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ABSTRACT 

 
STRUCTURAL OPTIMIZATION STRATEGIES  

VIA DIFFERENT OPTIMIZATION AND SOLVER CODES  
AND AEROSPACE APPLICATIONS 

 

Ekren, Mustafa 

M.Sc., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Altan Kayran 

 

 

December 2008, 234 pages 

 

In this thesis, structural optimization study is performed by using three different 

methods. In the first method, optimization is performed using MSC.NASTRAN 

Optimization Module, a commercial structural analysis program. In the second 

method, optimization is performed using the optimization code prepared in 

MATLAB and MSC.NASTRAN as the solver. As the third method, 

optimization is performed by using the optimization code prepared in MATLAB 

and analytical equations as the solver. All three methods provide certain 

advantages in the solution of optimization problems. Therefore, within the 

context of the thesis these methods are demonstrated and the interface codes 

specific to the programs used in this thesis are explained in detail. In order to 

compare the results obtained by the methods, the verification study has been 

performed on a cantilever beam with rectangular cross-section. In the 

verification study, the height and width of the cross-section of the beam are 

taken as the two design parameters. This way it has been possible to show the 

design space on the two dimensional graph, and it becomes easier to trace the 

progress of the optimization methods during each step. In the last section 

structural optimization of a multi-element wing torque box has been performed 

by the MSC.NASTRAN optimization module. In this section geometric property 
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optimization has been performed for constant tip loading and variable loading 

along the wing span. In addition, within the context of shape optimization 

optimum rib placement problem has also been solved. 

 
Keywords: Structural Optimization, Geometric Property and Shape 

Optimization, Aerospace Structures, Finite Element Method 
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ÖZ 

DEĞİŞİK OPTİMİZASYON VE ÇÖZÜCÜ KODLARIYLA YAPISAL 

OPTİMİZASYON STRATEJİLERİ VE HAVACILIK VE UZAY 

UYGULAMALARI  

 

 

Ekren, Mustafa 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Altan Kayran 

 

 

Aralık 2008, 234 sayfa 

 

Bu tezde, üç farklı yöntem kullanılarak yapısal optimizasyon çalışması 

gerçekleştirilmiştir. Birinci yöntemde yapısal optimizasyon problemi ticari bir 

yapısal analiz programı olan MSC.NASTRAN optimizasyon modülü 

kullanılarak yapılmıştır. İkinci yöntemde MATLAB ortamında hazırlanmış 

optimizasyon kodu ile çözücü olarak MSC.NASTRAN kullanılarak 

optimizasyon problemi çözülmüştür. Üçüncü yöntem ise MATLAB ortamında 

hazırlanmış optimizasyon kodu ve analitik denklemler çözücü olarak 

kullanılmak suretiyle optimizasyon yapılmıştır.  Her üç yöntemde günümüzde 

optimizasyon problemlerinin çözülmesinde çeşitli avantajlar sağlayabilmektedir. 

Bu nedenle bu tez kapsamında her üç yöntemin gösterimi gerçekleştirilmiş ve 

kullanılan programlara özel arayüz kodları da tez içinde detaylıca açıklanmıştır. 

Her üç yöntem ile elde edilen sonuçların kıyaslanmasını yapabilmek için 

doğrulama çalışmaları dikdörtgen kesitli ankestre kiriş problemi üzerinde 

gerçekleştirilmiştir. Doğrulama çalışmasında kesit alanın yükseklik ve genişliği 

olmak üzere iki adet tasarım değişkeni kullanılmıştır. Bu sayede tasarım 

uzayının iki boyutlu grafik üzerinde görsel olarak gösterilmesi mümkün olmakta 

ve optimizasyon yöntemlerinin her adımdaki gelişiminin izlenebilmesi 
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kolaylaşmaktadır. Son bölümde ise çok elemanlı bir kanat tork kutu yapısının 

optimizasyonu MSC.NASTRAN optimizasyon modülü kullanılarak yapılmıştır.  

Bu kısımda sabit uç yük, kanat boyunca değişken yük durumları için geometrik 

özellik optimizasyonu gerçekleştirilmiştir. Ayrıca, şekil optimizasyonu 

kapsamında ise kanat sinir pozisyonlarının optimum yerleşim problemi 

çözülmüştür.  

 

Anahtar Kelimeler: Yapısal Optimizasyon, Geometrik Özellik ve Şekil 

Optimizasyonu,  Hava Aracı Yapıları , Sonlu Elemanlar Yöntemi,  
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CHAPTER 1 
 

 

1.INTRODUCTION 
 

 

 

Optimization has vital importance in every field of modern world.  

“Nothing takes place in the world whose meaning is not that of some maximum 

or minimum.”  said by Euler. 

Optimization is defined as the procedure used to make a system or design as 

effective or functional as possible. Today, optimization forms a major necessary 

part of design activity in all major disciplines and those disciplines are not 

limited only to engineering. There is hardly any area where optimization has not 

proven itself to be effective. These areas include everything that are seen around 

or used in daily lives. It is unthinkable that the products that are seen everyday, 

like cars, houses, electronic or non-electronic devices that are produced today 

are not designed optimally in one way or another. The will to produce maximum 

quality products with minimum possible cost is the driving force behind the 

rapid development of the optimization methods. 

The theory of optimization has its roots from ancient times. Throughout history, 

there had always been a huge number of geometrical and mechanical problems, 

which are optimization problems in fact but has been solved by using 

geometrical knowledge since the optimization techniques were not known by 

then. [1] 

Optimization techniques are being used for more than a century. At first, the 

basic tool used to find the extremum of functions was differential calculus [2]. It 

is the World War II that has played a very important role for the development of 

optimization. In mid-1940s, Simplex Method has been developed for solving 

linear programming problems. Linear Programming has been used to solve war 
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problems at first but afterwards, it was found out that this technique was very 

useful in solving problems in economics, business and engineering sciences. In 

1951, H.W. Kuhn and A.W. Tucker developed the Lagrangian multiplier rule 

for convex and other non-linear programming problems which also involved 

inequality constraints. The Kuhn-Tucker optimality conditions became very 

useful and important for developing algorithms in solving convex and other non-

linear programming problems with differentiable functions. After World War II, 

in late 1950s, non-linear programming has been emphasized with the 

development of a powerful method for unconstrained optimization developed by 

W.C. Davidon. Afterwards, his work has been further developed by M.J.D. 

Powell and R. Fletcher and it lead to the rise of powerful Quasi-Newton 

methods. The development of computer science made it possible to simplify 

programming and thus to easily solve great optimization problems which is 

nearly impossible to solve by hand. Early computers provided accessibility, 

responsiveness, autonomy and fixed cost while recent models added large 

memory, high precision and impressive speed. At present, optimization is a 

developing subject with many newly explored areas of theory and application 

[1]. 

There is no doubt that there is a widespread practical usage of optimization 

methods in many different fields – aerospace industry being one of the earliest 

disciplines to use these methods most significantly. Driven by the need to lower 

the burden of the unnecessary weight in aerospace vehicles in order to minimize 

the tremendous cost associated with this weight, it is not hard to understand why 

the application of the optimization methods is such a big necessity for aerospace 

industry. Minimum weight vehicles together with the savings in fuel 

consumption with optimal trajectory design without any deviations from 

aviation safety is the main target to reach through optimization. 

In the following sections of this chapter, general information on the optimization 

methods of aerospace structures will be discussed. In chapter 2, optimization 

theory is introduced. In chapter 3, optimization technique used in the developed  

MATLAB® code will be presented. In chapter 4, three different approaches of 
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the structural optimization used in the present thesis will be described including 

the description of the interface codes specific to MATLAB® and 

MSC.NASTRAN®. In chapter 5, two case studies are performed with different 

optimization techniques both for verification and demonstration purposes. In 

chapter 6, a complex aerospace structure optimization is performed. In this 

section both geometric property and shape optimization studies are performed 

for a wing torque box. Finally, in the last chapter, conclusion of the studies is 

given and researchers interested in the subject matter are encouraged to do 

further work. 

1.1 OPTIMIZATION METHODS 
 

There are many optimization methods used in solving problems in engineering 

and other disciplines. These methods can be classified mainly in two groups. 

First group is the genetic algorithms [3] and second group is the gradient based 

algorithms. In this thesis gradient based algorithms are used for the solution of 

structural optimization problems. Gradient based algorithms are also divided 

into two major groups which are the unconstrained and constrained optimization 

problems. Some examples of methods for gradient based algorithms are given 

below. 

1. Unconstrained Optimization 

 Steepest Descent Method 

 Conjugate Gradient Method 

 Davidon-Fletcher-Powell Method 

2. Constrained Optimization 

 Penalty Function Method 

 Augmented Lagrange Multiplier Method 
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1.2 MAIN APPLICATION AREAS OF OPTIMIZED 
STRUCTURES 

 
Optimized structures can be found in many disciplines in engineering. However, 

structural optimization is especially critical in the design of aerospace structures. 

Weight of an aerospace vehicle is not only related to the performance of the 

vehicle but weight savings also induce significant cost savings during the design 

stage and directly affects the fuel consumption during the operation of the 

vehicle. Therefore, aerospace companies use low margins of safety in their 

design to achieve weight savings. The use of low margins of safety in structural 

design can be best accomplished by performing structural optimization. 

Common types of optimization performed in the structure area are: 

• Property optimization: Cross-section dimensions, thicknesses, geometric 

dimensions etc. 

• Shape optimization:  Changing the locations of certain structural 

members like ribs, changing the shape of a cut-out etc. 

• Topology optimization:   Optimal distribution of material  

In the following section, some examples will be given for the optimized 

structures used in different fields of engineering.  

1.2.1 AERONAUTICS 
 
Almost in all aeronautical vehicles optimization is used, because weight has 

direct impact on the performance of the air vehicle as well as the operating cost 

as discussed above. Therefore, aerospace structures are usually composed of 

stiffened thin walled structural members. The use of stiffened thin walled 

members assures weight savings as well as structural integrity if the structural 

design is performed in the right way. Wings and fuselage of aircraft are two 

main substructures where significant weight savings can be achieved if 

optimization techniques are implemented in the design stage. For instance  in 

Figure 1.1, a section of the fuselage of an aircraft structure is presented. 
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Figure 1.1 A typical aircraft Structure [4] 

 

 

 

As it can be seen from Figure 1.1, many structural members exist in the fuselage 

frame and one can imagine the great amount of weight savings that can be 

achieved if optimization techniques are used in the design stage of such a 

fuselage frame.  

1.2.2 SPACE  
 
Satellite structures are also becoming very popular with the technological 

advancement that takes place in space technologies. Today many countries 

possess their own satellite structures in space and these spacecraft serve for 

different purposes ranging from telecommunication to earth observation and 

remote sensing etc. Weight saving in satellite structures is also very critical 

because the launch cost of satellites are directly related to the weight of the 

satellite. In addition, orbit performance of the satellites can be improved by 

weight savings.  Figure 1.2 and 1.3 show the initial and optimized shape of a 
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frame of a satellite structure. Figure 1.4 shows the test of the optimized 

structure. [5] 

 

 

 

 
Figure 1.2 Initial satellite structure [5]  

 

 

 

 
 

Figure 1.3 Optimized satellite structure [5]  
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Figure 1.4 Optimized satellite structure on test [5]  

 

 

 

1.2.3 MARINE  
 
In the marine industry weight savings are also as important as in aerospace 

industry. By designing weight efficient ships significant performance gains can 

be obtained and fuel consumption can be significantly reduced. To increase 

performance gains nowadays personal yachts are manufactured from composite 

materials which present significant weight savings. Race sail boats are other 

examples of marine structures for which weight saving directly affects the 

success in the race due to performance gains achieved by weight reduction. In 

Figure 1.5  two racing sail boats are shown. Structural optimization in hull 

structures has vital importance to achieve excellent strength-to-weight ratios.  
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Figure 1.5 Sail boats [6]  

 

 

 

1.2.4 AUTOMOTIVE 
 
Structural optimization also has vital importance in the automotive industry. 

Weight reduction in automobiles is especially critical in having reduced 

emissions. Low emission of combustion products is directly related to the 

weight of the automobile. Today in many countries around the world, low 

emission regulations are prepared to force the automobile manufacturers to 

manufacture automobiles which comply with these regulations. Besides the 

improvements in the engine technology, weight reduction achieved by means of 

optimization of the structure of the automobile is also an important factor to 

consider in having lower emissions. Structural optimization is the only way to 

design structures with minimum weight by satisfying the prescribed constraints 

imposed on the structural integrity. As an example of optimization in 

automobile industry,  Figure 1.6 shows the finite element model of the structure 

of an automobile  frame used in the optimization study.  
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Figure 1.6 FE model for optimization   

 

 

 

1.3 ADVANTAGES OF OPTIMIZING STRUCTURES  
 
Although performing optimization studies requires initial investment such as 

high performance computers and additional engineering cost, there are many 

advantages gained by optimizing structures. Some of these advantages can be 

listed as: 

 reduced weight ,  

 reduced manufacturing cost,  

 improved efficiency,  

 improved service life  

 reduced operating costs (less fuel, less repair costs),  

 reduced environmental effect 

It is deemed that the advantages gained by optimizing structures outweighs the 

investment costs related with establishing the infra-structure to perform 

optimization studies. By implementing optimization early in design stages, 

companies can manufacture products with superior performance with reduced 

cost. Especially, for industries involved in series manufacturing, optimization 

can result in huge cost savings. Today, companies strive to continue to exist in 

the market with competitive products,  and in this respect optimization presents 

a very powerful tool in achieving the production of competitive products. 
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CHAPTER 2 
 

 

2.OPTIMIZATION THEORY FOR GRADIENT BASED 

METHODS 

 

 

 

Optimization means minimization (or maximization) of a function. In aerospace 

industry, weight is one of the best example for the function to minimize. It 

depends on the volume and density of the structure and therefore mostly volume 

minimization is performed in structural optimization provided that material 

choice is not included in the optimization study.  

In a general structural optimization problem there are always some restrictions 

that allows no further weight reduction, such as stress values must be below a 

certain level or the maximum deflections must be below a certain value. In 

addition, the outer shape of aircraft sub-structures is usually determined by 

aerodynamics and flight mechanics considerations and unless a 

multidisciplinary approach is followed in the optimization, the outer dimensions 

can be taken as constants but not as design variables. For instance, thickness of 

the profile of a lifting surface may be a fixed value and for a fixed spar location 

the spar height will be constant.  In optimization problems, the design variables 

usually have an upper and a lower bound. In structural optimization problems 

these bounds, on some of the design variables, exist because of the available 

structural elements from which the selection has to be made during the 

manufacturing. 
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To handle an optimization problem mathematically, there is a need for a 

statement. General statement of optimization problems is given as: 

 

Minimize   f(x1, x2, x3,…, xn) 

 

Subject to   hk(x1, x2, x3,…, xn) = 0            k = 1, 2, …, l   

 

gj (x1, x2, x3,…, xn) ≤ 0            j = 1, 2, …, m 

 

   xi
u  ≤  xi  ≤  xi

u                         i = 1, 2, …, n 

 

where, 

 

hk(x1, x2, x3,…, xn) = 0      k = 1, 2, …, l    represents the equality constraints. 

gj (x1, x2, x3,…, xn) ≤ 0      j = 1, 2, …, m  represents the inequality constraints 

xi
u  ≤  xi  ≤  xi

u                    i = 1, 2, …, n   represents the upper and lower bounds 

 

This chapter introduces optimization methods. One-dimensional optimization 

methods are explained in the first part. In the second part, unconstrained 

optimization methods for multivariable optimization problems are investigated. 

In the last part of the this chapter, implementation of constraints is presented.      

2.1 ONE DIMENSIONAL OPTIMIZATION METHODS 

Finding global minimum of the function with one variable in a given range can 

be stated as one dimensional optimization problem.  There are many numerical 

methods for solution of one dimensional optimization problems. These are 

called as one dimensional search or line search methods. Following three 

methods will be mentioned in this chapter: 

 Newton Raphson Method 

 Bisection Method 

 Golden Section Method 
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2.1.1 NEWTON RAPHSON METHOD 

Newton Raphson method is used to find the root of a function. At optimum 

point the derivative of the function is zero. Therefore, this method can be 

applied to find the optimum point by searching the roots of derivative, instead of 

original function itself.  

The idea is very simple. First the function Φ is evaluated at a point α. Then that 

point is moved by an amount of Δα and the function is evaluated at a new 

location. This procedure is continued until the condition Φ(α) = 0  is satisfied.  

Calculation of increment in α value (Δα) is as follows:  

0)()()( =Δ
Φ

+Φ=Δ+Φ=Φ α
α

αααα
d
d           (2.1) 
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⎡ Φ
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Φ
Φ

−=Δ
−

d
d

d
d

    (2.2) 

New α value is determined by incrementing α by Δα, and the whole process 

repeated until solution is reached.  

The drawback of Newton-Raphson method is the need to have an initial guess 

near the true solution. Algorithm of this method is given in detail in Appendix 

A.1. 

2.1.2 BISECTION METHOD  

Like Newton Raphson method, bisection method is also used to find the roots of 

the function. This method is based on the reduction of the search interval.  

In this method function values are evaluated at incremental values of the 

independent variable α, and sign change of the function value is searched for. 

Assuming that an interval is determined  at upper bound αb and lower bound αa 

of the interval, the sign of the function must be different. In such a case, a 

continuous function will have at least one root in the interval.    

Next step is evaluating the function in the middle of the interval. The sign of the 

function will be different from either the sign of the function at the lower bound 

or the sign of the function at the upper bound. Thus, the search interval is halved 
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and the whole process is repeated until the interval is less than a prescribed very 

small value. Middle point of the interval can be obtained by using the formula 

below.  

α=αa+( αb - αa)/2    (2.3) 

Algorithm of this method is given in detail in Appendix A.2. 

2.1.3 GOLDEN SECTION METHOD 

This method is used to find the minimum or the maximum of a function within a 

certain interval. The method is similar to bisection method but the intervals are 

derived from golden section ratio 1.61803 from Fibonacci series [7]. The brief 

explanation of the method is given below. 

 

 

 

 
Figure 2.1 Golden section search technique [7] 

 

 

 

In Figure 2.1, horizontal axis is used for the independent variable x and the 

vertical axis is used for the value of the function f(x). The lower value of the 

search interval is x1 and the upper value is x3. The function is evaluated at three 
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points x1, x3 and x2, where f1, f3 and f2 are the corresponding function values 

respectively. If the value of f2 is smaller than either f1 or f3, the interval contains 

a minimum. To reduce the search interval one more evaluation at x4, located 

between x2 and x3, has to be performed and the result is f4. If the value of f4 is 

greater than f2, then the interval x1 and x4 contains a minimum. The lower value 

of the new interval is x1 and the upper value is x4. Three points are now x1, x2 

and x4. However, if the value of f4 is smaller than f2, then the interval x2 and x3 

contains a minimum. The lower value of the new interval is x2 and the upper 

value is x3. Three points are then x2, x4 and x3. 

To reduce the interval by the same fraction at each iteration the location of x2 

and x4 should be chosen based on the golden section ratio,1.61803.  

1.61803
c
a

a
b

==     (2.4) 

 The derivation of this ratio can be found in reference [7]. Algorithm of this 

method is given in detail in Appendix A.3. 

2.2 UNCONSTRAINED OPTIMIZATION WITH GRADIENT 

BASED METHODS 

In this class of optimization problems, the function to be optimized may have 

more than one design variable and there is no restriction on the design variables. 

Therefore, this type of optimization problems is called as unconstrained 

optimization.  

‘First Order Conditions’ (FOC) should be satisfied at optimum. These 

conditions are also known as Kuhn Tucker conditions or necessary conditions 

[8].  

∇f = 0      (2.5) 

However, ‘First Order Conditions’ does not guarantee the optimum. Therefore, 

‘Second Order Conditions’ should also be satisfied. 

( ) 0>⋅⋅⋅= ΔxxHΔx
2
1Δf *T     (2.6)  
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where, 

‘H(x*)’ is Hessian matrix which includes second order derivatives of 

objective function ‘f’ at solution.  

‘x’ is the vector of design variables. 

Equation (2.6) is the second order term of Taylor Series expansion. If the right 

hand side of the equation (2.6) is greater than zero, the extremum at that point is 

a minima.  

Following gradient based methods are commonly used for the solution of 

optimization problems. 

 Steepest Descent Method 

 Conjugate Gradient Method 

 Davidon-Fletcher-Powell (DFP) Method 

2.2.1 STEEPEST DESCENT METHOD 

The steepest descent method is the simplest of the gradient based methods. The 

idea behind this method stems from the definition of the gradient of a function. 

The objective function increases most rapidly in the direction of the gradient. 

Therefore, by reversing the direction of the gradient the search direction si is 

obtained at a given point xi.  Once the search direction is obtained, the next 

action to take is to decide how far to go in that direction. At this point any one of 

the one dimensional optimization methods can be used to solve this problem, 

and a factor αi  for the search direction is the output of one dimensional search. 

Next point xi+1 is obtained using formula below.  

xi+1 = xi + αi si     (2.7)   

This iteration continues until the optimum point is reached. 

This method is very simple and easy to apply. It is guaranteed to reach local 

minimum if there is any. The disadvantage of the steepest descent method is that 

it is very slow.  

An algorithm for this method is given in Appendix A.4. Further information can 

be found in reference[9]. 



 16

2.2.2 CONJUGATE GRADIENT METHOD 

This method is very similar to the steepest descent method. The only difference 

is in constructing the search direction. In this method on top of the search 

direction of the to steepest descent method, a certain fraction of previous search 

direction is added to the negative of the gradient [9].  

si= - ∇f(xi) + β si-1    (2.8) 

The fraction of the previous search direction is the ratio of squares of the current 

and the previous gradient vectors. 

)f(x)f(x
)f(x)f(x

1i
T

1i

i
T

i

−− ∇∇
∇∇

=β      (2.9)  

The advantage of this method is its robustness compared to the steepest descent 

method. It should be noted that the magnitude of gradient of the objective 

function (∇f)  at optimum approaches to zero. Therefore, if the previous design 

variable x is closer to optimum than the current design variable x, the value of β 

is large. This means that previous iteration is dominant.  

An algorithm for this method is given in Appendix A.5. Further information can 

be found in reference [9]. 

2.2.3 DAVIDON-FLETCHER-POWELL METHOD 

In ‘Conjugate Gradient Method’ only the information from the previous 

iteration is included in the determination of the search direction. However, 

Davidon Fletcher Powell method uses information from all past iterations. This 

information is kept in a n x n matrix H which is called as metric, where n is the 

number of the design variables. Therefore, this method is called as variable 

metric method. The search direction is stated as follows [7]. 

si= - Hi · ∇f(xi)      (2.10) 

The initial metric H0 must be symmetric positive definite. Usually, identity 

matrix is chosen as the initial metric. It is updated in every iteration according to 

the following formula [7].  
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H matrix is symmetric positive definite in all iterations. As x approaches to the 

optimum, H matrix converges to the Hessian of the function. For quadratic 

functions DFP method converges in less than n iterations.  

An algorithm for this method is given in Appendix A.6. Further information can 

be found in reference [9] 

2.3 CONSTRAINED OPTIMIZATION WITH GRADIENT 
BASED METHODS 

 
If  there are some constraints introduced to the unconstrained optimization 

problem, the resulting optimization problem is called as constrained 

optimization. However, a constrained optimization problem can be converted to 

an unconstrained optimization problem. In this thesis two methods, which 

convert the constrained optimization problem into unconstrained optimization 

problem, are introduced. These methods are: 

1. Penalty Function  Method. 

2. Augmented Lagrange Multiplier Method 

In the thesis ‘Augmented Lagrange Multiplier Method’ is implemented in the 

proceeding sections. 

2.3.1 PENALTY FUNCTION METHOD 

The penalty function method is the modification of objective function f(x) in 

such a way that it includes the constraints. Then, it can be solved by using 

algorithms used for unconstrained problems. Modification is very simple. A 

penalty function P(x) is added to the objective function.  

f(x,rh,rg)=f(x)+P(x,rh,rg)   (2.12) 

Where, rg and rh are the penalty function multipliers used in equation  (2.13). 

This additional function should penalize the objective function only outside the 

feasible region. In order to achieve this, penalty function can be chosen as 

follows [8]. 
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where, 

 hk(x) defines an equality constraint. 

 gj(x) defines an inequality constraint. 

This assures that when the constraints are violated the new objective function 

becomes large. Also, constants “rh” and “rg” are used to adjust the weight of the 

penalty function. These constants are called weighting factors or penalty 

parameters and it is not necessary to change them in each iteration. 

An algorithm for this method is given in Appendix A.7. Further information can 

be found in reference [9]. 

2.3.2 AUGMENTED LAGRANGE MULTIPLIER METHOD 

Another method of solving constrained optimization problem is Augmented 

Lagrange Multiplier (ALM) Method. This method is based on the same idea as 

‘Penalty Function Method’. An additional function is added to the original 

objective function to penalize it when the constraints are violated. New 

objective function can be stated as follows [8]. 

 
( )

( )∑∑

∑∑

==

==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−⋅+⋅+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−⋅+⋅+=

ml

ml

f

11

2

11

2

2
,xmax(x)

2
,xmax)x()x(),,β,λ,x(

j

j
jj

k
ik

j

j
jg

k
ihgh

rg
ghλ

rg
grhrfrr

β
β

β

  (2.14) 

Vectors λ and β are multipliers for equality and inequality constraints 

respectively. Variables rg and rh are the penalty parameters. Vectors λ and β are 

updated in every iteration by using the formulas below, 
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Main advantage of this method is its robustness. At the solution, this method 

provides information about lagrange multipliers.  

An algorithm for this method is given in Appendix A.8. Further information can 

be found in reference [9]. 
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CHAPTER 3 
 

 

3.OPTIMIZATION CODE IN MATLAB® 

 

 

 

MATLAB® is a very useful tool to create codes for optimization. Because, in 

optimization problems matrix operations are needed frequently and 

implementing matrix operations is very easy in MATLAB® environment. Also, 

separation of tasks is quite simple in MATLAB® by implementing different 

code segments in different M files. There are many examples of solution of 

optimization problems with MATLAB®.  In this thesis, general structure of the 

optimization code written by Venkataraman [8] is taken and modifications are 

incorporated to come up with the optimization code used in the demonstration of 

the three different ways solving structural optimization problems.  

The optimization code includes three nested loops. Outermost loop is used to 

convert constrained optimization problem to unconstrained one and ‘Augmented 

Lagrange Multiplier Method’ is used to perform this task. In the inner loop, 

Davidon Fletcher Powell method is chosen to obtain solution for unconstrained 

optimization problem. This loop provides a search direction to be solved by a 

one dimensional search algorithm. Finally, innermost loop provides a solution 

for one dimensional search problem with golden section method. 

Each loop is written in  a different M-file. Evaluation of the objective function, 

equality constraints, inequality constraints, construction of unconstrained 

objective function and evaluation of the gradient of the function is written in 

separate M-files. Separation of M-files allows easy adaptation of 

MSC.NASTRAN® as a solver in the optimization. 
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Main flowchart of the optimization code written in MATLAB® environment is 

given in Figure 3.1 

 

 

 

 
Figure 3.1 Main algorithm of the optimization code  
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3.1 AUGMENTED LAGRANGIAN MULTIPLIER METHOD 

SECTION 

In this section, the outermost loop of the code is implemented. The augmented 

lagrangian multiplier method is composed of three main parts.  

The first part is the input section where initial values of design variables, upper 

and lower bounds of the design variables, number of  equality and inequalty 

constraints and their initial multipliers are input. In addition, tolerances for 

convergence and maximum number of iterations are stated. At the end of input 

section objective function, equality and inequality constraints and newly 

constructed unconstrained objective function is evaluated and their values are 

stored.  

In the second part, unconstrained optimization problem is solved. Davidon 

Fletcher Powell method is called and in this part a solution for unconstrained 

optimization problem is obtained. Similar to the end of the first part, objective 

function, equality and inequality constraints and newly constructed 

unconstrained objective function is evaluated and their values are stored. 

In third part, convergence criteria is checked. If convergence criteria is achieved 

the code stops. However, in the code there are also other criteria to stop the 

execution of the code. These additional criteria include a check on the values of 

the design variables “x” and maximum number of iterations. If the design 

variables do not change appreciably or the maximum number of iterations is 

exceeded, the code stops execution.  If any one of the stopping criteria is not 

satisfied, penalty multipliers “rg”, “rh”, and lagrange multipliers “λ” , “β” are 

updated. 

If the code stops with a violated constraint because design variables “x” are not 

changing, in that case the stopping criteria which checks the values of the design 

variables “x” can be omitted. This allows making further improvements in the 

multipliers and the weight of the violated constraint will be increased so that the 

constraint will not be violated. By adjusting the weights of the constraints the 

code tries to satisfy all constraints.  
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3.2 DAVIDON FLETCHER POWEL METHOD SECTION 

This section of the code implements Davidon Fletcher Powell method to solve 

the unconstrained optimization problem. The unconstrained objective function, 

current value of design variable vector “x”, upper and lower bounds of the 

design variable vector“x” and maximum iteration number are taken from the 

ALM section. Tolerances for the convergence were stated at the beginning of 

the section. For the first iteration, identity matrix is used as the initial metric. 

Subsequently, gradient of the unconstrained objective function is calculated in 

an external M-file. Next step is determining the search direction “s” which is 

found by negative of the dot product of the metric by the gradient. Once the 

search direction is determined, an M-file containing the golden section method 

is called to solve the one dimensional problem. This M-file provides a multiplier 

“α” for the search direction, updated design variable vector “x” and the 

corresponding unconstrained objective function value. Square of the length of 

the gradient of the unconstrained objective function is calculated with the 

updated “x” for the convergence check. If the square is less than the previously 

specified tolerance value, the algorithm is converged to a solution and the code 

stops execution. Otherwise, metric is updated based on DFP method and the 

whole process is repeated. As an exception, if the search direction is modified in 

the one dimensional search, metric is reset to the identity matrix. Other stopping 

criteria, which are the no appreciable change in the design variable vector “x” 

and no appreciable change in the objective function value, are also checked 

respectively. If the code does not stop, it repeats all the steps starting from the 

determination of the search direction until the convergence or until one of the 

stopping criteria is achieved. 

 

3.3 GOLDEN SECTION METHOD SECTION 

This section is composed of two parts. These are determination of upper and 

lower bound for variable “α” which is factor for search direction “s” which is 

written differently from and the implementation of golden section method.  
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Since the golden section method needs an interval to work on, determination of 

upper and lower bound for “α” is performed in the first part. Objective of this 

part is to keep the design variable vector “x” within its lower and upper 

boundaries which are given as input in the beginning of the ALM section. At 

first, lower bound for “α” is set to zero. For this case the first component of the 

search direction “s” is zero and the upper bound is set to a very high value such 

as 1012. Then, for each component of  “x” (xi) , its position with respect to the 

boundaries and corresponding component of “s” (si) are checked. There are six 

possibilities for the position of the design variable xi. 

First, xi can be between its boundaries and the corresponding search direction is 

negative. Lower bound of  “α” remains as is. Upper bound of  “α” is set to the 

ratio of the distance to the lower boundary of xi divided by si. 

Second, xi can be between its boundaries and corresponding search direction is 

positive. Lower bound of  “α” remains as is. Upper bound of  “α” is set to the 

ratio of the distance to the upper boundary of xi divided by si. 

Third, xi can be less than its lower boundary and corresponding search direction 

is positive. Lower bound of  “α” is set to the ratio of the distance to the lower 

boundary of xi divided by si. Upper bound of  “α” is set to the ratio of the 

distance to the upper boundary of xi divided by si. 

Fourth, xi can be less than its lower bound and corresponding search direction is 

negative. For this case the search direction si must be reversed. This means a 

modification in the search direction and requires a reset in metric in DFP 

section. Lower bound of  “α” is set to negative value of the ratio of the distance 

to the lower boundary of xi divided by original si. Upper bound of  “α” is set to 

the negative value of the ratio of the distance to the upper boundary of xi divided 

by original si. 

Fifth, xi can be greater than its upper boundary and corresponding search 

direction is positive. For this case the search direction si must be reversed. This 

means a modification in the search direction and requires a reset in metric in 

DFP section. Lower bound of  “α” is set to the negative value of the ratio of the 

distance to the upper boundary of xi divided by original si. Upper bound of  “α” 
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is set to the negative value of the ratio of the distance to the lower boundary of 

xi divided by original si. 

Sixth, xi can be greater than its upper boundary and corresponding search 

direction is negative. Lower bound of “α” is set to the ratio of the distance to the 

upper boundary of xi divided by si. Upper bound of  “α” is set to the ratio of the 

distance to the lower boundary of xi divided by si. 

After checking for all components of the design variable vector “x”, the 

minimum value of the calculated upper bound of “α” and the maximum value of 

the calculated lower bound of “α” is used as the new upper bound and lower 

bounds of “α”, respectively. This reduces the search interval and ensures staying 

within the boundaries of the variable “x”. 

If the value for the lower bound is greater than the upper bound, it means that 

the search direction in design space does not pass through the region bounded by 

lower and upper bounds of the design variable vector “x”. For this case upper 

and lower bounds are inverted. Therefore, updated “x” is guaranteed to be close 

to its boundaries in next iterations. 

In the second part of this section, golden section algorithm is implemented 

directly. A tolerance and maximum iteration number are calculated by using 

upper and lower bounds of  “α”. In the code the maximum iteration number is 

limited by 1000. Then, reduction of the interval continues until it becomes less 

than the tolerance or the maximum number of iterations is reached. 

Average of the final lower and upper bound of variable “α” is chosen as final 

“α” to be multiplied by search direction “s”.  

At the end of the section, design variable vector “x” is updated by the addition 

of search direction “s” multiplied by “α” to the previous “x”. And, finally the 

corresponding unconstrained objective function value is calculated. 
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3.4 OBJECTIVE FUNCTION SECTION FOR ANALYTIC 

SOLVER 

This section introduces objective function and constraints of the optimization 

algorithm. It is composed of four subsections. These are the objective function, 

equality  constraints, inequality constraints and unconstrained objective function 

section.  

3.4.1 OBJECTIVE FUNCTION SECTION 

The aim of the optimization is to minimize the objective function. In this 

section, main objective function is evaluated. The M-file which is dedicated to 

this function is called “Ofun.m”. Design variable vector “x”, which is a row 

vector, is the only input to the objective function evaluation. Output is a scalar 

which is function value. 

3.4.2 EQUALITY CONSTRAINT SECTION 

An optimization problem might have equality constraints. If there is no equality 

constraints, this section is skipped. Otherwise, the M-file called “Hfun.m”  is 

used to calculate their value(s). Design variable vector “x” is the only input to 

this section.  Output is a column vector in which each row is allocated for a 

different constraint value. At the solution, all the values of the output vector 

must be zero within a prescribed tolerance because the equality constraints are 

expressed by  relations which are set to zero. 

3.4.3 INEQUALITY CONSTRAINT SECTION 

Similarly, an optimization problem might have inequality constraints. If there 

are no inequality constraints, this section is skipped as well. The M-file for the 

calculation of the values of inequality constraints is called “Gfun.m”. Design 

variable vector “x” is the only input to this section.  Output is a column vector in 

which each row is allocated for a different constraint value. At the solution, all 

the values of the output vector must be equal to or less than zero. Similar to 



 27

equality constraints, inequality constraints are expressed by ‘less than or equal 

to’ relations. 

3.4.4  UNCONSTRAINED OBJECTIVE FUNCTION SECTION 

This section constructs the unconstrained objective function for the augmented 

lagrangian method. The name of the M-file for this subsection is “FALM.m”.  

Design variable vector “x”, lagrange multipliers λ for equality and β for 

inequality constraints and penalty multipliers rh and rg  for equality and 

inequality  constraints are given as inputs. Output is a scalar which is the value 

of unconstrained function.  

In the beginning of the section, the main objective function is called.  If there are 

no constraints, this value is the output value. In order to take constraints into 

account, first existence of equality constraints is checked. If there is at least one, 

an additional value which is calculated according to the augmented lagrangian 

method  is added  to the main objective function. This procedure is repeated for 

inequality constraints and final value of unconstrained function is obtained.  

 

3.5 OBJECTIVE FUNCTION SECTION FOR MSC.NASTRAN®  

SOLVER 

Like in the previous section, the purpose of this section is to introduce an 

objective function and constraints to the algorithm. The difference is that in this 

case values of inequality constraints are obtained from a MSC.NASTRAN® 

solution. Main objective function is calculated in M-file “Ofun.m” which is the 

same as used in the previous section. Evaluation of equality and inequality 

constraints, construction of the unconstrained objective function is performed in 

M-file “nastfunc.m”.  Modification of the MSC.NASTRAN® input file .bdf for 

the current design variable vector “x”, executing MSC.NASTRAN® and reading 

results for inequality constraints from the MSC.NASTRAN® output file  .f06 are 

performed in the beginning of the “nastfunc.m”.   
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3.6 GRADIENT FUNCTION SECTION 

To find a search direction in each iteration, the gradient of unconstrained 

objective function at the current design variable vector “x” is needed. The M-file 

for this task is called “gradfunction.m”.  Objective function name and current 

“x” are used as inputs. For each element of “x” first forward finite difference 

technique is applied. Results are stored in a row matrix, which is the output.
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CHAPTER 4 
 

 

4.OPTIMIZATION STRATEGIES WITH DIFFERENT 

OPTIMIZATION AND SOLVER CODES 

 

 

 

Optimization process can be divided into two main sub-processes which are the 

optimization process and the evaluation of objective function and constraints. 

Therefore, an optimizer code and a solver are used to perform the optimization 

process and to evaluate the objective function and constraints, respectively. In 

this chapter, three different methods are presented to perform structural 

optimization with different optimization and solver codes. These methods are 

typically used to solve structural optimization problems in different engineering 

fields. In the first technique, structural optimization is performed by using the 

optimization code prepared in MATLAB® and analytical equations as the solver. 

This method actually corresponds to having an optimization and solver code 

which are developed by the user, and therefore user has complete control over 

the source codes. In this thesis to demonstrate the method, optimization code 

developed is used in conjunction with an analytical solver applicable to a 

cantilever beam problem. In general in this method a finite element code 

developed by the user can be used as the solver code. In the second technique, 

optimization is performed using the optimization code prepared in MATLAB® 

and commercial finite element solver MSC.NASTRAN® as the solver. The use 

of a commercial finite element code as the solver is also very common in 

solving structural optimization problems. Commercial finite element codes 

present a variety of element types with proven accuracy and most analyst have 

access to these codes. Therefore, during the solution of the optimization problem 

one can exploit the advantages of the commercial finite element codes and use 
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them as their solver codes and concentrate more on the optimization source 

code. As the third technique, optimization is performed using 

MSC.NASTRAN® Optimization Module. In this method optimization and 

solver source codes are not within the reach of the user and user solely relies on 

the optimization module of a commercial finite element program. This method 

requires experience in preparing the input files to define the optimization 

problem. In addition, effective use of optimization modules of the commercial 

finite element codes usually takes time because in some commercial finite 

element codes, preprocessing of the optimization problems is not user friendly. 

However, these optimization modules are often used by the engineers dealing 

with solving practical optimization problems.  

The use of three different strategies, discussed above, to solve the same 

optimization problem also allows one to make mutual comparison studies. Thus, 

the solutions obtained with different methods can be compared with each other 

to further substantiate the results obtained for the optimization problem. 

Moreover, knowledge of alternative routes to solve the same optimization 

problem gives the user a chance to optimize their optimization and/or solver 

codes.   

 

4.1 OPTIMIZATION VIA USER DEVELOPED 
OPTIMIZATION AND SOLVER CODES 

 

In this technique optimizer code described in chapter three is used. To perform 

the optimization process, Augmented Lagrange Multiplier method is 

implemented with Davidon Fletcher Powell algorithm as the unconstrained 

optimizer. For the determination of the search direction, ‘Golden Section 

Method’ is chosen in the one dimensional search. To calculate the gradient of 

the unconstrained objective function, which is required by the Davidon Fletcher 

Powell algorithm,  first forward finite difference technique is used. Each method 

is written in a different M-file and a total of  four main M-files are developed to 



 31

perform the optimization process. These M files are named as “AugLagMet.m”,  

“DFP.m”, “golden.m” and “gradfunction.m” respectively.  

The four main M-files are supported with other M-files which perform 

evaluation of the objective function, and constraints, and construction of the 

unconstrained objective function. Evaluation of the objective function and 

constraints are implemented in separate M-files. In M-file “Ofun.m”, main 

objective function is evaluated. MATLAB® files “Gfun.m” and “Hfun.m” are 

used to evaluate inequality and equality constraints, respectively. Files 

“Ofun.m”, “Gfun.m” and “Hfun.m”  comprise the solver code because in 

structural optimization problems the objective function evaluation usually 

requires the calculation of weight, and equality and inequality constraints 

usually require the  solution of certain field variables such as stresses, 

displacements etc. for the particular optimization problem defined. Finally, in 

the M-file called “FALM.m” unconstrained objective function is constructed in 

accordance with Augmented Lagrangian Multiplier Method. Detailed 

information about the code was given in chapter 3. 

This technique is applicable to the problems for which user developed 

optimization and solver codes are used. For demonstration purposes, Euler beam 

relations are used as the analytical expressions to calculate field variables such 

as stresses, displacements etc. The advantage of this technique is that user has 

full control on optimization and solver process. It should be noted that if a finite 

element code is developed by the user then this code could be incorporated in 

“Gfun.m” which evaluates the inequality constraints. In structural optimization 

problems the inequality constraints are usually defined on field variables such as 

deflection, stress or on eigen-values defined in structural stability problems such 

as natural frequency or buckling loads. Thus, the current structure of the code 

allows expansion in implementing a user developed finite element code as the 

solver. This expansion is elaborated in the next section. The user interface of 

this technique is given in Appendix B.1. 
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4.2 OPTIMIZATION USING AN OPTIMIZATION CODE IN 
MATLAB® AND MSC.NASTRAN® AS SOLVER 

 
 
In structural analysis, for the solution of problems involving complex 

geometries and loading, analytical solutions are usually not available. Therefore, 

in such problems finite element method can be used to obtain results for the 

field quantities such as deflections , stress values, etc.. In the optimization 

process of such complex problems, finite element method can be implemented 

as the solver as stated above. In this section, a strategy which uses an 

optimization code in MATLAB® as the optimizer and MSC.NASTRAN® as 

solver is  presented.  

In this technique, the optimization process is same as described previously. The 

M-files “AugLagMet.m”,  “DFP.m”, “golden.m” and “gradfunction.m” are used 

without any change in algorithms. Therefore, this technique differs from the 

previous one only in the evaluation of the objective function and constraints.  

Usually, the main objective function to be minimized is the weight or volume. 

The evaluation of the weight is a simple task. Analytical methods can be used 

for this task and it is performed in “Ofun.m” which is the same MATLAB® file 

as described in the previous method. However, for checking whether the  

constraints are satisfied or not, usually a finite element solution is required. For 

instance, in structural optimization problems the constraints are usually imposed 

on stress values and displacements, or on natural frequencies and on buckling 

loads etc. And, calculation of stresses, displacements, natural frequencies, 

buckling loads etc. usually requires finite element solution to be performed for 

complex geometry and loading problems defined in aerospace structures.  

Therefore, in this method the M-file “nastfunc.m” is developed to perform the 

construction of the unconstrained objective function by using the commercial 

finite element solver MSC.NASTRAN®.  

In this method, the existing input file bdf-file is modified at the beginning of 

“nastfunc.m., In other words the design variables are updated in accordance with 
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the output of the optimization code and old variables are replaced with the new 

ones in bdf_file. Then, MSC.NASTRAN® is called from MATLAB® inside the 

MATLAB® file “nastfunc.m”   to execute a finite element run and the solution is 

written in the MSC.NASTRAN® output file which is .f06-file. After  the 

MSC.NASTRAN®  job is finished, “nastfunc.m” file reads the required output 

from the .f06-file. The required output are those quantities which are used in the 

evaluation of the objective function and constraints. Finally, construction of the 

unconstrained objective function is performed in accordance with the 

‘Augmented Lagrange Multiplier method’. The output of the M-file 

“nastfunc.m”  is the value of unconstrained objective function. 

To be able to perform these tasks, a run must be executed by MSC.NASTRAN®  

before starting the optimization process to find out the format of the 

MSC.NASTRAN® input and output files for the particular structural problem, 

and to locate the positions of the variables which will be used in the evaluation 

of the unconstrained objective function. The position of the variables in the 

input .bdf-file, and required results in the output .f06-file should be spotted 

beforehand to perform the reading and modification of the particular fields in 

the MSC.NASTRAN® input and output files.  A detailed procedure for this 

technique is given in Appendix B.2.  

To summarize, the functions of “FALM.m” in analytical solver technique and 

“nastfunc.m” in MSC.NASTRAN® solver technique are the same. Both take the 

current variables as input, perform the construction of the unconstrained 

objective function and evaluate its value. The output of both M-files is the value 

of unconstrained objective function calculated by using the  current value of the 

design variables. 
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4.3 OPTIMIZATION USING THE  OPTIMIZATION MODULE 
OF MSC.NASTRAN®  

 
MSC.NASTRAN® is widely used in aerospace industry. It has not only a very 

powerful finite element solver, but also contains a module for optimization 

which can be used in structural optimization problems. In this section, property 

optimization and shape optimization capability of the optimization module of 

MSC.NASTRAN® is introduced for linear structural analysis. It should be noted 

that the use of optimization modules of commercial  finite element codes 

presents the user an alternative method to check the results of the 

optimization/solver codes developed by the users themselves. In aerospace 

structures margins of safety of structural elements are usually kept low in order 

to reduce the overall weight of the aerospace vehicle. Structural optimization is 

especially important in aerospace structures because of the significant impact 

that the weight reduction induces on the performance and cost of aerospace 

vehicles. However, since the margins of safety have to be low, in order not to 

risk any failure the results of the structural optimization must be highly reliable. 

Therefore, cross-check of the results produced by the user developed 

optimization/solver codes and by the optimization modules of commercial finite 

element codes is very important in using the results of the optimization codes in 

the design of aerospace structures with an increased level of confidence.  

Optimization process of MSC.NASTRAN® is given in Figure 4.1.  
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Figure 4.1 MSC.NASTRAN® implementation of structural optimization [10] 

 

 

 

Initial design is composed of two parts. First part is the analysis model, in which 

grid locations, element structure and properties, material information, loads, 

boundary conditions and load cases are described. Second part is the design 

model. Defining the design variables, relating design variables to element 

properties, defining the design responses,  constraints and objectives are 

described in design model. The initial design is the input to the 

MSC.NASTRAN® optimization process. 

First activity of MSC.NASTRAN® optimization process is to perform a finite 

element analysis. Next, in the constraint screening activity the constraints that 

are violated or likely to be violated are identified. These are set to be as active 

constraints.  

In sensitivity analysis, the sensitivities such as the rates of change of structural 

response quantities or a change in constraint values with respect to changes in 
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design variables are computed. These are partial derivatives and provide 

essential information to the optimizer. 

An approximate model is constructed by using the information from finite 

element analysis and sensitivity analysis. This model involves approximations to 

finite element results to reduce the number of full scale finite element analyses. 

Optimizer performs optimization process by using the approximate model. By 

default, gradient based methods are used to construct improved design. Other 

available methods are sequential linear programming and sequential quadratic 

programming. 

The improved model is compared with the previous model. If the changes are 

below the desired value, this means that soft convergence is achieved. Then, 

after the finite element analysis, one more convergence test for hard 

convergence is performed. Detailed information about MSC.NASTRAN® 

sensitivity analysis and optimization process is given in Reference [11].  

There are three steps to perform an optimization task using  MSC.NASTRAN®  

optimization tools. These are:  

1. Creating an input .bdf-file  

2. Executing a MSC.NASTRAN®  run 

3. Post processing of the results 

4.3.1 CREATING A BDF-FILE  
 
A standard input .bdf-file is composed of  four sections which are the file 

management, executive control, case control and bulk data, respectively. The 

following paragraphs define these sections. Further information about creating 

bdf-file can be found in Reference [10]. 

4.3.1.1 FILE MANAGEMENT SECTION  
 

File management section is used for the attachment and initialization of database 

sets and external files. Usually, in MSC.NASTRAN® jobs, no file management 

statements are required. But, for shape optimization problems DBLOCATE 
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statement is used for introducing auxiliary model to the design model. Also, user 

defined beam libraries or external responses can be introduced in this section. 

 

4.3.1.2 EXECUTIVE CONTROL SECTION  
 

In executive control, the only required statement is “SOL 200” which implies 

design optimization 

 

4.3.1.3 CASE CONTROL SECTION  
 

In case control section, four tasks are performed for design sensitivity analysis 

and optimization. These tasks are the analysis discipline definition, design task 

definition, design response characterization and shape basis vector computation, 

respectively.  

In analysis discipline definition, solution sequences that are used in optimization 

process are defined. The applicable solution sequences are linear statics, normal 

modes, buckling, direct frequency, modal frequency, modal transient, direct 

complex eigenvalue analysis, static aeroelasticity, static aeroelastic divergence 

and flutter. In this thesis only linear statics is used.  

In design task definition, design objective function and design constraint sets are 

identified.  

Design response characterization is used to resolve design response ambiguities. 

For example, for plate element stresses, maximum shear stress and von Mises 

stress use the same item code ID. By using the statement 

“STRESS(VONMISES)=15” or “STRESS(SHEAR)=15” it is clearly identified 

which stress to be used in analysis and optimization. 

Shape basis vector computation is applicable only when analytic boundary 

shape method is used for shape optimization. Analytic boundary shape method 

is not used in this thesis. 



 38

4.3.1.4 BULK DATA SECTION  
 

Bulk data contains the analysis model and design model. MSC/PATRAN® is a 

very useful tool to construct an analysis model.  There are also other commercial 

tools such as MSC.SOFY® or NX.NASTRAN®.  Design model is located below 

the analysis model.  

At the beginning of the design model section, design variables are identified 

with their initial values and upper and lower bounds.  

Next, the relations between design variables and element properties, 

displacements or shape basis vectors are defined. For shape optimization, an 

auxiliary model is required. This model describes change in grid positions when 

corresponding design variable is changed. It is prepared by a separate finite 

element analysis of the model for the desired displacements and it should be 

introduced in the file management section.  

Next, design responses are created which are used as basis of defining design 

objective function and constraints. There are three types of responses. First type 

is first level responses which are available directly from an MSC.NASTRAN® 

analysis. Structural weight, displacements at grid points, element stresses, and 

so on, are all examples of first level responses. Second type is second level 

responses which are called as user-defined since they utilize the equation input 

feature in MSC.NASTRAN®. Third type is third level responses which can be 

regarded as an extension of the second level responses. This type allows one to 

introduce an external process to the MSC.NASTRAN® design sensitivity and 

optimization process. 

Next, design objective and design constraints are stated. Design objective is a 

scalar quantity to be minimized by the optimizer. “DESOBJ” statement is used 

to identify which design response is related to the design objective.  Design 

constraints are defined by “ DCONSTR” statements. This statement points a 

design response and gives upper and lower limits for the corresponding design 

response.  
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At the end of the bulk data section output control parameters are stated. These 

parameters affect either the frequency or level of detail of the output.  

4.3.2 MSC.NASTRAN® RUN 
 
After completing MSC.NASTRAN® input file.bdf, MSC.NASTRAN® job is 

submitted. Output is written in .f06, .pch (punch) and .op2-files. Xdb file can 

also be used instead of op2 file. At the end of the solution, the output file .f06-

file must be investigated for errors and warnings before post processing the 

results. 

4.3.3 POSTPROCESSING 
 
Two ways of post processing is presented in this section. First one is importing 

the op2-files into MSC/PATRAN®. Using post processor tool of 

MSC/PATRAN® history of each variables, objective function and constraints 

can be plotted on graphs. The results of structural analysis such as stress 

distribution, displacements, grid point forces can be viewed not only at the final 

solution but also at each step of the optimization process. 

Another way of getting the same data is through the output .f06-files. F06-files 

contain similar information as op2-files but in formatted text form.  

Additionally, pch-file includes outputs from the MSC.NASTRAN® analysis 

such as final grid locations or final element properties. These outputs can be 

conveniently used as input into another computer analysis. A sample bdf-file for 

the optimization process is presented in Appendix B.3 
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CHAPTER 5 
 

 

5.SAMPLE STUDIES TO DEMONSTRATE 

DIFFERENT OPTIMIZATION STRATEGIES 

 

 

 

In this chapter, optimizations of two sample problems are presented to 

demonstrate the application of the three different strategies described in the 

previous section. Both problems are cantilever beam problems subjected to a 

vertical force at the free end. In the first problem a rectangular cross section is 

chosen with two design variables. The height and width of the cross-section of 

the beam are taken as the two design parameters. This way it has been possible 

to show the design space on the two dimensional graph, and thus it becomes 

easier to trace the progress of the optimization methods during each step.  

In the second problem I cross section beam is chosen with 4 design variables. 

Since analytical solution for stresses and deflections are available for the 

cantilever beam problems, the three optimization strategies are implemented in 

solving the optimization problems defined. 

5.1 OPTIMIZATION OF CANTILEVER BEAM WITH 
RECTANGULAR CROSS SECTION 

 

In this sample problem, to illustrate the optimization process a simple 

optimization problem is solved. A cantilever beam subject to vertical force ”P” 

at the end will be optimized. In this problem two design variables are used, 

because this way the design space can be shown on a two dimensional graph. 

The beam is assumed to have rectangular cross section which does not vary 

along the length. The width ”B” and the height ”H” are chosen as design 



 41

variables. Their dimensions are given in mm. The length of the beam is fixed. 

Figure 5.1 shows the cantilever beam to be optimized. 

 

 

 

 

 

 

 

Figure 5.1 Cantilever beam with rectangular cross section 
 

 

 

The objective of this problem is to minimize the weight of the beam subject to 

certain constraints. High strength aluminum is used as the material of the beam. 

Since density of aluminum is constant, minimizing weight is the same as 

minimizing the volume.  

The beam is subjected to three constraints. First constraint is maximum normal 

stress due to bending at the root, second one is the maximum tip deflection due 

to tip loading and the third one is height to width ratio to ensure the stability of 

the beam. 

Based on above explanations the optimization problem can be stated as follows: 

 

Minimize: 

LHBV ⋅⋅=         (5.1)   

Subject to: 
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where the bounds of the design variables are specified as: 

201 ≤≤ B       (5.5) 

5020 ≤≤ H       (5.6) 

The design space for this problem is defined by the lower and upper bounds of 

the design variables “B” and “H”. To make a one to one correspondence with 

the optimization solutions, the value of the unconstrained objective function in 

the design space is given in Table 5.1. Horizontal axis represents width “B” of 

the cross section and vertical axis represents the height “H” of the cross section.  

The minimum value of objective function in the design space is at the lower 

bounds of both design variables. In the Table 5.1 the final optimum value of 

objective function and its location is marked with blue background. This value is 

the optimum value considering the constraints imposed on the problem. 

 

 

 

Table  5.1   Objective function variation in the unconstrained design space  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H\B 
(mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0
21 10.5 21.0 31.5 42.0 52.5 63.0 73.5 84.0 94.5 105.0 115.5 126.0 136.5 147.0 157.5 168.0 178.5 189.0 199.5 210.0
22 11.0 22.0 33.0 44.0 55.0 66.0 77.0 88.0 99.0 110.0 121.0 132.0 143.0 154.0 165.0 176.0 187.0 198.0 209.0 220.0
23 11.5 23.0 34.5 46.0 57.5 69.0 80.5 92.0 103.5 115.0 126.5 138.0 149.5 161.0 172.5 184.0 195.5 207.0 218.5 230.0
24 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0 132.0 144.0 156.0 168.0 180.0 192.0 204.0 216.0 228.0 240.0
25 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0 112.5 125.0 137.5 150.0 162.5 175.0 187.5 200.0 212.5 225.0 237.5 250.0
26 13.0 26.0 39.0 52.0 65.0 78.0 91.0 104.0 117.0 130.0 143.0 156.0 169.0 182.0 195.0 208.0 221.0 234.0 247.0 260.0
27 13.5 27.0 40.5 54.0 67.5 81.0 94.5 108.0 121.5 135.0 148.5 162.0 175.5 189.0 202.5 216.0 229.5 243.0 256.5 270.0
28 14.0 28.0 42.0 56.0 70.0 84.0 98.0 112.0 126.0 140.0 154.0 168.0 182.0 196.0 210.0 224.0 238.0 252.0 266.0 280.0
29 14.5 29.0 43.5 58.0 72.5 87.0 101.5 116.0 130.5 145.0 159.5 174.0 188.5 203.0 217.5 232.0 246.5 261.0 275.5 290.0
30 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0 165.0 180.0 195.0 210.0 225.0 240.0 255.0 270.0 285.0 300.0
31 15.5 31.0 46.5 62.0 77.5 93.0 108.5 124.0 139.5 155.0 170.5 186.0 201.5 217.0 232.5 248.0 263.5 279.0 294.5 310.0
32 16.0 32.0 48.0 64.0 80.0 96.0 112.0 128.0 144.0 160.0 176.0 192.0 208.0 224.0 240.0 256.0 272.0 288.0 304.0 320.0
33 16.5 33.0 49.5 66.0 82.5 99.0 115.5 132.0 148.5 165.0 181.5 198.0 214.5 231.0 247.5 264.0 280.5 297.0 313.5 330.0
34 17.0 34.0 51.0 68.0 85.0 102.0 119.0 136.0 153.0 170.0 187.0 204.0 221.0 238.0 255.0 272.0 289.0 306.0 323.0 340.0
35 17.5 35.0 52.5 70.0 87.5 105.0 122.5 140.0 157.5 175.0 192.5 210.0 227.5 245.0 262.5 280.0 297.5 315.0 332.5 350.0
36 18.0 36.0 54.0 72.0 90.0 108.0 126.0 144.0 162.0 180.0 198.0 216.0 234.0 252.0 270.0 288.0 306.0 324.0 342.0 360.0
37 18.5 37.0 55.5 74.0 92.5 111.0 129.5 148.0 166.5 185.0 203.5 222.0 240.5 259.0 277.5 296.0 314.5 333.0 351.5 370.0
38 19.0 38.0 57.0 76.0 95.0 114.0 133.0 152.0 171.0 190.0 209.0 228.0 247.0 266.0 285.0 304.0 323.0 342.0 361.0 380.0
39 19.5 39.0 58.5 78.0 97.5 117.0 136.5 156.0 175.5 195.0 214.5 234.0 253.5 273.0 292.5 312.0 331.5 351.0 370.5 390.0
40 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0
41 20.5 41.0 61.5 82.0 102.5 123.0 143.5 164.0 184.5 205.0 225.5 246.0 266.5 287.0 307.5 328.0 348.5 369.0 389.5 410.0
42 21.0 42.0 63.0 84.0 105.0 126.0 147.0 168.0 189.0 210.0 231.0 252.0 273.0 294.0 315.0 336.0 357.0 378.0 399.0 420.0
43 21.5 43.0 64.5 86.0 107.5 129.0 150.5 172.0 193.5 215.0 236.5 258.0 279.5 301.0 322.5 344.0 365.5 387.0 408.5 430.0
44 22.0 44.0 66.0 88.0 110.0 132.0 154.0 176.0 198.0 220.0 242.0 264.0 286.0 308.0 330.0 352.0 374.0 396.0 418.0 440.0
45 22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0 202.5 225.0 247.5 270.0 292.5 315.0 337.5 360.0 382.5 405.0 427.5 450.0
46 23.0 46.0 69.0 92.0 115.0 138.0 161.0 184.0 207.0 230.0 253.0 276.0 299.0 322.0 345.0 368.0 391.0 414.0 437.0 460.0
47 23.5 47.0 70.5 94.0 117.5 141.0 164.5 188.0 211.5 235.0 258.5 282.0 305.5 329.0 352.5 376.0 399.5 423.0 446.5 470.0
48 24.0 48.0 72.0 96.0 120.0 144.0 168.0 192.0 216.0 240.0 264.0 288.0 312.0 336.0 360.0 384.0 408.0 432.0 456.0 480.0
49 24.5 49.0 73.5 98.0 122.5 147.0 171.5 196.0 220.5 245.0 269.5 294.0 318.5 343.0 367.5 392.0 416.5 441.0 465.5 490.0
50 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 275.0 300.0 325.0 350.0 375.0 400.0 425.0 450.0 475.0 500.0

Design Space (Volume, Objective Function ) (1000 mm^3)
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The values of the maximum stress at the root of the beam in the design space is 

given in Table 5.2. According to the first constraint, maximum stress value must 

be less than 700 MPa. The region where stress values are higher than 700 MPa 

marked with red background. This region is the restricted region. Therefore, a  

feasible region must be defined in the design space where constraints are not 

violated. If there were no constraints, the feasible region would be the design 

space itself. From Table 5.2 it can be concluded that the feasible region is 

reduced by the stress constraint. 

 

 

 

Table  5.2   Variation of maximum stress in the design space  

 

 

 

 

H\B 
(mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 9375 4688 3125 2344 1875 1563 1339 1172 1042 938 852 781 721 670 625 586 551 521 493 469
21 8503 4252 2834 2126 1701 1417 1215 1063 945 850 773 709 654 607 567 531 500 472 448 425
22 7748 3874 2583 1937 1550 1291 1107 968 861 775 704 646 596 553 517 484 456 430 408 387
23 7089 3544 2363 1772 1418 1181 1013 886 788 709 644 591 545 506 473 443 417 394 373 354
24 6510 3255 2170 1628 1302 1085 930 814 723 651 592 543 501 465 434 407 383 362 343 326
25 6000 3000 2000 1500 1200 1000 857 750 667 600 545 500 462 429 400 375 353 333 316 300
26 5547 2774 1849 1387 1109 925 792 693 616 555 504 462 427 396 370 347 326 308 292 277
27 5144 2572 1715 1286 1029 857 735 643 572 514 468 429 396 367 343 322 303 286 271 257
28 4783 2392 1594 1196 957 797 683 598 531 478 435 399 368 342 319 299 281 266 252 239
29 4459 2229 1486 1115 892 743 637 557 495 446 405 372 343 318 297 279 262 248 235 223
30 4167 2083 1389 1042 833 694 595 521 463 417 379 347 321 298 278 260 245 231 219 208
31 3902 1951 1301 976 780 650 557 488 434 390 355 325 300 279 260 244 230 217 205 195
32 3662 1831 1221 916 732 610 523 458 407 366 333 305 282 262 244 229 215 203 193 183
33 3444 1722 1148 861 689 574 492 430 383 344 313 287 265 246 230 215 203 191 181 172
34 3244 1622 1081 811 649 541 463 405 360 324 295 270 250 232 216 203 191 180 171 162
35 3061 1531 1020 765 612 510 437 383 340 306 278 255 235 219 204 191 180 170 161 153
36 2894 1447 965 723 579 482 413 362 322 289 263 241 223 207 193 181 170 161 152 145
37 2739 1370 913 685 548 457 391 342 304 274 249 228 211 196 183 171 161 152 144 137
38 2597 1298 866 649 519 433 371 325 289 260 236 216 200 185 173 162 153 144 137 130
39 2465 1233 822 616 493 411 352 308 274 247 224 205 190 176 164 154 145 137 130 123
40 2344 1172 781 586 469 391 335 293 260 234 213 195 180 167 156 146 138 130 123 117
41 2231 1115 744 558 446 372 319 279 248 223 203 186 172 159 149 139 131 124 117 112
42 2126 1063 709 531 425 354 304 266 236 213 193 177 164 152 142 133 125 118 112 106
43 2028 1014 676 507 406 338 290 254 225 203 184 169 156 145 135 127 119 113 107 101
44 1937 968 646 484 387 323 277 242 215 194 176 161 149 138 129 121 114 108 102 97
45 1852 926 617 463 370 309 265 231 206 185 168 154 142 132 123 116 109 103 97 93
46 1772 886 591 443 354 295 253 222 197 177 161 148 136 127 118 111 104 98 93 89
47 1698 849 566 424 340 283 243 212 189 170 154 141 131 121 113 106 100 94 89 85
48 1628 814 543 407 326 271 233 203 181 163 148 136 125 116 109 102 96 90 86 81
49 1562 781 521 390 312 260 223 195 174 156 142 130 120 112 104 98 92 87 82 78
50 1500 750 500 375 300 250 214 188 167 150 136 125 115 107 100 94 88 83 79 75

Design Space (Maximum Normal Stress, Constraint 1 <= 700MPa )
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The values of the maximum displacement at the tip of the beam in the design 

space is given in Table 5.3. According to the second constraint, maximum 

displacement value must be less than 25.4 mm. The region where displacement 

values are higher than 25.4 mm marked with red background. This region is 

restricted region. Therefore, feasible region in the design space is also reduced 

by the displacement constraint. Again, the cell with the blue background color 

shows the location of the optimum solution. 

 

 

 

Table  5.3   Variation of maximum deflection in the design space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H\B 
(mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 1116.1 558.0 372.0 279.0 223.2 186.0 159.4 139.5 124.0 111.6 101.5 93.0 85.9 79.7 74.4 69.8 65.7 62.0 58.7 55.8
21 964.1 482.1 321.4 241.0 192.8 160.7 137.7 120.5 107.1 96.4 87.6 80.3 74.2 68.9 64.3 60.3 56.7 53.6 50.7 48.2
22 838.5 419.3 279.5 209.6 167.7 139.8 119.8 104.8 93.2 83.9 76.2 69.9 64.5 59.9 55.9 52.4 49.3 46.6 44.1 41.9
23 733.8 366.9 244.6 183.5 146.8 122.3 104.8 91.7 81.5 73.4 66.7 61.2 56.4 52.4 48.9 45.9 43.2 40.8 38.6 36.7
24 645.9 322.9 215.3 161.5 129.2 107.6 92.3 80.7 71.8 64.6 58.7 53.8 49.7 46.1 43.1 40.4 38.0 35.9 34.0 32.3
25 571.4 285.7 190.5 142.9 114.3 95.2 81.6 71.4 63.5 57.1 51.9 47.6 44.0 40.8 38.1 35.7 33.6 31.7 30.1 28.6
26 508.0 254.0 169.3 127.0 101.6 84.7 72.6 63.5 56.4 50.8 46.2 42.3 39.1 36.3 33.9 31.7 29.9 28.2 26.7 25.4
27 453.6 226.8 151.2 113.4 90.7 75.6 64.8 56.7 50.4 45.4 41.2 37.8 34.9 32.4 30.2 28.4 26.7 25.2 23.9 22.7
28 406.7 203.4 135.6 101.7 81.3 67.8 58.1 50.8 45.2 40.7 37.0 33.9 31.3 29.1 27.1 25.4 23.9 22.6 21.4 20.3
29 366.1 183.0 122.0 91.5 73.2 61.0 52.3 45.8 40.7 36.6 33.3 30.5 28.2 26.1 24.4 22.9 21.5 20.3 19.3 18.3
30 330.7 165.3 110.2 82.7 66.1 55.1 47.2 41.3 36.7 33.1 30.1 27.6 25.4 23.6 22.0 20.7 19.5 18.4 17.4 16.5
31 299.7 149.9 99.9 74.9 59.9 50.0 42.8 37.5 33.3 30.0 27.2 25.0 23.1 21.4 20.0 18.7 17.6 16.7 15.8 15.0
32 272.5 136.2 90.8 68.1 54.5 45.4 38.9 34.1 30.3 27.2 24.8 22.7 21.0 19.5 18.2 17.0 16.0 15.1 14.3 13.6
33 248.5 124.2 82.8 62.1 49.7 41.4 35.5 31.1 27.6 24.8 22.6 20.7 19.1 17.7 16.6 15.5 14.6 13.8 13.1 12.4
34 227.2 113.6 75.7 56.8 45.4 37.9 32.5 28.4 25.2 22.7 20.7 18.9 17.5 16.2 15.1 14.2 13.4 12.6 12.0 11.4
35 208.2 104.1 69.4 52.1 41.6 34.7 29.7 26.0 23.1 20.8 18.9 17.4 16.0 14.9 13.9 13.0 12.2 11.6 11.0 10.4
36 191.4 95.7 63.8 47.8 38.3 31.9 27.3 23.9 21.3 19.1 17.4 15.9 14.7 13.7 12.8 12.0 11.3 10.6 10.1 9.6
37 176.3 88.1 58.8 44.1 35.3 29.4 25.2 22.0 19.6 17.6 16.0 14.7 13.6 12.6 11.8 11.0 10.4 9.8 9.3 8.8
38 162.7 81.4 54.2 40.7 32.5 27.1 23.2 20.3 18.1 16.3 14.8 13.6 12.5 11.6 10.8 10.2 9.6 9.0 8.6 8.1
39 150.5 75.3 50.2 37.6 30.1 25.1 21.5 18.8 16.7 15.1 13.7 12.5 11.6 10.8 10.0 9.4 8.9 8.4 7.9 7.5
40 139.5 69.8 46.5 34.9 27.9 23.3 19.9 17.4 15.5 14.0 12.7 11.6 10.7 10.0 9.3 8.7 8.2 7.8 7.3 7.0
41 129.5 64.8 43.2 32.4 25.9 21.6 18.5 16.2 14.4 13.0 11.8 10.8 10.0 9.3 8.6 8.1 7.6 7.2 6.8 6.5
42 120.5 60.3 40.2 30.1 24.1 20.1 17.2 15.1 13.4 12.1 11.0 10.0 9.3 8.6 8.0 7.5 7.1 6.7 6.3 6.0
43 112.3 56.1 37.4 28.1 22.5 18.7 16.0 14.0 12.5 11.2 10.2 9.4 8.6 8.0 7.5 7.0 6.6 6.2 5.9 5.6
44 104.8 52.4 34.9 26.2 21.0 17.5 15.0 13.1 11.6 10.5 9.5 8.7 8.1 7.5 7.0 6.6 6.2 5.8 5.5 5.2
45 98.0 49.0 32.7 24.5 19.6 16.3 14.0 12.2 10.9 9.8 8.9 8.2 7.5 7.0 6.5 6.1 5.8 5.4 5.2 4.9
46 91.7 45.9 30.6 22.9 18.3 15.3 13.1 11.5 10.2 9.2 8.3 7.6 7.1 6.6 6.1 5.7 5.4 5.1 4.8 4.6
47 86.0 43.0 28.7 21.5 17.2 14.3 12.3 10.7 9.6 8.6 7.8 7.2 6.6 6.1 5.7 5.4 5.1 4.8 4.5 4.3
48 80.7 40.4 26.9 20.2 16.1 13.5 11.5 10.1 9.0 8.1 7.3 6.7 6.2 5.8 5.4 5.0 4.7 4.5 4.2 4.0
49 75.9 37.9 25.3 19.0 15.2 12.6 10.8 9.5 8.4 7.6 6.9 6.3 5.8 5.4 5.1 4.7 4.5 4.2 4.0 3.8
50 71.4 35.7 23.8 17.9 14.3 11.9 10.2 8.9 7.9 7.1 6.5 6.0 5.5 5.1 4.8 4.5 4.2 4.0 3.8 3.6

Design Space (Displacement, Constraint 2 <= 25.4 mm )
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The ratio of the “H/B” in the design space is given in Table 5.4. According to 

the third constraint, the ratio “H/B” must be less than 5. The region where the 

ratio “H/B” ratio is greater than 5 is marked with red background. This region is 

the restricted region. Therefore, feasible region in design space is further 

reduced by the slenderness ratio constraint. The cell with the blue background 

show the position of the optimum solution. 

 

 

 

Table  5.4   Variation of slenderness ratio in the design space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The feasible region in design space is reduced by each constraint. In the 

optimization process all the constraints must be satisfied. Therefore, intersection 

H\B 
(mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 20 10 7 5 4 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1
21 21 11 7 5 4 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1
22 22 11 7 6 4 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1
23 23 12 8 6 5 4 3 3 3 2 2 2 2 2 2 1 1 1 1 1
24 24 12 8 6 5 4 3 3 3 2 2 2 2 2 2 2 1 1 1 1
25 25 13 8 6 5 4 4 3 3 3 2 2 2 2 2 2 1 1 1 1
26 26 13 9 7 5 4 4 3 3 3 2 2 2 2 2 2 2 1 1 1
27 27 14 9 7 5 5 4 3 3 3 2 2 2 2 2 2 2 2 1 1
28 28 14 9 7 6 5 4 4 3 3 3 2 2 2 2 2 2 2 1 1
29 29 15 10 7 6 5 4 4 3 3 3 2 2 2 2 2 2 2 2 1
30 30 15 10 8 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2
31 31 16 10 8 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2
32 32 16 11 8 6 5 5 4 4 3 3 3 2 2 2 2 2 2 2 2
33 33 17 11 8 7 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2
34 34 17 11 9 7 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2
35 35 18 12 9 7 6 5 4 4 4 3 3 3 3 2 2 2 2 2 2
36 36 18 12 9 7 6 5 5 4 4 3 3 3 3 2 2 2 2 2 2
37 37 19 12 9 7 6 5 5 4 4 3 3 3 3 2 2 2 2 2 2
38 38 19 13 10 8 6 5 5 4 4 3 3 3 3 3 2 2 2 2 2
39 39 20 13 10 8 7 6 5 4 4 4 3 3 3 3 2 2 2 2 2
40 40 20 13 10 8 7 6 5 4 4 4 3 3 3 3 3 2 2 2 2
41 41 21 14 10 8 7 6 5 5 4 4 3 3 3 3 3 2 2 2 2
42 42 21 14 11 8 7 6 5 5 4 4 4 3 3 3 3 2 2 2 2
43 43 22 14 11 9 7 6 5 5 4 4 4 3 3 3 3 3 2 2 2
44 44 22 15 11 9 7 6 6 5 4 4 4 3 3 3 3 3 2 2 2
45 45 23 15 11 9 8 6 6 5 5 4 4 3 3 3 3 3 3 2 2
46 46 23 15 12 9 8 7 6 5 5 4 4 4 3 3 3 3 3 2 2
47 47 24 16 12 9 8 7 6 5 5 4 4 4 3 3 3 3 3 2 2
48 48 24 16 12 10 8 7 6 5 5 4 4 4 3 3 3 3 3 3 2
49 49 25 16 12 10 8 7 6 5 5 4 4 4 4 3 3 3 3 3 2
50 50 25 17 13 10 8 7 6 6 5 5 4 4 4 3 3 3 3 3 3

Design Space (Slenderness, Constraint 3 <= 5 )
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set of all three feasible regions which are restricted by constraints must be used 

as the final feasible region where an optimum solution resides. In Table 5.5 the 

values of the objective function in the design space are shown. The overall 

restricted region is marked with red background. The final optimum value of 

objective function and its location is marked with blue background. For the 

integer values of the design variables with increments of one, at the optimum 

solution the objective function value is about 144000, the optimum ‘B’ value is 

about 8 and the optimum ‘H’ value is about 36. Thus, in the optimization 

solutions which will be performed next, one can compare the solutions with 

these figures to see how close are the solutions to the true optimum solution. 

 

 

 

Table  5.5   Variation of the value of the objective function in the design 

space after all the constraints are imposed 

 

  

 

 

 

H\B 
(mm) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0
21 10.5 21.0 31.5 42.0 52.5 63.0 73.5 84.0 94.5 105.0 115.5 126.0 136.5 147.0 157.5 168.0 178.5 189.0 199.5 210.0
22 11.0 22.0 33.0 44.0 55.0 66.0 77.0 88.0 99.0 110.0 121.0 132.0 143.0 154.0 165.0 176.0 187.0 198.0 209.0 220.0
23 11.5 23.0 34.5 46.0 57.5 69.0 80.5 92.0 103.5 115.0 126.5 138.0 149.5 161.0 172.5 184.0 195.5 207.0 218.5 230.0
24 12.0 24.0 36.0 48.0 60.0 72.0 84.0 96.0 108.0 120.0 132.0 144.0 156.0 168.0 180.0 192.0 204.0 216.0 228.0 240.0
25 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0 112.5 125.0 137.5 150.0 162.5 175.0 187.5 200.0 212.5 225.0 237.5 250.0
26 13.0 26.0 39.0 52.0 65.0 78.0 91.0 104.0 117.0 130.0 143.0 156.0 169.0 182.0 195.0 208.0 221.0 234.0 247.0 260.0
27 13.5 27.0 40.5 54.0 67.5 81.0 94.5 108.0 121.5 135.0 148.5 162.0 175.5 189.0 202.5 216.0 229.5 243.0 256.5 270.0
28 14.0 28.0 42.0 56.0 70.0 84.0 98.0 112.0 126.0 140.0 154.0 168.0 182.0 196.0 210.0 224.0 238.0 252.0 266.0 280.0
29 14.5 29.0 43.5 58.0 72.5 87.0 101.5 116.0 130.5 145.0 159.5 174.0 188.5 203.0 217.5 232.0 246.5 261.0 275.5 290.0
30 15.0 30.0 45.0 60.0 75.0 90.0 105.0 120.0 135.0 150.0 165.0 180.0 195.0 210.0 225.0 240.0 255.0 270.0 285.0 300.0
31 15.5 31.0 46.5 62.0 77.5 93.0 108.5 124.0 139.5 155.0 170.5 186.0 201.5 217.0 232.5 248.0 263.5 279.0 294.5 310.0
32 16.0 32.0 48.0 64.0 80.0 96.0 112.0 128.0 144.0 160.0 176.0 192.0 208.0 224.0 240.0 256.0 272.0 288.0 304.0 320.0
33 16.5 33.0 49.5 66.0 82.5 99.0 115.5 132.0 148.5 165.0 181.5 198.0 214.5 231.0 247.5 264.0 280.5 297.0 313.5 330.0
34 17.0 34.0 51.0 68.0 85.0 102.0 119.0 136.0 153.0 170.0 187.0 204.0 221.0 238.0 255.0 272.0 289.0 306.0 323.0 340.0
35 17.5 35.0 52.5 70.0 87.5 105.0 122.5 140.0 157.5 175.0 192.5 210.0 227.5 245.0 262.5 280.0 297.5 315.0 332.5 350.0
36 18.0 36.0 54.0 72.0 90.0 108.0 126.0 144.0 162.0 180.0 198.0 216.0 234.0 252.0 270.0 288.0 306.0 324.0 342.0 360.0
37 18.5 37.0 55.5 74.0 92.5 111.0 129.5 148.0 166.5 185.0 203.5 222.0 240.5 259.0 277.5 296.0 314.5 333.0 351.5 370.0
38 19.0 38.0 57.0 76.0 95.0 114.0 133.0 152.0 171.0 190.0 209.0 228.0 247.0 266.0 285.0 304.0 323.0 342.0 361.0 380.0
39 19.5 39.0 58.5 78.0 97.5 117.0 136.5 156.0 175.5 195.0 214.5 234.0 253.5 273.0 292.5 312.0 331.5 351.0 370.5 390.0
40 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0
41 20.5 41.0 61.5 82.0 102.5 123.0 143.5 164.0 184.5 205.0 225.5 246.0 266.5 287.0 307.5 328.0 348.5 369.0 389.5 410.0
42 21.0 42.0 63.0 84.0 105.0 126.0 147.0 168.0 189.0 210.0 231.0 252.0 273.0 294.0 315.0 336.0 357.0 378.0 399.0 420.0
43 21.5 43.0 64.5 86.0 107.5 129.0 150.5 172.0 193.5 215.0 236.5 258.0 279.5 301.0 322.5 344.0 365.5 387.0 408.5 430.0
44 22.0 44.0 66.0 88.0 110.0 132.0 154.0 176.0 198.0 220.0 242.0 264.0 286.0 308.0 330.0 352.0 374.0 396.0 418.0 440.0
45 22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0 202.5 225.0 247.5 270.0 292.5 315.0 337.5 360.0 382.5 405.0 427.5 450.0
46 23.0 46.0 69.0 92.0 115.0 138.0 161.0 184.0 207.0 230.0 253.0 276.0 299.0 322.0 345.0 368.0 391.0 414.0 437.0 460.0
47 23.5 47.0 70.5 94.0 117.5 141.0 164.5 188.0 211.5 235.0 258.5 282.0 305.5 329.0 352.5 376.0 399.5 423.0 446.5 470.0
48 24.0 48.0 72.0 96.0 120.0 144.0 168.0 192.0 216.0 240.0 264.0 288.0 312.0 336.0 360.0 384.0 408.0 432.0 456.0 480.0
49 24.5 49.0 73.5 98.0 122.5 147.0 171.5 196.0 220.5 245.0 269.5 294.0 318.5 343.0 367.5 392.0 416.5 441.0 465.5 490.0
50 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.0 225.0 250.0 275.0 300.0 325.0 350.0 375.0 400.0 425.0 450.0 475.0 500.0

Design Space (Volume, Objective Function ) (1000 mm^3)



 47

5.1.1 OPTIMIZATION USING THE OPTIMIZATION CODE IN 
MATLAB® AND ANALYTIC FUNCTIONS AS SOLVER 

 

First, optimization of the cantilever beam with the rectangular cross section is 

performed by using first strategy explained in Chapter 4. In this method 

optimization code written in MATLAB® is used together with the analytical 

beam equations as the solver. The M-file called “AugLagMet.m” is executed in 

MATLAB® environment. “AugLagMet.m” asks the user for inputs which are 

listed below. The lower and upper bounds of the design variables as well as the 

other inputs are specified as:  

1. Initial values of design variables  [B,H]:  [10 35]  

2. Lower bounds of design variables [B,H]: : [1 20] 

3. Upper bounds of design variables [B,H]: : [20 50] 

4. Number of equality constraints:   0 

5. Number of inequality constraints:   3 

6. Initial values of lagrange multipliers “λ” 

for equality constraints:    0 

7. Initial values of lagrange multipliers “β” 

for inequality constraints :   [10 10 10] 

where, lagrange multipliers “β” is given by [β1, β2, β3] ; 

• β1 is the multiplier for the constraint given in equation (5.2) used for 

upper bound of the stress value at the root of the beam. 

• β2 is the multiplier for the constraint given in equation (5.3) used for the 

displacement value at the tip of the beam. 

• β3 is the multiplier for the constraint given in equation (5.4) used for the 

slenderness ratio. 

 

The M-files “Ofun.m”, “Gfun.m” and “Hfun.m” which evaluate volume, 

inequality constraints and equality constraints respectively are modified specific 

to this problem. Since there is no equality constraints, “Hfun.m” is never called 

during this problem. 
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The optimization process is converged to the solution in 8 iterations, where one 

iteration is one outermost cycle in the main algorithm shown in figure 3.1. In 

Figures 5.2 – 5.7 change of objective function, design variables and constraints 

with respect to iteration number are shown. Results are tabulated and 

comparisons are made in section 5.1.4 with the results obtained by the other two 

methods.  
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Figure 5.2 Variation of the objective function with respect to iteration number 

 

 

 

As it can be seen from Figure 5.2 the objective function initially decreases but 

then starts to increase to satisfy the constraints.  
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Figure 5.3 Variation of width of cross section “B” with respect to iteration 

number 
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Figure 5.4 Variation of height of cross section “H” with respect to iteration 

number 
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Figures 5.3 and 5.4 show that the design variables ‘B’ and ‘H’ are within 

specified  upper and lower bounds. 
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Figure 5.5 Variation of stress at the root of the beam with respect to  

iteration number 
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Figure 5.6 Variation of displacement at the tip of the beam with respect to  

iteration number 
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Figures 5.5 and 5.6 show that stress constraint is not violated at any iteration 

until optimum solution is reached. However, in the initial iterations the 

displacement constraint is violated and the optimization code makes adjustments 

until the constraint is satisfied. It should be noted that if displacement constraint 

did not exist, the weight of the beam could be reduced even further because 

stresses are below the allowable specified for this problem. It is seen that in this 

particular problem the maximum tip deflection constraint is the more restricting 

constraint.  
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Figure 5.7 Variation of H/B with respect to the iteration number  

 

 

 

Figure 5.7 shows that the ‘H/B’ stress constraint is also violated at the initial 

steps but eventually it settles down until the constraint is satisfied. Existence of 

a constraint on the ‘H/B’ ratio prevents one to increase the height of the beam 

freely within the bounds specified. Therefore, it becomes harder to satisfy the 

maximum deflection constraint compared to stress constraint. Because, as it can 
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be seen from Equation (5.3), the tip deflection in inversely proportional to the 

cube of the height of the beam, whereas the maximum stress is inversely 

proportional to the square of the height of the beam. 
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5.1.2 CANTILEVER BEAM OPTIMIZATION USING THE 
OPTIMIZATION CODE IN MATLAB® AND 
MSC.NASTRAN® AS THE SOLVER 

 
Next, optimization of the same cantilever beam with rectangular cross section is 

performed by using the second strategy described in Chapter 4. In this method 

optimization code written in MATLAB® is used together with the commercial 

finite element solver MSC.NASTRAN®. The M-file called “AugLagMet.m” is 

again executed in MATLAB® environment. “AugLagMet.m” asks the user for 

inputs which are given below with the corresponding the values for this 

example.  

1. Initial values of design variables [B,H]: :  [10 35]  

2. Lower bounds of design variables [B,H]: : [1 20] 

3. Upper bounds of design variables [B,H]: : [20 50] 

4. Number of equality constraints:   0 

5. Number of inequality constraints:   3 

6. Initial values of lagrange multipliers “λ” 

for equality constraints:    0 

7. Initial values of lagrange multipliers “β” 

for inequality constraints :   [10 10 10] 

Where, lagrange multipliers “β” is given by [β1, β2, β3] ; 

• β1 is the multiplier for the constraint given in equation (5.2) used for 

upper bound of the stress value at the root of the beam. 

• β2 is the multiplier for the constraint given in equation (5.3) used for the 

displacement value at the tip of the beam. 

• β3 is the multiplier for the constraint given in equation (5.4) used for the 

slenderness ratio. 

The M-files “Ofun.m”, Gfun.m”and “nastfunc.m” which evaluate volume, 

inequality constraints and constructs the unconstrained objective function 

respectively. Since there is no equality constraints, “Hfun.m” is neither modified 

nor called during this problem. A bdf-file called “cantbeam1.bdf” which is the 
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input file for the finite element model of the cantilever beam for linear static 

analysis is created before the start of the optimization process.  Whenever the 

unconstrained objective function or inequality constraints are evaluated, first 

“cantbeam1.bdf” is modified by using current value of the design variables. In 

the solution sequence linear static analysis is performed by MSC.NASTRAN®. 

Finally, maximum stress value at the root and maximum displacement at the tip 

is read from MSC.NASTRAN® output file .f06-file. The finite element model is 

described in section 5.1.3. In section 5.1.3 the solution performed by the 

MSC.NASTRAN® optimization module will be described. The initial analysis 

model used for MSC.NASTRAN® optimization is used as the finite element 

model of the beam here. 

The optimization process is converged to the solution in 12 iterations, where one 

iteration is one outermost cycle in the main algorithm shown in figure 3.1.  In 

Figures 5.8 – 5.13 change of objective function, design variables and constraints 

with respect to iteration number are shown. Results are tabulated and 

comparisons are made in section 5.1.4 with the results obtained by the other two 

methods. 
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Figure 5.8 Variation of objective function with respect to iteration number 
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Figure 5.9 Variation of width of cross section “B” with respect to iteration 

number 
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Figure 5.10 Variation of height of cross section “H” with respect to 

iteration number 
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Figure 5.11 Variation of stress at the root of the beam with respect to 

iteration number 
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Figure 5.12 Variation of displacement at the tip of the beam with respect to 

iteration number 
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Figure 5.13 Variation of H/B with respect to iteration number 

 

 

 

Figures 5.8-5.13 show that variations of the objective function, design variables 

and the constraints with iteration number depict similar behavior as in the first 

strategy where the solver was the analytical relations for the cantilever beam 

problem for the maximum axial stress and maximum tip deflection. This 

example in a way proves that the incorporation of MSC.NASTRAN® as the 

solver of the optimization code developed in MATLAB® has been successful.  
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5.1.3. CANTILEVER BEAM OPTIMIZATION USING         
MSC.NASTRAN® OPTIMIZATION TOOL 

 
Finally, optimization of the cantilever beam with rectangular cross section is 

performed by using third method explained in chapter 4. In this method 

optimization module of MSC.NASTRAN® is used. It should be noted that 

during the execution of the optimization solution with the optimization module 

of MSC.NASTRAN®, MSC.NASTRAN® solver is frequently called internally. 

Before the optimization process, the cantilever beam problem is modeled in 

MSC.PATRAN® .  

The beam is modeled with 10 CBAR elements which can used for the beam 

cross sections for which the shear center and the centroidal axis coincide. 

Rectangular cross section is assigned to the beam elements as the element 

property. At the root 6 degree of freedom (Ux, Uy, Uz, Rx, Ry and Rz) of the 

node is fixed. At the tip 1250 N force is applied in negative (-) “y” direction as 

shown in figure 5.14.  

Initial finite element model and cross section properties are shown in figures 

5.14-5.16.  

 

 

 

 
Figure 5.14 Cantilever beam finite element model 
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Figure 5.15 Initial cantilever beam model with equivalent inertia 

 

 

 

 

 
Figure 5.16 Initial cantilever beam cross section properties 
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To make comparisons with the optimized beam, initial finite element analysis 

results are presented in Figures 5.17-5.18. Figure 5.17 shows the displacement 

distribution  and Figure 5.18 shows the  axial stress distribution along the span 

of the beam.  

 

 

 

 
Figure 5.17 Cantilever beam initial displacement 

 

 

 

 
Figure 5.18 Cantilever beam initial stress distribution 



 61

Optimized finite element model and the cross-section of the optimized beam are 

shown in Figures 5.19 and 5.20 respectively. From Figure 5.19 one can not 

identify the difference between the initial and final optimized beam 

configuration but Figure 5.20 shows the optimized cross-section clearly. It can 

be seen that the height of the beam does not change much from its initial value 

but the width is reduced from its initial value. 

 

 

 

 
Figure 5.19 Final cantilever beam model with equivalent inertia 

 

 

 

 
Figure 5.20 Final cantilever beam cross section properties 
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Final finite element analysis results for the optimized beam are presented in 

Figures 5.21-5.22.  Figure 5.21 shows the displacement distribution and Figure 

5.22 shows the  axial stress distribution along the span of the beam. 

 

 

 

 
Figure 5.21 Displacement distribution in the optimized beam 

 

 

 

 
Figure 5.22 Stress distribution in the optimized beam 
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Variation of the objective function, each design variable and the maximum 

constraint value are shown in Figures 5.23-5.26. Maximum constraint value is 

the highest value of the normalized constraints constructed internally in  

MSC.NASTRAN®. In each iteration different constraint may have highest 

value. MSC.NASTRAN® optimization module arrives at the optimum solution 

in six design cycles as shown in Figures 5.23-5.26. 

 

 

 

 

 
Figure 5.23 History of the objective function  

 

 

 

 

 
Figure 5.24 History of the  design variable “B”  

B (mm) 

Volume (mm3) 
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Figure 5.25 History of the  design variable “H” 

 

 

 

 
Figure 5.26 History of the maximum constraint value  

 

 

 

It is observed that history of the design variables ‘B’ and ‘H’ show similar 

behaviour as the history of the design variables in the other two strategies with 

slight differences in the initial phases of the optimization process.  

Results of the MSC.NASTRAN® optimization module are also tabulated and 

comparisons are made in section 5.1.4 with the results obtained by the other two 

methods. The effect of mesh density on results is presented in appendix C.1. 

H (mm) 
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5.1.4. COMPARISON OF THE THREE DIFFERENT 
OPTIMIZATION STRATEGIES 

 
In this section, results of the three different optimization strategies are compared 

with each other in Table 5.6.  

For the first and second technique, number of iterations indicates evaluation of 

outer most loop of optimization process shown in figure 3.1. For the third 

technique, it indicates the evaluation of loop of optimization process shown in 

figure 4.1. 

 

 

 

Table  5.6   Comparison of results of three different optimization approaches 

  
1st 

Technique 
2nd 

Technique 
3rd 

Technique
Number of iterations 8 12 6 

Initial value 10 10 10 B (mm) 
Final value 7.274 7.294 7.290 
Initial value 35 35 35 H (mm) 
Final value 36.381 36.443 36.448 
Initial value 175000 175000 175000 Objective function (mm3) 
Final value 132317 132914 132849 
Initial value 306.1 306.1 306.1 Max axial stress at the 

root (Mpa) Final value 389.5 387.1 387.2 
Initial value 20.825 20.906 20.906 Max. tip deflection  (mm) 
Final value 25.491 25.397 25.402 
Initial value 3.500 3.500 3.500 H/B 
Final value 5.002 4.996 5.000 

 

 

 

It can be seen from Table 5.6 that in all methods the design variables have 

converged to almost the same values. These values compare well with the values 

given in Table 5.5. In Table 5.5 only the integer values of the design variables 

are listed, therefore optimum values given in Table 5.6 are slightly different 

from the optimum listed in Table 5.5.  Since initial values were chosen close to 

the optimum values optimization processes have converged very quickly in all 
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techniques. The fastest solution is obtained with optimization module of 

MSC.NASTRAN®. It should be noted that optimization module of 

MSC.NASTRAN® uses sensitivity analysis which speeds up the solution time 

drastically. First technique is slightly slower than the MSC.NASTRAN® 

optimization module, and the solutions are obtained within seconds. However, 

second technique is very slow, because during the optimization process 

MSC.NASTRAN® is called whenever the evaluation of the unconstrained 

function is needed. The optimizer waits MSC.NASTRAN® job for some time 

which is required to ask for the license and finish the execution of  a run. For 

this reason, hours are required to arrive at the solution with this technique. 

Therefore, this approach should only be used for problems with complex 

geometry and loading conditions which require finite element analysis. In 

complex geometry and loading situations if the user wants to have full control 

over the optimization code, he can choose to use a commercial finite element 

solver to work in conjunction with the optimization code developed by the user. 

In such cases it is recommended to use parallel computing to speed up the 

arriving at the optimum solution. In all optimization approaches weight is 

reduced by 24 percent without violating any constraint. All techniques show that 

maximum deflection at the tip and “H/B” ratio are the active or more restricting 

constraints at the optimum. 

The results obtained in this section shows that all three approaches can be 

successfully applied in the solution of an optimization problem. The 

optimization approach to be used depends on the availability of resources as 

well as background on optimization theory. For instance, optimization module 

of MSC.NASTRAN® can be effectively used by those who do not have 

sufficient background on optimization theory. In engineering applications 

sometimes engineers are faced to solve problems for which they have little 

background. Therefore, optimization modules of commercial finite element 

codes provide such an alternative tool to be used in design optimization studies.  
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5.2 CANTILEVER BEAM WITH I CROSS SECTION 
 

The second example undertaken is the optimization of a cantilever beam with an 

I shaped cross–section. In this example the number of design variables is 

increased to four. Similar to the first beam example cantilever beam is subjected 

to a vertical force ”P” at the end and the beam will be optimized in a similar 

manner as in rectangular cross-section beam. The beam cross section is assumed 

to be constant along the span of the beam. Height ”H”, flange width ”Wf”, web 

thickness “tw” and flange thickness “tf” are taken as the design variables, 

respectively. The dimensions of the design variables are in mm. The length of 

the beam is fixed and thus only the cross-sectional properties of the beam are 

included in the design variable list. Figure 5.27 shows the cantilever beam with I 

cross section to be optimized. 

 

 

 

 
Figure 5.27 Cantilever beam with I cross section 
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The objective of this problem is again to minimize the weight of the beam. Like 

in the previous problem high strength aluminum is used as the material of the 

beam.  

The beam is subject to three inequality constraints. First inequality constraint is 

maximum bending stress at the root, second one is maximum tip deflection due 

to tip loading and the third one is taken as the maximum shear stress in the web 

of the beam. Based on the problem definition the optimization problem can be 

stated as follows: 

 

Minimize: 
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5.2.1 OPTIMIZATION USING THE OPTIMIZATION CODE IN 
MATLAB® AND ANALYTIC FUNCTIONS AS SOLVER 

 

First, optimization of the cantilever beam with I cross section is performed by 

using first method explained in Chapter 4. In this method optimization code 

written in MATLAB® is used together with the analytical solver. The M-file 

called “AugLagMet.m” is executed in MATLAB® environment. 

“AugLagMet.m” asks user for inputs which are given below with the 

corresponding the values for this example.  

1. Initial values of the design variable vector “x”: [20 12  3 1.5]  

2. Lower bounds of the design variable vector “x”: [10 1 0.5 0.5] 

3. Upper bounds of the design variable vector “x”: [50 50 20 20]  

4. Number of equality constraints:   0 

5. Number of inequality constraints:   10 

6. Initial values of lagrange multipliers “λ” 

for equality constraints:    0 

7. Initial values of lagrange multipliers “β” 

for inequality constraints :   [10000 10000 10000  

10000 10000 10000 

10000 100 100 

10000] 

Where the design variable vector “x” is given by [H, Wf, tw, tf]. Lagrange 

multipliers “β” are given by [β1, β2, β3, β4, β5, β6, β7, β8, β9, β10] ; 

• β1 is the multiplier for the constraint given in equation (5.8) used for 

upper bound of the stress value which is calculated in upper flange at the 

root of the beam. 

• β2 is the multiplier for the constraint given in equation (5.8) used for 

lower bound of the stress value which is calculated in upper flange at the 

root of the beam. 
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• β3 is the multiplier for the constraint given in equation (5.8) used for 

upper bound of the stress value which is calculated in lower flange at the 

root of the beam. 

• β4 is the multiplier for the constraint given in equation (5.8) used for 

lower bound of the stress value which is calculated in lower flange at the 

root of the beam. 

• β5 is the multiplier for the constraint given in equation (5.11) used for 

upper bound of the inequality. 

• β6 is the multiplier for the constraint given in equation (5.11) used for 

lower bound of the inequality. 

• β7 is the multiplier for the constraint given in equation (5.10) used for the 

shear stress value which is calculated at the centroid at the root of the 

beam. 

• β8 is the multiplier for the artificial constraint, which is built for the 

upper bound of the height given in equation (5.15). 

• β9 is the multiplier for the artificial constraint, which is built for the 

upper bound of the flange width given in equation (5.12).. 

• β10 is the multiplier for the constraint given in equation (5.9) used for the 

displacement value at the tip of the beam. 

 

It should be noted that the upper bound of height “H” and the flange width “Wf” 

are input higher than desired values. The height “H” and the flange width “Wf” 

values are then restricted by the inequality constraints. The initial multipliers for 

these constraints “β8” and “β9” are chosen less than other multipliers to reduce 

the impact of these artificial constraints at the beginning of the process. 

The M-files “Ofun.m”, Gfun.m”and “Hfun.m” which evaluate volume, 

inequality constraints and equality constraints respectively, and they are 

modified accordingly.  

The optimization process is converged to the optimum solution in 71 iterations, 

where one iteration is one outermost cycle in the main algorithm shown in figure 

3.1.  In Figures 5.28 – 5.36 change of the objective function, design variables 
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and constraints with respect to iteration number are shown. Results are tabulated 

and comparisons are made in section 5.2.4 with the results obtained by the other 

two methods. 
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Figure 5.28 Variation of the objective function with respect to iteration 

number 
 

 

 

It is seen that in this problem the objective function decreases considerably in 

the optimum solution. However, it is also observed that the optimization process 

is resistant, in other words during the initial phases of the optimization process it 

is seen that there is almost no variation of the objective function. 
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Figure 5.29 Variation of the height of cross section “H” with respect to 

iteration number 
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Figure 5.30 Variation of the width of flanges “Wf” with respect to iteration 

number 
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Variable tw
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Figure 5.31 Variation of the web thickness “tw” with respect to iteration 

number 
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Figure 5.32 Variation of the flange thickness “tf” with respect to iteration 

number 
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The variation of the design variables reveals that flange and web thicknesses 

approach to their lower limit in the optimized solution whereas the flange width 

and the beam height approach to their upper limit in the optimized solution. It is 

also observed that the height of the beam violated the upper bound during the 

initial phase of the iterations and in a way persists to stay in the restricted zone. 

However, in the end it is forced to enter into the feasible region. 
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Figure 5.33 Variation of maximum bending stress at the root of the beam 

with respect to iteration number 
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Figure 5.34 Variation of maximum shear stress at the root of the beam with 

respect to iteration number  
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Figure 5.35 Variation of maximum displacement with respect to iteration 

number 
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Observation of the stress and deflection constraints shows that the displacement 

constraint is a gain the more restricting constraint in this problem like in the 

rectangular beam problem. It is seen that the stress values in the optimum 

solution are far below the maximum allowable values, however the maximum 

tip deflection is almost the same as the maximum allowable value in the 

optimized solution. It is obvious that if there were no displacement constraint 

defined in this problem, the stress values would increase due to the decreases in 

the design variables, and more reduction in the objective function, which the 

total volume, would be obtained. 
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Figure 5.36 Variation of tf / tw with respect to iteration number 

 

 

 

Figure 5.36 shows the variation of the constraint on the ratio of the flange 

thickness to the web thickness. The constraint is violated towards end of the 

optimization process but eventually the constraint is satisfied at the optimum 

solution. 
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5.2.2 CANTILEVER BEAM OPTIMIZATION USING THE 
OPTIMIZATION CODE IN MATLAB® AND 
MSC.NASTRAN® AS THE SOLVER 

 
In this section optimization of the cantilever beam with I cross section is 

performed by using second strategy explained in Chapter 4. In this method 

optimization code written in MATLAB® is used together with the commercial 

finite element solver MSC.NASTRAN®. The M-file called “AugLagMet.m” is 

executed in MATLAB® environment. “AugLagMet.m” asks user for inputs 

which are given below with the corresponding the values for this example.  

1. Initial values of design variable “x”:  [20 12  3 1.5]  

2. Lower bounds of design variable “x”:  [10 1 0.5 0.5] 

3. Upper bounds of design variable “x”:  [50 50 20 20] 

4. Number of equality constraints:   0 

5. Number of inequality constraints:   10 

6. Initial values of lagrange multipliers “λ” 

for equality constraints:    0 

7. Initial values of lagrange multipliers “β” 

for inequality constraints :   [10000 10000 10000  

10000 10000 10000 

10000 100 100 

10000] 

 

Where the design variable vector “x” is given by [H, Wf, tw, tf]. Lagrange 

multipliers “β” is given by [β1, β2, β3, β4, β5, β6, β7, β8, β9, β10] ; 

• β1 is the multiplier for the constraint given in equation (5.8) used for 

upper bound of the stress value which is calculated in upper flange at the 

root of the beam. 

• β2 is the multiplier for the constraint given in equation (5.8) used for 

lower bound of the stress value which is calculated in upper flange at the 

root of the beam. 
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• β3 is the multiplier for the constraint given in equation (5.8) used for 

upper bound of the stress value which is calculated in lower flange at the 

root of the beam. 

• β4 is the multiplier for the constraint given in equation (5.8) used for 

lower bound of the stress value which is calculated in lower flange at the 

root of the beam. 

• β5 is the multiplier for the constraint given in equation (5.11) used for 

upper bound of the inequality. 

• β6 is the multiplier for the constraint given in equation (5.11) used for 

lower bound of the inequality. 

• β7 is the multiplier for the constraint given in equation (5.10) used for the 

shear stress value which is calculated at the centroid at the root of the 

beam. 

• β8 is the multiplier for the artificial constraint, which is built for the 

upper bound of the height given in equation (5.15). 

• β9 is the multiplier for the artificial constraint, which is built for the 

upper bound of the flange width given in equation (5.12).. 

• β10 is the multiplier for the constraint given in equation (5.9) used for the 

displacement value at the tip of the beam. 

 

It should again be noted that the upper bound of height “H” and the flange width 

“Wf” are input higher than desired values. The height “H” and the flange width 

“Wf values are then restricted by the inequality constraints. The initial 

multipliers for these constraints “β8” and “β9” are chosen less than other 

multipliers to reduce the impact of these artificial constraints at the beginning of 

the process. 

The M-files “Ofun.m”, Gfun.m”and “Hfun.m” which evaluate volume, 

inequality constraints and equality constraints respectively, and they are 

modified accordingly.  

The optimization process is converged to the solution again in 71 iterations, 

where one iteration is one outermost cycle in the main algorithm shown in figure 
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3.1. In Figures 5.37 – 5.45 change of objective function, variables and 

constraints with respect to the iteration number are shown. Results are tabulated 

and comparisons are made in section 5.2.4 with the results obtained by the other 

two methods. 
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Figure 5.37 Variation of the objective function with respect to iteration 

number 
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Figure 5.38 Variation of the height of cross section “H” with respect to 

iteration number  
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Figure 5.39 Variation of the width of flanges “Wf” with respect to iteration 

number 
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Variable tw
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Figure 5.40 Variation of the web thickness “tw” with respect to iteration 

number 
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Figure 5.41 Variation of the flange thickness “tf” with respect to iteration 

number 
 



 82

Max. Normal Stress

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80

Iteration number

R
oo

t s
tr

es
s 

(M
Pa

)

Root Stress

Allowable
Stress

 
Figure 5.42 Variation of maximum bending stress at the root of the beam 

with respect to iteration number  
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Figure 5.43 Variation of maximum shear stress at the root of the beam with 

respect to iteration number 
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Figure 5.44 Variation of the maximum displacement with respect to 

iteration number 
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Figure 5.45 Variation of tf / tw with respect to iteration number 
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Figures 5.37-5.45 show that variations of the objective function, design 

variables and the constraints with iteration number depict similar behavior as in 

the first method where the solver was the analytical relations for the cantilever 

beam problem for the maximum axial stress, maximum shear stress  and 

maximum tip deflection. Moreover, this problem has four design variables. This 

example also shows that the incorporation of MSC.NASTRAN® as the solver of 

the optimization code developed in MATLAB® has been successful.  

It should be noted that since the same optimization code are used in both 

methods discussed above, one should expect to get similar variations in the 

history of the design variables.  
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5.2.3. CANTILEVER BEAM OPTIMIZATION USING 
OPTIMIZATION MODULE OF MSC.NASTRAN®  

 
Finally, optimization of the cantilever beam with the I cross section is performed 

by using the optimization module of MSC.NASTRAN®. It should be noted that 

during the execution of the optimization solution with the optimization module 

of MSC.NASTRAN®, MSC.NASTRAN® solver is frequently called internally. 

Before the optimization process, the cantilever beam problem is modeled in 

MSC.PATRAN® .  

The beam is modeled with 10 CBAR elements similar to the modeling of the 

rectangular cross-section beam. I cross section is assigned as the element’s 

cross-sectional property. At the root 6 degree of freedom (Ux, Uy, Uz, Rx, Ry 

and Rz) of the node is fixed. At the tip 1250 N force is applied in negative (-) 

“y” direction as shown in figure 5.46. 

Initial finite element model and cross section properties are shown in figures 

5.46-5.48. Initial values are;  

• Height of the beam: 20 mm  

• Width of the beam: 12 mm 

• Thickness of the web: 3 mm  

• Thickness of the flanges: 1.5 mm.  

 

 

 



 86

 
Figure 5.46 Cantilever I beam model 

 

 

 

 

 
Figure 5.47 Initial cantilever I beam model with equivalent inertia 
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Figure 5.48 Initial cantilever I beam section properties 

 

 

 

Initial finite element analysis results are presented in Figures 5.49-5.50. In 

Figure 5.49 displacement distribution and in Figure 5.50 maximum axial stress 

distribution due to bending are shown. 

 

 

 

 
Figure 5.49 Cantilever I beam initial displacement 
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Figure 5.50 Cantilever I beam initial bending stress distribution  

 

 

 

Optimized finite element model and the cross-section of the optimized beam are 

shown in Figures 5.51 and 5.52 respectively. From Figure 5.51 one can not 

identify the difference between the initial and final optimized beam 

configuration but Figure 5.52 shows the optimized cross-section clearly. It can 

be seen that the height of the beam does not change much from its initial value 

but the flange width and  thickness of the flange and the web are reduced from 

its initial value. 
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Figure 5.51 Final cantilever I beam model with equivalent inertia 

 

 

 

 
Figure 5.52 Final cantilever I beam section properties 

 

 

 

Final finite element analysis results for the optimized beam are presented in 

Figures 5.53-5.54.  Figure 5.53 shows the displacement distribution and Figure 
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5.54 shows the  axial stress distribution due to bending along the span of the 

beam. 

 

 

 

 
Figure 5.53 Displacement distribution in the optimized beam 

 

 

 

 
Figure 5.54 Bending stress distribution in the optimized beam 
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Variation of the objective function, each design variable and the maximum 

constraint value are shown in Figures 5.55-5.60. Maximum constraint value is 

the highest value of the normalized constraints constructed internally in  

MSC.NASTRAN®. In each iteration different constraint may have highest 

value.  MSC.NASTRAN® optimization module arrives at the optimum solution 

in twenty design cycles as shown in Figures 5.55-5.60.  

 

 

 

 
Figure 5.55 History of the objective function  

Volume (mm3) 
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Figure 5.56 History of the design variable “H”(height of the beam) 

 

 

 

 

 
Figure 5.57 History of the design variable “Wf” (width of the flange) 

 

H (mm) 

Wf (mm) 



 93

 
Figure 5.58 History of the  design variable “tw” (thickness of the web) 

 

 

 

 
Figure 5.59 History of the design variable “tf” (thickness of the flange) 

tw (mm) 

tf (mm) 
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Figure 5.60 Cantilever beam problem history of the maximum constraint 

value 
 

 

 

It is observed that in this problem history of the design variables do not  show 

exactly the same similar behaviour as the history of the design variables in the 

other two optimization strategies. Results of the MSC.NASTRAN® optimization 

module are also tabulated and comparisons are made in section 5.2.4 with the 

results obtained by the other two methods. The effect of mesh density on results 

is presented in appendix C.2. 
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5.2.4. COMPARISON OF THE THREE DIFFERENT 
OPTIMIZATION STRATEGIES 
 
In this section, results of the three different optimization strategies are compared 

with each other in Table 5.7.  

For the first and second technique, number of iterations indicates evaluation of 

outer most loop of optimization process shown in figure 3.1. For the third 

technique, it indicates the evaluation of loop of optimization process shown in 

figure 4.1. 

 

 

 

Table  5.7   Comparison of results for the I-Beam 

  
1st 

Technique 
2nd 

Technique 
3rd 

Technique 
Number of iterations 71 75 23 

Initial value 20 20.0 20 Beam Height, H (mm) 
Final value 39.983 40.0 40.0 
Initial value 12.0 12.0 12.0 Flange Width, Wf 

(mm) Final value 39.974 38.43 38.43 
Initial value 3.0 3.0 3.0 Web Thickness, tw 

(mm) Final value 0.50 0.50 0.50 
Initial value 1.5 1.5 1.5 Flange Thickness, tf 

(mm) Final value 0.883 0.970 0.970 
Initial value 43500 43500 43500 Objective function, V 

(mm3) Final value 44834 46820 46820 
Initial value 1448.4 1448.4 1448.4 Max. Stress at the 

root (MPa) Final value 426.4 407.0 407.0 
Initial value 23.174 23.174 23.174 Max. Shear Stress 

(MPa) Final value 65.938 65.826 65.826 
Initial value 8.000 8.000 8.000 Max. deflection at tip 

(mm) Final value 25.39 25.474 25.474 
Initial value 0.500 0.500 0.500 tf / tw 
Final value 1.765 1.939 1.939 

 

 

 

It can be seen from Table 5.7 that there are slight differences in the converged 

design variables in the three solution strategies used. In the three approaches the 
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beam height and web thickness converges to almost the same value. However 

there are slight differences in flange width and flange thickness. Flange width 

obtained by using MSC.NASTRAN® is found a approximately 1 mm lower than 

the flange width obtained by the optimization code developed in MATLAB®. 

However, in the optimized solution the objective function value determined by 

the optimization by using MSC.NASTRAN® is slightly higher than the solution 

obtained by the optimization code which uses analytical functions as the solver. 

The difference is approximately 4.2 %. This slight difference is due to the higher 

flange thickness determined by the optimization by using MSC.NASTRAN®.  

It should also be noticed that in the optimum solution the value of the objective 

function is higher than its initial value. Such a situation occurs because the 

constraints of the problem drives the design variables into the feasible region 

and this process may end up with an increase in the optimized objective function 

value compared to its initial value. 

Again the fastest solution is obtained with the optimization module of 

MSC.NASTRAN®. As it was discussed in the rectangular cross-section beam 

problem the second technique is very slow because of the frequent calling of 

MSC.NASTRAN® during the evaluation of the unconstrained function. 

Therefore, this approach should only be used for problems with complex 

geometry and loading conditions which require finite element analysis. In the 

future it is also recommended to improve the optimization code such that the 

optimum solution will be arrived at in less number of iteration steps. 

It can be concluded that apart from the slight differences all three approaches 

converges to the same optimum, and this verifies that all three approaches work 

fine.  
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CHAPTER 6 
 

 

6.OPTIMIZATION OF A WING TORQUE BOX 

 

 

 

Weight saving is one of the most important issues in aerospace structures. 

Therefore,  in this chapter structural optimization of a wing torque is performed 

by using the optimization module of MSC.NASTRAN®. As it was discussed 

before, the use of MSC.NASTRAN® as the solver only results in extremely long 

solution times with the optimization code developed in the thesis. To arrive at 

the solution within reasonable time in this section the optimization module of 

MSC.NASTRAN® is used and by the virtue of the sensitivity analysis feature of 

the optimization module of MSC.NASTRAN® the optimization of the torque 

box of a wing structure could be solved within a reasonable time period. The 

main objective is to design a suitable primary structure of least possible weight 

for the uniform cantilever wing while satisfying the constraints imposed. It 

should be noted that such an optimization study on an aerospace structure with 

the optimization module of a commercial finite element code is especially in 

important for aerospace companies dealing with the design and manufacturing 

of aerospace systems. Commercial codes give the opportunity to perform 

structural optimization with many design variables within a reasonable time. In 

the particular study the sensitivity analysis capability and the building up of the 

approximate model by MSC.NASTRAN® allowed the optimization to be 

completed within a short time. 

Two main types of optimization are performed on the torque box of the wing. In 

the first optimization study only property optimization is performed. In this type 

of optimization design variables are related to a property of an element such as 

shell element thickness or cross-sectional area of a rod element. Therefore 
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optimizer tries to reach the optimum solution by changing the properties of 

elements only. In this type of optimization grid locations are not changed, so 

initial shape of the wing is preserved. Two optimizations are performed within 

the scope of property optimization. In section 6.1, an equivalent aerodynamic 

lift force is applied at the tip of the wing, and optimization is performed for a 

constant tip force and tip bending moment. In section 6.2, a distributed 

aerodynamic lift force and pitching moment is applied to the torque box at the 

rib locations. Property optimization study has been performed with these two 

different external load cases.  

The second type of optimization study performed involves shape optimization. 

In MSC.NASTRAN® shape optimization allows optimizer to modify grid 

locations, thus positions of structural elements can be changed to aid in arriving 

at the optimum solution. In section 6.3.1, only one variable which defines 

change of  the location of rib 2 is used in a pure shape optimization study. This 

study is performed to verify that the optimization tool of MSC.NASTRAN® 

changes the location of the rib correctly so that desired constraint is satisfied. As 

it will be described in section 6.3.1, by performing static analysis with the rib 2 

displaced to the left and right of its initial position, one can actually show that 

whether output of the optimizer is meaningful or not. In section 6.3.2, multi-

variable shape and property optimization is performed simultaneously. This 

example can be regarded as the most complete optimization study which not 

only optimizes the properties but also allows location change of the ribs along 

the wing span to arrive at the optimum solution. 

The uniform cantilever wing studied has a 1.524 m (5 ft) chord length and 4.572 

m (15 ft) semispan. NACA 2412 type of airfoil defines the cross section of the 

wing. The geometry of the wing in rendered form is shown in Figure 6.1. 
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Figure 6.1 The wing model studied in optimization study 

 

 

 

Wing is divided into 6 equal parts by the ribs. The rib located at the root is 

numbered 1 and the rib located at the root is numbered 7. There are two spars on 

the wing, front and rear spar. Front spar is located at 25% of the chord and rear 

spar is located at 66% of the chord measured from the leading edge. Both spars 

have an extension at the root to connect the wing to the fuselage. Rib and spar 

locations are shown in detail in Figure 6.2.  
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Figure 6.2 Geometry and finite element of the wing 

 

 

 

In the finite element model rod elements are used to model the flanges of the 

spars and shell elements are used to model the webs and skin panels. Equivalent 

section option is used for the shell element properties to provide membrane 

effect only. For this purpose, a dummy material with relatively very low elastic 

modulus is chosen as the bending material. Finite element model of the wing is 

given in Figure 6.3. In the finite element model single shell elements are used 

between the ribs in the skins, and spar webs. 
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Figure 6.3 Elements of the wing model 

 

 

 

Spars consist of a web, an upper flange and a lower flange. Element properties 

of front and rear spars are given in Tables 6.1 and 6.2, respectively. As it can be 

seen from Tables 6.1 and 6.2, the flange areas of the spars, web thicknesses and 

skin thicknesses change discretely between the rib stations. Thus, the flange 

areas, skin and web thicknesses are taken as the discrete design variables. The 

last three columns of the tables give the initial value, lower and upper bounds of 

the design variables. The thicknesses are given in mm, and the cap areas are 

given in mm2. 
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Table  6.1   Element properties and design variables of the front spar 
Front Spar
Description 
Web Thickness
Rib 1 - Rib 2 110100 110100 v001 1 0.8 5
Rib 2 - Rib 3 210100 210100 v002 1 0.8 5
Rib 3 - Rib 4 310100 310100 v003 1 0.8 5
Rib 4 - Rib 5 410100 410100 v004 1 0.8 5
Rib 5 - Rib 6 510100 510100 v005 1 0.8 5
Rib 6 - Rib 7 610100 610100 v006 1 0.8 5
Upper Cap Area
Rib 1 - Rib 2 110200 110200 v007 100 1 2000
Rib 2 - Rib 3 210200 210200 v008 100 1 2000
Rib 3 - Rib 4 310200 310200 v009 100 1 2000
Rib 4 - Rib 5 410200 410200 v010 100 1 2000
Rib 5 - Rib 6 510200 510200 v011 100 1 2000
Rib 6 - Rib 7 610200 610200 v012 100 1 2000
Lower Cap Area
Rib 1 - Rib 2 110300 110300 v013 100 1 2000
Rib 2 - Rib 3 210300 210300 v014 100 1 2000
Rib 3 - Rib 4 310300 310300 v015 100 1 2000
Rib 4 - Rib 5 410300 410300 v016 100 1 2000
Rib 5 - Rib 6 510300 510300 v017 100 1 2000
Rib 6 - Rib 7 610300 610300 v018 100 1 2000

Minimum 
Value (mm)

Maximum 
Value (mm)

Element 
Number

Property 
Number

D. V. 
Name

Initial 
Value 

 
 

 

 

Table  6.2   Element properties and design variables of the rear spar 
Rear Spar
Description 
Web Thickness
Rib 1 - Rib 2 120100 120100 v019 1 0.8 5
Rib 2 - Rib 3 220100 220100 v020 1 0.8 5
Rib 3 - Rib 4 320100 320100 v021 1 0.8 5
Rib 4 - Rib 5 420100 420100 v022 1 0.8 5
Rib 5 - Rib 6 520100 520100 v023 1 0.8 5
Rib 6 - Rib 7 620100 620100 v024 1 0.8 5
Upper Cap Area
Rib 1 - Rib 2 120200 120200 v025 100 1 2000
Rib 2 - Rib 3 220200 220200 v026 100 1 2000
Rib 3 - Rib 4 320200 320200 v027 100 1 2000
Rib 4 - Rib 5 420200 420200 v028 100 1 2000
Rib 5 - Rib 6 520200 520200 v029 100 1 2000
Rib 6 - Rib 7 620200 620200 v030 100 1 2000
Lower Cap Area
Rib 1 - Rib 2 120300 120300 v031 100 1 2000
Rib 2 - Rib 3 220300 220300 v032 100 1 2000
Rib 3 - Rib 4 320300 320300 v033 100 1 2000
Rib 4 - Rib 5 420300 420300 v034 100 1 2000
Rib 5 - Rib 6 520300 520300 v035 100 1 2000
Rib 6 - Rib 7 620300 620300 v036 100 1 2000

Element 
Number

Property 
Number

D. V. 
Name

Initial 
Value 

Minimum 
Value (mm)

Maximum 
Value (mm)
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Finite element model and element numbering of front and rear spars are given in 

Figures 6.4 and 6.5 respectively. 

 

 

 

 
Figure 6.4 Elements of the front spar  
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Figure 6.5 Elements of the rear spar 

 

 

 

Skins consist of six panels. Element properties of upper and lower skin panels 

are given in Tables 6.3 and 6.4, respectively. The initial value of the thickness 

and the initial values of the lower and upper bounds are assigned arbitrarily 

based on experience. 

 

 

 

Table  6.3   Element Properties and Design Variables of Upper Skin 
Upper Skin Thickness

Rib 1 - Rib 2 110020 110020 v037 1 0.8 5
Rib 2 - Rib 3 210020 210020 v038 1 0.8 5
Rib 3 - Rib 4 310020 310020 v039 1 0.8 5
Rib 4 - Rib 5 410020 410020 v040 1 0.8 5
Rib 5 - Rib 6 510020 510020 v041 1 0.8 5
Rib 6 - Rib 7 610020 610020 v042 1 0.8 5

Description Initial 
Value 

Minimum 
Value (mm)

Maximum 
Value (mm)

Element 
Number

Property 
Number

D. V. 
Name
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Table  6.4   Element properties and design variables of lower skin 
Lower Skin Thickness

Rib 1 - Rib 2 110030 110030 v043 1 0.8 5
Rib 2 - Rib 3 210030 210030 v044 1 0.8 5
Rib 3 - Rib 4 310030 310030 v045 1 0.8 5
Rib 4 - Rib 5 410030 410030 v046 1 0.8 5
Rib 5 - Rib 6 510030 510030 v047 1 0.8 5
Rib 6 - Rib 7 610030 610030 v048 1 0.8 5

Element 
Number

Property 
Number

D. V. 
Name

Initial 
Value 

Minimum 
Value (mm)

Maximum 
Value (mm)Description 

 
 

 

 

Finite element model and element numbering of upper and lower skins are given 

in Figures 6.6 and 6.7 respectively. 

 

 

 

 
Figure 6.6 Upper skin elements  
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Figure 6.7 Lower skin elements 

 

 

 

Ribs are assumed to consist of a web, an upper and a lower flange. Element 

properties of ribs from root to tip are given in Tables 6.5 - 6.11, respectively. 

Finite element model and element numbering of the ribs are given in Figures 6.8 

- 6.14  from root to tip, respectively. 
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Table  6.5   Element properties and design variables of rib 1 
Rib 1

Web Thickness (mm) 111000 111000 v049 1 0.8 5
Upper Cap Area (mm^2) 112000 112000 v050 100 1 2000
Lower Cap Area (mm^2) 113000 113000 v051 100 1 2000
Front Cap Area (mm^2) 114000 114000 v052 100 1 2000
Rear Cap Area (mm^2) 124000 124000 v053 100 1 2000

Initial 
Value 

Minimum 
Value 

Maximum 
Value Description Element 

Number
Property 
Number

D. V. 
Name

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.8 Elements of rib 1 

 

Upper Cap Area
Front Cap Area

Rear Cap Area

Lower Cap Area 
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Table  6.6   Element Properties and Design Variables of Rib 2 
Rib 2

Web Thickness (mm) 211000 211000 v054 1 0.8 5
Upper Cap Area (mm^2) 212000 212000 v055 100 1 2000
Lower Cap Area (mm^2) 213000 213000 v056 100 1 2000
Front Cap Area (mm^2) 214000 214000 v057 100 1 2000
Rear Cap Area (mm^2) 224000 224000 v058 100 1 2000

Initial 
Value 

Minimum 
Value 

Maximum 
Value Description Element 

Number
Property 
Number

D. V. 
Name

 
 

 

 

 
Figure 6.9 Elements of rib 2 

 

 

 

Table  6.7   Element properties and design variables of rib 3 
Rib 3

Web Thickness (mm) 311000 311000 v059 1 0.8 5
Upper Cap Area (mm^2) 312000 312000 v060 100 1 2000
Lower Cap Area (mm^2) 313000 313000 v061 100 1 2000
Front Cap Area (mm^2) 314000 314000 v062 100 1 2000
Rear Cap Area (mm^2) 324000 324000 v063 100 1 2000

Description Element 
Number

Property 
Number

D. V. 
Name

Initial 
Value 

Minimum 
Value 

Maximum 
Value 

 
 

 

 

 
Figure 6.10 Elements of rib 3 
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Table  6.8   Element properties and design variables of rib 4 
Rib 4

Web Thickness (mm) 411000 411000 v064 1 0.8 5
Upper Cap Area (mm^2) 412000 412000 v065 100 1 2000
Lower Cap Area (mm^2) 413000 413000 v066 100 1 2000
Front Cap Area (mm^2) 414000 414000 v067 100 1 2000
Rear Cap Area (mm^2) 424000 424000 v068 100 1 2000

Initial 
Value 

Minimum 
Value 

Maximum 
Value Description Element 

Number
Property 
Number

D. V. 
Name

 
 

 

 

 
Figure 6.11 Elements of rib 4 

 

 

 

Table  6.9   Element properties and design variables of rib 5 
Rib 5

Web Thickness (mm) 511000 511000 v069 1 0.8 5
Upper Cap Area (mm^2) 512000 512000 v070 100 1 2000
Lower Cap Area (mm^2) 513000 513000 v071 100 1 2000
Front Cap Area (mm^2) 514000 514000 v072 100 1 2000
Rear Cap Area (mm^2) 524000 524000 v073 100 1 2000

Description Element 
Number

Property 
Number

D. V. 
Name

Initial 
Value 

Minimum 
Value 

Maximum 
Value 

 
 

 

 

 
Figure 6.12 Elements of rib 5 
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Table  6.10   Element properties and design variables of rib 6 
Rib 6

Web Thickness (mm) 611000 611000 v074 1 0.8 5
Upper Cap Area (mm^2) 612000 612000 v075 100 1 2000
Lower Cap Area (mm^2) 613000 613000 v076 100 1 2000
Front Cap Area (mm^2) 614000 614000 v077 100 1 2000
Rear Cap Area (mm^2) 624000 624000 v078 100 1 2000

Initial 
Value 

Minimum 
Value 

Maximum 
Value Description Element 

Number
Property 
Number

D. V. 
Name

 
 

 

 

 
Figure 6.13 Elements of rib 6 

 

 

 

Table  6.11   Element properties and design variables of rib 7 
Rib 7

Web Thickness (mm) 711000 711000 v079 1 0.8 5
Upper Cap Area (mm^2) 712000 712000 v080 100 1 2000
Lower Cap Area (mm^2) 713000 713000 v081 100 1 2000
Front Cap Area (mm^2) 714000 714000 v082 100 1 2000
Rear Cap Area (mm^2) 724000 724000 v083 100 1 2000

Description Element 
Number

Property 
Number

D. V. 
Name

Initial 
Value 

Minimum 
Value 

Maximum 
Value 

 
 

 

 

 
Figure 6.14 Elements of rib 7 
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Thus, there are 83 design variables as can be seen from Table 6.11 which lists 

the last five design variables. 

Displacement boundary conditions are applied to nodes of extension part of the 

spars in all analyses and this part is not considered in the region to be optimized. 

Applied displacement boundary condition is shown in figure 6.15. 

 

 

 

 
Figure 6.15 Applied displacement boundary condition 

 

 

 

Elements to be optimized are shown in Figure 6.16 . The skin and web elements 

are shrunk by a certain percentage to allow one identify each  structural element 

separately. 
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.

 
Figure 6.16 Elements to be optimized 

 

 

 

The wing is designed for an aircraft having 1460 kg as the maximum takeoff 

weight, 861 kg minimum operating weight and a dive speed of 270 mile per 

hour. Based on this information span wise lift and pitching moment distribution 

is calculated in accordance with the ESDU document 95010 [12]. Span wise lift 

and pitching moment distributions are given in Figures 6.17 - 6.18. 
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Figure 6.17 Spanwise aerodynamic lift force distribution 

 

 

 

 
Figure 6.18 Spanwise aerodynamic pitching moment distribution 

 
The optimization problem is defined such that the objective function is to 

minimize the weight of the wing subject to 87 constraints. Constraints are 

imposed on axial stresses in all flanges, Von Mises stresses in all webs and skins 

and displacements of nodes at the tip of the wing. All constraints are given in 

Tables 6.12 – 6.23.  
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Table  6.12   Design constraints related to front spar 
Front Spar

Tip 
Loading

Distr. 
Load

Web Von Mises Stress (MPa) (MPa) (MPa) (MPa)
110100 110100 s001 AS001 224.8 203.3 0.01 300
210100 210100 s002 AS002 218.3 153.9 0.01 300
310100 310100 s003 AS003 219.6 113.5 0.01 300
410100 410100 s004 AS004 219.9 73.5 0.01 300
510100 510100 s005 AS005 216.1 37.5 0.01 300
610100 610100 s006 AS006 237.9 10.2 0.01 300

Upper Cap Axial Stress
110200 110200 s007 AS007 -445.5 -454.6 -425 445
210200 210200 s008 AS008 -237.5 -286.3 -425 445
310200 310200 s009 AS009 -36.2 -163.8 -425 445
410200 410200 s010 AS010 167.5 -77.4 -425 445
510200 510200 s011 AS011 363.4 -26.2 -425 445
610200 610200 s012 AS012 600.5 -4.5 -425 445

Lower Cap Axial Stress
110300 110300 s013 AS013 445.5 454.7 -425 445
210300 210300 s014 AS014 237.5 286.3 -425 445
310300 310300 s015 AS015 36.2 163.9 -425 445
410300 410300 s016 AS016 -167.5 77.4 -425 445
510300 510300 s017 AS017 -363.5 26.2 -425 445
610300 610300 s018 AS018 -600.5 4.5 -425 445

Element 
Number

Property 
Number

D. R. 
Name

D. C. 
Name

Description Minimum 
Value

Maximum 
Value

Initial Value

 
 

 

 

Table  6.13   Design constraints related to rear spar 
Rear Spar

Tip 
Loading

Distr. 
Load

Web Von Mises Stress (MPa) (MPa) (MPa) (MPa)
120100 120100 s019 AS019 120.5 107.4 0.01 300
220100 220100 s020 AS020 134.7 96.1 0.01 300
320100 320100 s021 AS021 131.8 67.8 0.01 300
420100 420100 s022 AS022 131.3 44.3 0.01 300
520100 520100 s023 AS023 139.6 22.6 0.01 300
620100 620100 s024 AS024 92.0 6.6 0.01 300

Upper Cap Axial Stress
120200 120200 s025 AS025 -283.0 -291.2 -425 445
220200 220200 s026 AS026 -165.1 -200.3 -425 445
320200 320200 s027 AS027 -23.5 -111.9 -425 445
420200 420200 s028 AS028 111.2 -54.3 -425 445
520200 520200 s029 AS029 258.9 -19.4 -425 445
620200 620200 s030 AS030 342.9 -3.8 -425 445

Lower Cap Axial Stress
120300 120300 s031 AS031 283.1 291.3 -425 445
220300 220300 s032 AS032 165.2 200.3 -425 445
320300 320300 s033 AS033 23.5 111.9 -425 445
420300 420300 s034 AS034 -111.3 54.3 -425 445
520300 520300 s035 AS035 -258.9 19.4 -425 445
620300 620300 s036 AS036 -343.0 3.8 -425 445

D. R. 
Name

D. C. 
Name

Description Element 
Number

Initial Value Minimum 
Value

Maximum 
ValueProperty 

Number
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Table  6.14   Design constraints related to upper skin 
Upper Skin Von Mises Stress

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
110020 110020 s037 AS037 370.1 378.9 0.01 281
210020 210020 s038 AS038 207.9 249.9 0.01 281
310020 310020 s039 AS039 38.8 141.3 0.01 281
410020 410020 s040 AS040 144.2 67.9 0.01 281
510020 510020 s041 AS041 319.6 23.8 0.01 281
610020 610020 s042 AS042 479.7 4.6 0.01 281

Description Element 
Number

Initial Value Minimum 
Value

Maximum 
ValueProperty 

Number
D. R. 
Name

D. C. 
Name

 
 

 

 

Table  6.15   Design constraints related to lower skin 
Lower Skin Von Mises Stress

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
110030 110030 s043 AS043 370.1 379.0 0.01 281
210030 210030 s044 AS044 207.9 250.0 0.01 281
310030 310030 s045 AS045 38.8 141.4 0.01 281
410030 410030 s046 AS046 144.2 67.9 0.01 281
510030 510030 s047 AS047 319.7 23.8 0.01 281
610030 610030 s048 AS048 479.8 4.6 0.01 281

Description Element 
Number

Property 
Number

D. R. 
Name

D. C. 
Name

Initial Value Minimum 
Value

Maximum 
Value

 
 

 

 

Table  6.16   Design constraints related to rib 1 
Rib 1

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 111000 111000 s049 AS049 10.3 8.5 0.01 300
Upper Cap Axial Stress 112000 112000 s050 AS050 82.7 83.4 -425 445
Lower Cap Axial Stress 113000 113000 s051 AS051 -82.7 -83.4 -425 445
Front Cap Axial Stress 114000 114000 s052 AS052 0.0 0.0 -425 445
Rear Cap Axial Stress 124000 124000 s053 AS053 0.0 0.0 -425 445

Description 

Initial Value Minimum 
Value

Maximum 
ValueElement 

Number
Property 
Number

D. R. 
Name

D. C. 
Name

 
 

 

 

Table  6.17   Design constraints related to rib 2 
Rib 2

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 211000 211000 s054 AS054 7.1 3.4 0.01 300
Upper Cap Axial Stress 212000 212000 s055 AS055 92.6 98.5 -425 445
Lower Cap Axial Stress 213000 213000 s056 AS056 -92.6 -98.5 -425 445
Front Cap Axial Stress 214000 214000 s057 AS057 0.0 0.0 -425 445
Rear Cap Axial Stress 224000 224000 s058 AS058 0.0 0.0 -425 445

Description 
Element 
Number

Property 
Number

D. R. 
Name

D. C. 
Name

Initial Value Minimum 
Value

Maximum 
Value
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Table  6.18   Design constraints related to rib 3 
Rib 3

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 311000 311000 s059 AS059 2.8 7.0 0.01 300
Upper Cap Axial Stress 312000 312000 s060 AS060 31.1 51.2 -425 445
Lower Cap Axial Stress 313000 313000 s061 AS061 -31.1 -51.2 -425 445
Front Cap Axial Stress 314000 314000 s062 AS062 0.0 0.0 -425 445
Rear Cap Axial Stress 324000 324000 s063 AS063 0.0 0.0 -425 445

Description 

Initial Value Minimum 
Value

Maximum 
ValueElement 

Number
Property 
Number

D. R. 
Name

D. C. 
Name

 
 

 

 

Table  6.19   Design constraints related to rib 4 
Rib 4

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 411000 411000 s064 AS064 0.1 3.9 0.01 300
Upper Cap Axial Stress 412000 412000 s065 AS065 -15.7 28.5 -425 445
Lower Cap Axial Stress 413000 413000 s066 AS066 15.7 -28.5 -425 445
Front Cap Axial Stress 414000 414000 s067 AS067 0.0 0.0 -425 445
Rear Cap Axial Stress 424000 424000 s068 AS068 0.0 0.0 -425 445

Description 
Element 
Number

Property 
Number

D. R. 
Name

D. C. 
Name

Initial Value Minimum 
Value

Maximum 
Value

 
 

 

 

Table  6.20   Design constraints related to rib 5 
Rib 5

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 511000 511000 s069 AS069 7.3 3.4 0.01 300
Upper Cap Axial Stress 512000 512000 s070 AS070 -63.3 11.5 -425 445
Lower Cap Axial Stress 513000 513000 s071 AS071 63.3 -11.5 -425 445
Front Cap Axial Stress 514000 514000 s072 AS072 0.0 0.0 -425 445
Rear Cap Axial Stress 524000 524000 s073 AS073 0.0 0.0 -425 445

Description 

Initial Value Minimum 
Value

Maximum 
ValueElement 

Number
Property 
Number

D. R. 
Name

D. C. 
Name

 
 

 

 

Table  6.21   Design constraints related to rib 6 
Rib 6

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 611000 611000 s074 AS074 28.8 2.2 0.01 300
Upper Cap Axial Stress 612000 612000 s075 AS075 -122.1 3.0 -425 445
Lower Cap Axial Stress 613000 613000 s076 AS076 122.2 -3.0 -425 445
Front Cap Axial Stress 614000 614000 s077 AS077 0.0 0.0 -425 445
Rear Cap Axial Stress 624000 624000 s078 AS078 0.0 0.0 -425 445

Description 
Element 
Number

Property 
Number

D. R. 
Name

D. C. 
Name

Initial Value Minimum 
Value

Maximum 
Value
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Table  6.22   Design constraints related to rib 7 
Rib 7

Tip 
Loading

Distr. 
Load

(MPa) (MPa) (MPa) (MPa)
Web Von Mises Stress 711000 711000 s079 AS079 11.7 1.1 0.01 300
Upper Cap Axial Stress 712000 712000 s080 AS080 -121.2 0.3 -425 445
Lower Cap Axial Stress 713000 713000 s081 AS081 121.2 -0.3 -425 445
Front Cap Axial Stress 714000 714000 s082 AS082 0.0 0.0 -425 445
Rear Cap Axial Stress 724000 724000 s083 AS083 0.0 0.0 -425 445

Description 

Initial Value Minimum 
Value

Maximum 
ValueElement 

Number
Property 
Number

D. R. 
Name

D. C. 
Name

 
 

 

 

Table  6.23   Design constraints related to displacements at rib 7 
Rib 7

D.R.Name Node DOF D.C. Name Initial Value 
(mm)

Upper Bound 
(mm)

Lower Bound 
(mm)

D201 7120 Tz D201 0.00 -0.001 -200
D202 7220 Tz D202 0.00 -0.001 -200
D203 7130 Tz D203 0.00 -0.001 -200
D204 7230 Tz D204 0.00 -0.001 -200  
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6.1 OPTIMIZATION OF THE WING WITH TIP LOADING 
 
This section describes the optimization of the wing subject to tip loading only. 

Equivalent aerodynamic lift force and pitching moment are applied on a 

node,which is created at 33.91% chord and on the camber line, at wing tip 

location as two concentrated loads.  Rigid element RBE3 of MSC.NASTRAN® 

is used to distribute the applied load to the nodes of rib 7 which is the rib at the 

tip of the wing. Applied displacement boundary condition and distribution of the 

tip load are shown in Figure 6.19. 

 

 

 

 
 

 
 

Figure 6.19 Initial wing model with tip loading 
 
 

79686896
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Initial analysis results are shown in Figures 6.20 – 6.23. These results belong to 

the wing with the initial values of the design variables. 

 

 

 

 
 

Figure 6.20 Initial axial stresses on the flanges  
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Figure 6.21 Initial Von Mises stresses on the skins and the webs  

 

 

 

It should be noted that since the total external load is applied in a concentrated 

fashion at the wing tip, the stresses in the elements near the application point of 

the external force are found to be higher compared to the stresses in the rest of 

the elements of the wing. Axial stresses on the flanges also show similar 

behavior. Away from the wing tip, the stresses are seen to increase towards the 

root of the wing, as expected. 
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Figure 6.22 Initial Von Mises stresses on the skins and the webs interior view 
 

 

 

 
Figure 6.23 Initial deflection of the wing 
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The optimized element properties of the wing model are shown in Figures 6.24-

6-29. These figures give the color plot representation of the final flange areas, 

skin, web and rib thicknesses. As it was discussed before, the element properties 

are allowed to change discretely between the rib stations. To reduce the number 

of design variables single elements were used to model the structure between the 

rib stations. Therefore, at the end of the solution single colors are assigned to the 

flange areas, skin and webs between the rib stations and ribs. Solution took 

12.578 seconds of CPU time.  

 

 

 

 
Figure 6.24 Final flange areas on the wing model 
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Figure 6.25 Final upper skin thicknesses of the wing model 

 

 

 

 
Figure 6.26 Final lower skin thicknesses of the wing model 
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Figure 6.27 Final front spar thicknesses of the wing model 

 

 

 

 
Figure 6.28 Final rear spar thicknesses of the wing model 
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Figure 6.29 Final rib web thicknesses of the wing model 

 

 

 

Final analysis results are shown in figures 6.30 – 6.33 
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Figure 6.30 Final axial stresses on the flanges 

 

 

 

 
Figure 6.31 Final Von Mises stresses on the skins and the webs  
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Figure 6.32 Final Von Mises stresses on the skins and the webs interior view 

 

 

 

 
Figure 6.33 Final deflection of the wing 
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History of objective function which is the total weight of the wing is shown in 

Figure 6.34. The optimized weight is determined to be 57.7 kg, and it can be 

concluded that with the initial values of the design variables the constraints are 

not all satisfied and therefore the objective function increases until the 

constraints are satisfied.   

Figures 6.35-6.50 show the history of all the design variables until the optimum 

solution is reached. It can be observed from these figures that except for the 

flange areas of the ribs most of the design variables increase compared to their 

initial values and this observation is in accordance with the variation of the 

objective function with the design cycle. In Figures 6.35-6.50 the thicknesses 

are given in mm and cap areas are given in mm2.  

 

 

 

 
Figure 6.34 History of objective function (in kg)  

 

56.671 kg 
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Figure 6.35 History of lower skin thicknesses (in mm) 

 

 

 

 
Figure 6.36 History of upper skin thicknesses (in mm) 

for legend  
refer to table 6.4 

for legend  
refer to table 6.3 
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Figure 6.37 History of front spar web thicknesses (in mm) 

 

 

 

 
Figure 6.38 History of rear spar web thicknesses (in mm) 

for legend  
refer to table 6.1 

for legend  
refer to table 6.2 
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Figure 6.39 History of rib web thicknesses (in mm) 

 

 

 

 
Figure 6.40 History of upper flange areas of front spar (in mm2) 

 

for legend refer to 
tables 6.6 – 6.11 

for legend  
refer to table 6.1 
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Figure 6.41 History of lower flange areas of front spar  (in mm2) 

 

 

 

 
Figure 6.42 History of upper flange areas of rear spar (in mm2)  

for legend  
refer to table 6.1 

for legend  
refer to table 6.2 
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Figure 6.43 History of lower flange areas of rear spar  (in mm2) 

 

 

 

 
Figure 6.44 History of flange areas of rib 1 (in mm2) 

for legend  
refer to table 6.2 

for legend  
refer to table 6.5 
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Figure 6.45 History of flange areas of rib 2 (in mm2) 

 

 

 

 
Figure 6.46 History of flange areas of rib 3 (in mm2) 

for legend  
refer to table 6.6 

for legend  
refer to table 6.7 
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Figure 6.47 History of flange areas of rib 4 (in mm2) 

 

 

 

 
Figure 6.48 History of flange areas of rib 5 (in mm2) 

for legend  
refer to table 6.8 

for legend  
refer to table 6.9 
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Figure 6.49 History of flange areas of rib 6 (in mm2) 

 

 

 

 
Figure 6.50 History of flange areas of rib 7 (in mm2) 

for legend  
refer to table 6.10

for legend  
refer to table 6.11
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Figure 6.51 History of maximum constraint value  
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6.2 OPTIMIZATION OF THE WING WITH DISTRIBUTED 
LOADING 

 
In this section the same torque box is optimized for the distributed load case. 

Aerodynamic lift force and pitching moment are applied on  nodes which are 

created at 33.91% chord and on the camber line, as specified by the ESDU 

document [12], at each rib location.  Rigid RBE3 element is then used to 

distribute applied load to the nodes of ribs similar to the tip load case. 

Displacement boundary condition applied and distributed load imposed are 

shown in Figure 6.52.  

 

 

 

 

 

 

 

 
Figure 6.52 Initial wing model with distributed loading 
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Initial analysis results are shown in Figures 6.53 – 6.56. These results belong to 

the wing with the initial values of the design variables. 

 

 

 

 
Figure 6.53 Initial axial stresses on the flanges 

 

 

 

 
Figure 6.54 Initial Von Mises stresses on the skins and the webs  
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Figure 6.55 Initial Von Mises stresses on the skins and the webs interior view 
 

 

 

 
Figure 6.56 Initial deflection of the wing model 

 

 

 

In this example it is observed that since the total load is applied on the wing in a 

distributed fashion the peak stresses occur towards the root of the wing contrary 

to the concentrated tip load case solved in the previous section.  
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The optimized element properties of the wing model are shown in Figures 6.57-

6-64. These figures give the color plot representation of the final flange areas, 

skin, web and rib thicknesses. As it was discussed before, the element properties 

are allowed to change discretely between the rib stations. To reduce the number 

of design variables single elements were used to model the structure between the 

rib stations. Therefore, at the end of the solution single colors are assigned to the 

flange areas, skin and webs between the rib stations and ribs. Solution took 

8.140 seconds of CPU time.  

 

 

 

 
Figure 6.57 Final flange areas on the wing model 
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Figure 6.58 Final upper skin thicknesses of the wing model 

 

 

 

 
Figure 6.59 Final lower skin thicknesses of the wing model 
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Figure 6.60 Final front spar thicknesses of the wing model 

 

 

 

 
Figure 6.61 Final rear spar thicknesses of the wing model 
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Figure 6.62 Final rib web thicknesses of the wing model 

 

 

 

  
Figure 6.63 Final overall thicknesses of the wing model 
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Figure 6.64 Final web thicknesses of the wing model interior view 

 

 

 

Final analysis results of the optimized torque box are presented in Figures 6.65 – 

6.68. It is observed that the final stresses are reduced from their initial values. 

This observation is based on the comparison of the initial stress analysis results 

given in Figures 6.53-6.55 with the stress analysis results of the optimized 

configuration given by Figures 6.65-6.67. Reduction in stress values would 

imply an increase in the weight of the final optimized configuration compared to 

the initial configuration. In order to check the validity of this conclusion the 

history of the objective function has to be checked. 
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Figure 6.65 Final axial stresses on the flanges 

 

 

 

 
Figure 6.66 Final Von Mises stresses on the skins and the webs  
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Figure 6.67 Final Von Mises stresses on the skins and the webs interior view 

 

 

 

 
Figure 6.68 Final deflection of the wing model 
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History of objective function, design variables and constraints are shown in 

figures 6.69 – 6.86. 

History of the objective function which is the total weight of the wing is shown 

in Figure 6.69. The optimized weight is determined to be about 60 kg. The 

increase of the weight of the wing in the optimized configuration justifies the 

increase of the stress values in most elements in the final configuration 

compared to the stresses analysis results in the initial configuration. It can be 

concluded that with the initial values of the design variables the constraints are 

not all satisfied and therefore the objective function increases until the 

constraints are satisfied.   

Figures 6.70-6.85 show the history of all the design variables until the optimum 

solution is reached. It can be observed from these figures that except for the rib 

flange areas, most of the design variables increase compared to their initial 

values and this observation is in accordance with the variation of the objective 

function with the design cycle. In Figures 6.70-6.85 the thicknesses are given in 

mm and cap areas are given in mm2.  

 

 

 

 
Figure 6.69 History of objective function (in kg)  

60.027 kg 
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Figure 6.70 History of lower skin thicknesses (in mm) 

 

 

 

 
Figure 6.71 History of upper skin thicknesses (in mm) 

for legend  
refer to table 6.4 

for legend  
refer to table 6.3 
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Figure 6.72 History of front spar web thicknesses (in mm) 

 

 

 

 
Figure 6.73 History of rear spar web thicknesses (in mm) 

for legend  
refer to table 6.1 

for legend  
refer to table 6.2 
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Figure 6.74 History of rib web thicknesses (in mm) 

 

 

 

 
Figure 6.75 History of upper flange areas of front spar (in mm2) 

for legend  
refer to 
tables 6.5 – 6.11

for legend  
refer to table 6.1 
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Figure 6.76 History of lower flange areas of front spar (in mm2)  

 

 

 

 
Figure 6.77 History of upper flange areas of rear spar (in mm2)  

for legend  
refer to table 6.1 

for legend  
refer to table 6.2 
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Figure 6.78 History of lower flange areas of rear spar (in mm2) 

 

 

 

 
Figure 6.79 History of flange areas of rib 1 (in mm2) 

for legend  
refer to table 6.2 

for legend  
refer to table 6.5 
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Figure 6.80 History of flange areas of rib 2 (in mm2) 

 

 

 

 
Figure 6.81 History of flange areas of rib 3 (in mm2) 

for legend  
refer to table 6.6 

for legend  
refer to table 6.7 
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Figure 6.82 History of flange areas of rib 4 (in mm2) 

 

 

 

 
Figure 6.83 History of flange areas of rib 5 (in mm2)  

for legend  
refer to table 6.8 

for legend  
refer to table 6.9 
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Figure 6.84 History of flange areas of rib 6 (in mm2) 

 

 

 

 
Figure 6.85 History of flange areas of rib 7 (in mm2) 

for legend  
refer to table 6.10

for legend  
refer to table 6.11
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Figure 6.86 History of maximum constraint value  
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6.3 OPTIMIZATION OF THE WING TORQUE BOX WITH 
DISTRIBUTED LOADING INCLUDING SHAPE 
OPTIMIZATION 

 

In this section the optimization of the wing torque box has been performed by 

incorporating the shape optimization feature of the optimization module of 

MSC.NASTRAN®. Within the context of the shape optimization the location of 

the ribs of the wing are chosen to be moveable. Each rib is allowed to move in-

board and out-board by a distance equal to the half the distance between the rib 

and the neighboring in-board and out-board rib. 

 In order to carry out shape optimization, an auxiliary model is required to 

define shape basis vector in shape optimization. The optimizer requires a 

relation between shape design variables and changes of grid locations. This 

relation is defined as a linear combination of shape design variables times shape 

basis vectors, which results in the total change in grid locations. The auxiliary 

wing model is the same as the original one and it is used for both shape 

optimizations described in sections 6.3.1 and 6.3.2. Five different load cases are 

applied to the wing model. In each load case, a displacement vector, which is 10 

mm towards the root, is applied to each rib located between the root and the tip 

rib of the wing and the other ribs are fixed. Linear static analysis is performed 

with these load cases. Resultant MASTER-file and DBALL-file are then 

introduced to the original .bdf-file. To ensure that MSC.NASTRAN® produces 

these result files “scr=no” command should be used. Load cases in auxiliary 

model are shown in Figures 6.87-6.91 
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Figure 6.87 Load case 1 in auxiliary model  

 

 

 

 
Figure 6.88 Load case 2 in auxiliary model 

 

Rib 2  
displacement

Rib 3  
displacement
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Figure 6.89 Load case 3 in auxiliary model 

 

 

 

 
Figure 6.90 Load case 4 in auxiliary model 

 

Rib 4  
displacement

Rib 5  
displacement
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Figure 6.91 Load case 5 in auxiliary model 

 

Rib 6  
displacement
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6.3.1. ONE VARIABLE OPTIMIZATION 
 
In this section the shape optimization module is verified by performing a test 

optimization study involving the location change of a rib. For this purpose 

location of a single rib is selected as the main design parameter, and all the other 

design parameters are kept fixed. All property related design variables defined 

in the previous sections are taken as fixed quantities and except for rib 2, 

locations of all the rest of the ribs are also taken as fixed. Since element 

properties are not defined as design variables there is no objective function in 

this test case. To verify that the optimizer moves the rib in the correct direction a 

problem is defined. In the particular study a constraint is applied on the Von 

Mises stress of element 110030 and the position of rib 2 is taken as the only 

design variable. Initially, three static analyses are performed with the rib 2 in 

three different locations along the span of the wing. In the first static analysis rib 

is taken at its original position, and in the remaining two static analyses rib 2 is 

moved 300 mm in-board and out-board, respectively. At the end of the three 

static analyses Von Mises stress on element 110030 is recorded to see the effect 

of the rib position on the resulting stress on the element. The output of these 

three static analyses is given in Table 6.24. 

 

 

 

Table  6.24   Comparison of linear static analyses of the wing with rib 2 at 

different spanwise locations  

 
Rib 2 is moved 

towards the root 

Rib 2 is in 

original position

Rib 2 is moved 

towards the tip 

Spanwise location of 

Rib 2 (mm) 
462.0 762.0 1062.0 

Von Mises Stress on 

Element 110030 (MPa) 
404.8 379.0 351.3 
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As it was pointed out above in the particular study there is no change in the 

objective function which is the weight of the wing because element properties 

are not assigned as design variables.  

In the next analysis a shape optimization run is executed by imposing a 

constraint on the Von Mises stress on element 110030. Von Mises stress on 

element 110030 is constrained to be less than 360 MPa and this value is 

assigned as the single constraint of the optimization problem. This stress value is 

in between the stress determined by the static analysis with the rib 2 in the 

original position, and the stress determined by the static analysis with the rib 2 

in its displaced position by a distance of 300 mm towards the wing tip. Based on 

the static analysis results presented in Table 6.24, it is clear that the shape 

optimizer has to move rib 2 towards the wing tip. The result of the shape 

optimization will be checked to see if the rib 2 is moved towards the wing tip or 

not. 

Initial model of the wing is shown in Figure 6.92. Final rib 2 location and stress 

result of element 110030 are shown in Figures 6.93 and 6.94, respectively.  

 

 

 

 
Figure 6.92 Initial wing model with distributed loading  

 

Element 110030 

Rib 2 
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Figure 6.93 Final location of the rib 2 on the wing model 

 

 

 

 

 
Figure 6.94 Final Von Mises stress on the element 110030  

 

Rib 2 displaced out-board  

360 MPa 
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At the end of the shape optimization MSC.NASTRAN® shape optimizer has 

moved the rib 2 towards the tip by 208.4 mm so that Von Mises stress on the 

element 110030 became 360 MPa. The new position of rib 2 is between the 

original position of the rib 2 and the outboard displaced position of the of rib 2 

given in Table 6.24, as expected. History of the objective function is given in 

Figure 6.95. Each design cycle indicates 1 iteration which is a complete loop 

described in figure 4.1. Since the element properties are not considered as the 

design variables the objective function which is the weight of the wing is kept 

constant. The initial weight is calculated based on the initial values of the 

element properties which were given in the previous section.  The variation of 

the design variable, which is the position of rib 2, with respect to the design 

cycle is plotted in Figure 6.96.  It is seen that in seven design cycles rib 2 moved 

out-board such that the constraint imposed on the Von Mises stress on element 

110030 is satisfied. The history of the constraint function is shown in Figure 

6.97. At the end of the seventh design cycle the constraint function becomes 

zero which means that the constraint is satisfied. 

 

 

 

 
Figure 6.95 History of objective function (in kg) 
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Figure 6.96 History of rib 2 location (in 100 mm) 

 

 

 

 
Figure 6.97 History of the maximum constraint value 
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6.3.2. MULTI VARIABLE OPTIMIZATION 
 
In this section, property optimization and shape optimization are performed 

together for the wing torque box with distributed loading. Each rib is allowed to 

move in-board and out-board by a distance equal to the half the distance 

between the rib and the neighboring in-board and out-board rib. Since rib 

positions are also included in the design variables, the expectation is to end up 

with a final optimized configuration with less weight. The same finite element 

model is used as in the previous sections. Aerodynamic lift force and pitching 

moment are again applied on a node, which is created at 33.91% chord and on 

the camber line, at each rib location. The location of the load application nodes 

are not changed during the optimization process. Rigid RBE3 element of 

MSC.NASTRAN® is used to distribute the applied load to the nodes at the 

intersection of the ribs with the front and rear spar. Auxiliary model which was 

described in section 6.3 is used for constructing the shape basis vectors. 

Displacement boundary condition applied and distributed loading are shown in 

Figure 6.98. 

 

 

 

 
Figure 6.98 Initial wing model with distributed loading 
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Initial linear static run results are exactly same as in section 6.2. The element 

property optimization problem defined in section 6.2 is also same as the current 

problem with the addition of shape optimization. Solution took 35.437 seconds 

of CPU time.   

In the optimized wing configuration, final rib locations and the element 

properties of the wing model are shown in Figures 6.99-6-107. 

 

 

 

 
Figure 6.99 Final rib locations on the wing model 

 

 

 

Figure 6.99 shows that rib positions in the optimized configuration are very 

close to the original rib positions. Ribs 2 , 4 and 5 are seen to displace most in 

the final configuration. In Figure 6.99, the location of the load application node 

is fixed, therefore the perpendicular distance from the load application point to 

the rib gives the distance by which the ribs move. 
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Figure 6.100 Final flange areas of the wing model 

 

 

 

 
Figure 6.101 Final lower skin thicknesses of the wing model 
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Figure 6.102 Final upper skin thicknesses of the wing model 

 

 

 

 
Figure 6.103 Final front spar thicknesses of the wing model 
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Figure 6.104 Final rear spar thicknesses of the wing model 

 

 

 

 
Figure 6.105 Final rib web thicknesses of the wing model 
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Figure 6.106 Final rib web thicknesses of the wing model  

 

 

 

 
Figure 6.107 Final Rib web thicknesses of the wing model interior view 
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In the optimized configuration final analysis results are shown in Figures 6.108 

– 6.111. Comparison of the stress analysis results given in Figures 6.108-6.110 

with the stress analysis results of the element property optimization problem 

given in Figures 6.65-6.67 show that there is increase in the stress values, and 

this is an indication of weight reduction accomplished by shape optimization. 

Actually, in the original element property optimization problem there was a 

weight increase from the initial configuration to satisfy the constraints. In the 

current problem the initial configuration is again selected as the same initial 

configuration used in element property optimization. To be sure about the 

weight reduction the history of the objective function has to be checked, and this 

is done the subsequent pages. 

 

 

 

 
Figure 6.108 Final axial stresses on the flanges 
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Figure 6.109 Final Von Mises stresses on the skins and the webs  

 

 

 

 
Figure 6.110 Final Von Mises stresses on the skins and the webs interior view 
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Figure 6.111 Final deflection of the wing model 

 

 

 

History of objective function is given in Figure 6.112. Each design cycle 

indicates 12 iteration, therefore  optimization process converged in 72 iterations. 

It can be seen from Figure 6.112 that the value of the objective function again 

increase compared to the value at of the objective function at the initial 

configuration. However, comparison of Figure 6.112 with Figure 6.69 reveals 

that the value of the objective function in the optimized configuration is less in 

the combined property and shape optimization solution. In the optimized 

configuration wing weighs about 51.5 kg which is 8.5 kg less compared to the 

final weight of the wing obtained in pure element property optimization.  This 

results shows that shape optimization is also a very critical issue in optimizing 

aerospace structures because in aerospace structures there are many structural 

elements whose positions can be adjusted in the optimum way to achieve further 

weight reduction. 
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Figure 6.112 History of objective function 

 

 

 

The history of the design variables are given in Figure 6.113-6.128.  

 

 

 

 
Figure 6.113 History of lower skin thicknesses (in mm) 

 

51.540 kg 

for legend  
refer to table 6.4 
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Figure 6.114 History of upper skin thicknesses (in mm) 

 

 

 

  
Figure 6.115 History of front spar web thicknesses (in mm) 

for legend  
refer to table 6.3 

for legend  
refer to table 6.1 
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Figure 6.116 History of rear spar web thicknesses (in mm) 

 

 

 

 
Figure 6.117 History of rib web thicknesses (in mm) 

for legend  
refer to table 6.2 

for legend refer to 
tables 6.5 – 6.11 
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Figure 6.118 History of upper flange areas of front spar (in mm2)  

 

 

 

 
Figure 6.119 History of lower flange areas of front spar (in mm2)  

for legend  
refer to table 6.1 

for legend  
refer to table 6.1 
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Figure 6.120 History of upper flange areas of rear spar (in mm2)   

 

 

 

 
Figure 6.121 History of lower flange areas of rear spar (in mm2)   

for legend  
refer to table 6.2 

for legend  
refer to table 6.2 
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Figure 6.122 History of flange areas of rib 1 (in mm2) 

 

 

 

 
Figure 6.123 History of flange areas of rib 2 (in mm2) 

for legend  
refer to table 6.5 

for legend  
refer to table 6.6 
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Figure 6.124 History of flange areas of rib 3 (in mm2) 

 

 

 

 
Figure 6.125 History of flange areas of rib 4 (in mm2) 

for legend  
refer to table 6.7 

for legend  
refer to table 6.8 
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Figure 6.126 History of flange areas of rib 5 (in mm2) 

 

 

 

 
Figure 6.127 History of flange areas of rib 6 (in mm2) 

for legend  
refer to table 6.9 

for legend  
refer to table 6.10
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Figure 6.128 History of flange areas of rib 7 (in mm2)  

 

 

 

 
Figure 6.129 History of maximum constraint value 

for legend  
refer to table 6.11
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6.4 COMPARISON OF OPTIMIZATION STUDIES OF THE 
WING TORQUE BOX 

 

In this section, the three optimization results are compared in Table 6.25. 

Detailed comparison tables for each constraint are in appendix C.3 

 

 

 

Table  6.25   Comparison of results of three optimization processes 

  Property 
Optimization 

Property & 
Shape 

Optimization

  Lower 
Bound

Upper 
Bound   Tip 

Loading
Distributed 

Loading 
Distributed 

Loading 
Number of iterations - - - 27 23 72 
CPU time (second) - - - 12.578 8.140 35.437 

- - Initial 42.008 42.008 42.008 Objective function  
- - Final 56.671 60.027 51.540 

Initial 480 379 379 Max. stress on the 
Skins (Mpa) 0.01 281 

Final 277 178 123 
Initial 238 203 203 Max. stress on the 

Webs (Mpa) 0.01 300 
Final 289 195 145 
Initial 600 455 455 Max. stress on the 

Flanges (Mpa) 0.00 445 
Final 379 263 168 
Initial -601 -455 -455 Min. stress on the 

Flanges (Mpa) -425 0.00 
Final -194 -108 -127 
Initial 256 446 446 Max. deflection at tip 

(mm) 0.001 200 
Final 157 201 201 

 

 

 

In all optimization  processes weight is increased compared to the weight at the 

initial configuration without violating any constraint. Comparison of the 

property optimization results with the distributed loading with the results of the 

combined property and shape optimization shows that the maximum tip 

displacement condition is the more restricting condition. The final maximum 
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stress values are below their limits but the tip deflection reaches to the limit 

value. It can be seen that combined property and shape optimization results in 

significant weight reduction compared to just property optimization. This 

problem is a clear indication that shape optimization can play an important role 

in weight reduction. Shape optimization can be especially important in 

aerospace structures which is composed of many sub-elements whose positions 

can all be considered as a design variable to be used in the optimization process. 

However, the result of combined property/shape optimization may not be 

attributed to the rib location change only. It may be that when shape 

optimization is also incorporated in the solution of the optimization problem a 

better local minimum could have been obtained. Since in this example no multi-

disciplinary optimization problem is defined, there might be many local 

minimums, and with combined property/shape optimization a different local 

minimum could be converged to. It should be expected that in a multi-

disciplinary optimization problem, the number of local minimums may decrease 

significantly. 

It should be noted that in the problem definition some of the constraints and 

upper and lower bounds of the design variables might not have been selected as 

reasonable figures. Therefore, results may not reflect a configuration that can be 

manufactured. However, in this chapter the aim was to demonstrate the use of 

element and shape optimization and to show the significant impact that the 

combined property and shape optimization might have on structural efficiency. 
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CHAPTER 7 
 

 

7.CONCLUDING REMARKS AND FUTURE WORK 

 

 

 

The main objective of the thesis was to demonstrate the application of three 

different strategies of structural optimization which are commonly used in the 

academic studies and industrial applications. Structural optimization requires an 

optimizer code working in conjunction with a solver code which mainly 

evaluates the constraint functions and calculates the objective function. For this 

purpose some people develop their own optimizer and solver codes, or some 

people develop only the optimizer and use a ready solver code which is typically 

a finite element code in structural analysis. In addition, nowadays there are 

many very efficient commercial finite element programs with embedded 

optimization modules, and especially in industrial work these commercial codes 

can be used very effectively to design optimum structures. In this thesis all three 

strategies of structural optimization are demonstrated. These approaches are 

listed below. 

Approach 1: A gradient based optimization code is developed in MATLAB® 

environment and this code is used in conjunction with the analytical functions 

applicable in classical beam theory, to optimize two different beams with 

different cross-sections. 

Approach 2: The same optimizer code developed is used in conjunction with a 

commercial finite element code MSC.NASTRAN® to demonstrate how one can 

take advantage of the available finite element solvers and use them with an 

optimization code of their own. For comparison purposes the two classical beam 

problems are solved with this approach. 
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Approach 3: The optimization module of the commercial finite element program 

MSC.NASTRAN® is used to solve the two beam problems with different 

number of design variables.  

All three approaches are compared with each other by performing structural 

optimization of two different beams with different number of design variables. 

In the first case study a rectangular cross-section beam is optimized and only 

two design variables are used to verify that all three approaches converge to the 

true solution which can easily be demonstrated on a two dimensional space. In 

the second case study an I beam with four design variables is optimized. The 

results of the three approaches show that all of these techniques can be used to 

arrive at the same optimum solution. However, it was observed that the 

optimization module of MSC.NASTRAN® arrives at the optimum solution 

fastest.  The high speed of convergence to the optimum solution by MSC 

NASTRAN® is due to the use of sensitivity analysis and construction of an 

approximate model in the search for the optimum. However, the I beam problem 

demonstrated that with the use of the analytical functions applicable for the 

beam theory in conjunction with the optimizer code developed resulted in a 

4.5% more weight reduction. Thus, this example is a clear indication that in 

situations where weight reduction is very critical the use of different 

optimization approaches should be tried not only to cross-check the results but 

also to see if further weight reduction can be achieved or not. It is also noted that 

the calling of a commercial finite element solver from a used developed 

optimizer may not be a very effective method as far as solution times are 

concerned. Because of the frequent call of the commercial finite code and the 

need for some initial setup times used in checking the license file and like, the 

whole process takes extremely long time.  However, in certain problems 

optimization modules of commercial finite element codes may not be used in 

arriving at the optimum solution. For instance, if the loads change with the 

deformation, then an external finite element solver could be incorporated to 

perform optimization instead of the optimization module of a commercial finite 

element program. 
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In the remaining part of the thesis a wing torque box is optimized by the 

optimization module of MSC.NASTRAN®. The fast convergence of the 

optimization module of MSC.NASTRAN® was the main reason to choose 

MSC.NASTRAN® in the optimization solution of the wing torque box. This 

section is intended to demonstrate the application of element property and shape 

optimization separately and combined element property and shape optimization. 

Element property optimization was performed with an almost equivalent tip load 

and distributed load. Within the context of shape optimization positions of the 

ribs were taken as the design variables. The shape optimizer was verified 

initially by performing a shape optimization with only a single rib location as 

the design variable and with all fixed quantities for the element properties. This 

solution showed that the rib was displaced in the right direction by the right 

amount. After verifying the result of the shape optimizer, the combined element 

property and shape optimization was performed and results of this study were 

compared with the results of the element property optimization. In both 

problems the final weight of the optimized configuration increased compared to 

the weight of the initial configuration to satisfy all the constraints. However, it 

was observed by incorporating shape optimizer in the optimization study weight 

reduction could be achieved compared to the just element property optimization. 

This study in a way demonstrated the significant impact that the shape 

optimization can have on the design of aerospace structures with higher 

structural efficiency.  

As for the future work it is deemed that the optimization code developed could 

be improved to reduce the time spent in the search process to the reach the 

optimum solution. For instance further improvement in the code could be made 

such as removing unnecessary function evaluations or reducing the pause time 

for MSC.NASTRAN® job to finish so that code can proceed to the subsequent 

operations faster.  Especially more work needs to be done in reducing the time 

spent to reach to the optimum solution when the developed code works together 

with a commercial finite element solver. The main burden here is the pause time 

at each call to the finite element solver, and effort can be spent to optimize this 
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pause time to speed up the whole process. If the speeding up of the solution time 

can be accomplished then the wing torque box problem can be solved by using 

the optimization code developed in conjunction with the MSC.NASTRAN® 

solver. Furthermore, simplified structural analysis methodology could also be 

incorporated in the solver side to eliminate the need for finite element analysis. 

This way the optimizer code could be used with the simplified structural 

analysis relations which give direct stresses on flanges and shear stresses on the 

skins and the webs.  

 The gradient based optimizer code developed requires many evaluations of 

objective and constraint functions. When the code is used in conjunction with a 

commercial finite element code MSC.NASTRAN®, the cost of the repeated 

finite element analysis is very high. As a further improvement, a module can be 

added to the optimization code which will produce an approximate model by 

using Taylor Series expansion of objective and constraint functions. In this 

manner, finite element analyses can be used in the construction of an 

approximate model. The optimization code can use the results coming from 

approximate model instead of performing finite element analysis whenever 

evaluation of the objective and constraint functions is required. In this way, high 

cost of the repeated finite element analyses can be avoided. 

In addition, multi-disciplinary optimization problems can be performed in 

MSC.NASTRAN® and the wing torque box analyzed can be optimized in all 

aspects. For instance constraints on the fundamental frequency can be 

incorporated into the problem definition. In addition, the skin and web panels 

can be checked from local buckling point of view. For this purpose local 

buckling relations can be added as other constraints and these can relations can 

be linked to the axial stresses occurring in the panels for the calculation of the 

local buckling margins of safety. A further study could be to incorporate 

aeroelastic constraints on flutter speed or divergence speed to see how restrictive 

these constraints might be. A further work could be on making a finer mesh but 

using the same number of design variables. In such a study the properties of the 

critical elements between the rib stations can be selected as the design variables 
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and the element properties of all the other elements between the rib stations can 

be linked to the critical element. This study may be required to see the effect of 

mesh density on the optimum structural configuration. A further work could be 

made on using a more accurate distribution of the external load acting on the 

wing structure. Output from a CFD code could be incorporated into 

MSC.NASTRAN® and property and shape optimization studies can be 

performed with a more realistic load case.  
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APPENDIX A.1 
 

 

NEWTON-RAPHSON METHOD 
 

 

 

Following is the algorithm for Newton-Raphson Method [8]: 

Step 1  assume α 

Step 2  calculate Δα 

Step 3  update ⎯α=α+Δα 

  if Φ(⎯α) = 0 exit 

  if Φ(⎯α) ≠ 0 α←⎯α 

  go to step 2 

 

Calculation of Δα 
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APPENDIX A.2 
 

 

BISECTION METHOD 
 

 

 

Following is the algorithm for Bisection Method [8]: 

 

Step 1  choose αa and αb αa < αb 

Step 2  set  α=αa+( αb - αa)/2  

Step 3  if Φ(α) = 0.0 exit 

  Else if Φ(αb - αa) ≤ 10-4 exit 

  Else if Φ(α)*Φ(αa) ≥ 0 then  αa←α 

  Else αb←α 

  go to step 2 
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APPENDIX A.3 
 

 

GOLDEN SECTION METHOD 
 

 

 

Following is the algorithm for Golden Section Method [8]: 

 

Step 1  Choose αlow, αup 

  τ=0.38197 

  ε=tolerance = (Δα)final/(αup -αlow) 

  N number of iterations=-2.078 ln ε 

  i=1 

Step 2  α1=(1-τ)αlow+ταup f1=f(α1) 

  α2=ταlow+(1-τ)αup f2=f(α2) 

Step 3  if (i<N) 

  if (f1>f2) 

  αlow←α1 α1←α2  f1←f2 

  α2=ταlow+(1-τ)αup f2=f(α2) 

  i←i+1 

  Go to Step 3 

  if (f2>f1) 

  αup←α2 α2←α1  f2←f1 

α1=(1-τ)αlow+ταup f1=f(α1)  

i←i+1 

Go to Step 3 
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APPENDIX A.4 
 

 

STEEPEST DESCENT METHOD 
 

 

 

Following is the algorithm for Steepest Descent Method [8]: 

 

Step 1  Choose x1, N (number of iterations) 

  fs(1) = f(x1) ; xs(1)=x1  (store values) 

  ε1, ε2, ε3 (tolerance for stopping criteria) 

  Set i=1 (initialize iteration counter) 

Step 2  si = -∇f (xi) (this is computed in step 3) 

  xi+1 = xi+αisi 

  αi is determined by minimizing f(xi+1) 

  xs(i+1) ← xi+1; fs(i+1) = f(xi+1) (store values)    

Step 3  Δf = fs(i+1) – fs(i) 

  Δx = xs(i+1) – xs(i) 

  If  |Δf| ≤ ε1   stop (function not changing) 

  If ΔxTΔx ≤ ε2   stop (design not changing) 

  i+1 = N  stop 

  ∇f(xi+1)T ∇f(xi+1) ≤ ε3  converged 

  i ← i+1 

  Go to Step 2 

 
 



 198

APPENDIX A.5 
 

 

CONJUGATE GRADIENT METHOD 
 

 

 

Following is the algorithm for Conjugate Gradient Method [8]: 

Step 1  Choose x1, N (number of iterations) 

  fs(1) = f(x1);  xs(1) = x1 (store values)    

  ε1, ε2, ε3 (tolerance for stopping criteria) 

  set i=1 (initialize iteration counter) 

Step 2  if i=1, si = - ∇f(xi) 

  else, 
)(f)(f

)(f)(f

1i
T

1i

i
T

i

−− ∇∇
∇∇

=
xx
xxβ  

  si= - ∇f(xi) + β si-1 

  xi+1= xi + αi si 

  αi is determined by minimizing f(xi+1) 

  xs(i+1) ← xi+1;  fs(i+1) = f(xi+1) % (store values)   

Step 3  Δf = fs(i+1) – fs(i) 

  Δx = xs(i+1) - xs(i) 

  If ⏐Δf⏐ ≤ ε1 stop (function not changing) 

  If ΔxTΔx ≤ ε2 stop (design not changing) 

  If i+1 = N stop 

  If ∇f (xi+1)T∇f (xi+1) ≤ ε3 converged 

  i ← i+1 

  go to step 2 



 199

APPENDIX A.6 
 

 

DAVIDON-FLETCHER-POWELL METHOD 
 

 

 

Following is the algorithm for Davidon-Fletcher-Powell Method [8]: 

 

Step 1  Choose x1, [A1] (initial metric), N 

  ε1, ε2, ε3 (tolerance for stopping criteria) 

  Set i=1 (initialize iteration counter) 

Step 2  si = - [Ai] ∇f(xi) 

  xi+1 = xi + αisi ; Δx = αisi 

  αi is determined by minimizing f(xi+1) 

Step 3  If ∇f(xi+1)T∇f(xi+1)  ≤ ε3; converged 

  If ⏐ f(xi+1) - f(xi)⏐ ≤ ε1; stop (function not changing) 

  If ΔxTΔx  ≤ ε2;  stop (design variable x is not changing) 

  If i+1 = N,    stop (iteration limit) 

  Else 

  Y = ∇f(xi+1) - ∇f(xi) 

  Z = [Ai] Y 

  [ ]
Yx
xxB T

T

Δ
ΔΔ

=  

  [ ]
ZY

ZZC T

T

−=  

  [Ai+1] = [Ai] + [B] + [C] 

  i ← i+1 

  Go to Step 2 
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APPENDIX A.7 
 

 

PENALTY FUNCTION METHOD 
 

 

 

Following is the algorithm for Penalty Function Method [8]: 

 

Step 1  Choose x1, Ns (Maximum number of Penalty Function Method  

iterations) 

  Nu (number of DFP iterations) 

  εi's (for convergence and stopping) 

  rh
1, rg

1 (initial penalty multipliers) 

  ch, cg (scaling value for multipliers) 

  q = 1 (Penalty Function Method iteration counter) 

Step 2  Call DFP to minimize F (xq, rh
q, rg

q) 

  Output: xq* 

Step 3  Convergence for Penalty Function Method  

  If hk = 0, for k = 1,2,….,l; 

  If gj ≤ 0, for j = 1,2,…,m; 

  If all side constraints are satisfied 

  Then converged, Stop 

  Stopping criteria: 

  ΔF = Fq – Fq-1, Δx = xq* - x(q-1)* 

  If (ΔF)2 ≤ ε1: stop (function not changing) 

  Else If ΔxTΔx ≤ ε1: stop (design variable x is not changing) 

  Else If q = Ns:  stop (maximum iterations reached) 

  Continue 

  q ← q+1 
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rh
q ← rh

q*Ch; rg
q ← rg

q*Cg 

xq ← xq* 

  go to step 2 
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APPENDIX A.8 
 

 

AUGMENTED LAGRANGE MULTIPLIER METHOD 
 

 

 

Following is the algorithm for Augmented Lagrange Multiplier (ALM) Method 

[8]. 

 

Step 1  Choose x1, Ns (Maximum number of ALM iterations) 

  Nu (Maximum number of DFP iterations) 

  εi's (for convergence and stopping criteria) 

  rh
1, rg

1 (initial penalty multipliers) 

  ch, cg (scaling value for multipliers) 

  λ1, β1 (initial multiplier vectors) 

  q = 1 (ALM iteration counter) 

Step 2 Call DFP to minimize unconstrained objective function F (xq, λq, 

βq, rh
q, rg

q) 

  Output: xq* 

Step 3  Convergence for ALM  

  If hk = 0, for k = 1,2,….,l; 

  If gj ≤ 0, for j = 1,2,…,m; 

  ( If βj > 0 for gj = 0) 

  (If ∇f + Σλk∇hk + Σβj∇gj = 0) 

  Then converged, Stop 

  Stopping criteria: 

  ΔF = Fq – Fq-1, Δx = xq* - x(q-1)* 

  If (ΔF)2 ≤ ε1: stop (function not changing) 

  Else If ΔxTΔx ≤ ε1: stop (design variable x not changing) 
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 Else If q = Ns: stop (maximum number of iterations reached) 

  Continue 

  q ← q+1 

  λq ←  λq + 2 rh h(xq*) 

βq ← βq + 2 rg (max [g(xq*), -βq/2rg]) 

rh
q ← rh

q*Ch; rg
q ← rg

q*Cg 

xq ← xq* 

  go to step 2 
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APPENDIX B.1 
 

 

USER INTERFACE OF MATLAB® CODE DEVELOPED FOR 
OPTIMIZATION 

 

 

 

Optimization of cantilever beam with rectangular cross section using 

optimization code developed in MATLAB® is presented here. 

• Open MATLAB® in the computer and select the directory, which 

includes “AugLagMet.m”, “DFP.m”, “golden.m”, “gradfunction.m”, 

“FALM.m”, “Ofun.m”, Gfun.m” and “Hfun.m” files, as current 

directory.   

• Type “AugLagMet” in the MATLAB® command window as shown in 

figure B.1 and press enter. This command starts optimization.  

 

 

 

 
Figure B.1 Starting AugLagMet in MATLAB® command window  
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• Enter asked inputs in the MATLAB® command window as shown in 

figure B.2. 

 

 

 

 
Figure B.2 Entering initial values in MATLAB® command window  

 

 

 

Result will appear in MATLAB® command window shown in figure B.3. 

History of the design variables, objective function and constraints are written in 

ac comma separated value (csv) file called “almX.csv”. 
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Figure B.3 Result in MATLAB® command window  
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APPENDIX B.2 
 

 

MATLAB® TO MSC.NASTRAN® INTERFACE 
 

 

 

The objective “nastfunc.m” file calculates the objective function value with new 

design variables. First requirement is that the folder should contain 

“cantbeam1.bdf” file. This file is created by MSC.PATRAN® as input for the 

finite element analysis using MSC.NASTRAN®. Second requirement  is an 

arrangement in Microsoft WINDOWS® and this will be explained later. 

 

Objective function is composed of three main parts.   

First part is main objective function without constraints which is volume of the 

beam. It is a very simple function of design variables and can be calculated 

analytically. Therefore there is no need to perform an finite element analysis.  

Second part is a penalty function for equality constraints. For the beam example 

there is no equality constraints. This part is skipped.  

Third part is a penalty function for inequality constraints. For the beam example 

these constraints are related with the displacements and the stresses which are 

obtained from finite element analysis.  

“nastfunc.m” first performs the finite element analysis using MSC.NASTRAN®, 

then calculates the objective function value.  

 

There are three steps to perform finite element analysis.  

First step is modifying input file. In other words, the values of the design 

variables should be changed. Initial “cantbeam1.bdf” file is renamed as 

“dummy.bdf” and a new empty “cantbeam1.bdf” is created. Each line of the 

“dummy.bdf” file is directly copied to the “cantbeam1.bdf” file until 23rd line 

which includes the design variable. This line is rewritten to the “cantbeam1.bdf” 
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file with the new values of design variables. From line 24 to end of file, each 

line is copied from “dummy.bdf “to “cantbeam1.bdf”.   

Second step is performing finite element analysis. For finite element analysis, 

MSC.NASTRAN® is used. To call MSC.NASTRAN® from MATLAB® 

“winopen” function is used. This function is same as double clicking on a file in 

Microsoft WINDOWS®. Second requirement explained below is necessary for 

this step. After starting MSC.NASTRAN® job, program waits until the end of 

the job. When the job is finished all unnecessary files are deleted. 

Third step is reading stresses and displacements from “cantbeam1.f06”file. This 

file is an output of MSC.NASTRAN® job. The displacement is stored in the 

265th line and the stress is stored in the 325th line. After openning 

“cantbeam1.f06” file, each line is read until the end of file. Using “sscanf” 

command, line 265 and 325 are stored in Ascan and Bscan matrices 

respectively. 4th element of the Ascan matrix is the displacement and 8th 

element of the Bscan matrix is the stress for the constraints. Next  

“cantbeam1.f06” file is closed and deleted. 

At the end, the value of the objective function is calculated in accordance with 

Augmented Lagrange Multipliers (ALM) Method.  

Second requirement for this process is an arrangement in Microsoft 

WINDOWS®. 

In MATLAB®, “winopen” function performs double clicking in Microsoft 

WINDOWS®. What is required at this step is that, if a “bdf” file is double 

clicked, this “bdf” file must be opened with MSC.NASTRAN®. Therefore, 

following steps has to be performed in Microsoft WINDOWS®: 

• Right click on a bdf file. 

• Choose “Open With > Choose Pogram...” as shown in figure B.4 
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Figure B.4 Open with a bdf-file in Microsoft.WINDOWS® 

 

 

 

• Click on “Browse...” , then choose 

“C:\MSC.Software\MSC.Nastran\bin\” as shown in figure B.5 

 

 

 

 
Figure B.5 Location of “nastran.exe” 

 
• Choose “nastran.exe” and click on “Open” as shown in figure B.6 
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Figure B.6 “nastran.exe” file in ./bin/ directory 

 

 

 

• Toggle “Always use the selected program to open this kind of file” as 

shown in figure B.7 

 

 

 

 
Figure B.7 Open a “bdf-file” allways with “nastran.exe” 
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• Click on “OK”  

Second requirement is fulfilled now. 

How to use nastfunc.m is explained below; 

• Open MATLAB® 

• Choose a folder containing “nastfunc.m” and “cantbeam1.bdf” as the 

current directory . 

• Type nastfunc([15 35]) and press enter as shown in figure B.8. [15 35] is 

the design variable vector for rectangular cross section beam. For this 

example, it is a row vector with two variables.  

 

 

 

 
Figure B.8 MATLAB® command window 

 

 

 

MSC.NASTRAN® starts and the screen presented in figure B.9 appears until the 

end of the job. 
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Figure B.9 MSC.NASTRAN® run window 

 

 

 

At the end, the value of the objective function appears on the MATLAB® 

screen. 

 

 

 
Figure B.10 MATLAB® command window 
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APPENDIX C.1 
 

 

MESH DENSITY COMPARISON FOR RECTANGULAR CROSS 
SECTION CANTILEVER BEAM 

 

 

 

To investigate the effect of mesh density on optimization problem of  

rectangular cross section cantilever beam, five identical models are built with 2, 

5, 10, 20 and 50 elements, respectively. The initial models are shown  in figure 

C.1.  

 

 

 

 
Figure C.1 Finite element models for rectangular cross section cantilever 

beam with different mesh densities  
 

 

 

 

2 Elements 5 Elements 

50 Elements

20 Elements10 Elements
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Optimization is performed by using  MSC.NASTRAN® for all five models and 

results are tabulated in table C.1. 

 

 

 

Table  C.1   Comparison of optimization results of rectangular cross section 

cantilever beam with different mesh densities 

  
2 

Element
5 

Element
10 

Element
20 

Element 
50 

Element
Number of iterations 6 6 6 6 6 

Initial value 10 10 10 10 10 B (mm) Final value 7.290 7.290 7.290 7.290 7.290 
Initial value 35 35 35 35 35 H (mm) Final value 36.448 36.448 36.448 36.448 36.448 
Initial value 175000 175000 175000 175000 175000 Objective function, 

Volume  (mm3) Final value 132849 132849 132849 132849 132849 
Initial value 306.1 306.1 306.1 306.1 306.1 Max axial stress at 

the root (Mpa) Final value 387.2 387.2 387.2 387.2 387.2 
Initial value 20.825 20.906 20.906 20.906 20.906 Max. tip deflection  

(mm) Final value 25.402 25.402 25.402 25.402 25.402 
Initial value 3.500 3.500 3.500 3.500 3.500 H/B Final value 5.000 5.000 5.000 5.000 5.000 

 

 

 

It is observed that mesh density has no effect on this particular problem. 

Objective function, design variables and constraints converged to the same 

values after 6 iterations in each analysis. Therefore using 10 element provides 

reliable results. 
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APPENDIX C.2 
 

 

MESH DENSITY COMPARISON FOR I SHAPED CROSS SECTION 
CANTILEVER BEAM 

 

 

 

Five identical models are built with 2, 5, 10, 20 and 50 elements, respectively 

To investigate the effect of mesh density on optimization problem of  I shaped 

cross section cantilever beam,. The initial models are shown  in figure C.2.  

 

 

 

 
Figure C.2 Finite element models for I shaped cross section cantilever beam 

with different mesh densities  
 

 

 

 

 

2 Elements 5 Elements 

50 Elements

20 Elements10 Elements
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Optimization is performed by using  MSC.NASTRAN® for all five models and 

results are tabulated in table C.2. 

 

 

 

Table  C.2   Comparison of optimization results of  shaped cross section 

cantilever beam with different mesh densities 

  
2  

Element
5  

Element
10  

Element
20  

Element 
50  

Element
Number of iterations 21 23 23 23 23 

Initial value 20.0 20.0 20.0 20.0 20.0 Beam Height, H 
(mm) Final value 40.0 40.0 40.0 40.0 40.0 

Initial value 12.0 12.0 12.0 12.0 12.0 Flange Width, Wf 
(mm) Final value 35.83 38.43 38.43 38.43 38.43 

Initial value 3.0 3.0 3.0 3.0 3.0 Web Thickness, 
tw (mm) Final value 0.50 0.50 0.50 0.50 0.50 

Initial value 1.5 1.5 1.5 1.5 1.5 Flange Thickness, 
tf (mm) Final value 1.05 0.97 0.97 0.97 0.97 

Initial value 43500 43500 43500 43500 43500 Objective 
function, V (mm3) Final value 46967 46820 46820 46820 46820 

Initial value 1448.4 1448.4 1448.4 1448.4 1448.4 Max. Stress at 
the root (MPa) Final value 406.9 407.0 407.0 407.0 407.0 

Initial value 23.174 23.174 23.174 23.174 23.174 Max. Shear 
Stress (MPa) Final value 65.884 65.826 65.826 65.826 65.826 

Initial value 8.000 8.000 8.000 8.000 8.000 Max. deflection at 
tip (mm) Final value 25.476 25.474 25.474 25.474 25.474 

Initial value 0.500 0.500 0.500 0.500 0.500 tf / tw 
Final value 2.090 1.939 1.939 1.939 1.939 

 

 

 

It is observed that if the number of elements is greater or equal to 5 then mesh 

density has no effect on this problem. Objective function, design variables and 

constraints converged to the same values after 23 iterations in the analyses with 

5 or more elements. But they converged to slightly different values in 21 

iterations with 2 elements. Therefore using 10 element provides reliable results. 
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APPENDIX C.3 
 

 

COMPARISON TABLES FOR WING TORQUE BOX OPTIMIZATION 
 

 

 

The results of optimizations performed in chapter 6 are compared in tables C3-

13 for all stress constraints. Initial and final stress values on each element and 

corresponding upper and lower bounds are tabulated.  

 

 

 

Table  C.3   Comparison of front spar results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS001 224.8 203.3 0.01 300 288.9 50.9 112.9
Between Rib 2 - Rib 3 AS002 218.3 153.9 0.01 300 260.6 194.6 126.5
Between Rib 3 - Rib 4 AS003 219.6 113.5 0.01 300 93.4 40.6 95.8
Between Rib 4 - Rib 5 AS004 219.9 73.5 0.01 300 122.7 29.2 84.5
Between Rib 5 - Rib 6 AS005 216.1 37.5 0.01 300 264.8 27.7 47.0
Between Rib 6 - Rib 7 AS006 237.9 10.2 0.01 300 200.4 12.1 12.7

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS007 -445.5 -454.6 -425 445 -118.1 -103.7 -126.7
Between Rib 2 - Rib 3 AS008 -237.5 -286.3 -425 445 -123.7 -108.1 -101.4
Between Rib 3 - Rib 4 AS009 -36.2 -163.8 -425 445 -35.3 -74.3 -110.7
Between Rib 4 - Rib 5 AS010 167.5 -77.4 -425 445 185.7 -60.4 -77.7
Between Rib 5 - Rib 6 AS011 363.4 -26.2 -425 445 350.5 -29.3 -44.3
Between Rib 6 - Rib 7 AS012 600.5 -4.5 -425 445 379.3 -5.9 -7.0

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS013 445.5 454.7 -425 445 317.6 136.6 168.1
Between Rib 2 - Rib 3 AS014 237.5 286.3 -425 445 295.9 262.8 107.6
Between Rib 3 - Rib 4 AS015 36.2 163.9 -425 445 31.3 63.2 111.9
Between Rib 4 - Rib 5 AS016 -167.5 77.4 -425 445 -122.5 62.5 77.8
Between Rib 5 - Rib 6 AS017 -363.5 26.2 -425 445 -148.8 26.2 44.3
Between Rib 6 - Rib 7 AS018 -600.5 4.5 -425 445 -193.8 6.0 7.0

Lower Flange Axial Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

Upper Flange Axial Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

Front Spar
Web Von Mises Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value
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Table  C.4   Comparison of rear spar results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS019 120.5 107.4 0.01 300 163.6 71.6 144.9
Between Rib 2 - Rib 3 AS020 134.7 96.1 0.01 300 49.3 34.5 101.4
Between Rib 3 - Rib 4 AS021 131.8 67.8 0.01 300 156.3 46.2 64.4
Between Rib 4 - Rib 5 AS022 131.3 44.3 0.01 300 165.4 41.1 61.7
Between Rib 5 - Rib 6 AS023 139.6 22.6 0.01 300 66.0 17.3 27.8
Between Rib 6 - Rib 7 AS024 92.0 6.6 0.01 300 71.4 8.4 8.4

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS025 -283.0 -291.2 -425 445 -86.1 -53.3 -113.2
Between Rib 2 - Rib 3 AS026 -165.1 -200.3 -425 445 -108.6 -55.6 -100.9
Between Rib 3 - Rib 4 AS027 -23.5 -111.9 -425 445 -34.0 -81.0 -52.4
Between Rib 4 - Rib 5 AS028 111.2 -54.3 -425 445 154.6 -38.2 -60.9
Between Rib 5 - Rib 6 AS029 258.9 -19.4 -425 445 183.3 -16.0 -29.8
Between Rib 6 - Rib 7 AS030 342.9 -3.8 -425 445 159.4 -6.1 -6.7

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS031 283.1 291.3 -425 445 163.2 183.8 49.8
Between Rib 2 - Rib 3 AS032 165.2 200.3 -425 445 156.9 85.9 98.8
Between Rib 3 - Rib 4 AS033 23.5 111.9 -425 445 35.9 60.3 53.4
Between Rib 4 - Rib 5 AS034 -111.3 54.3 -425 445 -72.2 46.3 61.0
Between Rib 5 - Rib 6 AS035 -258.9 19.4 -425 445 -140.1 16.2 29.9
Between Rib 6 - Rib 7 AS036 -343.0 3.8 -425 445 -111.3 5.7 6.7

Lower Flange Axial Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

Upper Flange Axial Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

Rear Spar
Web Von Mises Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

 
 

 

 

Table  C.5   Comparison of upper skin results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS037 370.1 378.9 0.01 281 105.1 81.1 123.1
Between Rib 2 - Rib 3 AS038 207.9 249.9 0.01 281 122.2 84.3 104.1
Between Rib 3 - Rib 4 AS039 38.8 141.3 0.01 281 42.7 82.1 83.9
Between Rib 4 - Rib 5 AS040 144.2 67.9 0.01 281 175.7 50.7 71.7
Between Rib 5 - Rib 6 AS041 319.6 23.8 0.01 281 277.0 23.4 38.4
Between Rib 6 - Rib 7 AS042 479.7 4.6 0.01 281 276.4 6.5 7.5

Upper Skin Von Mises Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value
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Table  C.6   Comparison of lower skin results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Between Rib 1 - Rib 2 AS043 370.1 379.0 0.01 281 245.2 165.5 112.0
Between Rib 2 - Rib 3 AS044 207.9 250.0 0.01 281 239.2 177.7 106.1
Between Rib 3 - Rib 4 AS045 38.8 141.4 0.01 281 43.0 65.4 85.1
Between Rib 4 - Rib 5 AS046 144.2 67.9 0.01 281 101.1 55.3 71.8
Between Rib 5 - Rib 6 AS047 319.7 23.8 0.01 281 149.9 22.0 38.4
Between Rib 6 - Rib 7 AS048 479.8 4.6 0.01 281 157.0 6.3 7.5

Lower Skin Von Mises Stress (MPa)

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

 
 

 

 

 

Table  C.7   Comparison of rib 1 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS049 10.3 8.5 0.01 300 24.4 42.8 17.7
Upper Flange Axial Stress (MPa) AS050 82.7 83.4 -425 445 30.2 24.2 37.2
Lower Flange Axial Stress (MPa) AS051 -82.7 -83.4 -425 445 -49.4 -40.3 -33.6
Front Flange Axial Stress (MPa) AS052 0.0 0.0 -425 445 -10.2 -2.3 -5.2
Rear Flange Axial Stress (MPa) AS053 0.0 0.0 -425 445 -2.0 -8.3 5.8

Rib 1

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

 
 

 

 

 

Table  C.8   Comparison of rib 2 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS054 7.1 3.4 0.01 300 50.4 41.5 11.0
Upper Flange Axial Stress (MPa) AS055 92.6 98.5 -425 445 37.0 27.1 38.1
Lower Flange Axial Stress (MPa) AS056 -92.6 -98.5 -425 445 -75.8 -59.0 -36.4
Front Flange Axial Stress (MPa) AS057 0.0 0.0 -425 445 -20.3 -7.6 -4.8
Rear Flange Axial Stress (MPa) AS058 0.0 0.0 -425 445 -6.2 -6.1 5.9

Rib 2

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value
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Table  C.9   Comparison of rib 3 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS059 2.8 7.0 0.01 300 48.6 23.2 9.0
Upper Flange Axial Stress (MPa) AS060 31.1 51.2 -425 445 36.0 26.9 29.0
Lower Flange Axial Stress (MPa) AS061 -31.1 -51.2 -425 445 -48.1 -33.5 -30.3
Front Flange Axial Stress (MPa) AS062 0.0 0.0 -425 445 -4.6 -5.9 0.5
Rear Flange Axial Stress (MPa) AS063 0.0 0.0 -425 445 -5.3 0.0 -1.1

Rib 3

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

 
 

 

 

 

Table  C.10   Comparison of rib 4 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS064 0.1 3.9 0.01 300 6.4 36.4 13.4
Upper Flange Axial Stress (MPa) AS065 -15.7 28.5 -425 445 -22.4 21.5 24.9
Lower Flange Axial Stress (MPa) AS066 15.7 -28.5 -425 445 19.4 -15.0 -24.9
Front Flange Axial Stress (MPa) AS067 0.0 0.0 -425 445 -0.9 2.1 -0.3
Rear Flange Axial Stress (MPa) AS068 0.0 0.0 -425 445 -4.5 2.1 0.2

Rib 4

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

 
 

 

 

Table  C.11   Comparison of rib 5 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS069 7.3 3.4 0.01 300 45.1 2.7 8.9
Upper Flange Axial Stress (MPa) AS070 -63.3 11.5 -425 445 -71.9 11.1 18.7
Lower Flange Axial Stress (MPa) AS071 63.3 -11.5 -425 445 43.5 -12.9 -18.7
Front Flange Axial Stress (MPa) AS072 0.0 0.0 -425 445 -14.6 -0.6 0.1
Rear Flange Axial Stress (MPa) AS073 0.0 0.0 -425 445 -6.9 -0.7 0.0

Rib 5

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value
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Table  C.12   Comparison of rib 6 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS074 28.8 2.2 0.01 300 98.0 0.8 2.4
Upper Flange Axial Stress (MPa) AS075 -122.1 3.0 -425 445 -87.9 3.8 5.7
Lower Flange Axial Stress (MPa) AS076 122.2 -3.0 -425 445 50.1 -2.9 -5.7
Front Flange Axial Stress (MPa) AS077 0.0 0.0 -425 445 -24.7 0.5 0.0
Rear Flange Axial Stress (MPa) AS078 0.0 0.0 -425 445 -2.7 0.0 0.0

Rib 6

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value

 
 

 

 

 

Table  C.13   Comparison of rib 7 results of three optimization processes 

Property & 
Shape 

Optimization
Tip 

Loading
Distributed 

Loading
Tip 

Loading
Distributed 

Loading
Distributed 

Loading 
Web Von Mises Stress (MPa) AS079 11.7 1.1 0.01 300 47.9 1.7 1.5
Upper Flange Axial Stress (MPa) AS080 -121.2 0.3 -425 445 -78.6 0.8 0.3
Lower Flange Axial Stress (MPa) AS081 121.2 -0.3 -425 445 50.4 -1.1 -0.3
Front Flange Axial Stress (MPa) AS082 0.0 0.0 -425 445 -18.7 -0.1 0.0
Rear Flange Axial Stress (MPa) AS083 0.0 0.0 -425 445 2.3 0.1 0.0

Rib 7

Description D.C. 
Name

Lower 
Bound

Upper 
Bound

Property 
OptimizationInitial Value
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APPENDIX D.1 
 

 

SAMPLE BDF-FILE FOR PROPERTY OPTIMIZATION 
 

 

 

The bdf-file used in rectangular beam optimization is presented here. Original 

bdf-file entries are in bold characters.  

At the beginning of the file descriptive information is given. A “$” sign is used 

in the beginning of comments. 

$ NASTRAN input file created by the MSC MSC.Nastran input file 
$ translator ( MSC.Patran 13.1.116 ) on June      19, 2008 at 22:02:49. 
$ Direct Text Input for Nastran System Cell Section 
 
For this example there is no need for  File Management Section . Therefore it is 

skipped. Only a comment is given to indicate its location. 

 
$ Direct Text Input for File Management Section 
 
Next Executive Control Section takes place. Only SOL 200  statement is used in 

this section to indicate that optimization process will be performed.  

$ Design Sensitivity and Optimization Analysis 
SOL 200 
$ Direct Text Input for Executive Control 
CEND 
 
Case Control Section starts here with title of the job. 
 
TITLE = MSC.Nastran job created on 19-Jun-08 at 19:43:29 
 
“ECHO= SORT,PUNCH(NEWBULK)” command provides initial bulkdata 

written in f06-file and final (optimized) bulk data in pch-file. 

 
ECHO = SORT,PUNCH(NEWBULK) 
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“DESOBJ(MIN) =  1” indicates that the objective function is given in DRESP1 

card with number 1. This card is in the design response section of the design 

model. 

DESOBJ(MIN) =  1 
 
“DESSUB =  21” indicates the active constraints group which is 21. Constraints 

are defined with DCONSTR” cards in the design constraints section of the 

design model  

 
DESSUB      =  21 
 
In this optimization task linear static analyses are performed.  
 
ANALYSIS = STATICS 
$ Direct Text Input for Global Case Control Data 
 
At the end of the case control section applied load case is defined. In this 

example only one load case is implemented.  

 
SUBCASE 1 
$ Subcase name : Default 
   SUBTITLE=Default 
   SPC = 2 
   LOAD = 2 
   DISPLACEMENT(SORT1,REAL)=ALL 
   SPCFORCES(SORT1,REAL)=ALL 
   STRESS(SORT1,REAL,VONMISES,BILIN)=ALL 
 
Bulk Data Section is the last section . 
 
BEGIN BULK 
 
Following parameters are used to control output of analysis 
 
PARAM    POST    -1     
PARAM   PRTMAXIM YES 
PARAM    NASPRT  1 
$ Direct Text Input for Bulk Data 
 
Description of analysis model starts here.  
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Element property is defined first. PBARL card allows one to introduce cross 

section of bar element to MSC.NASTRAN®. “BAR” in this card indicates 

rectangular cross section. 10 and 35 are width (DIM1) and height (DIM2) of the 

cross section respectively.  

 
$ Elements and Element Properties for region : beam 
PBARL    1       1               BAR 
        10.     35. 
$ Pset: "beam" will be imported as: "pbarl.1" 
 
Elements are defined next. 
 
CBAR     1       1       1       2       0.     1.       0. 
CBAR     2       1       2       3       0.     1.       0. 
CBAR     3       1       3       4       0.     1.       0. 
CBAR     4       1       4       5       0.     1.       0. 
CBAR     5       1       5       6       0.     1.       0. 
CBAR     6       1       6       7       0.     1.       0. 
CBAR     7       1       7       8       0.     1.       0. 
CBAR     8       1       8       9       0.     1.       0. 
CBAR     9       1       9       10      0.     1.       0. 
CBAR     10      1       10      11      0.     1.       0. 
 
Material definition is given in “MAT1” card. For weight optimization a value 

for density must be entered. For this example, elastic modulus is 7000. MPa, 

poissons ratio is 0.33 and density is 1. kg/mm3. In this case the value of the 

weight is equal to the value of volume in mm3.   

 
$ Referenced Material Records 
$ Material Record : al 
$ Description of Material : Date: 19-Jun-08           Time: 19:39:44 
MAT1     1      70000.          .33     1. 
 
“GRID” cards are used to define the node locations 
 
$ Nodes of the Entire Model 
GRID     1               0.      0.      0. 
GRID     2              50.      0.      0. 
GRID     3              100.     0.      0. 
GRID     4              150.     0.      0. 
GRID     5              200.     0.      0. 
GRID     6              250.     0.      0. 
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GRID     7              300.     0.      0. 
GRID     8              350.     0.      0. 
GRID     9              400.     0.      0. 
GRID     10             450.     0.      0. 
GRID     11             500.     0.      0. 
 
At the end of the analysis model definition loads and boundary conditions are 

defined. 

 
$ Loads for Load Case : Default 
SPCADD   2       1 
LOAD     2      1.      1.       1 
$ Displacement Constraints of Load Set : disproot 
SPC1     1       123456  1 
$ Nodal Forces of Load Set : yforce 
FORCE    1       11      0      1250.    0.     -1.      0. 
$ Referenced Coordinate Frames 
 
After end of the analysis model definition, design model description starts. 

First design variables are defined. “DESVAR” card includes the number, name, 

initial value, upper bound and lower bound information of a design variable.  

 
$ ...DESIGN VARIABLE DEFINITION 
$ rect_W 
DESVAR   1      rect_W:110.     1.      20.     1. 
$ rect_H 
DESVAR   2      rect_H:235.     20.     50.     1. 
 
Design variable must be related to a property of elements in analysis model or 

shape basis vectors in shape optimization. “DVPREL1” card is used to relate a 

design variable to a element property in analysis model. Initial value of a design 

variable overwrites the corresponding value. DIM1 is the width of the 

rectangular cross section. Therefore, design variable 1 is related to the width of 

the rectangular cross section.  

 
$ ...DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL 
PARAMETER RELATIONS 
DVPREL1  1       PBARL   1       DIM1 
         1      1. 
DVPREL1  2       PBARL   1       DIM2 
         2      1. 
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Design responses indicates which results are important for the optimization task.  
 
$ ...STRUCTURAL RESPONSE IDENTIFICATION 
 
In this example total weight, y displacement of tip node and maximum stress at 

the root element are used as first type of response. Design response number 1 is 

the weight and chosen as objective function in case control section. 

 
DRESP1   1       W       WEIGHT 
DRESP1   27      U2      DISP                   2               11 
DRESP1   37      S1      STRESS  PBAR           7               1 
 
An equation which is the height to width ratio of the cross section is used as the 

second type of design response.   

 
DRESP2   15      BH      230 
         DESVAR  1       2 
DEQATN   230     BH(W,H)= H/W 
 
Next step is definition of constraints. “DCONSTR” card includes the constraint 

group number , which is 21 in this example, related design response number, 

upper and lower bounds for the design response. 

 
$ ...CONSTRAINTS 
DCONSTR 21      27      -25.4   25.4  
DCONSTR 21      37      -700.0  700.0   
DCONSTR 21      15       0.1    5.0 
 
Finally, maximum iteration number,  number of fully stressed design cycles, 

frequency of the output, design quantities to be printed, convergence criteria and 

move limits on approximate optimization are defined by using “DOPTPRM” 

card [3]. 

 
$ ...OPTIMIZATION CONTROL 
DOPTPRM  DESMAX  100     FSDMAX  0       P1      1       P2      1 
         CONV1  .001     CONV2  1.-20    CONVDV .001     CONVPR .01 
         DELP   .2       DELX   1.       DPMIN  .01      DXMIN  .05 
ENDDATA e4f673bf 

This is the end of bdf-file 
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APPENDIX D.2 
 

 

SAMPLE BDF-FILE FOR SHAPE OPTIMIZATION 
 

 

 

The bdf-file used in wing torque box shape and property optimization is 

presented here. Original bdf-file entries are in bold characters. Repeated cards 

are omitted and replaced by “…”. 

At the beginning of the file descriptive information is given. A “$” sign is used 

in the beginning of comments. 

 

$ NASTRAN input file created by the MSC MSC.Nastran input file 
$ translator ( MSC.Patran 13.1.116 ) on October   21, 2008 at 20:43:46. 
$ Direct Text Input for Nastran System Cell Section 
$ Direct Text Input for File Management Section 
$ Design Sensitivity and Optimization Analysis 
 
In File Management Section, result of auxiliary model analysis which is used to 

built shape basis vectors for shape optimization is introduced. The extensions of 

necessary result files are “MASTER” and “DBALL”. Therefore, both files must 

exist in the folder where optimization is performed, but only MASTER-file is 

introduced in the bdf-file. 

 
ASSIGN F1_AUX='wing_aux.MASTER' 
DBLOCATE DATABLK=(ug/ugd,geom1/geom1d,geom2/geom2d) , 
LOGICAL=F1_AUX 
 
Next Executive Control Section takes place. SOL 200  statement is used in this 

section to indicate that optimization process will be performed.  

 
SOL 200 
TIME 600 
$ Direct Text Input for Executive Control 
CEND 
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Case Control Section starts here with title of the job. 
 
TITLE = MSC.Nastran job created on 05-Oct-08 at 13:53:10 
“ECHO= SORT,PUNCH(NEWBULK)” command provides initial bulkdata 

written in f06-file and final (optimized) bulk data in pch-file. Limitation is set 

by “MAXLINES” command. 

 
ECHO = SORT,PUNCH(NEWBULK) 
MAXLINES = 999999999 
 
“DESOBJ(MIN) =  1” indicates that the objective function is given in DRESP1 

card with number 1. This card is in the design response section of the design 

model.  

 
DESOBJ(MIN) =  1 
 
“DESSUB =  21” indicates the active constraints group which is 21. Constraints 

are defined with DCONSTR” cards in the design constraints section of the 

design model.  

 
DESSUB      =  21 
 
In this optimization task linear static analyses are performed.  
 
ANALYSIS = STATICS 
$ Direct Text Input for Global Case Control Data 
 
At the end of the case control section applied load case is defined. In this 

example only one load case is implemented.  

 
SUBCASE 1 
$ Subcase name : Default 
   SUBTITLE=Default 
   SPC = 2 
   LOAD = 2 
   DISPLACEMENT(SORT1,REAL)=ALL 
   SPCFORCES(SORT1,REAL)=ALL 
   GPFORCE=ALL 
   STRESS(SORT1,REAL,VONMISES,BILIN)=ALL 
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Bulk Data Section is the last section . 
 
BEGIN BULK 
 
Following parameters are used to control output of analysis “PARAM NASPRT 

50” indicates that outputs of finite element analyses are recorded in every 50th 

iteration during optimization process. 

 
PARAM    POST    -1     
PARAM   PRTMAXIM YES 
PARAM    NASPRT  50 
$ Direct Text Input for Bulk Data 
 
Description of analysis model starts here. Element, property and material 

definitions, grid locations, multipoint constraints, load and boundary conditions 

are defined in this section. 

 
$ Elements and Element Properties for region : 110020 
PSHELL   110020  1      1.       2               1 
$ Pset: "110020" will be imported as: "pshell.110020" 
CQUAD4   110020  110020  1120    1220    2220    2120 
... 
... 
... 
$ Elements and Element Properties for region : 711000 
PSHELL   711000  3      1.       2               3 
$ Pset: "711000" will be imported as: "pshell.711000" 
CQUAD4   711000  711000  7120    7220    7230    7130 
$ Elements and Element Properties for region : 112000 
PROD     112000  3      100. 
$ Pset: "112000" will be imported as: "prod.112000" 
CROD     112000  112000  1120    1220 
... 
... 
... 
$ Elements and Element Properties for region : 620300 
PROD     620300  3      100. 
$ Pset: "620300" will be imported as: "prod.620300" 
CROD     620300  620300  6230    7230 
$ Elements and Element Properties for region : 900000 
PSHELL   900000  3      5.       3               3 
$ Pset: "900000" will be imported as: "pshell.900000" 
CQUAD4   910101  900000  9121    9122    9132    9131 
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CQUAD4   910102  900000  9122    1120    1130    9132 
CQUAD4   920101  900000  9221    9222    9232    9231 
CQUAD4   920102  900000  9222    1220    1230    9232 
$ Elements and Element Properties for region : 900001 
PBARL    900001  3               BAR 
        50.     20. 
$ Pset: "900001" will be imported as: "pbarl.900001" 
CBAR     910201  900001  9121    9122    0.     1.      1. 
... 
... 
... 
CBAR     924002  900001  9222    9232    0.     1.      1. 
$ Referenced Material Records 
$ Material Record : AL2024 
$ Description of Material : Date: 04-Oct-08           Time: 20:45:10 
MAT1     1      72000.          .33     2.8E-6 
$ Material Record : AL7050 
$ Description of Material : Date: 04-Oct-08           Time: 20:45:10 
MAT1     3      70000.          .33     2.8E-6 
$ Material Record : dummy 
$ Description of Material : Date: 04-Oct-08           Time: 20:45:10 
MAT1     2      1.              .33     2.8E-6 
$ Multipoint Constraints of the Entire Model 
RBE3     1               1000    123456 1.       123     1120    1130 
         1220    1230 
... 
... 
... 
RBE3     7               7000    123456 1.       123     7120    7130 
         7220    7230 
$ Nodes of the Entire Model 
GRID     1000           516.788 29.6729  0. 
GRID     1120           381.115 116.891  0. 
... 
... 
... 
GRID     9231           1010.6  -36.4019-662. 
GRID     9232           1010.6  -36.4019-100. 
$ Loads for Load Case : Default 
SPCADD   2       1 
LOAD     2      1.      1.       1      1.       3      1.       4 
        1.       5      1.       6      1.       7      1.       8 
        1.       9      1.       10     1.       11     1.       12 
        1.       13     1.       14     1.       15 
$ Displacement Constraints of Load Set : root 
SPC1     1       123     9121    9122    9131    9132    9221    9222 
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         9231    9232 
$ Nodal Forces of Load Set : Rib_1 
FORCE    1       1000    0      3091.16  0.     1.       0. 
$ Nodal Forces of Load Set : Rib_1 
MOMENT   3       1000    0      398.76   0.      0.     1. 
... 
... 
... 
FORCE    14      7000    0      1486.88  0.     1.       0. 
$ Nodal Forces of Load Set : Rib_7 
MOMENT   15      7000    0      229.46   0.      0.     1. 
$ Referenced Coordinate Frames 
 
After end of the analysis model definition, design model description starts. 

 

First design variables are defined. “DESVAR” card includes the number, name, 

initial value, upper bound and lower bound information of a design variable.  

 
$ ...DESIGN VARIABLE DEFINITION 
$ v001 
DESVAR   11      v001   1.      .8      5.       
$ v002 
DESVAR   12      v002   1.      .8      5.       
... 
... 
... 
$ v082 
DESVAR   92      v082   100.    1.      2000.    
$ v083 
DESVAR   93      v083   100.    1.      2000.    
$ 
$ Shape Optimization variables 
$ v084 
DESVAR   94      v084     1. -30.        30.     
... 
... 
... 
$ v088 
DESVAR   98      v088     1. -30.        30.    
$ 
$ 
 
Design variable must be related to a property of elements in analysis model or 

shape basis vectors in shape optimization. “DVPREL1” card is used to relate a 
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design variable to a element property in analysis model. Initial value of a design 

variable overwrites the corresponding value. “DVSHAP” card is used to relate a 

design variable to a shape basis vector which is constructed by using single load 

case result of analysis auxiliary model. For example, “DVSHAP   95      2       

1.0” card indicates that design variable with number 95 is related with the shape 

basis vector which is constructed by using the result of second load case in 

auxiliary model analysis. “1.0” is the multiplication factor. 

 
$ ...DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL 
PARAMETER RELATIONS 
DVPREL1  11      PSHELL  110100  T 
         11     1. 
DVPREL1  12      PSHELL  210100  T 
         12     1. 
... 
... 
... 
DVPREL1  92      PROD    714000  A 
         92     1. 
DVPREL1  93      PROD    724000  A 
         93     1. 
$ 
$ A DVSHAP entry defines a shape basis vector by associating one design 
$ variable to a dblocated displacement vector. 
$          
DVSHAP   94      1       1.0 
DVSHAP   95      2       1.0 
DVSHAP   96      3       1.0 
DVSHAP   97      4       1.0 
DVSHAP   98      5       1.0 
$ 
$ 
$          
 
Design responses indicates which results are important for the optimization task.  

 
$ ...STRUCTURAL RESPONSE IDENTIFICATION 
 
In this example total weight, y displacement of tip nodes, Von Mises stress at all 

shell element and axial stress at rod elements are used as first type of response. 



 233

Design response number 1 is the weight and chosen as objective function in case 

control section. 

 
DRESP1   1      MinWeigh WEIGHT 
$ Stress Responce 
DRESP1  101      S101    STRESS  PSHELL         11              110100 
DRESP1  102      S102    STRESS  PSHELL         11              210100 
... 
... 
... 
DRESP1  182      S182    STRESS  PROD           2               714000 
DRESP1  183      S183    STRESS  PROD           2               724000 
$ Displacement Responce 
DRESP1  201      D201    DISP                   2               7120 
DRESP1  202      D202    DISP                   2               7130 
DRESP1  203      D203    DISP                   2               7220 
DRESP1  204      D204    DISP                   2               7230 
 
 
Next step is definition of constraints. “DCONSTR” card includes the constraint 

group number , which is 21 in this example, related design response number, 

upper and lower bounds for the design response. 

 
$ ...CONSTRAINTS 
DCONSTR 21      101     0.01    300.0 
DCONSTR 21      102     0.01    300.0 
... 
... 
... 
DCONSTR 21      182     -425.0  445.0 
DCONSTR 21      183     -425.0  445.0 
$ 
DCONSTR 21      201      0.001  200.0 
DCONSTR 21      202      0.001  200.0 
DCONSTR 21      203      0.001  200.0 
DCONSTR 21      204      0.001  200.0 
$ 
$ 
 
Finally, maximum iteration number,  number of fully stressed design cycles, 

frequency of the output, design quantities to be printed, convergence criteria and 
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move limits on approximate optimization are defined by using “DOPTPRM” 

card [3]. 

 
$ ...OPTIMIZATION CONTROL 
DOPTPRM  DESMAX  5000    FSDMAX  0       P1      50      P2      5  
         CONV1  .001     CONV2  1.-20    CONVDV .001     CONVPR .01 
         DELP   .2       DELX   1.       DPMIN  .01      DXMIN  .05 
ENDDATA e0fc0b62 
 

This is the end of bdf-file 

 


