STRUCTURAL OPTIMIZATION STRATEGIES VIA DIFFERENT OPTIMIZATION AND SOLVER CODES AND AEROSPACE APPLICATIONS

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA EKREN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AEROSPACE ENGINEERING

DECEMBER 2008

Approval of the thesis:

STRUCTURAL OPTIMIZATION STRATEGIES VIA DIFFERENT OPTIMIZATION AND SOLVER CODES AND AEROSPACE APPLICATIONS

submitted by MUSTAFA EKREN in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering Department, Middle East Technical University by,

Prof. Dr. Canan Özgen		
Dean, Graduate School of Natural and Applied Scie	ences	
Prof. Dr. İsmail Hakkı Tuncer Head of Department, Aerospace Engineering		
Assoc. Prof. Dr. Altan Kayran Supervisor, Aerospace Engineering Dept., METU		
Examining Committee Members: Prof. Dr. Ozan Tekinalp Aerospace Engineering Dept., METU		
Assoc. Prof. Dr. Altan Kayran Aerospace Engineering Dept., METU		
Asst. Prof. Dr. Melin Şahin Aerospace Engineering Dept., METU		
Dr. Güçlü Seber Aerospace Engineering Dept., METU		
Dr. Küçük Ayşe İlhan TAI		
	Date:	05.12.2008

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Mustafa EKREN

Signature:

ABSTRACT

STRUCTURAL OPTIMIZATION STRATEGIES VIA DIFFERENT OPTIMIZATION AND SOLVER CODES AND AEROSPACE APPLICATIONS

Ekren, Mustafa

M.Sc., Department of Aerospace Engineering Supervisor: Assoc. Prof. Dr. Altan Kayran

December 2008, 234 pages

In this thesis, structural optimization study is performed by using three different methods. In the first method, optimization is performed using MSC.NASTRAN Optimization Module, a commercial structural analysis program. In the second method, optimization is performed using the optimization code prepared in MATLAB and MSC.NASTRAN as the solver. As the third method, optimization is performed by using the optimization code prepared in MATLAB and analytical equations as the solver. All three methods provide certain advantages in the solution of optimization problems. Therefore, within the context of the thesis these methods are demonstrated and the interface codes specific to the programs used in this thesis are explained in detail. In order to compare the results obtained by the methods, the verification study has been performed on a cantilever beam with rectangular cross-section. In the verification study, the height and width of the cross-section of the beam are taken as the two design parameters. This way it has been possible to show the design space on the two dimensional graph, and it becomes easier to trace the progress of the optimization methods during each step. In the last section structural optimization of a multi-element wing torque box has been performed by the MSC.NASTRAN optimization module. In this section geometric property

optimization has been performed for constant tip loading and variable loading along the wing span. In addition, within the context of shape optimization optimum rib placement problem has also been solved.

Keywords: Structural Optimization, Geometric Property and Shape Optimization, Aerospace Structures, Finite Element Method

ÖΖ

DEĞİŞİK OPTİMİZASYON VE ÇÖZÜCÜ KODLARIYLA YAPISAL OPTİMİZASYON STRATEJİLERİ VE HAVACILIK VE UZAY UYGULAMALARI

Ekren, Mustafa Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü Tez Yöneticisi: Doç. Dr. Altan Kayran

Aralık 2008, 234 sayfa

Bu tezde, üç farklı yöntem kullanılarak yapısal optimizasyon çalışması gerçekleştirilmiştir. Birinci yöntemde yapısal optimizasyon problemi ticari bir vapısal analiz programı olan MSC.NASTRAN optimizasyon modülü kullanılarak yapılmıştır. İkinci yöntemde MATLAB ortamında hazırlanmış optimizasyon kodu ile çözücü olarak MSC.NASTRAN kullanılarak optimizasyon problemi çözülmüştür. Üçüncü yöntem ise MATLAB ortamında hazırlanmış optimizasyon kodu ve analitik denklemler çözücü olarak kullanılmak suretiyle optimizasyon yapılmıştır. Her üç yöntemde günümüzde optimizasyon problemlerinin çözülmesinde çeşitli avantajlar sağlayabilmektedir. Bu nedenle bu tez kapsamında her üç yöntemin gösterimi gerçekleştirilmiş ve kullanılan programlara özel arayüz kodları da tez içinde detaylıca açıklanmıştır. Her üç yöntem ile elde edilen sonuçların kıyaslanmasını yapabilmek için doğrulama çalışmaları dikdörtgen kesitli ankestre kiriş problemi üzerinde gerçekleştirilmiştir. Doğrulama çalışmasında kesit alanın yükseklik ve genişliği olmak üzere iki adet tasarım değişkeni kullanılmıştır. Bu sayede tasarım uzayının iki boyutlu grafik üzerinde görsel olarak gösterilmesi mümkün olmakta ve optimizasyon yöntemlerinin her adımdaki gelişiminin izlenebilmesi

kolaylaşmaktadır. Son bölümde ise çok elemanlı bir kanat tork kutu yapısının optimizasyonu MSC.NASTRAN optimizasyon modülü kullanılarak yapılmıştır. Bu kısımda sabit uç yük, kanat boyunca değişken yük durumları için geometrik özellik optimizasyonu gerçekleştirilmiştir. Ayrıca, şekil optimizasyonu kapsamında ise kanat sinir pozisyonlarının optimum yerleşim problemi çözülmüştür.

Anahtar Kelimeler: Yapısal Optimizasyon, Geometrik Özellik ve Şekil Optimizasyonu, Hava Aracı Yapıları, Sonlu Elemanlar Yöntemi, To my wife, Pınar and to my parents, İsmet and Hasibe EKREN

ACKNOWLEDGMENTS

I would like to express my deepest gratitude and appreciation to my supervisor Assoc. Prof. Dr. Altan KAYRAN for his guidance, valuable suggestions and deepest knowledge and support at all levels of this study.

I would also like to thank to my colleagues for their assistance and patience. And of course to my company TAI.

I would like to also express my thanks for their friendship and support to, my brother Mehmet, my cousin Elif, and I also want to thank to Melih for his friendship and support.

TABLE OF CONTENTS

ABSTRACT.		iv
ÖZ		vi
ACKNOWLE	DGMENTS	ix
TABLE OF C	ONTENTS	X
LIST OF FIG	URES	xiii
LIST OF TAE	BLES	xix
LIST OF SYM	BOLS AND ABBREVIATIONS	xxi
CHAPTERS		
1. INTROD	UCTION	1
1.1 OPT	IMIZATION METHODS	3
1.2 MA	IN APPLICATION AREAS OF OPTIMIZED STRUCTURES.	4
1.2.1	AERONAUTICS	4
1.2.2	SPACE	5
1.2.3	MARINE	7
1.2.4	AUTOMOTIVE	8
1.3 ADV	VANTAGES OF OPTIMIZING STRUCTURES	9
2. OPTIMIZ	ZATION THEORY FOR GRADIENT BASED METHODS	. 10
2.1 ONI	E DIMENSIONAL OPTIMIZATION METHODS	. 11
2.1.1	NEWTON RAPHSON METHOD	. 12
2.1.2	BISECTION METHOD	. 12
2.1.3	GOLDEN SECTION METHOD	. 13
2.2 UNG	CONSTRAINED OPTIMIZATION WITH GRADIENT BASE	D
METHODS	۱ ۱	. 14
2.2.1	STEEPEST DESCENT METHOD	. 15
2.2.2	CONJUGATE GRADIENT METHOD	. 16
2.2.3	DAVIDON-FLETCHER-POWELL METHOD	. 16
2.3 CON	NSTRAINED OPTIMIZATION WITH GRADIENT BASED	
METHODS	۱ ۱	. 17
2.3.1	PENALTY FUNCTION METHOD	. 17
2.3.2	AUGMENTED LAGRANGE MULTIPLIER METHOD	. 18
3. OPTIMIZ	ZATION CODE IN MATLAB [®]	. 20
3.1 AU	GMENTED LAGRANGIAN MULTIPLIER METHOD	
SECTION.		. 22
3.2 DAV	VIDON FLETCHER POWEL METHOD SECTION	. 23
3.3 GOI	LDEN SECTION METHOD SECTION	. 23
3.4 OBJ	ECTIVE FUNCTION SECTION FOR ANALYTIC SOLVER.	. 26
3.4.1	OBJECTIVE FUNCTION SECTION	. 26
3.4.2	EQUALITY CONSTRAINT SECTION	. 26
3.4.3	INEQUALITY CONSTRAINT SECTION	. 26

3.4.4	UNCONSTRAINED OBJECTIVE FUNCTION SECTION	. 27
3.5 OB	JECTIVE FUNCTION SECTION FOR MSC.NASTRAN®	
SOLVER.		. 27
3.6 GR	ADIENT FUNCTION SECTION	. 28
4. OPTIMI	ZATION STRATEGIES WITH DIFFERENT OPTIMIZATION	N
AND SOLVE	ER CODES	. 29
4.1 OP	TIMIZATION VIA USER DEVELOPED OPTIMIZATION AN	٧D
SOLVER (CODES	. 30
4.2 OP	TIMIZATION USING AN OPTIMIZATION CODE IN	
MATLAB	[®] AND MSC.NASTRAN [®] AS SOLVER	. 32
4.3 OP	TIMIZATION USING THE OPTIMIZATION MODULE OF	
MSC.NAS	TRAN [®]	. 34
4.3.1	CREATING A BDF-FILE	. 36
4.3.2	MSC.NASTRAN [®] RUN	. 39
4.3.3	POSTPROCESSING	. 39
5. SAMPL	E STUDIES TO DEMONSTRATE DIFFERENT	
OPTIMIZAT	ION STRATEGIES	. 40
5.1 OP	TIMIZATION OF CANTILEVER BEAM WITH	
RECTANO	GULAR CROSS SECTION	. 40
5.1.1	OPTIMIZATION USING THE OPTIMIZATION CODE IN	
MATLA	AB [®] AND ANALYTIC FUNCTIONS AS SOLVER	. 47
5.1.2	CANTILEVER BEAM OPTIMIZATION USING THE	
OPTIMI	ZATION CODE IN MATLAB [®] AND MSC.NASTRAN [®] AS	
THE SO	DLVER	. 53
5.1.3.	CANTILEVER BEAM OPTIMIZATION USING	
MSC.NA	ASTRAN® OPTIMIZATION TOOL	. 58
5.1.4.	COMPARISON OF THE THREE DIFFERENT	
OPTIMI	ZATION STRATEGIES	. 65
5.2 CA	NTILEVER BEAM WITH I CROSS SECTION	. 67
5.2.1	OPTIMIZATION USING THE OPTIMIZATION CODE IN	
MATLA	AB [®] AND ANALYTIC FUNCTIONS AS SOLVER	. 69
5.2.2	CANTILEVER BEAM OPTIMIZATION USING THE	
OPTIMI	ZATION CODE IN MATLAB [®] AND MSC.NASTRAN [®] AS	
THE SO	DLVER	. 77
5.2.3. C	ANTILEVER BEAM OPTIMIZATION USING OPTIMIZATIO	ΟN
MODUI	LE OF MSC.NASTRAN [®]	. 85
5.2.4. C	OMPARISON OF THE THREE DIFFERENT OPTIMIZATION	N
STRAT	EGIES	. 95
6. OPTIMI	ZATION OF A WING TORQUE BOX	. 97
6.1 OP	TIMIZATION OF THE WING WITH TIP LOADING	118
6.2 OP	TIMIZATION OF THE WING WITH DISTRIBUTED LOADI	NG
138	3	
6.3 OP	TIMIZATION OF THE WING TORQUE BOX WITH	
DISTRIBU	JTED LOADING INCLUDING SHAPE OPTIMIZATION	158
6.3.1. O	NE VARIABLE OPTIMIZATION	162
6.3.2. M	ULTI VARIABLE OPTIMIZATION	167

6.4 COMPARISON OF OPTIMIZATION STUDIES OF THE WIN	NG
TORQUE BOX	185
7. CONCLUDING REMARKS AND FUTURE WORK	187
REFERENCES	192
APPENDICES	
NEWTON-RAPHSON METHOD	194
BISECTION METHOD	195
GOLDEN SECTION METHOD	196
STEEPEST DESCENT METHOD	197
CONJUGATE GRADIENT METHOD	198
DAVIDON-FLETCHER-POWELL METHOD	199
PENALTY FUNCTION METHOD	200
AUGMENTED LAGRANGE MULTIPLIER METHOD	202
USER INTERFACE OF MATLAB [®] CODE DEVELOPED FOR	
OPTIMIZATION	204
MATLAB® TO MSC.NASTRAN® INTERFACE	207
MESH DENSITY COMPARISON FOR RECTANGULAR CROSS SEC	TION
CANTILEVER BEAM	213
MESH DENSITY COMPARISON FOR I SHAPED CROSS SECTION	
CANTILEVER BEAM	215
COMPARISON TABLES FOR WING TORQUE BOX OPTIMIZATION	N 217
SAMPLE BDF-FILE FOR PROPERTY OPTIMIZATION	222
SAMPLE BDF-FILE FOR SHAPE OPTIMIZATION	227

LIST OF FIGURES

Figure 1.1	A typical aircraft Structure [4]	5
Figure 1.2	Initial satellite structure [5]	6
Figure 1.3	Optimized satellite structure [5]	6
Figure 1.4	Optimized satellite structure on test [5]	7
Figure 1.5	Sail boats [6]	8
Figure 1.6	FE model for optimization	9
Figure 2.1	Golden section search technique [7]	13
Figure 3.1	Main algorithm of the optimization code	21
Figure 4.1	MSC.NASTRAN [®] implementation of structural optimization	25
Eigung 5 1	[10]	33
Figure 5.1	Variation of the chiestics function with respect to iteration	41
Figure 5.2	number	48
Figure 5.3	Variation of width of cross section "B" with respect to iteration	n
	number	49
Figure 5.4	Variation of height of cross section "H" with respect to iteration number	n 49
Figure 5.5	Variation of stress at the root of the beam with respect to	
	iteration number	50
Figure 5.6	Variation of displacement at the tip of the beam with respect to)
	iteration number	50
Figure 5.7	Variation of H/B with respect to the iteration number	51
Figure 5.8	Variation of objective function with respect to iteration number	r
		54
Figure 5.9	Variation of width of cross section "B" with respect to iteration	n
	number	55
Figure 5.10	Variation of height of cross section "H" with respect to iteration	n
	number	55
Figure 5.11	Variation of stress at the root of the beam with respect to iterat	ion
	number	56
Figure 5.12	Variation of displacement at the tip of the beam with respect to)
	iteration number	56
Figure 5.13	Variation of H/B with respect to iteration number	57
Figure 5.14	Cantilever beam finite element model	58
Figure 5.15	Initial cantilever beam model with equivalent inertia	59
Figure 5.16	Initial cantilever beam cross section properties	59
Figure 5.17	Cantilever beam initial displacement	60
Figure 5.18	Cantilever beam initial stress distribution	60
Figure 5.19	Final cantilever beam model with equivalent inertia	61

Figure 5.20	Final cantilever beam cross section properties	61
Figure 5.21	Displacement distribution in the optimized beam	62
Figure 5.22	Stress distribution in the optimized beam	62
Figure 5.23	History of the objective function	63
Figure 5.24	History of the design variable "B"	63
Figure 5.25	History of the design variable "H"	64
Figure 5.26	History of the maximum constraint value	64
Figure 5.27	Cantilever beam with I cross section	67
Figure 5.28	Variation of the objective function with respect to iteration number	71
Figure 5.29	Variation of the height of cross section "H" with respect to iteration number	72
Figure 5.30	Variation of the width of flanges "Wf" with respect to iteration	. –
	number	72
Figure 5.31	Variation of the web thickness "tw" with respect to iteration number	73
Figure 5.32	Variation of the flange thickness "tf" with respect to iteration number.	73
Figure 5.33	Variation of maximum bending stress at the root of the beam	
	with respect to iteration number	74
Figure 5.34	Variation of maximum shear stress at the root of the beam with	ו 75
Eigura 5 25	Variation of maximum displacement with respect to iteration	15
Figure 5.55	variation of maximum displacement with respect to iteration	75
Eigura 5 26	Variation of tf / tw with respect to iteration number	75
Figure 5.30	Variation of the objective function with respect to iteration	70
Figure 5.57	number	79
Figure 5.38	Variation of the height of cross section "H" with respect to iteration number	80
Figure 5.39	Variation of the width of flanges "Wf" with respect to iteration	L
	number	80
Figure 5.40	Variation of the web thickness "tw" with respect to iteration number	81
Figure 5.41	Variation of the flange thickness "tf" with respect to iteration	Q 1
Figure 5.42	Variation of maximum bending stress at the root of the beam	01
	with respect to iteration number	82
Figure 5.43	Variation of maximum shear stress at the root of the beam with	ı
	respect to iteration number	82
Figure 5.44	Variation of the maximum displacement with respect to iteration	on
	number	83
Figure 5.45	Variation of tf / tw with respect to iteration number	83
Figure 5.46	Cantilever I beam model	86
Figure 5.47	Initial cantilever I beam model with equivalent inertia	86
Figure 5.48	Initial cantilever I beam section properties	87
Figure 5.49	Cantilever I beam initial displacement	87

Figure 5.50	Cantilever I beam initial bending stress distribution	88
Figure 5.51	Final cantilever I beam model with equivalent inertia	89
Figure 5.52	Final cantilever I beam section properties	89
Figure 5.53	Displacement distribution in the optimized beam	90
Figure 5.54	Bending stress distribution in the optimized beam	90
Figure 5.55	History of the objective function	91
Figure 5.56	History of the design variable "H"(height of the beam)	92
Figure 5.57	History of the design variable "Wf" (width of the flange)	92
Figure 5.58	History of the design variable "tw" (thickness of the web)	93
Figure 5.59	History of the design variable "tf" (thickness of the flange)	93
Figure 5.60	Cantilever beam problem history of the maximum constrain	t
-	value	94
Figure 6.1	The wing model studied in optimization study	99
Figure 6.2	Geometry and finite element of the wing	100
Figure 6.3	Elements of the wing model	101
Figure 6.4	Elements of the front spar	103
Figure 6.5	Elements of the rear spar	104
Figure 6.6	Upper skin elements	105
Figure 6.7	Lower skin elements	106
Figure 6.8	Elements of rib 1	107
Figure 6.9	Elements of rib 2	108
Figure 6.10	Elements of rib 3	108
Figure 6.11	Elements of rib 4	109
Figure 6.12	Elements of rib 5	109
Figure 6.13	Elements of rib 6	110
Figure 6.14	Elements of rib 7	110
Figure 6.15	Applied displacement boundary condition	111
Figure 6.16	Elements to be optimized	112
Figure 6.17	Spanwise aerodynamic lift force distribution	113
Figure 6.18	Spanwise aerodynamic pitching moment distribution	113
Figure 6.19	Initial wing model with tip loading	118
Figure 6.20	Initial axial stresses on the flanges	119
Figure 6.21	Initial Von Mises stresses on the skins and the webs	120
Figure 6.22	Initial Von Mises stresses on the skins and the webs interior	view
C		121
Figure 6.23	Initial deflection of the wing	121
Figure 6.24	Final flange areas on the wing model	122
Figure 6.25	Final upper skin thicknesses of the wing model	123
Figure 6.26	Final lower skin thicknesses of the wing model	123
Figure 6.27	Final front spar thicknesses of the wing model	124
Figure 6.28	Final rear spar thicknesses of the wing model	124
Figure 6.29	Final rib web thicknesses of the wing model	125
Figure 6.30	Final axial stresses on the flanges	126
Figure 6.31	Final Von Mises stresses on the skins and the webs	126
Figure 6.32	Final Von Mises stresses on the skins and the webs interior	view
c		127

Figure 6.33	Final deflection of the wing	127
Figure 6.34	History of objective function (in kg)	128
Figure 6.35	History of lower skin thicknesses (in mm)	129
Figure 6.36	History of upper skin thicknesses (in mm)	129
Figure 6.37	History of front spar web thicknesses (in mm)	130
Figure 6.38	History of rear spar web thicknesses (in mm)	130
Figure 6.39	History of rib web thicknesses (in mm)	131
Figure 6.40	History of upper flange areas of front spar (in mm ²)	131
Figure 6.41	History of lower flange areas of front spar (in mm ²)	132
Figure 6.42	History of upper flange areas of rear spar (in mm ²)	132
Figure 6.43	History of lower flange areas of rear spar (in mm ²)	133
Figure 6.44	History of flange areas of rib 1 (in mm ²)	133
Figure 6.45	History of flange areas of rib 2 (in mm ²)	134
Figure 6.46	History of flange areas of rib 3 (in mm ²)	134
Figure 6.47	History of flange areas of rib 4 (in mm ²)	135
Figure 6.48	History of flange areas of rib 5 (in mm ²)	135
Figure 6.49	History of flange areas of rib 6 (in mm ²)	136
Figure 6.50	History of flange areas of rib 7 (in mm ²)	136
Figure 6.51	History of maximum constraint value	137
Figure 6.52	Initial wing model with distributed loading	138
Figure 6.53	Initial axial stresses on the flanges	139
Figure 6.54	Initial Von Mises stresses on the skins and the webs	139
Figure 6.55	Initial Von Mises stresses on the skins and the webs interior	or view
		140
Figure 6.56	Initial deflection of the wing model	140
Figure 6.57	Final flange areas on the wing model	141
Figure 6.58	Final upper skin thicknesses of the wing model	142
Figure 6.59	Final lower skin thicknesses of the wing model	142
Figure 6.60	Final front spar thicknesses of the wing model	143
Figure 6.61	Final rear spar thicknesses of the wing model	143
Figure 6.62	Final rib web thicknesses of the wing model	144
Figure 6.63	Final overall thicknesses of the wing model	144
Figure 6.64	Final web thicknesses of the wing model interior view	145
Figure 6.65	Final axial stresses on the flanges	146
Figure 6.66	Final Von Mises stresses on the skins and the webs	146
Figure 6.67	Final Von Mises stresses on the skins and the webs interio	r view
		147
Figure 6.68	Final deflection of the wing model	147
Figure 6.69	History of objective function (in kg)	148
Figure 6.70	History of lower skin thicknesses (in mm)	149
Figure 6.71	History of upper skin thicknesses (in mm)	149
Figure 6.72	History of front spar web thicknesses (in mm)	150
Figure 6.73	History of rear spar web thicknesses (in mm)	150
Figure 6.74	History of rib web thicknesses (in mm)	151
Figure 6.75	History of upper flange areas of front spar (in mm ²)	151
Figure 6.76	History of lower flange areas of front spar (in mm ²)	152

Figure 6.77	History of upper flange areas of rear spar (in mm ²)	152
Figure 6.78	History of lower flange areas of rear spar (in mm ²)	153
Figure 6.79	History of flange areas of rib 1 (in mm ²)	153
Figure 6.80	History of flange areas of rib 2 (in mm ²)	154
Figure 6.81	History of flange areas of rib 3 (in mm ²)	154
Figure 6.82	History of flange areas of rib 4 (in mm ²)	155
Figure 6.83	History of flange areas of rib 5 (in mm ²)	155
Figure 6.84	History of flange areas of rib 6 (in mm ²)	156
Figure 6.85	History of flange areas of rib 7 (in mm ²)	156
Figure 6.86	History of maximum constraint value	157
Figure 6.87	Load case 1 in auxiliary model	159
Figure 6.88	Load case 2 in auxiliary model	159
Figure 6.89	Load case 3 in auxiliary model	160
Figure 6.90	Load case 4 in auxiliary model	160
Figure 6.91	Load case 5 in auxiliary model	161
Figure 6.92	Initial wing model with distributed loading	163
Figure 6.93	Final location of the rib 2 on the wing model	164
Figure 6.94	Final Von Mises stress on the element 110030	164
Figure 6.95	History of objective function (in kg)	165
Figure 6.96	History of rib 2 location (in 100 mm)	166
Figure 6.97	History of the maximum constraint value	166
Figure 6.98	Initial wing model with distributed loading	167
Figure 6.99	Final rib locations on the wing model	168
Figure 6.100	Final flange areas of the wing model	169
Figure 6.101	Final lower skin thicknesses of the wing model	169
Figure 6.102	Final upper skin thicknesses of the wing model	170
Figure 6.103	Final front spar thicknesses of the wing model	170
Figure 6.104	Final rear spar thicknesses of the wing model	171
Figure 6.105	Final rib web thicknesses of the wing model	171
Figure 6.106	Final rib web thicknesses of the wing model	172
Figure 6.107	Final Rib web thicknesses of the wing model interior view	172
Figure 6.108	Final axial stresses on the flanges	173
Figure 6.109	Final Von Mises stresses on the skins and the webs	174
Figure 6.110	Final Von Mises stresses on the skins and the webs interior	view
		174
Figure 6.111	Final deflection of the wing model	175
Figure 6.112	History of objective function	176
Figure 6.113	History of lower skin thicknesses (in mm)	176
Figure 6.114	History of upper skin thicknesses (in mm)	177
Figure 6.115	History of front spar web thicknesses (in mm)	177
Figure 6.116	History of rear spar web thicknesses (in mm)	178
Figure 6.117	History of rib web thicknesses (in mm)	178
Figure 6.118	History of upper flange areas of front spar (in mm ²)	179
Figure 6.119	History of lower flange areas of front spar (in mm ²)	179
Figure 6.120	History of upper flange areas of rear spar (in mm ²)	180
Figure 6.121	History of lower flange areas of rear spar (in mm ²)	180

Figure 6.122	History of flange areas of rib 1 (in mm ²)	181
Figure 6.123	History of flange areas of rib 2 (in mm ²)	181
Figure 6.124	History of flange areas of rib 3 (in mm ²)	182
Figure 6.125	History of flange areas of rib 4 (in mm ²)	182
Figure 6.126	History of flange areas of rib 5 (in mm ²)	183
Figure 6.127	History of flange areas of rib 6 (in mm ²)	183
Figure 6.128	History of flange areas of rib 7 (in mm ²)	184
Figure 6.129	History of maximum constraint value	184
Figure B.1	Starting AugLagMet in MATLAB [®] command window	204
Figure B.2	Entering initial values in MATLAB [®] command window	205
Figure B.3	Result in MATLAB [®] command window	206
Figure B.4	Open with a bdf-file in Microsoft.WINDOWS [®]	209
Figure B.5	Location of "nastran.exe"	209
Figure B.6	"nastran.exe" file in ./bin/ directory	210
Figure B.7	Open a "bdf-file" allways with "nastran.exe"	210
Figure B.8	MATLAB [®] command window	211
Figure B.9	MSC.NASTRAN [®] run window	212
Figure B.10	MATLAB [®] command window	212
Figure C.1	Finite element models for rectangular cross section cantilev	ver
	beam with different mesh densities	213
Figure C.2	Finite element models for I shaped cross section cantilever	beam
	with different mesh densities	215

LIST OF TABLES

Table 5.1	Objective function variation in the unconstrained design space	42
Table 5.2	Variation of maximum stress in the design space	. 43
Table 5.3	Variation of maximum deflection in the design space	. 44
Table 5.4	Variation of slenderness ratio in the design space	. 45
Table 5.5	Variation of the value of the objective function in the design	
	space after all the constraints are imposed	. 46
Table 5.6	Comparison of results of three different optimization approach	les
		. 65
Table 5.7	Comparison of results for the I-Beam	. 95
Table 6.1	Element properties and design variables of the front spar	102
Table 6.2	Element properties and design variables of the rear spar	102
Table 6.3	Element Properties and Design Variables of Upper Skin	104
Table 6.4	Element properties and design variables of lower skin	105
Table 6.5	Element properties and design variables of rib 1	107
Table 6.6	Element Properties and Design Variables of Rib 2	108
Table 6.7	Element properties and design variables of rib 3	108
Table 6.8	Element properties and design variables of rib 4	109
Table 6.9	Element properties and design variables of rib 5	109
Table 6.10	Element properties and design variables of rib 6	110
Table 6.11	Element properties and design variables of rib 7	110
Table 6.12	Design constraints related to front spar	114
Table 6.13	Design constraints related to rear spar	114
Table 6.14	Design constraints related to upper skin	115
Table 6.15	Design constraints related to lower skin	115
Table 6.16	Design constraints related to rib 1	115
Table 6.17	Design constraints related to rib 2	115
Table 6.18	Design constraints related to rib 3	116
Table 6.19	Design constraints related to rib 4	116
Table 6.20	Design constraints related to rib 5	116
Table 6.21	Design constraints related to rib 6	116
Table 6.22	Design constraints related to rib 7	117
Table 6.23	Design constraints related to displacements at rib 7	117
Table 6.24	Comparison of linear static analyses of the wing with rib 2 at	
	different spanwise locations	162
Table 6.25	Comparison of results of three optimization processes	185
Table C.1	Comparison of optimization results of rectangular cross section	n
	cantilever beam with different mesh densities	214
Table C.2	Comparison of optimization results of shaped cross section	
	cantilever beam with different mesh densities	216

Table C.3	Comparison of front spar results of three optimization processes.
Table C.4	Comparison of rear spar results of three optimization processes
Table C.5	Comparison of upper skin results of three optimization processes
Table C.6	Comparison of lower skin results of three optimization processes
Table C.7	Comparison of rib 1 results of three optimization processes 219
Table C.8	Comparison of rib 2 results of three optimization processes 219
Table C.9	Comparison of rib 3 results of three optimization processes 220
Table C.10	Comparison of rib 4 results of three optimization processes 220
Table C.11	Comparison of rib 5 results of three optimization processes 220
Table C.12	Comparison of rib 6 results of three optimization processes 221
Table C.13	Comparison of rib 7 results of three optimization processes 221

LIST OF SYMBOLS AND ABBREVIATIONS

х	Design variables	
FE	Finite Element	
FEM	Finite Element Method	
FOC	First Order Condition	
SOC	Second Order Condition	
α	Step size in 1-D search	
τ	Tolerance	
3	Tolerance	
L	Length	
Δ	Change in value	
∇	Gradient of function	
с	Maximum distance from neutral axis	
E	Modulus of Elasticity	
Ι	Moment of Inertia	
Н	Height of the Beam	
В	Width of the Beam	
М	Applied Moment	
σ	Stress value	
Р	Applied Force	
W	Weight	
υ	Poisson's Ratio	
δ	Displacement	
D.R.	Design Response	
D.V.	Design Variable	
D.C.	Design Constraint	

CHAPTER 1

INTRODUCTION

Optimization has vital importance in every field of modern world.

"Nothing takes place in the world whose meaning is not that of some maximum or minimum." said by Euler.

Optimization is defined as the procedure used to make a system or design as effective or functional as possible. Today, optimization forms a major necessary part of design activity in all major disciplines and those disciplines are not limited only to engineering. There is hardly any area where optimization has not proven itself to be effective. These areas include everything that are seen around or used in daily lives. It is unthinkable that the products that are seen everyday, like cars, houses, electronic or non-electronic devices that are produced today are not designed optimally in one way or another. The will to produce maximum quality products with minimum possible cost is the driving force behind the rapid development of the optimization methods.

The theory of optimization has its roots from ancient times. Throughout history, there had always been a huge number of geometrical and mechanical problems, which are optimization problems in fact but has been solved by using geometrical knowledge since the optimization techniques were not known by then. [1]

Optimization techniques are being used for more than a century. At first, the basic tool used to find the extremum of functions was differential calculus [2]. It is the World War II that has played a very important role for the development of optimization. In mid-1940s, Simplex Method has been developed for solving linear programming problems. Linear Programming has been used to solve war

problems at first but afterwards, it was found out that this technique was very useful in solving problems in economics, business and engineering sciences. In 1951, H.W. Kuhn and A.W. Tucker developed the Lagrangian multiplier rule for convex and other non-linear programming problems which also involved inequality constraints. The Kuhn-Tucker optimality conditions became very useful and important for developing algorithms in solving convex and other nonlinear programming problems with differentiable functions. After World War II, in late 1950s, non-linear programming has been emphasized with the development of a powerful method for unconstrained optimization developed by W.C. Davidon. Afterwards, his work has been further developed by M.J.D. Powell and R. Fletcher and it lead to the rise of powerful Quasi-Newton methods. The development of computer science made it possible to simplify programming and thus to easily solve great optimization problems which is nearly impossible to solve by hand. Early computers provided accessibility, responsiveness, autonomy and fixed cost while recent models added large memory, high precision and impressive speed. At present, optimization is a developing subject with many newly explored areas of theory and application [1].

There is no doubt that there is a widespread practical usage of optimization methods in many different fields – aerospace industry being one of the earliest disciplines to use these methods most significantly. Driven by the need to lower the burden of the unnecessary weight in aerospace vehicles in order to minimize the tremendous cost associated with this weight, it is not hard to understand why the application of the optimization methods is such a big necessity for aerospace industry. Minimum weight vehicles together with the savings in fuel consumption with optimal trajectory design without any deviations from aviation safety is the main target to reach through optimization.

In the following sections of this chapter, general information on the optimization methods of aerospace structures will be discussed. In chapter 2, optimization theory is introduced. In chapter 3, optimization technique used in the developed MATLAB[®] code will be presented. In chapter 4, three different approaches of

the structural optimization used in the present thesis will be described including the description of the interface codes specific to MATLAB[®] and MSC.NASTRAN[®]. In chapter 5, two case studies are performed with different optimization techniques both for verification and demonstration purposes. In chapter 6, a complex aerospace structure optimization is performed. In this section both geometric property and shape optimization studies are performed for a wing torque box. Finally, in the last chapter, conclusion of the studies is given and researchers interested in the subject matter are encouraged to do further work.

1.1 OPTIMIZATION METHODS

There are many optimization methods used in solving problems in engineering and other disciplines. These methods can be classified mainly in two groups. First group is the genetic algorithms [3] and second group is the gradient based algorithms. In this thesis gradient based algorithms are used for the solution of structural optimization problems. Gradient based algorithms are also divided into two major groups which are the unconstrained and constrained optimization problems. Some examples of methods for gradient based algorithms are given below.

- 1. Unconstrained Optimization
 - Steepest Descent Method
 - Conjugate Gradient Method
 - Davidon-Fletcher-Powell Method
- 2. Constrained Optimization
 - Penalty Function Method
 - Augmented Lagrange Multiplier Method

1.2 MAIN APPLICATION AREAS OF OPTIMIZED STRUCTURES

Optimized structures can be found in many disciplines in engineering. However, structural optimization is especially critical in the design of aerospace structures. Weight of an aerospace vehicle is not only related to the performance of the vehicle but weight savings also induce significant cost savings during the design stage and directly affects the fuel consumption during the operation of the vehicle. Therefore, aerospace companies use low margins of safety in their design to achieve weight savings. The use of low margins of safety in structural design can be best accomplished by performing structural optimization. Common types of optimization performed in the structure area are:

- Property optimization: Cross-section dimensions, thicknesses, geometric dimensions etc.
- Shape optimization: Changing the locations of certain structural members like ribs, changing the shape of a cut-out etc.
- Topology optimization: Optimal distribution of material

In the following section, some examples will be given for the optimized structures used in different fields of engineering.

1.2.1 AERONAUTICS

Almost in all aeronautical vehicles optimization is used, because weight has direct impact on the performance of the air vehicle as well as the operating cost as discussed above. Therefore, aerospace structures are usually composed of stiffened thin walled structural members. The use of stiffened thin walled members assures weight savings as well as structural integrity if the structural design is performed in the right way. Wings and fuselage of aircraft are two main substructures where significant weight savings can be achieved if optimization techniques are implemented in the design stage. For instance in Figure 1.1, a section of the fuselage of an aircraft structure is presented.

Figure 1.1 A typical aircraft Structure [4]

As it can be seen from Figure 1.1, many structural members exist in the fuselage frame and one can imagine the great amount of weight savings that can be achieved if optimization techniques are used in the design stage of such a fuselage frame.

1.2.2 SPACE

Satellite structures are also becoming very popular with the technological advancement that takes place in space technologies. Today many countries possess their own satellite structures in space and these spacecraft serve for different purposes ranging from telecommunication to earth observation and remote sensing etc. Weight saving in satellite structures is also very critical because the launch cost of satellites are directly related to the weight of the satellite. In addition, orbit performance of the satellites can be improved by weight savings. Figure 1.2 and 1.3 show the initial and optimized shape of a

frame of a satellite structure. Figure 1.4 shows the test of the optimized structure. [5]

Figure 1.2 Initial satellite structure [5]

Figure 1.3 Optimized satellite structure [5]

Figure 1.4 Optimized satellite structure on test [5]

1.2.3 MARINE

In the marine industry weight savings are also as important as in aerospace industry. By designing weight efficient ships significant performance gains can be obtained and fuel consumption can be significantly reduced. To increase performance gains nowadays personal yachts are manufactured from composite materials which present significant weight savings. Race sail boats are other examples of marine structures for which weight saving directly affects the success in the race due to performance gains achieved by weight reduction. In Figure 1.5 two racing sail boats are shown. Structural optimization in hull structures has vital importance to achieve excellent strength-to-weight ratios.

Figure 1.5 Sail boats [6]

1.2.4 AUTOMOTIVE

Structural optimization also has vital importance in the automotive industry. Weight reduction in automobiles is especially critical in having reduced emissions. Low emission of combustion products is directly related to the weight of the automobile. Today in many countries around the world, low emission regulations are prepared to force the automobile manufacturers to manufacture automobiles which comply with these regulations. Besides the improvements in the engine technology, weight reduction achieved by means of optimization of the structure of the automobile is also an important factor to consider in having lower emissions. Structural optimization is the only way to design structures with minimum weight by satisfying the prescribed constraints imposed on the structural integrity. As an example of optimization in automobile industry, Figure 1.6 shows the finite element model of the structure of an automobile frame used in the optimization study.

Figure 1.6 FE model for optimization

1.3 ADVANTAGES OF OPTIMIZING STRUCTURES

Although performing optimization studies requires initial investment such as high performance computers and additional engineering cost, there are many advantages gained by optimizing structures. Some of these advantages can be listed as:

- reduced weight ,
- reduced manufacturing cost,
- improved efficiency,
- improved service life
- reduced operating costs (less fuel, less repair costs),
- reduced environmental effect

It is deemed that the advantages gained by optimizing structures outweighs the investment costs related with establishing the infra-structure to perform optimization studies. By implementing optimization early in design stages, companies can manufacture products with superior performance with reduced cost. Especially, for industries involved in series manufacturing, optimization can result in huge cost savings. Today, companies strive to continue to exist in the market with competitive products, and in this respect optimization presents a very powerful tool in achieving the production of competitive products.

CHAPTER 2

OPTIMIZATION THEORY FOR GRADIENT BASED METHODS

Optimization means minimization (or maximization) of a function. In aerospace industry, weight is one of the best example for the function to minimize. It depends on the volume and density of the structure and therefore mostly volume minimization is performed in structural optimization provided that material choice is not included in the optimization study.

In a general structural optimization problem there are always some restrictions that allows no further weight reduction, such as stress values must be below a certain level or the maximum deflections must be below a certain value. In addition, the outer shape of aircraft sub-structures is usually determined by aerodynamics and flight mechanics considerations and unless а multidisciplinary approach is followed in the optimization, the outer dimensions can be taken as constants but not as design variables. For instance, thickness of the profile of a lifting surface may be a fixed value and for a fixed spar location the spar height will be constant. In optimization problems, the design variables usually have an upper and a lower bound. In structural optimization problems these bounds, on some of the design variables, exist because of the available structural elements from which the selection has to be made during the manufacturing.

To handle an optimization problem mathematically, there is a need for a statement. General statement of optimization problems is given as:

 $\begin{array}{lll} \mbox{Minimize} & f(x_1, x_2, x_3, ..., x_n) \\ \mbox{Subject to} & h_k(x_1, x_2, x_3, ..., x_n) = 0 & k = 1, 2, ..., 1 \\ & g_j \ (x_1, x_2, x_3, ..., x_n) \leq 0 & j = 1, 2, ..., m \\ & x_i^u \leq x_i \leq x_i^u & i = 1, 2, ..., n \end{array}$

where,

$h_k(x_1, x_2, x_3, \dots, x_n) = 0$	k = 1, 2,, 1	represents the equality constraints.
$g_{j}(x_{1}, x_{2}, x_{3},, x_{n}) \leq 0$	j = 1, 2,, m	represents the inequality constraints
$x_i^u \leq x_i \leq x_i^u$	i = 1, 2,, n	represents the upper and lower bounds

This chapter introduces optimization methods. One-dimensional optimization methods are explained in the first part. In the second part, unconstrained optimization methods for multivariable optimization problems are investigated. In the last part of the this chapter, implementation of constraints is presented.

2.1 ONE DIMENSIONAL OPTIMIZATION METHODS

Finding global minimum of the function with one variable in a given range can be stated as one dimensional optimization problem. There are many numerical methods for solution of one dimensional optimization problems. These are called as one dimensional search or line search methods. Following three methods will be mentioned in this chapter:

- Newton Raphson Method
- Bisection Method
- Golden Section Method

2.1.1 NEWTON RAPHSON METHOD

Newton Raphson method is used to find the root of a function. At optimum point the derivative of the function is zero. Therefore, this method can be applied to find the optimum point by searching the roots of derivative, instead of original function itself.

The idea is very simple. First the function Φ is evaluated at a point α . Then that point is moved by an amount of $\Delta \alpha$ and the function is evaluated at a new location. This procedure is continued until the condition $\Phi(\alpha) = 0$ is satisfied. Calculation of increment in α value ($\Delta \alpha$) is as follows:

$$\Phi(\alpha) = \Phi(\alpha + \Delta \alpha) = \Phi(\alpha) + \frac{d\Phi}{d\alpha} \Delta \alpha = 0$$
(2.1)

$$\Delta \alpha = -\frac{\Phi(\alpha)}{d\Phi/d\alpha} = -\left[\frac{d\Phi}{d\alpha}\right]^{-1} \Phi(\alpha)$$
(2.2)

New α value is determined by incrementing α by $\Delta \alpha$, and the whole process repeated until solution is reached.

The drawback of Newton-Raphson method is the need to have an initial guess near the true solution. Algorithm of this method is given in detail in Appendix A.1.

2.1.2 **BISECTION METHOD**

Like Newton Raphson method, bisection method is also used to find the roots of the function. This method is based on the reduction of the search interval.

In this method function values are evaluated at incremental values of the independent variable α , and sign change of the function value is searched for. Assuming that an interval is determined at upper bound α_b and lower bound α_a of the interval, the sign of the function must be different. In such a case, a continuous function will have at least one root in the interval.

Next step is evaluating the function in the middle of the interval. The sign of the function will be different from either the sign of the function at the lower bound or the sign of the function at the upper bound. Thus, the search interval is halved

and the whole process is repeated until the interval is less than a prescribed very small value. Middle point of the interval can be obtained by using the formula below.

$$\alpha = \alpha_a + (\alpha_b - \alpha_a)/2 \tag{2.3}$$

Algorithm of this method is given in detail in Appendix A.2.

2.1.3 GOLDEN SECTION METHOD

This method is used to find the minimum or the maximum of a function within a certain interval. The method is similar to bisection method but the intervals are derived from golden section ratio 1.61803 from Fibonacci series [7]. The brief explanation of the method is given below.

Figure 2.1 Golden section search technique [7]

In Figure 2.1, horizontal axis is used for the independent variable x and the vertical axis is used for the value of the function f(x). The lower value of the search interval is x_1 and the upper value is x_3 . The function is evaluated at three

points x_1 , x_3 and x_2 , where f_1 , f_3 and f_2 are the corresponding function values respectively. If the value of f_2 is smaller than either f1 or f3, the interval contains a minimum. To reduce the search interval one more evaluation at x_4 , located between x_2 and x_3 , has to be performed and the result is f_4 . If the value of f_4 is greater than f_2 , then the interval x_1 and x_4 contains a minimum. The lower value of the new interval is x_1 and the upper value is x_4 . Three points are now x_1 , x_2 and x_4 . However, if the value of f_4 is smaller than f_2 , then the interval x_2 and x_3 contains a minimum. The lower value of the new interval is x_2 and the upper value is x_3 . Three points are then x_2 , x_4 and x_3 .

To reduce the interval by the same fraction at each iteration the location of x_2 and x_4 should be chosen based on the golden section ratio, 1.61803.

$$\frac{b}{a} = \frac{a}{c} = 1.61803$$
 (2.4)

The derivation of this ratio can be found in reference [7]. Algorithm of this method is given in detail in Appendix A.3.

2.2 UNCONSTRAINED OPTIMIZATION WITH GRADIENT BASED METHODS

In this class of optimization problems, the function to be optimized may have more than one design variable and there is no restriction on the design variables. Therefore, this type of optimization problems is called as unconstrained optimization.

'First Order Conditions' (FOC) should be satisfied at optimum. These conditions are also known as Kuhn Tucker conditions or necessary conditions [8].

$$\nabla f = 0 \tag{2.5}$$

However, 'First Order Conditions' does not guarantee the optimum. Therefore, 'Second Order Conditions' should also be satisfied.

$$\Delta \mathbf{f} = \frac{1}{2} \cdot \Delta \mathbf{x}^{\mathrm{T}} \cdot \mathbf{H} \left(\mathbf{x}^{*} \right) \cdot \Delta \mathbf{x} > 0$$
 (2.6)

where,

 $(\mathbf{H}(\mathbf{x}^*))$ is Hessian matrix which includes second order derivatives of objective function 'f' at solution.

'x' is the vector of design variables.

Equation (2.6) is the second order term of Taylor Series expansion. If the right hand side of the equation (2.6) is greater than zero, the extremum at that point is a minima.

Following gradient based methods are commonly used for the solution of optimization problems.

- Steepest Descent Method
- Conjugate Gradient Method
- Davidon-Fletcher-Powell (DFP) Method

2.2.1 STEEPEST DESCENT METHOD

The steepest descent method is the simplest of the gradient based methods. The idea behind this method stems from the definition of the gradient of a function. The objective function increases most rapidly in the direction of the gradient. Therefore, by reversing the direction of the gradient the search direction s_i is obtained at a given point x_i . Once the search direction is obtained, the next action to take is to decide how far to go in that direction. At this point any one of the one dimensional optimization methods can be used to solve this problem, and a factor α_i for the search direction is the output of one dimensional search. Next point x_{i+1} is obtained using formula below.

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \, \mathbf{s}_i \tag{2.7}$$

This iteration continues until the optimum point is reached.

This method is very simple and easy to apply. It is guaranteed to reach local minimum if there is any. The disadvantage of the steepest descent method is that it is very slow.

An algorithm for this method is given in Appendix A.4. Further information can be found in reference[9].
2.2.2 CONJUGATE GRADIENT METHOD

This method is very similar to the steepest descent method. The only difference is in constructing the search direction. In this method on top of the search direction of the to steepest descent method, a certain fraction of previous search direction is added to the negative of the gradient [9].

$$\mathbf{s_i} = -\nabla \mathbf{f}(\mathbf{x_i}) + \beta \mathbf{s_{i-1}}$$
(2.8)

The fraction of the previous search direction is the ratio of squares of the current and the previous gradient vectors.

$$\beta = \frac{\nabla \mathbf{f}(\mathbf{x}_{i})^{\mathrm{T}} \nabla \mathbf{f}(\mathbf{x}_{i})}{\nabla \mathbf{f}(\mathbf{x}_{i-1})^{\mathrm{T}} \nabla \mathbf{f}(\mathbf{x}_{i-1})}$$
(2.9)

The advantage of this method is its robustness compared to the steepest descent method. It should be noted that the magnitude of gradient of the objective function (∇f) at optimum approaches to zero. Therefore, if the previous design variable x is closer to optimum than the current design variable x, the value of β is large. This means that previous iteration is dominant.

An algorithm for this method is given in Appendix A.5. Further information can be found in reference [9].

2.2.3 DAVIDON-FLETCHER-POWELL METHOD

In 'Conjugate Gradient Method' only the information from the previous iteration is included in the determination of the search direction. However, Davidon Fletcher Powell method uses information from all past iterations. This information is kept in a n x n matrix \mathbf{H} which is called as metric, where n is the number of the design variables. Therefore, this method is called as variable metric method. The search direction is stated as follows [7].

$$\mathbf{s}_{\mathbf{i}} = -\mathbf{H}_{\mathbf{i}} \cdot \nabla \mathbf{f}(\mathbf{x}_{\mathbf{i}}) \tag{2.10}$$

The initial metric \mathbf{H}_0 must be symmetric positive definite. Usually, identity matrix is chosen as the initial metric. It is updated in every iteration according to the following formula [7].

$$\mathbf{H}_{i+1} = \mathbf{H}_{i} + \frac{\Delta \mathbf{x}_{i} \cdot \Delta \mathbf{x}_{i}^{\mathrm{T}}}{\Delta \mathbf{x}_{i}^{\mathrm{T}} \cdot \Delta [\nabla \mathbf{f}(\mathbf{x}_{i})]} - \frac{\{\mathbf{H}_{i} \cdot \Delta [\nabla \mathbf{f}(\mathbf{x}_{i})]\} \cdot \{\mathbf{H}_{i} \cdot \Delta [\nabla \mathbf{f}(\mathbf{x}_{i})]\}^{\mathrm{T}}}{\Delta [\nabla \mathbf{f}(\mathbf{x}_{i})]^{\mathrm{T}} \cdot \mathbf{H}_{i} \cdot \Delta [\nabla \mathbf{f}(\mathbf{x}_{i})]} \quad (2.11)$$

H matrix is symmetric positive definite in all iterations. As **x** approaches to the optimum, **H** matrix converges to the Hessian of the function. For quadratic functions DFP method converges in less than n iterations.

An algorithm for this method is given in Appendix A.6. Further information can be found in reference [9]

2.3 CONSTRAINED OPTIMIZATION WITH GRADIENT BASED METHODS

If there are some constraints introduced to the unconstrained optimization problem, the resulting optimization problem is called as constrained optimization. However, a constrained optimization problem can be converted to an unconstrained optimization problem. In this thesis two methods, which convert the constrained optimization problem into unconstrained optimization problem, are introduced. These methods are:

- 1. Penalty Function Method.
- 2. Augmented Lagrange Multiplier Method

In the thesis 'Augmented Lagrange Multiplier Method' is implemented in the proceeding sections.

2.3.1 PENALTY FUNCTION METHOD

The penalty function method is the modification of objective function $f(\mathbf{x})$ in such a way that it includes the constraints. Then, it can be solved by using algorithms used for unconstrained problems. Modification is very simple. A penalty function $P(\mathbf{x})$ is added to the objective function.

$$f(\mathbf{x}, \mathbf{r}_{h}, \mathbf{r}_{g}) = f(\mathbf{x}) + P(\mathbf{x}, \mathbf{r}_{h}, \mathbf{r}_{g})$$
(2.12)

Where, r_g and r_h are the penalty function multipliers used in equation (2.13).

This additional function should penalize the objective function only outside the feasible region. In order to achieve this, penalty function can be chosen as follows [8].

$$P(\mathbf{x}, r_{h}, r_{g}) = r_{h} \cdot \sum_{k=1}^{l} h_{k}(\mathbf{x})^{2} + r_{g} \cdot \sum_{j=1}^{m} \max(0, g_{j}(\mathbf{x}))^{2} \qquad (2.13)$$

where,

 $h_k(\mathbf{x})$ defines an equality constraint.

 $g_i(\mathbf{x})$ defines an inequality constraint.

This assures that when the constraints are violated the new objective function becomes large. Also, constants " r_h " and " r_g " are used to adjust the weight of the penalty function. These constants are called weighting factors or penalty parameters and it is not necessary to change them in each iteration.

An algorithm for this method is given in Appendix A.7. Further information can be found in reference [9].

2.3.2 AUGMENTED LAGRANGE MULTIPLIER METHOD

Another method of solving constrained optimization problem is Augmented Lagrange Multiplier (ALM) Method. This method is based on the same idea as 'Penalty Function Method'. An additional function is added to the original objective function to penalize it when the constraints are violated. New objective function can be stated as follows [8].

$$f(\mathbf{x},\lambda,\beta,r_{h},r_{g}) = f(\mathbf{x}) + r_{h} \cdot \sum_{k=1}^{l} h_{i}(\mathbf{x})^{2} + r_{g} \cdot \sum_{j=1}^{m} \left[\max\left(g_{j}(\mathbf{x}),-\frac{\beta_{j}}{2 \cdot rg}\right) \right]^{2} + \sum_{k=1}^{l} \lambda_{k} \cdot h_{i}(\mathbf{x}) + \sum_{j=1}^{m} \beta_{j} \cdot \left[\max\left(g_{j}(\mathbf{x}),-\frac{\beta_{j}}{2 \cdot rg}\right) \right]$$
(2.14)

Vectors λ and β are multipliers for equality and inequality constraints respectively. Variables r_g and r_h are the penalty parameters. Vectors λ and β are updated in every iteration by using the formulas below,

$$\lambda = \lambda + 2 \cdot r_h \cdot \mathbf{h}(\mathbf{x}) \tag{2.15}$$

$$\beta = \beta + 2 \cdot r_g \cdot \left(\max \left[g(\mathbf{x}), -\frac{\beta}{2 \cdot r_g} \right] \right)$$
(2.16)

Main advantage of this method is its robustness. At the solution, this method provides information about lagrange multipliers.

An algorithm for this method is given in Appendix A.8. Further information can be found in reference [9].

CHAPTER 3

OPTIMIZATION CODE IN MATLAB®

MATLAB[®] is a very useful tool to create codes for optimization. Because, in optimization problems matrix operations are needed frequently and implementing matrix operations is very easy in MATLAB[®] environment. Also, separation of tasks is quite simple in MATLAB[®] by implementing different code segments in different M files. There are many examples of solution of optimization problems with MATLAB[®]. In this thesis, general structure of the optimization code written by Venkataraman [8] is taken and modifications are incorporated to come up with the optimization code used in the demonstration of the three different ways solving structural optimization problems.

The optimization code includes three nested loops. Outermost loop is used to convert constrained optimization problem to unconstrained one and 'Augmented Lagrange Multiplier Method' is used to perform this task. In the inner loop, Davidon Fletcher Powell method is chosen to obtain solution for unconstrained optimization problem. This loop provides a search direction to be solved by a one dimensional search algorithm. Finally, innermost loop provides a solution for one dimensional search problem with golden section method.

Each loop is written in a different M-file. Evaluation of the objective function, equality constraints, inequality constraints, construction of unconstrained objective function and evaluation of the gradient of the function is written in separate M-files. Separation of M-files allows easy adaptation of MSC.NASTRAN[®] as a solver in the optimization.

Main flowchart of the optimization code written in MATLAB[®] environment is given in Figure 3.1

Figure 3.1 Main algorithm of the optimization code

3.1 AUGMENTED LAGRANGIAN MULTIPLIER METHOD SECTION

In this section, the outermost loop of the code is implemented. The augmented lagrangian multiplier method is composed of three main parts.

The first part is the input section where initial values of design variables, upper and lower bounds of the design variables, number of equality and inequalty constraints and their initial multipliers are input. In addition, tolerances for convergence and maximum number of iterations are stated. At the end of input section objective function, equality and inequality constraints and newly constructed unconstrained objective function is evaluated and their values are stored.

In the second part, unconstrained optimization problem is solved. Davidon Fletcher Powell method is called and in this part a solution for unconstrained optimization problem is obtained. Similar to the end of the first part, objective function, equality and inequality constraints and newly constructed unconstrained objective function is evaluated and their values are stored.

In third part, convergence criteria is checked. If convergence criteria is achieved the code stops. However, in the code there are also other criteria to stop the execution of the code. These additional criteria include a check on the values of the design variables "**x**" and maximum number of iterations. If the design variables do not change appreciably or the maximum number of iterations is exceeded, the code stops execution. If any one of the stopping criteria is not satisfied, penalty multipliers "rg", "rh", and lagrange multipliers " λ ", " β " are updated.

If the code stops with a violated constraint because design variables " \mathbf{x} " are not changing, in that case the stopping criteria which checks the values of the design variables " \mathbf{x} " can be omitted. This allows making further improvements in the multipliers and the weight of the violated constraint will be increased so that the constraint will not be violated. By adjusting the weights of the constraints the code tries to satisfy all constraints.

3.2 DAVIDON FLETCHER POWEL METHOD SECTION

This section of the code implements Davidon Fletcher Powell method to solve the unconstrained optimization problem. The unconstrained objective function, current value of design variable vector "x", upper and lower bounds of the design variable vector"x" and maximum iteration number are taken from the ALM section. Tolerances for the convergence were stated at the beginning of the section. For the first iteration, identity matrix is used as the initial metric. Subsequently, gradient of the unconstrained objective function is calculated in an external M-file. Next step is determining the search direction "s" which is found by negative of the dot product of the metric by the gradient. Once the search direction is determined, an M-file containing the golden section method is called to solve the one dimensional problem. This M-file provides a multiplier " α " for the search direction, updated design variable vector "x" and the corresponding unconstrained objective function value. Square of the length of the gradient of the unconstrained objective function is calculated with the updated "x" for the convergence check. If the square is less than the previously specified tolerance value, the algorithm is converged to a solution and the code stops execution. Otherwise, metric is updated based on DFP method and the whole process is repeated. As an exception, if the search direction is modified in the one dimensional search, metric is reset to the identity matrix. Other stopping criteria, which are the no appreciable change in the design variable vector " \mathbf{x} " and no appreciable change in the objective function value, are also checked respectively. If the code does not stop, it repeats all the steps starting from the determination of the search direction until the convergence or until one of the stopping criteria is achieved.

3.3 GOLDEN SECTION METHOD SECTION

This section is composed of two parts. These are determination of upper and lower bound for variable " α " which is factor for search direction "**s**" which is written differently from and the implementation of golden section method.

Since the golden section method needs an interval to work on, determination of upper and lower bound for " α " is performed in the first part. Objective of this part is to keep the design variable vector "**x**" within its lower and upper boundaries which are given as input in the beginning of the ALM section. At first, lower bound for " α " is set to zero. For this case the first component of the search direction "**s**" is zero and the upper bound is set to a very high value such as 10^{12} . Then, for each component of "**x**" (x_i), its position with respect to the boundaries and corresponding component of "**s**" (s_i) are checked. There are six possibilities for the position of the design variable x_i.

First, x_i can be between its boundaries and the corresponding search direction is negative. Lower bound of " α " remains as is. Upper bound of " α " is set to the ratio of the distance to the lower boundary of x_i divided by s_i .

Second, x_i can be between its boundaries and corresponding search direction is positive. Lower bound of " α " remains as is. Upper bound of " α " is set to the ratio of the distance to the upper boundary of x_i divided by s_i .

Third, x_i can be less than its lower boundary and corresponding search direction is positive. Lower bound of " α " is set to the ratio of the distance to the lower boundary of x_i divided by s_i . Upper bound of " α " is set to the ratio of the distance to the upper boundary of x_i divided by s_i .

Fourth, x_i can be less than its lower bound and corresponding search direction is negative. For this case the search direction s_i must be reversed. This means a modification in the search direction and requires a reset in metric in DFP section. Lower bound of " α " is set to negative value of the ratio of the distance to the lower boundary of x_i divided by original s_i . Upper bound of " α " is set to the negative value of the ratio of the distance to the upper boundary of x_i divided by original s_i .

Fifth, x_i can be greater than its upper boundary and corresponding search direction is positive. For this case the search direction s_i must be reversed. This means a modification in the search direction and requires a reset in metric in DFP section. Lower bound of " α " is set to the negative value of the ratio of the distance to the upper boundary of x_i divided by original s_i . Upper bound of " α "

is set to the negative value of the ratio of the distance to the lower boundary of x_i divided by original s_i .

Sixth, x_i can be greater than its upper boundary and corresponding search direction is negative. Lower bound of " α " is set to the ratio of the distance to the upper boundary of x_i divided by s_i . Upper bound of " α " is set to the ratio of the distance to the lower boundary of x_i divided by s_i .

After checking for all components of the design variable vector " \mathbf{x} ", the minimum value of the calculated upper bound of " α " and the maximum value of the calculated lower bound of " α " is used as the new upper bound and lower bounds of " α ", respectively. This reduces the search interval and ensures staying within the boundaries of the variable " \mathbf{x} ".

If the value for the lower bound is greater than the upper bound, it means that the search direction in design space does not pass through the region bounded by lower and upper bounds of the design variable vector " \mathbf{x} ". For this case upper and lower bounds are inverted. Therefore, updated " \mathbf{x} " is guaranteed to be close to its boundaries in next iterations.

In the second part of this section, golden section algorithm is implemented directly. A tolerance and maximum iteration number are calculated by using upper and lower bounds of " α ". In the code the maximum iteration number is limited by 1000. Then, reduction of the interval continues until it becomes less than the tolerance or the maximum number of iterations is reached.

Average of the final lower and upper bound of variable " α " is chosen as final " α " to be multiplied by search direction "**s**".

At the end of the section, design variable vector " \mathbf{x} " is updated by the addition of search direction " \mathbf{s} " multiplied by " α " to the previous " \mathbf{x} ". And, finally the corresponding unconstrained objective function value is calculated.

3.4 OBJECTIVE FUNCTION SECTION FOR ANALYTIC SOLVER

This section introduces objective function and constraints of the optimization algorithm. It is composed of four subsections. These are the objective function, equality constraints, inequality constraints and unconstrained objective function section.

3.4.1 OBJECTIVE FUNCTION SECTION

The aim of the optimization is to minimize the objective function. In this section, main objective function is evaluated. The M-file which is dedicated to this function is called "Ofun.m". Design variable vector " \mathbf{x} ", which is a row vector, is the only input to the objective function evaluation. Output is a scalar which is function value.

3.4.2 EQUALITY CONSTRAINT SECTION

An optimization problem might have equality constraints. If there is no equality constraints, this section is skipped. Otherwise, the M-file called "Hfun.m" is used to calculate their value(s). Design variable vector " \mathbf{x} " is the only input to this section. Output is a column vector in which each row is allocated for a different constraint value. At the solution, all the values of the output vector must be zero within a prescribed tolerance because the equality constraints are expressed by relations which are set to zero.

3.4.3 INEQUALITY CONSTRAINT SECTION

Similarly, an optimization problem might have inequality constraints. If there are no inequality constraints, this section is skipped as well. The M-file for the calculation of the values of inequality constraints is called "Gfun.m". Design variable vector " \mathbf{x} " is the only input to this section. Output is a column vector in which each row is allocated for a different constraint value. At the solution, all the values of the output vector must be equal to or less than zero. Similar to

equality constraints, inequality constraints are expressed by 'less than or equal to' relations.

3.4.4 UNCONSTRAINED OBJECTIVE FUNCTION SECTION

This section constructs the unconstrained objective function for the augmented lagrangian method. The name of the M-file for this subsection is "FALM.m". Design variable vector "**x**", lagrange multipliers λ for equality and β for inequality constraints and penalty multipliers r_h and r_g for equality and inequality constraints are given as inputs. Output is a scalar which is the value of unconstrained function.

In the beginning of the section, the main objective function is called. If there are no constraints, this value is the output value. In order to take constraints into account, first existence of equality constraints is checked. If there is at least one, an additional value which is calculated according to the augmented lagrangian method is added to the main objective function. This procedure is repeated for inequality constraints and final value of unconstrained function is obtained.

3.5 OBJECTIVE FUNCTION SECTION FOR MSC.NASTRAN[®] SOLVER

Like in the previous section, the purpose of this section is to introduce an objective function and constraints to the algorithm. The difference is that in this case values of inequality constraints are obtained from a MSC.NASTRAN[®] solution. Main objective function is calculated in M-file "Ofun.m" which is the same as used in the previous section. Evaluation of equality and inequality constraints, construction of the unconstrained objective function is performed in M-file "nastfunc.m". Modification of the MSC.NASTRAN[®] input file .bdf for the current design variable vector "**x**", executing MSC.NASTRAN[®] and reading results for inequality constraints from the MSC.NASTRAN[®] output file .f06 are performed in the beginning of the "nastfunc.m".

3.6 GRADIENT FUNCTION SECTION

To find a search direction in each iteration, the gradient of unconstrained objective function at the current design variable vector " \mathbf{x} " is needed. The M-file for this task is called "gradfunction.m". Objective function name and current " \mathbf{x} " are used as inputs. For each element of " \mathbf{x} " first forward finite difference technique is applied. Results are stored in a row matrix, which is the output.

CHAPTER 4

OPTIMIZATION STRATEGIES WITH DIFFERENT OPTIMIZATION AND SOLVER CODES

Optimization process can be divided into two main sub-processes which are the optimization process and the evaluation of objective function and constraints. Therefore, an optimizer code and a solver are used to perform the optimization process and to evaluate the objective function and constraints, respectively. In this chapter, three different methods are presented to perform structural optimization with different optimization and solver codes. These methods are typically used to solve structural optimization problems in different engineering fields. In the first technique, structural optimization is performed by using the optimization code prepared in MATLAB[®] and analytical equations as the solver. This method actually corresponds to having an optimization and solver code which are developed by the user, and therefore user has complete control over the source codes. In this thesis to demonstrate the method, optimization code developed is used in conjunction with an analytical solver applicable to a cantilever beam problem. In general in this method a finite element code developed by the user can be used as the solver code. In the second technique, optimization is performed using the optimization code prepared in MATLAB[®] and commercial finite element solver MSC.NASTRAN® as the solver. The use of a commercial finite element code as the solver is also very common in solving structural optimization problems. Commercial finite element codes present a variety of element types with proven accuracy and most analyst have access to these codes. Therefore, during the solution of the optimization problem one can exploit the advantages of the commercial finite element codes and use

them as their solver codes and concentrate more on the optimization source code. As the third technique, optimization is performed using MSC.NASTRAN® Optimization Module. In this method optimization and solver source codes are not within the reach of the user and user solely relies on the optimization module of a commercial finite element program. This method requires experience in preparing the input files to define the optimization problem. In addition, effective use of optimization modules of the commercial finite element codes usually takes time because in some commercial finite element codes, preprocessing of the optimization problems is not user friendly. However, these optimization modules are often used by the engineers dealing with solving practical optimization problems.

The use of three different strategies, discussed above, to solve the same optimization problem also allows one to make mutual comparison studies. Thus, the solutions obtained with different methods can be compared with each other to further substantiate the results obtained for the optimization problem. Moreover, knowledge of alternative routes to solve the same optimization problem gives the user a chance to optimize their optimization and/or solver codes.

4.1 OPTIMIZATION VIA USER DEVELOPED OPTIMIZATION AND SOLVER CODES

In this technique optimizer code described in chapter three is used. To perform the optimization process, Augmented Lagrange Multiplier method is implemented with Davidon Fletcher Powell algorithm as the unconstrained optimizer. For the determination of the search direction, 'Golden Section Method' is chosen in the one dimensional search. To calculate the gradient of the unconstrained objective function, which is required by the Davidon Fletcher Powell algorithm, first forward finite difference technique is used. Each method is written in a different M-file and a total of four main M-files are developed to perform the optimization process. These M files are named as "AugLagMet.m", "DFP.m", "golden.m" and "gradfunction.m" respectively.

The four main M-files are supported with other M-files which perform evaluation of the objective function, and constraints, and construction of the unconstrained objective function. Evaluation of the objective function and constraints are implemented in separate M-files. In M-file "Ofun.m", main objective function is evaluated. MATLAB[®] files "Gfun.m" and "Hfun.m" are used to evaluate inequality and equality constraints, respectively. Files "Ofun.m", "Gfun.m" and "Hfun.m" comprise the solver code because in structural optimization problems the objective function evaluation usually requires the calculation of weight, and equality and inequality constraints usually require the solution of certain field variables such as stresses, displacements etc. for the particular optimization problem defined. Finally, in the M-file called "FALM.m" unconstrained objective function is constructed in accordance with Augmented Lagrangian Multiplier Method. Detailed information about the code was given in chapter 3.

This technique is applicable to the problems for which user developed optimization and solver codes are used. For demonstration purposes, Euler beam relations are used as the analytical expressions to calculate field variables such as stresses, displacements etc. The advantage of this technique is that user has full control on optimization and solver process. It should be noted that if a finite element code is developed by the user then this code could be incorporated in "Gfun.m" which evaluates the inequality constraints. In structural optimization problems the inequality constraints are usually defined on field variables such as a natural frequency or buckling loads. Thus, the current structure of the code allows expansion in implementing a user developed finite element code as the solver. This expansion is elaborated in the next section. The user interface of this technique is given in Appendix B.1.

4.2 OPTIMIZATION USING AN OPTIMIZATION CODE IN MATLAB[®] AND MSC.NASTRAN[®] AS SOLVER

In structural analysis, for the solution of problems involving complex geometries and loading, analytical solutions are usually not available. Therefore, in such problems finite element method can be used to obtain results for the field quantities such as deflections , stress values, etc.. In the optimization process of such complex problems, finite element method can be implemented as the solver as stated above. In this section, a strategy which uses an optimization code in MATLAB[®] as the optimizer and MSC.NASTRAN[®] as solver is presented.

In this technique, the optimization process is same as described previously. The M-files "AugLagMet.m", "DFP.m", "golden.m" and "gradfunction.m" are used without any change in algorithms. Therefore, this technique differs from the previous one only in the evaluation of the objective function and constraints.

Usually, the main objective function to be minimized is the weight or volume. The evaluation of the weight is a simple task. Analytical methods can be used for this task and it is performed in "Ofun.m" which is the same MATLAB[®] file as described in the previous method. However, for checking whether the constraints are satisfied or not, usually a finite element solution is required. For instance, in structural optimization problems the constraints are usually imposed on stress values and displacements, or on natural frequencies and on buckling loads etc. And, calculation of stresses, displacements, natural frequencies, buckling loads etc. usually requires finite element solution to be performed for complex geometry and loading problems defined in aerospace structures. Therefore, in this method the M-file "nastfunc.m" is developed to perform the construction of the unconstrained objective function by using the commercial finite element solver MSC.NASTRAN[®].

In this method, the existing input file bdf-file is modified at the beginning of "nastfunc.m., In other words the design variables are updated in accordance with

the output of the optimization code and old variables are replaced with the new ones in bdf_file. Then, MSC.NASTRAN[®] is called from MATLAB[®] inside the MATLAB[®] file "nastfunc.m" to execute a finite element run and the solution is written in the MSC.NASTRAN[®] output file which is .f06-file. After the MSC.NASTRAN[®] job is finished, "nastfunc.m" file reads the required output from the .f06-file. The required output are those quantities which are used in the evaluation of the objective function and constraints. Finally, construction of the unconstrained objective function is performed in accordance with the 'Augmented Lagrange Multiplier method'. The output of the M-file "nastfunc.m" is the value of unconstrained objective function.

To be able to perform these tasks, a run must be executed by MSC.NASTRAN[®] before starting the optimization process to find out the format of the MSC.NASTRAN[®] input and output files for the particular structural problem, and to locate the positions of the variables which will be used in the evaluation of the unconstrained objective function. The position of the variables in the input .bdf-file, and required results in the output .f06-file should be spotted beforehand to perform the reading and modification of the particular fields in the MSC.NASTRAN[®] input and output files. A detailed procedure for this technique is given in Appendix B.2.

To summarize, the functions of "FALM.m" in analytical solver technique and "nastfunc.m" in MSC.NASTRAN[®] solver technique are the same. Both take the current variables as input, perform the construction of the unconstrained objective function and evaluate its value. The output of both M-files is the value of unconstrained objective function calculated by using the current value of the design variables.

4.3 OPTIMIZATION USING THE OPTIMIZATION MODULE OF MSC.NASTRAN[®]

MSC.NASTRAN[®] is widely used in aerospace industry. It has not only a very powerful finite element solver, but also contains a module for optimization which can be used in structural optimization problems. In this section, property optimization and shape optimization capability of the optimization module of MSC.NASTRAN[®] is introduced for linear structural analysis. It should be noted that the use of optimization modules of commercial finite element codes presents the user an alternative method to check the results of the optimization/solver codes developed by the users themselves. In aerospace structures margins of safety of structural elements are usually kept low in order to reduce the overall weight of the aerospace vehicle. Structural optimization is especially important in aerospace structures because of the significant impact that the weight reduction induces on the performance and cost of aerospace vehicles. However, since the margins of safety have to be low, in order not to risk any failure the results of the structural optimization must be highly reliable. Therefore, cross-check of the results produced by the user developed optimization/solver codes and by the optimization modules of commercial finite element codes is very important in using the results of the optimization codes in the design of aerospace structures with an increased level of confidence. Optimization process of MSC.NASTRAN[®] is given in Figure 4.1.

Figure 4.1 MSC.NASTRAN[®] implementation of structural optimization [10]

Initial design is composed of two parts. First part is the analysis model, in which grid locations, element structure and properties, material information, loads, boundary conditions and load cases are described. Second part is the design model. Defining the design variables, relating design variables to element properties, defining the design responses, constraints and objectives are described in design model. The initial design is the input to the MSC.NASTRAN[®] optimization process.

First activity of MSC.NASTRAN[®] optimization process is to perform a finite element analysis. Next, in the constraint screening activity the constraints that are violated or likely to be violated are identified. These are set to be as active constraints.

In sensitivity analysis, the sensitivities such as the rates of change of structural response quantities or a change in constraint values with respect to changes in

design variables are computed. These are partial derivatives and provide essential information to the optimizer.

An approximate model is constructed by using the information from finite element analysis and sensitivity analysis. This model involves approximations to finite element results to reduce the number of full scale finite element analyses. Optimizer performs optimization process by using the approximate model. By default, gradient based methods are used to construct improved design. Other available methods are sequential linear programming and sequential quadratic programming.

The improved model is compared with the previous model. If the changes are below the desired value, this means that soft convergence is achieved. Then, after the finite element analysis, one more convergence test for hard convergence is performed. Detailed information about MSC.NASTRAN[®] sensitivity analysis and optimization process is given in Reference [11].

There are three steps to perform an optimization task using MSC.NASTRAN[®] optimization tools. These are:

- 1. Creating an input .bdf-file
- 2. Executing a MSC.NASTRAN[®] run
- 3. Post processing of the results

4.3.1 CREATING A BDF-FILE

A standard input .bdf-file is composed of four sections which are the file management, executive control, case control and bulk data, respectively. The following paragraphs define these sections. Further information about creating bdf-file can be found in Reference [10].

4.3.1.1 FILE MANAGEMENT SECTION

File management section is used for the attachment and initialization of database sets and external files. Usually, in MSC.NASTRAN[®] jobs, no file management statements are required. But, for shape optimization problems DBLOCATE

statement is used for introducing auxiliary model to the design model. Also, user defined beam libraries or external responses can be introduced in this section.

4.3.1.2 EXECUTIVE CONTROL SECTION

In executive control, the only required statement is "SOL 200" which implies design optimization

4.3.1.3 CASE CONTROL SECTION

In case control section, four tasks are performed for design sensitivity analysis and optimization. These tasks are the analysis discipline definition, design task definition, design response characterization and shape basis vector computation, respectively.

In analysis discipline definition, solution sequences that are used in optimization process are defined. The applicable solution sequences are linear statics, normal modes, buckling, direct frequency, modal frequency, modal transient, direct complex eigenvalue analysis, static aeroelasticity, static aeroelastic divergence and flutter. In this thesis only linear statics is used.

In design task definition, design objective function and design constraint sets are identified.

Design response characterization is used to resolve design response ambiguities. For example, for plate element stresses, maximum shear stress and von Mises stress use the same item code ID. By using the statement "STRESS(VONMISES)=15" or "STRESS(SHEAR)=15" it is clearly identified which stress to be used in analysis and optimization.

Shape basis vector computation is applicable only when analytic boundary shape method is used for shape optimization. Analytic boundary shape method is not used in this thesis.

4.3.1.4 BULK DATA SECTION

Bulk data contains the analysis model and design model. MSC/PATRAN[®] is a very useful tool to construct an analysis model. There are also other commercial tools such as MSC.SOFY[®] or NX.NASTRAN[®]. Design model is located below the analysis model.

At the beginning of the design model section, design variables are identified with their initial values and upper and lower bounds.

Next, the relations between design variables and element properties, displacements or shape basis vectors are defined. For shape optimization, an auxiliary model is required. This model describes change in grid positions when corresponding design variable is changed. It is prepared by a separate finite element analysis of the model for the desired displacements and it should be introduced in the file management section.

Next, design responses are created which are used as basis of defining design objective function and constraints. There are three types of responses. First type is first level responses which are available directly from an MSC.NASTRAN[®] analysis. Structural weight, displacements at grid points, element stresses, and so on, are all examples of first level responses. Second type is second level responses which are called as user-defined since they utilize the equation input feature in MSC.NASTRAN[®]. Third type is third level responses which can be regarded as an extension of the second level responses. This type allows one to introduce an external process to the MSC.NASTRAN[®] design sensitivity and optimization process.

Next, design objective and design constraints are stated. Design objective is a scalar quantity to be minimized by the optimizer. "DESOBJ" statement is used to identify which design response is related to the design objective. Design constraints are defined by "DCONSTR" statements. This statement points a design response and gives upper and lower limits for the corresponding design response.

At the end of the bulk data section output control parameters are stated. These parameters affect either the frequency or level of detail of the output.

4.3.2 MSC.NASTRAN[®] RUN

After completing MSC.NASTRAN[®] input file.bdf, MSC.NASTRAN[®] job is submitted. Output is written in .f06, .pch (punch) and .op2-files. Xdb file can also be used instead of op2 file. At the end of the solution, the output file .f06-file must be investigated for errors and warnings before post processing the results.

4.3.3 POSTPROCESSING

Two ways of post processing is presented in this section. First one is importing the op2-files into MSC/PATRAN[®]. Using post processor tool of MSC/PATRAN[®] history of each variables, objective function and constraints can be plotted on graphs. The results of structural analysis such as stress distribution, displacements, grid point forces can be viewed not only at the final solution but also at each step of the optimization process.

Another way of getting the same data is through the output .f06-files. F06-files contain similar information as op2-files but in formatted text form.

Additionally, pch-file includes outputs from the MSC.NASTRAN[®] analysis such as final grid locations or final element properties. These outputs can be conveniently used as input into another computer analysis. A sample bdf-file for the optimization process is presented in Appendix B.3

CHAPTER 5

SAMPLE STUDIES TO DEMONSTRATE DIFFERENT OPTIMIZATION STRATEGIES

In this chapter, optimizations of two sample problems are presented to demonstrate the application of the three different strategies described in the previous section. Both problems are cantilever beam problems subjected to a vertical force at the free end. In the first problem a rectangular cross section is chosen with two design variables. The height and width of the cross-section of the beam are taken as the two design parameters. This way it has been possible to show the design space on the two dimensional graph, and thus it becomes easier to trace the progress of the optimization methods during each step.

In the second problem I cross section beam is chosen with 4 design variables. Since analytical solution for stresses and deflections are available for the cantilever beam problems, the three optimization strategies are implemented in solving the optimization problems defined.

5.1 OPTIMIZATION OF CANTILEVER BEAM WITH RECTANGULAR CROSS SECTION

In this sample problem, to illustrate the optimization process a simple optimization problem is solved. A cantilever beam subject to vertical force "P" at the end will be optimized. In this problem two design variables are used, because this way the design space can be shown on a two dimensional graph. The beam is assumed to have rectangular cross section which does not vary along the length. The width "B" and the height "H" are chosen as design

variables. Their dimensions are given in mm. The length of the beam is fixed. Figure 5.1 shows the cantilever beam to be optimized.

Figure 5.1 Cantilever beam with rectangular cross section

The objective of this problem is to minimize the weight of the beam subject to certain constraints. High strength aluminum is used as the material of the beam. Since density of aluminum is constant, minimizing weight is the same as minimizing the volume.

The beam is subjected to three constraints. First constraint is maximum normal stress due to bending at the root, second one is the maximum tip deflection due to tip loading and the third one is height to width ratio to ensure the stability of the beam.

Based on above explanations the optimization problem can be stated as follows:

Minimize:

$$\mathbf{V} = \mathbf{B} \cdot \mathbf{H} \cdot \mathbf{L} \tag{5.1}$$

Subject to:

$$\sigma = \frac{M \cdot c}{I} = \frac{6 \cdot P \cdot L}{B \cdot H^2} \le 700 \text{ MPa}$$
(5.2)

$$\delta = \frac{P \cdot L^3}{3 \cdot E \cdot I} = \frac{4 \cdot P \cdot L^3}{E \cdot B \cdot H^3} \le 25.4 \text{ mm}$$
(5.3)

$$\frac{\mathrm{H}}{\mathrm{B}} \le 5 \tag{5.4}$$

where the bounds of the design variables are specified as:

$$1 \le B \le 20 \tag{5.5}$$

$$20 \le H \le 50 \tag{5.6}$$

The design space for this problem is defined by the lower and upper bounds of the design variables "B" and "H". To make a one to one correspondence with the optimization solutions, the value of the unconstrained objective function in the design space is given in Table 5.1. Horizontal axis represents width "B" of the cross section and vertical axis represents the height "H" of the cross section. The minimum value of objective function in the design space is at the lower bounds of both design variables. In the Table 5.1 the final optimum value of objective function is marked with blue background. This value is the optimum value considering the constraints imposed on the problem.

 Table 5.1
 Objective function variation in the unconstrained design space

 Design Space (Volume Objective Function) (1000 mm^3)

	Design Space (Volume, Objective Function) (1000 mm^3)																			
H\B (mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
20	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0	160.0	170.0	180.0	190.0	200.0
21	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.5	105.0	115.5	126.0	136.5	147.0	157.5	168.0	178.5	189.0	199.5	210.0
22	11.0	22.0	33.0	44.0	55.0	66.0	77.0	88.0	99.0	110.0	121.0	132.0	143.0	154.0	165.0	176.0	187.0	198.0	209.0	220.0
23	11.5	23.0	34.5	46.0	57.5	69.0	80.5	92.0	103.5	115.0	126.5	138.0	149.5	161.0	172.5	184.0	195.5	207.0	218.5	230.0
24	12.0	24.0	36.0	48.0	60.0	72.0	84.0	96.0	108.0	120.0	132.0	144.0	156.0	168.0	180.0	192.0	204.0	216.0	228.0	240.0
25	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0	162.5	175.0	187.5	200.0	212.5	225.0	237.5	250.0
26	13.0	26.0	39.0	52.0	65.0	78.0	91.0	104.0	117.0	130.0	143.0	156.0	169.0	182.0	195.0	208.0	221.0	234.0	247.0	260.0
27	13.5	27.0	40.5	54.0	67.5	81.0	94.5	108.0	121.5	135.0	148.5	162.0	175.5	189.0	202.5	216.0	229.5	243.0	256.5	270.0
28	14.0	28.0	42.0	56.0	70.0	84.0	98.0	112.0	126.0	140.0	154.0	168.0	182.0	196.0	210.0	224.0	238.0	252.0	266.0	280.0
29	14.5	29.0	43.5	58.0	72.5	87.0	101.5	116.0	130.5	145.0	159.5	174.0	188.5	203.0	217.5	232.0	246.5	261.0	275.5	290.0
30	15.0	30.0	45.0	60.0	75.0	90.0	105.0	120.0	135.0	150.0	165.0	180.0	195.0	210.0	225.0	240.0	255.0	270.0	285.0	300.0
31	15.5	31.0	46.5	62.0	77.5	93.0	108.5	124.0	139.5	155.0	170.5	186.0	201.5	217.0	232.5	248.0	263.5	279.0	294.5	310.0
32	16.0	32.0	48.0	64.0	80.0	96.0	112.0	128.0	144.0	160.0	176.0	192.0	208.0	224.0	240.0	256.0	272.0	288.0	304.0	320.0
33	16.5	33.0	49.5	66.0	82.5	99.0	115.5	132.0	148.5	165.0	181.5	198.0	214.5	231.0	247.5	264.0	280.5	297.0	313.5	330.0
34	17.0	34.0	51.0	68.0	85.0	102.0	119.0	136.0	153.0	170.0	187.0	204.0	221.0	238.0	255.0	272.0	289.0	306.0	323.0	340.0
35	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5	175.0	192.5	210.0	227.5	245.0	262.5	280.0	297.5	315.0	332.5	350.0
36	18.0	36.0	54.0	72.0	90.0	108.0	126.0	144.0	162.0	180.0	198.0	216.0	234.0	252.0	270.0	288.0	306.0	324.0	342.0	360.0
37	18.5	37.0	55.5	74.0	92.5	111.0	129.5	148.0	166.5	185.0	203.5	222.0	240.5	259.0	277.5	296.0	314.5	333.0	351.5	370.0
38	19.0	38.0	57.0	76.0	95.0	114.0	133.0	152.0	171.0	190.0	209.0	228.0	247.0	266.0	285.0	304.0	323.0	342.0	361.0	380.0
39	19.5	39.0	58.5	78.0	97.5	117.0	136.5	156.0	175.5	195.0	214.5	234.0	253.5	273.0	292.5	312.0	331.5	351.0	370.5	390.0
40	20.0	40.0	60.0	80.0	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	400.0
41	20.5	41.0	61.5	82.0	102.5	123.0	143.5	164.0	184.5	205.0	225.5	246.0	266.5	287.0	307.5	328.0	348.5	369.0	389.5	410.0
42	21.0	42.0	63.0	84.0	105.0	126.0	147.0	168.0	189.0	210.0	231.0	252.0	273.0	294.0	315.0	336.0	357.0	378.0	399.0	420.0
43	21.5	43.0	64.5	86.0	107.5	129.0	150.5	172.0	193.5	215.0	236.5	258.0	279.5	301.0	322.5	344.0	365.5	387.0	408.5	430.0
44	22.0	44.0	66.0	88.0	110.0	132.0	154.0	176.0	198.0	220.0	242.0	264.0	286.0	308.0	330.0	352.0	374.0	396.0	418.0	440.0
45	22.5	45.0	67.5	90.0	112.5	135.0	157.5	180.0	202.5	225.0	247.5	270.0	292.5	315.0	337.5	360.0	382.5	405.0	427.5	450.0
46	23.0	46.0	69.0	92.0	115.0	138.0	161.0	184.0	207.0	230.0	253.0	276.0	299.0	322.0	345.0	368.0	391.0	414.0	437.0	460.0
47	23.5	47.0	70.5	94.0	117.5	141.0	164.5	188.0	211.5	235.0	258.5	282.0	305.5	329.0	352.5	376.0	399.5	423.0	446.5	470.0
48	24.0	48.0	72.0	96.0	120.0	144.0	168.0	192.0	216.0	240.0	264.0	288.0	312.0	336.0	360.0	384.0	408.0	432.0	456.0	480.0
49	24.5	49.0	73.5	98.0	122.5	147.0	171.5	196.0	220.5	245.0	269.5	294.0	318.5	343.0	367.5	392.0	416.5	441.0	465.5	490.0
50	25.0	50.0	75.0	100.0	125.0	150.0	175.0	200.0	225.0	250.0	275.0	300.0	325.0	350.0	375.0	400.0	425.0	450.0	475.0	500.0

The values of the maximum stress at the root of the beam in the design space is given in Table 5.2. According to the first constraint, maximum stress value must be less than 700 MPa. The region where stress values are higher than 700 MPa marked with red background. This region is the restricted region. Therefore, a feasible region must be defined in the design space where constraints are not violated. If there were no constraints, the feasible region would be the design space itself. From Table 5.2 it can be concluded that the feasible region is reduced by the stress constraint.

	Design Space (Maximum Normal Stress, Constraint 1 <= 700MPa)																			
H\B (mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
20	9375	4688	3125	2344	1875	1563	1339	1172	1042	938	852	781	721	670	625	586	551	521	493	469
21	8503	4252	2834	2126	1701	1417	1215	1063	945	850	773	709	654	607	567	531	500	472	448	425
22	7748	3874	2583	1937	1550	1291	1107	968	861	775	704	646	596	553	517	484	456	430	408	387
23	7089	3544	2363	1772	1418	1181	1013	886	788	709	644	591	545	506	473	443	417	394	373	354
24	6510	3255	2170	1628	1302	1085	930	814	723	651	592	543	501	465	434	407	383	362	343	326
25	6000	3000	2000	1500	1200	1000	857	750	667	600	545	500	462	429	400	375	353	333	316	300
26	5547	2774	1849	1387	1109	925	792	693	616	555	504	462	427	396	370	347	326	308	292	277
27	5144	2572	1715	1286	1029	857	735	643	572	514	468	429	396	367	343	322	303	286	271	257
28	4783	2392	1594	1196	957	797	683	598	531	478	435	399	368	342	319	299	281	266	252	239
29	4459	2229	1486	1115	892	743	637	557	495	446	405	372	343	318	297	279	262	248	235	223
30	4167	2083	1389	1042	833	694	595	521	463	417	379	347	321	298	278	260	245	231	219	208
31	3902	1951	1301	976	780	650	557	488	434	390	355	325	300	279	260	244	230	217	205	195
32	3662	1831	1221	916	732	610	523	458	407	366	333	305	282	262	244	229	215	203	193	183
33	3444	1722	1148	861	689	574	492	430	383	344	313	287	265	246	230	215	203	191	181	172
34	3244	1622	1081	811	649	541	463	405	360	324	295	270	250	232	216	203	191	180	171	162
35	3061	1531	1020	765	612	510	437	383	340	306	278	255	235	219	204	191	180	170	161	153
36	2894	1447	965	723	579	482	413	362	322	289	263	241	223	207	193	181	170	161	152	145
37	2739	1370	913	685	548	457	391	342	304	274	249	228	211	196	183	171	161	152	144	137
38	2597	1298	866	649	519	433	371	325	289	260	236	216	200	185	173	162	153	144	137	130
39	2465	1233	822	616	493	411	352	308	274	247	224	205	190	176	164	154	145	137	130	123
40	2344	1172	781	586	469	391	335	293	260	234	213	195	180	167	156	146	138	130	123	117
41	2231	1115	744	558	446	372	319	279	248	223	203	186	172	159	149	139	131	124	117	112
42	2126	1063	709	531	425	354	304	266	236	213	193	177	164	152	142	133	125	118	112	106
43	2028	1014	676	507	406	338	290	254	225	203	184	169	156	145	135	127	119	113	107	101
44	1937	968	646	484	387	323	277	242	215	194	176	161	149	138	129	121	114	108	102	97
45	1852	926	617	463	370	309	265	231	206	185	168	154	142	132	123	116	109	103	97	93
46	1772	886	591	443	354	295	253	222	197	177	161	148	136	127	118	111	104	98	93	89
47	1698	849	566	424	340	283	243	212	189	170	154	141	131	121	113	106	100	94	89	85
48	1628	814	543	407	326	271	233	203	181	163	148	136	125	116	109	102	96	90	86	81
49	1562	781	521	390	312	260	223	195	174	156	142	130	120	112	104	98	92	87	82	78
50	1500	750	500	375	300	250	214	188	167	150	136	125	115	107	100	94	88	83	79	75

Table 5.2 Variation of maximum stress in the design space

The values of the maximum displacement at the tip of the beam in the design space is given in Table 5.3. According to the second constraint, maximum displacement value must be less than 25.4 mm. The region where displacement values are higher than 25.4 mm marked with red background. This region is restricted region. Therefore, feasible region in the design space is also reduced by the displacement constraint. Again, the cell with the blue background color shows the location of the optimum solution.

Design Space (Displacement, Constraint 2 <= 25.4 mm) H\B 5 1 2 4 6 7 8 10 11 12 13 14 15 16 17 3 9 18 19 20 (mm) 85.9 74.4 69.8 65.7 58.7 55.8 20 279.0 186.0 124.0 93.0 79.7 558.0 159.4 139. 62.0 482 * 321 96.4 74 2 68.0 56 21 241 በ 192.8 160] 127 107 87 F 64 3 <u>10</u> -279.5 209.6 167.7 119.8 104.8 93.2 83.9 76.2 69.9 64.5 59.9 55.9 46.6 44.1 41.9 22 419.3 139.8 52.4 49.3 23 244.6 183.5 146.8 104.8 91.7 81.5 66.7 56.4 52.4 45.9 38.6 36.7 366.9 122.3 61.2 48.9 43.2 40.8 49.7 64.6 32.3 24 322.9 161.5 129.2 107.6 92.3 80.7 71.8 58.7 53.8 46.1 40.4 38.0 35.9 34.0 28.6 25 190.5 142.9 114.3 81.6 63.5 57.1 51.9 44.0 40.8 35 ' 33.6 30. 72.6 127.0 101.6 63.5 50.8 46.2 39.1 26 254 (169.3 84.7 56.4 36.3 33.9 29.9 28 : 26.7 25.4 27 151.2 64.8 56.7 50.4 45.4 32.4 28.4 25.2 23.9 22.7 453 226.8 113.4 90.7 75.6 37.8 34.9 30.2 26.7 135.6 67.8 50.8 45.2 31.3 28.2 28 81.3 58.1 23.9 21.4 20.3 40.7 37.0 33.9 29.1 25.4 22.6 406. 203.4 45.8 29 24.4 22.9 21.5 20.3 19.3 18.3 66.1 55.1 47.2 41.3 36.7 33.1 25.4 30 165.3 110.2 82.7 30.1 23.6 330 27 F 22.0 20.7 19.5 18.4 17.4 16.5 31 149.9 99.9 59.9 50.0 25.0 23.1 21.4 20.0 18.7 17.6 16.7 15.8 15.0 34.1 31.1 38.9 35.5 24.8 13.6 32 90.8 68.1 54.5 49.7 45.4 22.7 21.0 19.5 18.2 17.0 16.0 15.1 14.3 30.: 27.2 82 41 / 33 124.: 24.8 22.6 20.7 19.1 17.7 16.6 15.5 14.6 13.8 13.1 12.4 56.8 45.4 32.5 28.4 113.6 75.7 34 37.9 25.2 22.7 20.7 18.9 17.5 16.2 15.1 14.2 13.4 12.6 12.0 11.4 35 104.1 69.4 52.1 41.6 34.7 29.7 23.1 20.8 18.9 17.4 16.0 14.9 13.9 13.0 12.2 11.6 11.0 10.4 208. 26.0 36 63.8 17.4 191.4 95.7 47.8 38.3 31.9 27.3 23.9 21.3 19.1 15.9 14.7 13.7 12.8 12.0 11.3 10.6 10.1 9.6 44.1 37 88.1 81.4 29.4 22.0 19.6 17.6 16.0 14.7 13.6 12.6 11.8 11.0 10.4 9.8 9.3 8.8 176. 162 58.8 35.3 32.5 25.2 54 0 38 23.2 20.3 18.1 16.3 14.8 13.6 12.5 11.6 10.8 10.2 9.6 9.0 8.6 8.1 75.3 50.2 37.6 30.1 39 150. 25.1 21.5 18.8 16.7 15.1 13.7 12.5 11.6 10.8 10.0 9.4 8.9 8.4 7.9 7.5 40 69.8 46.5 34.9 27.9 23.3 19.9 17.4 15.5 14.0 12.7 11.6 10.7 10.0 9.3 8.7 8.2 7.8 7.3 7.0 139. 41 18.5 16.2 14.4 13.0 11.8 10.8 10.0 9.3 6.8 6.5 43.2 32.4 21.6 8.6 8.1 7.6 7.2 29. 64.8 30.1 24.1 120 60.3 40.2 42 20.1 17.2 15.1 13.4 12.1 11.0 10.0 9.3 8.6 8.0 7.5 7.1 6.7 6.3 6.0 56.1 37.4 28.1 43 112. 22.5 18.7 16.0 14.0 12.5 11.2 10.2 9.4 8.6 8.0 7.5 7.0 6.6 6.2 5.9 5.6 44 52.4 34.9 21.0 17.5 15.0 13.1 11.6 10.5 9.5 8.7 8.1 7.5 7.0 6.6 6.2 5.8 5.5 5.2 104.8 49.0 45.9 32.7 30.6 45 24.5 19.6 16.3 14.0 12.2 10.9 9.8 8.9 8.2 7.5 7.0 6.5 6.1 5.8 5.4 5.2 4.9 46 22.9 18.3 15.3 13.1 11.5 10.2 9.2 8.3 7.6 7.1 6.6 6.1 5.7 5.4 5.1 4.8 4.6 43.0 28.7 47 86.0 21.5 17.2 14.3 12.3 10.7 9.6 8.6 7.8 7.2 6.6 6.1 5.7 5.4 5.1 4.8 4.5 4.3 48 80.7 40.4 26.9 20.2 16.1 13.5 11.5 10.1 9.0 8.1 7.3 6.7 6.2 5.8 5.4 5.0 4.7 4.5 4.2 4.0 49 25.3 19.0 15.2 12.6 10.8 9.5 8.4 7.6 6.9 6.3 5.8 5.4 5.1 4.7 4.5 4.2 4.0 3.8 37.9 35.7 75.9 71.4 50 23.8 14.3 11.9 7.9 7.1 6.5 5.5 5.1 4.8 4.5 4.2 4.0 3.8 3.6 17.9 10.2 8.9 6.0

Table 5.3Variation of maximum deflection in the design space

The ratio of the "H/B" in the design space is given in Table 5.4. According to the third constraint, the ratio "H/B" must be less than 5. The region where the ratio "H/B" ratio is greater than 5 is marked with red background. This region is the restricted region. Therefore, feasible region in design space is further reduced by the slenderness ratio constraint. The cell with the blue background show the position of the optimum solution.

Design Space (Slenderness, Constraint 3 <= 5) H\B (mm) 12 13 14 15 16 16 10 11 12 12 18 18 6 20 20 13 13 21 15 16 24

Table 5.4Variation of slenderness ratio in the design space

The feasible region in design space is reduced by each constraint. In the optimization process all the constraints must be satisfied. Therefore, intersection

set of all three feasible regions which are restricted by constraints must be used as the final feasible region where an optimum solution resides. In Table 5.5 the values of the objective function in the design space are shown. The overall restricted region is marked with red background. The final optimum value of objective function and its location is marked with blue background. For the integer values of the design variables with increments of one, at the optimum solution the objective function value is about 144000, the optimum 'B' value is about 8 and the optimum 'H' value is about 36. Thus, in the optimization solutions which will be performed next, one can compare the solutions with these figures to see how close are the solutions to the true optimum solution.

Table 5.5Variation of the value of the objective function in the designspace after all the constraints are imposed

	Design Space (Volume, Objective Function) (1000 mm^3)																			
H\B (mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
20	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0	90.0	100.0	110.0	120.0	130.0	140.0	150.0	160.0	170.0	180.0	190.0	200.0
21	10.5	21.0	31.5	42.0	52.5	63.0	73.5	84.0	94.5	105.0	115.5	126.0	136.5	147.0	157.5	168.0	178.5	189.0	199.5	210.0
22	11.0	22.0	33.0	44.0	55.0	66.0	77.0	88.0	99.0	110.0	121.0	132.0	143.0	154.0	165.0	176.0	187.0	198.0	209.0	220.0
23	11.5	23.0	34.5	46.0	57.5	69.0	80.5	92.0	103.5	115.0	126.5	138.0	149.5	161.0	172.5	184.0	195.5	207.0	218.5	230.0
24	12.0	24.0	36.0	48.0	60.0	72.0	84.0	96.0	108.0	120.0	132.0	144.0	156.0	168.0	180.0	192.0	204.0	216.0	228.0	240.0
25	12.5	25.0	37.5	50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0	162.5	175.0	187.5	200.0	212.5	225.0	237.5	250.0
26	13.0	26.0	39.0	52.0	65.0	78.0	91.0	104.0	117.0	130.0	143.0	156.0	169.0	182.0	195.0	208.0	221.0	234.0	247.0	260.0
27	13.5	27.0	40.5	54.0	67.5	81.0	94.5	108.0	121.5	135.0	148.5	162.0	175.5	189.0	202.5	216.0	229.5	243.0	256.5	270.0
28	14.0	28.0	42.0	56.0	70.0	84.0	98.0	112.0	126.0	140.0	154.0	168.0	182.0	196.0	210.0	224.0	238.0	252.0	266.0	280.0
29	14.5	29.0	43.5	58.0	72.5	87.0	101.5	116.0	130.5	145.0	159.5	174.0	188.5	203.0	217.5	232.0	246.5	261.0	275.5	290.0
30	15.0	30.0	45.0	60.0	75.0	90.0	105.0	120.0	135.0	150.0	165.0	180.0	195.0	210.0	225.0	240.0	255.0	270.0	285.0	300.0
31	15.5	31.0	46.5	62.0	77.5	93.0	108.5	124.0	139.5	155.0	170.5	186.0	201.5	217.0	232.5	248.0	263.5	279.0	294.5	310.0
32	16.0	32.0	48.0	64.0	80.0	96.0	112.0	128.0	144.0	160.0	176.0	192.0	208.0	224.0	240.0	256.0	272.0	288.0	304.0	320.0
33	16.5	33.0	49.5	66.0	82.5	99.0	115.5	132.0	148.5	165.0	181.5	198.0	214.5	231.0	247.5	264.0	280.5	297.0	313.5	330.0
34	17.0	34.0	51.0	68.0	85.0	102.0	119.0	136.0	153.0	170.0	187.0	204.0	221.0	238.0	255.0	272.0	289.0	306.0	323.0	340.0
35	17.5	35.0	52.5	70.0	87.5	105.0	122.5	140.0	157.5	175.0	192.5	210.0	227.5	245.0	262.5	280.0	297.5	315.0	332.5	350.0
36	18.0	36.0	54.0	72.0	90.0	108.0	126.0	144.0	162.0	180.0	198.0	216.0	234.0	252.0	270.0	288.0	306.0	324.0	342.0	360.0
37	18.5	37.0	55.5	74.0	92.5	111.0	129.5	148.0	166.5	185.0	203.5	222.0	240.5	259.0	277.5	296.0	314.5	333.0	351.5	370.0
38	19.0	38.0	57.0	76.0	95.0	114.0	133.0	152.0	171.0	190.0	209.0	228.0	247.0	266.0	285.0	304.0	323.0	342.0	361.0	380.0
39	19.5	39.0	58.5	78.0	97.5	117.0	136.5	156.0	175.5	195.0	214.5	234.0	253.5	273.0	292.5	312.0	331.5	351.0	370.5	390.0
40	20.0	40.0	60.0	80.0	100.0	120.0	140.0	160.0	180.0	200.0	220.0	240.0	260.0	280.0	300.0	320.0	340.0	360.0	380.0	400.0
41	20.5	41.0	61.5	82.0	102.5	123.0	143.5	164.0	184.5	205.0	225.5	246.0	266.5	287.0	307.5	328.0	348.5	369.0	389.5	410.0
42	21.0	42.0	63.0	84.0	105.0	126.0	147.0	168.0	189.0	210.0	231.0	252.0	273.0	294.0	315.0	336.0	357.0	3/8.0	399.0	420.0
43	21.5	43.0	64.5	86.0	107.5	129.0	150.5	172.0	193.5	215.0	236.5	258.0	279.5	301.0	322.5	344.0	305.5	387.0	408.5	430.0
44	22.0	44.0	66.U	0.88	110.0	132.0	154.0	1/6.0	198.0	220.0	242.0	264.0	286.0	308.0	330.0	352.0	374.0	396.0	418.0	440.0
40	22.5	40.0	60.0	90.0	112.5	135.0	107.5	101.0	202.5	220.0	247.5	270.0	292.5	315.0	331.5	300.0	302.5	405.0	427.0	400.0
40	23.0	40.0	70.5	92.0	117.0	138.0	101.0	104.0	207.0	230.0	203.0 259.5	210.0	299.0 205.5	322.0	340.0 252 F	308.0	391.0 200 F	414.0	437.0	400.0
47	23.5	47.0	70.5	94.0 96.0	120.0	141.0	168.0	108.0	211.0	235.0	208.0	202.0	312.0	336.0	360.0	384.0	399.5 408.0	423.0	440.0 456.0	4/0.0
40	24.0	40.0	73.5	08.0	120.0	1/17.0	171.5	192.0	210.0	240.0	204.0	200.0	312.0	3/3 0	367.5	304.0	400.0	432.0	400.0	400.0
50	25.0	50.0	75.0	100.0	125.0	150.0	175.0	200.0	225.0	250.0	275.0	300.0	325.0	350.0	375.0	400.0	425.0	450.0	475.0	500.0

5.1.1 OPTIMIZATION USING THE OPTIMIZATION CODE IN MATLAB[®] AND ANALYTIC FUNCTIONS AS SOLVER

First, optimization of the cantilever beam with the rectangular cross section is performed by using first strategy explained in Chapter 4. In this method optimization code written in MATLAB[®] is used together with the analytical beam equations as the solver. The M-file called "AugLagMet.m" is executed in MATLAB[®] environment. "AugLagMet.m" asks the user for inputs which are listed below. The lower and upper bounds of the design variables as well as the other inputs are specified as:

1.	Initial values of design variables [B,H]:	[10 35]
2.	Lower bounds of design variables [B,H]: :	[1 20]
3.	Upper bounds of design variables [B,H]: :	[20 50]
4.	Number of equality constraints:	0
5.	Number of inequality constraints:	3
6.	Initial values of lagrange multipliers " λ "	
	for equality constraints:	0
7.	Initial values of lagrange multipliers " β "	
	for inequality constraints :	[10 10 10]

where, lagrange multipliers " β " is given by [β_1 , β_2 , β_3];

- β₁ is the multiplier for the constraint given in equation (5.2) used for upper bound of the stress value at the root of the beam.
- β₂ is the multiplier for the constraint given in equation (5.3) used for the displacement value at the tip of the beam.
- β₃ is the multiplier for the constraint given in equation (5.4) used for the slenderness ratio.

The M-files "Ofun.m", "Gfun.m" and "Hfun.m" which evaluate volume, inequality constraints and equality constraints respectively are modified specific to this problem. Since there is no equality constraints, "Hfun.m" is never called during this problem.

The optimization process is converged to the solution in 8 iterations, where one iteration is one outermost cycle in the main algorithm shown in figure 3.1. In Figures 5.2 - 5.7 change of objective function, design variables and constraints with respect to iteration number are shown. Results are tabulated and comparisons are made in section 5.1.4 with the results obtained by the other two methods.

Figure 5.2 Variation of the objective function with respect to iteration number

As it can be seen from Figure 5.2 the objective function initially decreases but then starts to increase to satisfy the constraints.

Figure 5.3 Variation of width of cross section "B" with respect to iteration number

Figure 5.4 Variation of height of cross section "H" with respect to iteration number

Figures 5.3 and 5.4 show that the design variables 'B' and 'H' are within specified upper and lower bounds.

Figure 5.5 Variation of stress at the root of the beam with respect to iteration number

Figure 5.6 Variation of displacement at the tip of the beam with respect to iteration number

Figures 5.5 and 5.6 show that stress constraint is not violated at any iteration until optimum solution is reached. However, in the initial iterations the displacement constraint is violated and the optimization code makes adjustments until the constraint is satisfied. It should be noted that if displacement constraint did not exist, the weight of the beam could be reduced even further because stresses are below the allowable specified for this problem. It is seen that in this particular problem the maximum tip deflection constraint is the more restricting constraint.

Figure 5.7 Variation of H/B with respect to the iteration number

Figure 5.7 shows that the 'H/B' stress constraint is also violated at the initial steps but eventually it settles down until the constraint is satisfied. Existence of a constraint on the 'H/B' ratio prevents one to increase the height of the beam freely within the bounds specified. Therefore, it becomes harder to satisfy the maximum deflection constraint compared to stress constraint. Because, as it can
be seen from Equation (5.3), the tip deflection in inversely proportional to the cube of the height of the beam, whereas the maximum stress is inversely proportional to the square of the height of the beam.

5.1.2 CANTILEVER BEAM OPTIMIZATION USING THE OPTIMIZATION CODE IN MATLAB[®] AND MSC.NASTRAN[®] AS THE SOLVER

Next, optimization of the same cantilever beam with rectangular cross section is performed by using the second strategy described in Chapter 4. In this method optimization code written in MATLAB[®] is used together with the commercial finite element solver MSC.NASTRAN[®]. The M-file called "AugLagMet.m" is again executed in MATLAB[®] environment. "AugLagMet.m" asks the user for inputs which are given below with the corresponding the values for this example.

1.	Initial values of design variables [B,H]: :	[10 35]
2.	Lower bounds of design variables [B,H]: :	[1 20]
3.	Upper bounds of design variables [B,H]: :	[20 50]
4.	Number of equality constraints:	0
5.	Number of inequality constraints:	3
6.	Initial values of lagrange multipliers " λ "	
	for equality constraints:	0
7.	Initial values of lagrange multipliers " β "	
	for inequality constraints :	[10 10 10]

Where, lagrange multipliers " β " is given by [β_1 , β_2 , β_3];

- β₁ is the multiplier for the constraint given in equation (5.2) used for upper bound of the stress value at the root of the beam.
- β₂ is the multiplier for the constraint given in equation (5.3) used for the displacement value at the tip of the beam.
- β₃ is the multiplier for the constraint given in equation (5.4) used for the slenderness ratio.

The M-files "Ofun.m", Gfun.m"and "nastfunc.m" which evaluate volume, inequality constraints and constructs the unconstrained objective function respectively. Since there is no equality constraints, "Hfun.m" is neither modified nor called during this problem. A bdf-file called "cantbeam1.bdf" which is the

input file for the finite element model of the cantilever beam for linear static analysis is created before the start of the optimization process. Whenever the unconstrained objective function or inequality constraints are evaluated, first "cantbeam1.bdf" is modified by using current value of the design variables. In the solution sequence linear static analysis is performed by MSC.NASTRAN[®]. Finally, maximum stress value at the root and maximum displacement at the tip is read from MSC.NASTRAN[®] output file .f06-file. The finite element model is described in section 5.1.3. In section 5.1.3 the solution performed by the MSC.NASTRAN[®] optimization module will be described. The initial analysis model used for MSC.NASTRAN[®] optimization is used as the finite element model of the beam here.

The optimization process is converged to the solution in 12 iterations, where one iteration is one outermost cycle in the main algorithm shown in figure 3.1. In Figures 5.8 - 5.13 change of objective function, design variables and constraints with respect to iteration number are shown. Results are tabulated and comparisons are made in section 5.1.4 with the results obtained by the other two methods.

Figure 5.8 Variation of objective function with respect to iteration number

Figure 5.9 Variation of width of cross section "B" with respect to iteration number

Figure 5.10 Variation of height of cross section "H" with respect to iteration number

Figure 5.11 Variation of stress at the root of the beam with respect to iteration number

Figure 5.12 Variation of displacement at the tip of the beam with respect to iteration number

Figure 5.13 Variation of H/B with respect to iteration number

Figures 5.8-5.13 show that variations of the objective function, design variables and the constraints with iteration number depict similar behavior as in the first strategy where the solver was the analytical relations for the cantilever beam problem for the maximum axial stress and maximum tip deflection. This example in a way proves that the incorporation of MSC.NASTRAN[®] as the solver of the optimization code developed in MATLAB[®] has been successful.

5.1.3. CANTILEVER BEAM OPTIMIZATION USING MSC.NASTRAN[®] OPTIMIZATION TOOL

Finally, optimization of the cantilever beam with rectangular cross section is performed by using third method explained in chapter 4. In this method optimization module of MSC.NASTRAN[®] is used. It should be noted that during the execution of the optimization solution with the optimization module of MSC.NASTRAN[®], MSC.NASTRAN[®] solver is frequently called internally. Before the optimization process, the cantilever beam problem is modeled in MSC.PATRAN[®].

The beam is modeled with 10 CBAR elements which can used for the beam cross sections for which the shear center and the centroidal axis coincide. Rectangular cross section is assigned to the beam elements as the element property. At the root 6 degree of freedom (Ux, Uy, Uz, Rx, Ry and Rz) of the node is fixed. At the tip 1250 N force is applied in negative (-) "y" direction as shown in figure 5.14.

Initial finite element model and cross section properties are shown in figures 5.14-5.16.

Figure 5.14 Cantilever beam finite element model

Figure 5.15 Initial cantilever beam model with equivalent inertia

Figure 5.16 Initial cantilever beam cross section properties

To make comparisons with the optimized beam, initial finite element analysis results are presented in Figures 5.17-5.18. Figure 5.17 shows the displacement distribution and Figure 5.18 shows the axial stress distribution along the span of the beam.

Figure 5.17 Cantilever beam initial displacement

Figure 5.18 Cantilever beam initial stress distribution

Optimized finite element model and the cross-section of the optimized beam are shown in Figures 5.19 and 5.20 respectively. From Figure 5.19 one can not identify the difference between the initial and final optimized beam configuration but Figure 5.20 shows the optimized cross-section clearly. It can be seen that the height of the beam does not change much from its initial value but the width is reduced from its initial value.

Figure 5.19 Final cantilever beam model with equivalent inertia

Figure 5.20 Final cantilever beam cross section properties

Final finite element analysis results for the optimized beam are presented in Figures 5.21-5.22. Figure 5.21 shows the displacement distribution and Figure 5.22 shows the axial stress distribution along the span of the beam.

Figure 5.21 Displacement distribution in the optimized beam

Figure 5.22 Stress distribution in the optimized beam

Variation of the objective function, each design variable and the maximum constraint value are shown in Figures 5.23-5.26. Maximum constraint value is the highest value of the normalized constraints constructed internally in MSC.NASTRAN[®]. In each iteration different constraint may have highest value. MSC.NASTRAN® optimization module arrives at the optimum solution in six design cycles as shown in Figures 5.23-5.26.

Figure 5.23 History of the objective function

Figure 5.26 History of the maximum constraint value

It is observed that history of the design variables 'B' and 'H' show similar behaviour as the history of the design variables in the other two strategies with slight differences in the initial phases of the optimization process.

Results of the MSC.NASTRAN[®] optimization module are also tabulated and comparisons are made in section 5.1.4 with the results obtained by the other two methods. The effect of mesh density on results is presented in appendix C.1.

5.1.4. COMPARISON OF THE THREE DIFFERENT OPTIMIZATION STRATEGIES

In this section, results of the three different optimization strategies are compared with each other in Table 5.6.

For the first and second technique, number of iterations indicates evaluation of outer most loop of optimization process shown in figure 3.1. For the third technique, it indicates the evaluation of loop of optimization process shown in figure 4.1.

		1st Technique	2nd Technique	3rd Technique
Number of iterations	8	12	6	
R (mm)	Initial value	10	10	10
B(IIIII)	Final value	7.274	7.294	7.290
H (mm)	Initial value	35	35	35
н (шш)	Final value	36.381	36.443	36.448
Objective function (mm^3)	Initial value	175000	175000	175000
objective function (mm)	Final value	132317	132914	132849
Max axial stress at the	Initial value	306.1	306.1	306.1
root (Mpa)	Final value	389.5	387.1	387.2
Max tip deflection (mm)	Initial value	20.825	20.906	20.906
Max. up denection (mm)	Final value	25.491	25.397	25.402
LI/B	Initial value	3.500	3.500	3.500
	Final value	5.002	4.996	5.000

 Table 5.6
 Comparison of results of three different optimization approaches

It can be seen from Table 5.6 that in all methods the design variables have converged to almost the same values. These values compare well with the values given in Table 5.5. In Table 5.5 only the integer values of the design variables are listed, therefore optimum values given in Table 5.6 are slightly different from the optimum listed in Table 5.5. Since initial values were chosen close to the optimum values optimization processes have converged very quickly in all

techniques. The fastest solution is obtained with optimization module of MSC.NASTRAN[®]. It should be noted that optimization module of MSC.NASTRAN[®] uses sensitivity analysis which speeds up the solution time drastically. First technique is slightly slower than the MSC.NASTRAN® optimization module, and the solutions are obtained within seconds. However, second technique is very slow, because during the optimization process MSC.NASTRAN[®] is called whenever the evaluation of the unconstrained function is needed. The optimizer waits MSC.NASTRAN[®] job for some time which is required to ask for the license and finish the execution of a run. For this reason, hours are required to arrive at the solution with this technique. Therefore, this approach should only be used for problems with complex geometry and loading conditions which require finite element analysis. In complex geometry and loading situations if the user wants to have full control over the optimization code, he can choose to use a commercial finite element solver to work in conjunction with the optimization code developed by the user. In such cases it is recommended to use parallel computing to speed up the arriving at the optimum solution. In all optimization approaches weight is reduced by 24 percent without violating any constraint. All techniques show that maximum deflection at the tip and "H/B" ratio are the active or more restricting constraints at the optimum.

The results obtained in this section shows that all three approaches can be successfully applied in the solution of an optimization problem. The optimization approach to be used depends on the availability of resources as well as background on optimization theory. For instance, optimization module of MSC.NASTRAN[®] can be effectively used by those who do not have sufficient background on optimization theory. In engineering applications sometimes engineers are faced to solve problems for which they have little background. Therefore, optimization modules of commercial finite element codes provide such an alternative tool to be used in design optimization studies.

5.2 CANTILEVER BEAM WITH I CROSS SECTION

The second example undertaken is the optimization of a cantilever beam with an I shaped cross–section. In this example the number of design variables is increased to four. Similar to the first beam example cantilever beam is subjected to a vertical force "P" at the end and the beam will be optimized in a similar manner as in rectangular cross-section beam. The beam cross section is assumed to be constant along the span of the beam. Height "H", flange width "Wf", web thickness "tw" and flange thickness "tf" are taken as the design variables, respectively. The dimensions of the design variables are in mm. The length of the beam is fixed and thus only the cross-sectional properties of the beam are included in the design variable list. Figure 5.27 shows the cantilever beam with I cross section to be optimized.

Figure 5.27 Cantilever beam with I cross section

The objective of this problem is again to minimize the weight of the beam. Like in the previous problem high strength aluminum is used as the material of the beam.

The beam is subject to three inequality constraints. First inequality constraint is maximum bending stress at the root, second one is maximum tip deflection due to tip loading and the third one is taken as the maximum shear stress in the web of the beam. Based on the problem definition the optimization problem can be stated as follows:

Minimize:

$$\mathbf{V} = \left(2 \cdot \mathbf{W}_{\mathsf{f}} \cdot \mathbf{t}_{\mathsf{f}} + \mathbf{W}_{\mathsf{w}} \cdot \mathbf{t}_{\mathsf{w}}\right) \cdot \mathbf{L}$$
(5.7)

Subject to:

$$-700 \text{ MPa} \le \sigma = \frac{M \cdot c}{I} \le 700 \text{ MPa}$$
(5.8)

$$\delta = \frac{\mathbf{P} \cdot \mathbf{L}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}} = \le 25.4 \text{ mm}$$
(5.9)

$$\tau = \frac{\mathbf{P} \cdot \mathbf{Q}}{\mathbf{I} \cdot \mathbf{t}_{w}} \le 350 \text{ MPa}$$
(5.10)

$$0.4 \le \frac{t_{\rm f}}{t_{\rm w}} \le 2.5$$
 (5.11)

where

$$1 \le W_f \le 40 \tag{5.12}$$

$$0.5 \le t_{\rm f} \le 20 \tag{5.13}$$

$$0.5 \le t_w \le 20$$
 (5.14)

$$10 \le H \le 40 \tag{5.15}$$

$$I = \frac{1}{6} \cdot W_{f} \cdot t_{f}^{3} + \frac{1}{2} \cdot t_{f} \cdot W_{f} \cdot (H - t_{f})^{2} + \frac{1}{12} \cdot t_{w} \cdot (H - 2 \cdot t_{f})^{2}$$
(5.16)

$$Q = \frac{1}{2} \cdot t_{f} \cdot W_{f} \cdot (H - t_{f})^{2} + \frac{1}{8} \cdot t_{w} \cdot (H - 2 \cdot t_{f})^{2}$$
(5.17)

5.2.1 OPTIMIZATION USING THE OPTIMIZATION CODE IN MATLAB[®] AND ANALYTIC FUNCTIONS AS SOLVER

First, optimization of the cantilever beam with I cross section is performed by using first method explained in Chapter 4. In this method optimization code written in MATLAB[®] is used together with the analytical solver. The M-file called "AugLagMet.m" is executed in MATLAB[®] environment. "AugLagMet.m" asks user for inputs which are given below with the corresponding the values for this example.

- 1. Initial values of the design variable vector "x": [20 12 3 1.5]
- 2. Lower bounds of the design variable vector "x": [10 1 0.5 0.5]
- 3. Upper bounds of the design variable vector "x": [50 50 20 20]
- 4. Number of equality constraints:05. Number of inequality constraints:106. Initial values of lagrange multipliers " λ "
for equality constraints:07. Initial values of lagrange multipliers " β "
for inequality constraints :[10000 10000 10000
10000 10000
10000 100009. Initial values of lagrange multipliers "10000 10000 10000
10000 10000 10000
10000 1000010000 10000
10000

Where the design variable vector "**x**" is given by [H, Wf, tw, tf]. Lagrange multipliers " $\boldsymbol{\beta}$ " are given by [β_1 , β_2 , β_3 , β_4 , β_5 , β_6 , β_7 , β_8 , β_9 , β_{10}];

- β₁ is the multiplier for the constraint given in equation (5.8) used for upper bound of the stress value which is calculated in upper flange at the root of the beam.
- β₂ is the multiplier for the constraint given in equation (5.8) used for lower bound of the stress value which is calculated in upper flange at the root of the beam.

- β₃ is the multiplier for the constraint given in equation (5.8) used for upper bound of the stress value which is calculated in lower flange at the root of the beam.
- β₄ is the multiplier for the constraint given in equation (5.8) used for lower bound of the stress value which is calculated in lower flange at the root of the beam.
- β₅ is the multiplier for the constraint given in equation (5.11) used for upper bound of the inequality.
- β₆ is the multiplier for the constraint given in equation (5.11) used for lower bound of the inequality.
- β₇ is the multiplier for the constraint given in equation (5.10) used for the shear stress value which is calculated at the centroid at the root of the beam.
- β_8 is the multiplier for the artificial constraint, which is built for the upper bound of the height given in equation (5.15).
- β₉ is the multiplier for the artificial constraint, which is built for the upper bound of the flange width given in equation (5.12)..
- β₁₀ is the multiplier for the constraint given in equation (5.9) used for the displacement value at the tip of the beam.

It should be noted that the upper bound of height "H" and the flange width "Wf" are input higher than desired values. The height "H" and the flange width "Wf" values are then restricted by the inequality constraints. The initial multipliers for these constraints " β_8 " and " β_9 " are chosen less than other multipliers to reduce the impact of these artificial constraints at the beginning of the process.

The M-files "Ofun.m", Gfun.m"and "Hfun.m" which evaluate volume, inequality constraints and equality constraints respectively, and they are modified accordingly.

The optimization process is converged to the optimum solution in 71 iterations, where one iteration is one outermost cycle in the main algorithm shown in figure 3.1. In Figures 5.28 - 5.36 change of the objective function, design variables

and constraints with respect to iteration number are shown. Results are tabulated and comparisons are made in section 5.2.4 with the results obtained by the other two methods.

Figure 5.28 Variation of the objective function with respect to iteration number

It is seen that in this problem the objective function decreases considerably in the optimum solution. However, it is also observed that the optimization process is resistant, in other words during the initial phases of the optimization process it is seen that there is almost no variation of the objective function.

Figure 5.29 Variation of the height of cross section "H" with respect to iteration number

Figure 5.30 Variation of the width of flanges "Wf" with respect to iteration number

Figure 5.31 Variation of the web thickness "tw" with respect to iteration number

Figure 5.32 Variation of the flange thickness "tf" with respect to iteration number

The variation of the design variables reveals that flange and web thicknesses approach to their lower limit in the optimized solution whereas the flange width and the beam height approach to their upper limit in the optimized solution. It is also observed that the height of the beam violated the upper bound during the initial phase of the iterations and in a way persists to stay in the restricted zone. However, in the end it is forced to enter into the feasible region.

Figure 5.33 Variation of maximum bending stress at the root of the beam with respect to iteration number

Figure 5.34 Variation of maximum shear stress at the root of the beam with respect to iteration number

Figure 5.35 Variation of maximum displacement with respect to iteration number

Observation of the stress and deflection constraints shows that the displacement constraint is a gain the more restricting constraint in this problem like in the rectangular beam problem. It is seen that the stress values in the optimum solution are far below the maximum allowable values, however the maximum tip deflection is almost the same as the maximum allowable value in the optimized solution. It is obvious that if there were no displacement constraint defined in this problem, the stress values would increase due to the decreases in the design variables, and more reduction in the objective function, which the total volume, would be obtained.

Figure 5.36 Variation of tf / tw with respect to iteration number

Figure 5.36 shows the variation of the constraint on the ratio of the flange thickness to the web thickness. The constraint is violated towards end of the optimization process but eventually the constraint is satisfied at the optimum solution.

5.2.2 CANTILEVER BEAM OPTIMIZATION USING THE OPTIMIZATION CODE IN MATLAB[®] AND MSC.NASTRAN[®] AS THE SOLVER

In this section optimization of the cantilever beam with I cross section is performed by using second strategy explained in Chapter 4. In this method optimization code written in MATLAB[®] is used together with the commercial finite element solver MSC.NASTRAN[®]. The M-file called "AugLagMet.m" is executed in MATLAB[®] environment. "AugLagMet.m" asks user for inputs which are given below with the corresponding the values for this example.

1.	Initial values of design variable "x":	[20 12 3 1.5]
2.	Lower bounds of design variable "x":	[10 1 0.5 0.5]
3.	Upper bounds of design variable "x":	[50 50 20 20]
4.	Number of equality constraints:	0
5.	Number of inequality constraints:	10
6.	Initial values of lagrange multipliers " λ "	
	for equality constraints:	0
7.	Initial values of lagrange multipliers " β "	
	for inequality constraints :	[10000 10000 10000
		10000 10000 10000
		10000 100 100
		10000]

Where the design variable vector "**x**" is given by [H, Wf, tw, tf]. Lagrange multipliers " $\boldsymbol{\beta}$ " is given by [β_1 , β_2 , β_3 , β_4 , β_5 , β_6 , β_7 , β_8 , β_9 , β_{10}];

- β₁ is the multiplier for the constraint given in equation (5.8) used for upper bound of the stress value which is calculated in upper flange at the root of the beam.
- β₂ is the multiplier for the constraint given in equation (5.8) used for lower bound of the stress value which is calculated in upper flange at the root of the beam.

- β₃ is the multiplier for the constraint given in equation (5.8) used for upper bound of the stress value which is calculated in lower flange at the root of the beam.
- β₄ is the multiplier for the constraint given in equation (5.8) used for lower bound of the stress value which is calculated in lower flange at the root of the beam.
- β₅ is the multiplier for the constraint given in equation (5.11) used for upper bound of the inequality.
- β₆ is the multiplier for the constraint given in equation (5.11) used for lower bound of the inequality.
- β₇ is the multiplier for the constraint given in equation (5.10) used for the shear stress value which is calculated at the centroid at the root of the beam.
- β_8 is the multiplier for the artificial constraint, which is built for the upper bound of the height given in equation (5.15).
- β₉ is the multiplier for the artificial constraint, which is built for the upper bound of the flange width given in equation (5.12)..
- β₁₀ is the multiplier for the constraint given in equation (5.9) used for the displacement value at the tip of the beam.

It should again be noted that the upper bound of height "H" and the flange width "Wf" are input higher than desired values. The height "H" and the flange width "Wf values are then restricted by the inequality constraints. The initial multipliers for these constraints " β_8 " and " β_9 " are chosen less than other multipliers to reduce the impact of these artificial constraints at the beginning of the process.

The M-files "Ofun.m", Gfun.m"and "Hfun.m" which evaluate volume, inequality constraints and equality constraints respectively, and they are modified accordingly.

The optimization process is converged to the solution again in 71 iterations, where one iteration is one outermost cycle in the main algorithm shown in figure

3.1. In Figures 5.37 - 5.45 change of objective function, variables and constraints with respect to the iteration number are shown. Results are tabulated and comparisons are made in section 5.2.4 with the results obtained by the other two methods.

Figure 5.37 Variation of the objective function with respect to iteration number

Figure 5.38 Variation of the height of cross section "H" with respect to iteration number

Figure 5.39 Variation of the width of flanges "Wf" with respect to iteration number

Figure 5.40 Variation of the web thickness "tw" with respect to iteration number

Figure 5.41 Variation of the flange thickness "tf" with respect to iteration number

Figure 5.42 Variation of maximum bending stress at the root of the beam with respect to iteration number

Figure 5.43 Variation of maximum shear stress at the root of the beam with respect to iteration number

Figure 5.44 Variation of the maximum displacement with respect to iteration number

Figure 5.45 Variation of tf / tw with respect to iteration number

Figures 5.37-5.45 show that variations of the objective function, design variables and the constraints with iteration number depict similar behavior as in the first method where the solver was the analytical relations for the cantilever beam problem for the maximum axial stress, maximum shear stress and maximum tip deflection. Moreover, this problem has four design variables. This example also shows that the incorporation of MSC.NASTRAN[®] as the solver of the optimization code developed in MATLAB[®] has been successful.

It should be noted that since the same optimization code are used in both methods discussed above, one should expect to get similar variations in the history of the design variables.

5.2.3. CANTILEVER BEAM OPTIMIZATION USING OPTIMIZATION MODULE OF MSC.NASTRAN[®]

Finally, optimization of the cantilever beam with the I cross section is performed by using the optimization module of MSC.NASTRAN[®]. It should be noted that during the execution of the optimization solution with the optimization module of MSC.NASTRAN[®], MSC.NASTRAN[®] solver is frequently called internally. Before the optimization process, the cantilever beam problem is modeled in MSC.PATRAN[®].

The beam is modeled with 10 CBAR elements similar to the modeling of the rectangular cross-section beam. I cross section is assigned as the element's cross-sectional property. At the root 6 degree of freedom (Ux, Uy, Uz, Rx, Ry and Rz) of the node is fixed. At the tip 1250 N force is applied in negative (-) "y" direction as shown in figure 5.46.

Initial finite element model and cross section properties are shown in figures 5.46-5.48. Initial values are;

- Height of the beam: 20 mm
- Width of the beam: 12 mm
- Thickness of the web: 3 mm
- Thickness of the flanges: 1.5 mm.

Figure 5.46 Cantilever I beam model

Figure 5.47 Initial cantilever I beam model with equivalent inertia

Figure 5.48 Initial cantilever I beam section properties

Initial finite element analysis results are presented in Figures 5.49-5.50. In Figure 5.49 displacement distribution and in Figure 5.50 maximum axial stress distribution due to bending are shown.

Figure 5.49 Cantilever I beam initial displacement

Figure 5.50 Cantilever I beam initial bending stress distribution

Optimized finite element model and the cross-section of the optimized beam are shown in Figures 5.51 and 5.52 respectively. From Figure 5.51 one can not identify the difference between the initial and final optimized beam configuration but Figure 5.52 shows the optimized cross-section clearly. It can be seen that the height of the beam does not change much from its initial value but the flange width and thickness of the flange and the web are reduced from its initial value.

Figure 5.51 Final cantilever I beam model with equivalent inertia

Figure 5.52 Final cantilever I beam section properties

Final finite element analysis results for the optimized beam are presented in Figures 5.53-5.54. Figure 5.53 shows the displacement distribution and Figure

5.54 shows the axial stress distribution due to bending along the span of the beam.

Figure 5.53 Displacement distribution in the optimized beam

Figure 5.54 Bending stress distribution in the optimized beam

Variation of the objective function, each design variable and the maximum constraint value are shown in Figures 5.55-5.60. Maximum constraint value is the highest value of the normalized constraints constructed internally in MSC.NASTRAN[®]. In each iteration different constraint may have highest value. MSC.NASTRAN[®] optimization module arrives at the optimum solution in twenty design cycles as shown in Figures 5.55-5.60.

Figure 5.56 History of the design variable "H"(height of the beam)

Figure 5.57 History of the design variable "Wf" (width of the flange)

Figure 5.58 History of the design variable "tw" (thickness of the web)

Figure 5.59 History of the design variable "tf" (thickness of the flange)

Figure 5.60 Cantilever beam problem history of the maximum constraint value

It is observed that in this problem history of the design variables do not show exactly the same similar behaviour as the history of the design variables in the other two optimization strategies. Results of the MSC.NASTRAN[®] optimization module are also tabulated and comparisons are made in section 5.2.4 with the results obtained by the other two methods. The effect of mesh density on results is presented in appendix C.2.

5.2.4. COMPARISON OF THE THREE DIFFERENT OPTIMIZATION STRATEGIES

In this section, results of the three different optimization strategies are compared with each other in Table 5.7.

For the first and second technique, number of iterations indicates evaluation of outer most loop of optimization process shown in figure 3.1. For the third technique, it indicates the evaluation of loop of optimization process shown in figure 4.1.

		1st Technique	2nd Technique	3rd Technique
Number of iterations		71	75	23
Boom Hoight H (mm)	Initial value	20	20.0	20
Dealli Height, H (IIIII)	Final value	39.983	40.0	40.0
Flange Width, Wf	Initial value	12.0	12.0	12.0
(mm)	Final value	39.974	38.43	38.43
Web Thickness, tw	Initial value	3.0	3.0	3.0
(mm)	Final value	0.50	0.50	0.50
Flange Thickness, tf	Initial value	1.5	1.5	1.5
(mm)	Final value	0.883	0.970	0.970
Objective function, V	Initial value	43500	43500	43500
(mm ³)	Final value	44834	46820	46820
Max. Stress at the	Initial value	1448.4	1448.4	1448.4
root (MPa)	Final value	426.4	407.0	407.0
Max. Shear Stress	Initial value	23.174	23.174	23.174
(MPa)	Final value	65.938	65.826	65.826
Max. deflection at tip	Initial value	8.000	8.000	8.000
(mm)	Final value	25.39	25.474	25.474
+f / +\w/	Initial value	0.500	0.500	0.500
	Final value	1.765	1.939	1.939

Table 5.7Comparison of results for the I-Beam

It can be seen from Table 5.7 that there are slight differences in the converged design variables in the three solution strategies used. In the three approaches the

beam height and web thickness converges to almost the same value. However there are slight differences in flange width and flange thickness. Flange width obtained by using MSC.NASTRAN[®] is found a approximately 1 mm lower than the flange width obtained by the optimization code developed in MATLAB[®]. However, in the optimized solution the objective function value determined by the optimization by using MSC.NASTRAN[®] is slightly higher than the solution obtained by the optimization code which uses analytical functions as the solver. The difference is approximately 4.2 %. This slight difference is due to the higher flange thickness determined by the optimization by using MSC.NASTRAN[®].

It should also be noticed that in the optimum solution the value of the objective function is higher than its initial value. Such a situation occurs because the constraints of the problem drives the design variables into the feasible region and this process may end up with an increase in the optimized objective function value compared to its initial value.

Again the fastest solution is obtained with the optimization module of MSC.NASTRAN[®]. As it was discussed in the rectangular cross-section beam problem the second technique is very slow because of the frequent calling of MSC.NASTRAN[®] during the evaluation of the unconstrained function. Therefore, this approach should only be used for problems with complex geometry and loading conditions which require finite element analysis. In the future it is also recommended to improve the optimization code such that the optimum solution will be arrived at in less number of iteration steps.

It can be concluded that apart from the slight differences all three approaches converges to the same optimum, and this verifies that all three approaches work fine.

CHAPTER 6

OPTIMIZATION OF A WING TORQUE BOX

Weight saving is one of the most important issues in aerospace structures. Therefore, in this chapter structural optimization of a wing torque is performed by using the optimization module of MSC.NASTRAN[®]. As it was discussed before, the use of MSC.NASTRAN[®] as the solver only results in extremely long solution times with the optimization code developed in the thesis. To arrive at the solution within reasonable time in this section the optimization module of MSC.NASTRAN[®] is used and by the virtue of the sensitivity analysis feature of the optimization module of MSC.NASTRAN[®] the optimization of the torque box of a wing structure could be solved within a reasonable time period. The main objective is to design a suitable primary structure of least possible weight for the uniform cantilever wing while satisfying the constraints imposed. It should be noted that such an optimization study on an aerospace structure with the optimization module of a commercial finite element code is especially in important for aerospace companies dealing with the design and manufacturing of aerospace systems. Commercial codes give the opportunity to perform structural optimization with many design variables within a reasonable time. In the particular study the sensitivity analysis capability and the building up of the approximate model by MSC.NASTRAN[®] allowed the optimization to be completed within a short time.

Two main types of optimization are performed on the torque box of the wing. In the first optimization study only property optimization is performed. In this type of optimization design variables are related to a property of an element such as shell element thickness or cross-sectional area of a rod element. Therefore optimizer tries to reach the optimum solution by changing the properties of elements only. In this type of optimization grid locations are not changed, so initial shape of the wing is preserved. Two optimizations are performed within the scope of property optimization. In section 6.1, an equivalent aerodynamic lift force is applied at the tip of the wing, and optimization is performed for a constant tip force and tip bending moment. In section 6.2, a distributed aerodynamic lift force and pitching moment is applied to the torque box at the rib locations. Property optimization study has been performed with these two different external load cases.

The second type of optimization study performed involves shape optimization. In MSC.NASTRAN[®] shape optimization allows optimizer to modify grid locations, thus positions of structural elements can be changed to aid in arriving at the optimum solution. In section 6.3.1, only one variable which defines change of the location of rib 2 is used in a pure shape optimization study. This study is performed to verify that the optimization tool of MSC.NASTRAN[®] changes the location of the rib correctly so that desired constraint is satisfied. As it will be described in section 6.3.1, by performing static analysis with the rib 2 displaced to the left and right of its initial position, one can actually show that whether output of the optimizer is meaningful or not. In section 6.3.2, multivariable shape and property optimization is performed simultaneously. This example can be regarded as the most complete optimization study which not only optimizes the properties but also allows location change of the ribs along the wing span to arrive at the optimum solution.

The uniform cantilever wing studied has a 1.524 m (5 ft) chord length and 4.572 m (15 ft) semispan. NACA 2412 type of airfoil defines the cross section of the wing. The geometry of the wing in rendered form is shown in Figure 6.1.

Figure 6.1 The wing model studied in optimization study

Wing is divided into 6 equal parts by the ribs. The rib located at the root is numbered 1 and the rib located at the root is numbered 7. There are two spars on the wing, front and rear spar. Front spar is located at 25% of the chord and rear spar is located at 66% of the chord measured from the leading edge. Both spars have an extension at the root to connect the wing to the fuselage. Rib and spar locations are shown in detail in Figure 6.2.

Figure 6.2 Geometry and finite element of the wing

In the finite element model rod elements are used to model the flanges of the spars and shell elements are used to model the webs and skin panels. Equivalent section option is used for the shell element properties to provide membrane effect only. For this purpose, a dummy material with relatively very low elastic modulus is chosen as the bending material. Finite element model of the wing is given in Figure 6.3. In the finite element model single shell elements are used between the ribs in the skins, and spar webs.

Figure 6.3 Elements of the wing model

Spars consist of a web, an upper flange and a lower flange. Element properties of front and rear spars are given in Tables 6.1 and 6.2, respectively. As it can be seen from Tables 6.1 and 6.2, the flange areas of the spars, web thicknesses and skin thicknesses change discretely between the rib stations. Thus, the flange areas, skin and web thicknesses are taken as the discrete design variables. The last three columns of the tables give the initial value, lower and upper bounds of the design variables. The thicknesses are given in mm, and the cap areas are given in mm².

Front Spar						
Description	Element	Property	D. V.	Initial	Minimum	Maximum
Web Thickness	Number	Number	Name	Value	Value (mm)	Value (mm)
Rib 1 - Rib 2	110100	110100	v001	1	0.8	5
Rib 2 - Rib 3	210100	210100	v002	1	0.8	5
Rib 3 - Rib 4	310100	310100	v003	1	0.8	5
Rib 4 - Rib 5	410100	410100	v004	1	0.8	5
Rib 5 - Rib 6	510100	510100	v005	1	0.8	5
Rib 6 - Rib 7	610100	610100	v006	1	0.8	5
Upper Cap Area						
Rib 1 - Rib 2	110200	110200	v007	100	1	2000
Rib 2 - Rib 3	210200	210200	v008	100	1	2000
Rib 3 - Rib 4	310200	310200	v009	100	1	2000
Rib 4 - Rib 5	410200	410200	v010	100	1	2000
Rib 5 - Rib 6	510200	510200	v011	100	1	2000
Rib 6 - Rib 7	610200	610200	v012	100	1	2000
Lower Cap Area						
Rib 1 - Rib 2	110300	110300	v013	100	1	2000
Rib 2 - Rib 3	210300	210300	v014	100	1	2000
Rib 3 - Rib 4	310300	310300	v015	100	1	2000
Rib 4 - Rib 5	410300	410300	v016	100	1	2000
Rib 5 - Rib 6	510300	510300	v017	100	1	2000
Rib 6 - Rib 7	610300	610300	v018	100	1	2000

Table 6.1Element properties and design variables of the front spar

Table 6.2

Element properties and design variables of the rear spar

Rear Spar						
Description	Element	Property	D. V.	Initial	Minimum	Maximum
Web Thickness	Number	Number	Name	Value	Value (mm)	Value (mm)
Rib 1 - Rib 2	120100	120100	v019	1	0.8	5
Rib 2 - Rib 3	220100	220100	v020	1	0.8	5
Rib 3 - Rib 4	320100	320100	v021	1	0.8	5
Rib 4 - Rib 5	420100	420100	v022	1	0.8	5
Rib 5 - Rib 6	520100	520100	v023	1	0.8	5
Rib 6 - Rib 7	620100	620100	v024	1	0.8	5
Upper Cap Area						
Rib 1 - Rib 2	120200	120200	v025	100	1	2000
Rib 2 - Rib 3	220200	220200	v026	100	1	2000
Rib 3 - Rib 4	320200	320200	v027	100	1	2000
Rib 4 - Rib 5	420200	420200	v028	100	1	2000
Rib 5 - Rib 6	520200	520200	v029	100	1	2000
Rib 6 - Rib 7	620200	620200	v030	100	1	2000
Lower Cap Area						
Rib 1 - Rib 2	120300	120300	v031	100	1	2000
Rib 2 - Rib 3	220300	220300	v032	100	1	2000
Rib 3 - Rib 4	320300	320300	v033	100	1	2000
Rib 4 - Rib 5	420300	420300	v034	100	1	2000
Rib 5 - Rib 6	520300	520300	v035	100	1	2000
Rib 6 - Rib 7	620300	620300	v036	100	1	2000

Finite element model and element numbering of front and rear spars are given in Figures 6.4 and 6.5 respectively.

Figure 6.4 Elements of the front spar

Skins consist of six panels. Element properties of upper and lower skin panels are given in Tables 6.3 and 6.4, respectively. The initial value of the thickness and the initial values of the lower and upper bounds are assigned arbitrarily based on experience.

Table 6.3Element Properties and Design Variables of Upper Skin

Upper Skin Thickness						
Description	Element	Property	D. V.	Initial	Minimum	Maximum
	Number	Number	Name	Value	Value (mm)	Value (mm)
Rib 1 - Rib 2	110020	110020	v037	1	0.8	5
Rib 2 - Rib 3	210020	210020	v038	1	0.8	5
Rib 3 - Rib 4	310020	310020	v039	1	0.8	5
Rib 4 - Rib 5	410020	410020	v040	1	0.8	5
Rib 5 - Rib 6	510020	510020	v041	1	0.8	5
Rib 6 - Rib 7	610020	610020	v042	1	0.8	5

Lower Skin Thickness						
Description	Element	Property	D. V.	Initial	Minimum	Maximum
	Number	Number	Name	Value	Value (mm)	Value (mm)
Rib 1 - Rib 2	110030	110030	v043	1	0.8	5
Rib 2 - Rib 3	210030	210030	v044	1	0.8	5
Rib 3 - Rib 4	310030	310030	v045	1	0.8	5
Rib 4 - Rib 5	410030	410030	v046	1	0.8	5
Rib 5 - Rib 6	510030	510030	v047	1	0.8	5
Rib 6 - Rib 7	610030	610030	v048	1	0.8	5

Table 6.4Element properties and design variables of lower skin

Finite element model and element numbering of upper and lower skins are given in Figures 6.6 and 6.7 respectively.

Figure 6.6 Upper skin elements

Ribs are assumed to consist of a web, an upper and a lower flange. Element properties of ribs from root to tip are given in Tables 6.5 - 6.11, respectively. Finite element model and element numbering of the ribs are given in Figures 6.8 - 6.14 from root to tip, respectively.

Rib 1						
Decerintian	Element	Property	D. V.	Initial	Minimum	Maximum
Description	Number	Number	Name	Value	Value	Value
Web Thickness (mm)	111000	111000	v049	1	0.8	5
Upper Cap Area (mm^2)	112000	112000	v050	100	1	2000
Lower Cap Area (mm^2)	113000	113000	v051	100	1	2000
Front Cap Area (mm^2)	114000	114000	v052	100	1	2000
Rear Cap Area (mm^2)	124000	124000	v053	100	1	2000

Table 6.5Element properties and design variables of rib 1

Figure 6.8 Elements of rib 1

Rib 2							
Description	Element	Property	D. V.	Initial	Minimum	Maximum	
Description	Number	Number	Name	Value	Value	Value	
Web Thickness (mm)	211000	211000	v054	1	0.8	5	
Upper Cap Area (mm^2)	212000	212000	v055	100	1	2000	
Lower Cap Area (mm^2)	213000	213000	v056	100	1	2000	
Front Cap Area (mm^2)	214000	214000	v057	100	1	2000	
Rear Cap Area (mm^2)	224000	224000	v058	100	1	2000	

Table 6.6Element Properties and Design Variables of Rib 2

Table 6.7

Element properties and design variables of rib 3

Rib 3							
Description	Element	Property	D. V.	Initial	Minimum	Maximum	
Description	Number	Number	Name	Value	Value	Value	
Web Thickness (mm)	311000	311000	v059	1	0.8	5	
Upper Cap Area (mm^2)	312000	312000	v060	100	1	2000	
Lower Cap Area (mm^2)	313000	313000	v061	100	1	2000	
Front Cap Area (mm ²)	314000	314000	v062	100	1	2000	
Rear Cap Area (mm^2)	324000	324000	v063	100	1	2000	

Rib 4						
Decerintian	Element	Property	D. V.	Initial	Minimum	Maximum
Description	Number	Number	Name	Value	Value	Value
Web Thickness (mm)	411000	411000	v064	1	0.8	5
Upper Cap Area (mm^2)	412000	412000	v065	100	1	2000
Lower Cap Area (mm^2)	413000	413000	v066	100	1	2000
Front Cap Area (mm^2)	414000	414000	v067	100	1	2000
Rear Cap Area (mm^2)	424000	424000	v068	100	1	2000

Table 6.8 Element properties and design variables of rib 4

Elements of rib 4

Table 6.9 Element properties and design variables of rib 5

Rib 5								
Decerintian	Element	Property	D. V.	Initial	Minimum	Maximum		
Description	Number	Number	Name	Value	Value	Value		
Web Thickness (mm)	511000	511000	v069	1	0.8	5		
Upper Cap Area (mm^2)	512000	512000	v070	100	1	2000		
Lower Cap Area (mm^2)	513000	513000	v071	100	1	2000		
Front Cap Area (mm ²)	514000	514000	v072	100	1	2000		
Rear Cap Area (mm^2)	524000	524000	v073	100	1	2000		

Figure 6.12 Elements of rib 5

Rib 6						
Decerintian	Element	Property	D. V.	Initial	Minimum	Maximum
Description	Number	Number	Name	Value	Value	Value
Web Thickness (mm)	611000	611000	v074	1	0.8	5
Upper Cap Area (mm^2)	612000	612000	v075	100	1	2000
Lower Cap Area (mm^2)	613000	613000	v076	100	1	2000
Front Cap Area (mm^2)	614000	614000	v077	100	1	2000
Rear Cap Area (mm^2)	624000	624000	v078	100	1	2000

Table 6.10Element properties and design variables of rib 6

Table 6.11

Element properties and design variables of rib 7

Rib 7								
Description	Element	Property	D. V.	Initial	Minimum	Maximum		
Description	Number	Number	Name	Value	Value	Value		
Web Thickness (mm)	711000	711000	v079	1	0.8	5		
Upper Cap Area (mm^2)	712000	712000	v080	100	1	2000		
Lower Cap Area (mm^2)	713000	713000	v081	100	1	2000		
Front Cap Area (mm ²)	714000	714000	v082	100	1	2000		
Rear Cap Area (mm^2)	724000	724000	v083	100	1	2000		

Thus, there are 83 design variables as can be seen from Table 6.11 which lists the last five design variables.

Displacement boundary conditions are applied to nodes of extension part of the spars in all analyses and this part is not considered in the region to be optimized. Applied displacement boundary condition is shown in figure 6.15.

Figure 6.15 Applied displacement boundary condition

Elements to be optimized are shown in Figure 6.16. The skin and web elements are shrunk by a certain percentage to allow one identify each structural element separately.

Figure 6.16 Elements to be optimized

The wing is designed for an aircraft having 1460 kg as the maximum takeoff weight, 861 kg minimum operating weight and a dive speed of 270 mile per hour. Based on this information span wise lift and pitching moment distribution is calculated in accordance with the ESDU document 95010 [12]. Span wise lift and pitching moment distributions are given in Figures 6.17 - 6.18.

Figure 6.17 Spanwise aerodynamic lift force distribution

Figure 6.18 Spanwise aerodynamic pitching moment distribution

The optimization problem is defined such that the objective function is to minimize the weight of the wing subject to 87 constraints. Constraints are imposed on axial stresses in all flanges, Von Mises stresses in all webs and skins and displacements of nodes at the tip of the wing. All constraints are given in Tables 6.12 - 6.23.

Front Spar								
					Initial	Value	Minimum	Maximum
Description	Element	Property	D. R.	D. C.	Tip	Distr.	Mahar	Waximum
-	Number	Number	Name	Name	Loading	Load	value	value
Web Von Mises Stress					(MPa)	(MPa)	(MPa)	(MPa)
	110100	110100	s001	AS001	224.8	203.3	0.01	300
	210100	210100	s002	AS002	218.3	153.9	0.01	300
	310100	310100	s003	AS003	219.6	113.5	0.01	300
	410100	410100	s004	AS004	219.9	73.5	0.01	300
	510100	510100	s005	AS005	216.1	37.5	0.01	300
	610100	610100	s006	AS006	237.9	10.2	0.01	300
Upper Cap Axial Stress								
	110200	110200	s007	AS007	-445.5	-454.6	-425	445
	210200	210200	s008	AS008	-237.5	-286.3	-425	445
	310200	310200	s009	AS009	-36.2	-163.8	-425	445
	410200	410200	s010	AS010	167.5	-77.4	-425	445
	510200	510200	s011	AS011	363.4	-26.2	-425	445
	610200	610200	s012	AS012	600.5	-4.5	-425	445
Lower Cap Axial Stress								
	110300	110300	s013	AS013	445.5	454.7	-425	445
	210300	210300	s014	AS014	237.5	286.3	-425	445
	310300	310300	s015	AS015	36.2	163.9	-425	445
	410300	410300	s016	AS016	-167.5	77.4	-425	445
	510300	510300	s017	AS017	-363.5	26.2	-425	445
	610300	610300	s018	AS018	-600.5	4.5	-425	445

Table 6.12Design constraints related to front spar

Table 6.13

Design constraints related to rear spar

Rear Spar								
					Initial	Value	Minimum	Maximum
Description	Element	Property	D. R.	D. C.	Тір	Distr.	Velue	Value
	Number	Number	Name	Name	Loading	Load	value	value
Web Von Mises Stress					(MPa)	(MPa)	(MPa)	(MPa)
	120100	120100	s019	AS019	120.5	107.4	0.01	300
	220100	220100	s020	AS020	134.7	96.1	0.01	300
	320100	320100	s021	AS021	131.8	67.8	0.01	300
	420100	420100	s022	AS022	131.3	44.3	0.01	300
	520100	520100	s023	AS023	139.6	22.6	0.01	300
	620100	620100	s024	AS024	92.0	6.6	0.01	300
Upper Cap Axial Stress								
	120200	120200	s025	AS025	-283.0	-291.2	-425	445
	220200	220200	s026	AS026	-165.1	-200.3	-425	445
	320200	320200	s027	AS027	-23.5	-111.9	-425	445
	420200	420200	s028	AS028	111.2	-54.3	-425	445
	520200	520200	s029	AS029	258.9	-19.4	-425	445
	620200	620200	s030	AS030	342.9	-3.8	-425	445
Lower Cap Axial Stress								
	120300	120300	s031	AS031	283.1	291.3	-425	445
	220300	220300	s032	AS032	165.2	200.3	-425	445
	320300	320300	s033	AS033	23.5	111.9	-425	445
	420300	420300	s034	AS034	-111.3	54.3	-425	445
	520300	520300	s035	AS035	-258.9	19.4	-425	445
	620300	620300	s036	AS036	-343.0	3.8	-425	445

Upper Skin Von Mises Stress										
					Initial	Value	Minimum	Maximum		
Description	Element	Property	D. R.	D. C.	Тір	Distr.	Value	Value		
Description	Number	Number	Name	Name	Loading	Load	Load value	value		
					(MPa)	(MPa)	(MPa)	(MPa)		
	110020	110020	s037	AS037	370.1	378.9	0.01	281		
	210020	210020	s038	AS038	207.9	249.9	0.01	281		
	310020	310020	s039	AS039	38.8	141.3	0.01	281		
	410020	410020	s040	AS040	144.2	67.9	0.01	281		
	510020	510020	s041	AS041	319.6	23.8	0.01	281		
	610020	610020	s042	AS042	479.7	4.6	0.01	281		

Table 6.14Design constraints related to upper skin

Table 6.15

Design constraints related to lower skin

Lower Skin Von Mises St	ress							
					Initial	Value	Minimum	Maximum
Description	Element	Property	D. R.	D. C.	Тір	Distr.	Value	Value
Description	Number	Number	Name	Name	Loading	Load	value	value
					(MPa)	(MPa)	(MPa)	(MPa)
	110030	110030	s043	AS043	370.1	379.0	0.01	281
	210030	210030	s044	AS044	207.9	250.0	0.01	281
	310030	310030	s045	AS045	38.8	141.4	0.01	281
	410030	410030	s046	AS046	144.2	67.9	0.01	281
	510030	510030	s047	AS047	319.7	23.8	0.01	281
	610030	610030	s048	AS048	479.8	4.6	0.01	281

Table 6.16Design constraints related to rib 1

Rib 1					Initial	Value	Minimum	Maximum
	Element	Property	D. R.	D. C.	Тір	Distr.	Value	Value
Description	Number	Number	Name	Name	Loading	Load		
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	111000	111000	s049	AS049	10.3	8.5	0.01	300
Upper Cap Axial Stress	112000	112000	s050	AS050	82.7	83.4	-425	445
Lower Cap Axial Stress	113000	113000	s051	AS051	-82.7	-83.4	-425	445
Front Cap Axial Stress	114000	114000	s052	AS052	0.0	0.0	-425	445
Rear Cap Axial Stress	124000	124000	s053	AS053	0.0	0.0	-425	445

Table 6.17Design constraints related to rib 2

Rib 2					Initial	Value	Minimum	Moximum
Description	Element Number	Property Number	D. R. Name	D. C. Name	Tip Loading	Distr. Load	Value	Value
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	211000	211000	s054	AS054	7.1	3.4	0.01	300
Upper Cap Axial Stress	212000	212000	s055	AS055	92.6	98.5	-425	445
Lower Cap Axial Stress	213000	213000	s056	AS056	-92.6	-98.5	-425	445
Front Cap Axial Stress	214000	214000	s057	AS057	0.0	0.0	-425	445
Rear Cap Axial Stress	224000	224000	s058	AS058	0.0	0.0	-425	445

Rib 3					Initial	Value	Minimum	Maximum
	Element	Property	D. R.	D. C.	Tip	Distr.	Value	Value
Description	Number	Number	Name	Name	Loading	Load	value	value
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	311000	311000	s059	AS059	2.8	7.0	0.01	300
Upper Cap Axial Stress	312000	312000	s060	AS060	31.1	51.2	-425	445
Lower Cap Axial Stress	313000	313000	s061	AS061	-31.1	-51.2	-425	445
Front Cap Axial Stress	314000	314000	s062	AS062	0.0	0.0	-425	445
Rear Cap Axial Stress	324000	324000	s063	AS063	0.0	0.0	-425	445

Table 6.18Design constraints related to rib 3

Table 6.19Design constraints related to rib 4

Rib 4						Value	Minimum	Maximum
	Element	Property	D. R.	D. C.	Тір	Distr.	Valuo	Valuo
Description	Number	Number	Name	Name	Loading	Load	value	value
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	411000	411000	s064	AS064	0.1	3.9	0.01	300
Upper Cap Axial Stress	412000	412000	s065	AS065	-15.7	28.5	-425	445
Lower Cap Axial Stress	413000	413000	s066	AS066	15.7	-28.5	-425	445
Front Cap Axial Stress	414000	414000	s067	AS067	0.0	0.0	-425	445
Rear Cap Axial Stress	424000	424000	s068	AS068	0.0	0.0	-425	445

Table 6.20Design constraints related to rib 5

Rib 5		Initial Value		Value	Minimum	Maximum		
	Element	Property	D. R.	D. C.	Тір	Distr.	Value	Value
Description	Number	Number	Name	Name	Loading	Load		
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	511000	511000	s069	AS069	7.3	3.4	0.01	300
Upper Cap Axial Stress	512000	512000	s070	AS070	-63.3	11.5	-425	445
Lower Cap Axial Stress	513000	513000	s071	AS071	63.3	-11.5	-425	445
Front Cap Axial Stress	514000	514000	s072	AS072	0.0	0.0	-425	445
Rear Cap Axial Stress	524000	524000	s073	AS073	0.0	0.0	-425	445

Table 6.21Design constraints related to rib 6

Rib 6					Initial Value		Minimum	Maximum
	Element	Property	D. R.	D. C.	Tip	Distr.	Value	Value
Description	Number	Number	Name	Name	Loading	Load	value	value
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	611000	611000	s074	AS074	28.8	2.2	0.01	300
Upper Cap Axial Stress	612000	612000	s075	AS075	-122.1	3.0	-425	445
Lower Cap Axial Stress	613000	613000	s076	AS076	122.2	-3.0	-425	445
Front Cap Axial Stress	614000	614000	s077	AS077	0.0	0.0	-425	445
Rear Cap Axial Stress	624000	624000	s078	AS078	0.0	0.0	-425	445

Rib 7					Initial	Value	Minimum	Maximum
	Element	Property	D. R.	D. C.	Tip	Distr.	Value	Value
Description	Number	Number	Name	Name	Loading	Load	value	value
					(MPa)	(MPa)	(MPa)	(MPa)
Web Von Mises Stress	711000	711000	s079	AS079	11.7	1.1	0.01	300
Upper Cap Axial Stress	712000	712000	s080	AS080	-121.2	0.3	-425	445
Lower Cap Axial Stress	713000	713000	s081	AS081	121.2	-0.3	-425	445
Front Cap Axial Stress	714000	714000	s082	AS082	0.0	0.0	-425	445
Rear Cap Axial Stress	724000	724000	s083	AS083	0.0	0.0	-425	445

Table 6.22Design constraints related to rib 7

Table 6.23Design constraints related to displacements at rib 7

Rib 7						
	Nada	DOE		Initial Value	Upper Bound	Lower Bound
D.R.Maine	Noue	DOF	D.C. Name	(mm)	(mm)	(mm)
D201	7120	Tz	D201	0.00	-0.001	-200
D202	7220	Tz	D202	0.00	-0.001	-200
D203	7130	Tz	D203	0.00	-0.001	-200
D204	7230	Tz	D204	0.00	-0.001	-200

6.1 OPTIMIZATION OF THE WING WITH TIP LOADING

This section describes the optimization of the wing subject to tip loading only. Equivalent aerodynamic lift force and pitching moment are applied on a node, which is created at 33.91% chord and on the camber line, at wing tip location as two concentrated loads. Rigid element RBE3 of MSC.NASTRAN[®] is used to distribute the applied load to the nodes of rib 7 which is the rib at the tip of the wing. Applied displacement boundary condition and distribution of the tip load are shown in Figure 6.19.

Figure 6.19 Initial wing model with tip loading

Initial analysis results are shown in Figures 6.20 - 6.23. These results belong to the wing with the initial values of the design variables.

Figure 6.20 Initial axial stresses on the flanges

Figure 6.21 Initial Von Mises stresses on the skins and the webs

It should be noted that since the total external load is applied in a concentrated fashion at the wing tip, the stresses in the elements near the application point of the external force are found to be higher compared to the stresses in the rest of the elements of the wing. Axial stresses on the flanges also show similar behavior. Away from the wing tip, the stresses are seen to increase towards the root of the wing, as expected.

Figure 6.22 Initial Von Mises stresses on the skins and the webs interior view

Figure 6.23 Initial deflection of the wing

The optimized element properties of the wing model are shown in Figures 6.24-6-29. These figures give the color plot representation of the final flange areas, skin, web and rib thicknesses. As it was discussed before, the element properties are allowed to change discretely between the rib stations. To reduce the number of design variables single elements were used to model the structure between the rib stations. Therefore, at the end of the solution single colors are assigned to the flange areas, skin and webs between the rib stations and ribs. Solution took 12.578 seconds of CPU time.

Figure 6.24 Final flange areas on the wing model

Figure 6.25 Final upper skin thicknesses of the wing model

Figure 6.26 Final lower skin thicknesses of the wing model

Figure 6.27 Final front spar thicknesses of the wing model

Figure 6.28 Final rear spar thicknesses of the wing model

Figure 6.29 Final rib web thicknesses of the wing model

Final analysis results are shown in figures 6.30 - 6.33

Figure 6.30 Final axial stresses on the flanges

Figure 6.31 Final Von Mises stresses on the skins and the webs

Figure 6.32 Final Von Mises stresses on the skins and the webs interior view

Figure 6.33 Final deflection of the wing

History of objective function which is the total weight of the wing is shown in Figure 6.34. The optimized weight is determined to be 57.7 kg, and it can be concluded that with the initial values of the design variables the constraints are not all satisfied and therefore the objective function increases until the constraints are satisfied.

Figures 6.35-6.50 show the history of all the design variables until the optimum solution is reached. It can be observed from these figures that except for the flange areas of the ribs most of the design variables increase compared to their initial values and this observation is in accordance with the variation of the objective function with the design cycle. In Figures 6.35-6.50 the thicknesses are given in mm and cap areas are given in mm².

Figure 6.34 History of objective function (in kg)

Figure 6.35 History of lower skin thicknesses (in mm)

Figure 6.36 History of upper skin thicknesses (in mm)

Figure 6.37 History of front spar web thicknesses (in mm)

Figure 6.38 History of rear spar web thicknesses (in mm)

Figure 6.39 History of rib web thicknesses (in mm)

Figure 6.40 History of upper flange areas of front spar (in mm²)

Figure 6.41 History of lower flange areas of front spar (in mm²)

Figure 6.42 History of upper flange areas of rear spar (in mm²)

Figure 6.43 History of lower flange areas of rear spar (in mm²)

Figure 6.44 History of flange areas of rib 1 (in mm²)

Figure 6.45 History of flange areas of rib 2 (in mm²)

Figure 6.46 History of flange areas of rib 3 (in mm²)

Figure 6.47 History of flange areas of rib 4 (in mm²)

Figure 6.48 History of flange areas of rib 5 (in mm²)

Figure 6.49 History of flange areas of rib 6 (in mm²)

Figure 6.50 History of flange areas of rib 7 (in mm²)

Figure 6.51 History of maximum constraint value

6.2 OPTIMIZATION OF THE WING WITH DISTRIBUTED LOADING

In this section the same torque box is optimized for the distributed load case. Aerodynamic lift force and pitching moment are applied on nodes which are created at 33.91% chord and on the camber line, as specified by the ESDU document [12], at each rib location. Rigid RBE3 element is then used to distribute applied load to the nodes of ribs similar to the tip load case. Displacement boundary condition applied and distributed load imposed are shown in Figure 6.52.

Figure 6.52 Initial wing model with distributed loading

Initial analysis results are shown in Figures 6.53 - 6.56. These results belong to the wing with the initial values of the design variables.

Figure 6.53 Initial axial stresses on the flanges

Figure 6.54 Initial Von Mises stresses on the skins and the webs

Figure 6.55 Initial Von Mises stresses on the skins and the webs interior view

Figure 6.56 Initial deflection of the wing model

In this example it is observed that since the total load is applied on the wing in a distributed fashion the peak stresses occur towards the root of the wing contrary to the concentrated tip load case solved in the previous section.

The optimized element properties of the wing model are shown in Figures 6.57-6-64. These figures give the color plot representation of the final flange areas, skin, web and rib thicknesses. As it was discussed before, the element properties are allowed to change discretely between the rib stations. To reduce the number of design variables single elements were used to model the structure between the rib stations. Therefore, at the end of the solution single colors are assigned to the flange areas, skin and webs between the rib stations and ribs. Solution took 8.140 seconds of CPU time.

Figure 6.57 Final flange areas on the wing model

Figure 6.58 Final upper skin thicknesses of the wing model

Figure 6.59 Final lower skin thicknesses of the wing model

Figure 6.60 Final front spar thicknesses of the wing model

Figure 6.61 Final rear spar thicknesses of the wing model

Figure 6.62 Final rib web thicknesses of the wing model

Figure 6.63 Final overall thicknesses of the wing model

Figure 6.64 Final web thicknesses of the wing model interior view

Final analysis results of the optimized torque box are presented in Figures 6.65 - 6.68. It is observed that the final stresses are reduced from their initial values. This observation is based on the comparison of the initial stress analysis results given in Figures 6.53-6.55 with the stress analysis results of the optimized configuration given by Figures 6.65-6.67. Reduction in stress values would imply an increase in the weight of the final optimized configuration compared to the initial configuration. In order to check the validity of this conclusion the history of the objective function has to be checked.

Figure 6.65 Final axial stresses on the flanges

Figure 6.66 Final Von Mises stresses on the skins and the webs

Figure 6.67 Final Von Mises stresses on the skins and the webs interior view

Figure 6.68 Final deflection of the wing model

History of objective function, design variables and constraints are shown in figures 6.69 - 6.86.

History of the objective function which is the total weight of the wing is shown in Figure 6.69. The optimized weight is determined to be about 60 kg. The increase of the weight of the wing in the optimized configuration justifies the increase of the stress values in most elements in the final configuration compared to the stresses analysis results in the initial configuration. It can be concluded that with the initial values of the design variables the constraints are not all satisfied and therefore the objective function increases until the constraints are satisfied.

Figures 6.70-6.85 show the history of all the design variables until the optimum solution is reached. It can be observed from these figures that except for the rib flange areas, most of the design variables increase compared to their initial values and this observation is in accordance with the variation of the objective function with the design cycle. In Figures 6.70-6.85 the thicknesses are given in mm and cap areas are given in mm².

Figure 6.69 History of objective function (in kg)

Figure 6.70 History of lower skin thicknesses (in mm)

Figure 6.71 History of upper skin thicknesses (in mm)

Figure 6.72 History of front spar web thicknesses (in mm)

Figure 6.73 History of rear spar web thicknesses (in mm)

Figure 6.74 History of rib web thicknesses (in mm)

Figure 6.75 History of upper flange areas of front spar (in mm²)

Figure 6.76 History of lower flange areas of front spar (in mm²)

Figure 6.77 History of upper flange areas of rear spar (in mm²)

Figure 6.78 History of lower flange areas of rear spar (in mm²)

Figure 6.79 History of flange areas of rib 1 (in mm²)

Figure 6.80 History of flange areas of rib 2 (in mm²)

Figure 6.81 History of flange areas of rib 3 (in mm²)

Figure 6.82 History of flange areas of rib 4 (in mm²)

Figure 6.83 History of flange areas of rib 5 (in mm²)

Figure 6.84 History of flange areas of rib 6 (in mm²)

Figure 6.85 History of flange areas of rib 7 (in mm²)

Figure 6.86 History of maximum constraint value

6.3 OPTIMIZATION OF THE WING TORQUE BOX WITH DISTRIBUTED LOADING INCLUDING SHAPE OPTIMIZATION

In this section the optimization of the wing torque box has been performed by incorporating the shape optimization feature of the optimization module of MSC.NASTRAN[®]. Within the context of the shape optimization the location of the ribs of the wing are chosen to be moveable. Each rib is allowed to move inboard and out-board by a distance equal to the half the distance between the rib and the neighboring in-board and out-board rib.

In order to carry out shape optimization, an auxiliary model is required to define shape basis vector in shape optimization. The optimizer requires a relation between shape design variables and changes of grid locations. This relation is defined as a linear combination of shape design variables times shape basis vectors, which results in the total change in grid locations. The auxiliary wing model is the same as the original one and it is used for both shape optimizations described in sections 6.3.1 and 6.3.2. Five different load cases are applied to the wing model. In each load case, a displacement vector, which is 10 mm towards the root, is applied to each rib located between the root and the tip rib of the wing and the other ribs are fixed. Linear static analysis is performed with these load cases. Resultant MASTER-file and DBALL-file are then introduced to the original .bdf-file. To ensure that MSC.NASTRAN[®] produces these result files "scr=no" command should be used. Load cases in auxiliary model are shown in Figures 6.87-6.91

Figure 6.87 Load case 1 in auxiliary model

Figure 6.88 Load case 2 in auxiliary model

Figure 6.89 Load case 3 in auxiliary model

Figure 6.90 Load case 4 in auxiliary model

Figure 6.91 Load case 5 in auxiliary model

6.3.1. ONE VARIABLE OPTIMIZATION

In this section the shape optimization module is verified by performing a test optimization study involving the location change of a rib. For this purpose location of a single rib is selected as the main design parameter, and all the other design parameters are kept fixed. All property related design variables defined in the previous sections are taken as fixed quantities and except for rib 2, locations of all the rest of the ribs are also taken as fixed. Since element properties are not defined as design variables there is no objective function in this test case. To verify that the optimizer moves the rib in the correct direction a problem is defined. In the particular study a constraint is applied on the Von Mises stress of element 110030 and the position of rib 2 is taken as the only design variable. Initially, three static analyses are performed with the rib 2 in three different locations along the span of the wing. In the first static analysis rib is taken at its original position, and in the remaining two static analyses rib 2 is moved 300 mm in-board and out-board, respectively. At the end of the three static analyses Von Mises stress on element 110030 is recorded to see the effect of the rib position on the resulting stress on the element. The output of these three static analyses is given in Table 6.24.

Table 6.24Comparison of linear static analyses of the wing with rib 2 at
different spanwise locations

	Rib 2 is moved	Rib 2 is in	Rib 2 is moved	
	towards the root	original position	towards the tip	
Spanwise location of	462.0	762.0	1062.0	
Rib 2 (mm)	402.0	702.0		
Von Mises Stress on	404.8	370.0	351.3	
Element 110030 (MPa)	404.0	579.0		

As it was pointed out above in the particular study there is no change in the objective function which is the weight of the wing because element properties are not assigned as design variables.

In the next analysis a shape optimization run is executed by imposing a constraint on the Von Mises stress on element 110030. Von Mises stress on element 110030 is constrained to be less than 360 MPa and this value is assigned as the single constraint of the optimization problem. This stress value is in between the stress determined by the static analysis with the rib 2 in the original position, and the stress determined by the static analysis with the rib 2 in its displaced position by a distance of 300 mm towards the wing tip. Based on the static analysis results presented in Table 6.24, it is clear that the shape optimizer has to move rib 2 towards the wing tip. The result of the shape optimization will be checked to see if the rib 2 is moved towards the wing tip or not.

Initial model of the wing is shown in Figure 6.92. Final rib 2 location and stress result of element 110030 are shown in Figures 6.93 and 6.94, respectively.

Figure 6.92 Initial wing model with distributed loading

Figure 6.93 Final location of the rib 2 on the wing model

Figure 6.94 Final Von Mises stress on the element 110030

At the end of the shape optimization MSC.NASTRAN[®] shape optimizer has moved the rib 2 towards the tip by 208.4 mm so that Von Mises stress on the element 110030 became 360 MPa. The new position of rib 2 is between the original position of the rib 2 and the outboard displaced position of the of rib 2 given in Table 6.24, as expected. History of the objective function is given in Figure 6.95. Each design cycle indicates 1 iteration which is a complete loop described in figure 4.1. Since the element properties are not considered as the design variables the objective function which is the weight of the wing is kept constant. The initial weight is calculated based on the initial values of the element properties which were given in the previous section. The variation of the design variable, which is the position of rib 2, with respect to the design cycle is plotted in Figure 6.96. It is seen that in seven design cycles rib 2 moved out-board such that the constraint imposed on the Von Mises stress on element 110030 is satisfied. The history of the constraint function is shown in Figure 6.97. At the end of the seventh design cycle the constraint function becomes zero which means that the constraint is satisfied.

Figure 6.95 History of objective function (in kg)

Figure 6.96 History of rib 2 location (in 100 mm)

Figure 6.97 History of the maximum constraint value

6.3.2. MULTI VARIABLE OPTIMIZATION

In this section, property optimization and shape optimization are performed together for the wing torque box with distributed loading. Each rib is allowed to move in-board and out-board by a distance equal to the half the distance between the rib and the neighboring in-board and out-board rib. Since rib positions are also included in the design variables, the expectation is to end up with a final optimized configuration with less weight. The same finite element model is used as in the previous sections. Aerodynamic lift force and pitching moment are again applied on a node, which is created at 33.91% chord and on the camber line, at each rib location. The location of the load application nodes are not changed during the optimization process. Rigid RBE3 element of MSC.NASTRAN[®] is used to distribute the applied load to the nodes at the intersection of the ribs with the front and rear spar. Auxiliary model which was described in section 6.3 is used for constructing the shape basis vectors. Displacement boundary condition applied and distributed loading are shown in Figure 6.98.

Figure 6.98 Initial wing model with distributed loading

Initial linear static run results are exactly same as in section 6.2. The element property optimization problem defined in section 6.2 is also same as the current problem with the addition of shape optimization. Solution took 35.437 seconds of CPU time.

In the optimized wing configuration, final rib locations and the element properties of the wing model are shown in Figures 6.99-6-107.

Figure 6.99 Final rib locations on the wing model

Figure 6.99 shows that rib positions in the optimized configuration are very close to the original rib positions. Ribs 2, 4 and 5 are seen to displace most in the final configuration. In Figure 6.99, the location of the load application node is fixed, therefore the perpendicular distance from the load application point to the rib gives the distance by which the ribs move.

Figure 6.100 Final flange areas of the wing model

Figure 6.101 Final lower skin thicknesses of the wing model

Figure 6.102 Final upper skin thicknesses of the wing model

Figure 6.103 Final front spar thicknesses of the wing model

Figure 6.104 Final rear spar thicknesses of the wing model

Figure 6.105 Final rib web thicknesses of the wing model

Figure 6.106 Final rib web thicknesses of the wing model

Figure 6.107 Final Rib web thicknesses of the wing model interior view

In the optimized configuration final analysis results are shown in Figures 6.108 – 6.111. Comparison of the stress analysis results given in Figures 6.108-6.110 with the stress analysis results of the element property optimization problem given in Figures 6.65-6.67 show that there is increase in the stress values, and this is an indication of weight reduction accomplished by shape optimization. Actually, in the original element property optimization problem there was a weight increase from the initial configuration to satisfy the constraints. In the current problem the initial configuration is again selected as the same initial configuration used in element property optimization. To be sure about the weight reduction the history of the objective function has to be checked, and this is done the subsequent pages.

Figure 6.108 Final axial stresses on the flanges

Figure 6.109 Final Von Mises stresses on the skins and the webs

Figure 6.110 Final Von Mises stresses on the skins and the webs interior view

Figure 6.111 Final deflection of the wing model

History of objective function is given in Figure 6.112. Each design cycle indicates 12 iteration, therefore optimization process converged in 72 iterations. It can be seen from Figure 6.112 that the value of the objective function again increase compared to the value at of the objective function at the initial configuration. However, comparison of Figure 6.112 with Figure 6.69 reveals that the value of the objective function in the optimized configuration is less in the combined property and shape optimization solution. In the optimized configuration wing weighs about 51.5 kg which is 8.5 kg less compared to the final weight of the wing obtained in pure element property optimization. This results shows that shape optimization is also a very critical issue in optimizing aerospace structures because in aerospace structures there are many structural elements whose positions can be adjusted in the optimum way to achieve further weight reduction.

Figure 6.112 History of objective function

The history of the design variables are given in Figure 6.113-6.128.

Figure 6.113 History of lower skin thicknesses (in mm)

Figure 6.114 History of upper skin thicknesses (in mm)

Figure 6.115 History of front spar web thicknesses (in mm)

Figure 6.116 History of rear spar web thicknesses (in mm)

Figure 6.117 History of rib web thicknesses (in mm)

Figure 6.118 History of upper flange areas of front spar (in mm²)

Figure 6.119 History of lower flange areas of front spar (in mm²)

Figure 6.120 History of upper flange areas of rear spar (in mm²)

Figure 6.121 History of lower flange areas of rear spar (in mm²)

Figure 6.122 History of flange areas of rib 1 (in mm²)

Figure 6.123 History of flange areas of rib 2 (in mm²)

Figure 6.124 History of flange areas of rib 3 (in mm²)

Figure 6.125 History of flange areas of rib 4 (in mm²)

Figure 6.126 History of flange areas of rib 5 (in mm²)

Figure 6.127 History of flange areas of rib 6 (in mm²)

Figure 6.128 History of flange areas of rib 7 (in mm²)

Figure 6.129 History of maximum constraint value

6.4 COMPARISON OF OPTIMIZATION STUDIES OF THE WING TORQUE BOX

In this section, the three optimization results are compared in Table 6.25. Detailed comparison tables for each constraint are in appendix C.3

			_	Property Optimization		Property & Shape Optimization
	Lower Bound	Upper Bound		Tip Loading	Distributed Loading	Distributed Loading
Number of iterations	-	-	-	27	23	72
CPU time (second)	-	-	-	12.578	8.140	35.437
Objective function	-	-	Initial	42.008	42.008	42.008
	-	-	Final	56.671	60.027	51.540
Max. stress on the Skins (Mpa)	0.01	281	Initial	480	379	379
			Final	277	178	123
Max. stress on the Webs (Mpa)	0.01	300	Initial	238	203	203
			Final	289	195	145
Max. stress on the Flanges (Mpa)	0.00	445	Initial	600	455	455
			Final	379	263	168
Min. stress on the Flanges (Mpa)	-425	0.00	Initial	-601	-455	-455
			Final	-194	-108	-127
Max. deflection at tip (mm)	0.001	200	Initial	256	446	446
			Final	157	201	201

Table 6.25

Comparison of results of three optimization processes

In all optimization processes weight is increased compared to the weight at the initial configuration without violating any constraint. Comparison of the property optimization results with the distributed loading with the results of the combined property and shape optimization shows that the maximum tip displacement condition is the more restricting condition. The final maximum

stress values are below their limits but the tip deflection reaches to the limit value. It can be seen that combined property and shape optimization results in significant weight reduction compared to just property optimization. This problem is a clear indication that shape optimization can play an important role in weight reduction. Shape optimization can be especially important in aerospace structures which is composed of many sub-elements whose positions can all be considered as a design variable to be used in the optimization process. However, the result of combined property/shape optimization may not be attributed to the rib location change only. It may be that when shape optimization is also incorporated in the solution of the optimization problem a better local minimum could have been obtained. Since in this example no multidisciplinary optimization problem is defined, there might be many local minimums, and with combined property/shape optimization a different local minimum could be converged to. It should be expected that in a multidisciplinary optimization problem, the number of local minimums may decrease significantly.

It should be noted that in the problem definition some of the constraints and upper and lower bounds of the design variables might not have been selected as reasonable figures. Therefore, results may not reflect a configuration that can be manufactured. However, in this chapter the aim was to demonstrate the use of element and shape optimization and to show the significant impact that the combined property and shape optimization might have on structural efficiency.

CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

The main objective of the thesis was to demonstrate the application of three different strategies of structural optimization which are commonly used in the academic studies and industrial applications. Structural optimization requires an optimizer code working in conjunction with a solver code which mainly evaluates the constraint functions and calculates the objective function. For this purpose some people develop their own optimizer and solver codes, or some people develop only the optimizer and use a ready solver code which is typically a finite element code in structural analysis. In addition, nowadays there are many very efficient commercial finite element programs with embedded optimization modules, and especially in industrial work these commercial codes can be used very effectively to design optimum structures. In this thesis all three strategies of structural optimization are demonstrated. These approaches are listed below.

Approach 1: A gradient based optimization code is developed in MATLAB[®] environment and this code is used in conjunction with the analytical functions applicable in classical beam theory, to optimize two different beams with different cross-sections.

Approach 2: The same optimizer code developed is used in conjunction with a commercial finite element code MSC.NASTRAN[®] to demonstrate how one can take advantage of the available finite element solvers and use them with an optimization code of their own. For comparison purposes the two classical beam problems are solved with this approach.

Approach 3: The optimization module of the commercial finite element program MSC.NASTRAN[®] is used to solve the two beam problems with different number of design variables.

All three approaches are compared with each other by performing structural optimization of two different beams with different number of design variables. In the first case study a rectangular cross-section beam is optimized and only two design variables are used to verify that all three approaches converge to the true solution which can easily be demonstrated on a two dimensional space. In the second case study an I beam with four design variables is optimized. The results of the three approaches show that all of these techniques can be used to arrive at the same optimum solution. However, it was observed that the optimization module of MSC.NASTRAN[®] arrives at the optimum solution The high speed of convergence to the optimum solution by MSC fastest. NASTRAN[®] is due to the use of sensitivity analysis and construction of an approximate model in the search for the optimum. However, the I beam problem demonstrated that with the use of the analytical functions applicable for the beam theory in conjunction with the optimizer code developed resulted in a 4.5% more weight reduction. Thus, this example is a clear indication that in situations where weight reduction is very critical the use of different optimization approaches should be tried not only to cross-check the results but also to see if further weight reduction can be achieved or not. It is also noted that the calling of a commercial finite element solver from a used developed optimizer may not be a very effective method as far as solution times are concerned. Because of the frequent call of the commercial finite code and the need for some initial setup times used in checking the license file and like, the whole process takes extremely long time. However, in certain problems optimization modules of commercial finite element codes may not be used in arriving at the optimum solution. For instance, if the loads change with the deformation, then an external finite element solver could be incorporated to perform optimization instead of the optimization module of a commercial finite element program.

In the remaining part of the thesis a wing torque box is optimized by the optimization module of MSC.NASTRAN[®]. The fast convergence of the optimization module of MSC.NASTRAN® was the main reason to choose MSC.NASTRAN[®] in the optimization solution of the wing torque box. This section is intended to demonstrate the application of element property and shape optimization separately and combined element property and shape optimization. Element property optimization was performed with an almost equivalent tip load and distributed load. Within the context of shape optimization positions of the ribs were taken as the design variables. The shape optimizer was verified initially by performing a shape optimization with only a single rib location as the design variable and with all fixed quantities for the element properties. This solution showed that the rib was displaced in the right direction by the right amount. After verifying the result of the shape optimizer, the combined element property and shape optimization was performed and results of this study were compared with the results of the element property optimization. In both problems the final weight of the optimized configuration increased compared to the weight of the initial configuration to satisfy all the constraints. However, it was observed by incorporating shape optimizer in the optimization study weight reduction could be achieved compared to the just element property optimization. This study in a way demonstrated the significant impact that the shape optimization can have on the design of aerospace structures with higher structural efficiency.

As for the future work it is deemed that the optimization code developed could be improved to reduce the time spent in the search process to the reach the optimum solution. For instance further improvement in the code could be made such as removing unnecessary function evaluations or reducing the pause time for MSC.NASTRAN[®] job to finish so that code can proceed to the subsequent operations faster. Especially more work needs to be done in reducing the time spent to reach to the optimum solution when the developed code works together with a commercial finite element solver. The main burden here is the pause time at each call to the finite element solver, and effort can be spent to optimize this pause time to speed up the whole process. If the speeding up of the solution time can be accomplished then the wing torque box problem can be solved by using the optimization code developed in conjunction with the MSC.NASTRAN[®] solver. Furthermore, simplified structural analysis methodology could also be incorporated in the solver side to eliminate the need for finite element analysis. This way the optimizer code could be used with the simplified structural analysis relations which give direct stresses on flanges and shear stresses on the skins and the webs.

The gradient based optimizer code developed requires many evaluations of objective and constraint functions. When the code is used in conjunction with a commercial finite element code MSC.NASTRAN[®], the cost of the repeated finite element analysis is very high. As a further improvement, a module can be added to the optimization code which will produce an approximate model by using Taylor Series expansion of objective and constraint functions. In this manner, finite element analyses can be used in the construction of an approximate model. The optimization code can use the results coming from approximate model instead of performing finite element analysis whenever evaluation of the objective and constraint functions is required. In this way, high cost of the repeated finite element analyses can be avoided.

In addition, multi-disciplinary optimization problems can be performed in MSC.NASTRAN[®] and the wing torque box analyzed can be optimized in all aspects. For instance constraints on the fundamental frequency can be incorporated into the problem definition. In addition, the skin and web panels can be checked from local buckling point of view. For this purpose local buckling relations can be added as other constraints and these can relations can be linked to the axial stresses occurring in the panels for the calculation of the local buckling margins of safety. A further study could be to incorporate aeroelastic constraints on flutter speed or divergence speed to see how restrictive these constraints might be. A further work could be on making a finer mesh but using the same number of design variables. In such a study the properties of the critical elements between the rib stations can be selected as the design variables

and the element properties of all the other elements between the rib stations can be linked to the critical element. This study may be required to see the effect of mesh density on the optimum structural configuration. A further work could be made on using a more accurate distribution of the external load acting on the wing structure. Output from a CFD code could be incorporated into MSC.NASTRAN[®] and property and shape optimization studies can be performed with a more realistic load case.

REFERENCES

[1] Bector C.R., Chandra S., Dutta J., Principles of Optimization Theory, Alpha Science, 2005

[2] Sarker R.A. and Newton C.S., "Optimization Modelling, A Practical Approach", CRC Press, 2007

[3] Chambers, L.D., Practical Handbook of Genetic Algorithms, CRC Press, 1999

[4] Standford University Web Site,http://adg.stanford.edu/aa241/structures/structuraldesign.html, Last accesseddate August 2008

[5] University of Southampton Web Site http://www.soton.ac.uk/~ajk/truss/welcome.html, Last accessed date August 2008

[6] Valencia Sailing Web Site, http://valenciasailing.blogspot.com/2007_03_01_archive.html, Last accessed date August 2008

[7] Chong E.K.P and Zak S.H., "An Introduction to Optimization", John Wiley and Sons, 2008

[8] Venkataraman P., "Applied Optimization with MATLAB® Programming", John Wiley and Sons, 2002 [9] Greig D.M., "Optimization", Longman Group Limited, 1980

[10] MSC.NASTRAN®, "MSC.Nastran Quick Reference Guide" MSC Software Corp., 2003

[11] MSC.NASTRAN® 2004, "Design Sensitivity and Optimization User's Guide", MSC Software Corp., 2003

[12] ESDU 95010 'Computer program for estimation of spanwise loading of wings with camber and twist in subsonic attached flow', www.esdu.com, June 1995.

[13] Bertsekas D.P., "Constrained Optimization and Lagrange Multiplier Methods", Academic Press, 1982

[14] Luenberger D.G., "Linear and Nonlinear Programming", Addison-Wesley,2005

[15] MSC/France & MSC/UK Paper 1998 Web Site, http://www.ipek.unikarlsruhe.de/medien/veroeffentlichungen/fed_mscconf98/paper_final_980528.ht m, Last accessed date August 2008

[16] Cuthbert Jr. T.R., Optimization Using Personal Computers, Wiley-Interscience, 1987

[17] Conley W., Computer Optimization Techniques, PBI, 1980

[18] Laporte E., Le Tallec P., Numerical Methods in Sensitivity Analysis and Shape Optimization, Birkhauser, 2003

APPENDIX A.1

NEWTON-RAPHSON METHOD

Following is the algorithm for Newton-Raphson Method [8]:

- Step 1 assume α
- Step 2 calculate $\Delta \alpha$

Step 3
update
$$\overline{\alpha} = \alpha + \Delta \alpha$$

if $\Phi(\overline{\alpha}) = 0$ exit
if $\Phi(\overline{\alpha}) \neq 0$ $\alpha \leftarrow \overline{\alpha}$
go to step 2

Calculation of $\Delta \alpha$

$$\Phi(\alpha) = \Phi(\alpha + \Delta \alpha) = \Phi(\alpha) + \frac{d\Phi}{d\alpha} \Delta \alpha = 0$$
$$\Delta \alpha = -\frac{\Phi(\alpha)}{d\Phi/d\alpha} = -\left[\frac{d\Phi}{d\alpha}\right]^{-1} \Phi(\alpha)$$

APPENDIX A.2

BISECTION METHOD

Following is the algorithm for Bisection Method [8]:

Step 1choose α_a and α_b $\alpha_a < \alpha_b$ Step 2set $\alpha = \alpha_a + (\alpha_b - \alpha_a)/2$ Step 3if $\Phi(\alpha) = 0.0$ exitElse if $\Phi(\alpha_b - \alpha_a) \le 10^{-4}$ exitElse if $\Phi(\alpha)^* \Phi(\alpha_a) \ge 0$ then $\alpha_a \leftarrow \alpha$ Else $\alpha_b \leftarrow \alpha$ go to step 2
GOLDEN SECTION METHOD

Following is the algorithm for Golden Section Method [8]:

Step 1 Choose
$$\alpha^{low}$$
, α^{up}
 $\tau=0.38197$
 $\varepsilon=tolerance = (\Delta \alpha)_{final}/(\alpha^{up} - \alpha^{low})$
N number of iterations=-2.078 ln ε
i=1
Step 2 $\alpha_1=(1-\tau)\alpha^{low}+\tau\alpha^{up}$ $f_1=f(\alpha_1)$
 $\alpha_2=\tau\alpha^{low}+(1-\tau)\alpha^{up}$ $f_2=f(\alpha_2)$
Step 3 if (if2)
 $\alpha^{low}\leftarrow\alpha_1$ $\alpha_1\leftarrow\alpha_2$ $f_1\leftarrow f_2$
 $\alpha_2=\tau\alpha^{low}+(1-\tau)\alpha^{up}$ $f_2=f(\alpha_2)$
i \leftarrow i+1
Go to Step 3
if (f_2>f_1)
 $\alpha^{up}\leftarrow\alpha_2$ $\alpha_2\leftarrow\alpha_1$ $f_2\leftarrow f_1$
 $\alpha_1=(1-\tau)\alpha^{low}+\tau\alpha^{up}$ $f_1=f(\alpha_1)$
i \leftarrow i+1
Go to Step 3

STEEPEST DESCENT METHOD

Following is the algorithm for Steepest Descent Method [8]:

Step 1	Choose \mathbf{x}_1 , N (number of iterations)			
	$fs(1) = f(\mathbf{x}_1)$; $\mathbf{x}_s(1) = \mathbf{x}_1$ (store values)			
	ϵ 1, ϵ 2, ϵ 3 (tolerance for stopping criteria)			
	Set i=1 (initialize iteration counter)			
Step 2	$\mathbf{s}_{i} = -\nabla f(\mathbf{x}_{i})$ (this is computed in step 3)			
	$\mathbf{x}_{i+1} = \mathbf{x}_i + \boldsymbol{\alpha}_i \mathbf{s}_i$			
	αi is determined by minimizing $f(\mathbf{x}_{i+1})$			
	$\mathbf{x}_{s}(i+1) \leftarrow \mathbf{x}_{i+1}; f_{s}(i+1) = f(\mathbf{x}_{i+1}) \text{ (store values)}$			
Step 3	$\Delta f = fs(i+1) - fs(i)$			
	$\Delta \mathbf{x} = \mathbf{x}_{s}(i+1) - \mathbf{x}_{s}(i)$			
	If $ \Delta f \le \varepsilon 1$ stop (function not changing)			
	If $\Delta \mathbf{x}^{\mathrm{T}} \Delta \mathbf{x} \leq \varepsilon 2$ stop (design not changing)			
	i+1 = N stop			
	$\nabla f(\mathbf{x}_{i+1})^T \nabla f(\mathbf{x}_{i+1}) \le \epsilon 3$ converged			
	$i \leftarrow i+1$			
	Go to Step 2			

CONJUGATE GRADIENT METHOD

Following is the algorithm for Conjugate Gradient Method [8]:

Step 1	Choose \mathbf{x}_1 , N (number of iterations)
	$f_s(1) = f(\mathbf{x}_1); x_s(1) = x_1 \text{ (store values)}$
	$\epsilon_1, \epsilon_2, \epsilon_3$ (tolerance for stopping criteria)
	set i=1 (initialize iteration counter)
Step 2	if i=1, $\mathbf{s}_i = -\nabla f(\mathbf{x}_i)$
	else, $\boldsymbol{\beta} = \frac{\nabla f(\boldsymbol{x}_i)^T \nabla f(\boldsymbol{x}_i)}{\nabla f(\boldsymbol{x}_{i-1})^T \nabla f(\boldsymbol{x}_{i-1})}$
	$\mathbf{s}_i = - \nabla f(\mathbf{x}_i) + \mathbf{\beta} \mathbf{s}_{i-1}$
	$\mathbf{x}_{i+1} = \mathbf{x}_i + \boldsymbol{\alpha}_i \ \mathbf{s}_i$
	α_i is determined by minimizing $f(\mathbf{x}_{i+1})$
	$\mathbf{x}_{s}(i+1) \leftarrow \mathbf{x}_{i+1}; \ f_{s}(i+1) = f(\mathbf{x}_{i+1}) \%$ (store values)
Step 3	$\Delta f = f_s(i+1) - f_s(i)$
	$\Delta \mathbf{x} = \mathbf{x}_{s}(i+1) - \mathbf{x}_{s}(i)$
	If $ \Delta f \leq \epsilon_1$ stop (function not changing)
	If $\Delta \mathbf{x}^{\mathrm{T}} \Delta \mathbf{x} \leq \varepsilon_2$ stop (design not changing)
	If $i+1 = N$ stop
	If $\nabla f(\mathbf{x}_{i+1})^T \nabla f(\mathbf{x}_{i+1}) \le \varepsilon_3$ converged
	i ← i+1
	go to step 2

DAVIDON-FLETCHER-POWELL METHOD

Following is the algorithm for Davidon-Fletcher-Powell Method [8]:

Choose \mathbf{x}_1 , $[\mathbf{A}_1]$ (initial met	rric), N
ϵ 1, ϵ 2, ϵ 3 (tolerance for sto	pping criteria)
Set i=1 (initialize iteration	counter)
$\mathbf{s}_i = - [\mathbf{A}_i] \nabla f(\mathbf{x}_i)$	
$\mathbf{x}_{i+1} = \mathbf{x}_i + \boldsymbol{\alpha}_i \mathbf{s}_i$; $\Delta \mathbf{x} = \boldsymbol{\alpha}_i \mathbf{s}_i$	
$\boldsymbol{\alpha}_i$ is determined by minimi	$\operatorname{zing} f(\mathbf{x}_{i+1})$
If $\nabla f(\mathbf{x}_{i+1})^T \nabla f(\mathbf{x}_{i+1}) \leq \varepsilon_3$;	converged
If $ f(\mathbf{x}_{i+1}) - f(\mathbf{x}_i) \leq \varepsilon_1;$	stop (function not changing)
If $\Delta \mathbf{x}^{\mathrm{T}} \Delta \mathbf{x} \leq \varepsilon_2$; stop	(design variable x is not changing)
If $i+1 = N$,	stop (iteration limit)
Else	
$\mathbf{Y} = \nabla f(\mathbf{x}_{i+1}) - \nabla f(\mathbf{x}_i)$	
$\mathbf{Z} = [\mathbf{A}_i] \mathbf{Y}$	
$\left[\mathbf{B}\right] = \frac{\Delta \mathbf{x} \Delta \mathbf{x}^{\mathrm{T}}}{\Delta \mathbf{x}^{\mathrm{T}} \mathbf{Y}}$	
$[\mathbf{C}] = -\frac{\mathbf{Z}\mathbf{Z}^{\mathrm{T}}}{\mathbf{Y}^{\mathrm{T}}\mathbf{Z}}$	
$[\mathbf{A}_{i+1}] = [\mathbf{A}_i] + [\mathbf{B}] + [\mathbf{C}]$	
i ← i+1	
Go to Step 2	
	Choose \mathbf{x}_{1} , $[\mathbf{A}_{1}]$ (initial met ϵ_{1} , ϵ_{2} , ϵ_{3} (tolerance for sto Set i=1 (initialize iteration of $\mathbf{s}_{i} = -[\mathbf{A}_{i}] \nabla f(\mathbf{x}_{i})$ $\mathbf{x}_{i+1} = \mathbf{x}_{i} + \boldsymbol{\alpha}_{i}\mathbf{s}_{i}$; $\Delta \mathbf{x} = \boldsymbol{\alpha}_{i}\mathbf{s}_{i}$ $\boldsymbol{\alpha}_{i}$ is determined by minimi If $\nabla f(\mathbf{x}_{i+1})^{T} \nabla f(\mathbf{x}_{i+1}) \leq \epsilon_{3}$; If $ f(\mathbf{x}_{i+1}) - f(\mathbf{x}_{i}) \leq \epsilon_{1}$; If $\Delta \mathbf{x}^{T} \Delta \mathbf{x} \leq \epsilon_{2}$; stop If $i+1 = N$, Else $\mathbf{Y} = \nabla f(\mathbf{x}_{i+1}) - \nabla f(\mathbf{x}_{i})$ $\mathbf{Z} = [\mathbf{A}_{i}] \mathbf{Y}$ $[\mathbf{B}] = \frac{\Delta \mathbf{x} \Delta \mathbf{x}^{T}}{\Delta \mathbf{x}^{T} \mathbf{Y}}$ $[\mathbf{C}] = -\frac{\mathbf{Z} \mathbf{Z}^{T}}{\mathbf{Y}^{T} \mathbf{Z}}$ $[\mathbf{A}_{i+1}] = [\mathbf{A}_{i}] + [\mathbf{B}] + [\mathbf{C}]$ $i \leftarrow i+1$ Go to Step 2

PENALTY FUNCTION METHOD

Following is the algorithm for Penalty Function Method [8]:

Step 1	Choose \mathbf{x}^1 , N _s (Maximum number of Penalty Function Method				
	iterations)				
	N _u (number of DFP iterations)				
	ε_i 's (for convergence and stopping)				
	r_h^1 , r_g^1 (initial penalty multipliers)				
	c _h , c _g (scaling value for multipliers)				
	q = 1 (Penalty Function Method iteration counter)				
Step 2	Call DFP to minimize F $(\mathbf{x}^q, \mathbf{r}_h^q, \mathbf{r}_g^q)$				
	Output: x ^{q*}				
Step 3	Convergence for Penalty Function Method				
	If $h_k = 0$, for $k = 1, 2,, l$;				
	If $g_j \le 0$, for $j = 1, 2,, m$;				
	If all side constraints are satisfied				
	Then converged, Stop				
	Stopping criteria:				
	$\Delta \mathbf{F} = \mathbf{F}_{q} - \mathbf{F}_{q-1}, \ \Delta \mathbf{x} = \mathbf{x}^{q^*} - \mathbf{x}^{(q-1)^*}$				
	If $(\Delta F)^2 \le \varepsilon_1$: stop (function not changing)				
	Else If $\Delta \mathbf{x}^{\mathrm{T}} \Delta \mathbf{x} \leq \varepsilon_1$: stop (design variable x is not changing)				
	Else If $q = N_s$: stop (maximum iterations reached)				
	Continue				
	$q \leftarrow q+1$				

$$r_h^q \leftarrow r_h^{q^*}C_h; r_g^q \leftarrow r_g^{q^*}C_g$$

 $\mathbf{x}^q \leftarrow \mathbf{x}^{q^*}$
go to step 2

AUGMENTED LAGRANGE MULTIPLIER METHOD

Following is the algorithm for Augmented Lagrange Multiplier (ALM) Method [8].

Step 1	Choose \mathbf{x}^1 , N _s (Maximum number of ALM iterations)
	N _u (Maximum number of DFP iterations)
	ε_i 's (for convergence and stopping criteria)
	r_h^{1} , r_g^{1} (initial penalty multipliers)
	c _h , c _g (scaling value for multipliers)
	λ^{1} , β^{1} (initial multiplier vectors)
	q = 1 (ALM iteration counter)
Step 2	Call DFP to minimize unconstrained objective function F ($\mathbf{x}^{q}, \boldsymbol{\lambda}^{q}$
	$\boldsymbol{\beta}^{q}, r_{h}^{q}, r_{g}^{q})$
	Output: \mathbf{x}^{q^*}
Step 3	Convergence for ALM
	If $h_k = 0$, for $k = 1, 2,, l$;
	If $g_j \le 0$, for $j = 1, 2,, m$;
	(If $\beta_j > 0$ for $g_j = 0$)
	$(If \nabla f + \Sigma \lambda_k \nabla h_k + \Sigma \beta_j \nabla g_j = 0)$
	Then converged, Stop
	Stopping criteria:
	$\Delta \mathbf{F} = \mathbf{F}_{q} - \mathbf{F}_{q-1}, \Delta \mathbf{x} = \mathbf{x}^{q^*} - \mathbf{x}^{(q-1)^*}$
	If $(\Delta F)^2 \le \varepsilon_1$: stop (function not changing)
	Else If $\Delta \mathbf{x}^{\mathrm{T}} \Delta \mathbf{x} \leq \varepsilon_1$: stop (design variable \mathbf{x} not changing)

Else If $q = N_s$: stop (maximum number of iterations reached) Continue

$$q \leftarrow q+1$$

$$\lambda^{q} \leftarrow \lambda^{q} + 2 r_{h} \mathbf{h}(\mathbf{x}^{q^{*}})$$

$$\beta^{q} \leftarrow \beta^{q} + 2 r_{g} (\max [\mathbf{g}(\mathbf{x}^{q^{*}}), -\beta^{q}/2r_{g}])$$

$$r_{h}^{q} \leftarrow r_{h}^{q^{*}}C_{h}; r_{g}^{q} \leftarrow r_{g}^{q^{*}}C_{g}$$

$$\mathbf{x}^{q} \leftarrow \mathbf{x}^{q^{*}}$$

go to step 2

USER INTERFACE OF MATLAB[®] CODE DEVELOPED FOR OPTIMIZATION

Optimization of cantilever beam with rectangular cross section using optimization code developed in MATLAB[®] is presented here.

- Open MATLAB[®] in the computer and select the directory, which includes "AugLagMet.m", "DFP.m", "golden.m", "gradfunction.m", "FALM.m", "Ofun.m", Gfun.m" and "Hfun.m" files, as current directory.
- Type "AugLagMet" in the MATLAB[®] command window as shown in figure B.1 and press enter. This command starts optimization.

Figure B.1 Starting AugLagMet in MATLAB[®] command window

• Enter asked inputs in the MATLAB[®] command window as shown in figure B.2.

Figure B.2 Entering initial values in MATLAB[®] command window

Result will appear in MATLAB[®] command window shown in figure B.3. History of the design variables, objective function and constraints are written in ac comma separated value (csv) file called "almX.csv".

Figure B.3 Result in MATLAB[®] command window

MATLAB® TO MSC.NASTRAN® INTERFACE

The objective "nastfunc.m" file calculates the objective function value with new design variables. First requirement is that the folder should contain "cantbeam1.bdf" file. This file is created by MSC.PATRAN[®] as input for the finite element analysis using MSC.NASTRAN[®]. Second requirement is an arrangement in Microsoft WINDOWS[®] and this will be explained later.

Objective function is composed of three main parts.

First part is main objective function without constraints which is volume of the beam. It is a very simple function of design variables and can be calculated analytically. Therefore there is no need to perform an finite element analysis.

Second part is a penalty function for equality constraints. For the beam example there is no equality constraints. This part is skipped.

Third part is a penalty function for inequality constraints. For the beam example these constraints are related with the displacements and the stresses which are obtained from finite element analysis.

"nastfunc.m" first performs the finite element analysis using MSC.NASTRAN[®], then calculates the objective function value.

There are three steps to perform finite element analysis.

First step is modifying input file. In other words, the values of the design variables should be changed. Initial "cantbeam1.bdf" file is renamed as "dummy.bdf" and a new empty "cantbeam1.bdf" is created. Each line of the "dummy.bdf" file is directly copied to the "cantbeam1.bdf" file until 23rd line which includes the design variable. This line is rewritten to the "cantbeam1.bdf"

file with the new values of design variables. From line 24 to end of file, each line is copied from "dummy.bdf "to "cantbeam1.bdf".

Second step is performing finite element analysis. For finite element analysis, MSC.NASTRAN[®] is used. To call MSC.NASTRAN[®] from MATLAB[®] "winopen" function is used. This function is same as double clicking on a file in Microsoft WINDOWS[®]. Second requirement explained below is necessary for this step. After starting MSC.NASTRAN[®] job, program waits until the end of the job. When the job is finished all unnecessary files are deleted.

Third step is reading stresses and displacements from "cantbeam1.f06" file. This file is an output of MSC.NASTRAN[®] job. The displacement is stored in the 265th line and the stress is stored in the 325th line. After openning "cantbeam1.f06" file, each line is read until the end of file. Using "sscanf" command, line 265 and 325 are stored in Ascan and Bscan matrices respectively. 4th element of the Ascan matrix is the displacement and 8th element of the Bscan matrix is the stress for the constraints. Next "cantbeam1.f06" file is closed and deleted.

At the end, the value of the objective function is calculated in accordance with Augmented Lagrange Multipliers (ALM) Method.

Second requirement for this process is an arrangement in Microsoft WINDOWS[®].

In MATLAB[®], "winopen" function performs double clicking in Microsoft WINDOWS[®]. What is required at this step is that, if a "bdf" file is double clicked, this "bdf" file must be opened with MSC.NASTRAN[®]. Therefore, following steps has to be performed in Microsoft WINDOWS[®]:

- Right click on a bdf file.
- Choose "Open With > Choose Pogram..." as shown in figure B.4

Venkatarman_modification_working_	nast	
File Edit View Favorites Tools Help	2	
🕒 Back 👻 🕤 🖌 🏂 🔎 Search 🛛	🄁 Folders 🛛 🎫 👻	
Address 🔁 C:\tez\Venkatarman_modification,	_working_nast	
Nan	ne 🔺	Size Type
File and Folder Tasks 🕺 📆	ALM_7_4_1.asv	9 KB ASV File
🗐 Rename this file	ALM_7_4_1.m	9 KB MATLAB M-file
Maura this Gla	cantbeam1.bdf	3 KB BDF File
Constitue Characteristic	DFP.m Open	2 KB MATLAB M-file
Copy this rile	golden.m Open With in astran	4 KB MATLAB M-hile
Publish this file to the Web	gradrunctio TextPad X Wrapper Application	I KB MATLAB M-File
🔁 E-mail this file	nastfunctor 🖞 Scan for threats 😕 Notepad	9 KB MATLAB M-file
X Delete this file	nastfung m DAdd to archive Choose Program	27 KB Microsoft Word Doc
	Ofun_741.r 🍓 Add to "cantbeam1.rar"	1 KB MATLAB M-file
Other Places	Compress and email	
	Compress to "cantbeam1.rar" and email	
iez 🔁	Send To +	
My Documents		
Shared Documents	Cut	
😼 My Computer	Сору	
🧐 My Network Places	Create Shortcut	
	Delete	
Details \$	Rename	
Decuis	Properties	
cantbeam1.bdf BDF File Date Modified: 20 Ağustos 2008		

Click on "Browse...", then choose
 "C:\MSC.Software\MSC.Nastran\bin\" as shown in figure B.5

Figure B.5 Location of "nastran.exe"

• Choose "nastran.exe" and click on "Open" as shown in figure B.6

dress 🗀 C:(tez)Verkatarman_modific	ation_working_nast					
	None -	1	Size Type	Date Modified	1	
Rename this file Move this file	AM,7.4.1.av AM,7.4.1.m Scartboart.bd	Coen with	i bin	- o #	• •	2
Copy this file Publish this file to the Web E-mail this file Delete this file	Coose the program you want to use to open the file: Program P	Ny Pacant Documents	Proceedings			
Other Places R Image: her My Documents Image: My Computer My Computer Image: My Network Places My Network Places	Institution Instruction Instruction Wrapper Application Other Instruction Actions Application Actions Application Actions Deskin Addet ActionA 7.0 Primer Cashere	My Documents My Conguter	naubranw.exe			
Details \$ cantbeam1.bdf ECF File Date Modified: 20 AQuatos 2008 Cargamba, (5:29	Always use the selected program to open the land of file	My Nelwork Places	File name: Frankan.exe Files of type: Programs			Open Cancel

Figure B.6 "nastran.exe" file in ./bin/ directory

• Toggle "Always use the selected program to open this kind of file" as shown in figure B.7

🔁 ¥enkatarman_modification_working	j_nast		
File Edit View Favorites Tools H	elp		
Ġ Back 🔹 🕥 🖌 🏂 🔎 Search	Polders		
Address 🔁 C:\tez\Venkatarman_modification	on_working_nast		
N	ame A	Size	Туре
File and Folder Tasks 🔗 🚊	ALM_7_4_1.asv	9 KB	ASV File
🗐 Rename this file	ALM_7_4_1.m	9 KB	MATLAB M-file
😥 Move this file	a cantbeam1.bdf	3 KB	BDF File
Copy this file	Open With	2 KB	MATLAB M-FIE
Dublish this file to the Web	Choose the program you want to use to open this file:	1 KB	MATLAB M-file
Comparing the control web		9 KB	ASV File
Delete blie file	File: cantbeam1.bdf	9 KB	MATLAB M-file
	Programs	232 KB	Microsoft Word Doc
t	Recommended Programs:	1 KB	MATLAB M-file
Other Places 🕆	mastran 🔤		
Ch tez	Notepad		
My Documents	X Wrapper Application		
Shared Documents	Other Programs:		
My Computer	ACDSee Application		
Mu Natural Blacar	Acrobat Distiller		
S HIS NOTWORK PLACES	Adobe Acrobat 7.0		
	Internet Explorer		
Details *	MATLAB Editor		
BDF File	Always use the selected program to open this kind of file		
Date Modified: 20 Ağustos 2008	Browse		
Çarşamba, 05:29			
Size: 2.23 KB	If the program you want is not in the list or on your computer, you can look		
	for the appropriate program on the Web.		
	OK Cancel		

Figure B.7 Open a "bdf-file" allways with "nastran.exe"

• Click on "OK"

Second requirement is fulfilled now.

How to use nastfunc.m is explained below;

- Open MATLAB[®]
- Choose a folder containing "nastfunc.m" and "cantbeam1.bdf" as the current directory .
- Type nastfunc([15 35]) and press enter as shown in figure B.8. [15 35] is the design variable vector for rectangular cross section beam. For this example, it is a row vector with two variables.

File Edit Wew Debug Desktow Wndow Help	e Matlab					_ 🗆 ×
Image: State in the set of the set	File Edit View Debug Desktop Window	, Help				
Shotads 2 How to Add 2 What's New Current Directory - Cite2/Venkdtarman_modification_working_nast C	1 ※ N m m N N (N m)	Current Directory: C:\te	z\Venkatarm	an_modification_working_nast	💌 🛄 🗈	
Command Vindow * Command Vindow * Caribearni DBALL 17 Eki 2008 21:42:22 DFP.m 12.Agu 2008 10:10:36 Grantbearni DBALL 17 Eki 2008 21:42:22 DFP.m 12.Agu 2008 10:10:36 Grantbearni DBALL 17 Eki 2008 21:22:20 Grantbearni MASTER 17.Eki 2008 21:22:20 Grantbearni MASTER 17.Eki 2008 21:27:28 Marine 16.Eki 2008 21:27:38 Mastfunc. 16.Eki 2008 21:27:38 Mastfunc. 16.Eki 2008 21:27:38 Mastfunc. 17.Eki 2008 21:37:35 Command History * Command History * DPP ('unc', [-2 2], 2000, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagiflet DPP ('unc', [15 35], 160, [0 0], [150 150]) AugLa	Shortcuts 🗷 How to Add 💽 What's New					
<pre>Note: Solution: Solut</pre>	Current Directory - C:\tez\Venkatarmar	_modification_working_nast	× 5	Command Window		× *
AFfies 4 Lest Modeled I cantbearni DBALL 17 Eki 2008 21:42:22 DBALa cantbearni DAALL 17 Eki 2008 21:42:22 MAS B OFP:m 12 Ağu 2008 11:8:36 M-file B OFP:m 12 Ağu 2008 10:71:4 M-file B ofden.m 11.Ağu 2008 10:71:4 M-file I nastfunc.m 30 Haz 2008 20:56:56 M-file I nastfunc.m 16 Eki 2008 21:21:38 M-file I nastfunc.m.doc 17 Eki 2008 21:21:38 DOC B OFP:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 14:18:16 M-file I officing 741:m 13 Tem 2008 10:10;10;10;10;10;10;10;10;10;10;10;10;10;1	🗈 🖆 🗟 😓 🛛 🐱 -			>> nastfunc([15 35])		
L cantbeami. DBALL 1/F. Ki.2008 21:42:22 UBAL t cantbeami. MASTER 17 Eki2008 21:42:22 MAS profilem 11 Ağu 2008 13:07:14 M-file profilem 11 Ağu 2008 13:07:14 M-file profilem 2008 21:21:28 ASV mastfunc.sv 16 Eki2008 21:21:28 ASV mastfunc.m doc 17 Eki2008 21:21:38 M-file nastfunc.m doc 17 Eki2008 21:21:38 M-file mastfunc.m doc 17 Eki2008 21:37:36 DOC moding 741 m 13 Tem 2008 14:18:16 M-file ¥ carrent Directory Workspace Command History × × DPFP ('unc', [12 2], 2000, [0 0], [3 3]) DFPP ('unc', [12 3], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [13 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagNet DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) AugLagNet DFP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFPP ('unc', [15 35], 160, [0 0], [150 150]) DFP (All Files 🛆	Last Modified	File Ty			
□ cantibean1.MASTER 17. Eki2008 21:42 22 MAS' □ DFP.m 12.Agu 2008 01:836 Mfile □ golden.m 11.Agu 2008 13:07:14 Mfile □ golden.m 11.Agu 2008 13:07:14 Mfile □ astfunc.asv 16.Eki 2008 21:21:28 ASV □ nastfunc.m.doc 17.Eki 2008 21:37:36 DOC □ ofun_741.m 13.Tem.2008 14:18:16 Mfile ≠ ■ Command Hatory * × □ = DFP (*unc*, [-2 2], 2000, [0 0], [3 3]) → → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) × → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) → → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) × → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) × → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) → → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) × → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) × → DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) × → DFP (*unc*, [-15 35], 160, [0 0], [150 150]) × → DFP (*unc*, [15 35], 160, [0 0], [150 150]) → → AugLagNet → → → AugLagNet → <	Cantbeam1.DBALL	17.Eki.2008 21:42:22	DBAL			
Import 12 Agu 2008 01:18:36 M-file Import 11 Agu 2008 10:07:14 M-file Import 11 Agu 2008 10:07:14 M-file Import 01 Haz 2008 20:55:56 M-file Import 16 Eki 2008 21:21:28 ASV Import 16 Eki 2008 21:27:38 M-file Import 17 Eki 2008 21:37:36 DOC Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 13 Tem.2008 14:18:16 M-file Import 14 Import M-file Import 14 Tem.2008 14:18:16 M-file Import Import 14 Tem.2 X Import Import Import 15 Tem.2 X Import Import Import Import 10 Joston	Cantbeam1.MASTER	17.Eki.2008 21:42:22	MAS"			
Bigleden m 11.Agu 2008 13.07:14 M-file Bigradfunction m 30.Haz 2008 20.656 M-file Inastfunc.sav 16.Ek.12008 21:21:38 ASV Inastfunc.m.doc 17.Ek.12008 21:21:38 M-file Inastfunc.m.doc 17.Ek.12008 21:21:38 M-file Command History * * Command History * * DFP (*unc*, [-2 - 2], 2000, [0 0], [3 3]) * * DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) - * -ugLagNet * * -DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) - * -DFP (*unc*, [-2 - 2], 2000, [0 0], [150 150]) - * -DFP (*unc*, [15 35], 160, [0 0], [150 150]) - * -DFP (*unc*, [15 35], 160, [0 0], [150 150]) - - -AugLagNet - - - -DFP (*unc*, [15 35], 160, [0 0], [150 150]) - - -AugLagNet - - - -AugLagNet - - -	DFP.m	12.Ağu.2008 01:18:36	M-file			
Byradfunction m 30 Haz 2006 20 55 56 M-file nastfunc.asv 16 Eki 2008 21:21:28 ASV nastfunc.m 16 Eki 2008 21:21:38 M-file nastfunc.m 16 Eki 2008 21:21:38 M-file nastfunc.m 16 Eki 2008 21:21:38 M-file nastfunc.m 13 Tem 2008 14:18:16 M-file imodified imodified imodified Corrent Directory imodified imodified >PFF ('unc', [-2 2], 2000, [0 0], [3 3]) imodified -DFFF ('unc', [-2 - 2], 2000, [0 0], [3 3]) imodified -DFFF ('unc', [-2 - 2], 2000, [0 0], [150 150]) imodified -AugLagMet -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -AugLagMet -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -DFFF ('unc', [15 35], 160, [0 0], [150 150]) -AugLagMet -DEFF ('unc', [15 35], 160, [0 0], [150 150]) -AugLagMet	💼 golden.m	11.Ağu.2008 13:07:14	M-file			
Institunc.asv 16. Eki 2008 21:21:28 ASV Institunc.m.doc 17. Eki 2008 21:21:38 M.file Imoduling.m.doc 17. Eki 2008 21:21:38 M.file Imoduling.m.doc 17. Eki 2008 21:21:38 M.file Imoduling.m.doc 17. Eki 2008 21:21:38 M.file Imoduling.m.doc 17. Eki 2008 21:21:38 M.file Imoduling.m.doc 17. Eki 2008 21:21:38 M.file Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace Imoduling Corrent Directory Vortspace <t< td=""><td>🛅 gradfunction. m</td><td>30.Haz.2008 20:55:56</td><td>M-file</td><td></td><td></td><td></td></t<>	🛅 gradfunction. m	30.Haz.2008 20:55:56	M-file			
Imastfunc.m 16.Eki2008 21:21:38 M-file Inastfunc.m.doc 17.Eki2008 21:37:36 DOC Imastfunc.m.doc 17.Eki2008 21:37:36 Imastfunc.m.doc Imastfunc.m.doc 17.Eki2008 21:37:36 Imastfunc.m.doc Imastfunc.m.doc 10.01, 200, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 10.01, 200, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc 15.35, 160, [0.0], [150 150]) Imastfunc.m.doc Imastfunc.m.doc	nastfunc.asv	16.Eki.2008 21:21:28	ASV			
Inastfunc_m.doc 17.Eki2008 21:37:36 DOC Image: Contract Directory Workspace Image: Contract Directory Workspace Contract Directory Workspace Image: Contract Directory Workspace Contract Directory Workspace Image: Contract Directory Workspace Contract Directory Workspace Image: Contract Directory Workspace Contract Directory Workspace Image: Contract Directory Workspace Contract Directory Workspace Image: Contract Directory Dire	nastfunc.m	16.Eki.2008 21:21:38	M-file			
Ofun_741.m 13.Tem.2008 14:18:16 M-file w xment Directory, Workspace >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	nastfunc m.doc	17.Eki.2008 21:37:36	DOC _			
Carret Directory Workspace Command History * × OPFP ('unc', [-2 2], 2000, [0 0], [3 3]) * × OPFP ('unc', [-2 -2], 2000, [0 0], [3 3]) • OPFP ('unc', [-2 -2], 2000, [0 0], [15 150]) • AugLagHet • OPFP ('unc', [15 35], 160, [0 0], [150 150]) -AugLagHet -OFFP ('unc', [15 35], 160, [0 0], (150 150]) -DFPP ('unc', [15 35], 160, [0 0], (150 150]) -DFPP ('unc', [15 35], 160, [0 0], (150 150]) -DFPP ('unc', [15 35], 160, [0 0], (150 150]) -DFPP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], (150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150])	🕞 Ofun 741.m	13.Tem.2008 14:18:16	M-file ▼			
Current Directory Workspace Command History # × ->FPF ('unc', [-2 2], 2000, [0 0], [3 3]) -> ->FPF ('unc', [10 10], 200, [0 0], [15 150]) -> ->UggagMet -> ->FPF ('unc', [15 35], 160, [0 0], [150 150]) -> ->AugLagMet -> ->FPF ('unc', [15 35], 160, [0 0], [150 150]) -> ->PFP ('unc', [15 35], 160, [0 0], [150 150]) -> ->PFP ('unc', [15 35], 160, [0 0], [150 150]) -> ->AugLagMet -> ->uglagMet -> ->uggLagMet ->	1		•			
Command History * × -DFP ('unc', [-2 2], 2000, [0 0], [3 3]) A -DFP ('unc', [-2 -2], 2000, [0 0], [3 3]) A -DFP ('unc', [-2 -2], 2000, [0 0], [3 3]) A -DFP ('unc', [-2 -2], 2000, [0 0], [150 150]) AugLagMet -DFP ('unc', [15 35], 160, [0 0], [150 150]) -AugLagMet -DFP ('unc', [15 35], 160, [0 0], [150 150]) -AugLagMet -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -DFP ('unc', [15 35], 160, [0 0], [150 150]) -AugLagMet -AugLagMet	Current Directory Workspace					
→ DFP ('unc', [-2 2], 2000, [0 0], [3 3]) → DFP ('unc', [-2 -2], 2000, [0 0], [3 3]) → DFP ('unc', [-2 -2], 2000, [0 0], [3 3]) → DFP ('unc', [15 35], 160, [0 0], [15 0 150]) → AugLagMet → DFP ('unc', [15 35], 160, [0 0], [15 0 150]) → AugLagMet → DFP ('unc', [15 35], 160, [0 0], [15 0 150]) → DFP ('unc', [15 35], 160, [0 0], [15 0 150]) → DFP ('unc', [15 35], 160, [0 0], [15 0 150]) → DFP ('unc', [15 35], 160, [0 0], [15 0 150]) → AugLagMet → AugLagMet → augLagMet	Command History		X 5			
- DFP('unc',[-2 -2],2000,[0 0],[3 3]) - DFP('unc',[10 10],200,[0 0],[150 150]) - AugLagNet - DFP('unc',[15 35],160,[0 0],[150 150]) - AugLagNet - DFP('unc',[15 35],160,[0 0],[150 150]) - DFP('unc',[15 35],160,[0 0],[150 150]) - AugLagNet - AugLagNet - AugLagNet - augLagNet - augLagNet - augLagNet	DFP('unc',[-2 2],2000,[0	0 01,[3 3])				
-DFP('unc', [10 10],200,[0 0],[150 150]) -AugLagNet -DFP('unc', [15 35],160,[0 0],[150 150]) -AugLagNet -DFP('unc', [15 35],160,[0 0],[150 150]) -DFP('unc', [15 35],160,[0 0],[20 50]) -NDFP('unc', [15 35],160,[0 0],[150 150]) -AugLagNet B=t 30,09.2008 20:45* -AugLagNet -clear	-DFP('unc',[-2 -2],2000,	[0 0],[3 3])				
- AugLagMet - DFP('unc', [15 35],160,[0 0],[150 150]) - AugLagMet - DFP('unc', [15 35],160,[0 0],[150 150]) - DFP('unc', [15 35],160,[0 0],[150 150]) - AugLagMet - AugLagMet - clear	-DFP('unc',[10 10],200,[0	0 0],[150 150])				
-DFP('unc',[15 35],160,[0 0],[150 150]) -AugLagMet DFP('unc',[15 35],160,[0 0],[150 150]) -DFP('unc',[15 35],160,[0 0],[20 50]) -DFP('unc',[15 35],160,[0 0],[150 150]) AugLagMet B+4 30.09.2008 20:45+ -AugLagMet -clear	-AugLagNet					
-AugLagMet -DFP('unc',[15 35],160,[0 0],[150 150]) -DFP('unc',[15 35],160,[0 0],[20 50]) -NPP('unc',[15 35],160,[0 0],[150 150]) -AugLagMet -AugLagMet -laugLagMet -laugLagMet -laugLagMet	DFP('unc',[15 35],160,[0	0 0],[150 150])				
-DFP('unc',[15 35],160,[0 0],[150 150]) -DFP('unc',[15 35],160,[0 0],[20 50]) -DFP('unc',[15 35],160,[0 0],[150 150]) -AugLagMet =+ 30.09.2008 20:45+ -AugLagMet -lear	-AugLagMet					
-DFP('unc',[15 35],160,[0 0],[20 50]) -DFP('unc',[15 35],160,[0 0],[150 150]) -AugLagMet B→t 30.09.2008 20:455 -AugLagMet -clear	DFP('unc',[15 35],160,[0	0 0],[150 150])				
	DFP('unc',[15 35],160,[0	0 0],[20 50])				
LugLagMet 30.09.2008 20:45% LugLagMet LugLagMet	-DFP('unc',[15 35],160,[0	0 0],[150 150])				
B→t→- 30.09.2008 20:455 AugLagNet clear	LugLagMet					
-AugLagNet	₽-% 30.09.2008 20:45%					
-clear -	-lugLagMet					
	clear		_			
LugLagNet	AugLagNet		-			
	the presence of the second		· ·	1		

Figure B.8 MATLAB[®] command window

MSC.NASTRAN[®] starts and the screen presented in figure B.9 appears until the end of the job.

M MATLAB
File Edit Debug Desktop Window Help
🖾 MSC Nastran W2005.1 (cantheam1)
MSC.Nastran U2005.1 (Intel Windows XP 5.1 (Build 2600)) Fri Oct 17 21:48:24 2008
*** SYSTEM INFORMATION MESSAGE (pgm: nastran, fn: estimate_job_requirements) Starting ESTIMATE, please wait
<pre>www USER INFORMATION MESSAGE (pgm: nastran, fn: estimate_job_requirements) Estimated DDF-60 Estimated nemory-32.0HB Estimated diskul.2HB MSC.Nastran beginning job cantbean1. HSC.Nastran started Pri Oct 17 21:48:24 GDT 2008</pre>
Command History P X
AugLagMet
-clear
-AugLagHet
⊟=≈ 17.10.2008 21:40*
-nastfunc([15 35])
-nastfunc([25 35])
-clc
-nastfunc([15 35])
nastfunc([15 35])
Start Busy

Figure B.9 MSC.NASTRAN[®] run window

At the end, the value of the objective function appears on the $\text{MATLAB}^{\circledast}$ screen.

E
E
. * ×
< * *

Figure B.10 MATLAB[®] command window

MESH DENSITY COMPARISON FOR RECTANGULAR CROSS SECTION CANTILEVER BEAM

To investigate the effect of mesh density on optimization problem of rectangular cross section cantilever beam, five identical models are built with 2, 5, 10, 20 and 50 elements, respectively. The initial models are shown in figure C.1.

Figure C.1 Finite element models for rectangular cross section cantilever beam with different mesh densities

Optimization is performed by using MSC.NASTRAN[®] for all five models and results are tabulated in table C.1.

		2	5	10	20	50
		Element	Element	Element	Element	Element
Number of iterations		6	6	6	6	6
D (mm)	Initial value	10	10	10	10	10
D (mm)	Final value	7.290	7.290	7.290	7.290	7.290
H (mm)	Initial value	35	35	35	35	35
	Final value	36.448	36.448	36.448	36.448	36.448
Objective function, Volume (mm ³)	Initial value	175000	175000	175000	175000	175000
	Final value	132849	132849	132849	132849	132849
Max axial stress at the root (Mpa)	Initial value	306.1	306.1	306.1	306.1	306.1
	Final value	387.2	387.2	387.2	387.2	387.2
Max. tip deflection	Initial value	20.825	20.906	20.906	20.906	20.906
(mm)	Final value	25.402	25.402	25.402	25.402	25.402
u/p	Initial value	3.500	3.500	3.500	3.500	3.500
н/в	Final value	5.000	5.000	5.000	5.000	5.000

 Table C.1
 Comparison of optimization results of rectangular cross section

 cantilever beam with different mesh densities

It is observed that mesh density has no effect on this particular problem. Objective function, design variables and constraints converged to the same values after 6 iterations in each analysis. Therefore using 10 element provides reliable results.

MESH DENSITY COMPARISON FOR I SHAPED CROSS SECTION CANTILEVER BEAM

Five identical models are built with 2, 5, 10, 20 and 50 elements, respectively To investigate the effect of mesh density on optimization problem of I shaped cross section cantilever beam,. The initial models are shown in figure C.2.

Figure C.2 Finite element models for I shaped cross section cantilever beam with different mesh densities

Optimization is performed by using MSC.NASTRAN[®] for all five models and results are tabulated in table C.2.

		2	5	10	20	50
		Element	Element	Element	Element	Element
Number of iteration	ns	21	23	23	23	23
Beam Height, H	Initial value	20.0	20.0	20.0	20.0	20.0
(mm)	Final value	40.0	40.0	40.0	40.0	40.0
Flange Width, Wf	Initial value	12.0	12.0	12.0	12.0	12.0
(mm)	Final value	35.83	38.43	38.43	38.43	38.43
Web Thickness,	Initial value	3.0	3.0	3.0	3.0	3.0
tw (mm)	Final value	0.50	0.50	0.50	0.50	0.50
Flange Thickness,	Initial value	1.5	1.5	1.5	1.5	1.5
tf (mm)	Final value	1.05	0.97	0.97	0.97	0.97
Objective	Initial value	43500	43500	43500	43500	43500
function, V (mm ³)	Final value	46967	46820	46820	46820	46820
Max. Stress at	Initial value	1448.4	1448.4	1448.4	1448.4	1448.4
the root (MPa)	Final value	406.9	407.0	407.0	407.0	407.0
Max. Shear	Initial value	23.174	23.174	23.174	23.174	23.174
Stress (MPa)	Final value	65.884	65.826	65.826	65.826	65.826
Max. deflection at	Initial value	8.000	8.000	8.000	8.000	8.000
tip (mm)	Final value	25.476	25.474	25.474	25.474	25.474
tf / tw	Initial value	0.500	0.500	0.500	0.500	0.500
LI / LVV	Final value	2.090	1.939	1.939	1.939	1.939

 Table C.2
 Comparison of optimization results of shaped cross section cantilever beam with different mesh densities

It is observed that if the number of elements is greater or equal to 5 then mesh density has no effect on this problem. Objective function, design variables and constraints converged to the same values after 23 iterations in the analyses with 5 or more elements. But they converged to slightly different values in 21 iterations with 2 elements. Therefore using 10 element provides reliable results.

COMPARISON TABLES FOR WING TORQUE BOX OPTIMIZATION

The results of optimizations performed in chapter 6 are compared in tables C3-13 for all stress constraints. Initial and final stress values on each element and corresponding upper and lower bounds are tabulated.

Front Spar								
Web Von Mises Stress (MPa)								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization
	Name	Tip	Distributed	Bound	Bound	Tip	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Between Rib 1 - Rib 2	AS001	224.8	203.3	0.01	300	288.9	50.9	112.9
Between Rib 2 - Rib 3	AS002	218.3	153.9	0.01	300	260.6	194.6	126.5
Between Rib 3 - Rib 4	AS003	219.6	113.5	0.01	300	93.4	40.6	95.8
Between Rib 4 - Rib 5	AS004	219.9	73.5	0.01	300	122.7	29.2	84.5
Between Rib 5 - Rib 6	AS005	216.1	37.5	0.01	300	264.8	27.7	47.0
Between Rib 6 - Rib 7	AS006	237.9	10.2	0.01	300	200.4	12.1	12.7
Upper Flange Axial Stress (MPa)								
Description	D.C.	Initial Value		Lower	r Upper	Property Optimization		Property & Shape Optimization
	Name	Tip	Distributed	Bound	Bound	Tip	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Between Rib 1 - Rib 2	AS007	-445.5	-454.6	-425	445	-118.1	-103.7	-126.7
Between Rib 2 - Rib 3	AS008	-237.5	-286.3	-425	445	-123.7	-108.1	-101.4
Between Rib 3 - Rib 4	AS009	-36.2	-163.8	-425	445	-35.3	-74.3	-110.7
Between Rib 4 - Rib 5	AS010	167.5	-77.4	-425	445	185.7	-60.4	-77.7
Between Rib 5 - Rib 6	AS011	363.4	-26.2	-425	445	350.5	-29.3	-44.3
Between Rib 6 - Rib 7	AS012	600.5	-4.5	-425	445	379.3	-5.9	-7.0
Lower Flange Axial Stress (MPa)								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optir	operty mization	Property & Shape Optimization
	Name	Тір	Distributed	Bound	Bound	Тір	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Between Rib 1 - Rib 2	AS013	445.5	454.7	-425	445	317.6	136.6	168.1
Between Rib 2 - Rib 3	AS014	237.5	286.3	-425	445	295.9	262.8	107.6
Between Rib 3 - Rib 4	AS015	36.2	163.9	-425	445	31.3	63.2	111.9
Between Rib 4 - Rib 5	AS016	-167.5	77.4	-425	445	-122.5	62.5	77.8
Between Rib 5 - Rib 6	AS017	-363.5	26.2	-425	445	-148.8	26.2	44.3
Between Rib 6 - Rib 7	AS018	-600.5	4.5	-425	445	-193.8	6.0	7.0

Table C.3 Comparison of front spar results of three optimization processes

Rear Spar								
Web Von Mises Stress (MPa)								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optin	operty nization	Property & Shape Optimization
	Name	Tip Loading	Distributed Loading	Бойна	Боина	Tip Loading	Distributed Loading	Distributed Loading
Between Rib 1 - Rib 2	AS019	120.5	107.4	0.01	300	163.6	71.6	144.9
Between Rib 2 - Rib 3	AS020	134.7	96.1	0.01	300	49.3	34.5	101.4
Between Rib 3 - Rib 4	AS021	131.8	67.8	0.01	300	156.3	46.2	64.4
Between Rib 4 - Rib 5	AS022	131.3	44.3	0.01	300	165.4	41.1	61.7
Between Rib 5 - Rib 6	AS023	139.6	22.6	0.01	300	66.0	17.3	27.8
Between Rib 6 - Rib 7	AS024	92.0	6.6	0.01	300	71.4	8.4	8.4
Upper Flange Axial Stress (MPa)								
Description	D.C.	Initia	Initial Value		Upper	Property Optimization		Property & Shape Optimization
	Name	Tip Loading	Distributed Loading	Бойна	Бойна	Tip Loading	Distributed Loading	Distributed Loading
Between Rib 1 - Rib 2	AS025	-283.0	-291.2	-425	445	-86.1	-53.3	-113.2
Between Rib 2 - Rib 3	AS026	-165.1	-200.3	-425	445	-108.6	-55.6	-100.9
Between Rib 3 - Rib 4	AS027	-23.5	-111.9	-425	445	-34.0	-81.0	-52.4
Between Rib 4 - Rib 5	AS028	111.2	-54.3	-425	445	154.6	-38.2	-60.9
Between Rib 5 - Rib 6	AS029	258.9	-19.4	-425	445	183.3	-16.0	-29.8
Between Rib 6 - Rib 7	AS030	342.9	-3.8	-425	445	159.4	-6.1	-6.7
Lower Flange Axial Stress (MPa)								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optin	operty nization	Property & Shape Optimization
	Name	Тір	Distributed	Bound	Bound	Tip	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Between Rib 1 - Rib 2	AS031	283.1	291.3	-425	445	163.2	183.8	49.8
Between Rib 2 - Rib 3	AS032	165.2	200.3	-425	445	156.9	85.9	98.8
Between Rib 3 - Rib 4	AS033	23.5	111.9	-425	445	35.9	60.3	53.4
Between Rib 4 - Rib 5	AS034	-111.3	54.3	-425	445	-72.2	46.3	61.0
Between Rib 5 - Rib 6	AS035	-258.9	19.4	-425	445	-140.1	16.2	29.9
Between Rib 6 - Rib 7	AS036	-343.0	3.8	-425	445	-111.3	5.7	6.7

 Table C.4
 Comparison of rear spar results of three optimization processes

 Table C.5
 Comparison of upper skin results of three optimization processes

Upper Skin Von Mises Stress (MPa)									
Description	D.C.	Initia	Il Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization	
	Name	Тір	Distributed	Bound	Bound	Тір	Tip Distributed	Distributed	
		Loading	Loading			Loading	Loading	Loading	
Between Rib 1 - Rib 2	AS037	370.1	378.9	0.01	281	105.1	81.1	123.1	
Between Rib 2 - Rib 3	AS038	207.9	249.9	0.01	281	122.2	84.3	104.1	
Between Rib 3 - Rib 4	AS039	38.8	141.3	0.01	281	42.7	82.1	83.9	
Between Rib 4 - Rib 5	AS040	144.2	67.9	0.01	281	175.7	50.7	71.7	
Between Rib 5 - Rib 6	AS041	319.6	23.8	0.01	281	277.0	23.4	38.4	
Between Rib 6 - Rib 7	AS042	479.7	4.6	0.01	281	276.4	6.5	7.5	

Lower Skin Von Mises Stress (MP	ower Skin Von Mises Stress (MPa)										
Description	D.C.	Initial Value		Lower	Upper	Property Optimization		Property & Shape Optimization			
	Name	Тір	Distributed	Бойна	Боина	Tip	Distributed	Distributed			
		Loading	Loading			Loading	Loading	Loading			
Between Rib 1 - Rib 2	AS043	370.1	379.0	0.01	281	245.2	165.5	112.0			
Between Rib 2 - Rib 3	AS044	207.9	250.0	0.01	281	239.2	177.7	106.1			
Between Rib 3 - Rib 4	AS045	38.8	141.4	0.01	281	43.0	65.4	85.1			
Between Rib 4 - Rib 5	AS046	144.2	67.9	0.01	281	101.1	55.3	71.8			
Between Rib 5 - Rib 6	AS047	319.7	23.8	0.01	281	149.9	22.0	38.4			
Between Rib 6 - Rib 7	AS048	479.8	4.6	0.01	281	157.0	6.3	7.5			

Comparison of lower skin results of three optimization processes Table C.6

Table C.7 Comparison of rib 1 results of three optimization processes

Rib 1									
Description	D.C.	Initia	Il Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization	
	Name	Тір	Distributed	Бойна	Бойна	Тір	Distributed	Distributed	
		Loading	Loading			Loading	Loading	Loading	
Web Von Mises Stress (MPa)	AS049	10.3	8.5	0.01	300	24.4	42.8	17.7	
Upper Flange Axial Stress (MPa)	AS050	82.7	83.4	-425	445	30.2	24.2	37.2	
Lower Flange Axial Stress (MPa)	AS051	-82.7	-83.4	-425	445	-49.4	-40.3	-33.6	
Front Flange Axial Stress (MPa)	AS052	0.0	0.0	-425	445	-10.2	-2.3	-5.2	
Rear Flange Axial Stress (MPa)	AS053	0.0	0.0	-425	445	-2.0	-8.3	5.8	

Comparison of rib 2 results of three optimization processes Table C.8

Rib 2	Rib 2										
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization			
	Name	Тір	Distributed	Бойна	Боина	Тір	Distributed	Distributed			
		Loading	Loading			Loading	Loading	Loading			
Web Von Mises Stress (MPa)	AS054	7.1	3.4	0.01	300	50.4	41.5	11.0			
Upper Flange Axial Stress (MPa)	AS055	92.6	98.5	-425	445	37.0	27.1	38.1			
Lower Flange Axial Stress (MPa)	AS056	-92.6	-98.5	-425	445	-75.8	-59.0	-36.4			
Front Flange Axial Stress (MPa)	AS057	0.0	0.0	-425	445	-20.3	-7.6	-4.8			
Rear Flange Axial Stress (MPa)	AS058	0.0	0.0	-425	445	-6.2	-6.1	5.9			

Rib 3								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization
	Name	Тір	Distributed	Бойна	Боина	Tip	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Web Von Mises Stress (MPa)	AS059	2.8	7.0	0.01	300	48.6	23.2	9.0
Upper Flange Axial Stress (MPa)	AS060	31.1	51.2	-425	445	36.0	26.9	29.0
Lower Flange Axial Stress (MPa)	AS061	-31.1	-51.2	-425	445	-48.1	-33.5	-30.3
Front Flange Axial Stress (MPa)	AS062	0.0	0.0	-425	445	-4.6	-5.9	0.5
Rear Flange Axial Stress (MPa)	AS063	0.0	0.0	-425	445	-5.3	0.0	-1.1

Table C.9 Comparison of rib 3 results of three optimization processes

Table C.10 Comparison of rib 4 results of three optimization processes

Rib 4								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization
	Name	Тір	Distributed	Bound	Bound	Tip Distributed		Distributed
		Loading	Loading			Loading	Loading	Loading
Web Von Mises Stress (MPa)	AS064	0.1	3.9	0.01	300	6.4	36.4	13.4
Upper Flange Axial Stress (MPa)	AS065	-15.7	28.5	-425	445	-22.4	21.5	24.9
Lower Flange Axial Stress (MPa)	AS066	15.7	-28.5	-425	445	19.4	-15.0	-24.9
Front Flange Axial Stress (MPa)	AS067	0.0	0.0	-425	445	-0.9	2.1	-0.3
Rear Flange Axial Stress (MPa)	AS068	0.0	0.0	-425	445	-4.5	2.1	0.2

Table C.11 Comparison of rib 5 results of three optimization processes

Rib 5								
Description	D.C.	Initia	I Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization
	Name	Тір	Distributed	Бойна	Бойна	Тір	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Web Von Mises Stress (MPa)	AS069	7.3	3.4	0.01	300	45.1	2.7	8.9
Upper Flange Axial Stress (MPa)	AS070	-63.3	11.5	-425	445	-71.9	11.1	18.7
Lower Flange Axial Stress (MPa)	AS071	63.3	-11.5	-425	445	43.5	-12.9	-18.7
Front Flange Axial Stress (MPa)	AS072	0.0	0.0	-425	445	-14.6	-0.6	0.1
Rear Flange Axial Stress (MPa)	AS073	0.0	0.0	-425	445	-6.9	-0.7	0.0

Rib 6								
Description	D.C.	Initia	I Value	Lower	Upper	Pro Optin	operty nization	Property & Shape Optimization
	Name	Tip	Distributed	Бойна	Бойна	Tip	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Web Von Mises Stress (MPa)	AS074	28.8	2.2	0.01	300	98.0	0.8	2.4
Upper Flange Axial Stress (MPa)	AS075	-122.1	3.0	-425	445	-87.9	3.8	5.7
Lower Flange Axial Stress (MPa)	AS076	122.2	-3.0	-425	445	50.1	-2.9	-5.7
Front Flange Axial Stress (MPa)	AS077	0.0	0.0	-425	445	-24.7	0.5	0.0
Rear Flange Axial Stress (MPa)	AS078	0.0	0.0	-425	445	-2.7	0.0	0.0

Table C.12 Comparison of rib 6 results of three optimization processes

Table C.13 Comparison of rib 7 results of three optimization processes

Rib 7								
Description	D.C.	Initia	al Value	Lower	Upper	Pro Optir	operty nization	Property & Shape Optimization
	Name	Tip	Distributed	Bound	Bound	Tip	Distributed	Distributed
		Loading	Loading			Loading	Loading	Loading
Web Von Mises Stress (MPa)	AS079	11.7	1.1	0.01	300	47.9	1.7	1.5
Upper Flange Axial Stress (MPa)	AS080	-121.2	0.3	-425	445	-78.6	0.8	0.3
Lower Flange Axial Stress (MPa)	AS081	121.2	-0.3	-425	445	50.4	-1.1	-0.3
Front Flange Axial Stress (MPa)	AS082	0.0	0.0	-425	445	-18.7	-0.1	0.0
Rear Flange Axial Stress (MPa)	AS083	0.0	0.0	-425	445	2.3	0.1	0.0

SAMPLE BDF-FILE FOR PROPERTY OPTIMIZATION

The bdf-file used in rectangular beam optimization is presented here. Original bdf-file entries are in bold characters.

At the beginning of the file descriptive information is given. A "\$" sign is used in the beginning of comments.

\$ NASTRAN input file created by the MSC MSC.Nastran input file \$ translator (MSC.Patran 13.1.116) on June 19, 2008 at 22:02:49. \$ Direct Text Input for Nastran System Cell Section

For this example there is no need for File Management Section . Therefore it is skipped. Only a comment is given to indicate its location.

\$ Direct Text Input for File Management Section

Next Executive Control Section takes place. Only SOL 200 statement is used in this section to indicate that optimization process will be performed.

\$ Design Sensitivity and Optimization AnalysisSOL 200\$ Direct Text Input for Executive ControlCEND

Case Control Section starts here with title of the job.

TITLE = MSC.Nastran job created on 19-Jun-08 at 19:43:29

"ECHO= SORT,PUNCH(NEWBULK)" command provides initial bulkdata written in f06-file and final (optimized) bulk data in pch-file.

ECHO = SORT, PUNCH(NEWBULK)

"DESOBJ(MIN) = 1" indicates that the objective function is given in DRESP1 card with number 1. This card is in the design response section of the design model.

DESOBJ(MIN) = 1

"DESSUB = 21" indicates the active constraints group which is 21. Constraints are defined with DCONSTR" cards in the design constraints section of the design model

DESSUB = 21

In this optimization task linear static analyses are performed.

ANALYSIS = STATICS \$ Direct Text Input for Global Case Control Data

At the end of the case control section applied load case is defined. In this example only one load case is implemented.

SUBCASE 1 \$ Subcase name : Default SUBTITLE=Default SPC = 2 LOAD = 2 DISPLACEMENT(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL STRESS(SORT1,REAL,VONMISES,BILIN)=ALL

Bulk Data Section is the last section .

BEGIN BULK

Following parameters are used to control output of analysis

PARAM POST -1 PARAM PRTMAXIM YES PARAM NASPRT 1 \$ Direct Text Input for Bulk Data

Description of analysis model starts here.

Element property is defined first. PBARL card allows one to introduce cross section of bar element to MSC.NASTRAN®. "BAR" in this card indicates rectangular cross section. 10 and 35 are width (DIM1) and height (DIM2) of the cross section respectively.

\$ Elements and Element Properties for region : beam PBARL 1 1 BAR 10. 35.
\$ Pset: "beam" will be imported as: "pbarl.1"

Elements are defined next.

CBAR	1	1	1	2	0.	1.	0.
CBAR	2	1	2	3	0.	1.	0.
CBAR	3	1	3	4	0.	1.	0.
CBAR	4	1	4	5	0.	1.	0.
CBAR	5	1	5	6	0.	1.	0.
CBAR	6	1	6	7	0.	1.	0.
CBAR	7	1	7	8	0.	1.	0.
CBAR	8	1	8	9	0.	1.	0.
CBAR	9	1	9	10	0.	1.	0.
CBAR	10	1	10	11	0.	1.	0

Material definition is given in "MAT1" card. For weight optimization a value for density must be entered. For this example, elastic modulus is 7000. MPa, poissons ratio is 0.33 and density is 1. kg/mm3. In this case the value of the weight is equal to the value of volume in mm3.

\$ Referenced Material Records\$ Material Record : al\$ Description of Material : Date: 19-Jun-08MAT1170000..331.

"GRID" cards are used to define the node locations

\$ Nodes of the Entire Model

GRID	1	0.	0.	0.
GRID	2	50.	0.	0.
GRID	3	100.	0.	0.
GRID	4	150.	0.	0.
GRID	5	200.	0.	0.
GRID	6	250.	0.	0.

7	300.	0.	0.
8	350.	0.	0.
9	400.	0.	0.
10	450.	0.	0.
11	500.	0.	0.
	7 8 9 10 11	7300.8350.9400.10450.11500.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

At the end of the analysis model definition loads and boundary conditions are defined.

\$ Loads for Load Case : Default SPCADD 2 1 LOAD 2 1. 1. 1 **\$ Displacement Constraints of Load Set : disproot** SPC1 123456 1 1 **\$** Nodal Forces of Load Set : yforce FORCE 1 11 0 1250. 0. -1. 0. **\$ Referenced Coordinate Frames**

After end of the analysis model definition, design model description starts. First design variables are defined. "DESVAR" card includes the number, name,

initial value, upper bound and lower bound information of a design variable.

\$...DESIGN VARIABLE DEFINITION \$ rect_W DESVAR 1 rect_W:110. 1. 20. 1. \$ rect_H DESVAR 2 rect H:235. 20. 50. 1.

Design variable must be related to a property of elements in analysis model or shape basis vectors in shape optimization. "DVPREL1" card is used to relate a design variable to a element property in analysis model. Initial value of a design variable overwrites the corresponding value. DIM1 is the width of the rectangular cross section. Therefore, design variable 1 is related to the width of the rectangular cross section.

```
$ ...DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL
PARAMETER RELATIONS
DVPREL1 1 PBARL 1 DIM1

1
DVPREL1 2 PBARL 1 DIM2
1
```

Design responses indicates which results are important for the optimization task.

\$...STRUCTURAL RESPONSE IDENTIFICATION

In this example total weight, y displacement of tip node and maximum stress at the root element are used as first type of response. Design response number 1 is the weight and chosen as objective function in case control section.

DRESP11WWEIGHTDRESP127U2DISP211DRESP137S1STRESSPBAR71

An equation which is the height to width ratio of the cross section is used as the second type of design response.

DRESP2 15 BH 230 DESVAR 1 2 DEQATN 230 BH(W,H)= H/W

Next step is definition of constraints. "DCONSTR" card includes the constraint group number , which is 21 in this example, related design response number, upper and lower bounds for the design response.

 \$...CONSTRAINTS

 DCONSTR 21
 27
 -25.4
 25.4

 DCONSTR 21
 37
 -700.0
 700.0

 DCONSTR 21
 15
 0.1
 5.0

Finally, maximum iteration number, number of fully stressed design cycles, frequency of the output, design quantities to be printed, convergence criteria and move limits on approximate optimization are defined by using "DOPTPRM" card [3].

\$...OPTIMIZATION CONTROL DOPTPRM DESMAX 100 FSDMAX 0 P1 1 P2 1 CONV1 .001 CONV2 1.-20 CONVDV .001 CONVPR .01 DELP .2 DELX 1. DPMIN .01 DXMIN .05 ENDDATA e4f673bf

This is the end of bdf-file

SAMPLE BDF-FILE FOR SHAPE OPTIMIZATION

The bdf-file used in wing torque box shape and property optimization is presented here. Original bdf-file entries are in bold characters. Repeated cards are omitted and replaced by "…".

At the beginning of the file descriptive information is given. A "\$" sign is used in the beginning of comments.

\$ NASTRAN input file created by the MSC MSC.Nastran input file
\$ translator (MSC.Patran 13.1.116) on October 21, 2008 at 20:43:46.
\$ Direct Text Input for Nastran System Cell Section
\$ Direct Text Input for File Management Section
\$ Design Sensitivity and Optimization Analysis

In File Management Section, result of auxiliary model analysis which is used to built shape basis vectors for shape optimization is introduced. The extensions of necessary result files are "MASTER" and "DBALL". Therefore, both files must exist in the folder where optimization is performed, but only MASTER-file is introduced in the bdf-file.

ASSIGN F1_AUX='wing_aux.MASTER' DBLOCATE DATABLK=(ug/ugd,geom1/geom1d,geom2/geom2d), LOGICAL=F1_AUX

Next Executive Control Section takes place. SOL 200 statement is used in this section to indicate that optimization process will be performed.

SOL 200 TIME 600 \$ Direct Text Input for Executive Control CEND Case Control Section starts here with title of the job.

TITLE = MSC.Nastran job created on 05-Oct-08 at 13:53:10

"ECHO= SORT,PUNCH(NEWBULK)" command provides initial bulkdata written in f06-file and final (optimized) bulk data in pch-file. Limitation is set by "MAXLINES" command.

ECHO = SORT,PUNCH(NEWBULK) MAXLINES = 999999999

"DESOBJ(MIN) = 1" indicates that the objective function is given in DRESP1 card with number 1. This card is in the design response section of the design model.

DESOBJ(MIN) = 1

"DESSUB = 21" indicates the active constraints group which is 21. Constraints are defined with DCONSTR" cards in the design constraints section of the design model.

DESSUB = 21

In this optimization task linear static analyses are performed.

ANALYSIS = STATICS \$ Direct Text Input for Global Case Control Data

At the end of the case control section applied load case is defined. In this example only one load case is implemented.

```
SUBCASE 1

$ Subcase name : Default

SUBTITLE=Default

SPC = 2

LOAD = 2

DISPLACEMENT(SORT1,REAL)=ALL

SPCFORCES(SORT1,REAL)=ALL

GPFORCE=ALL

STRESS(SORT1,REAL,VONMISES,BILIN)=ALL
```

Bulk Data Section is the last section .

BEGIN BULK

Following parameters are used to control output of analysis "PARAM NASPRT 50" indicates that outputs of finite element analyses are recorded in every 50th iteration during optimization process.

PARAM POST -1 PARAM PRTMAXIM YES PARAM NASPRT 50 \$ Direct Text Input for Bulk Data

Description of analysis model starts here. Element, property and material definitions, grid locations, multipoint constraints, load and boundary conditions are defined in this section.

```
$ Elements and Element Properties for region : 110020
PSHELL 110020 1
                     1.
                           2
                                    1
$ Pset: "110020" will be imported as: "pshell.110020"
CQUAD4 110020 110020 1120 1220 2220 2120
...
•••
$ Elements and Element Properties for region : 711000
PSHELL 711000 3
                           2
                     1.
                                    3
$ Pset: "711000" will be imported as: "pshell.711000"
CQUAD4 711000 711000 7120 7220 7230 7130
$ Elements and Element Properties for region : 112000
PROD 112000 3
                    100.
$ Pset: "112000" will be imported as: "prod.112000"
CROD 112000 112000 1120 1220
...
•••
$ Elements and Element Properties for region : 620300
        620300 3
                    100.
PROD
$ Pset: "620300" will be imported as: "prod.620300"
        620300 620300 6230 7230
CROD
$ Elements and Element Properties for region : 900000
PSHELL 900000 3
                     5.
                           3
                                    3
$ Pset: "900000" will be imported as: "pshell.900000"
CQUAD4 910101 900000 9121 9122 9132 9131
```

CQUAD4 910102 900000 9122 1120 1130 9132 COUAD4 920101 900000 9221 9222 9232 9231 CQUAD4 920102 900000 9222 1220 1230 9232 **\$** Elements and Element Properties for region : 900001 **PBARL 900001 3** BAR 50. 20. \$ Pset: "900001" will be imported as: "pbarl.900001" CBAR 910201 900001 9121 9122 0. 1. 1. ••• ••• ••• CBAR 924002 900001 9222 9232 0. 1. 1. **\$ Referenced Material Records \$ Material Record : AL2024 \$ Description of Material : Date: 04-Oct-08** Time: 20:45:10 MAT1 1 72000. .33 **2.8E-6 \$ Material Record : AL7050 \$ Description of Material : Date: 04-Oct-08** Time: 20:45:10 MAT1 3 70000. .33 2.8E-6 **\$** Material Record : dummy **\$ Description of Material : Date: 04-Oct-08** Time: 20:45:10 MAT1 2 1. .33 2.8E-6 **\$** Multipoint Constraints of the Entire Model 1000 123456 1. RBE3 1 123 1120 1130 1220 1230 ••• ••• ••• RBE3 7 7000 123456 1. 123 7120 7130 7220 7230 **\$** Nodes of the Entire Model 516.788 29.6729 0. GRID 1000 GRID 1120 381.115 116.891 0. ••• ••• ••• 9231 1010.6 -36.4019-662. GRID GRID 9232 1010.6 -36.4019-100. **\$** Loads for Load Case : Default SPCADD 2 1 LOAD 2 1. 1. 1 1. 3 1. 4 5 1. 7 1. 8 1. 1. 6 1. 9 1. 10 1. 11 1. 12 13 14 1. 1. 1. 15 **\$ Displacement Constraints of Load Set : root SPC1** 1 123 9121 9122 9131 9132 9221 9222

```
9231 9232
$ Nodal Forces of Load Set : Rib 1
FORCE 1
              1000 0
                         3091.16 0.
                                     1.
                                           0.
$ Nodal Forces of Load Set : Rib 1
MOMENT 3
                1000 0
                           398.76 0.
                                        0.
                                           1.
•••
•••
•••
FORCE 14
               7000
                     0
                          1486.88 0.
                                      1.
                                           0.
$ Nodal Forces of Load Set : Rib 7
MOMENT 15
                 7000 0
                            229.46 0.
                                        0.
                                            1.
$ Referenced Coordinate Frames
```

After end of the analysis model definition, design model description starts.

First design variables are defined. "DESVAR" card includes the number, name, initial value, upper bound and lower bound information of a design variable.

```
$ ...DESIGN VARIABLE DEFINITION
$ v001
DESVAR 11
                v001 1.
                          .8
                               5.
$ v002
DESVAR 12
               v002 1.
                          .8
                               5.
•••
•••
•••
$v082
DESVAR 92
               v082 100.
                          1.
                                2000.
$ v083
DESVAR 93
               v083 100.
                                2000.
                          1.
$
$ Shape Optimization variables
$ v084
DESVAR 94
                v084
                      1. -30.
                                30.
•••
•••
•••
$ v088
DESVAR 98
                                30.
               v088
                      1. -30.
$
$
```

Design variable must be related to a property of elements in analysis model or shape basis vectors in shape optimization. "DVPREL1" card is used to relate a
design variable to a element property in analysis model. Initial value of a design variable overwrites the corresponding value. "DVSHAP" card is used to relate a design variable to a shape basis vector which is constructed by using single load case result of analysis auxiliary model. For example, "DVSHAP 95 2 1.0" card indicates that design variable with number 95 is related with the shape basis vector which is constructed by using the result of second load case in auxiliary model analysis. "1.0" is the multiplication factor.

```
$ ... DEFINITION OF DESIGN VARIABLE TO ANALYSIS MODEL
PARAMETER RELATIONS
DVPREL1 11
              PSHELL 110100 T
    11
        1.
DVPREL1 12
              PSHELL 210100 T
    12 1.
•••
•••
DVPREL1 92
              PROD 714000 A
    92 1.
DVPREL1 93
              PROD 724000 A
    93 1.
$
$ A DVSHAP entry defines a shape basis vector by associating one design
$ variable to a dblocated displacement vector.
$
DVSHAP 94
              1
                  1.0
DVSHAP 95
              2
                  1.0
DVSHAP 96
              3
                  1.0
DVSHAP 97
                  1.0
              4
DVSHAP 98
              5
                  1.0
$
$
$
```

Design responses indicates which results are important for the optimization task.

\$...STRUCTURAL RESPONSE IDENTIFICATION

In this example total weight, y displacement of tip nodes, Von Mises stress at all shell element and axial stress at rod elements are used as first type of response. Design response number 1 is the weight and chosen as objective function in case control section.

```
MinWeigh WEIGHT
DRESP1 1
$ Stress Responce
                   STRESS PSHELL
                                        11
DRESP1 101
              S101
                                                110100
DRESP1 102
              S102 STRESS PSHELL
                                        11
                                                210100
•••
•••
•••
DRESP1 182
              S182
                   STRESS PROD
                                      2
                                              714000
                   STRESS PROD
DRESP1 183
              S183
                                      2
                                              724000
$ Displacement Responce
DRESP1 201
              D201
                                 2
                                         7120
                    DISP
                                 2
DRESP1 202
              D202 DISP
                                         7130
DRESP1 203
              D203 DISP
                                 2
                                         7220
DRESP1 204
              D204 DISP
                                 2
                                         7230
```

Next step is definition of constraints. "DCONSTR" card includes the constraint group number , which is 21 in this example, related design response number, upper and lower bounds for the design response.

```
$...CONSTRAINTS
DCONSTR 21
               101
                    0.01
                          300.0
DCONSTR 21
               102
                    0.01 300.0
•••
•••
               182
                    -425.0 445.0
DCONSTR 21
DCONSTR 21
               183
                    -425.0 445.0
$
DCONSTR 21
               201
                     0.001 200.0
DCONSTR 21
               202
                     0.001 200.0
DCONSTR 21
               203
                     0.001 200.0
DCONSTR 21
               204
                     0.001 200.0
$
$
```

Finally, maximum iteration number, number of fully stressed design cycles, frequency of the output, design quantities to be printed, convergence criteria and

move limits on approximate optimization are defined by using "DOPTPRM" card [3].

\$...OPTIMIZATION CONTROL DOPTPRM DESMAX 5000 FSDMAX 0 P1 50 P2 5 CONV1 .001 CONV2 1.-20 CONVDV .001 CONVPR .01 DELP .2 DELX 1. DPMIN .01 DXMIN .05 ENDDATA e0fc0b62

This is the end of bdf-file