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ABSTRACT

STRUCTURAL OPTIMIZATION STRATEGIES
VIA DIFFERENT OPTIMIZATION AND SOLVER CODES
AND AEROSPACE APPLICATIONS

Ekren, Mustafa
M.Sc., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Altan Kayran

December 2008, 234 pages

In this thesis, structural optimization study is performed by using three different
methods. In the first method, optimization is performed using MSC.NASTRAN
Optimization Module, a commercial structural analysis program. In the second
method, optimization is performed using the optimization code prepared in
MATLAB and MSC.NASTRAN as the solver. As the third method,
optimization is performed by using the optimization code prepared in MATLAB
and analytical equations as the solver. All three methods provide certain
advantages in the solution of optimization problems. Therefore, within the
context of the thesis these methods are demonstrated and the interface codes
specific to the programs used in this thesis are explained in detail. In order to
compare the results obtained by the methods, the verification study has been
performed on a cantilever beam with rectangular cross-section. In the
verification study, the height and width of the cross-section of the beam are
taken as the two design parameters. This way it has been possible to show the
design space on the two dimensional graph, and it becomes easier to trace the
progress of the optimization methods during each step. In the last section
structural optimization of a multi-element wing torque box has been performed

by the MSC.NASTRAN optimization module. In this section geometric property
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optimization has been performed for constant tip loading and variable loading
along the wing span. In addition, within the context of shape optimization

optimum rib placement problem has also been solved.

Keywords: Structural Optimization, Geometric Property and Shape

Optimization, Aerospace Structures, Finite Element Method
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DEGIiSiK OPTIMiZASYON VE COZUCU KODLARIYLA YAPISAL

OPTIMIiZASYON STRATEJILERI VE HAVACILIK VE UZAY
UYGULAMALARI

Ekren, Mustafa
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii
Tez Yoneticisi: Dog. Dr. Altan Kayran

Aralik 2008, 234 sayfa

Bu tezde, li¢ farkli yontem kullanilarak yapisal optimizasyon c¢aligmasi
gerceklestirilmistir. Birinci yontemde yapisal optimizasyon problemi ticari bir
yapisal analiz programi olan MSC.NASTRAN optimizasyon modiilii
kullanilarak yapilmustir. Ikinci yontemde MATLAB ortaminda hazirlanms
optimizasyon kodu ile ¢oziici olarak MSC.NASTRAN kullanilarak
optimizasyon problemi ¢oziilmiistiir. Ugiincii yontem ise MATLAB ortaminda
hazirlanmis optimizasyon kodu ve analitik denklemler ¢oziicii olarak
kullanilmak suretiyle optimizasyon yapilmistir. Her {i¢ yontemde giliniimiizde
optimizasyon problemlerinin ¢oziilmesinde cesitli avantajlar saglayabilmektedir.
Bu nedenle bu tez kapsaminda her {i¢ yontemin gosterimi gerceklestirilmis ve
kullanilan programlara 6zel arayiiz kodlar1 da tez i¢inde detaylica aciklanmistir.
Her {i¢ yontem ile elde edilen sonuclarin kiyaslanmasini yapabilmek igin
dogrulama calismalar1 dikdortgen kesitli ankestre kiris problemi iizerinde
gerceklestirilmistir. Dogrulama calismasinda kesit alanin yiikseklik ve genisligi
olmak tizere iki adet tasarim degiskeni kullanilmistir. Bu sayede tasarim
uzayimin iki boyutlu grafik tizerinde gorsel olarak gosterilmesi miimkiin olmakta

ve optimizasyon yoOntemlerinin her adimdaki gelisiminin izlenebilmesi
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kolaylagsmaktadir. Son béliimde ise ¢ok elemanli bir kanat tork kutu yapisinin
optimizasyonu MSC.NASTRAN optimizasyon modiilii kullanilarak yapilmistir.
Bu kisimda sabit ug yiik, kanat boyunca degisken yilik durumlar1 i¢in geometrik
ozellik optimizasyonu gergeklestirilmistir. Ayrica, sekil optimizasyonu
kapsaminda ise kanat sinir pozisyonlarinin optimum yerlesim problemi

¢Ozllmiistiir.

Anahtar Kelimeler: Yapisal Optimizasyon, Geometrik Ozellik ve Sekil

Optimizasyonu, Hava Araci Yapilart, Sonlu Elemanlar Yontemi,
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CHAPTER 1

INTRODUCTION

Optimization has vital importance in every field of modern world.
“Nothing takes place in the world whose meaning is not that of some maximum

’

or minimum.” said by Euler.

Optimization is defined as the procedure used to make a system or design as
effective or functional as possible. Today, optimization forms a major necessary
part of design activity in all major disciplines and those disciplines are not
limited only to engineering. There is hardly any area where optimization has not
proven itself to be effective. These areas include everything that are seen around
or used in daily lives. It is unthinkable that the products that are seen everyday,
like cars, houses, electronic or non-electronic devices that are produced today
are not designed optimally in one way or another. The will to produce maximum
quality products with minimum possible cost is the driving force behind the
rapid development of the optimization methods.

The theory of optimization has its roots from ancient times. Throughout history,
there had always been a huge number of geometrical and mechanical problems,
which are optimization problems in fact but has been solved by using
geometrical knowledge since the optimization techniques were not known by
then. [1]

Optimization techniques are being used for more than a century. At first, the
basic tool used to find the extremum of functions was differential calculus [2]. It
is the World War II that has played a very important role for the development of
optimization. In mid-1940s, Simplex Method has been developed for solving

linear programming problems. Linear Programming has been used to solve war



problems at first but afterwards, it was found out that this technique was very
useful in solving problems in economics, business and engineering sciences. In
1951, H.W. Kuhn and A.W. Tucker developed the Lagrangian multiplier rule
for convex and other non-linear programming problems which also involved
inequality constraints. The Kuhn-Tucker optimality conditions became very
useful and important for developing algorithms in solving convex and other non-
linear programming problems with differentiable functions. After World War II,
in late 1950s, non-linear programming has been emphasized with the
development of a powerful method for unconstrained optimization developed by
W.C. Davidon. Afterwards, his work has been further developed by M.J.D.
Powell and R. Fletcher and it lead to the rise of powerful Quasi-Newton
methods. The development of computer science made it possible to simplify
programming and thus to easily solve great optimization problems which is
nearly impossible to solve by hand. Early computers provided accessibility,
responsiveness, autonomy and fixed cost while recent models added large
memory, high precision and impressive speed. At present, optimization is a
developing subject with many newly explored areas of theory and application
[1].

There is no doubt that there is a widespread practical usage of optimization
methods in many different fields — aerospace industry being one of the earliest
disciplines to use these methods most significantly. Driven by the need to lower
the burden of the unnecessary weight in aerospace vehicles in order to minimize
the tremendous cost associated with this weight, it is not hard to understand why
the application of the optimization methods is such a big necessity for aerospace
industry. Minimum weight vehicles together with the savings in fuel
consumption with optimal trajectory design without any deviations from
aviation safety is the main target to reach through optimization.

In the following sections of this chapter, general information on the optimization
methods of aerospace structures will be discussed. In chapter 2, optimization
theory is introduced. In chapter 3, optimization technique used in the developed

MATLAB®™ code will be presented. In chapter 4, three different approaches of



the structural optimization used in the present thesis will be described including
the description of the interface codes specific to MATLAB® and
MSC.NASTRAN®. In chapter 5, two case studies are performed with different
optimization techniques both for verification and demonstration purposes. In
chapter 6, a complex aerospace structure optimization is performed. In this
section both geometric property and shape optimization studies are performed
for a wing torque box. Finally, in the last chapter, conclusion of the studies is
given and researchers interested in the subject matter are encouraged to do

further work.

1.1 OPTIMIZATION METHODS

There are many optimization methods used in solving problems in engineering
and other disciplines. These methods can be classified mainly in two groups.
First group is the genetic algorithms [3] and second group is the gradient based
algorithms. In this thesis gradient based algorithms are used for the solution of
structural optimization problems. Gradient based algorithms are also divided
into two major groups which are the unconstrained and constrained optimization
problems. Some examples of methods for gradient based algorithms are given
below.
1. Unconstrained Optimization

= Steepest Descent Method

= Conjugate Gradient Method

= Davidon-Fletcher-Powell Method
2. Constrained Optimization

= Penalty Function Method

* Augmented Lagrange Multiplier Method



1.2 MAIN APPLICATION AREAS OF OPTIMIZED
STRUCTURES

Optimized structures can be found in many disciplines in engineering. However,
structural optimization is especially critical in the design of aerospace structures.
Weight of an aerospace vehicle is not only related to the performance of the
vehicle but weight savings also induce significant cost savings during the design
stage and directly affects the fuel consumption during the operation of the
vehicle. Therefore, aerospace companies use low margins of safety in their
design to achieve weight savings. The use of low margins of safety in structural
design can be best accomplished by performing structural optimization.
Common types of optimization performed in the structure area are:
e Property optimization: Cross-section dimensions, thicknesses, geometric
dimensions etc.
e Shape optimization: Changing the locations of certain structural
members like ribs, changing the shape of a cut-out etc.
e Topology optimization: Optimal distribution of material
In the following section, some examples will be given for the optimized

structures used in different fields of engineering.

1.2.1 AERONAUTICS

Almost in all aeronautical vehicles optimization is used, because weight has
direct impact on the performance of the air vehicle as well as the operating cost
as discussed above. Therefore, aerospace structures are usually composed of
stiffened thin walled structural members. The use of stiffened thin walled
members assures weight savings as well as structural integrity if the structural
design is performed in the right way. Wings and fuselage of aircraft are two
main substructures where significant weight savings can be achieved if
optimization techniques are implemented in the design stage. For instance in

Figure 1.1, a section of the fuselage of an aircraft structure is presented.



Figure 1.1 A typical aircraft Structure [4]

As it can be seen from Figure 1.1, many structural members exist in the fuselage
frame and one can imagine the great amount of weight savings that can be
achieved if optimization techniques are used in the design stage of such a

fuselage frame.

1.2.2 SPACE

Satellite structures are also becoming very popular with the technological
advancement that takes place in space technologies. Today many countries
possess their own satellite structures in space and these spacecraft serve for
different purposes ranging from telecommunication to earth observation and
remote sensing etc. Weight saving in satellite structures is also very critical
because the launch cost of satellites are directly related to the weight of the
satellite. In addition, orbit performance of the satellites can be improved by

weight savings. Figure 1.2 and 1.3 show the initial and optimized shape of a



frame of a satellite structure. Figure 1.4 shows the test of the optimized

structure. [5]

Figure 1.2 Initial satellite structure [5]

Figure 1.3 Optimized satellite structure [5]



Figure 1.4 Optimized satellite structure on test [5]

1.2.3 MARINE

In the marine industry weight savings are also as important as in aerospace
industry. By designing weight efficient ships significant performance gains can
be obtained and fuel consumption can be significantly reduced. To increase
performance gains nowadays personal yachts are manufactured from composite
materials which present significant weight savings. Race sail boats are other
examples of marine structures for which weight saving directly affects the
success in the race due to performance gains achieved by weight reduction. In
Figure 1.5 two racing sail boats are shown. Structural optimization in hull

structures has vital importance to achieve excellent strength-to-weight ratios.
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Figure 1.5 Sail boats [6]

1.24 AUTOMOTIVE

Structural optimization also has vital importance in the automotive industry.
Weight reduction in automobiles is especially critical in having reduced
emissions. Low emission of combustion products is directly related to the
weight of the automobile. Today in many countries around the world, low
emission regulations are prepared to force the automobile manufacturers to
manufacture automobiles which comply with these regulations. Besides the
improvements in the engine technology, weight reduction achieved by means of
optimization of the structure of the automobile is also an important factor to
consider in having lower emissions. Structural optimization is the only way to
design structures with minimum weight by satisfying the prescribed constraints
imposed on the structural integrity. As an example of optimization in
automobile industry, Figure 1.6 shows the finite element model of the structure

of an automobile frame used in the optimization study.



Figure 1.6 FE model for optimization

1.3 ADVANTAGES OF OPTIMIZING STRUCTURES

Although performing optimization studies requires initial investment such as
high performance computers and additional engineering cost, there are many
advantages gained by optimizing structures. Some of these advantages can be
listed as:

» reduced weight,

* reduced manufacturing cost,

* improved efficiency,

= improved service life

= reduced operating costs (less fuel, less repair costs),

* reduced environmental effect
It is deemed that the advantages gained by optimizing structures outweighs the
investment costs related with establishing the infra-structure to perform
optimization studies. By implementing optimization early in design stages,
companies can manufacture products with superior performance with reduced
cost. Especially, for industries involved in series manufacturing, optimization
can result in huge cost savings. Today, companies strive to continue to exist in
the market with competitive products, and in this respect optimization presents

a very powerful tool in achieving the production of competitive products.



CHAPTER 2

OPTIMIZATION THEORY FOR GRADIENT BASED
METHODS

Optimization means minimization (or maximization) of a function. In aerospace
industry, weight is one of the best example for the function to minimize. It
depends on the volume and density of the structure and therefore mostly volume
minimization is performed in structural optimization provided that material
choice is not included in the optimization study.

In a general structural optimization problem there are always some restrictions
that allows no further weight reduction, such as stress values must be below a
certain level or the maximum deflections must be below a certain value. In
addition, the outer shape of aircraft sub-structures is usually determined by
aerodynamics and flight mechanics considerations and unless a
multidisciplinary approach is followed in the optimization, the outer dimensions
can be taken as constants but not as design variables. For instance, thickness of
the profile of a lifting surface may be a fixed value and for a fixed spar location
the spar height will be constant. In optimization problems, the design variables
usually have an upper and a lower bound. In structural optimization problems
these bounds, on some of the design variables, exist because of the available
structural elements from which the selection has to be made during the

manufacturing.
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To handle an optimization problem mathematically, there is a need for a

statement. General statement of optimization problems is given as:

Minimize f(x1, X2, X3,..., Xp)

Subject to hy(x1, X2, X3,..., X5) =0 k=1,2,...,1
gj (X1, X2, X3,..., Xn) <0 j=1,2,...,m
Xi" < X <X 1=1,2,...,n

where,

h(x1, X2, X3,..., X)) =0  k=1,2,...,1 represents the equality constraints.
gi (X1, X2, X3,...,Xn) <0 j=1,2, ..., m represents the inequality constraints

X < x < x i=1,2,...,n represents the upper and lower bounds

This chapter introduces optimization methods. One-dimensional optimization
methods are explained in the first part. In the second part, unconstrained
optimization methods for multivariable optimization problems are investigated.

In the last part of the this chapter, implementation of constraints is presented.

2.1 ONE DIMENSIONAL OPTIMIZATION METHODS

Finding global minimum of the function with one variable in a given range can
be stated as one dimensional optimization problem. There are many numerical
methods for solution of one dimensional optimization problems. These are
called as one dimensional search or line search methods. Following three
methods will be mentioned in this chapter:

= Newton Raphson Method

= Bisection Method

* Golden Section Method

11



2.1.1 NEWTON RAPHSON METHOD

Newton Raphson method is used to find the root of a function. At optimum
point the derivative of the function is zero. Therefore, this method can be
applied to find the optimum point by searching the roots of derivative, instead of
original function itself.

The idea is very simple. First the function @ is evaluated at a point a.. Then that
point is moved by an amount of Aa and the function is evaluated at a new
location. This procedure is continued until the condition ®(a) =0 is satisfied.

Calculation of increment in o value (Aa) is as follows:

O(a) = D(a +Aa) =c1>(a)+diDAa =0 2.1)
da
 D(a) {dcpr
Ao =— = | ®(a) (2.2)
Wre Lo

New a value is determined by incrementing o by Ac, and the whole process
repeated until solution is reached.
The drawback of Newton-Raphson method is the need to have an initial guess

near the true solution. Algorithm of this method is given in detail in Appendix

Al

2.1.2 BISECTION METHOD

Like Newton Raphson method, bisection method is also used to find the roots of
the function. This method is based on the reduction of the search interval.

In this method function values are evaluated at incremental values of the
independent variable o, and sign change of the function value is searched for.
Assuming that an interval is determined at upper bound oy and lower bound o,
of the interval, the sign of the function must be different. In such a case, a
continuous function will have at least one root in the interval.

Next step is evaluating the function in the middle of the interval. The sign of the
function will be different from either the sign of the function at the lower bound

or the sign of the function at the upper bound. Thus, the search interval is halved

12



and the whole process is repeated until the interval is less than a prescribed very
small value. Middle point of the interval can be obtained by using the formula
below.

o=, +( o - aty)/2 (2.3)
Algorithm of this method is given in detail in Appendix A.2.

2.1.3 GOLDEN SECTION METHOD

This method is used to find the minimum or the maximum of a function within a
certain interval. The method is similar to bisection method but the intervals are
derived from golden section ratio 1.61803 from Fibonacci series [7]. The brief

explanation of the method is given below.

f, ¢ :
& i 5
f2 [ ] E
? fa
e
—_ R C L
a b

Figure 2.1 Golden section search technique [7]

In Figure 2.1, horizontal axis is used for the independent variable x and the
vertical axis is used for the value of the function f(x). The lower value of the

search interval is x; and the upper value is x3. The function is evaluated at three

13



points x;, X3 and x,, where f}, f3 and f, are the corresponding function values
respectively. If the value of f; is smaller than either f1 or {3, the interval contains
a minimum. To reduce the search interval one more evaluation at x4, located
between x, and X3, has to be performed and the result is fy. If the value of f; is
greater than f,, then the interval x; and x4 contains a minimum. The lower value
of the new interval is x; and the upper value is x4. Three points are now x;, X,
and x4. However, if the value of f; is smaller than f,, then the interval x, and x;
contains a minimum. The lower value of the new interval is x, and the upper
value is x3. Three points are then x5, X4 and X3,

To reduce the interval by the same fraction at each iteration the location of x;
and x4 should be chosen based on the golden section ratio,1.61803.

b_3_ 61803 (2.4)
a C

The derivation of this ratio can be found in reference [7]. Algorithm of this

method is given in detail in Appendix A.3.

2.2 UNCONSTRAINED OPTIMIZATION WITH GRADIENT
BASED METHODS

In this class of optimization problems, the function to be optimized may have
more than one design variable and there is no restriction on the design variables.
Therefore, this type of optimization problems is called as unconstrained
optimization.

‘First Order Conditions’ (FOC) should be satisfied at optimum. These
conditions are also known as Kuhn Tucker conditions or necessary conditions
[8].

V=0 (2.5)

However, ‘First Order Conditions’ does not guarantee the optimum. Therefore,

‘Second Order Conditions’ should also be satisfied.

Af Z%-AXT H(x")-Ax> 0 (2.6)

14



where,
‘H(x")’ is Hessian matrix which includes second order derivatives of
objective function ‘f” at solution.
‘x’ is the vector of design variables.
Equation (2.6) is the second order term of Taylor Series expansion. If the right
hand side of the equation (2.6) is greater than zero, the extremum at that point is
a minima.
Following gradient based methods are commonly used for the solution of
optimization problems.
= Steepest Descent Method
= Conjugate Gradient Method
= Davidon-Fletcher-Powell (DFP) Method

2.2.1 STEEPEST DESCENT METHOD

The steepest descent method is the simplest of the gradient based methods. The
idea behind this method stems from the definition of the gradient of a function.
The objective function increases most rapidly in the direction of the gradient.
Therefore, by reversing the direction of the gradient the search direction s; is
obtained at a given point x;. Once the search direction is obtained, the next
action to take is to decide how far to go in that direction. At this point any one of
the one dimensional optimization methods can be used to solve this problem,
and a factor a; for the search direction is the output of one dimensional search.
Next point x;1; is obtained using formula below.

Xi+1 = Xj T O S; (2.7)
This iteration continues until the optimum point is reached.
This method is very simple and easy to apply. It is guaranteed to reach local
minimum if there is any. The disadvantage of the steepest descent method is that
it is very slow.
An algorithm for this method is given in Appendix A.4. Further information can

be found in reference[9].
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2.2.2 CONJUGATE GRADIENT METHOD

This method is very similar to the steepest descent method. The only difference
is in constructing the search direction. In this method on top of the search
direction of the to steepest descent method, a certain fraction of previous search
direction is added to the negative of the gradient [9].

si= - VI(x3) + B sit (2.8)
The fraction of the previous search direction is the ratio of squares of the current

and the previous gradient vectors.

Vi(x. )" VIx,
b= Vf(x(ii;TVfEx:)l) 22
The advantage of this method is its robustness compared to the steepest descent
method. It should be noted that the magnitude of gradient of the objective
function (V) at optimum approaches to zero. Therefore, if the previous design
variable x is closer to optimum than the current design variable x, the value of 3
is large. This means that previous iteration is dominant.

An algorithm for this method is given in Appendix A.5. Further information can

be found in reference [9].

2.2.3 DAVIDON-FLETCHER-POWELL METHOD

In ‘Conjugate Gradient Method’ only the information from the previous
iteration is included in the determination of the search direction. However,
Davidon Fletcher Powell method uses information from all past iterations. This
information is kept in a n x n matrix H which is called as metric, where n is the
number of the design variables. Therefore, this method is called as variable
metric method. The search direction is stated as follows [7].
si= - H; - Vf(x;) (2.10)

The initial metric Hyp must be symmetric positive definite. Usually, identity
matrix is chosen as the initial metric. It is updated in every iteration according to

the following formula [7].
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H —H, ATxi Ax,H, -A[Vf(xiZ]}- {H, -A[VE(x,)]}" @.11)
Ax," - A[VE(x,)] AVE(x,)]" - H, - A[VE(x, )]
H matrix is symmetric positive definite in all iterations. As x approaches to the
optimum, H matrix converges to the Hessian of the function. For quadratic
functions DFP method converges in less than n iterations.
An algorithm for this method is given in Appendix A.6. Further information can

be found in reference [9]

2.3 CONSTRAINED OPTIMIZATION WITH GRADIENT
BASED METHODS

If there are some constraints introduced to the unconstrained optimization
problem, the resulting optimization problem is called as constrained
optimization. However, a constrained optimization problem can be converted to
an unconstrained optimization problem. In this thesis two methods, which
convert the constrained optimization problem into unconstrained optimization
problem, are introduced. These methods are:

1. Penalty Function Method.

2. Augmented Lagrange Multiplier Method

In the thesis ‘Augmented Lagrange Multiplier Method’ is implemented in the

proceeding sections.

2.3.1 PENALTY FUNCTION METHOD

The penalty function method is the modification of objective function f(x) in
such a way that it includes the constraints. Then, it can be solved by using
algorithms used for unconstrained problems. Modification is very simple. A
penalty function P(x) is added to the objective function.

SX 1,1 =f(X)+P(X,Ip,1p) (2.12)
Where, 1, and 1, are the penalty function multipliers used in equation (2.13).
This additional function should penalize the objective function only outside the

feasible region. In order to achieve this, penalty function can be chosen as

follows [8].
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P(x,1,.1,) =13, -lehk(x)2 +1, -i“max(o,gj(x))2 (2.13)

where,

hi(x) defines an equality constraint.

gi(x) defines an inequality constraint.
This assures that when the constraints are violated the new objective function
becomes large. Also, constants “r,” and “r,” are used to adjust the weight of the
penalty function. These constants are called weighting factors or penalty
parameters and it is not necessary to change them in each iteration.
An algorithm for this method is given in Appendix A.7. Further information can

be found in reference [9].

2.3.2 AUGMENTED LAGRANGE MULTIPLIER METHOD

Another method of solving constrained optimization problem is Augmented
Lagrange Multiplier (ALM) Method. This method is based on the same idea as
‘Penalty Function Method’. An additional function is added to the original
objective function to penalize it when the constraints are violated. New

objective function can be stated as follows [8].

f(X}\'Brh’rg) S(xX)+r7,- Zh (x)? +r, il:max( x) 2'3'/ j:l
& (2.14)

+Zzh@h§y Fw&j) @j}

2-rg

Vectors A and P are multipliers for equality and inequality constraints

respectively. Variables r, and r, are the penalty parameters. Vectors A and B are

updated in every iteration by using the formulas below,

A=A+2-r, -h(x) (2.15)

p=Pp+2-r, -(max{g(x),—%D (2.16)

g
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Main advantage of this method is its robustness. At the solution, this method
provides information about lagrange multipliers.
An algorithm for this method is given in Appendix A.8. Further information can

be found in reference [9].
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CHAPTER 3

OPTIMIZATION CODE IN MATLAB®

MATLAB® is a very useful tool to create codes for optimization. Because, in
optimization problems matrix operations are needed frequently and
implementing matrix operations is very easy in MATLAB® environment. Also,
separation of tasks is quite simple in MATLAB® by implementing different
code segments in different M files. There are many examples of solution of
optimization problems with MATLAB®. In this thesis, general structure of the
optimization code written by Venkataraman [8] is taken and modifications are
incorporated to come up with the optimization code used in the demonstration of
the three different ways solving structural optimization problems.

The optimization code includes three nested loops. Outermost loop is used to
convert constrained optimization problem to unconstrained one and ‘Augmented
Lagrange Multiplier Method’ is used to perform this task. In the inner loop,
Davidon Fletcher Powell method is chosen to obtain solution for unconstrained
optimization problem. This loop provides a search direction to be solved by a
one dimensional search algorithm. Finally, innermost loop provides a solution
for one dimensional search problem with golden section method.

Each loop is written in a different M-file. Evaluation of the objective function,
equality constraints, inequality constraints, construction of unconstrained
objective function and evaluation of the gradient of the function is written in
separate M-files. Separation of M-files allows easy adaptation of

MSC.NASTRAN" as a solver in the optimization.
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Main flowchart of the optimization code written in MATLAB® environment is

given in Figure 3.1
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Figure 3.1 Main algorithm of the optimization code
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3.1 AUGMENTED LAGRANGIAN MULTIPLIER METHOD
SECTION

In this section, the outermost loop of the code is implemented. The augmented
lagrangian multiplier method is composed of three main parts.

The first part is the input section where initial values of design variables, upper
and lower bounds of the design variables, number of equality and inequalty
constraints and their initial multipliers are input. In addition, tolerances for
convergence and maximum number of iterations are stated. At the end of input
section objective function, equality and inequality constraints and newly
constructed unconstrained objective function is evaluated and their values are
stored.

In the second part, unconstrained optimization problem is solved. Davidon
Fletcher Powell method is called and in this part a solution for unconstrained
optimization problem is obtained. Similar to the end of the first part, objective
function, equality and inequality constraints and newly constructed
unconstrained objective function is evaluated and their values are stored.

In third part, convergence criteria is checked. If convergence criteria is achieved
the code stops. However, in the code there are also other criteria to stop the
execution of the code. These additional criteria include a check on the values of
the design variables “x” and maximum number of iterations. If the design
variables do not change appreciably or the maximum number of iterations is
exceeded, the code stops execution. If any one of the stopping criteria is not
satisfied, penalty multipliers “r,”, “r,”, and lagrange multipliers “A” , “B” are
updated.

If the code stops with a violated constraint because design variables “x” are not
changing, in that case the stopping criteria which checks the values of the design
variables “x” can be omitted. This allows making further improvements in the
multipliers and the weight of the violated constraint will be increased so that the

constraint will not be violated. By adjusting the weights of the constraints the

code tries to satisfy all constraints.
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3.2 DAVIDON FLETCHER POWEL METHOD SECTION

This section of the code implements Davidon Fletcher Powell method to solve
the unconstrained optimization problem. The unconstrained objective function,
current value of design variable vector “x”, upper and lower bounds of the
design variable vectorx” and maximum iteration number are taken from the
ALM section. Tolerances for the convergence were stated at the beginning of
the section. For the first iteration, identity matrix is used as the initial metric.
Subsequently, gradient of the unconstrained objective function is calculated in

(1954
S

an external M-file. Next step is determining the search direction which is
found by negative of the dot product of the metric by the gradient. Once the
search direction is determined, an M-file containing the golden section method
is called to solve the one dimensional problem. This M-file provides a multiplier
“a” for the search direction, updated design variable vector “x” and the
corresponding unconstrained objective function value. Square of the length of
the gradient of the unconstrained objective function is calculated with the
updated “x” for the convergence check. If the square is less than the previously
specified tolerance value, the algorithm is converged to a solution and the code
stops execution. Otherwise, metric is updated based on DFP method and the
whole process is repeated. As an exception, if the search direction is modified in
the one dimensional search, metric is reset to the identity matrix. Other stopping
criteria, which are the no appreciable change in the design variable vector “x”
and no appreciable change in the objective function value, are also checked
respectively. If the code does not stop, it repeats all the steps starting from the
determination of the search direction until the convergence or until one of the

stopping criteria is achieved.

3.3 GOLDEN SECTION METHOD SECTION

This section is composed of two parts. These are determination of upper and
lower bound for variable “a” which is factor for search direction “s” which is

written differently from and the implementation of golden section method.
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Since the golden section method needs an interval to work on, determination of
upper and lower bound for “a” is performed in the first part. Objective of this
part is to keep the design variable vector “x” within its lower and upper
boundaries which are given as input in the beginning of the ALM section. At
first, lower bound for “a” is set to zero. For this case the first component of the
search direction “s” is zero and the upper bound is set to a very high value such
as 10'2. Then, for each component of “x” (x;) , its position with respect to the
boundaries and corresponding component of “s” (s;) are checked. There are six
possibilities for the position of the design variable x;.

First, x; can be between its boundaries and the corresponding search direction is
negative. Lower bound of “a” remains as is. Upper bound of “a” is set to the
ratio of the distance to the lower boundary of x; divided by s;.

Second, x;i can be between its boundaries and corresponding search direction is
positive. Lower bound of “a” remains as is. Upper bound of “o’ is set to the
ratio of the distance to the upper boundary of x; divided by s;.

Third, x; can be less than its lower boundary and corresponding search direction
is positive. Lower bound of “a” is set to the ratio of the distance to the lower
boundary of x; divided by s;. Upper bound of “o” is set to the ratio of the
distance to the upper boundary of x; divided by s;.

Fourth, x; can be less than its lower bound and corresponding search direction is
negative. For this case the search direction s; must be reversed. This means a
modification in the search direction and requires a reset in metric in DFP
section. Lower bound of “a” is set to negative value of the ratio of the distance
to the lower boundary of x; divided by original s;. Upper bound of “a” is set to
the negative value of the ratio of the distance to the upper boundary of x; divided
by original s;.

Fifth, x; can be greater than its upper boundary and corresponding search
direction is positive. For this case the search direction s; must be reversed. This
means a modification in the search direction and requires a reset in metric in
DFP section. Lower bound of “a” is set to the negative value of the ratio of the

distance to the upper boundary of x; divided by original s;. Upper bound of “a”
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is set to the negative value of the ratio of the distance to the lower boundary of
xj divided by original s;.

Sixth, x; can be greater than its upper boundary and corresponding search
direction is negative. Lower bound of “a” is set to the ratio of the distance to the
upper boundary of x; divided by s;. Upper bound of “a” is set to the ratio of the
distance to the lower boundary of x; divided by s;.

After checking for all components of the design variable vector “x”, the
minimum value of the calculated upper bound of “o” and the maximum value of
the calculated lower bound of “a” is used as the new upper bound and lower
bounds of “a”, respectively. This reduces the search interval and ensures staying
within the boundaries of the variable “x”

If the value for the lower bound is greater than the upper bound, it means that
the search direction in design space does not pass through the region bounded by
lower and upper bounds of the design variable vector “x”. For this case upper
and lower bounds are inverted. Therefore, updated “x” is guaranteed to be close
to its boundaries in next iterations.

In the second part of this section, golden section algorithm is implemented
directly. A tolerance and maximum iteration number are calculated by using
upper and lower bounds of “o”. In the code the maximum iteration number is
limited by 1000. Then, reduction of the interval continues until it becomes less
than the tolerance or the maximum number of iterations is reached.

(13 ’9

Average of the final lower and upper bound of variable is chosen as final

13 7’ G‘ 2

to be multiplied by search direction

At the end of the section, design variable vector “x” is updated by the addition

66 2 [IP¥2]

of search direction multiplied by “a” to the previous “x”. And, finally the

corresponding unconstrained objective function value is calculated.
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3.4 OBJECTIVE FUNCTION SECTION FOR ANALYTIC
SOLVER

This section introduces objective function and constraints of the optimization
algorithm. It is composed of four subsections. These are the objective function,
equality constraints, inequality constraints and unconstrained objective function

section.

3.4.1 OBJECTIVE FUNCTION SECTION

The aim of the optimization is to minimize the objective function. In this
section, main objective function is evaluated. The M-file which is dedicated to
this function is called “Ofun.m”. Design variable vector “x”, which is a row
vector, is the only input to the objective function evaluation. Output is a scalar

which is function value.

3.4.2 EQUALITY CONSTRAINT SECTION

An optimization problem might have equality constraints. If there is no equality
constraints, this section is skipped. Otherwise, the M-file called “Hfun.m” 1is
used to calculate their value(s). Design variable vector “x” is the only input to
this section. Output is a column vector in which each row is allocated for a
different constraint value. At the solution, all the values of the output vector
must be zero within a prescribed tolerance because the equality constraints are

expressed by relations which are set to zero.

3.4.3 INEQUALITY CONSTRAINT SECTION

Similarly, an optimization problem might have inequality constraints. If there
are no inequality constraints, this section is skipped as well. The M-file for the
calculation of the values of inequality constraints is called “Gfun.m”. Design
variable vector “x” is the only input to this section. Output is a column vector in
which each row is allocated for a different constraint value. At the solution, all

the values of the output vector must be equal to or less than zero. Similar to
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equality constraints, inequality constraints are expressed by ‘less than or equal

to’ relations.

3.4.4 UNCONSTRAINED OBJECTIVE FUNCTION SECTION

This section constructs the unconstrained objective function for the augmented
lagrangian method. The name of the M-file for this subsection is “FALM.m”.
Design variable vector “x”, lagrange multipliers A for equality and B for
inequality constraints and penalty multipliers 1, and r, for equality and
inequality constraints are given as inputs. Output is a scalar which is the value
of unconstrained function.

In the beginning of the section, the main objective function is called. If there are
no constraints, this value is the output value. In order to take constraints into
account, first existence of equality constraints is checked. If there is at least one,
an additional value which is calculated according to the augmented lagrangian
method is added to the main objective function. This procedure is repeated for

inequality constraints and final value of unconstrained function is obtained.

3.5 OBJECTIVE FUNCTION SECTION FOR MSC.NASTRAN®
SOLVER

Like in the previous section, the purpose of this section is to introduce an
objective function and constraints to the algorithm. The difference is that in this
case values of inequality constraints are obtained from a MSC.NASTRAN"
solution. Main objective function is calculated in M-file “Ofun.m” which is the
same as used in the previous section. Evaluation of equality and inequality
constraints, construction of the unconstrained objective function is performed in
M-file “nastfunc.m”. Modification of the MSC.NASTRAN™ input file .bdf for
the current design variable vector “x”, executing MSC.NASTRAN™ and reading
results for inequality constraints from the MSC.NASTRAN® output file .f06 are

performed in the beginning of the “nastfunc.m”.
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3.6 GRADIENT FUNCTION SECTION

To find a search direction in each iteration, the gradient of unconstrained
objective function at the current design variable vector “x” is needed. The M-file
for this task is called “gradfunction.m”. Objective function name and current
“x” are used as inputs. For each element of “x” first forward finite difference

technique is applied. Results are stored in a row matrix, which is the output.
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CHAPTER 4

OPTIMIZATION STRATEGIES WITH DIFFERENT
OPTIMIZATION AND SOLVER CODES

Optimization process can be divided into two main sub-processes which are the
optimization process and the evaluation of objective function and constraints.
Therefore, an optimizer code and a solver are used to perform the optimization
process and to evaluate the objective function and constraints, respectively. In
this chapter, three different methods are presented to perform structural
optimization with different optimization and solver codes. These methods are
typically used to solve structural optimization problems in different engineering
fields. In the first technique, structural optimization is performed by using the
optimization code prepared in MATLAB® and analytical equations as the solver.
This method actually corresponds to having an optimization and solver code
which are developed by the user, and therefore user has complete control over
the source codes. In this thesis to demonstrate the method, optimization code
developed is used in conjunction with an analytical solver applicable to a
cantilever beam problem. In general in this method a finite element code
developed by the user can be used as the solver code. In the second technique,
optimization is performed using the optimization code prepared in MATLAB®™
and commercial finite element solver MSC.NASTRAN® as the solver. The use
of a commercial finite element code as the solver is also very common in
solving structural optimization problems. Commercial finite element codes
present a variety of element types with proven accuracy and most analyst have
access to these codes. Therefore, during the solution of the optimization problem

one can exploit the advantages of the commercial finite element codes and use
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them as their solver codes and concentrate more on the optimization source
code. As the third technique, optimization 1is performed using
MSC.NASTRAN® Optimization Module. In this method optimization and
solver source codes are not within the reach of the user and user solely relies on
the optimization module of a commercial finite element program. This method
requires experience in preparing the input files to define the optimization
problem. In addition, effective use of optimization modules of the commercial
finite element codes usually takes time because in some commercial finite
element codes, preprocessing of the optimization problems is not user friendly.
However, these optimization modules are often used by the engineers dealing
with solving practical optimization problems.

The use of three different strategies, discussed above, to solve the same
optimization problem also allows one to make mutual comparison studies. Thus,
the solutions obtained with different methods can be compared with each other
to further substantiate the results obtained for the optimization problem.
Moreover, knowledge of alternative routes to solve the same optimization
problem gives the user a chance to optimize their optimization and/or solver

codes.

4.1 OPTIMIZATION VIA USER DEVELOPED
OPTIMIZATION AND SOLVER CODES

In this technique optimizer code described in chapter three is used. To perform
the optimization process, Augmented Lagrange Multiplier method 1is
implemented with Davidon Fletcher Powell algorithm as the unconstrained
optimizer. For the determination of the search direction, ‘Golden Section
Method’ is chosen in the one dimensional search. To calculate the gradient of
the unconstrained objective function, which is required by the Davidon Fletcher
Powell algorithm, first forward finite difference technique is used. Each method

is written in a different M-file and a total of four main M-files are developed to
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perform the optimization process. These M files are named as “AuglagMet.m”,
“DFP.m”, “golden.m” and ““gradfunction.m” respectively.

The four main M-files are supported with other M-files which perform
evaluation of the objective function, and constraints, and construction of the
unconstrained objective function. Evaluation of the objective function and
constraints are implemented in separate M-files. In M-file “Ofun.m”, main
objective function is evaluated. MATLAB® files “Gfun.m” and “Hfun.m” are
used to evaluate inequality and equality constraints, respectively. Files
“Ofun.m”, “Gfun.m” and “Hfun.m” comprise the solver code because in
structural optimization problems the objective function evaluation usually
requires the calculation of weight, and equality and inequality constraints
usually require the solution of certain field variables such as stresses,
displacements etc. for the particular optimization problem defined. Finally, in
the M-file called “FALM.m” unconstrained objective function is constructed in
accordance with Augmented Lagrangian Multiplier Method. Detailed
information about the code was given in chapter 3.

This technique is applicable to the problems for which user developed
optimization and solver codes are used. For demonstration purposes, Euler beam
relations are used as the analytical expressions to calculate field variables such
as stresses, displacements etc. The advantage of this technique is that user has
full control on optimization and solver process. It should be noted that if a finite
element code is developed by the user then this code could be incorporated in
“Gfun.m” which evaluates the inequality constraints. In structural optimization
problems the inequality constraints are usually defined on field variables such as
deflection, stress or on eigen-values defined in structural stability problems such
as natural frequency or buckling loads. Thus, the current structure of the code
allows expansion in implementing a user developed finite element code as the
solver. This expansion is elaborated in the next section. The user interface of

this technique is given in Appendix B.1.

31



4.2 OPTIMIZATION USING AN OPTIMIZATION CODE IN
MATLAB® AND MSC.NASTRAN® AS SOLVER

In structural analysis, for the solution of problems involving complex
geometries and loading, analytical solutions are usually not available. Therefore,
in such problems finite element method can be used to obtain results for the
field quantities such as deflections , stress values, etc.. In the optimization
process of such complex problems, finite element method can be implemented
as the solver as stated above. In this section, a strategy which uses an
optimization code in MATLAB® as the optimizer and MSC.NASTRAN® as
solver is presented.

In this technique, the optimization process is same as described previously. The
M-files “AuglagMet.m”, “DFP.m”, “golden.m” and “gradfunction.m” are used
without any change in algorithms. Therefore, this technique differs from the
previous one only in the evaluation of the objective function and constraints.
Usually, the main objective function to be minimized is the weight or volume.
The evaluation of the weight is a simple task. Analytical methods can be used
for this task and it is performed in “Ofun.m” which is the same MATLAB® file
as described in the previous method. However, for checking whether the
constraints are satisfied or not, usually a finite element solution is required. For
instance, in structural optimization problems the constraints are usually imposed
on stress values and displacements, or on natural frequencies and on buckling
loads etc. And, calculation of stresses, displacements, natural frequencies,
buckling loads etc. usually requires finite element solution to be performed for
complex geometry and loading problems defined in aerospace structures.
Therefore, in this method the M-file “nastfunc.m” is developed to perform the
construction of the unconstrained objective function by using the commercial
finite element solver MSC.NASTRAN®.

In this method, the existing input file bdf-file is modified at the beginning of

“nastfunc.m., In other words the design variables are updated in accordance with
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the output of the optimization code and old variables are replaced with the new
ones in bdf file. Then, MSC.NASTRAN® is called from MATLAB® inside the
MATLAB" file “nastfunc.m” to execute a finite element run and the solution is
written in the MSC.NASTRAN® output file which is .f06-file. After the
MSC.NASTRAN® job is finished, “nastfunc.m” file reads the required output
from the .f06-file. The required output are those quantities which are used in the
evaluation of the objective function and constraints. Finally, construction of the
unconstrained objective function is performed in accordance with the
‘Augmented Lagrange Multiplier method’. The output of the M-file
“nastfunc.m” is the value of unconstrained objective function.

To be able to perform these tasks, a run must be executed by MSC.NASTRAN®
before starting the optimization process to find out the format of the
MSC.NASTRAN" input and output files for the particular structural problem,
and to locate the positions of the variables which will be used in the evaluation
of the unconstrained objective function. The position of the variables in the
input .bdf-file, and required results in the output .f06-file should be spotted
beforehand to perform the reading and modification of the particular fields in
the MSC.NASTRAN® input and output files. A detailed procedure for this
technique is given in Appendix B.2.

To summarize, the functions of “FALM.m” in analytical solver technique and
“nastfunc.m” in MSC.NASTRAN" solver technique are the same. Both take the
current variables as input, perform the construction of the unconstrained
objective function and evaluate its value. The output of both M-files is the value
of unconstrained objective function calculated by using the current value of the

design variables.
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4.3 OPTIMIZATION USING THE OPTIMIZATION MODULE
OF MSC.NASTRAN®

MSC.NASTRAN" is widely used in acrospace industry. It has not only a very
powerful finite element solver, but also contains a module for optimization
which can be used in structural optimization problems. In this section, property
optimization and shape optimization capability of the optimization module of
MSC.NASTRAN" is introduced for linear structural analysis. It should be noted
that the use of optimization modules of commercial finite element codes
presents the user an alternative method to check the results of the
optimization/solver codes developed by the users themselves. In aerospace
structures margins of safety of structural elements are usually kept low in order
to reduce the overall weight of the aerospace vehicle. Structural optimization is
especially important in aerospace structures because of the significant impact
that the weight reduction induces on the performance and cost of aerospace
vehicles. However, since the margins of safety have to be low, in order not to
risk any failure the results of the structural optimization must be highly reliable.
Therefore, cross-check of the results produced by the user developed
optimization/solver codes and by the optimization modules of commercial finite
element codes is very important in using the results of the optimization codes in
the design of aerospace structures with an increased level of confidence.

Optimization process of MSC.NASTRAN™ is given in Figure 4.1.
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Figure 4.1 MSC.NASTRAN® implementation of structural optimization [10]

Initial design is composed of two parts. First part is the analysis model, in which
grid locations, element structure and properties, material information, loads,
boundary conditions and load cases are described. Second part is the design
model. Defining the design variables, relating design variables to element
properties, defining the design responses, constraints and objectives are
described in design model. The initial design is the input to the
MSC.NASTRAN® optimization process.

First activity of MSC.NASTRAN® optimization process is to perform a finite
element analysis. Next, in the constraint screening activity the constraints that
are violated or likely to be violated are identified. These are set to be as active
constraints.

In sensitivity analysis, the sensitivities such as the rates of change of structural

response quantities or a change in constraint values with respect to changes in

35



design variables are computed. These are partial derivatives and provide
essential information to the optimizer.
An approximate model is constructed by using the information from finite
element analysis and sensitivity analysis. This model involves approximations to
finite element results to reduce the number of full scale finite element analyses.
Optimizer performs optimization process by using the approximate model. By
default, gradient based methods are used to construct improved design. Other
available methods are sequential linear programming and sequential quadratic
programming.
The improved model is compared with the previous model. If the changes are
below the desired value, this means that soft convergence is achieved. Then,
after the finite element analysis, one more convergence test for hard
convergence is performed. Detailed information about MSC.NASTRAN®
sensitivity analysis and optimization process is given in Reference [11].
There are three steps to perform an optimization task using MSC.NASTRAN®
optimization tools. These are:

1. Creating an input .bdf-file

2. Executing a MSC.NASTRAN® run

3. Post processing of the results

4.3.1 CREATING A BDF-FILE

A standard input .bdf-file is composed of four sections which are the file
management, executive control, case control and bulk data, respectively. The
following paragraphs define these sections. Further information about creating

bdf-file can be found in Reference [10].

4.3.1.1 FILE MANAGEMENT SECTION

File management section is used for the attachment and initialization of database
sets and external files. Usually, in MSC.NASTRAN® jobs, no file management
statements are required. But, for shape optimization problems DBLOCATE
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statement is used for introducing auxiliary model to the design model. Also, user

defined beam libraries or external responses can be introduced in this section.

4.3.1.2 EXECUTIVE CONTROL SECTION

In executive control, the only required statement is “SOL 200" which implies

design optimization

4.3.1.3 CASE CONTROL SECTION

In case control section, four tasks are performed for design sensitivity analysis
and optimization. These tasks are the analysis discipline definition, design task
definition, design response characterization and shape basis vector computation,
respectively.

In analysis discipline definition, solution sequences that are used in optimization
process are defined. The applicable solution sequences are linear statics, normal
modes, buckling, direct frequency, modal frequency, modal transient, direct
complex eigenvalue analysis, static aeroelasticity, static aeroelastic divergence
and flutter. In this thesis only linear statics is used.

In design task definition, design objective function and design constraint sets are
identified.

Design response characterization is used to resolve design response ambiguities.
For example, for plate element stresses, maximum shear stress and von Mises
stress use the same item code ID. By wusing the statement
“STRESS(VONMISES)=15" or “STRESS(SHEAR)=15" it is clearly identified
which stress to be used in analysis and optimization.

Shape basis vector computation is applicable only when analytic boundary
shape method is used for shape optimization. Analytic boundary shape method

1s not used in this thesis.
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4.3.1.4 BULK DATA SECTION

Bulk data contains the analysis model and design model. MSC/PATRAN® is a
very useful tool to construct an analysis model. There are also other commercial
tools such as MSC.SOFY™ or NX.NASTRAN®. Design model is located below
the analysis model.

At the beginning of the design model section, design variables are identified
with their initial values and upper and lower bounds.

Next, the relations between design variables and element properties,
displacements or shape basis vectors are defined. For shape optimization, an
auxiliary model is required. This model describes change in grid positions when
corresponding design variable is changed. It is prepared by a separate finite
element analysis of the model for the desired displacements and it should be
introduced in the file management section.

Next, design responses are created which are used as basis of defining design
objective function and constraints. There are three types of responses. First type
is first level responses which are available directly from an MSC.NASTRAN®
analysis. Structural weight, displacements at grid points, element stresses, and
so on, are all examples of first level responses. Second type is second level
responses which are called as user-defined since they utilize the equation input
feature in MSC.NASTRAN™. Third type is third level responses which can be
regarded as an extension of the second level responses. This type allows one to
introduce an external process to the MSC.NASTRAN® design sensitivity and
optimization process.

Next, design objective and design constraints are stated. Design objective is a
scalar quantity to be minimized by the optimizer. “DESOBIJ” statement is used
to identify which design response is related to the design objective. Design
constraints are defined by “ DCONSTR” statements. This statement points a
design response and gives upper and lower limits for the corresponding design

response.
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At the end of the bulk data section output control parameters are stated. These

parameters affect either the frequency or level of detail of the output.

4.3.2 MSC.NASTRAN® RUN

After completing MSC.NASTRAN® input file.bdf, MSC.NASTRAN® job is
submitted. Output is written in .f06, .pch (punch) and .op2-files. Xdb file can
also be used instead of op2 file. At the end of the solution, the output file .f06-
file must be investigated for errors and warnings before post processing the

results.

4.3.3 POSTPROCESSING

Two ways of post processing is presented in this section. First one is importing
the op2-files into MSC/PATRAN®. Using post processor tool of
MSC/PATRAN® history of each variables, objective function and constraints
can be plotted on graphs. The results of structural analysis such as stress
distribution, displacements, grid point forces can be viewed not only at the final
solution but also at each step of the optimization process.

Another way of getting the same data is through the output .f06-files. FO6-files
contain similar information as op2-files but in formatted text form.

Additionally, pch-file includes outputs from the MSC.NASTRAN® analysis
such as final grid locations or final element properties. These outputs can be
conveniently used as input into another computer analysis. A sample bdf-file for

the optimization process is presented in Appendix B.3
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CHAPTER 5

SAMPLE STUDIES TO DEMONSTRATE
DIFFERENT OPTIMIZATION STRATEGIES

In this chapter, optimizations of two sample problems are presented to
demonstrate the application of the three different strategies described in the
previous section. Both problems are cantilever beam problems subjected to a
vertical force at the free end. In the first problem a rectangular cross section is
chosen with two design variables. The height and width of the cross-section of
the beam are taken as the two design parameters. This way it has been possible
to show the design space on the two dimensional graph, and thus it becomes
easier to trace the progress of the optimization methods during each step.

In the second problem I cross section beam is chosen with 4 design variables.
Since analytical solution for stresses and deflections are available for the
cantilever beam problems, the three optimization strategies are implemented in

solving the optimization problems defined.

5.1 OPTIMIZATION OF CANTILEVER BEAM WITH
RECTANGULAR CROSS SECTION

In this sample problem, to illustrate the optimization process a simple
optimization problem is solved. A cantilever beam subject to vertical force ”P”
at the end will be optimized. In this problem two design variables are used,
because this way the design space can be shown on a two dimensional graph.
The beam is assumed to have rectangular cross section which does not vary

along the length. The width ”B” and the height ”"H” are chosen as design
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variables. Their dimensions are given in mm. The length of the beam is fixed.

Figure 5.1 shows the cantilever beam to be optimized.

P=1250 N

< > <+—>
I.=500 mm B

Figure 5.1 Cantilever beam with rectangular cross section

The objective of this problem is to minimize the weight of the beam subject to
certain constraints. High strength aluminum is used as the material of the beam.
Since density of aluminum is constant, minimizing weight is the same as
minimizing the volume.

The beam is subjected to three constraints. First constraint is maximum normal
stress due to bending at the root, second one is the maximum tip deflection due
to tip loading and the third one is height to width ratio to ensure the stability of
the beam.

Based on above explanations the optimization problem can be stated as follows:

Minimize:
V=B-H-L (5.1
Subject to:

oM _6PL 550 Mpy (5.2)

1 B-H*

3 3
0= P-L = 4PL3S25.4mm (5.3)
3-E-1 E-B-H

w| o

<5 (5.4)
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where the bounds of the design variables are specified as:

1<B<20
20<H <50

(5.5)
(5.6)

The design space for this problem is defined by the lower and upper bounds of

the design variables “B” and “H”. To make a one to one correspondence with

the optimization solutions, the value of the unconstrained objective function in

the design space is given in Table 5.1. Horizontal axis represents width “B” of

the cross section and vertical axis represents the height “H” of the cross section.

The minimum value of objective function in the design space is at the lower

bounds of both design variables. In the Table 5.1 the final optimum value of

objective function and its location is marked with blue background. This value is

the optimum value considering the constraints imposed on the problem.

Table 5.1 Objective function variation in the unconstrained design space
Design Space (Volume, Objective Function ) (1000 mm*"3)

(:\r:) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 | 100 | 20.0 | 30.0 [ 40.0 | 50.0 | 60.0 [ 70.0 | 80.0 | 90.0 | 100.0 | 110.0 | 120.0 | 130.0 | 140.0 | 150.0 | 160.0 | 170.0 | 180.0 | 190.0 | 200.0
21 | 105 | 21.0 | 315 | 42.0 | 525 | 63.0 [ 735 | 84.0 | 945 | 105.0 | 1155 | 126.0 | 136.5 | 147.0 | 157.5 | 168.0 | 178.5 | 189.0 [ 199.5 | 210.0
22 | 110 | 22.0 | 33.0 | 440 | 55.0 | 66.0 | 77.0 | 88.0 | 99.0 [ 110.0 | 121.0 | 132.0 | 143.0 | 154.0 | 165.0 | 176.0 | 187.0 | 198.0 | 209.0 | 220.0
23 | 115 | 230 | 345 | 46.0 [ 57.5 | 69.0 | 80.5 | 92.0 | 103.5 [ 115.0 | 126.5 | 138.0 | 149.5 | 161.0 | 172.5 | 184.0 | 1955 | 207.0 | 218.5 | 230.0
24 ) 120 | 24.0 | 36.0 | 48.0 [ 60.0 | 72.0 | 84.0 | 96.0 | 108.0 [ 120.0 | 132.0 | 144.0 | 156.0 | 168.0 | 180.0 | 192.0 | 204.0 | 216.0 | 228.0 | 240.0
25 | 125 | 25.0 | 375 | 50.0 | 625 | 75.0 | 87.5 | 100.0 | 1125 | 125.0 | 137.5 | 150.0 | 162.5 | 175.0 | 187.5 | 200.0 | 212.5 | 225.0 | 237.5 | 250.0
26 | 13.0 | 26.0 | 39.0 | 52.0 | 65.0 | 78.0 | 91.0 | 104.0 | 117.0 [ 130.0 | 143.0 | 156.0 | 169.0 | 182.0 | 195.0 | 208.0 | 221.0 | 234.0 | 247.0 | 260.0
27 | 135 | 27.0 | 405 | 54.0 | 67.5 | 810 | 94.5 | 108.0 | 1215 [ 135.0 | 1485 | 162.0 | 175.5 | 189.0 | 202.5 | 216.0 | 229.5 | 243.0 | 256.5 | 270.0
28 | 140 | 28.0 | 420 | 56.0 | 70.0 | 84.0 | 98.0 | 112.0| 126.0 [ 140.0 | 154.0 | 168.0 | 182.0 | 196.0 | 210.0 | 224.0 | 238.0 | 252.0 | 266.0 | 280.0
29 | 145 | 29.0 | 435 | 58.0 [ 725 | 87.0 | 101.5| 116.0 | 130.5 | 145.0 | 159.5 | 174.0 | 188.5 | 203.0 | 217.5 | 232.0 | 2465 | 261.0 | 275.5 | 290.0
30 | 15.0 | 30.0 | 45.0 | 60.0 [ 75.0 | 90.0 | 105.0 | 120.0 | 135.0 | 150.0 | 165.0 | 180.0 | 195.0 | 210.0 | 225.0 | 240.0 | 255.0 | 270.0 | 285.0 | 300.0
31 | 155 | 31.0 | 465 | 62.0 [ 77.5 | 93.0 | 108.5| 124.0 | 139.5 | 155.0 | 170.5 | 186.0 | 201.5 | 217.0 | 232.5 | 248.0 | 263.5 | 279.0 | 294.5 | 310.0
32 | 16.0 | 320 | 48.0 [ 64.0 | 80.0 | 96.0 | 112.0| 128.0 [ 144.0 | 160.0 | 176.0 | 192.0 | 208.0 | 224.0 | 240.0 | 256.0 | 272.0 | 288.0 | 304.0 | 320.0
33 | 165 | 33.0 | 495 [ 66.0 | 825 | 99.0 | 1155 132.0 [ 148.5 | 165.0 | 181.5 | 198.0 | 214.5 | 231.0 | 247.5 | 264.0 | 280.5 | 297.0 | 3135 | 330.0
34 ] 17.0 | 340 | 51.0 | 68.0 [ 85.0 | 102.0 | 119.0 [ 136.0 | 153.0 | 170.0 | 187.0 | 204.0 | 221.0 | 238.0 | 255.0 | 272.0 | 289.0 | 306.0 | 323.0 | 340.0
35 | 175 | 35.0 | 525 | 70.0 | 87.5 | 105.0 [ 122.5| 140.0 | 157.5 | 175.0 | 192.5 | 210.0 | 227.5 | 245.0 | 262.5 | 280.0 | 297.5 | 315.0 | 332.5 | 350.0
36 | 180 | 36.0 | 54.0 | 72.0 | 90.0 | 108.0 [ 126.0 162.0 | 180.0 | 198.0 | 216.0 | 234.0 | 252.0 | 270.0 | 288.0 | 306.0 | 324.0 | 342.0 | 360.0
37 | 185 | 37.0 | 555 [ 74.0 | 925 | 111.0| 129.5| 148.0 | 166.5 | 185.0 | 203.5 | 222.0 | 240.5 | 259.0 | 277.5 | 296.0 | 314.5 | 333.0 | 35L5 | 370.0
38 | 19.0 | 38.0 | 57.0 [ 76.0 | 95.0 | 114.0 | 133.0 | 152.0 | 171.0 | 190.0 | 209.0 | 228.0 | 247.0 | 266.0 | 285.0 | 304.0 | 323.0 | 342.0 | 361.0 | 380.0
39 | 195 | 39.0 | 585 | 78.0 | 97.5 | 117.0 | 136.5 | 156.0 | 175.5 [ 195.0 | 214.5 | 234.0 | 2563.5 | 273.0 | 292.5 | 312.0 | 3315 | 351.0 | 370.5 | 390.0
40 | 20.0 | 40.0 | 60.0 [ 80.0 | 100.0 [ 120.0 | 140.0 | 160.0 | 180.0 | 200.0 | 220.0 | 240.0 | 260.0 | 280.0 | 300.0 | 320.0 | 340.0 | 360.0 | 380.0 | 400.0
41 | 205 | 410 | 615 | 82.0 | 1025 123.0 | 1435 164.0 | 184.5 | 205.0 | 225.5 | 246.0 | 266.5 | 287.0 | 307.5 | 328.0 | 348.5 | 369.0 | 389.5 | 410.0
42 | 21.0 | 420 | 63.0 | 84.0 | 105.0 | 126.0 | 147.0 | 168.0 | 189.0 | 210.0 | 231.0 | 252.0 | 273.0 | 294.0 | 315.0 | 336.0 | 357.0 | 378.0 | 399.0 | 420.0
43 | 215 | 43.0 | 645 | 86.0 [ 107.5] 129.0 | 150.5 | 172.0 | 1935 | 215.0 | 236.5 | 258.0 | 279.5 | 301.0 | 322.5 | 344.0 | 365.5 | 387.0 [ 408.5 | 430.0
44 | 22.0 | 44.0 | 66.0 [ 88.0 | 110.0 | 132.0 | 154.0 | 176.0 | 198.0 | 220.0 | 242.0 | 264.0 | 286.0 | 308.0 | 330.0 | 352.0 | 374.0 | 396.0 | 418.0 | 440.0
45 | 225 | 45.0 | 675 [ 90.0 | 1125 135.0 | 157.5| 180.0 | 202.5 | 225.0 | 247.5 | 270.0 | 292.5 | 315.0 | 337.5 | 360.0 | 382.5 | 405.0 | 427.5 | 450.0
46 | 23.0 | 46.0 | 69.0 [ 92.0 | 115.0 | 138.0 | 161.0 | 184.0 | 207.0 | 230.0 | 253.0 | 276.0 | 299.0 | 322.0 | 345.0 | 368.0 | 391.0 | 414.0 | 437.0 | 460.0
47 | 235 | 47.0 | 705 [ 94.0 | 117.5| 141.0 | 164.5| 188.0 | 211.5 | 235.0 | 258.5 | 282.0 | 305.5 | 329.0 | 352.5 | 376.0 | 399.5 | 423.0 | 446.5 | 470.0
48 | 24.0 | 48.0 | 72.0 | 96.0 | 120.0 | 144.0 | 168.0 | 192.0 | 216.0 | 240.0 | 264.0 | 288.0 | 312.0 | 336.0 | 360.0 | 384.0 | 408.0 | 432.0 | 456.0 | 480.0
49 | 245 | 49.0 | 735 [ 98.0 | 1225 147.0 | 1715 196.0 | 220.5 | 245.0 | 269.5 | 294.0 | 318.5 | 343.0 | 367.5 | 392.0 | 416.5 | 441.0 | 465.5 | 490.0
50 | 25.0 | 50.0 | 75.0 [ 100.0| 125.0 | 150.0 | 175.0 | 200.0 | 225.0 | 250.0 | 275.0 | 300.0 | 325.0 | 350.0 | 375.0 | 400.0 | 425.0 | 450.0 | 475.0 | 500.0
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The values of the maximum stress at the root of the beam in the design space is
given in Table 5.2. According to the first constraint, maximum stress value must
be less than 700 MPa. The region where stress values are higher than 700 MPa
marked with red background. This region is the restricted region. Therefore, a
feasible region must be defined in the design space where constraints are not
violated. If there were no constraints, the feasible region would be the design
space itself. From Table 5.2 it can be concluded that the feasible region is

reduced by the stress constraint.

Table 5.2  Variation of maximum stress in the design space

Design Space (Maximum Normal Stress, Constraint 1 <= 700MPa )
15 16 17 18 19 20

625 | 586 | 551 | 521 | 493 | 469
567 | 531 | 500 | 472 | 448 | 425
517 | 484 | 456 | 430 | 408 | 387
473 | 443 | 417 | 394 | 373 | 354
434 | 407 | 383 | 362 | 343 [ 326
400 | 375 | 353 | 333 | 316 [ 300
370 | 347 | 326 | 308 | 292 | 277
343 | 322 | 303 | 286 | 271 | 257
319 | 299 | 281 | 266 | 252 | 239
297 | 279 | 262 | 248 | 235 | 223
278 | 260 | 245 | 231 | 219 | 208
260 | 244 | 230 | 217 | 205 | 195
244 ) 229 | 215 | 203 | 193 | 183
230 | 215 | 203 | 191 | 181 | 172
216 | 203 | 191 | 180 | 171 | 162
204 | 191 | 180 | 170 | 161 | 153
193 | 181 | 170 | 161 | 152 | 145
183 | 171 | 161 | 152 | 144 | 137
173 | 162 | 153 | 144 | 137 | 130
164 | 154 | 145 | 137 | 130 | 123
156 | 146 | 138 | 130 | 123 | 117
149 | 139 | 131 | 124 | 117 | 112
142 | 133 | 125 | 118 | 112 | 106
135 | 127 | 119 | 113 | 107 | 101
129 | 121 | 114 | 108 | 102 | 97
123 | 116 | 109 | 103 | 97 93
118 | 111 | 104 | 98 93 89
113 | 106 | 100 | 94 89 85
109 | 102 | 96 90 86 81
104 | 98 92 87 82 78
100 | 94 88 83 79 75
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The values of the maximum displacement at the tip of the beam in the design
space is given in Table 5.3. According to the second constraint, maximum
displacement value must be less than 25.4 mm. The region where displacement
values are higher than 25.4 mm marked with red background. This region is
restricted region. Therefore, feasible region in the design space is also reduced
by the displacement constraint. Again, the cell with the blue background color

shows the location of the optimum solution.

Table 5.3  Variation of maximum deflection in the design space

Design Space (Displacement, Constraint 2 <= 25.4 mm )

44



The ratio of the “H/B” in the design space is given in Table 5.4. According to
the third constraint, the ratio “H/B” must be less than 5. The region where the
ratio “H/B” ratio is greater than 5 is marked with red background. This region is
the restricted region. Therefore, feasible region in design space is further
reduced by the slenderness ratio constraint. The cell with the blue background

show the position of the optimum solution.

Table 5.4 Variation of slenderness ratio in the design space

Design Space (Slenderness, Constraint 3<=5)
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The feasible region in design space is reduced by each constraint. In the

optimization process all the constraints must be satisfied. Therefore, intersection
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set of all three feasible regions which are restricted by constraints must be used
as the final feasible region where an optimum solution resides. In Table 5.5 the
values of the objective function in the design space are shown. The overall
restricted region is marked with red background. The final optimum value of
objective function and its location is marked with blue background. For the
integer values of the design variables with increments of one, at the optimum
solution the objective function value is about 144000, the optimum ‘B’ value is
about 8 and the optimum ‘H’ value is about 36. Thus, in the optimization
solutions which will be performed next, one can compare the solutions with

these figures to see how close are the solutions to the true optimum solution.

Table 5.5 Variation of the value of the objective function in the design

space after all the constraints are imposed

Design Space (Volume, Objective Function ) (1000 mm*3)
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5.1.1 OPTIMIZATION USING THE OPTIMIZATION CODE IN
MATLAB® AND ANALYTIC FUNCTIONS AS SOLVER

First, optimization of the cantilever beam with the rectangular cross section is
performed by using first strategy explained in Chapter 4. In this method
optimization code written in MATLAB® is used together with the analytical
beam equations as the solver. The M-file called “AuglLagMet.m” is executed in
MATLAB® environment. “AugLagMet.m” asks the user for inputs which are
listed below. The lower and upper bounds of the design variables as well as the

other inputs are specified as:

1. Initial values of design variables [B,H]: [10 35]
2. Lower bounds of design variables [B,H]: : [120]
3. Upper bounds of design variables [B,H]: : [20 50]
4. Number of equality constraints: 0

5. Number of inequality constraints: 3

6. Initial values of lagrange multipliers “A”

for equality constraints: 0
7. Initial values of lagrange multipliers “f”
for inequality constraints : [10 10 10]
where, lagrange multipliers “B” is given by [B1, B2, B3] ;
e [ is the multiplier for the constraint given in equation (5.2) used for
upper bound of the stress value at the root of the beam.
e [}, is the multiplier for the constraint given in equation (5.3) used for the
displacement value at the tip of the beam.
e [33 is the multiplier for the constraint given in equation (5.4) used for the

slenderness ratio.

The M-files “Ofun.m”, “Gfun.m” and “Hfun.m” which evaluate volume,
inequality constraints and equality constraints respectively are modified specific
to this problem. Since there is no equality constraints, “Hfun.m” is never called

during this problem.
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The optimization process is converged to the solution in 8 iterations, where one
iteration is one outermost cycle in the main algorithm shown in figure 3.1. In
Figures 5.2 — 5.7 change of objective function, design variables and constraints
with respect to iteration number are shown. Results are tabulated and
comparisons are made in section 5.1.4 with the results obtained by the other two

methods.

Volume
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170000 -

150000 -

130000 -

110000 -

Volume (mm~*3)

90000 -

70000

50000 \ \ \ \ \ \ \ \
0 1 2 3 4 5 6 7 8 9

Iteration number

Figure 5.2 Variation of the objective function with respect to iteration number

As it can be seen from Figure 5.2 the objective function initially decreases but

then starts to increase to satisfy the constraints.

48



Variable B

25

20 4
B
E 151 e |_ower Bound
m
5 B
2 10 - e Jpper Bound
©
5 \

5 \”

0 . . . .

0 2 4 6 8 10
Iteration number

Figure 5.3 Variation of width of cross section “B” with respect to iteration
number
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Figure 5.4 Variation of height of cross section “H” with respect to iteration
number
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Figures 5.3 and 5.4 show that the design variables ‘B’ and ‘H’ are within

specified upper and lower bounds.
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Figure 5.5 Variation of stress at the root of the beam with respect to
iteration number
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Figure 5.6 Variation of displacement at the tip of the beam with respect to
iteration number
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Figures 5.5 and 5.6 show that stress constraint is not violated at any iteration
until optimum solution is reached. However, in the initial iterations the
displacement constraint is violated and the optimization code makes adjustments
until the constraint is satisfied. It should be noted that if displacement constraint
did not exist, the weight of the beam could be reduced even further because
stresses are below the allowable specified for this problem. It is seen that in this

particular problem the maximum tip deflection constraint is the more restricting

constraint.
H/B
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Figure 5.7 Variation of H/B with respect to the iteration number

Figure 5.7 shows that the ‘H/B’ stress constraint is also violated at the initial
steps but eventually it settles down until the constraint is satisfied. Existence of
a constraint on the ‘H/B’ ratio prevents one to increase the height of the beam
freely within the bounds specified. Therefore, it becomes harder to satisfy the

maximum deflection constraint compared to stress constraint. Because, as it can
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be seen from Equation (5.3), the tip deflection in inversely proportional to the
cube of the height of the beam, whereas the maximum stress is inversely

proportional to the square of the height of the beam.

52



5.1.2 CANTILEVER BEAM OPTIMIZATION USING THE
OPTIMIZATION CODE IN MATLAB® AND
MSC.NASTRAN® AS THE SOLVER

Next, optimization of the same cantilever beam with rectangular cross section is
performed by using the second strategy described in Chapter 4. In this method
optimization code written in MATLAB® is used together with the commercial
finite element solver MSC.NASTRAN®. The M-file called “AuglLagMet.m” is
again executed in MATLAB® environment. “AugLagMet.m” asks the user for

inputs which are given below with the corresponding the values for this

example.
1. Initial values of design variables [B,H]: : [10 35]
2. Lower bounds of design variables [B,H]: : [120]
3. Upper bounds of design variables [B,H]: : [20 50]
4. Number of equality constraints: 0
5. Number of inequality constraints: 3
6. Initial values of lagrange multipliers “A”

for equality constraints: 0
7. Initial values of lagrange multipliers “f”
for inequality constraints : [10 10 10]
Where, lagrange multipliers “B” is given by [B1, B2, B3] ;
e [ is the multiplier for the constraint given in equation (5.2) used for
upper bound of the stress value at the root of the beam.
e [}, is the multiplier for the constraint given in equation (5.3) used for the
displacement value at the tip of the beam.
e [33 is the multiplier for the constraint given in equation (5.4) used for the
slenderness ratio.
The M-files “Ofun.m”, Gfun.m”and ‘“nastfunc.m” which evaluate volume,
inequality constraints and constructs the unconstrained objective function
respectively. Since there is no equality constraints, “Hfun.m” is neither modified

nor called during this problem. A bdf-file called “cantbeam1.bdf” which is the
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input file for the finite element model of the cantilever beam for linear static
analysis is created before the start of the optimization process. Whenever the
unconstrained objective function or inequality constraints are evaluated, first
“cantbeam1.bdf” is modified by using current value of the design variables. In
the solution sequence linear static analysis is performed by MSC.NASTRAN®.
Finally, maximum stress value at the root and maximum displacement at the tip
is read from MSC.NASTRAN® output file .f06-file. The finite element model is
described in section 5.1.3. In section 5.1.3 the solution performed by the
MSC.NASTRAN® optimization module will be described. The initial analysis
model used for MSC.NASTRAN® optimization is used as the finite element
model of the beam here.

The optimization process is converged to the solution in 12 iterations, where one
iteration is one outermost cycle in the main algorithm shown in figure 3.1. In
Figures 5.8 — 5.13 change of objective function, design variables and constraints
with respect to iteration number are shown. Results are tabulated and
comparisons are made in section 5.1.4 with the results obtained by the other two

methods.
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Figure 5.8 Variation of objective function with respect to iteration number
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Figure 5.9 Variation of width of cross section “B” with respect to iteration
number
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Figure 5.10 Variation of height of cross section “H” with respect to
iteration number
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Figure 5.13  Variation of H/B with respect to iteration number

Figures 5.8-5.13 show that variations of the objective function, design variables
and the constraints with iteration number depict similar behavior as in the first
strategy where the solver was the analytical relations for the cantilever beam
problem for the maximum axial stress and maximum tip deflection. This
example in a way proves that the incorporation of MSC.NASTRAN® as the

solver of the optimization code developed in MATLAB® has been successful.
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5.1.3. CANTILEVER BEAM OPTIMIZATION USING
MSC.NASTRAN® OPTIMIZATION TOOL

Finally, optimization of the cantilever beam with rectangular cross section is
performed by using third method explained in chapter 4. In this method
optimization module of MSC.NASTRAN® is used. It should be noted that
during the execution of the optimization solution with the optimization module
of MSC.NASTRAN®™, MSC.NASTRAN" solver is frequently called internally.
Before the optimization process, the cantilever beam problem is modeled in
MSC.PATRAN®.

The beam is modeled with 10 CBAR elements which can used for the beam
cross sections for which the shear center and the centroidal axis coincide.
Rectangular cross section is assigned to the beam elements as the element
property. At the root 6 degree of freedom (Ux, Uy, Uz, Rx, Ry and Rz) of the
node is fixed. At the tip 1250 N force is applied in negative (-) “y” direction as
shown in figure 5.14.

Initial finite element model and cross section properties are shown in figures

5.14-5.16.

Figure 5.14  Cantilever beam finite element model
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Figure 5.16 Initial cantilever beam cross section properties
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To make comparisons with the optimized beam, initial finite element analysis
results are presented in Figures 5.17-5.18. Figure 5.17 shows the displacement
distribution and Figure 5.18 shows the axial stress distribution along the span

of the beam.
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Figure 5.18  Cantilever beam initial stress distribution
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Optimized finite element model and the cross-section of the optimized beam are
shown in Figures 5.19 and 5.20 respectively. From Figure 5.19 one can not
identify the difference between the initial and final optimized beam
configuration but Figure 5.20 shows the optimized cross-section clearly. It can
be seen that the height of the beam does not change much from its initial value

but the width is reduced from its initial value.

Figure 5.19  Final cantilever beam model with equivalent inertia
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Figure 5.20  Final cantilever beam cross section properties
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Final finite element analysis results for the optimized beam are presented in
Figures 5.21-5.22. Figure 5.21 shows the displacement distribution and Figure

5.22 shows the axial stress distribution along the span of the beam.
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Figure 5.21  Displacement distribution in the optimized beam
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Variation of the objective function, each design variable and the maximum
constraint value are shown in Figures 5.23-5.26. Maximum constraint value is
the highest value of the normalized constraints constructed internally in
MSC.NASTRAN®. In each iteration different constraint may have highest
value. MSC.NASTRAN®™ optimization module arrives at the optimum solution

in six design cycles as shown in Figures 5.23-5.26.
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Figure 5.24  History of the design variable “B”
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Figure 5.26  History of the maximum constraint value

It is observed that history of the design variables ‘B’ and ‘H’ show similar
behaviour as the history of the design variables in the other two strategies with
slight differences in the initial phases of the optimization process.

Results of the MSC.NASTRAN® optimization module are also tabulated and
comparisons are made in section 5.1.4 with the results obtained by the other two

methods. The effect of mesh density on results is presented in appendix C.1.
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5.1.4. COMPARISON OF THE THREE DIFFERENT
OPTIMIZATION STRATEGIES

In this section, results of the three different optimization strategies are compared
with each other in Table 5.6.

For the first and second technique, number of iterations indicates evaluation of
outer most loop of optimization process shown in figure 3.1. For the third
technique, it indicates the evaluation of loop of optimization process shown in

figure 4.1.

Table 5.6 Comparison of results of three different optimization approaches

1st 2nd 3rd
Technique | Technique | Technique
Number of iterations 8 12 6
Initial value 10 10 10
B (mm) Final value 7.274 7.294 7.290
H (mm) Initial value 35 35 35
Final value 36.381 36.443 36.448
Objective function (mm?) Initial value 175000 175000 175000
Final value 132317 132914 132849
Max axial stress at the Initial value 306.1 306.1 306.1
root (Mpa) Final value 389.5 387.1 387.2
Max. tip deflection (mm) Initial value 20.825 20.906 20.906
Final value 25.491 25.397 25.402
H/B Initial value 3.500 3.500 3.500
Final value 5.002 4.996 5.000

It can be seen from Table 5.6 that in all methods the design variables have
converged to almost the same values. These values compare well with the values
given in Table 5.5. In Table 5.5 only the integer values of the design variables
are listed, therefore optimum values given in Table 5.6 are slightly different
from the optimum listed in Table 5.5. Since initial values were chosen close to

the optimum values optimization processes have converged very quickly in all
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techniques. The fastest solution is obtained with optimization module of
MSC.NASTRAN®. It should be noted that optimization module of
MSC.NASTRAN" uses sensitivity analysis which speeds up the solution time
drastically. First technique is slightly slower than the MSC.NASTRAN®
optimization module, and the solutions are obtained within seconds. However,
second technique is very slow, because during the optimization process
MSC.NASTRAN® is called whenever the evaluation of the unconstrained
function is needed. The optimizer waits MSC.NASTRAN® job for some time
which is required to ask for the license and finish the execution of a run. For
this reason, hours are required to arrive at the solution with this technique.
Therefore, this approach should only be used for problems with complex
geometry and loading conditions which require finite element analysis. In
complex geometry and loading situations if the user wants to have full control
over the optimization code, he can choose to use a commercial finite element
solver to work in conjunction with the optimization code developed by the user.
In such cases it is recommended to use parallel computing to speed up the
arriving at the optimum solution. In all optimization approaches weight is
reduced by 24 percent without violating any constraint. All techniques show that
maximum deflection at the tip and “H/B” ratio are the active or more restricting
constraints at the optimum.

The results obtained in this section shows that all three approaches can be
successfully applied in the solution of an optimization problem. The
optimization approach to be used depends on the availability of resources as
well as background on optimization theory. For instance, optimization module
of MSC.NASTRAN" can be effectively used by those who do not have
sufficient background on optimization theory. In engineering applications
sometimes engineers are faced to solve problems for which they have little
background. Therefore, optimization modules of commercial finite element

codes provide such an alternative tool to be used in design optimization studies.
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5.2 CANTILEVER BEAM WITH I CROSS SECTION

The second example undertaken is the optimization of a cantilever beam with an
I shaped cross—section. In this example the number of design variables is
increased to four. Similar to the first beam example cantilever beam is subjected
to a vertical force ”P” at the end and the beam will be optimized in a similar
manner as in rectangular cross-section beam. The beam cross section is assumed
to be constant along the span of the beam. Height "H”, flange width "W{”, web
thickness “tw” and flange thickness “tf” are taken as the design variables,
respectively. The dimensions of the design variables are in mm. The length of
the beam is fixed and thus only the cross-sectional properties of the beam are
included in the design variable list. Figure 5.27 shows the cantilever beam with |

cross section to be optimized.

/ upper fange
Il

Web

lower flange

el e

Figure 5.27  Cantilever beam with I cross section
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The objective of this problem is again to minimize the weight of the beam. Like
in the previous problem high strength aluminum is used as the material of the
beam.

The beam is subject to three inequality constraints. First inequality constraint is
maximum bending stress at the root, second one is maximum tip deflection due
to tip loading and the third one is taken as the maximum shear stress in the web
of the beam. Based on the problem definition the optimization problem can be

stated as follows:

Minimize:
V=02-W -t +W,-t,)-L (5.7)
Subject to:
~700 MPa <o = MI'C =< 700 MPa (5.8)
3
0= 3P ELI =<25.4 mm (5.9
r= f'tQ <350 MPa (5.10)
tf
0.4st—sz.5 (5.11)
where
1< W, <40 (5.12)
0.5<t, <20 5.13
f
0.5<t, <20 (5.14)
10<H <40 (5.15)
1 3 1 , 1 2
I:E-wf-tf +E-tf~wf-(H—tf) +E-tw~(H—2-tf) (5.16)
1 2, 1 >
Q:E-tf-wf-(H—tf) +§-tw-(H—2-tf) (5.17)
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5.2.1 OPTIMIZATION USING THE OPTIMIZATION CODE IN
MATLAB® AND ANALYTIC FUNCTIONS AS SOLVER

First, optimization of the cantilever beam with I cross section is performed by
using first method explained in Chapter 4. In this method optimization code
written in MATLAB® is used together with the analytical solver. The M-file
called “AugLagMetm” is executed in MATLAB® environment.
“AuglLagMet.m” asks user for inputs which are given below with the
corresponding the values for this example.

1. Initial values of the design variable vector “x”: [20 12 3 1.5]

2. Lower bounds of the design variable vector “x”: [10 1 0.5 0.5]

3. Upper bounds of the design variable vector “x: [50 50 20 20]

4. Number of equality constraints: 0
5. Number of inequality constraints: 10
6. Initial values of lagrange multipliers “A”

for equality constraints: 0
7. Initial values of lagrange multipliers “f”
for inequality constraints : [10000 10000 10000
10000 10000 10000
10000 100 100
10000]
Where the design variable vector “x” is given by [H, W{, tw, tf]. Lagrange
multipliers “p” are given by [B1, B2, B3, Ba, Bs, Ps> P, Ps, Po, Pio] ;

e [3; is the multiplier for the constraint given in equation (5.8) used for
upper bound of the stress value which is calculated in upper flange at the
root of the beam.

e [3, is the multiplier for the constraint given in equation (5.8) used for
lower bound of the stress value which is calculated in upper flange at the

root of the beam.
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e [3; is the multiplier for the constraint given in equation (5.8) used for
upper bound of the stress value which is calculated in lower flange at the
root of the beam.

e 34 1s the multiplier for the constraint given in equation (5.8) used for
lower bound of the stress value which is calculated in lower flange at the
root of the beam.

e [}s is the multiplier for the constraint given in equation (5.11) used for
upper bound of the inequality.

e [} is the multiplier for the constraint given in equation (5.11) used for
lower bound of the inequality.

e 37 is the multiplier for the constraint given in equation (5.10) used for the
shear stress value which is calculated at the centroid at the root of the
beam.

e [ is the multiplier for the artificial constraint, which is built for the
upper bound of the height given in equation (5.15).

e [} is the multiplier for the artificial constraint, which is built for the
upper bound of the flange width given in equation (5.12)..

e [0 is the multiplier for the constraint given in equation (5.9) used for the

displacement value at the tip of the beam.

It should be noted that the upper bound of height “H” and the flange width “W{”
are input higher than desired values. The height “H” and the flange width “Wt”
values are then restricted by the inequality constraints. The initial multipliers for
these constraints “Bs” and “Po” are chosen less than other multipliers to reduce
the impact of these artificial constraints at the beginning of the process.

The M-files “Ofun.m”, Gfun.m”and “Hfun.m” which evaluate volume,
inequality constraints and equality constraints respectively, and they are
modified accordingly.

The optimization process is converged to the optimum solution in 71 iterations,
where one iteration is one outermost cycle in the main algorithm shown in figure

3.1. In Figures 5.28 — 5.36 change of the objective function, design variables
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and constraints with respect to iteration number are shown. Results are tabulated
and comparisons are made in section 5.2.4 with the results obtained by the other

two methods.
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Figure 5.28 Variation of the objective function with respect to iteration
number

It is seen that in this problem the objective function decreases considerably in
the optimum solution. However, it is also observed that the optimization process
is resistant, in other words during the initial phases of the optimization process it

is seen that there is almost no variation of the objective function.
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Figure 5.29 Variation of the height of cross section “H” with respect to
iteration number
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Figure 5.30 Variation of the width of flanges “Wf” with respect to iteration
number
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Figure 5.31 Variation of the web thickness “tw” with respect to iteration

number
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Figure 5.32 Variation of the flange thickness “tf”” with respect to iteration
number
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The variation of the design variables reveals that flange and web thicknesses
approach to their lower limit in the optimized solution whereas the flange width
and the beam height approach to their upper limit in the optimized solution. It is
also observed that the height of the beam violated the upper bound during the
initial phase of the iterations and in a way persists to stay in the restricted zone.

However, in the end it is forced to enter into the feasible region.

Max. Normal Stress

700 -

600 -

500 -

= R00t Stress
400 -

Root stress (MPa)

= Allowable
300 1 Stress

200

100

0 20 40 60 80
Iteration number

Figure 5.33 Variation of maximum bending stress at the root of the beam
with respect to iteration number
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Figure 5.34 Variation of maximum shear stress at the root of the beam with
respect to iteration number
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Observation of the stress and deflection constraints shows that the displacement
constraint is a gain the more restricting constraint in this problem like in the
rectangular beam problem. It is seen that the stress values in the optimum
solution are far below the maximum allowable values, however the maximum
tip deflection is almost the same as the maximum allowable value in the
optimized solution. It is obvious that if there were no displacement constraint
defined in this problem, the stress values would increase due to the decreases in
the design variables, and more reduction in the objective function, which the

total volume, would be obtained.
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Figure 5.36  Variation of tf / tw with respect to iteration number

Figure 5.36 shows the variation of the constraint on the ratio of the flange
thickness to the web thickness. The constraint is violated towards end of the
optimization process but eventually the constraint is satisfied at the optimum

solution.
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5.2.2 CANTILEVER BEAM OPTIMIZATION USING THE
OPTIMIZATION CODE IN MATLAB® AND
MSC.NASTRAN® AS THE SOLVER

In this section optimization of the cantilever beam with I cross section is

performed by using second strategy explained in Chapter 4. In this method

optimization code written in MATLAB® is used together with the commercial

finite element solver MSC.NASTRAN®. The M-file called “AuglLagMet.m” is

executed in MATLAB® environment. “AugLagMet.m” asks user for inputs

which are given below with the corresponding the values for this example.

1.

Initial values of design variable “x”:

. Lower bounds of design variable “x”:
. Upper bounds of design variable “x”:

2
3
4.
5
6

Number of equality constraints:

. Number of inequality constraints:

. Initial values of lagrange multipliers “A”

for equality constraints:
Initial values of lagrange multipliers “§”

for inequality constraints :

[20 12 3 1.5]
[1010.50.5]
[50 50 20 20]
0

10

[10000 10000 10000
10000 10000 10000
10000 100 100
10000]

Where the design variable vector “x” is given by [H, W{, tw, tf]. Lagrange
multipliers “B” is given by [B1, P2, B3, Ba, Bs, Bs, B7, Bs, Po, Pro] ;

B is the multiplier for the constraint given in equation (5.8) used for

upper bound of the stress value which is calculated in upper flange at the

root of the beam.

B> 1s the multiplier for the constraint given in equation (5.8) used for

lower bound of the stress value which is calculated in upper flange at the

root of the beam.
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e [3; is the multiplier for the constraint given in equation (5.8) used for
upper bound of the stress value which is calculated in lower flange at the
root of the beam.

e 34 1s the multiplier for the constraint given in equation (5.8) used for
lower bound of the stress value which is calculated in lower flange at the
root of the beam.

e [}s is the multiplier for the constraint given in equation (5.11) used for
upper bound of the inequality.

e [} is the multiplier for the constraint given in equation (5.11) used for
lower bound of the inequality.

e 37 is the multiplier for the constraint given in equation (5.10) used for the
shear stress value which is calculated at the centroid at the root of the
beam.

e [ is the multiplier for the artificial constraint, which is built for the
upper bound of the height given in equation (5.15).

e [} is the multiplier for the artificial constraint, which is built for the
upper bound of the flange width given in equation (5.12)..

e [0 is the multiplier for the constraint given in equation (5.9) used for the

displacement value at the tip of the beam.

It should again be noted that the upper bound of height “H” and the flange width
“Wf” are input higher than desired values. The height “H” and the flange width
“Wt values are then restricted by the inequality constraints. The initial
multipliers for these constraints “Bg” and “Bo” are chosen less than other
multipliers to reduce the impact of these artificial constraints at the beginning of
the process.

The M-files “Ofun.m”, Gfun.m”and “Hfun.m” which evaluate volume,
inequality constraints and equality constraints respectively, and they are
modified accordingly.

The optimization process is converged to the solution again in 71 iterations,

where one iteration is one outermost cycle in the main algorithm shown in figure
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3.1. In Figures 5.37 — 5.45 change of objective function, variables and
constraints with respect to the iteration number are shown. Results are tabulated
and comparisons are made in section 5.2.4 with the results obtained by the other

two methods.
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Figure 5.37 Variation of the objective function with respect to iteration
number
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Figure 5.38 Variation of the height of cross section “H” with respect to
iteration number
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Figure 5.39 Variation of the width of flanges “Wf” with respect to iteration
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Figure 5.40 Variation of the web thickness “tw” with respect to iteration
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Figure 5.41 Variation of the flange thickness “tf” with respect to iteration
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Figure 5.42 Variation of maximum bending stress at the root of the beam
with respect to iteration number
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Figures 5.37-5.45 show that variations of the objective function, design
variables and the constraints with iteration number depict similar behavior as in
the first method where the solver was the analytical relations for the cantilever
beam problem for the maximum axial stress, maximum shear stress and
maximum tip deflection. Moreover, this problem has four design variables. This
example also shows that the incorporation of MSC.NASTRAN® as the solver of
the optimization code developed in MATLAB®™ has been successful.

It should be noted that since the same optimization code are used in both
methods discussed above, one should expect to get similar variations in the

history of the design variables.
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5.2.3. CANTILEVER BEAM OPTIMIZATION USING
OPTIMIZATION MODULE OF MSC.NASTRAN®

Finally, optimization of the cantilever beam with the I cross section is performed
by using the optimization module of MSC.NASTRAN®. It should be noted that
during the execution of the optimization solution with the optimization module
of MSC.NASTRAN®, MSC.NASTRAN® solver is frequently called internally.
Before the optimization process, the cantilever beam problem is modeled in
MSC.PATRAN®.
The beam is modeled with 10 CBAR elements similar to the modeling of the
rectangular cross-section beam. I cross section is assigned as the element’s
cross-sectional property. At the root 6 degree of freedom (Ux, Uy, Uz, Rx, Ry
and Rz) of the node is fixed. At the tip 1250 N force is applied in negative (-)
“y” direction as shown in figure 5.46.
Initial finite element model and cross section properties are shown in figures
5.46-5.48. Initial values are;

e Height of the beam: 20 mm

e Width of the beam: 12 mm

e Thickness of the web: 3 mm

e Thickness of the flanges: 1.5 mm.
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Figure 5.46  Cantilever | beam model

Figure 5.47  Initial cantilever I beam model with equivalent inertia
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Figure 5.48 Initial cantilever I beam section properties

Initial finite element analysis results are presented in Figures 5.49-5.50. In
Figure 5.49 displacement distribution and in Figure 5.50 maximum axial stress

distribution due to bending are shown.
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Figure 5.49  Cantilever I beam initial displacement
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Figure 5.50  Cantilever I beam initial bending stress distribution

Optimized finite element model and the cross-section of the optimized beam are
shown in Figures 5.51 and 5.52 respectively. From Figure 5.51 one can not
identify the difference between the initial and final optimized beam
configuration but Figure 5.52 shows the optimized cross-section clearly. It can
be seen that the height of the beam does not change much from its initial value
but the flange width and thickness of the flange and the web are reduced from

its initial value.
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Figure 5.51  Final cantilever I beam model with equivalent inertia
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Figure 5.52  Final cantilever I beam section properties

Final finite element analysis results for the optimized beam are presented in

Figures 5.53-5.54. Figure 5.53 shows the displacement distribution and Figure
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5.54 shows the axial stress distribution due to bending along the span of the

beam.

MSC Patran 2008 12 02-Jan-02 00119.03
Fringe: Default, Statc Subcase D 23, Disgl its. T L [NON-LAYERED) 2384001

Deform: Defaull, Static Subcase D 23, Deplacements, Transtational, 2 21+001]

1 70400
¥ \z BE+001

default_Fringe
| Mzp: 2 BE+001 @Nd 11
2 Min 0, @hd 1
detault_Detomrmation
Max 2 66+001 @Nd 11

Figure 5.53  Displacement distribution in the optimized beam
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Figure 5.54  Bending stress distribution in the optimized beam
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Variation of the objective function, each design variable and the maximum
constraint value are shown in Figures 5.55-5.60. Maximum constraint value is
the highest value of the normalized constraints constructed internally in
MSC.NASTRAN®. In each iteration different constraint may have highest
value. MSC.NASTRAN® optimization module arrives at the optimum solution

in twenty design cycles as shown in Figures 5.55-5.60.
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Figure 5.55  History of the objective function
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Figure 5.56  History of the design variable “H”(height of the beam)
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Figure 5.57  History of the design variable “Wf” (width of the flange)
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Figure 5.60 Cantilever beam problem history of the maximum constraint
value

It is observed that in this problem history of the design variables do not show
exactly the same similar behaviour as the history of the design variables in the
other two optimization strategies. Results of the MSC.NASTRAN® optimization
module are also tabulated and comparisons are made in section 5.2.4 with the
results obtained by the other two methods. The effect of mesh density on results

is presented in appendix C.2.
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5.24. COMPARISON OF
OPTIMIZATION STRATEGIES

THE THREE DIFFERENT

In this section, results of the three different optimization strategies are compared
with each other in Table 5.7.

For the first and second technique, number of iterations indicates evaluation of
outer most loop of optimization process shown in figure 3.1. For the third
technique, it indicates the evaluation of loop of optimization process shown in

figure 4.1.

Table 5.7 Comparison of results for the [-Beam

1st 2nd 3rd
Technique | Technigue | Technique
Number of iterations 71 75 23
Beam Height, H (mm) In.itial value 20 20.0 20
Final value 39.983 40.0 40.0
Flange Width, Wf Initial value 12.0 12.0 12.0
(mm) Final value 39.974 38.43 38.43
Web Thickness, tw Initial value 3.0 3.0 3.0
(mm) Final value 0.50 0.50 0.50
Flange Thickness, tf | Initial value 15 1.5 1.5
(mm) Final value 0.883 0.970 0.970
Objective function, V | Initial value 43500 43500 43500
(mm®) Final value 44834 46820 46820
Max. Stress at the Initial value 1448.4 1448.4 1448.4
root (MPa) Final value 426.4 407.0 407.0
Max. Shear Stress Initial value 23.174 23.174 23.174
(MPa) Final value 65.938 65.826 65.826
Max. deflection at tip | Initial value 8.000 8.000 8.000
(mm) Final value 25.39 25.474 25.474
t ] tw Initial value 0.500 0.500 0.500
Final value 1.765 1.939 1.939

It can be seen from Table 5.7 that there are slight differences in the converged

design variables in the three solution strategies used. In the three approaches the
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beam height and web thickness converges to almost the same value. However
there are slight differences in flange width and flange thickness. Flange width
obtained by using MSC.NASTRAN" is found a approximately 1 mm lower than
the flange width obtained by the optimization code developed in MATLAB®.
However, in the optimized solution the objective function value determined by
the optimization by using MSC.NASTRAN™ is slightly higher than the solution
obtained by the optimization code which uses analytical functions as the solver.
The difference is approximately 4.2 %. This slight difference is due to the higher
flange thickness determined by the optimization by using MSC.NASTRAN®.

It should also be noticed that in the optimum solution the value of the objective
function is higher than its initial value. Such a situation occurs because the
constraints of the problem drives the design variables into the feasible region
and this process may end up with an increase in the optimized objective function
value compared to its initial value.

Again the fastest solution is obtained with the optimization module of
MSC.NASTRAN®. As it was discussed in the rectangular cross-section beam
problem the second technique is very slow because of the frequent calling of
MSC.NASTRAN® during the evaluation of the unconstrained function.
Therefore, this approach should only be used for problems with complex
geometry and loading conditions which require finite element analysis. In the
future it is also recommended to improve the optimization code such that the
optimum solution will be arrived at in less number of iteration steps.

It can be concluded that apart from the slight differences all three approaches
converges to the same optimum, and this verifies that all three approaches work

fine.
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CHAPTER 6

OPTIMIZATION OF A WING TORQUE BOX

Weight saving is one of the most important issues in aerospace structures.
Therefore, in this chapter structural optimization of a wing torque is performed
by using the optimization module of MSC.NASTRAN®. As it was discussed
before, the use of MSC.NASTRAN™ as the solver only results in extremely long
solution times with the optimization code developed in the thesis. To arrive at
the solution within reasonable time in this section the optimization module of
MSC.NASTRAN" is used and by the virtue of the sensitivity analysis feature of
the optimization module of MSC.NASTRAN" the optimization of the torque
box of a wing structure could be solved within a reasonable time period. The
main objective is to design a suitable primary structure of least possible weight
for the uniform cantilever wing while satisfying the constraints imposed. It
should be noted that such an optimization study on an aerospace structure with
the optimization module of a commercial finite element code is especially in
important for aerospace companies dealing with the design and manufacturing
of aerospace systems. Commercial codes give the opportunity to perform
structural optimization with many design variables within a reasonable time. In
the particular study the sensitivity analysis capability and the building up of the
approximate model by MSC.NASTRAN" allowed the optimization to be
completed within a short time.

Two main types of optimization are performed on the torque box of the wing. In
the first optimization study only property optimization is performed. In this type
of optimization design variables are related to a property of an element such as

shell element thickness or cross-sectional area of a rod element. Therefore
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optimizer tries to reach the optimum solution by changing the properties of
elements only. In this type of optimization grid locations are not changed, so
initial shape of the wing is preserved. Two optimizations are performed within
the scope of property optimization. In section 6.1, an equivalent aerodynamic
lift force is applied at the tip of the wing, and optimization is performed for a
constant tip force and tip bending moment. In section 6.2, a distributed
aerodynamic lift force and pitching moment is applied to the torque box at the
rib locations. Property optimization study has been performed with these two
different external load cases.

The second type of optimization study performed involves shape optimization.
In MSC.NASTRAN® shape optimization allows optimizer to modify grid
locations, thus positions of structural elements can be changed to aid in arriving
at the optimum solution. In section 6.3.1, only one variable which defines
change of the location of rib 2 is used in a pure shape optimization study. This
study is performed to verify that the optimization tool of MSC.NASTRAN®
changes the location of the rib correctly so that desired constraint is satisfied. As
it will be described in section 6.3.1, by performing static analysis with the rib 2
displaced to the left and right of its initial position, one can actually show that
whether output of the optimizer is meaningful or not. In section 6.3.2, multi-
variable shape and property optimization is performed simultaneously. This
example can be regarded as the most complete optimization study which not
only optimizes the properties but also allows location change of the ribs along
the wing span to arrive at the optimum solution.

The uniform cantilever wing studied has a 1.524 m (5 ft) chord length and 4.572
m (15 ft) semispan. NACA 2412 type of airfoil defines the cross section of the

wing. The geometry of the wing in rendered form is shown in Figure 6.1.
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Figure 6.1 The wing model studied in optimization study

Wing is divided into 6 equal parts by the ribs. The rib located at the root is
numbered 1 and the rib located at the root is numbered 7. There are two spars on
the wing, front and rear spar. Front spar is located at 25% of the chord and rear
spar is located at 66% of the chord measured from the leading edge. Both spars
have an extension at the root to connect the wing to the fuselage. Rib and spar

locations are shown in detail in Figure 6.2.
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FRONT SPAR

Figure 6.2 Geometry and finite element of the wing

In the finite element model rod elements are used to model the flanges of the
spars and shell elements are used to model the webs and skin panels. Equivalent
section option is used for the shell element properties to provide membrane
effect only. For this purpose, a dummy material with relatively very low elastic
modulus is chosen as the bending material. Finite element model of the wing is
given in Figure 6.3. In the finite element model single shell elements are used

between the ribs in the skins, and spar webs.
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Figure 6.3 Elements of the wing model

Spars consist of a web, an upper flange and a lower flange. Element properties
of front and rear spars are given in Tables 6.1 and 6.2, respectively. As it can be
seen from Tables 6.1 and 6.2, the flange areas of the spars, web thicknesses and
skin thicknesses change discretely between the rib stations. Thus, the flange
areas, skin and web thicknesses are taken as the discrete design variables. The
last three columns of the tables give the initial value, lower and upper bounds of
the design variables. The thicknesses are given in mm, and the cap areas are

. . 2
given 1 mm-.
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Table 6.1 Element properties and design variables of the front spar
Front Spar
Description Element | Property [ D. V. Initial Minimum Maximum
Web Thickness Number | Number | Name Value Value (mm) | Value (mm)
Rib 1 - Rib 2 110100 | 110100 v001l 1 0.8 5
Rib 2 - Rib 3 210100 | 210100 v002 1 0.8 5
Rib 3 - Rib 4 310100 | 310100 v003 1 0.8 5
Rib 4 - Rib 5 410100 | 410100 v004 1 0.8 5
Rib 5 - Rib 6 510100 | 510100 v005 1 0.8 5
Rib 6 - Rib 7 610100 | 610100 v006 1 0.8 5
Upper Cap Area
Rib 1-Rib 2 110200 | 110200 v007 100 1 2000
Rib 2 - Rib 3 210200 | 210200 v008 100 1 2000
Rib 3 - Rib 4 310200 | 310200 v009 100 1 2000
Rib 4 - Rib 5 410200 | 410200 v010 100 1 2000
Rib 5 - Rib 6 510200 | 510200 vO1ll 100 1 2000
Rib 6 - Rib 7 610200 | 610200 v012 100 1 2000
Lower Cap Area
Rib 1-Rib 2 110300 | 110300 v013 100 1 2000
Rib 2 - Rib 3 210300 | 210300 v01l4 100 1 2000
Rib 3 - Rib 4 310300 | 310300 v01l5 100 1 2000
Rib 4 - Rib 5 410300 | 410300 v016 100 1 2000
Rib 5 - Rib 6 510300 | 510300 v01l7 100 1 2000
Rib 6 - Rib 7 610300 | 610300 v018 100 1 2000

Table 6.2 Element properties and design variables of the rear spar
Rear Spar
Description Element | Property [ D. V. Initial Minimum Maximum
Web Thickness Number | Number | Name Value Value (mm) | Value (mm)
Rib 1 - Rib 2 120100 | 120100 v019 1 0.8 5
Rib 2 - Rib 3 220100 | 220100 v020 1 0.8 5
Rib 3 - Rib 4 320100 | 320100 v021 1 0.8 5
Rib 4 - Rib 5 420100 | 420100 v022 1 0.8 5
Rib 5 - Rib 6 520100 | 520100 v023 1 0.8 5
Rib 6 - Rib 7 620100 | 620100 v024 1 0.8 5
Upper Cap Area
Rib 1-Rib 2 120200 | 120200 v025 100 1 2000
Rib 2 - Rib 3 220200 | 220200 v026 100 1 2000
Rib 3 - Rib 4 320200 | 320200 v027 100 1 2000
Rib 4 - Rib 5 420200 | 420200 v028 100 1 2000
Rib 5 - Rib 6 520200 | 520200 v029 100 1 2000
Rib 6 - Rib 7 620200 | 620200 v030 100 1 2000
Lower Cap Area
Rib 1-Rib 2 120300 | 120300 v031 100 1 2000
Rib 2 - Rib 3 220300 | 220300 v032 100 1 2000
Rib 3 - Rib 4 320300 | 320300 v033 100 1 2000
Rib 4 - Rib 5 420300 | 420300 v034 100 1 2000
Rib 5 - Rib 6 520300 | 520300 v035 100 1 2000
Rib 6 - Rib 7 620300 | 620300 v036 100 1 2000
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Finite element model and element numbering of front and rear spars are given in

Figures 6.4 and 6.5 respectively.

Figure 6.4 Elements of the front spar
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Skins consist of six panels. Element properties of upper and lower skin panels

are given in Tables 6.3 and 6.4, respectively. The initial value of the thickness

and the initial values of the lower and upper bounds are assigned arbitrarily

based on experience.

Table 6.3 Element Properties and Design Variables of Upper Skin

Upper Skin Thickness

Description Element | Property| D.V. Initial Minimum Maximum

Number | Number [ Name Value Value (mm) [ Value (mm)

Rib 1 - Rib 2 110020 | 110020 v037 1 0.8 5

Rib 2 - Rib 3 210020 [ 210020 | v038 1 0.8 5
Rib3-Rib4 310020 | 310020 v039 1 0.8 5

Rib 4 - Rib 5 410020 [ 410020 | v040 1 0.8 5

Rib 5 - Rib 6 510020 | 510020 v041 1 0.8 5

Rib 6 - Rib 7 610020 [ 610020 | v042 1 0.8 5
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Table 6.4 Element properties and design variables of lower skin

Lower Skin Thickness
Description Element | Property | D. V. Initial Minimum Maximum
Number | Number [ Name Value Value (mm) [ Value (mm)

Rib1-Rib2 110030 | 110030 | v043 1 0.8 5

Rib 2 -Rib 3 210030 | 210030 [ v044 1 0.8 5
Rib3-Rib4 310030 | 310030 [ v045 1 0.8 5

Rib 4 -Rib5 410030 | 410030 | v046 1 0.8 5

Rib 5 - Rib 6 510030 | 510030 | v047 1 0.8 5

Rib 6 - Rib 7 610030 | 610030 | v048 1 0.8 5

Finite element model and element numbering of upper and lower skins are given

in Figures 6.6 and 6.7 respectively.
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Figure 6.6 Upper skin elements

105



I\ 410030

&
610030 ?
b

Figure 6.7 Lower skin elements

Ribs are assumed to consist of a web, an upper and a lower flange. Element
properties of ribs from root to tip are given in Tables 6.5 - 6.11, respectively.
Finite element model and element numbering of the ribs are given in Figures 6.8

- 6.14 from root to tip, respectively.
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Table 6.5

Element properties and design variables of rib 1

Rib 1
Descrintion Element | Property | D. V. Initial Minimum Maximum
P Number | Number | Name Value Value Value
Web Thickness (mm) 111000 | 111000 | v049 1 0.8 5
Upper Cap Area (mm™2) | 112000 [ 112000 [ v050 100 1 2000
Lower Cap Area (mm”2) 113000 [ 113000 | vO51 100 1 2000
Front Cap Area (mm”"2) 114000 | 114000 | v052 100 1 2000
Rear Cap Area (mm”2) 124000 | 124000 v053 100 1 2000
Upper Cap Area
1 Front Cap Area {00
‘ Rear Cap Area
O : Y +
Lower Cap Area Q_z

z

4120

4200
14000 24000
4230
. e
LX
Figure 6.8 Elements of rib 1
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Table 6.6

Element Properties and Design Variables of Rib 2

Rib 2
Description Element | Property [ D. V. Initial Minimum Maximum
P Number | Number | Name Value Value Value
Web Thickness (mm) 211000 [ 211000 v054 1 0.8 5
Upper Cap Area (mm”"2) 212000 [ 212000 | v055 100 1 2000
Lower Cap Area (mm”"2) 213000 [ 213000 v056 100 1 2000
Front Cap Area (mm"2) 214000 [ 214000 v057 100 1 2000
Rear Cap Area (mm”2) 224000 | 224000 v058 100 1 2000
120 —
222
14000 24000
2230
P
L.
Figure 6.9 Elements of rib 2

Table 6.7 Element properties and design variables of rib 3

Rib 3

Description Element | Property [ D.V. Initial Minimum Maximum
Number | Number [ Name Value Value Value

Web Thickness (mm) 311000 | 311000 | vO59 1 0.8 5

Upper Cap Area (mm”2) 312000 | 312000 | v060 100 1 2000

Lower Cap Area (mm"2) 313000 | 313000 | v061 100 1 2000

Front Cap Area (mm”"2) 314000 | 314000 | v062 100 1 2000

Rear Cap Area (mm”"2) 324000 | 324000 | v063 100 1 2000

g12n W

8220

14000 24000

8230

g e
Figure 6.10

Elements of rib 3
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Table 6.8

Element properties and design variables of rib 4

Rib 4
Description Element | Property [ D.V. Initial Minimum Maximum
Number | Number | Name Value Value Value
Web Thickness (mm) 411000 | 411000 [ v064 1 0.8 5
Upper Cap Area (mm”2) 412000 | 412000 [ v065 100 1 2000
Lower Cap Area (mm”2) 413000 | 413000 [ vO066 100 1 2000
Front Cap Area (mm”2) 414000 | 414000 | v067 100 1 2000
Rear Cap Area (mm"2) 424000 | 424000 [ v068 100 1 2000
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Figure 6.11

Elements of rib 4

Table 6.9 Element properties and design variables of rib 5
Rib 5
Descrintion Element | Property [ D. V. Initial Minimum Maximum
P Number | Number | Name Value Value Value
Web Thickness (mm) 511000 | 511000 | v069 1 0.8 5
Upper Cap Area (mm”2) 512000 [ 512000 | v070 100 1 2000
Lower Cap Area (mm”2) 513000 [ 513000 | vO71 100 1 2000
Front Cap Area (mm”"2) 514000 [ 514000 | v072 100 1 2000
Rear Cap Area (mm"2) 524000 | 524000 | v073 100 1 2000
—_—
e — T ——
Figure 6.12  Elements of rib 5
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Table 6.10 Element properties and design variables of rib 6

Rib 6
Descrintion Element | Property [ D.V. Initial Minimum Maximum
P Number | Number | Name Value Value Value
Web Thickness (mm) 611000 [ 611000 | v074 1 0.8 5
Upper Cap Area (mm”2) 612000 [ 612000 | vO75 100 1 2000
Lower Cap Area (mm”2) 613000 [ 613000 | vO76 100 1 2000
Front Cap Area (mm”2) 614000 [ 614000 | vO77 100 1 2000
Rear Cap Area (mm"2) 624000 | 624000 | v078 100 1 2000
F120 W
G220
14000 611000 24000
$230
g ——
y
Figure 6.13  Elements of rib 6
Table 6.11 Element properties and design variables of rib 7
Rib 7
Description Element | Property [ D. V. Initial Minimum Maximum
P Number | Number | Name Value Value Value
Web Thickness (mm) 711000 [ 711000 | vO79 1 0.8 5
Upper Cap Area (mm”2) 712000 [ 712000 | v080 100 1 2000
Lower Cap Area (mm"2) 713000 | 713000 | v081 100 1 2000
Front Cap Area (mm”"2) 714000 | 714000 | v082 100 1 2000
Rear Cap Area (mm"2) 724000 | 724000 | v083 100 1 2000

2120

o ———aw
320

14000 24000

4230

o —

Figure 6.14  Elements of rib 7
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Thus, there are 83 design variables as can be seen from Table 6.11 which lists
the last five design variables.

Displacement boundary conditions are applied to nodes of extension part of the
spars in all analyses and this part is not considered in the region to be optimized.

Applied displacement boundary condition is shown in figure 6.15.

Figure 6.15  Applied displacement boundary condition

Elements to be optimized are shown in Figure 6.16 . The skin and web elements
are shrunk by a certain percentage to allow one identify each structural element

separately.
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Figure 6.16  Elements to be optimized

The wing is designed for an aircraft having 1460 kg as the maximum takeoff
weight, 861 kg minimum operating weight and a dive speed of 270 mile per
hour. Based on this information span wise lift and pitching moment distribution
is calculated in accordance with the ESDU document 95010 [12]. Span wise lift

and pitching moment distributions are given in Figures 6.17 - 6.18.
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Figure 6.17

Pitching Moment Distribution (N.m/m)
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Spanwise aerodynamic pitching moment distribution

The optimization problem is defined such that the objective function is to

minimize the weight of

imposed on axial stresses

the wing subject to 87 constraints. Constraints are

in all flanges, Von Mises stresses in all webs and skins

and displacements of nodes at the tip of the wing. All constraints are given in

Tables 6.12 — 6.23.
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Table 6.12

Design constraints related to front spar

Front Spar
Initial Value Minimum | Maximum

Description Element | Property [ D.R. D.C. Tip Distr. Value Value
Number | Number [ Name Name Loading Load

Web Von Mises Stress (MPa) (MPa) (MPa) (MPa)
110100 | 110100 s001 AS001 224.8 203.3 0.01 300
210100 | 210100 s002 AS002 218.3 153.9 0.01 300
310100 | 310100 s003 AS003 219.6 113.5 0.01 300
410100 | 410100 s004 AS004 219.9 73.5 0.01 300
510100 | 510100 s005 AS005 216.1 375 0.01 300
610100 | 610100 s006 AS006 237.9 10.2 0.01 300

Upper Cap Axial Stress
110200 | 110200 s007 AS007 -445.5 -454.6 -425 445
210200 | 210200 s008 AS008 -237.5 -286.3 -425 445
310200 | 310200 s009 AS009 -36.2 -163.8 -425 445
410200 | 410200 s010 AS010 167.5 -77.4 -425 445
510200 | 510200 s011 AS011 363.4 -26.2 -425 445
610200 | 610200 s012 AS012 600.5 -4.5 -425 445

Lower Cap Axial Stress
110300 | 110300 s013 AS013 445.5 454.7 -425 445
210300 | 210300 s014 AS014 237.5 286.3 -425 445
310300 | 310300 s015 AS015 36.2 163.9 -425 445
410300 | 410300 s016 AS016 -167.5 77.4 -425 445
510300 | 510300 s017 AS017 -363.5 26.2 -425 445
610300 | 610300 s018 AS018 -600.5 4.5 -425 445

Table 6.13 Design constraints related to rear spar
Rear Spar
‘Initial Valu_e Minimum | Maximum

Description Element | Property| D.R. D.C. Tip Distr. Value Value
Number | Number | Name Name Loading Load

Web Von Mises Stress (MPa) (MPa) (MPa) (MPa)
120100 | 120100 s019 AS019 120.5 107.4 0.01 300
220100 | 220100 s020 AS020 134.7 96.1 0.01 300
320100 | 320100 s021 AS021 131.8 67.8 0.01 300
420100 | 420100 s022 AS022 131.3 44.3 0.01 300
520100 | 520100 s023 AS023 139.6 22.6 0.01 300
620100 | 620100 s024 AS024 92.0 6.6 0.01 300

Upper Cap Axial Stress
120200 | 120200 s025 AS025 -283.0 -291.2 -425 445
220200 | 220200 s026 AS026 -165.1 -200.3 -425 445
320200 | 320200 s027 AS027 -23.5 -111.9 -425 445
420200 | 420200 s028 AS028 111.2 -54.3 -425 445
520200 | 520200 s029 AS029 258.9 -19.4 -425 445
620200 | 620200 s030 AS030 342.9 -3.8 -425 445

Lower Cap Axial Stress
120300 | 120300 s031 AS031 283.1 291.3 -425 445
220300 | 220300 s032 AS032 165.2 200.3 -425 445
320300 | 320300 s033 AS033 23.5 111.9 -425 445
420300 | 420300 s034 AS034 -111.3 54.3 -425 445
520300 | 520300 s035 AS035 -258.9 19.4 -425 445
620300 | 620300 s036 AS036 -343.0 3.8 -425 445
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Table 6.14

Design constraints related to upper skin

Upper Skin Von Mises Stress

lInitiaI Valug Minimum | Maximum
Description Element | Property|  D.R. D. C. Tlp. pistr. Value Value
Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
110020 | 110020 s037 AS037 370.1 378.9 0.01 281
210020 | 210020 s038 AS038 207.9 249.9 0.01 281
310020 | 310020 s039 AS039 38.8 141.3 0.01 281
410020 | 410020 s040 AS040 144.2 67.9 0.01 281
510020 | 510020 s041 AS041 319.6 23.8 0.01 281
610020 | 610020 s042 AS042 479.7 4.6 0.01 281
Table 6.15 Design constraints related to lower skin
Lower Skin Von Mises Stress
_Initial VaIu_e Minimum | Maximum
Description Element | Property| D.R. D.C. Tip Distr. Value Value
Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
110030 | 110030 s043 AS043 370.1 379.0 0.01 281
210030 | 210030 s044 AS044 207.9 250.0 0.01 281
310030 | 310030 s045 AS045 38.8 141.4 0.01 281
410030 | 410030 s046 AS046 144.2 67.9 0.01 281
510030 | 510030 s047 AS047 319.7 23.8 0.01 281
610030 | 610030 s048 AS048 479.8 4.6 0.01 281
Table 6.16 Design constraints related to rib 1
Rib 1 Initial Value Minimum | Maximum
Element | Property| D.R. D.C. Tip Distr. value Value
Description Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 111000 | 111000 s049 AS049 10.3 8.5 0.01 300
Upper Cap Axial Stress 112000 | 112000 s050 AS050 82.7 83.4 -425 445
Lower Cap Axial Stress 113000 | 113000 s051 AS051 -82.7 -83.4 -425 445
Front Cap Axial Stress 114000 | 114000 s052 AS052 0.0 0.0 -425 445
Rear Cap Axial Stress 124000 | 124000 s053 AS053 0.0 0.0 -425 445
Table 6.17 Design constraints related to rib 2
Rib 2 Initial Value Minimum | Maximum
Element | Property [ D.R. D.C. Tip Distr. Value Value
Description Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 211000 | 211000 s054 AS054 7.1 3.4 0.01 300
Upper Cap Axial Stress 212000 | 212000 s055 AS055 92.6 98.5 -425 445
Lower Cap Axial Stress 213000 | 213000 s056 AS056 -92.6 -98.5 -425 445
Front Cap Axial Stress 214000 | 214000 s057 AS057 0.0 0.0 -425 445
Rear Cap Axial Stress 224000 | 224000 s058 AS058 0.0 0.0 -425 445
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Table 6.18 Design constraints related to rib 3
Rib 3 Initial Value Minimum | Maximum
Element | Property [ D.R. D.C. Tip Distr. value value
Description Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 311000 | 311000 s059 AS059 2.8 7.0 0.01 300
Upper Cap Axial Stress 312000 | 312000 s060 AS060 31.1 51.2 -425 445
Lower Cap Axial Stress 313000 | 313000 s061 AS061 -31.1 -51.2 -425 445
Front Cap Axial Stress 314000 | 314000 s062 AS062 0.0 0.0 -425 445
Rear Cap Axial Stress 324000 | 324000 s063 AS063 0.0 0.0 -425 445
Table 6.19 Design constraints related to rib 4
Rib 4 Initial Value Minimum | Maximum
Element | Property [ D.R. D.C. Tip Distr. value value
Description Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 411000 | 411000 s064 AS064 0.1 3.9 0.01 300
Upper Cap Axial Stress 412000 [ 412000 s065 AS065 -15.7 28.5 -425 445
Lower Cap Axial Stress 413000 [ 413000 s066 AS066 15.7 -28.5 -425 445
Front Cap Axial Stress 414000 | 414000 s067 AS067 0.0 0.0 -425 445
Rear Cap Axial Stress 424000 | 424000 s068 AS068 0.0 0.0 -425 445
Table 6.20 Design constraints related to rib 5
Rib 5 Initial Value Minimum | Maximum
Element | Property| D.R. D.C. Tip Distr. value Value
Description Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 511000 | 511000 s069 AS069 7.3 3.4 0.01 300
Upper Cap Axial Stress 512000 | 512000 s070 AS070 -63.3 11.5 -425 445
Lower Cap Axial Stress 513000 | 513000 s071 AS071 63.3 -11.5 -425 445
Front Cap Axial Stress 514000 | 514000 s072 AS072 0.0 0.0 -425 445
Rear Cap Axial Stress 524000 | 524000 s073 AS073 0.0 0.0 -425 445
Table 6.21 Design constraints related to rib 6
Rib 6 Initial Value Minimum | Maximum
Element | Property| D.R. D.C. Tip Distr. value Value
Description Number | Number | Name Name Loading Load
(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 611000 | 611000 s074 AS074 28.8 2.2 0.01 300
Upper Cap Axial Stress 612000 | 612000 s075 AS075 -122.1 3.0 -425 445
Lower Cap Axial Stress 613000 | 613000 s076 AS076 122.2 -3.0 -425 445
Front Cap Axial Stress 614000 | 614000 s077 AS077 0.0 0.0 -425 445
Rear Cap Axial Stress 624000 | 624000 s078 AS078 0.0 0.0 -425 445
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Table 6.22 Design constraints related to rib 7

Rib 7 Initial Value Minimum | Maximum

Element | Property [ D.R. D.C. Tip Distr. value value
Description Number | Number | Name Name Loading Load

(MPa) (MPa) (MPa) (MPa)

Web Von Mises Stress 711000 | 711000 s079 AS079 11.7 1.1 0.01 300
Upper Cap Axial Stress 712000 | 712000 s080 AS080 -121.2 0.3 -425 445
Lower Cap Axial Stress 713000 | 713000 s081 AS081 121.2 -0.3 -425 445
Front Cap Axial Stress 714000 | 714000 s082 AS082 0.0 0.0 -425 445
Rear Cap Axial Stress 724000 | 724000 s083 AS083 0.0 0.0 -425 445

Table 6.23 Design constraints related to displacements at rib 7
Rib 7
D.R.Name | Node | por| b.c. Name Initial Value | Upper Bound | Lower Bound
(mm) (mm) (mm)
D201 [7120] Tz | D201 0.00 -0.001 -200
D202 [ 7220] Tz | D202 0.00 -0.001 -200
D203 | 7130] Tz | D203 0.00 -0.001 -200
D204 | 7230 Tz | D204 0.00 -0.001 -200
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6.1 OPTIMIZATION OF THE WING WITH TIP LOADING

This section describes the optimization of the wing subject to tip loading only.
Equivalent aerodynamic lift force and pitching moment are applied on a
node,which is created at 33.91% chord and on the camber line, at wing tip
location as two concentrated loads. Rigid element RBE3 of MSC.NASTRAN®™
is used to distribute the applied load to the nodes of rib 7 which is the rib at the
tip of the wing. Applied displacement boundary condition and distribution of the

tip load are shown in Figure 6.19.

e

79686896

Figure 6.19  Initial wing model with tip loading
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Initial analysis results are shown in Figures 6.20 — 6.23. These results belong to

the wing with the initial values of the design variables.

MSC Patran 2006 r2 26-Nov-08 20:08:36 210+002)
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Figure 6.20 Initial axial stresses on the flanges
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Figure 6.21  Initial Von Mises stresses on the skins and the webs

It should be noted that since the total external load is applied in a concentrated
fashion at the wing tip, the stresses in the elements near the application point of
the external force are found to be higher compared to the stresses in the rest of
the elements of the wing. Axial stresses on the flanges also show similar
behavior. Away from the wing tip, the stresses are seen to increase towards the

root of the wing, as expected.
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Figure 6.22  Initial Von Mises stresses on the skins and the webs interior view
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Figure 6.23  Initial deflection of the wing
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The optimized element properties of the wing model are shown in Figures 6.24-
6-29. These figures give the color plot representation of the final flange areas,
skin, web and rib thicknesses. As it was discussed before, the element properties
are allowed to change discretely between the rib stations. To reduce the number
of design variables single elements were used to model the structure between the
rib stations. Therefore, at the end of the solution single colors are assigned to the
flange areas, skin and webs between the rib stations and ribs. Solution took

12.578 seconds of CPU time.
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Figure 6.24  Final flange areas on the wing model
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Figure 6.25  Final upper skin thicknesses of the wing model

MSC.Patran 2006 r2 26-Nov-08 21:46:46 4.12+000)
Thickness Scalar Plot
3.89+000)
367+000)
3.45+000)

3.23+000)
SOHOOOI

2.79+000/=8

2567+000)

2:35+000)

2.13+000

1.81+000)

168+000)

1.46+000)

1.24+000)
Qz 1.02+000
A 00-001

Figure 6.26  Final lower skin thicknesses of the wing model
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Figure 6.27  Final front spar thicknesses of the wing model
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Figure 6.28  Final rear spar thicknesses of the wing model
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MSC Patran 2006 12 26-Nov-08 21 53:46
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Figure 6.29  Final rib web thicknesses of the wing model

Final analysis results are shown in figures 6.30 — 6.33
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Figure 6.30  Final axial stresses on the flanges
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Figure 6.31  Final Von Mises stresses on the skins and the webs
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Figure 6.32  Final Von Mises stresses on the skins and the webs interior view
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Figure 6.33  Final deflection of the wing
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History of objective function which is the total weight of the wing is shown in
Figure 6.34. The optimized weight is determined to be 57.7 kg, and it can be
concluded that with the initial values of the design variables the constraints are
not all satisfied and therefore the objective function increases until the
constraints are satisfied.

Figures 6.35-6.50 show the history of all the design variables until the optimum
solution is reached. It can be observed from these figures that except for the
flange areas of the ribs most of the design variables increase compared to their
initial values and this observation is in accordance with the variation of the
objective function with the design cycle. In Figures 6.35-6.50 the thicknesses

. . . . 2
are given i mm and cap arc€as are given in mm .
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Figure 6.34  History of objective function (in kg)
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Figure 6.35  History of lower skin thicknesses (in mm)
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Figure 6.36  History of upper skin thicknesses (in mm)
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Figure 6.37  History of front spar web thicknesses (in mm)
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Figure 6.38  History of rear spar web thicknesses (in mm)
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Figure 6.39  History of rib web thicknesses (in mm)
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Figure 6.40  History of upper flange areas of front spar (in mm?)
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Figure 6.41  History of lower flange areas of front spar (in mm?)
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Figure 6.42  History of upper flange areas of rear spar (in mm?)
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Figure 6.43

History of lower flange areas of rear spar (in mm?)
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Figure 6.44

History of flange areas of rib 1 (in mm”)
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Figure 6.45  History of flange areas of rib 2 (in mm?)
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Figure 6.46  History of flange areas of rib 3 (in mm?)
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History of flange areas of rib 4 (in mm?)
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History of flange areas of rib 5 (in mm?)
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Figure 6.51  History of maximum constraint value
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6.2 OPTIMIZATION OF THE WING WITH DISTRIBUTED
LOADING

In this section the same torque box is optimized for the distributed load case.
Aerodynamic lift force and pitching moment are applied on nodes which are
created at 33.91% chord and on the camber line, as specified by the ESDU
document [12], at each rib location. Rigid RBE3 element is then used to
distribute applied load to the nodes of ribs similar to the tip load case.
Displacement boundary condition applied and distributed load imposed are

shown in Figure 6.52.

Figure 6.52  Initial wing model with distributed loading
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Initial analysis results are shown in Figures 6.53 — 6.56. These results belong to

the wing with the initial values of the design variables.

MSC Patran 2005 r2 27-Nov-08 1052 44 16

Fringe: Default, Static Subcase D 0, Stress Tensor, | ¥ Componenit, 2 of 3 layers [Masdrnurn)

18!
defautt_Frings

M 160 @Nd 1130
Min <169 @Nd 1120

Figure 6.53  Initial axial stresses on the flanges

MSC Patran 2005 12 27-Nov-05 105354
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= default_Frings
Mot 336 @Nd 2130
Min 1 @Nd911

Figure 6.54  Initial Von Mises stresses on the skins and the webs
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Figure 6.55 Initial Von Mises stresses on the skins and the webs interior view

MSC Patran 2005 r2 27-Novw-08 106757
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Mae 4 46+002 @Nd T12C

Figure 6.56  Initial deflection of the wing model

In this example it is observed that since the total load is applied on the wing in a
distributed fashion the peak stresses occur towards the root of the wing contrary

to the concentrated tip load case solved in the previous section.
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The optimized element properties of the wing model are shown in Figures 6.57-
6-64. These figures give the color plot representation of the final flange areas,
skin, web and rib thicknesses. As it was discussed before, the element properties
are allowed to change discretely between the rib stations. To reduce the number
of design variables single elements were used to model the structure between the
rib stations. Therefore, at the end of the solution single colors are assigned to the
flange areas, skin and webs between the rib stations and ribs. Solution took

8.140 seconds of CPU time.
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Figure 6.57  Final flange areas on the wing model
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Figure 6.58  Final upper skin thicknesses of the wing model
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Figure 6.59  Final lower skin thicknesses of the wing model
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Figure 6.60  Final front spar thicknesses of the wing model
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Figure 6.61  Final rear spar thicknesses of the wing model
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Figure 6.62  Final rib web thicknesses of the wing model
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Figure 6.63  Final overall thicknesses of the wing model
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Figure 6.64  Final web thicknesses of the wing model interior view

Final analysis results of the optimized torque box are presented in Figures 6.65 —
6.68. It is observed that the final stresses are reduced from their initial values.
This observation is based on the comparison of the initial stress analysis results
given in Figures 6.53-6.55 with the stress analysis results of the optimized
configuration given by Figures 6.65-6.67. Reduction in stress values would
imply an increase in the weight of the final optimized configuration compared to
the initial configuration. In order to check the validity of this conclusion the

history of the objective function has to be checked.
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Figure 6.65  Final axial stresses on the flanges
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Figure 6.66  Final Von Mises stresses on the skins and the webs

146



MSC. Patran 2005 12 27-Nov-08 10:42 52 189+002
Fringe: Default, Static Subcase:D 23, Strass Tensor, , van Mises, 2 of § layers (Maximum) 1774002

1.64+002

152+002,

28-001

1.36+002,

1.26+002

1.14+002

1.01+002

886+001

780+001

6.34+001

5.08+001

331+001
256+001
¥ 1.28+001

Q 328-001
z default_Fringe

Max 1.89+002 @Nd 213C
Min3.26-001 @Nd 9221

Figure 6.67  Final Von Mises stresses on the skins and the webs interior view
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Figure 6.68  Final deflection of the wing model
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History of objective function, design variables and constraints are shown in
figures 6.69 — 6.86.

History of the objective function which is the total weight of the wing is shown
in Figure 6.69. The optimized weight is determined to be about 60 kg. The
increase of the weight of the wing in the optimized configuration justifies the
increase of the stress values in most elements in the final configuration
compared to the stresses analysis results in the initial configuration. It can be
concluded that with the initial values of the design variables the constraints are
not all satisfied and therefore the objective function increases until the
constraints are satisfied.

Figures 6.70-6.85 show the history of all the design variables until the optimum
solution is reached. It can be observed from these figures that except for the rib
flange areas, most of the design variables increase compared to their initial
values and this observation is in accordance with the variation of the objective
function with the design cycle. In Figures 6.70-6.85 the thicknesses are given in

mm and cap areas are given in mm”.

600 /\/\_’__\_/ 60.027 kg

150
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Design Cycle

Figure 6.69  History of objective function (in kg)
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Figure 6.71  History of upper skin thicknesses (in mm)
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Figure 6.77  History of upper flange areas of rear spar (in mm?)
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Figure 6.79
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Figure 6.80  History of flange areas of rib 2 (in mm®)
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Figure 6.81  History of flange areas of rib 3 (in mm®)
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Figure 6.82  History of flange areas of rib 4 (in mm®)
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Figure 6.83  History of flange areas of rib 5 (in mm?)

155



120

0.

a0.0

E0O

400

200

120

o0

800

600

00

200

for legend
refer to table 6.10

Figure 6.84

0 1 12 13 14 18 16 17 18 18 2w a1 »

Design Cycle

History of flange areas of rib 6 (in mm?)

for legend
refer to table 6.11

Figure 6.85

o112 13 14 18 16 17 18 18 20 M @ X

Design Cycle

History of flange areas of rib 7 (in mm?)
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Figure 6.86  History of maximum constraint value
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6.3 OPTIMIZATION OF THE WING TORQUE BOX WITH
DISTRIBUTED LOADING INCLUDING SHAPE
OPTIMIZATION

In this section the optimization of the wing torque box has been performed by
incorporating the shape optimization feature of the optimization module of
MSC.NASTRAN®. Within the context of the shape optimization the location of
the ribs of the wing are chosen to be moveable. Each rib is allowed to move in-
board and out-board by a distance equal to the half the distance between the rib
and the neighboring in-board and out-board rib.

In order to carry out shape optimization, an auxiliary model is required to
define shape basis vector in shape optimization. The optimizer requires a
relation between shape design variables and changes of grid locations. This
relation is defined as a linear combination of shape design variables times shape
basis vectors, which results in the total change in grid locations. The auxiliary
wing model is the same as the original one and it is used for both shape
optimizations described in sections 6.3.1 and 6.3.2. Five different load cases are
applied to the wing model. In each load case, a displacement vector, which is 10
mm towards the root, is applied to each rib located between the root and the tip
rib of the wing and the other ribs are fixed. Linear static analysis is performed
with these load cases. Resultant MASTER-file and DBALL-file are then
introduced to the original .bdf-file. To ensure that MSC.NASTRAN® produces
these result files “scr=no” command should be used. Load cases in auxiliary

model are shown in Figures 6.87-6.91
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Rib 2

displacement

Figure 6.87 Load case 1 in auxiliary model

Rib 3

displacement

Load case 2 in auxiliary model
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Figure 6.88



B Rib 4
- displacement

Figure 6.89  Load case 3 in auxiliary model

Rib 5
- displacement

Figure 6.90  Load case 4 in auxiliary model
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Rib 6

displacement

Load case 5 in auxiliary model

Figure 6.91
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6.3.1. ONE VARIABLE OPTIMIZATION

In this section the shape optimization module is verified by performing a test
optimization study involving the location change of a rib. For this purpose
location of a single rib is selected as the main design parameter, and all the other
design parameters are kept fixed. All property related design variables defined
in the previous sections are taken as fixed quantities and except for rib 2,
locations of all the rest of the ribs are also taken as fixed. Since element
properties are not defined as design variables there is no objective function in
this test case. To verify that the optimizer moves the rib in the correct direction a
problem is defined. In the particular study a constraint is applied on the Von
Mises stress of element 110030 and the position of rib 2 is taken as the only
design variable. Initially, three static analyses are performed with the rib 2 in
three different locations along the span of the wing. In the first static analysis rib
is taken at its original position, and in the remaining two static analyses rib 2 is
moved 300 mm in-board and out-board, respectively. At the end of the three
static analyses Von Mises stress on element 110030 is recorded to see the effect
of the rib position on the resulting stress on the element. The output of these

three static analyses is given in Table 6.24.

Table 6.24 Comparison of linear static analyses of the wing with rib 2 at

different spanwise locations

Rib 2 is moved Rib2isin Rib 2 is moved

towards the root | original position | towards the tip

Spanwise location of

Rib 2 (mm)

462.0 762.0 1062.0

Von Mises Stress on

Element 110030 (MPa)

404.8 379.0 351.3
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As it was pointed out above in the particular study there is no change in the
objective function which is the weight of the wing because element properties
are not assigned as design variables.

In the next analysis a shape optimization run is executed by imposing a
constraint on the Von Mises stress on element 110030. Von Mises stress on
element 110030 is constrained to be less than 360 MPa and this value is
assigned as the single constraint of the optimization problem. This stress value is
in between the stress determined by the static analysis with the rib 2 in the
original position, and the stress determined by the static analysis with the rib 2
in its displaced position by a distance of 300 mm towards the wing tip. Based on
the static analysis results presented in Table 6.24, it is clear that the shape
optimizer has to move rib 2 towards the wing tip. The result of the shape
optimization will be checked to see if the rib 2 is moved towards the wing tip or
not.

Initial model of the wing is shown in Figure 6.92. Final rib 2 location and stress

result of element 110030 are shown in Figures 6.93 and 6.94, respectively.

Element 110030

Figure 6.92  Initial wing model with distributed loading
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VQ Rib 2 displaced out-board

Figure 6.93  Final location of the rib 2 on the wing model

.

Figure 6.94  Final Von Mises stress on the element 110030
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At the end of the shape optimization MSC.NASTRAN®™ shape optimizer has
moved the rib 2 towards the tip by 208.4 mm so that Von Mises stress on the
element 110030 became 360 MPa. The new position of rib 2 is between the
original position of the rib 2 and the outboard displaced position of the of rib 2
given in Table 6.24, as expected. History of the objective function is given in
Figure 6.95. Each design cycle indicates 1 iteration which is a complete loop
described in figure 4.1. Since the element properties are not considered as the
design variables the objective function which is the weight of the wing is kept
constant. The initial weight is calculated based on the initial values of the
element properties which were given in the previous section. The variation of
the design variable, which is the position of rib 2, with respect to the design
cycle is plotted in Figure 6.96. It is seen that in seven design cycles rib 2 moved
out-board such that the constraint imposed on the Von Mises stress on element
110030 1is satisfied. The history of the constraint function is shown in Figure
6.97. At the end of the seventh design cycle the constraint function becomes

zero which means that the constraint is satisfied.
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Figure 6.95  History of objective function (in kg)
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6.3.2. MULTI VARIABLE OPTIMIZATION

In this section, property optimization and shape optimization are performed
together for the wing torque box with distributed loading. Each rib is allowed to
move in-board and out-board by a distance equal to the half the distance
between the rib and the neighboring in-board and out-board rib. Since rib
positions are also included in the design variables, the expectation is to end up
with a final optimized configuration with less weight. The same finite element
model is used as in the previous sections. Aerodynamic lift force and pitching
moment are again applied on a node, which is created at 33.91% chord and on
the camber line, at each rib location. The location of the load application nodes
are not changed during the optimization process. Rigid RBE3 element of
MSC.NASTRAN" is used to distribute the applied load to the nodes at the
intersection of the ribs with the front and rear spar. Auxiliary model which was
described in section 6.3 is used for constructing the shape basis vectors.
Displacement boundary condition applied and distributed loading are shown in

Figure 6.98.

Figure 6.98  Initial wing model with distributed loading
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Initial linear static run results are exactly same as in section 6.2. The element
property optimization problem defined in section 6.2 is also same as the current
problem with the addition of shape optimization. Solution took 35.437 seconds
of CPU time.

In the optimized wing configuration, final rib locations and the element

properties of the wing model are shown in Figures 6.99-6-107.

RIB 2 'I_ RIE 4 RIES

1 1 z z 1
RIE 1 RIE 2 RIE 3 RIE4 RIES RIBE& RIET

Figure 6.99  Final rib locations on the wing model

Figure 6.99 shows that rib positions in the optimized configuration are very
close to the original rib positions. Ribs 2 , 4 and 5 are seen to displace most in
the final configuration. In Figure 6.99, the location of the load application node
is fixed, therefore the perpendicular distance from the load application point to

the rib gives the distance by which the ribs move.
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Figure 6.100 Final flange areas of the wing model
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Figure 6.101 Final lower skin thicknesses of the wing model
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Figure 6.102 Final upper skin thicknesses of the wing model
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Figure 6.103 Final front spar thicknesses of the wing model
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Figure 6.104 Final rear spar thicknesses of the wing model
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Figure 6.105 Final rib web thicknesses of the wing model
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Figure 6.106 Final rib web thicknesses of the wing model
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Figure 6.107 Final Rib web thicknesses of the wing model interior view
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In the optimized configuration final analysis results are shown in Figures 6.108
— 6.111. Comparison of the stress analysis results given in Figures 6.108-6.110
with the stress analysis results of the element property optimization problem
given in Figures 6.65-6.67 show that there is increase in the stress values, and
this is an indication of weight reduction accomplished by shape optimization.
Actually, in the original element property optimization problem there was a
weight increase from the initial configuration to satisfy the constraints. In the
current problem the initial configuration is again selected as the same initial
configuration used in element property optimization. To be sure about the
weight reduction the history of the objective function has to be checked, and this

is done the subsequent pages.

MSC. Pafran 2006 12 27-Now-08 125920 B.86+001
Fringe: DEFAULT.SC1, Static Subcase:D 72, Stress Tensor, . X Component, At Center 5154001

4.43+001
3.72+00
3.00+001
2.29+001
1.57+001
8.64+000)
1.38+000
-b.77+000)
-1.29+001

-2.01+001

-2.72+001
-3.44+001

e -4.15+001

Q -487+001
z default_Fringe

Ma & 86+001 @Nd 2130
Min-4.87+001 @Nd 2120

Figure 6.108 Final axial stresses on the flanges
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1.86+002
1.26+002
1.16+002
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9.46+001
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6.32+001
5.28+001

4.23+001

3.19+001
2.14+001
N 1.09+00

Q 493001
z defautt_Fringe

Max 167+002 @Nd 1130
Min 4.83-001 @Nd 9131

Figure 6.109 Final Von Mises stresses on the skins and the webs
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1.26+002
1.15+002
1.06+002
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7.37+001
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Figure 6.110 Final Von Mises stresses on the skins and the webs interior view
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Figure 6.111 Final deflection of the wing model

History of objective function is given in Figure 6.112. Each design cycle
indicates 12 iteration, therefore optimization process converged in 72 iterations.
It can be seen from Figure 6.112 that the value of the objective function again
increase compared to the value at of the objective function at the initial
configuration. However, comparison of Figure 6.112 with Figure 6.69 reveals
that the value of the objective function in the optimized configuration is less in
the combined property and shape optimization solution. In the optimized
configuration wing weighs about 51.5 kg which is 8.5 kg less compared to the
final weight of the wing obtained in pure element property optimization. This
results shows that shape optimization is also a very critical issue in optimizing
aerospace structures because in aerospace structures there are many structural
elements whose positions can be adjusted in the optimum way to achieve further

weight reduction.
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Figure 6.112 History of objective function

The history of the design variables are given in Figure 6.113-6.128.
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Figure 6.113 History of lower skin thicknesses (in mm)
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Figure 6.114 History of upper skin thicknesses (in mm)
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Figure 6.115 History of front spar web thicknesses (in mm)
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Figure 6.116 History of rear spar web thicknesses (in mm)

Y074
Y49

for legend refer to
tables 6.5 — 6.11

Design Cycle

Figure 6.117 History of rib web thicknesses (in mm)
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Figure 6.118 History of upper flange areas of front spar (in mm?)
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Figure 6.119 History of lower flange areas of front spar (in mm?)
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Figure 6.120 History of upper flange areas of rear spar (in mm?)
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Figure 6.121 History of lower flange areas of rear spar (in mm?)
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Figure 6.122 History of flange areas of rib 1 (in mm?)
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Figure 6.123 History of flange areas of rib 2 (in mm®)
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Figure 6.124 History of flange areas of rib 3 (in mm?)
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Figure 6.125 History of flange areas of rib 4 (in mm®)
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Figure 6.126 History of flange areas of rib 5 (in mm?)
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Figure 6.127 History of flange areas of rib 6 (in mm®)
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Figure 6.128 History of flange areas of rib 7 (in mm?)
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Figure 6.129 History of maximum constraint value
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6.4 COMPARISON OF OPTIMIZATION STUDIES OF THE
WING TORQUE BOX

In this section, the three optimization results are compared in Table 6.25.

Detailed comparison tables for each constraint are in appendix C.3

Table 6.25 Comparison of results of three optimization processes
Property Property &
Optimization sh?pe_
Optimization
Lower | Upper Tip Distributed| Distributed
Bound | Bound Loading | Loading Loading
Number of iterations - - - 27 23 72
CPU time (second) - - - 12.578 8.140 35.437
L . - - Initial | 42.008 42.008 42.008
Objective function -
- - Final 56.671 60.027 51.540
Ma_x. stress on the 0.01 281 Irfmal 480 379 379
Skins (Mpa) Final 277 178 123
Max. stress on the 0.01 300 Initial 238 203 203
Webs (Mpa) Final 289 195 145
Max. stress on the 0.00 445 Initial 600 455 455
Flanges (Mpa) Final 379 263 168
Min. stress on the 425 0.00 Initial -601 -455 -455
Flanges (Mpa) Final -194 -108 -127
Max. deflection at tip 0001 | 200 In_|t|al 256 446 446
(mm) Final 157 201 201

In all optimization processes weight is increased compared to the weight at the

initial configuration without violating any constraint. Comparison of the

property optimization results with the distributed loading with the results of the

combined property and shape optimization shows that the maximum tip

displacement condition is the more restricting condition. The final maximum
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stress values are below their limits but the tip deflection reaches to the limit
value. It can be seen that combined property and shape optimization results in
significant weight reduction compared to just property optimization. This
problem is a clear indication that shape optimization can play an important role
in weight reduction. Shape optimization can be especially important in
aerospace structures which is composed of many sub-elements whose positions
can all be considered as a design variable to be used in the optimization process.
However, the result of combined property/shape optimization may not be
attributed to the rib location change only. It may be that when shape
optimization is also incorporated in the solution of the optimization problem a
better local minimum could have been obtained. Since in this example no multi-
disciplinary optimization problem is defined, there might be many local
minimums, and with combined property/shape optimization a different local
minimum could be converged to. It should be expected that in a multi-
disciplinary optimization problem, the number of local minimums may decrease
significantly.

It should be noted that in the problem definition some of the constraints and
upper and lower bounds of the design variables might not have been selected as
reasonable figures. Therefore, results may not reflect a configuration that can be
manufactured. However, in this chapter the aim was to demonstrate the use of
element and shape optimization and to show the significant impact that the

combined property and shape optimization might have on structural efficiency.
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CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

The main objective of the thesis was to demonstrate the application of three
different strategies of structural optimization which are commonly used in the
academic studies and industrial applications. Structural optimization requires an
optimizer code working in conjunction with a solver code which mainly
evaluates the constraint functions and calculates the objective function. For this
purpose some people develop their own optimizer and solver codes, or some
people develop only the optimizer and use a ready solver code which is typically
a finite element code in structural analysis. In addition, nowadays there are
many very efficient commercial finite element programs with embedded
optimization modules, and especially in industrial work these commercial codes
can be used very effectively to design optimum structures. In this thesis all three
strategies of structural optimization are demonstrated. These approaches are
listed below.

Approach 1: A gradient based optimization code is developed in MATLAB®
environment and this code is used in conjunction with the analytical functions
applicable in classical beam theory, to optimize two different beams with
different cross-sections.

Approach 2: The same optimizer code developed is used in conjunction with a
commercial finite element code MSC.NASTRAN® to demonstrate how one can
take advantage of the available finite element solvers and use them with an
optimization code of their own. For comparison purposes the two classical beam

problems are solved with this approach.
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Approach 3: The optimization module of the commercial finite element program
MSC.NASTRAN" is used to solve the two beam problems with different
number of design variables.

All three approaches are compared with each other by performing structural
optimization of two different beams with different number of design variables.
In the first case study a rectangular cross-section beam is optimized and only
two design variables are used to verify that all three approaches converge to the
true solution which can easily be demonstrated on a two dimensional space. In
the second case study an I beam with four design variables is optimized. The
results of the three approaches show that all of these techniques can be used to
arrive at the same optimum solution. However, it was observed that the
optimization module of MSC.NASTRAN®™ arrives at the optimum solution
fastest. The high speed of convergence to the optimum solution by MSC
NASTRAN® is due to the use of sensitivity analysis and construction of an
approximate model in the search for the optimum. However, the I beam problem
demonstrated that with the use of the analytical functions applicable for the
beam theory in conjunction with the optimizer code developed resulted in a
4.5% more weight reduction. Thus, this example is a clear indication that in
situations where weight reduction is very critical the use of different
optimization approaches should be tried not only to cross-check the results but
also to see if further weight reduction can be achieved or not. It is also noted that
the calling of a commercial finite element solver from a used developed
optimizer may not be a very effective method as far as solution times are
concerned. Because of the frequent call of the commercial finite code and the
need for some initial setup times used in checking the license file and like, the
whole process takes extremely long time. However, in certain problems
optimization modules of commercial finite element codes may not be used in
arriving at the optimum solution. For instance, if the loads change with the
deformation, then an external finite element solver could be incorporated to
perform optimization instead of the optimization module of a commercial finite

element program.
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In the remaining part of the thesis a wing torque box is optimized by the
optimization module of MSC.NASTRAN®. The fast convergence of the
optimization module of MSC.NASTRAN® was the main reason to choose
MSC.NASTRAN" in the optimization solution of the wing torque box. This
section is intended to demonstrate the application of element property and shape
optimization separately and combined element property and shape optimization.
Element property optimization was performed with an almost equivalent tip load
and distributed load. Within the context of shape optimization positions of the
ribs were taken as the design variables. The shape optimizer was verified
initially by performing a shape optimization with only a single rib location as
the design variable and with all fixed quantities for the element properties. This
solution showed that the rib was displaced in the right direction by the right
amount. After verifying the result of the shape optimizer, the combined element
property and shape optimization was performed and results of this study were
compared with the results of the element property optimization. In both
problems the final weight of the optimized configuration increased compared to
the weight of the initial configuration to satisfy all the constraints. However, it
was observed by incorporating shape optimizer in the optimization study weight
reduction could be achieved compared to the just element property optimization.
This study in a way demonstrated the significant impact that the shape
optimization can have on the design of aerospace structures with higher
structural efficiency.

As for the future work it is deemed that the optimization code developed could
be improved to reduce the time spent in the search process to the reach the
optimum solution. For instance further improvement in the code could be made
such as removing unnecessary function evaluations or reducing the pause time
for MSC.NASTRAN® job to finish so that code can proceed to the subsequent
operations faster. Especially more work needs to be done in reducing the time
spent to reach to the optimum solution when the developed code works together
with a commercial finite element solver. The main burden here is the pause time

at each call to the finite element solver, and effort can be spent to optimize this
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pause time to speed up the whole process. If the speeding up of the solution time
can be accomplished then the wing torque box problem can be solved by using
the optimization code developed in conjunction with the MSC.NASTRAN®
solver. Furthermore, simplified structural analysis methodology could also be
incorporated in the solver side to eliminate the need for finite element analysis.
This way the optimizer code could be used with the simplified structural
analysis relations which give direct stresses on flanges and shear stresses on the
skins and the webs.

The gradient based optimizer code developed requires many evaluations of
objective and constraint functions. When the code is used in conjunction with a
commercial finite element code MSC.NASTRAN®, the cost of the repeated
finite element analysis is very high. As a further improvement, a module can be
added to the optimization code which will produce an approximate model by
using Taylor Series expansion of objective and constraint functions. In this
manner, finite element analyses can be used in the construction of an
approximate model. The optimization code can use the results coming from
approximate model instead of performing finite element analysis whenever
evaluation of the objective and constraint functions is required. In this way, high
cost of the repeated finite element analyses can be avoided.

In addition, multi-disciplinary optimization problems can be performed in
MSC.NASTRAN® and the wing torque box analyzed can be optimized in all
aspects. For instance constraints on the fundamental frequency can be
incorporated into the problem definition. In addition, the skin and web panels
can be checked from local buckling point of view. For this purpose local
buckling relations can be added as other constraints and these can relations can
be linked to the axial stresses occurring in the panels for the calculation of the
local buckling margins of safety. A further study could be to incorporate
aeroelastic constraints on flutter speed or divergence speed to see how restrictive
these constraints might be. A further work could be on making a finer mesh but
using the same number of design variables. In such a study the properties of the

critical elements between the rib stations can be selected as the design variables
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and the element properties of all the other elements between the rib stations can
be linked to the critical element. This study may be required to see the effect of
mesh density on the optimum structural configuration. A further work could be
made on using a more accurate distribution of the external load acting on the
wing structure. Output from a CFD code could be incorporated into
MSC.NASTRAN® and property and shape optimization studies can be

performed with a more realistic load case.
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APPENDIX A.1

NEWTON-RAPHSON METHOD

Following is the algorithm for Newton-Raphson Method [8]:

Step 1 assume o,
Step 2 calculate Ao
Step 3 update o=o+Aa

ifd( 0)=0 exit
ifO( 0)#0 o<« o

go to step 2

Calculation of Ao

D(a) = D(a + Aa) = D(a) LN
da

Ao =

_ D() __[d@
da

= —]l D(a)
Vi

194



APPENDIX A.2

BISECTION METHOD

Following is the algorithm for Bisection Method [8]:

Step 1 choose o, and oy, o, < o,
Step 2 set a=0t,+( o - 0Ly)/2
Step 3 if d(a)=0.0 exit

Else if ®(o - o) < 107 exit
Else if ®(a)*®(at,) > 0 then o<
Else ap<—a

go to step 2
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APPENDIX A.3

GOLDEN SECTION METHOD

Following is the algorithm for Golden Section Method [8]:

Step 1

Step 2

Step 3

low
b

Choose oV, o'?

1=0.38197

e=tolerance = (A)ginal/ ("’ oo

N number of iterations=-2.078 In ¢
i=1

o =(1-1)aV+1a™  fi=f(o)
a=ta"+(1-1)a™®  Hr=f(0)
if (i<N)

if (f1>12)

o ®Ve—oy oLj4—0ly fi<f,
=o' +(1-1)a™®  Hr=f(0)
i«—it1

Go to Step 3

if (f>1))

oPe—an Ol<—0l| o
o =(1-1)a+1a™®  fi=f(o)
1—i+1

Go to Step 3
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APPENDIX A .4

STEEPEST DESCENT METHOD

Following is the algorithm for Steepest Descent Method [8]:

Step 1

Step 2

Step 3

Choose x;, N (number of iterations)
fs(1)=1(x1) ; xs(1)=x; (store values)
el, €2, €3 (tolerance for stopping criteria)

Set i=1 (initialize iteration counter)

si = -V{ (xj) (this is computed in step 3)

Xi+1 = Xi Ol

ad is determined by minimizing f(Xi+1)
Xs(i+1) < xj11; fi(i+1) = f(xi+1) (store values)
Af = fs(i+1) — fs(i)

AX = x4(i+1) — x4(1)

If |Af]<el  stop (function not changing)

If AX'Ax < €2 stop (design not changing)
i+1 =N stop

Vi(xi+1)" VE(xi+1) < €3 converged

1< i+l

Go to Step 2
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APPENDIX A.5

CONJUGATE GRADIENT METHOD

Following is the algorithm for Conjugate Gradient Method [8]:

Step 1

Step 2

Step 3

Choose xj, N (number of iterations)
fi(1) =1(x1); xs(1) =x; (store values)
€1, €2, €3 (tolerance for stopping criteria)
set i=1 (initialize iteration counter)
if i=1, s; = - VAx))

VIi(x,) VI(x,)
Vf(x_,)' VI(x, )

else, p =

si= - VI(x;) + B si.1

Xit1=Xi T i §

ai is determined by minimizing f(Xi1)
Xs(it1) < Xj11; fy(it+1) = f(x+1) % (store values)
Af = f(i+1) — (i)

Ax = x4(it1) - x5(1)

If ‘ Af ‘ <¢g; stop (function not changing)
If AX'Ax < ¢, stop (design not changing)
Ifi+1=N stop

Ifvf (xi+1)TVf (Xi+1) < &3 converged
11+l

go to step 2
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APPENDIX A.6

DAVIDON-FLETCHER-POWELL METHOD

Following is the algorithm for Davidon-Fletcher-Powell Method [8]:

Step 1

Step 2

Step 3

Choose xi, [A] (initial metric), N

el, €2, €3 (tolerance for stopping criteria)

Set i=1 (initialize iteration counter)

si = - [Ai] VAXi)

Xi+1 = Xi T aisi ; AX = 0LiS;

a; 1s determined by minimizing f{X;:1)

If Vf(Xi+1)TVf(Xi+1) <egs; converged

If | S(Xir1) - A(x3) | < €1; stop (function not changing)
If AX'AX < g; stop (design variable x is not changing)
Ifi+1 =N, stop (iteration limit)

Else

Y = Vf(xi+1) - VAXi)

Z=[A]Y

AxAX"
Bl=
[B] AX'Y

77"
[C] - Y'7
[Ain] = [Ai] + [B] + [C]
14 1+1

Go to Step 2
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APPENDIX A.7

PENALTY FUNCTION METHOD

Following is the algorithm for Penalty Function Method [8]:

Step 1

Step 2

Step 3

Choose xl, N; (Maximum number of Penalty Function Method
iterations)

N, (number of DFP iterations)

&i's (for convergence and stopping)

', rg1 (initial penalty multipliers)

Ch, Cg (scaling value for multipliers)

q = 1 (Penalty Function Method iteration counter)
Call DFP to minimize F (x, ry%, r,%)

Output: x©°

Convergence for Penalty Function Method
Ifhy=0, fork=1,2,....];
Ifg;<0,forj=1,2,...,m;

If all side constraints are satisfied

Then converged, Stop

Stopping criteria:

AF =F,—Fg, Ax = x% - x@"

If (AF)* < g;: stop (function not changing)

Else IfAx'Ax <g;:  stop (design variable x is not changing)
Else If g = Ng: stop (maximum iterations reached)
Continue

q <« qtl
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* &
n? < iy Cp; 1! 1,7 Cy
*
x?« x4

go to step 2
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APPENDIX A.8

AUGMENTED LAGRANGE MULTIPLIER METHOD

Following is the algorithm for Augmented Lagrange Multiplier (ALM) Method
[8].

Step 1 Choose x', Ny (Maximum number of ALM iterations)
Ny (Maximum number of DFP iterations)
&i's (for convergence and stopping criteria)
', rg1 (initial penalty multipliers)
Ch, Cg (scaling value for multipliers)
A!, B! (initial multiplier vectors)

q =1 (ALM iteration counter)

Step 2 Call DFP to minimize unconstrained objective function F (x7, A%,
BY, rgq)
Output: x¥"

Step 3 Convergence for ALM

Ifhy=0, fork=1,2,....];
Ifg;<0,forj=1,2,...,m;

(If B> 0 for g;=0)

(If VI + Z0Vh + ZB{Vg; = 0)

Then converged, Stop

Stopping criteria:

AF =F—Fg, Ax = x% - x@"

If (AF)* < g;: stop (function not changing)

Else IfFAX'Ax <g;:  stop (design variable x not changing)
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Else If q = Ng: stop (maximum number of iterations reached)
Continue

q<qtl

Al A4+ 21 h(x¥)

B < B%+ 2 1, (max [g(x™), -B2r])

) < 1,3 Cps It « rgq*Cg

X1« x¥

go to step 2
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APPENDIX B.1

USER INTERFACE OF MATLAB® CODE DEVELOPED FOR
OPTIMIZATION

Optimization of cantilever beam with rectangular cross section using
optimization code developed in MATLAB® is presented here.

e Open MATLAB® in the computer and select the directory, which
includes “AuglagMet.m”, “DFP.m”, “golden.m”, “gradfunction.m”,
“FALM.m”, “Ofun.m”, Gfun.m” and “Hfun.m” files, as current
directory.

e Type “AugLagMet” in the MATLAB® command window as shown in

figure B.1 and press enter. This command starts optimization.

| T =T

File Edit Debug Desktop Window Help
= B o o |8 | 7| curenoreetory: [CumaTianzmon: =

: Shorteuts 2] How to Add (2] What's Mew

Current Directory - CAMATUABTworke 7 3¢
i kw2 @B -

Al Files 4

To get starced, select MATLLE Help or Demos from the Help menu.

Auglaget.asv = |
[@ suglaghet. m
[l DFP.asv
[E@DFP.m
[ dfp sy
[ FALM.m
[ Gfun.m
[] golden.asy
[ golden.m
[ golden:x csv
[Z8 gradifunction.m

>> BugLagHet|

[E@ Hfun.m
[@ Ofun.m =l
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Figure B.1 Starting AugLagMet in MATLAB® command window
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e Enter asked inputs in the MATLAB® command window as shown in

figure B.2.

=

File Edt Debug Desktop Window Help

DE| 4 B@ e o | 8| 2] cunentdrectory: [CusTLaBTwork =

Shortcuts (7] Howto Add (2] What's New

Current Directory - CAMATLABTwork A x | RECUINERRRUTTEE] 7 x
e B -

Al Files £

To get started, select MATLAE Help or Demos from the Help menu.

3] Auglaghet
Il r1ease enter inicial values
N xpegin @ r10 3:
3
o
2|l p1ease enter minimwn values
2l mmin : 1201
0
0
0| | Please enter nwaxinum values
3| | momx : [20 50)
2
2
_>| Please enter nunber of egquality constraincs
Command History £ 4
%-- 30.11.2008 21:17 --% 2] |P1ease enter number of inequality constraints
[Auglagli=t #6<0 : 3
—ri0 301
—I1 20]
—[20 50] Please enter initial wvalues for
—0 augmented lagrange rultipliers of eguality constraints
2 lemda : 0O
—0
10 10 10]
—eole Please enter initial values for
%-- 30.11.2008 21:25 --% augmented lagrange multipliers of inegquality constraints
—AugLaghet beta : [10 10 10]
110 35]
—I1 20]
20 501
—0
—3
PT— o
[ »

4\ Start | vsiting for input A

Figure B2  Entering initial values in MATLAB®™ command window

Result will appear in MATLAB® command window shown in figure B.3.
History of the design variables, objective function and constraints are written in

ac comma separated value (csv) file called “almX.csv”.
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Figure B.3
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APPENDIX B.2

MATLAB® TO MSC.NASTRAN® INTERFACE

The objective “nastfunc.m” file calculates the objective function value with new
design variables. First requirement is that the folder should contain
“cantbeam1.bdf” file. This file is created by MSC.PATRAN® as input for the
finite element analysis using MSC.NASTRAN®. Second requirement is an
arrangement in Microsoft WINDOWS® and this will be explained later.

Objective function is composed of three main parts.

First part is main objective function without constraints which is volume of the
beam. It is a very simple function of design variables and can be calculated
analytically. Therefore there is no need to perform an finite element analysis.
Second part is a penalty function for equality constraints. For the beam example
there is no equality constraints. This part is skipped.

Third part is a penalty function for inequality constraints. For the beam example
these constraints are related with the displacements and the stresses which are
obtained from finite element analysis.

“nastfunc.m” first performs the finite element analysis using MSC.NASTRAN®,

then calculates the objective function value.

There are three steps to perform finite element analysis.

First step is modifying input file. In other words, the values of the design
variables should be changed. Initial “cantbeaml.bdf” file is renamed as
“dummy.bdf” and a new empty “cantbeaml1.bdf”’ is created. Each line of the
“dummy.bdf” file is directly copied to the “cantbeam1.bdf” file until 23rd line

which includes the design variable. This line is rewritten to the “cantbeam1.bdf”
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file with the new values of design variables. From line 24 to end of file, each
line is copied from “dummy.bdf “to “cantbeam1.bdf”.
Second step is performing finite element analysis. For finite element analysis,
MSC.NASTRAN® is used. To call MSC.NASTRAN® from MATLAB"
“winopen” function is used. This function is same as double clicking on a file in
Microsoft WINDOWS®. Second requirement explained below is necessary for
this step. After starting MSC.NASTRAN® job, program waits until the end of
the job. When the job is finished all unnecessary files are deleted.
Third step is reading stresses and displacements from “cantbeam1.f06™file. This
file is an output of MSC.NASTRAN®™ job. The displacement is stored in the
265th line and the stress is stored in the 325th line. After openning
“cantbeam1.f06” file, each line is read until the end of file. Using “sscanf”
command, line 265 and 325 are stored in Ascan and Bscan matrices
respectively. 4th element of the Ascan matrix is the displacement and 8th
element of the Bscan matrix is the stress for the constraints. Next
“cantbeam1.f06” file is closed and deleted.
At the end, the value of the objective function is calculated in accordance with
Augmented Lagrange Multipliers (ALM) Method.
Second requirement for this process is an arrangement in Microsoft
WINDOWS"”.
In MATLAB®, “winopen” function performs double clicking in Microsoft
WINDOWS®. What is required at this step is that, if a “bdf” file is double
clicked, this “bdf” file must be opened with MSC.NASTRAN®. Therefore,
following steps has to be performed in Microsoft WINDOWS™:

e Right click on a bdf file.

e Choose “Open With > Choose Pogram...” as shown in figure B.4
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e (Click on “Browse...” , then choose
“C:\MSC.Software\MSC.Nastran\bin\” as shown in figure B.5
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Figure B.5  Location of “nastran.exe”
e Choose “nastran.exe” and click on “Open” as shown in figure B.6
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Figure B.4

Open with a bdf-file in Microsoft. WINDOWS®
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Figure B.6  “nastran.exe” file in ./bin/ directory

e Toggle “Always use the selected program to open this kind of file” as

shown in figure B.7
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Figure B.7  Open a “bdf-file” allways with “nastran.exe”
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e C(Click on “OK”
Second requirement is fulfilled now.
How to use nastfunc.m is explained below;
e Open MATLAB®
e Choose a folder containing “nastfunc.m” and ‘“cantbeaml.bdf” as the
current directory .
e Type nastfunc([15 35]) and press enter as shown in figure B.8. [15 35] is

the design variable vector for rectangular cross section beam. For this

example, it is a row vector with two variables.

=) MATLAB =13
Fle Edt View Debug Desktop Window Help

0 ﬁ“vl 4 BB o o |ﬁ Ef‘ 7 ‘ Currert Directory: | C:ieztvenkatarman_moification_working_nast LlJ
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Current Directory | ¥iorkspace

Command History a x
DFP('unz', [-2 2],2000,[0 O], [3 311 =l

[-z -21,
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2000, [0 0], [3 31}
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160, [0 0], [150 1501}
160, [0 0], [20 50])
160, [0 0], [150 150}
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Figure B8  MATLAB® command window

MSC.NASTRAN" starts and the screen presented in figure B.9 appears until the
end of the job.
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Figure B.9

At the end, the value of the objective function appears

screen.
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Figure B.10

MATLAB® command window
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APPENDIX C.1

MESH DENSITY COMPARISON FOR RECTANGULAR CROSS
SECTION CANTILEVER BEAM

To investigate the effect of mesh density on optimization problem of
rectangular cross section cantilever beam, five identical models are built with 2,
5, 10, 20 and 50 elements, respectively. The initial models are shown in figure

C.1.

* T
2 Elements i i 5 Elements
* T
10 Elements ' Ny NI 20 Elements
!

- 50 Elements

Figure C.1 Finite element models for rectangular cross section cantilever
beam with different mesh densities
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Optimization is performed by using MSC.NASTRAN® for all five models and

results are tabulated in table C.1.

Table C.1 Comparison of optimization results of rectangular cross section

cantilever beam with different mesh densities

2 5 10 20 50
Element | Element | Element | Element | Element
Number of iterations 6 6 6 6 6
B (mm) Iqitial value 10 10 10 10 10
Final value 7.290 7.290 7.290 7.290 7.290
H (mm) Iqitial value 35 35 35 35 35
Final value | 36.448 | 36.448 | 36.448 | 36.448 | 36.448
Objective function, | Initial value | 175000 | 175000 | 175000 | 175000 | 175000
Volume (mm3) Final value | 132849 | 132849 | 132849 | 132849 | 132849
Max axial stress at | Initial value | 306.1 306.1 306.1 306.1 306.1
the root (Mpa) Final value 387.2 387.2 387.2 387.2 387.2
Max. tip deflection |Initial value | 20.825 | 20.906 | 20.906 | 20.906 | 20.906
(mm) Final value | 25.402 | 25.402 | 25.402 | 25.402 | 25.402
H/B Initial value | 3.500 3.500 3.500 3.500 3.500
Final value 5.000 5.000 5.000 5.000 5.000

It is observed that

mesh density has no effect on this particular problem.

Objective function, design variables and constraints converged to the same

values after 6 iterations in each analysis. Therefore using 10 element provides

reliable results.
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APPENDIX C.2

MESH DENSITY COMPARISON FOR I SHAPED CROSS SECTION
CANTILEVER BEAM

Five identical models are built with 2, 5, 10, 20 and 50 elements, respectively
To investigate the effect of mesh density on optimization problem of I shaped

cross section cantilever beam,. The initial models are shown in figure C.2.

T T S
' 2 Elements ¥ 5 Elements
t }
10 Elements e T+ 20 Elements

T, 50 Elements

1

Figure C.2 Finite element models for I shaped cross section cantilever beam
with different mesh densities
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Optimization is performed by using MSC.NASTRAN® for all five models and

results are tabulated in table C.2.

Table C.2 Comparison of optimization results of

cantilever beam with different mesh densities

shaped cross section

2 5 10 20 50
Element | Element | Element | Element | Element
Number of iterations 21 23 23 23 23
Beam Height, H [Initial value| 20.0 20.0 20.0 20.0 20.0
(mm) Final value | 40.0 40.0 40.0 40.0 40.0
Flange Width, Wf | Initial value 12.0 12.0 12.0 12.0 12.0
(mm) Final value | 35.83 38.43 38.43 38.43 38.43
Web Thickness, Initial value 3.0 3.0 3.0 3.0 3.0
tw (mm) Final value | 0.50 0.50 0.50 0.50 0.50
Flange Thickness,| Initial value 1.5 1.5 1.5 1.5 1.5
tf (mm) Final value | 1.05 0.97 0.97 0.97 0.97
Objective Initial value | 43500 | 43500 | 43500 | 43500 | 43500
function, V (mm°®) | Final value | 46967 | 46820 | 46820 | 46820 | 46820
Max. Stress at Initial value | 1448.4 | 1448.4 | 1448.4 | 1448.4 | 1448.4
the root (MPa) Final value | 406.9 407.0 407.0 407.0 407.0
Max. Shear Initial value | 23.174 | 23.174 | 23.174 | 23.174 | 23.174
Stress (MPa) Final value | 65.884 | 65.826 | 65.826 | 65.826 | 65.826
Max. deflection at | Initial value | 8.000 8.000 8.000 8.000 8.000
tip (mm) Final value | 25.476 | 25.474 | 25.474 | 25.474 | 25.474
] tw Initial value | 0.500 0.500 0.500 0.500 0.500
Final value | 2.090 1.939 1.939 1.939 1.939

It is observed that if the number of elements is greater or equal to 5 then mesh

density has no effect on this problem. Objective function, design variables and

constraints converged to the same values after 23 iterations in the analyses with

5 or more elements. But they converged to slightly different values in 21

iterations with 2 elements. Therefore using 10 element provides reliable results.
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APPENDIX C.3

COMPARISON TABLES FOR WING TORQUE BOX OPTIMIZATION

The results of optimizations performed in chapter 6 are compared in tables C3-

13 for all stress constraints. Initial and final stress values on each element and

corresponding upper and lower bounds are tabulated.

Table C.3 Comparison of front spar results of three optimization processes

Front Spar
Web Von Mises Stress (MPa)
. Propert Property &
. D.C. Initial Value Lower | Upper OptimFi)zatiyon Shape
Description Name - — Bound | Bound - — Qolimization
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS001| 224.8 203.3 0.01 300 288.9 50.9 112.9
Between Rib 2 - Rib 3 AS002| 218.3 153.9 0.01 300 260.6 194.6 126.5
Between Rib 3 - Rib 4 AS003| 219.6 113.5 0.01 300 93.4 40.6 95.8
Between Rib 4 - Rib 5 AS004| 219.9 73.5 0.01 300 122.7 29.2 84.5
Between Rib 5 - Rib 6 AS005| 216.1 375 0.01 300 264.8 27.7 47.0
Between Rib 6 - Rib 7 AS006| 237.9 10.2 0.01 300 200.4 12.1 12.7
Upper Flange Axial Stress (MPa)
L. Propert Property &
. D.C. Initial Value Lower | Upper Optiml?zatiyon Shape
Description Name - — Bound | Bound - — Optlmlzatlon
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS007]| -445.5 -454.6 -425 445 | -118.1 -103.7 -126.7
Between Rib 2 - Rib 3 AS008]| -237.5 -286.3 -425 445 | -123.7 -108.1 -101.4
Between Rib 3 - Rib 4 AS009| -36.2 -163.8 -425 445 -35.3 -74.3 -110.7
Between Rib 4 - Rib 5 AS010| 167.5 -77.4 -425 445 185.7 -60.4 -77.7
Between Rib 5 - Rib 6 AS011]| 363.4 -26.2 -425 445 350.5 -29.3 -44.3
Between Rib 6 - Rib 7 AS012| 600.5 -4.5 -425 445 379.3 -5.9 -7.0
Lower Flange Axial Stress (MPa)
. Propert Property &
. D.C. Initial Value Lower | Upper Optimpi.zat?/on Shape
Description Name - — Bound | Bound - — Qotimization
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS013| 445.5 454.7 -425 445 317.6 136.6 168.1
Between Rib 2 - Rib 3 AS014| 237.5 286.3 -425 445 295.9 262.8 107.6
Between Rib 3 - Rib 4 AS015| 36.2 163.9 -425 445 31.3 63.2 111.9
Between Rib 4 - Rib 5 AS016| -167.5 77.4 -425 445 | -122.5 62.5 77.8
Between Rib 5 - Rib 6 AS017] -363.5 26.2 -425 445 | -148.8 26.2 44.3
Between Rib 6 - Rib 7 AS018]| -600.5 4.5 -425 445 | -193.8 6.0 7.0
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Table C.4 Comparison of rear spar results of three optimization processes

Rear Spar
Web Von Mises Stress (MPa)
;. Propert Property &
. D.C. Initial Value Lower | Upper Optiml?zatiyon Shape
Description Name - e Bound | Bound - — Op_tlm_lzatlon
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS019| 120.5 107.4 0.01 300 163.6 71.6 144.9
Between Rib 2 - Rib 3 AS020| 134.7 96.1 0.01 300 49.3 34.5 101.4
Between Rib 3 - Rib 4 AS021]| 131.8 67.8 0.01 300 156.3 46.2 64.4
Between Rib 4 - Rib 5 AS022| 131.3 44.3 0.01 300 165.4 41.1 61.7
Between Rib 5 - Rib 6 AS023]| 139.6 22.6 0.01 300 66.0 17.3 27.8
Between Rib 6 - Rib 7 AS024| 92.0 6.6 0.01 300 71.4 8.4 8.4
Upper Flange Axial Stress (MPa)
- Propert Property &
- D.C. Initial Value Lower | Upper OptimFi)zatiyon Shape
Description Name : _ Bound | Bound i __ Op_tlm_lzanon
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS025| -283.0 -291.2 -425 445 -86.1 -53.3 -113.2
Between Rib 2 - Rib 3 AS026| -165.1 -200.3 -425 445 | -108.6 -55.6 -100.9
Between Rib 3 - Rib 4 AS027| -23.5 -111.9 -425 445 -34.0 -81.0 -52.4
Between Rib 4 - Rib 5 AS028]| 111.2 -54.3 -425 445 154.6 -38.2 -60.9
Between Rib 5 - Rib 6 AS029| 258.9 -19.4 -425 445 183.3 -16.0 -29.8
Between Rib 6 - Rib 7 AS030| 342.9 -3.8 -425 445 159.4 -6.1 -6.7
Lower Flange Axial Stress (MPa)
. Propert Property &
- D.C. Initial Value - o\er [ upper Optim'?zat?/on Shape
Description Name - — Bound | Bound - — Opt'm.'zat'on
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS031| 283.1 291.3 -425 445 163.2 183.8 49.8
Between Rib 2 - Rib 3 AS032]| 165.2 200.3 -425 445 156.9 85.9 98.8
Between Rib 3 - Rib 4 AS033| 23.5 111.9 -425 445 35.9 60.3 53.4
Between Rib 4 - Rib 5 AS034]| -111.3 54.3 -425 445 -72.2 46.3 61.0
Between Rib 5 - Rib 6 AS035| -258.9 19.4 -425 445 | -140.1 16.2 29.9
Between Rib 6 - Rib 7 AS036| -343.0 3.8 -425 445 | -111.3 5.7 6.7

Table C.5 Comparison of upper skin results of three optimization processes

Upper Skin Von Mises Stress (MPa)

Initial Value Property PrZﬁ?SZ :
. D.C. Lower | Upper Optimization R
Description Name - o Bound | Bound - e Op_tlm_lzw
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS037] 370.1 378.9 0.01 281 105.1 81.1 123.1
Between Rib 2 - Rib 3 AS038| 207.9 249.9 0.01 281 122.2 84.3 104.1
Between Rib 3 - Rib 4 AS039| 38.8 141.3 0.01 281 42.7 82.1 83.9
Between Rib 4 - Rib 5 AS040| 144.2 67.9 0.01 281 175.7 50.7 71.7
Between Rib 5 - Rib 6 AS041| 319.6 23.8 0.01 281 277.0 23.4 38.4
Between Rib 6 - Rib 7 AS042| 479.7 4.6 0.01 281 276.4 6.5 7.5
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Table C.6 Comparison of lower skin results of three optimization processes

Lower Skin Von Mises Stress (MPa)

L Propert Property &
. D.C. Initial Value Lower | Upper Optimpi.zat?/on Shape
Description Name - — Bound | Bound - — Qotimization
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Between Rib 1 - Rib 2 AS043]| 370.1 379.0 0.01 281 245.2 165.5 112.0
Between Rib 2 - Rib 3 AS044| 207.9 250.0 0.01 281 239.2 177.7 106.1
Between Rib 3 - Rib 4 AS045| 38.8 141.4 0.01 281 43.0 65.4 85.1
Between Rib 4 - Rib 5 AS046| 144.2 67.9 0.01 281 101.1 55.3 71.8
Between Rib 5 - Rib 6 AS047]| 319.7 23.8 0.01 281 149.9 22.0 38.4
Between Rib 6 - Rib 7 AS048| 479.8 4.6 0.01 281 157.0 6.3 7.5

Table C.7 Comparison of rib 1 results of three optimization processes

Rib 1
. Propert Property &
- D.C. Initial Value Lower | Upper Optim’?zat?/on Shape
Description Name Bound | Bound Optimization
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS049| 10.3 8.5 0.01 300 24.4 42.8 17.7
Upper Flange Axial Stress (MPa) [AS050| 82.7 83.4 -425 445 30.2 24.2 37.2
Lower Flange Axial Stress (MPa) |AS051{ -82.7 -83.4 -425 445 -49.4 -40.3 -33.6
Front Flange Axial Stress (MPa) [AS052| 0.0 0.0 -425 445 -10.2 -2.3 -5.2
Rear Flange Axial Stress (MPa) AS053| 0.0 0.0 -425 445 -2.0 -8.3 5.8

Table C.8 Comparison of rib 2 results of three optimization processes

Rib 2
- Propert Property &
.. D.C. Initial Value Lower | Upper Optim'?zat%lon _Shgpe.
Description Name Bound | Bound Optimization |
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS054| 7.1 3.4 0.01 300 50.4 41.5 11.0
Upper Flange Axial Stress (MPa) [AS055| 92.6 98.5 -425 445 37.0 27.1 38.1
Lower Flange Axial Stress (MPa) |AS056| -92.6 -98.5 -425 445 -75.8 -59.0 -36.4
Front Flange Axial Stress (MPa) AS057| 0.0 0.0 -425 445 -20.3 -7.6 -4.8
Rear Flange Axial Stress (MPa) AS058| 0.0 0.0 -425 445 -6.2 -6.1 5.9
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Table C.9 Comparison of rib 3 results of three optimization processes

Rib 3
. Propert Property &
- D.C. Initial Value Lower | Upper Optim’?zat?/on Shape
Description Name Bound | Bound Optimization
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS059| 238 7.0 0.01 300 48.6 23.2 9.0
Upper Flange Axial Stress (MPa) [AS060| 31.1 51.2 -425 445 36.0 26.9 29.0
Lower Flange Axial Stress (MPa) |AS061{ -31.1 -51.2 -425 445 -48.1 -33.5 -30.3
Front Flange Axial Stress (MPa) [AS062| 0.0 0.0 -425 445 -4.6 -5.9 0.5
Rear Flange Axial Stress (MPa) AS063| 0.0 0.0 -425 445 -5.3 0.0 -1.1

Table C.10 Comparison of rib 4 results of three optimization processes

Rib 4
L. Propert Property &
. D.C. Initial Value Lower | Upper Optiml?zatiyon Shape
Description Name : — Bound | Bound _ — Op_tlm_lzanon
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS064| 0.1 3.9 0.01 300 6.4 36.4 13.4
Upper Flange Axial Stress (MPa) |AS065| -15.7 28.5 -425 445 -22.4 21.5 24.9
Lower Flange Axial Stress (MPa) [AS066| 15.7 -28.5 -425 445 19.4 -15.0 -24.9
Front Flange Axial Stress (MPa) [AS067| 0.0 0.0 -425 445 -0.9 2.1 -0.3
Rear Flange Axial Stress (MPa) AS068| 0.0 0.0 -425 445 -4.5 2.1 0.2

Table C.11 Comparison of rib 5 results of three optimization processes

Rib 5
L. Propert Property &
. D.C. Initial Value Lower | Upper Optiml?zatiyon Shape
Description Name : — Bound | Bound _ — Op_tlm_lzanon
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS069| 7.3 3.4 0.01 300 45.1 2.7 8.9
Upper Flange Axial Stress (MPa) |AS070| -63.3 11.5 -425 445 -71.9 11.1 18.7
Lower Flange Axial Stress (MPa) [AS071| 63.3 -11.5 -425 445 43.5 -12.9 -18.7
Front Flange Axial Stress (MPa) AS072| 0.0 0.0 -425 445 -14.6 -0.6 0.1
Rear Flange Axial Stress (MPa) AS073| 0.0 0.0 -425 445 -6.9 -0.7 0.0
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Table C.12 Comparison of rib 6 results of three optimization processes

Rib 6
. Propert Property &
- D.C. Initial Value Lower | Upper Optim’?zat?/on Shape
Description Name Bound | Bound Optimization
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS074| 28.8 2.2 0.01 300 98.0 0.8 2.4
Upper Flange Axial Stress (MPa) |AS075| -122.1 3.0 -425 445 -87.9 3.8 5.7
Lower Flange Axial Stress (MPa) |AS076( 122.2 -3.0 -425 445 50.1 -2.9 -5.7
Front Flange Axial Stress (MPa) [AS077| 0.0 0.0 -425 445 -24.7 0.5 0.0
Rear Flange Axial Stress (MPa) AS078| 0.0 0.0 -425 445 -2.7 0.0 0.0

Table C.13 Comparison of rib 7 results of three optimization processes

Rib 7
L. Propert Property &
. D.C. Initial Value Lower | Upper Optiml?zatiyon Shape
Description Name : — Bound | Bound _ — Op_tlm_lzanon
Tip Distributed Tip Distributed| Distributed
Loading] Loading Loading] Loading Loading
Web Von Mises Stress (MPa) AS079| 11.7 1.1 0.01 300 47.9 1.7 1.5
Upper Flange Axial Stress (MPa) |AS080| -121.2 0.3 -425 445 -78.6 0.8 0.3
Lower Flange Axial Stress (MPa) |AS081| 121.2 -0.3 -425 445 50.4 -1.1 -0.3
Front Flange Axial Stress (MPa) [AS082| 0.0 0.0 -425 445 -18.7 -0.1 0.0
Rear Flange Axial Stress (MPa) AS083| 0.0 0.0 -425 445 2.3 0.1 0.0
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APPENDIX D.1

SAMPLE BDF-FILE FOR PROPERTY OPTIMIZATION

The bdf-file used in rectangular beam optimization is presented here. Original
bdf-file entries are in bold characters.

At the beginning of the file descriptive information is given. A “$” sign is used
in the beginning of comments.

$ NASTRAN input file created by the MSC MSC.Nastran input file
$ translator ( MSC.Patran 13.1.116 ) on June 19, 2008 at 22:02:49.
$ Direct Text Input for Nastran System Cell Section

For this example there is no need for File Management Section . Therefore it is
skipped. Only a comment is given to indicate its location.
$ Direct Text Input for File Management Section

Next Executive Control Section takes place. Only SOL 200 statement is used in
this section to indicate that optimization process will be performed.

$ Design Sensitivity and Optimization Analysis

SOL 200

$ Direct Text Input for Executive Control

CEND

Case Control Section starts here with title of the job.

TITLE = MSC.Nastran job created on 19-Jun-08 at 19:43:29

“ECHO= SORT,PUNCH(NEWBULK)” command provides initial bulkdata
written in f06-file and final (optimized) bulk data in pch-file.

ECHO = SORT,PUNCH(NEWBULK)
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“DESOBJ(MIN) = 1” indicates that the objective function is given in DRESP1
card with number 1. This card is in the design response section of the design
model.

DESOBJ(MIN) = 1

“DESSUB = 21” indicates the active constraints group which is 21. Constraints
are defined with DCONSTR” cards in the design constraints section of the

design model

DESSUB = 21
In this optimization task linear static analyses are performed.

ANALYSIS = STATICS
$ Direct Text Input for Global Case Control Data

At the end of the case control section applied load case is defined. In this

example only one load case is implemented.

SUBCASE 1

$ Subcase name : Default
SUBTITLE=Default
SPC=2
LOAD =2
DISPLACEMENT(SORT1,REAL)=ALL
SPCFORCES(SORT1,REAL)=ALL
STRESS(SORT1,REAL,VONMISES,BILIN)=ALL

Bulk Data Section is the last section .

BEGIN BULK

Following parameters are used to control output of analysis
PARAM POST -1

PARAM PRTMAXIM YES

PARAM NASPRT 1

$ Direct Text Input for Bulk Data

Description of analysis model starts here.
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Element property is defined first. PBARL card allows one to introduce cross
section of bar element to MSC.NASTRAN®. “BAR” in this card indicates
rectangular cross section. 10 and 35 are width (DIM1) and height (DIM2) of the

cross section respectively.

$ Elements and Element Properties for region : beam
PBARL 1 1 BAR

10. 35.
$ Pset: "beam" will be imported as: "pbarl.1"

Elements are defined next.

CBAR 1 1 1 2 0. 1 0.
CBAR 2 1 2 3 0. 1 0.
CBAR 3 1 3 4 0 1 0.
CBAR 4 1 4 5 0. 1 0.
CBAR 5§ 1 5 6 0. 1 0.
CBAR o6 1 6 7 0. 1 0.
CBAR 7 1 7 8 0. 1 0.
CBAR 8 1 8§ 9 o0 1. O
CBAR 9 1 9 10 0. 1. 0.
CBAR 10 1 10 11 0. 1. O

Material definition is given in “MAT1” card. For weight optimization a value
for density must be entered. For this example, elastic modulus is 7000. MPa,
poissons ratio is 0.33 and density is 1. kg/mm3. In this case the value of the

weight is equal to the value of volume in mm3.

$ Referenced Material Records

$ Material Record : al

$ Description of Material : Date: 19-Jun-08 Time: 19:39:44
MAT1 1 70000. 33 1.

“GRID” cards are used to define the node locations

$ Nodes of the Entire Model

GRID 1 0. 0. 0.
GRID 2 50. 0. 0.
GRID 3 100. 0. 0.
GRID 4 150. 0. 0.
GRID 5§ 200. 0. 0.
GRID 6 250. 0. 0.
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GRID 7 300. 0. O

GRID 8 350. 0. 0.
GRID 9 400. 0. 0.
GRID 10 450. 0. O
GRID 11 500. 0. O

At the end of the analysis model definition loads and boundary conditions are

defined.

$ Loads for Load Case : Default

SPCADD 2 1

LOAD 2 1. 1. 1

$ Displacement Constraints of Load Set : disproot
SPC1 1 123456 1

$ Nodal Forces of Load Set : yforce

FORCE 1 11 0 1250. 0. -1. O.

$ Referenced Coordinate Frames

After end of the analysis model definition, design model description starts.

First design variables are defined. “DESVAR” card includes the number, name,

initial value, upper bound and lower bound information of a design variable.

$ ...DESIGN VARIABLE DEFINITION

$ rect W

DESVAR 1 rect W:110. 1. 20. 1.

$ rect H

DESVAR 2 rect H:235. 20. 50. 1.

Design variable must be related to a property of elements in analysis model or
shape basis vectors in shape optimization. “DVPREL1” card is used to relate a
design variable to a element property in analysis model. Initial value of a design
variable overwrites the corresponding value. DIM1 is the width of the

rectangular cross section. Therefore, design variable 1 is related to the width of

the rectangular cross section.

$ ..DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL
PARAMETER RELATIONS
DVPREL1 1 PBARL 1 DIM1

1 1.
DVPREL1 2 PBARL 1 DIM2
2 1
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Design responses indicates which results are important for the optimization task.
$ ..STRUCTURAL RESPONSE IDENTIFICATION

In this example total weight, y displacement of tip node and maximum stress at
the root element are used as first type of response. Design response number 1 is

the weight and chosen as objective function in case control section.

DRESP1 1 W  WEIGHT
DRESP1 27 U2 DISP 2 11
DRESP1 37 S1 STRESS PBAR 7 1

An equation which is the height to width ratio of the cross section is used as the

second type of design response.

DRESP2 15 BH 230
DESVAR 1 2
DEQATN 230 BH(W,H)=H/W
Next step is definition of constraints. “DCONSTR” card includes the constraint

group number , which is 21 in this example, related design response number,

upper and lower bounds for the design response.

$ ...CONSTRAINTS

DCONSTR 21 27 -25.4 254
DCONSTR 21 37 -700.0 700.0
DCONSTR21 15 0.1 5.0

Finally, maximum iteration number, number of fully stressed design cycles,
frequency of the output, design quantities to be printed, convergence criteria and

move limits on approximate optimization are defined by using “DOPTPRM”

card [3].

$ ...OPTIMIZATION CONTROL

DOPTPRM DESMAX 100 FSDMAX 0 P1 1 P2 1
CONV1 .001 CONV2 1.-20 CONVDV.001 CONVPR.01
DELP .2 DELX 1. DPMIN .01 DXMIN .05

ENDDATA e4f673bf

This is the end of bdf-file
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APPENDIX D.2

SAMPLE BDF-FILE FOR SHAPE OPTIMIZATION

The bdf-file used in wing torque box shape and property optimization is
presented here. Original bdf-file entries are in bold characters. Repeated cards
are omitted and replaced by “...”.

At the beginning of the file descriptive information is given. A “$” sign is used

in the beginning of comments.

$ NASTRAN input file created by the MSC MSC.Nastran input file

$ translator ( MSC.Patran 13.1.116 ) on October 21, 2008 at 20:43:46.
$ Direct Text Input for Nastran System Cell Section

$ Direct Text Input for File Management Section

$ Design Sensitivity and Optimization Analysis

In File Management Section, result of auxiliary model analysis which is used to
built shape basis vectors for shape optimization is introduced. The extensions of
necessary result files are “MASTER” and “DBALL”. Therefore, both files must

exist in the folder where optimization is performed, but only MASTER-file is
introduced in the bdf-file.

ASSIGN F1_AUX='wing_aux.MASTER'
DBLOCATE DATABLK=(ug/ugd,geoml/geom1d,geom?2/geom2d) ,
LOGICAL=F1_AUX

Next Executive Control Section takes place. SOL 200 statement is used in this

section to indicate that optimization process will be performed.

SOL 200

TIME 600

$ Direct Text Input for Executive Control
CEND
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Case Control Section starts here with title of the job.

TITLE = MSC.Nastran job created on 05-Oct-08 at 13:53:10

“ECHO= SORT,PUNCH(NEWBULK)” command provides initial bulkdata
written in f06-file and final (optimized) bulk data in pch-file. Limitation is set
by “MAXLINES” command.

ECHO = SORT,PUNCH(NEWBULK)

MAXLINES = 999999999

“DESOBJ(MIN) = 1” indicates that the objective function is given in DRESP1
card with number 1. This card is in the design response section of the design

model.

DESOBJ(MIN) = 1

“DESSUB = 21” indicates the active constraints group which is 21. Constraints
are defined with DCONSTR” cards in the design constraints section of the

design model.

DESSUB = 21
In this optimization task linear static analyses are performed.

ANALYSIS =STATICS
$ Direct Text Input for Global Case Control Data

At the end of the case control section applied load case is defined. In this

example only one load case is implemented.

SUBCASE 1

$ Subcase name : Default
SUBTITLE=Default
SPC=2
LOAD =2
DISPLACEMENT(SORT1,REAL)=ALL
SPCFORCES(SORT1,REAL)=ALL
GPFORCE=ALL
STRESS(SORT1,REAL,VONMISES,BILIN)=ALL
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Bulk Data Section is the last section .
BEGIN BULK

Following parameters are used to control output of analysis “PARAM NASPRT
50” indicates that outputs of finite element analyses are recorded in every 50th

iteration during optimization process.

PARAM POST -1

PARAM PRTMAXIM YES
PARAM NASPRT 50

$ Direct Text Input for Bulk Data

Description of analysis model starts here. Element, property and material
definitions, grid locations, multipoint constraints, load and boundary conditions

are defined in this section.

$ Elements and Element Properties for region : 110020
PSHELL 110020 1 1. 2 1

$ Pset: '"110020" will be imported as: "pshell.110020"

CQUAD4 110020 110020 1120 1220 2220 2120

$ Elements and Element Properties for region : 711000
PSHELL 711000 3 1. 2 3

$ Pset: "711000" will be imported as: "pshell.711000"
CQUAD4 711000 711000 7120 7220 7230 7130
$ Elements and Element Properties for region : 112000
PROD 112000 3  100.

$ Pset: "112000" will be imported as: "prod.112000"
CROD 112000 112000 1120 1220

$ Elements and Element Properties for region : 620300
PROD 620300 3  100.

$ Pset: ""620300" will be imported as: "prod.620300"
CROD 620300 620300 6230 7230

$ Elements and Element Properties for region : 900000
PSHELL 900000 3 5. 3 3

$ Pset: '"900000" will be imported as: "pshell.900000"
CQUAD4 910101 900000 9121 9122 9132 9131
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CQUAD4 910102 900000 9122 1120 1130 9132
CQUAD4 920101 900000 9221 9222 9232 9231
CQUAD4 920102 900000 9222 1220 1230 9232
$ Elements and Element Properties for region : 900001
PBARL 900001 3 BAR
50. 20.

$ Pset: '"900001" will be imported as: '""pbarl.900001"
CBAR 910201 900001 9121 9122 0. 1. 1.

CBAR 924002 900001 9222 9232 0. 1. 1.
$ Referenced Material Records
$ Material Record : AL2024
$ Description of Material : Date: 04-Oct-08 Time: 20:45:10
MAT1 1 72000. 33 2.8E-6
$ Material Record : AL7050
$ Description of Material : Date: 04-Oct-08 Time: 20:45:10
MAT1 3 70000. 33 2.8E-6
$ Material Record : dummy
$ Description of Material : Date: 04-Oct-08 Time: 20:45:10
MAT1 2 1. 33 2.8E-6
$ Multipoint Constraints of the Entire Model
RBE3 1 1000 123456 1. 123 1120 1130
1220 1230

RBE3 7 7000 123456 1. 123 7120 7130
7220 7230

$ Nodes of the Entire Model

GRID 1000 516.788 29.6729 0.

GRID 1120 381.115116.891 0.

GRID 9231 1010.6 -36.4019-662.
GRID 9232 1010.6 -36.4019-100.
$ Loads for Load Case : Default
SPCADD 2 1
LOAD 2 1. 1. 1 1. 3 1 4
1. 5 1. 6 1. 7 1. 8
1. 9 1. 10 1. 11 1. 12
1. 13 1. 14 1. 15
$ Displacement Constraints of Load Set : root
SPC1 1 123 9121 9122 9131 9132 9221 9222

230



9231 9232
$ Nodal Forces of Load Set : Rib_1
FORCE 1 1000 0 3091.16 0. 1. 0.
$ Nodal Forces of Load Set : Rib_1
MOMENT 3 1000 0 398.76 0. 0. 1.

FORCE 14 7000 0 1486.88 0. 1. 0.
$ Nodal Forces of Load Set : Rib_7

MOMENT 15 7000 0 22946 0. 0. 1.
$ Referenced Coordinate Frames

After end of the analysis model definition, design model description starts.

First design variables are defined. “DESVAR” card includes the number, name,

initial value, upper bound and lower bound information of a design variable.

$ ...DESIGN VARIABLE DEFINITION
$ v001

DESVAR 11 v001 1. .8 5.

$ v002

DESVAR 12 v002 1. .8 5.

$ v082

DESVAR 92 v082 100. 1. 2000.
$ v083

DESVAR 93 v083 100. 1. 2000.
$

$ Shape Optimization variables

$ v084

DESVAR 94 v084 1.-30. 30.

$ v088

DESVAR 98 v088 1.-30. 30.
$

$

Design variable must be related to a property of elements in analysis model or

shape basis vectors in shape optimization. “DVPREL1” card is used to relate a
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design variable to a element property in analysis model. Initial value of a design
variable overwrites the corresponding value. “DVSHAP” card is used to relate a
design variable to a shape basis vector which is constructed by using single load
case result of analysis auxiliary model. For example, “DVSHAP 95 2
1.0” card indicates that design variable with number 95 is related with the shape
basis vector which is constructed by using the result of second load case in

auxiliary model analysis. “1.0” is the multiplication factor.

$ ...DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL
PARAMETER RELATIONS
DVPREL1 11 PSHELL 110100 T

11 1.
DVPREL1 12 PSHELL 210100 T
12 1.

DVPREL1 92 PROD 714000 A

92 1.
DVPREL1 93 PROD 724000 A
93 1.

$
$ A DVSHAP entry defines a shape basis vector by associating one design
$ variable to a dblocated displacement vector.

$
DVSHAP 94 1 1.0
DVSHAP 95 2 1.0
DVSHAP 96 3 1.0
DVSHAP 97 4 1.0
DVSHAP 98 5 1.0
$
$
$

Design responses indicates which results are important for the optimization task.

$ ...STRUCTURAL RESPONSE IDENTIFICATION

In this example total weight, y displacement of tip nodes, Von Mises stress at all

shell element and axial stress at rod elements are used as first type of response.
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Design response number 1 is the weight and chosen as objective function in case

control section.

DRESP1 1 MinWeigh WEIGHT

$ Stress Responce

DRESP1 101 S101 STRESS PSHELL
DRESP1 102 S102 STRESS PSHELL
DRESP1 182 S182 STRESS PROD
DRESP1 183 S183 STRESS PROD

$ Displacement Responce

DRESP1 201 D201 DISP 2
DRESP1 202 D202 DISP 2
DRESP1 203 D203 DISP 2
DRESP1 204 D204 DISP 2

11 110100
11 210100

2 714000
2 724000

7120
7130
7220
7230

Next step is definition of constraints. “DCONSTR” card includes the constraint

group number , which is 21 in this example, related design response number,

upper and lower bounds for the design response.

$ ...CONSTRAINTS

DCONSTR 21 101 0.01 300.0
DCONSTR 21 102 0.01 300.0
DCONSTR 21 182 -425.0 445.0
DCONSTR 21 183 -425.0 445.0
$

DCONSTR 21 201 0.001 200.0
DCONSTR 21 202 0.001 200.0
DCONSTR 21 203  0.001 200.0
DCONSTR 21 204 0.001 200.0
$

$

Finally, maximum iteration number,

number of fully stressed design cycles,

frequency of the output, design quantities to be printed, convergence criteria and
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move limits on approximate optimization are defined by using “DOPTPRM”

card [3].

$ ...OPTIMIZATION CONTROL

DOPTPRM DESMAX 5000 FSDMAX 0 P1 50 P2 S5
CONV1 .001 CONV2 1.-20 CONVDV.001 CONVPR.01
DELP .2 DELX 1. DPMIN .01 DXMIN .05

ENDDATA e0fcOb62

This is the end of bdf-file
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