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ABSTRACT

SIMULTANEOUS BOTTOM-UP/TOP-DOWN PROCESSING IN EARLY AND MID
LEVEL VISION

ERDEM, Mehmet Erkut

Ph.D., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Sibel Tarı

November 2008, 175 pages

The prevalent view in computer vision since Marr is that visual perception is a data-driven

bottom-up process. In this view, image data is processed in a feed-forward fashion where a

sequence of independent visual modules transforms simple low-level cues into more complex

abstract perceptual units. Over the years, a variety of techniques has been developed using

this paradigm. Yet an important realization is that low-level visual cues are generally so

ambiguous that they could make purely bottom-up methods quite unsuccessful. These am-

biguities cannot be resolved without taking account of high-level contextual information. In

this thesis, we explore different ways of enriching early and mid-level computer vision mod-

ules with a capacity to extract and use contextual knowledge. Mainly, we integrate low-level

image features with contextual information within unified formulations where bottom-up

and top-down processing take place simultaneously.

Keywords: bottom up/top down paradigms in computer vision, image denoising, image

segmentation, skeleton extraction, PDE methods
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ÖZ

ERKEN VE ORTA DÜZEY GÖRMEDE ALTTAN ÜSTE/YUKARIDAN AŞAĞI
EŞZAMANLI İŞLEME

ERDEM, Mehmet Erkut

Doktora, Bilgisayar Muhendisliği Bölümü Bölümü

Tez Yöneticisi: Doç. Dr. Sibel Tarı

Kasım 2008, 175 sayfa

Marr’dan bu yana bilgisayarlı görmeye hakim olan genel kanı, görsel algının veri güdümlü,

alttan üste doğru işleyen bir süreç olduğu yönündedir. Bu kapsamda imge verisi ileri beslemeli

bir biçimde işlenirken ard arda gelen birbirlerinden bağımsız alt modüller basit, düsük düzey

ipuçlarını daha karmaşık, soyut algı birimlerine dönüştürürler. Yıllar boyu bu model kul-

lanılarak çok çeşitli sayıda yöntem geliştirilmiştir. Oysa önemli bir nokta, düşük düzey

ipuçlarının genelde belirsiz bir yapıda olmasıdır ki bu tümüyle alttan üste doğru işleyen yön-

temleri bir hayli başarısız yapmaktadır. Bu belirsizlikler yüksek düzey bağlamsal bilgi kaale

alınmadan giderilemez. Bu tezde erken ve orta düzey bilgisayarlı görme modüllerinin farklı

biçimlerde bağlamsal bilgi çıkarma ve kullanma yetisiyle kuvvetlendirilmesi incelenmekte-

dir. Esas olarak, düşük düzey imge öznitelikleri bağlamsal bilgi ile alttan üste ve yukarı-

dan aşağıya doğru işlemenin eşzamanlı yeraldığı birleştirilmiş formülasyonların bünyesinde

bütünleştirilmektedir.

Anahtar Kelimeler: bilgisayarlı görmede alttan üste/yukarıdan aşağıya yaklaşımlar, imge

gürültü temizleme, imge bölütleme, iskelet çıkarma, kısmi türevleme denklem metodları
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CHAPTER 1

INTRODUCTION

Everyday, our visual system interprets the external world it sees without facing any difficulty.

From the plain man’s point of view vision is an effortlessly easy process. At first glance, this

could give rise to the illusion that constructing computers that make inferences related to

the external world being seen through images is a simple task. However, for the time being,

it has been proved that this is not the case. Computational vision has appealed and still

appeals many researchers from many different fields.

Computational vision is very important not only from a practical point of view (e.g.

perception-driven robots) but also from a scientific point of view, as it helps us to understand

the underlying mechanisms of the visual systems of living organisms, including humans, by

providing a systematic framework. It is noteworthy that in the 1960s the preliminary studies

on computational vision emerged as a part of artificial intelligence. However, it was not until

the 1980s that computational vision started to be defined as an area of science in modern

sense. In this respect, David Marr is generally acknowledged as one of the most influential

scientists who defined the area. According to Marr, visual perception can be interpreted

as an information processing task, which requires a clear understanding of what is to be

computed, how the computation is to be done and how it is to be realized physically [96].

This interpretation implies that there is a single visual perception problem that is solved

everyday by living organisms that had experienced very different evolutionary paths; and

computational vision aims to solve it by using computers.

Since Marr, in the computational study of vision, it has been commonly assumed that

visual perception is a data-driven, bottom-up process that consists of several independent

visual modules (Figure 1.1). In this view, image data is mainly processed in a feed-forward

fashion, and a sequence of processes (modules) transforms simple low-level cues into more

complex abstract perceptual units. Each process receives an input from its preceding process
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Figure 1.1: Visual modules and the information flow.

and produces an output to serve as an input for its succeeding process. During this activity,

low-level cues are always assumed to be reliable and higher-level knowledge has no effect on

the early stages.

Roughly speaking, visual modules can be described in three groups: early visual pro-

cessing (or simply filtering), segmentation and object recognition. Early visual processing is

responsible for smoothing the input image by filtering out irrelevant image information such

as noise, and hence it has a critical role for the further processing modules. The task of

segmentation is to partition the (filtered) image into coherent regions that are likely to cor-

respond to objects exist in the image. After possible object regions are extracted, the third

module object recognition, as its name implies, is in charge of recognizing known objects and

analyzing the properties of them.

Since the early days of computational vision, the most common way of determining

whether a region is coherent or not has relied on very simple image-based criteria such as

uniformity of intensity or color. Subsequent to the filtering process that eliminates noise,

segmentation involves identifying regions of uniform features. This is realized by carrying out

two sequential steps: edge detection and boundary forming. In the edge detection step, edge

points are identified by applying some local edge operators that are sensitive to the changes

in local brightness. The general assumption is that different image regions have different

intensities. Following this, in the boundary forming step, extracted local edge fragments

are grouped together to obtain region boundaries. The grouping process is performed, for

example, by forcing the smoothness and the continuity of bounding contours.

The main problem with this approach is that noisy pixels have similar characteristics to

image edges. They correspond to the image points where an abrupt change in the intensity

occurs. When a low-pass denoising filter is applied to the image, the filter not only removes

the noise but also blurs intensity discontinuities, making the edges difficult to detect. If the
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cut-off frequency of the low-pass filter is set to a large value to reduce the blurring, then

one cannot eliminate noise. The noise which is passed to the second level in the hierarchy is

enhanced more than the signal itself by the edge detection process [58].

In Figure 1.2, we present another drawback of this approach on a noise-free natural

image. Here, we identify the image edges using the Canny edge detector [34], one of the

widely used edge detection methods. As the details extracted from three separate image

points (subimages labeled with a, b and c) clearly illustrate, the color is smoothly varying

along the region that corresponds to the sky. It can be clearly seen that there are no

extraneous edges inside that region, which makes partitioning the region as a whole possible.

However, in the other parts of the image, the method results in cluttered edges that do not

correspond to actual object or scene boundaries. The main reason is that the criteria based

on color uniformity becomes inadequate to describe these image regions.

Figure 1.2: A natural image and a sample edge detection result.
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One way to increase the robustness of the segmentation process is to consider additional

image features other than intensity and color information. One such possible image feature is

texture, which can simply be described as a visual cue that is composed of regularly arranged

similar local patterns. Conveniently, it provides prominent information about image regions.

For example, Figure 1.3 includes a texture mosaic image that consists of five regions. Since

each region has its own local structure characteristics, it is possible to easily distinguish them

by a segmentation method that relies on texture uniformity.

Figure 1.3: A mosaic image (taken from [72]) and texture samples extracted from it.

Although, in principle, employing texture information improves the segmentation results,

texture features are in many cases insufficient as well, especially when the natural images

are taken into account. For example, consider the cheetah image provided in Figure 1.4.

Although our visual system can reliably extract the apparent boundary of the animal, most

probably, a segmentation method that only relies on texture uniformity will fail in extracting

them. The trouble is that even if the animal has the dominant texture composed of fur with

round black spots (the subimage labeled with a), the ear of the animal does not contain any

texture at all (the subimage labelled as b). This prevents the ear and the body regions of the

animal to be grouped together, and thus makes obtaining a single region that corresponds

to cheetah very difficult.

Another major challenge in image segmentation is to handle occlusions. In general, it is

impossible to delineate the occluded object boundaries correctly by utilizing the cues depend
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Figure 1.4: A cheetah image and the details extracted from two different image regions.

merely on raw image data. Figure 1.5 shows two such examples. In the images, the hands

are partially occluded by the pencils that results in some parts of the regions describing the

hands missing. What provides our visual system with the ability to reliably separate the

hands from the background is the prior experience. What a hand could possibly look like is

somewhat encoded in our brains, and guides the segmentation process. Hence, we can see

the hands as single objects although some portions of them are not visible.

Figure 1.5: Partially occluded hand images.

As these examples illustrate, the corrupting influences such as noise, texture, occlusion,

etc. greatly affect image segmentation. Most of the time, low-level visual cues are so am-

biguous that they could make traditional, purely bottom-up segmentation methods quite

unsuccessful. Due to the unidirectional information flow, any misinterpretation in the early
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stages disturbs the later ones. The only way to resolve these ambiguities is to integrate

low-level image features with high-level contextual information. Interestingly, there is an

increasing number of studies in cognitive neuroscience that are consistent with this idea,

e.g. [71, 85, 86, 102]. These studies all support existence of top-down information flow in

the human visual system, and emphasize the importance of feedback connections between

different visual areas that provide contextual influences.

Without doubt, this view requires a modified Marr paradigm in which different visual

modules interact with each other through feed-forward/feedback pathways. The consistency

of such interactions among the visual modules highly depends on making use of a shared

language, which involves utilizing a common representational framework. Thus, it can be

argued that representation is the key issue for such kind of computational models.

Generally speaking, the notion of context has a broad meaning. It typically includes prior

information (i.e. application or aim specific knowledge), global image features or statistics,

and neighboring events (e.g. nearby objects, nearby pixels, etc.)[139, 156]. Context mainly

provides a top-down knowledge which influences the processing of visual cues so that some

possible interpretations are excluded while the more consistent ones are enforced during the

computations.

1.1 Major Contributions of This Thesis

Our main focus in this thesis is to enrich low and mid-level computer vision modules with

a capacity to extract and use contextual knowledge. In particular, this thesis makes the

following contributions:

1. A novel image smoothing method that considers local context has been introduced.

The proposed approach employs high-level contextual measures extracted from local

image regions to influence the ongoing filtering process.

2. Different local contextual measures have been suggested for modulating the filtering

operation. Each performs several seemingly different visual tasks like elimination of

unintuitive edges due to noise or texture, enhancing weak edges, extracting texture

boundaries, and preserving texture during denoising.

3. Two new prior-shape based segmentation frameworks which utilize Tari-Shah-Pien

(TSP) surfaces [143] as shape priors have been presented, yielding robustness against

undesirable conditions such as noise, low contrast, weak edges and partial occlusions.

6



4. A new skeleton extraction approach that relies on a special function which simultane-

ously encodes the boundaryness and medialness has been suggested for highly-textured

natural images. Using extracted shape skeletons, we can identify image patches of uni-

form characteristics that can be utilized within various image analysis tasks.

1.2 Organization of the Thesis

The organization of this thesis is as follows:

Chapter 2 and Chapter 3 survey the literature on filtering and segmentation methods.

In particular, Chapter 2 is on a detailed review of important linear and nonlinear diffusion

models, and variational segmentation methods. In Chapter 3, we examine important seg-

mentation frameworks presented in the last decade that employ prior shape knowledge to

guide the segmentation.

Chapter 4 presents a context-influenced image smoothing method with four different

choices for local contextual measures. In Chapter 5, we suggest two new prior-shape guided

segmentation methods utilizing TSP surfaces as shape priors. Chapter 6 is about a new

skeleton based analysis of natural images that divides them into constituent components

while simultaneously forming a representation for the components which ties shape and

image features.

In Chapter 6, the basic machinery for constructing the function which simultaneously

encodes the boundaryness and medialness is the context-guided image smoothing framework

that we proposed in Chapter 4. Thus, these two chapters are closely related. Even though

the simultaneous bottom-up/top-down processing plays a key role in this thesis, the work

presented in Chapter 5 differs from the ones suggested in Chapter 4 and Chapter 6 in

terms of how the higher-level information, providing the top-down flow, is incorporated and

utilized in the computations. Within the prior-guided segmentation frameworks introduced

in Chapter 5, the object specific knowledge is given a priori, i.e. it is explicitly provided

by the user. In this respect, Chapter 5 can be read separately considering the background

provided in Chapter 2 and Chapter 3.

Finally, Chapter 7 summarizes our major contributions and discusses future works.
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CHAPTER 2

EARLY VISUAL PROCESSING

In the previous chapter, the traditional bottom-up paradigm that dominated the studies

in computational vision was analyzed, and some interesting and challenging cases for the

bottom-up segmentation approaches were presented that motivate the proposed works in

this thesis.

These challenges generally stem from the unidirectional information flow. For instance,

consider detecting edges that plays a key role in image segmentation. Since edges are de-

scribed as abrupt intensity changes in the images, edge detection in fact requires a kind of

derivative computation through local edge operators. If the image data is noisy, differen-

tiation yields inaccurate results. Hence, the input image needs to be smoothed out before

applying the operators. As discussed in the previous chapter, this leads to a chicken and

egg dilemma since the smoothing process should eliminate the noise, and yet preserve the

edges. Needless to say, this requires a clear understanding of possible edge points which is

the actual goal of edge detection.

About twenty years ago, the dilemma in the one way information flow between smoothing

and edge detection prompted eminent researchers to propose methods that combine smooth-

ing and edge detection [20, 62, 100, 109]. Most of these unified frameworks are based on

nonlinear diffusion models and variational regularization/segmentation methods. Although,

partial differential equations (PDEs), which appear in many diffusion models, and variational

approaches have been widely and successfully used in areas such as physics and engineer-

ing for many years, they have been an area of intensive research in image processing and

computer vision only for the past two decades, yet they have provided effective solutions

especially for image smoothing and restoration tasks.

We prefer to start our review with the linear diffusion equation to provide a motivation

for these studies. It is also used as an illustrative example to analyze the relation between
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variational regularization frameworks and diffusion equations. The subsequent parts of this

chapter are devoted to important nonlinear diffusion models and variational regularization

methods. The numerical implementation details of some of these works are also provided

since they are closely related with the proposed works. The chapter concludes with a brief

discussion on the reviewed works.

2.1 Linear Diffusion

The linear diffusion (heat) equation is the oldest and best investigated PDE method in image

processing. Let f(x) denote a grayscale (noisy) input image and u(x, t) be initialized with

u(x, 0) = u0(x) = f(x). Then, the linear diffusion process can be defined by the equation

∂u

∂t
= ∇ · (∇u) = ∇2u (2.1)

where ∇· denotes the divergence operator. Hence,

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
. (2.2)

The diffusion process can be seen as an evolution process with an artificial time variable t

denoting the diffusion time where the input image is smoothed at a constant rate in all direc-

tions. Starting from the initial image u0(x), the evolving images u(x, t) under the governed

equation represent the successively smoothed versions of the initial input image f(x), and

thus create a scale space representation of the given image f , with t > 0 being the scale.

As we move to coarser scales, the evolving images become more and more simplified since

the diffusion process removes the image structures at finer scales. Figure 2.1 and Figure 2.2

show example scale space representations sampled at different diffusion times for two differ-

ent images. In fact, the notion of scale is an essential part of early visual processing, where

the main task is to separate the image into relevant and irrelevant parts.

It is shown that the solution of the linear diffusion equation with the given initial condi-

tion u(x, 0) = f(x) for a specific diffusion time T is equivalent to the convolution of the input

image f(x) with the Gaussian kernel Gσ(x) with standard deviation σ =
√

2T [74, 79, 155].

Thus, linear diffusion can be regarded as a low-pass filter. The correspondence between the

diffusion time variable t and the standard deviation σ clearly depicts the effect of t on the

evolving images. The higher the value of t, the higher the value of σ, and the more smooth

the image becomes. This relation also provides the following explicit solution to (2.1):

u(x, t) =
(
G√

2T ∗ g
)

(x) with Gσ(x) =
1

2πσ2
exp

(
−|x|2

2σ2

)
. (2.3)
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T = 0 T = 1.25 T = 2.5

T = 5 T = 10 T = 20

Figure 2.1: Linear diffusion results for different diffusion times.

T = 0 T = 5 T = 10

T = 20 T = 40 T = 80

Figure 2.2: Linear diffusion results for different diffusion times.
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Numerical Implementation

Since we deal with digital images, solving the linear diffusion equation requires discretization

in both spatial and time coordinates. Central differences are the typical choices for the spatial

derivatives:

d2ui,j

dx2
≈ ui+1,j − 2ui,j + ui−1,j

h2
x

,
d2ui,j

dy2
≈ ui,j+1 − 2ui,j + ui,j−1

h2
y

(2.4)

where ui,j denotes the gray value or the brightness of the evolving image at pixel location

(i, j).

The values of hx and hy are generally set to 1 as digital images are discretized on a

regular pixel grid. For the remainder of this thesis, we take hx = hy = 1. This leads to the

following space-discrete equation for (2.1):

dui,j

dt
= ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j . (2.5)

The straightforward approach to solve (2.5) is to consider an iterative scheme with an

explicit time discretization, where homogeneous Neumann boundary condition is imposed

along the image boundary

uk+1
i,j − uk

i,j

∆t
= uk

i+1,j + uk
i−1,j + uk

i,j+1 + uk
i,j−1 − 4uk

i,j (2.6)

where ∆t is the time step, and uk represents the restored image u at iteration k. Numerical

stability condition for the discrete scheme requires that ∆t ≤ 0.25.

Relation Between Variational Regularization and Diffusion Equations

Interestingly, there is a strong relation between variational regularization methods and dif-

fusion equations [124]. The variational regularization methods formulate smoothing process

as a functional minimization via which a noise-free approximation of a given image is to be

estimated. Most of these formulations assume an additive noise model

f(x) = u(x) + n(x) (2.7)

where f(x) and u(x) respectively denote the given noisy image and the desired denoised

image, and n(x) represents the additive noise.

Consider the Tikhonov energy functional [145] as an illustrative example:

E(u) =
∫

Ω

(
(u − f)2 + α|∇u|2

)
dx (2.8)

where
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• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the smooth approximation of f ,

• α > 0 is the scale parameter.

The first term in E(u) is the data fidelity term that penalizes the deviations between

u and f , and thus forces the restored image to be close to the original image. The second

term is called the regularization or smoothness term which penalizes the high gradients, and

gives preference to smooth approximations. The relative importance of these two terms are

defined by the scale parameter α.

The minimizing function u formally satisfies the Euler-Lagrange equation

(u − f)− α∇2u = 0 (2.9)

with the Neumann boundary condition ∂u
∂n

∣∣
∂Ω

= 0.

It is possible to rewrite (2.9) as

u − u0

α
= ∇2u with u0 = f, (2.10)

which may be regarded as an implicit time discretization of the linear diffusion equation

(2.1) where a single time step (T = α) is used. Note that diffusion time (scale selection)

problem is not really eliminated by the variational regularization, it is replaced with a new

parameter α that determines the strength of the smoothness prior.

The main drawback of linear diffusion filtering is that the smoothing process does not

consider information regarding important image features such as edges. It follows that same

amount of smoothing to be applied at every image location. As a result, the diffusion process

does smooth not only noise, but also image edges.

2.2 Perona-Malik Type Nonlinear Diffusion [109]

The main theory behind nonlinear diffusion models is to use nonlinear PDEs to create a

scale space representation that consists of gradually simplified images where some image

features such as edges are maintained or even enhanced. The earliest nonlinear diffusion

model proposed in image processing is the so-called anisotropic diffusion1 by Perona and
1In fact, Perona-Malik equation is an isotropic nonhomogeneous equation as it uses a scalar-valued diffu-

sivity. A true example of anisotropic diffusion model, edge-enhancing diffusion [153], will be summarized in

Section 2.6.
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Malik [109].

In their formulation, they replaced the constant diffusion coefficient of linear equa-

tion (2.1) by a smooth nonincreasing diffusivity function g with g(0) = 1, g(s) ≥ 0, and

lims→∞ g(s) = 0. As a consequence, the diffusivities become variable in both space and

time. The Perona-Malik equation is

∂u

∂t
= ∇ · (g(|∇u|)∇u) (2.11)

with homogeneous Neumann boundary conditions and the initial condition u0(x) = f(x),

f denoting the input image.

Perona and Malik suggested two different choices for the diffusivity function:

g(s) =
1

1 + s2/λ2
, (2.12)

g(s) = e−
s2

λ2 (2.13)

where λ corresponds to a contrast parameter. These functions share similar characteristics,

and result in similar effects on the diffusivities.

We review the 1D physical analysis of the Perona-Malik diffusion below since it clearly

demonstrates the role of the contrast parameter λ and the main behavior of the equa-

tion [154]. For 1D case, the Perona-Malik equation is as follows:

∂u

∂t
=

∂

∂x
(g(|ux|)ux)︸ ︷︷ ︸

Φ(ux)

= Φ′(ux)uxx (2.14)

with g(|ux|) = 1
1+|ux|2/λ2 or g(|ux|) = e−

|ux|2

λ2 .

Figure 2.3 shows the diffusivity functions and the corresponding flux functions for linear

diffusion and Perona-Malik type nonlinear diffusion. One can easily observe that for linear

diffusion the diffusivity is constant (g(s) = 1), which results in a linearly increasing flux

function. As a result, all points, including the discontinuities, are smoothed equally. For

Perona-Malik, the diffusivity is variable and decreases as |ux| increases. It is evident that

the decay in diffusivity is particularly rapid after the contrast parameter λ. This leads

to two different behaviors in the diffusion process. Since ∂u
∂t = Φ′(ux)uxx, for the points

where |ux| < λ, Φ′(ux) > 0 which corresponds to lost in the material. For the points where

|ux| > λ, on the contrary, Φ′(ux) < 0 which generates an enhancement in the material.

Hence, although the diffusivity is always nonnegative, one can observe both forward and

backward diffusions during the smoothing process, and the contrast parameter λ separates

the regions of forward diffusion from the regions of backward diffusion.
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Figure 2.3: Diffusivities and the corresponding flux functions for linear diffusion (plotted in

dashed line) and Perona-Malik type nonlinear diffusion (plotted in solid line). For Perona-

Malik diffusivity g(s) = 1
1+s2/λ2 is used with λ = 3.

If we consider the 2D case, the diffusivities are reduced at the image locations where |∇u|2

is large. As |∇u|2 can be interpreted as a measure of edge likelihood, this means that the

amount of smoothing is low along image edges. In particular, the contrast parameter λ spec-

ifies a measure that determines which edge points are to be preserved or blurred during the

diffusion process. Even edges can be sharpened due to the local backward diffusion behavior

as discussed for the 1D case. Since the backward diffusion is a well-known ill-posed process,

this may cause an instability, the so-called staircasing effect, where a piece-wise smooth region

in the original image evolves into many unintuitive piecewise constant regions. Figure 2.4

shows an example where this instability occurs. The unintuitive regions such as the one at

the woman’s face and shoulder are clearly visible in Figure 2.4(b). A possible solution to

this drawback is to use regularized gradients in diffusivity computations [36] (Figure 2.4(c)).

Replacing the diffusivities g(|∇u|) with the regularized ones g(|∇uσ |) leads to the fol-

lowing equation:
∂u

∂t
= ∇ · (g(|∇uσ |)∇u) (2.15)

where uσ = Gσ ∗ u represents a Gaussian-smoothed version of the image. Taking the equiv-

alence of the Gaussian smoothing and the linear scale space into account, ∇uσ can also be

considered as the gradient computed at a specific scale σ > 0.

Some example results of regularized Perona-Malik filtering with different diffusion times

are shown in Figure 2.5 and Figure 2.6. It is evident from these images that the corresponding

smoothing process diminishes noise while retaining or even enhancing edges since it considers
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(a) (b) (c)

Figure 2.4: The staircasing effect. (a) Original noisy image. (b) Perona-Malik diffusion. (c)

Regularized Perona-Malik diffusion.

T = 0 T = 50 T = 100

T = 200 T = 400 T = 800

Figure 2.5: Regularized Perona-Malik results for different diffusion times (λ = 1, σ = 1).

a kind of a priori edge knowledge.

Numerical Implementation

For numerical implementation, we use central differences to approximate the gradient mag-

nitude at a pixel (i, j) in the diffusivity estimation, gi,j = g(|∇ui,j |):

|∇ui,j| =

√(
dui,j

dx

)2

+
(

dui,j

dy

)2

≈

√(
ui+1,j − ui−1,j

2

)2

+
(

ui,j+1 − ui,j−1

2

)2

. (2.16)
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T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 2.6: Regularized Perona-Malik results for different diffusion times (λ = 1, σ = 1).

The Perona-Malik equation (2.11) is first discretized w.r.t. spatial variables. This results

in the following space-discrete equation:

∂u

∂t
=

∂

∂x
(g(|∇u|)ux) +

∂

∂y
(g(|∇u|)uy) ,

dui,j

dt
= gi+ 1

2 ,j · (ui+1,j − ui,j) − gi− 1
2 ,j · (ui,j − ui−1,j)

+ gi,j+ 1
2
· (ui,j+1 − ui,j) − gi,j− 1

2
· (ui,j − ui,j−1) . (2.17)

This discretization scheme requires the diffusivities to be estimated at mid-pixel points (Fig-

ure 2.7). They are simply computed by taking averages of the diffusivities over neighboring

pixels:

gi± 1
2 ,j =

gi±1,j + gi,j

2
, gi,j± 1

2
=

gi,j±1 + gi,j

2
. (2.18)

The time derivative in (2.17) can be discretized using forward difference. This yields an

iterative scheme with an explicit time discretization, where homogeneous Neumann boundary

condition is imposed along the image boundary

uk+1
i,j − uk

i,j

∆t
= gk

i+ 1
2 ,j

· uk
i+1,j + gk

i− 1
2 ,j

· uk
i−1,j + gk

i,j+ 1
2
· uk

i,j+1 + gk
i,j− 1

2
· uk

i,j−1

−
(
gk
i+ 1

2 ,j
+ gk

i− 1
2 ,j

+ gk
i,j+ 1

2
+ gk

i,j− 1
2

)
· uk

i,j (2.19)
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Figure 2.7: Discretization grid used in (2.17).

with ∆t denoting the time step. For the Perona-Malik diffusion, the stability requirement is

again ∆t ≤ 0.25.

2.3 Mumford-Shah (MS) Functional [100]

The formulation of Mumford and Shah [100] is based on a functional minimization via which

a piecewise smooth approximation of a given image and an edge set are to be recovered

simultaneously. In this unified formulation, smoothing and edge detection processes work

jointly to partition an image into segments. The Mumford-Shah (MS) model is:

EMS(u,Γ) = β

∫

Ω
(u − f)2dx + α

∫

Ω\Γ
|∇u|2dx + length(Γ) (2.20)

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• Γ ⊂ Ω is the edge set segmenting Ω,

• u is the piecewise smooth approximation of f ,

• α, β > 0 are the scale space parameters of the model.

The first term in EMS is the data fidelity term which forces u to be close to the original

image f . The next two terms are the generic priors that provide certain knowledge about

the solution. Specifically, the second term, the so-called regularization or smoothness term,

gives preference to piecewise smooth images by penalizing high gradients. Since the integral

is over Ω\Γ, this prior is turned off at image boundaries, and thus it excludes image edges

to be smoothed out. The third term is a penalty term on total edge length which prevents
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the image to be split into many regions. Additionally, it implicitly imposes smoothness of

the boundaries.

Generally, the unknown edge set Γ of a lower dimension makes the minimization of the

MS model very difficult. Hence, in literature several approaches for approximating the MS

model are suggested. In the next subsections, we review two such approaches which are

proposed by Ambrosio and Tortorelli [3], and Chan and Vese [40], respectively.

2.3.1 Ambrosio-Tortorelli (AT) Approximation of the MS Functional [3]

Ambrosio and Tortorelli [3] suggested an approximation for the MS model by following

the Γ convergence framework [24]. The basic idea is to introduce a smooth edge indicator

function v which is more convenient than using the characteristic function χΓ as the edge

indicator. The new function v depends on a parameter ρ, and as ρ → 0, v → 1 − χΓ. That

is, v(x) ≈ 0 if x ∈ Γ and v(x) ≈ 1 otherwise. The result is the functional

EAT (u, v) =
∫

Ω

(
β(u − f)2 + α(v2|∇u|2) +

1
2

(
ρ|∇v|2 +

(1 − v)2

ρ

))
dx . (2.21)

In the Ambrosio-Tortorelli (AT) model, the continuous function v encodes the boundary

information. The value of v at a point can be interpreted as a measure of boundaryness

where the low values indicate the edge points. That is, v ≈ 0 along the boundaries and

grows rapidly away from them. Thus, the function v may be thought as a blurred version

of the edge set. The parameter ρ specifies the level of blurring (Figure 2.8), and as ρ → 0,
1
2

∫
Ω

(
ρ|∇v|2 + (1−v)2

ρ

)
dx approximates the cardinality of the edge set Γ.

Piecewise smooth image u and the edge strength function v are simultaneously computed

→ ρ2

→ ρ1

edge point

ρ1 < ρ2

Figure 2.8: An example 1D edge strength function (1 − v) for two different values of ρ.
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via the solution of the following system of coupled PDEs:
∂u

∂t
= ∇ · (v2∇u) − β

α
(u − f);

∂u

∂n

∣∣∣∣
∂Ω

= 0 , (2.22)

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂Ω

= 0 (2.23)

where ∂Ω denotes the boundary of Ω and n denotes the outer unit normal vector to ∂Ω.

Notice that PDE for each variable can be interpreted as a biased diffusion equation that

minimizes a convex quadratic functional in which the other variable is kept fixed:

Keeping v fixed, (2.22) minimizes a convex quadratic functional given by
∫

Ω

(
αv2|∇u|2 + β(u − f)2

)
dx . (2.24)

The data fidelity term in (2.22) provides a bias that forces u to be close to the original

image f . In the regularization term, the edge strength function v specifies the boundary

points and guides the smoothing accordingly. Since v ≈ 0 along the boundaries, no smoothing

is carried out at the boundary points, thus the edges are preserved.

Keeping u fixed, (2.23) minimizes a convex quadratic functional given by

ρ

2

∫

Ω

(
|∇v|2 +

1 + 2αρ|∇u|2
ρ2

(
v − 1

1 + 2αρ|∇u|2

)2
)

dx . (2.25)

The reciprocal relationship between v and |∇u|2 can be clearly observed in the above func-

tional. It asserts that the function v is nothing but a smoothing of 1
1+2αρ|∇u|2 with a blurring

radius proportional to ρ and reciprocal to |∇u|. Ignoring the smoothness term ρ|∇v|2, which

mildly forces some spatial organization by requiring the edges to be smooth, and by letting

ρ→ 0 [38, 131],

v ≈ 1
1 + 2αρ|∇u|2 . (2.26)

Considering this approximation and the relation between variational regularization and

diffusion equations (Section 2.1), we can interpret (2.22) as a Perona-Malik type nonlinear

diffusion at a specific scale. Replacing v in (2.22) with 1/(1 + 2αρ|∇u|2) yields the PDE

∂u

∂t
= ∇ · (g(|∇u|)∇u) − β

α
(u − f) (2.27)

where g(|∇u|) =
(

1
1+|∇u|2/λ2

)2
with λ2 = 1/2αρ. Thus,

√
1/2αρ can be seen as a contrast

parameter.

Since the parameters α and β define the relative importance of the regularization term,

the scale is determined by the ratio α/β. Keeping the value of α fixed, decreasing the value of

β results in more simplified results (Figure 2.9(b)-(c)). Moreover, the scale space parameters

α and β also define the detail level in segmentation. With the ratio α/β fixed, the level of

detail increases with the increasing α (Figure 2.9(b)-(d)).
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(a)

(b)

(c)

(d)

Figure 2.9: Example segmentation results (u and 1 − v). (a) Source image. (b)-(d) Cor-

responding segmentations obtained with the parameters (b) α = 1, β = 0.01, ρ = 0.01,

(c) α = 1, β = 0.001, ρ = 0.01, and (d) α = 4, β = 0.04, ρ = 0.01, respectively.
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Numerical Implementation

Equations (2.22) and (2.23) can be simultaneously solved for u and v using standard nu-

merical discretization techniques such as finite differences. We first discretize the coupled

system with respect to spatial variables. This leads to the following space-discrete system of

equations:

dui,j

dt
= v2

i+ 1
2 ,j

· (ui+1,j − ui,j) − v2
i− 1

2 ,j
· (ui,j − ui−1,j)

+ v2
i,j+ 1

2
· (ui,j+1 − ui,j) − v2

i,j− 1
2
· (ui,j − ui,j−1)

− β

α
(ui,j − fi,j) , (2.28)

dvi,j

dt
= vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j

− 2α|∇ui,j |2vi,j

ρ
− (vi,j − 1)

ρ2
. (2.29)

As in the discretization of the Perona-Malik equation, the diffusivities represented by

the edge strength function v at mid-pixel points can be computed by taking averages over

neighboring pixels:

vi± 1
2
,j =

vi±1,j + vi,j

2
, vi,j± 1

2
=

vi,j±1 + vi,j

2
. (2.30)

The time derivatives in (2.28) and (2.29) can be discretized using forward differences,

where regularization terms and the bias terms on the right hand side of each equation are

evaluated at times k and k + 1, respectively.

uk+1
i,j − uk

i,j

∆t
=

(
vk
i+ 1

2 ,j

)2
· uk

i+1,j +
(
vk
i− 1

2 ,j

)2
· uk

i−1,j +
(
vk
i,j+ 1

2

)2
· uk

i,j+1 +
(
vk
i,j− 1

2

)2
· uk

i,j−1

−
(
vk
i+ 1

2 ,j
+ vk

i− 1
2 ,j

+ vk
i,j+ 1

2
+ vk

i,j− 1
2

)
· uk

i,j −
β

α

(
uk+1

i,j − fi,j

)
, (2.31)

vk+1
i,j − vk

i,j

∆t
= vk

i+1,j + vk
i−1,j + vk

i,j+1 + vk
i,j−1 − 4vk

i,j

−
α

((
uk

i+1,j − uk
i−1,j

)2
+
(
uk

i,j+1 − uk
i,j−1

)2
)

vk+1
i,j

2ρ
−

(
vk+1
i,j − 1

)

ρ2
(2.32)

where ∆t denotes the time step.

Although the suggested scheme is neither fully explicit nor fully implicit, it still allows us

to compute uk+1 and vk+1 by using forward recursion as in an explicit scheme. A numerical

stopping criteria for the iterative scheme can be defined in the sense that the rate of change

of u is less than a threshold. The corresponding minimization procedure is summarized in

Algorithm 1.
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Algorithm 1 Minimization of the Ambrosio-Tortorelli Model
1: Initialize the variables with u0 = f , v0 = 1

1+2αρ|∇u0|2

2: for k = 0 to kmax do

3: Solve (2.31) for uk+1 using &
√

2α/β' steps

4: if |uk+1 − uk| < ε|uk| then

5: stop iterations

6: end if

7: Solve (2.32) for vk+1

8: end for

2.3.2 Chan-Vese (CV) Approximation of the MS Functional [40]

Chan and Vese [40] proposed an approximation for the MS segmentation model by following

the level-set based curve evolution formulation [106, 128]. Level sets provide an implicit

contour representation where an evolving curve is represented with the zero-level line of a

level set function (Figure 2.10). The basic aim of Chan and Vese (CV) model is to partition

a given image into two regions that are likely to correspond object and background regions

by embedding the object boundary by the zero-level curve of a 3D level set function.

Let φ be a level set function. Then, the Chan-Vese functional is

ECV (c1, c2, φ) = λ1

∫

Ω
(f−c1)2H(φ)dx+λ2

∫

Ω
(f−c2)2(1−H(φ))dx+µ

∫

Ω
|∇H(φ)|dx (2.33)

where λ1, λ2 > 0 and µ ≥ 0 are fixed parameters. The length parameter µ can be interpreted

as a scale parameter since it determines the relative importance of the length term. The

possibility of detecting smaller objects/regions increases with decreasing µ.

Figure 2.10: A curve can be represented as the zero-level line of a level set function (image

taken from [40]).
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The model represents the segmented image with the variables c1, c2 and H(φ), where

H(φ) denotes the Heaviside function of the level set function φ defined by

H(z) =





1 if z ≥ 0

0 if z < 0 .
(2.34)

The Heaviside function of the level set function, H(φ), specifies object and background

regions in the observed image f , while the last term in (2.33),
∫
Ω |∇H(φ)|, expresses the

length of the object boundary. On top of that, the scalars c1 and c2 denote the average

gray values of object and background regions indicated by φ ≥ 0 and φ < 0, respectively.

Thus, the CV model can be seen as a two-phase piecewise constant approximation of the

MS model, which can theoretically be obtained by letting the weight α of the smoothness

term in (2.20) tend to infinity, and forcing a two-region segmentation.

To segment a given image, the functional (2.33) needs to be minimized with respect to

c1, c2, and φ. Keeping φ fixed, the average gray values c1 and c2 can be easily estimated by

c1 =
∫
Ω f(x)H(φ(x))dx∫

Ω H(φ(x))dx
, (2.35)

c2 =
∫
Ω f(x)(1 − H(φ(x)))dx∫

Ω(1 − H(φ(x)))dx
. (2.36)

Keeping c1 and c2 fixed and using the calculus of variations for the functional (2.33), the

gradient descent equation for the evolution of φ is derived as

∂φ

∂t
= δ(φ)

[
µ ∇ ·

(
∇φ
|∇φ|

)
− λ1(f − c1)2 + λ2(f − c2)2

]
. (2.37)

Figure 2.11 illustrates segmentation of a noisy image that contains objects of different

shapes and sizes. We initialize the level set function φ with φ0 = −
√

(x − 100)2 + (y − 100)2+

90. As the zero-level line of the evolving level set function φ is attracted to object bound-

aries, a more accurate piecewise constant approximations of the original image f is recovered.

Although some of the objects in the image have holes, they can be automatically detected

by the CV model without considering additional curves since the level set formulation allows

change of topology.

Numerical Implementation

In the numerical approximation of the CV model, generally, a regularized Heaviside function

is used. For the remainder of this thesis, the following regularization is considered:

Hε(z) =
1
2

(
1 +

2
π

arctan
(z

ε

))
, (2.38)

δε(z) =
dHε(z)

dz
=

1
π

ε

ε2 + z2
. (2.39)
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Figure 2.11: Example segmentation results (evolving contour φ superimposed on the original

image f and the corresponding piecewise constant approximations of f). The parameters

and the initial level set function are chosen as λ1 = λ2 = 1, µ = 0.5 · 2552, ε = 1, and

φ0 = −
√

(x − 100)2 + (y − 100)2 + 90.
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The evolution equation of φ (2.37) can be discretized by using standard finite differences

as

φk+1
i,j − φk

i,j

∆t
= δ(φk

i,j)



µ∆x
− ·



 ∆x
+φ

k+1
i,j√

(∆x
+φ

k
i,j)2 + (φk

i,j+1 − φk
i,j−1)2/4





+ µ∆y
− ·



 ∆y
+φ

k+1
i,j√

(φk
i+1,j − φk

i−1,j)2/4 + (∆y
+φ

k
i,j)2





− λ1

(
fi,j − c1(φk)

)2
+ λ2

(
fi,j − c2(φk)

)2
]

(2.40)

where (i, j) denotes the pixel position, ∆t is the time step, and forward and backward

differences are defined as

∆x
−φi,j = φi,j − φi−1,j, ∆x

+φi,j = φi+1,j − φi,j ,

∆y
−φi,j = φi,j − φi,j−1, ∆y

+φi,j = φi,j+1 − φi,j.

The minimization procedure is summarized in Algorithm 2. Keeping φ fixed, first the

average gray values of object and background regions c1 and c2 are estimated. Next, the

level set function φ is evolved according to (2.40). A numerical stopping criteria can be

defined in the sense that the rate of change of φ or the overall energy (2.33) is less than a

threshold.

Algorithm 2 Minimization of the Chan-Vese Model
1: Initialize the level set function with φ0 = φ0

2: for k = 0 to kmax do

3: Estimate c1(φk) and c2(φk) using (2.35) and (2.36), respectively

4: Solve (2.40) for φk+1

5: Check whether a numerical stopping criteria on φ is reached

6: if it is reached then

7: stop iterations

8: end if

9: end for
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2.4 Total Variation (TV) Regularization [122]

Rudin et al. [122] formulated image restoration as minimization of the total variation (TV)

of a given image under certain assumptions on the noise. The Total Variation (TV) regular-

ization model is generally defined as:

ETV (u) =
∫

Ω

(
1
2
(u − f)2 + α|∇u|

)
dx (2.41)

where

• Ω ⊂ R2 is connected, bounded, open subset representing the image domain,

• f is an image defined on Ω,

• u is the restored version of g,

• α > 0 is a scalar.

The gradient descent equation for (2.41) is defined by

∂u

∂t
= ∇ ·

(
∇u

|∇u|

)
− 1
α

(u − f);
∂u

∂n

∣∣∣∣
∂Ω

= 0 . (2.42)

Since the value of α specifies the relative importance of the fidelity term, it can be

interpreted as a scale parameter that determines the level of smoothing. In Figure 2.12, we

illustrate the role of this parameter. The restored images are given in Figure 2.12(b)-(d).

As it can be clearly seen, level of smoothing increases with increasing α.

In the original formulation of Rudin et al., the observed image f was assumed to be

degraded by additive Gaussian noise with zero mean and known variance σ2. Hence, in

order to restore a given image, they propose to solve the constrained optimization problem

min
u

∫

Ω
|∇u|dx (2.43)

subject to ∫

Ω
(u − f)2dx = σ2 . (2.44)

When TV regularization is defined as a constrained optimization problem, 1
α can be consid-

ered as a Lagrange multiplier, which has to be determined by taking the given constraint

into account.

In Section 2.1, we reviewed the relation between Tikhonov regularization and linear

diffusion. In a similar manner, we can associate TV regularization with a nonlinear diffusion

filter, the so-called TV flow [4, 52]. Ignoring the fidelity term in (2.42) leads to the PDE

∂u

∂t
= ∇ · (g(|∇u|)∇u) (2.45)
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(a) (b)

Figure 2.12: Example restoration results. (a) Source image. (b)-(d) Corresponding segmen-

tations obtained with (b) α = 50, (c) α = 100, and (d) α = 200.

with u0 = f and the diffusivity function g(|∇u|) = 1
|∇u| . Notice that this diffusivity function

has no additional contrast parameter as compared with the Perona-Malik diffusivities in

(2.12) and (2.13). Figure 2.13 and Figure 2.14 depict TV scale space examples sampled at

different diffusion times for two different images. It is evident from these images that the

corresponding smoothing process yields segmentation-like, piecewise constant images.

Numerical Implementation

Like the models that we discussed in the previous sections of this chapter, the evolution

equation of u (2.42) can be discretized by using standard finite differences. An important

point is that the solution of TV regularization or equivalently TV flow leads to singular dif-

fusivities as shown in (2.45). In numerical implementations based on standard discretization,

this leads to stability problems as the image gradient tends to zero. A common solution to

this problem is to add a small positive constant ε to image gradients.

After ε-regularization, the space-discrete version of (2.42) can be written as:
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T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 2.13: TV flow results for different diffusion times.

T = 0 T = 25 T = 50

T = 100 T = 200 T = 400

Figure 2.14: TV flow results for different diffusion times.

∂u

∂t
=

∂

∂x

(
ux√

|∇u|2 + ε2

)
+

∂

∂y

(
uy√

|∇u|2 + ε2

)
− 1
α

(u − f)
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=
uxx

(
u2

y + ε2
)
− 2uxuyuxy + uyy

(
u2

x + ε2
)

(
u2

x + u2
y + ε2

) 3
2

− 1
α

(u − f) ,

dui,j

dt
=

d2ui,j

dx2

((
dui,j

dy

)2
+ ε2

)
− 2

(
dui,j

dx

)(
dui,j

dy

)(
d2ui,j

dxdy

)
+ d2ui,j

dy2

((
dui,j

dx

)2
+ ε2

)

((
dui,j

dx

)2
+
(

dui,j

dy

)2
+ ε2

) 3
2

− 1
α

(ui,j − fi,j) (2.46)

where d2ui,j

dx2 , d2ui,j

dy2 and dui,j

dx , dui,j

dy can be approximated as in (2.4) and (2.16), respectively

and
d2ui,j

dxdy
≈ ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4
. (2.47)

When explicit time discretization is employed, numerical solution to (2.46) can be com-

puted by the following iterative scheme, where homogeneous Neumann boundary condition

is imposed along the image boundary:

uk+1
i,j − uk

i,j

∆t
=




(

uk
i+1,j − uk

i−1,j

2

)2

+

(
uk

i,j+1 − uk
i,j−1

2

)2

+ ε2




− 3

2

·
[ (

uk
i+1,j − 2uk

i,j + uk
i−1,j

)



(

uk
i,j+1 − uk

i,j−1

2

)2

+ ε2





− 1
8

(
uk

i+1,j − uk
i−1,j

)(
uk

i,j+1 − uk
i,j−1

)

(
uk

i+1,j+1 − uk
i+1,j−1 − uk

i−1,j+1 + uk
i−1,j−1

)

+
(
uk

i,j+1 − 2uk
i,j + uk

i,j−1

)



(

uk
i+1,j − uk

i−1,j

2

)2

+ ε2




]

− 1
α

(
uk

i,j − fi,j

)
(2.48)

where ∆t denotes the time step. ε-regularization requires the stability condition ∆t ≤ 0.25ε,

and thus a sufficiently large number of iterations is needed for small values of ε.

2.5 A Common Framework for Curve Evolution, Segmentation

and Anisotropic Diffusion [131]

In Section 2.3.1, we reviewed the Ambrosio-Tortorelli approximation of the Mumford-Shah

functional. The key idea of this approximation is to utilize a continuous edge strength

function v. The value of v approaches to 0 at the object boundaries and grows rapidly as

image gradients become small. In [131], Shah suggested a modification to the Ambrosio-

Tortorelli model (2.21), where the quadratic cost functions in both the data fidelity and the
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smoothing terms are replaced with L1-functions. The modified energy is:

ES(u, v) =
∫

Ω

(
β |u − f | + α v2|∇u| + 1

2

(
ρ|∇v|2 +

(1 − v)2

ρ

))
dx . (2.49)

As ρ→ 0, this energy functional converges to the following functional:

ES2(u,Γ) =
β

α

∫

Ω
|u − f |dx +

∫

Ω\Γ
|∇u|dx +

∫

Γ

Ju

1 + αJu
ds (2.50)

with Ju = |u+ − u−| indicating the jump in u across Γ. u+ and u− denote intensity values

on two sides of Γ, respectively, and thus each boundary point is weighted according to its

level of contrast.

Minimizing ES corresponds to the gradient descent equations:

∂u

∂t
= 2∇v · ∇u + v|∇u| curv(u) − β

αv
|∇u|(u − f)

|u − f | ;
∂u

∂n

∣∣∣∣
∂Ω

= 0 , (2.51)

∂v

∂t
= ∇2v − 2α|∇u|v

ρ
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂Ω

= 0 (2.52)

with curv(u) = ∇ ·
(

∇u
|∇u|

)
.

The second equation (2.52) is very similar to the evolution equation of v (2.23) in the

AT model; only |∇u|2 is replaced with |∇u|. The determining factor of the model is the

new evolution equation of u (2.51). Replacing L2-norms in both the data fidelity and the

smoothness terms by their L1-norms generates shocks in u and thus object boundaries are

recovered as actual discontinuities. As it can be clearly seen from Figure 2.15, the suggested

smoothing process of u gives rise to more cartoon-like, piecewise constant images (these

results are obtained by using a half-quadratic approximation of Shah’s modified energy

proposed in [76]). However, the robust norms utilized attract the image towards the cartoon

limit and catch unintuitive regions such as the one at the man’s right shoulder and the ones

on the floor. It is important to remark that the effect of the scale space parameters α and

β on segmentation results is similar compared to the one in AT model (cf. Figure 2.9). The

amount of smoothing is determined by the ratio α/β, and increasing the value of α while

keeping α/β fixed leads to more detailed segmentations.

One of the underlying assumptions of the original MS model and AT approximation is

that the filtered image varies from the observed image by Gaussian noise. Hence, when a

source image is corrupted by impulse noise, the corresponding smoothing process produces

inadequate results. However, replacing the L2-norm with the L1 in the modified model

yields to a robust data fidelity term that can cope with impulse noise. For example, consider

the noisy image given in Figure 2.16(a), which is degraded with 5% salt and pepper noise.
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(a)

(b)

(c)

(d)

Figure 2.15: Example segmentation results (u and 1 − v). (a) Source image. (b)-(d) Corre-

sponding segmentations obtained with parameters (b) α = 1, β = 0.01, ρ = 0.01, (c) α = 1,

β = 0.001, ρ = 0.01, and (d) α = 4, β = 0.04, ρ = 0.01.
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(a) (b) (c)

Figure 2.16: Segmentation of a noisy image degraded with 5% salt and pepper noise.

(a) Source image. (b) Reconstruction using AT model. (c) Reconstruction using Shah’s

modified functional (both results are obtained with α = 1, β = 0.01, ρ = 0.01).

Figure 2.16(b) and (c) depict the outcomes of the AT approximation and the modified model,

respectively. As they demonstrate, the modified model eliminates the impulse noise during

smoothing, however, noise still present in the AT result.

2.6 Edge Enhancing Diffusion [153]

The nonlinear diffusion model proposed by Perona and Malik employs a scalar-valued diffu-

sivity function to guide the smoothing process as summarized in Section 2.2. The diffusivities

are reduced at the image locations where the magnitude of image gradient |∇u|2 is large,

and as a result, the edges are preserved or even enhanced. In [153], Weickert suggested an

alternative approach that additionally takes direction of the image gradients into account.

The suggested model is an anisotropic nonlinear diffusion model with better edge enhancing

capabilities.

In general, any anisotropic nonlinear diffusion can be described by the equation

∂u

∂t
= ∇ · (D(∇u)∇u) (2.53)

where u is the smoothed image that is initialized with the input image f (i.e. u0(x) = f(x)),

and D represents a matrix-valued diffusion tensor that describes the smoothing directions

and the corresponding diffusivities. One can easily observe that for linear diffusion the

diffusion tensor can be defined as D(∇u) = I, which results in a constant diffusion coefficient

for all image points in all directions. Similarly, for Perona-Malik type nonlinear diffusion,

D(∇u) = g(|∇uσ |)I. Such a choice reduces the amount of smoothing at image edges, but
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in an equal amount in all directions. In actual anisotropic setting, the diffusion tensor D is

defined as a function of the structure tensor given by

J(∇u) = ∇u∇uT =



 u2
x uxuy

uxuy u2
y



 . (2.54)

The structure tensor J(∇u) can be interpreted as an image feature describing the local

orientation information. It has an orthonormal basis of eigenvectors v1 and v2 with v1 ‖ ∇u

and v2 ⊥ ∇u, and the corresponding eigenvalues λ1 = |∇u|2 and λ2 = 0. It is impor-

tant to note that noise significantly affects the tensor estimation. Thus the given image

u is usually convolved with a Gaussian kernel Gσ with a relatively small standard devia-

tion σ as a presmoothing step and the structure tensor is computed accordingly by using

∇uσ = ∇(Gσ ∗ u) instead of ∇u.

The main idea behind edge enhancing diffusion is to use the structure tensor as an

image/edge descriptor to construct a diffusion tensor that reduces the amount of smoothing

across the edges while smoothing is still carried out along the edges. In order to perform this,

Weickert proposed to utilize same orthonormal basis of eigenvectors v1 ‖ ∇uσ and v2 ⊥ ∇uσ

estimated from the structure tensor J(∇uσ) with the following choice of eigenvalues satisfying
λ1(|∇uσ|)
λ2(|∇uσ|) → 0 for |∇uσ| → ∞

λ1(|∇uσ|) =





1 if |∇uσ| = 0

1 − exp
(
− 3.31488

(|∇uσ|/λ)8

)
otherwise,

(2.55)

λ2(|∇uσ|) = 1 (2.56)

where λ denotes the contrast parameter.

Such a choice preserves and enhances image edges by reducing the diffusivity λ1 per-

pendicular to edges for sufficiently large values of |∇uσ|. Specifically, the diffusion tensor is

given by the formula

D =



 (uσ)x − (uσ)y
(uσ)y (uσ)x



 ·



 λ1(|∇uσ|) 0

0 λ2(|∇uσ|)



 ·



 (uσ)x − (uσ)y
(uσ)y (uσ)x




−1

. (2.57)

Figure 2.17 and Figure 2.18 illustrate example results of edge enhancing diffusion filter

for different diffusion times. As it can be clearly seen from these images, the corresponding

smoothing process diminishes noise and fine image details while retaining and even enhancing

edges as in the Perona-Malik type nonlinear diffusion. On the other hand, the corners become

more rounded in the anisotropic model compared to the Perona-Malik filter (cf. Figure 2.5

and Figure 2.6) since edge enhancing diffusion allows smoothing along edges while preventing
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Figure 2.17: Edge enhancing diffusion results for different diffusion times (λ = 2, σ = 1).

T = 0 T = 100 T = 200

T = 400 T = 800 T = 1600

Figure 2.18: Edge enhancing diffusion results for different diffusion times (λ = 1.8, σ = 1).

34



smoothing across them. As discussed in [154], this causes a slight shrinking effect in the

image structures, which eliminates fine or thin structures better than the Perona-Malik

model. Thus, through this process one can capture semantically more correct image regions.

2.7 Discussion

All of the studies reviewed here offer elegant solutions for image segmentation and restoration

problems as they utilize a unified approach that combines smoothing and edge detection.

Variational methods formulate the problems in terms of energy minimization where the

functional to be minimized depends on a global criterion. Typically, these functionals include

regularization terms, such as terms enforcing smoothness of image regions or continuity of

contours, that bias the solutions towards the expected results. One can minimize these

functionals by solving the corresponding Euler-Lagrange equations. The nonlinear diffusion

models, on the other hand, do not bother with devising such energies, and function directly

on the PDEs.

As we discussed in Section 2.1, there is a close relationship between these two approaches

as the Euler-Lagrange equations obtained from the variational formulations can be associated

with nonlinear diffusion models. The local interactions between the image points, which

are governed by the diffusion models, give rise to solutions that are consistent with the

global criterion considered even though the computations are carried out in a local fashion.

The critical point in these studies is that as the models get more and more complicated,

implementation of the numerics becomes much more challenging.

It is important to note that the prior information included in the regularization terms of

these models is very generic. This usually restricts the class of images to be segmented (e.g.

the Mumford-Shah model enforces the segmented image to be piecewise smooth). One way

to extend these models is to take additional image features other than intensity information

into account. For instance, in [2, 123], the authors suggested to use Gabor filter responses

to describe the input images, resulting in formulations that deal with textured images.
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CHAPTER 3

PRIOR-GUIDED SEGMENTATION

In Chapter 2, important diffusion models and variational regularization frameworks were

reviewed. Most of these works use very generic prior knowledge such as smoothness of

image regions and continuity of contours to bias the segmentation. For natural images,

these generic priors generally yield poor results due to the ambiguities in low-level visual

cues. The only way to resolve these ambiguities is to consider high-level prior information.

Interestingly, in the last decade, there is an increasing number of works that employ prior

shape knowledge of objects within a given class to guide the segmentation process (e.g.

[22, 44, 73, 87, 89, 105, 116, 120, 135, 148]). In this chapter, some of these important studies

are reviewed in two parts.

Although the main focus of this thesis is on variational formulations, the first part of

this chapter is dedicated to the studies that are formulated within a probabilistic framework.

These studies are mainly proposed for detecting or recognizing objects within a given class,

yet they also provide simultaneous segmentation results.

The studies that we survey in the remaining part of this chapter are influential examples

of variational frameworks that integrate low-level image features with a priori information

about the shape of an object of interest. Main goal of these frameworks is to delineate

actual boundaries of the objects in the presence of corrupting influences such as noise and

partial occlusion. The advantages and disadvantages of these formulations are compared

and contrasted at the end of the chapter.
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3.1 Probabilistic Formulations

Objects within a specific class have a large variability in their shape and appearance that

makes segmenting out them in images a very difficult task. In the following sections, we

will review some important examples of prior shape based segmentation methods that aim

to solve this problem by utilizing probabilistic formulations. As stated before, these studies

are mainly proposed for detecting objects from images. However, the detection results also

provide a way to obtain simultaneous segmentation of objects. The key idea behind all these

methods is to learn some kind of shape and appearance models from a set training images

and to use these models in recognition and segmentation.

3.1.1 The Work of Borenstein and Ullman [22]

The work of Borenstein and Ullman is one of the earliest methods proposed in this domain.

Borenstein and Ullman specifically aimed to obtain top-down segmentation of an object

within a given class. The essential difference between their method and the studies that are

summarized in the subsequent sections is that their approach does not include any object

recognition procedure.

In their method, they use image patches (or fragments) together with their figure-ground

labels to model the class-specific object knowledge. Segmenting a novel input image is

obtained by following an approach similar to solving a jigsaw-puzzle. From a set of image

patches representing the given class, the ones that constitute a consistent cover of the image

data are tried to be grouped together. The method also defines an object vs. background

separation since the figure-ground segmentations of the patches are provided in advance.

Figure 3.1 presents an overview of this procedure.

The segmentation method can be divided into two main stages: a learning phase where

image patches representing a specific object class are extracted, and an actual segmentation

phase which uses these patches to partition a novel image into two as figure and ground. In

the learning phase, the training images are divided into two as class and non-class images

and candidate image patches of various sizes are extracted from the class images. Then, an

optimal set of class-specific image patches, which are more common in class images compared

to non-class images, are selected by considering a similarity measure based on the normalized

correlation. These patches are the ones that best describe the given class when the variability

of local shape and appearance is taken into account. During the learning phase, a figure-

ground label is also stored for each image patch. While these labels are directly extracted
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Figure 3.1: Overview of the class-specific segmentation (image taken from [22]).

from the segmented training examples in [22], Borenstein and Ullman suggested to learn

them automatically in their former work [23].

In the segmentation phase, the class-specific segmentation is obtained by using a greedy

algorithm that estimates an optimal cover of the novel image with the patches extracted

in the learning phase. Among all possible covers, this algorithm searches for the one that

maximizes a function that measures the individual match quality of the patches with the

novel image, the local consistency of the cover, and the reliability of the assembled patches.

The main issue with this top-down approach is that the resulting segmentation is defined

only by the figure-ground labels of the image patches that participate the estimated optimal

cover. Thus, this process generally yields approximate (inaccurate) object boundaries that

are not fully consistent with the image data. In a recent work [21], the version of this method

that automatically learns the figure-ground labels of the patches [23] is combined with a

bottom-up segmentation algorithm [134]. As reported in [21], while this combined approach

increases the quality of the segmentations, it does not completely solve this problem.

3.1.2 The Work of Leibe et al. [87, 88]

The method proposed by Leibe et al. offers a combined approach to object recognition and

segmentation. As in the work of Borenstein and Ullman, their approach uses a patch-based

idea that is composed of two stages: learning a class-specific object model from a set of

training images, and the following object recognition procedure.
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The initial part of the learning phase consists of constructing a codebook of local ap-

pearances of a given object class. This is performed by first applying an interest point

detector to training images and extracting the most informative regions from each image.

Subsequent to this, all extracted patches are represented by using a local descriptor, and

then the (visually) similar ones are grouped together. The grouping process is based on

an unsupervised clustering method called the agglomerative clustering. Next, each cluster

is described by its mean, yielding a dense set of local appearances. These resulting cluster

centers correspond to the local structures appear on objects within the given class and define

the codebook entries. In the final part of the learning phase, these codebook entries are used

to built a class-specific object model called the Implicit Shape Model. This model includes

both the extracted codebook entries (local appearances), and the information about where

they may occur on the object by means of non-parametric spatial probability distributions

(one for each entry). These distributions are estimated by performing an additional pass

over the training images and comparing every codebook entry with the extracted local image

patches around the detected interest points. If the similarity between an entry and an image

patch is above a threshold, the position information is stored in the shape model relative

to the object center. The whole learning procedure is illustrated in Figure 3.2. To obtain

a simultaneous class-specific top-down segmentation, this shape model can be enriched by

additionally keeping the figure-ground segmentations of the codebook entries.

After the object shape model is constructed, when a test image is provided, the recogni-

tion phase carries out the following steps. First, an interest point detector is applied to the

test image and local image patches are extracted around the points detected. Then, these

patches are compared to the entries in the codebook. For every match having a similarity

value above a threshold, the corresponding codebook entry provides a probabilistic vote for

potential location of the object center by taking the learned spatial probability distribution

Figure 3.2: Overview of the learning procedure (image taken from [88]).
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into account. Next, the votes are collected by using a Generalized Hough Transform and

the local maxima in the vote space are estimated using the Mean-Shift mode estimation

algorithm. Every local maximum point provides an object hypothesis, thus corresponds to

an initial recognition result. The object hypotheses can be refined by backprojecting the

participating votes to the image and considering the nearby image patches that are excluded

by the interest point detector. More importantly, if the figure-ground segmentations of the

codebook entries are available, a joint top-down segmentation result can be obtained. The

key idea is to build pixel-wise probabilistic segmentation maps for both the object and the

background, where the probability values are estimated by taking the weighted averages

of the figure-ground labels coming from the activated codebook entries containing the cor-

responding pixel. In [87, 88], Leibe et al. also showed that it is possible to improve the

initial recognition results by using the top-down segmentation result. For this, they used

the obtained figure-ground knowledge to eliminate the ambiguous information due to the

background pixels.

Figure 3.3 presents an overview of the summarized joint class-specific recognition and

segmentation procedure. As it can be seen from the example provided in the figure, the

recognition method proposed by Leibe et al. provides a significant advantage as it can cope

with multiple objects. On the other hand, the joint segmentation procedure results in fuzzy

object boundaries that are not completely consistent with the image data as in the work of

Borenstein and Ullman.

Figure 3.3: Overview of the joint class-specific recognition and segmentation procedure (im-

age taken from [88]).
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3.1.3 The Works of Shotton et al. [135] and Opelt et al. [105]

We prefer to review these two prior shape based methods within the same section since the

motivations behind them are very closely related. While the works that we summarized

in the previous sections use local image regions (patches) to represent class-specific object

knowledge, the ones suggested by Shotton et al. and Opelt et al. employ local contour

information for this purpose. The main intention of the authors in both works is to detect

objects in images. Although this is the case, the detection results provide some kind of joint-

segmentation results. Both methods include learning and testing stages. In the learning

stage, a class-specific object model/detector that relies on local contour features is learned

from a set of training images containing class and non-class images. The testing phase uses

the learned model to recognize objects in novel images.

In [135], the learning process is performed in two stages in a semi-supervised manner.

In the initial phase, a moderate set of class images containing reference figure-ground seg-

mentations is used to construct a codebook of local contours. The local contours are simply

extracted from the edge maps of randomly selected local regions on the segmentation masks.

Each entry in the codebook corresponds to a local contour and its spatial position relative

to the object center. Next, a location-specific classifier, which is modeled as weighted sum-

mation of the responses of a number of codebook entries, is learned from class and non-class

images by using a boosting algorithm. The algorithm not only selects the most informative

local contours within the codebook entries, but also estimates the optimal parameters for the

classifier. Given a novel image, detecting an object corresponds to computing a classification

map using the learned classifier. Simply, the recognition process consists of the following

steps. First, the edge map of the image is extracted. Then, each local contour participating

the learned classifier is matched with the extracted image edges using the oriented chamfer

matching and the ones that are activated are used to estimate possible locations for the

object center. This process can be performed by computing the total response of the learned

classifier for every hypothesis which results in a classification map where each point in the

map gives a measure of the object presence. In the final phase of the learning stage, the

learned classifier is evaluated on a set of unlabeled class images, and the set of non-class

images used in the initial learning phase. The false detections in the non-class images and

the detection results in the unlabeled training data are then used to train a more accurate

classifier. Some sample recognition results are presented in Figure 3.4. As seen in the figure,

the local contour fragments that are involved in detection provide approximate boundaries
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Figure 3.4: Sample results of the recognition method of Shotton et al. (image taken

from [135]).

for the objects.

The learning phase of the object detection method suggested by Opelt et al. [105] can

be divided into two parts. In the first part, a codebook of local contour fragments of a

given class is constructed from a set of training images where every object is specified by

a bounding box, and a set of labeled validation images where the object centers are given

for the class images. First, the Canny edge detector is applied to the images to extract the

edge information. Next, starting from a random seed along the extracted boundaries within

the bounding boxes, the candidate local contour fragments of various sizes are extracted

from the training images and associated with the corresponding object centers. For each

candidate, a cost function is used to measure how well the local contour fragment matches

with the validation set (using the chamfer distance) and how consistent the relative object

center information is with respect to the true object centers given for class images in the

validation set. Subsequent to this, the optimal ones are selected and grouped together

using agglomerative clustering. Each cluster is described by its medoid (the local contour

fragment whose average distance to all the fragments in the cluster is minimal) and an

optimized codebook is built. In the final part of the learning phase, Adaboost is utilized

to learn a strong detector by combining several weak detectors that are formed using the

constructed codebook. Each weak detector is a composition of 2-3 local contour fragments

and is activated when (1) the participating fragments are matched with the image edges, and

(2) the hypotheses about the object center are consistent and in agreement with the true

object centers that are specified for the class images. Once the strong detector is learned,

the recognition phase consists of the following steps. First, the image edges of the novel
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Figure 3.5: The overview of the contour-based recognition procedure proposed by Opelt et

al. (image taken from [105]).

image are detected. Then, the local contours participating the weak detectors that form the

strong detector are matched to this edge map. Each weak detector provides a probabilistic

vote for the potential location of the object center. These votes are then collected by using

a Generalized Hough Transform and the local maxima in the vote space are estimated using

the Mean-Shift mode estimation algorithm as in the work of Leibe et al. [87, 88]. Every local

maximum point above a certain threshold specifies an object hypothesis. Opelt et al. also

showed that an approximate segmentation can be obtained by backprojecting the codebook

entries that take part in these object hypotheses to the image plane. An overview of the joint

recognition and segmentation process is presented in Figure 3.5 using some sample images.

3.2 Variational Formulations

In the following sections, we will briefly summarize important examples of the variational

frameworks that integrates low-level image features with a priori information about the

shape of an object of interest. As stated before, the main goal of these frameworks is

to accurately delineate the actual boundaries of objects when corrupting influences due to

missing regions, partial occlusion and noise appear in images. This is a very challenging

task since the objects within a given class have a large variability in their shape as well. In

general, the frameworks within this domain differ in terms of how they represent the prior

shape knowledge, the boundary detection rule that they are based on, and how they extend
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it to allow the influence of the shape prior.

3.2.1 The Work of Leventon et al. [89]

The work of Leventon et al. is one of the pioneering works that use prior shape knowledge

within a variational formulation. It extends a level set implementation of the geodesic

active contours model [35, 77] in such a way that the segmenting curve evolves according

to two competing forces dictated by the image and the prior shape model, respectively. For

this, Leventon et al. incorporated an additional prior shape term into the curve evolution

equation. While the data-driven term locally attracts the curve towards the object boundary

by taking the curvature and the image gradients into account, the additional term globally

controls its shape.

In [89], the prior shape model is constructed by using a moderate set of training curves,

which correspond to the various appearances of a shape of interest, as follows. First, each

training curve is embedded as zero-level line of a higher dimensional surface by using signed

distance function (Figure 3.6). Following that, a Principal Component Analysis (PCA) is

performed on these distance surfaces. This process yields a linear low-dimensional space

where a shape within the given class can be represented in terms of the mean distance

surface and the coefficients of the estimated principal components (Figure 3.7). As reported

in [89], in order to capture meaningful statistics (true variations in shape) within this space,

it is important to align the training data before the analysis.

The level-set based segmentation approach uses an implicit contour representation where

an evolving curve is represented with the zero-level line of a higher dimensional surface (Sec-

Figure 3.6: A prior shape model is constructed by utilizing distance surfaces with their

zero-level lines representing the training curves (image taken from [89]).
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Figure 3.7: The mean shape and three principal components describing the shape variability

(image taken from [89]).

tion 2.3.2). Partitioning an image into two regions (object vs. background) is performed by

iterating between two processes. The first process is the estimation of the shape parame-

ters (the coefficients of the principal components) and the rigid pose parameters of the most

probable shape. The prior shape information and the image information are utilized together

with the evolving shape (the current level set function) to determine a maximum a posteriori

(MAP) estimate. The second process is the main curve evolution process, which is derived

by adding a prior shape term to the evolution equation of geodesic active contours model.

This additional term imposes prior knowledge about the shape of the object of interest and

provides a global force that evolves the level set function towards the MAP estimate. As

illustrated in [89], these alternating processes result in more accurate segmentation results

since the shape of the segmenting curve is enforced by the prior shape model. The critical

point is that this model describes only the global variations of a class of shapes.

3.2.2 The Work of Tsai et al. [148]

This study presents a segmentation method where the figure-ground separation is guided

by a prior shape model. As in most of the works that employ prior shape knowledge, the

segmentation method is composed of two main phases: a training phase where the prior

shape model is constructed, and an actual segmentation phase where an image is partitioned

into two as object vs. background by using the learned model. Figure 3.8 presents an
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Figure 3.8: The overview of the segmentation method proposed by Tsai et al. (image taken

from [148]).

overview of this method.

In their work, Tsai et al. represented the prior shape knowledge by adopting the linear

shape model that we summarized in Section 3.2.1. Thus, the training phase of the method

is nearly identical to the one proposed in [89]. The model is constructed by using a set

of binary images that contains various appearances of a shape of interest. As discussed in

Section 3.2.1, aligning the training data before the construction process is essential to obtain

a more accurate shape model. For this, Tsai et al. suggested a shape alignment algorithm,

formulated as an energy minimization problem, that removes the shape variabilities due to

differences in pose. Once the training shapes are aligned using the corresponding gradient

descent equations, a signed distance surface is estimated for each aligned shape. Then, the
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mean distance surface and the principal components of variation modeling a linear shape

space is constructed by applying PCA to the set of estimated distance surfaces.

The main difference between the segmentation method of Tsai et al. and the previously

discussed method of Leventon et al. resides in how the constructed prior shape model is

utilized in the segmentation phase. In the work of Leventon et al., segmentation is carried

out by alternating between two processes. While first process employs the prior shape model

to compute the most probable shape by taking the evolving segmenting curve and the image

gradients into account, the second process uses this shape to impose an additional force

to a level set implementation of the geodesic active contours model. On the other other

hand, the method suggested by Tsai et al. follows a more unified approach. They embed

the prior shape model within region-based active contours models [40, 158] by replacing the

level set functions in the original functionals with the shape representation defined by the

model. Thus, segmenting an image involves minimizing a single segmentation functional

with respect to the shape and pose parameters by applying gradient descent. At each step of

the gradient descent, these parameters are updated according to the current image statistics,

yielding a new level set function. The zero-level curve of this level set function, in return,

determines the segmenting curve, and thus the new image statistics for the next update.

This cycle is repeated until convergence is achieved.

The experiments on both synthetic and medical data presented in [148] reveal promising

segmentation results. The region-based active contours models, which are utilized as the

boundary detection rule in the formulation, provide significant robustness against noise and

missing regions. The linear shape model embedded within this segmentation model serves

as a shape prior that controls the shape of the segmenting curve, resulting in accurate object

boundaries. However, as in [89], the prior shape model describes only the global deformations

within a shape class, and thus greatly affects the performance.

3.2.3 The Work of Rousson and Paragios [120]

Following an idea similar to the ones presented in [89, 148], Rousson and Paragios suggested

a two-phase procedure for segmentation. While the first phase, which can be interpreted

as a learning phase, constructs a prior shape model from a collection of sample shapes, the

second phase carries out the actual segmentation process by using a unified segmentation

model that combines the learned shape model with a data-driven segmentation model.

In [120], the shape prior is constructed as follows. First, the sample shapes within the

training set are aligned by following a variational approach. The distance surface repre-
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sentations of the training shapes are utilized within this alignment process. Subsequent to

this, a pixel-wise probabilistic shape model, where each pixel is characterized by a Gaussian

distribution, is estimated by taking aligned distance surfaces into consideration (Figure 3.9).

This is performed by alternating between two processes until convergence is reached. While

the first process computes the mean values and the variances in each pixel under some reg-

ularity conditions, the second process relaxes the estimated mean surface towards a signed

distance surface. The main difference between the estimated probabilistic shape prior and

the one utilized in [89, 148] lies in how the shape variations are described within these mod-

els. The linear shape formulation in [89, 148] models only the global variations in shapes

by means of a Principal Component Analysis of the training set. On the other hand, the

probabilistic shape model accounts for a pixel-wise confidence map for local variations. Dur-

ing segmentation, this confidence map locally determines in what extent the segmentation

process respects the shape prior.

The actual segmentation process is formulated as an energy minimization problem that

partitions an image into two regions as object vs. background. Considering the constructed

shape prior along with a similarity transformation, Rousson and Paragios defined a unified

energy which combines a level-set based segmentation model with a term imposing certain

constraints on the shape of the object to be segmented. While the data-driven segmentation

model supervises the segmentation according to the image data, the additional shape term

Figure 3.9: The aligned shapes are used to build a shape model that explains local variations

in a class of shapes with a confidence map (image taken from [120]).
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attracts the contour in a direction that results in a segmenting contour belonging to the

predefined shape class, simultaneously registering the prior shape with the evolving level

set. Recently, Rousson and Paragios suggested an alternative segmentation model [121] that

uses the same probabilistic shape formulation, yet recovers the similarity transformation

parameters in a more robust way by using the image data alone.

3.2.4 Diffusion Snakes - The Work of Cremers et al. [44]

The level-set based methods we discussed so far implicitly represent a curve as the zero-

level line of a high-dimensional function. This method differs from these works in that it

makes use of an explicit shape representation. The researchers utilized spline curves to

learn a statistical shape prior and subsequently to partition an image with the prior shape

knowledge. Spline-based formulations provide an explicit parameterization of curves as they

define a curve by a collection of control points.

Learning a statistical shape prior involves extracting shape statistics from a set of training

shapes. This is performed by fitting a spline curve to each training shape and aligning

the collection of the resulting curves with respect to similarity transformations and cyclic

permutation of the control points. Since the spline control points of the aligned curves lie in

the same vector space, Cremers et al. used the distribution of these control points to model

the prior shape knowledge. Assuming a Gaussian probability distribution, their statistical

shape prior includes a mean shape (the mean control point vector) and a (regularized)

covariance matrix.

Following that, Cremers et al. suggested a joint segmentation functional that integrates

an implementation of the Mumford-Shah model, which represents the segmenting edge set

as a closed spline curve, with a shape energy in the form of a Mahalanobis distance that

penalizes the deviations from the derived shape prior. Segmenting an image involves mini-

mizing the joint energy with respect to two variables: the control points of the segmenting

curve and the smooth approximation of the original image. The steady-state solutions are

obtained by alternating between the corresponding gradient descent equations. Mainly, the

control points evolve under an image-driven force that attracts the curve towards the object

boundaries and a shape-driven force that controls the shape of the segmenting curve. This

process also provides a closed-form, parameter-free solution for the similarity transformation

parameters. The name of the framework, Diffusion Snakes, comes from the simultaneously

performed diffusion process that estimates a smooth approximation of the original image.

Figure 3.10 illustrates a sample segmentation result obtained by the reviewed spline-

49



Figure 3.10: The shape statistics are extracted from a collection of sample shapes and

integrated with a spline-based Mumford-Shah segmentation model (image taken from [44]).

based formulation. In general, the framework accurately delineates object boundaries even

when corrupting influences due to occlusion, clutter and noise appear in images. However,

as revealed in [43], when the training shapes representing the prior knowledge are visually

different from each other, the resulting statistical shape prior fails to capture complex shape

deformations. Taking this into account, in [43], Cremers et al. suggested to use nonlin-

ear shape statistics within the Diffusion Snakes formulation, producing an improvement in

segmentation results.

3.2.5 The Works of Riklin-Raviv et al. [115, 116]

The prior-based segmentation approaches proposed by Riklin-Raviv et al. differ from the

studies we reviewed so far in that they ignore the shape variability. The researchers specif-

ically aimed at segmenting out of an object of interest from a given image by taking a

perspective [116] or projective [115] transformation model into account (Figure 3.11). The

shape priors in these studies are composed of a single reference shape, and thus they do not

need an explicit learning phase.

Both works formulate the prior-based segmentation process as a functional minimization

via which a segmenting contour and a set of transformation parameters are to be recovered

simultaneously. The general form of the functionals is nearly equivalent. Each functional is
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(a) (b)

Figure 3.11: The methods proposed by Riklin-Raviv et al. use a single reference shape to

segment an object of interest by considering transformation models based on (a) perspec-

tive transformation (image taken from [116]), (b) projective transformation (image taken

from [115]).

an extended Chan-Vese functional (Section 2.3.2) with an additional prior shape term which

mainly measure the difference in the areas of the evolving object region and the transformed

prior. While the Chan-Vese functional leads to an image force that attracts the zero-level

curve of the evolving level set function to the object boundaries, the prior shape term enforces

the zero-level curve towards the given prior shape under transformation. The key difference

between the proposed functionals lies in the transformation model utilized in the prior shape

term.

The shape term proposed in [116] uses a single (segmented) image of an object of in-

terest to partition the novel images of that object taken from the same camera center (Fig-

ure 3.11(a)). Riklin-Raviv et al. suggested a quite elegant formulation that utilizes a gen-

eralized cone representation, which is constructed from the reference image, as the shape

prior. As illustrated in Figure 3.12, the cross sections of the generalized cone describe the

appearances of a given object under the perspective transformation, and Riklin-Raviv et al.

used the transformed versions of this cone model to constrain the evolving level set. In [115],

Riklin-Raviv et al. extended this work by considering a projective transformation model

(Figure 3.11(b)) so that it could partition a new image of a given object as seen through a

different view point. For this, they use an explicit formulation of the homography matrix

for the transformation model and a binary image (function) to represent the prior shape,

resulting in more complex gradient descent equations.

Besides the methods discussed in this section, Riklin-Raviv et al. also suggested two
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Figure 3.12: The framework that takes perspective transformation into consideration uses a

generalized cone representation to describe possible deformations of the prior shape (image

taken from [116]).

noteworthy segmentation methods in [114, 117]. The importance of these studies is that they

do not utilize prior shape models that are explicitly constructed from a single reference shape

or a set of sample shapes of an object. Instead, in these works, the prior shape knowledge

is emerged from the input image(s) as the segmentation process carries on. The so-called

mutual segmentation framework [117] simultaneously segments two ambiguous images of the

same object taken from different viewpoints by taking a projective transform model into

account. The evolving object contour in each image functions as a shape prior for the other

image. The segmentation method proposed in [114], on the other hand, aims at extracting

boundaries of symmetric objects in the presence of perspective distortion. In particular, it

uses the symmetrical counterpart of the evolving object contour as a dynamic shape prior

to supervise the segmentation.

3.2.6 The Work of Hong et al. [73]

Most of the studies we reviewed so far utilize representations that globally model the prior

shape. In [44, 89, 148], the authors learned global variations of a shape of interest through

a set of training shapes which corresponds to the various appearances of an object. Riklin-

Raviv et al. ignored the shape variability at all and considered only a perspective [116] or

projective [115] transformation model. The probabilistic framework of Rousson and Para-

gios [120], on the other hand, provides relaxation for the global representations as it uses

a pixel-wise confidence map to locally determine in what extent the segmentation process

respects the shape prior. In [73], Hong et al. suggested an alternative formulation which

takes a single reference shape into account within a local deformation model that constrains

the shape of the evolving contour. It is mainly obtained by extending the Chan-Vese segmen-

tation functional with an additional shape energy in the same way proposed in the works
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Figure 3.13: The shape representation using integral kernels encodes the local properties

of shape geometry. This makes obtaining meaningful correspondences between two shapes

possible.

of Riklin-Raviv et al. [116, 115]. The shape energy basically acts as a matching energy

functional that determines the correspondences between the evolving object contour and the

given prior shape. In their work, these correspondences are implicitly described by a local

displacement map that transforms the shape prior into the evolving contour.

Particularly, the proposed shape energy consists of a data term and a regularization term.

The data term measures the similarity between the evolving shape and the transformed prior,

providing a driving force for the registration. On the other hand, the regularization term

in the energy forces the local deformation map to be smooth. The key idea of the work

of Hong et al. is to use a shape representation, the so-called integral kernels, in the data

term (Figure 3.13). This representation assigns each point a distinct value based on the

local geometry, and thus produces the estimated correspondences to be meaningful. In the

regularization term, Hong et al. employed the linear elasticity model proposed in [28] to

obtain a smooth deformation map. Since this model does not handle large deformations,

they performed a global registration before applying the local deformation model.

During the segmentation process, the Chan-Vese functional provides an image force that

pulls the zero-level curve of the evolving level set function towards the object boundaries.

However, the shape of the evolving object contour is restricted by the additional prior shape

term that simultaneously registers the shape prior to the image data. The main advantage

of using a local deformation model over using a representation that models global shape

variations is that it provides a more flexible way to manage the shape variations within an

object class as it does not demand a large number of sample shapes. However, one of the

drawbacks of this approach is that it does not always retain the specified shape. To overcome

this weakness, in [73], Hong et al. suggested an extra regularization term that preserves the
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local shape features. In Chapter 5, we utilize a similar local deformation model within our

prior-based segmentation work that uses TSP surfaces [143] as shape priors. Chapter 5 also

includes a detailed review of the representation based on integral kernels, as it shares some

similar characteristics with the TSP surface.

3.3 Discussion

Segmenting out objects in natural images is a difficult task since low-level image cues are

generally highly ambiguous. The diffusion models and variational regularization methods

reviewed in Chapter 2 utilize very generic priors to resolve these ambiguities, but do usually

produce poor segmentation results. On the other hand, relatively recent works make use of

high-level a priori information about the shape of an object of interest. All of the studies

investigated in this chapter are considered important examples in this domain. We mainly

categorized these studies into two as probabilistic and variational formulations, and reviewed

them in separate sections. The characteristics common to all these formulations is that they

are all composed of two main phases: a training (learning) phase and an actual segmentation

phase. While a prior shape model representing a priori knowledge about the target object

is built in the training phase, the following segmentation phase partitions an image into two

as object vs. background by taking the learned model into account.

The studies that are formulated within a probabilistic framework are mostly proposed for

detecting objects from images, yet the detection process leads to simultaneous segmentation

of objects. Due to this motive, these methods are not really concerned about whether they

extract accurate object boundaries or not, and most of the time, the obtained segmentation

results are not fully consistent with the image data. The training phase uses a moderate

set of training images, which is composed of class and non-class images, to learn some kind

of shape and appearance models by selecting the most informative local image patches or

contours that are more common in class images compared to non-class images. As the objects

within a specific class have a large variability in their shape and appearance, the success of

these methods highly depends on the training set and the learning process. These works

generally differ in terms of

1. how they represent the object-specific knowledge (utilizing local image regions with

figure-ground labels in [22, 87] and local contour fragments in [105, 135]), and

2. how they use the probabilistic object models in joint recognition and segmentation
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process.

The variational formulations reviewed in this chapter are global formulations in that

they are obtained by integrating the prior shape information directly into generic variational

segmentation frameworks. They were mainly originated from the applications in medical

imaging where extracting specific parts of the biological structures such as brain has a

critical importance. Thus, their main goal is to accurately delineate the actual boundaries of

objects in the presence of corrupting influences due to missing regions, partial occlusion and

noise. The segmentation results (extracted object boundaries) obtained by the variational

formulations are generally compatible with the image data as the formulations unify high-

level shape knowledge and the low-level image cues. In general, these formulations can be

analyzed in terms of

1. how they represent the prior shape knowledge (PCA of signed distance representations

in [89, 148], Gaussian probability distribution on control points in [44], a probability

density function of signed distance representations in [120], and a single reference shape

within a deformation model in [73, 115, 116]),

2. the boundary detection rule that they are based on (level-set based geodesic active

contours model in [89], spline-based model in [44], and region-based active contours

models in [73, 115, 116, 120, 148]), and

3. how they extend it to allow the influence of the shape prior.

To summarize, the probabilistic formulations offer solutions for segmentation that are

more general than the ones suggested by the variational methods. They represent object-

specific shape knowledge by models based on local visual cues such as image patches or

contour fragments. However, during joint recognition and segmentation of objects, since

they use these models in a top-down manner, they usually do not identify correct object

boundaries. In this respect, the variational frameworks are more advantageous as they

integrate low-level image features with high-level contextual information within a unified

formulation.
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CHAPTER 4

CONTEXT-INFLUENCED FILTERING

The prevalent view in computer vision since Marr [96] is that the early vision is a data-driven

and bottom-up process. Over the years, a variety of techniques has been developed using

this paradigm. Most of these techniques cannot handle the ambiguities in low-level visual

cues due to the unidirectional information flow. In Chapter 2, it was argued that unified

approaches have advantages over the bottom-up methods. The main reason for this is that

they offer formulations which perform smoothing and edge detection in a simultaneous way.

These formulations are mainly based on generic priors that bias the solutions towards the

expected results. For example, the Mumford-Shah model contains regularization terms that

force segmented images to be piecewise smooth while preventing them to be split into many

regions.

The variational segmentation frameworks reviewed in the previous chapter improve out-

comes of the unified methods by incorporating prior shape knowledge in computations. In

this chapter, we go in a different direction and address the influence of context in image

smoothing by developing a regularization framework based on the Ambrosio-Tortorelli ap-

proximation [3] of the Mumford-Shah segmentation functional [100]. More specifically, we

embed contextual knowledge extracted from local image regions in the Euler-Lagrange equa-

tions of the AT model.

We propose various contextual feedback measures1, each for a seemingly different visual

task, and incorporate them in the regularization process. The smoothing examples that

utilize these measures demonstrate the potential of the method under challenging cases such

as difficult noise types, non-uniform contrast, existence of multi-scale patterns and textures.
1Most of the work presented in Section 4.2.1 and Section 4.2.2 has been in collaboration with Aysun Sancar

Yılmaz and was previously presented in the First International Conference on Scale Space and Variational

Methods in Computer Vision (SSVM 2007) [57] as an early version of this work. Full version is published in

Journal of Mathematical Imaging and Vision (JMIV) [56].
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4.1 Image Smoothing by Considering Local Context

Contextual influences have been explored within both computer vision and neuroscience

community, e.g. [1, 13, 14, 15, 48, 49, 50, 68, 70, 75, 81, 84, 92, 101, 108, 112, 113, 125,

137, 138, 140, 142, 146, 147, 156, 159]. In the work proposed here, context is a collection of

nearby local neighborhoods or nearby local image patches, and the contextual measures are

aggregate quantities that are computed from these collections. Our work differs from the

above efforts in the sense that we use the AT model (a PDE framework) as the computational

platform.

As previously discussed in Section 2.3.1, the formulation of Ambrosio and Tortorelli

suggests a numerical solution to the MS model by replacing the unknown segmentation

contour in the model with a continuous function called the edge strength function. An

important aspect of this formulation is that it can be interpreted as a biased nonlinear

diffusion model with an additional constraint which enforces smoothness of the boundaries.

Although the AT model gives fairly good segmentations for a limited set of images, as

illustrated in Figure 4.1, the reconstruction results are affected by a heavy noise or a texture.

We argue that some of the challenging cases for the AT model can be resolved by considering

the context.

In the following, we give a general review of methods that modified the AT model. After

that, in Section 4.1.2, we introduce our regularization framework which considers the context.

Section 4.1.2 also presents the details of our numerical implementation, and discusses how

the proposed regularization can be extended to multi-channel images.

4.1.1 Related Work

Over the years, a variety of modifications to the AT model were proposed. As reviewed in

Section 2.5, Shah [131] considered replacing the quadratic cost functions in both the data

fidelity and the regularizer with L1-functions. Consequently, shocks form in the smoothed

image and the object boundaries are recovered as actual discontinuities without being af-

fected by the noise or the texture much.

An extreme modification to the AT approximation has been proposed by Tari et al. [143]

by using sufficiently large values of ρ and interpreting v as a smoothed distance function.

The resulting distance function, which is called the TSP surface, allows to perform skeletal

analysis in grayscale images. The properties of this surface will be examined in detail in the

following chapters.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.1: Images which cannot be handled by the AT model. (a)-(b) couple image cor-

rupted with 5% salt and pepper noise and its reconstruction using AT. (c)-(d) A noisy test

image –70% of the pixels are degraded with uniform noise– and its reconstruction using AT.

(e)-(f) An animal image and its reconstruction using AT. (g)-(h) A texture mosaic image

and its reconstruction using AT.
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In [11, 12], Bar et al. presented a promising approach for image deblurring in the presence

of impulse noise. The success of their method stems mostly from the use of robust data

fidelity measure obtained by replacing the L2-norm with the L1. The use of non-smooth

cost functions such as the L1-norm in the data fidelity term in order to deal with outliers is

well motivated both theoretically and experimentally (e.g. [30, 45, 46, 104, 131]).

Teboul et al. [144] presented a modification to the AT model by replacing the quadratic

cost |∇v|2 with an L1-cost which leads to singular diffusivity. The major drawback of singular

diffusivities is the numerical difficulty [33]. The cost function choice in [144] also leads to

directional smoothing. As explored by Weickert [153] (Section 2.6), directional smoothing

can offer significant feature preserving capabilities. However, the models get complicated

and the numerics is not as simple as in the case of isotropic diffusion. Our regularization

approach is similar to that of Weickert [153] in the sense that we consider gray values in a

local image region to steer diffusion. However, our contextual feedback measures are more

general and higher level. Moreover, we remain in the isotropic setting.

In the following, we propose a simple yet effective modification to the AT model that

converts it to a regularizer with much better feature preserving capabilities without resorting

to additional energies, prior models and difficult to minimize cost functions.

4.1.2 New Regularization Method

Key to our approach is the link between regularization and diffusion filters [19, 99, 103,

124, 130]. After casting the AT approximation as a biased diffusion filter, we use local

image measures to steer the diffusion. The local measures are computed from a collection

of local neighborhoods that are not necessarily centered on the pixel to be regularized.

These measures are referred to as contextual feedback measures or simply feedback measures

throughout the thesis.

We utilize spatially adaptive approach in [47] which has also been investigated under

the computational frameworks of image algebra [118] and mathematical morphology [127].

Our approach can also be related to the one in Gilboa et al. [63] in the sense that both

of the methods consider contextual knowledge apart from the other variational denoising

frameworks which are based on the local features of the image such as derivatives. While [63]

is based on a non-local convex regularization term that depends on the contextual similarity

suggested in [31], we remain in the local and simple framework of the AT approximation.

In the proposed method, as in the AT approximation, there are two coupled processes:

the image process u and the edge process v. The edge process v evolves according to the
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same dynamics defined by the AT model:

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂Ω

= 0 . (4.1)

On the other hand, the image process u evolves according to

∂u

∂t
= ∇ · ((cv)2∇u) − β

α
(u − f);

∂u

∂n

∣∣∣∣
∂Ω

= 0 , (4.2)

cv = φv + (1 − φ)V .

In (4.2), V is either 0 or 1 decided by the specified feedback type, and φ denotes the

corresponding contextual feedback measure which takes values in [0, 1] depending on u and/or

v in a collection of neighborhoods. Thus, φ is at a higher place in the visual hierarchy than u

and v. Note that with φ = 1 for all image points, the coupled system reduces to the gradient

descent for the AT model. We discuss the role played by the multiplier c by considering an

abstract view (Figure 4.2) of the discrete approximations of the pair of coupled PDEs which

are given by (4.7) and (4.8) in the subsequent numerical implementation section.

For any image point i, the value of uk+1
i is computed using uk

i , the neighborhood of uk
i ,

fi, and the feedback which depends on φi. Notice that the direct connection from v to u in

the AT model is replaced by an indirect path; first rising higher up in the visual hierarchy

and then coming back to steer the diffusion of u.

Figure 4.2: Proposed architecture. Aggregate quantities computed from a collection of

neighborhoods are utilized to steer the evolution of the processes u and v. See text.
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Suppose that we wish to eliminate an accidentally occurring feature, such as a high

gradient due to noise. One can define φi such that it has low values for the accidental

occurrences, and let it modulate the diffusivity in (4.2) as

(cv)2i = (φivi + (1 − φi) 1)2 . (4.3)

Note that the lower the value of φi, the higher the diffusivity shifts towards the maximum

value 1 to smooth out the feature. We call this type of modulation negative feedback.

Suppose that we wish to prevent an accidental elimination of a feature of interest, e.g.

preserving a fine texture or encouraging edge formation. One can define φi such that it is

low for meaningful occurrences, and let it modulate the diffusivity in (4.2) as

(cv)2i = (φivi + (1 − φi) 0)2 . (4.4)

Thus, the lower the value of φi, the higher the diffusivity shifts towards the minimum value

0 to preserve the meaningful feature. We call this type of modulation positive feedback.

A computational advantage of the proposed approach is that both negative and positive

feedbacks are implemented as a regularization. This provides robustness. Another source of

robustness is the separate evolution of the edge indicator vi from its modulated form (cv)i,

even though they eventually seem to converge to each other. The separate evolution of these

variables prevents oscillations in the edge indicator, and allows us to effectively use both

positive and negative feedback. Finally, notice that as indicated by (4.3) and (4.4), ci is not

explicitly computed. We may say that ci as an indirect measure of feedback.

Numerical Implementation

The partial differential equations (4.2) and (4.1) can be simultaneously solved for u and v

using standard numerical discretization techniques such as finite differences. The coupled

system is first discretized with respect to spatial variables, yielding the following space-

discrete system of equations:

dui,j

dt
= (cv)2

i+ 1
2 ,j

· (ui+1,j − ui,j) − (cv)2
i− 1

2 ,j
· (ui,j − ui−1,j)

+ (cv)2
i,j+ 1

2
· (ui,j+1 − ui,j) − (cv)2

i,j− 1
2
· (ui,j − ui,j−1)

− β

α
(ui,j − fi,j) , (4.5)

dvi,j

dt
= vi+1,j + vi−1,j + vi,j+1 + vi,j−1 − 4vi,j

− 2α|∇ui,j |2vi,j

ρ
− (vi,j − 1)

ρ2
. (4.6)
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This discretization scheme requires the modified diffusivities represented by cv to be esti-

mated at mid-pixel points. They are simply computed by taking averages over neighboring

pixels as in the discretization of the AT model.

The time derivatives in (4.5) and (4.6) can be discretized using forward differences, where

regularization terms and the bias terms on the right hand side of each equation are evaluated

at times k and k + 1, respectively. This yields an iterative scheme where homogeneous

Neumann boundary condition is imposed along the image boundary

uk+1
i,j − uk

i,j

∆t
=

(
(cv)k

i+ 1
2 ,j

)2
· uk

i+1,j +
(
(cv)k

i− 1
2 ,j

)2
· uk

i−1,j

+
(
(cv)k

i,j+ 1
2

)2
· uk

i,j+1 +
(
(cv)k

i,j− 1
2

)2
· uk

i,j−1

−
(
(cv)k

i+ 1
2 ,j

+ (cv)k
i− 1

2 ,j
+ (cv)k

i,j+ 1
2

+ (cv)k
i,j− 1

2

)
· uk

i,j

− β

α

(
uk+1

i,j − fi,j

)
, (4.7)

vk+1
i,j − vk

i,j

∆t
= vk

i+1,j + vk
i−1,j + vk

i,j+1 + vk
i,j−1 − 4vk

i,j

−
α

((
uk

i+1,j − uk
i−1,j

)2
+
(
uk

i,j+1 − uk
i,j−1

)2
)

vk+1
i,j

2ρ

−

(
vk+1
i,j − 1

)

ρ2
. (4.8)

with ∆t denoting the time step.

Although the suggested scheme is neither fully explicit nor fully implicit, it still allows us

to compute uk+1 and vk+1 by using forward recursion as in an explicit scheme. A numerical

stopping criteria for the iterative scheme can be defined in the sense that the rate of change

of u is less than a threshold. The corresponding procedure is summarized in Algorithm 3.

Extension to Multi-Channel Images

A straightforward way to smooth a multi-channel image is to diffuse each channel indepen-

dently. For an m-channel image f = (f1, . . . , fm), this yields the following system of coupled

equations for u = (u1, . . . , um) and v = (v1, . . . , vm):

∂ui

∂t
= ∇ · ((civi)2∇ui) − β

α
(ui − f i);

∂ui

∂n

∣∣∣∣
∂Ω

= 0 (i = 1, . . . ,m) , (4.9)

∂vi

∂t
= ∇2vi − 2α|∇ui|2vi

ρ
− (vi − 1)

ρ2
;

∂vi

∂n

∣∣∣∣
∂Ω

= 0 (i = 1, . . . ,m) . (4.10)

62



Algorithm 3 The iterative scheme for the context-influenced smoothing method
1: Initialize the variables with u0 = f , v0 = 1

1+2αρ|∇u0|2

2: for k = 0 to kmax do

3: Estimate the contextual feedback measure φ

4: Compute the modified diffusivity (cv)k by using (4.3) or (4.4)

5: Solve (4.7) for uk+1 using &
√

2α/β' steps

6: if |uk+1 − uk| < ε|uk| then

7: stop iterations

8: end if

9: Solve (4.8) for vk+1

10: end for

We remark that different edge locations will be created in different channels. To overcome

this inconsistency, we can diffuse each channel with a common edge indicator function as

proposed in [110] using the following set of coupled PDEs 2:

∂ui

∂t
= ∇ · ((civ)2∇ui) − β

α
(ui − f i);

∂ui

∂n

∣∣∣∣
∂Ω

= 0 (i = 1, . . . ,m) , (4.11)

∂v

∂t
= ∇2v −

m∑

i=1

(
2α|∇ui|2v

ρ

)
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂Ω

= 0 . (4.12)

For the multi-channel case, the contextual feedback measures may be estimated in various

ways. First, each φi and consequentially (civ) may be computed directly from the ith channel

of the image. Second, a common feedback measure may be estimated from a weighted

average of the multi-channel data. For color images, the average readily corresponds to an

intensity image. A common feedback measure may also be estimated via a statistical measure

extracted from channels. When the latter strategy is adopted in the experiments, the median

of the individually computed measures is used for the contextual feedback measures that

will be discussed in Sections 4.2.1 and 4.2.4. On the other hand, for the feedback measure

introduced in Section 4.2.3, the measure is estimated by considering the distribution of

contextual similarities computed from vector-valued image patches.
2An alternative color image segmentation method within the AT regularization framework is proposed

in [29] by modeling images as manifolds.
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4.2 Contextual Feedback Measures

In the following subsections, we present different choices for the contextual feedback measure

which are respectively based on directional consistency of the edges (φdc), edge continuity

(φh), texture edges (φte), and local scale (φls). The measures presented in Section 4.2.1 and

Section 4.2.3 are to be interpreted as negative feedback measures whereas the ones presented

in Section 4.2.2 and Section 4.2.4 are to be interpreted as positive feedback measures.

Since the feedback measure induces a multiplier for the diffusivity function, we can

integrate different contextual feedback measures by simply taking the multiplier c as the

product of individual c values, and consider a coalition during the ongoing filtering process.

4.2.1 Directional Consistency: φdc

Segmentation, when defined as a sequential bottom-up process, is composed of the following

three steps: smoothing, edge detection and edge linking. The purpose of the edge linking

step is to force global consistency to locally detected edges in order to form a coherent edge

set. In this step, the edge pixels that are detected based on the magnitude of image gradients

are linked to give a connected edge set if their gradient directions are in agreement. The

unlinked edge pixels are discarded. Interestingly, this last step is what the MS model or its

AT approximation lacks. We induce such an effect in our diffusion model by increasing the

relative persistence of the edge pixels which are consistent with their neighbors by increasing

the diffusivity at the inconsistent ones. We consider a feedback measure φdc
i such that

φdc
i → 1 on the preferred configurations and φdc

i → 0 on the incoherent ones, and let ci has

the following form:

ci = 1 + (1 − φdc
i )

1 − vi

vi
. (4.13)

First, notice that ci increases in proportion to the image gradient |∇ui| which is propor-

tional to 1−vi
vi

(refer to (2.26) in Section 2.3.1). Second, notice that the overall diffusivity

coefficient (cv)2i can be estimated as follows, without explicitly computing the variable ci:

(cv)2i =
(
φdc

i vi +
(
1 − φdc

i

)
1
)2

. (4.14)

The value of the diffusivity is bounded by 1. It attains its maximum as φdc
i → 0 and decays

to a value determined by the edge indicator vi as φdc
i → 1 . In the experiments, we compute

φdc
i as

φdc
i = exp



εdc



 1
|ηs|

∑

j∈ηs

∇ui · ∇uj − 1







 . (4.15)
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In (4.15), ηs represents the neighborhood of pixel i defined as ±s pixels along the orthogonal

edge direction ∇ui
⊥. The parameter εdc is a scalar which determines the decay rate of the

φdc
i function. Particularly, the definition of neighborhood utilized here is adaptive in the

sense defined in [47]. If the neighboring pixels are coherent (having similar edge directions),

then the average angle between ∇ui and ∇uj ’s is close to 0, yielding φdc
i → 1. Therefore,

when φdc
i is high, occurrence of a low-level feature (high gradient) is not accidental and we

can rely on the edgeness measure. On the other hand, as φdc
i approaches to 0, an occurrence

of the same low level feature is very likely to be accidental and we warp the diffusivity value

towards 1.

The importance of directional consistency is best observed if the input image contains

impulse noise. Our method can be related to the ones in [37, 41] in the sense that some

regularization is performed on the noisy image points. While [37, 41] use hard decisions

on noisy image points and smooth out only these points, our method uses a soft decision

strategy by means of the local region measure φdc to define the new diffusivity (cv)2 for each

image point.

4.2.2 Edge Continuity: φh

In boundary detection methods, the principle of edge continuity is used to eliminate streaking

or breaking up of an edge contour due to noise or non-uniform contrast. This procedure is

commonly referred as hysteresis due to successful application of threshold retardation in the

Canny edge detector [34]. In our diffusion model, we lower the diffusivity at pixels that

correspond to the broken parts of boundary segments to favor edge formation. There may

be various choices for the selection of the feedback measure φh. The important point is to

decrease the modified diffusivity (cv)2i if the neighboring site encourages formation of an

edge, i.e. having a low v value. As shown in Section 2.3.1, there is a reciprocal relationship

between vi and |∇ui| given by vi ≈ 1
1+2αρ|∇ui|2 . A decreasing diffusivity can be achieved

by increasing the estimate of the image gradient which is used in estimating the diffusivity.

Therefore, a natural choice is to add an offset hi ∈ [0, 1] indicating a support in favor of edge

formation to the gradient term in the diffusivity estimate:

(cv)2i =
(

1
1 + hi + 2αρ|∇ui|2

)2

=
(

1
1 + 2αρ(|∇ui|2 + h∗

i )

)2

. (4.16)
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We can rewrite

(cv)2i =
(
φh

i vi +
(
1 − φh

i

)
0
)2

(4.17)

by letting

φh
i =

1
1 + hivi

. (4.18)

There is a subtle difference between φdc discussed in the previous subsection and φh. Whereas

φdc is high for the non-accidental occurrences of certain low-level features, e.g. image gradi-

ents, φh is high for the accidental occurrences of the same feature. As φh approaches to 0,

we can rely on a non-accidental occurrence of the feature of interest and warp our diffusivity

towards 0. Therefore, the modified edge indicator cv is a linear combination of v and the

maximum edgeness value which is 0.

In the discrete implementation of (4.2), diffusivities are estimated at mid-grid points.

Hence, hi should be computed as a support from a suitably chosen neighbor. For example,

a modified diffusivity (cv)2i+0.5,j at a mid point between (i, j) and (i + 1, j) may receive a

support in the form of either (1 − vi+0.5,j−1) or (1 − vi+0.5,j+1). Notice that the lower the

value of edge indicator at a neighboring site, the higher the support it provides.

Adding spatial organization to energies defining regularization with line process has been

previously proposed by Black and Rangarajan [17]. In [19], Black et al. derived the necessary

update equations. If we let v2
k+v2

l
2 define a line process between site k and site l, then our

development becomes equivalent to that of Black et al. Thus, solving new coupled equations

are qualitatively equivalent to modifying the MS model with an additive term favoring

unbroken contours as in Black and Rangarajan [17].

4.2.3 Texture Edges: φte

In the MS model, edgeness is measured by the image gradient. However in textured images,

a large image gradient may be due to a texture within a region rather than from an edge.

Consequently, the MS model or its AT approximation fail to capture object boundaries

(Figure 4.1(e)-(h)). Our motivation in defining this feedback measure is to eliminate the

texture and to preserve the structure. In this respect, our texture edges feedback strategy is

related to the work of Aleman-Flores et al. [2]. Whereas they modify Perona-Malik to make

the diffusivity a function of the texture gradient computed from the Gabor feature space,

we let a measure computed from local patches modulate the diffusivity.

In order to capture the true object boundaries in a textured image, we need features that

are at a higher level than the local derivatives. In the feed-forward step, we estimate the
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contextual feedback measure φte using the probability map of the texture edges of the source

image. Due to computational concerns, this probability map is extracted only once using

a simple patch-based technique proposed by Wolf et al. [157]. The probability of an image

point being near a texture edge is computed using a non-parametric test of distributions

called Wilcoxon Mann-Whitney test.

For each point i, four distributions are sampled: Dup
i , Ddown

i , Dleft
i and Dright

i . These

distributions correspond to the contextual similarities between the patch centered at the

point i and the patches which are ∆x pixels to the related direction. The similarities are

simply computed by using the Euclidean distance between the n × n patches. If the point

i lies on near a texture edge, then sampled distributions Dup
i and Ddown

i , or Dleft
i and

Dright
i should be different from each other. This hypothesis is tested using Wilcoxon Mann-

Whitney test. As in [157], the final probability is taken as the minimum of the p-value’s p1
i

and p2
i returned by the test for the distributions Dup

i -Ddown
i and Dleft

i -Dright
i . We use this

probability value to define φte
i as

φte
i = exp

(
−εte

(
min(p1

i , p
2
i )
))

, (4.19)

where εte is again a scalar parameter that determines the decay rate. For points that do not

correspond to a texture edge, the estimated p-values are high making φte
i → 0 and (cv)i → 1.

This case is equivalent to the case discussed under directional consistency. Just like

φdc, a low value of φte indicates an accidental occurrence of a feature of interest (i.e. high

gradient). Therefore, we warp our diffusivity estimate towards the maximum value of 1 to

diffuse more at the locations where the existence of a local feature is not supported by the

context. The modulated diffusivity is given by

(cv)2i =
(
φte

i vi +
(
1 − φte

i

)
1
)2

. (4.20)

4.2.4 Local Scale: φls

The MS model decomposes an image into cartoon and noise components. During denoising,

some important features of the image such as textures or fine details are also smoothed out

as they are treated as noise by the model. This behavior is more apparent in the models

with more robust norms, e.g. [122, 131]. In [64], a spatially varying fidelity term is proposed

for the TV regularization (Section 2.4) to partly preserve local image structures. The term

is based on local variance measures and determines the level of denoising.

Our framework can be also used to devise a texture preserving denoising model by lower-

ing the diffusivity at the pixels inside textured regions. The contextual feedback measure φls
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determines whether a point lies on a textured region or not, and controls the level of smooth-

ing accordingly.

We use robust statistics following [18] to determine the textured regions. For an image

point i, the local scale is specified by

σi = medianj∈Ωi(|∇uj − medianj∈Ωi(|∇uj |)) (4.21)

where higher values of σi means that the point i lies on a textured image region. In deriving

σi, we use an n×n image patch around the image point i which is represented by Ωi in (4.21).

Considering σi, we define the new contextual feedback measure φls
i as follows:

φls
i = exp

(
−εls σi

)
. (4.22)

For a pixel inside a textured region, the value of σi is high, making φls
i → 0. Similar to

φh
i , φls

i is low for non-accidental occurrences of a high gradient. Therefore, we warp our

diffusivity estimate towards the minimum value of 0 when φls
i is low. That is, we compute

the modulated edge indicator (cv)i as the convex combination of 0 and vi

(cv)2i =
(
φls

i vi +
(
1 − φls

i

)
0
)2

. (4.23)

4.3 Experimental Results

In this section, we present experimental results on various synthetic and natural images.

In order to demonstrate the performance of our regularization framework and to illustrate

what it is gained by taking the context into account, we compare the results of our method

with that of the AT model [3], Shah’s modification [131] and the TV regularization [122].

In all experiments, we use a convergence tolerance of ε = 5 × 10−4 unless stated otherwise.

Due to computational concerns, the texture edges measure φte is extracted only once from

the original image, and the local scale measure φls is estimated at the 0th, 10th and 20th

iterations.

The importance of the directional consistency of the edges is best observed if the image

contains impulse noise. Thus, we first apply our regularization method to the noisy image

given in Figure 4.3(a). Figure 4.3(b) and (c) illustrate smoothing results of the AT model

for different values of smoothing radius, αβ . The result in Figure 4.3(b) is obtained with

α = 0.75, β = 0.005, ρ = 0.01. When we increase the smoothing radius by choosing

β = 0.001, diffusion is so strong that we even lose the upper body part of the woman. Yet,

the noise is still present as seen in Figure 4.3(c). If we use a regularization term which
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uses a contextual feedback by means of directional consistency of the edges, as discussed in

Section 4.2.1, the image is denoised without blurring (Figure 4.3(d) and (e)). The perceptual

difference between Figure 4.3(d) and (e) is in the sharpness level. The result in Figure 4.3(d)

is obtained with the segmentation parameters specified as α = 1, β = 0.01, ρ = 0.01 and the

contextual feedback parameters s = 2 and εdc = 0.25 (these are the default values for the

directional consistency parameters). For the result given in Figure 4.3(e), we use the same

parameters except εdc = 0.1. The variable εdc determines the decay rate of the coherency

function used in the segmentation process and specifies the level of sharpness. For large εdc

value, the decay rate is high, and as a result the edges are smoothed out more depending on

the contextual feedback. As observed, the resulting image is smoother. Conversely, for small

εdc values, we get sharper results. The result given in Figure 4.3(e) is also comparable to that

is obtained by Shah’s modification presented in Figure 4.3(f) which uses the L1-norm for

both the data fidelity and the regularizer (a half-quadratic approximation of Shah’s modified

energy proposed in [76] is utilized). While both results are satisfactory, the reconstruction

using the model due to Shah is blockier. The robust norms used attract the image towards

the cartoon limit and catch unintuitive regions such as the one at the man’s right shoulder

and the ones on the floor. Better result can be obtained by merely replacing the data fidelity

term in the AT model with the L1-norm as in [30, 104].

In the AT model, increasing the value of α while keeping α
β fixed means decreasing

the penalty of the length term, yielding more detailed reconstructions. Consequently, in

Figure 4.4, the proposed modification is tested with again the image given in Figure 4.3(a),

however, forcing the reconstruction to be more detailed by the proper choice of parameters.

Figure 4.4(a) demonstrates the outcome of the proposed modification presented in the first

experiment. The result displayed in Figure 4.4(c) is obtained by using the same parameters

except α = 4, β = 0.04. As the corresponding edge indicator functions respectively shown

in Figure 4.4(b) and (d), even the detailed reconstruction with α = 4 is noise free.

In the next example, Figure 4.5, we illustrate the effect of edge continuity (Section 4.2.2).

For this, we use the sample image given in Figure 4.5(a), which is taken from [19]. The

smoothing results are presented in Figure 4.5(b) and (c) together with the corresponding edge

indicator functions. Figure 4.5(b) illustrates the outcome of the AT whereas Figure 4.5(c)

illustrates the result obtained by considering edge continuity. Both results are obtained by

using the same scale space parameters, α = 1, β = 0.01, ρ = 0.01. As it can be clearly seen

from the enlarged indicator functions given in Figure 4.5(d), the modified scheme eliminates

broken contours.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Considering directional consistency of the edges φdc as the contextual feedback

measure eliminates impulse noise. (a) Source image corrupted with 5% salt and pepper noise.

(b)-(c) Reconstructions using AT with two different smoothing radii. Notice that the noise

is still present even when we lose the upper body part of the woman. (d)-(e) Reconstructions

with directional consistency for two different sharpness levels. Notice that at comparable

scales noise is completely eliminated. (f) L1-reconstruction catches unintuitive regions.

In Figure 4.6, we demonstrate the results obtained with a regularization considering the

coalition of edge continuity and directional consistency as the contextual feedback measure

via the product of individual c functions. Recall that a combination can be achieved by

multiplying individual c values. In the case of directional consistency, the multiplier cdc is

given by (4.13). In the case of edge continuity, the multiplier ch is equal to φh as indicated

by (4.17). The reconstruction results of the source image corrupted with 10% salt and pepper

noise (Figure 4.6(a)) are given in Figure 4.6(b)-(d). They are obtained using the scale space

parameters specified in the previous experiment. As it can be clearly seen, the result obtained

with edge continuity, Figure 4.6(b), does contain noise. Figure 4.6(c) illustrates the result

obtained with the modification that considers directional consistency. Finally, Figure 4.6(d)

is the outcome of the combined framework that takes the coalition of two into account, which

is not only noise free but also has stronger edges.
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(a) (b)

(c) (d)

Figure 4.4: u and 1 − v functions computed with α = 1, β = 0.01 and α = 4, β = 0.04

respectively. Even in detailed reconstruction, directional consistency feedback is sufficient

to remove noise completely.

In Figure 4.7, the framework considering the coalition of directional consistency of the

edges and edge continuity is tested on a noisier image (Figure 4.7(a)). Figure 4.7(b)-(c) are

the outcomes of the AT approximation with α = 2.5, β = 0.0001, ρ = 0.01. Figure 4.7(b) is

obtained with a convergence tolerance of ε = 4.8 × 10−4 whereas Figure 4.7(c) is obtained

with ε = 1.6 × 10−4. The effect of decreasing β dramatically is to shut off the data fidelity

term and to increase the relative importance of the length term. Notice that the relative

increase (α/β) in the weight of the second term of the AT model is less than the relative

increase (1/β) in the weight of the third term. Our goal is to compare the effect of the

length term, which is a part of the original model, to the effect of φdc. As it can be seen in

Figure 4.7(c), eliminating the noise entirely results in smoothing out the whole rectangular

region. This is mainly due to the perceived difference in the contrast. Figure 4.7(d)-(f)

are the outcomes of the proposed framework that are produced by using the scale space

parameters α = 1, β = 0.01, ρ = 0.01. Figure 4.7(d) is obtained by using directional

consistency with ε = 2.5 × 10−4. Figure 4.7(e) is the outcome of the coalition of φdc and

φh with ε = 1.25 × 10−4. Notice that the results given in Figure 4.7(d) and (e) are visually
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(a)

(b) (c) (d)

Figure 4.5: Considering edge continuity φh as the contextual feedback measure eliminates

broken contours. (a) Source image. (b) Reconstruction using AT (u and 1 − v). (c) Recon-

struction with the new method forcing edge continuity (u and 1 − v). (d) Details from the

edge indicator functions given in (b) and (c), respectively.

similar. This is due to the fact that the contrast is almost constant in the image. Hence,

broken lines do not occur. Figure 4.7(f) is obtained by using directional consistency with

a larger neighborhood size, s = 10, and a convergence tolerance of ε = 1.6 × 10−4. The

perceptual difference between Figure 4.7(d) and (f) is clearly evident. Imposing coherency

in a large neighborhood produces smoother object boundaries, however, at the expense of

losing sharpness. Both reconstructions are qualitatively comparable to the one obtained

by the TV regularization (Figure 4.7(g)). Note that the control parameters of the TV

regularization were tuned to eliminate the noise and to capture the shape boundaries.
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(a) (b)

(c) (d)

Figure 4.6: Considering a framework that uses the coalition of φdc and φh as the contextual

feedback measure eliminates both noise and the broken contours. (a) Source image corrupted

with 10% salt and pepper noise. (b) Reconstruction with edge continuity. (c) Reconstruction

with directional consistency of the edges. (d) Reconstruction using both edge continuity and

directional consistency of the edges.

Figure 4.8 - Figure 4.10 demonstrate the use of texture edges measure φte described

in Section 4.2.3 for smoothing textured images. We observe that this measure, if used

together with the other feedback measures, captures the actual object boundaries. Note

that in our formulation, we do not decompose the original image into structure, texture

and noise components as in [9, 150], we only retain the structure. We do so without using

complicated norms.

Figure 4.8 and Figure 4.9 include two texture mosaic images [72] as the source images.

Figure 4.8(b) and Figure 4.9(b) are the outcomes of our proposed method. Figure 4.8(b)

is obtained by taking account of φte as the only contextual feedback measure with the

segmentation parameters α = 100, β = 0.0075, ρ = 0.01 and feedback parameters n = 5,

∆x = 15 and εte = 1000 (these are the default values for the texture edges). On the other

hand, Figure 4.9(b) is obtained by considering φte together with φdc and φh measures using

the same parameters except α = 300, β = 0.005, ρ = 0.001 and εte = 100. For each
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 4.7: A difficult denoising case. (a) Source image, 70% of the pixels are degraded

with uniform noise. (b)-(c) Reconstructions using AT with different choices of convergence

tolerance. (d) Reconstruction considering directional consistency. (e) Reconstruction using

the coalition of φdc and φh. (f) Reconstruction considering directional consistency with a

larger neighborhood size. (g) Reconstruction using the TV regularization.

texture mosaic image, the texture edges measure and the resulting edge indicator function

are also given. As it can be clearly seen in Figure 4.8(c)-(d) and Figure 4.9(c)-(d), while the

estimated texture edges measures computed using the method proposed in [157] are noisy,

the resulting edge indicator functions succeed to capture the actual object boundaries. The

results of Shah’s modification and the TV regularization for different scale parameters are

also provided in Figure 4.8 and Figure 4.9 for comparison.

74



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8: Actual region boundaries are captured by considering φte as the feedback mea-

sure. (a) Source image. (b) Reconstruction result with contextual feedback. (c) Texture

edges measure φte. (d) Final edge indicator function. (e)-(f) Reconstructions using Shah’s

modification with different scale parameters. (g)-(h) Reconstructions using the TV regular-

ization with different scale parameters.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Coalition of three feedback measures. (a) Source image. (b) Reconstruction

result with contextual feedback. (c) Textures edges measure φte. (d) Final edge indicator

function. (e)-(f) Reconstructions using Shah’s modification with different scale parameters.

(g)-(h) Reconstructions using the TV regularization with different scale parameters.
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In Figure 4.10, the framework taking the coalition of directional consistency, edge con-

tinuity and texture edges into account is tested with a natural animal image. The source

image Figure 4.10(a) is taken from [60]. Figure 4.10(b) is the outcome of the combined

framework with the segmentation parameters α = 200, β = 0.05, ρ = 0.001 and the default

contextual feedback parameters except εte = 20.

(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Coalition of three feedback measures. (a) Source image. (b) Reconstruction

result with contextual feedback (c) Texture edges measure φte. (d) Final edge indicator

function. (e) Reconstruction using Shah’s modification. (f) Reconstruction using the TV

regularization.
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In Figure 4.7, we addressed the effect of decreasing β dramatically on the outcomes of

the AT model. It mainly increases the relative importance of the length term and turns off

the data fidelity term, leading to cartoon-like images. Next, by taking textured images into

account, we compare the cartoon limit of the AT model with the regularization framework

that utilizes coalition of directional consistency, edge continuity and texture edges.

Figure 4.11(a) illustrates a natural animal image. In Figure 4.11(b), we present the

reconstruction of this image by using the cartoon limit of the AT model, with α = 5,

β = 0.0001, ρ = 0.01. Figure 4.11(c) is the outcome of the proposed regularization method

obtained using α = 1, β = 0.01, ρ = 0.01 and the default contextual feedback parameters

except εte = 2. It is clearly seen from these images that both the cartoon model and our

proposed framework give satisfactory results by eliminating fine texture details such as the

black spots in the animal’s skin and the bush in the background. It is essential to underline

that our method does remove texture without forcing the result to be piecewise constant as

the cartoon limit does.

In the next example, Figure 4.12, we consider three synthetic images, each having a

similar pattern. While generating these images, we mainly swap the intensity values of the

image regions. For the source images given in Figure 4.12(a) and (c), the cartoon limit

smoothes out the circular patterns and gives rise to a dark object on a white background

(Figure 4.12(b) and (d)). On the other hand, for the image having a gray background

(Figure 4.12(e)), the same set of parameters which forces the AT model to cartoon limit,

α = 0.1, β = 0.0005, ρ = 0.01, yields a poor result as presented in Figure 4.12(f). Due to

the contrast difference, elimination of the black circles leads to losing the object boundary.

This is more visible in Figure 4.12(f) where the smoothing radius is decreased by choosing

(a) (b) (c)

Figure 4.11: Comparison of the effect of cartoon limit of the AT model and that of our

regularization framework on textured images. (a) Source image. (b) Reconstruction obtained

by forcing the AT model to cartoon limit. (c) Reconstruction result with contextual feedback.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.12: Comparison of the effect of cartoon limit of the AT model and that of our

regularization framework on textured images. (a)-(d) Sample synthetic images containing

textured regions and their reconstructions obtained by forcing the AT model to cartoon limit.

Notice that the circular patterns are smoothed out. (e) Another synthetic textured image.

(f)-(g) Reconstructions of (e) by forcing the AT model to cartoon limit. (h) Reconstruction

of (e) with contextual feedback. Notice that while the cartoon limit of the AT model does

not give any satisfactory result, our modification eliminates texture.

β = 0.001. Our regularization framework deals with this problem by taking the contextual

feedback into account. As it can be clearly seen in Figure 4.12(f), the reconstruction result

obtained by using α = 4, β = 0.005, ρ = 0.01, ∆x = 10, εte = 10 captures the actual object

boundaries, and at the same time removes the circular patterns.

As discussed in Section 4.2.4, the MS model does not distinguish texture and fine details

from noise. Hence, they are smoothed out during denoising. Figure 4.13 depicts how local

scale measure affects the reconstruction results. For the image given in Figure 4.13(a), the

outcomes of the AT model are presented in Figure 4.13(b)-(c). Figure 4.13(b) is obtained

by using α = 10, β = 2.5, ρ = 0.001 with a convergence tolerance of ε = 1 × 10−4 while

Figure 4.13(c) is obtained using α = 15, β = 1, ρ = 0.001. Figure 4.13(d) is the outcome of

the proposed method estimated using α = 10, β = 0.1, ρ = 0.001, εls = 0.25, n = 25 and

the local scale measure depicted in Figure 4.13(e). The L2-norms of the differences between
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the original image and the reconstructions presented in Figure 4.13(b)-(d) are 6.0954 × 103,

7.6363×103 and 6.0735×103 , respectively. Although the amount of signal eliminated from the

source image in Figure 4.13(b) and (d) is approximately the same and the reconstructions

are in a visually similar scale, Figure 4.13(b) is not entirely smooth and contains noisy

pixels whereas the source image is denoised while preserving textures in Figure 4.13(d).

Increasing the level of smoothing in the AT model results in noise-free results as presented

in Figure 4.13(c), however the textured regions are also smoothed out during the process.

Figure 4.14 illustrates the results of two more texture preserving denoising experiments.

Figure 4.14(c) and (d) are obtained using the parameters α = 20, β = 0.1, ρ = 0.001,

εls = 0.125, n = 15 and α = 4, β = 0.1, ρ = 0.001, εls = 0.125, n = 25 respectively.

Figure 4.14(b) is taken from Berkeley Segmentation Dataset [97]. Note that the basic idea is

just to lower the diffusion at textured locations. The measure φls does not make a distinction

between noise and texture.

(a) (b) (c)

(d) (e)

Figure 4.13: Texture preserving denoising with local scale measure φls. (a) Source image.

(b)-(c) Reconstructions using AT with different choices of smoothing levels. (d) Reconstruc-

tion with contextual feedback. Notice that texture in the fabric is preserved. (e) Local scale

measure φls.
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(a) (b)

(c) (d)

Figure 4.14: Some more experiments on texture preserving denoising. Notice the difference

between non-textured and textured regions. (a)-(b) Source images. (c)-(d) Smoothed images.

Finally, we apply our method to color images as described at the end of Section 4.1.2.

We use the RGB channels as our multi-channel data. For Figure 4.15, we have repeated the

texture preserving denoising experiment using now colored versions of Figure 4.13(a) and

Figure 4.14(b). The denoising results presented in Figure 4.15(b) are obtained by diffusing

each channel separately with a common feedback measure estimated from the intensity image.

Figure 4.16 illustrates the results of using different strategies for color image smoothing of

the image presented in Figure 4.16(a) (image taken from [97]). All smoothing results given in

Figure 4.16(b)-(d) are obtained by considering the coalition of directional consistency, edge

continuity and texture edges with the segmentation parameters α = 100, β = 0.1, ρ = 0.001

and the default contextual feedback parameters except εdc = 0.05. Figure 4.16(b) is the result

obtained by diffusing each channel separately by using the feedback measures estimated from

corresponding multi-channel data. Figure 4.16(c) is obtained by again diffusing each channel

separately but with a common feedback measure estimated from the intensity image. Finally,

Figure 4.16(d) is the outcome of the color image smoothing with a common edge strength

function and a feedback measure estimated from intensity image.

81



(a) (b)

Figure 4.15: Texture preserving denoising on a color image. Notice the difference between

non-textured and textured regions. (a) Source images. (b) Smoothed images.

(a) (b)

(c) (d)

Figure 4.16: Color image smoothing. (a) Source Image. (b) Result of channel-by-channel

smoothing. (c) Result of channel-by-channel smoothing with a common feedback measure

estimated from intensity image. (d) Color image smoothing with a common edge strength

function and a feedback measure estimated from intensity image.
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In Figure 4.17, we demonstrate a case where using contextual feedback measures esti-

mated from the intensity image yields an inaccurate smoothing result. The reconstructions

of the color image shown in Figure 4.17(a), which is reproduced from [39], are given in

Figure 4.17(c) and (e) together with the corresponding edge indicator functions provided in

Figure 4.17(d) and (f). All of the smoothing results are obtained by considering the coalition

of directional consistency, edge continuity and texture edges with the segmentation param-

eters α = 100, β = 0.1, ρ = 0.001 and the default contextual feedback parameters except

εdc = 0.05. Figure 4.17(c) is the outcome of the color image smoothing with a common edge

strength function and a feedback measure estimated from intensity image. Since transform-

ing the color image into intensity image makes the upper and the lower objects disappear

(Figure 4.17(b)), these objects are smoothed out during processing and the reconstruction

fails to capture the actual object boundaries. On the other hand, when the feedback mea-

sures are estimated by considering each channel simultaneously, we get a fairly good result

(Figure 4.17(e)).

(a) (b)

(c) (d) (e) (f)

Figure 4.17: Coalition of measures in color image smoothing. (a) Source Image. (b) Cor-

responding intensity image. (c)-(d) Reconstruction result of color image smoothing with a

common edge strength function and a feedback measure estimated from the intensity image

(u and 1-v). (e)-(f) Reconstruction result of color image smoothing with a common edge

strength function and a feedback measure estimated from all channels (u and 1 − v).
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Figure 4.18 shows some typical smoothing results of natural color images obtained with

the proposed method. In all the cases, textured regions are smoothed out, and at the same

time structures are preserved.

(a) (b)

Figure 4.18: Smoothing of natural color images. (a) Source images. (b) Smoothing results.
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Computational Complexity and Performance

In this section, we provide information regarding the computational complexity and the

performance of our procedure. As we summarized in Algorithm 3, the proposed method

consists of the steps that involve estimating the contextual feedback measure and the modi-

fied diffusivity, and evolving the smooth image and the edge strength function. Assuming the

resolution of the input image is M × N , the complexity of updating the piecewise smooth

image and the edge strength function is O(MN) per iteration. Similarly, the complexity

of determining the modified diffusivity at each iteration is O(MN) since the diffusivity is

computed at each pixel using a convex combination where the coefficient corresponds to the

feedback measure estimated from local context. Nonetheless, the overall complexity of the

proposed method depends mainly on how the contextual feedback measure is estimated and

incorporated into the general framework. As this measure is mostly determined according to

the features extracted from local image regions, the computational complexity of this step

is generally higher than that of others.

For instance, the complexity of computing the feedback measures proposed by us typically

dominates the overall process: O(MNs) for directional consistency, O(MN∆x(n2+log ∆x))

for texture edges, and O(MNn2 log n) for local scale. However, in the case of edge conti-

nuity, the complexity is O(MN) as it is determined taking only the neighboring pixels into

account. In the current implementation, we compute the measures respectively based on

the directional consistency of edges and edge continuity at each iteration. However, as we

stated before, we do estimate the texture edge measure from the source image once at the

beginning, and the local scale measure at specific time points due to computational concerns.

We have carried out the experiments presented here on a standard PC hardware (2.4GHz

Intel Core 2 Duo system with 2GB of RAM) using nonoptimized MATLAB code. As the

complexity analysis reveals, the time required to smooth an image mainly relies on the size

of that image, and the contextual feedback measure or measures utilized in the smoothing

process. As an example, consider the experiment presented in Figure 4.6. The size of the

source image is 365 × 388. When the edge continuity is taken into account as the feedback

measure, it takes 170 iterations and roughly 343 seconds to smooth the image. When the

measure based on the directional consistency is used, the computation time is approximately

134 seconds, and the number of iterations for convergence is 99. On the other hand, as one

can expect, considering the coalition of these two measures in the smoothing increases the

computation time per iteration. The smoothing takes 94 iterations and about 265 seconds.
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4.4 Summary and Discussion

Diffusivity modulated by the context is the key mechanism behind the proposed method. The

modulated diffusivity (cv)2 is a square of a convex combination of the edge indicator v and

a fixed value which is either 1 (negative feedback) or 0 (positive feedback). Four different

possibilities for contextual feedback measure are presented to perform several seemingly

different tasks: elimination of unintuitive edges due to noise or texture, preserving texture,

catching texture boundaries, and enhancing weak edges. Experimental results demonstrate

that the proposed regularization is able to remove difficult noise types, capture texture

boundaries and produce almost segmentation like results without using singular diffusivities

that arise from cost functions such as the L1-norm.

In the same computational frame, the contextual feedback measures can be combined

and the list can be extended. As an example, continuous measures by Kokkinos et al. [80]

that allow probabilistic discrimination between edges, textured and smooth areas can be

directly utilized in our framework. Moreover, these type of measures can be used as weights

in combining the effects of various feedback measures.

In the proposed approach, both negative and positive feedback are implemented as regu-

larization. This may have the disadvantage that if a feature does not exist in the data (e.g.

illusory contour), it will not emerge. There may be two solutions. Firstly, an occasional

random noise may be added in order to generate spurious edges. If these edge hypotheses do

not get sufficient support from the context, they will be eliminated during the regularization

process. Secondly, the information rising up in the hierarchy may get connected to a database

object whose shape is known and impose top-down constraints to the regularization process.

In fact, assuming such an association is present, the next chapter focuses on two new prior-

shape guided segmentation methods. Moreover, in Chapter 6, we will return back to this

association problem and suggest a new skeleton based analysis of highly-textured natural

images. We will extend the TSP method [143], employing the context-influenced smoothing

framework proposed here, such that it becomes applicable to natural images. This approach

will be simply utilized for extracting visual cues from an image, and consequently for giving

insights into the objects and their parts in the images.
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CHAPTER 5

PRIOR-GUIDED SEGMENTATION

USING TSP SURFACES AS SHAPE

PRIORS

In the previous chapter, an image smoothing method that considers the local context has

been introduced. The proposed approach employs high-level contextual measures extracted

from local image regions to influence the filtering process. We suggested different local

contextual measures for modulation, and it was shown that these local contextual measures

can resolve certain ambiguities in low-level visual cues. In this chapter, we propose new

segmentation frameworks that aim to solve the ambiguities that the context-guided filtering

framework cannot cope with.

Segmentation is generally defined as partitioning an image into coherent regions that

are likely to correspond to objects in the image. However, as discussed in the introduction

chapter, delineating the object boundaries accurately becomes particularly challenging when

corrupting influences due to missing regions, partial occlusions and noise appear in images.

The only way to resolve these ambiguities is to integrate low-level image features with high-

level a priori shape knowledge. In this respect, how to represent a shape becomes the most

important issue in devising a prior-shape guided segmentation framework. Hence, first, we

address the representation issue by going through several shape representations that mainly

encode the local geometry of shapes, yet our main focus is on the Tari-Shah-Pien (TSP)

surface [143].

In the subsequent sections, we suggest two new prior-guided segmentation methods that

make use of TSP surfaces as shape priors. These studies mainly differ from each other in

terms of how they model the deformation of the prior shape. The first method, in particular,
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utilizes a representational framework to model global shape variations1. On the other hand,

the second method integrates a shape matching model that considers local deformation

between two shapes with the Mumford-Shah segmentation model2. In each section, the

performances of these methods are demonstrated on several illustrative images.

5.1 Representing the Prior Shape

There is an increasing number of studies in computer vision that employ prior shape knowl-

edge to guide segmentation. We previously review some of them in Chapter 3. Demand to

use prior knowledge about objects within a given class particularly leads to the difficulty of

how to represent a shape. The major problem is that for the time being no one has achieved

to develop a general theory of shape yet, and thus there is not a clear answer to the question

“What is the best way of representing (prior) shapes”. As a matter of fact, formulation of

appropriate shape spaces and metrics is still an active research topic.

Representation also plays an important role in Marr’s view of computational vision [96].

He emphasized that visual perception should be interpreted as an information processing

task, which should be understood at three different levels, where representation is one of

them. In particular, these levels are

• Computational theory level (what is to be computed and why?)

• Representation and Algorithm level (how the computation is to be done?)

• Hardware implementation level (how the process is to be realized physically?)

It is evident that the computational theory level is more important than the other levels

as it describes the underlying computations in an abstract way. There may be several

ways to perform the same computational process with a wide choice of representations and

algorithms.

A binary image, also known as a silhouette, can be seen as a shape representation itself.

However, it does not provide sufficient information about properties of a shape. Hence,

in shape analysis literature, silhouettes are generally used as inputs to several other shape

representation frameworks. In the proposed work, we prefer to use the TSP surfaces as
1This is a joint work with Aykut Erdem and was previously published in the Fifth International Workshop

on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005) [55].
2This work has been developed in collaboration with Luminita Vese during my research visit at University

of California, Los Angeles (UCLA).
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(a) (b)

Figure 5.1: (a) A convex shape example. (b) A concave shape example.

shape priors. Before giving the details of this representation and discussing what does the

TSP surface offer for this thesis work, let us first review the representations similar to the

TSP surfaces. In the subsequent sections, the silhouettes given in Figure 5.1 are used as

illustrative examples.

5.1.1 Shape Representation Based on the Distance Transform

The distance transform has been a widely used shape representation method. Given a shape

in terms of silhouette, the key idea is to estimate a surface whose value at each internal

point is the minimum distance of the point to the shape boundary. The distance transform

is mainly used in skeleton estimation frameworks such as [126, 136], where the skeleton points

are described as the ones which are equidistant from at least two boundary points. They

are also successfully employed in level-set based segmentation frameworks that employ prior

shape knowledge (e.g. [89, 120, 148]).

Let Γ denote the shape boundary, then the distance surface (or function) φ is defined as:

φ(x) = min
y∈Γ

dist(x, y) (5.1)

with x representing internal points of the silhouette. The quick way of computing distance

function φ is to solve the Eikonal equation

|∇φ| = 1 . (5.2)

The solution of this equation can be easily determined by using the fast marching algorithm

of Sethian [129]. Figure 5.2 illustrates estimated distance functions of the shapes given

in Figure 5.1 and the corresponding level curves. One of the significant properties of the

distance transform is that the zero-level curve of the distance functions corresponds to the
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(a) (b)

(c) (d)

Figure 5.2: (a)-(b) Estimated distance functions. (c)-(d) Corresponding level curves.

shape boundary and the other level curves propagate toward the center of the shape at

uniform speed, that is clearly visible in the provided examples.

5.1.2 Shape Representation Using a Poisson Equation [65]

In [65], Gorelick et al. proposed a novel shape representation which can also be seen as

a surface estimated from a silhouette. They extracted some shape features by using the

differential properties of this surface and utilized them for shape classification and retrieval.

Let S represent a silhouette and ∂S denote its boundary. Then, a surface U can be

estimated from the given silhouette by solving the following Poisson equation

∇2U =
∂2U

∂x2
+
∂2U

∂y2
= −1 (5.3)

with (x, y) ∈ S and the Dirichlet boundary condition U(x, y) = 0 along the shape boundary

∂S.

As in the distance transform, the zero-level curve of the surface U denotes the shape

boundary. Unlike the distance transform, the proposed Poisson equation leads to a regular-

ization on the corresponding level curves. Thus, the level curves of U represent smoothed

analogs of the shape boundary. Moreover, as pointed out in [65], due to this regularization
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(a) (b)

(c) (d)

Figure 5.3: (a)-(b) Solutions to the Poisson equation. (c)-(d) Corresponding level curves.

the nearby points effect the values assigned to them, reflecting the local shape structure.

Note that, in the distance transform, the value of each point inside the silhouette depends

only on the nearest boundary point. Figure 5.3 depicts the solution to the Poisson equa-

tion obtained for the silhouettes given in Figure 5.1, and the corresponding level curves (cf.

Figure 5.2).

5.1.3 Shape Representation Using Integral Kernels [73]

The shape representation using integral kernels was first introduced in [73]. As previously

summarized in Section 3.2.6, Hong et al. used this representation as a shape prior within a

local deformation model. The key idea is to describe the local structure of a shape in the

form of a binary image χ by using a kernel representation.

Particularly, the proposed representation Rσ is determined by using a Gaussian kernel

Gσ(x) =
1

2πσ2
exp

(
−|x|2

2σ2

)
(5.4)

as

Rσ(χ;x) = χ(x)(Gσ(x) ∗ (1 − χ(x))) + (1 − χ(x))(Gσ(x) ∗ χ(x)) . (5.5)

Figure 5.4 provides an illustrative example depicting how the representation given in
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Figure 5.4: The representation using integral kernels is specified by the intersection area

between the kernel and the inside or outside of the silhouette (image taken from [73]).

(5.5) is estimated. For the points at the bounding contour or inside the silhouette, the

values assigned are specified by the intersection area between the kernel and the outside of

the silhouette (see the points denoted by x1 and x3). On the other hand, for the points

outside the silhouette, the values assigned are determined by the intersection area between

the kernel and the inside of the silhouette (see the point denoted by x2).

Like the representation based on the Poisson equation reviewed in the previous section,

the shape representation using integral kernels encodes the local properties of shape geome-

try. The value assigned to each point is determined according to its position on the silhouette

image (inside or outside) and the scale parameter σ. In particular, the parameter σ defines

the radius of the disk kernel, and thus the local interactions between the points. Figure 5.5

shows the shape representation based on integral kernels and the corresponding level curves

for two different choices of σ for the silhouettes given in Figure 5.1. It is important to note

that for the concave shapes, different shape regions may affect the assigned values depending

on the choice of the value of σ. The main advantage of this representational framework is

that the representation can be directly estimated by convolving the binary images by integral

kernels, not by solving a PDE.

5.1.4 Shape Representation Based on the TSP Surface [143]

As previously discussed in Section 2.3.1, the formulation of Ambrosio and Tortorelli uses

sufficiently small values of ρ to obtain an approximate edge set represented by the edge

strength function v. As ρ → 0, the value of the v function becomes approximately 0 along

the boundaries and grows rapidly away from them. In [143], Tari, Shah and Pien employed

the AT model with significantly large values of ρ, yielding an alternative role to the AT edge

strength function. As the value of ρ increases, the differential properties of the edge strength

function v start to encode the skeleton information. The resulting representation is called
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: (a)-(b) Integral kernel representations with σ = 3 and (c)-(d) the corresponding

level curves. (e)-(f) Integral kernel representations with σ = 7 and (g)-(h) the corresponding

level curves.
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the TSP surface throughout this thesis.

The most important advantage of the TSP method is that it can be directly applied to

gray scale images. However, we first review the TSP surface on binary images. As pointed

out in [143], the analysis on binary images is important since it clearly demonstrates the

properties of the TSP surface.

For binary images the TSP surface v is the minimizer of the following functional:

Eb_TSP (v) =
1
2

∫

Ω

(
ρ|∇v|2 +

v2

ρ

)
dx (5.6)

subject to the boundary condition v = 1 along the shape boundary Γ. Note the change in

the value of boundary likelihood for the binary formulation.

The v function is estimated by numerically computing the steady state solution of the

PDE
∂v

∂t
= ∇2v − v

ρ2
, v|Γ = 1 . (5.7)

For sufficiently large values of ρ, the v function becomes an approximate monotonic

function of distance from the boundary. More specifically, the edge strength function v acts

like a level set function whose level curves are smoothed analogs of the shape boundary that

evolve in the inward normal direction with a curvature dependent velocity as in the curve

evolution of Kimia, Tannenbaum and Zucker [78].

In the TSP formulation, the parameter ρ determines the level of smoothing of the shape

boundary, thus it can be interpreted as a scale parameter. Figure 5.6 illustrates sample level

curves of TSP surfaces computed for a cat shape for two different choices of ρ values. As it

can be clearly seen, the amount of smoothing increases with increasing ρ. While the TSP

surface computed using ρ = 1 looks like the solution of the distance transform, the level

curves for ρ = 128 encode smoother versions of the shape boundary. In this respect, shape

representation based on the TSP surface is more similar to the representation based on the

Poisson equation than that based on the distance transform.

The TSP method can be easily extended to grayscale images since the edge strength

function corresponding to shape boundary can be directly estimated from grayscale images

using the AT model reviewed in Section 2.3.1. In the resulting framework, there are two

separate scales represented by the parameters α, β and ρ. The ratio between α and β

determines the level of smoothing of the grayscale image. With this ratio fixed, the higher

the value of α, the more detailed is the image smoothing. Figure 5.7 illustrates the TSP

surfaces and the corresponding level curves for the silhouettes given in Figure 5.1 for two

94



(a) (b) (c)

Figure 5.6: Analysis of the TSP method for two different values of ρ. (a) A cat shape. (b)-(c)

The level curves of the v function for ρ = 1 and ρ = 128, respectively.

different choices of ρ. For these surfaces, the binary silhouettes are interpreted as grayscale

images, and only the edge strength functions are allowed to evolve with α = 500.

The shape skeletons can be easily estimated from the TSP surfaces by tracking the curva-

ture extrama along the level curves of the v function. As Tari, Shah and Pien demonstrated

in [143], there is a connection between the differential properties of the edge strength func-

tion and the curvature extrama of the evolving shape boundary (Figure 5.8). The details of

the skeleton extraction process will be given in the next chapter.

5.1.5 What does the TSP surface offer?

All of the shape representations reviewed in the previous sections reflect local shape structure

in their own ways. Distance transform assigns every silhouette point a value based on

the nearest boundary point. The other representations use certain regularizations, and

hence take more global properties into account. The introduced regularizations in the TSP

surface and the surface based on the Poisson equation lead to their level curves to represent

smoother versions of the shape boundary. However, from a computational perspective, the

representation using integral kernels is more favorable than the others since one does not

need to solve any PDE to obtain them.

In the beginning of this chapter, we emphasized that representation is an important

issue for an information processing task. Depending on how the underlying process to be

carried out, the chosen representation makes certain information more explicit while ignoring

irrelevant ones. As we pointed out, the main focus of this thesis work is to enrich low and mid-

level computer vision modules with a capacity to extract and use contextual knowledge. This

view demands a modified Marr paradigm in which close interactions exist among different

visual modules. The consistency of such interactions can be guaranteed only when a common
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: (a)-(b) TSP surfaces with ρ = 4 and (c)-(d) the corresponding level curves.

(e)-(f) TSP surfaces with ρ = 8 and (g)-(h) the corresponding level curves.
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Figure 5.8: Differential properties of the TSP surfaces encode skeleton information.

representational framework is utilized.

Within the scope of this thesis, the TSP surface plays a key role. The segmentation

frameworks presented in this chapter integrate the Mumford-Shah segmentation model with

prior shape models which use the TSP surfaces as shape priors. In the next chapter, we will

extend the TSP method such that it becomes applicable to highly-textured natural images

with all their complexity. We divide images into constituent components while simultane-

ously forming a representation for those components which ties shapes and image features.

The patches of uniform characteristics can be robustly and easily used in various image

analysis tasks.

5.2 Prior-guided Segmentation Using a Global Shape Model

We previously reviewed some diffusion and variational regularization models in Chapter 2.

Most of these models use very generic priors such as smoothness of image regions and conti-

nuity of contours to bias the segmentation. However, these priors are generally not sufficient

enough to accurately extract object boundaries. In the last decade, there is an increas-

ing number of works that employ prior shape knowledge of objects within a given class to

guide the segmentation process. We previously summarized some of these variational frame-

works in Chapter 3. In the following, inspired by the unlevel-sets formulation of Raviv et

al. [116] (Section 3.2.5) and the statistical formulation of Leventon et al. [89] (Section 3.2.1),

we present a new image segmentation method which utilizes a model describing the global

variations of the prior shape to supervise the segmentation process.
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5.2.1 Modeling Global Shape Variations

In our formulation, we prefer to represent the prior shapes in terms of TSP surfaces. As sum-

marized in the previous section, TSP surfaces provide distance-transform like representations

for the shape boundary, and reflect local shape characteristics.

Let Γ denote the boundary of a given shape, we can compute the corresponding TSP

surface, v, by minimizing the functional given in (5.6). If one searches only the pose of

an object of interest, ignoring the shape variability, then utilizing a single TSP surface

representing the shape is sufficient enough to capture the prior information. On the other

hand, for more general cases, variations in the shape are also required to be modeled. Here,

we use a set of training curves, which correspond to the various appearances of a shape of

interest, to devise a global model for shape variations.

Suppose we are given an ensemble of aligned shapes3 whose boundaries are given by

the curves Γ1, · · · ,Γp, respectively. We first estimate the corresponding TSP surfaces,

v1(x), · · · , vp(x). Then, following an idea presented by Leventon et al. [89] and later adopted

in [148], we perform a Principal Component Analysis (PCA) on these TSP surfaces. This

process yields a linear low-dimensional shape space where a shape within the given class

can be represented in terms of the mean TSP surface and the coefficients of the estimated

principal components. Specifically, the mean TSP surface Φ̄(x) is the ordinary average of

v1(x), · · · , vp(x). Let Φ1, · · · ,Φp be the principal components computed by PCA, then a

possible shape from this ensemble is represented with

Φw(x) = Φ̄(x) +
p∑

i=1

wiΦi(x) . (5.8)

Notice that this process does not guarantee that the resultant representation Φw(x)

will be a TSP surface, yet the experiments reveal that the global model yields sufficient

segmentation results.

5.2.2 Segmentation Framework

In the previous section, a representation for the shape prior in terms of a mean TSP surface

and principle components is developed. Now, we will discuss how this representation (5.8)

can be utilized as a shape prior to guide the segmentation process.

We formulate image segmentation as an energy minimization problem. Our boundary

detection rule is based on the AT functional. In this formulation, we let the edge strength
3The alignment algorithm proposed in [148] is used in the experiments.
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function v be approximately 1 along the boundaries and decay away from the boundaries

(cf. 2.21), leading to the following version of the AT model:

EAT ′(u, v) =
∫

Ω

(
β(u − f)2 + α((1 − v)2|∇u|2) +

1
2

(
ρ|∇v|2 +

v2

ρ

))
dx . (5.9)

The simplest way of integrating prior shape information with the AT functional is to add

two energies to arrive at a combined energy:

E = EAT ′ + µEshape (5.10)

where µ is the parameter which enforces the shape similarity of the embedding surface in

the overall segmentation process.

A straightforward choice for shape energy is simply

Eshape(v, tx, ty, h, θ,w) =
∫

Ω
(v − T (Φw))2dx (5.11)

where the pose transformation function T applied to the shape prior Φw is defined as follows:




x′

y′

T (Φw)




=





h 0 0

0 h 0

0 0 1





︸ ︷︷ ︸
scale





cos θ − sin θ 0

sin θ cos θ 0

0 0 1





︸ ︷︷ ︸
rotation





x

y

Φw




+





tx

ty

0





︸ ︷︷ ︸
translation

. (5.12)

However, we observed that such a straightforward choice may cause segmentation process

to trap into local minima. Hence, we considered the normalized difference in our formulation:

Eshape(v, tx, ty, h, θ,w) =
∫
Ω(v − T (Φw))2dx∫
Ω(v + T (Φw))2dx

. (5.13)

Our segmentation process recovers both pose transformation parameters tx, ty, θ, and

h and the shape variability parameters w simultaneously along with a piecewise smooth

image u and the corresponding TSP surface v. For numerical implementation, we discretize

the proposed functional with respect to spatial variables instead of discretizing the Euler-

Lagrange equations obtained from the functional as we usually do. Upon casting the problem

into a discrete setting, we arrive to the following optimization problem:

minE(u, v, tx, ty, h, θ,w) =
width∑

i=1

height∑

j=1

β(ui,j − fi,j)2 + α(1 − vi,j)2(u2
x + u2

y)

+
ρ

2
(v2

x + v2
y) +

vi,j
2

2ρ

+ µ

∑width
i=1

∑height
j=1 (vi,j − T (Φw)i,j)2

∑width
i=1

∑height
j=1 (vi,j + T (Φw)i,j)2

(5.14)
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subject to the constraints

0 ≤ ui,j ≤ 255 ,

0 ≤ vi,j ≤ 1 .

In (5.14), ux, uy, vx, vy denote the central difference approximations for x and y deriva-

tives of ui,j and vi,j , respectively:

ux =
ui+1,j − ui−1,j

2
, uy = ui,j+1−ui,j−1

2 , vx = vi+1,j−vi−1,j

2 , vy =
vi,j+1 − vi,j−1

2
.

We now apply gradient descent to (5.14) to obtain segmentation. Minimizing the func-

tional with respect to each unknown variable leads to the following evolution equations:

∂ui,j

∂t
=

α

2
[
(1 − vi−1,j)2(ui,j − ui−2,j) − (1 − vi+1,j)2(ui+2,j − ui,j)

+ (1 − vi,j−1)2(ui,j − ui,j−2) − (1 − vi,j+1)2(ui,j+2 − ui,j)
]

+ 2β(ui,j − fi,j) , (5.15)

∂vi,j

∂t
= −2α(1 − vi,j)(ux

2 + uy
2) +

vi,j

ρ

+
ρ

4
[(vi,j − vi−2,j) − (vi+2,j − vi,j) + (vi,j − vi,j−2) − (vi,j+2 − vi,j)]

+ 2µ
[
(vi,j − T (Φw)i,j)

S
− D(vi,j + T (Φw)i,j)

S2

]
, (5.16)

∂tx
∂t

= 2µ





∑width
i=1

∑height
j=1 (vi,j − T (Φw)i,j)

(
−∂T (Φw)

∂x′

)

i,j

S

−
D
∑width

i=1

∑height
j=1 (vi,j + T (Φw)i,j)

(
∂T (Φw)
∂x′

)

i,j

S2



 , (5.17)

∂ty
∂t

= 2µ





∑width
i=1

∑height
j=1 (vi,j − T (Φw)i,j)

(
−∂T (Φw)

∂y′

)

i,j

S

−
D
∑width

i=1

∑height
j=1 (vi,j + T (Φw)i,j)

(
∂T (Φw)
∂y′

)

i,j

S2



 , (5.18)

∂h

∂t
= 2µ





∑width
i=1

∑height
j=1 (vi,j − T (Φw)i,j)

(
−∂T (Φw)

∂x′
∂x′

∂h − ∂T (Φw)
∂y′

∂y′

∂h

)

i,j

S

−
D
∑width

i=1

∑height
j=1 (vi,j + T (Φw)i,j)

(
∂T (Φw)
∂x′

∂x′

∂h + ∂T (Φw)
∂y′

∂y′

∂h

)

i,j

S2



 , (5.19)
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∂θ

∂t
= 2µ


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∑width
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(
−∂T (Φw)

∂x′
∂x′
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∂y′

∂y′

∂θ

)

i,j

S

−
D
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j=1 (vi,j + T (Φw)i,j)

(
∂T (Φw)
∂x′

∂x′

∂θ + ∂T (Φw)
∂y′

∂y′

∂θ

)

i,j

S2



 , (5.20)

∂wl

∂t
= 2µ

[∑width
i=1

∑height
j=1 (vi,j − T (Φw)i,j) (−T (Φl)i,j)

S

−
D
∑width

i=1

∑height
j=1 (vi,j + T (Φw)i,j) (T (Φl)i,j)

S2

]

(5.21)

where

D =
width∑

i=1

height∑

j=1

(vi,j − T (Φw)i,j)2 , S =
width∑

i=1

height∑

j=1

(vi,j + T (Φw)i,j)2 .

Our strategy is to alternate between these gradient descent equations during minimiza-

tion. When we try to update a variable, we keep the other unknown variables fixed and

apply the corresponding gradient descent equation. A numerical stopping criteria for the

iterative scheme can be defined in the sense the rate of change of the evolving variables is

less than a threshold. The overall minimization procedure is summarized in Algorithm 4.

Algorithm 4 Minimization of the proposed segmentation functional
1: Compute TSP surfaces, v1, · · · , vp, representing the given training curves Γ1, · · · ,Γp

2: Determine the mean TSP surface Φ̄ and the principal components Φ1, · · · ,Φp by per-

forming PCA on v1, · · · , vp

3: Initialize the variables with u0 = f , v0 = 2αρ|∇u0|2
1+2αρ|∇u0|2

4: Set initial values for pose transformation parameters tx, ty, θ, h

5: Set initial values of shape variability parameters w1, · · · , wp

6: while stopping criteria is not reached do

7: Update u and v according to (5.15) and (5.16), respectively

8: Update tx and ty using (5.17) and (5.18), respectively

9: Update h and θ according to (5.19) and (5.20), respectively

10: Compute the new shape variability parameters w1, · · · , wp using (5.21)

11: end while
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5.2.3 Experimental Results

In this section, we demonstrate the segmentation results of our algorithm on various images.

In all experiments, we set µ = 1 unless stated otherwise and use sufficiently small values of

smoothing radius, (i.e.
√
α/β = 0.1 or

√
α/β = 1). Typical ρ values are 8, 16, 32.

As pointed out before, if the shape of the object of interest does not vary, we can use a

single TSP surface representing the object as our shape prior. Following this, we start with

some simple examples. We apply our method to the hand image given in Figure 5.9(a). The

segmentation process takes the prior shape given in Figure 5.9(b) into account. We simply

estimate the TSP surface representing the prior shape (Figure 5.9(c)) and integrate it with

our segmentation framework. The shape prior is initialized as demonstrated in Figure 5.9(d),

and then allowed to evolve according to the proposed framework. As seen in Figure 5.9(e),

the segmentation given by our method can handle plane Euclidean transformations and

accurately delineate the object boundaries.

Delineating the occluded object boundaries is in general a very difficult task. The seg-

mentation methods that utilize cues depend merely on image data yields poor results. Fig-

ure 5.10(a) shows such an example that is generated from the hand image shown in Fig-

ure 5.9(a) by artificially introducing a ring type shape and cutting off some part of the

pointer finger. In our formulation, the corrupting influences due to occlusion and missing

(a) (b) (c)

(d) (e)

Figure 5.9: Segmentation result of a hand image. (a) Input image. (b) Prior hand shape.

(c) Prior TSP surface computed with ρ = 8. (d) Initial one-level curve of the prior TSP

superimposed on the input image. (e) Final segmentation result.
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regions is compensated by the prior shape knowledge, and as a result our method gives ac-

curate object boundaries (Figure 5.10(c)). Instead of taking µ constant and equal to 1, if

we increase its value throughout the iterations, we can speed up the recovery process of the

transformation parameters. Thus, the missing and occluded parts become apparent in the

evolving TSP surface in less number of iterations as demonstrated in Figure 5.11.

An advantage of TSP surfaces is that they allow us to represent shape boundaries which

are not simple closed curves within our formulation. In the following, we consider such an

(a) (b) (c)

Figure 5.10: Segmentation of partially occluded hand with missing parts. (a) Input image.

(b) Initial one-level curve of the prior TSP superimposed on the input image. (c) Final

segmentation result.

Figure 5.11: Evolution of the TSP surface of the hand image given in Figure 5.10(a) through-

out iterations.
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example where we consider a prior shape in the form of a line drawing with junctions as

illustrated in Figure 5.12(a)). We estimate the TSP surface representing the prior shape

(Figure 5.12(b)), and use it to segment out the object given in Figure 5.12(c). Although the

object is composed of two blobs, as Figure 5.12(e) illustrates, the proposed work is able to

extract both of them simultaneously. Notice that a formulation based on level sets cannot

be applied here since the segmenting curve is no longer a simple closed curve.

For the experiments illustrated in Figure 5.9 - Figure 5.12, we have ignored the shape

variability and used a single TSP surface to represent prior shape knowledge. In the next

example, Figure 5.14, we demonstrate how the shape variations within an object class are

dealt with by the proposed framework. For this, we use a set of airplane shapes given in Fig-

ure 5.13, each having a different appearance. We extract the TSP surface of each airplane

in the training set, and then perform PCA on the surfaces estimated. This process yields a

mean TSP surface and main principal components that we use to define the shape prior as

discussed in Section 5.2.1. Once the prior is constructed, next, we test the performance of

our segmentation framework on a set of novel examples, not belonging to the training set.

Figure 5.14(a) shows these example airplanes that all have different poses. In Figure 5.14(b),

we present the training curves superimposed on the input images considering the initial pose

(a) (b)

(a) (b) (c)

Figure 5.12: Segmenting an object considering a shape prior given in the form of a line

drawing with junctions. (a) Prior shape. (b) Prior TSP surface computed with ρ = 8. (c)

Input image. (d) Initial one-level curve of the prior TSP superimposed on the input image.

(e) Final segmentation result.
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Figure 5.13: Set of airplane shapes taken from [148].

(a) (b) (c)

Figure 5.14: Segmentation of airplane images using a model describing the global variations

of the prior shape. (a) Input images. (b) Training curves superimposed on the input image

(with the initial pose parameters). (c) Final segmentation results.

parameters. The contours in Figure 5.14(c) are the outcomes of the proposed formulation.

Since TSP surfaces have values that are approximately 1 along an edge and decay to 0 away

from an edge, we obtain these contours by performing some morphological operations on the

surfaces estimated. The results obtained show that the shape prior satisfactorily describes

the global variations of the prior shape. For the airplane image in the bottom row, the

additional parts in the wings are not parts of the segmentation as they are not previously

observed in the training set. This can be interpreted as a drawback of the global shape

model in that it does not describe the local deformations in shape.
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5.3 Prior-guided Segmentation Utilizing a Local Deformation

Model

In the previous section, we proposed a novel image segmentation method which utilizes TSP

surfaces to model the global variations of the prior shape and to supervise the segmentation

process. In this section, we present a new segmentation framework that make use of the TSP

surfaces to determine meaningful correspondences between a given template and the evolving

object region by taking account of a local deformation model similar to the formulation of

Hong et al. [73] (Section 3.2.6).

5.3.1 Shape Matching Using a Local Deformation Model

The aim of shape matching is to determine correspondences between two shapes. One way to

find these correspondences is to extract some features or structures from the given silhouettes

and to reduce the problem to finding a matching between them (e.g. [7, 16, 78, 160]). We

are interested in integrating a matching model into the Mumford-Shah segmentation model,

and hence we avoid such kinds of frameworks and focus on a formulation that establishes

the correspondences without performing any explicit shape analysis.

We approach shape matching as a registration problem where the task is to find a trans-

formation between corresponding data [98]. Given two silhouettes, a reference S1 and a

template S2, the trivial approach is to interpret the silhouettes S1 and S2 themselves as

shape representations and to determine a deformation such that the distance between the

reference shape and the transformed template shape is minimized. However, very likely

that in such a formulation, the estimated correspondences between the silhouettes will be

semantically wrong since each silhouette point is indistinguishable from others. Obtaining

more meaningful matching results demands more descriptive representations. Hence, we first

represent S1 and S2 by the corresponding TSP surfaces. As we review in Section 5.1.4, the

TSP surfaces assign each point a distinct value based on the local geometry of the shapes.

Let v1 and v2 denote the TSP surfaces estimated from S1 and S2, respectively. Matching

between the given shapes is estimated by minimizing the functional

Ematch(h) = Efid(h) + βEreg(h) (5.22)

with respect to the unknown deformation function h : Ω → R2. The first term in the energy

Efid(h) measures the similarity between the reference TSP surface and the template TSP

surface which is transformed under the displacement vector field h.
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In particular, the similarity term is defined as

Efid(h) =
1
2

∫

Ω
(v2(x + h(x)) − v1(x))2 dx (5.23)

where Ω denotes the domain in which v1 and v2 are defined. While this term provides a

driving force for the registration, the regularization term Ereg(h) forces the deformation

field h to be smooth. The relative importance between smoothing and similarity terms is

determined by the parameter β.

In literature, several approaches are proposed to regularize the deformation field h (see

Part II of [98] for a review). In our formulation, we use the linear elasticity model proposed

in [28], which is a physically motivated model:

Ereg(h) =
∫

Ω

(
µ̄

4

2∑

i,j=1

(
∂xihj + ∂xjhi

)2 +
λ

2
(∇ · h)2

)
dx (5.24)

where ∂xj denotes the partial derivative with respect to xj , and λ, µ̄ > 0 are the Lamé

constants that reflect material properties of an elastic body (a TSP surface in our framework).

This model cannot handle large deformations, and hence we assume that a global registration

is initially performed.

The deformation field h minimizing (5.22) formally satisfies the Euler-Lagrange equation

∂h

∂t
= −Ematch

∂h
= −

(
∂Efid

∂h
+ β

∂Ereg

∂h

)
(5.25)

where

∂Efid

∂h
= (v2(x + h(x)) − v1(x))∇v2(x + h(x)) , (5.26)

∂Ereg

∂h
= −

(
µ̄∇2h + (λ+ µ̄)∇ (∇ · h)

)
. (5.27)

In the following, Figure 5.15 - Figure 5.18, we present example matching results obtained

by the proposed method. From the silhouettes in Figure 5.15(a)-(b) - Figure 5.18(a)-(b),

we first estimate the corresponding TSP surfaces on which we perform the actual matching

process. These are given in Figure 5.15(c)-(d) - Figure 5.18(c)-(d). As discussed, finding

correspondences between two shapes corresponds to determining a deformation field h that

assigns a displacement vector h(x) for every point x, minimizing (5.22). The deformation

fields representing the matching between these shapes are illustrated in Figure 5.15(e) -

Figure 5.18(e). As it can be clearly seen from Figure 5.15(f) and Figure 5.16(f), the resulting

registration process determines meaningful correspondences between the given shapes for

the first two examples. However, for the last two cases, although the template shapes
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are accurately registered to the reference shapes (Figure 5.17(f) and Figure 5.18(f)), the

matching results are not so good. This clearly depicts that the registration procedure yields

reliable matching results only when the shapes to be registered are locally similar.

(a) (b)

(c) (d)

(e) (f)

Figure 5.15: (a)-(b) Silhouettes of two artificial shapes. (c)-(d) Corresponding TSP surfaces

estimated with ρ = 4. (e) Estimated deformation vector field. (f) Matching result.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: (a)-(b) cow and cat silhouettes (adapted from [26]). (c)-(d) Corresponding TSP

surfaces estimated with ρ = 4. (e) Estimated deformation vector field. (f) Matching result.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: (a)-(b) Silhouettes of two artificial shapes. (c)-(d) Corresponding TSP surfaces

estimated with ρ = 4. (e) Estimated deformation vector field. (f) Matching result.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: (a)-(b) Silhouettes of two artificial shapes. (c)-(d) Corresponding TSP surfaces

estimated with ρ = 4. (e) Estimated deformation vector field. (f) Matching result.
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5.3.2 Segmentation Framework

In this section, motivated by the formulation of Hong et al. [73], we present a new segmen-

tation framework that make use of the TSP surfaces and the matching functional discussed

in the previous section. Let T denote the given binary template and vT represent the cor-

responding TSP surface. We formulate image segmentation by minimization of a pair of

coupled functionals, E1 and E2 defined as follows:

E1(φ|h) = ECV (φ) + µ1Eshape(φ|h), µ1 ≥ 0 , (5.28)

E2(v, h|φ) = ETSP (v|φ) + µ2Ematch(h), µ2 ≥ 0 . (5.29)

The first functional E1 is an extended Chan-Vese (CV) functional (2.33) with an addi-

tional prior shape term given by

Eshape(φ|h) =
∫

Ω
(H(φ(x)) − T (x + h(x)))2 dx . (5.30)

This prior term is similar to the one used in [116] and measures the difference in the areas

of the evolving object region represented by H(φ) and the transformed prior under the

deformation h. As a result, while CV term leads to an image force that attracts the zero-

level curve of the evolving level set function φ to object boundaries, the prior term enforces

the zero-level curve towards the given template T under transformation.

The second functional E2 consists of two terms. The term ETSP is utilized to represent

the evolving object region in terms of a TSP surface denoted by v, and defined by

ETSP (v|φ) = α

∫

Ω
v2|∇H(φ)|2dx +

1
2

∫

Ω

(
ρ|∇v|2 +

(1 − v)2

ρ

)
dx . (5.31)

In fact, it is a modified AT functional (2.21) where the variable u is replaced with H(φ) and

the fidelity term is excluded. The second term Ematch in (5.29) corresponds to the matching

energy defined in (5.22). Minimizing this functional with respect to the unknown variables

v and h establishes a correspondence between the evolving object region and the prior shape

that are represented as the TSP surfaces v and vT , respectively.

The functionals E1 and E2 are coupled in the sense that the deformation field h found

by (5.29) determines the level set φ; and the level set φ estimated by (5.28) specifies the

TSP surface v and the deformation field h. These two functionals work jointly to partition

an image into object vs. background regions.

Our strategy is to alternate between these functionals when we apply the gradient descent.

We fix the deformation field h when we try to minimize the first functional E1, and determine
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the level set φ. Similarly, we fix the level set function φ when we try to minimize the second

functional E2, and estimate the evolving shape represented by the TSP surface v and the

deformation field h. Note that we could have combine these two functionals and have started

with it, interpreting it as a general framework. The main disadvantage of such a formulation

is that when we apply the gradient descent, the deformation field h depends on not only the

TSP surfaces, but also the binary silhouettes, which may yield inaccurate correspondences

as we stated before.

We now apply gradient descent to the functionals E1 and E2 to obtain segmentation.

Minimizing the first functional (5.28) with respect to φ leads to the following evolution

equation:
∂φ

∂t
= −E1

∂φ
= −

(
ECV

∂φ
+ µ1

Eshape

∂φ

)
(5.32)

with
Eshape

∂φ
= 2 δ(φ(x)) (H(φ(x)) − T (x + h(x))) . (5.33)

With fixed φ, minimizing the second functional (5.29) with respect to v and h leads to

two evolution equations. While the evolution equation for h is similar to (5.25) where v2 is

replaced with vT , and v1 with v, the evolution equation for v is given by:

∂v

∂t
= −E2

∂v
= −

(
ETSP

∂v
+ µ2

Ematch

∂v

)
(5.34)

with

ETSP

∂v
= ∇2v − 2α|∇H(φ)|2v

ρ
− (v − 1)

ρ2
, (5.35)

Ematch

∂v
= (vT (x + h(x)) − v(x)) . (5.36)

The minimization procedure of the proposed framework is summarized in Algorithm 5.

In the experiments, the iterations continue until the square of the overall energy (E1 + E2)2

is no more decreasing.

5.3.3 Experimental Results

In this section, we present experimental results on various natural images. In order to demon-

strate the performance of our framework and to illustrate what it is gained by introducing

prior shape knowledge, we compare the results of our method with those of the CV model

using the same values for the common parameters and the same initial conditions. Note that

setting µ1 to zero and excluding E2 from computations reduce our formulation to the CV

model, yielding a model that does not take prior shape into account. In all experiments, we
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Algorithm 5 The proposed segmentation algorithm
1: Compute the TSP surface v representing the given binary template T

2: Initialize the variables with φ0 = φ0, v0 = vT , h0 = 0

3: while stopping criteria is not reached do

4: Estimate c1 and c2 using (2.35) and (2.36), respectively

5: Transform the template T under the currently estimated deformation field h.

6: Update the level set function φ according to (5.32) by taking the transformed template

into account

7: Update the TSP surface v by iterating (5.34) 500 times

8: Estimate the deformation field h by iterating (5.25) 200 times

9: end while

set ε = 1, λ1 = λ2 = 1, ρ = 4, α = 500, µ2 = 10−4, λ = 0, µ̄ = 1 unless stated otherwise,

and assume that a global registration is initially performed.

Let us start with some simple examples. We apply our method to the hand image given

in Figure 5.19(a). The segmentation process takes the prior shapes shown in Figure 5.19(b)

into account. The level sets are initialized by considering these shapes and then are allowed

to evolve according to the proposed framework. Since there are no corrupting influences in

the images and hands correspond to single homogeneous regions, as seen in Figure 5.19(c)-

(d), the segmentations given by our method and that by the CV model accurately delineate

the object boundaries. The similar results obtained show that top-down knowledge provided

by a shape prior is not always required for segmentation. It can be argued that it should be

consulted only when an image is ambiguous. However, an advantage of the proposed work

is that it segments an image while jointly registering the prior shape on the image data4

(Figure 5.19(e)). This important issue will be discussed in detail through some illustrative

examples later on.

A major challenge in image segmentation is to handle occlusions. In general, it is im-

possible to delineate the occluded object boundaries accurately by utilizing the cues depend

merely on image data. Figure 5.20(a) shows two such examples that are generated from Fig-

ure 5.19(a) by artificially introducing occlusions. In the images, the hands are partially
4In [67], the authors introduced a model that also performs registration and segmentation simultaneously.

The model depends on the CV model and a nonlinear elasticity regularization on the deformation vector

field and does not employ any prior shape knowledge. Hence, it cannot fully cope with the ambiguities in

images as compared to our formulation.
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(a) (b) (c) (d) (e)

Figure 5.19: Segmentation results of two hand images. (a) Input images. (b) Unregistered

prior shapes superimposed on the input images (initial zero-level curves). (c) Segmentation

results without prior shape information. (d) Final segmentation results. (e) Deformed grids

under the estimated displacement vector fields. (the parameters are µ = 15000, µ1 = 10000

and β = 0.01).

occluded by the pencils, resulting in some parts of the regions describing the hands missing.

Thus, without the shape priors (Figure 5.20(b)), the missing information cannot be recov-

ered and the segmenting contours fail to capture the objects of interest as in Figure 5.20(c).

When the prior shape knowledge is taken into account, the shapes of the evolving object

regions are not allowed to deviate much from the prior shapes, and as a result ambiguous

information due to partial occlusions are compensated and the final contours yield more

acceptable approximations of object boundaries (Figure 5.20(d)).

We next consider images corrupted by noise. The hand images given in Figure 5.21(a)

are noisy versions of the images presented in the bottom rows of Figure 5.19(a) and Fig-

ure 5.20(a), respectively. They were generated by corrupting 75% of the image pixels with

uniform noise. Although there is a significant amount of noise in the images, the proposed

framework is able to produce relatively good segmentation results (Figure 5.21(d)). Particu-

larly, in segmenting the noisy hand image in the bottom row, our method copes with not only

missing information due to noise, but also that due to partial occlusions. This experiment

also illustrates the robustness of the CV model against noise. For the noisy hand image in

the top row, the contour obtained by the CV model delineates the object boundary without

taking any prior knowledge into account. Although this is the case, the one obtained by the

proposed method is more smoother due to the regularization introduced on the deformation
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(a) (b) (c) (d) (e)

Figure 5.20: Segmentation of partially occluded hands. (a) Input images. (b) Unregistered

prior shapes superimposed on the input images (initial zero-level curves). (c) Segmentation

results without prior shape information. (d) Final segmentation results. (e) Deformed grids

under the estimated displacement vector fields. (the parameters are µ = 25000, µ1 = 20000

and β = 0.025).

(a) (b) (c) (d) (e)

Figure 5.21: Segmenting hand images corrupted by significant amount of noise. (a) Input

images. (b) Unregistered prior shapes superimposed on the input images (initial zero-level

curves). (c) Segmentation results without prior shape information. (d) Final segmentation

results. (e) Deformed grids under the estimated displacement vector fields. (the parameters

are µ = 20000, µ1 = 15000 (top row), µ1 = 12500 (bottom row) and β = 0.01).

field (Figure 5.21(e)) that is utilized to transform the prior shape, which guides the evolving

contour.
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In the next example, Figure 5.22, we demonstrate a major drawback of our formulation.

For the images we illustrated in Figure 5.20 and Figure 5.21, the proposed framework handles

missing or misleading information by establishing a correspondence between the evolving

object region and the prior shape and guiding segmentation process accordingly. However,

once the amount of missing information increases, this alters. Figure 5.22(a) shows example

hand images under heavy occlusions. Note that a certain part of the thumb is behind the bar

in the image in the top row, and fingers are nearly missing in the image in the bottom row.

As seen in Figure 5.22(d), with increasing occlusion, there is not sufficient information for

the employed local deformation model to compensate, thus the proposed formulation results

in degraded segmentation results.

An advantage of our formulation is that it performs image segmentation with simultane-

ously registering the prior shape on the image data as we discussed in the beginning of this

section. In the following, we show joint results of segmentation and registration processes

on a set of horse images. Figure 5.23(a) contains the horse images that are used in this ex-

periment (the horse image in the third row is taken from the Weizmann Horse Database [22]

and that in the last row is generated by artificially modifying it). In Figure 5.23(b), the ini-

tial zero-level curves, which correspond to the unregistered shape priors, are superimposed

on the input images. The contours in Figure 5.23(c) and (d) are the outcomes of the CV

(a) (b) (c) (d) (e)

Figure 5.22: Segmenting hand images under heavy occlusions. (a) Input images. (b) Un-

registered prior shapes superimposed on the input images (initial zero-level curve). (c) Seg-

mentation results without prior shape information. (d) Final segmentation results. (e) De-

formed grids under the estimated displacement vector fields. (the parameters are µ = 15000,

µ1 = 20000, β = 0.005 (top row) and µ = 30000, µ1 = 15000, β = 0.01 (bottom row)).
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(a) (b) (c) (d) (e)

Figure 5.23: (a) Input images. (b) Unregistered prior shapes superimposed on the input

images (initial zero-level curves). (c) Segmentation results without prior shape information.

(d) Final segmentation results. (e) Deformed grids under the estimated displacement vector

fields.

model and the proposed formulation, respectively. Table 5.1 lists the parameters utilized in

segmentation.

Figure 5.24 presents the corresponding registration results, where the initial zero-level

curves are broken into meaningful parts (head, tails, legs, etc.) and transformed under

the estimated displacement vector fields shown in Figure 5.23(e) accordingly. We have used

different colors for different parts of the curves in order to show how meaningful the obtained

correspondences are. As these results confirm, even the CV model and our framework give

the same segmentation results (e.g. for the horse images in the topmost two rows), our

model is superior to the Chan-Vese model due to jointly performed registration process that

allows to perform additional semantic analysis if an explicit shape analysis is carried out

beforehand.

As discussed in Section 2.3.2, the CV model can be interpreted as a two-phase piecewise

constant approximation of the MS model, where the given image is assumed to be com-

posed of two regions as a dark object on a bright background, or a bright object on a dark
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Table 5.1: The parameters for the images given in Figure 5.23

µ µ1 β

first row 9000 10000 0.05

second row 15000 5000 0.01

third row 18000 5000 0.01

fourth row 18000 20000 0.01

Figure 5.24: Analysis of the registration process. Correspondences between the prior shapes

and the deformed versions of them are shown in same color.

background. Although the model can cope with noise (Figure 5.21) as it does not employ

gradient information to extract object boundaries, two-phase piecewise constant assumption

generally yields unrealistic results for textured images. A similar argument can be made for

our formulation since it is based on the Chan-Vese model.

Consider the highly textured images presented in the top row of Figure 5.25. While the

image in the left is a synthetic image containing a human pattern, that in the right is a

natural starfish image. To eliminate the corrupting effects due to texture, we suggest to per-

form a priori smoothing process guided by the context-influenced filtering model proposed

in Chapter 4. The outcomes of this smoothing process are shown in the bottom row of Fig-

ure 5.25 5. Figure 5.26 illustrates the segmentation results obtained by using the original

and the smoothed images with the parameters listed in Table 5.2.

The contours in Figure 5.26(b) and (c) are the outcomes of the Chan-Vese model and

our framework, respectively. The parameters λ1 and λ2 are chosen so that different weights
5These results are estimated by taking coalition of directional consistency, edge continuity and texture

edges into consideration with the parameters α = 5 (left column), α = 4 (right column), β = 0.01, ρ = 0.01,

∆x = 10 and εte = 20.
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Table 5.2: The parameters used in segmenting the images presented in Figure 5.25

µ λ1 λ2 µ1 β

first column 7000 0.7 1 5000 0.01

second column 100 0.25 1 100 0.05

third column 3000 1 0.25 1000 0.01

fourth column 1000 1 0.1 500 0.01

Figure 5.25: Input images and the corresponding smoothing results.

are assigned to the fidelity terms of the object and background regions during the minimiza-

tion process. We extract more accurate object boundaries with prior smoothing, especially

for the textured image containing the human pattern. Additionally, performing smoothing

beforehand improves the speed of segmentation since smoothed images require less number

of iterations.

In Figure 5.27, we present the registration results that are simultaneously estimated

with the segmentation results given in Figure 5.26. While Figure 5.27(a) illustrates the

unregistered curves, Figure 5.27(b) and (c) show the registered ones that are estimated

by using the input and the smoothed images, respectively. Again, the colors depict the

correspondences between the initial curves and the final ones. Note that all these curves are

superimposed on the original unprocessed images whether they are computed from them or

not.
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(a)

(b)

(c)

(d)

Figure 5.26: Segmenting input and processed images given in Figure 5.25. (a) Unregistered

prior shapes superimposed on the images (initial zero-level curves). (b) Segmentation results

without prior shape information. (c) Final segmentation results. (d) Deformed grids under

the estimated displacement vector fields.

Comparison with the method of Hong et al.

Finally, we compare our prior-guided segmentation framework with the one proposed by

Hong et al. [73], which also takes a local deformation model into account as we reviewed

in Section 3.2.6. The shape priors that they employed are based on integral kernels (Sec-

tion 5.1.3), and encode local geometry of shapes in a different way compared to the TSP

surfaces. Consider the images shown in Figure 5.28(a) and Figure 5.29(a) that contain a
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(a) (b) (c)

Figure 5.27: Analysis of the registration results (correspondences between the prior shapes

and the deformed versions of them are shown in same color). (a) Initial curves. (b) Final

curves obtained by taking input images into account. (c) Final curves obtained by taking

processed images into account (contours superimposed on input images).

brain MRI and a hand, respectively. While the corpus callosum in the brain image has weak

edges due to low contrast, the hand is partially occluded. As it can be clearly seen in Fig-

ure 5.28(c)-(d) and Figure 5.29(c)-(d), both methods can cope with these influencing factors

and give very similar and good segmentation results. These examples support our previous

viewpoint that there is not a unique way to represent the shape priors. Each representation

has its own strengths and weaknesses, and choice of representations are highly dependent on

applications and computational constraints. Particularly, although integral kernels are more

computationally favorable than the TSP surfaces since they do not require solving a PDE,

the TSP surfaces provide a much more rich representation in the sense that they additionally

allow to perform shape analysis as they can be used to extract skeletons even though we did

not explicitly utilize this property in our prior-guided segmentation frameworks.
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(a) (b) (c)

(d) (e) (f)

Figure 5.28: Segmenting a brain MRI image having weak edges. (a) Input image taken

from [73].(b) Unregistered prior shape superimposed on the input image (initial zero-level

curve). (c) Final segmentation result (the parameters are µ = 2000, λ1 = 1, λ2 = 0.25,

µ1 = 1250 and β = 0.01). (d) Segmentation result reported in [73]. (e) Segmentation result

without prior shape information. (f) Deformed grid under the estimated displacement vector

field.

Computational Complexity and Performance

In this section, we provide information about the computational complexity and the per-

formance of the suggested segmentation framework. As we summarized in Algorithm 5, at

each iteration, we first update the average gray values of object and background regions,

and the evolving the level set function. Next, we compute the TSP surface representing the

object region, and estimate the displacement vector field of the local deformation model ac-

cordingly. Assuming the resolution of the input image is M ×N , the complexity of all these

processes is O(MN) per iteration as we go through every pixel during the computations.

Hence, in general, the time required to segment an image depends on the size of that image.

We have perfomed the experiments presented here on a standard PC hardware (2.4GHz

Intel Core 2 Duo system with 2GB of RAM) using nonoptimized MATLAB code. As an

example, consider the experiment presented in Figure 5.29 where we partition an 365 × 388

hand image. With the current implementation, it takes 39 iterations and roughly 14 minutes

to segment the image. It is important to remark that more efficient implementation schemes
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(a) (b) (c)

(d) (e) (f)

Figure 5.29: Segmenting a partially occluded hand. (a) Input image taken from [73].(b) Un-

registered prior shape superimposed on the input image (initial zero-level curve). (c) Final

segmentation result (the parameters are µ = 20000, µ1 = 17500 and β = 0.025). (d) Seg-

mentation result reported in [73]. (e) Segmentation result without prior shape information.

(f) Deformed grid under the estimated displacement vector field.

could be considered to alleviate the computation time. For instance, since the Dirac delta

function arises as a factor in the evolution equation of the level set function, the computations

can be carried out within a narrow band around the zero level curve of the level set function

as in [120], which significantly reduces the computational complexity per iteration. Moreover,

one can utilize multigrid methods [25, 27] to more effectively solve the partial differential

equations.

5.4 Summary

In many vision applications, extracting accurate object boundaries becomes particularly

difficult when the images contain missing or misleading information due to partial occlu-

sions, weak edges and noise. We have presented two new prior-shape based segmentation

frameworks that aim to solve this problem. The key to our formulations is the TSP surface

representation. In general, in the segmentation framework proposed in Section 5.2, we make

use of this surface representation while modeling the global variations of the prior shape and

subsequently guiding the segmentation process. On the other hand, our work suggested in

124



Section 5.3 utilizes TSP surfaces to determine meaningful correspondences between a given

template and the evolving object region by taking account of a local deformation model. The

deformation between similar local shapes, in return, supervises segmentation by enforcing

the zero-level curve of the evolving level set function towards the transformed template.

In our preliminary work which integrates a global shape model with the Mumford-Shah

functional, we have simply demonstrated the potential use of TSP surfaces as an aid for

incorporating shape priors into image segmentation. Although it can be considered as a

straightforward model as compared to our latter work, it deals with the shape variations

within an object class and gives adequate results for a set of fairly simple synthetic images.

However, one critical issue that must be addressed is that the shape prior obtained by adding

linear combinations of the principal components to the mean TSP surface could not preserve

the properties of a TSP surface. It may have either negative values or values that exceed 1

at some points even if the empirical results show that such situations are not observed a

lot. In this regard, to obtain a more precise global shape model, one can use a nonnegative

matrix factorization (e.g. [69, 83]) instead of principal component analysis.

Our latest method discussed in Section 5.3 is more robust than our former work against

undesirable conditions such as noise, weak edges and partial occlusions as the experimental

results demonstrate. The Chan-Vese model utilized in this work gives a two-phase piece-

wise constant approximation of the input image, yielding a clear separation of object and

background regions. Moreover, the integrated matching functional that uses a local defor-

mation model handles shape variability better than the global shape model and does only

need a single template to represent the shape prior. To illustrate this, in Figure 5.30, we

repeat the experiment presented in the bottom row of Figure 5.14 by applying our former

work. Although we use a single airplane template (Figure 5.30(b)) in the experiment, the

segmentation result obtained is fairly good. The local deformation model transforms the

prior shape towards the object boundaries by introducing additional parts in the wings that

are not initially a part of the prior shape (Figure 5.30(e)). On the other hand, as it can be

clearly seen in Figure 5.30(d), the global shape model in our former work is inadequate in

describing these local variations in shape.

Another advantage of our new method is that it partitions an image into regions while

simultaneously registering the prior shape on the image data that allows further semantic

analysis to be performed on the extracted object. However, since the proposed approach

utilizes a local deformation model that relies on linear elasticity, the shapes to be registered

should be locally similar. For the objects having highly variable shapes, one need to use reg-
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(a) (b) (c)

(d) (e) (f)

Figure 5.30: Comparison of the proposed segmentation methods. (a) Input image.(b) Un-

registered prior shape superimposed on the input image (initial zero-level curve). (c) Final

segmentation result (the parameters are µ = 3000, µ1 = 1500 and β = 0.01). (d) Seg-

mentation result of our previous work (presented in Figure 5.14). (e) Transformed prior.

(f) Deformed grid under the estimated displacement vector field.

istration models that can deal with large deformations. Another drawback of the proposed

work is that once the amount of missing or misleading information increases, the local defor-

mation model cannot compensate the insufficient data and results in degraded segmentation

results. This suggests that the local deformation model should work jointly with a global

shape model to restrict implausible transformations.

As we emphasized before, representation has a critical role in any information processing

task. From this perspective, computational frameworks that employ different prior shape

representations have been suggested for prior-shape guided segmentation. Generally, it is not

very clear how to completely compare the results of these studies as one cannot fully measure

what is attained is whether due to the computational scheme or due to the underlying prior

shape representation. As a futurework, we want to compare the shape representations previ-

ously discussed in Section 5.1 within a segmentation framework similar to our former model

to explore their influences on the ongoing process. In this respect, we plan to decompose

our former scheme into three coupled processes that respectively correspond to prior-guided

segmentation, feature extraction, and local shape matching steps, which allows us to play

with the local shape feature utilized in segmentation.
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CHAPTER 6

SKELETONS FROM NATURAL IMAGES

In the previous chapter, we suggested two new prior-guided segmentation methods that

make use of TSP surfaces as shape priors. In general, the prior shape knowledge helps us to

attain more accurate segmentation results by resolving the missing or misleading information

in the images. One key issue in the proposed works, as in most of the prior-shape based

segmentation frameworks, is that an initial guess about the object of interest is required to

initiate the segmentation process.

Finding out such an initial guess is often as difficult as the segmentation itself since it

demands an analysis of the input image beforehand. In this chapter, we propose a skeleton

based analysis of natural images which operates directly on the raw image with all its com-

plexity. We divide the image into constituent components while simultaneously forming a

representation for the components which ties shape and image features.

Our analysis is based on the function v which simultaneously codes the boundaryness and

medialness. The localization of the one deteriorates as the localization of the other improves

as a function of the choice of scale and contrast parameters. We show that, with the proper

choice of parameters, v function, at a skeleton point, becomes an invertible function of the

distance from putative shape boundaries. We use this connection to extract patches of

uniform characteristics that can be robustly and easily used in various image analysis tasks.

We provide illustrative results using textured images taken from various datasets.
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6.1 Related Work

Skeleton extraction has been of interest to computer vision community for almost 40 years.

Skeleton based representations have been used in numerous shape recognition methods quite

successfully, e.g. [7, 10, 14, 126, 136, 160]. However, the vast majority of the skeleton

extraction methods assume that shape is given (see [7, 111, 141] for an extensive list of

references). Thus, these methods ignore the difficult problem of image segmentation.

The literature on skeleton-like information extraction from real images are rather limited

(even though the earliest attempts go back to seventies [53, 90, 152]) due to ambiguities

which are inherent to the processing of real images with all their complexity. One of the

earliest attempts is the gray-value thinning [53, 149] by applying thinning to the results of bi-

narization (thresholding) at various gray-values. Another early attempt is the Gradmat [152]

method which defines the axis as the ridges of a medialness function. A medialness score is

computed for every image point P based on the gradient magnitudes at all pairs of points

that have P as their midpoint. The Gradmat method is highly sensitive to noise. However,

when the basic idea is combined with regularization as in Cores [32], a robust medialness

score can be computed.

There are some recent papers dealing with skeleton extraction from grayscale images [5,

42, 51]. However, they consider strong assumptions on the nature of input images such

as piecewise constant images in [5] or existence of a bright object in a dark background

in [42, 51]. None of these approaches can handle complicated natural images.

The limited literature on skeleton-like structure extraction from real images can be

extended by including ridge extraction methods that operate on grayscale images to ex-

tract special image loci [54, 61, 91, 93, 94], watersheds [151], and morphological representa-

tions [66, 95, 127].

A theoretically interesting approach, which has not been used in practice, has been pre-

sented by Tari, Shah and Pien in [143]. They propose the edge strength function which is a

regularized form of the regularized image gradient. The edge strength function, which has

been constructed via a pair of coupled diffusion equations, is approximately an exponential

function of the minimum distance to the putative edges. It has been shown that the medial-

ness of a point is inversely related to the gradient of the edge strength function at that point,

and this relation has been exploited to extract skeletons. The method is only applicable to

piecewise smooth images with moderate noise, and the extracted skeletons are too compli-

cated to be used in image analysis. One reason that the skeletons are too complicated is the
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saddle point instability which has been reported in [6] and solved by using a large enough

regularization parameter. However, the suggested solution works only for simply connected

domains. Another limitation of the edge strength function is that its value does not give the

skeletal radius (minimum distance from a skeleton point to the putative shape boundary).

This is an important problem because the recovery of the putative shape boundary from the

edge strength function is not trivial [130, 131].

In this chapter, we extend the work of Tari, Shah and Pien (TSP method) such that it

becomes applicable to natural images. We first change the pair of coupled equations which

are used to compute the edge strength function such that it better reflects the structure of

the image regions. Second, we decouple the skeletal radius and the image gradient, and relate

the skeletal radii directly to the minimum distance to the putative shape boundary. Using

skeletal radii, we extract shape sections of uniform characteristic, e.g. texture, easily. These

shape sections can be used in image analysis. We demonstrate our results using images from

various datasets [82, 97, 107].

6.2 Computing Medialness From an Image

Our construction of medialness builds on our work on shape preserving filtering discussed

in Chapter 4. The following pair of coupled PDEs defines an evolution both for a smooth

image u and a function v, given an input image f and the parameters α, β, ρ:

∂u

∂t
= ∇ · ((cv)2∇u) − β

α
(u − f);

∂u

∂n

∣∣∣∣
∂Ω

= 0 , (6.1)

∂v

∂t
= ∇2v − 2α|∇u|2v

ρ
− (v − 1)

ρ2
;

∂v

∂n

∣∣∣∣
∂Ω

= 0 . (6.2)

If we fix c = 1, the system of coupled PDEs is reduced to the gradient descent for the

Ambrosio-Tortorelli approximation [3] of the Mumford-Shah [100] segmentation functional

which has been previously used by Tari, Shah and Pien [143]. Key point is that

cv = φv + (1 − φ)V (6.3)

where φ measures the strength of a feature of interest and is explicitly estimated at each

image point. φ induces a spatially varying multiplier c for the diffusivity function, providing

a higher-level contextual influence. The type of the influence is determined by V , which is

either 0 for boosting the feature of interest or 1 for eliminating it. Note that with φ = 1,

at all image points, c = 1. Thus, the higher-level influence is turned off and the system is

reduced to the one in [143].
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The parameters α, β, ρ determine the image scale σ (i.e. the smoothing radius of u) and

the contrast threshold λ. The image scale σ is given by
√

2α
β . The contrast threshold λ is

roughly given by
√

1/2αρ. Notice that the parameter α affects both the image scale and

the contrast threshold. Increasing α while keeping both
√

2α
β and ρ constant decreases the

contrast threshold, thus leads to an increase in the number of edges.

Notice that if we fix u, (6.2) is a gradient descent for
∫

Ω

(
ρ2

1 + 2αρ|∇u|2 |∇v|2 +
(

v − 1
1 + 2αρ|∇u|2

)2
)

dx . (6.4)

Clearly, v is a blurred form of 1
1+2αρ|∇u|2 , and the amount of blurring is an increasing

function of ρ. Thus, as ρ decreases, the localization of edges improves. Consequently, for

small values of the parameter ρ, v function encodes edgeness information.

Note that as in the edge strength function of Tari, Shah and Pien [143], the new v function

computed from (6.1)-(6.3) is a nonlinearly smoothed form of a nonlinearly smoothed image

gradient. The difference between the former and the later is the way the image is smoothed.

We select φ such that the smoothing of u will preserve structures rather than noise or texture.

The construction of the medialness function is summarized in Algorithm 6. We start with

a small ρ value (ρ = 0.001 is used in the experiments). Three different contextual feedback

measures φdc, φh, φte denoting, respectively, the directional consistency, the edge continuity,

and the texture edges are used to compute cv in (6.3). The numerical implementation

follows the iterative scheme we previously introduced for the context-influenced filtering in

Section 4.1.2. A numerical stopping criteria |uk+1 − uk| < ε1|uk| is defined on the evolving

image u for a small positive constant ε1. This first phase yields a smooth image u∗ and a

function v which attains its minimum on the putative edges. After the numerical convergence

with the first set of parameters, we set f = u∗ and rerun the coupled system using a different

parameter set. First, we significantly lower both the contrast threshold and the image scale to

shutdown the smoothing of u. Consequently, the influence of contextual feedback parameters

εdc in (4.15), h in (4.18), and εte in (4.19) becomes negligible. Thus, we set all of them to

zero. Second, we dramatically increase the value of ρ (we use ρ = 128 throughout the

experiments). A second numerical stopping criteria |vk+1 − vk| < ε2|vk| is defined on the

evolving medialness function v for a small positive constant ε2.

In the following, we demonstrate the role played by the parameter ρ which mainly defines

the separate phases of our medialness computation procedure. We consider a cube image

that is degraded by Gaussian noise with zero mean and non-constant (local) variance along

with 2% impulse noise (Figure 6.1). Recall that as ρ→ 0, v → 1
1+2αρ|∇u|2 , and as ρ increases
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Algorithm 6 The suggested iterative scheme for constructing a medialness function from a

natural image
1: Initialize the variables with u0 = f , v0 = 1

1+2αρ|∇u0|2

2: Set the contrast and scale parameters, λ and σ

3: Set ρ to a small value (e.g. ρ = 0.001)

4: Determine the contextual feedback measure φte [56]

5: for k = 1 to kmax do

6: Estimate the contextual feedback measures φdc and φh [57]

7: Compute the modified diffusivity (cv)k−1 by taking account of complementary feed-

back measures

8: Solve (4.7) for uk using &σ' steps

9: if |uk − uk−1| < ε1|uk−1| then

10: stop iterations

11: end if

12: Solve (4.8) for vk

13: end for

14: Set f = uk = u∗, decrease the level of detail and smoothing by changing σ and λ, and

increase the value of ρ (e.g. ρ = 128)

15: Turn off the influence of the contextual feedback measures by selecting εdc = h = εte = 0

at all image points, making c = 1

16: Solve (4.7) for uk+1 using &σ' steps

17: Solve (4.8) for vk+1

18: while |vk+1 − vk| ≥ ε2|vk| do

19: k := k + 1

20: Solve (4.7) for uk+1 using &σ' steps

21: Solve (4.8) for vk+1

22: end while

v becomes blurred. As Figure 6.2 illustrates, the localization of edges deteriorates as ρ

increases from 1 to 32. Notice that for ρ = 32, the edge localization is very poor, and

the v function resembles a distance function. Figure 6.3 illustrates, in color, the v function

computed from the noisy cube image with ρ = 32 and ρ = 128. As the details extracted

from v for each surface of the cube depict, for large values of ρ, v function encodes some

kind of medialness information, i.e. v is approximately a function of the minimum distance
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Figure 6.1: A cube image degraded by Gaussian noise with zero mean and non-constant

variance along with 2% impulse noise.

ρ = 1 ρ = 4 ρ = 8 ρ = 32

Figure 6.2: Deterioration in the edge localization.
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Figure 6.3: v function computed using ρ = 32 and ρ = 128, and the details extracted from

v for each surface of the cube.

to the putative edges. The value of the parameter ρ mainly determines the growth rate

of the approximate distance function. The rate of growth increases with the decreasing ρ.

Consequently, v function encodes the medialness information more reliably as ρ increases.
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Note that just like the function in [143], the new v function is an implicit function of the

image gradient rather than the distance to shape boundary. In Section 6.3, we propose an

approximation such that v function, at a skeleton point, becomes an invertible function of

the minimum distance to the shape boundary.

6.3 From Medialness to Skeletons and Patches

In the following, we first review the skeleton extraction method of Tari, Shah and Pien.

Then, we show that with our choice of parameters, i.e very large ρ, the medialness function

v at a skeleton point becomes independent of the image gradient. We use this observation to

compute the skeletal radius, i.e the distance from a skeleton point to the nearest boundary.

The envelope of skeletal circles defines a patch of interest. We demonstrate how these patches

can be used in image analysis.

6.3.1 Review of the Skeleton Extraction Method [143]

Skeleton points are determined from the surface v by the points where the surface gradient

|∇v| is extremum along the level curves of v.

Let S1 denote the closure of the set of zero-crossings of d|∇v|
ds

d|∇v|
ds

=
((v2

y − v2
x)vxy − vxvy(vyy − vxx)

|∇v|2
(6.5)

where s denotes the arclength along the level curves of v. This is approximately equivalent

to the curvature extrama. However, as computation of curvature involves second derivatives

of v, it is more sensitive to noise than the computation of |∇v|.

Let S+
1 ⊂ S1 and S−

1 ⊂ S1 be two disjoint set of points such that S1 = S+
1 ∪ S−

1 . This

separation can be achieved either using the sign of d2|∇v|
ds2 [143] or a sign test [132]. S+

1 is

approximately equivalent to the points where the curvature of the level curves is positive.

Let S0 denote the set of points where |∇v| = 0. Points in S0 correspond to centers (maxima

of v) or necks (saddle points of v).

The constructions are illustrated in Figure 6.4 on a binary cat shape. The v functions

are computed using the binary formulation given in [143] with two different values of ρ. As it

can be seen from the sample level curves of v given in Figure 6.4(b), the level of smoothing of

the shape boundary increases with the increasing ρ. Moreover, as ρ increases, the cardinality

of points of S0 decreases. Increasing the value of ρ also results in more coarser skeleton as

the less significant branches shrink (Figure 6.4(c)).
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(a)

ρ = 1 ρ = 128

(b)

(c)

Figure 6.4: Illustrative constructions. (a) A cat shape. (b) The level curves of v for two

different ρ values. As ρ increases, |S0| decreases. (c) S1 for two different ρ values.

Roughly speaking, S+
1 tracks the protrusion of the level curves of v, and S−

1 tracks the

indentation of the level curves of v. When they join (d2|∇v|
ds2 = 0), both branches terminate

at a disconnection point [8]. The branches of S1 that do not terminate at a disconnection

point terminate at a point in S0.

6.3.2 Distance From a Skeleton Point to the Nearest Boundary Point

Recall that v function is a nonlinearly smoothed form of 1
1+2αρ|∇u|2 . Thus, the value of v at

a point depends on the gradient |∇u| at the point and its neighbors. Consequently, one can

not estimate the radius of the skeletal circle (i.e. the distance from a skeleton point to the
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nearest boundary) using the value of v. Difficulties associated using v function for extracting

boundaries has been previously reported in [131].

We propose to replace the direct dependency of v to |∇u|, just at a skeleton point, with

an indirect dependency through an absolute distance |d| such that the function v attains its

minimum at a distance |d| from the skeleton point.

We consider a ribbon-like section of a shape, i.e. a section having slowly varying width

(this will be justified later in Section 6.3.3), and the skeleton points in that shape section

(the dotted line) in Figure 6.5. Note that the boundaries at |d| distance from the skeleton

point are the putative edges. Ignoring the curvature effect, the evolution equation is reduced

to (
d2

dx2
− 2α|ux|

ρ
− 1
ρ2

)
v = − 1

ρ2
; −d ≤ x ≤ d (6.6)

with the conditions v(−d) = v(d) ≈ 0.

In (6.6), |ux| is large at the putative edges. Thus, 1
1+2αρ|∇u|2 is practically zero at x = ±d.

On the other hand, |ux| is a small quantity unless v ≈ 0. The second and third term in the

left hand side are, therefore, negligible. The term in the right hand side affects the scaling of

the solution. Multiplying the right hand side by ρ2 does not make a qualitative difference.

Consequently, the behavior is roughly governed by

d2v

dx2
= − 1

ρ2
; −d ≤ x ≤ d (6.7)

Therefore,

v(0) =
d2

2ρ2
. (6.8)

Consequently, the radius r of the maximal circle is given by

r = d = ρ
√

2v . (6.9)

In Figure 6.6, we illustrate the sample skeletal circles with the computed radii according

Figure 6.5: An illustration of a ribbon-like section of a shape and its skeleton (the dotted

line).
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Figure 6.6: Sample skeletal circles with radii computed using (6.9).

to (6.9). Notice that the envelopes of the circles are quite in agreement with the correspond-

ing ribbon-like shape sections.

6.3.3 Optional Pruning Strategies

As ρ increases, the skeleton points code less and less the noise and the secondary details (i.e.

such branches get shorter and shorter), and the skeleton branches terminate at the end of

ribbon-like sections of a shape. In [6], Aslan proposed a straightforward solution to eliminate

the irrelevant branches based on a length criterion.

Ideally, in a symmetric ribbon-like portion of a shape, v is symmetric about the geometric

axis. The positive skeleton points (S+
1 ) coincide with the geometric axis, and are orthogonal

to the level curves of v. As we approach to a disconnection point (i.e. the join of S+
1 and

S−
1 ), the behavior of S+

1 deviates from the ideal. Eventually the level curves of d|∇v|
ds becomes

tangent to a level curve of v at the disconnection point (Figure 6.7(e)-(f)). Shah [133]

proposed the angle, ψ, between the vectors ∇v and ∇
(

d|∇v|
ds

)
as a measure of the deviation

from the ideal that could be used to prune inaccurate branches.

As the skeleton points have ψ values close to 90◦ along the ribbon-like shape sections,

considering a fairly high threshold does preserve only the branches of the skeleton identifying

the main protrusions. On the other hand, setting the threshold too low fails to eliminate

the branches related to noise or insignificant shape details. Shah suggested to use a two-step

pruning procedure to obtain more accurate skeleton representations. This procedure requires

two threshold values θ and θ for the angle ψ with θ > θ. In the first step, the skeleton points

are pruned by making use of θ, which yields the significant protrusion branches representing

the ribbon-like shape sections. Next, in the second step, the branches of the thresholded

skeleton are traced in the direction of increasing v and extended by the skeleton points
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ignored by the initial step as long as ψ remains greater than θ.

In Figure 6.7, we present sample pruning results obtained by the suggested algorithm.

Figure 6.7(a) illustrates the unpruned skeleton branches. In Figure 6.7(b) and (c), we respec-

tively use θ = 60◦ and 75◦, and θ = 10◦ to prune the skeleton branches extracted. As it can

be clearly seen from these pruning results, the level of pruning increases with the increasing

value of the thresholding angle θ. The enlarged pruning result given in Figure 6.7(d) illus-

trates the deviation in the ideal behavior of the protrusion branches (S+
1 ) as we approach

to a disconnection point. The pruned segments of the protrusion branches which do not

represent the ribbon-like shape sections are shown in thick red lines.

The pruning strategy discussed above as a simpler alternative to Shah’s former strat-

egy [132] can be utilized to further justify the approximation we proposed in (6.8).

6.4 Experimental Results and Discussion

The first set of experiments is performed using the images presented in Figure 6.8 with the

parameters listed in Table 6.1. The common feature of these images is that they all contain a

single object which is distinguishable from the surroundings by means of intensity or texture

difference.

Figure 6.9-Figure 6.11 illustrate the outcome of the proposed skeleton extraction proce-

dure. First two rows display u and 1− v after the first phase with small ρ. Notice that 1− v

is an edge map. The third row displays the level curves of v after the second phase. Final

v accurately encodes the successive level curves of a smoothed distance function. Finally,

the last row depicts the extracted skeleton points. Notice that even the function v after the

Table 6.1: Parameter sets used during the first and the second phases of the medialness

computation for the images given in Figure 6.8

Images ρ = 0.001 (ε1 = 5 × 10−4) ρ = 128 (ε2 = 1 × 10−5)

cheetah λ = 1.58, σ = 89.44, εdc = 0.25, εte = 20 λ = 0.04

σ = 20, εdc = h = εte = 0

cheetah2 λ = 0.33, σ = 244.95, εdc = 0.25, εte = 100 λ = 0.04

bear λ = 3.95, σ = 46.19, εdc = 0.1, εte = 20 λ = 0.14

bear2 λ = 1.58, σ = 141.42, εdc = 0.25, εte = 200 λ = 0.04

elephant λ = 3.53, σ = 20, εdc = 0.1, εte = 10 λ = 0.14

rhino λ = 2.24, σ = 44.72, εdc = 0.25, εte = 2 λ = 0.14

dog λ = 5.00, σ = 28.28, εdc = 0.25, εte = 10 λ = 0.14
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Examples of the pruning strategy suggested in [133]. (a) Original unpruned

skeletons. (b)-(c) Sample pruning results with θ = 60◦ and θ = 75◦, respectively. (d) An

enlarged pruning result from (b) where the pruned segments of the protrusion branches are

shown in thick red lines. (e)-(f) Level curves of v superimposed on the skeleton branches.

Notice that as we approach to a disconnection point, the level curves of d|∇v|
ds becomes tangent

to a level curve of v.

first phase contains unintuitive or double edges (Figure 6.9-cheetah2 ), or missing contours

(Figure 6.10-bear2 ), skeletons can still be computed.

Each protrusion branch (S+
1 ) emanates from a boundary protrusion and ends at an

interior point. The v-value at a point on a protrusion branch (to an extent discussed in

Section 6.3.2) is an invertible function of the distance to the nearest boundary point (6.8). In

Figure 6.12, we concentrate on isolated protrusion branches and depict the recovery of shape
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cheetah cheetah2 bear bear2

elephant rhino dog

Figure 6.8: Illustrative natural images used in the experiments (bear2 image is taken from

Berkeley Segmentation Dataset [97] and bear, elephant, rhino images are from [107]).

sections from the selected skeleton branches. Specifically, Figure 6.12(a) shows the plots

of the skeletal radii for the selected protrusion branches extracted from the natural images

presented in Figure 6.8. It can be seen from the corresponding skeletal circles presented in

Figure 6.12(b) that the protrusion branches identify particular object sections. While for

the cheetah, cheetah2, bear2 and elephant images, the identified sections correspond to ears,

the protrusion branch encodes one of the legs for the bear image. On the other hand, for

the rhino and dog images, the selected branches respectively specify the whole main body,

and the main body along with the rightmost leg of the animals. As we obtain the skeletal

radii by considering a ribbon-like portion of a shape, the estimated radii becomes unreliable

for the locations where a protrusion branch loses its association to a ribbon-like structure.

Especially, the v values and the values of the associated skeletal radii along such locations

becomes larger than expected due to the nearby indentations. This is clearly visible in the

protrusion branches specified for the cheetah, cheetah2, and bear images.

Figure 6.13 illustrates the structured image regions identified by the protrusion branches

using three different strategies. In Figure 6.13(a), we show the regions determined by em-

ploying the skeletal radius formula in (6.9) derived considering the ribbon-like portions of

a shape. For the cheetah, cheetah2, and bear images, this process results in skeletal circles
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(a)

(b)

(c)

(d)

Figure 6.9: cheetah and cheetah2 images. (a)-(b) u and 1 − v after the first phase with

ρ = 0.001. (c) Level curves of v after the second phase with ρ = 128. (d) Skeletons

extracted.
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(a)

(b)

(c)

(d)

Figure 6.10: bear and bear2 images. (a)-(b) u and 1− v after the first phase with ρ = 0.001.

(c) Level curves of v after the second phase with ρ = 128. (d) Skeletons extracted.
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(a)

(b)

(c)

(d)

Figure 6.11: elephant, rhino, and dog images. (a)-(b) u and 1 − v after the first phase with

ρ = 0.001. (c) Level curves of v after the second phase with ρ = 128. (d) Skeletons extracted.
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(a)

(b)

Figure 6.12: Analysis of isolated protrusion branches. (a) Plots of the skeletal radii starting

from the boundary protrusions. (b) Circles associated with the skeleton points along the

protrusion branches.

larger than expected, especially as the corresponding skeleton points approach to a discon-

nection point (i.e. the join of S+
1 and S−

1 ). When we use the pruning algorithm proposed by

Shah in [133] with θ = 80◦ and θ = 10◦, we can obtain more reliable results since it preserves

the major ribbon-like shape sections. However, the extracted regions still contain pixels be-

longing to the background as illustrated in Figure 6.13(b). Neglecting the multiplier
√

2 in

(6.9), on the other hand, gives more conservative radii and yields smaller circles to be asso-

ciated with skeleton points (Figure 6.13(c)). This allows us to extract more accurate feature

statistics from the estimated image regions. Notice that, even the scale of the cheetah and
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(a)

(b)

(c)

Figure 6.13: Sample structured image regions extracted with (a) the skeletal radii computed

using (6.9), (b) the same radii in (a) but considering the pruned skeleton branches, and (c)

the more conservative radii computed neglecting
√

2 in (6.9).

cheetah2 images are different, the extracted regions of interest show similar characteristics

within each strategy by means of shape and appearance.

In the following, we concentrate on the structured image regions identified by the con-

servative skeletal radii (Figure 6.14(a)), and show what can be further inferred from these

regions of interest. As shown in Figure 6.14(b) and (c), these regions can be used to ob-

tain approximate object boundary fragments. The curves presented in Figure 6.14(b) are

estimated using a simple thresholding mechanism which mainly inspects the minimum v-

values around the boundary of the skeletal circles and discards the circles that are far from

the object boundaries. These circles are shown in dashed lines in the figure. The resulting

boundary fragments extracted in this way provide some hypotheses regarding the object

segmentation.

In Figure 6.12-Figure 6.14, our focus is on the analysis of local regions encoded by isolated

protrusion branches. However, sometimes, the local regions identified by isolated branches

do not express meaningful shape sections. In Figure 6.15 and Figure 6.16, we illustrate
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(a)

(b)

(c)

Figure 6.14: Analysis on the structured image regions extracted using the conservative skele-

tal radii. (a) Regions of interest. (b) Boundary extraction process (see text). (c) Approxi-

mate object boundary fragments inferred from (b).

two such cases. Mainly, in these images, we successively group the protrusion branches to

obtain more accurate regions of interest. For each figure, we give the results of the region

extraction process considering both the radii computed using (6.9), and the more conservative

radii that we get by neglecting the multiplier
√

2 in (6.9). While Figure 6.15 is about the

analysis of the region corresponding to the left ear of elephant, Figure 6.16 concentrates on

the main body of rhino. We estimate the initial approximations of these regions using the

branches that terminate at elliptic points in S0 which can be regarded as region centers. As

shown in the topmost left images of Figure 6.15 and Figure 6.16, these branches represent

the most prominent features of the regions and give general ideas about the overall shape.

The approximations can be further improved by successively adding the nearby protrusion

branches to the computations. A similar procedure can be also employed for the cases where

we could not attain a segregation of foreground object and background, e.g. the legs of rhino

in Figure 6.11.
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(a) (b)

Figure 6.15: Successive approximation of the structured image region corresponding to the

ear of elephant by considering (a) the skeletal radii computed using (6.9), and (b) the more

conservative radii computed neglecting
√

2 in (6.9).

Figure 6.17 illustrates an example where the extracted skeleton has the TSP instabilities

reported in [6, 7]. The details from the skeleton presented in Figure 6.17(a) clearly depicts

the instability: One of the prominent branches expressing the main body and the rightmost

leg is broken into several parts at the saddle points, introducing unintuitive branches. Hence,

the initial approximation of the region encoded by the longest part does not fully span the

rightmost leg. It possible to solve this problem by tracing the nearby skeleton points and

by appending the ones belonging to broken protrusion branches to the initial part of the

branch. When such a strategy is employed, a more accurate approximation can be obtained.

This successive approximation process is illustrated in Figure 6.17(b) and (c), respectively

considering the skeletal radius in (6.9) and the conservative one.

In the following, we show region extraction results on a set of bird images given in Fig-

ure 6.18 that are obtained by using the parameters specified in Table 6.2. The local image

regions are again defined by the skeletons obtained by the proposed procedure considering

the conservative radii. Here, our analysis is more local than the previous examples as we

let the images partition into many fairly small regions. For this, we employ only the edge

continuity and the directional consistency measures in the first phase which does not yield a

complete segregation of the foreground objects. In the second phase where we increase the

value of ρ to a sufficiently large value, we impose homogeneous Dirichlet boundary conditions

(v = 0) along ∂Ω, making the skeleton branches emanate from the image boundaries. We
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(a)

(b)

Figure 6.16: Successive approximation of the structured image region corresponding to the

main body of rhino by considering (a) the skeletal radii computed using (6.9), and (b) the

more conservative radii computed neglecting
√

2 in (6.9).

apply the pruning method suggested in [6] to eliminate short skeleton branches.

In Figure 6.19, the first row displays u after the first phase with small ρ. The second row

displays v after the first phase and the extracted skeletons that are superimposed on it after

pruning. In Figure 6.19(c), we display local image patches defined by the envelopes of the
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(a)

(b) (c)

Figure 6.17: TSP instability problem [6, 7]. (a) Details from the extracted skeleton where

the TSP instability occurs. (b)-(c) The region of interest identified by the protrusion branch

of subject of interest, and its successive approximation obtained by appending the nearby

skeleton points to the initial part of the branch (for two choices of the skeletal radii – the

one derived considering ribbon-like shape portions and the more conservative one).

Table 6.2: Parameter sets used during the first and the second phases of the medialness

computation for the images given in Figure 6.18

Images ρ = 0.001 (ε1 = 5 × 10−4) ρ = 128 (ε2 = 1 × 10−6)

duck1
λ = 3.53

σ = 28.28, εdc = 0.25 λ = 0.20, σ = 1.41, εdc = h = 0duck2

duck3 λ = 5.00

skeletal circles associated with the extracted skeleton branches. As it can be clearly seen,

these regions cover a significant portion of the images even when we use a pruning step.

Finally, we demonstrate an illustrative image analysis procedure where we perform sim-

ple foreground/background separation. We start with the local image regions presented in

148



duck1 duck2 duck3

Figure 6.18: Bird images taken from [82].

(a)

(b)

(c)

Figure 6.19: Region extraction results.(a) u after the first phase with small ρ. (b) v after the

first phase with small ρ and the skeletons extracted (superimposed after pruning). (c) Local

image regions defined by the skeletons extracted.

Figure 6.19(c). The extracted patches are of uniform characteristic that code specific sec-

tions of the image. We first describe each structured patch within each image by means

of simple texture features (mean intensity, standard deviation, entropy, homogeneity of the

co-occurrence matrix). Next, we perform k-means clustering on these features with k = 4

for each image. As the images all contain birds which are distinguishable from the surround-

ings by means of intensity or texture difference, one of the estimated clusters includes the

regions that correspond to background. In Figure 6.20(a)-(b), we display the outcome of this
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procedure. Even though we describe the structured patches using simple texture features,

they provide a rough, but fairly good separation of the foreground from the background.

Now that a rough foreground/background separation is available, we can perform a thor-

ough analysis and refine the separation results. The main idea of this step is to restrict the

attention to the initially estimated foreground portion of the image during re-estimation of

the separation. We first compute the convex hull enclosing the initial foreground region, and

use it in the second clustering phase. We describe each pixel in the convex hull by means of

the entropy value calculated within a squared window centering the pixel (ignoring the pixels

outside the convex hull). Next, we perform k-means clustering with k = 2 to classify the

pixels into two as foreground and background. In Figure 6.20(c)-(d), we present the refined

separation for the rightmost bird in the duck3 image (11×11 square image patches are used

in computing the entropy, and the holes inside the region defined by the foreground pixels

are filled). Clearly, the final result is much more accurate than the initial separation result.

Lastly, in Figure 6.20(e), we illustrate the outcome of an image inpainting method [119]

where the estimated foreground region is used as a mask to remove the bird from the image

(the image is resized to 50% of its original size before applying inpainting).

6.5 Conclusion

Skeleton based representations have been used in shape recognition methods quite success-

fully. However, their applicability to real images has been neglected with the exception of

few works. The main reason is the ambiguities which are inherent to the processing of real

images. In this paper, we have presented a skeleton based analysis which operates directly

on a raw natural image with all its complexity.

Our analysis is based on a function v which simultaneously codes medialness and bound-

aryness. The accuracy in the localization of the former improves as the accuracy in the

localization of the later deteriorates as a function of the parameter ρ. The v function is a

nonlinearly smoothed form of the image gradient which is itself selectively smoothed so as

to preserve shapes rather than texture and noise.

An important practical contribution is that, with the proper choice of parameters, v

function becomes independent of the image gradient. We propose an approximation to v

function on the skeleton points such that it becomes a function of the minimum distance

to putative shape boundaries. The envelope of skeletal circles associated with the skeleton

points defines a patch of interest of uniform characteristic. Consequently, we can divide the
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(a)

(b)

(c) (d) (e)

Figure 6.20: Foreground/background separation. (a)-(b) Background/foreground regions

estimated by the first clustering phase. (c)-(d) The refined separation result for the rightmost

bird in the duck3 image. (e) An inpainting result.

image into constituent components while simultaneously forming a representation for those

components which ties shapes and image features.

We have demonstrated the potential of the proposed skeleton based analysis on several

illustrative examples. We have suggested a trivial foreground/background separation tech-

nique building on the patches of interest defined by the skeletal branches. Even though we

use simple texture features to describe the structured image patches, we obtain fairly good

separation results.

The current trend in recent object recognition studies is to employ shape features, e.g.

silhouette or boundary based features [59, 105, 135], which are more reliable than the com-

monly used appearance based features extracted from square or circular local image patches.

In this respect, local symmetry information carried by the skeletons is an important cue,

which provides information regarding the shape of objects and their parts in images. The

structured image regions identified by the proposed radius function describe local appear-
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ance knowledge more accurately than the circular or square image patches as our region

extraction procedure depends on local shape information as well. One can use the visual

features extracted by this way within an object recognition framework to construct seman-

tically more correct codebook of local appearances of a given object class. Once such a

codebook is built, the knowledge about objects and their parts could be simply inferred by

associating the visual cues estimated from input images with the ones in the codebook. An

outcome of such a scheme would be an emergence of an object-specific knowledge from the

images which can advance the prior-shape based filtering and segmentation frameworks by

letting this knowledge initiate and supervise the segmentation process.
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CHAPTER 7

SUMMARY AND CONCLUSION

Context has a broad meaning, and implies knowledge that affects the interpretations in

a top-down manner. From computational vision point of view, the bottom-up processing

strategies ignore context. This mainly results in an inaccurate perception, and consequently

false inferences to be raised related to the external world being seen through images. In

this respect, taking account of contextual information is very important to deal with missing

or misleading image features. In general, contextual knowledge influences the processing of

visual cues, which leads to resolution of the ambiguities or filling in the essential features

that are not present in the data.

In this thesis, we explored various ways of improving low and mid-level computer vision

modules such as image smoothing and segmentation with a capacity to use contextual data by

integrating low-level image features with high-level information within unified formulations

where bottom-up and top-down processing take place simultaneously. The proposed works

are based on the AT approximation of the MS functional or the TSP formulation that

depends on the AT model.

The AT model in general offers a global method that combines smoothing and edge

detection within a unified formulation. The local interactions between the image points

governed by the associated Euler-Lagrange equations give rise to solutions according to a

global criterion which enforces smoothness of image regions and continuity of segmenting

contours even though all the computations are carried out in a local fashion. However, this

global criterion, or that is to say the global context, generally yields poor results as the

computations are greatly affected by the ambiguities in the low-level visual cues.

Based on these findings, in Chapter 4, we have presented a novel regularization method

which is derived from the AT model by letting the contextual knowledge extracted from local
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image regions additionally modulate the diffusivity1. Specifically, the key idea behind this

formulation is to embed some contextual measures in the Euler-Lagrange equations of the

AT model, so that the diffusion process at each image point is more aware of the surrounding

events and acts accordingly. To illustrate the influence of context in image smoothing, we

suggested four different contextual feedback measures each apparently for a different visual

task, and incorporated them in the regularization process to steer the ongoing diffusion.

In the same computation framework, these measures can be integrated and the list can be

extended with new feedback measures. The experiments performed on both gray and color

natural images indicate the potential of the method under difficult noise types, non-uniform

contrast, existence of multi-scale patterns and textures. More importantly, they show that

it is possible to resolve some of the challenging cases for the AT model by considering local

context.

In Chapter 5, we have looked into the task of segmenting out an object of interest in

an image while the knowledge about the shape of the object is given a priori. Delineating

accurate object boundaries is a very difficult task, especially when the images contain miss-

ing or misleading features due to partial occlusions, weak edges and noise. As previously

illustrated in many prior-shape guided segmentation studies, introducing context in the form

of high-level shape knowledge helps resolving this problem. One of the main novelties of this

thesis is utilizing the TSP surfaces as prior shape representations. TSP surfaces provide

distance-transform like representations for the shape boundary, and encode the local shape

geometry accordingly.

We have presented two new segmentation frameworks that make use of TSP surfaces as

shape priors which yield robustness against undesirable conditions such as noise, low contrast,

weak edges and partial occlusions as our experimental results reveal. These frameworks

mainly differ from each other in terms of how they model the deformation of the prior

shape. In the segmentation framework proposed in Section 5.2, a model describing the

global variations of the prior shape has been used to guide the segmentation process2. This

framework has a fairly straightforward formulation, and can only deal with simple synthetic

images. Yet, it should be noted that it demonstrates the potential use of TSP surfaces as prior

shape representations. Our work proposed in Section 5.3, on the other hand, has employed
1An early version of this work was presented in the First International Conference on Scale Space and Vari-

ational Methods in Computer Vision (SSVM 2007) [57]. Full version is published in Journal of Mathematical

Imaging and Vision (JMIV) [56].
2This is a joint work with Aykut Erdem and was previously published in the Fifth International Workshop

on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2005) [55].
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TSP surfaces to determine meaningful correspondences between a given template and the

evolving object region by considering a local deformation model similar to that of Hong et

al. [73]3. The deformation map estimated, in return, supervises segmentation by enforcing

the zero-level curve of the evolving level set function towards the transformed template. This

framework is more robust compared to our former method as the CV model utilized in this

work results in a clear separation of object and background regions. The shape variability

has been handled in a better way due to the integrated matching functional which considers a

local deformation model. As a consequence, the method does only employ a single template

to represent the shape prior and to capture the variations in the shape class, which eliminates

the need for a set of training curves that correspond to the various appearances of the shape

of interest. It is also important to remark that this method partitions an image into two

as object versus background segments while jointly registering the prior shape on the image

data, allowing further semantic analysis to be carried out on the object region extracted.

One critical issue in the prior-shape based segmentation frameworks is that an initial

guess about the object of interest, which imposes top-down constraints, is required to ini-

tiate the segmentation process. Generally, finding out such a guess is as difficult as the

segmentation process itself. As a step in that direction, in Chapter 6, we have proposed a

skeleton based analysis of natural images which operates directly on the raw image with all

its complexity. We divide the image into constituent components while simultaneously form-

ing a representation for the components which ties shape and image features. In particular,

considering our context-influenced regularization framework, we extend the TSP method

such that it becomes applicable to natural images. We decouple the skeletal radius and the

image gradient, and relate the skeletal radii directly to the minimum distance to the putative

shape boundary. Using skeletal radii, we can identify local image regions of uniform char-

acteristic. As our experimental results have clearly demonstrated, these structured image

regions can be robustly and easily used in various image analysis tasks.

7.1 Future Work

A promising extension of this thesis could involve an interleaved segmentation and object

recognition framework where the object-specific knowledge emerges from the images au-

tonomously as in the emergence of the local contextual data within our context-influenced
3This work has been developed in collaboration with Luminita Vese during my research visit at University

of California, Los Angeles (UCLA).
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smoothing method, and supervises the recognition and segmentation processes simultane-

ously. Our image analysis procedure based on skeleton extraction gives us some hints about

how such a framework can be attained, and its practical advantages over the similar joint

recognition and segmentation studies. First of all, local symmetry information carried by

the shape skeletons is an important cue which provides information regarding the shape of

objects and their parts in images. Previously, in the initial part of Chapter 3, we reviewed

some probabilistic formulations which employ models representing object knowledge based

on local visual cues mostly as image patches or contour fragments to recognize and segment

out objects in a scene. As we stated before, the appearance based features commonly used

in these studies are extracted from square or circular image patches, and usually are inade-

quate to identify correct object boundaries. On the other hand, image features that can be

computed from the local image regions described by the extracted skeleton branches (with

the help of the suggested radius function) are more reliable since the local shape is taken into

consideration while computing these structured image regions. This suggests that one could

construct semantically more correct codebook of local appearances of a given object class

by just using almost identical strategies utilized in these probabilistic formulations. Once

such a codebook is contructed, the information regarding the objects and their parts could

be simply inferred by associating the visual cues estimated from input images with the ones

in the codebook.

Apart from the challenging joint recognition and segmentation task, there is a large

number of possibilities to advance the proposed prior-shape guided segmentation frameworks.

Integrating the local deformation model with a shape model describing the global variations

of a given object class may result in a formulation that can cope with local shape variations,

as well as with large amounts of occlusions and missing parts. In addition to this, as the

TSP formulation allows estimating TSP surfaces directly from the grayscale images, one

can employ this capability within a segmentation framework in an intelligent way, avoiding

the constraints imposed by the CV model such as a dark object on a bright background,

or a bright object on a dark background. Furthermore, TSP surfaces provide a rich shape

representation in the sense that they can be used to perform explicit shape analysis by means

of the skeletons extracted from them. In our formulations, we did not utilize this property.

An interesting futurework could be devising a segmentation framework which is heavily built

on skeletal information.

As another futurework, we plan to compare the shape representations that all encode

local shape geometry in their own ways (Section 5.1) within a segmentation framework
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similar to our former model by exploring their influences on the ongoing process. In this

respect, we can decompose our former scheme into three coupled processes that respectively

correspond to prior-guided segmentation, feature extraction, and local shape matching steps,

which allows us to play with the local shape feature utilized in segmentation.
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