables {Ru}.  

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑘𝑘11  𝑘𝑘12  …  𝑘𝑘1𝑗𝑗   …  𝑘𝑘1𝜕𝜕
𝑘𝑘21  𝑘𝑘22  …   𝑘𝑘2𝑗𝑗   …  𝑘𝑘2𝜕𝜕
⋮        ⋮            ⋮                ⋮
𝑘𝑘𝑗𝑗1  𝑘𝑘𝑗𝑗2   …  𝑘𝑘𝑗𝑗𝑗𝑗   … 𝑘𝑘𝑗𝑗𝜕𝜕
⋮        ⋮            ⋮                ⋮
𝑘𝑘𝜕𝜕1  𝑘𝑘𝜕𝜕2   …  𝑘𝑘𝑗𝑗𝑗𝑗   …  𝑘𝑘𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑢𝑢1
𝑢𝑢2
⋮
𝑢𝑢𝑗𝑗
⋮
𝑢𝑢𝜕𝜕⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝑅𝑅𝑢𝑢1
𝑅𝑅𝑢𝑢2
⋮
𝑅𝑅𝑢𝑢𝑗𝑗
⋮

𝑅𝑅𝑢𝑢𝜕𝜕⎭
⎪
⎬

⎪
⎫

 

 

If u is specified as U at global node j (uj=U), after the assembling of elemental 

equations are completed, the jth row of the unknown vector {u} is replaced by k. 

Then, this system of equations can be solved by modifying the {Ru} vector and 

reducing the system by deleting the jth row and column of [kij] matrix as 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝑘𝑘11  𝑘𝑘12  …   0  …  𝑘𝑘1𝜕𝜕
𝑘𝑘21  𝑘𝑘22  …   0  …  𝑘𝑘2𝜕𝜕
⋮        ⋮            ⋮                ⋮
0       0     …  1   …       0
⋮        ⋮            ⋮                ⋮
𝑘𝑘𝜕𝜕1  𝑘𝑘𝜕𝜕2   …   0   …  𝑘𝑘𝜕𝜕𝜕𝜕 ⎦

⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝑢𝑢1
𝑢𝑢2
⋮
𝑈𝑈
⋮
𝑢𝑢𝜕𝜕⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝑅𝑅𝑢𝑢1 − 𝑈𝑈𝑘𝑘1𝑗𝑗
𝑅𝑅𝑢𝑢2 − 𝑈𝑈𝑘𝑘2𝑗𝑗

⋮
𝑅𝑅𝑢𝑢𝑗𝑗
⋮

𝑅𝑅𝑢𝑢𝜕𝜕 − 𝑈𝑈𝑘𝑘𝜕𝜕𝑗𝑗 ⎭
⎪
⎬

⎪
⎫

 

 

When a Neumann type boundary condition, that is, specified secondary variables 

at the boundary, is defined, the solution depends on the specified value. In 

general, the boundary integral can be written as 
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� 𝑎𝑎𝜕𝜕ΨT ∂u
∂n

ℓn dΓ
Γ

 (3.52) 

 

where Γ is the length of the boundary, ℓn  is the direction cosine of the surface 

normal and an is a constant. If the secondary variable is zero at the boundary, i.e., 

zero heat flux or geometrical symmetry, that is 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 0 , then the boundary integral 

vanishes. If the secondary variable is given as a constant such as, 𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝐶𝐶, it gives 

an extra vector, 

� 𝑎𝑎𝜕𝜕ΨTCℓn dΓ
Γ

 (3.53) 

 

which must be added to the {Ru} vector [67]. 

However, if a slip velocity, temperature jump, or another mixed type boundary 

condition, such as convection boundary condition, is defined on a boundary, then, 

this boundary integral needs some modification, which leads to a matrix 

associated to the unknown primary variable and a vector consisting of known 

parameters. For momentum equations, the boundary integrals are equivalent to 

𝑅𝑅𝑖𝑖 = � 𝛹𝛹𝑖𝑖𝜎𝜎𝑖𝑖𝑗𝑗 𝜕𝜕𝑗𝑗
𝑑𝑑𝑒𝑒

𝑑𝑑𝑑𝑑 (3.54) 

 

When slip velocity is defined at the boundary, tangential Dirichlet type boundary 

condition should be replaced by traction boundary conditions by setting 

𝜎𝜎𝑖𝑖𝑗𝑗 𝜕𝜕𝑗𝑗 𝑡𝑡𝑖𝑖 =
1
𝛼𝛼

(𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑠𝑠)𝑡𝑡𝑖𝑖  (3.55) 
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where ti is the tangent vector to the surface, α is the slip coefficient, and 𝑢𝑢𝑖𝑖𝑠𝑠 is the 

velocity of the surface [66]. By doing this, a boundary matrix and a boundary 

vector arise, such that 

𝑅𝑅𝑖𝑖 = �
1
𝛼𝛼
𝛹𝛹𝑖𝑖𝑢𝑢𝑖𝑖

𝛺𝛺𝑒𝑒

𝑡𝑡𝑖𝑖 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦 − �
1
𝛼𝛼
𝛹𝛹𝑖𝑖𝑢𝑢𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖

𝑑𝑑𝑒𝑒

𝑑𝑑𝑑𝑑 (3.56) 

 

When this modification is applied to Eq. (3.12) with zero surface velocity, a 

simpler boundary condition is obtained, which yields only a boundary matrix that 

can be expressed in general as 

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝐶𝐶𝑢𝑢 (3.57) 

and  

� 𝑎𝑎𝜕𝜕ΨTC u ℓn dΓ
Γ

 (3.58) 

 

A similar procedure should be applied to the temperature jump boundary 

condition. Since these boundary integrals are evaluated along the edge of the 

elements in two dimensional problems, they reduce to line integrals. Thus one 

dimensional shape functions should be used instead of two dimensional shape 

functions. 

After assembling and imposing the boundary conditions, the system of equations 

can be solved. Since the Navier-Stokes equations are non-linear, an iterative 

solution procedure is needed. In this study Picard method, which is also known as 

the direct iteration method [65] is used. In this method, equation system is first 
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solved with an initial value assigned to the unknown primary variables. Then, the 

new values of the primary variables are compared with the old ones. If the 

difference between the new and old values is below the error (convergence) 

criterion, iteration stops. If not, iteration continues using the last found values 

until the error criterion satisfied. This algorithm can be given as, 

𝐊𝐊(∆𝑃𝑃)∆𝑃𝑃+1= 𝐅𝐅 (3.59) 

 

where Δ is the unknown vector, K(Δ) is the non-linear matrix, and the superscript 

r indicates the iteration number. As the error criterion Euclidean norm is used in 

the form of 

|∆𝑃𝑃+1 − ∆𝑃𝑃 |
|∆𝑃𝑃+1| < 𝜀𝜀 (3.60) 

 

where ε is error criterion and it is set to be 10-3 in this study. 
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CHAPTER – 4 

 

RESULTS AND DISCUSSION 

 

 

Results of numerical simulations for smooth and rough geometries are given in 

this chapter and findings are discussed. Additionally, information about mesh 

generation and mesh convergence studies are given in related subsections. 

Numerical simulations have been conducted for flow of air (Pr = 0.7, γ = 1.4) 

between two parallel plates having Re of 5, 10, 20, 50, and 100, which leads the 

Pe of 3.5, 7, 14, 35, and 70. Considered relative roughness values of the channel 

are 0%, 1.325%, 2.0% and 2.65%. However 2.65% relative roughness is 

considered only in continuum case. To simulate the rarefaction effects, velocity 

slip and temperature jump boundary conditions have been applied at channel solid 

boundaries as described in Chapter 3. While applying these boundary conditions, 

Kn of 0.0 (continuum case), 0.02, 0.04, 0.06, 0.08, and 0.10 have been considered. 

Moreover, effect of viscous dissipation on heat transfer has been investigated by 

the change of Br, where considered Br values are – 0.1, 0.0, and +0.1. Also, all the 

cases have been repeated for both considering and neglecting the axial conduction 

term in the energy equation.  

 

4.1 – Code Validation and Mesh Convergence Studies: 

The meshes used in the simulations of two-dimensional flow in smooth and rough 

parallel plate channels are generated by a mesh generator program written in 
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MATLAB by the author of this study. This program is capable of preparing 

different kinds of meshes, such as uniform mesh in whole geometry, dense mesh 

near boundaries or mesh with gradually increasing element size at inlet and 

gradually decreasing element size at outlet in x-direction, and the necessary 

boundary condition data for inlet, outlet, lower and upper walls in smooth and 

rough channels. Also, user can specify the roughness peak heights, distance 

between the peaks, base angle of the triangular peaks, and number of elements 

that should be used in one side of the triangles, and between two triangular peaks. 

Some examples of meshes generated by this program are given in Fig. (4.1). 

Code validation and mesh convergence studies for hydraulic part have been 

conducted in smooth channels for the upper Re limit of this study by comparing 

the non-dimensional velocity profiles with the analytical results of 

hydrodynamically fully developed case. For the smooth channel and coordinate 

system considered in this study, the fully developed non-dimensional velocity 

profile can be obtained from momentum equation as 

𝑢𝑢(𝑦𝑦)
𝑢𝑢𝑚𝑚

= 6 
��𝑦𝑦𝐻𝐻� − �𝑦𝑦𝐻𝐻�

2
+ 𝐾𝐾𝐾𝐾�

[1 + 6 𝐾𝐾𝐾𝐾]  (4.1) 

 

For the energy part of the problem, obtained fully developed Nu values have been 

compared with the results of Refs. [6] and [24] for the cases where axial 

conduction in the fluid is neglected, and with the results of Refs. [17, 18] and [68] 

for the cases where axial conduction in the fluid is considered. 

Detailed mesh convergence studies have been conducted with various mesh sizes 

and types, such as uniform mesh, dense mesh near boundaries with different dense 

region length and element number, and mesh with gradually increasing element 

size in x – direction. During these studies, from 200 to 720 elements in x – 

direction, and from 60 to 100 elements in y – direction have been tried. Purpose of 
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this study is to obtain maximum accuracy with minimum element number as well 

as obtaining a mesh independent solution. It is observed that, Nu is more 

dependent to the mesh size and type than the non-dimensional velocity profile. 

 

 

 

 

Figure 4.1: Mesh examples for smooth and rough channels with 1.325% and 2.0% 

relative roughness. 
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Although good results for the non-dimensional velocity can be obtained with a 

coarse mesh, a finer mesh is needed to obtain accurate Nu. Moreover, it is also 

observed that mesh type at inlet section affects the smoothness of the results at 

this section more, compared to other parts of the channel. Best results with 

minimum element number are obtained by using elements with gradually 

increasing sizes at inlet, and dense mesh near the solid boundaries and coarser 

mesh inside the channel. Finally, during the smooth channel simulations, 408 

elements in x – direction and 90 elements in y – direction is used. 

For the rough channel, mesh is also refined around the triangular peaks. Meshes 

with 2 to 10 elements on one side of the peaks and 2 to 20 elements between the 

peaks have been tried and change in Nu distribution is observed. Then, 4, 5, and 7 

elements on one side of the peaks, and 8, 10, and 16 elements between the peaks 

are used in the rough channel simulations for relative roughnesses of 1.325%, 

2.0%, and 2.65% respectively. 

 

4.2 – Results for Smooth Channel: 

As can be seen from Eq. (4.1), fully developed velocity profile depends on the Kn 

and is shown graphically in Fig. (4.2). Re only affects the development length and 

as it increases, flow reaches fully developed state at a distance far away from the 

inlet section. When Kn = 0, flow is in macro-scale and rarefaction effects are 

neglected. Kn = 0.10 is the upper limit of the slip flow regime and naturally, 

rarefaction effects are maximum in this regime. As Kn increases from 0 to 0.10, 

rarefaction effect increases as well as the slip velocity at the wall, which reduces 

the maximum velocity at the center line and velocity gradient at the wall. The 

reduction in velocity gradient at the wall also causes reduction in the friction 

factor. As Kn increases from 0 to 0.10, non-dimensional centerline velocity 

decreases from 1.5 to 1.3125, and non-dimensional velocity of the fluid particles 
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at the wall increases from 0 to 0.375. Analytical non-dimensional velocities at the 

wall and centerline are also tabulated in Table (4.1). 

 

 

Figure 4.2: Non-dimensional fully developed velocity profile inside the parallel – 

plate microchannel. 

 

 

Table 4.1: Analytical non-dimensional velocities at wall and centerline for various 

Kn values. 

Kn 0.00 0.02 0.04 0.06 0.08 0.10 
Velocity at 

Wall: 0 0.1071 0.1935 0.2647 0.3243 0.375 
Centerline 

Velocity: 1.5 1.4464 1.4032 1.3676 1.3378 1.3125 
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As described in Chapter 3, energy equation is solved after obtaining the velocity 

profile from Navier-Stokes equations. When temperature distribution is obtained 

from the energy equation, local Nu values are obtained from Eq. (3.13). As Kn 

increases, temperature jump at the wall increases as well, which reduces the 

temperature gradient at the wall. This reduction should also cause a decrease in 

Nu. When axial conduction (AC) in the fluid is neglected non-dimensional 

centerline temperature decreases from 1.3191 to 1.2246, and non-dimensional 

wall temperature increases from 0 to 0.4216 as Kn increases from 0 to 0.10, 

regardless of Re. However, when axial conduction in the fluid is considered, non-

dimensional wall and centerline temperatures show slight dependence on Re. For 

small Re, non-dimensional wall temperatures are slightly higher while non-

dimensional centerline temperatures are slightly lower compared to cases where 

axial conduction is neglected. These are summarized in Table (4.2). It is observed 

that mean temperatures of cases where axial conduction is included are higher 

than cases where axial conduction is neglected, at the inlet section of the channel. 

This difference is more obvious for small Re, where axial conduction becomes 

important. Similar behavior is observed when viscous dissipation effect is 

considered. As a result, axial conduction should not be neglected for flows with 

small Pe in entrance region problems. 

Figures (4.3) and (4.4) show the local Nu along the channel when viscous 

dissipation is neglected for various Kn and Pe, without and with axial conduction 

effect, respectively. When axial conduction is neglected, local Nu values show 

dependence on Pe at the inlet section of the channel, and increases with increasing 

Pe. However, Nu reaches the same fully developed value for each Kn regardless 

of Pe, that is 7.541 for Kn = 0 and 5.059 for Kn = 0.10. It is also observed that as 

Kn increases, rarefaction effect increases and this causes reduction on local and 

fully developed Nu values. Comparison of fully developed Nu values, when axial 

conduction effect is neglected, with Ref. [24] is given in Table (4.3). 
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Table 4.2: Dimensionless fully developed wall and centerline temperatures for 

various Kn and Re with and without axial conduction in the fluid (Br = 0). 

Kn 0.00 0.02 0.04 0.06 0.08 0.10 
Wall  Temperature 

with AC: 
Re = 5 0 0.1230 0.2254 0.3103 0.3808 0.4398 
Re = 100 0 0.1161 0.2136 0.2955 0.3645 0.4230 

without 
AC: 

Re = 5 0 0.1155 0.2125 0.2941 0.3631 0.4216 
Re = 100 0 0.1155 0.2125 0.2941 0.3631 0.4216 

Centerline Temperature 

with AC: 
Re = 5 1.2961 1.2766 1.2566 1.2376 1.2203 1.2048 
Re = 100 1.3169 1.2978 1.2776 1.2580 1.2398 1.2231 

without 
AC: 

Re = 5 1.3191 1.2999 1.2796 1.2599 1.2415 1.2246 
Re = 100 1.3191 1.2999 1.2796 1.2599 1.2415 1.2246 

 

 

 

Figure 4.3: Local Nu along the channel for various Kn and Pe when axial 

conduction and viscous dissipation are neglected. 
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Figure 4.4: Local Nu along the channel for various Kn and Pe when axial 

conduction included and viscous dissipation neglected. 

 

 

Table 4.3: Comparison of fully developed Nu values for smooth channel with Ref. 

[24] (axial conduction neglected). 

 Without Viscous 
Dissipation 

( Br = 0) 
Deviation 

(%) 

With Viscous 
Dissipation 

(Br ≠ 0) 
Deviation 

(%) 
Kn Nu Nu [24] Nu Nu [24] 

0.00 7.541 7.541 0.000 17.485 17.497 0.068 
0.02 6.926 6.925 0.014 13.679 13.688 0.066 
0.04 6.374 6.374 0.000 11.215 11.222 0.062 
0.06 5.883 5.882 0.017 9.493 9.499 0.063 
0.08 5.446 5.445 0.018 8.224 8.229 0.061 
0.10 5.059 5.058 0.020 7.251 7.256 0.069 
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When axial conduction is included, dependence of Nu on Pe is very small. Unlike 

the neglected axial conduction cases, local Nu does not change too much with Pe 

and takes higher values at the inlet section. Also, local Nu drop more sharply 

when axial conduction is considered. Moreover, fully developed Nu values show 

slight dependence on Pe and take different values for each Pe and Kn. 

Comparison of fully developed Nu values with Refs. [17] and [68] is given in Fig. 

(4.5). Also, fully developed Nu values are summarized in Table (4.4) for various 

Pe and Kn when axial conduction is included. 

 

 

 

Figure 4.5: Comparison of fully developed Nu values for smooth channel with 

Refs. [17] and [68] (axial conduction included, Br = 0). 
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Table 4.4: Fully developed Nu for smooth channel for various Re and Kn (axial 

conduction included, Br = 0). 

Kn \ Pe 3.5 7 14 35 70 
0.00 8.030 7.955 7.841 7.668 7.586 
0.02 7.378 7.307 7.200 7.041 6.966 
0.04 6.762 6.701 6.607 6.470 6.408 
0.06 6.206 6.154 6.075 5.961 5.909 
0.08 5.713 5.669 5.603 5.509 5.467 
0.10 5.278 5.241 5.186 5.109 5.076                                                   

 

 

Variation of local Nu along the channel for various Kn and Br is given in Fig. 

(4.6). When viscous dissipation effect is included, increase in fully developed Nu 

values is observed. Nu reaches the same values for each Kn regardless of Pe or the 

sign of Br.  For Br = ± 0.1, fully developed Nu increases to 17.485 from 7.541 for 

Kn = 0, and to 7.251 from 5.059 for Kn = 0.10 when axial conduction is 

neglected. When axial conduction is included, no significant change is observed 

in fully developed Nu values. However, effect of axial conduction changes the 

local Nu variation at the inlet section similar to cases where viscous dissipation is 

neglected and is more obvious at small Pe as expected. Also, when Br = - 0.1, 

there exist some asymptotic local Nu inside the channel, which are generally 

referred in literature to points where direction of the heat transfer between wall 

and fluid changes. Location of these values along the channel depends on Kn and 

Pe. 
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Figure 4.6: Local Nu along the channel for various Kn and Br values and Pe = 70. 

 

4.3 – Results for Rough Channel: 

For the rough channel, velocity contours are examined first, since the solution of 

the energy equation strictly depends on the velocity profile. Then, obtained Nu 

values are compared. In Fig. (4.7), contour plots for dimensionless u-velocity 

around roughness elements and smooth channel for Kn = 0 and Re = 100 are 

shown. Since rarefaction effects are neglected, it is observed that the increase in 

Re only affects the velocity contour at inlet section. Also, increase in roughness 

height reduces the low velocity layer thickness over the peaks of roughness 

elements. Theoretically, flow field should look like to the smooth channel flow 

case as the roughness height become smaller, and low velocity layer thickness 

over the roughness elements should decrease as the roughness height increases. 

To verify this, contour plots of dimensionless u-velocity around the roughness 
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elements for relative roughnesses of 0.1%, 0.5%, and 10% are also included to 

Fig. (4.7). 

In literature, there are a few publications, which give the local Nu distribution in a 

rough microchannel with triangular roughness elements.  In Ref. [50], Croce and 

D’Agaro conducted numerical simulations with randomly generated triangular 

and square roughness elements on the wall of tube and parallel plate channel with 

periodic boundary conditions. They do not consider the rarefaction effect. 

However, they showed the local Nu distribution over triangular roughness 

elements only for microtube with 2.65 % relative roughness, which is given in 

Fig. (4.8a), and stated that the general distribution of local Nu is similar, except it 

takes higher values for parallel plate channel. Local Nu distribution inside the 

rough channels considered in this study for Kn = 0 are shown in Fig. (4.8), along 

with the results of Croce and D’Agaro [50]. Obtained local Nu distribution have 

similar pattern of Ref. [50]. 
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ε = 0 % 

 
ε = 0.1 % 

 
ε = 0.5 % 

 
ε = 1.325 % 

 
ε = 2.0 % 

 
ε = 2.65 % 

 
ε = 10 % 

 

Figure 4.7: Dimensionless u-velocity contours along the smooth channel and 

between the roughness elements for Kn = 0 and Re = 100. 
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Figure 4.8: Local Nu distributions over the roughness elements (Kn=0) (a) Ref. 

[50] (b) ε=0.1% (c) ε=0.5% (d) ε=1.325% (e) ε=2.0% (f) ε=2.65% (g) ε=10%. 

(b) 

(c) 

(d) 
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Figure 4.8: Continued. 

 

 

 

(e) 

(f) 

(g) 
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Figure (4.9) shows the local Nu distribution along the channel with 1.325% 

relative roughness when axial conduction term is neglected and included for Kn = 

0, Br = 0, and Pe = 3.5. Neglecting axial conduction term yields different local Nu 

values. This behavior also observed at high Pe which implies that neglecting axial 

conduction term will cause different results, similar to smooth case. 

 

 

 

Figure 4.9: Local Nu distributions over the roughness elements when axial 

conduction term is included and neglected (Kn = 0, Pe = 3.5, Br = 0, ε = 1.325%). 

 

 

When local Nu values along the channel are calculated, it is observed that it 

follows a wave like pattern along the rough section, different from smooth 

channel. Local Nu takes maximum value on the peak points of roughness 

elements and drops to a minimum value on the bottom corners of the elements, 

which is a property of triangular like roughness element. This behavior is 
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consistent with the similar studies in literature and can be explained better if the 

isothermal contour lines near the roughness elements are examined. Fig. (4.10) 

shows the isothermal contour lines near roughness elements for Kn = 0, Re = 100 

and ε = 2.0 % case. Temperature gradient is higher at the peaks of the elements 

that cause a local increase in heat transfer. 

 

 

Figure 4.10: Isothermal contour lines near the roughness elements for case Kn = 0, 

Re = 100 and ε = 2.0 %. 

 

In Figs. (4.11)  and (4.12) velocity contour plots for various Kn and Re = 100 are 

given for channels having 1.325% and 2.0% relative roughness, respectively. 

When Kn increases, rarefaction effect becomes noticeable and disturbs the 

velocity profile between the roughness elements. Fluid particles on the roughness 

element sides that face the flow have higher velocities than the particles on the 

other sides of the elements. As Kn continues to increase, flow becomes more free 

and the degree of change in the velocity field around the roughness elements 

reduces. However, zones with lower velocities still exist after the roughness 

elements in downstream direction. When relative roughness height increased, 

disturbance in the velocity field also increases, as expected. These disturbances 

also affect the temperature distribution around the rough section. Velocity contour 

plots for Kn = 0.10 for all of rough channels are given in Fig. (4.13) to show the 

effect of increasing roughness height on velocity field. 
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ε = 1.325 % 
 

Kn = 0.02 

 
 

 

Kn = 0.06 

 
 

 

Kn = 0.10 

 
 

 

Figure 4.11: Velocity contour plots of channel with 1.325% relative roughness for 

various Kn and Re = 100. 
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ε = 2.0 % 
 

Kn = 0.02 

 
 

 
Kn = 0.06 

 
 

 
Kn = 0.10 

 
 

 

Figure 4.12: Velocity contour plots of channel with 2.0% relative roughness for 

various Kn and Re = 100. 
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Kn = 0.10 
 

ε = 0.1% 

 
ε = 0.5% 

 
ε = 1.325% 

 
ε = 2.0% 

 
ε = 10% 

 

Figure 4.13: Velocity contour plots of rough channels for Kn = 0.10 and Re = 100. 
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When rarefaction effect is considered only in the velocity field, that is slip 

velocity boundary condition at the wall is taken into account for momentum 

equations, but temperature jump boundary condition is not considered for the 

energy equation, temperature gradients at the top of the peaks and between the 

elements increased. This is shown in Fig. (4.14a), where local Nu values obtained 

with the similar pattern of no-slip / no-temperature jump case also increased. 

However, when temperature jump at the wall was considered, gradients right after 

the peaks of the elements become smaller than the other regions of the element, 

and heat transfer reduces in this region. Isothermal contour lines for this case are 

shown in Fig. (4.14b). Temperature jump is an apparent discontinuity in the 

temperature at the gas-wall interface, and defined as the difference between actual 

surface temperature and the temperature predicted by extrapolating the law of 

temperature variation in the gas. Thermal conductivity of the gas within a few 

mean free paths of the solid wall is not same as the interiors of the gas due to the 

effect of wall collisions. Scattered and reflected molecules at the surface have 

different energies which yields discontinuities in the temperature [70]. Since the 

temperature jump boundary condition is a mixed type boundary condition it 

consists of two parts, one is Dirichlet type and the other is Neumann type. 

Dirichlet type boundary condition, which is constant wall temperature in this case, 

yields isothermal contour lines that fallow the solid surface in a nearly parallel 

fashion. On the other hand Neumann type boundary condition yields contours 

normal to the surface. Thus, mixed boundary condition possesses both of these 

properties and yields isothermal contour lines as shown in Fig. (4.14b). 

As roughness height increases, local Nu distribution begins to deviate from the 

smooth one due to increasing disturbance in velocity field and changing gradients 

which is shown in Fig. (4.15) for Kn = 0.10 and Re = 100. Figs. (4.16) and (4.17) 

show the change in local Nu distribution with Kn for channels having 1.325% and 

2.0% relative roughnesses, respectively. Unlike the Kn = 0 cases, local Nu do not 

follow the roughness pattern. Due to the presence of temperature jump, Nu also 
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takes high values on the faces of roughness elements with high gradient. Similar 

to smooth cases, as Kn increases, increasing rarefaction effect reduces the Nu in 

both configuration. However, increasing Pe slightly increases the local Nu values 

at low Kn unlike the smooth channel cases. It is also observed that there is an 

increase in local Nu with increasing roughness heights. 

 

 

Figure 4.14: Isothermal contour lines for Kn = 0.10, Re = 100, and ε = 2.0 % (a) 

no temperature jump at wall, (b) temperature jump at wall. 

 

When Pe increases, conduction in the fluid become less significant and convective 

effects dominate the heat transfer and result in enhanced heat transfer. However 

when convective effect is combined with the rarefaction effect, local Nu decreases 

with increasing rarefaction effect. For high Kn, where rarefaction effect becomes 

dominant, increasing relative surface roughness does not change the maximum 

value of local Nu, although for low Kn, increasing relative surface roughness yield 

higher local Nu values. This is shown in Figs. (4.17) and (4.18) where change of 

local Nu with Pe and relative roughness of the channel for Kn = 0.02 and Kn = 

0.10 are displayed, respectively. 

(a) 

(b) 
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Figure 4.15: Local Nu distribution for channels with 0.1%, 0.5%, 1.325%, and 

2.0% relative surface roughnesses and Re = 100, Kn = 0.10, Br = 0. 
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Figure 4.16: Change of local Nu with Kn for channel with ε = 1.325% relative 

roughness (a) Pe = 7, (b) Pe = 70. 

(a) 

(b) 
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Figure 4.17: Change of local Nu with Kn for channel with ε = 2.0% relative 

roughness (a) Pe = 7, (b) Pe = 70. 

 

 

(a) 

(b) 
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Figure 4.18: Change of local Nu with Pe and relative roughness of the channel for 

Kn = 0.02 (a) ε = 1.325 %, (b) ε = 2.0 %. 

 

 

(a) 

(b) 
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Figure 4.19: Change of local Nu with Pe and relative roughness of the channel for 

Kn = 0.10 (a) ε = 1.325 %, (b) ε = 2.0 %. 

 

(a) 

(b) 
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To be more specific, local Nu obtained for the rough channel are averaged over 

the channel according the formula 

 

𝑁𝑁𝑢𝑢𝐴𝐴𝐴𝐴 =
1
𝐿𝐿
�𝑁𝑁𝑢𝑢𝑥𝑥 𝑑𝑑𝑥𝑥 (4.1) 

 

where NuAv is the average Nu, Nux is the local Nu, and L is the length of the 

channel. Then, average Nu values obtained for the rough channel are compared 

with smooth channel fully developed Nu values by calculating the percent 

difference between them according to, 

 

% 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐾𝐾𝐷𝐷𝐷𝐷 =  
𝑁𝑁𝑢𝑢𝐴𝐴𝐴𝐴 ,𝑅𝑅 − 𝑁𝑁𝑢𝑢 𝑆𝑆

𝑁𝑁𝑢𝑢𝐴𝐴𝐴𝐴 ,𝑅𝑅
× 100 (4.2) 

 

where NuAv,R is the average Nu for the rough channel, and NuS is the Nu for the 

smooth channel. 

When axial conduction is included and viscous dissipation is neglected, average 

Nu in the rough channel decreases at most about 6% for Kn = 0 case with respect 

to smooth channel values. In these cases, local Nu takes the maximum values at 

the peaks of the roughness elements and this value is far greater than the 

corresponding smooth channel value. However, reduction in local Nu values 

between the roughness elements is dominant and peak value cannot compensate 

this reduction. Thus, overall Nu reduces as the relative roughness height increases. 

A similar result is achieved in Refs. [50, 51] for microtubes with triangular 

roughness elements. On the other hand, in the presence of rarefaction effect, an 

increase in the overall Nu with respect to smooth channel values is observed. In 

this case, increase is up to 24% and more obvious at low Kn values and less 
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pronounceable at high Kn values. Also average Nu values increases slightly with 

increasing Pe and relative surface roughness height when rarefaction is considered 

which is shown graphically in Fig. (4.20). Average Nu and percent differences 

with respect to smooth cases where axial conduction included and viscous 

dissipation neglected are summarized in Table (4.5).   

In microchannels, length to height ratio of the channel is high and viscous heating 

should become important. When viscous dissipation is considered with axial 

conduction, existence of surface roughness reduces the average Nu for Kn = 0 

case up to 6.3 % with respect to smooth channel value. Similar to the previous 

case, when rarefaction effect is considered, surface roughness increases the 

average Nu up to 43% at low Kn with respect to smooth channel value. Average 

Nu values for various Kn and Pe values are shown graphically in Fig. (4.21). Also, 

average Nu values and percent differences with respect to smooth cases where 

axial conduction and viscous dissipation included are summarized in Table (4.6). 
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Figure 4.20: Channel averaged Nu for various Kn and Pe values when axial 

conduction included and viscous dissipation neglected. 
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Table 4.5: Channel averaged Nu compared with fully developed smooth channel 

values when axial conduction included and viscous dissipation neglected. 

Pe Kn 

With Axial Conduction (Br = 0) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 8.030 7.600 7.578 -5.661 -5.971 
0.02 7.378 8.613 8.746 14.343 15.644 
0.04 6.762 7.565 7.561 10.612 10.563 
0.06 6.206 6.746 6.728 8.010 7.762 
0.08 5.713 6.071 6.051 5.903 5.591 
0.10 5.278 5.508 5.489 4.168 3.837 

7 

0 7.955 7.534 7.511 -5.581 -5.906 
0.02 7.307 8.651 8.762 15.535 16.602 
0.04 6.701 7.544 7.551 11.179 11.258 
0.06 6.154 6.730 6.719 8.560 8.406 
0.08 5.669 6.060 6.045 6.450 6.215 
0.10 5.241 5.500 5.485 4.710 4.447 

14 

0 7.841 7.436 7.411 -5.453 -5.799 
0.02 7.200 8.587 8.786 16.148 18.049 
0.04 6.607 7.520 7.543 12.139 12.409 
0.06 6.075 6.710 6.709 9.461 9.451 
0.08 5.603 6.046 6.038 7.321 7.205 
0.10 5.186 5.491 5.482 5.557 5.400 

35 

0 7.668 7.294 7.267 -5.134 -5.512 
0.02 7.041 8.633 8.863 18.437 20.557 
0.04 6.470 7.531 7.585 14.092 14.704 
0.06 5.961 6.715 6.737 11.223 11.513 
0.08 5.509 6.051 6.061 8.960 9.114 
0.10 5.109 5.500 5.505 7.103 7.197 

70 

0 7.586 7.250 7.223 -4.642 -5.029 
0.02 6.966 8.838 9.084 21.180 23.319 
0.04 6.408 7.672 7.772 16.472 17.547 
0.06 5.909 6.818 6.880 13.336 14.112 
0.08 5.467 6.134 6.179 10.880 11.519 
0.10 5.076 5.570 5.606 8.877 9.454 
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Figure 4.21: Channel averaged Nu for various Kn and Pe values when axial 

conduction and viscous dissipation included. 

 

 

 

 

 



91 
 

Table 4.6: Channel averaged Nu compared with fully developed smooth channel 

values when axial conduction and viscous dissipation included. 

Pe Kn 

With Axial Conduction (Br = 0.1) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough 

2.0% 

3.5 

0 17.485 16.582 16.445 -5.448 -6.323 
0.02 13.679 20.897 22.677 34.541 39.678 
0.04 11.215 14.267 14.982 21.392 25.143 
0.06 9.493 11.173 11.643 15.037 18.468 
0.08 8.224 9.201 9.569 10.615 14.052 
0.10 7.251 7.815 8.123 7.219 10.733 

7 

0 17.485 16.595 16.458 -5.363 -6.237 
0.02 13.679 21.215 22.772 35.522 39.930 
0.04 11.215 14.316 15.042 21.663 25.443 
0.06 9.493 11.212 11.694 15.329 18.823 
0.08 8.224 9.232 9.611 10.917 14.435 
0.10 7.251 7.841 8.159 7.528 11.134 

14 

0 17.485 16.621 16.485 -5.198 -6.067 
0.02 13.679 21.052 22.951 35.024 40.400 
0.04 11.215 14.419 15.171 22.219 26.076 
0.06 9.493 11.292 11.802 15.928 19.564 
0.08 8.224 9.297 9.702 11.537 15.232 
0.10 7.251 7.895 8.237 8.159 11.967 

35 

0 17.485 16.707 16.567 -4.660 -5.542 
0.02 13.679 21.420 23.436 36.138 41.633 
0.04 11.215 14.759 15.606 24.014 28.138 
0.06 9.493 11.558 12.164 17.864 21.955 
0.08 8.224 9.512 10.005 13.539 17.799 
0.10 7.251 8.074 8.496 10.198 14.653 

70 

0 17.485 16.887 16.746 -3.544 -4.411 
0.02 13.679 22.147 24.236 38.235 43.559 
0.04 11.215 15.397 16.437 27.161 31.769 
0.06 9.493 12.059 12.849 21.280 26.116 
0.08 8.224 9.921 10.580 17.101 22.271 
0.10 7.251 8.417 8.991 13.850 19.349 

 

 



92 
 

When axial conduction and viscous dissipation are neglected, different behavior 

of average Nu, compared to previous cases, are observed. It is seen in Fig. (4.9) 

that neglecting axial conduction term in rough channel should yield different 

results than including axial conduction. In this case, surface roughness generally 

decreases average Nu at low Pe and high Kn, where axial conduction becomes 

important and also increasing rarefaction should reduce the collision rate of 

molecules. As Pe increases, surface roughness tends to increase the average Nu. 

Similar to the previous cases, increase is more obvious at low Kn. When viscous 

dissipation is included, surface roughness reduces the Nu up to moderate Pe 

except low rarefied cases, and then the effect is in increasing way. Again at low 

Kn values, surface roughness increases the average Nu with increasing roughness 

height. Channel averaged Nu values for various Kn and Pe values are shown 

graphically in Fig. (4.22) for axial conduction and viscous dissipation neglected 

cases, and in Fig. (4.23) for the cases where axial conduction neglected but 

viscous dissipation included. Also, summary of average Nu values when axial 

conduction and viscous dissipation neglected are given in Table (4.7), while axial 

conduction neglected and viscous dissipation added cases are given in Table (4.8). 
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Figure 4.22: Channel averaged Nu for various Kn and Pe values when axial 

conduction and viscous dissipation neglected. 
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Figure 4.23: Channel averaged Nu for various Kn and Pe values when axial 

conduction neglected and viscous dissipation included. 
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Table 4.7: Channel averaged Nu compared with fully developed smooth channel 

values when axial conduction and viscous dissipation neglected. 

Pe Kn 

Without Axial Conduction (Br = 0) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 7.541 7.539 7.511 -0.027 -0.398 
0.02 6.926 6.586 6.764 -5.159 -2.394 
0.04 6.374 5.737 5.696 -11.095 -11.908 
0.06 5.883 5.255 5.196 -11.951 -13.212 
0.08 5.446 4.832 4.774 -12.708 -14.085 
0.10 5.059 4.460 4.406 -13.422 -14.810 

7 

0 7.541 7.545 7.519 0.048 -0.294 
0.02 6.926 6.708 6.813 -3.255 -1.664 
0.04 6.374 5.934 5.899 -7.419 -8.061 
0.06 5.883 5.415 5.362 -8.646 -9.711 
0.08 5.446 4.966 4.914 -9.670 -10.817 
0.10 5.059 4.574 4.527 -10.615 -11.742 

14 

0 7.541 7.560 7.534 0.246 -0.091 
0.02 6.926 6.836 7.066 -1.317 1.984 
0.04 6.374 6.114 6.109 -4.253 -4.339 
0.06 5.883 5.563 5.537 -5.748 -6.251 
0.08 5.446 5.089 5.061 -7.006 -7.598 
0.10 5.059 4.678 4.653 -8.148 -8.730 

35 

0 7.541 7.605 7.579 0.838 0.505 
0.02 6.926 7.169 7.405 3.388 6.466 
0.04 6.374 6.385 6.423 0.166 0.763 
0.06 5.883 5.786 5.801 -1.677 -1.411 
0.08 5.446 5.277 5.287 -3.210 -3.001 
0.10 5.059 4.838 4.849 -4.566 -4.324 

70 

0 7.541 7.678 7.653 1.787 1.465 
0.02 6.926 7.560 7.814 8.382 11.363 
0.04 6.374 6.703 6.805 4.904 6.333 
0.06 5.883 6.050 6.126 2.756 3.969 
0.08 5.446 5.502 5.570 1.013 2.226 
0.10 5.059 5.035 5.100 -0.481 0.811 
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Table 4.8: Channel averaged Nu compared with fully developed smooth channel 

values when axial conduction neglected and viscous dissipation included. 

Pe Kn 

Without Axial Conduction (Br = 0.1) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 17.485 16.655 16.444 -4.983 -6.329 
0.02 13.679 14.330 16.535 4.545 17.273 
0.04 11.215 10.716 11.165 -4.658 -0.446 
0.06 9.493 8.821 9.049 -7.613 -4.908 
0.08 8.224 7.508 7.666 -9.539 -7.272 
0.10 7.251 6.530 6.658 -11.043 -8.905 

7 

0 17.485 16.455 16.248 -6.258 -7.616 
0.02 13.679 15.069 16.066 9.226 14.855 
0.04 11.215 11.133 11.366 -0.734 1.324 
0.06 9.493 9.141 9.278 -3.855 -2.313 
0.08 8.224 7.757 7.876 -6.018 -4.413 
0.10 7.251 6.729 6.843 -7.753 -5.964 

14 

0 17.485 16.257 16.052 -7.553 -8.925 
0.02 13.679 15.775 16.889 13.289 19.005 
0.04 11.215 11.711 12.001 4.233 6.550 
0.06 9.493 9.545 9.757 0.540 2.702 
0.08 8.224 8.057 8.250 -2.069 0.310 
0.10 7.251 6.962 7.143 -4.158 -1.511 

35 

0 17.485 16.067 15.866 -8.825 -10.206 
0.02 13.679 17.308 18.641 20.966 26.618 
0.04 11.215 12.656 13.194 11.385 14.996 
0.06 9.493 10.213 10.639 7.048 10.775 
0.08 8.224 8.563 8.942 3.957 8.031 
0.10 7.251 7.362 7.709 1.505 5.936 

70 

0 17.485 16.130 15.946 -8.398 -9.648 
0.02 13.679 18.885 20.507 27.569 33.295 
0.04 11.215 13.735 14.621 18.347 23.295 
0.06 9.493 11.018 11.755 13.845 19.239 
0.08 8.224 9.202 9.859 10.629 16.582 
0.10 7.251 7.889 8.489 8.091 14.580 
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If Nu is averaged over only the rough sections of the channels, they will indicate 

the average Nu values of channels with completely rough walls from inlet to 

outlet. In this case, average Nu takes slightly higher values except Kn = 0 cases, 

where reduction in local Nu between roughness elements is dominant. However, 

general trend is similar as the channel averaged cases. Rough section averaged Nu 

for various Kn and Pe values when axial conduction included and viscous 

dissipation neglected cases are shown graphically in Fig. (4.24), while axial 

conduction and viscous dissipation included cases are shown in Fig. (4.25). Also, 

comparison of rough section averaged Nu with fully developed smooth channel 

values when axial conduction included and viscous dissipation neglected cases are 

summarized in Table (4.9), and comparison of rough section averaged Nu with 

fully developed smooth channel values for axial conduction and viscous 

dissipation included cases are summarized in Table (4.10). Moreover, in Figs. 

(4.26) and (4.27), rough section averaged Nu for various Kn and Pe values when 

axial conduction and viscous dissipation neglected cases and axial conduction 

neglected but viscous dissipation included cases are shown graphically, 

respectively. Summaries of these cases are also given in Tables (4.11) and (4.12), 

respectively. 
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Figure 4.24: Rough section averaged Nu for various Kn and Pe values when axial 

conduction included and viscous dissipation neglected. 
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Figure 4.25: Rough section averaged Nu for various Kn and Pe values when axial 

conduction and viscous dissipation included. 
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Table 4.9: Rough section averaged Nu compared with fully developed smooth 

channel values when axial conduction included and viscous dissipation neglected. 

Pe Kn 

With Axial Conduction (Br = 0) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 8.030 5.712 5.680 -40.591 -41.374 
0.02 7.378 9.082 9.318 18.767 20.823 
0.04 6.762 7.825 7.798 13.582 13.290 
0.06 6.206 6.874 6.824 9.719 9.059 
0.08 5.713 6.105 6.054 6.419 5.630 
0.10 5.278 5.474 5.427 3.583 2.752 

7 

0 7.955 5.654 5.621 -40.703 -41.535 
0.02 7.307 9.218 9.408 20.727 22.336 
0.04 6.701 7.839 7.833 14.514 14.452 
0.06 6.154 6.887 6.850 10.647 10.166 
0.08 5.669 6.119 6.078 7.361 6.728 
0.10 5.241 5.490 5.451 4.537 3.851 

14 

0 7.841 5.566 5.530 -40.884 -41.789 
0.02 7.200 9.185 9.546 21.612 24.577 
0.04 6.607 7.870 7.896 16.051 16.321 
0.06 6.075 6.914 6.897 12.129 11.919 
0.08 5.603 6.146 6.119 8.829 8.434 
0.10 5.186 5.517 5.490 5.997 5.533 

35 

0 7.668 5.433 5.394 -41.135 -42.162 
0.02 7.041 9.399 9.817 25.084 28.277 
0.04 6.470 7.994 8.076 19.067 19.890 
0.06 5.961 7.004 7.030 14.894 15.208 
0.08 5.509 6.221 6.228 11.442 11.548 
0.10 5.109 5.584 5.586 8.504 8.532 

70 

0 7.586 5.369 5.328 -41.296 -42.393 
0.02 6.966 9.804 10.244 28.948 32.000 
0.04 6.408 8.261 8.423 22.433 23.926 
0.06 5.909 7.193 7.289 17.854 18.933 
0.08 5.467 6.366 6.434 14.119 15.036 
0.10 5.076 5.702 5.759 10.983 11.859 
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Table 4.10: Rough section averaged Nu compared with fully developed smooth 

channel values when axial conduction and viscous dissipation included. 

Pe Kn 

With Axial Conduction (Br = 0.1) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 17.484 11.389 11.175 -53.516 -56.454 
0.02 13.680 26.499 29.783 48.376 54.068 
0.04 11.216 16.450 17.768 31.818 36.875 
0.06 9.494 12.289 13.160 22.744 27.854 
0.08 8.225 9.782 10.466 15.915 21.406 
0.10 7.252 8.090 8.662 10.355 16.278 

7 

0 17.484 11.390 11.176 -53.507 -56.444 
0.02 13.681 27.058 29.955 49.440 54.329 
0.04 11.217 16.533 17.876 32.158 37.255 
0.06 9.495 12.356 13.254 23.157 28.361 
0.08 8.226 9.838 10.546 16.385 22.003 
0.10 7.253 8.138 8.732 10.875 16.947 

14 

0 17.485 11.396 11.183 -53.438 -56.357 
0.02 13.683 26.741 30.285 48.832 54.820 
0.04 11.219 16.708 18.114 32.854 38.065 
0.06 9.497 12.497 13.458 24.007 29.432 
0.08 8.228 9.955 10.721 17.353 23.259 
0.10 7.254 8.238 8.885 11.945 18.355 

35 

0 17.497 11.448 11.235 -52.840 -55.730 
0.02 13.701 27.300 31.144 49.815 56.008 
0.04 11.235 17.289 18.914 35.017 40.600 
0.06 9.511 12.970 14.145 26.667 32.757 
0.08 8.240 10.351 11.311 20.392 27.150 
0.10 7.264 8.577 9.399 15.303 22.711 

70 

0 17.547 11.585 11.384 -51.458 -54.132 
0.02 13.775 28.354 32.332 51.419 57.396 
0.04 11.298 18.330 20.324 38.363 44.412 
0.06 9.563 13.820 15.345 30.805 37.683 
0.08 8.280 11.062 12.340 25.143 32.898 
0.10 7.295 9.184 10.295 20.569 29.144 
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Figure 4.26: Rough section averaged Nu for various Kn and Pe values when axial 

conduction and viscous dissipation neglected. 
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Figure 4.27: Rough section averaged Nu for various Kn and Pe values when axial 

conduction neglected and viscous dissipation included. 
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Table 4.11: Rough section averaged Nu compared with fully developed smooth 

channel values when axial conduction and viscous dissipation neglected. 

Pe Kn 

Without Axial Conduction (Br = 0) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 7.541 7.421 7.370 -1.617 -2.316 
0.02 6.926 5.710 6.049 -21.301 -14.493 
0.04 6.374 5.003 4.904 -27.407 -29.986 
0.06 5.883 4.539 4.409 -29.603 -33.427 
0.08 5.446 4.144 4.016 -31.433 -35.608 
0.10 5.059 3.799 3.682 -33.163 -37.403 

7 

0 7.541 7.417 7.371 -1.667 -2.306 
0.02 6.926 6.337 6.519 -9.290 -6.247 
0.04 6.374 5.375 5.289 -18.586 -20.521 
0.06 5.883 4.849 4.731 -21.333 -24.338 
0.08 5.446 4.403 4.290 -23.687 -26.939 
0.10 5.059 4.019 3.918 -25.892 -29.135 

14 

0 7.541 7.418 7.372 -1.659 -2.290 
0.02 6.926 6.567 6.995 -5.470 0.989 
0.04 6.374 5.708 5.681 -11.666 -12.189 
0.06 5.883 5.122 5.057 -14.848 -16.333 
0.08 5.446 4.631 4.564 -17.601 -19.319 
0.10 5.059 4.211 4.151 -20.151 -21.865 

35 

0 7.541 7.418 7.373 -1.654 -2.282 
0.02 6.926 7.138 7.576 2.973 8.585 
0.04 6.374 6.167 6.222 -3.351 -2.441 
0.06 5.883 5.498 5.511 -7.009 -6.757 
0.08 5.446 4.944 4.952 -10.149 -9.986 
0.10 5.059 4.477 4.488 -12.989 -12.716 

70 

0 7.541 7.416 7.370 -1.688 -2.319 
0.02 6.926 7.762 8.224 10.770 15.780 
0.04 6.374 6.662 6.831 4.329 6.692 
0.06 5.883 5.900 6.025 0.291 2.361 
0.08 5.446 5.283 5.398 -3.085 -0.890 
0.10 5.059 4.771 4.885 -6.041 -3.556 
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Table 4.12: Rough section averaged Nu compared with fully developed smooth 

channel values when axial conduction neglected and viscous dissipation included. 

Pe Kn 

Without Axial Conduction (Br = 0.1) 
Nu 

Difference  

(ε = 1.325%) 

Difference  

(ε = 2.0%) Smooth 

Rough 

1.325% 

Rough  

2.0% 

3.5 

0 17.485 15.491 15.116 -12.869 -15.674 
0.02 13.679 13.989 17.901 2.218 23.584 
0.04 11.215 9.715 10.468 -15.446 -7.137 
0.06 9.493 7.839 8.208 -21.102 -15.656 
0.08 8.224 6.585 6.841 -24.895 -20.217 
0.10 7.251 5.666 5.875 -27.972 -23.426 

7 

0 17.485 15.495 15.125 -12.844 -15.605 
0.02 13.679 15.463 17.134 11.537 20.165 
0.04 11.215 10.569 10.930 -6.115 -2.610 
0.06 9.493 8.492 8.709 -11.783 -8.999 
0.08 8.224 7.096 7.294 -15.891 -12.748 
0.10 7.251 6.076 6.272 -19.334 -15.602 

14 

0 17.485 15.521 15.159 -12.653 -15.347 
0.02 13.679 16.906 18.925 19.090 27.719 
0.04 11.215 11.716 12.245 4.276 8.411 
0.06 9.493 9.298 9.699 -2.096 2.124 
0.08 8.224 7.698 8.070 -6.834 -1.914 
0.10 7.251 6.545 6.899 -10.794 -5.101 

35 

0 17.485 15.544 15.201 -12.487 -15.028 
0.02 13.679 19.754 22.390 30.753 38.905 
0.04 11.215 13.474 14.559 16.766 22.968 
0.06 9.493 10.551 11.425 10.030 16.910 
0.08 8.224 8.656 9.436 4.996 12.844 
0.10 7.251 7.313 8.025 0.845 9.644 

70 

0 17.485 15.241 14.950 -14.723 -16.954 
0.02 13.679 22.379 25.551 38.875 46.464 
0.04 11.215 15.320 17.062 26.796 34.270 
0.06 9.493 11.961 13.418 20.631 29.250 
0.08 8.224 9.796 11.098 16.049 25.896 
0.10 7.251 8.268 9.454 12.298 23.305 
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Theoretically, as roughness heights in the channels decreases, average Nu values 

should become closer to the smooth channel values. In Table (4.13), channel 

averaged and rough section averaged Nu values are summarized for all relative 

roughnesses considered in this study for Kn = 0 and Kn = 0.10 when axial 

conduction is included. In is observed that as the relative surface roughness 

reduces, average Nu values become closer to the corresponding smooth channel 

values both for no-slip and slip conditions. 

 

 

Table 4.13: Summary of channel and rough section averaged Nu for Kn = 0 and 

Kn = 0.10 (axial conduction included). 

 Channel Averaged Nu 

Kn 

Smooth 
Fully 

Developed 
ε = 0.1% ε = 0.5% ε = 1.325% ε = 2.0% ε = 10% 

0 7.586 7.545 7.327 7.250 7.223 6.804 

0.10 5.076 5.097 5.418 5.570 5.606 5.451 
 Rough Section Averaged Nu 

Kn 

Smooth 
Fully 

Developed 
ε = 0.1% ε = 0.5% ε = 1.325% ε = 2.0% ε = 10% 

0 7.586 7.269 5.483 5.369 5.328 5.311 

0.10 5.076 5.095 5.401 5.702 5.759 5.450 
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CHAPTER – 5 

 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE 

WORK 

 

 

In this study the effect of roughness on convective heat transfer and fluid flow in 

microchannels with uniform inlet fluid velocity and constant wall temperature 

boundary condition is investigated. For this purpose, single-phase, 

incompressible, laminar and constant property fluid flow between parallel plates 

at steady state and in the slip-flow regime is considered. 

Roughness effect is simulated by adding triangular obstructions along the channel 

wall. Since the flow is in the slip-flow regime, the Navier-Stokes and energy 

equations are solved numerically by imposing velocity slip and temperature jump 

to boundary conditions. Also, since the fluid is assumed to have constant thermo-

physical properties, Navier-Stokes and energy equations are decoupled. 

Therefore, Navier-Stokes equations are first solved along the channel, and then 

the velocities found are used in the energy equation to obtain the temperature 

profile and local Nusselt numbers along the channel. Numerical calculations are 

carried out both by taking the axial conduction and the viscous dissipation effects 

into account, and by neglecting their effects. Reduced integration penalty FEM is 

used as the numerical method for the hydraulic part and standard Galerkin FEM 

for the energy part of the problem. The computer code is written in MATLAB by 

the author. The written code is verified by comparing the results obtained from 

analytical solutions for simplified smooth channel cases. 
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Air is used as the working fluid where Pr = 0.7. Calculations are carried out for 

Re values of 5, 10, 20, 50, and 100 which yields Pe values of 3.5, 7, 14, 35, and 

70.  Kn range from 0.0 to 0.10, and considered Br values are -0.1, 0.0, and 0.1. 

Roughness is considered as triangular shape geometrical obstructions placed over 

the bottom plate of smooth channel and investigated relative roughness values are 

1.325%, 2.0%, and 2.65%.  

Under the specified assumptions, following general conclusions can be obtained 

from this study. 

For the smooth case, 

1) Rarefaction decreases the velocity gradient at the wall which will 

reduce the friction factor.  

2) As Kn increases, local and fully developed Nu decreases compared to 

the continuum case. 

3) Axial conduction plays an important role especially at low Pe and at 

the inlet section, and should not be neglected for slow flows. 

4) In the presence of viscous heating, there is significant increase in fully 

developed Nu values. Due to high length to diameter ratio of 

microchannels, viscous heating should be considered in the analysis. 

For the rough case, 

1) When rarefaction effect is neglected, presence of surface roughness 

decreases the Nu compared to smooth channel fully developed values. 

Magnitude of the decrease depends on the flow parameters and the 

effects included such as axial conduction and viscous dissipation. 

However, decrease in magnitude increase slightly with increasing 

relative roughness. 



109 
 

2) As Kn increases, increase in Nu is observed with respect to 

corresponding smooth channel value. However the increase reduces as 

the rarefaction increases.  

3) Magnitude of the relative roughness affects the overall Nu values more 

at low Kn values in the considered relative roughness values. 

4) In the presence of viscous dissipation, Nu increases similar to the 

smooth case and this increase is more in high relative roughness. 

5) Increase in Pe increases the maximum value of local Nu at low Kn, 

however there is not any significant difference at high Kn. 

6) When axial conduction term is neglected, surface roughness tends to 

decrease the average Nu at low Pe values, except low Kn. 

7) Surface roughness is found to be more effective at relatively low 

rarefied flows. 

 

Surface roughness properties of microchannels in a micro-flow device, such as a 

micro heat exchanger or a micro heat sink, depend on the manufacturing 

processes of these channels, as well as the materials used; such as silicon, steel, or 

copper. Most commonly and widely used method is the photolithographic process. 

This method is mostly related to the silicon wafers and cross-sections of the 

channels that can be obtained by this method are limited to the crystallographic 

morphology of the silicon used. These cross-sections are rectangular, triangular, 

and trapezoidal. Among the others, silicon microchannels with trapezoidal cross-

sections are preferred more due to ease of production. In the photolithographic 

process, surface roughness also depends on the concentration and temperature of 

the etching solution, and the duration that the solution is applied in addition to the 

crystallographic morphology of the silicon used. In widely used trapezoidal 

channels, roughness occurs at the base of the channel rather than at the side walls, 

and they resemble conical or triangular prisms because of the morphology of the 

silicon. 
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Cases considered in this study showed that effect of surface roughness on heat 

transfer is more obvious at low rarefied flow between parallel plates. Similar 

simulations should also be repeated with different channel geometries such as 

circular, rectangular, triangular or trapezoidal cross-sections to verify this general 

result found for parallel plates. Thus, surface roughness could be considered and 

used in real micro applications. If the purpose is heat transfer enhancement in 

micro applications such as in micro heat exchanger or heat sink composed of 

trapezoidal silicon microchannels, the goal can be achieved by arranging the flow 

in the channel to a low rarefied state since surface roughness is inevitable (due to 

the production method). In this study, an optimum value of Kn = 0.02 is 

determined for maximum heat transfer, among the considered Kn value. However, 

it should be kept in mind that lower Kn values, which are beyond the scope of this 

study, could increase heat transfer more. 

 

It is known from the literature that, geometrical properties of channels and 

roughness elements in such numerical simulations yields different results. Also, 

there is very little numerical data about roughness effect on heat transfer in 

microchannels, especially with rarefaction effect, compared to other subjects. 

Thus, various simulations should be done with different geometries and different 

conditions to clarify the roughness effect and to construct a database regarding 

roughness effect. It should also be noted that, such two dimensional simulations 

should yield overestimated results. Thus three-dimensional simulations are needed 

and should give more accurate results. 

 

It is also known from literature that, surface roughness causes high pressure drop 

in microchannels. When high pressure drop is combined with large length to 

diameter ratio, compressibility effect becomes important. Thus, this work can be 

expanded by taking compressibility into account. Moreover, other important 
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factors such as; temperature dependent fluid properties, conduction at solid 

boundaries, and different boundary conditions such as constant heat flux or 

varying temperature profile at solid boundaries, can be investigated together with 

surface roughness. 
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