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ABSTRACT

EFFECT OF SURFACE ROUGHNESS IN MICROCHANNELS ON HEAT
TRANSFER

Turgay, Metin Bilgehan
M.Sc., Department of Mechanical Engineering
Supervisor : Asst. Prof. Dr. Almila Giiveng Yazicioglu

Co-Supervisor : Prof. Dr. Sadik Kakag

December 2008, 118 pages

In this study, effect of surface roughness on convective heat transfer and fluid
flow in two dimensional parallel plate microchannels is analyzed by numerically.
For this purpose, single-phase, developing, laminar fluid flow at steady state and
in the slip flow regime is considered. The continuity, momentum, and energy
equations for Newtonian fluids are solved numerically for constant wall
temperature boundary condition. Slip velocity and temperature jump at wall
boundaries are imposed to observe the rarefaction effect. Effect of axial
conduction inside the fluid and viscous dissipation also considered separately.
Roughness elements on the surfaces are simulated by triangular geometrical
obstructions. Then, the effect of these roughness elements on the velocity field
and Nusselt number are compared to the results obtained from the analyses of
flows in microchannels with smooth surfaces. It is found that increasing surface

roughness reduces the heat transfer at continuum conditions. However in slip flow



regime, increase in Nusselt number with increasing roughness height is observed.
Moreover, this increase is found to be more obvious at low rarefied flows. It is
also found that presence of axial conduction and viscous dissipation has

increasing effect on heat transfer in smooth and rough channels.

Key words: microchannel, slip flow, temperature jump, surface roughness, heat

transfer.
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MIKROKANALLARDA YUZEY PURUZLULUGUNUN ISI TRANSFERINE
ETKISI

Turgay, Metin Bilgehan
Yiiksek Lisans, Makine Miihendisligi Bolimii
Tez Yoneticisi : Asst. Prof. Dr. Almila Giiveng Yazicioglu

Ortak Tez Yoneticisi : Prof. Dr. Sadik Kakag

Aralik 2008, 118 sayfa

Bu calismada, iki boyutlu parallel plakalardan olusan mikrokanallardaki yiizey
puriizliligiiniin konveksiyonla 1s1 transferine ve akisa etkisi numerik olarak
incelenmigtirtir. Bunun i¢in tek fazli, 1s1l ve hidrodinamik olarak gelismekte olan
kararli rejimdeki kaygan akis ele alinmistir. Newtonien akigkanlar i¢in siireklilik,
momentum ve enerji denklemleri sabit duvar sicakligi sinir sarti i¢in numerik
olarak ¢oziilmiistlir. Seyrelme etkisini incelemek i¢in duvardaki hiz kaymasi ve
sicaklik sigramasi goz Oniine alinmistir. Ayrica akiskan i¢indeki eksenel 1s1 iletimi
ve siirtinme kaybi da degerlendirilmistir. Yiizey piiriizliligi ticgen geometrik
elemanlar olarak simiile edilmistir. Daha sonra piiriizlii kanal i¢in elde edilen hiz
profili ve Nusselt sayilari, piriizsiz kanal i¢in elde edilen degerlerle
karsilagtirilmistir.  Siireklilik sartlarinda  yiizey piirtizliiliigiindeki artisin = 1s1
tranferini  azalttigit bulunmustur. Fakat, kaygan akis sartlarinda ylizey
puriizliligiindeki artigin Nusselt sayisini da arttirdigr gézlemlenmistir. Bu artisin

az seyrelmis akislarde daha fazla oldugu saptanmistir. Ayrica, eksenel 1s1

Vi



iletiminin ve siirtiinme 1sinmasinin, piiriizlii kanallarda da diizgiin ylizeyli

kanallarda da 1s1 transferini arttirict etkisi oldugu bulunmustur.

Anahtar Kelimeler: mikrokanallar, kaygan akis, sicaklik sigramasi, yiizey

plirtizliiligi, 1s1 transferi.
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CHAPTER 1

INTRODUCTION

With the rapid development of micro and nano fabrication in the last two decades,
devices in micro- (1x10® m) and nano- (1x10” m) scale, which can be named as
MEMS (Microelectromechanical Systems), NEMS (Nanoelectromechanical
Systems), MFD (Micro flow devices), etc., became very popular for scientists,
researchers, engineers, and various industrial companies. As a result, micro
devices and systems such as micro actuators, micro motors, micro heat sinks,
micro heat exchangers, micro pumps, lab-on-a-chip devices, micro total analysis
systems (LTAS), micro propulsion devices, micro reactors, micro gears, micro

valves, and micro sensors have been fabricated and used successfully [1].

Most of these micro devices and systems include fluid flow and heat transfer in
micro-scale, which is an open and new field in scientific literature. This new and
intriguing area of science and engineering brought very important advantages and
developments, such as high efficiency in production, low costs per samples, very
small dimensions of the resulting product, which improves portability and
transport, much better accuracy and reliability, and in heat transfer area, increased
convective and radiative heat transfer rates due to high surface area to volume
ratios of heat sinks or heat exchangers. This development also brought its own

unique problems, such as deviations from well known conventional theories.



Studies in micro flow started with Poiseuille, in 1846. He investigated the liquid
flow in tubes with diameters ranging from 30 um to 150 um. Then, in 1909,
Knudsen studied the rarefied gas flow in glass capillary tubes in transition and
free molecular flow regimes [2]. Since then, various scientists performed research
in this field and tried to understand the fundamentals of the micro-scale. Famous
scientist Dr. Richard P. Feynman delivered two lectures in this area [3]. The first
was in 1959 at the annual meeting of the American Physical Society, and named
“There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of
Physics” [4]. In this lecture, he proposed a vision of miniaturization. The second
lecture was in 1983 at the Jet Propulsion Laboratory, and named “Infinitesimal
Machinery” [5], in which he revisited his first lecture and anticipated some of
today’s micro technologies [1, 2]. These two lectures were accepted as a

touchstone in micro engineering.

With the developing technology, many micro-scale devices became available for
scientists, in late 1980s and early 1990s. Since then, experiments have been
conducted systematically to better understand the flow and heat transfer behavior
in micro-scale. It was seen from the experimental data that conventional
continuum approach is not always valid in micro-scale, i.e., friction factors,
Nusselt numbers, Poiseuille numbers differ from classical values, and early
transition from laminar to turbulent flow can be observed. These differences were
mainly addressed by the rarefaction effect. Furthermore, additional factors that
can be negligible in macro gas flows, such as compressibility, viscous dissipation,
and thermal creep become important in gas micro flows, due to extremely small
dimensions. However, when the fluid is liquid, wetting of the solid boundaries,
adsorption and electrokinetic effects near the solid-fluid interface become very

important as well [2].

In the macro world, the fluid is treated as a continuum (infinitely divisible

substance). Related problems are solved using conservation of mass, momentum,



and energy equations with appropriate boundary conditions, which lead to a set of
nonlinear partial differential equations called Navier-Stokes equations. The
boundary conditions are mostly the “no-slip”, in which the velocity of the fluid
molecules adjacent to the solid boundary is equal to zero, and the “no-temperature
jump”, in which the temperature of the fluid molecules adjacent to the solid
boundary is equal to the temperature to the solid boundary [6]. Also, in macro
flow systems, flow regimes are mostly characterized by Reynolds number, Re,
defined as
UcLc

Re =— (1.1)

where U, is the characteristic fluid velocity, L. is the characteristic length, and ¢

is kinematic viscosity.

However, continuum model fails as the characteristic length becomes comparable
to the mean free path, 4, which is defined as the average distance traveled by the
molecules without colliding with each other. This should be the case if the gas is
at very low pressure (rarefied) or the characteristic length is very small as in
micro- or nanochannels [7]. The ratio of the mean free path to the characteristic
length, gives an important non-dimensional parameter known as the Knudsen

number, Kn, which is a measure of the rarefaction,

Kn

= (1.2)

h
[

Also, the relationship between Kn, Re and Mach (Ma) numbers is given as,

,ynMa
Kn= |—— 1.3
" 2 Re 13)

where y is specific heat ratio of the fluid. In micro flow systems, flow regimes are

characterized by the Knudsen number. Most commonly, when Knudsen number is



below 0.001, flow is considered as continuum and the Navier-Stokes and energy
equations are valid with no-slip and no-temperature jump boundary conditions.
When Knudsen number is between 0.001 and 0.1, flow is considered as in slip-
flow regime. From Knudsen 0.1 to 10 is the transition regime and above 10, flow
becomes free molecular. This classification is shown in Figure (1.1) graphically. It
should be noted that, this classification is not solid; it is based on empirical data

and regime limits may depend on the problem geometry [2].

Kn = 0.0001 0.001 0.0 0.1 1 10 100
s ' ’
Continuum ' ' Transition ' >
Flow h ; Regime :
Slip - Flow (moderately ! Free-molecular
Regime ; rarefied) ; Flow
(slightly rarefied) i

Figure 1.1: Knudsen number regimes.

Slip-flow regime is important in micro-scale gas flows, because most micro
fluidic devices operate in this regime. In slip-flow regime, the continuum based
Navier-Stokes and energy equations are still valid with appropriate boundary
conditions at the solid boundaries, which are tangential velocity slip and
temperature jump boundary conditions. One of the most commonly used pair of
slip/jump boundary conditions is the Maxwellian boundary conditions, which are

first order in accuracy. The tangential velocity slip boundary condition is given as,



2—Fy,  (du RT A /T
= — — (= 1.3
Us A (6n>w +3 8n T (an)w (L3

and the temperature jump boundary condition is given as,

Ts _Tw

=2—FT2_)/A <6T> (1.4)

In these equations, F), is the tangential momentum accommodation coefficient, Fr
is the thermal accommodation coefficient, R is the gas constant, Pr is the gas
Prandtl number, vy is the ratio of the specific heats, » is the coordinate normal to
the wall [1, 7]. Additional slip boundary conditions such as, second and higher
order accurate ones, can be found in Ref. [2]. The second term on the right hand
side of Eq. (1.3) reflects the thermal creep effect, which is the fluid flow induced

by the temperature gradient along the channel.

The momentum accommodation coefficient F), represents the fraction of the
molecules undergoing diffuse reflection. It is equal to zero for ideally smooth
surfaces, where specular reflection occurs and molecules conserve their tangential
momentum. It is equal to one for diffuse reflection where the tangential
momentum is lost at the wall. It depends on fluid, solid and surface roughness of
the channel. Experimental results show that its value is between 0.5 and 1.0, and
in most of the engineering applications it is close to 1.0. Meanwhile, the thermal
accommodation coefficient Fy represents the fraction of the molecules reflected
diffusively by the wall and accommodated their energy to the wall temperature.

Its value varies between 0 and 1.0 [6].

When the gas micro flow is in slip-flow and early transition regime, continuum
based solution methods are sufficient, that is governing Navier-Stokes and energy
equations are solved with slip and jump boundary conditions, using one of the

numerical methods such as finite element, finite volume, or finite difference,



when analytical solution is not possible. However when the flow is in late

transition or free-molecular regime, an atomistic solution method, such as direct

simulation Monte Carlo (DSMC), Boltzmann, Lattice Boltzmann, is required.

When it comes to liquid micro flows, solution method mostly depends on the

dimensions of the system. In mesoscopic scales, continuum approach with no-slip

boundary condition suffices. However, in submicron dimensions, an atomistic

solution method like molecular dynamics (MD), lattice Boltzmann, dissipative

particle dynamics, is required [1, 2]. These conditions are summarized in Table

(1.1).
Table 1.1: Summary of flow regimes and solution methods [1, 5].
Regime Solution Method Kn Range

Navier-Stokes and energy equations with

Continuum ) ) o Kn <0.001
no-slip / no-jump boundary conditions
Navier-Stokes and energy equations with

Slip — Flow slip / jump boundary conditions, (MD, 0.001 <Kn<0.1
DSMC... may be used for liquids)
BTE (Boltzmann transport equation),

Transition 0.1<Kn<10
DSMC

Free molecular | BTE, DSMC Kn>10

As stated before, experiments conducted in micro fluidic systems give different

results than similar experiments conducted in macro size systems. These




differences are the results of neglected parameters and conditions described
above. It is also possible that, some discrepancies belong to the experimental
measurement uncertainties and other errors which might be expected when
dealing with such small scales. In all circumstances, these anomalies between the
results show the insufficient fundamental understanding and knowledge in this
area. One of the problems faced in the understanding of these phenomena is the
effect of the surface conditions of the microchannels, more specifically the surface

roughness effect.

Roughness characteristics of microchannels are strictly dependent on the
manufacturing processes of these channels. Manufacturing methods can be
classified as micromechanical machining, X-ray micromachining, surface and
surface-proximity-micromachining, and photolithographic-based processes [8].
Since the photolithographic process is the most common method, there are several
experiments in open literature conducted with such microchannels. These are
mostly related to the silicon wafers that are widely used in micro systems such as
in electronics as semiconductors. When the chemical (wet) etching is applied on
the silicon substrate by using a KOH solution, specific cross-sectional shapes are
obtained. These cross-sectional shapes of the microchannels depend on the
crystallographic morphology of the silicon used. These are rectangular on <110>
silicon, trapezoidal with an apex angle of 54.74° on <100> silicon, and triangular
on <111> silicon, where the numbers between the “<...>” sign show the Miller
indices of silicon morphology. In photolithographic process, surface roughness
depends on the crystallographic morphology of the silicon used, the concentration
and temperature of the etching solution, and the duration that the solution is
applied. For example, when a silicon micro channel with trapezoidal cross-section
is obtained by wet etching, it has smooth lateral faces while the base face has
randomly distributed roughness elements that look like conical or triangular prism
obstructions, which can be seen in Fig. (1.2). However, when the process is

continued, the channel has a triangular cross-section.
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Figure 1.2: Scanning electron microscopy images of a silicon trapezoidal
microchannel produced by photolithography (a) channel at a distance (b) smooth
sidewall (c) closer look at roughness elements at base [69].

Defining the roughness characteristics in micro-scale is very difficult. Its
extremely small size and random distribution of peaks along the surface make the
investigation of roughness effect very difficult among the other parameters. Thus,
most of the investigators neglect this effect in their studies. Furthermore, when an
unexpected deviation occurs, most researchers refer to the roughness effect,
whether it is true or not. During the last decade, special attention has been paid to
this effect due to its somewhat mystic and unresolved nature. However, there are

still a limited numbers of publications, relative to other effects, in open literature.



This study focuses on the effect of roughness on convective heat transfer and fluid
flow in microchannels with uniform inlet fluid velocity and constant wall
temperature boundary condition. For this purpose, single-phase, incompressible,
laminar and constant property fluid flows, at steady state and in the slip-flow
regime, in parallel plate channel, is considered. Roughness effect is simulated by
adding triangular obstructions along the channel wall. Since the flow is in slip-
flow regime, the Navier-Stokes and energy equations are solved numerically by
imposing the velocity slip and temperature jump to boundary conditions. Also,
since the fluid is assumed to have constant thermo-physical properties, Navier-
Stokes and energy equations can be decoupled. Therefore, Navier-Stokes
equations are first solved along the channel, and then the velocities found are used
in the energy equation to obtain the temperature profile and local Nusselt numbers
along the channel. Numerical calculations are carried out both by taking the axial
conduction and the viscous dissipation effects into account, and by neglecting
their effects. Reduced integration penalty finite element method is chosen as the
numerical method and the computer code is written in MATLAB by the author.
The written code is verified by comparing the results obtained from analytical

solutions for simplified smooth channel cases.

In Chapter 2, review of the studies about micro-scale heat transfer and fluid flow
in literature is given. Single phase flow and convective heat transfer in
microchannels, especially with surface roughness, is considered. In Chapter 3, the
case problem in is defined and governing equations are given. Then, numerical
method, formulation, and solution procedure are described. Mesh convergence
studies and results for both smooth and rough cases are given in Chapter 4 with a
discussion. Then, the study is concluded with a summary and conclusion which
forms Chapter 5. Also, further possible developments about this area are

suggested in this chapter.



CHAPTER 2

LITERATURE SURVEY

Parallel to the technological development in micro engineering, especially in
micro machining and construction, scientific research in the micro scale flow and
heat transfer area has increased in last two decades. Thus, numerous studies have
been conducted to understand the fundamentals; such as flow characteristics and
heat transfer rates in simple geometries, as well as specific effects like rarefaction,
viscous dissipation, channel geometries, electrokinetic effects, and surface
roughness, and published in open literature. However, in this chapter, studies on
single-phase flow and convective heat transfer in microchannels are reviewed. In
particular, special interest is given to studies dealing with surface roughness

effect, and they are taken into consideration in more detail.

Yener et al. [9] described the fundamentals of single-phase forced convection in
microchannels and presented an extensive review in this area. Bayazitoglu and
Kakac [10] explained the flow regimes of single phase gaseous fluid flows in
microchannels with different cross-sections, by giving the theoretical base and
reviewing the analytical, experimental, and numerical studies. Bayazitoglu et al.
[11] reviewed some analytical solutions of temperature distribution and leading
Nu values of gaseous slip-flows in microchannels for different geometries. The
reader is encouraged to refer to these reviews to construct a basic knowledge

about micro scale flow and heat transfer phenomena.
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Obot [12] reviewed the experimental results on pressure drop, heat and mass
transfer studies, and laminar to turbulent transition of single phase flows, up to
year 1998. The causes of inconsistencies in the results have been mostly related to
the measurement errors by the author. Also, Sobhan and Garimella [13] reviewed
the experimental results and theoretical predictions of fluid flow and heat transfer
studies in micro- and mini-channels and microtubes, up to year 2000. They also
presented them in tabular form and compared the single phase friction factor and
Nu correlations with the correlations of conventional size channels. The authors
stated that there is little agreement between the results of each investigator. The
possible reasons of deviations are referred to entrance and exit effects, surface
roughness, which is generally not considered, and uncertainties and errors in
experimental setups and measurements. Both Refs. [12] and [13] stated the need

for additional systematic studies with carefully chosen and measured parameters.

Morini [8] reviewed the experimental studies on single phase convective heat
transfer through microchannels chronologically, and tabulated and analyzed the
results obtained for friction factor, laminar to turbulent transition, and Nu values.
The author also stated that the results obtained from experiments deviate from
conventional theories and are inconsistent with each other. The inconsistency in
the experimental correlations for Nu for gas and liquid flows was shown
graphically as well by the author in their work. These deviations are caused by
rarefaction, compressibility, viscous dissipation, property variations, electro-
osmotic effects, surface conditions of microchannels, and experimental
uncertainties. Furthermore, the author also stated that the deviations are
decreasing as the reliability and accuracy of the experimental and measurement
devices increase with the improvement in micro technology, but also expressed
the need of further studies for fundamental understanding of micro flows and heat

transfer.
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More recently, Hestroni et al. [14] reviewed the experimental studies of laminar
incompressible flows in microchannels with circular, rectangular, triangular, and
trapezoidal cross-sections, and having hydraulic diameters from 1.01 um to 4010
um. The authors compared the experimental data on pressure drop, Poiseuille
number, friction factor, laminar to turbulent transition, and the effect of the
viscous energy dissipation on flow parameters, of the flows in 0.00/ < Re < Re,,
and 0.001 < Re < 0.4 region. In a subsequent study, Hestroni et al. [15] reviewed
the experimental and theoretical studies of single phase heat transfer in circular,
triangular, rectangular, and trapezoidal microchannels with hydraulic diameters of
60 to 2000 um. This time, the authors compared the experimental data on the
effects of energy dissipation, axial conduction in the fluid and wall, geometrical
properties and surface conditions of microchannels on heat transfer, to

conventional theories.

From all these reviews, several conflicting conclusions can be drawn. Some
investigators reported laminar fully developed friction factors and Poiseuille
numbers lower than the conventional values, some reported higher values, while
some investigators reported agreement with conventional values. A similar
conflict occurs in laminar to turbulent transition Re values. Reported Re values
vary between 300 and 6000. Similar conclusions can be made about the laminar
regime Nu and the effect of energy dissipation on heat transfer. However, it
should also be noted that, as the precision and reliability of the experimental
setups and measurement devices increase, the deviation margin of theoretical and
experimental results obtained from similar experiments conducted by different
investigators reduces. Nevertheless, as pointed out in Refs. [8-15], future research

is still needed for fundamental understanding.

Kavehpour et al. [16] investigated the effects of rarefaction and compressibility on
the heat transfer and fluid flow characteristics in the entrance and fully developed

regions for both uniform wall temperature and uniform wall heat flux thermal
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boundary conditions. For this purpose the authors modeled a 2-D flow through a
parallel plate in the slip-flow regime, 0.00/< Kn <0.1, and then solved the
compressible form of conservation of momentum and energy equations, and the
equation of state for an ideal gas, by imposing slip velocity and temperature jump
into the boundary conditions. After non-dimensionalization, they used a numerical
method based on control volume finite difference scheme (SIMPLE algorithm,
power law scheme) to solve the equations. They compared their results with the
continuum flows and found that Nu and friction coefficients were decreased.
Furthermore, they showed that the compressibility effect is important for flows
with higher Re, and the rarefaction effect is important for flows with lower Re.
The entrance region was found to be longer for higher Kn values, the velocity and
the temperature profile became flattened, and the axial pressure variation became

nonlinear, compared to continuum flows.

Hadjiconstantinou and Simek [17, 18] investigated the convective heat transfer
characteristics of a hydrodynamically and thermally fully developed gaseous flow,
between micro- and nano-scale parallel plates and in circular tubes, under the
constant wall temperature boundary condition. The authors used the slip flow
theory, with axial conduction, to calculate the Nu in the 0 < Kn < (.2 range, and
the DSMC method in the 0.02 < Kn < 2 range. Results were obtained for different
Kn, Pe, and thermal accommodation coefficients. They found that the axial heat
conduction increased the Nu in the slip-flow regime. However, the effect of axial
conduction decreased as the Kn increased. They also found that the Nu decreased

with increasing Kn.

Aydin and Aver [19] investigated the effect of Br and Kn values on Nu by solving
the energy equation, analytically. For this purpose the authors considered a steady,
hydrodynamically and thermally fully developed, laminar flow of a Newtonian
fluid with constant properties, flowing in a parallel plate microchannel. Unlike

Refs. [17, 18], they included viscous dissipation, but neglected axial conduction,
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since Pe was large enough to neglect the axial conduction. They conducted their
analysis for constant wall temperature and constant heat flux thermal boundary
conditions separately, by imposing slip velocity and temperature jump effects at
the wall. They observed singularities at the Br for each Kn, which was explained
as the points where the heat supplied to the fluid is balanced with internal heat
generation due to viscous heating. Similar to Refs. [17, 18], they found that as Kn

increases, Nu decreases due to the increase in the temperature jump at the wall.

Asako et al. [20] investigated the compressibility effect on gaseous flows in
parallel plate microchannels. For this purpose, they modeled a two dimensional
compressible steady flow of an ideal gas. Then, they solved the compressible form
of momentum equations with uniform inlet velocity and no-slip boundary
condition, and the energy equation by neglecting the heat conduction terms. After
non-dimensionalization, they solved the equations numerically, in which the
numerical methodology was based on the arbitrary-Lagrangian-Eulerian (ALE)
method. They also obtained correlations for Darcy’s and Fanning’s friction
factors, f; and f respectively, which are functions of Re and Mach number. They
found that (f -Re) is a function of Mach number and different from
incompressible flow values for the parallel plate channel. Also the effect of

stagnation pressure and temperature on (f - Re) is found to be small.

Jeong and Jeong [21] solved the Graetz problem, which is hydrodynamically
developed at the entrance and thermally developing, in a parallel plate
microchannel with uniform temperature and uniform heat flux boundary
conditions, analytically. The authors included the rarefaction effects, which are
slip velocity and temperature jump on the channel wall, axial conduction in the
fluid, and viscous dissipation into their analysis. They solved the governing
energy equation for various Kn and Br values, and for air as the working fluid,
with the method of separation-of-variables, and used the eigenfunction series

expansion for the temperature distribution. They found that Nu decreases as Kn or
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Br increases and as Pe decreases. They also stated that, similar to Refs. [17, 18],
which are hydrodynamically and thermally fully developed flow analyses, axial
conduction increases the Nu compared to the solutions of Graetz problem without

axial conduction.

Tunc and Bayazitoglu [22] solved the same problem for microtubes analytically
by using integral transform technique. They considered the fluid properties
constant, included viscous dissipation, and also took the temperature jump and
velocity slip at the wall into account. They analyzed both the uniform temperature
and uniform heat flux boundary condition cases. The effect of viscous dissipation
was studied for fluid heating and cooling, both. They showed the variation of Nu
with Kn, Pr, and Br, and presented their results in tabular form for 0.6 < Pr < 1.0,

0.0<Kn<0.12,and Br = 0.0, £0.01.

Larrodé¢ et al. [23] also studied the Graetz problem, which is extended to the slip-
flow region, to define the effect of rarefaction on heat transfer in microtubes. They
solved the energy equation considering temperature jump and velocity slip at the
wall. By introducing a spatial rescaling factor, slip radius, which is a function of
Kn and momentum accommodation factor, they reduced the slip-flow Graetz
problem to a classical Graetz problem with a mixed boundary condition. They
developed a uniform asymptotic approximation for the solution of the
eigenfunction of the problem. They found that heat transfer is decreased when

they considered the temperature jump compared to the continuum case.

Cetin et al. [24] studied a two-dimensional, incompressible, constant property,
hydrodynamically developed, thermally developing, single-phase laminar flow in
microtubes and microchannels, and in the slip-flow regime at steady state. The
authors neglected the axial conduction in the fluid, but included viscous
dissipation and velocity slip and temperature jump conditions at the walls, into
their analysis. They solved the energy equation for constant wall temperature and

constant wall heat flux boundary conditions, numerically. They used a finite
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difference scheme as the numerical method, and a fine mesh in their simulations.
They verified the numerical method by comparing it with the continuum flow
simulation results. They found that for the constant wall temperature case, Nu
decreases as the Kn increases, as a result of increasing temperature jump, which
reduces the heat transfer when Br is greater than zero. Also, Nu had greater values

in the presence of viscous heating, compared to otherwise.

In a subsequent study, Cetin et al. [25] solved the same Graetz problem in slip-
flow regime by considering the axial conduction, viscous dissipation, and
rarefaction effects, for uniform wall temperature boundary condition in a
microtube. They used a coordinate transformation for the energy equation and
then solved it numerically by a finite difference scheme. They showed the
variation of local Nu values with Kn, Pe, and Br along the channel. For this case,

they found an increase in the thermal entrance length and fully developed Nu.

Sun et al. [26] investigated the Graetz problem in slip-flow regime for constant
wall heat flux, constant wall temperature and linear variation of wall temperature
boundary conditions in a microtube. They considered viscous heating, but
neglected axial conduction. Also, rarefaction effects, velocity slip and the
temperature jump, were taken into account at boundaries. They solved the
governing equations numerically by a finite volume-finite difference scheme.
They obtained similar results as Ref. [24]. They stated that, the velocity slip and
the temperature jump have inverse effects on heat transfer; while slip velocity
increases convection along the surface, temperature jump reduces the temperature

gradient and thus the heat transfer along the wall.

Aydin and Avci [27] studied the forced convective heat transfer of
hydrodynamically and thermally fully developed laminar, steady state gas flow in
micropipes. They included viscous dissipation, velocity slip and temperature jump
to their analysis. They solved the governing equations for constant heat flux and

constant wall temperature boundary conditions, analytically. They showed the
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combined effect of Kn and Br on Nu and temperature distribution. They also

discussed the singularities on Br and Nu variations, and the modified Br.

Koo and Kleinstreuer [28] investigated the viscous dissipation effect on
temperature distribution and on the friction factor, by scale analysis and numerical
simulations. They assumed steady laminar hydrodynamically fully developed
incompressible flow in microchannels with circular and rectangular cross-
sections. In their analysis, they used water, methanol and iso-propanol as the
working fluid, and assumed constant properties except viscosity, which varies
with mean flow temperature. They found that viscous dissipation increases as the
channel size decreases and the effect of viscous dissipation on friction factor also
increase with the reduction of channel size. They concluded their analysis by
stating that the viscous dissipation strongly depends on the Re, Pr, Eckert number,

microchannel aspect ratio and the hydraulic diameter.

Yu and Ameel [29] solved the energy equation for hydrodynamically fully
developed, incompressible laminar flow of a constant property fluid flowing in a
rectangular microchannel with constant wall temperature thermal boundary
condition, analytically. They implemented the slip velocity and temperature jump
at the wall and neglected the energy dissipation. Analytical method was a
modified generalized integral transform technique due to the non-separable nature
of the resulting eigenvalue problem. They found that, for a given aspect ratio, heat
transfer is reduced always with increasing temperature jump. Also, increasing
temperature jump reduced the thermal entrance length. Furthermore, fully

developed normalized Nu decreased with increasing aspect ratio.

Tunc and Bayazitoglu [30] analyzed thermally and hydrodynamically fully
developed flow of a gas at steady-state in rectangular microchannels with axially
and peripherally constant heat flux boundary conditions at the walls. They also
included the slip velocity and temperature jump at the wall into their analysis, but

neglected viscous dissipation. They obtained temperature profile and Nu for
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varying values of the aspect ratio. They applied the integral transform technique
to the incompressible momentum equation in axial direction, to obtain the fully
developed velocity profile that includes the slip velocity at the walls. Then they
used this velocity profile to solve the energy equation. To solve the energy
equation they also used the integral transform technique. They verified their
method by comparing the results obtained for the continuum solution. For high Re
the effect of compressibility, for low Re the effect of rarefaction is found to be
important. They found that when K» increases, Nu decreases due to the increase in
temperature jump. Also, the decrease in Nu is more significant for smaller aspect
ratios, since as the channel size decreases, rarefaction effect increases. When
temperature jump is not considered, Nu increases as Kn increases. This increment
is larger for smaller channels due to the increase in the magnitude of the slip

velocity.

Hsieh et al. [31] investigated Nitrogen gas flow in a rectangular microchannel
with an aspect ratio of 0.25 (50 um D x 200 pum W x 24,000 um L) and hydraulic
diameter of 80 um for low Re, experimentally and theoretically. The Re range was
2.6 < Re <89.4 and the Kn range was 0.001 < Kn < 0.02. The flow was considered
isothermal. They compared their experimental results with analytical results,
which were based on a two dimensional continuous flows with first order slip
boundary condition. In this analytical solution, they solved the 2D Navier-Stokes
and continuity equations and the equation of state for ideal gas with the
assumptions of steady-state, isothermal, compressible slip flow, by a perturbation
method. They also proposed a new complete momentum accommodation
coefficient in terms of Kn, which was used in slip velocity equation. They found
that the pressure drop has an unusual nonlinear behavior compared to larger
channels, which was due to compressibility effect. Analytical results, with slip
flow boundary condition, were in good agreement with experimental results and

the flow seemed to never reach the fully developed condition under the
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experimental conditions. Finally, it was found that the pressure drop is smaller

than that for a conventional sized channel.

Lee et al. [32] conducted experiments of single phase flow of deionized water,
through rectangular microchannels, made of copper and having hydraulic
diameters of 318 to 903 um. The flow Re was ranging from 300 to 3500. The
authors carried out the experiments over a range of flow rates. They found that, at
a given flow rate, the heat transfer coefficient increased with decreasing channel
size. They also made numerical simulations, which model the experimental setup,
by commercial software package FLUENT, and compared the numerical results
with the experimental ones. Their simulations both include the three dimensional
conjugate heat transfer and simplified thin wall case, in which axial conduction
was neglected. They obtained a good agreement with the experimental results.
They stated that, when the boundary conditions and the entrance effects are
coupled carefully with conventional theories, heat transfer in microchannels can

be predicted satisfactorily, in the dimensional range of this experiment.

Renksizbulut et al. [33] investigated the slip flow and heat transfer of a constant
property gas flow in rectangular microchannels of various aspect ratios. They
solved the incompressible form of three dimensional Navier-Stokes equations and
energy equations with velocity slip and temperature jump boundary conditions, by
using a numerical method based on control volume. They considered the axial
conduction effect but neglected viscous dissipation. They considered 0./ < Re <
10 and Kn < 0.1 range, and Pr = [ case. They found large reductions in the
friction factor and Nu in the entrance region of the channel, which they attributed
to the rarefaction effects. They stated that the entrance lengths were only slightly
affected by the rarefaction effects for the range of considered Re, but they
displayed a highly nonlinear dependence on the channel aspect ratio. They also
proposed friction factor and Nu correlations, which were functions of Re, Kn, and

the side angle of the channel. The proposed correlations were approximately valid

19



for rectangular and trapezoidal channels. When the results obtained from these
correlations were compared with experimental results, it was seen that

correlations deviates about 6% at most from experimental results.

Morini et al. [34] investigated the rarefaction effects on the pressure drop for an
incompressible fully developed laminar flow in the slip flow regime 0.001 < Kn <
0.1 with an average Mach number less than 0.3, through silicon microchannels
having rectangular, trapezoidal and double-trapezoidal cross-sections and various
aspect ratios. They treated the flow as steady state and two dimensional, and
assumed that the fluid is Newtonian with constant physical properties. They also
assumed that all channel walls were rigid and non-porous. They solved the
conservation of momentum equation for the fluid by using first-order Maxwell
slip boundary condition at the wall, numerically by a code written with the
software package FlexPDE. According to the authors this software solves systems
of partial differential equations by a Rayleigh-Ritz-Galerkin finite element
method. As a result, they stated that for trapezoidal and double-trapezoidal
microchannels, the effect of the aspect ratio on the friction factor reduction was
strong only if the aspect ratio is less than 0.5. Additionally, for gas flows, the
effect of gas rarefaction can be decoupled from the compressibility effects if the
average Mach number is less than 0.3 and then, the flow can be analyzed by using
the Navier-Stokes equation for incompressible fluids with a slip flow boundary

condition at the channel wall if the Kn ranges between 0.001 and 0.1.

Cao et al. [35] investigated the fully developed laminar flow and heat transfer in
the slip-flow regime in trapezoidal microchannels. They also assumed the flow as
laminar and steady-state, and neglected the viscous dissipation effect. To solve the
governing equations, they first converted the physical trapezoidal cross-section to
a computational plane of square cross-section via a coordinate transformation;
then solved the resulting equations numerically by a finite difference scheme for

uniform wall heat flux boundary condition. They discussed rarefaction and
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geometrical effects on friction coefficient and Nu. They found that the friction
coefficient was reduced in the slip-flow region and the effect of aspect ratio and
base angle became less obvious at high Kn. They also stated that the influences of
aspect ratio and base angle on heat transfer were negligible for large temperature

jump.

Kuddusi and Cetegen [36] studied the incompressible, hydrodynamically
developed, thermally developing gaseous flow in trapezoidal microchannels with
hydraulic diameters ranging from 1 to 100 um, with various aspect ratios. To
solve the Navier-Stokes and the energy equations, they used a coordinate
transformation, in which the trapezoidal cross-section converted to a unit square
cross-section. Then the resulting equations were solved by a finite difference
scheme. They validated their method by comparing the obtained thermally
developing and fully developed Nu values, and friction factors for various
channels, with the existing data in the literature. They discussed the effects of
aspect ratio and rarefaction and found that when rarefaction increases, friction
factor decreases. A similar situation also occurs when aspect ratio increases. They
also observed that at low rarefaction values the high heat transfer rate at the
entrance diminished rapidly as the developing flow approached the fully
developed condition, but at high rarefaction heat transfer did not exhibit

considerable change along the channel.

Barber et al. [37] considered the low Kn isothermal flows over curved surfaces
and questioned the validity of the conventional Maxwell’s first order slip velocity
equation, which is given in Eq. (1.3). They showed that, this equation is unable to
capture important physical properties over curved or rotating surfaces, and
demonstrated the limitations with some rarefied flow problems. They also
reformulated the slip velocity boundary condition, with the use of the local wall
shear stress, to make it suitable for generalized curved surfaces. For a two-

dimensional surface, the equation becomes;
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Dongari et al. [38] investigated the gaseous slip-flow in a long, parallel plate
microchannel. They assumed that the flow was steady, isothermal, two
dimensional and locally fully developed with negligible viscous dissipation. They
chose the channel long, so the entry and exit effects became negligible. Then, they
solved the integral from of Navier-Stokes equations analytically by assuming a
second order slip velocity. They also considered the change in axial momentum in
their analysis. They validated their theory with the available experimental data

and showed that second-order slip velocity gives better results in slip-flow region.

Interest in the effect of surface roughness in micro fluidic systems increased in the
last decade. Mala and Li [39] investigated water flow through fused silica and
stainless steel microtubes with various diameters between 50 um and 254 pm
experimentally up to Re = 2500. The mean surface roughness heights of both
tubes were = 1.75 um, but shapes and distributions of roughness elements were
not known. They observed deviations from the predictions of conventional
theories as higher friction factor and friction constant, and a possible early
transition from laminar to turbulent flow. For a fixed volume flow rate, the
pressure gradient was higher than that predicted by the conventional theory. For
small Re, the conventional theory and the experimental data were in a rough
agreement. However as the Re increases, deviation from the conventional theory
was observed. The deviation increases as the diameter of the microtubes
decreases. They also introduced a roughness-viscosity model (RVM) to explain
the effects of surface roughness, which depends on the idea of increasing
momentum near the wall (around the roughness elements) and zero at the center
of the channel. This additional momentum was accounted for by an additional
viscosity term in the momentum formulation, similar to eddy-viscosity in

turbulent flow. Then the modified momentum equation was solved by a numerical
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method. However, this formulation includes a constant that depends on
experimental data and geometry of the channel, which makes its use limited. They
also proposed an empirical formula for this constant depending on their
experimental data, thus a good agreement was obtained between the numerical
results and experimental results. Moreover, this model does not include the
velocity slip at the wall, since it was developed for liquid flow in microchannel

where no-slip condition holds, and its use for gas flows is questionable.

Qu et al. [40] conducted experiments of deionized water flowing through
trapezoidal silicon microchannels with hydraulic diameters ranging from 51 pm to
169 um and measured the flow rate and pressure drop along the channel at steady
state. These microchannels were manufactured by anisotropic chemical etching,
and have 0.8 um and 2.0 um average roughness heights. The physical properties
of water involved in the calculations, such as density and dynamic viscosity, were
determined from the measured water temperature and assumed to be independent
of the pressure. They also modelled the experimental setup and solved with
conventional theories. For this purpose, they transformed the two dimensional
trapezoidal cross-section to a square computational cross-section by a coordinate
transformation, and solved the governing equations with a finite difference
scheme. They observed higher pressure gradient and flow friction than the
conventional theories and Re dependent friction coefficient. They concluded their
analysis by applying the RVM proposed by Ref. [39] with a new formula for the
previously mentioned constant, and found good agreement for relatively low Re

values.

In a proceeding work, Qu et al. [41] investigated the heat transfer characteristics
of deionized water flowing through trapezoidal silicon microchannels, which were
also produced by anisotropic chemical etching. These microchannels had
hydraulic diameters ranging from 62 um to 169 pm and average roughness

heights of 0.8 um and 2.0 um. The temperatures, flow rate and the pressure drop
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along the microchannel were measured. They also solved the conjugate heat
transfer problem, which combines heat conduction in the solid region and heat
convection in the fluid region, numerically. They neglected the entrance effects,
viscous dissipation and axial heat conduction, and assumed a laminar, fully
developed flow at steady state in the trapezoidal microchannels. Then, momentum
and energy equations were solved for no-slip and no temperature jump boundary
conditions with a finite difference scheme. They observed smaller Nu values than
the conventional theory, which was a result of surface roughness. They also
applied the RVM that was modified for the trapezoidal microchannels [40] and
proposed new modified Nu relationship. Good agreement between experimental

Nu and modified Nu was obtained.

Kandlikar et al. [42] experimentally investigated the effect of surface roughness
on pressure drop and heat transfer by using stainless steel mini tubes having 1.032
mm and 0.62 mm diameters, and distilled water as the working fluid. The
roughness of the tubes was changed by etching them with an acid solution. Thus,
they obtained relative roughness values of 0.00178 to 0.00281 for the tube having
1.067 mm diameter, and 0.00161 to 0.00355 for the tube of 0.62 mm diameter.
They conducted the experiments for a Re range of 500 to 2600 for the 1.067 mm
tube and 900 to 3000 for 0.62 mm tube. They compared the experimental local Nu
values with theoretical ones and showed that the agreement is within the
experimental uncertainties. They found that the effect of surface roughness on
pressure drop and heat transfer for the larger tube were negligible, but for the 0.62
mm tube heat transfer and pressure drop showed dependence on the surface
roughness, namely highest heat transfer and pressure drop occurred in the tube
with highest relative roughness value. They concluded with the recommendation

of further research on tubes with much smaller diameters.

Sun and Faghri [43] numerically investigated the effects of relative surface

roughness, roughness distribution, and gas rarefaction on nitrogen flow in a
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parallel plate channel where the roughness was modeled by an array of
rectangular obstructions placed on sides of channel. They used the DSMC method
in slip-flow regime. They found that the friction coefficient increased as the
roughness height increased, and also when the distance between the roughness
modules decreased. They stated that the effect of surface roughness was more
pronounced at low Kn, which was the result of reduced interaction between the

gas molecules and channel walls at high Kn values.

Hu et al. [44] investigated the effect of surface roughness, mainly effects of the
roughness elements’ height, size, spacing and channel height, on velocity
distribution and pressure drop. They considered a steady state pressure driven
fully developed water flow in low Re regime (0.00] < Re < 10) in a microchannel
formed by two parallel plates, and modeled the roughness elements as rectangular
prisms on the surfaces. For simplicity, they neglected the turbulence and the wake
between roughness elements, and the channel side wall effects. Then, they solved
the three dimensional Navier-Stokes equations numerically with no-slip boundary
condition for different heights, sizes and arrangements of roughness elements. The
numerical method used was the finite volume method. They found that the
pressure drop per unit length increases when roughness height increases or when
the roughness size increases while keeping the spacing between the roughness
elements constant. When the spacing increased or the channel height increased,

pressure drop per unit length decreased.

Later, Baviére et al. [45] studied the same geometry, properties and boundary
conditions of Ref. [44] only by extending the Re range to / < Re < 200, both
analytically and numerically. For numerical simulation they used the commercial
CFD software FLUENT. Their analytical model was based on the method for
predicting the rough-wall skin friction in turbulent flows. They found that the

flow was independent of the Re in the considered range.
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Another experimental work was proposed by Wu and Cheng [46]. They
conducted experiments of laminar deionized water flow in 13 trapezoidal silicon
microchannels, which had different geometric parameters, surface roughness and
surface hydrophilic properties. Trapezoidal microchannels were formed by wet
etching of the <100> silicon wafers in a solution of KOH. To study the effect of
surface hydrophilic property on the flow and heat transfer, some of the channels
were deposited by a thermal oxide layer to increase their surface hydrophilic
capacity. They found that the Nu and the friction constant increased with
increasing surface roughness and surface hydrophilic property, especially at high
Re values. Heat transfer in microchannels having strong hydrophilic surfaces was
enhanced, especially at high Re, with increase in pressure drop. However, they
also stated that the geometric parameters have more effect on the performance of
the microchannel than the surface roughness and surface hydrophilic property.
Furthermore, they found sharp and almost linear increase in Nu with increasing Re
for Re < I M flows, but after that the increase was smooth. Moreover, they
proposed two correlations for Nu for the Re ranges of 10 < Re < 100 and 100 <
Re < 1500, and one for the apparent friction constant depending on their

experimental results, as given below:

For 10 < Re < 100:
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For 100 < Re < 1500:
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where C; = 6.7, C, = 47.8, and C3 = 508.7 for silicon surfaces, and C; = 6.6, C, =
54.4, and C; = 540.5 for thermal oxide surfaces. Also, W, is the bottom width of
the channel, W, is the top width of the channel, H is the height of the channel, & is
the surface absolute roughness, D, is the hydraulic diameter (thus & / D, gives the
surface relative roughness), and L is the length of the channel. These equations are
valid for 0 < Wy,/ W,<0.934, 0.038 <H / W, < 0.648, 3.26x10" <k /D, < 1.09x10°
2 191.77 <L /D, <453.79, and 4.05 < Pr < 5.7 for Eq. (2.2) and 4.44 < Pr <
6.05 for Eq. (2.3). According to the authors, range of deviations of these equations
from experimental data is 20.3%, 19.8% and 19.3% for Eqns. (2.2), (2.3), and
(2.4), respectively.

Kleinstreuer and Koo [47] proposed the porous medium layer (PML) model to
investigate the effects of surface roughness on the friction factor for liquid flows
in micro-conduits. Roughness on the wall is considered as a porous medium and
its effect is modeled by the resistance offered by this porous layer. They showed
the application of this model for steady, laminar, fully developed liquid flows in
two dimensional microchannels, microtubes, and micro-journal bearings. They
stated that the model predicts the friction factor well compared with the
experimental data in literature, where the relative roughness was significant. Koo
and Kleinstreuer [48] extend their work by analyzing the effect of surface
roughness on heat transfer in such conduits. They found that the surface
roughness effect on heat transfer was less significant than on momentum transfer.
Furthermore, the effect of Re on Nu was found to be negligible compared to its

effect on friction factor.

Turner et al. [49] conducted experiments to investigate laminar gas flow in
microchannels. They used five smooth microchannels (relative roughness values
were between 0.001 to 0.006) that were etched into <100> silicon wafers and had
hydraulic diameters in the range 4.7 < D;, < 95 um, and three rough microchannel

etched into <110> silicon wafers with hydraulic diameters in the range /0 < D), <

27



96 um and relative roughness values of 0.02, 0.03, and 0.06. When relative
roughness and Mach number were kept small, agreement between the measured
friction factor and theoretical incompressible value was good for Kn < 0.01.
Above this, friction factor decreased. When Kn reached a value of 0.15, the
reduction in the friction factor was 50%. Also, for laminar gas flow they did not
observe any significant effect of relative surface roughness on friction factor and
obtained similar results to those obtained from Moody’s chart. However, this
observation is different from the other studies and needed to be verified.
Moreover, they found that the friction factor was independent of surface
roughness for rarefied gas flow, had minor influence in compressible flow, in the

experimental surface roughness range.

Croce and D’Agaro [50] performed numerical simulations of heat transfer and
pressure loss in rough microtubes and microchannels, having diameters ranging
from 50 pm to 150 pm and relative roughness height ranging from 0.0% to 5.3%,
with a finite element CFD code. They assumed laminar incompressible fully
developed flow of liquid R-114 at steady state and neglected viscous dissipation.
They modeled the surface roughness as randomly generated rectangular and
triangular peaks on the smooth surface. They found an increase in Poiseuille
number relative to a smooth surface. They also stated that the effect of surface
roughness on heat transfer depends on the roughness elements and channel
geometry. In a proceeding work [51], they compared their results with the RVM
by Mala and Li [39] and the PML by Koo and Kleinstreuer [47], and obtained

reasonably good agreement.

Wang et al. [52] introduced the method of regular perturbation to study the effect
of wall roughness on Poiseuille flow in parallel plate microchannels. They
considered a steady state laminar fully developed flow of a Newtonian fluid and
solved the Navier-Stokes equation by introducing the stream function, with no-

slip boundary condition. The wall roughness was modeled by superimposing a
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series of harmonic functions. They stated that the effect of roughness on friction
factor depends on the energy dissipation of the fluid while the effect of the

roughness on flow pattern depends on the kinetic energy of the main flow.

To extend the understanding of the roughness effect and to characterize it,
Kandlikar et al. [53] proposed three new roughness characterization parameters,
namely the maximum profile peak height R,, mean spacing of profile irregularities

Rsm, and floor distance to mean line F,, which are shown in Fig. (2.1).

Main Profile
Mean Line

Floor Profile
Mean Linge

Figure 2.1: Graphical representation of maximum profile peak height R,,, mean
spacing of profile irregularities Rs,, and floor distance to mean line F), [53].

The authors also presented three additional parameters to consider the local
hydraulic diameter variation: maximum, minimum, and average. With these new
parameters, they defined the roughness height e, constricted flow diameter D,

and related modified Re and friction factor as;

e=R, +F, 2.5)
D =D, — 2¢ 2.6)

29



R
ecf TI,'DC]cI,l, (27)
64
/i 2.8
Darcy cf Recf ( )

where 711 is the mass flow rate in kg/s, and p is the dynamic viscosity in Ns/m?,
Later, they modified the Moody’s diagram with these new parameters, as given in
Fig (2.2). They also conducted some experiments with air and water in rectangular
channels with hydraulic diameters ranging from 325 to 1819 um, relative
roughness values based on constricted flow diameter from 1% to 14%, Re values
from 200 to 7200 for air and 200 to 5700 for water. They observed early laminar
to turbulent transition with increasing relative roughness. This is a still-developing
method and they stated that understanding the 3D effects of roughness is needed
for future work. In a following study, Taylor et al. [54] discussed these new
parameters as well as the historical development of surface roughness
investigations. They also discussed the future work, standardization, and needs of

this field.

Celata et al. [55] investigated the effect of channel wall roughness and wall
hydrophobicity in circular microchannels having diameters of 70 to 326 pm with
relative roughness less than 1%, experimentally, as well as experiments conducted
in smooth tubes with diameters of 31 to 259 um. Test microtubes were made of
fused silica, glass and Teflon. Rough tubes were obtained from smooth glass tubes
by using fine-grain abrasive powder and liquid silicon oil. The working fluid was
demineralised and degassed water. They did not observe any deviation from
classical laws for the smooth cases. Moreover, they did not encounter any effect
of slip flow due to hydrophobic channel walls and the cause of liquid slip flow
observed in some researches was attributed to local desorption of dissolved gases.

They did not observe any early transition to turbulent flow either.
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Figure 2.2: Modified Moody’s friction factor chart [53].

Rawool et al. [56] performed a three-dimensional numerical simulation of air flow
through a serpentine microchannel having square cross-section with designed
roughness. Roughness elements were modeled as trapezoidal, rectangular and
triangular obstructions placed along the channel wall. They used the commercial
CFD software CFD-ACE+ for the simulation and solved the steady state Navier-
Stokes equations with no-slip boundary conditions for the Re range 40 < Re <
200. They found that the friction factor was bigger for the rectangular and
triangular obstruction cases than the trapezoidal obstruction case, and it increased
as the obstruction heights increased. They also found that the pressure drop

decreases as the obstruction pitch increases.

Shen et al. [57] investigated single phase convective heat transfer in a compact
heat sink consisting of 26 rectangular microchannels each having dimensions of

300 um width and 800 pm depth. Microchannels were made of copper and
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relative roughness was 4-6%. They used deionized water as the working fluid in
the experiments and conducted the test for the Re range of /62 < Re < 1257 with
different water inlet temperatures and heating powers. They found higher
Poiseuille numbers than the conventional values in high Re regimes, and an
increase with increasing Re values. They also found significantly low local and
average Nu and observed increase both in local and average Nu with increasing Re
and Pr, which was attributed to surface roughness effect. Furthermore, they did

not observe any early transition from laminar to turbulent flow.

Ji et al. [58] investigated the effect of surface roughness on two dimensional,
rarefied, compressible gas flow through a parallel plate microchannel,
numerically. Simulated gas was nitrogen having constant thermophysical
properties with inlet Mach number ranging from 0.0055 to 0.202 and Re ranging
from 0.001 to 100. Roughness was modeled by rectangular slabs which were
uniformly and symmetrically distributed on the plates. They solved the
compressible form of the Navier-Stokes and the energy equations for constant
wall temperature boundary condition with second order velocity slip and
temperature jump at the walls. The numerical method was based on finite volume
method. Numerical simulations were carried out for relative roughness heights
from 0.1% to 6% where they defined the relative roughness height as the ratio of
roughness height over channel height. They found that the effect of surface
roughness on the flow was stronger for low Kn values. They also stated that the
reduction in average Nu was more significant for rarefied flow compared to
compressible flow, and the roughness affects the Poiseuille number more than the

average heat transfer rate.

Cao et al. [59] performed non-equilibrium molecular dynamics simulations to
investigate the effect of surface roughness on rarefied gas flows. In their
simulations, they assumed locally fully developed flow of gaseous argon flowing

through submicron platinum channels with roughness. The roughness elements
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were modeled as triangular, rectangular, sinusoidal, and randomly generated
triangular waves. They found smaller slip length than the Maxwell model’s
prediction, and higher friction coefficient compared to smooth channels. They
also stated that the roughness geometry had great influence on the friction

characteristics.

Tang et al. [60] reviewed the experimental studies on friction factor and then
conducted experiments to investigate the effects of compressibility, rarefaction
and surface roughness on the friction factor of gaseous nitrogen and helium flow
in microchannels. To investigate the surface roughness effect, they used fused
silica microtubes, stainless steel microtubes and fused silica square microchannels
with diameters ranging from 50 to 201 um, 119 to 300 um and hydraulic
diameters from 52 to 100 pum, respectively. To investigate the rarefaction effect,
they used fused silica microtubes with diameters from 10 to 20 um. They
observed much higher friction factors than the conventional theories in stainless
steel tubes, which had the most dense roughness elements among the tested micro
conduits. Friction factor for the fused silica tubes and channels agreed with the
theoretical values. Tests with small diameter tubes showed reduction in friction

factor that was attributed to the rarefaction effect.

Wang and Wang [61, 62] studied the roughness effect by a regular perturbation
method in two separate cases. In the first case [61], the flow was in microtubes
where roughness was modeled by a two dimensional simple harmonic function.
The relative roughness was from 0 to 0.05 and the flow Re range was [ < Re <
500. They included the effects of viscous dissipation, but neglected the velocity
slip. They found an increase in pressure drop with the increase of relative
roughness. In the second case [62], the flow was between parallel plates where
they defined the roughness as a wave on the surfaces. They considered up to 10%
relative roughness and Re range of / < Re < 200 in their computations. They

solved the incompressible two dimensional Navier-Stokes equations with no-slip
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boundary condition. For this purpose, they transformed the domain into a smooth
one by coordinate transformation. Then, related equations were solved by a
perturbation method. They found that the flows were viscous dominant for low Re
flows and separation from surface occurred for large relative roughness values at

high Re values.

Recently, Croce et al. [63] extended their previous work [50] to three dimensions.
They defined the roughness elements as three dimensional conical peaks on a
plane microchannel that result the relative roughness ranging from 0.05% to
2.65%. They considered laminar flow of an incompressible fluid with constant
properties and neglected the viscous dissipation. They solved the related equations
numerically with no-slip and constant wall temperature boundary conditions for
different peak heights and different peak arrangements. The numerical simulation
was based on a finite element method. They found that roughness had an
important effect on pressure drop and less on heat transfer. Also, they stated the
importance of the roughness elements’ geometrical properties on microchannel

performance.

Later, Croce et al. [64] performed a numerical analysis of compressibility and
rarefaction effects on pressure drop in parallel plate microchannels with relative
surface roughness from 0% to 2.65%. They modeled the roughness as triangular
obstructions in a portion of the channel. They considered viscous dissipation in
their analysis and assumed constant fluid physical properties. They solved the
compressible form of the Navier-Stokes and energy equations with generalized
Maxwell slip and constant temperature boundary conditions, but neglected the
temperature jump at the walls. Resulting equations were solved with a hybrid
finite volume-finite difference solver. They found great effect of rarefaction on
Poiseuille number; however roughness geometry reduces this effect. Also,

roughness effect was found to be stronger at high Kn.
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In the light of above literature search, it was seen that most of the studies dealing
with surface roughness effect were done with the continuum assumptions, which
were no-slip and/or no temperature jump. Moreover, studies of gas flows in slip-
flow regime in rough microchannels are rare, especially for heat transfer analysis.
As a result, very little data exists in the open literature, and studies considering
roughness and channel geometrical properties as well as different flow conditions
are still needed. Thus, in this study gas flow in the slip-flow regime in a rough
microchannel is considered with laminar incompressible flow and constant fluid
thermophysical properties assumptions. Then, Navier-Stokes and energy
equations are solved with appropriate boundary conditions for two dimensional

geometries.
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CHAPTER -3

PROBLEM DEFINITION AND NUMERICAL METHOD

For the 2D case, a laminar, viscous, incompressible, single-phase Newtonian flow
at steady state between parallel plates with constant wall temperatures is
considered. The fluid is assumed to have constant thermo-physical properties. The
flow is assumed to have uniform velocity and temperature at the channel inlet and
the flow is in slip-flow regime inside the channel. This slip effect is accounted for
by imposing the slip velocity and temperature jump boundary conditions at the
wall. The roughness is modeled by adding triangular obstructions along one of the
channel walls. Then, the Navier-Stokes and energy equations are solved with
appropriate boundary conditions, numerically. Since the fluid is assumed to have
constant thermo-physical properties, Navier-Stokes and energy equations are
solved separately. The numerical method is the Galerkin based reduced
integration penalty finite element method for the Navier-Stokes equations, and
standard Galerkin finite element method for the energy equation, which are
explained in the following sections. Also, numerical calculations are carried out in
an equivalent parallel plate channel with smooth surfaces to test the numerical

code and to compare the results with those obtained from the rough channel.
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3.1 — Problem Geometry and Boundary Conditions:

Geometry of the smooth channel is given in Fig. (3.1), and the rough channel in

Fig. (3.2), schematically. Also, the applied boundary conditions are shown on the

figures.

Solid wall, T=T.,

Outlet

' Solid wall, T=T,, :

Figure 3.1: Schematic of the smooth channel.

Solid smooth wall, T=T,,

Outlet

Solid rough wall, T=T,, 5

L >

Figure 3.2: Schematic of the rough channel.
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Boundary conditions can be summarized as follows:

Inlet: u = Uir V= 0, T = Ti
Solid walls: v=20
2—F Jdu, Ju
u, = Mﬂ.( t + n)
Fy on at /., 3.1)

T = 2y 2—FT/1(6T>
S W y+1 Fp Pr\on/,

Outlet: traction free

Since the tangential momentum accommodation coefficient, ), and the thermal
accommodation coefficient, 7 is close to unity in most of the engineering
applications, many of the numerical simulations in literature are carried out by
selecting them as 1, if no special interest on their value is sought. Thus, in this

study, they are selected as 1 to better compare the results.

Relative roughness, &, of the channel surface is defined as

£E=— (3.2)

where e is the average height of the roughness elements, and D, is the hydraulic
diameter of the channel. In most of the studies in literature, it is stated that silicon
micro-channels generally have a relative roughness value between 0 — 4%. Thus,
in this study, relative roughnesses of 1.325%, 2.0% and 2.65% are considered.
The 2.65% relative roughness value is considered only in continuum regime to
compare with literature. Geometrical properties of the roughness elements are
shown in Fig. (3.3). Base angles of the triangular roughness elements are 45
degrees and spacing between the peaks of roughness elements is 5 times of their
height. Such kind of geometrical properties and spacing of roughness element is
used in a case in Ref. [50] where incompressible flow with no-slip boundary

conditions is investigated and in Ref. [64] where compressible flow is
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investigated. These elements are replaced in the middle of the channel. There are a
total of 30, 20, and 15 elements along the channel for the cases of 1.325%, 2.0%

and 2.65% relative roughness, respectively.

45° & e

A

A 4
A
\ 4

2e 3e

Figure 3.3: Geometrical properties of the roughness elements on the channel

surface.

3.2 — Governing Equations:

Governing equations for two dimensional, steady, viscous flow of a Newtonian
fluid with constant properties are the continuity, momentum, and energy
equations. By neglecting the body forces, the continuity and momentum
equations, and the energy equation with axial conduction and viscous dissipation,

can be written in vectorial form in Cartesian coordinates as;

Continuity: V.U =0 (3.3)
Momentum: p(U.VU) = —Vp+ V- (u[(Vi) + (vu)T]) (3.4)
Energy: pCo(W -VT) =V - (kVT) + & (3.5
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These equations can be written in non-dimensional form by using the following

non-dimensional parameters;

__u _ v X -y
YT, T, *= D, ~ D,
_ P T—-T, U,D
H 9 Ur,
== a=— Pr=— Br=—t—m
p Pep a k(T; = T,,)
Pe = RePr

where U, is the mean velocity, H is the channel height, p is the fluid density, u is
the fluid dynamic viscosity, ¥ is the fluid kinematic viscosity, o is the fluid
thermal diffusivity, & is the fluid thermal conductivity, ¢, is the specific heat of the
fluid at constant pressure, € is the non-dimensional temperature, 7, is the constant
channel wall temperature, 7; is the constant fluid inlet velocity, Kn is the Knudsen
number, Re is the Reynolds number, Pr is the Prandtl number, Pe is the Peclet
number, and Br is the Brinkman number. After substituting the non-dimensional
parameters given in Eq. (3.6) into Eqgs. (3.3) through (3.5) and the boundary
condition set given in Eq. (3.1), and removing the bar signs over the non-

dimensional parameters for simplicity, the governing equations became:

Continuity: V. u=0 (3.7)
— 1 — —>
Momentum: (u.Vu) =—-Vp + ﬁV [(TW) + (V)] (3.8)
. 1
Energy: (u-ve) = E{V -(V6) + &} (3.9
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and

x=0: u=1 wv=0 6=1
2 —Fy du, OJu,
y=0 y=H: U, = (Kn)( + )
o Fy on = at /, (3.10)
2y 2—-Fp (Kn) (66)
S y+1 F Pr \on/,
The local Nusselt number is defined as,
h,D
Nu, = =% (3.11)
k
where /4, is the local heat transfer coefficient and written as,
h, = k <6T> 3.12
x_(Tm_Tw) anw ( )

When the non-dimensional parameters given in Eq. (3.6) are used, Eq. (3.11)

become,

Nu, = — (Z—DW (3.13)

where 6,, is the non-dimensional mean temperature and can be calculated by,

ubdA
0, _Jyu0ad (3.14)
J, udA
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Also, the mean velocity along the channel can be calculated by,

udA
Uy, = fA

= (3.15)
[, da

3.3 — Numerical Method:

Governing equations are solved numerically by a Galerkin based Finite Element
Method (FEM), explicitly the reduced integration penalty finite element method
for the hydraulic part and standard Galerkin FEM for the energy part. FEM is a
powerful method in comparison with the other methods such as finite volume or
finite differences for problems involving complex geometries and boundary
conditions [65]. Briefly, in FEM, first the computational domain is discretized
into finite elements, which is also called mesh (or grid) generation. Mesh
generation can be done by using either triangular or quadrilateral elements in two-
dimensional geometries, and tetrahedral, prism, or hexahedral (brick) elements in
three-dimensional geometries. Then, the governing equations of the problem in
interest are written in weighted integral sense (weak formulation) and by using
this weak form, finite element model of the problem is developed. After the model
development, elements used in the domain are assembled to obtain the global
system of algebraic equations that define the problem. Finally, the equation set is
solved after implementing the boundary conditions [66]. These steps will be
shown in reasonable detail for the momentum and energy equations in the
following subsections. Additional information can be obtained from Refs. [65]

and [66].
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3.3.1 — Formulation of the Momentum Equations:

Considering the momentum equations in open form, all nonzero expressions are
taken to one side of the equality sign. Then, the resulting equations are multiplied
with a weight (test) function Ju;, and integrated over the element domain Q° to

obtain the needed weighted integral statements (weak forms of the equations).

X-momentum:

J‘ 5 ( 6u+ au) 2 (0%u 1 6(6u+61J)+6Pd dv =0 (3.16)
M\ ox "ay Re\0x%?) Redy\dy ax/ ox xay= '

y-momentum:

f 5 ( 6v+ av) 2 (0%v 1 a(au+6v)+an v = 0 (3.17)
oM\ Max ”ay Re\0y%?] Redx\dy ox/ 0y x4y = '

Also, it is necessary to equally distribute the integration between the dependent
variables and weight functions in the second order partial derivatives of these
equations. For this purpose, one should use the integration by parts (Green-Gauss
Theorem) in two dimensions. Resulting weak statements of these equations forms
the variational problem subjected to a constrained which is continuity equation. In
penalty function method, problem is reformulated as an unconstrained one. Since
the velocity field constrained to satisfy the continuity equation, the weight

functions of velocity components also satisfy the continuity equation,

a6 a6 _
w  90uy (3.18)
0x dy

As a result of this formulation, pressure does not appear explicitly in variational
problem. Details of the formulation can be found in Ref. [66]. At last, weak forms

are given as for x-momentum;
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f5 (au+ au)dd
u; uax vay xdy

ne

f[ dou; au dou; (au

Tox ax ady

ddu; au ov
+]e ( )dxdy—f&ttdl"

P 9x \d0x dy

ne

where

. 26u+ <6u+6v)] +1<6u+6v>
*  |Re dx dx 0dy " T Re dy Ox Mty

and for y-momentum,;

f5 (6v+ 6v>d d
u; uax vay xdy

j[ déuy; au ddu; (6u+
dy Ox

ay ay ox

Jv
)] dx dy

ddu; au ov
+]6—< )dxdy—f&ttdl’

P oy \ox ay

ne

where

1 /0u OJv 2 ov ou
y = ( ) p(&

_—+ — +|—+
e\dy Ox T Re dy ¢

44

av
+ @)] "y

(3.19)

(3.20)

(3.21)

(3.22)



Since the pressure term does not appear in momentum equations, it can be

computed by the relation

Ju 0Jv
P = —(-.'p <a + @) (323)

In Egs. (3.19-3.23), €, is the penalty parameter, which should be between 10* to
10'* according to Ref. [66]. It is also stated that, magnitude of the penalty
parameter depends on many other parameters such as mesh, computer capacity,
and Re. When penalty parameter is too high, system matrix become singular and
locking occurs. In this study, when penalty parameter was chosen as 10'%, system
matrix became singular. When it was chosen as 10' and 10", convergence
problems occurred. Also, when it was selected as 10°, convergence took an
unnecessarily long time. Thus, penalty parameter is chosen as 10® in this study. As
a result, pressure and continuity equation drop out from the system equation set.
After solving the velocity field, pressure can be computed if needed with known
velocities using Eq. (3.23) or by pressure Poisson equation, which can be obtained
by differentiating x- and y-momentum equations with respect to x and vy,

respectively, and summing the resulting equations.

In Egs. (3.19-3.22), u and v are primary variables; ¢, and ¢, are secondary variables
which define the total boundary stress. The line integrals in Egs. (3.19) and (3.21)
containing the secondary variables are called the boundary integrals and their
solution procedure depends on the boundary conditions of the problem. Integrals
in these equations will be evaluated numerically using 2x2 or 3x3 Gauss —
Legendre quadrature, depending on the elements used in the finite element mesh.
It is necessary to use at least 2x2 quadrature for bilinear elements (i.e., 4-node
quadrilateral element), and 3x3 quadrature for quadratic elements (i.e., 9-node

quadrilateral element).
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Substituting the shape (approximation) functions, y;, for the non-dimensional

velocity components and the weight function,

u= Zujll’j(x,y) v= Z v ¥(xy) Su; = ¥ (3.24)

where 7 is the total node number used in the computational element, into the Eqs.

(3.19-3.22), gives for the x-momentum:

z f [u—+v— u, dx dy

j=10e
Zf 26111 %, 611/ %, dxd

Re\ 0x ax dy 0y Y axay
j=10e
o (1 (0w, Y,

———== 3.25
+sz<ya>vdxdy (3.25)
j=1pn

n
+ 0%, 0% dxd
f _xﬁ b ey
j=10e
n
o¥; 0¥,
+ fep 6_6_ pdxdy = 3€‘}’itxdl"
j=1qe re
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and for the y-momentum,

0¥ 0¥
j v, [u—+v— vy dx dy

0x ady
j=1qe
Zf 26‘1’6‘1” oV, 0¥, dxd
Re\ 0dy dy 0x 0Ox b axay
j=1qe
o (1 (0w, Y,
— =) 3.26
oS () o
j=1pe
Y [ e (Zh2),y axa
. €p ) ox w dx dy
j=1pe
+n 0%; 0% vdxd Yt dl'
o (G oy Juxar=§

Egs. (3.28) and (3.29) can be written in matrix form as

[[Cll] [0] ]{{u}} + [[Kll] [KlZ]] {{u}}

[0]  [C11]]{{v} [K21] [K22]] ({v} 397
N [[Lll] [L12]]{{u}}_ {{Ru}} G.27)
[L21] [L22]1 v}~ YRv}
where the matrix entries are defined as
[C11]; = fllf [u%—w+v%—z dx dy (3.28)

ne
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[K11] —f L (2 0% OB 1 a
U™ J Re\” ox ax ' 9y ay xay
_Qe
[K12] —j L (2599 tea
Y7 ] Re dy 0x xay
_Qe

ne

ov; 0¥, N ov; 0¥, p
dy dy  0x 0Ox xay

R—n
3~

[L11]; = j
[le]ij = f
[L21]ij = f

[Lzz]ij = f
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(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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(3.38)



According to the reduced integration penalty finite element method, the [L]
matrices, which are related to the penalty term, are calculated with one order less
Gauss quadrature points than other matrices. For example, if 3x3 Gauss
quadrature points are used to calculate the [C] and [K] matrices, then 2x2 Gauss

quadrature points are used to calculate the [L] matrices.

3.3.2 — Formulation of the Energy Equation:

A similar procedure like the formulation of momentum equations should be
followed for the formulation of energy equation. First, all nonzero expressions in
the open form of the energy equation are taken to one side of the equality sign and
the resulting equation is multiplied with a weight function 67;. Then the equation
is integrated over the element domain £° to obtain the weighted integral statement

of the equation.

f ST ( 69+ 69) 1 629+629
e “ox ”ay Pe\dx? 0dy?

) Br <6u>2 N <6v)2 N 1 (av N au)2 (3.39)
Pe [\ox dy 2\0x 0y '

1(6u+6v>zl e dv = 0

3\dx Jdy xay =

Next, integration by parts is applied to the second order derivatives to equally
distribute the integration between the dependent variable and weight function in

the second order partial derivatives which yields,
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f6T[ 69+ ae]d d
"“ax ”ay xay

ne

1 f(ac?TiaB d8T, 30

+ﬁ dx 0x dy @)dXdy
_Qe

90 00
_ § 5T, (—xnx + @ny) dr (3.40)

2Br f 5T (6u>2 N <6v)2 N 1 (av N au)2
Pe “\ox dy 2\dx 0y

Substituting the shape (approximation) functions, y;, for the non-dimensional

velocity components, temperature, and the weight function, 077,

(3.41)

S

where 7 is the total node number used in the computational element, into the Eq.

(3.40), gives for the energy equation,
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Zf (oo T+ o) T 6 axay

j=10e
zf ov; 0¥, 6‘{11-8‘{’]- 0 dud
Pe\ ox 0x Oyaijy
j=1pe
n 2 2
Br 0¥ ¥
_ 2—w | —Ly. (3.42)
2f Pe l(&xu]> +<ay )
j=1ne
RGN ‘1[0 LY 2
2 ax”f ay“f 3 ax” ay”
1
= ELPLCIndF
l"e
where
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Eq. (3.42) can also be written in matrix form as,

[KT1]{6} — {KT2} = {Rt} (3.44)

where

[KT1]y = ] ( | ) +(‘P ) ]
Qe (3.45)
i[ae;f:i aa‘g +aaji (Zg ) x &y
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1(0% 9\ (3.46)
+§(ij+guj>

10w, ¥ \’
—§ Wu]- +W‘Uj dXdy

1
(Rt} = fﬁngndr (3.47)
[‘e

3.3.3 — Numerical Integration:

In this study, numerical integrations are carried out by Gauss quadrature.
Quadrilateral elements with 4 nodes (shown in Fig. 3.4) are used as the master
computational element. In this element, elemental node numbering is in
counterclockwise direction and node coordinates are defined by means of
elemental local coordinate system, ¢ and #. The shape functions related to this

computational element are tabulated in literature and also given here in Eq. (3.48).

I‘]A

my

1 2
o O

Figure 3.4: Quadrilateral element with 4 nodes as master computational element.
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1 1
Yi==-1-0-1n) ‘1’3=Z(1+f)(1+n)

i ) (3.48)
¥ =21+ -m) =7 A=A+

It 1s necessary to evaluate the derivatives of the shape functions with respect to
global coordinates x and y, to numerically integrate these equations. Since shape
functions are defined with local coordinates (&, 1), transformation of the geometry

from global coordinates (x, y) to computational coordinates (¢,7) is needed. This

is done by defining,
x=zxj‘1’j(§n) y=2y,-‘l’]-(§n) (3.49)
j=1 j=1

Then, the derivatives of shape functions with respect to x and y, can be expressed
in terms of local coordinates (£,77) by means of this transformation. With the
chain rule of partial differentiation, the first derivatives of the shape functions

with respect to local coordinates can be written as in matrix form;

S [ o FCAVA T A
G | Y g
kan } on aonl\ oy dy
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iﬁg } =14 5% (3.50)

where [J] is the Jacobian matrix of the transformation and calculated by,

dx 0dy zx]aai Zy]aai
[(7]:Ia"c k1 _|i=1 A
x Wl Ie 0 o 0¥,

o o | L5 LTy

Lj=1 T, j=1 T,

1
0§ 0¢ as‘,xg Y2 (3.51)

3.3.4 — Imposing Boundary Conditions and Solution of the System Equation:

Evaluation of boundary integrals (line integrals) {Ru}, {Rv}, and {Rt} in Egs.
(3.37), (3.38), and (3.47) respectively, depends on the boundary conditions of the
problem. Three types of boundary conditions are generally used in numerical
simulations. These are Dirichlet (essential), Neumann (natural), and mixed

boundary conditions.

If a Dirichlet type boundary condition, that is specified primary variables

(specified velocity for momentum equations and specified temperature for energy

54



equation), is defined on a boundary, then it is not necessary to calculate the

boundary integral on that boundary node. When this type of a boundary condition

is defined on a boundary, specified value of the variable is directly placed into the

appropriate location of the unknown vector after assembling the system equations.

For example, consider an arbitrary system of equations with unknown primary

variables {u} and secondary variables {Ru}.

ki1

-kll klZ
k21 k22

kiy -

Ky Ky o

ki o ki
kyj o ko
fj e Fn
K oee K

(Rul\
RuZ

ki)

If u is specified as U at global node j (4;=U), after the assembling of elemental

equations are completed, the j’h row of the unknown vector {u} is replaced by .

Then, this system of equations can be solved by modifying the {Ru} vector and

reducing the system by deleting the / row and column of [k;;] matrix as

[ kll k12
k21 k22

0 O

Ky Ky

o o

(1

- ko | u,
0 iu

' knn- Un

J

\ fRul—Uklj\

I RuZ—Uk2]

=R |
Ry

When a Neumann type boundary condition, that is, specified secondary variables

at the boundary, is defined, the solution depends on the specified value. In

general, the boundary integral can be written as
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Ju
j‘g a, ¥’ %{’n dr (3.52)
r

where I is the length of the boundary, #, is the direction cosine of the surface

normal and a, is a constant. If the secondary variable is zero at the boundary, i.e.,

. .0 .
zero heat flux or geometrical symmetry, that is % = 0, then the boundary integral

. . . . Ju o .
vanishes. If the secondary variable is given as a constant such as, P C, it gives
n

an extra vector,

a,¥'ce, dr (3.53)

ﬁ\eﬁ

which must be added to the {Ru} vector [67].

However, if a slip velocity, temperature jump, or another mixed type boundary
condition, such as convection boundary condition, is defined on a boundary, then,
this boundary integral needs some modification, which leads to a matrix
associated to the unknown primary variable and a vector consisting of known

parameters. For momentum equations, the boundary integrals are equivalent to

re

When slip velocity is defined at the boundary, tangential Dirichlet type boundary

condition should be replaced by traction boundary conditions by setting

1
ont; = E(ui — ) (3.55)
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where ¢; is the tangent vector to the surface, a is the slip coefficient, and u; is the
velocity of the surface [66]. By doing this, a boundary matrix and a boundary

vector arise, such that

1 1
e re

When this modification is applied to Eq. (3.12) with zero surface velocity, a
simpler boundary condition is obtained, which yields only a boundary matrix that

can be expressed in general as

ou
Z=Cu (3.57)
an
and
3§ a,¥"Cu#, dr (3.58)

r

A similar procedure should be applied to the temperature jump boundary
condition. Since these boundary integrals are evaluated along the edge of the
elements in two dimensional problems, they reduce to line integrals. Thus one
dimensional shape functions should be used instead of two dimensional shape

functions.

After assembling and imposing the boundary conditions, the system of equations
can be solved. Since the Navier-Stokes equations are non-linear, an iterative
solution procedure is needed. In this study Picard method, which is also known as

the direct iteration method [65] is used. In this method, equation system is first
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solved with an initial value assigned to the unknown primary variables. Then, the
new values of the primary variables are compared with the old ones. If the
difference between the new and old values is below the error (convergence)
criterion, iteration stops. If not, iteration continues using the last found values

until the error criterion satisfied. This algorithm can be given as,

K(A")A™t1=F (3.59)

where A is the unknown vector, K(A) is the non-linear matrix, and the superscript
r indicates the iteration number. As the error criterion Euclidean norm is used in

the form of

|AT+1 _ Arl

T (3.60)

where ¢ is error criterion and it is set to be 107 in this study.
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CHAPTER -4

RESULTS AND DISCUSSION

Results of numerical simulations for smooth and rough geometries are given in
this chapter and findings are discussed. Additionally, information about mesh
generation and mesh convergence studies are given in related subsections.
Numerical simulations have been conducted for flow of air (Pr = 0.7, y = 1.4)
between two parallel plates having Re of 5, 10, 20, 50, and 100, which leads the
Pe of 3.5, 7, 14, 35, and 70. Considered relative roughness values of the channel
are 0%, 1.325%, 2.0% and 2.65%. However 2.65% relative roughness is
considered only in continuum case. To simulate the rarefaction effects, velocity
slip and temperature jump boundary conditions have been applied at channel solid
boundaries as described in Chapter 3. While applying these boundary conditions,
Kn of 0.0 (continuum case), 0.02, 0.04, 0.06, 0.08, and 0.10 have been considered.
Moreover, effect of viscous dissipation on heat transfer has been investigated by
the change of Br, where considered Br values are — 0.1, 0.0, and +0.1. Also, all the
cases have been repeated for both considering and neglecting the axial conduction

term in the energy equation.

4.1 — Code Validation and Mesh Convergence Studies:

The meshes used in the simulations of two-dimensional flow in smooth and rough

parallel plate channels are generated by a mesh generator program written in
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MATLAB by the author of this study. This program is capable of preparing
different kinds of meshes, such as uniform mesh in whole geometry, dense mesh
near boundaries or mesh with gradually increasing element size at inlet and
gradually decreasing element size at outlet in x-direction, and the necessary
boundary condition data for inlet, outlet, lower and upper walls in smooth and
rough channels. Also, user can specify the roughness peak heights, distance
between the peaks, base angle of the triangular peaks, and number of elements
that should be used in one side of the triangles, and between two triangular peaks.

Some examples of meshes generated by this program are given in Fig. (4.1).

Code validation and mesh convergence studies for hydraulic part have been
conducted in smooth channels for the upper Re limit of this study by comparing
the non-dimensional velocity profiles with the analytical results of
hydrodynamically fully developed case. For the smooth channel and coordinate
system considered in this study, the fully developed non-dimensional velocity

profile can be obtained from momentum equation as

2
) _ [(%) -(7) + K”] (4.1)
Uy, B [1+ 6 Kn]

For the energy part of the problem, obtained fully developed Nu values have been
compared with the results of Refs. [6] and [24] for the cases where axial
conduction in the fluid is neglected, and with the results of Refs. [17, 18] and [68]

for the cases where axial conduction in the fluid is considered.

Detailed mesh convergence studies have been conducted with various mesh sizes
and types, such as uniform mesh, dense mesh near boundaries with different dense
region length and element number, and mesh with gradually increasing element
size in x — direction. During these studies, from 200 to 720 elements in x —

direction, and from 60 to 100 elements in y — direction have been tried. Purpose of
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this study is to obtain maximum accuracy with minimum element number as well
as obtaining a mesh independent solution. It is observed that, Nu is more

dependent to the mesh size and type than the non-dimensional velocity profile.
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Figure 4.1: Mesh examples for smooth and rough channels with 1.325% and 2.0%

relative roughness.
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Although good results for the non-dimensional velocity can be obtained with a
coarse mesh, a finer mesh is needed to obtain accurate Nu. Moreover, it is also
observed that mesh type at inlet section affects the smoothness of the results at
this section more, compared to other parts of the channel. Best results with
minimum element number are obtained by using elements with gradually
increasing sizes at inlet, and dense mesh near the solid boundaries and coarser
mesh inside the channel. Finally, during the smooth channel simulations, 408

elements in x — direction and 90 elements in y — direction is used.

For the rough channel, mesh is also refined around the triangular peaks. Meshes
with 2 to 10 elements on one side of the peaks and 2 to 20 elements between the
peaks have been tried and change in Nu distribution is observed. Then, 4, 5, and 7
elements on one side of the peaks, and 8, 10, and 16 elements between the peaks
are used in the rough channel simulations for relative roughnesses of 1.325%,

2.0%, and 2.65% respectively.

4.2 — Results for Smooth Channel:

As can be seen from Eq. (4.1), fully developed velocity profile depends on the Kn
and is shown graphically in Fig. (4.2). Re only affects the development length and
as it increases, flow reaches fully developed state at a distance far away from the
inlet section. When Kn = 0, flow is in macro-scale and rarefaction effects are
neglected. Kn = 0.10 is the upper limit of the slip flow regime and naturally,
rarefaction effects are maximum in this regime. As Kn increases from 0 to 0.10,
rarefaction effect increases as well as the slip velocity at the wall, which reduces
the maximum velocity at the center line and velocity gradient at the wall. The
reduction in velocity gradient at the wall also causes reduction in the friction
factor. As Kn increases from 0 to 0.10, non-dimensional centerline velocity

decreases from 1.5 to 1.3125, and non-dimensional velocity of the fluid particles
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at the wall increases from 0 to 0.375. Analytical non-dimensional velocities at the

wall and centerline are also tabulated in Table (4.1).

D5 s u u 1 L L e R B O S i o e e e e LR R i R P R P ¢ g
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Non-dimensional Velocity

Figure 4.2: Non-dimensional fully developed velocity profile inside the parallel —

plate microchannel.

Table 4.1: Analytical non-dimensional velocities at wall and centerline for various

Kn values.
Kn| 0.00 0.02 0.04 0.06 0.08 0.10
Velocityat | 0.1071 | 0.1935 | 02647 | 03243 | 0375

Wall:

C:,“te“.i“e 1.5 1.4464 1.4032 1.3676 1.3378 | 1.3125
elocity:
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As described in Chapter 3, energy equation is solved after obtaining the velocity
profile from Navier-Stokes equations. When temperature distribution is obtained
from the energy equation, local Nu values are obtained from Eq. (3.13). As Kn
increases, temperature jump at the wall increases as well, which reduces the
temperature gradient at the wall. This reduction should also cause a decrease in
Nu. When axial conduction (AC) in the fluid is neglected non-dimensional
centerline temperature decreases from 1.3191 to 1.2246, and non-dimensional
wall temperature increases from 0 to 0.4216 as Kn increases from 0 to 0.10,
regardless of Re. However, when axial conduction in the fluid is considered, non-
dimensional wall and centerline temperatures show slight dependence on Re. For
small Re, non-dimensional wall temperatures are slightly higher while non-
dimensional centerline temperatures are slightly lower compared to cases where
axial conduction is neglected. These are summarized in Table (4.2). It is observed
that mean temperatures of cases where axial conduction is included are higher
than cases where axial conduction is neglected, at the inlet section of the channel.
This difference is more obvious for small Re, where axial conduction becomes
important. Similar behavior is observed when viscous dissipation effect is
considered. As a result, axial conduction should not be neglected for flows with

small Pe in entrance region problems.

Figures (4.3) and (4.4) show the local Nu along the channel when viscous
dissipation is neglected for various Kn and Pe, without and with axial conduction
effect, respectively. When axial conduction is neglected, local Nu values show
dependence on Pe at the inlet section of the channel, and increases with increasing
Pe. However, Nu reaches the same fully developed value for each Kn regardless
of Pe, that is 7.541 for Kn = 0 and 5.059 for Kn = 0.10. It is also observed that as
Kn increases, rarefaction effect increases and this causes reduction on local and
fully developed Nu values. Comparison of fully developed Nu values, when axial

conduction effect is neglected, with Ref. [24] is given in Table (4.3).
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Table 4.2: Dimensionless fully developed wall and centerline temperatures for

various Kn and Re with and without axial conduction in the fluid (Br = 0).

Kn| 0.00 0.02 004 | 006 | 0.08 | 0.10
Wall Temperature
with AC Re=5 0 0.1230 | 0.2254 | 0.3103 | 0.3808 | 0.4398
Re =100 0 0.1161 | 0.2136 | 0.2955 | 0.3645 | 0.4230
without | Re=5 0 0.1155 | 0.2125 | 0.2941 | 0.3631 | 0.4216
AC: | Re =100 0 0.1155 | 0.2125 | 0.2941 | 0.3631 | 0.4216
Centerline Temperature
with AC: Re=5 1.2961 | 1.2766 | 1.2566 | 1.2376 | 1.2203 | 1.2048
Re=100 | 1.3169 | 1.2978 | 1.2776 | 1.2580 | 1.2398 | 1.2231
without | Re =35 1.3191 | 1.2999 | 1.2796 | 1.2599 | 1.2415 | 1.2246
AC: | Re=100 | 1.3191 | 1.2999 | 1.2796 | 1.2599 | 1.2415 | 1.2246
30
Br=0
without AC
L smooth |
Kn=0.00
--------- Kn=0.10

20 Pe increasing

Local Nu

Pe increasing

Figure 4.3: Local Nu along the channel for various Kn and Pe when axial

conduction and viscous dissipation are neglected.
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Figure 4.4: Local Nu along the channel for various Kn and Pe when axial

conduction included and viscous dissipation neglected.

Table 4.3: Comparison of fully developed Nu values for smooth channel with Ref.

[24] (axial conduction neglected).

Without Viscous With Viscous
Dissipation Deviation Dissipation Deviation
(Br=0) (%) (Br #0) (%)
Kn Nu Nu [24] Nu Nu [24]

0.00 7.541 7.541 0.000 17.485 17.497 0.068
0.02 6.926 6.925 0.014 13.679 13.688 0.066
0.04 6.374 6.374 0.000 11.215 11.222 0.062
0.06 | 5.883 5.882 0.017 9.493 9.499 0.063
0.08 5.446 5.445 0.018 8.224 8.229 0.061
0.10 5.059 5.058 0.020 7.251 7.256 0.069
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When axial conduction is included, dependence of Nu on Pe is very small. Unlike
the neglected axial conduction cases, local Nu does not change too much with Pe
and takes higher values at the inlet section. Also, local Nu drop more sharply
when axial conduction is considered. Moreover, fully developed Nu values show
slight dependence on Pe and take different values for each Pe and Kn.
Comparison of fully developed Nu values with Refs. [17] and [68] is given in Fig.
(4.5). Also, fully developed Nu values are summarized in Table (4.4) for various

Pe and Kn when axial conduction is included.

9.0 -

8.5 -
s 0T
2 7.5 ¢ @ To=m=r T = =T —==¢ -
'§_ 7.0 - - .- Kn=0 (Ref. 17)
9 65 - ---¢--- Kn = 0 (Ref. 68)
Q —O—ano
3 %0 - ---m--- Kn = 0.1 (Ref. 68)
O 55 - —a—Kn=0.1
% 5.0 | W= —u .
Y 45

4.0 . : , , .

0 20 40 60 80 100
Pe

Figure 4.5: Comparison of fully developed Nu values for smooth channel with

Refs. [17] and [68] (axial conduction included, Br = 0).
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Table 4.4: Fully developed Nu for smooth channel for various Re and Kn (axial

conduction included, Br = 0).

Kn \ Pe 3.5 7 14 35 70
0.00 | 8.030 7.955 7.841 7.668 7.586
0.02 | 7378 7.307 7.200 7.041 6.966
0.04 | 6.762 6.701 6.607 6.470 6.408
0.06 | 6.206 6.154 6.075 5.961 5.909
0.08 | 5.713 5.669 5.603 5.509 5.467
0.10 | 5.278 5.241 5.186 5.109 5.076

Variation of local Nu along the channel for various Kn and Br is given in Fig.
(4.6). When viscous dissipation effect is included, increase in fully developed Nu
values is observed. Nu reaches the same values for each Kn regardless of Pe or the
sign of Br. For Br =+ 0.1, fully developed Nu increases to 17.485 from 7.541 for
Kn = 0, and to 7.251 from 5.059 for Kn = 0.10 when axial conduction is
neglected. When axial conduction is included, no significant change is observed
in fully developed Nu values. However, effect of axial conduction changes the
local Nu variation at the inlet section similar to cases where viscous dissipation is
neglected and is more obvious at small Pe as expected. Also, when Br = - 0.1,
there exist some asymptotic local Nu inside the channel, which are generally
referred in literature to points where direction of the heat transfer between wall
and fluid changes. Location of these values along the channel depends on Kn and

Pe.
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Figure 4.6: Local Nu along the channel for various Kn and Br values and Pe = 70.

4.3 — Results for Rough Channel:

For the rough channel, velocity contours are examined first, since the solution of
the energy equation strictly depends on the velocity profile. Then, obtained Nu
values are compared. In Fig. (4.7), contour plots for dimensionless u-velocity
around roughness elements and smooth channel for Kn = 0 and Re = 100 are
shown. Since rarefaction effects are neglected, it is observed that the increase in
Re only affects the velocity contour at inlet section. Also, increase in roughness
height reduces the low velocity layer thickness over the peaks of roughness
elements. Theoretically, flow field should look like to the smooth channel flow
case as the roughness height become smaller, and low velocity layer thickness
over the roughness elements should decrease as the roughness height increases.

To verify this, contour plots of dimensionless u-velocity around the roughness
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elements for relative roughnesses of 0.1%, 0.5%, and 10% are also included to

Fig. (4.7).

In literature, there are a few publications, which give the local Nu distribution in a
rough microchannel with triangular roughness elements. In Ref. [50], Croce and
D’Agaro conducted numerical simulations with randomly generated triangular
and square roughness elements on the wall of tube and parallel plate channel with
periodic boundary conditions. They do not consider the rarefaction effect.
However, they showed the local Nu distribution over triangular roughness
elements only for microtube with 2.65 % relative roughness, which is given in
Fig. (4.8a), and stated that the general distribution of local Nu is similar, except it
takes higher values for parallel plate channel. Local Nu distribution inside the
rough channels considered in this study for Kn = 0 are shown in Fig. (4.8), along
with the results of Croce and D’Agaro [50]. Obtained local Nu distribution have

similar pattern of Ref. [50].
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Figure 4.7: Dimensionless u-velocity contours along the smooth channel and

between the roughness elements for Kn = 0 and Re = 100.
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Figure 4.8: Continued.
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Figure (4.9) shows the local Nu distribution along the channel with 1.325%
relative roughness when axial conduction term is neglected and included for Kn =
0, Br=0, and Pe = 3.5. Neglecting axial conduction term yields different local Nu
values. This behavior also observed at high Pe which implies that neglecting axial

conduction term will cause different results, similar to smooth case.
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Figure 4.9: Local Nu distributions over the roughness elements when axial

conduction term is included and neglected (Kn =0, Pe =3.5, Br=0, ¢ = 1.325%)).

When local Nu values along the channel are calculated, it is observed that it
follows a wave like pattern along the rough section, different from smooth
channel. Local Nu takes maximum value on the peak points of roughness
elements and drops to a minimum value on the bottom corners of the elements,

which is a property of triangular like roughness element. This behavior is
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consistent with the similar studies in literature and can be explained better if the
isothermal contour lines near the roughness elements are examined. Fig. (4.10)
shows the isothermal contour lines near roughness elements for Kn = 0, Re = 100
and € = 2.0 % case. Temperature gradient is higher at the peaks of the elements

that cause a local increase in heat transfer.
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Figure 4.10: Isothermal contour lines near the roughness elements for case Kn = 0,

Re=100 and € = 2.0 %.

In Figs. (4.11) and (4.12) velocity contour plots for various Kn and Re = 100 are
given for channels having 1.325% and 2.0% relative roughness, respectively.
When Krn increases, rarefaction effect becomes noticeable and disturbs the
velocity profile between the roughness elements. Fluid particles on the roughness
element sides that face the flow have higher velocities than the particles on the
other sides of the elements. As Kn continues to increase, flow becomes more free
and the degree of change in the velocity field around the roughness elements
reduces. However, zones with lower velocities still exist after the roughness
elements in downstream direction. When relative roughness height increased,
disturbance in the velocity field also increases, as expected. These disturbances
also affect the temperature distribution around the rough section. Velocity contour
plots for Kn = 0.10 for all of rough channels are given in Fig. (4.13) to show the

effect of increasing roughness height on velocity field.

75



o= 1.25% _ INNNNNNNNN

U 0 02040608 1 12 14

Kn=10.02
Kn = 0.06
Kn=10.10

0

1.8 1.9 2 21

Figure 4.11: Velocity contour plots of channel with 1.325% relative roughness for

various Kn and Re = 100.
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Figure 4.12: Velocity contour plots of channel with 2.0% relative roughness for

various Kn and Re = 100.
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Figure 4.13: Velocity contour plots of rough channels for Kn = (.10 and Re = 100.
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When rarefaction effect is considered only in the velocity field, that is slip
velocity boundary condition at the wall is taken into account for momentum
equations, but temperature jump boundary condition is not considered for the
energy equation, temperature gradients at the top of the peaks and between the
elements increased. This is shown in Fig. (4.14a), where local Nu values obtained
with the similar pattern of no-slip / no-temperature jump case also increased.
However, when temperature jump at the wall was considered, gradients right after
the peaks of the elements become smaller than the other regions of the element,
and heat transfer reduces in this region. Isothermal contour lines for this case are
shown in Fig. (4.14b). Temperature jump is an apparent discontinuity in the
temperature at the gas-wall interface, and defined as the difference between actual
surface temperature and the temperature predicted by extrapolating the law of
temperature variation in the gas. Thermal conductivity of the gas within a few
mean free paths of the solid wall is not same as the interiors of the gas due to the
effect of wall collisions. Scattered and reflected molecules at the surface have
different energies which yields discontinuities in the temperature [70]. Since the
temperature jump boundary condition is a mixed type boundary condition it
consists of two parts, one is Dirichlet type and the other is Neumann type.
Dirichlet type boundary condition, which is constant wall temperature in this case,
yields isothermal contour lines that fallow the solid surface in a nearly parallel
fashion. On the other hand Neumann type boundary condition yields contours
normal to the surface. Thus, mixed boundary condition possesses both of these

properties and yields isothermal contour lines as shown in Fig. (4.14b).

As roughness height increases, local Nu distribution begins to deviate from the
smooth one due to increasing disturbance in velocity field and changing gradients
which is shown in Fig. (4.15) for Kn = 0.10 and Re = 100. Figs. (4.16) and (4.17)
show the change in local Nu distribution with Kn for channels having 1.325% and
2.0% relative roughnesses, respectively. Unlike the Kn = 0 cases, local Nu do not

follow the roughness pattern. Due to the presence of temperature jump, Nu also
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takes high values on the faces of roughness elements with high gradient. Similar
to smooth cases, as Kn increases, increasing rarefaction effect reduces the Nu in
both configuration. However, increasing Pe slightly increases the local Nu values
at low Kn unlike the smooth channel cases. It is also observed that there is an

increase in local Nu with increasing roughness heights.

0.04 T

003k

S|
=
(

0.02

0.01

¥

Figure 4.14: Isothermal contour lines for Kn =0.10, Re = 100, and € =2.0 % (a)

no temperature jump at wall, (b) temperature jump at wall.

When Pe increases, conduction in the fluid become less significant and convective
effects dominate the heat transfer and result in enhanced heat transfer. However
when convective effect is combined with the rarefaction effect, local Nu decreases
with increasing rarefaction effect. For high Kn, where rarefaction effect becomes
dominant, increasing relative surface roughness does not change the maximum
value of local Nu, although for low Kn, increasing relative surface roughness yield
higher local Nu values. This is shown in Figs. (4.17) and (4.18) where change of
local Nu with Pe and relative roughness of the channel for Kn = 0.02 and Kn =

0.10 are displayed, respectively.
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Figure 4.15: Local Nu distribution for channels with 0.1%, 0.5%, 1.325%, and
2.0% relative surface roughnesses and Re = 100, Kn = 0.10, Br = 0.
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To be more specific, local Nu obtained for the rough channel are averaged over

the channel according the formula

1
Nuy, = ZfNux dx (4.1)

where Nuy, is the average Nu, Nu, is the local Nu, and L is the length of the
channel. Then, average Nu values obtained for the rough channel are compared
with smooth channel fully developed Nu values by calculating the percent

difference between them according to,

NuAv,R — N'LLS

% Dif ference = x 100 (4.2)

Nuyy, r

where Nuy, g is the average Nu for the rough channel, and Nug is the Nu for the

smooth channel.

When axial conduction is included and viscous dissipation is neglected, average
Nu in the rough channel decreases at most about 6% for Kn = 0 case with respect
to smooth channel values. In these cases, local Nu takes the maximum values at
the peaks of the roughness elements and this value is far greater than the
corresponding smooth channel value. However, reduction in local Nu values
between the roughness elements is dominant and peak value cannot compensate
this reduction. Thus, overall Nu reduces as the relative roughness height increases.
A similar result is achieved in Refs. [50, 51] for microtubes with triangular
roughness elements. On the other hand, in the presence of rarefaction effect, an
increase in the overall Nu with respect to smooth channel values is observed. In

this case, increase is up to 24% and more obvious at low Kn values and less

86



pronounceable at high Kn values. Also average Nu values increases slightly with
increasing Pe and relative surface roughness height when rarefaction is considered
which is shown graphically in Fig. (4.20). Average Nu and percent differences
with respect to smooth cases where axial conduction included and viscous

dissipation neglected are summarized in Table (4.5).

In microchannels, length to height ratio of the channel is high and viscous heating
should become important. When viscous dissipation is considered with axial
conduction, existence of surface roughness reduces the average Nu for Kn = 0
case up to 6.3 % with respect to smooth channel value. Similar to the previous
case, when rarefaction effect is considered, surface roughness increases the
average Nu up to 43% at low Kn with respect to smooth channel value. Average
Nu values for various Kn and Pe values are shown graphically in Fig. (4.21). Also,
average Nu values and percent differences with respect to smooth cases where

axial conduction and viscous dissipation included are summarized in Table (4.6).
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Figure 4.20: Channel averaged Nu for various Kn and Pe values when axial

conduction included and viscous dissipation neglected.
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Table 4.5: Channel averaged Nu compared with fully developed smooth channel

values when axial conduction included and viscous dissipation neglected.

With Axial Conduction (Br = ()
Nu

Rough Rough Difference Difference

Pe Kn | Smooth 1.325% 20% | (=1.325%) | (e=2.0%)
0] 8.030 7.600 7.578 -5.661 -5.971
0.02 | 7.378 8.613 8.746 14.343 15.644
35| 0.04] 6762 7.565 7.561 10.612 10.563
0.06 | 6.206 6.746 6.728 8.010 7.762
0.08 | 5.713 6.071 6.051 5.903 5.591
0.10 | 5.278 5.508 5.489 4.168 3.837
0| 7.955 7.534 7.511 -5.581 -5.906
0.02 | 7.307 8.651 8.762 15.535 16.602
71 0.04] 6.701 7.544 7.551 11.179 11.258
0.06 | 6.154 6.730 6.719 8.560 8.406
0.08 | 5.669 6.060 6.045 6.450 6.215
0.10 | 5.241 5.500 5.485 4.710 4.447
0| 7.841 7.436 7.411 -5.453 -5.799
0.02 | 7.200 8.587 8.786 16.148 18.049
14| 0.04 | 6.607 7.520 7.543 12.139 12.409
0.06 | 6.075 6.710 6.709 9.461 9.451
0.08 | 5.603 6.046 6.038 7.321 7.205
0.10 | 5.186 5.491 5.482 5.557 5.400
0| 7.668 7.294 7.267 -5.134 -5.512
0.02 | 7.041 8.633 8.863 18.437 20.557
35| 0.04] 6.470 7.531 7.585 14.092 14.704
0.06 | 5.961 6.715 6.737 11.223 11.513
0.08 | 5.509 6.051 6.061 8.960 9.114
0.10 | 5.109 5.500 5.505 7.103 7.197
0| 7.586 7.250 7.223 -4.642 -5.029
0.02 | 6.966 8.838 9.084 21.180 23.319
70 | 0.04 | 6.408 7.672 7.772 16.472 17.547
0.06 | 5.909 6.818 6.880 13.336 14.112
0.08 | 5.467 6.134 6.179 10.880 11.519
0.10 | 5.076 5.570 5.606 8.877 9.454
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Figure 4.21: Channel averaged Nu for various Kn and Pe values when axial

conduction and viscous dissipation included.
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Table 4.6: Channel averaged Nu compared with fully developed smooth channel

values when axial conduction and viscous dissipation included.

With Axial Conduction (Br = 0.1)
Nu

Rough Rough Difference Difference

Pe Kn | Smooth | 1.325% 2.0% (6=1325%) | (e=2.0%)
0| 17.485 16.582 16.445 -5.448 -6.323
0.02 | 13.679 20.897 22.677 34.541 39.678
35| 0.04] 11215 14.267 14.982 21.392 25.143
0.06 | 9.493 11.173 11.643 15.037 18.468
0.08 | 8.224 9.201 9.569 10.615 14.052
0.10 | 7.251 7.815 8.123 7.219 10.733
0| 17.485 16.595 16.458 -5.363 -6.237
0.02 | 13.679 21.215 22.772 35.522 39.930
7 0.04] 11215 14.316 15.042 21.663 25.443
0.06 | 9.493 11.212 11.694 15.329 18.823
0.08 | 8.224 9.232 9.611 10.917 14.435
0.10 | 7.251 7.841 8.159 7.528 11.134
0| 17.485 16.621 16.485 -5.198 -6.067
0.02 | 13.679 21.052 22.951 35.024 40.400
14| 0.04 | 11215 14.419 15.171 22.219 26.076
0.06 | 9.493 11.292 11.802 15.928 19.564
0.08 | 8.224 9.297 9.702 11.537 15.232
0.10 | 7.251 7.895 8.237 8.159 11.967
0| 17.485 16.707 16.567 -4.660 -5.542
0.02 | 13.679 21.420 23.436 36.138 41.633
35| 0.04| 11.215 14.759 15.606 24.014 28.138
0.06 | 9.493 11.558 12.164 17.864 21.955
0.08 | 8.224 9.512 10.005 13.539 17.799
0.10 | 7.251 8.074 8.496 10.198 14.653
0| 17.485 16.887 16.746 -3.544 4411
0.02 | 13.679 22.147 24.236 38.235 43.559
70 | 0.04 | 11.215 15.397 16.437 27.161 31.769
0.06 | 9.493 12.059 12.849 21.280 26.116
0.08 | 8.224 9.921 10.580 17.101 22.271
0.10 | 7.251 8.417 8.991 13.850 19.349
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When axial conduction and viscous dissipation are neglected, different behavior
of average Nu, compared to previous cases, are observed. It is seen in Fig. (4.9)
that neglecting axial conduction term in rough channel should yield different
results than including axial conduction. In this case, surface roughness generally
decreases average Nu at low Pe and high Kn, where axial conduction becomes
important and also increasing rarefaction should reduce the collision rate of
molecules. As Pe increases, surface roughness tends to increase the average Nu.
Similar to the previous cases, increase is more obvious at low Kn. When viscous
dissipation is included, surface roughness reduces the Nu up to moderate Pe
except low rarefied cases, and then the effect is in increasing way. Again at low
Kn values, surface roughness increases the average Nu with increasing roughness
height. Channel averaged Nu values for various Kn and Pe values are shown
graphically in Fig. (4.22) for axial conduction and viscous dissipation neglected
cases, and in Fig. (4.23) for the cases where axial conduction neglected but
viscous dissipation included. Also, summary of average Nu values when axial
conduction and viscous dissipation neglected are given in Table (4.7), while axial

conduction neglected and viscous dissipation added cases are given in Table (4.8).
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Figure 4.22: Channel averaged Nu for various Kn and Pe values when axial

conduction and viscous dissipation neglected.
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Figure 4.23: Channel averaged Nu for various Kn and Pe values when axial

conduction neglected and viscous dissipation included.
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Table 4.7: Channel averaged Nu compared with fully developed smooth channel

values when axial conduction and viscous dissipation neglected.

Without Axial Conduction (Br = ()
Nu
Rough Rough Difference Difference
Pe Kn | Smooth | 1.325% 2.0% (6=1325%) | (e=2.0%)

0| 7.541 7.539 7.511 -0.027 -0.398

0.02 | 6.926 6.586 6.764 -5.159 -2.394
35| 0.04] 6374 5.737 5.696 -11.095 -11.908
0.06 | 5.883 5.255 5.196 -11.951 -13.212
0.08 | 5.446 4.832 4.774 -12.708 -14.085
0.10 | 5.059 4.460 4.406 -13.422 -14.810

0| 7.541 7.545 7.519 0.048 -0.294

0.02 | 6.926 6.708 6.813 -3.255 -1.664

71 0.04] 6374 5.934 5.899 -7.419 -8.061
0.06 | 5.883 5.415 5.362 -8.646 -9.711
0.08 | 5.446 4.966 4914 -9.670 -10.817
0.10 | 5.059 4.574 4.527 -10.615 -11.742

0| 7.541 7.560 7.534 0.246 -0.091

0.02 | 6.926 6.836 7.066 -1.317 1.984

14| 0.04| 6374 6.114 6.109 -4.253 -4.339
0.06 | 5.883 5.563 5.537 -5.748 -6.251

0.08 | 5.446 5.089 5.061 -7.006 -7.598

0.10 | 5.059 4.678 4.653 -8.148 -8.730

0| 7.541 7.605 7.579 0.838 0.505

0.02 | 6.926 7.169 7.405 3.388 6.466

35| 0.04] 6374 6.385 6.423 0.166 0.763
0.06 | 5.883 5.786 5.801 -1.677 -1.411

0.08 | 5.446 5.277 5.287 -3.210 -3.001

0.10 | 5.059 4.838 4.849 -4.566 -4.324

0| 7.541 7.678 7.653 1.787 1.465

0.02 | 6.926 7.560 7.814 8.382 11.363

70 | 004 | 6.374 6.703 6.805 4.904 6.333
0.06 | 5.883 6.050 6.126 2.756 3.969

0.08 | 5.446 5.502 5.570 1.013 2.226

0.10 | 5.059 5.035 5.100 -0.481 0.811
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Table 4.8: Channel averaged Nu compared with fully developed smooth channel

values when axial conduction neglected and viscous dissipation included.

Without Axial Conduction (Br = 0.1)
Nu
Rough Rough Difference Difference
Pe Kn | Smooth 1.325% 2.0% (e=1.325%) | (e=2.0%)

0| 17.485 16.655 16.444 -4.983 -6.329

0.02 | 13.679 14.330 16.535 4.545 17.273

35| 0.04] 11215 10.716 11.165 -4.658 -0.446
0.06 | 9.493 8.821 9.049 -7.613 -4.908

0.08 | 8.224 7.508 7.666 -9.539 -7.272

0.10 | 7.251 6.530 6.658 -11.043 -8.905

0| 17.485 16.455 16.248 -6.258 -7.616

0.02 | 13.679 15.069 16.066 9.226 14.855

7 0.04] 11215 11.133 11.366 -0.734 1.324
0.06 | 9.493 9.141 9.278 -3.855 -2.313

0.08 | 8.224 7.757 7.876 -6.018 -4.413

0.10 | 7.251 6.729 6.843 -7.753 -5.964

0| 17.485 16.257 16.052 -7.553 -8.925

0.02 | 13.679 15.775 16.889 13.289 19.005

14| 0.04 | 11215 11.711 12.001 4233 6.550
0.06 | 9.493 9.545 9.757 0.540 2.702

0.08 | 8.224 8.057 8.250 -2.069 0.310

0.10 | 7.251 6.962 7.143 -4.158 -1.511
0| 17.485 16.067 15.866 -8.825 -10.206

0.02 | 13.679 17.308 18.641 20.966 26.618

35| 0.04| 11.215 12.656 13.194 11.385 14.996
0.06 | 9.493 10.213 10.639 7.048 10.775

0.08 | 8.224 8.563 8.942 3.957 8.031

0.10 | 7.251 7.362 7.709 1.505 5.936

0| 17.485 16.130 15.946 -8.398 -9.648

0.02 | 13.679 18.885 20.507 27.569 33.295

70 | 0.04 | 11.215 13.735 14.621 18.347 23.295
0.06 | 9.493 11.018 11.755 13.845 19.239

0.08 | 8.224 9.202 9.859 10.629 16.582

0.10 | 7.251 7.889 8.489 8.091 14.580
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If Nu is averaged over only the rough sections of the channels, they will indicate
the average Nu values of channels with completely rough walls from inlet to
outlet. In this case, average Nu takes slightly higher values except Kn = 0 cases,
where reduction in local Nu between roughness elements is dominant. However,
general trend is similar as the channel averaged cases. Rough section averaged Nu
for various Kn and Pe values when axial conduction included and viscous
dissipation neglected cases are shown graphically in Fig. (4.24), while axial
conduction and viscous dissipation included cases are shown in Fig. (4.25). Also,
comparison of rough section averaged Nu with fully developed smooth channel
values when axial conduction included and viscous dissipation neglected cases are
summarized in Table (4.9), and comparison of rough section averaged Nu with
fully developed smooth channel values for axial conduction and viscous
dissipation included cases are summarized in Table (4.10). Moreover, in Figs.
(4.26) and (4.27), rough section averaged Nu for various Kn and Pe values when
axial conduction and viscous dissipation neglected cases and axial conduction
neglected but viscous dissipation included cases are shown graphically,
respectively. Summaries of these cases are also given in Tables (4.11) and (4.12),

respectively.
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Figure 4.24: Rough section averaged Nu for various Kn and Pe values when axial

conduction included and viscous dissipation neglected.
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Figure 4.25: Rough section averaged Nu for various Kn and Pe values when axial

conduction and viscous dissipation included.
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Table 4.9: Rough section averaged Nu compared with fully developed smooth

channel values when axial conduction included and viscous dissipation neglected.

With Axial Conduction (Br = ()
Nu
Rough Rough Difference Difference
Pe Kn | Smooth 1.325% 2.0% (e=1.325%) | (e=2.0%)
0| 8.030 5.712 5.680 -40.591 -41.374
0.02 | 7.378 9.082 9.318 18.767 20.823
35| 0.04] 6762 7.825 7.798 13.582 13.290
0.06 | 6.206 6.874 6.824 9.719 9.059
0.08 | 5.713 6.105 6.054 6.419 5.630
0.10 | 5.278 5.474 5.427 3.583 2.752
0| 7.955 5.654 5.621 -40.703 -41.535
0.02 | 7.307 9.218 9.408 20.727 22.336
71 0.04] 6.701 7.839 7.833 14.514 14.452
0.06 | 6.154 6.887 6.850 10.647 10.166
0.08 | 5.669 6.119 6.078 7.361 6.728
0.10 | 5.241 5.490 5.451 4.537 3.851
0| 7.841 5.566 5.530 -40.884 -41.789
0.02 | 7.200 9.185 9.546 21.612 24.577
14| 0.04 | 6.607 7.870 7.896 16.051 16.321
0.06 | 6.075 6.914 6.897 12.129 11.919
0.08 | 5.603 6.146 6.119 8.829 8.434
0.10 | 5.186 5.517 5.490 5.997 5.533
0| 7.668 5.433 5.394 -41.135 -42.162
0.02 | 7.041 9.399 9.817 25.084 28.277
35| 0.04] 6.470 7.994 8.076 19.067 19.890
0.06 | 5.961 7.004 7.030 14.894 15.208
0.08 | 5.509 6.221 6.228 11.442 11.548
0.10 | 5.109 5.584 5.586 8.504 8.532
0| 7.586 5.369 5.328 -41.296 -42.393
0.02 | 6.966 9.804 10.244 28.948 32.000
70 | 0.04 | 6.408 8.261 8.423 22.433 23.926
0.06 | 5.909 7.193 7.289 17.854 18.933
0.08 | 5.467 6.366 6.434 14.119 15.036
0.10 | 5.076 5.702 5.759 10.983 11.859
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Table 4.10: Rough section averaged Nu compared with fully developed smooth

channel values when axial conduction and viscous dissipation included.

With Axial Conduction (Br = 0.1)
Nu

Rough Rough Difference Difference

Pe Kn | Smooth 1.325% 2.0% (e=1.325%) | (e=2.0%)
0| 17.484 11.389 11.175 -53.516 -56.454
0.02 | 13.680 26.499 29.783 48.376 54.068
35| 0.04] 11216 16.450 17.768 31.818 36.875
0.06 | 9.494 12.289 13.160 22.744 27.854
0.08 | 8.225 9.782 10.466 15915 21.406
0.10 | 7.252 8.090 8.662 10.355 16.278
0| 17.484 11.390 11.176 -53.507 -56.444
0.02 | 13.681 27.058 29.955 49.440 54.329
71 0.04] 11.217 16.533 17.876 32.158 37.255
0.06 | 9.495 12.356 13.254 23.157 28.361
0.08 | 8.226 9.838 10.546 16.385 22.003
0.10 | 7.253 8.138 8.732 10.875 16.947
0| 17.485 11.396 11.183 -53.438 -56.357
0.02 | 13.683 26.741 30.285 48.832 54.820
14| 0.04 | 11219 16.708 18.114 32.854 38.065
0.06 | 9.497 12.497 13.458 24.007 29.432
0.08 | 8.228 9.955 10.721 17.353 23.259
0.10 | 7.254 8.238 8.885 11.945 18.355
0| 17.497 11.448 11.235 -52.840 -55.730
0.02 | 13.701 27.300 31.144 49.815 56.008
35| 0.04| 11.235 17.289 18.914 35.017 40.600
0.06 | 9.511 12.970 14.145 26.667 32.757
0.08 | 8.240 10.351 11.311 20.392 27.150
0.10 | 7.264 8.577 9.399 15.303 22.711
0| 17.547 11.585 11.384 -51.458 -54.132
0.02 | 13.775 28.354 32.332 51.419 57.396
70 | 0.04 | 11.298 18.330 20.324 38.363 44412
0.06 | 9.563 13.820 15.345 30.805 37.683
0.08 | 8.280 11.062 12.340 25.143 32.898
0.10 | 7.295 9.184 10.295 20.569 29.144
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Figure 4.26: Rough section averaged Nu for various Kn and Pe values when axial
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Figure 4.27: Rough section averaged Nu for various Kn and Pe values when axial

conduction neglected and viscous dissipation included.
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Table 4.11: Rough section averaged Nu compared with fully developed smooth

channel values when axial conduction and viscous dissipation neglected.

Without Axial Conduction (Br = ()
Nu
Rough Rough Difference Difference
Pe Kn | Smooth 1.325% 2.0% (e=1.325%) | (e=2.0%)
0| 7.541 7.421 7.370 -1.617 -2.316
0.02 | 6.926 5.710 6.049 -21.301 -14.493
35| 0.04] 6374 5.003 4.904 -27.407 -29.986
0.06 | 5.883 4.539 4.409 -29.603 -33.427
0.08 | 5.446 4.144 4.016 -31.433 -35.608
0.10 | 5.059 3.799 3.682 -33.163 -37.403
0| 7.541 7.417 7.371 -1.667 -2.306
0.02 | 6.926 6.337 6.519 -9.290 -6.247
71 0.04] 6374 5.375 5.289 -18.586 -20.521
0.06 | 5.883 4.849 4,731 -21.333 -24.338
0.08 | 5.446 4.403 4.290 -23.687 -26.939
0.10 | 5.059 4.019 3.918 -25.892 -29.135
0| 7.541 7.418 7.372 -1.659 -2.290
0.02 | 6.926 6.567 6.995 -5.470 0.989
14| 0.04| 6374 5.708 5.681 -11.666 -12.189
0.06 | 5.883 5.122 5.057 -14.848 -16.333
0.08 | 5.446 4.631 4.564 -17.601 -19.319
0.10 | 5.059 4211 4.151 -20.151 -21.865
0| 7.541 7.418 7.373 -1.654 -2.282
0.02 | 6.926 7.138 7.576 2.973 8.585
35| 0.04] 6374 6.167 6.222 -3.351 -2.441
0.06 | 5.883 5.498 5.511 -7.009 -6.757
0.08 | 5.446 4.944 4952 -10.149 -9.986
0.10 | 5.059 4477 4.488 -12.989 -12.716
0| 7.541 7.416 7.370 -1.688 -2.319
0.02 | 6.926 7.762 8.224 10.770 15.780
70 | 004 | 6.374 6.662 6.831 4.329 6.692
0.06 | 5.883 5.900 6.025 0.291 2.361
0.08 | 5.446 5.283 5.398 -3.085 -0.890
0.10 | 5.059 4771 4.885 -6.041 -3.556
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Table 4.12: Rough section averaged Nu compared with fully developed smooth

channel values when axial conduction neglected and viscous dissipation included.

Without Axial Conduction (Br = 0.1)
Nu
Rough Rough Difference Difference
Pe Kn | Smooth 1.325% 2.0% (e=1.325%) | (e=2.0%)

0| 17.485 15.491 15.116 -12.869 -15.674

0.02 | 13.679 13.989 17.901 2.218 23.584

35| 0.04] 11215 9.715 10.468 -15.446 -7.137
0.06 | 9.493 7.839 8.208 -21.102 -15.656
0.08 | 8.224 6.585 6.841 -24.895 -20.217
0.10 | 7.251 5.666 5.875 -27.972 -23.426
0| 17.485 15.495 15.125 -12.844 -15.605

0.02 | 13.679 15.463 17.134 11.537 20.165

7 0.04] 11215 10.569 10.930 -6.115 -2.610
0.06 | 9.493 8.492 8.709 -11.783 -8.999
0.08 | 8.224 7.096 7.294 -15.891 -12.748
0.10 | 7.251 6.076 6.272 -19.334 -15.602
0| 17.485 15.521 15.159 -12.653 -15.347

0.02 | 13.679 16.906 18.925 19.090 27.719

14| 0.04 | 11215 11.716 12.245 4276 8.411
0.06 | 9.493 9.298 9.699 -2.096 2.124

0.08 | 8.224 7.698 8.070 -6.834 -1.914

0.10 | 7.251 6.545 6.899 -10.794 -5.101
0| 17.485 15.544 15.201 -12.487 -15.028

0.02 | 13.679 19.754 22.390 30.753 38.905

35| 0.04| 11.215 13.474 14.559 16.766 22.968
0.06 | 9.493 10.551 11.425 10.030 16910

0.08 | 8.224 8.656 9.436 4.996 12.844

0.10 | 7.251 7.313 8.025 0.845 9.644
0| 17.485 15.241 14.950 -14.723 -16.954

0.02 | 13.679 22.379 25.551 38.875 46.464

70 | 0.04 | 11.215 15.320 17.062 26.796 34.270
0.06 | 9.493 11.961 13.418 20.631 29.250

0.08 | 8.224 9.796 11.098 16.049 25.896

0.10 | 7.251 8.268 9.454 12.298 23.305
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Theoretically, as roughness heights in the channels decreases, average Nu values
should become closer to the smooth channel values. In Table (4.13), channel
averaged and rough section averaged Nu values are summarized for all relative
roughnesses considered in this study for Kn = 0 and Kn = 0.10 when axial
conduction is included. In is observed that as the relative surface roughness
reduces, average Nu values become closer to the corresponding smooth channel

values both for no-slip and slip conditions.

Table 4.13: Summary of channel and rough section averaged Nu for Kn = 0 and

Kn =0.10 (axial conduction included).

Channel Averaged Nu

Smooth
Fully €=0.1% | €=05% | €=1.325% | €=2.0% | £¢=10%
Kn | Developed

0 7.586 7.545 7.327 7.250 7.223 6.804
0.10 5.076 5.097 5.418 5.570 5.606 5.451

Rough Section Averaged Nu

Smooth
Fully €=0.1% | €=05% | €=1.325% | €=2.0% | £¢=10%
Kn | Developed

0 7.586 7.269 5.483 5.369 5.328 5.311
0.10 5.076 5.095 5.401 5.702 5.759 5.450
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CHAPTER -5

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE
WORK

In this study the effect of roughness on convective heat transfer and fluid flow in
microchannels with uniform inlet fluid velocity and constant wall temperature
boundary condition is investigated. For this purpose, single-phase,
incompressible, laminar and constant property fluid flow between parallel plates

at steady state and in the slip-flow regime is considered.

Roughness effect is simulated by adding triangular obstructions along the channel
wall. Since the flow is in the slip-flow regime, the Navier-Stokes and energy
equations are solved numerically by imposing velocity slip and temperature jump
to boundary conditions. Also, since the fluid is assumed to have constant thermo-
physical properties, Navier-Stokes and energy equations are decoupled.
Therefore, Navier-Stokes equations are first solved along the channel, and then
the velocities found are used in the energy equation to obtain the temperature
profile and local Nusselt numbers along the channel. Numerical calculations are
carried out both by taking the axial conduction and the viscous dissipation effects
into account, and by neglecting their effects. Reduced integration penalty FEM is
used as the numerical method for the hydraulic part and standard Galerkin FEM
for the energy part of the problem. The computer code is written in MATLAB by
the author. The written code is verified by comparing the results obtained from

analytical solutions for simplified smooth channel cases.
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Air is used as the working fluid where Pr = 0.7. Calculations are carried out for
Re values of 5, 10, 20, 50, and 100 which yields Pe values of 3.5, 7, 14, 35, and
70. Kn range from 0.0 to 0.10, and considered Br values are -0.1, 0.0, and 0.1.

Roughness is considered as triangular shape geometrical obstructions placed over

the bottom plate of smooth channel and investigated relative roughness values are
1.325%, 2.0%, and 2.65%.

Under the specified assumptions, following general conclusions can be obtained

from this study.

For the smooth case,

1)

2)

3)

4)

Rarefaction decreases the velocity gradient at the wall which will
reduce the friction factor.

As Kn increases, local and fully developed Nu decreases compared to
the continuum case.

Axial conduction plays an important role especially at low Pe and at
the inlet section, and should not be neglected for slow flows.

In the presence of viscous heating, there is significant increase in fully
developed Nu values. Due to high length to diameter ratio of

microchannels, viscous heating should be considered in the analysis.

For the rough case,

1) When rarefaction effect is neglected, presence of surface roughness

decreases the Nu compared to smooth channel fully developed values.
Magnitude of the decrease depends on the flow parameters and the
effects included such as axial conduction and viscous dissipation.
However, decrease in magnitude increase slightly with increasing

relative roughness.
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2) As Kn increases, increase in Nu is observed with respect to
corresponding smooth channel value. However the increase reduces as
the rarefaction increases.

3) Magnitude of the relative roughness affects the overall Nu values more
at low Kn values in the considered relative roughness values.

4) In the presence of viscous dissipation, Nu increases similar to the
smooth case and this increase is more in high relative roughness.

5) Increase in Pe increases the maximum value of local Nu at low Kn,
however there is not any significant difference at high Kn.

6) When axial conduction term is neglected, surface roughness tends to
decrease the average Nu at low Pe values, except low Kn.

7) Surface roughness is found to be more effective at relatively low
rarefied flows.

Surface roughness properties of microchannels in a micro-flow device, such as a
micro heat exchanger or a micro heat sink, depend on the manufacturing
processes of these channels, as well as the materials used; such as silicon, steel, or
copper. Most commonly and widely used method is the photolithographic process.
This method is mostly related to the silicon wafers and cross-sections of the
channels that can be obtained by this method are limited to the crystallographic
morphology of the silicon used. These cross-sections are rectangular, triangular,
and trapezoidal. Among the others, silicon microchannels with trapezoidal cross-
sections are preferred more due to ease of production. In the photolithographic
process, surface roughness also depends on the concentration and temperature of
the etching solution, and the duration that the solution is applied in addition to the
crystallographic morphology of the silicon used. In widely used trapezoidal
channels, roughness occurs at the base of the channel rather than at the side walls,
and they resemble conical or triangular prisms because of the morphology of the

silicon.
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Cases considered in this study showed that effect of surface roughness on heat
transfer is more obvious at low rarefied flow between parallel plates. Similar
simulations should also be repeated with different channel geometries such as
circular, rectangular, triangular or trapezoidal cross-sections to verify this general
result found for parallel plates. Thus, surface roughness could be considered and
used in real micro applications. If the purpose is heat transfer enhancement in
micro applications such as in micro heat exchanger or heat sink composed of
trapezoidal silicon microchannels, the goal can be achieved by arranging the flow
in the channel to a low rarefied state since surface roughness is inevitable (due to
the production method). In this study, an optimum value of Kn = 0.02 is
determined for maximum heat transfer, among the considered Kn value. However,
it should be kept in mind that lower Kn values, which are beyond the scope of this
study, could increase heat transfer more.

It is known from the literature that, geometrical properties of channels and
roughness elements in such numerical simulations yields different results. Also,
there is very little numerical data about roughness effect on heat transfer in
microchannels, especially with rarefaction effect, compared to other subjects.
Thus, various simulations should be done with different geometries and different
conditions to clarify the roughness effect and to construct a database regarding
roughness effect. It should also be noted that, such two dimensional simulations
should yield overestimated results. Thus three-dimensional simulations are needed

and should give more accurate results.

It is also known from literature that, surface roughness causes high pressure drop
in microchannels. When high pressure drop is combined with large length to
diameter ratio, compressibility effect becomes important. Thus, this work can be

expanded by taking compressibility into account. Moreover, other important
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factors such as; temperature dependent fluid properties, conduction at solid
boundaries, and different boundary conditions such as constant heat flux or
varying temperature profile at solid boundaries, can be investigated together with

surface roughness.
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