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ABSTRACT

ON THE GENERALIZATIONS AND PROPERTIES OF ABRAMOVICH–WICKSTEAD
SPACES

Polat, Faruk

Ph. D., Department of Mathematics

Supervisor : Prof. Dr. Şafak Alpay

Co-Supervisor : Prof. Dr. Zafer Ercan

November 2008, 87 pages

In this thesis, we study two problems. The first one is to introduce the general version of

Abramovich-Wickstead type space and investigate its orderproperties. In particular, we study

the ideals, order bounded sets, disjointness properties, Dedekind completion and the norm

properties of this Riesz space. We also define a new example ofRiesz space-valued uniformly

continuous functions, denoted byCDr
0 which generalizes the original Abramovich-Wickstead

space. It is also shown that similar spacesCD0 andCDw introduced earlier by Alpay and

Ercan are decomposable lattice-normed spaces.

The second one is related to analytic representations of different classes of dominated oper-

ators on these spaces. Our main theorems say that regular linear operators onCDr
0 or linear

dominated operators onCD0 may be represented as the sum of integration with respect to

operator-valued measure and summation operation. In the case when the operator is order

continuous orbo-continuous, then these representations reduce to summation parts.

Keywords: Riesz space, regular operator, lattice-normed space, dominated operator, vector

measure with bounded variation
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ÖZ

ABRAMOVICH–WICKSTEAD UZAYLARININ GENELLEŞTİRMELERİ VE
ÖZELLİKLERİ ÜZERİNE

Polat, Faruk

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Şafak Alpay

Ortak Tez Yöneticisi : Prof. Dr. Zafer Ercan

Kasım 2008, 87 sayfa

Bu tezde iki problem ele alınmaktadır. Bunlardan ilki Abramovich-Wickstead türü uzayını

genel versiyonunu tanıtmak ve onun sıralama özelliklerini araştırmaktır.Özel olarak bu Riesz

uzayının ideallerini, sıra sınırlı kümelerini, ayrıklık̈ozelliklerini, Dedekind tamlık ve norm

özelliklerini çalışıyoruz. Aynı zamanda orjinal Abramovich-Wickstead uzayını genelleştiren

yeni birCDr
0 ile gösterilen Riesz uzayı değerli düzgün sürekli fonksiyon uzayını tanımlıyoruz.

Ayrıca Alpay ve Ercan tarafından önceden tanıtılan benzerCD0 veCDw uzaylarının gerçekte

ayrıştırılabilir örgü-normlu uzaylar olduğu gösterilmektedir.

Ele alınan ikinci problem ise bu uzaylar üzerindeki baskınoperatörlerin farklı sınıflarının

analitik temsilleriyle ilgilidir. Temel teoremlerimizCDr
0 üzerinde ki düzgün doğrusal op-

eratörlerin veyaCD0 üzerinde ki baskın doğrusal operatörlerin operatör değerli ölçü integrali

ve toplam operasyonunun toplamı olarak yazılabileceği ile ilgilidir. Operatörün sıra sürekli

yadabo- sıra sürekli olması durumunda bu temsiller sadece toplamsal kısma indirgenmekte-

dir.

Anahtar Kelimeler: Riesz uzayı, düzgün operatör, örg¨u-normlu uzay, baskın operatör, sınırlı

varyasyonlu vektör ölçüsü
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CHAPTER 1

INTRODUCTION

1.1 State of the Art

In 1993, two peculiar new classes ofunital AM-spaces CD0(K) andCDw(K), the elements

of which are the sums of real-valued continuous functions and discrete functions onK, were

introduced by Abramovich and Wickstead [33] for a quasi-Stonean spaceK without isolated

points. They showed that neither class is almost Dedekindσ-complete, althoughCDw(K) has

Cantor property. Finally, they identified the order continuous and sequentially order contin-

uous duals of spaces in these classes. Further Alpay and Ercan [27] relaxed the condition

on quasi-Stonean spaceK by taking it as a compact Hausdorff space without isolated points

and introduced the spacesCD0(K,E) andCDw(K,E) for a normed spaceE. They investi-

gated lattice-norm properties, the center and order continuous duals of these spaces under

the assumption thatE is a Banach lattice. From then Ercan [34] proved thatCD0(K) and

C(K×{0, 1}) are isometrically Riesz isomorphic spaces under a certaintopology onK×{0, 1}.

V. G. Troitsky [30] found a description of Ercan’s topological spaceK × {0, 1} as theAlexan-

droff duplicateof K and gave an elegant characterization of elements ofCD0(K). T. Hoim

and D. A. Robbins [29] introduced the space of sectionsCD0(K,X) of a continuous Banach

bundleX overK and making use of Ercan’s result proved that this space is linearly isometric

to the space of allcontinuous sectionsof some continuous Banach bundlẽX over the Alexan-

droff duplicateK̃ of K. Some new properties of the spaceCD0(K,X) were investigated by A.

E. Gutman and A. V. Koptev in [3], see also a survey paper [2].

These results naturally rise the following task: to introduce the general version of Abramo-

vich–Wickstead type spaces, investigate its order properties, and find new examples of such

1



spaces. As mentioned above, the works of both Abramovich–Wickstead and Alpay–Ercan

contained some characterizations of order continuous duals of CD0 andCDw-type spaces.

This naturally brought us the idea to investigate the linearoperators in more general setting

on these type of spaces.

The notion of adominatedor majorizedoperator was invented in the 1930s by L. V. Kan-

torovich. He introduced the fundamental notion of lattice-normed space by elements of a

vector lattice and that of a linear operator between such spaces which is dominated by a pos-

itive linear or monotone sublinear operator. The idea of dominated operator can be stated as

follows: if an operator under consideration is dominated byanother operator, called adomi-

nant or majorant, then the properties of the latter have a substantail influence on the properties

of the former. Thus operators that have “nice” dominants must posses nice properties. In the

succeeding years, many authors studied various particularcases of lattice-normed spaces and

different classes of dominated operators, e.g., see [8, 11, 19, 31]. The general theory of dom-

inated operators has been improved by A. G. Kusraev and his followers (A. E. Gutman, S.

A. Malyugin, E. V. Kolesnikov, S. Z. Strizhevskii etc.). Different kinds (bo-continuous, dis-

jointness preserving operators, integral operators in particular pseudointegral operators) and

some analytical represantations of dominated operators were given in the book [4] by A. G.

Kusraev. There exists an important relationship between lattice-normed spaces and continu-

ous Banach bundles. A. G. Kusraev and V. Z. Strizhevskĭı [7]proved that any lattice-normed

space can be represented as the space ofalmost global sectionsof a suitable continuous Ba-

nach bundle. However, uniqueness of the bundle was not established and later A. E. Gutman

found a class of uniqueness for The Kusraev–Strizhevskĭı Representation Theorem, the class

of ample(or complete) continuous Banach bundles. A detailed presentation of this theory can

be found in [1, 4].

The spaces of vector-valued functions are oftenbr-complete orbo-complete lattice-normed

spaces and this peculiarity is important when studying the structure of the spaces or linear

operators on them. AsCD0(K,E) andCDw(K,E) spaces are lattice-normed spaces, this moti-

vated us to use the technics in [4] to characterize some kindsof dominated operators on these

spaces.

The modernvector measure theoryincludes two main lines of investigation. The first one,

the study of measures with values in Banach or locally convexspace, stems from classical
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works by S. Bohner, N. Dunford, I. M. Gelfand, and B. Pettis and together with a variety of

interesting applications in geometry of Banach spaces and operator theory is covered by many

monographs, see for example [12, 19, 20].

The second line dealing with vector lattice valued measuresstems from L. V. Kantorovich,

B. Z. Vulikh, and A. G. Pinsker [17], although such measures appeared implicitly earlier as

Boolean homomorphismsor spectral measures. This study was concentrated mainly on mea-

sure extension problem and Riesz type representation theorems. In this respect two important

results due to J. D. M. Wright should be mentioned:

1) A Dedekindσ-complete vector lattice possesses the measure extension property if and only

if it is weakly (σ,∞)-distributive [13];

2) The Riesz Representation Theorem for positive operatorswith values in a Dedekind com-

plete vector lattice is true, but the representing measure is quasiregular and cannot be chosen

regular [14].

J. D. M. Wright [15] obtained also the following characterization: Every quasiregular Borel

measure on every compact space with values in a Dedekind complete vector lattice is reg-

ular if and only if this vector lattice is weakly (σ,∞)-distributive. More details and further

bibliography can be found in [4]. For a unified treatment of both lines see [5].

One of the main ideas of Dinculeanu’s book [19] is dominationof a linear operator on the

space of vector-valued measurable functions by a measure. An operatorT : C(K,E) → F is

said to be dominated (or majored) if there exists a regular positive Borel measureν such that

||T( f )|| ≤
∫
|| f (k)|| dν(k), f or every f∈ C(K,E).

We say thatT is dominated byν, or thatν dominatesT. If T is dominated, then there exists

a least positive regular measure dominatingT. He ellobrated the space of dominated linear

operators onC(K,E) in details by using the regular Borel measures with boundedvariation.

Kusraev’s definition and N. Dinculeanu’s definition actually coincide for the dominated linear

operators onC(K,E). The systematic application of concept of domination leads to integral

representation of broad classes of linear operators definedon spaces of measurable vector-

valued functions.

Putting together the ideas of Abramovich–Wickstead type spaces, Kantorovich’s dominated

operators, and Dinculeanu’s integral representations, wecan state the following important

3



problem.

1.2 Statement of the Problem

The aim of this work is to introduce and investigate new typesof Abramovich–Wickstead

spaces of vector-valued functions and obtain analytic representations of different classes of

dominated operators on these spaces.

1.3 Review of Contents

Chapter 1 of this thesis presents the scope of the study as an introduction.

Chapter 2 contains some background related to theory of vector measures and lattice-normed

spaces needed in this thesis.

Chapter 3 deals with the general version of Abramovich–Wickstead type spaces, denoted

by E ×G F and investigating its order properties. In particular, we study the ideals, order

bounded sets, disjointness properties, Dedekind completion and the norm properties of this

Riesz space as well as we identify its center. We also define a new concrete example of Riesz

space-valued uniformly continuous functions, denoted byCDr
0 which generalizes the original

Abramovich–Wickstead space. It is also shown that similar spacesCD0 andCDw introduced

earlier by Alpay and Ercan are actually decomposable lattice-normed spaces.

Chapter 4 is devoted to study the analytic represantation ofdifferent classes of dominated

operators onCDr
0 andCD0-type spaces. Our main representation theorems are that regular

linear operators onCDr
0 or linear dominated operators onCD0 may be constructed as the sum

of integration with respect to operator-valued measure andsummation operation (or integra-

tion with respect to discrete operator-valued measure). Wehave shown that if the operator is

order continuous orbo-continuous, then these representations reduce to discrete parts.

More precisely, we can state the main results of this chapteras follows.

1. Let K be a non-empty set andF be a Dedekind complete vector lattice. Then we set

(1) c0(N,E) = {(en) ∈ E : ∃e ∈ E+ such that en ∈ E(e) ∀n and||en||e→ 0},

(2) l1[K, Lr (E, F)] the space of operatorsα : K → Lr (E, F) such that the infinite sum
∑∞

n=1 |α(kn)|(|en|) is an element ofF for all (kn) ∈ K and (en) ∈ c0(N,E).

4



As usual,
∑∞

n=1 |α(kn)|(|en|) is the supremum of the sums
∑m

n=1 |α(kn)|(|en|). l1[K, Lr(E, F)] is a

vector lattice under the pointwise operations. Then we havethe following.

Theorem 1.Let K be a compact Hausdorff space without isolated points and F be a Dedekind

complete vector lattice. Then Lr(CDr
0(K,E), F) is lattice isomorphic to qca(K, Lr (E, F) ⊕

l1[K, Lr(E, F)] with the dual order on this direct sum defined by

< µ, α > ≥ 0⇔ µ ≥ 0 andα ≥ 0 andµ({k}) ≥ α(k)

for all k ∈ K, which if we identifyα with a discrete measure on K, is precisely requiring that

µ ≥ α ≥ 0.

2. Let K be a compact space andF be a Dedekind complete vector lattice. Then we set

l1(K, Lr
n(E, F)) the set of all mapsβ = β(k) from K into Lr

n(E, F) satisfying

(1) sup|| f ||e≤1
∑

k |β(k)|(|( f (k)|) ∈ F for each arbitrary but fixede ∈ E+ and f ∈ CDr
0(K,E),

(2)
∑

k |β(k)|( fα(k)) ↓α 0 wheneverfα ↓ 0.

Then we have the following.

Theorem 2.Let K be a compact Hausdorff space without isolated points and F be a Dedekind

complete vector lattice. Then Lr
n(CDr

0(K,E), F) is lattice isomorphic to l1(K, Lr
n(E, F)).

3. Let K be a non-empty set,E andF be two Banach spaces. Then we setl1(K, L(E, F)) the set

of mappingsϕ : K → L(E, F) such that the sum
∑

k∈K ||ϕ(k)( f (k))|| < ∞ for all f ∈ c0(K,E).

Then we have the following.

Theorem 3.Let K be a compact Hausdorff space without isolated points, E and F be two

Banach spaces. Then M(CD0(K,E), F) is isometrically isomorphic to rca(B, L(E, F)) ⊕

l1(K, L(E, F)) where rca(B, L(E, F)) is the space of regular Borel measures m: B→ L(E, F)

with finite variation|m|.

Theorem 4.Let K be a compact Hausdorff space without isolated points, E and F be two

Banach spaces. Then Mn(CD0(K,E), F) is isometrically isomorphic to l1(K, L(E, F)).

4. Let K be a compact Hausdorff space without isolated points,E and F be two Banach

lattices withF Dedekind complete. Then we definel1(K, Lr
n(E, F)) as the set of all maps

ϕ = ϕ(k) from K into Lr
n(E, F) satisfying

∑

k

|ϕ(k)|(| f (k)|) ∈ F

5



where f ∈ CD0(K,E) and
∑

k |ϕ(k)|( fα(k)) ↓α 0 wheneverfα ↓ 0 in CD0(K,E). Then we have

the following result.

Theorem 5.Let K, E and F be as above definition. Then Lr
n(CD0(K,E), F) is isometrically

lattice isomorphic to l1(K, Lr
n(E, F)).

5. Let K be a compact Hausdorff space without isolated points,E and F be two Banach

lattices withF Dedekind complete. Then we definel1w(K, Lr
n(E, F)) as the set of all maps

ϕ = ϕ(k) from K into Lr
n(E, F) satisfying

∑

k

|ϕ(k)|(| f (k)|) ∈ F

where f ∈ CDw(K,E) and
∑

k |ϕ(k)|( fα(k)) ↓α 0 wheneverfα ↓ 0 in CDw(K,E). Then we get

the following result.

Theorem 6.Let K, E and F be as above definition. Then Lr
n(CDw(K,E), F) is isometrically

lattice isomorphic to l1w(K, Lr
n(E, F)).

The main results presented above are new and original. Thesetheorems and methods applied

will be useful for further investigations of dominated operators on Abramovich–Wickstead

type spaces of vector-valued functions.

1.4 Methods Applied

This work uses essentially the methods and technical tools from the following branches of

modern analysis: Theory of vector lattices and positive operators, theory of dominated oper-

ators in lattice-normed spaces, and theory of vector measures (with values in Banach spaces

and vector lattices). In particular, we use intensively thefollowing concepts: order continuity,

vector measures with bounded variation, norm order completeness and norm uniformly com-

pleteness of a lattice-normed space, decomposability of the majorant norm of a dominated

operator, spaces with mixed norms, integration with respect to operator-valued measure, etc.

1.5 Publications and Reports

Some results of this thesis were published in the following two papers.

1) F. Polat,Linear Operators on Abramovich-Wickstead type spaces,Vladikavkaz Math. J.

6



(10), 46-55 (2008);

2) F. Polat,Dominated Operators on Some Lattice-Normed spaces,Proceedings of Interna-

tional Conference Order Analysis and Related Problems of Mathematical Modeling, Vladi-

kavkaz, June 1-7, 2008.

Besides, some results of the thesis were delivered in the following seminars and symposium.

1) Joint Seminar on Analysis in the IAMI (Vladikavkaz, Russia, March 2008);

2) Seminar on Positivity and Its Applications (METU, Ankara, 13 June 2008);

3) International Symposium ”Positivity and Its Applications in Science and Economics” (Bo-

lu, 17-19 September 2008).
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CHAPTER 2

PRELIMINARIES

In this chapter, for the convenience of the reader, we present a general background needed in

this thesis. For Riesz space theory, the reader can consult the book [10] by C. D. Aliprantis

and O. Burkinshaw.

2.1 Vector Measures

In this section, we collect some necassary materials for this thesis. For more information

about vector measures, we refer to [6, 12, 19].

1. Consider a nonempty setK and aσ-algebraA of the subsets ofK. Let E be a Dedekind

complete vector lattice. We shall call the mappingµ : A→ E an (E-valued) measure if

(1) µ(∅) = 0,

(2) Whenever{An} (n=1,2,...) is a sequence of pairwise disjoint elements ofA, then

µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An) := o-lim
n

n∑

k=1

µ(Ak).

We say that a measureµ is positiveand writeµ ≥ 0 if µ(A) ≥ 0 for all A ∈ A andbounded

if there existse ∈ E+ such that|µ(A)| ≤ e for eachA ∈ A. We denote the set of all bounded

E-valued measures on aσ-algebraA by ca(K,A,E). If µ, ν ∈ ca(K,A,E) and t ∈ R, then

we put by definition

(1) (µ + ν)(A) := µ(A) + ν(A) (A ∈ A);

(2) (tµ)(A) := tµ(A) (A ∈ A);

8



(3) µ ≥ ν⇔ µ − ν ≥ 0.

One can prove thatca(K,A,E) is a Dedekind complete vector lattice. In particular, for every

measureµ : A → E, µ+ := µ ∨ 0 andµ− := (−µ)+ = −(µ ∧ 0) are the positive and negative

parts respectively. It is easy to verify that

µ+(A) = sup{µ(A′) : A′ ∈ A, A′ ⊂ A} (A ∈ A).

In the sequel, we shall consider specialE-valued measures. Suppose thatK is a compact

topological space andA is the Borelσ-algebra. A positive measureµ : A → E is said to be

regular if for every A ∈ A we have

µ(A) = inf {µ(U) : A ⊂ U, U ∈ Op(K)}

whereOp(K) is the collection of all open subsets ofK. If the latter condition is true only

for closedA ∈ A, thenµ is calledquasiregular.Finally, an arbitrary measureµ : A → E is

said to beregular (quasiregular) if the positive measuresµ+ andµ− are regular (quasiregular).

Let rca(K,E) andqca(K,E) be the sets ofE-valued Borel measures, regular and quasiregular

respectively. It is seen from the definitions thatrca(K,E) andqca(K,E) are vector sublattices

in ca(K,A,E). Clearly, the supremum (infimum) of the increasing (decreasing) family of

quasiregular measures bounded inca(A,A,E) will also be quasiregular. The same holds for

regular measures. Thusqca(K,E) andrca(K,E) are Dedekind complete vector lattices.

2. Now we will define the integral with respect to an arbitrary measureµ ∈ ca(K,A,E).

(1) Let us denote byS t(K,A) the set of all functionsϕ : K → R of the formϕ =
∑n

k=1 akχAk,

whereA1, . . . ,An ∈ A, a1, . . . , an ∈ R, andχA is the characteristic function of a setA. Con-

struct the operatorIµ : S t(K,A)→ E by putting

Iµ


n∑

k=1

akXAk

 :=
n∑

k=1

akµ(Ak).

As it is seenIµ is a linear operator; moreover, the normative inequality holds

|Iµ( f )| ≤ ‖ f ‖∞|µ|(K) ( f ∈ S t(K,A)),

where‖ f ‖∞ := supα∈A | f (α)|. The subspaceS t(K,A) is dense with respect to the norm in

the spacel∞(K,A) of all bounded measurable functions. ThereforeIµ admits a unique linear

extension (by continuity ) tol∞(K,A), with the above-mentioned normative inequality being

9



preserved. In particular, ifK is a compact space andA is the Borelσ-algebra, thenIµ( f ) is

defined for every continuous functionf ∈ C(K). Note also thatIµ ≥ 0 if and only ifµ ≥ 0.

3. Now we give several results about analytical representation of linear operators which

yields new formulas of subdifferentiation.

Suppose that for everyn ∈ N a directed set A(n) is given. Take a sequence of decreasing nets

(eα,n)α∈A(n) ⊂ [0, e] in a Dedekind complete vector latticeE such that inf{eα,n : α ∈ A(n)} = 0

for eachn ∈ N. If for any such sequence the equality

inf
ϕ∈A

sup
n∈N

eϕ(n),n = 0, A :=
∏

n∈N

A(n)

holds, then we call Dedekind complete vector latticeE as (σ,∞)-distributive. For a Dedekind

complete vector lattice of countable type (= with the countable chain condition) the property

of (σ,∞)-distributivity is equivalent to theregularity of the base. The latter means that the

diagonal principleis fulfilled in the Boolean algebraB(E): if a double sequence (bn,m)n,m∈N

in B(E) is such that for everyn ∈ N the sequence (xn,m)m∈N decreases ando-converges to zero

then there exists a strictly increasing sequence (m(n))n∈N for whicho-limn→∞ xn,m(n) = 0.

The following theorem belongs to J. D. M. Wright [15].

Theorem 2.1 (Wright) Let K be a compact topological space and let E be an arbitrary

Dedekind complete vector lattice. The mappingµ 7→ Iµ implements a linear and lattice

isomorphism of Dedekind complete vector lattices qca(K,E) and Lr (C(K),E).

Theorem 2.2 Let a Dedekind complete vector lattice E be(σ,∞)-distributive. Then

qca(K,E) = rca(K,E).

In addition, the mappingµ 7→ Iµ implements a linear and lattice isomorphism of Dedekind

complete vector lattices rca(K,E) and Lr (C(K),E).

We omit the proofs of the Wright theorem and its improvementscontained in Theorem 2.2,

which demand considerations that are rather long and laborious in a technical sense.
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2.2 Lattice–Normed Spaces

In this section, we give some definitions about lattice-normed spaces. We also collect some

results concerning dominated operators which are related to lattice-normed spaces. For more

details and proofs of theorems, the reader can consult the book [4] by A. G. Kusraev.

Let X be a vector space andE be a real vector lattice. A mapping|.| : X → E+ is called a

vector (E-valued) normif it satisfies the following axioms:

(1) |x| = 0⇔ x = 0 (x ∈ X);

(2) |λx| = |λ||x| (λ ∈ R, x ∈ X);

(3) |x+ y| ≤ |x| + |y| (x, y ∈ X ).

A vector norm is calleddecomposableor Kantorovich normif

(4) for all e1, e2 ∈ E+ andx ∈ X, from |x| = e1 + e2, it follows that there existx1, x2 ∈ X

such thatx = x1 + x2 and|xk| = ek ( k = 1, 2).

A triple (X, |.|,E) is a lattice-normed spaceif |.| is anE-valued norm in the vector spaceX.

The spaceE is called thenorm latticeof X. If the vector norm is decomposable, then the

space (X, |.|,E) is called decomposable.

If |x| ∧ |y| = 0, then we call the elementsx, y ∈ X disjointand writex⊥y. As in the case of a

vector lattice, a setM⊥ = {x ∈ X : x⊥y f or each y∈ M}, with ∅ , M ⊂ X is called abandor

acomponent.

Lemma 2.3 [4, 2.1.2] If the elements x, y ∈ X are disjoint, then we have that|x+ y| = |x|+ |y|.

Proof. Indeed, from the relations|x| ∧ |y| = 0 and|x| ≤ |x+ y| + |y|, we infer that

|x| ≤ (|x+ y| + |y|) ∧ |x| ≤ |x+ y| ∧ |x| ≤ |x+ y|.

Similarly, |y| ≤ |x+ y|; therefore,|x| + |y| = |x| ∨ |y| ≤ |x+ y|. �

We now give the following important property of disjoint elements in the lattice-normed space

(X, |.|,E).
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Lemma 2.4 [4, 2.1.3] For every pair of disjoint elements e1, e2 ∈ E, then the decomposition

x = x1 + x2 in X with |x1| = e1 and |x2| = e2 is unique.

Proof. Assume|x1| = |y1| = e1 and |x2| = |y2| = e2, and x = x1 + x2 = y1 + y2. Then

x1− y1⊥x2− y2, since|x1− y1| ≤ |x1|+ |y1| = 2e1 and|x2− y2| ≤ 2e2. By the previous lemma,

0 = |(x1 − y1) + (x2 − y2)| = |x1 − y1| + |x2 − y2|,

whencex1 = y1 andx2 = y2. �

Example 2.5 In the definition above, if X= E, then the modulus of an element serves as its

vector norm: |x| = x ∨ (−x), (x ∈ E). Decomposability of this norm easily follows from the

Riesz decomposition property holding in every vector lattice. If E = R, then X is a normed

space. We can use the conventional notation||.|| for the norm and omit references to the order

structure of the norm lattice.

Definition 2.6 [4, 2.1.5] Let (X, |.|,E) be a lattice-normed space.

(1) We say that a net(xα)α∈A bo−converges to an element x∈ X and we write x= bo-lim xα

if there exists a decreasing net(eγ)γ∈Γ in E such thatinfγ∈Γ eγ = 0 and, for everyγ ∈ Γ,

there exists an indexα(γ) ∈ A such that|x− xα| ≤ eγ for all α ≥ α(γ).

(2) Let (xα)α∈A be a net in X. Given an element e∈ E+, let the following condition be

satisfied: for everyε > 0, there is an indexα(ε) ∈ A such that|x − xα| ≤ εe for all

α ≥ α(ε). Then we say that(xα) br-converges to x and write x= br-lim xα.

(3) A net(xα) is said to be bo−fundamental (br−fundamental) if the net(xα − xβ)(α,β)∈A×A

bo−converges (br−converges) to zero.

(4) (X, |.|,E) is called bo−complete (br−complete) if every bo-fundamental net ( br−funda-

mental net) in it bo−converges ( br−converges) to an element of the space.

Recall that a normed (Banach) lattice is a vector latticeE that is simultenously a normed

(Banach) space whose norm is monotone in the following sense: if |x| ≤ |y| ⇒ ||x|| ≤ ||y||

(x, y ∈ E). If (X, |.|,E) is a lattice-normed space withE a norm, then by definition,|x| ∈ E for

eachx ∈ X and we introduce a mixed norm inX by the formula

|||x||| = || |x| ||, (x ∈ X).
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In this case, the normed space (X, |||.|||) is called a space withmixed norm. Using the inequality

| |x| − |y| | ≤ |x− y| and monotonicity of the norm inE, we have

|| |x| − |y| || ≤ |||x− y||| (x, y ∈ X),

so that the vector norm|.| is a norm continuous mapping from (X, |||.|||) into E.

A Banach space with mixed normis a pair (X,E) in which E is a Banach lattice andX is a

br−complete lattice-normed space withE-valued norm.

The following proposition justifies the definition.

Proposition 2.7 [4, 7.1.2] Let E be a Banach lattice. Then(X, |||.|||) is a Banach space if

and only if the lattice-normed space(X, |.|,E) is complete with respect to relative uniform

convergence.

Proof. (⇐) Take a Cauchy sequence (xn) ⊂ X. Without loss of generality, we may assume

that |||xn+1 − xn||| ≤
1
n3 , n ∈ N. Assign

en = |x1| +

n∑

k=1

k|xk+1 − xk|, n ∈ N.

Then we may estimate

||en+l − en|| =

∥∥∥∥∥∥∥

n+l∑

k=n+1

k|xk+1 − xk|

∥∥∥∥∥∥∥
≤

n+l∑

k=n+1

k|||xk+1 − xk||| ≤

n+l∑

k=n+1

1

k2
→ 0

whenk, l → ∞. Thus the sequence (en) is a Cauchy sequence and it has a limite= limn→∞ en.

Sinceen+k ≥ en, (n, k ∈ N), we havee= supen. If n ≥ m, then

m|xn+l − xn| ≤

n+l∑

k=n+1

k|xk+1 − xk| ≤ en+l − en ≤ e;

consequently,|xn+l − xn| ≤ ( 1
m)e. This means that the sequence (xn) is br-fundamental and so

that the limitx := br − limn→∞ xn exists. It is clear that limn→∞ |||x− xn||| = 0.

(⇒) Suppose that a sequence (xn) ∈ X is br-fundamental; i.e.,

|xn − xm| ≤ λke (m, n, k ∈ N and m, n ≥ k) where 0≤ e ∈ E and limk→∞ λk = 0. Then

|||xn − xm||| ≤ λk||e|| → 0 as k→ ∞

Therefore the limitx := limn→∞ xn exists. By continuity of the vector norm, we have

|x− xn| ≤ λke (n ≥ k),

therefore,x = br-lim xn. �
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Definition 2.8 [4, 4.1.1] Let (X, |.|,E) and (Y, |.|, F) be two lattice-normed spaces. Then a

linear operator T : X → Y is said to be dominated or majorized if there exists a positive

linear operator S: E→ F such that

|T x| ≤ S(|x|) (x ∈ X).

Remark 2.9 Let F be a Dedekind complete vector lattice and ma j(T) be the set of all dom-

inants of T. It is clear that ma j(T) is a convex set in the Dedekind complete vector lattice

L̃(E, F). If there is a least element in ma j(T) with respect to the order induced from L(̃E, F),

then it is called the least or exact dominant of T and denoted by |T |. Consequently|T | is a

positive linear operator from E to F. Moreover|T | = inf ma j(T) ∈ ma j(T) and the inequality

|T x| ≤ |T |(|x|) (x ∈ X)

holds. The set of all dominated operators from X to Y is denoted by M(X,Y). Thus,

T ∈ M(X,Y)⇔ ma j(T) , ∅.

The following theorem gives the sufficient condition for a linear dominated operator to have

an exact dominant.

Theorem 2.10 [4, 4.1.2] Let (X, |.|,E) and (Y, |.|, F) be two lattice normed spaces with X de-

composable and F Dedekind complete. Then every dominated operator T : X→ Y has exact

dominant|T |.

Theorem 2.11 [4, 4.2.7] Let (X, |.|,E) and(Y, |.|, F) be two decomposable lattice-normed spa-

ces with Y bo-complete. Then for each dominated operator T: X → Y and each representa-

tion |T | = S1+S2 where0 ≤ S1,S2 : E→ F, there exist dominated operators T1,T2 : X→ Y

such that T= T1 + T2 and |Tk| = Sk (k = 1, 2). If the operators S1 and S2 are disjoint, then

there exists a unique pair of operators T1 and T1 satisfying the condition under consideration.

Definition 2.12 [4, 4.3.1] Let T ∈ M(X,Y). Then T is called norm order continuous or

bo-continuous if for every net(xα) ⊂ X, from the equality bo-limα xα = 0 it follows that

bo-limα T(xα) = 0. That is to say, it follows from|xα| →o 0 in E that |T(xα)| →o 0 in F where

E and F are norm lattices of X and Y respectively. The set of allbo-continuous operators

T ∈ M(X,Y) will be denoted by Mn(X,Y).
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We now give the following characterization aboutbo-order continuous dominated operators.

Theorem 2.13 [4, 4.3.4] Let X be a decomposable lattice-normed space and F be a Dedekind

complete vector lattice. Then a dominated operator T: X → Y is bo-order continuous if and

only if its least dominant|T | is order continuous.

15



CHAPTER 3

SOME GENERALIZATIONS OF ABRAMOVICH –

WICKSTEAD SPACES

Recall that a topological space is called basically disconnected if the closure of anyFσ open

set is open. A compact Hausdorff space that is basically disconnected is calledquasi-Stonean

space. For a quasi-Stonean spaceK without isolated points, the following function spaces

were introduced by Y. A. Abramovich and A. W. Wickstead in [33].

l∞w (K) = { f : f is real valued, bounded and{k : f (k) , 0} is countable};

c0(K) = { f : f is real valued and{k : | f (k)| > ε} is f inite f or eachε > 0}.

These spaces were used to defineCD0(K) = C(K)⊕c0(K) andCDw(K) = C(K)⊕ l∞w (K) where

C(K) is the space of real valued continuous functions onK. Both of the spacesCD0(K) and

CDw(K) are Banach lattices under the pointwise order and supremumnorm. These types of

spaces can be called Abramovich–Wickstead spaces, or shortly AW-spaces as in [35]. Further

Alpay and Ercan [28] showed that for a compact Hausdorff spaceK without isolated points,

CD0(K) is isometrically isomorphic toC(K) ⊗ c0(K) where the order onC(K) ⊗ c0(K) is

defined as follows:

0 ≤ ( f , g) ⇐⇒ 0 ≤ f (k) and0 ≤ f (k) + g(k) f or each k∈ K.

They also proved that|( f , g)| = (| f |, | f + g| − | f |) for each f ∈ C(K) andg ∈ c0(K). This

motivated us to define a new Riesz space product of two Riesz spaces under the similar order

above. In this chapter, we investigate order properties of this new Riesz space. In particular,

we construct some concrete examples of this new Riesz space.
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3.1 The Representation ofE ×G F–space

For ordered vector subspacesE andF of an ordered vector spaceG, we consider coordinate-

wise algebraic operations onE × F, that is,

(x, y) + (x′, y′) = (x+ x′, y+ y′) andλ(x, y) = (λx, λy)

for each (x, y) ∈ E × F and for eachλ ∈ R.

Definition 3.1 Let E and F be ordered vector subspaces of an ordered vector space G. We

define an order on E× F as follows:

0 ≤ (x, y) ∈ E × F ⇔ 0 ≤ x and0 ≤ x+ y in G.

E ×G F denotes the space E× F equipped with this order.

Now we give another definition which will be useful in the nexttheorem. For the details see

[26].

Definition 3.2 Let G be a Riesz space, and let X and Y be vector subspaces of G. We call X

an order ideal with respect to Y if|x+ y| − |y| ∈ X for all x ∈ X, y∈ Y.

Theorem 3.3 Let X be a vector subspace of a Riesz space G. Then X is a Riesz subspace of

G if and only if it is an ideal with respect to{0}, and X is an order ideal if and only if it is an

ideal with respect to G.

Theorem 3.4 Let E and F be ordered vector subspaces of a Riesz space G. ThenE ×G F is

a Riesz space if E is a Riesz subspace and F is an order ideal with respect to E. Moreover,

|(x, y)| = (|x|, |x+ y| − |x|),

for all (x, y) ∈ E ×G F. In particular, if F is an ideal in G, then G×G F, G×G G and0×G F

are Riesz spaces.

Proof. Since (0, 0) ≤ (x, y) and (x, y) ≤ (0, 0) imply that 0≤ x, 0 ≤ x + y, 0 ≤ −x and

0 ≤ −x − y, we havex = 0 andx + y = 0 soy = 0, thenE ×G F is an ordered vector space.
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Let (x, y) ∈ E×G F. SinceF is an order ideal with respect toE, we have|x+ y| − |x| ∈ F. Also

0 ≤ |x| − x, 0 ≤ |x+ y| − |x| − y+ |x| − x and 0≤ |x|+ x, 0 ≤ |x+ y| − |x|+ y+ |x|+ x, imply that

(x, y) ≤ (|x|, |x+ y| − |x|) and (−x,−y) ≤ (|x|, |x+ y| − |x|), i.e, (|x|, |x+ y| − |x|) is an upper bound

for {(x, y),−(x, y)}. Suppose that (g, p) is another upper bound of{(x, y),−(x, y)}. Then,

0 ≤ g− x, 0≤ g+ p− x− y, 0 ≤ x+ g and 0≤ x+ g+ p+ y.

This shows that (|x|, |x+ y| − |x|) ≤ (g, p) and so| (x, y) |= (| x |, | x+ y | − | x |). In particular,

sinceG is an ideal in itself,G ×G G is a Riesz space. Also by the previous theorem,F is an

ideal with respect to{0} andF is an order ideal with respect toG, so 0×G F andG ×G F are

Riesz spaces. �

Example 3.5 (1) Let E and F be Riesz spaces. Then G= E × F is a Riesz space under the

pointwise order such that|(x, y)| = (|x|, |y|). Let E0 = {(x, 0) : x ∈ E} and F0 = {(0, y) : y ∈ F}.

Then E0 and F0 are Riesz subspaces of G. Since

|(x, 0)+ (0, y)| − |(x, 0)| = |(x, y)| − (|x|, 0) = (|x|, |y|) − (|x|, 0) = (0, |y|) ∈ F0,

F0 is an order ideal with respect to E0. By previous theorem, E0 ×G F0 is a Riesz space.

(2) Let G be a Riesz space, E be a Riesz subspace of G and F be an ordered subspace of G. If

F is an ideal in E, then F is an order ideal with respect to E by the first theorem. So E×G F

is a Riesz space by the previous theorem.

(3) Suppose that a Riesz subspace F is an order ideal with respect to a Riesz subspace E in a

Riesz space G. Let E′ be a Riesz subspace of E. Let x∈ E′ and y∈ F . Then|x+ y| − |x| ∈ F

as E′ ⊂ E. So F is an order ideal with respect to all Riesz subspaces ofE.

(4) Suppose that a Riesz subspace F is an order ideal with respect to Riesz subspaces Eα for

eachα in a Riesz space G. Then F is an ideal with respect to
⋂

Eα. To see this, let x∈ F and

y ∈
⋂

Eα, then|x+ y| − |y| ∈ F as y∈ Eα for eachα.

(5) Let G, G′ be Riesz spaces and T: G→ G′ be a lattice homomorphism. Then if E and F

are Riesz subspaces of G for which F is an order ideal with respect to E. Then we have that

the Riesz subspace T(F) of G′ is an order ideal with respect to the Riesz subspace T(E) of

G′. Similarly, if F′ is a Riesz subspace of G′ which is an order ideal with respect to a Riesz

subspace E′ of G′, then the Riesz subspace T−1(F′) of G is an order ideal with respect to the

Riesz subspace T−1(E′) of G.
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(6) Let E and Fα be Riesz subspaces of a Riesz space G for eachα. Suppose Fα is an order

ideal with respect to E for eachα. Then
⋃

Fα is a Riesz subspace of G which is an order

ideal with respect to E.

(7) Let G be a Riesz space, E be a Riesz subspace of G and F be an ordered subspace of

G. Suppose that F is an order ideal with respect to E. Then, theideal I(F) generated by F

in G is also an ideal with respect to E. That is to say,|x + y| − |x| ∈ I (F) for each x∈ E

and y ∈ I (F). Suppose y∈ I (F), then there exists f∈ F such that|y| ≤ | f |. But then

| |x + y| − |x| | ≤ |x+ y− x| = |y| ≤ | f |. This implies|x+ y| − |x| ∈ I (F). Thus E×G I (F) is a

Riesz space.

(8) Let E, F and G be as in (7). Suppose F is an order ideal in G. IfF is an order ideal with

respect to E, then F is an order ideal with respect to the idealI (E) generated by E in G. We

have to show that for every x∈ I (E) and y∈ F, |x+y|−|x| ∈ F. But| |x+y|−|x| | ≤ |x+y−x| = |y|.

Since y∈ F and F is an order ideal in G, we have|x+ y| − |x| ∈ F. Thus I(E) ×G F is a Riesz

space.

(9) Suppose that F is an order ideal with respect to E. Then I(F) is an order ideal with

respect to I(E). That is to say,|x + y| − |x| ∈ I (F) for all x ∈ I (E) and y ∈ I (F). But

| |x + y| − |x| | ≤ |x + y − x| = |y| and |y| ≤ | f | for some f∈ F. So|x + y| − |x| ∈ I (F). Thus

I (E) ×G I (F) is a Riesz space.

(10) Suppose that F is an ideal in E. Then I(F) is an ideal in I(E). Clearly, F ⊂ E implies

I (F) ⊂ I (E). Assume that|x| ≤ |y| for all y ∈ I (F) and x∈ I (E). Since y∈ I (F), there exists

some f∈ F such that|y| ≤ | f |. This implies that x∈ I (F). So I(F) is an order ideal in I(E).

Thus I(E) ×G I (F) is a Riesz space.

(11) Suppose that F is an ideal with respect to E in a normed Riesz space G. Let x∈ E and

y ∈ F. Then there exists a sequence(yn) ⊂ F such that yn → y. As the lattice operations are

continuous,|x+ yn| − |x| → |x+ y| − |x|. As|x+ yn| − |x| ∈ F for each n∈ N, |x+ y| − |x| ∈ F.

So E×G F is a Riesz space. As a corollary to this, we obtain that if G isa Banach lattice and

if F is an order ideal with respect to E, then the completion F is alsa an ideal with respect to

E.

(12) Suppose that F is an ideal with respect to E in a normed Riesz space G. Suppose F is

closed. Let x∈ E and y∈ F. Then there exists a sequence(xn) ⊂ E such that xn → x. As the
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lattice operations are continuous, we have that|xn+y|− |xn| → |x+y|− |x|. As|xn+y|− |xn| ∈ F

for each n∈ N, |x+ y| − |x| ∈ F. SoE ×G F is a Riesz space.

(13) Let T be a lattice homomorphism on the Riesz space E, thenT−1({0}) is an order ideal

with respect to T(E).

Recall that a sequence (xn) in a Riesz spaceL is said to be order convergent to an elementx

of L (denoted byxn→
o x) if there exists a sequenceyn ↓ 0 such that|xn − x| ≤ yn.

We can characterize order convergent sequences inE ×G F space as follows.

Proposition 3.6 If xn→
o x in E and yn→o y in F, then(xn, yn)→o 0 in E ×G F.

Proof. Let xn →
o x in E andyn →

o y in F. Then there exist sequences (pn) in E and (rn) in

F such that|xn − x| ≤ pn ↓ 0 and|yn − y| ≤ rn ↓ 0. So|(xn, yn) − (x, y)| = |(xn − x, yn − y| =

(|xn− x|, |yn− y+ xn− x| − |xn− x|) ≤ (|xn− x|, |yn − y|) ≤ (pn, rn). But pn ↓ 0 andrn ↓ 0 imply

(pn, rn) ↓ 0 in E ×G F and this completes the proof. �

3.2 Ideals and Central Operators inE ×G F–space

In this section, we deal with the ideals and central operators of E ×G F-spaces. First we

turn our attention to characterize principal ideals ofE andG by using the principal ideals of

E ×G F-spaces. Next proposition contains this characterization.

Proposition 3.7 If (x, y) belongs to the principal ideal generated by(x0, y0) in E ×G F, then

x belongs to the principal ideal generated by x0 in E and x+ y belongs to the principal ideal

generated by x0 + y0 in G.

Proof. It is enough to consider only positive elements. Let (x0, y0) be a positive element of

E ×G F andI(x0,y0) be the order ideal generated by (x0, y0) in E ×G F. Let (x, y) be a positive

element ofI(x0,y0). Then there existsλ > 0 such that 0≤ (x, y) ≤ λ(x0, y0) in E ×G F. By

definition of the order inE ×G F, this yields 0≤ x ≤ λx0 and 0≤ x+ y ≤ λ(x0 + y0), and this

completes the proof. �
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It is a natural task to consider projections ofE×G F ontoE and investigate its properties. Next

proposition is dealt with this.

Proposition 3.8 Let E be a Riesz subspace of G and F be an order ideal with respect to E.

Then 1)(xα, yα) ↓ (0, 0) in E ×G F implies xα ↓ 0 in E and xα + yα ↓ 0 in G;

2) The projection map P: E ×G F −→ E defined as P(x, y) = x is an order continuous lattice

homomorphism.

Proof. 1)Let (xα, yα) ↓ (0, 0) in E ×G F. Then 0< (u, v) ≤ (xα, yα) implies thatu ≤ 0 and

u+ v ≤ 0 so thatxα ↓ 0 in E andxα + yα ↓ 0 in G.

2) SinceP(|(x, y)|) = P(|x|, |x + y| − |x|) = |x| = |P(x, y)|, P is a lattice homomorphism. The

fact thatP is order continuous follows from (1). �

Example 3.9 (1) For each ideal I in E, P−1(I ) is an ideal in E×G F. That is to say the set

{(x, y) : x ∈ I , y ∈ F} is an ideal of E×G F.

(2) I ×G F and Ix0 ×G F are ideals of E×G F where I is the ideal in E and Ix0 is a principal

ideal generated by x0 in E.

(3) Let J be an order ideal of the Riesz space F, then(0, J) = {(0, x) : x ∈ J} is an order

ideal of E×G F. If I is an order ideal of E with I∩ F = {0}, then(I , 0) is an order ideal

in E ×G F. Thus we have that(I , 0)+ (0, J) = (I , J) is an order ideal of E×G F.

(4) Identifying E with E0 = {(x, 0) : x ∈ E}, we see, in fact, that P is a projection of E×G F

onto E. In fact if E1 is a subspace of E for which there exists a projection P1 from E onto

E1, then the subspace E1 is the image (onto) of the projection P1oP : E ×G F −→ E1.

Suppose now E1 is a Riesz subspace of E. If F is an order ideal with respect to E, then

automatically an order ideal with respect to E1. That is to say,|x+ y| − |x| ∈ F for each

x ∈ E1. Thus for each Riesz subspace E1 of E, E1 ×G F is a Riesz subspace of E×G F.

Since P is a Riesz homomorphism, for each Riesz subspace H of E×G F, P(H) is a

Riesz subspace of E

(5) If E is not a uniformly complete Riesz space, then E×G F is not a uniformly complete

Riesz space, see[32,Thm.59.3].
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For the following definition, see [32].

Definition 3.10 The Riesz homomorphismπ of L into M is called a Rieszσ-homomorphism

if π preserves countable suprema, i.e., if f= sup fn(n = 1, 2, ...) in L thenπ f = supπ fn holds

in M.

A sufficient condition for Riesz homomorphismπ to be Rieszσ – homomorphism is that

fn ↓ 0 in L+ impliesπ fn ↓ 0 in M+. Evidently, the kernel of a Rieszσ-homomorphism is a

σ-ideal inL.

The projection mapP : E ×G F −→ E defined asP(x, y) = x is a Rieszσ-homomorphism

since (xn, yn) ↓ (0, 0) in E ×G F implies xn ↓ 0 in E. We immediately have the following

results by using [32,Thm.18.11].

Proposition 3.11 (1) KerP= {0} ×G F is aσ-ideal in E×G F.

(2) For anyσ-ideal N of E, P−1(N) = N ×G F is aσ-ideal in E×G F.

(3) For any ideal A in E×G F, P(A) is an ideal in E.

Definition 3.12 The Riesz homomorphismπ of L into M is called a normal Riesz homomor-

phism if π preserves arbitrary suprema, i.e., if it follows from f= sup fα (whereα runs

through an arbitrary index set ) in L thatπ f = supπ fα holds in M.

A sufficient condition for the Riesz homomorphismπ to be a normal Riesz homomorphism

is that 0≤ fα ↑ f in L+ implies 0≤ π fα ↑ π f in M+ (or equivalently,fα ↓ 0 in L+ implies

π fα ↓ 0 in M+). Evidently, the kernel of a normal Riesz homomorphism is a band inL.

The projection mapP : E×GF −→ E defined asP(x, y) = x is a normal Riesz homomorphism

since (xα, yα) ↓ (0, 0) in E ×G F implies xα ↓ 0 in E. We immediately have the following

results by using [32,Thm.18.12].

Proposition 3.13 (1) KerP= {0} ×G F is a band in E×G F.

(2) For any band N of E, P−1(N) = N ×G F is a band in E×G F.

(3) For any projection band H in E, H×G F is a projection band in E×G F.
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(4) If f is an atom in E, then the band generated by f , Bf , is a projection band in E. So

Bf ×G F is a projection band in E×G F.

The following theorem is useful to characterize the disjoint complement of kernel of projec-

tion mapP, {0} ×G F and Dedekind completeness ofE ×G F. For the details of the following

theorem, see [32,Thm.66.3].

Theorem 3.14 If L is Dedekind complete andπ is a normal Riesz homomorphism from L

onto M with kernel Kπ, then M and disjoint complement(Kπ)⊥ are Riesz isomorphic, and so

M is Dedekind complete.

By using the previous theorem, we immediately have the following corollary.

Corollary 3.15 (1) (KP)⊥ = ({0} ×G F)⊥ � E

(2) If E is not Dedekind complete, then E×G F is not Dedekind complete.

For further discussion, it will be convenient to introduce aproperty for the Riesz spaceL

which is intermediate between the principal projection property that is to say every principal

band inL is a projection band and the Archimedean property. For the details see [32].

Definition 3.16 The Riesz space L is said to have sufficiently many projections if every nonzero

band contains a nonzero projection band.

Proposition 3.17 If E has sufficiently many projections, then E×G F has sufficiently many

projections.

Proof. Suppose thatE has sufficiently many projections. LetB be a band inE ×G F. Then

P(B) is a band inE. SoP(B) contains a nonzero projection band inE. ThenP−1(P(B)) ⊂ B

andP−1(P(B)) is a projection band ofE ×G F. �

We now consider operators onE, G and onE ×G F. For an operatorT onG, T may not map

E into E andF into F. One way to get around this, we may restrict our attention to central

operators and assume thatE and F are ideals ofG. Since central operators map ideals to
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ideals, each central operator of the Riesz spaceG will give rise to an operator ofE ×G F into

itself. Another way is to assume thatF is an order ideal inE. ThenF is an order ideal with

respect toE. Therefore we ensure thatE×G F is a Riesz space. Then ifT : E→ E is a central

operator onE, the relation

T̄(x, y) = (T x,Ty)

gives rise to a central operator̄T on E ×G F. Suppose (x, y) ≥ 0 in E ×G F, thenx ≥ 0 and

x+ y ≥ 0 in G. Then we have that−λx ≤ T x≤ λx and−λ(x+ y) ≤ T(x+ y) ≤ λ(x+ y). Thus

−λ(x, y) ≤ (T x,Ty) ≤ λ(x, y). So the operator̄T : E ×G F −→ E ×G F is a central operator.

Observe also that̄T is a positive operator wheneverT is a positive operator and||T̄ ||0 ≤ ||T ||0

where||.||0 denotes the order unit norm ofZ(E) andZ(E×G F). So we get the following result.

Proposition 3.18 Let E be a Riesz subspace of G and F be an order ideal in E. If T: E→ E

is a a positive central operator on E, the relation

T̄(x, y) = (T x,Ty)

gives rise to a central operator̄T on E×G F such that||T̄ ||0 ≤ ||T ||0 where||.||0 denotes the

order unit norm of Z(E) and Z(E ×G F).

One is temped to conjecture that each central operator onE×GF gives rise to a central operator

on E and onF. The problem here is the following; an operatorT̄ on E ×G F may not map

E � {(x, 0) : x ∈ E} into itself. Similarly, it may not mapF � {(0, y) : y ∈ F} into itself. One

way to approach this is to assume thatE andF are order ideals of the big spaceG. But then:

suppose thatE is an ideal inG, then |(x, y)| ≤ |(x, 0)| imply that (|x|, |x + y| − |x|) ≤ (|x|, 0).

This gives us|x + y| ≤ |x|. So x + y ∈ E. Theny ∈ E ⇒ F ⊂ E, even if we assume that

F ∩ E = {0}. But, clearly if E0 = {(x, 0) : x ∈ E} andF0 = {(0, y) : x ∈ F} are ideals of

E ×G F, then a central operator̄T : E ×G F −→ E ×G F defines mapsT0 : E −→ E and

T1 : F −→ F asT0(x, 0) = T̄(x, 0), T1(0, y) = T̄(0, y) such that−λ(x, 0) ≤ T0(x, 0) ≤ λ(x, 0)

and−λ(0, y) ≤ T1(0, y) ≤ λ(0, y). These show thatT0 ∈ Z(E) andT1 ∈ Z(F). So we get the

following result.

Proposition 3.19 if E0 = {(x, 0) : x ∈ E} and F0 = {(0, y) : y ∈ F} are ideals of E×G F, then

a central operatorT̄ : E ×G F −→ E ×G F defines maps T0 : E −→ E and T1 : F −→ F as

T0(x, 0) = T̄(x, 0), T1(0, y) = T̄(0, y) such that T0 ∈ Z(E) and T1 ∈ Z(F).
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3.3 Order Bounded Sets and Dedekind Completion ofE ×G F–space

In this section, we investigate order bounded sets and Dedekind completeness properties of

E×G F–spaces. In particular, we give two examples of concreteE×G F–spaces such that one

has Cantor property and the other one does not have Cantor property.

As the following proposition shows, we can characterize order bounded subsets ofE andF

by using order bounded subsets ofE ×G F.

Proposition 3.20 Let B= {(x, y) : x ∈ E, y ∈ F} be an order bounded subset of E×G F. If F

is an order ideal with respect to E, then{x : (x, y) ∈ B} is an order bounded subset of E and

{y : (x, y) ∈ B} is an order bounded subset of G. If F is an ideal in E, then{x : (x, y) ∈ B} and

{y : (x, y) ∈ B} are order bounded subsets of E.

Proof. Let B = {(x, y) : x ∈ E, y ∈ F} be an order bounded subset ofE ×G F. Let 0≤ (a, b) in

E ×G F be such that|(x, y)| ≤ (a, b) for all (x, y) ∈ B. That is to say (|x|, |x + y| − |x|) ≤ (a, b).

Then |x| ≤ a for all (x, y) ∈ B and {x : (x, y) ∈ B} is an order bounded subset ofE. On

the other hand,|x + y| ≤ a + b for all (x, y) ∈ B. Thus | |y| − |x| | ≤ |x + y| ≤ a + b yields

|y| ≤ (a + b) + |x| ≤ 2a + b for all (x, y) ∈ B. If F is an ideal ofE, then{y : (x, y) ∈ B} is an

order bounded subset ofE. If F is an order ideal with respect toE, then{y : (x, y) ∈ B} is an

order bounded subset ofG. �

Proposition 3.21 If E ×G F is a Dedekind complete Riesz space, then E and F are Dedekind

complete Riesz spaces in their own rights.

Proof. Suppose thatE ×G F is Dedekind complete Riesz space. Let 0≤ xα ↑≤ x in E. Let

0 ≤ y ∈ F be arbitrary. Then 0≤ (xα, y) ↑≤ (x, y) in E ×G F. Let (z1, z2) be the supremum

of (xα, y) in E ×G F. Suppose 0≤ xα ↑≤ z1 and if 0≤ xα ≤ z for all α, then (xα, y) ≤ (z, y)

in E ×G F and we have (z1, z2) ≤ (z, y) which yieldsz1 ≤ z. Thusz1 is the supremum of (xα)

in E. Similarly, let 0≤ yα ↑≤ y in F. We choosex ∈ E+ and consider 0≤ (x, yα) in E ×G F.

Then 0≤ (x, yα) ↑≤ (x, y) in E ×G F. Let (z1, z2) be the supremum of (x, yα) in E ×G F. It

follows thatx = z1 andz2 is the supremum of (yα) in F. �

Proposition 3.22 Let E be a Dedekind complete Riesz subspace of G and F be a band in E,

then E×G F is Dedekind complete Riesz space.

25



Proof. Let (xα, yα) ∈ E ×G F be such that 0≤ (xα, yα) ↑≤ (x, y) in E ×G F. Then 0≤ xα ↑≤ x

in E and asE is Dedekind complete, (xα) has a supremum inE, sayB1. On the other hand,

yα ≤ 2x+ y in E. Then the supremum of (yα) exists inE and asF is assumed to be a band in

E, this supremum, sayB2, belongs toF. ThenB1 + B2 is an upper bound for (xα + yα) in E

and ifz is the supremum of (xα+yα) in E, we have 0≤ z≤ B1+B2. Suppose 0≤ z< B1+B2.

Then by Riesz Decomposition Property,z = u + v where 0≤ u < B1, 0 ≤ v < B2. But then

there existsα0 andxα0 with u < xα0 andyα0 with v < yα0. Thusu+ v = z < xα0 + yα0 which

is a contradiction. Hencez = B1 + B2 and (B1, B2) is the supremum (xα, yα) in E ×G F. So

E ×G F is Dedekind complete. �

Remark 3.23 If E is Dedekind complete and F is an ideal of E, then Fδ ⊂ E and Fδ is an

ideal of E where Fδ is the Dedekind completion of F. Since both Fδ and E are Riesz spaces,

it is enough to consider positive elements only. Let0 ≤ y ≤ x ∈ Fδ with y ∈ E. Since x∈ Fδ,

there exists0 ≤ xα ↑ x with xα ∈ F for all α. Then0 ≤ xα ∧ y ↑ x∧ y = y. As0 ≤ xα ∧ y ≤ xα

for eachα, xα ∧ y ∈ F and y∈ Fδ.

Thus if E is Dedekind complete and ifF is an ideal ofE, thenE ×G Fδ has a Riesz space

structure from the previous remark. In this case the Dedekind completion ofE×GF is E×G Fδ

as the next proposition shows.

Proposition 3.24 If E is Dedekind complete and F is an ideal of E, then E×G Fδ is the

Dedekind completion of E×G F.

Proof. We already know thatE ×G Fδ is Dedekind complete and containsE ×G F. We now

show thatE×G F is a majorizing order dense Riesz subspace ofE×G Fδ. Let (x, y) ∈ E×G Fδ.

Choosey0 ∈ F with y ≤ y0, then (x, y) ≤ (x, y0) ∈ E ×G F. This shows thatE ×G F is a

majorizing Riesz subspace ofE ×G Fδ.

Let 0< (x, y) in E ×G Fδ. Then 0< x and 0< x+ y. Then we have that 0,−y < x⇒ y− < x.

Hence 0< x−y− ≤ x. Sincey ∈ Fδ, by the order denseness ofF in Fδ, there exists 0< f ≤ y+.

So 0< (x − y−, f ) ≤ (x, y) where (x − y−, f ) ∈ E ×G F. This shows thatE ×G F is an order

dense Riesz subspace ofE ×G Fδ. �

Similar considerations above proposition will yield the following result.
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Proposition 3.25 If F is an ideal of E, then the Dedekind completion of E×G F is Eδ ×G Fδ.

Proof. We have seen earlier thatEδ ×G Fδ is Dedekind complete and has a Riesz space

structure asFδ is an order ideal ofEδ. It is also easy to see thatE ×G F is majorizing in

Eδ ×G Fδ. Thus the only problem is to show thatE ×G F is order dense inEδ ×G Fδ. To see

this Let 0< (x, y) in Eδ ×G Fδ. Then 0< x and 0< x + y. So 0,−y < x⇒ y− < x. Hence

0 < x − y− ∈ Eδ. As E is order dense inEδ, there existsx1 ∈ E such that 0< x1 ≤ x − y−.

Also there existsf ∈ F such that 0< f ≤ y+ asF is order dense inFδ. But thenx1 + f ≤

x− y− + f ≤ x− y− + f + y+ = x+ y. Then we get 0< (x1, f ) ≤ (x, y) where (x1, f ) ∈ E×G F.

This completes the proof. �

Definition 3.26 An Archmedean Riesz space L is said to have Cantor property (or σ- inter-

polation property) if for any sequences(xn) and(ym) in L such that xn ≤ ym for each n,m ∈ N,

there exists an element g∈ L such that xn ≤ g ≤ ym for each n,m ∈ N.

As the following examples show that the spaceE ×G F has Cantor property in some cases.

The first example contains a concreteE ×G F–space having Cantor property. For the details

of examples, see [33].

Example 3.27 Let Q be a quasi-Stonean space with no isolated points.

Let G=B(Q)= the space of all bounded real-valued functions on Q, E= C(Q) and F= lw∞(Q).

Let xn, zm ∈ E×G F with xn = (an, bn) ≤ zm = (a′m, b
′
m) for all m, n ∈ N. It follows that an ≤ a′m

for all m, n ∈ N. As E has certainly the Cantor property, there is g∈ E with an ≤ g ≤ a′m for

each n,m ∈ N. Then the set

C =
⋃

n∈N

supp(bn) ∪
⋃

n∈N

supp(b′n)

is countable since it is the union of two countable sets. For each q∈ C choose any p(q) ∈ R

with an(q) + bn(q) ≤ a′m(q) + b′m(q). Define d∈ lw∞(Q) by d(q) = p(q) − g(q) if q ∈ C and

d(q) = 0 if q < C. Then clearly, we have that(an, bn) ≤ (g, d) ≤ (a′m, b
′
m) on E×G F and

(g, d) ∈ E ×G F. So E×G F has Cantor property.

Now we give an example ofE ×G F–space which has no Cantor property.

27



Example 3.28 Let Q be a quasi-Stonean space with no isolated points. Let G=B(Q)= the

space of all bounded real-valued functions on Q, E= C(Q) and F = c0(Q). To prove that

E ×G F is not a Cantor space, we may find disjoint sets T= {t1, t2, ...} and U = {u1, u2, ...}

with p in the closure of both{tn, tn+1, ...} and {un, un+1, ...} for each n∈ N. Define bn ∈ c0(Q)

to be the function with value−1 on {t1, t2, ..., tn} and otherwise0. Similarly let dn ∈ c0(Q) be

the function with value1 on {u1, u2, ..., un} and otherwise0. Then we have(1Q, bn) ≥ (0, dm)

for all m, n ∈ N. If there were f∈ C(Q) and c∈ c0(Q) such that(1Q, bn) ≥ ( f , c) ≥ (0, dn)

for each n∈ N, then1Q + bn ≥ f + c ≥ dn for each n. As{t1, t2, ..., tn} ⊂ {t1, t2, ..., tn+k} and

{u1, u2, ..., un} ⊂ {u1, u2, ..., un+k} for each k∈ N, then we certainly have f+ c = 0 on T and1

on U. Since c∈ c0(Q), c(tn)→ 0 and c(un)→ 0 as n→ ∞. Thus

0 = lim( f (tn) + c(tn)) = lim f (tn) = f (p) = lim f (un) = lim( f (un) + c(un)) = 1

and this contradiction shows that E×G F has no Cantor property.

3.4 The Norm Properties ofE ×G F–space

In this section, we investigate some properties ofE×G F-spaces such as Dunford-Pettis prop-

erty, weakly sequentially continuity of lattice operations and Schur property. For these pur-

poses, we need to makeE ×G F-space a normed Riesz space(Banach lattice). Consider the

norm ||(x, y)||E×GF = max{||x||, ||x + y||} on E ×G F. With respect to this norm, we have the

following.

Theorem 3.29 Let G be a normed Riesz space. We consider the following norm on E×G F:

||(x, y)||E×GF = max{||x||, ||x+ y||}.

Then we have the following:

(1) E ×G F is a normed Riesz space.

(2) (e, f ) is an order unit for E×G F whenever e and f are order units for E and F respec-

tively.

(3) E ×G F is a Banach lattice whenever E and F are Banach lattices in their own rights.
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(4) E ×G F is an AM-space whenever E and F are Banach lattices in their own rights and

G is an AM-space.

(5) E ×G F is an AL-space whenever E and F are Banach lattices in their own rights and

G is an AL-space.

(6) If G has an order continous norm, then E×G F has an order continuous norm.

Proof.

(1) It is enough to show that the norm defined above is a latticenorm. Let|(x, y)| ≤ |(x′, y′)|.

Then from Theorem 3.4, we have

(|x|, |x+ y| − |x|) ≤ (|x′|, |x′ + y′| − |x′|).

This gives us|x| ≤ |x′| and|x+ y| ≤ |x′ + y′|. SinceG is a normed Riesz space, we have

||x|| ≤ ||x′|| and||x+ y|| ≤ ||x′ + y′||. So we have||(x, y)||E×GF ≤ ||(x′, y′)||E×GF.

(2) We will show that (e, f ) is an order unit forE ×G F. Let (x, y) ∈ E ×G F. Then

there exist 0≤ λ, α ∈ R such that|x| ≤ λe and |y| ≤ α f . So |x| ≤ max{λ, α}e and

|x + y| ≤ λe+ α f ≤ max{λ, α}(e+ f ). This gives us that|(x, y)| ≤ max{λ, α}(e, f ). So

(e, f ) is an order unit forE ×G F.

(3) Let (xn, yn)n be a Cauchy sequence inE ×G F. Then (xn) is a Cauchy sequence inE as

||xn − xm|| ≤ ||(xn, yn) − (xm, ym)||E×GF .

Then there existx ∈ E such thatxn→ x. The equality

||yn − ym|| = ||(0, yn) − (0, ym)||E×GF ,

and the inequality

||(0, yn) − (0, ym)||E×GF = ||(0, yn) − (xn, 0)+ (xn, 0)+ (xm, 0)− (xm, 0)− (0, ym)||E×GF

≤ ||(xn, yn) − (xm, ym)||E×GF + ||xn − xm||

show that (yn) is a Cauchy sequence inF. Let yn → y ∈ F. We also claim that

(xn, yn) → (x, y) in E ×G F. Let ε > 0 be given. Asxn → x andyn → y, there existn0
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andn1 in N such that||xn− x|| < ε for eachn ≥ n0 and||yn− y|| < ε for eachn ≥ n1. Let

N = max{n0, n1}. As

||(xn, yn) − (x, y)||E×GF = ||(xn, 0)+ (0, yn) − (x, 0)− (0, y)||E×GF

≤ ||(xn − x, 0)||E×GF + ||(0, yn − y)||E×GF

= ||xn − x|| + ||yn − y||,

we have that||(xn, yn) − (x, y)||E×GF < 2ε for eachn ≥ N. Therefore we proved the

claim. SoE ×G F is a Banach lattice.

(4) SinceE ×G F is a Banach lattice by (3), it is enough to show that the norm defined

above is anM-norm, that is if (x, y) ∧ (x′, y′) = 0, then

||(x, y) + (x′, y′)|| = max{||(x, y)||, ||(x′, y′)||}

for each (x, y), (x′, y′) ∈ (E ×G F)+. Let (x, y) ∧ (x′, y′) = 0. Thenx ∧ x′ = 0 and

(x + y) ∧ (x′ + y′) = 0 in G. Therefore, we have||x + x′|| = max{||x|| + ||x′||} and

||x+ y+ x′ + y′|| = max{||x+ y||, ||x′ + y′||} asG is an AM-space. These give us||(x, y) +

(x′, y′)||E×GF = max{||(x, y)||E×GF , ||(x′, y′)||E×GF}. This completes the proof.

(5) It is enough to show that the norm defined above is anL-norm, i.e., if (x, y)∧(x′ , y′) = 0,

then

||(x, y) + (x′, y′)||E×GF = ||(x, y)||E×GF + ||(x
′, y′)||E×GF

for each (x, y), (x′, y′) ∈ (E ×G F)+. Let (x, y) ∧ (x′, y′) = 0. Then, we havex∧ x′ = 0

and (x+y)∧ (x′+y′) = 0 in G. Then we have||x+ x′|| = ||x||+ ||x′|| and||x+y+ x′+y′|| =

||x+ y|| + ||x′ + y′|| asG is an AL-space. These give us

||(x, y) + (x′, y′)||E×GF = ||(x, y)||E×GF + ||(x
′, y′)||E×GF .

This completes the proof.

(6) Let (xα, yα) ↓ 0 in E ×G F. This implies thatxα ↓ 0 and xα + yα ↓ 0 in G. As

G has an order continuous norm, then for eachε > 0, there exist someα0 andα1

such that||xα|| < 1
2ε for eachα ≥ α0 and ||xα + yα|| < 1

2ε for eachα ≥ α1. Taking

α3 = max{α0, α1}, we have that

||(xα, yα)||E×GF = max{||xα||, ||xα + yα||} < ε

for eachα ≥ α3.
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Example 3.30 (1) Let c be the space of all convergent sequences, c0 be the space of all

sequences converging to zero and l∞ be the space of all bounded sequences. Consider c×l∞ c0.

We see that l∞ having order continuous norm is indispensable.

(2) Consider c0 ×l∞ l1 where l1 is the space of all absolutely summable sequences. We know

that l1 is an order ideal in c0. So c0 ×l∞ l1 is a Banach lattice having order continuous norm.

But l∞ does not have order continuous norm. So the converse of part (6) in the previous

theorem is not true in general.

Consider the norm||(x, y)||∞ = max{||x||, ||y||} onE×G F. Actually, two norms||.||∞ and||.||E×GF

are equivalent as the next proposition shows.

Proposition 3.31 Let G be a normed Riesz space, E and F be normed Riesz subspacesof

G such that F is an order ideal with respect to E. Two norms||(x, y)||E×GF and ||(x, y)||∞ on

E ×G F are equivalent. In particular, the projections P: E ×G F → E and Q: E ×G F → F

are continuous.

Proof. Let {(xn, yn)} be sequence inE×G F which converges to (x, y) with respect to the norm

||.||E×GF in E ×G F. Then givenε > 0, there existsN(ε) such that||(xn, yn) − (x, y)||E×GF < ε if

n ≥ N(ε). Thus||(xn − x, yn − y)||E×GF < ε if n ≥ N(ε). So we get

max{||x− xn||, ||y− yn + x− xn||} < ε

if n ≥ N(ε). In particular, this shows that||y− yn + x− xn|| < ε if n ≥ N(ε). Thus we have

||y− yn|| = ||y− yn + x− xn − (x− xn)|| ≤ ||y− yn + x− xn|| + ||x− xn|| ≤ 2ε

if n ≥ N(ε). Thus if (xn, yn) → (x, y) with respect to||.||E×GF in E ×G F, thenxn → x in E

andyn → y in F. Thus both of the projectionsP : E ×G F → E andQ : E ×G F → F are

continuous. In particular, we have that||x|| ≤ K||(x, y)||E×GF and ||y|| ≤ K||(x, y)||E×GF. This

implies that||(x, y)||∞ = max{||x||, ||y||} ≤ K||(x, y)||E×GF . On the other hand,

max{||x||, ||x+ y||} ≤ max{||x||, ||x|| + ||y||}

≤ max{||x||, 2 max{||x||, ||y||}} = 2 max{||x||, ||y||}.
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Therefore,||(x, y)||E×GF ≤ 2||(x, y)||∞. Thus||(x, y)||E×GF is equivalent to||(x, y)||∞. �

From now on, we assume thatE andF are Banach sublattices of a Banach latticeG.

Without assuming thatF is an order ideal inE, we have a map

T : G′ → (E ×G F)′

defined by

T f(x, y) = f (x+ y) for eachf ∈ G′ and (x, y) in E ×G F.

As

|T f(x, y)| = | f (x+ y)| ≤ || f ||G′ ||x+ y|| ≤ || f ||G′ ||(x, y)||E×GF ,

T f defines a continuous linear functional onE×G F and||T f ||(E×GF)′ ≤ || f ||G′ . If we restrictT

to E′, then||T f || ≥ |T f(x, 0)| = | f (x)|. Taking the supremum overx ∈ E such that||x|| ≤ 1, we

get || f ||E′ ≤ ||T f ||(E×GF)′ . HenceT is an isometry when it is restricted toE′. In what follows,

we assume thatF is an order ideal inE and use the fact thatE′ = (E ×G F)′. In this case, we

have the following.

Proposition 3.32 Let F be an order ideal in E. If E has Dunford-Pettis Property,shortly DPP,

i.e., for all (xn) ⊂ E, xn → 0 weakly and( fn) ⊂ E′, fn → 0 weakly, thenlimn→∞ fn(xn) = 0,

then E×G F has DPP.

Proof. Suppose thatE has DPP. Let (xn, yn) be a sequence inE ×G F such that (xn, yn) → 0

weakly in E ×G F. Let (fn) ⊂ (E ×G F)′ such thatfn → 0 weakly. Since the projections

P : E ×G F → E andQ : E ×G F → F are norm continuous, they are weakly continuous, we

havexn → 0 weakly inE andyn → 0 weakly inF. Thusxn + yn → 0 weakly inE. SinceE

has DPP, then

lim
n→∞

fn(xn, yn) = lim
n→∞

fn(xn + yn) = 0.

�

If F were not an order ideal inE, then the result would be as follows: ifG has DPP, then

E ×G F has DPP for eachF.

Definition 3.33 Lattice operations in a Banach lattice are said to be weakly sequentially

continuous if xn→ 0 weakly⇒ |xn| → 0 weakly.
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Proposition 3.34 Let F be an order ideal in E. If E has weakly sequentially lattice opera-

tions, then E×G F has weakly sequentially lattice operations.

Proof. Suppose that (xn, yn) → 0 weakly. Since the canonical projections are weakly

continuous, we havexn → 0 weakly in E and yn → 0 weakly in F then xn + yn → 0

weakly in E. Thus |(xn, yn)| = (|xn|, |xn + yn| − |xn|) and fn ∈ E′ = (E ×G F)′, we have

f (|xn|, |xn + yn| − |xn|) = f (|xn + yn|) we see thatf (|xn + yn|) → 0 sinceE has weakly sequen-

tially continuous lattice operations. �

If F were not an order ideal inE, then the result would be as follows: ifG has weakly

sequentially continuous lattice operations, thenE ×G F has weakly sequentially continuous

lattice operations for eachF.

Proposition 3.35 Let F be an order ideal in E. If E has Schur property, i.e., xn → 0 weakly

in E⇒ ||xn|| → 0, then E×G F has Schur property.

Proof. Suppose (xn, yn) → 0 weakly in E ×G F. Then using projections again, we have

xn → 0 weakly in E andyn → 0 weakly in F so thatxn + yn → 0 weakly inE. Firstly,

from xn → 0 weakly⇒ ||xn|| → 0 and fromxn + yn → 0 weakly⇒ ||xn + yn|| → 0. Thus

||(xn, yn)||E×GF = max{||xn||, ||xn + yn||} → 0. �

If F were not an order ideal inE, then the result would be as follows: ifG has Schur property,

thenE ×G F has Schur property for eachF.

From now on we assume thatF is an order ideal with respect toE.

Definition 3.36 A Banach lattice L is said to be a KB (Kantorovich-Banach)–space whenever

every increasing norm bounded sequence of L+ is norm convergent.

When isE ×G F a KB-space? Now we will try to find an answer for this question.One of

them is below.

Proposition 3.37 If G is a KB-space, E and F are Banach lattices, then E×GF is a KB-space.

Proof. Let 0 ≤ (xn, yn) ↑ be a norm bounded sequence inE ×G F. Then 0≤ xn ↑ is norm

bounded inE and 0≤ xn+ yn ↑ is norm bounded inG. AsG is a KB-space, (xn) and (xn+ yn)
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are norm convergent inG, sayxn→ x andxn + yn→ z. This gives usxn→ x andyn→ z− x.

As E andF are Banach lattices, (x, z− x) belongs toE×G F. So (xn, yn)→ (x, z− x) in E×G F.

This completes the proof. �

Proposition 3.38 Let E and F be Banach lattices. If E×G F is a KB-space, then E and F are

KB-spaces.

Proof. Let 0 ≤ xn ↑ be a norm bounded sequence inE. Then 0 ≤ (xn, 0) ↑ is a norm

bounded sequence inE ×G F. This implies (xn, 0) is norm convergent inE ×G F. But we

have||xn|| = ||(xn, 0)||E×GF. This shows that (xn) is norm convergent inE. SoE is a KB-space.

Similarly we can show thatF is a KB space. �

From the proposition above, we immediately have the following corollary.

Corollary 3.39 If E or F is not a KB space, then E×G F is not a KB space.

Example 3.40 Consider c×l∞ c0. As c is not a KB-space, so c×l∞ c0 is not a KB-space from

the previous corollary.

There is a connection between being a KB-space and containing c0 for a Banach latticeL. If

c0 is not (lattice) embeddable inL, thenL is a KB-space. For the details see [10,Thm.14.13].

Example 3.41 It is well-known that c0 is always lattice embeddable in an infinite dimensional

AM-space. Thus if G is a Banach lattice and if one consider theprincipal ideal Ix generated

by x ∈ G+, then from the previous theorem̄Ix ×G F is not a KB space for any F which is an

order ideal with respect to Ix since Ix is an AM space which contains c0.

Recall that a closed vector subspaceY of a Banach spaceX is said to becomplementedwhen-

ever there exists another closed vector subspaceZ of X such thatX = Y ⊕ Z. Also recall that

a Banach spaceY is said to embed complementably into another Banach spaceX whenever

there exists an embeddingT : Y→ X so thatT(Y) is complemented inX.

Regarding embeddings of Banach spaces into KB-spaces, we have the following remarkable

result of W. B. Johnson and L. Tzafriri.

34



Theorem 3.42 If a Banach space X embeds complementably into a Banach lattice and c0

does not embed in X, then X also embeds complementably in a KB–space.

Remark 3.43 (1) Let G be a KB–space. Then c0 is not embeddable in E×G F for every

Banach lattices E and F, otherwise E×G F is not a KB–space. Also in this case, c0 is not

lattice embeddable in E and F as E and F are lattice embeddablein E ×G F.

(2) if E is a complemented sublattice of G and c0 is not embeddable in E, then by considering

a KB space G′ containing E ( as given in the previous theorem ), E×G′ F is a KB–space for

every order ideal F with respect to E.

(3) Let G be a Banach lattice containing c0. Let F be an ideal with respect to c0. Then we

have that c0×G F is not a Grothendieck space. This is because the operator Pc : c0×G F → c0

is a lattice homomorphism. On the other hand it is well-knownthat there does not exist any

surjective linear operator T from a Grothendieck space to c0. In particular, we see that

c0 ×l∞ l1 is not a Grothendieck space.

In Banach lattices, the norm topology and the relatively uniform topology (ru–topology) al-

ways coincide. This may not be true in normed Riesz spaces.

Proposition 3.44 Let G be a normed Riesz space in which the norm and ru–topologycoin-

cide. Then E×G F has the same property for each Riesz subspaces E and F in which F is an

order ideal with respect to E.

Proof. It suffices to show that every norm convergent sequence has a ru-convergent subse-

quence. Let (xn, yn) be a norm convergent sequence inE ×G F. Then (xn) and (xn + yn) are

both norm convergent sequences inG. Let (xnk) be a ru-convergent subsequence of (xn). Let

(xnl + ynl ) be a ru-convergent subsequence of the norm convergent sequence (xnk + ynk). Since

(xnl , ynl ) is a ru-convergent subsequence of (xn, yn), we see that ru-uniform topology and norm

topology coincide inE ×G F. �

Corollary 3.45 Let E, F and G be as above. ThenFru is an ideal with respect to E for every

F which is an ideal with respect to E.
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3.5 Disjointness Properties ofE ×G F–space

In Banach lattice theory, disjoint sequences play an important role to characterize many prop-

erties of given Banach lattice such as laterallyσ-completeness properties, weakly compact or-

der intervals, lowerp-estimate property. In this section, we will characterize some properties

of E ×G F–spaces by using their disjoint sequences. We start with thefollowing proposition

which gives a relation between the disjoint sequences ofE×G F–spaces and the spacesE and

G.

Proposition 3.46 Let E be a Riesz subspace of a Riesz space G and F be an ordered vector

subspace of G such that F is an order ideal with respect to E. Then(x, y)⊥(x′, y′) in E ×G F

⇔ x⊥x′ in E and x+ y⊥x′ + y′ in G.

Proof. Let (x, y)⊥(x′, y′) in E×GF. Then|(x, y)+(x′, y′)| = |(x, y)−(x′, y′)| ⇔ |(x+x′, y+y′)| =

|(x− x′, y− y′)| ⇔ (|x+ x′|, |x+ y+ x′ + y′| − |x+ x′|) = (|x− x′|, |x+ y− x′ − y′| − |x− x′|).

So we get|x+ x′| = |x− x′| and|x+ y+ x′ + y′| = |x+ y− x′ − y′|. Thereforex⊥x′ in E and

x+ y⊥x′ + y′ in G. �

Proposition 3.47 Let E be an order dense ideal in G and F be an order ideal in E. Then the

ideal I(E ×G F) generated by E×G F is an order dense ideal in G×G G.

Proof. Let (x, y) ∈ (E ×G F)⊥. Then (x, y)⊥(e, f ) for each (e, f ) ∈ E ×G F. Thenx⊥e and

x + y⊥e+ f . As E is an order dense ideal inG, we getx = 0. Soy⊥e+ f for eache ∈ E

and f ∈ F. Taking f = 0, we gety⊥e. Again asE is an order dense ideal inG, we gety = 0.

Let I (E ×G F) be the ideal generated byE ×G F in G ×G G. ThenE ×G F ⊂ I (E ×G F) ⇒

I (E ×G F)⊥ = 0. �

Proposition 3.48 If F is an order ideal in E, then(E ×G F)⊥ is a subset of F⊥.

Proof. Let (x, y) ∈ (E ×G F)⊥. Thenx⊥e andx + y⊥e+ f for eache ∈ E and f ∈ F. This

implies thatx ∈ E⊥ andx+ y ∈ E⊥. We getx ∈ E⊥ andy = x+ y− x ∈ E⊥. As E⊥ ⊂ F⊥, we

get x ∈ F⊥, y ∈ F⊥. �

We now give the following definition. For the details see [9].
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Definition 3.49 A Riesz space L is said to be laterallyσ-complete, if the supremum of every

disjoint sequence of L+ exists in L.

Proposition 3.50 If E is a laterallyσ-complete Riesz subspace of G and F is a band of E,

then E×G F is a laterallyσ-complete Riesz space.

Proof. Let 0≤ (xn, yn) be a disjoint sequence inE ×G F. Then we have (xn, yn)⊥(xm, ym) = 0

for eachn , m. This implies thatxn⊥xm and alsoxn + yn⊥xm + ym. As E is laterallyσ-

complete, sup{xn} and sup{xn + yn} exist in E. Let sup{xn} = x and sup{xn + yn} = z. As

yn ≤ xn + yn ≤ z andF is a band inE, sup{yn} exists inF, let sup{yn} = y. We claim that

z= x+ y. Assume that 0≤ z< x+ y. Then by the Riesz Decomposition Property, there exist

x1 andx2 in E such that 0≤ x1 < x and 0≤ x2 < y such thatx1 + x2 = z. Then there exists

ann0 such thatx1 < xn0 andx2 < yn0. Thusx1 + x2 = z< xn0 + yn0, which is a contradiction.

Hencez= x+ y and (x, y) is the supremum of (xn, yn) in E ×G F. �

We now state a theorem which will be useful in the next proposition. For the details see [9].

Theorem 3.51 Let T : L→ F be a positive operator between two Archimedean Riesz spaces.

If L is laterally σ-complete, then the operator T isσ-order continuous.

Remark 3.52 Let E be an Archimedean Riesz subspace of G and F be an ideal in E. Let

0 ≤ n(x, y) ≤ (x′, y′) for each n∈ N and (x, y), (x′, y′) ∈ E ×G F. Then0 ≤ nx ≤ x′ and

0 ≤ n(x+ y) ≤ x′ + y′ in E. As E is Archimedean, we get x= 0 and x+ y = 0. Hence we get

x = 0 and y= 0. So E×G F is Archimedean

Proposition 3.53 Let E be an Archimedean laterallyσ-complete Riesz subspace of G and F

be a band in E. Then the projection map, P: E ×G F → E defined by P(x, y) = x isσ-order

continuous.

Proof. As E is an Archimedean laterallyσ-complete Riesz space andF is a band inE, E×G F

is an Archimedean laterallyσ-complete Riesz space. Also the projection mapP is positive.

ThereforeP isσ-order continuous by the previous theorem. �

Now we give a characterization of super Dedekind completeness ofE×G F by using disjointe-

ness property of this space. For this purpose, we give the following well-known definitions.
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Definition 3.54 The Riesz space L is said to have countable sup property (CSP)if every

disjoint net( fα) such that fα ≤ f for some f∈ L is countable.

Definition 3.55 A Riesz space L is called super Dedekind complete if L is Dedekind complete

and has countable sup property.

Proposition 3.56 If E has CSP, then E×G F has CSP.

Proof. Suppose thatE has CSP and let (fα, gα) be a disjoint net inE×G F such that (fα, gα) ≤

( f , g). This implies that (fα) is a disjoint net inE and fα ≤ f . As E has CSP, we get that (fα)

is countable and so is (fα, gα). �

Using the proposition above, we immediately have the following corollary.

Corollary 3.57 Let E be a Dedekind complete Riesz space which has CSP and F be aband

in E, then E×G F is super Dedekind complete.

Proposition 3.58 Let F be an order ideal in E. Assume that T: E → E is a positive

orthomorphism on E. Then the relation̄T(x, y) = (T x,Ty) gives rise to an orthomorphism on

E ×G F.

Proof. Suppose (x, y) ≥ 0 in E×G F. Thenx ≥ 0 andx+y ≥ 0 in G. By the positiveness ofT,

we get 0≤ T(x) and 0≤ T(x+ y) = T(x) + T(y). SoT̄ is a positive operator. ThereforēT is

an order bounded operator. Now assume that (x, y)⊥(x′, y′) in E×G F. This implies thatx⊥x′

andx+y⊥x′+y′ in E. As T is an orthomorphism onE, we havex⊥T(x′) andx+y⊥T(x′+y′)

⇒ (x, y)⊥T̄(x′, y′). �

Proposition 3.59 Let F be an order ideal with respect to E. If e is a weak order unit of E and

e+ f is a weak order unit of E+ F, then(e, f ) is a weak order unit of E×G F.

Proof. Let e > 0 be a weak order unit inE ande+ f > 0 be a weak order unit inE + F.

Then (e, f ) > 0 in E ×G F. Let (e, f )⊥(x, y) in E ×G F. This implies that (e, f ) ∧ |(x, y)| = 0.

Hence (e, f ) ∧ (|x|, |x+ y| − |x|) = 0. Thereforee∧ |x| = 0 and (e+ f ) ∧ |x+ y| = 0. Ase and

e+ f are the weak order units ofE andE + F respectively, we getx = 0 andx + y = 0. So

(x, y) = (0, 0). �
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Proposition 3.60 Let F be an order ideal in E. If e is a weak order unit of E and f is aweak

order unit of F, then(e, f ) is a weak order unit of E×G F.

Proof. Let e > 0 be a weak order unit inE and f > 0 be a weak order unit inF. Then

(e, f ) > 0 in E ×G F. Let (e, f )⊥(x, y) in E ×G F. This implies that (e, f ) ∧ |(x, y)| = 0. Hence

(e, f ) ∧ (|x|, |x + y| − |x|) = 0. Thereforee∧ |x| = 0 and (e+ f ) ∧ |x+ y| = 0. Ase is a weak

order unit ofE, we getx = 0. Then (e+ f ) ∧ |y| = 0. But 0< f ≤ (e+ f ). This implies that

f ∧ |y| ≤ (e+ f ) ∧ |y| = 0. This yields thatf ∧ |y| = 0. As f is a weak order unit ofF, we get

y = 0. �

Definition 3.61 A Riesz space L is said to have a finite or countable order basisif there exists

a sequence(vn) ⊂ L+ such that if f∈ L and | f | ∧ vn = 0 for each n∈ N imply that f = 0.

By using the definition above and disjointness property ofE ×G F, we may characterize the

finite or countable order basis ofE ×G F as in the next proposition.

Proposition 3.62 Let E be a Riesz subspace of G and F be an order ideal in E. If E hasa

countable order basis, then E×G F has a countable order basis.

Proof. Assume thatE has a countable order basis. Then there exists a sequence (vn) ⊂ E+

such that| f | ∧ vn = 0 for eachn ∈ N. Then the sequence (vn, 0) in E ×G F is positive. Let

|( f , g)| ∧ (vn, 0) = (0, 0) for eachn ∈ N. Then | f | ∧ vn = 0 and | f + g| ∧ vn = 0 for each

n ∈ N. As E has a countable order basis andf , f + g ∈ E, we have thatf = 0 and f + g = 0

⇒ ( f , g) = (0, 0). �

Definition 3.63 The element p in a Riesz space L is called a component of an element e> 0

in L whenever p and e− p are disjoint, i.e., whenever p⊥(e− p).

The above definition is justified by the following lemma. For the details of lemma, see

[32,Thm.38.2].

Lemma 3.64 Any component p of e> 0 satisfies0 ≤ p ≤ e.
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Proposition 3.65 If (e, f ) is a component of(x, y) in E ×G F, then e is a component of x in E

and e+ f is a component of x+ y in G.

Proof. Let (0, 0) ≤ (e, f ) be a component of (x, y) in E ×G F. This implies that (e, f ) ∧

((x, y) − (e, f )) = 0. Then (e, f ) ∧ (x − e, y − f ) = 0. This givese ∧ (x − e) = 0 and

(e+ f ) ∧ (x+ y− (e+ f )) = 0. �

For a positive elementx in a Banach latticeL, the order interval [0, x] is weakly compactif

every disjoint sequence of [0, x] is norm convergent to zero. By using this characterizationof

weakly compact order intervals, we have the following.

Proposition 3.66 If G is a Banach lattice having weakly compact order intervals, then E×GF

has weakly compact order intervals.

Proof. Let (xn, yn) be a disjoint sequence of [0, (e, f )] in E ×G F. Then (xn) is a disjoint

sequence inE such that (xn) ⊂ [0, e] and (xn + yn) is a disjoint sequence inG such that

(xn + yn) ⊂ [0, e+ f ]. As G has weakly compact order intervals, we have that||xn|| → 0 and

||xn + yn|| → 0. This implies that||(xn, yn)||E×GF = max{||xn||, ||xn + yn||} → 0. �

Proposition 3.67 Suppose that G is a Banach lattice with the property that S ol(A), solid hull

of every norm bounded subset A is relatively weakly compact.Then norm bounded subsets of

E ×G F has the same property for each Banach lattices E and F where Fis an order ideal

with respect to E.

Proof. Let A be a norm bounded subset ofE ×G F. It is enough to show that every norm

bounded disjoint sequence inS ol(A) is norm convergent to zero. Let (xn, yn) be a norm

bounded disjoint sequence inS ol(A). Then there exists someM > 0 such that||(xn, yn)|| ≤ M.

Then (xn) and (xn + yn) are norm bounded disjoint sequences inG. Then ||xn|| → 0 and

||xn + yn|| → 0 imply that ||(xn, yn)||E×GF = max{||xn||, ||xn + yn||} → 0 in E ×G F. This

completes the proof. �

Let us recall that the norm of a normed Riesz space satisfies alower p-estimateif and only if

(||xn||) ∈ lp for every disjoint order bounded sequence (xn) ∈ E+.
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Proposition 3.68 Let G be a normed Riesz space satisfying a lower p-estimate for some p.

Then E×G F satisfies a lower p-estimate for each E⊂ G and F an ideal with respect to E.

Proof. Let (xn, yn) be an order bounded disjoint sequence in (E ×G F)+. Then (xn) and

(xn + yn) are order bounded disjoint sequences inG+. Then (||xn||) and (||xn + yn||) are in lp.

Hence||(xn, yn)||E×GF = max{||xn||, ||xn + yn||} also belongs tolp andE ×G F satisfies a lower

p-estimate. �

It is well-known that everyL-weakly compact subsetA of a normed Riesz spaceL is relatively

weakly compact.

Proposition 3.69 Let G be a Banach lattice with the property that every relatively weakly

compact subset is L-weakly compact. Then E×G F has the same property for each Riesz

subspaces E and F of G such that F is an order ideal with respectto E.

Proof. Let A be a relatively weakly compact subset ofE ×G F. By Theorem 3.6.8 in ([23]),

it suffices to show that each disjoint weakly null sequence (xn, yn) in A is norm convergent to

zero. It is easily seen that (xn) and (xn + yn) are weakly null disjoint sequences inG. Thus

||xn|| and||xn + yn|| are convergent to zero inG and therefore inE ×G F. �

3.6 A New Type of Abramovich – Wickstead Spaces

In this section we introduce a new type of Abramovich–Wickstead spaces. We show that this

space is a Riesz space under pointwise order. We start with the following definition which

contains the building blocks of this space.

Definition 3.70 For a compact space K and a relatively uniformly complete vector lattice E,

we set

(1) C(K,E(e)) the space of all mappings from K into E(e) which are continuous in the

sense of the norm||.||e where E(e) denotes the ideal generated by e∈ E+ and

||u||e := inf {λ > 0 : |u| ≤ λe} (u ∈ E(e)).

41



Then, we set

Cr(K,E) :=
⋃{

C(K,E(e)) : e ∈ E+
}

and call the elements of this set r-continuous or uniformly continuous functions on K.

It is clear that Cr(K,E) is contained in l∞(K,E), the space of order bounded functions

from K into E, since in E(e) norm boundedness coincides with order boundedness.

Moreover, Cr(K,E) is a vector sublattice in l∞(K,E).

(2) c0(K,E(e)) the space of all mappings d from K into E(e) such that for allε > 0, the set

{k ∈ K : ||d(k)||e ≥ ε} is finite. Then we set

cr
0(K,E) :=

⋃{
c0(K,E(e)) : e∈ E+

}
.

It is clear that cr0(K,E) is contained in l∞(K,E). Moreover, cr0(K,E) is a vector sublat-

tice in l∞(K,E).

Now we give the following theorem which will be useful in the sequel.

Theorem 3.71 Let K be a compact Hausdorff space. For any f∈ Cr(K,E) andε > 0 there

exist e∈ E+ and finite collectionsϕ1, . . . , ϕn ∈ C(K) and e1, . . . , en ∈ E such that

sup
α∈K

∣∣∣∣∣∣∣
f (α) −

n∑

k=1

ϕk(α)ek

∣∣∣∣∣∣∣
≤ εe.

Proof. By the assumption,f ∈ C(K,E(e)) for somee ∈ E+. According to the Kakutani and

Kreı̆n Theorem,E(e) is linearly isometric and lattice isomorphic toC(Q) for some compact

Hausdorff spaceQ. Therefore one can assume thatf ∈ C(K,C(Q)). However, the spaces

C(K,C(Q)) andC(K×Q) are isomorphic as Banach lattices. It remains to note that,according

to the Stone-Weierstrass Theorem, the subspace of the functions (α, q) 7→
∑n

k=1 ϕk(α)ek(q),

whereϕ1, . . . , ϕn ∈ C(K) ande1, . . . , en ∈ C(Q), is dense inC(K × Q). �

Definition 3.72 Let K be a compact Hausdorff space without isolated points and E be a

relatively uniformly complete vector lattice. We denote byCDr
0(K,E) the set of E-valued

functions on K each of which is the sum of two E-valued functions f and d, where f∈ Cr (K,E)

and d∈ cr
0(K,E).
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For a finite subsetS of K ande ∈ E, χS ⊗ e is in CDr
0(K,E). It is easy to see thatCDr

0(K,E)

is an ordered vector space under the pointwise order.

We now give the following important lemma which will be used in this section.

Lemma 3.73 Let K be a compact space and E be a relatively uniformly complete vector

lattice. If f ∈ Cr(K,E) ∩ cr
0(K,E), then there exists an element e∈ E+ such that the function

f ∈ C(K,E(e)) ∩ c0(K,E(e)).

Proof. Let f ∈ Cr (K,E) ∩ cr
0(K,E). By assumption, there existe1 ande2 ∈ E+ such that

f ∈ C(K,E(e1)) and f ∈ c0(K,E(e2)). Let e= e1 ∨ e2. Then clearly,E(e1) andE(e2) ⊂ E(e).

We will show that f ∈ C(K,E(e)) ∩ c0(K,E(e)). Let f ∈ C(K,E(e1)). As E(e1) ⊂ E(e), we

have

{λ > 0 : | f (x)| ≤ λe1, x ∈ K} ⊂ {β > 0 : | f (x)| ≤ βe, x ∈ K}.

If we take the infimum of these sets, we get

inf {β > 0 : | f (x)| ≤ βe, x ∈ K} ≤ inf {α > 0 : | f (x)| ≤ αe1, x ∈ K},

hence|| f (x)||e ≤ || f (x)||e1 and f ∈ C(K,E(e)).

Let f ∈ c0(K,E(e2)). As E(e2) ⊂ E(e), we have similary|| f (x)||e ≤ || f (x)||e2. Fix ε > 0. It

follows that

{x ∈ K : ε ≤ || f (x)||e} ⊂ {x ∈ K : ε ≤ || f (x)||e2},

hence{x ∈ K : ε ≤ || f (x)||e} is finite. Thereforef ∈ c0(K,E(e) and this completes the proof.

�

Lemma 3.74 Let K be a compact Hausdorff space without isolated points and E be a rela-

tively complete vector lattice. Then, Cr(K,E) ∩ cr
0(K,E) = {0}.

Proof. Suppose the contrary; let 0, f ∈ Cr(K,E) ∩ cr
0(K,E). Let us assumef (x) , 0. By

using the previous lemma, there exists somee ∈ E+ such thatf ∈ C(K,E(e)) ∩ c0(K,E(e)).

Then there exists a neighborhoodV of x such that fory ∈ V we have|| f (y)||e > || f (x)||e/2. But

sincex is not isolated,V is uncountable, which is a contradiction sincef ∈ c0(K,E(e)). �
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It now follows that the decomposition of an element ofCDr
0(K,E)-space into a sum of an

r-continuous function and one with finite support is unique. So CDr
0(K,E) deserves to be

called an Abramovich–Wickstead space.

Lemma 3.75 Let K be a compact Hausdorff space without isolated points and E be a rela-

tively uniformly complete vector lattice. Let p∈ CDr
0(K,E). Then p+ = sup(p, 0) exists in

CDr
0(K,E)

Proof. Let p ∈ CDr
0(K,E). Let r(k) = f +(k) + [− f −(k) + h(k)] ∨ (− f +(k)) for eachk ∈ K

where f andh are continuous and discrete parts ofp respectively. Lets(k) = (− f −(k)+h(k))∨

(− f +(k)). Let ε > 0 be given. Then there exists somee ∈ E+ andn0 ∈ N such that

{k ∈ K : ε ≤ ||s(k)||e} ⊂ {k ∈ K :
1
n0
≤ ||h(k)||e}.

Indeed, if this were not true, then for some sequence (kn) in K, we would haveε ≤ ||s(kn)||e

while ||h(kn)||e < 1
n for all n ∈ N. By compactness ofK, we can find a subnet (kα) of (kn) that

converges to somek0 ∈ K. As ||h(kα)||e→ 0 in E(e), we have that

ε ≤ ||s(kα)||e = ||(− f −(kα) + h(kα)) ∨ (− f +(kα))||e→ || − f −(k0) ∨ (− f +(k0))||e = 0

which is a contradiction. Hencer ∈ CDr
0(K,E) wheneverp ∈ CDr

0(K,E). On the other hand,

r(k) = f +(k) + [− f −(k) + h(k)] ∨ (− f +(k)) = [ f +(k) − f −(k) + h(k)] ∨ 0 = (p(k))+

for eachk ∈ K. Sor is indeedp+. Therefore, continuous part ofr is f +, wheref +(k) = ( f (k))+

by uniqueness of decomposition. �

We summarize what we have from the previous lemma as follows:

Proposition 3.76 Let K be a compact Hausdorff space without isolated points and E be a

relatively uniforly complete vector lattice. Then CDr
0(K,E) is a vector lattice under the point-

wise ordering :0 ≤ p ∈ CDr
0(K,E)⇔ 0 ≤ p(k) in E for all k ∈ K.

Just like real-valued function spaceCD0(K) in [33], suprema and infima are easy to identify

in CDr
0(K,E). We shall writehγ ↑ h if the nethγ is increasing andsup(hγ) = h.

Proposition 3.77 Let K be a compact Hausdorff space without isolated points and E be a

relatively uniformly complete vector lattice. If hγ ↑ h in CDr
0(K,E), then hγ(k) ↑ h(k) in E for

all k ∈ K.
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Proof. Let k0 be an arbitrary but fixed point ofK. Thenh(k0) is an upper bound of{hγ(k0) :

γ ∈ Γ} in E(e) for somee ∈ E+. Let ν be another upper bound for{hγ(k0) : γ ∈ Γ}. If

ν ∧ h(k0) = h(k0), then the proof is obvious. On the other hand, ifν ∧ h(k0) < h(k0), then we

can find some 0< e1 ∈ E(e) such thatν ∧ h(k0) + e1 ≤ h(k0). Thenh − χk0 ⊗ e1 is an upper

bound inCDr
0(K,E) for the family{hγ : γ ∈ Γ}, contradicting the definition ofh. �

From the proposition above, we conclude that order convergence inCDr
0(K,E) is pointwise.

3.7 Abramovich–Wickstead Spaces as Lattice–Normed Spaces

In this section, we show that Abramovich–Wickstead type spaces are actually decomposable

br-complete lattice-normed spaces. For the sake of convenience, we give the following defi-

nitions which were given in [27].

Definition 3.78 For a non-empty set K and a normed space E, we define c0(K,E) as the

space of E-valued functions, f on K such that for eachε > 0 the set{k ∈ K : || f (k)|| > ε}

is finite and l∞w (K,E) as the space of all bounded E-valued functions, d on K such that the

set {k ∈ K : ||d(k)|| , 0} is countable.

Proposition 3.79 Let K be a topological space and E be a normed space. Then C(K,E)

which is the space of E-valued continuous functions on K, c0(K,E) and l∞w (K,E) are decom-

posable lattice-normed spaces with norm lattices C(K), c0(K) and l∞w (K) respectively.

Proof. Let f ∈ C(K,E). Define its vector norm by| f |(k) = || f (k)|| (k ∈ K). Then | f | ∈

C(K), since f : K → E and ||.|| : E → R
+ are continuous. Therefore the norm lattice of

C(K,E) is C(K). |.| is also a decomposable norm. Indeed, assume that| f | = h1 + h2 for some

h1, h2 ∈ C(K)+. Define a vector-valued functionf1 : K → E such thatf1(k) = f (k)
|| f (k)||h1(k)

when f (k) , 0 and f1(k) = 0 when f (k) = 0. Letkα → k in K. Let f (k) , 0, then

f1(kα) =
f (kα)
|| f (kα)||

h1(kα)→
f (k)
|| f (k)||

h1(k) = f1(k).

Let f (k) = 0. Suppose the contrary thatf1(kα) 9 0. Then there exist someε > 0 and a subnet

(kβ) of (kα) such that

ε < || f1(kβ)|| = h1(kβ) ≤ || f (kβ)|| → 0,
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which is a contradiction. Thereforef1 ∈ C(K,E) and f2 := f − f1 ∈ C(K,E). Moreover,

| fk| = hk (k = 1, 2), since

| f1|(k) = || f1(k)|| = ||
f (k)
|| f (k)||

h1(k)|| = |h1(k)| = h1(k)

and

| f2|(k) = | f − f1|(k) = || f (k) − f1(k)|| = || f (k) −
f (k)
|| f (k)||

h1(k)||

=
|| f (k)|| f (k)|| − f (k)h1(k)||

|| f (k)||

=
|| f (k)(h1(k) + h2(k)) − f (k)h1(k)||

|| f (k)||

=
|| f (k)h2(k))||
|| f (k)||

= h2(k).

Let now f ∈ c0(K,E). Define its vector norm| f |(k) = || f (k)||. Then we have| f | ∈ c0(K), since

for eachε > 0, the set

{k ∈ K : | f |(k) > ε} = {k ∈ K : || f (k)|| > ε}

is finite. |.| is also a decomposable norm. Indeed, assume that| f | = h1 + h2 for someh1, h2 ∈

c0(K)+. Define a vector-valued functionf1 : K → E such thatf1(k) = f (k)
|| f (k)||h1(k) when

f (k) , 0 and f1(k) = 0 when f (k) = 0. If f (k) , 0, then the set

{k ∈ K : || f1(k)|| > ε} = {k ∈ K : h1(k) > ε}

is finite ash1 ∈ c0(K)+ so that f1 ∈ c0(K,E). If f (k) = 0, then f1(k) = 0 so that clearly

f1 ∈ c0(K,E). Therefore f1 ∈ c0(K,E) and f2 := f − f1 ∈ c0(K,E). Moreover,| fk| = hk

(k = 1, 2).

The third assertion can be proved similarly. �

The following definition was given in [27].

Definition 3.80 Let K be a compact Hausdorff space without isolated points and E be a

normed space. We define CD0(K,E) as the set of E-valued functions on K such that each of

which is the sum of two E-valued functions f and d, where f∈ C(K,E) and d ∈ c0(K,E).

Similarly, we define CDw(K,E) as the set of all E-valued functions on K each of which is the

sum of two E-valued functions f and d, where f∈ C(K,E) and d∈ l∞w (K,E).
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For a finite subsetS of K ande∈ E, the vector–valued functionχS ⊗ e is in CD0(K,E) where

χS ⊗ e(k) = e if k ∈ S and 0 otherwise. On the other hand, for a countable subsetS of K and

e ∈ E, χS ⊗ e is in CDw(K,E).

Lemma 3.81 Let K be a compact Hausdorff space without isolated points and E be a normed

space. Then C(K,E) ∩ l∞w (K,E) = {0}.

Proof. Suppose the contrary; let 0, f ∈ C(K,E) ∩ l∞w (K,E). Assume thatf (x) , 0. Then

there exists a neighborhoodV of x such that fory ∈ V we have|| f (y)|| > || f (x)||/2. But since

x is not isolated,V is uncountable, which is a contradiction sincef ∈ l∞w (K,E). �

It now follows that the decomposition of an element ofCD0(K,E) or of CDw(K,E) into a

sum of a continuous function and one with finite (or countable) support is unique.

Lemma 3.82 Let K be a compact Hausdorff space without isolated points and E be a normed

space. Then CD0(K,E) and CDw(K,E) are decomposable lattice-normed spaces with norm

lattices CD0(K) and CDw(K) respectively.

Proof. Let f ∈ CD0(K,E). Thereforef = f1 + f2 ( f1 ∈ C(K,E), f2 ∈ c0(K,E)). We define

its vector norm as| f |(k) = | f1 + f2|(k) = || f1(k) + f2(k)|| for eachk ∈ K, since| f1| ∈ C(K) and

| f2| ∈ c0(K) are disjoint (Proposition 3.79) so that| f | = | f1+ f2| = | f1|+ | f2| ∈ C(K)⊕ c0(K) =

CD0(K) (Lemma 2.3).|.| is also a decomposable norm. Indeed, assume that| f | = h1 + h2 for

someh1, h2 ∈ CD0(K)+. Then | f1 + f2| = | f1| + | f2| = h1 + h2 = h′1 + h′′1 + h′2 + h′′2 where

h′1, h
′
2 ∈ C(K) andh′′1 , h

′′
2 ∈ c0(K). Then| f1| = h′1 + h′2 and | f2| = h′′1 + h′′2 . As C(K,E) and

c0(K,E) are decomposable lattice-normed spaces (Proposition 3.79), there existf ′k ∈ C(K,E)

such that| f ′k | = h′k (k = 1, 2) and f1 = f ′1 + f ′2 and there existf ′′k ∈ c0(K,E) such that

| f ′′k | = h′′k (k = 1, 2) and f2 = f ′′1 + f ′′2 . Therefore| f ′k+ f ′′k | = | f
′
k |+ | f

′′
k | = h′k+h′′k = hk (k = 1, 2)

and also we havef = f1 + f2 = f ′1 + f ′2 + f ′′1 + f ′′2 .

The second assertion can be proved similarly. �

The following observation about the norm inCD0(K,E) andCDw(K,E) was given in [27].

For the sake of convenience, we give its proof.
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Lemma 3.83 Let K be a compact Hausdorff space without isolated points and E be a normed

space. Then for each function f∈ C(K,E), we have

|| f || = inf
d∈c0(K,E)

|| f + d|| = inf
d∈l∞w (K,E)

|| f + d||

where|| f + d|| = supk∈K || f (k) + d(k)||.

Proof. As constantly zero function belongs toc0(K,E), we have infd∈c0(K,E) || f + d|| ≤ || f ||.

Suppose the contrary, infd∈c0(K,E) || f + d|| < || f ||. Then for someε > 0 andd ∈ c0(K,E), we

would have|| f + d|| + ε ≤ || f ||. As the mappingk 7→ || f (k)|| is a continuous function fromK

to R, we have|| f + d|| + ε ≤ || f (k0)|| for somek0 ∈ K. But the last inequality is not only true

for k0 ∈ K but also for an open neighborhoodU of k0, i.e. || f (k) + d(k)|| + ε ≤ || f (k)|| for all

k ∈ U. As d ∈ c0(K,E) andU is uncountable, there exists somek1 ∈ U such thatd(k1) = 0.

But then|| f (k1)|| + ε ≤ || f (k1)|| which is a contradiction.

The second equality can be proved similarly. �

Lemma 3.84 Let K be a non-empty set and E be a normed space. Then c0(K,E) and l∞w (K,E)

are closed subspaces of B(K,E) the space of bounded E-valued functions on K.

Proof. Suppose that a sequence of functions (fn) ∈ c0(K,E) converges in supremum norm to

f ∈ B(K,E). Fix ε > 0, then|| fn − f || < ε2 for somen. It follows that

{k ∈ K : || f (k)|| > ε} ⊂ {k ∈ K : || fn(k)|| >
ε

2
},

hence{k ∈ K : || f (k)|| > ε} is finite.

The second assertion can be proved similarly. �

The following theorem which will be used in the sequel was given in [27].

Theorem 3.85 Let K be a compact Hausdorff space without isolated points and E be a Ba-

nach space. Then CD0(K,E) and CDw(K,E) are Banach spaces under the supremum norm.

Proof. Let (hn) be a Cauchy sequence inCD0(K,E). Supposehn = fn+dn where fn ∈ C(K,E)

anddn ∈ c0(K,E). Then from Lemma 3.83,|| fn − fm|| ≤ ||hn − hm|| so that (fn) is a Cauchy
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sequence inC(K,E). Norm completeness ofC(K,E) yields a functionf ∈ C(K,E) such that

fn→ f in supremum norm. The inequality

||dn − dm|| = ||dn + fn − fn + fm− fm− dm|| ≤ ||hn − hm|| + || fn − fm||

implies that (dn) forms a Cauchy sequence inc0(K,E). It follows from Lemma 3.84 that

dn → d ∈ c0(K,E). Thereforehn = fn + dn → f + d ∈ CD0(K,E), henceCD0(K,E) is a

Banach space. The second assertion can be proved similarly as l∞w(K,E) is a closed subspace

of B(K,E). �

Remark 3.86 Let us denote the supremum norm of CD0(K) by ||.||∞. From [33], we know

that CD0(K) is a Banach lattice so that its norm is monotone in the following sense: if

|x| ≤ |y| ⇒ ||x||∞ ≤ ||y||∞ (x, y ∈ CD0(K)).

Since CD0(K,E) is a lattice-normed space with norm lattice CD0(K), then| f | ∈ CD0(K) for

each f∈ CD0(K,E). Then

|| f || = sup
k∈K
|| f (k)|| = sup

k∈K
| f |(k) = || | f | ||∞,

so that||.|| is a mixed norm in CD0(K,E) which is introduced in the second chapter of this

thesis. Hence CD0(K,E) is a Banach space with mixed norm||.|| from the previous theorem.

In view of the inequality| | f | − |g| | ≤ | f − g| and monotonicity of the norm in CD0(K), we

have

|| | f | − |g| ||∞ ≤ || f − g|| ( f , g ∈ CD0(K,E)),

so that the vector norm|.| is a norm continuous function from(CD0(K,E), ||.||) into CD0(K).

The same considerations yield that CDw(K,E) is a Banach space with mixed norm||.|| and

the vector norm|.| of CDw(K,E) is a norm continuous function from(CDw(K,E), ||.||) into

(CDw(K), ||.||∞).

Actually the following lemma is a direct consequence of the Proposition 2.7. Nevertheless we

give its proof for the sake of convenience.

Lemma 3.87 Let K be a compact Hausdorff space without isolated points and E be a Banach

space. Then CD0(K,E) and CDw(K,E) are br-complete lattice-normed spaces with CD0(K)

and CDw(K)-valued norms respectively.
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Proof. Suppose that a sequence (fn) ∈ CD0(K,E) is br-fundamental; that is to say,| fn − fm| ≤

λkg (m, n, k ∈ N and m, n ≥ k) where 0≤ g ∈ CD0(K) and limk→∞ λk = 0. Then

|| fn − fm|| ≤ λk||g||∞ → 0 as k→ ∞

Therefore the limitf := limn→∞ fn exists. By continuity of the vector norm, we have

| f − fn| ≤ λkg (n ≥ k),

therefore,f = br-lim fn.

The second assertion can be proved similarly. �

3.8 Aleksandrov duplicates andCD0(K)–spaces

In this section, we define a concreteE×G F space. We show that this space can be represented

as the space of real-valued continuous functions on the Aleksandrov duplicate. As a corollary,

we obtain the main result of [18].

Throughout this section,Σ denotes a compact Hausdorff topology onK andΓ denotes a lo-

cally compact Hausdorff topology on a non-empty subsetA of K such that the identity map

i : (A, Γ) → (A,Σ) is continuous. These spaces are denoted byKΣ andAΓ respectively. As

usual, the Banach lattice of real-valuedKΣ-continuous functions onK equipped with sup norm

and pointwise ordering is denoted byC(KΣ). B(K) denotes the space of real-valued bounded

functions onK. We denote the set{d ∈ B(K) : d(k) = 0 for all k < A, d is Γ-continuous on

A such that∀ ε > 0, there exists a compact setM in A with |d(k)| < ε for each k ∈ A \ M }

by C0(AΓ) which is equipped with supremum norm and pointwise ordering.

Lemma 3.88 C0(AΓ) is a closed subspace of B(K).

Proof. Suppose that a sequence of functions (fn) in C0(AΓ) converges in supremum norm to

f ∈ B(K). Fix ε > 0, then|| fn − f || < ε/2 for somen. It follows that

{k ∈ A : | f (k)| ≥ ε} ⊂ {k ∈ A : | fn(k)| ≥ ε/2}.

As {k ∈ A : | fn(k)| ≥ ε/2} is compact and the set{k ∈ A : | f (k)| ≥ ε} is closed so that

{k ∈ A : | f (k)| ≥ ε} is compact. �
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It follows thatC0(AΓ) equipped with sup norm and pointwise ordering is a Banach lattice.

C(KΣ) ×B(K) C0(AΓ) is a special example of anE ×G F as seen by the following lemma.

Lemma 3.89 C(KΣ) ×B(K) C0(AΓ) equipped with coordinatewise algebraic operations is a

Banach lattice with respect to the order

0 ≤ ( f , d) ⇔ 0 ≤ f (k) for all k ∈ K and0 ≤ f (a) + d(a) for all a ∈ A

and the norm

||( f , d)||=max{|| f ||, || f + d||} where||.|| is the supremum norm.

Proof. it is enough to show thatC0(AΓ) is an order ideal with respect toC(KΣ). That is to say

| f +d| − | f | ∈ C0(AΓ) for eachf ∈ C(KΣ) andd ∈ C0(AΓ). Clearly,| f +d| − | f | is Γ-continuous

on A. Also for eachε > 0,

{a ∈ A : | f (a) + d(a)| − | f (a)| < ε} ⊂ {a ∈ A : |d(a)| < ε}.

ThenC0(AΓ) is an order ideal with respect toC(KΣ). SoC(KΣ) ×B(K) C0(AΓ) is a Riesz space

by Theorem 3.4. Moreover,

|( f , d)| = (| f |, | f + d| − | f |).

As C(KΣ) andC0(AΓ) are Banach lattices,C(KΣ)×B(K) C0(AΓ) is a Banach lattice by Theorem

3.29. This completes the proof. �

From now on,C(KΣ) ×C0(AΓ) denotesC(KΣ) ×B(K) C0(AΓ). If KΣ has no isolated points and

A = K andΓ is discrete, thenC(KΣ) ∩ C0(KΓ) = {0}, andCD0(KΣ) = C(KΣ) ⊕ C0(KΓ) is a

Banach lattice under pointwise ordering and supremum norm.Moreover, it is easy to see that

CD0(KΣ) andC(KΣ) ×C0(KΓ) are isometrically Riesz isomorphic spaces.

Let K × {0} ∪ A× {1} be topologized by the open baseA = A1 ∪A2, where

A1 = {H × {1} : H is Γ-open in A}

and

A2 = {G× {0, 1} \ M × {1} : G isΣ-open, M isΓ-compact in A}.

WhenΓ is discrete, this space is calledAleksandrov duplicate and denoted byD(K,A), see

[21]. For the sake of convenience, we denoteK × {0} ∪ A × {1} under the topology defined
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above byD(KΣ ⊗ AΓ). In the caseΓ is discrete topology andA = K, we denote this space

by A(K). The spaceA(K) has been constructed by R. Engelking in [24] and it is generalized

for arbitrary locally compact Hausdorff space in [25]. It is known thatA(K) is a compact

Hausdorff space, see [24] and [16]. The spaceA([0, 1]) (where [0, 1] is topologized under

the usual metric) has been constructed by P. S. Aleksandrov and P. S. Uryson in [22] as an

example of a compact Hausdorff space containing a discrete dense subspace.

We now give the following proposition which will be useful inthe proof of main result of this

section.

Proposition 3.90 (i) KΣ and the subspace K× {0} of D(KΣ ⊗ AΓ) are homeomorphic.

(ii) If kα → k in AΓ, then(kα, 1)→ (k, 1) in D(KΣ ⊗ AΓ).

Proof.

(i) It is enough to show that the mapg : KΣ → K × {0} defined byg(k) = (k, 0) is a

homeomorphism. Let (kα) be a net inKΣ such thatkα → k in KΣ. Let assume that

U = G × {0, 1} \ M × {1} is a neighborhood of (k, 0) in D(KΣ ⊗ AΓ) as above. Then

(k, 0) ∈ G × {0}. So k ∈ G. As kα → k, there exists anα0 such thatkα ∈ G for

eachα ≥ α0. Then (kα, 0) ∈ U for eachα ≥ α0. So (kα, 0) → (k, 0) in D(KΣ ⊗ AΓ).

Conversely, assume that (kα, 0)→ (k, 0) in D(KΣ⊗AΓ). LetG be aΣ-open neighborhood

of k. ThenG × {0, 1} \ M × {1} whereM is Γ-compact is a neighborhood of (k, 0) in

D(KΣ ⊗ AΓ). Then there exists anα0 such that (kα, 0) ∈ G × {0, 1} \ M × {1} for each

α ≥ α0. So kα ∈ G for eachα ≥ α0. This implies thatkα → k in KΣ. So g is a

homeomorphism. This completes the proof.

(ii) Let kα → k in AΓ. Let U be a neighborhood of (k, 1) in D(KΣ ⊗ AΓ). Then either

U = H × {1} whereH is Γ-open inA or U = G× {0, 1} \ M × {1} whereG is Σ-open in

K andM is Γ-compact inA.

If U = H × {1}, thenk ∈ H. So there exists anα0 such thatkα ∈ H for eachα ≥ α0.

Then (kα, 1) ∈ H × {1} for eachα ≥ α0.

If U = G×{0, 1}\M×{1}, thenk ∈ G butk < M. As the identity mapi : (A, Γ)→ (A,Σ)

is continuous,kα → k in (A,Σ). So there exists anα0 such thatkα ∈ G for eachα ≥ α0.

Then (kα, 1) ∈ G× {0, 1} \ M × {1} asM is Γ-compact andk < M.
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In both of two cases, (kα, 1)→ (k, 1) in D(KΣ ⊗ AΓ). This completes the proof.

�

Further, we will often identifyKΣ with K × {0}.

Lemma 3.91 D(KΣ⊗AΓ) is compact. In particular K×{0} is a closed subspace of D(KΣ⊗AΓ).

Proof. Consider an open cover{Oi}i∈I of D(KΣ ⊗ AΓ). By replacing each set in the cover by

a union of basic open neighborhoods of all points in the set, we can assume that the cover is

formed by basic open neighborhoods. Hence the cover is of theform

{Hα}α∈I ∪ {Gγ × {0, 1} \ Mγ × {1}}γ∈Ω

whereHα is aΓ-open set inA andGγ is aΣ-open set andMγ is aΓ-compact set inA. It is

easy to see that{Gγ × {0}}γ∈Ω is an open cover ofK × {0}, so that there is a finite subcover

Gγ1 × {0}, ...,Gγn × {0}. But then

Gγ1 × {0, 1} \ Mγ1 × {1} ∪ ... ∪Gγn × {0, 1} \ Mγn × {1}

only misses finitely manyΓ-compact setsMγ1 × {1}, ...,Mγn × {1}.

As Mγ j (j=1,2,...n) is compact inA , then we haveMγ j × {1} ⊂ ∪Hα × {1}. Therefore we have

Mγ j × {1} ⊂ ∪
n
p=1Hpj × {1}. Hence if we add the corresponding open sets from the cover then

we obtain a finite cover of the entireD(KΣ ⊗ AΓ). �

Note thatD(KΣ ⊗ AΓ) is not a Hausdorff space as we can not seperate the points (k, 0) and

(k, 1) for eachk ∈ K.

Definition which is similar to the following was introduced in [34].

Definition 3.92 Let ((kα, rα)) be a net in K× {0} ∪ A × {1}. We say that the net((kα, rα))

converges to(k, r) in K × {0} ∪ A× {1} (in notation(kα, rα) −→ (k, r)) if

f (kα) + rαd(kα) −→ f (k) + rd(k)

for each f ∈ C(KΣ) and d∈ C0(AΓ). D(K � A) denotes K× {0} ∪ A× {1} equipped with this

convergence.
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The proof of the following theorem is a simple consequence ofthe above definition.

Theorem 3.93 Under the convergence in the previous definition D(K � A) is a Hausdorff

topological space (not necessarilyΣ ∩ A ⊂ Γ).

In [34], it was proved thatD(K � K) is a compact Hausdorff space under the convergence

given in the above definition ifKΣ has no isolated point andKΓ is discrete. For certain Banach

lattices, some representations of it have been constructedin [34] with the topology induced

by this.

Mimicking the proof of Theorem 3 in [18], we can identifyC(KΣ)×C0(AΓ) with the space of

real-valued continuous functions onD(KΣ ⊗ AΓ) as follows.

Theorem 3.94 C(D(KΣ⊗AΓ)) and C(KΣ)×C0(AΓ) are isometrically Riesz isomorphic spaces.

Proof. Let us assume thatf : K×{0}∪A×{1} → R is a map. We claim thatf ∈ C(D(KΣ⊗AΓ))

if and only if

(i) the maph : K → R defined byh(k) = f (k, 0) isΣ-continuous, and

(ii) the mapd : A→ R defined byd(k) = f (k, 1)− f (k, 0) belongs to the spaceC0(AΓ).

Indeed, suppose that (i) and (ii ) are satisfied. Then the mapk → f (k, 1) is Γ− continuous

on A. Because it is the sum ofd(k) andh(k). The first one isΓ-continuous onA by (ii), the

second one isΣ− continuous by (i), and so isΓ-continuous onA asΣ ∩ A ⊂ Γ. It follows that

f is continuous at each point ofA× {1}.

Let k ∈ K. Let us show thatf is continuous at (k, 0). Letε > 0 be given. Then

H = {k ∈ A : | f (k, 1)− f (k, 0)| ≥ ε/2}

is Γ- compact by (ii). Further, by (i) there is aΣ-open setG containingk such that we have

| f (k, 0)− f (l, 0)| < ε/2 for eachl ∈ G.

SetU = (G× {0, 1})\H × {1}. Then we have thatU is a neighborhood of (k, 0) in D(KΣ ⊗AΓ).

Further, if (l, i) ∈ U, then:

eitheri = 0, then| f (k, 0)− f (l, 0)| < ε/2 < ε,
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or i = 1, thenl < H and hence

| f (l, 1)− f (k, 0)| ≤ | f (l, 1)− f (l, 0)| + | f (l, 0)− f (k, 0)| < ε.

Conversely, suppose thatf is continuous. Then clearly (i) holds. Further, the mapk→ f (k, 1)

on A is Γ-continuous, and so isd(k). It remains to show that the set

H = {k ∈ A : |d(k)| = | f (k, 1)− f (k, 0)| ≥ ε}

is Γ- compact for eachε > 0.

Suppose that for someε > 0, H is notΓ-compact. Now, by compactness of (K,Σ) there is

k ∈ K such thatclΓ(G∩A)∩H is notΓ-compact for anyΣ- neighbourhoodG of k (otherwiseH

would be covered by finitely manyΓ- compact subsets and hence itself would beΓ-compact).

Let U = (G × {0, 1}) \ M × {1} be a basic open set inD(KΣ ⊗ AΓ) containing (k, 0) such that

for each (l, i) ∈ U we have| f (l, i) − f (k, 0)| < ε/2. AsclΓ(G∩ A) ∩ H is notΓ-compact, there

is l ∈ H ∩ (G ∩ A \ M). Then both (l, i) and (l, 0) belong toU, hence| f (l, 1) − f (l, 0)| < ε.

However,| f (l, 1)− f (l, 0)| ≥ ε (asl ∈ H), a contradiction. This proves the claim.

Define the mapπ : C(KΣ)×C0(AΓ)→ C(D(KΣ⊗AΓ)) by π( f , d)(k, r) = f (k) for eachk ∈ K \A

andπ( f , d)(k, r) = f (k)+d(k) for eachk ∈ A. It is clear thatπ is a bipostive, one-to-one linear

operator. Letf ∈ C(D(KΣ ⊗AΓ) be given. Defineh : K → R by h(k) = f (k, 0) andd : A→ R

by d(k) = f (k, 1) − f (k, 0). Then from the above observation (h, d) ∈ C(KΣ) × C0(AΓ) and

π(h, d) = f . Soπ is also onto. It is also clear that||π( f , d)|| = ||( f , d)||. �

As a corollary to the previous theorem, we obtain the main result of [18].

Corollary 3.95 C(D(KΣ⊗KΓ)) and C(KΣ)×C0(KΓ) are isometrically Riesz isomorphic spaces.

The following theorem is a consequence of previous theorem.

Theorem 3.96 D(KΣ ⊗ AΓ) and D(K � A) are homeomorphic spaces.

Proof. It is enough to show that the identity map,i : D(KΣ⊗AΓ)→ D(K �A) is a homeomor-

phism. Let (kα, rα) → (k, r) in D(KΣ ⊗ AΓ). Then we have thatF(kα, rα) → F(k, r) for each

F ∈ C(D(KΣ ⊗ AΓ)). From the previous theorem,

F(kα, rα) = π( f , d)(kα, rα)→ F(k, r) = π( f , d)(k, r)

55



for eachf ∈ C(KΣ) andd ∈ C0(AΓ).

This implies thatf (kα) + rαd(kα) → f (k) + rd(k). So we get (kα, rα) → (k, r) in D(K � A).

This completes the proof. �

If KΣ has no isolated points,A = K andΓ is discrete, then we get the following result of [34].

Corollary 3.97 If KΣ has no isolated points, then the spaces CD0(K) and C(A(K)) are iso-

metrically Riesz isomorphic spaces.
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CHAPTER 4

LINEAR OPERATORS ON ABRAMOVICH – WICKSTEAD

SPACES

4.1 Linear Operators on Generalized Abramovich – WicksteadSpaces

In this section, we characterize some types of linear operators on generalized Abramovich–

Wickstead spaces such as order continuous, weakly compact,M–weakly compact,L–weakly

compact and absolutely summing operators. Throughout thissection, we assume thatE and

F are Riesz subspaces of a Riesz spaceG such thatF is an order ideal with respectE. Let

T : G → X be a linear operator whereG and X are normed Riesz spaces. Consider the

operatorT̄ : E ×G F → X such thatT̄(e, f ) = Te+ T f = T(e + f ). Then we have the

following.

Proposition 4.1 Let G and X be normed Riesz spaces. If T: G→ X is a linear operator, then

T induces a linear map̄T : E ×G F → X such thatT̄(e, f ) = Te+ T f = T(e+ f ). Moreover,

we have

(1) If T is a positive operator, then̄T is positive.

(2) If T is a Riesz homomorphism, then̄T is a Riesz homomorphism.

(3) If T is a continuous operator, then̄T is a continuous operator with respect to||.||E×GF.

Proof. The linearity of induced map directly follows from the linearity of T.

(1) Suppose thatT is positive and let (0, 0) ≤ (e, f ) in E ×G F. Then 0≤ e and 0≤ e+ f in

G. SoT̄(e, f ) = T(e+ f ) is positive.

(2) Suppose thatT is a Riesz homomorphism. Then

T̄ |(e, f )| = T̄(|e|, |e+ f | − |e|) = T(|e+ f |) = |T(e+ f )| = |T̄(e, f )|,
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henceT̄ is a Riesz homomorphism.

(3) Suppose thatT is a continuous operator. Let||(xn, yn)|| → 0 in E ×G F with respect to

the norm||(x, y)||E×GF = max{||x||, ||x + y||}. Then ||xn|| → 0 and||xn + yn|| → 0 in G. Then

||T̄(xn, yn)|| = ||T(xn + yn)|| → 0 in X, sinceT is a continuous operator. �

Concerning the order continuity of the induced mapT̄, we have the following characterization.

Proposition 4.2 Let G and X be Riesz spaces with X Dedekind complete. If T is an order

continuous operator, then̄T is an order continuous operator.

Proof. Let (eα, fα) ↓ (0, 0) in E ×G F. This implies thateα ↓ 0 andeα + fα ↓ 0 in G. As T is

order continuous,

inf |T̄(eα, fα)| = inf |T(eα + fα)| = 0,

henceT̄ is an order continuous operator. �

Definition 4.3 The Riesz space L is said to have order continuity property ifevery lattice

homomorphism on L is order continuous.

Proposition 4.4 Let G be a Riesz space with order continuity property and E be amajorizing

Riesz subspace of G. Then E×G F has order continuity property for every order ideal F with

respect to E.

Proof. Suppose thatG is a Riesz space which has order continuity property,X is a Dedekind

complete Riesz space andE is a majorizing Riesz subspace ofG. Let T : E ×G F → X

be a lattice homomorphism. Using the lattice embeddingJ : E → E ×G F, then the map

π : E → E ×G F → X is a lattice homomorphism. Then we may extendπ to G such that

the extended map, ¯π, is a lattice homomorphism. AsG has order continuity property, then the

mapT is order continuous by previous proposition. �

Proposition 4.5 Let E be a Riesz subspace of G and X be a Riesz space andπ : E→ X be a

lattice homomorphism. If there is a lattice homomorphism extension ofπ to G, then there is a

lattice homomorphism extension ofπ to E×G F.
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Proof. Let ΦE×GF(π) andΦG(π) denote the set of all possible lattice homomorphism exten-

sions ofπ to E ×G F andG respectively. We will show thatΦE×GF(π) , ∅. Let π ∈ ΦG(π).

Then define a mapπ0 : E ×G F → X by π0(e, f ) = π(e+ f ). Asπ is a lattice homomorphism,

so isπ0. Thereforeπ0 ∈ ΦE×GF(π) , ∅. �

Let G be a Banach lattice andX be a Banach space. By using the linear map

T : G→ X, we may characterize many properties of the induced map

T̄ : E ×G F → X defined byT̄(e, f ) = T(e+ f ) whereE andF are Banach lattices inG such

thatF is an order ideal with respect toE. We consider the norm

||(x, y)|| = max{||x||, ||x+ y||

on E ×G F. The details are in the following proposition.

Proposition 4.6 (1) Assume that T: G→ X is a compact operator. Then̄T : E×G F → X

is a compact operator. If the given operator T factors through a Banach space Z with

continuous factors, then so does the operatorT̄ .

(2) If T : G→ X is a weakly compact operator, then̄T : E ×G F → X is a weakly compact

operator.

(3) Let T : G → X be a continuous operator. If T is an order weakly compact operator,

thenT̄ is an order weakly compact operator.

(4) Let T : G→ X be a continuous operator. If T is an M-weakly compact operator, then

T̄ is an M-weakly compact operator.

(5) Let T : G→ X be a continuous operator. If T is an L-weakly compact operator, thenT̄

is an L-weakly compact operator.

(6) If T : G→ X is a Dunford-Pettis operator, then̄T is a Dunford-Pettis operator.

(7) Let T : G→ X be a continuous operator. If T is a cone absolutely summing operator,

i.e., (||T xn||) ∈ l1 for every order bounded disjoint sequence(xn) ∈ G+, thenT̄ is a cone

absolutely summing operator.

Proof.
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(1) Let (xn, yn) be a norm bounded sequence inE ×G F. Then there existsM > 0 such

that ||(xn, yn)|| ≤ M for eachn ∈ N. This implies that max{||xn||, ||xn + yn||} ≤ M.

This gives us that (xn) and (xn + yn) are norm bounded sequences inG. As T is a

compact operator,T(xn + yn) has a convergent subsequenceT(xnk + ynk) in X. But

T̄(xnk, ynk) = T(xnk + ynk). SoT̄(xn, yn) has a convergent subsequence inX. Therefore

T̄ is a compact operator. Now assume thatT factors through a Banach spaceZ with

continuous factors, i.e., there exist continous operatorsR : G→ Z andS : Z→ X such

thatT = S R. Let R̄ : E×G F → Z be defined as̄R(e, f ) = R(e+ f ). AsR is a continuous

operator, so is̄R. Then we have thatSR̄(e, f ) = S R(e+ f ) = T(e+ f ) = T̄(e, f ).

(2) Let (xn, yn) be a norm bounded sequence inE ×G F. Then there existsM > 0 such that

||(xn, yn)|| ≤ M for eachn ∈ N. This implies that max{||xn||, ||xn + yn||} ≤ M. This gives

us that (xn) and (xn + yn) are norm bounded sequences inG. As T is a weakly compact

operator,T(xn + yn) has a weakly convergent subsequenceT(xnk + ynk) in X. But we

haveT̄(xnk , ynk) = T(xnk + ynk). So T̄(xn, yn) has a weakly convergent subsequence in

X. ThereforeT̄ is a weakly compact operator.

(3) Let T : G → X be a continuous operator. Then the induced mapT̄ : E ×G F → X is

a continuous operator. Let (xn, yn) be an order bounded disjoint sequence ofE ×G F.

Then there exists a positive element (x, y) in E ×G F such that|(xn, yn)| ≤ (x, y). This

implies that|xn| ≤ x and|xn+ yn| ≤ (x+ y). As (xn, yn) is a disjoint sequence inE×G F,

we have that (xn) is an order bounded disjoint sequence inE and (xn + yn) is an order

bounded disjoint sequence inG. As T is an order weakly compact operator, we have

that lim||T̄(xn, yn)|| = lim ||T(xn+yn)|| = 0. ThusT̄ is an order weakly compact operator.

(4) Let T : G → X be a continuous operator. Then̄T : E ×G F → X is a continuous

operator. Assume thatT is an M-weakly compact operator. Let (xn, yn) be a norm

bounded disjoint sequence ofE ×G F. Then (xn + yn) is a norm bounded disjoint

sequence ofG. We have that lim||T̄(xn, yn)|| = lim ||T(xn + yn)|| = 0, sinceT is an

M-weakly compact operator. SōT is anM-weakly compact operator.

(5) Let T : G → X be a continuous operator. Then the induced map defined above,

T̄ : E ×G F → X is a continuous operator. Assume thatT is an L-weakly compact

operator. Let (xn) be a disjoint sequence in the solid hull ofT̄(UE×GF), S ol(T̄(UE×GF),

whereUE×GF denotes the closed unit ball ofE×G F. As T̄(UE×GF) ⊂ T(UG) whereUG
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denotes the closed unit ball ofG, we have thatS ol(T̄(UE×GF) ⊂ S ol(T(UG)). So (xn) is

a disjoint sequence inS ol(T(UG)). Then lim||xn|| = 0, sinceT is anL-weakly compact

operator. SōT is anL-weakly compact operator.

(6) Let T : G→ X be a Dunford-Pettis operator. Let (xn, yn) → 0 be a weakly convergent

sequence inE×G F. As the projectionsP : E×G F → E andQ : E×G F → F are norm

continuous, they are weakly continous, we have thatxn → 0 weakly inE andyn → 0

weakly inF. Thenxn + yn→ 0 weakly inG. Then

lim ||T̄(xn, yn)|| = lim ||T(xn + yn)|| = 0,

sinceT is a Dunford-Pettis operator. SōT is a Dunford-Pettis operator.

(7) LetT : G→ X be a cone absolutely summing operator. Let (xn, yn) be an order bounded

disjoint sequence in (E ×G F)+. Then (xn) and (xn + yn) are order bounded disjoint

sequences inG+. We get that (||T̄(xn, yn)||) ∈ l1, since (||T̄(xn, yn)||) = (||T(xn+ yn)||). So

T̄ is cone absolutely summing.

�

4.2 Linear Operators on A New Type of Abramovich–Wickstead Spaces

Throughout this section, unless stated otherwise,E will denote arelatively uniformly complete

vector latticeand for a vector valued functionf , χk ⊗ f will denote the function which takes

f (k) at k and 0 otherwise. In this section we give two characterizations about the regular and

order continuous regular operators fromCDr
0(K,E) into a Dedekind complete vector lattice

F. The symbolsLr and Lr
n will denote the space of regular and order continuous regular

operators respectively.

We start with the following lemma which will be used in the sequel.

Lemma 4.7 Let K be a compact Hausdorff space and F be a Dedekind complete vector

lattice. Then for every positive linear operator T: Cr(K,E) → F there exists a positive

operator T′ : C(K)→ Lr (E, F) such that

T(ϕ ⊗ e) = T′(ϕ)e f or all ϕ ∈ C(K) and e∈ E.
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The correspondence T→ T′ is linear and one-to-one.

Proof. Let T : Cr(K,E) → F be a positive linear operator. For eachϕ ∈ C(K) ande ∈ E, the

functionϕ ⊗ edefined byϕ ⊗ e(k) = ϕ(k)ebelongs toCr(K,E); we put

T(ϕ ⊗ e) = T′(ϕ)e f or all ϕ ∈ C(K) and e∈ E.

For fixedϕ ∈ C(K), the mappingT′(ϕ) : e 7→ T′(ϕ)eof E into F is evidently linear. Moreover,

if 0 ≤ e ∈ E and 0≤ ϕ ∈ C(K), thenT′(ϕ)e = T(ϕ ⊗ e) ≥ 0, thereforeT′(ϕ) ∈ L+(E, F).

Thus, the mappingT′ : ϕ→ T′(ϕ) of C(K) into Lr (E, F) is linear and positive.

It is easy to verify that the mappingT 7→ T′ is linear. In order to prove that this mapping is

one-to-one, letS : Cr(K,E)→ F be a positive linear operator such that

S(ϕ ⊗ e) = T′(ϕ)e, f or ϕ ∈ C(K) and e∈ E.

Let f ∈ Cr(K,E). Then by Theorem 3.71, there exists a sequence (fn) of the form
∑
ϕi ⊗ ei

(finite sum) withϕi ∈ C(K) andei ∈ E converging relatively uniformly tof . Then we have

T( fn) = S( fn) for everyn. On the other handT andS are relatively uniformly continuous on

Cr(K,E), therefore

T( f ) = lim
n→∞

T( fn) = lim
n→∞

S( fn) = S( f ),

consequentlyT = S. �

Theorem 4.8 Let K be a compact space F be a Dedekind complete vector lattice. Then there

exists a lattice isomorphism T′ ↔ µ between the set of regular operators T′ : C(K) →

Lr (E, F) and the set of countably additive quasiregular Borel measuresµ : K → Lr(E, F)

given by the equality

T′( f ) =
∫

f dµ, f or every f∈ C(K).

Proof. Proof directly follows from Theorem 2.1, sinceLr (E, F) is a Dedekind complete vector

lattice. �

Let F be a Dedekind complete vector lattice andµ ∈ qca(K, Lr (E, F)). Then the integral

Iµ : C(K) → Lr (E, F) can be extended toCr(K,E). We can identify the algebraic tensor

productC(K) ⊗ E with a subspace inCr(K,E), assigning the mappingα 7→
∑n

k=1 ϕk(α)ek
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(α ∈ K) to
∑n

k=1 ϕk ⊗ ek, whereek ∈ E andϕk ∈ C(K). DefineIµ onC(K) ⊗ E by the formula

Iµ


n∑

k=1

ϕk ⊗ ek

 :=
n∑

k=1

∫

K
ϕk dµek.

If f ∈ Cr(K,E), then using Theorem 3.71, there existe∈ E+ and a sequence (fn) ⊂ C(K) ⊗ E

such that

sup
α∈K
| f (α) − fn(α)| ≤

1
n

e.

Put by definition ∫

K
f dµ := Iµ( f ) := o-lim Iµ( fn).

The soundedness of the above definitions easily follows fromthe following lemma.

Lemma 4.9 Let K be a compact Hausdorff space and F be a Dedekind complete vector

lattice. Then for every positive linear operator T′ : C(K) → Lr(E, F), there exists a unique

positive linear operator T: Cr(K,E)→ F such that

T′(ϕ)e= T(ϕ ⊗ e) f or everyϕ ∈ C(K) and e∈ E.

Proof. Let T′ : C(K)→ Lr(E, F) be a positive operator. Define an operator

T̄ : C(K) ⊗ E→ F by setting

T̄


n∑

k=1

ϕk ⊗ ek

 :=
n∑

k=1

T′(ϕk)(ek) (ϕk ∈ C(K) and ek ∈ E).

As T′ is linear and positive,̄T is a linear and positive operator.

Let f ∈ Cr(K,E). From Theorem 3.71, there exists a sequence (fn) ∈ C(K) ⊗ E of the form
∑
ϕi ⊗ ei (finite sum) withϕi ∈ C(K) andei ∈ E converging relatively uniformly tof . Then

( fn) is a relatively uniformly Cauchy sequence. SinceT̄ is linear and positive, we have

|T̄( fn) − T̄( fm)| = |T̄( fn − fm)| ≤ T̄ | fn − fm|.

This shows that (̄T( fn)) is a relatively uniformly Cauchy sequence inF because (fn) con-

verges. AsF is Dedekind complete, then (̄T( fn)) converges relatively uniformly to an element

of F. Let (fn) and (f ′n) be two sequences inC(K) ⊗ E such thatfn→ f and f ′n → f relatively

uniformly. Then from the inequality,

| fn − f ′n| ≤ | fn − f | + | f ′n − f |,
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we get that limn T̄( fn) = limn T̄( f ′n). Hence we define a mapT : Cr(K,E)→ F by setting

T( f ) = lim
n

T̄( fn).

The mappingT defined above coincides with̄T onC(K) ⊗ E since for eachf ∈ Cr(K,E) we

can setfn = f for eachn. This implies thatT′(ϕ)e= T(ϕ ⊗ e) for everyϕ ∈ C(K) ande ∈ E.

The linearity and positivity ofT come from the linearity and positivity ofT′.

For uniqueness, letT′′ be another extension of̄T. We want to prove that ifT(a) = T′′(a)

for every a ∈ C(K) ⊗ E, thenT = T′′. For eachf ∈ Cr (K,E), there exists a sequence

fn ∈ C(K)⊗E by density such thatfn→ f relatively uniformly. We haveT( fn) = T′′( fn) and

so

T( f ) = lim
n

T( fn) = lim
n

T′′( fn) = T′′( f ).

This completes the proof. �

Theorem 4.10 Let K be a compact Hausdorff space and F be a Dedekind complete vector

lattice. Then there exists a lattice isomorphism T↔ T′ between the space of regular opera-

tors T : Cr(K,E)→ F and the space of regular operators T′ : C(K)→ Lr (E, F) given by the

equality

T(ϕ ⊗ e) = T′(ϕ)e, f or ϕ ∈ C(K) and e∈ E.

If T and T′ are in correspondence, then there exists a common countablyadditive quasiregu-

lar Borel measureµ : K → Lr (E, F) such that

T( f ) =
∫

f dµ, f or f ∈ Cr(K,E),

and

T′(ϕ) =
∫
ϕ dµ, f or ϕ ∈ C(K).

Proof. Let T : Cr(K,E) → F be a regular operator. LetT′ : C(K) → Lr (E, F) be the regular

operator corresponding toT (Lemma 4.7) by the equality

T(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

We know that the correspondence is linear and one-to-one. Wehave

T(ϕ ⊗ x) = T′(ϕ)x =
∫
ϕ dµ x
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for everyx ∈ E, therefore

T(ϕ ⊗ x) =
∫
ϕ ⊗ x dµ, f or everyϕ ∈ C(K).

Conversely, letT′ : C(K) → Lr (E, F) be a regular operator, and letµ : K → Lr(E, F) be the

countably additive quasiregular measure corresponding toT′. If we put

T( f ) =
∫

f dµ, f ∈ Cr(K,E),

thenT : Cr (K,E)→ F is a regular operator and we have

T(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

�

Now we give the following definition which will be useful in the sequel.

Definition 4.11 Let K be a non-empty set and F be a Dedekind complete vector lattice. Then

we set

(1) c0(N,E) = {(en) ∈ E : ∃e ∈ E+ such that en ∈ E(e) ∀n and||en||e→ 0},

(2) l1[K, Lr (E, F)] the space of operatorsα : K → Lr(E, F) such that the infinite sum
∑∞

n=1 |α(kn)|(|en|) ∈ F for all (kn) ∈ K and(en) ∈ c0(N,E).

As usual,
∑∞

n=1 |α(kn)|(|en|) is the supremum of the sums
∑m

n=1 |α(kn)|(|en|). l1[K, Lr(E, F)] is a

vector lattice under the pointwise operations.

Theorem 4.12 Let K and F be as above. Then Lr(cr
0(K,E), F) is lattice isomorphic to

l1[K, Lr(E, F)].

Proof. Let φ : Lr(cr
0(K,E), F) → l1[K, Lr (E, F)] be defined byφ(G)(k)(e) = G(χk ⊗ e) for

eachG ∈ Lr(cr
0(K,E), F), k ∈ K ande ∈ E. It is easy to verify thatφ is a linear mapping.

Thenφ(G)(k) is an order bounded operator fromE into F asφ(G+)(k) andφ(G−)(k) are order

bounded for eachG. Thusφ(G) is a map fromK into Lr (E, F).

Let us recall thatφ(G) should also satisfy
∑∞

n=1 |φ(G)(kn)|(|en|) ∈ F for all sequences (kn) ∈ K

and (en) ∈ c0(N,E).
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Let G ∈ Lr (cr
0(K,E), F). Then we have

m∑

n=1

|φ(G)(kn)|(|en|) ≤
m∑

n=1

|G|(χkn ⊗ |en|)

= |G|


m∑

n=1

χkn ⊗ |en|

 ≤ |G|

∞∑

n=1

χkn ⊗ |en|

 ∈ F,

therefore
∞∑

n=1

|φ(G)(kn)|(|en|) = sup
m

m∑

n=1

|G|(χkn ⊗ |en|) ∈ F.

Thus the mapφ(G) we have defined belongs tol1[K, Lr(E, F)].

We now show thatφ is bipositive. Clearlyφ(G)(k)(e) ≥ 0 whenevere ≥ 0 andG ≥ 0, i.e.

φ(G)(k) is positive for allG ≥ 0. Suppose thatφ(G) ≥ 0 for someG ∈ Lr (cr
0(K,E), F), and

take 0≤ f ∈ cr
0(K,E). As

∑
k∈S χk⊗ f ↑S f in cr

0(K,E), we have
∑

k∈S G(χk⊗ f )→ G( f ). By

definitionG(χk ⊗ f ) = φ(G)(k)( f (k)) ≥ 0 and thusG( f ) ≥ 0 for each 0≤ f ∈ cr
0(K,E), i.e.

G ≥ 0.

Let nowφ(G) = 0 for someG ∈ Lr (cr
0(K,E), F). ThenG(χk ⊗ f ) = 0 for eachk ∈ K and

0 ≤ f ∈ cr
0(K,E). As

∑
k∈S χk ⊗ f ↑S f in cr

0(K,E), we have 0=
∑

k∈S G(χk ⊗ f ) → G( f ) or

G( f ) = 0. The fact thatcr
0(K,E) is vector lattice leads toG = 0.

To show thatφ is surjective, let 0≤ α ∈ l1[K, Lr (E, F)]. Let f ∈ cr
0(K,E). Then there exists

an at most countable subset (kn) of K such thatf (k) = 0 for all k , kn and there exists some

e ∈ E+ such thatf (kn) ∈ E(e) for eachn and|| f (kn)||e→ 0. Hence we can define

G( f ) =
∑

n∈N

α(kn)( f (kn)),

which certainly belongs toF as f (kn) ∈ c0(N,E). We now verify thatφ(G) = α. Let 0≤ e∈ E,

then

φ(G)(k0)(e) = G(χk0 ⊗ e) =
∑

n∈N

α(kn)(χk0 ⊗ e(kn)) = α(k0)(e).

Sincee ∈ E is arbitrary, we conclude thatφ(G)(k0) = α(k0) and k0 is arbitrary, we have

φ(G) = α. Since l1[K, Lr(E, F)] is a vector lattice, the proof of surjectivity ofφ is now

complete. �

Now we are in a position to give one of the main result of this section as follows:

Theorem 4.13 Let K be a compact Hausdorff space without isolated points and F be a

Dedekind complete vector lattice. Then we have that Lr (CDr
0(K,E), F) is lattice isomorphic

66



to qca(K, Lr (E, F) ⊕ l1[K, Lr (E, F)] with the dual order on this direct sum defined by

< µ, α > ≥ 0⇔ µ ≥ 0 andα ≥ 0 andµ({k}) ≥ α(k)

for all k ∈ K, which if we identifyα with a discrete measure on K, is precisely requiring that

µ ≥ α ≥ 0.

Proof. Let T ∈ Lr (CDr
0(K,E), F). Then certainlyT splits into two regular operatorsT1 and

T2 whereT1 : Cr(K,E) → F andT2 : cr
0(K,E) → F. Then by Theorem 4.10 there exists

an elementµ ∈ qca(K, Lr (E, F) such thatT1 can be identified withµ . On the other hand, by

Theorem 4.12 there exists aα ∈ l1[K, Lr (E, F)] such thatT2 can be identified withα. We thus

have a map fromLr (CDr
0(K,E), F) into qca(K, Lr (E, F) ⊕ l1[K, Lr (E, F)].

Now suppose thatµ ∈ qca(K, Lr (E, F)) andα ∈ l1[K, Lr(E, F)]. We can certainly define an

operatorT ∈ Lr (CDr
0(K,E), F) by

T( f ) =
∫

f1 dµ +
∑

k∈K

α(k)( f2(k)),

for f = f1 + f2 ∈ Cr (K,E) ⊕ cr
0(K,E). The map fromqca(K, Lr (E, F)) ⊕ l1[K, Lr (E, F)]

into Lr(CDr
0(K,E), F) is easily seen to be lattice isomorphism by Theorem 4.10 andTheorem

4.12. �

Now we give the following definition which will be used in our final result.

Definition 4.14 Let K be a compact space and F be a Dedekind complete vector lattice. Then

we set l1(K, Lr
n(E, F)) the set of all mapsβ = β(k) from K into Lr

n(E, F) satisfying

(1) sup|| f ||e≤1
∑

k |β(k)|(|( f (k)|) ∈ F for each arbitrary but fixed e∈ E+ and f ∈ CDr
0(K,E)

where|| f ||e = supk∈K || f (k)||e.

(2)
∑

k |β(k)|( fα(k)) ↓α 0 in F whenever fα ↓ 0 in CDr
0(K,E).

As usual,
∑

k |β(k)|(|( f (k)|) is the supremum of the sums
∑

S |β(k)|(| f (k)|) where S is a finite

subset of K.

l1(K, Lr
n(E, F)) is a vector lattice under pointwise operations.

We close this section with a result about order continuous operators onCDr
0(K,E)-spaces.
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Theorem 4.15 Let K be a compact Hausdorff space without isolated points and F be a

Dedekind complete vector lattice. Then Lr
n(CDr

0(K,E), F) is isomorphic to l1(K, Lr
n(E, F)).

Proof. Defineφ : Lr
n(CDr

0(K,E), F) → l1(K, Lr
n(E, F)) via φ(G)(k)(e) = G(χk ⊗ e) for each

G ∈ Lr
n(CDr

0(K,E), F), k ∈ K ande ∈ E. It is easy to see thatφ is linear. Thenφ(G)(k)

is order bounded, sinceφ(G+)(k) and φ(G−)(k) are order boundedF-valued operators for

eachG on CDr
0(K,E). If eα ↓ 0 in E, thenχk ⊗ eα ↓ 0 in CDr

0(K,E) for eachk ∈ K.

So φ(G)(k)(eα) = G(χk ⊗ eα) is order convergent to 0 so thatφ(G)(k) ∈ Lr
n(E, F) for each

G ∈ Lr
n(CDr

0(K,E), F). Thusφ(G) is a map fromK into Lr
n(E, F).

Now we will show thatφ(G) is an element ofl1(K, Lr
n(E, F)). Let S be a finite subset ofK

andG ∈ Lr
n(CDr

0(K,E), F). Then

∑

k∈S

|φ(G)(k)|(| f (k)|) =
∑

k∈S

|φ(G+ −G−)(k)|(| f (k)|)

≤
∑

k∈S

φ(G+)(k)(| f (k)|) +
∑

k∈S

φ(G−)(k)(| f (k)|)

=
∑

k∈S

G+(χk ⊗ | f |) +
∑

k∈S

G−(χk ⊗ | f |)

= G+

∑

k∈S

χk ⊗ | f |

 +G−

∑

k∈S

χk ⊗ | f |



for eachf ∈ CDr
0(K,E). Hence we get

∑

k∈S

|φ(G)(k)|(| f (k)|) ≤ G+(| f |) +G−(| f |) = |G|(| f |)

as
∑

k∈S χk⊗| f | ↑S | f |, G+ andG− are order continuous. Letebe an arbitrary but fixed element

of E+. Then

sup
|| f ||e≤1

∑

k

|φ(G)(k)|(| f (k)|) ≤ sup
|| f ||e≤1

|G|(| f |) ≤ |G|(e) ∈ F,

as| f | ≤ || f ||ee.

So far we have shown thatφ(G) satisfies the first condition of Definition 4.14. We also have

to show that
∑

k

|φ(G)(k)|( fα(k)) ↓α 0 in F

for each fα ∈ CDr
0(K,E) such thatfα ↓ 0. It is enough to show this for positive elements in

Lr
n(CDr

0(K,E), F). Let 0≤ G ∈ Lr
n(CDr

0(K,E), F) and fα ↓ 0 in CDr
0(K,E). For a fixedα, we
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have
∑

k∈S χk ⊗ fα ↑S fα. As G is order continuous and positive,

G


∑

k∈S

χk ⊗ fα

 =
∑

k∈S

G(χk ⊗ fα) ↑ G( fα).

Thus
∑

k∈K

|φ(G)(k)|( fα(k)) =
∑

k∈K

φ(G)(k)( fα(k)) =
∑

k∈K

G(χk ⊗ fα) = G( fα) ↓ 0.

Hence the mapφ(G) we have defined belongs tol1(K, Lr
n(E, F)).

We now show that it is bipositive. Certainlyφ(G)(k)(e) ≥ 0 whenevere ≥ 0 andG ≥ 0, i.e.,

φ(G)(k) is positive for allG ≥ 0. Now assume thatφ(G) ≥ 0 for someG ∈ Lr
n(CDr

0(K,E), F)

and take 0≤ f ∈ CDr
0(K,E). We have

∑
k∈S G(χk ⊗ f ) → G( f ), since

∑
k∈S χk ⊗ f ↑S f in

CDr
0(K,E). As G(χk ⊗ f ) = φ(G)(k)( f ) ≥ 0, G( f ) ≥ 0 for each 0≤ f ∈ CDr

0(K,E), i.e.,

G ≥ 0. We now show thatφ is one-to-one. Letφ(G) = 0 for someG ∈ Lr
n(CDr

0(K,E), F).

ThenG(χk ⊗ f ) = 0 for eachk ∈ K and 0≤ f ∈ CDr
0(K,E). As G is order continuous and

∑
k∈S χk ⊗ f ↑S f , this gives that 0=

∑
k∈S G(χk ⊗ f )→ G( f ) or G( f ) = 0. As CDr

0(K,E) is a

vector lattice, we getG = 0.

To show thatφ is surjective, take an arbitrary 0≤ α ∈ l1(K, Lr
n(E, F)) and let us define

G : CDr
0(K,E)+ → F by G( f ) =

∑
k∈K α(k)( f (k)). G is additive onCDr

0(K,E) and so

G( f ) = G( f +) −G( f −) extendsG to CDr
0(K,E). We now verify thatφ(G) = α. If 0 ≤ e ∈ E,

then

φ(G)(k0)(e) = G(χk0 ⊗ e) =
∑

k∈K

α(k)(χk0 ⊗ e)(k) = α(k0)e.

Sincee ∈ E is arbitrary, we conclude thatφ(G)(k0) = α(k0) and k0 is arbitrary, we have

φ(G) = α. �

4.3 Linear Dominated Operators on Abramovich–Wickstead Spaces

4.3.1 Dominated Operators onC(K,E)–spaces

Let K be a locally compact Hausdorff space andE be a Banach space. Recall that the sup-

port of a function f : K → E is the closure of the set{k : f (k) , 0}. The space of the

continuous functions with compact support is denoted byK(K,E). If K is compact, then we

haveK(K,E) = C(K,E), whereC(K,E) is the space of continuous functionsf : K → E. N.

Dinculeanu [19] has given some integral representations ofdominated operators onK(K,E).
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In this section, We adapt some results of N. Dinculeanu aboutthe integral representations

of linear operators onK(K,E) to the integral representations of linear dominated operators

on C(K,E). The proofs of the theorems follow directly the lines in theDinculeanu’s proofs.

Nevertheless, we give their proofs for the sake of convenience.

The regular Borel measures with finite variation will play animportant role in this section.

We begin with the definition of variation of a vector measure and give some properties of it.

Definition 4.16 Let B be aσ-algebra of subsets of a set X and E= (E, ||.||) be a Banach

space. Then

(1) the function m: B→ E is called avector measure(or E-valued measure) if m(∅) = 0

and m
(⋃

k Ak
)
=

∑
k m(Ak) for any sequence(Ak) of pairwise disjoint sets fromB,

(2) the function|m| : B→ R
+ ∪ {+∞} defined by the following formula :

|m|(A) = sup{
j∑

n=1

||m(An)|| : An ∈ B,

j⋃

n=1

An = A, Ak ∩ Ap = ∅ ∀k , p}

is called thevariation of m. |m| is additive and monotone. It is also a measure. m is

called a vector measure offinite variation if |m| is finite, i.e,|m|(X) < +∞. It is easy to

see that m isσ-finite or finite E-valued measure if and only if|m| is σ-finite or finite.

We now give the following well-known fact which will be useful in the sequel.

Theorem 4.17 Let K be a compact Hausdorff space and E be a Banach space. Then the

space of the functions
∑
ϕi ⊗ xi (finite sum) withϕi ∈ C+(K) and xi ∈ E is (uniformly) dense

in C(K,E).

Proof. Let f ∈ C(K,E) and letε > 0. For everyk ∈ K, there exists an open neighborhoodV

of k such that ifk′ ∈ V, then|| f (k) − f (k′)|| < ε2. Then

|| f (k′) − f (k′′)|| < ε, i f k′, k′′ ∈ V.

SinceK is compact, we can find a finite family (Vi) of open sets coveringK, such that for

eachi we have

|| f (k′) − f (k′′)|| < ε, i f k′, k′′ ∈ Vi .
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Let (ϕi) be a continuous partition of the unity subordinated to the family (Vi), i.e. 0≤ ϕi ≤ 1,

the support ofϕi is contained inVi and
∑
ϕi(k) = 1 for k ∈ K. For eachi take a pointki ∈ Vi

and putxi = f (ki). Then for eachk ∈ K,

||
∑
ϕi(k)xi − f (k)|| ≤

∑
ϕi(k)|| f (ki ) − f (k)|| ≤ ε

so that||
∑
ϕi ⊗ xi − f || ≤ ε. �

By using the previous theorem, we have the following result.

Theorem 4.18 Let K be a compact space, E and F be Banach spaces. Then for every linear

and continuous operator T: C(K,E) → F, there exists a linear and continuous operator

T′ : C(K)→ L(E, F) such that

T(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

The correspondence T7→ T′ is linear and one-to-one.

Proof. For everyϕ ∈ C(K) andx ∈ E, we haveϕ ⊗ x ∈ C(K,E); we put

T(ϕ ⊗ x) = T′(ϕ)x.

For fixedϕ ∈ C(K), the mappingT′(ϕ) : x 7→ T′(ϕ)x of E into F is linear and continuous:

||T′(ϕ)x||F = ||T(ϕ ⊗ x)||F ≤ ||T || ||ϕ|| ||x||,

therefore||T′(ϕ)||L(E,F) ≤ ||T || ||ϕ|| andT′(ϕ) ∈ L(E, F).

The mappingT′ : ϕ→ T′(ϕ) of C(K) into L(E, F) is linear.

It is easy to verify that the mappingT 7→ T′ is linear. In order to prove that this mapping is

one-to-one, letS : C(K,E)→ F be a linear and continuous operator such that

S(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

Let f ∈ C(K,E). Then by Theorem 4.17, there exists a sequence (fn) of the form
∑
ϕi ⊗ xi

(finite sum) withϕi ∈ C(K) andxi ∈ E converging uniformly tof . ThenT( fn) = S( fn) for

everyn. On the other handT andS are continuous onC(K,E), therefore

T( f ) = lim
n→∞

T( fn) = lim
n→∞

S( fn) = S( f ),

consequentlyT = S. �
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Remark 4.19 There are linear and continuous mappings T′ : C(K) → L(E, F) which do

not correspond to any linear mapping T: C(K,E) → F. However, if T′ is dominated (see

Definition 4.20), in particular F= C and T is continuous, then T′ can be obtained from a

dominated linear mapping T: C(K,E)→ F (Theorem 4.25).

We now give the following definition which is given for the linear operators

T : C(K,E)→ F by N. Dinculeanu [19].

Definition 4.20 A linear mapping T: C(K,E) → F is said to be dominated (or majored) if

there exists a regular positive Borel measureν such that

||T( f )||F ≤
∫
|| f (k)||E dν(k), f or every f∈ C(K,E).

We say that T is dominated byν, or that ν dominates T. If T is dominated, then there exists

a least positive regular measure dominating T. We shall denote the least regular measure

dominating T byµT.

Proposition 4.21 Let K be a compact Hausdorff space, E and F be two Banach spaces. If

the linear operator T: C(K,E) → F is dominated in the sense of Definition 2.8, then there

exists a regular Borel measure m such that

||T( f )||F ≤
∫
|| f (k)||E dm(k) ( f ∈ C(K,E)).

Proof. From Definition 2.8, the dominant ofT is a positive linear functionalS : C(K) → R

such that

||T( f )||F ≤ S(| f |) ( f ∈ C(K,E)).

By Riesz Representation Theorem, there exists a bounded regular Borel measurem such that

S(| f |) =
∫
| f |(k) dm(k) =

∫
|| f (k)||E dm(k).

�

It follows from the previous proposition that Definition 2.8and Definition 4.20 coincide for

the dominated linear operatorsT : C(K,E)→ F.

Let µ be a positive measure defined on aσ-algebraB of subsets ofK and E be a Banach

space. Letp be a real number such that 0< p < ∞.
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We denote byLp
E(K, µ) the set of allµ-measurable functionsf : K → E such that| f |p is

µ-integrable. For every functionf ∈ L
p
E(K, µ), we put

Np( f , µ) =

(∫
|| f (k)||pE dµ(k)

) 1
p

.

If a function f belongs toLp
E(K, µ) we say thatf has thep-th power ofµ-integrable. We

shall write alsoLp
E(µ) or L

p
E instead ofLp

E(K, µ), andNp( f ) or || f ||p instead ofNp( f , µ). If

E = R we shall writeLp(µ) instead ofLp
R

(µ). The setLp
E(µ) is a vector space. In casep = 1,

the spaceL1
E defined here equals to the space of theµ-integrable functions that is to sayf is

µ-measurable and|| f (k)||E ∈ L
1(µ).

Proposition 4.22 Let K be a compact Hausdorff space, E be a Banach space andµ be a

positive regular Borel measure. Then the space C(K,E) of continuous functions f: K → E

is dense inLp
E(µ) for 1 ≤ p < ∞.

Proof. See [Proposition 33 in section 5 of [19]]. �

We now give the following fact which will be used in obtainingone of the main results in this

section.

Proposition 4.23 Let K be a compact space, E and F be two Banach spaces, m and n be two

regular Borel measures with finite variations, with values in L(E, F). Then we have m= n if

and only if ∫
f (k) dm(k) =

∫
f (k) dn(k), f or every f∈ C(K,E).

Proof. If m = n, then evidently
∫

f (k) dm(k) =
∫

f (k) dn(k), for every f ∈ C(K,E). Con-

versely, suppose that
∫

f (k) dm(k) =
∫

f (k) dn(k), f or every f∈ C(K,E).

We have|m| ≤ |m| + |n| and|n| ≤ |m| + |n|, therefore

L
1
E(|m| + |n|) ⊂ L

1
E(|m|) ∩ L

1
E(|n|).

We have also
∥∥∥∥∥
∫

f (k) dm(k)
∥∥∥∥∥

F
≤

∫
|| f (k)||E d|m|(k) ≤

∫
|| f (k)||E d(|m| + |n|)(k),
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∥∥∥∥∥
∫

f (k) dn(k)
∥∥∥∥∥

F
≤

∫
|| f (k)||E d|n|(k) ≤

∫
|| f (k)||E d(|m| + |n|)(k),

therefore the linear mappingsf →
∫

f dm and f →
∫

f dn of L
1
E(|m| + |n|) into F are

continuous. On the other hand,|m| and |n| are regular sincem andn are regular (Proposition

22 of section 15 in [19]), therefore|m| + |n| is regular, henceC(K,E) is dense inL1
E(|m| + |n|)

(Proposition 4.22). Since these two mappings coincide on the dense subspaceC(K,E), they

coincide on the whole spaceL1
E(|m| + |n|). In particular, ifA ∈ B and x ∈ E, thenχAx ∈

L
1
E(|m| + |n|), therefore ∫

χA(k)x dm(k) =
∫
χA(k)x dn(k),

hence

m(A)x = n(A)x.

It follows thatm(A) = n(A) for everyA ∈ B, thereforem= n. �

Theorem 4.24 Let K be a compact space, E and F be Banach spaces. Then, there exists an

isomorphism T↔ m between the set of linear dominated operators T: C(K,E)→ F and the

set of regular Borel measures m: B→ L(E, F) with finite variation|m|, given by the equality

T( f ) =
∫

f (k) dm(k), f or every f∈ C(K,E).

Moreover, if T and m are in correspondence, we haveµT = |m|.

Proof. Let first m : B → L(E, F) be a regular Borel measure with finite variation|m| and

consider the spaceME(B) of the totallyB-measurable functions such thatf : K → E. Then

C(K,E) ⊂ME(B) so that

T( f ) =
∫

f (k) dm(k), f or f ∈ C(K,E).

From this equality, we deduce that

||T( f )||F ≤
∫
|| f (k)||E d|m|(k), f or f ∈ C(K,E),

thereforeT is dominated by the regular measure|m|. The correspondencem↔ T is linear:

from Proposition 4.23, we deduce that this correspondence is one-to-one. It remains to prove

that every linear dominated operatorT corresponds to some countably additive regular Borel

measurem with finite variation|m| andµT = |m|. Let T : C(K,E)→ F be a linear dominated

operator. Letν be a positive regular Borel measure such that

||T( f )||F ≤
∫
|| f (k)||E dν(k), f or f ∈ C(K,E).
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From this inequality we deduce thatT is continuous onC(K,E) for the topology ofL1
E(ν).

Since ν is regular andC(K,E) is dense inL1
E(ν), the linear operatorT can be extended

uniquely to a continuous linear mapping ofL
1
E(ν) into F denoted also byT, and we still

have

||T( f )||F ≤
∫
|| f (k)|| dν(k), f or f ∈ L

1
E(ν).

For every setA ∈ B, and for everyx ∈ E we haveχAx ∈ L
1
E(ν). Put

m(A)x = T(χAx).

The mappingm(A) : x 7→ m(A)x of E into F is linear and continuous:

||m(A)x||F = ||T(χAx)||F ≤
∫
||χA(k)x||E dν(k) = ||x||Eν(A),

thereforem(A) ∈ L(E, F) and

||m(A)||L(E,F) ≤ ν(A).

It is easy to verify that the set functionm : B→ L(E, F) is additive. From the last inequality

we deduce thatm is regular, countably additive and with finite variation|m| and |m| ≤ ν. We

now show that

T( f ) =
∫

f (k) dm(k), f ∈ L
1
E(ν).

For every step functionf =
∑
χAi xi, we have

T( f ) = T(
∑
χAi xi) =

∑
T(χAi xi) =

∑
m(Ai)xi :=

∫
f (k) dm(k).

Since|m| ≤ ν, we haveL1
E(ν) ⊂ L

1
E(|m|), therefore if f ∈ L

1
E(ν) we have

∥∥∥∥∥
∫

f (k) dm(k)
∥∥∥∥∥

F
≤

∫
|| f (k)||E d|m|(k) ≤

∫
|| f (k)||E dν(k),

whence the mappingf →
∫

f dmof L
1
E(ν) into F is continuous. Since the two linear map-

pings
∫

f dmandT of L
1
E(ν) into F are continuous and coincide on the set of step functions

which is dense, we deduce that they coincide on the whole space:

T( f ) =
∫

f (k) dm(k), f ∈ L
1
E(ν).

This equality is valid, in particular, forf ∈ C(K,E). Sinceν is an arbitrary regular Borel mea-

sure dominatingT and|m| ≤ ν, we deduce that|m| is the smallest regular measure dominating

T, i.e. µT = |m|. �
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Theorem 4.25 There exists an isomorphism T↔ T′ between the space of linear dominated

operators T : C(K,E) → F and the space of linear dominated operators T′ : C(K) →

L(E, F) given by the equality

T(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

If T and T′ are in correspondence, then there exists a regular measure m: B→ L(E, F) with

finite variation|m| such that

T( f ) =
∫

f (k) dm(k), f or f ∈ C(K,E),

and

T′(ϕ) =
∫
ϕ(k) dm(k), f or ϕ ∈ C(K),

and we have

µT = µT′ = |m|.

Proof. Let T : C(K,E) → F be a linear dominated operator andm : B → L(E, F) be the

regular measure with finite variation|m| such that

T( f ) =
∫

f (k) dm, f or every f∈ C(K,E).

Let T′ : C(K)→ L(E, F) be the linear mapping corresponding toT by the equality (Theorem

4.18)

T(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

We know that the correspondence is linear and one-to-one. Hence

T′(ϕ)x = T(ϕ ⊗ x) =
∫

(ϕ ⊗ x)(k) dm=

(∫
ϕ(k) dm(k)

)
x

for everyx ∈ E, therefore

T′(ϕ) =
∫
ϕ(k) dm(k), f or everyϕ ∈ C(K).

From this equality we deduce thatT′ is dominated and that

µT = µT′ = |m|.

Conversely, letT′ : C(K) → X = L(E, F) be a linear dominated mapping, and letm : B →

L(R,X) = X be the regular measure corresponding toT′ by Theorem 4.24. If we put

T( f ) =
∫

f (k) dm(k), f ∈ C(K,E),
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thenT : C(K,E)→ F is a dominated linear mapping and we have

T(ϕ ⊗ x) = T′(ϕ)x, f or ϕ ∈ C(K) and x∈ E.

�

4.3.2 Dominated Operators onc0(K,E)–spaces

In this section we give some characterizations about dominated operators onc0(K,E)-spaces.

This section will play an important role in characterizing dominated operators onCD0(K,E)

spaces. Throughout this section, the wordisometrymeans vector norm preserving linear

bijective operator. We now give the following fact which will be useful in the sequel.

Lemma 4.26 Let K be a non-empty set and E be a Banach space. Then the space of the

functions
∑
ϕi ⊗ xi (finite sum) withϕi ∈ c0(K) and xi ∈ E is (uniformly) dense in c0(K,E).

Proof. Let f ∈ c0(K,E) andε > 0. Then there exists an at most countable subset (kn) ∈ K

such thatf (k) = 0 for all k , kn and there exists somen0 ∈ N such that|| f (kn)|| < ε for each

n ≥ n0. Let fm(kn) = f (kn) for each 1≤ n ≤ mand 0 otherwise. Then for eachk ∈ K,

|| fm(kn) − f (k)|| = || f (kn+1)|| < ε f or each n≥ N = n0 − 1.

This completes the proof sincefm(kn) =
∑m

n=1 χkn ⊗ f (kn). �

Definition 4.27 Let K be a non-empty set, E and F be two Banach spaces. We define

l1(K, L(E, F)) as the set of mappingsϕ : K → L(E, F) such that

∑

k∈K

||ϕ(k)( f (k))||F < ∞, f or all f ∈ c0(K,E).

As usual,
∑

k∈K ||ϕ(k)( f (k))||F is the supremum of all the sums
∑

S ||ϕ(k)( f (k))||F whereS is a finite subset ofK .

l1(K, L(E, F)) is a lattice-normed space with norm latticel1(K) (the set of real-valued abso-

lutely summable functions onK).

Now we give the following result which will be used in the nextsection.
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Theorem 4.28 Let K be a non-empty set and E and F be two Banach spaces. Then wehave

that M(c0(K,E), F) is isometrically isomorphic to l1(K, L(E, F)).

Proof. Let φ : M(c0(K,E), F)→ l1(K, L(E, F)) be defined byφ(G)(k)(e) = G(χk⊗e) for each

G ∈ M(c0(K,E), F), k ∈ K ande∈ E. Thenφ(G)(k) is clearly a linear operator fromE into F.

Sincec0(K,E) is decomposable (Proposition 3.79) andR (the norm lattice ofF) is Dedekind

complete, the least dominant|G| exists (Theorem 2.10) and is a linear continuous functional

on c0(K). We can identify|G| with a functionα ∈ l1(K) = l1(K,R) in the sense that

|G|(g) =
∑

k∈K

α(k)g(k) (g ∈ c0(K)).

Taking this observation into account we deduce that

||φ(G)(k)(e)||F = ||G(χk ⊗ e||F ≤ |G|(|χk ⊗ e|) =
∑

k∈K

|α(k)| ||e||E,

therefore||φ(G)(k)||L(E,F) ≤
∑

k∈K |α(k)| < ∞ andφ(G)(k) ∈ L(E, F). Thusφ(G) is a map from

K into L(E, F).

We now show that
∑

k∈K ||φ(G)(k)( f (k))||F < ∞ for eachf ∈ c0(K,E).

For any finite subsetS of K, we have

∑

k∈S

||φ(G)(k)( f (k))||F =
∑

k∈S

||G(χk ⊗ f )||F

≤
∑

k∈S

|G|(|χk ⊗ f |) = |G|


∑

k∈S

|| f (k)||Eχk



≤ |G|(| f |),

therefore
∑

k∈K

||φ(G)(k)( f (k))||F ≤ |G|(| f |) < ∞.

Henceφ(G) satisfies the restriction to be an element ofl1(K, L(E, F)). Let 0≤ g ∈ c0(K) such

that | f | ≤ g for f ∈ c0(K,E), then we have from the previous inequality that

sup
| f |≤g

∑

k∈K

||φ(G)(k)( f (k))||F =
∑

k∈K

||φ(G)(k)||L(E,F) ≤ sup
| f |≤g
|G|(| f |)

≤ |G|(g) =
∑

k∈K

α(k)g(k),
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thereforeφ(G) is dominated and|φ(G)| ≤ α = |G|.

It is easy to verify thatφ is a linear map. Assume thatφ(G) = 0 for someG ∈ M(c0(K,E), F).

ThenG(χk ⊗ e) = 0 for eachk ∈ K ande ∈ E. This yields

G(
n∑

i=1

χki ⊗ ei) =
n∑

i=1

G(χki ⊗ ei) = 0.

Since
∑n

i=1 χki ⊗ ei is dense inc0(K,E) (Lemma 4.26), then (by continuity)G( f ) = 0 for each

f ∈ c0(K,E). This implies thatG = 0. Thusφ is one-to-one.

To show thatφ is surjective and an isometry, letα ∈ l1(K, L(E, F)) and define

G( f ) =
∑

k∈K

α(k)( f (k)), f ∈ c0(K,E)

which certainly converges and it is clear thatG is linear. We now verify thatφ(G) = α. Let

e ∈ E, then

φ(G)(k0)(e) = G(χk0 ⊗ e) =
∑

k∈K

α(k)(χk0 ⊗ e(k)) = α(k0)(e),

Sincee ∈ E is arbitrary, we conclude thatφ(G)(k0) = α(k0) sincek0 is arbitrary, we have

φ(G) = α. Also

||G( f )|| = ||
∑

k∈K

α(k)( f (k))||F ≤
∑

k∈K

||α(k)( f (k))||F

≤
∑

k∈K

||α(k)||L(E,F) || f (k)||E =
∑

k∈K

|α|(k) | f |(k),

thereforeG is dominated and|G| ≤ |α| = |φ(G)|. �

4.3.3 Dominated Operators onCD0(K,E)–spaces

In this section, we give two characterizations about dominated andbo-continuous dominated

operators onCD0(K,E). The following theorem contains the first characterization.

Theorem 4.29 Let K be a compact Hausdorff space without isolated points, E and F be

two Banach spaces. Then we have that M(CD0(K,E), F) is isometrically isomorphic to

rca(B, L(E, F)) ⊕ l1(K, L(E, F)) where rca(B, L(E, F)) is the space of regular Borel mea-

sures m: B→ L(E, F) with finite variation|m|.
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Proof. Let T ∈ M(CD0(K,E), F). Then certainlyT splits into two dominated linear operators

T1 : C(K,E) → F andT2 : c0(K,E) → F. By Theorem 4.24 and Theorem 4.28 , there exist

somem ∈ rca(B, L(E, F)) andα ∈ l1(K, L(E, F)) such thatT1 andT2 can be identified with

m andα respectively. We thus have a mapping ofM(CD0(K,E), F) into rca(B, L(E, F)) ⊕

l1(K, L(E, F)).

Now suppose thatm ∈ rca(B, L(E, F)) andα ∈ l1(K, L(E, F)). We can certainly define a map

φ on M(CD0(K,E), F) by

φ( f ) =
∫

f1(k) dm(k) +
∑

k∈K

α(k)( f2(k)),

for f = f1+ f2 ∈ C(K,E)⊕c0(K,E). It follows from Theorem 4.24 and Theorem 4.28 that the

map fromrca(B, L(E, F))⊕l1(K, L(E, F)) into M(CD0(K,E), F) is an isometric isomorphism.

�

Now we give a characterization aboutbo-continuous operators onCD0(K,E).

Theorem 4.30 Let K be a compact Hausdorff space without isolated points, E and F be two

Banach spaces. Then Mn(CD0(K,E), F) is isometrically isomorphic to l1(K, L(E, F)).

Proof. Let G ∈ Mn(CD0(K,E), F). Then|G| is a positive order continuous linear functional

on CD0(K) (Theorem 2.13). Also from Theorem 6.1 in [33], we know that|G| can be iden-

tified with an elementϕ ∈ l1(K) so that by using Theorem 2.11 integral part in Theorem

4.29 vanishes. ThusMn(CD0(K,E), F) is isometrically isomorphic tol1(K, L(E, F)) again by

Theorem 4.29. �

4.4 Order Continuous Operators on Abramovich–Wickstead Spaces

Throughout this section the symbolLr
n denotes the space of regular order continuous operators

andχk⊗ f denotes the vector valued function which takes the valuef (k) atk and 0 otherwise.

The following definitions and theorems were given in [27].

Definition 4.31 Let K be a compact Hausdorff space without isolated points and E be a

Banach lattice. Then the set of all mapsβ = β(k) from K into Eñ satisfying

sup
|| f ||≤1

∑

k

|β(k)|(| f (k)|) < ∞
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where f∈ CD0(K,E) and
∑

k |β(k)|( fα(k)) ↓α 0 whenever fα ↓ 0 will be denoted by D0(K,Eñ).

As usual,
∑

k |β(k)|(| f (k)|) is the supremum of the sums
∑

S |β(k)|(| f (k)|) where S⊂ K and is

finite. D0(K,Eñ) is a normed Riesz space under pointwise operations and supremum norm.

Theorem 4.32 Let K and E be as above. Then CD0(K,E)ñ and D0(K,Eñ) are isometrically

lattice isomorphic spaces.

Definition 4.33 Let K be a compact Hausdorff space without isolated points and E be a

Banach lattice. Then the set of all mapsβ = β(k) from K into Eñ satisfying

sup
|| f ||≤1

∑

k

|β(k)|(| f (k)|) < ∞

where f∈ CDw(K,E) and
∑

k |β(k)|( fα(k)) ↓α 0whenever fα ↓ 0will be denoted by Dw(K,Eñ).

As usual,
∑

k |β(k)|(| f (k)|) is the supremum of the sums
∑

S |β(k)|(| f (k)|) where S is a finite sub-

set of K. Dw(K,Eñ) is a normed Riesz space under pointwise operations and supremum norm.

Theorem 4.34 Let K and E be as above. Then CDw(K,E)ñ and Dw(K,Eñ) are isometrically

lattice isomorphic spaces.

In this section, we give a generalization of Theorem 4.32 andTheorem 4.34 in two direc-

tions. In the first direction we replaceCD0(K,E)ñ (or CDw(K,E)ñ) by Lr
n(CD0(K,E), F) (or

Lr
n(CDw(K,E), F)) whereE andF are Banach lattices withF Dedekind complete. We takeF

as a Dedekind complete Banach lattice to ensure thatLr
n(CD0(K,E), F) (or Lr

n(CDw(K,E), F))

is a Dedekind complete Banach lattice under the regular norm||.||r . In the second direction,

we replaceEñ by Lr
n(E, F). We now give the following definition which is a modificationof

Definition 4.31.

Definition 4.35 Let K be a compact Hausdorff space without isolated points, E and F be two

Banach lattices with F Dedekind complete. Then we define l1(K, Lr
n(E, F)) as the set of all

mapsϕ = ϕ(k) from K into Lr
n(E, F) satisfying

∑

k

|ϕ(k)|(| f (k)|) ∈ F

where f∈ CD0(K,E) and
∑

k |ϕ(k)|( fα(k)) ↓α 0 in F whenever fα ↓ 0 in CD0(K,E).
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As usual,
∑

k |ϕ(k)|(| f (k)|) is the supremum of the sums
∑

S |ϕ(k)|(| f (k)|) whereS ⊂ K and is

finite.

l1(K, Lr
n(E, F)) is a Banach lattice under pointwise operations and supremum norm.

We now give the following theorem which is the main result of this section.

Theorem 4.36 Let K, E and F be as above definition. Then Lr
n(CD0(K,E), F) is isometrically

lattice isomorphic to l1(K, Lr
n(E, F)).

Proof. Let us define a mapφ : Lr
n(CD0(K,E), F) → l1(K, Lr

n(E, F)) at e ∈ E by the formula

φ(G)(k)(e) = G(χk ⊗ e) for eachG ∈ Lr
n(CD0(K,E), F) andk ∈ K. It is clear thatφ is a linear

map. Using the linearity and the fact thatφ(G+)(k) andφ(G−)(k) are order boundedF-valued

operators for eachG onCD0(K,E), φ(G)(k) is order bounded.

Moreover, ifeα ↓ 0 in E, thenχk ⊗ eα ↓ 0 in CD0(K,E) for eachk ∈ K. Using the order

continuity ofG, we have thatG(χk⊗e) is order convergent to 0 so thatφ(G)(k) ∈ Lr
n(E, F) for

eachG ∈ Lr
n(CD0(K,E), F). We thus have a mapφ(G) from K into Lr

n(E, F).

Now we will show that

∑

k

|ϕ(k)|(| f (k)|) ∈ F, f ∈ CD0(K,E).

Let S be a finite subset ofK andG ∈ Lr
n(CD0(K,E), F). Then

∑

k∈S

|φ(G)(k)|(| f (k)|) =
∑

k∈S

|φ(G+ −G−)(k)|(| f (k)|)

≤
∑

k∈S

φ(G+)(k)(|( f (k)|) +
∑

k∈S

φ(G−)(k)(| f (k)|)

=
∑

k∈S

G+(χk ⊗ | f |) +
∑

k∈S

G−(χk ⊗ | f |)

= G+

∑

k∈S

χk ⊗ | f |

 +G−

∑

k∈S

χk ⊗ | f |



for each f ∈ CD0(K,E). But we know that
∑

k∈S χk ⊗ | f | ↑S | f |, sinceG+ andG− are order

continuous, we obtain

∑

k∈S

|φ(G)(k)|(| f (k)|) ≤ G+(| f |) +G−(| f |) = |G|(| f |),
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so that
∑

k∈K

|φ(G)(k)|(| f (k)|) ∈ F,

sinceF is Dedekind complete. We also have to show that

∑

k

|φ(G)(k)|( fα(k)) ↓α 0 in F

for each fα ∈ CD0(K,E) such thatfα ↓ 0. It is enough to show this for positive elements in

Lr
n(CD0(K,E), F). Let 0≤ G ∈ Lr

n(CD0(K,E), F) and fα ↓ 0 in CD0(K,E). For a fixedα, we

have
∑

k∈S χk ⊗ fα ↑S fα. As G is order continuous and positive,

G


∑

k∈S

χk ⊗ fα

 =
∑

k∈S

G(χk ⊗ fα) ↑ G( fα),

so that

∑

k∈K

|φ(G)(k)|( fα(k)) =
∑

k∈K

φ(G)(k)( fα(k))

=
∑

k∈K

G(χk ⊗ fα) = G( fα) ↓ 0.

Hence the mapφ(G) is an element ofl1(K, Lr
n(E, F)).

We now show that it is bipositive. Certainlyφ(G) ≥ 0 wheneverG ≥ 0. Now assume

thatφ(G) ≥ 0 for someG ∈ Lr
n(CD0(K,E), F) and let us take 0≤ f ∈ CD0(K,E). We have

∑
k∈S G(χk⊗ f )→ G( f ), since

∑
k∈S χk⊗ f ↑S f in CD0(K,E). AsG(χk⊗ f ) = φ(G)(k)( f ) ≥ 0

and thusG( f ) ≥ 0 for each 0≤ f ∈ CD0(K,E), i.e.,G ≥ 0.

To show thatφ is one-to-one, letφ(G) = 0 for someG ∈ Lr
n(CD0(K,E), F). ThenG(χk⊗ f ) = 0

for eachk ∈ K and 0≤ f ∈ CD0(K,E). As G is order continuous and
∑

k∈S χk ⊗ f ↑S f , this

gives that 0=
∑

k∈S G(χk ⊗ f ) → G( f ) or G( f ) = 0. As CD0(K,E) is a vector lattice, we get

G = 0.

To show thatφ is surjective, take an arbitrary 0≤ α ∈ l1(K, Lr
n(E, F)) and let us define

G : CD0(K,E)+ → F+ by G( f ) =
∑

k∈K α(k)( f (k)). As G is additive onCD0(K,E) and so

G( f ) = G( f +) −G( f −) extendsG to CD0(K,E). We now verify thatφ(G) = α. If 0 ≤ e ∈ E,

then

φ(G)(k0)(e) = G(χk0 ⊗ e) =
∑

k∈K

α(k)(χk0 ⊗ e)(k) = α(k0)e.

Sincee ∈ E is arbitrary, we conclude thatφ(G)(k0) = α(k0) and k0 is arbitrary, we have

φ(G) = α.
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Finally we show thatφ is an isometry. LetG ∈ Lr
n(CD0(K,E), F) and f ∈ CD0(K,E). Then

||G||r = sup
|| f ||≤1

|| |G|( f ) || = sup
|| f ||≤1
|| |G|(| f |) || = sup

|| f ||≤1
|| |G|


∑

k∈K

χk ⊗ | f |

 ||

= sup
|| f ||≤1

||
∑

k∈K

|G|(χk ⊗ | f |) || = ||φ(|G|)|| = ||φ(G)||r .

This completes the proof. �

Definition 4.37 Let K be a compact Hausdorff space without isolated points, E and F be two

Banach lattices with F Dedekind complete. Then we define l1
w(K, Lr

n(E, F)) as the set of all

mapsϕ = ϕ(k) from K into Lr
n(E, F) satisfying

∑

k

|ϕ(k)|(| f (k)|) ∈ F

where f∈ CDw(K,E) and
∑

k |ϕ(k)|( fα(k)) ↓α 0 in F whenever fα ↓ 0 in CDw(K,E).

l1w(K, Lr
n(E, F)) is a Banach lattice under pointwise operations and supremum norm. The

following theorem is similar to Theorem 4.36 so we omit its proof.

Theorem 4.38 Let K, E and F be as above definition. Then Lr
n(CDw(K,E), F) is isometri-

cally lattice isomorphic to l1w(K, Lr
n(E, F)).
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