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ABSTRACT

ON THE GENERALIZATIONS AND PROPERTIES OF ABRAMOVICH-WICKBEAD
SPACES

Polat, Faruk
Ph. D., Department of Mathematics
Supervisor : Prof. Dr. Safak Alpay

Co-Supervisor : Prof. Dr. Zafer Ercan

November 2008, 87 pages

In this thesis, we study two problems. The first one is to bhiiee the general version of
Abramovich-Wickstead type space and investigate its quagrerties. In particular, we study
the ideals, order bounded sets, disjointness propertiedekind completion and the norm
properties of this Riesz space. We also define a new examplest space-valued uniformly
continuous functions, denoted BYDf which generalizes the original Abramovich-Wickstead
space. It is also shown that similar spa€d3, and CD,, introduced earlier by Alpay and

Ercan are decomposable lattice-normed spaces.

The second one is related to analytic representationsfigireint classes of dominated oper-
ators on these spaces. Our main theorems say that reg@ar tperators o€ D] or linear
dominated operators diDy may be represented as the sum of integration with respect to
operator-valued measure and summation operation. In e when the operator is order

continuous obo-continuous, then these representations reduce to suomits.

Keywords: Riesz space, regular operator, lattice-nornpaates dominated operator, vector

measure with bounded variation
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ABRAMOVICH-WICKSTEAD UZAYLARININ _GENELLESTiRMELERi VE
OZELLIKLERI UZERINE

Polat, Faruk
Doktora, Matematik Bolimi
Tez Yoneticisi : Prof. Dr. Safak Alpay

Ortak Tez Yoneticisi : Prof. Dr. Zafer Ercan

Kasim 2008, 87 sayfa

Bu tezde iki problem ele alinmaktadir. Bunlardan ilki Abr@rnth-Wickstead turl uzayini
genel versiyonunu tanitmak ve onun siralama 6zellikleiiastirmaktirOzel olarak bu Riesz
uzayinin ideallerini, sira sinirl kimelerini, ayrikldzelliklerini, Dedekind tamlk ve norm
Ozelliklerini calisiyoruz. Ayni zamanda orjinal Abrawich-Wickstead uzayini genellestiren
yeni birCDyj ile gosterilen Riesz uzayi degerli diizgtin stirekliksigon uzayini tanimliyoruz.
Ayrica Alpay ve Ercan tarafindan onceden tanitilan be@4ey ve CD,, uzaylarinin gercekte

ayristirilabilir 6rgii-normlu uzaylar oldugu gosterektedir.

Ele alinan ikinci problem ise bu uzaylar Uzerindeki baséperatorlerin farkl siniflarinin
analitik temsilleriyle ilgilidir. Temel teoremlerimi£ D}, Uzerinde ki dizgun dogrusal op-
eratorlerin veyd Dy Uizerinde ki baskin dogrusal operatorlerin operat@yede olcu integrali

ve toplam operasyonunun toplami olarak yazilabilecegildilidir. Operatoriin sira sirekli
yadabo- sira sirekli olmasi durumunda bu temsiller sadece togpddkisma indirgenmekte-

dir.

Anahtar Kelimeler: Riesz uzayi, diizgin operator,uangimlu uzay, baskin operator, sinirli

varyasyonlu vektor ol¢usi
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CHAPTER 1

INTRODUCTION

1.1 State of the Art

In 1993, two peculiar new classes whital AM-spaces CB(K) andCD,,(K), the elements
of which are the sums of real-valued continuous functiortsdiscrete functions oK, were
introduced by Abramovich and Wickstead [33] for a quasin®an spac& without isolated
points. They showed that neither class is almost Dedekisdmplete, althougke Dy(K) has
Cantor property. Finally, they identified the order contins and sequentially order contin-
uous duals of spaces in these classes. Further Alpay and E*¢hrelaxed the condition
on quasi-Stonean spageby taking it as a compact Hausdiospace without isolated points
and introduced the spac&Dy(K, E) andCD,(K, E) for a normed spac&. They investi-
gated lattice-norm properties, the center and order cootis duals of these spaces under
the assumption thdE is a Banach lattice. From then Ercan [34] proved G&l(K) and
C(Kx{0, 1}) are isometrically Riesz isomorphic spaces under a caidamiogy onK x {0, 1}.

V. G. Troitsky [30] found a description of Ercan’s topologicpaceK x {0, 1} as theAlexan-
droff duplicateof K and gave an elegant characterization of elemenS@f(K). T. Hoim
and D. A. Robbins [29] introduced the space of sectiGiy(K, X) of a continuous Banach
bundleX overK and making use of Ercan’s result proved that this spaceesiin isometric
to the space of attontinuous sectionsf some continuous Banach bundfeover the Alexan-
droff duplicateK of K. Some new properties of the spaeBy(K, X) were investigated by A.

E. Gutman and A. V. Koptev in [3], see also a survey paper [2].

These results naturally rise the following task: to introglithe general version of Abramo-

vich—Wickstead type spaces, investigate its order priggerand find new examples of such



spaces. As mentioned above, the works of both Abramovicbk&téad and Alpay—Ercan
contained some characterizations of order continuousscfaC Dy and CD,-type spaces.
This naturally brought us the idea to investigate the lirg@erators in more general setting

on these type of spaces.

The notion of adominatedor majorizedoperator was invented in the 1930s by L. V. Kan-
torovich. He introduced the fundamental notion of lattimemed space by elements of a
vector lattice and that of a linear operator between sucbespahich is dominated by a pos-
itive linear or monotone sublinear operator. The idea of idated operator can be stated as
follows: if an operator under consideration is dominatedabgther operator, calleddomi-
nant or majorantthen the properties of the latter have a substantail infleien the properties
of the former. Thus operators that have “nice” dominantstrpasses nice properties. In the
succeeding years, many authors studied various particatas of lattice-normed spaces and
different classes of dominated operators, e.g., see [8, 111L9Tt3 general theory of dom-
inated operators has been improved by A. G. Kusraev and hisvers (A. E. Gutman, S.
A. Malyugin, E. V. Kolesnikov, S. Z. Strizhevskii etc.). f&érent kinds po-continuous, dis-
jointness preserving operators, integral operators itiquéatr pseudointegral operators) and
some analytical represantations of dominated operators green in the book [4] by A. G.
Kusraev. There exists an important relationship betwetticdanormed spaces and continu-
ous Banach bundles. A. G. Kusraev and V. Z. Strizhevskip[@jed that any lattice-normed
space can be represented as the spaednaist global sectionsf a suitable continuous Ba-
nach bundle. However, uniqueness of the bundle was notlistiedh and later A. E. Gutman
found a class of uniqueness for The Kusraev—Strizhevsiqiré&sentation Theorem, the class
of ample(or completg continuous Banach bundles. A detailed presentation stli@ory can

be found in [1, 4].

The spaces of vector-valued functions are oftertomplete orbo-complete lattice-normed
spaces and this peculiarity is important when studying thectire of the spaces or linear
operators on them. ASDy(K, E) andCD,(K, E) spaces are lattice-normed spaces, this moti-
vated us to use the technics in [4] to characterize some kihdsminated operators on these

spaces.

The modernvector measure theonycludes two main lines of investigation. The first one,

the study of measures with values in Banach or locally compace, stems from classical



works by S. Bohner, N. Dunford, I. M. Gelfand, and B. Pettig &amgether with a variety of
interesting applications in geometry of Banach spaces pachtor theory is covered by many

monographs, see for example [12, 19, 20].

The second line dealing with vector lattice valued measstesis from L. V. Kantorovich,
B. Z. Vulikh, and A. G. Pinsker [17], although such measungseared implicitly earlier as
Boolean homomorphisnts spectral measuresT his study was concentrated mainly on mea-
sure extension problem and Riesz type representationdimsonn this respect two important

results due to J. D. M. Wright should be mentioned:

1) A Dedekindo-complete vector lattice possesses the measure extensiperfy if and only

if it is weakly (o, 0)-distributive [13];

2) The Riesz Representation Theorem for positive operatithsvalues in a Dedekind com-
plete vector lattice is true, but the representing measugeasiregular and cannot be chosen

regular [14].

J. D. M. Wright [15] obtained also the following charactetinn: Every quasiregular Borel
measure on every compact space with values in a Dedekindletangector lattice is reg-
ular if and only if this vector lattice is weakly{ oo)-distributive. More details and further

bibliography can be found in [4]. For a unified treatment affblines see [5].

One of the main ideas of Dinculeanu’s book [19] is dominatifra linear operator on the
space of vector-valued measurable functions by a measurepératofT : C(K,E) — F is

said to be dominated (or majored) if there exists a regulaitige Borel measure such that
IT(HI < fllf(k)ll dv(k), forevery fe C(K,E).

We say thafl is dominated by, or thaty dominatesT. If T is dominated, then there exists
a least positive regular measure dominafingHe ellobrated the space of dominated linear
operators orC(K, E) in details by using the regular Borel measures with boundethtion.
Kusraev’s definition and N. Dinculeanu’s definition actyalbincide for the dominated linear
operators orC(K, E). The systematic application of concept of domination $etdintegral
representation of broad classes of linear operators definespaces of measurable vector-
valued functions.

Putting together the ideas of Abramovich—Wickstead typeep, Kantorovich’s dominated

operators, and Dinculeanu’s integral representationscarestate the following important

3



problem.

1.2 Statement of the Problem

The aim of this work is to introduce and investigate new typeg&bramovich—Wickstead
spaces of vector-valued functions and obtain analyticessprtations of dlierent classes of

dominated operators on these spaces.

1.3 Review of Contents

Chapter 1 of this thesis presents the scope of the study aradtction.

Chapter 2 contains some background related to theory obvewasures and lattice-normed
spaces needed in this thesis.

Chapter 3 deals with the general version of Abramovich—#liekd type spaces, denoted
by E xg F and investigating its order properties. In particular, ey the ideals, order
bounded sets, disjointness properties, Dedekind coropleind the norm properties of this
Riesz space as well as we identify its center. We also defimsvacancrete example of Riesz
space-valued uniformly continuous functions, denote@Bj; which generalizes the original
Abramovich—Wickstead space. It is also shown that simpacesSC Dy andCD,, introduced
earlier by Alpay and Ercan are actually decomposable &timrmed spaces.

Chapter 4 is devoted to study the analytic represantatiodiffdrent classes of dominated
operators orCD}; andCDo-type spaces. Our main representation theorems are thaareg
linear operators o@ Dy, or linear dominated operators @Dy may be constructed as the sum
of integration with respect to operator-valued measuresamemation operation (or integra-
tion with respect to discrete operator-valued measure)h&Ve shown that if the operator is

order continuous dbo-continuous, then these representations reduce to diquaets.

More precisely, we can state the main results of this chastéollows.

1. LetK be a non-empty set arlelbe a Dedekind complete vector lattice. Then we set

(1) co(N, E) = {(en) € E : Je € E* such that g € E(€) ¥Yn and||ey|le — O},

(2) 1[K,L"(E, F)] the space of operators : K — L'(E,F) such that the infinite sum
Y la(ka)l(lenl) is an element oF for all (k,) € K and &) € co(N, E).

4



Asusual,}. >, |(kn)l(len]) is the supremum of the sumg , le(ka)l(lenl). 11[K, L"(E, F)] is a

vector lattice under the pointwise operations. Then we llagédollowing.

Theorem 1.Let K be a compact Hausdfispace without isolated points and F be a Dedekind
complete vector lattice. Thern' (CD{(K, E),F) is lattice isomorphic to qd#, L"(E,F)
[1[K, L"(E, F)] with the dual order on this direct sum defined by

<u,a>=>0u>0anda > 0andu({k}) = a(k)

for all k € K, which if we identifyr with a discrete measure on K, is precisely requiring that
u>a>0.
2. Let K be a compact space amdbe a Dedekind complete vector lattice. Then we set

I1(K, LL(E, F)) the set of all mapg = (k) from K into LI,(E, F) satisfying

(1) supyy.<1 2k IBKI((f(K)) € F for each arbitrary but fixed € E* and f € CDf(K, E),

(2) 2k IBRI(fe(K) lo O wheneverf, | 0.

Then we have the following.

Theorem 2.Let K be a compact Hausdfispace without isolated points and F be a Dedekind
complete vector lattice. Therf,(CD(K, E), F) is lattice isomorphic toli(K, LL(E, F)).

3. LetK be a non-empty sef andF be two Banach spaces. Then welgé, L(E, F)) the set

of mappingsy : K — L(E, F) such that the sumy,,.k lle(K)(f(K))|l < o for all f € co(K, E).

Then we have the following.

Theorem 3.Let K be a compact Hausdfrspace without isolated points, E and F be two
Banach spaces. Then (MDy(K, E), F) is isometrically isomorphic to rd®, L(E,F)) @
I1(K, L(E, F)) where rcdB, L(E, F)) is the space of regular Borel measures 8 — L(E, F)

with finite variation|m).

Theorem 4.Let K be a compact Hausdfrspace without isolated points, E and F be two
Banach spaces. Then{CDo(K, E), F) is isometrically isomorphic to'{K, L(E, F)).

4. Let K be a compact Hausddrspace without isolated point§ and F be two Banach
lattices withF Dedekind complete. Then we defitK, L(E, F)) as the set of all maps
¢ = ¢(K) from K into Lp,(E, F) satisfying

Dl € F
k

5



wheref € CDy(K, E) andY i l¢(K)I(f,(K)) l. O wheneverf, | 0in CDy(K, E). Then we have

the following result.

Theorem 5.Let K, E and F be as above definition. Thel{®Dy(K, E), F) is isometrically

lattice isomorphic tod(K, L!,(E, F)).

5. Let K be a compact Hausdbrspace without isolated point§ and F be two Banach
lattices withF Dedekind complete. Then we defitig(K, LL(E, F)) as the set of all maps
¢ = ¢(k) from K into L[,(E, F) satisfying

Dl € F
k

wheref € CDy(K, E) and X l¢(K)|(f(K)) 1o, O wheneverf, | 0in CDy(K, E). Then we get

the following result.

Theorem 6.Let K, E and F be as above definition. The{@Dy(K, E), F) is isometrically
lattice isomorphic tod(K, L},(E, F)).

The main results presented above are new and original. Theseems and methods applied
will be useful for further investigations of dominated ogters on Abramovich—Wickstead

type spaces of vector-valued functions.

1.4 Methods Applied

This work uses essentially the methods and technical tooia the following branches of
modern analysis: Theory of vector lattices and positiverafoes, theory of dominated oper-
ators in lattice-normed spaces, and theory of vector meagwith values in Banach spaces
and vector lattices). In particular, we use intensivelyftil®wing concepts: order continuity,
vector measures with bounded variation, norm order comipésts and norm uniformly com-
pleteness of a lattice-normed space, decomposabilityeofrtajorant norm of a dominated

operator, spaces with mixed norms, integration with reisfpegperator-valued measure, etc.

1.5 Publications and Reports

Some results of this thesis were published in the followimg papers.

1) F. Polat,Linear Operators on Abramovich-Wickstead type spavéadikavkaz Math. J.

6



(10), 46-55 (2008);
2) F. Polat,Dominated Operators on Some Lattice-Normed spaees;eedings of Interna-
tional Conference Order Analysis and Related Problems dh&faatical Modeling, Viadi-

kavkaz, June 1-7, 2008.

Besides, some results of the thesis were delivered in thawfimlg seminars and symposium.
1) Joint Seminar on Analysis in the IAMI (Vladikavkaz, Rusdviarch 2008);

2) Seminar on Positivity and Its Applications (METU, Ankat& June 2008);

3) International Symposium "Positivity and Its Applicai®in Science and Economics” (Bo-

lu, 17-19 September 2008).



CHAPTER 2

PRELIMINARIES

In this chapter, for the convenience of the reader, we ptesgeneral background needed in
this thesis. For Riesz space theory, the reader can cohsuitidok [10] by C. D. Aliprantis

and O. Burkinshaw.

2.1 \ector Measures

In this section, we collect some necassary materials farttieésis. For more information

about vector measures, we refer to [6, 12, 19].

1. Consider a nonempty st and ac-algebra# of the subsets oK. Let E be a Dedekind

complete vector lattice. We shall call the mappingA — E an E-valued measure if

(1) u©) =0,

(2) WhenevelfA,} (n=1,2,...) is a sequence of pairwise disjoint elementgipthen

u(J A0 = 3 A = olim > ).
n=1 k=1

n=1

We say that a measuyeis positiveand writey > O if u(A) > O for all A € ‘A andbounded
if there existse € E* such thatu(A)| < e for eachA € A. We denote the set of all bounded
E-valued measures onealgebraA by ca(K, A, E). If u,v € ca(K, A, E) andt € R, then

we put by definition

(D) @+ A = uA) +v(A) (Ae A);

2) @A) = tw(A) (Ae A);



Buzveu-v=0.

One can prove thata(K, A, E) is a Dedekind complete vector lattice. In particular, foery
measure: : A — E, u* ;= uvO0andu = (—u)* = —(u A Q) are the positive and negative

parts respectively. It is easy to verify that
ur(A) =supu(A) A e A A cA (AeA).

In the sequel, we shall consider spediabvalued measures. Suppose tKais a compact
topological space andl is the Borelo-algebra. A positive measufe: A — E is said to be

regular if for every A € A we have
u(A) = inf{u(U) : Ac U, U € Op(K)}

whereOp(K) is the collection of all open subsets Kf If the latter condition is true only
for closedA € A, thenu is calledquasiregular. Finally, an arbitrary measuge: A — E is
said to baegular (quasiregulaj if the positive measurgs" andu~ are regular (quasiregular).
Letrca(K, E) andqcaK, E) be the sets oE-valued Borel measures, regular and quasiregular
respectively. It is seen from the definitions the&(K, E) andgcaK, E) are vector sublattices

in ca(K, A, E). Clearly, the supremum (infimum) of the increasing (desireg) family of
guasiregular measures bounded&A, A, E) will also be quasiregular. The same holds for

regular measures. ThgsaK, E) andrca(K, E) are Dedekind complete vector lattices.
2. Now we will define the integral with respect to an arbitraryasereu € caK, A, E).

(1) Let us denote b (K, A) the set of all functiong : K — R of the forme = Y1, awa,,
whereAy,...,An € A, a1,...,a, € R, andya is the characteristic function of a s&t Con-

struct the operatal, : S{K, A) — E by putting

n n
i [Z akXAk] = ) (A,
k=1 k=1
As itis seen, is a linear operator, moreover, the normative inequalitg$o
(O < Hflleolul(K) - (F € STK, A)),

where||fllo = sup,cq|f(@)l. The subspac& (K, A) is dense with respect to the norm in
the space.. (K, A) of all bounded measurable functions. Therefgradmits a unique linear

extension (by continuity ) th. (K, A), with the above-mentioned normative inequality being

9



preserved. In particular, K is a compact space ad is the Borelo-algebra, then,(f) is

defined for every continuous functidne C(K). Note also that, > 0 if and only ifz > 0.

3. Now we give several results about analytical represemtatiolinear operators which

yields new formulas of subfierentiation.

Suppose that for evenye N a directed set A{) is given. Take a sequence of decreasing nets
(Ew.n)ecA(m) C [0, €] in a Dedekind complete vector lattiéesuch that infe,, : @ € A(n)} =0

for eachn € N. If for any such sequence the equality

inf su =0, A:= A(n
oeA nENpego(n),n Q ( )

holds, then we call Dedekind complete vector latlicas ¢, oo)-distributive. For a Dedekind
complete vector lattice of countable type\ith the countable chain condition) the property
of (o, co)-distributivity is equivalent to theegularity of the base. The latter means that the
diagonal principleis fulfilled in the Boolean algebr#&(E): if a double sequencdd{m)nmen

in B(E) is such that for everyp € N the sequencex m)men decreases anatconverges to zero

then there exists a strictly increasing sequema@))nen for which o-limp e Xpmmn) = 0.
The following theorem belongs to J. D. M. Wright [15].
Theorem 2.1 (Wright) Let K be a compact topological space and let E be an arbitrary

Dedekind complete vector lattice. The mapping- |, implements a linear and lattice

isomorphism of Dedekind complete vector latticeg c&) and L' (C(K), E).

Theorem 2.2 Let a Dedekind complete vector lattice E (e oo)-distributive. Then
gcaK, E) = rca(K, E).

In addition, the mapping ~ |, implements a linear and lattice isomorphism of Dedekind

complete vector lattices r¢K, E) and L' (C(K), E).

We omit the proofs of the Wright theorem and its improvemeuatstained in Theorem 2.2,

which demand considerations that are rather long and lal®in a technical sense.

10



2.2 Lattice—Normed Spaces

In this section, we give some definitions about lattice-reatrspaces. We also collect some
results concerning dominated operators which are relatéattice-normed spaces. For more
details and proofs of theorems, the reader can consult thie[ddby A. G. Kusraev.
Let X be a vector space arttl be a real vector lattice. A mapping : X — E, is called a
vector (E-valued) nornf it satisfies the following axioms:

Q) X=0e x=0((xeX);

(2) 1A = 12X (2 € R, x € X);

@) IX+yl <X+ 1yl (XY e X).

A vector norm is calledlecomposabler Kantorovich nornif

(4) for alle;,e € E, andx € X, from |x| = e1 + &, it follows that there exisky, xo € X

such thatx = x1 + X and|x| = e (k= 1, 2).

A triple (X, ., E) is alattice-normed spac# |.| is anE-valued norm in the vector spacé
The spaceE is called thenorm latticeof X. If the vector norm is decomposable, then the
space X, |.|, E) is called decomposable.

If X Alyl =0, then we call the elemenisy € X disjointand writexLy. As in the case of a
vector lattice, a seM+ = {x € X : xLy for each ye M}, with® # M c X is called abandor

acomponent

Lemma 2.3 [4,2.1.2] If the elements,y € X are disjoint, then we have that+y| = [X + |yl.

Proof. Indeed, from the relations| A |yl = 0 and|x| < |x+ Y| + |y, we infer that
X< (IX+Y+IY)A XS X+ YA < X+ Y]
Similarly, |y| < |x +Yl; therefore X + y| = [X VY] < [X+ Y. O

We now give the following important property of disjoint glents in the lattice-normed space
(X, E).
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Lemma 2.4 [4,2.1.3] For every pair of disjoint elements e € E, then the decomposition

X = X1 + X in X with|x;| = e; and|X;| = & is unique.

Proof. Assume|xi| = |yil = €1 and|Xs| = |y2| = €, andX = X1 + X2 = Y1 + V2. Then

X1 —Y1LX2 — Yo, Sincelxy — y1| < [Xa| + ly1] = 2e1 and|xz — yo| < 2e,. By the previous lemma,
0 =(x1—y1) + (X2 = y2)l = IX1 — Y1l + [X2 — Y2l

whencex; = y; andx = ys. O

Example 2.5 In the definition above, if X% E, then the modulus of an element serves as its
vector norm:|x| = XV (=X), (x € E). Decomposability of this norm easily follows from the
Riesz decomposition property holding in every vectordattilf E = R, then X is a normed
space. We can use the conventional notalfiirior the norm and omit references to the order

structure of the norm lattice.

Definition 2.6 [4,2.1.5] Let (X, |.|, E) be a lattice-normed space.

(1) We say that a ndix,).ca bo—converges to an elemenixX and we write x= bodim x,
if there exists a decreasing n@,),<r in E such thainf,.re, = 0 and, for everyy € T,

there exists an index(y) € A such thatx — x,| < e, for all & > a(y).

(2) Let (Xy)aca be a net in X. Given an elementeeE*, let the following condition be
satisfied: for every > O, there is an indexx(¢) € A such thatix — x,| < ee for all

a > a(g). Then we say thdtx,) br-converges to x and write x br-lim x,.

(3) A net(x,) is said to be befundamental (brfundamental) if the nex, — Xz)(@.p)eAxA

bo-converges (brconverges) to zero.

(4) (X, |, E) is called be-complete (brcomplete) if every bofundamental net (funda-

mental net) in it beconverges ( brconverges) to an element of the space.

Recall that a normed (Banach) lattice is a vector laticéhat is simultenously a normed
(Banach) space whose norm is monotone in the following seifgg < |yl = [IX|| < |Vl
(x,y € E). If (X,|.|, E) is a lattice-normed space witha norm, then by definitiorjx| € E for

eachx € X and we introduce a mixed norm Kby the formula

Xl = 111X, (x € X).

12



In this case, the normed spacg|(.|||) is called a space witimixed norm Using the inequality

| IX = IVl | < |x—y| and monotonicity of the norm i&, we have

X =Y < Ix=yill- (%Y € X),

so that the vector nori is a norm continuous mapping frorX,(||.|||) into E.

A Banach space with mixed nonsi a pair &, E) in which E is a Banach lattice an is a

br—complete lattice-normed space wHivalued norm.

The following proposition justifies the definition.

Proposition 2.7 [4,7.1.2] Let E be a Banach lattice. TheX,|||.]||) is a Banach space if
and only if the lattice-normed space |.|, E) is complete with respect to relative uniform

convergence.

Proof. (<) Take a Cauchy sequenci, c X. Without loss of generality, we may assume

that|[| X1 — Xalll < 75 .n € N. Assign

n
& =l + ) KiXe1—xd neN.

k=1
Then we may estimate
n+l n+l n+l 1
lens = enll = | 3 Kxer = < D) Klider=xdl < ) 5 =0
k=n+1 k=n+1 k=n+1

whenk,| — co. Thus the sequencey is a Cauchy sequence and it has a lienit limp_, €.

Sinceenk > €, (N, k € N), we havee = supe,. If n > m, then
n+

MXs =Xl < ) KX = Xd S @ —en< e
k=n+1

consequentiyixn, — Xp| < (%)e. This means that the sequenag)(is br-fundamental and so

that the limitx := br — lim_,., X, exists. Itis clear that lig,« |[|[X — Xql/| = O.

(=) Suppose that a sequencg)(e X is brfundamental; i.e.,

[Xh — Xml < ke (m,n,k e N and mn > k) where O< e € E and lim,., A4k = 0. Then
%0 = Xmlll < Akll€ll = 0as k— oo
Therefore the limitx := lim,_,., X, €xists. By continuity of the vector norm, we have
X=Xl < ke (n>K),

therefore x = br-lim x,. O
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Definition 2.8 [4,4.1.1] Let (X,].|, E) and (Y, |.|, F) be two lattice-normed spaces. Then a
linear operator T: X — Y is said to be dominated or majorized if there exists a passiti

linear operator S: E — F such that

TX <S(x) (xeX).

Remark 2.9 Let F be a Dedekind complete vector lattice and (fia pe the set of all dom-
inants of T. Itis clear that mdT) is a convex set in the Dedekind complete vector lattice
L(E, F). If there is a least element in m@)) with respect to the order induced frofitH, F),
then it is called the least or exact dominant of T and denoteb ConsequentlyT| is a

positive linear operator from E to F. Moreovér| = inf maj(T) € maj(T) and the inequality
[TX <[TI(IX) (xeX)
holds. The set of all dominated operators from X to Y is dehbyeM(X, Y). Thus,

T e M(X.Y) & majT) 0.

The following theorem gives the ficient condition for a linear dominated operator to have

an exact dominant.

Theorem 2.10[4,4.1.2] Let (X, |.|, E) and (Y, |.|, F) be two lattice normed spaces with X de-
composable and F Dedekind complete. Then every dominatdtopT : X — Y has exact

dominantT|.

Theorem 2.11[4,4.2.7] Let(X, |.|, E) and(Y, |.|, F) be two decomposable lattice-normed spa-
ces with Y bo-complete. Then for each dominated operatoKT Y and each representa-
tion|T| = S1+S, where0 < S;, S, : E — F, there exist dominated operatorg, T, : X — Y
such that T= T1 + T, and|Tyx| = Sk (k = 1, 2). If the operators $ and $ are disjoint, then

there exists a unique pair of operatorg dnd T; satisfying the condition under consideration.

Definition 2.12 [4,4.3.1] Let T € M(X,Y). Then T is called norm order continuous or
bo-continuous if for every ndi,) c X, from the equality bdim, X, = 0 it follows that
bodim, T(x,) = 0. That is to say, it follows frorx,| —° 0in E that|T(x,)| —° 0in F where
E and F are norm lattices of X and Y respectively. The set di@ontinuous operators

T € M(X,Y) will be denoted by M(X, Y).
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We now give the following characterization abdaatorder continuous dominated operators.
Theorem 2.13 [4,4.3.4] Let X be a decomposable lattice-normed space and F be a Detleki

complete vector lattice. Then a dominated operatarX — Y is bo-order continuous if and

only if its least dominani | is order continuous.
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CHAPTER 3

SOME GENERALIZATIONS OF ABRAMOVICH —
WICKSTEAD SPACES

Recall that a topological space is called basically disecoted if the closure of anlf,, open
set is open. A compact Hausdiospace that is basically disconnected is catjedsi-Stonean
space For a quasi-Stonean spakewithout isolated points, the following function spaces

were introduced by Y. A. Abramovich and A. W. Wickstead in].33

I (K) = {f : fisreal valued bounded andk : f(k) # 0} is countabl¢;

co(K) = {f : fisreal valued andk : |f(K)| > &} is finite for eache > 0}.

These spaces were used to defig)(K) = C(K)@cy(K) andCDy(K) = C(K)ely; (K) where
C(K) is the space of real valued continuous functiongkorBoth of the space€Dy(K) and
CDw(K) are Banach lattices under the pointwise order and suprenasm. These types of
spaces can be called Abramovich—Wickstead spaces, olysA@dftspaces as in [35]. Further
Alpay and Ercan [28] showed that for a compact HauSdspaceK without isolated points,
CDg(K) is isometrically isomorphic t&(K) ® co(K) where the order oi£(K) ® ¢co(K) is

defined as follows:

0<(f,g) & 0< f(k)andO < f(k) + g(k) for each ke K.

They also proved thd{f,g)| = (f|,|f + g — |f]) for eachf € C(K) andg € cop(K). This
motivated us to define a new Riesz space product of two Rieszespunder the similar order
above. In this chapter, we investigate order propertietisfriew Riesz space. In particular,

we construct some concrete examples of this new Riesz space.
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3.1 The Representation ok xg F—space

For ordered vector subspadésandF of an ordered vector spa€ we consider coordinate-

wise algebraic operations &hx F, that is,
(xy) +(X.y) = (x+ X,y +y) andA(x,y) = (1, 1)
for each &, y) € E x F and for eacht € R.
Definition 3.1 Let E and F be ordered vector subspaces of an ordered vectaresg. We
define an order on E F as follows:
0<(xy)eExFe0<xand0<x+yinG.
E xg F denotes the space EF equipped with this order.

Now we give another definition which will be useful in the néx¢orem. For the details see
[26].

Definition 3.2 Let G be a Riesz space, and let X and Y be vector subspaces & GallVX

an order ideal with respectto Y [ik+y| — |yl € X forall xe X,ye Y.

Theorem 3.3 Let X be a vector subspace of a Riesz space G. Then X is a Risgmea of
G if and only if it is an ideal with respect #®}, and X is an order ideal if and only if it is an

ideal with respect to G.

Theorem 3.4 Let E and F be ordered vector subspaces of a Riesz space G.ETkerF is

a Riesz space if E is a Riesz subspace and F is an order iddategpect to E. Moreover,

1Y) = (X, X+ Y1 = X)),

for all (x,y) € E xg F. In particular, if F is an ideal in G, then Gg F, G xg G and0 xg F

are Riesz spaces.

Proof. Since (Q0) < (x,y) and &, y) < (0,0) imply that 0< x, 0 < x+Vy, 0 < —x and

0 < —-x-vy, we havex = 0 andx +y = 0 soy = 0, thenE x¢ F is an ordered vector space.
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Let (x,y) € E xg F. SinceF is an order ideal with respect & we havegx+Yy|—|X € F. Also
O<IX=%0<|X+y|=IX—y+|x—xand 0< [X| + X, 0 < [X+VY| — X+ Y+ |X + X imply that
(%Y) < (IX, [x+yl—x) and X, —y) < (X, [X+ Y1 = [X), i.e, (X, [x+ Y| —|X]) is an upper bound

for {(x,y), —(X, y)}. Suppose thaty p) is another upper bound ¢fx, y), —(x, y)}. Then,
0<g-%x0<g+p-x-y,0<x+gand0< x+g+p+Yy.

This shows that|k|, [x +y| — [X]) < (g, p) and sd (x,y) |= (I x|,| Xx+y | =] X]). In particular,
sinceG is an ideal in itselfG xg G is a Riesz space. Also by the previous theorénms an
ideal with respect t¢0} andF is an order ideal with respect ®, so Oxg F andG xg F are

Riesz spaces. 0

Example 3.5 (1) Let E and F be Riesz spaces. Thes& X F is a Riesz space under the
pointwise order such thagx, y)| = (X, [y]). Let Ep = {(x,0) : xe E}and iy = {(0,y) : y € F}.

Then | and Fy are Riesz subspaces of G. Since

(%, 0) + (0. )1 = 1(x. 0) = |(x, Y)I = (IXI, 0) = (Ix, 1) — (1XI, 0) = (O, Iyl) € Fo,

Fo is an order ideal with respect tod= By previous theorem,Exg Fo is a Riesz space.

(2) Let G be a Riesz space, E be a Riesz subspace of G and F beesiecbsubspace of G. If
F is anideal in E, then F is an order ideal with respect to E by finst theorem. So kg F

is a Riesz space by the previous theorem.

(3) Suppose that a Riesz subspace F is an order ideal witkect$p a Riesz subspace E in a
Riesz space G. Let'Ibe a Riesz subspace of E. Let ¥’ and ye F . Then|x+y|—|x| € F

as E c E. So F is an order ideal with respect to all Riesz subspacés of

(4) Suppose that a Riesz subspace F is an order ideal witleot$p Riesz subspaces for
eacha in a Riesz space G. Then F is an ideal with respe¢?)tg,. To see this, let ¥ F and

ye€ N E,, thenx+y| -yl € F as ye E, for eacha.

(5) Let G, G be Riesz spaces and: TG — G’ be a lattice homomorphism. Then if E and F
are Riesz subspaces of G for which F is an order ideal witheesfo E. Then we have that
the Riesz subspace(H) of G’ is an order ideal with respect to the Riesz subspa¢i) of

G’. Similarly, if F' is a Riesz subspace of @hich is an order ideal with respect to a Riesz
subspace Eof G, then the Riesz subspace’{F’) of G is an order ideal with respect to the

Riesz subspace #(E’) of G.

18



(6) Let E and K be Riesz subspaces of a Riesz space G for @ea@uppose Fis an order
ideal with respect to E for each. Then| JF, is a Riesz subspace of G which is an order

ideal with respect to E.

(7) Let G be a Riesz space, E be a Riesz subspace of G and F beemdsubspace of
G. Suppose that F is an order ideal with respect to E. Thenidéal I(F) generated by F
in G is also an ideal with respect to E. That is to spys+ y| — |X| € I(F) for each xe E
and y € I(F). Suppose ¥ I(F), then there exists & F such thatly] < |f|. But then
[IX+Y = IX|<IX+y—=X =yl <|f|. Thisimpliegx+y| — X € I(F). Thus Exg I(F) is a

Riesz space.

(8) Let E, F and G be as in (7). Suppose F is an order ideal in &. i an order ideal with
respect to E, then F is an order ideal with respect to the idéB) generated by E in G. We
have to show that for everyI (E) and ye F, [x+Yy|—|X € F. But| [X+Yy|—|X | < [X+y—X = V.
Since ye F and F is an order ideal in G, we haye+Yy| — [x € F. Thus (E) xg F is a Riesz

space.

(9) Suppose that F is an order ideal with respect to E. Then igFan order ideal with
respect to I(E). That is to sayx + y| — |[x| € I(F) for all x € I(E) and y € I(F). But
[IX+y =X <IX+y—x =|yand|y|l < |f| for some fe F. So|x+Y| —|X € I(F). Thus

I(E) Xg I (F) is a Riesz space.

(10) Suppose that F is an ideal in E. Thdjfr) is an ideal in (E). Clearly, F c E implies
I(F) c I(E). Assume thaiix < |y| for all y € I(F) and xe I(E). Since ye I(F), there exists
some fe F such thatly] < |f|. This implies that »x I(F). So (F) is an order ideal in (E).

Thus E) xg I (F) is a Riesz space.

(11) Suppose that F is an ideal with respect to E in a normed&space G. Let ¥ E and
y € F. Then there exists a sequer(gg) c F such that yy — y. As the lattice operations are
continuous|X + Yol — [X = X+ Y| — |X. As|x+yn| — X € F foreachne N, [x+Yy| — |X € F.
So Exg F is a Riesz space. As a corollary to this, we obtain that if &@ Banach lattice and
if F is an order ideal with respect to E, then the completiorsklisa an ideal with respect to

E.

(12) Suppose that F is an ideal with respect to E in a normedARspace G. Suppose F is

closed. Let x E and ye F. Then there exists a sequer(eg) c E such that x — x. As the
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lattice operations are continuous, we have thatry| — [Xa| = |X+Y|—|X]. AS[Xn+Y|—|Xn| € F

for each ne N, [x+ Y| — |X € F. SoE x¢ F is a Riesz space.

(13) Let T be a lattice homomorphism on the Riesz space E Tth&0}) is an order ideal
with respect to TE).

Recall that a sequenca,] in a Riesz space is said to be order convergent to an element

of L (denoted byx, —° X) if there exists a sequengg | 0 such thatx, — x| < yy.

We can characterize order convergent sequencEs<ig F space as follows.

Proposition 3.6 If x, —=° xin E and yy »°y in F, then(x,,y,) —=° 0in E xg F.

Proof. Let x, —° xin E andy, —° yin F. Then there exist sequencgs)in E and ¢,,) in
F such thatx, — x| < pn | 0 andlyn —yl < ry | 0. S0|(Xh,¥n) = (XY = [(Xn = X, Yn = Y| =
(1% = X, [Yn =Y+ X0 = X = X2 = X]) < (1% = X, Iyn = ¥I) < (Pn, rn). Butps | 0 andry, | 0 imply
(pn,rn) 1 0in E X F and this completes the proof. O

3.2 Ideals and Central Operators inE xg F—space

In this section, we deal with the ideals and central opesatdE xg F-spaces. First we
turn our attention to characterize principal ideal€cindG by using the principal ideals of

E xg F-spaces. Next proposition contains this characterization

Proposition 3.7 If (x,y) belongs to the principal ideal generated Py, yo) in E xg F, then
x belongs to the principal ideal generated kyix E and x+ y belongs to the principal ideal

generated by ¢+ yo in G.

Proof. It is enough to consider only positive elements. Let Yo) be a positive element of
E Xg F andly,y,) be the order ideal generated by (yo) in E xg F. Let (x,y) be a positive
element ofl(y, ). Then there exista > 0 such that 0< (x,y) < A(Xo0,Yo) in E Xg F. By
definition of the order irE xg F, this yields 0< X < Axp and 0< X+ Yy < A(Xg + Yo), and this

completes the proof. O
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Itis a natural task to consider projectionskokg F onto E and investigate its properties. Next

proposition is dealt with this.

Proposition 3.8 Let E be a Riesz subspace of G and F be an order ideal with respéc
Then 1)(X.,VYa) | (0,0)in E xg F impliesx | OinEand % +Yy, | 0inG;

2) The projection map PE xg F — E defined as B, y) = x is an order continuous lattice

homomorphism.

Proof. 1)Let (X,,Yo) 1 (0,0) in E Xg F. Then 0< (u,V) < (X, Yeo) implies thatu < 0 and
u+v<0sothatx, | OinEandx, +Yy, | 0inG.

2) SinceP(|(x,Y)) = P(X,1x+ Yyl —IX)) = X = |P(x,y)|, P is a lattice homomorphism. The

fact thatP is order continuous follows from (1). O

Example 3.9 (1) For eachideal | in E, P1(l) is an ideal in Exg F. That is to say the set
{(x,y) : xel,y e F}is anideal of Exg F.

(2) I xg F and Iy, xg F are ideals of Exg F where | is the ideal in E and,/ is a principal

ideal generated bypin E.

(3) Let J be an order ideal of the Riesz space F, tf@rd) = {(0,X) : x € J} is an order
ideal of Exg F. If | is an order ideal of E with W F = {0}, then(l, 0) is an order ideal

in E xg F. Thus we have thdt, 0) + (0, J) = (I, J) is an order ideal of Exg F.

(4) Identifying E with i = {(x,0) : x € E}, we see, in fact, that P is a projection ofg F
onto E. Infactif i is a subspace of E for which there exists a projectierir®mn E onto
E1, then the subspace; s the image (onto) of the projectiom®P : E xg F — Ej.
Suppose now Hs a Riesz subspace of E. If F is an order ideal with respect, tith&n
automatically an order ideal with respect tq EThat is to sayjx+ Y| — |x| € F for each
X € E;. Thus for each Riesz subspaced E, E; X F is a Riesz subspace ofg F.
Since P is a Riesz homomorphism, for each Riesz subspace bk@efFE P(H) is a

Riesz subspace of E

(5) If E is not a uniformly complete Riesz space, therdF is not a uniformly complete

Riesz space, s¢82, Thm59.3].
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For the following definition, see [32].

Definition 3.10 The Riesz homomorphisaof L into M is called a Riesz-homomorphism
if 7 preserves countable suprema, i.e., i supf,(n=1,2,...) in L thenxf = suprf, holds

in M.

A sufficient condition for Riesz homomorphismto be Rieszo- — homomorphism is that
fo L 0inL* impliesxf, | 0in M*. Evidently, the kernel of a Riesz-homomaorphism is a

o-ideal inL.

The projection magP : E xg F — E defined aP(x,y) = xis a Rieszo-homomorphism
since &, Yn) 1 (0,0) in E xg F implies x, | 0 in E. We immediately have the following
results by using3d2, Thm1811].
Proposition 3.11 (1) KerP = {0} xg F isac-ideal in Exg F.

(2) For anyo-ideal N of E, P1(N) = N x¢ F is ac-ideal in Exg F.

(3) For any ideal Aiin Exg F, P(A) is an ideal in E.

Definition 3.12 The Riesz homomorphisrof L into M is called a normal Riesz homomor-
phism if 7 preserves arbitrary suprema, i.e., if it follows from=f supf, (wherea runs

through an arbitrary index set ) in L thatf = supnf, holds in M.

A sufficient condition for the Riesz homomorphisnto be a normal Riesz homomorphism
isthat 0< f, 7 fin L* implies 0< nf, T nf in M* (or equivalently,f, | 0 in L* implies

rnf, | 0in M*). Evidently, the kernel of a normal Riesz homomorphism isuacbinL.

The projection majP : ExgF — E defined a$’(x, y) = xis a normal Riesz homomorphism
since Ky, Y.) | (0,0) in E xg F impliesx, | 0 in E. We immediately have the following
results by using3d2, Thm18.12].
Proposition 3.13 (1) KerP = {0} xg F is a band in Exg F.

(2) For any band N of E, P(N) = N xg F is a band in Exg F.

(3) For any projection band H in E, kg F is a projection band in Exg F.
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(4) If f is an atom in E, then the band generated by f, B a projection band in E. So

B¢ xg F is a projection band in Bxg F.

The following theorem is useful to characterize the digjecmmplement of kernel of projec-
tion mapP, {0} xg F and Dedekind completenessbixg F. For the details of the following

theorem, see32, Thm66.3].

Theorem 3.14 If L is Dedekind complete and is a normal Riesz homomorphism from L
onto M with kernel K, then M and disjoint compleme(K,)* are Riesz isomorphic, and so

M is Dedekind complete.

By using the previous theorem, we immediately have theviotig corollary.

Corollary 3.15 (1) (Kp): = ({0} xg F)* = E

(2) If E is not Dedekind complete, thenxg F is not Dedekind complete.

For further discussion, it will be convenient to introduceraperty for the Riesz spade
which is intermediate between the principal projectionpenty that is to say every principal

band inL is a projection band and the Archimedean property. For theldesee [32].

Definition 3.16 The Riesz space L is said to havgisiently many projections if every nonzero

band contains a nonzero projection band.

Proposition 3.17 If E has syficiently many projections, then ¥z F has syficiently many

projections.

Proof. Suppose thaE has sfficiently many projections. LeB be a band irE xg F. Then
P(B) is a band irE. SoP(B) contains a nonzero projection bandin ThenP~1(P(B)) c B
andP~1(P(B)) is a projection band dE x¢ F. O

We now consider operators &) G and onE xg F. For an operatof onG, T may not map
E into E andF into F. One way to get around this, we may restrict our attentioretaral

operators and assume tHatand F are ideals ofG. Since central operators map ideals to
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ideals, each central operator of the Riesz spgaweéll give rise to an operator dE xg F into
itself. Another way is to assume thitis an order ideal irfE. ThenF is an order ideal with
respect tde. Therefore we ensure thitxg F is a Riesz space. Thenlif: E — Eisa central
operator ork, the relation

T(xy) = (TxTy)

gives rise to a central operatiﬁ_ron E xg F. SupposeX,y) > 0in E xg F, thenx > 0 and
X+Yy > 0inG. Then we have thatix < Tx < Axand-A(x+Yy) < T(x+Yy) < A(x+Y). Thus
—A(xy) < (T TY) < A Y). So the operatof : E xg F — E xg F is a central operator.
Observe also thak is a positive operator whenevéris a positive operator arufllo <|Mllo

wherel|.||o denotes the order unit norm 8{E) andZ(E x¢ F). So we get the following result.

Proposition 3.18 Let E be a Riesz subspace of G and F be an order ideal in E: ET E

is a a positive central operator on E, the relation
T(xy) = (TxTy)

gives rise to a central operatof on Exg F such that|T|lo < ||Tllo wherell.|lo denotes the

order unit norm of ZE) and Z(E x¢ F).

One is temped to conjecture that each central operatBix¥ gives rise to a central operator
on E and onF. The problem here is the following; an operaif)lon E xg F may not map
E = {(x,0) : x € E} into itself. Similarly, it may not mag- = {(0,y) : y € F}into itself. One
way to approach this is to assume tEaandF are order ideals of the big spaGe But then:
suppose thaE is an ideal inG, then|(x,y)| < [(x, 0)l imply that (x|, |x + y| — [X]) < (Ix],0).
This gives ugx+y| < |Xl. Sox+y € E. Theny € E = F c E, even if we assume that
F N E = {0}. But, clearly ifEg = {(x,0) : x € E} andFg = {(0,y) : x € F} are ideals of
E xc F, then a central operat(T? : Exg F — E xg F defines mapg, : E — E and
T F — F asTo(x 0) = T(x,0), T1(0,y) = T(0,y) such that-A(x, 0) < To(x, 0) < A(x, 0)
and-1(0,y) < T1(0,y) < A(0,y). These show thalp € Z(E) andT; € Z(F). So we get the

following result.

Proposition 3.19if Eg = {(X,0) : x€ E} and iy = {(0,y) : y € F} are ideals of Exg F, then
a central operatorT_: E xg F — E xg F defines mapsgl: E— Eand T, : F — F as
To(x,0) = T(x,0), T1(0,y) = T(0,y) such that § € Z(E) and T € Z(F).
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3.3 Order Bounded Sets and Dedekind Completion o xg F—space

In this section, we investigate order bounded sets and Dedlelompleteness properties of
E xg F—spaces. In particular, we give two examples of condeetg F—spaces such that one

has Cantor property and the other one does not have Canfmerpyo

As the following proposition shows, we can characterizeepfitbunded subsets & and F

by using order bounded subsetstokg F.

Proposition 3.20 Let B= {(x,y) : x € E,y € F} be an order bounded subset ot F. If F
is an order ideal with respect to E, thér : (x,y) € B} is an order bounded subset of E and
{y: (x,y) € B} is an order bounded subset of G. If F is an ideal in E, tfen(x,y) € B} and

{y : (x,y) € B} are order bounded subsets of E.

Proof. Let B = {(x,y) : X€ E,y € F} be an order bounded subsettoks F. Let 0< (a,b) in
E xg F be such thal(x, y)| < (a, b) for all (x,y) € B. That is to say|&|, |x + Y| — [X]) < (a,b).
Then|x < afor all (x,y) € Band{x : (x,y) € B} is an order bounded subset Bf On
the other handix+y| < a+bforall (x,y) € B. Thus||yl—|X | < [x+Y < a+ byields
Iyl < (a+b)+|x <2a+bforall (x,y) € B. If Fisan ideal ofg, then{y : (x,y) € B}is an
order bounded subset &f If F is an order ideal with respect &, then{y : (x,y) € B} is an

order bounded subset Gf. O

Proposition 3.21 If E x¢g F is a Dedekind complete Riesz space, then E and F are Dedekind

complete Riesz spaces in their own rights.

Proof. Suppose thaE x¢ F is Dedekind complete Riesz space. Let(k, 7< xin E. Let
0 <y € F be arbitrary. Then & (X,,Y) T< (X y) in E xg F. Let (z1, ) be the supremum
of (X.,Y) in E xg F. Suppose K X, T< z3 and if 0< x, < zfor all a, then &,,y) < (zY)
in E xg F and we havez, z,) < (zy) which yieldsz; < z. Thusz is the supremum ofx,)
in E. Similarly, let0<y, 7<yin F. We choosex € E* and consider & (x,Y,) in E x¢ F.
Then 0< (X, ¥,) T< (X,y) in E Xg F. Let (z1, ) be the supremum of(y,) in E xg F. It

follows thatx = z andz is the supremum ofy(,) in F. O

Proposition 3.22 Let E be a Dedekind complete Riesz subspace of G and F be arbé&nd i

then Exg F is Dedekind complete Riesz space.
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Proof. Let (X, Y.) € E xg F be such that & (X, Y,) T< (X,y) in E xg F. Then 0< X, T< X

in E and askE is Dedekind complete x;) has a supremum i&, sayB;. On the other hand,
Yo < 2X+yin E. Then the supremum o) exists inE and ag- is assumed to be a band in
E, this supremum, saB,, belongs toF. ThenB; + By is an upper bound forx, + y,) in E
and ifzis the supremum ofq, +v,) in E, we have 0< z < B1 + B,. Suppose & z < B; + B,.
Then by Riesz Decomposition Propertys= u + v where 0< u < B;,0 < v < B,. But then
there existsrg andX,, with u < X,, andy,, With v < y,,. Thusu+ Vv = z < Xy, + Yo, Which

is a contradiction. Hence= B; + B, and B1, By) is the supremumx,, y,) in E xg F. So

E xg F is Dedekind complete. O

Remark 3.23 If E is Dedekind complete and F is an ideal of E, thehd E and P is an
ideal of E where F is the Dedekind completion of F. Since bothdhd E are Riesz spaces,
it is enough to consider positive elements only. @&ty < x € F° with y € E. Since x F°,
there exist® < x, T xwith x, € Fforall . ThenO < X, AY T XAY =Y. ASO< X, AY < X,

for eacha, x, Ay € F and ye F°.

Thus if E is Dedekind complete and F is an ideal ofE, thenE xg F° has a Riesz space
structure from the previous remark. In this case the Dedieimpletion ofE xg F is E xg F°

as the next proposition shows.

Proposition 3.24 If E is Dedekind complete and F is an ideal of E, thexEF?° is the

Dedekind completion of kg F.

Proof. We already know thaE xg F¢ is Dedekind complete and contaiBsxg F. We now
show thatE xg F is a majorizing order dense Riesz subspadg g F°. Let (x,y) € E xg F°.
Chooseyp € F with 'y < yp, then §&,y) < (X, yo) € E xg F. This shows thaE xg F is a

majorizing Riesz subspace Bfxg F°.

Let 0< (x,y) in E xg F°. Then 0< xand 0< x + Y. Then we have that,8y < x =y~ < x.
Hence O< x—y~ < x. Sincey € F?, by the order densenessffin F°, there exists & f < y*.
So0< (x-y,f) < (xy)where k—y, f) € E xXg F. This shows thakE x¢ F is an order

dense Riesz subspaceBfig F°. O
Similar considerations above proposition will yield thddwing result.
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Proposition 3.25 If F is an ideal of E, then the Dedekind completion ofEF is E? xg F°.

Proof. We have seen earlier th& xg F° is Dedekind complete and has a Riesz space
structure as=? is an order ideal oE°. It is also easy to see th& xg F is majorizing in
E% xg F?. Thus the only problem is to show thitxg F is order dense ife® xg F°. To see
this Let 0< (x,y) in E° xg F°. Then O0< xand 0< x+Y. SoQ-y < X =y~ < X. Hence
0 < x-y € E% AsEis order dense ifE’, there existsx; € E such that O< x; < X -y~
Also there existS € F such that O< f < y* asF is order dense iff’. But thenx; + f <
X=y +f<x-y +f+y" =x+y. Thenwe get G (xg, f) < (X, y) where ki, f) € Exg F.

This completes the proof. O

Definition 3.26 An Archmedean Riesz space L is said to have Cantor propariy-(mter-
polation property) if for any sequencés,) and(ym) in L such that x < yy, foreachnme N,

there exists an elementaL such that ¥ < g < y, foreachnme N.

As the following examples show that the spdate&s F has Cantor property in some cases.
The first example contains a concréie<g F—space having Cantor property. For the details

of examples, see [33].

Example 3.27 Let Q be a quasi-Stonean space with no isolated points.

Let G=B(Q)= the space of all bounded real-valued functions on & E(Q) and F = I¥(Q).
Let %, Zm € Exg F with %, = (an, bn) < zyy = (&, by,) for all m, n € N. It follows that & < a,
for all m,n € N. As E has certainly the Cantor property, there is & with a, < g < aj, for

each nme N. Then the set
C = suprbn) u|_J suptby)
neN neN

is countable since it is the union of two countable sets. Bohege C choose any () € R

with an(g) + bn(a) < afy(q) + biy(a). Define de IZ(Q) by da) = p(a) - g(a) if g € C and
d(g) = 0if g ¢ C. Then clearly, we have th&,, bn) < (9.d) < (ap,, by,) on Exg F and

(9,d) € E xg F. So Exg F has Cantor property.

Now we give an example d& xg F—space which has no Cantor property.
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Example 3.28 Let Q be a quasi-Stonean space with no isolated points. E®(Q)= the
space of all bounded real-valued functions on Q=EC(Q) and F = ¢o(Q). To prove that
E xg F is not a Cantor space, we may find disjoint sets=Tty, tp,...} and U = {uy, Uy, ...}
with p in the closure of botkty, th,1, ...} and{un, Un,1, ...} for each ne N. Define B € cp(Q)
to be the function with valuel on{ty, to, ..., ty} and otherwise. Similarly let ¢, € co(Q) be
the function with valud on {uy, up, ..., up} and otherwisé. Then we havé€lg, bn) > (0, dy)
for all m,n € N. If there were fe C(Q) and ce ¢p(Q) such that(1g, by) > (f,c) > (0,dn)
for each ne N, thenlg + b, > f + ¢ > d, for each n. Adty, to, ..., tn} C {t1, 2, ..., thik} and
{U1, Up, ..., Un} C {U1, Uy, ..., Un.k} fOr each ke N, then we certainly have ¥ c=0on T andl

on U. Since & ¢y(Q), c(tn) — 0and du,) —» 0as n— co. Thus
0 = lim(f(ty) + c(tp)) = lim f(ty) = f(p) = lim f(u,) = lim(f(uy) + c(uy)) =1

and this contradiction shows that s F has no Cantor property.

3.4 The Norm Properties ofE xg F—space

In this section, we investigate some propertieg ofs F-spaces such as Dunford-Pettis prop-
erty, weakly sequentially continuity of lattice operasoand Schur property. For these pur-
poses, we need to makexg F-space a normed Riesz space(Banach lattice). Consider the
norm [|(X, Y)llexgr = mMax||xl, [[X + yll} on E xg F. With respect to this norm, we have the

following.

Theorem 3.29 Let G be a normed Riesz space. We consider the following norEvg; F:

(X WllexeF = max|xl, lIX + yli}.

Then we have the following:

(1) E xg F is a normed Riesz space.

(2) (e f)is an order unit for Exg F whenever e and f are order units for E and F respec-

tively.
(3) E x¢ F is a Banach lattice whenever E and F are Banach lattices @irtbwn rights.
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(4) E x¢ F is an AM-space whenever E and F are Banach lattices in th&ir nghts and

G is an AM-space.

(5) E xg F is an AL-space whenever E and F are Banach lattices in their oghts and

G is an AL-space.

(6) If G has an order continous norm, thenXg F has an order continuous norm.

Proof.

(1) Itis enough to show that the norm defined above is a latticen. Let|(x, y)| < |(X,Y)I.

Then from Theorem 3.4, we have

(X, X+ Y1 = X)) < (X1, X+ y'[ = X]).

This gives ugx| < |X'| and|x+y| < |X +Y|. SinceG is a normed Riesz space, we have

IXI < [IX]] and]|x + Y| < [IX' + Y'[l. So we have{(X, Y)llexck < I(X, Y)llExsF-

(2) We will show that € f) is an order unit forE xg F. Let (X,y) € E xXg F. Then
there exist 0< A, € R such thaix < deandly] < af. So|X < max4,a}e and
IX+Vy < e+ af < max4a,aj(e+ f). This gives us thal(x, y)| < max4, a}(e, f). So

(e, f) is an order unit folE xg F.
(3) Let (Xn, Yn)n be a Cauchy sequencelinxg F. Then ,) is a Cauchy sequence has
X0 = Xmll < [I(%n, Yn) = (Xm, Ym)llExgF-
Then there exisk € E such thatx, — x. The equality
Ilyn = Ymll = 11(0, Yn) — (0, ym)llExsF>
and the inequality

100, ¥n) = (O, Ym)llExgk = 11(0, ¥n) = (Xn, 0) + (Xn, 0) + (Xm, 0) = (Xm, 0) — (O, Ym)llExsF

l1(Xn, Yn) = (Xm, Ym)llExaF + 1% = Xmll

IA

show that ¥,) is a Cauchy sequence k. Lety, — y € F. We also claim that

(X, ¥n) = (X, ¥) in E xg F. Lete > 0 be given. Asx, — x andy, — Y, there existg
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(4)

(5)

(6)

andn; in N such thaf|x, — X|| < & for eachn > ng and|ly, — yl| < & for eachn > n;. Let

N = max{ng, n1}. As

||(Xn, 0) + (0’ Yn) - (X’ O) - (09 y)”EXGF

l(Xn = X, O)llExaF + 11(0, Yn — VllExcF

1%, Yn) = (X Y)llExsF

IA

[IXn = X + llyn = VI,

we have that|(xn, Yn) — (X, Y)llexck < 2e for eachn > N. Therefore we proved the

claim. SoE xg F is a Banach lattice.

SinceE x¢ F is a Banach lattice by (3), it is enough to show that the norfindé
above is arM-norm, that is if &, y) A (X,y’) = 0, then

106 y) + (Y= max{ii(x y)IL 1<, y )l

for each &), (X,y) € (E xg F)". Let x,y) A (X,y) = 0. Thenx A X = 0 and
X+yY)A (X +Y) = 0inG. Therefore, we havéx + X|| = maxX||x|| + |[X]||} and
IX+y+ X +VY| =maX|x+ VX + Y|} asG is an AM-space. These give (i, y) +

(X, Y )lexsr = maX|i(X, YllexsE, I(X, Y)llexsr ). This completes the proof.

Itis enough to show that the norm defined above is-@orm, i.e., if K, Y)A(X',y) = 0,
then

I, y) + (XY )ExF = 16 YllExcE + (X, Y)lIExcF

foreach & y), (X,y) € (E xg F)*. Let (x,y) A (X,¥) = 0. Then, we hava A X' =0
and K+y)A (X +Y') = 0inG. Then we havéix+ X|| = |[X|+||X|| and||X+Yy+ X +VY'|| =

X+l +|IX + Y| asG is an AL-space. These give us
”(X’ y) + (X,’ y,)HEXGF = “(X’ Y)||E><GF + ||(X,’ y,)”EXGF-
This completes the proof.

Let X, Vo) | 0in E xg F. This implies thatx, | O andx, +Vy, | 0in G. As
G has an order continuous norm, then for eack: 0, there exist someg and a1

such thatl|x,|| < %s for eacha > ag and||X, + Vol < %s for eacha > «@;. Taking

a3 = maXag, @1}, we have that
1(Xe» Yo)llExF = MaX([Xall, X + Yoll} < &
for eacha > as.
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Example 3.30 (1) Let ¢ be the space of all convergent sequencgdecthe space of all
sequences converging to zero apdle the space of all bounded sequences. Considerog.

We see thatJ having order continuous norm is indispensable.

(2) Consider g x| 11 where | is the space of all absolutely summable sequences. We know
that |; is an order ideal in 6. So @ x|_ |1 is @ Banach lattice having order continuous norm.
But I, does not have order continuous norm. So the converse of gaih (the previous

theorem is not true in general.

Consider the normi(x, Y)ll = max||Xll, [lyll} on Exg F. Actually, two normg|.||. and||.|lex.F

are equivalent as the next proposition shows.

Proposition 3.31 Let G be a normed Riesz space, E and F be normed Riesz subgpaces
G such that F is an order ideal with respect to E. Two noiifsy)llexsr and||(X, y)llo ON
E xg F are equivalent. In particular, the projections:FE xg F - Eand Q: Exg F —» F

are continuous.

Proof. Let{(xn, Yn)} be sequence ik xg F which converges tox y) with respect to the norm
l.llexeF IN E Xg F. Then givere > 0, there existdN(g) such that|(Xn, Yn) — (X, Y)llexek < € if

N> N(e). Thus||(X, — X Yn — Y)llexek < €if N> N(g). So we get
max{|[X = Xall, [Iy = Yn + X=Xqll} < &
if n> N(g). In particular, this shows th#liy — y, + X — Xyl < € if n > N(g). Thus we have
Iy = Yall = 11y = ¥n + X = X0 = (X= X))l < [ly = Yn + X = Xall + [IX = Xql| < 2

if n > N(g). Thus if X, yn) — (X y) with respect td|.|[exsr in E Xg F, thenx, — Xxin E
andy, — yin F. Thus both of the projectionB : E xg F - EandQ : E xg F — F are
continuous. In particular, we have thad| < KJ||(X, Y)llexcr andllyll < Kl|(X, Y)llexgr. This

implies thatl|(x, y)ll = max|[x|, Iyll} < K|I(X, Y)llexse. On the other hand,

max{|IX|l, [Ix+yll} < max{ixl, [IXI + [Iyll}

IA

max{[|xll, 2 max|[xl, [Iyll}} = 2 max{Ixl, lIyll}.
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Therefore||(X, Y)llexsF < 21(X, Y)lleo- Thus||(X, Y)llexcF iS equivalent tdl(X, y)llco- O
From now on, we assume thatandF are Banach sublattices of a Banach latt&e
Without assuming thdt is an order ideal irfE, we have a map

T:G — (ExgF)

defined by
Tf(x,y) = f(x+y) foreachf € G’ and (x,y) in E xg F.

As
[T Y = X+ Y < Iflle IX+ Yl < [Iflle 10X Y)llExsF

T f defines a continuous linear functional Brxg F and||T f||EexsFy < IIflle’. If we restrictT
to E’, then||T f|| > |T f(x,0) = |f(X)|. Taking the supremum overe E such that|x|| < 1, we
get|Ifller <IIT fllexsFy. HenceT is an isometry when it is restricted E. In what follows,
we assume thdt is an order ideal ift and use the fact th&’ = (E xg F)’. In this case, we

have the following.

Proposition 3.32 Let F be an order ideal in E. If E has Dunford-Pettis Propestyortly DPP,
i.e., for all (xn) € E, X, = Oweakly and(f,) c E’, f, — 0weakly, thedimp_ fn(X,) = 0,
then Exg F has DPP.

Proof. Suppose thaE has DPP. LetX,, y,) be a sequence i xg F such that %,,y,) — 0
weakly inE xg F. Let (f,) ¢ (E xg F)’ such thatf, — 0 weakly. Since the projections
P:ExgF - EandQ: E xg F — F are norm continuous, they are weakly continuous, we
havex, — 0 weakly inE andy, — 0 weakly inF. Thusx, + y, — 0 weakly inE. SinceE

has DPP, then

lim fn(%n, ¥n) = liM_fn(Xn + yn) = 0.
O
If F were not an order ideal i&, then the result would be as follows: & has DPP, then
E xg F has DPP for eack.
Definition 3.33 Lattice operations in a Banach lattice are said to be wealdguentially

continuous if ¥ —» 0 weakly= |x,| — 0 weakly.
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Proposition 3.34 Let F be an order ideal in E. If E has weakly sequentially ttbpera-

tions, then Exg F has weakly sequentially lattice operations.

Proof. Suppose thatxg,yn,) — 0 weakly. Since the canonical projections are weakly
continuous, we have, — 0 weakly inE andy, — 0 weakly inF thenx, +y, — O
weakly in E. Thus|(X., Yn)l = (IXal, [Xn + Ynl — IXl) and f, € E” = (E xg F)’, we have
f(IXnl, IXn + Ynl = [%al) = f(IXn + Ynl) we see thaf (|x, + yn|) — 0 sinceE has weakly sequen-

tially continuous lattice operations. O

If F were not an order ideal i, then the result would be as follows: @ has weakly
sequentially continuous lattice operations, tlierg F has weakly sequentially continuous

lattice operations for eadh.

Proposition 3.35 Let F be an order ideal in E. If E has Schur property, i.g,, 0 weakly
in E = ||Ixall = O, then Exg F has Schur property.

Proof. Suppose %n,yn) — 0 weakly inE xg F. Then using projections again, we have
Xn — 0 weakly inE andy, — 0 weakly inF so thatx, + y, — 0 weakly inE. Firstly,
from x, — 0 weakly= ||xn]| — 0 and fromx, + yn — 0 weakly= ||, + yn/| — 0. Thus

(%n, Yn)llExeF = max|iXall, 1%y + ynll} — O. O

If F were not an order ideal ig, then the result would be as follows:Gfhas Schur property,

thenE xg F has Schur property for ea¢h

From now on we assume thatis an order ideal with respect @

Definition 3.36 A Banach lattice L is said to be a KB (Kantorovich-Banachgespwhenever

every increasing norm bounded sequence*oislnorm convergent.

When isE xg F a KB-space? Now we will try to find an answer for this questi@me of

them is below.

Proposition 3.37 If G is a KB-space, E and F are Banach lattices, thexdE is a KB-space.

Proof. Let 0 < (Xn,¥n) T be a norm bounded sequencebnkg F. Then 0< X, T is norm

bounded irE and 0< X, + Y Tis norm bounded 6. AsG is a KB-space, ;) and xn + Yn)
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are norm convergent i@, sayx, — xandx, + Yy, — z This gives usx, — xandy, —» z— X.
As E andF are Banach latticesx(z— x) belongs tcE xg F. S0 (n, Yn) — (X, Z—X) in Exg F.

This completes the proof. O

Proposition 3.38 Let E and F be Banach lattices. If¥g F is a KB-space, then E and F are

KB-spaces.

Proof. Let 0 < x, T be a norm bounded sequenceBn Then 0< (X,,0) T is a norm
bounded sequence i xg F. This implies &,, 0) is norm convergent ifc xg F. But we
havel|xll = [I(Xn, O)llexgE- This shows thatx,) is norm convergent ic. SoE is a KB-space.

Similarly we can show théf is a KB space. O

From the proposition above, we immediately have the folhgngorollary.

Corollary 3.39 If E or F is not a KB space, then &g F is not a KB space.

Example 3.40 Consider cx;_, Co. As c is not a KB-space, sog_ o is not a KB-space from

the previous corollary.

There is a connection between being a KB-space and corgaigiior a Banach latticé.. If

Co is not (lattice) embeddable In thenL is a KB-space. For the details séd®]Thm14.13].

Example 3.41 Itis well-known that g is always lattice embeddable in an infinite dimensional
AM-space. Thus if G is a Banach lattice and if one consideptivecipal ideal Iy generated
by xe G*, then from the previous theorelpxg F is not a KB space for any F which is an

order ideal with respect toglsince k is an AM space which containg.c

Recall that a closed vector subspatef a Banach spack is said to becomplementedhen-
ever there exists another closed vector subsgamieX such thatX = Y @ Z. Also recall that
a Banach spac¥ is said to embed complementably into another Banach siagkenever

there exists an embeddifig: Y — X so thatT (Y) is complemented iX.

Regarding embeddings of Banach spaces into KB-spaces, weetma following remarkable

result of W. B. Johnson and L. Tzaffriri.
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Theorem 3.42 If a Banach space X embeds complementably into a Banacbelaitid ¢

does not embed in X, then X also embeds complementably ingpk&e-

Remark 3.43 (1) Let G be a KB—space. Theg s not embeddable in kg F for every
Banach lattices E and F, otherwise & F is not a KB—space. Also in this case,is not

lattice embeddable in E and F as E and F are lattice embeddaliexc F.

(2) if E is a complemented sublattice of G adscnot embeddable in E, then by considering
a KB space Gcontaining E ( as given in the previous theorem & F is a KB—space for

every order ideal F with respect to E.

(3) Let G be a Banach lattice containing.cLet F be an ideal with respect tg.cThen we
have that g xg F is not a Grothendieck space. This is because the operatocixg F — ¢p

is a lattice homomorphism. On the other hand it is well-knalat there does not exist any
surjective linear operator T from a Grothendieck space §o ¢n particular, we see that

Co X, 1 is not a Grothendieck space.

In Banach lattices, the norm topology and the relativelyfarm topology (ru—topology) al-

ways coincide. This may not be true in normed Riesz spaces.

Proposition 3.44 Let G be a normed Riesz space in which the norm and ru—topaoigy
cide. Then Exg F has the same property for each Riesz subspaces E and F ih Whgan

order ideal with respect to E.

Proof. It suffices to show that every norm convergent sequence has a rargent subse-
qguence. LetX,, yn) be a norm convergent sequencebirxg F. Then ,) and K, + y,) are
both norm convergent sequencesanLet (xn, ) be a ru-convergent subsequenceej.(Let
(X, + Yn) be a ru-convergent subsequence of the norm convergergrseg|l,, + Yyn ). Since
(X, Yny) Is @ ru-convergent subsequencexf ¢»), we see that ru-uniform topology and norm

topology coincide irE x¢ F. O

Corollary 3.45 Let E, F and G be as above. ThEp, is an ideal with respect to E for every

F which is an ideal with respect to E.
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3.5 Disjointness Properties oE xg F—space

In Banach lattice theory, disjoint sequences play an ingmbrole to characterize many prop-
erties of given Banach lattice such as lateralljgompleteness properties, weakly compact or-
der intervals, lowep-estimate property. In this section, we will characteriame properties
of E xg F—spaces by using their disjoint sequences. We start witfotlmving proposition
which gives a relation between the disjoint sequencdsxaf F—spaces and the spadesind

G.

Proposition 3.46 Let E be a Riesz subspace of a Riesz space G and F be an ordeted ve
subspace of G such that F is an order ideal with respect to EenTh y) L(X,y') in E Xg F

o xLX inEand x+yLx +Yy inG.

Proof. Let (x,y) L(X,Y) in ExgF. Then|(x,y)+ (X, y)l = (X, Y)—= (X, Y)l & [(x+X,y+Yy)| =
(X=X, y=y)l & (X+X[[X+y+X +Y[-[|xX+X]) = (X=X, [X+y—-X -y[-[|x=X]).
Sowe getx+ X| = |x=X|and|x+y+ X +Y|=|x+y—-X —Y/|. Thereforex.X in E and

X+yLxX +Yy inG. 0

Proposition 3.47 Let E be an order dense ideal in G and F be an order ideal in E nTthe

ideal I(E xg F) generated by Exg F is an order dense ideal in Gg G.

Proof. Let (x,y) € (E Xg F)*. Then & y)L(e, f) for each € f) € E xg F. ThenxLe and
x+yle+ f. AsE is an order dense ideal 18, we getx = 0. SoyLe+ f for eache € E
andf € F. Taking f = 0, we gety_Le. Again asE is an order dense ideal &, we gety = 0.
Let I(E xg F) be the ideal generated liyyxg F in G Xg G. ThenE xg F c I(Exg F) =
I(E xg F)* = 0. O

Proposition 3.48 If F is an order ideal in E, thefE xg F)* is a subset of F.

Proof. Let (x,y) € (E xg F)*. ThenxLeandx +yiLe+ f foreache € Eandf € F. This
implies thatx € E+ andx+y € E*. We getx € E* andy = x+y— x€ E*. AsE* c F*, we

getxe F+,ye F-. O
We now give the following definition. For the details see [9].

36



Definition 3.49 A Riesz space L is said to be laterattycomplete, if the supremum of every

disjoint sequence of'Lexists in L.

Proposition 3.50 If E is a laterally o-complete Riesz subspace of G and F is a band of E,

then Exg F is a laterally o-complete Riesz space.

Proof. Let 0 < (Xn, Yn) be a disjoint sequence B xg F. Then we havexq, Yn) L (Xm, Ym) = 0

for eachn # m. This implies thatx, Lxy and alsoxp + YnLXm + Ym. As E is laterally o--
complete, sufx,} andsux, + yn} exist inE. Let sugx,} = x and supx, + yn} = z As

Yn < Xn +Yn < zandF is a band inE, sudyn} exists inF, let sugy,} = y. We claim that
z=X+Y. Assume that & z < x+y. Then by the Riesz Decomposition Property, there exist
Xp andxy in E such that 0< x; < xand 0< X, < y such thatx; + X = z Then there exists
anng such thatx; < Xp, andX < Yn,. ThusXy + X2 = Z < Xn, + Yn,, Which is a contradiction.

Hencez = x+ y and ,Y) is the supremum ofx, y,) in E xg F. 0

We now state a theorem which will be useful in the next prapmsi For the details see [9].

Theorem 3.51 Let T: L — F be a positive operator between two Archimedean Riesz space

If L is laterally o-complete, then the operator T agsorder continuous.

Remark 3.52 Let E be an Archimedean Riesz subspace of G and F be an ideal reE
0 < n(x,y) < (X,Yy) for each ne Nand(x,y),(X,Y) € Exg F. Then0 < nx < x and
0<n(x+y) <X +YyinE. As E is Archimedean, we ge&x0 and x+ y = 0. Hence we get

x =0and y= 0. So Exg F is Archimedean

Proposition 3.53 Let E be an Archimedean lateralby-complete Riesz subspace of G and F
be a band in E. Then the projection map; E xg F — E defined by B, y) = X isc-order

continuous.

Proof. As E is an Archimedean laterally-complete Riesz space akds a band irgE, ExgF
is an Archimedean laterally-complete Riesz space. Also the projection nkais positive.

ThereforeP is o-order continuous by the previous theorem. O

Now we give a characterization of super Dedekind completenéE xg F by using disjointe-

ness property of this space. For this purpose, we give thenfinlg well-known definitions.
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Definition 3.54 The Riesz space L is said to have countable sup property (€SRgry

disjoint net(f,) such that f < f for some fe L is countable.

Definition 3.55 A Riesz space L is called super Dedekind complete if L is Dedlebmplete

and has countable sup property.
Proposition 3.56 If E has CSP, then kg F has CSP.

Proof. Suppose that has CSP and leff{, g,) be a disjoint net irE xg F such that {,, g,) <
(f,9). This implies that {,) is a disjoint net inE and f, < f. As E has CSP, we get that,()

is countable and so if{, g,). O

Using the proposition above, we immediately have the fdlgwcorollary.

Corollary 3.57 Let E be a Dedekind complete Riesz space which has CSP and bdrela

in E, then Exg F is super Dedekind complete.

Proposition 3.58 Let F be an order ideal in E. Assume that TE — E is a positive
orthomorphism on E. Then the relaticfr(x, y) = (T x Ty) gives rise to an orthomorphism on

EXGF.

Proof. SupposeX,y) > 0in ExgF. Thenx > 0 andx+y > 0 in G. By the positiveness of,
we get 0< T(x) and 0< T(x+Y) = T(X) + T(y). SoT is a positive operator. Therefofeis
an order bounded operator. Now assume tkaf)(L(X',y’) in E xg F. This implies thaix L x’
andx+yLlx +y in E. AsT is an orthomorphism ok, we havexLT(x") andx+yLT (X +Y’)

= (X Y)LT(X,Y). 0

Proposition 3.59 Let F be an order ideal with respect to E. If e is a weak ordet ohE and

e+ f is a weak order unit of & F, then(e, f) is a weak order unit of Exg F.

Proof. Lete > 0 be a weak order unit ikt ande + f > 0 be a weak order unit ik + F.
Then g f) > 0inE xg F. Let (g f)L(xy) in E xg F. This implies thaté f) A |(x,y)| = 0.
Hence & f) A (X, IX+ Yy — [X]) = 0. ThereforeeA |[Xl =0and €+ f) A|x+y| = 0. Aseand
e+ f are the weak order units & andE + F respectively, we gex = 0 andx+y = 0. So

(xy) = (0,0). O
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Proposition 3.60 Let F be an order ideal in E. If e is a weak order unit of E and f iseak

order unit of F, then(e, f) is a weak order unit of Exg F.

Proof. Lete > 0 be a weak order unit iE and f > O be a weak order unit iff. Then
(e f)>0IinExgF. Let (e f)L(xY)in Exg F. Thisimplies thaté f) A|(x,y)| = 0. Hence
(e ) A(X,Ix+Yyl —1|X) =0. Thereforee A [X = 0and €+ f) A [x+ Yy = 0. Aseis a weak
order unit ofE, we getx = 0. Then €+ f) Alyl = 0. ButO< f < (e+ f). This implies that
f AV < (e+ f) Ayl =0. Thisyields thatf A |y| = 0. As f is a weak order unit of, we get
y=0. O

Definition 3.61 A Riesz space L is said to have a finite or countable order lifiisre exists

a sequencév,) c L* such thatif fe L and|f| A v, = O for each ne N imply that f= 0.

By using the definition above and disjointness propertf ofs F, we may characterize the

finite or countable order basis Bfxg F as in the next proposition.

Proposition 3.62 Let E be a Riesz subspace of G and F be an order ideal in E. If Eahas

countable order basis, then ¥ F has a countable order basis.

Proof. Assume thak has a countable order basis. Then there exists a sequegfce E*
such that f| A v, = 0 for eachn € N. Then the sequencey(0) in E x¢ F is positive. Let
I(f,9)l A (Vh, 0) = (0,0) for eachn € N. Then|f| A v, = 0 and|f + gl A vy = 0 for each
n € N. As E has a countable order basis ahd + g € E, we have thaf = 0andf +g=0

= (f.9) = (0,0). O

Definition 3.63 The element p in a Riesz space L is called a component of aerelens 0

in L whenever p and e p are disjoint, i.e., wheneverige — p).

The above definition is justified by the following lemma. Fbetdetails of lemma, see
[32 Thm382].

Lemma 3.64 Any component p of & O satisfied < p<e
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Proposition 3.65 If (e, f) is a component dfx, y) in E xg F, then e is a component of x in E

and e+ f is a component of x y in G.

Proof. Let (0,0) < (e, f) be a component ofx(y) in E xg F. This implies that ¢ f) A
((xy) —(e,f)) = 0. Then g f)A(x—ey—- f) = 0. This givese A (x—€) = 0 and
e+ )A(x+y—-(e+ f)) =0. O

For a positive element in a Banach lattice., the order interval [0x] is weakly compacif
every disjoint sequence of [§] is norm convergent to zero. By using this characterizatibn

weakly compact order intervals, we have the following.

Proposition 3.66 If G is a Banach lattice having weakly compact order intesy#hen BxgF

has weakly compact order intervals.

Proof. Let (x,,yn) be a disjoint sequence of [& f)] in E xg F. Then §,) is a disjoint
sequence irE such that X,) c [0,€] and (x, + Yyn) is a disjoint sequence i@ such that
(X + Yn) C [0,e+ f]. As G has weakly compact order intervals, we have fixaf — 0 and

[IXn + Ynll = 0. This implies thati(Xn, Yn)llexcr = max||Xall, [1%n + Ynll} — O. O

Proposition 3.67 Suppose that G is a Banach lattice with the property tha{/&)polid hull
of every norm bounded subset A is relatively weakly comgéan norm bounded subsets of
E xg F has the same property for each Banach lattices E and F whesedn order ideal

with respect to E.

Proof. Let A be a norm bounded subset Bfxg F. It is enough to show that every norm
bounded disjoint sequence #10(A) is norm convergent to zero. Lek{yn) be a norm
bounded disjoint sequence $(A). Then there exists son > 0 such thaf|(Xn, yn)Il < M.
Then ,) and &, + yn) are norm bounded disjoint sequencesan Then||x,|| — 0 and
X2 + Ynll = O imply that[[(X, Yn)llexsF = MaX|iXll, 1% + Yall} — 0in E xg F. This

completes the proof. O

Let us recall that the norm of a normed Riesz space satisfmsex p-estimatef and only if

(IIxnll) € I, for every disjoint order bounded sequengg) € E*.
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Proposition 3.68 Let G be a normed Riesz space satisfying a lower p-estimasofoe p.

Then Exg F satisfies a lower p-estimate for eachcEs and F an ideal with respect to E.

Proof. Let (Xy,Yn) be an order bounded disjoint sequence Xz F)*. Then ,) and
(X + Yn) are order bounded disjoint sequence&in Then ((xnl[) and (IXn + ynll) are inlp.
Hence||(Xn, Yn)llexgk = maxX|IXall, [IXn + ynll} also belongs td, andE x¢ F satisfies a lower

p-estimate. O

Itis well-known that every.-weakly compact subsétof a normed Riesz spactes relatively

weakly compact.

Proposition 3.69 Let G be a Banach lattice with the property that every rekdimveakly
compact subset is L-weakly compact. Thesd=F has the same property for each Riesz

subspaces E and F of G such that F is an order ideal with resjoet

Proof. Let A be a relatively weakly compact subsettokg F. By Theorem 3.6.8 in ([23]),
it suffices to show that each disjoint weakly null sequenggy) in A is norm convergent to
zero. It is easily seen thak{) and (x, + yn) are weakly null disjoint sequences@ Thus

[IXnll @and||X, + Ynll @are convergent to zero @ and therefore irE xg F. O

3.6 A New Type of Abramovich — Wickstead Spaces

In this section we introduce a new type of Abramovich—Wiekst spaces. We show that this
space is a Riesz space under pointwise order. We start vatfottowing definition which

contains the building blocks of this space.

Definition 3.70 For a compact space K and a relatively uniformly completdardattice E,

we set

(1) C(K, E(e)) the space of all mappings from K into(& which are continuous in the

sense of the normh|le where Ee) denotes the ideal generated by &€* and

Ulle :=inf{d >0 :Ju < 1€} (ue E(e).

41



Then, we set

Ci(KE) = J{C(K.E(e) : ec E'}
and call the elements of this set r-continuous or unifornaligtmuous functions on K.

It is clear that G(K, E) is contained in4,(K, E), the space of order bounded functions
from K into E, since in &) norm boundedness coincides with order boundedness.

Moreover, G(K, E) is a vector sublattice ind(K, E).

(2) co(K, E(e)) the space of all mappings d from K intdd} such that for alle > 0, the set
{k e K :||d(K)|le > &} is finite. Then we set

(K. E) =] {co(K, E(e)) : e€ E7).

Itis clear that ¢(K, E) is contained ind,(K, E). Moreover, ¢(K, E) is a vector sublat-
tice in I (K, E).

Now we give the following theorem which will be useful in thegsiel.

Theorem 3.71 Let K be a compact Hausdfiispace. For any fe C;(K, E) ande > 0 there

exist ee E* and finite collectionss,...,¢n € C(K)and q, ..., e, € E such that

sup
aeK

< g€

f(a) = ) pr(@)e

k=1

Proof. By the assumptionf € C(K, E(e)) for somee € E*. According to the Kakutani and
Krein TheoremE(e) is linearly isometric and lattice isomorphic @(Q) for some compact
Hausdoff spaceQ. Therefore one can assume tlfae C(K,C(Q)). However, the spaces
C(K,C(Q)) andC(K x Q) are isomorphic as Banach lattices. It remains to note ditaprding
to the Stone-Weierstrass Theorem, the subspace of thédnsdt,q) — Y1, ek(@)ex(a),
whereyps, ...,y € C(K) andey, ..., e, € C(Q), is dense irC(K x Q). O

Definition 3.72 Let K be a compact Hausdgrspace without isolated points and E be a
relatively uniformly complete vector lattice. We denoteQiy(K, E) the set of E-valued
functions on K each of which is the sum of two E-valued funstioand d, where €& C, (K, E)

and de cy(K, E).
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For a finite subse$ of K ande € E, ys ® eis in CD{(K, E). Itis easy to see th&D{(K, E)

is an ordered vector space under the pointwise order.

We now give the following important lemma which will be usexthis section.

Lemma 3.73 Let K be a compact space and E be a relatively uniformly cotmptector
lattice. If f € C/(K, E) n (K, E), then there exists an elemengd=" such that the function

f e C(K, E(6)) N co(K, E(6)).

Proof. Let f € C/(K,E) n ¢(K, E). By assumption, there exisi ande, € E* such that
f € C(K, E(er)) andf € co(K, E(e2)). Lete = e; v &. Then clearlyE(e;) andE(e;) c E(e).
We will show thatf € C(K, E(e)) N co(K, E(e)). Let f € C(K, E(e1)). As E(e1) c E(e), we

have

{A>0:]f(X)| < e, xe K} c{B>0:|f(X) <pe xeK}.

If we take the infimum of these sets, we get

inf{B8>0:|f(X)| <Be xe K} <infla>0:|f(X)| < ae, xXe K},

hence||f(X)lle < [If(X)lle, and f € C(K, E(€)).
Let f € co(K, E(e2)). As E(e2) c E(e), we have similany|f(X)lle < [[f(X)lle,. Fixe > 0. It

follows that

{(xeK:e<[[f(Xlle} c {xe K:e<[[f(Xle),

hence{x € K : & < |[f(X)lle} is finite. Thereforef € cy(K, E(€) and this completes the proof.
O

Lemma 3.74 Let K be a compact Hausdfiispace without isolated points and E be a rela-

tively complete vector lattice. Then; (&, E) N cy(K, E) = {0}.

Proof. Suppose the contrary; letf f € C,(K, E) N ¢5(K, E). Let us assumé(x) # 0. By
using the previous lemma, there exists sameE* such thatf € C(K, E(€)) N ¢co(K, E(€)).
Then there exists a neighborhoddf x such that fory € V we have|f (y)lle > || f(X)|le/2. But

sincex is not isolatedy is uncountable, which is a contradiction since cy(K, E(e)). O
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It now follows that the decomposition of an element@D{ (K, E)-space into a sum of an
r-continuous function and one with finite support is uniquex CD{(K, E) deserves to be

called an Abramovich—-Wickstead space.

Lemma 3.75 Let K be a compact Hausdfiispace without isolated points and E be a rela-
tively uniformly complete vector lattice. Let@pCD{(K, E). Then g = sup(p, 0) exists in
CD{(K, E)

Proof. Let p € CD(K,E). Letr(k) = f*(k) + [-f~ (k) + h(k)] v (-f*(K)) for eachk € K
wheref andh are continuous and discrete partgogespectively. Les(k) = (-~ (k) + h(k)) v

(- f*(K)). Lete > 0 be given. Then there exists some E* andng € N such that

1
(ke K:ie<[s(K)lle} c ke K: o < lIh(k)lle}-
Indeed, if this were not true, then for some sequetggif K, we would haves < ||s(kn)lle
while |[h(kp)lle < % for all n € N. By compactness &, we can find a subnek() of (k,) that

converges to some € K. As [|h(k,)lle — 0 in E(€), we have that
& < [Istka)lle = ll(= 7 (ke) + h(ka)) V (= T (Ke)lle = I = T~ (ko) V (=7 (ko))lle = O

which is a contradiction. Henaee CD),(K, E) wheneverp € CD|(K, E). On the other hand,
r(k) = f7(k) + [-f7(K) + h(K] v (=7 (k) = [7(k) = 7(K) + h(K)] v 0 = (p(K))"

for eachk € K. Sor is indeedp®. Therefore, continuous part ofs f*, wheref*(k) = (f(k))*

by uniqueness of decomposition. O

We summarize what we have from the previous lemma as follows:

Proposition 3.76 Let K be a compact Hausdfrspace without isolated points and E be a
relatively uniforly complete vector lattice. Then Q(B, E) is a vector lattice under the point-

wise ordering :0 < p € CD|(K, E) & 0 < p(k) in E for all k € K.

Just like real-valued function spa€g(K) in [33], suprema and infima are easy to identify

in CD{(K, E). We shall writeh, 1 hif the neth, is increasing andugh,) = h.

Proposition 3.77 Let K be a compact Hausdfrspace without isolated points and E be a
relatively uniformly complete vector lattice. If B h in CD{(K, E), then B (k) T h(k) in E for
allk e K.
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Proof. Let ko be an arbitrary but fixed point d€. Thenh(ko) is an upper bound dh, (ko) :
y € T'}in E(e) for somee € E*. Let v be another upper bound f¢h,(ko) : vy € I'}. If
v A h(kg) = h(kp), then the proof is obvious. On the other hand; if h(kg) < h(kp), then we
can find some G e; € E(e) such that A h(kg) + e1 < h(ko). Thenh — yy, ® e; is an upper
bound inCDj(K, E) for the family {h, : y € T}, contradicting the definition di. O

From the proposition above, we conclude that order convegy@éC D(K, E) is pointwise.

3.7 Abramovich—Wickstead Spaces as Lattice—Normed Spaces

In this section, we show that Abramovich—Wickstead typecspare actually decomposable
br-complete lattice-normed spaces. For the sake of convemiere give the following defi-

nitions which were given in [27].

Definition 3.78 For a non-empty set K and a normed space E, we defi(i€, E) as the
space of E-valued functions, f on K such that for each 0 the settk € K : |[f(K)|| > &}
is finite and §; (K, E) as the space of all bounded E-valued functions, d on K sudhttiea
set {ke K : |[d(k)|| # O} is countable.

Proposition 3.79 Let K be a topological space and E be a normed space. TH&nE)
which is the space of E-valued continuous functions ongl,&) and I, (K, E) are decom-

posable lattice-normed spaces with norm latticé&Y co(K) and Iy (K) respectively.

Proof. Let f € C(K,E). Define its vector norm byf|(k) = ||[f(K)|| (k € K). Then|f| €
C(K), sincef : K - E and|.|| : E — R* are continuous. Therefore the norm lattice of
C(K,E) is C(K). |.| is also a decomposable norm. Indeed, assuméfthath; + h, for some
hy, h, € C(K)*. Define a vector-valued functiofy : K — E such thatfi(k) = %hl(k)

when f(k) # 0 andfy(k) = 0 whenf(k) = 0. Letk, — kin K. Let f(k) # O, then

) 10
f1(|<a)—”f(ka)”h1(ka) ”f(k)”hl(k) f1(K).

Let f(k) = 0. Suppose the contrary thiik,) - 0. Then there exist some> 0 and a subnet
(kg) of (k,) such that
& <|Ifa(kp)ll = ha(kg) < I (Kg)ll — O,
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which is a contradiction. Thereforf € C(K,E) and f, := f — f; € C(K, E). Moreover,
[Tl = he (k = 1, 2), since

_ _ i t® _ _

11109 = 1001l = el = a0l = ha()
and
f(K)
12109 = 1F = 09 = 109 = FuRIl = 11(0) = o (R
_ IEF@INE I = Fha Kl
I (Kl
_ R (K) + ha(k)) = FRh(K)II
I (Kl
HCLACH TR

I (Il

Letnow f € cy(K, E). Define its vector normf|(k) = || f(K)||. Then we havéf| € co(K), since

for eache > 0, the set
(ke K:[f|(K) > e} ={ke K:|[f(K] > &)

is finite. |.| is also a decomposable norm. Indeed, assume fthath; + h, for somehy, hy €
Go(K)*. Define a vector-valued functiofy : K — E such thatfi(k) = rrid:hi(k) when
f(k) # 0 andfy(k) = 0 whenf(k) = 0. If f(k) # 0, then the set

(ke K:|[fi(K)|| > &} = {ke K : hy(K) > &}

is finite ashy € cp(K)* so thatf; € cp(K,E). If f(k) = 0, thenfy(k) = O so that clearly
f1 € co(K,E). Thereforef; € co(K,E) and f, := f — f; € cp(K, E). Moreover,|fy| = hg
(k=1,2).

The third assertion can be proved similarly. O

The following definition was given in [27].

Definition 3.80 Let K be a compact Hausdfrspace without isolated points and E be a
normed space. We define @B, E) as the set of E-valued functions on K such that each of
which is the sum of two E-valued functions f and d, where (K, E) and d € cy(K, E).
Similarly, we define C{XK, E) as the set of all E-valued functions on K each of which is the

sum of two E-valued functions f and d, where €(K, E) and de Iy (K, E).

46



For a finite subse® of K ande € E, the vector-valued functiops ® e is in CDy(K, E) where
xs ® k) = eif ke S and 0 otherwise. On the other hand, for a countable si$eéK and
ec E, ys®eisinCDy(K, E).

Lemma 3.81 Let K be a compact Hausdfispace without isolated points and E be a hormed

space. Then K, E) NIy (K, E) = {0}.

Proof. Suppose the contrary; let® f € C(K, E) NI}y (K, E). Assume thatf(x) # 0. Then
there exists a neighborhoddof x such that fory € V we have||f(y)|| > || f(X)||/2. But since

xis not isolatedy is uncountable, which is a contradiction sirice Iy (K, E). O

It now follows that the decomposition of an element@by(K, E) or of CDy(K, E) into a

sum of a continuous function and one with finite (or countabigport is unique.

Lemma 3.82 Let K be a compact Hausdfispace without isolated points and E be a hormed
space. Then C§iK, E) and CD,(K, E) are decomposable lattice-normed spaces with norm

lattices Cy(K) and CDOy(K) respectively.

Proof. Let f € CDo(K, E). Thereforef = f; + f, (f; € C(K, E), f» € ¢p(K, E)). We define
its vector norm asf|(k) = |f1 + fo|(K) = || fi(K) + f2(K)|| for eachk € K, since|f;| € C(K) and
| 2] € cp(K) are disjoint (Proposition 3.79) so thdit = |f1 + fo| = |f1| +|f2] € C(K) @ co(K) =
CDy(K) (Lemma 2.3)..| is also a decomposable norm. Indeed, assume fthath; + h, for
somehy, hy € CDo(K)*. Then|fy + fo| = [fy| + 2] = hy + hy = h] + h! + 1, + h] where
hi,h, € C(K) andh?,h) € co(K). Then|fi| = h] + h, and|fz] = h + h]. As C(K, E) and
co(K, E) are decomposable lattice-normed spaces (Propositi@), 3tiere existf; € C(K, E)
such thatif| = h, (k = 1,2) andf; = f] + f] and there existf,’ € co(K, E) such that
1Tl = hY (k=1,2) andf; = "+ f}’. Thereforg f,+ | = |f/|+f| = i +h/ = h (k= 1,2)

and also we havé = fy + f = f/ + 7+ 1" + {7/,
The second assertion can be proved similarly. O

The following observation about the norm @Dy (K, E) andCD,(K, E) was given in [27].

For the sake of convenience, we give its proof.
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Lemma 3.83 Let K be a compact Hausdfispace without isolated points and E be a hormed

space. Then for each functionefC(K, E), we have

Ifll=inf |f+dl= (I +di
deco(K,E) delee (K,E)

inf
w(K,

where||f + d|| = supgek Il T (K) + d(K)]|.

Proof. As constantly zero function belongs ¢g(K, E), we have infiec,k.g) IIf + dil < [[f]l.
Suppose the contrary, g,k g llIf + dl|l < [[f]l. Then for some: > 0 andd € co(K, E), we
would havel|f + d|| + € < ||f||. As the mappingk — || f(K)|| is a continuous function frork
to R, we have|f + d|| + € < ||f(ko)|| for someky € K. But the last inequality is not only true
for ko € K but also for an open neighborhottiof ky, i.e. || f(K) + d(K)|| + £ < || f(K)|| for all
k e U. Asd € (K, E) andU is uncountable, there exists sokiee U such thatd(k;) = O.

But then||f (ky)|| + & < || f(ky)|| which is a contradiction.

The second equality can be proved similarly. O

Lemma 3.84 Let K be a non-empty set and E be a normed space. TH{EnE) and [} (K, E)

are closed subspaces ofg E) the space of bounded E-valued functions on K.
Proof. Suppose that a sequence of functiofyg € cy(K, E) converges in supremum norm to
f € B(K,E). Fixe > 0, then||f, — f|| < 5 for somen. It follows that
(ke KT > &) ¢ (ke K: 1Ml > 5
hencelk € K : || f(K)|| > &} is finite.
The second assertion can be proved similarly. O

The following theorem which will be used in the sequel wa®giin [27].

Theorem 3.85 Let K be a compact Hausdfispace without isolated points and E be a Ba-

nach space. Then GJIK, E) and CDQy(K, E) are Banach spaces under the supremum norm.

Proof. Let (h,) be a Cauchy sequence@by(K, E). Supposéd, = f,+d, wheref, € C(K, E)
andd, € cp(K, E). Then from Lemma 3.83|f, — fmll < |lhy — hml| so that §,) is a Cauchy
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sequence iIlC(K, E). Norm completeness @(K, E) yields a functionf € C(K, E) such that

f, — f in supremum norm. The inequality
[[dn — dmll = lIdn + fn = T + T = fn = dill < 110y = Dl + [ = il

implies that ¢l,) forms a Cauchy sequence (K, E). It follows from Lemma 3.84 that
dn — d € cp(K,E). Thereforeh, = fa +dy — f +d € CDp(K, E), henceCDy(K, E) is a
Banach space. The second assertion can be proved sim#dfly @, E) is a closed subspace

of B(K, E). O

Remark 3.86 Let us denote the supremum norm of (¢ by ||.||.. From [33], we know

that CDy(K) is a Banach lattice so that its norm is monotone in the follmygense: if
X <1yl = Xl < [IYlleo (%Y € CDo(K)).

Since CR(K, E) is a lattice-normed space with norm lattice G&), then|f| € CDy(K) for
each fe CDy(K,E). Then

11l = supl| f(K)I| = supl fI(K) = [ [T] llco,
keK keK

so that||.|| is a mixed norm in CR(K, E) which is introduced in the second chapter of this
thesis. Hence C§IK, E) is a Banach space with mixed nothfi from the previous theorem.
In view of the inequality |f| —|g|l | < |f — gl and monotonicity of the norm in GIK), we
have

Ifl=1dlllo < If =gl (f,g€ CDo(K, E)),

so that the vector norri is a norm continuous function frof@€ Do(K, E), ||.||) into CDy(K).
The same considerations yield that (&, E) is a Banach space with mixed noii and

the vector norm.| of CDy(K, E) is a norm continuous function frof€ Dy, (K, E), ||.]|) into

(CDw(K), Illleo)-

Actually the following lemma is a direct consequence of thepBsition 2.7. Nevertheless we

give its proof for the sake of convenience.

Lemma 3.87 Let K be a compact Hausd@space without isolated points and E be a Banach
space. Then C§iK, E) and CDOy(K, E) are brcomplete lattice-normed spaces with )

and CDQy(K)-valued norms respectively.
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Proof. Suppose that a sequendg)(e CDg(K, E) is brfundamental; that is to sayf, — f| <
Ag(mn,k e Nand mn > k) where 0< g € CDg(K) and lim_,. Ak = 0. Then

fn = full < AlDllc > 0 @S k> 00
Therefore the limitf := lim,_, fy exists. By continuity of the vector norm, we have
If —fl<4g (n>Kk),
therefore,f = br-lim f,.

The second assertion can be proved similarly. O

3.8 Aleksandrov duplicates andCDy(K)—-spaces

In this section, we define a concrdiexg F space. We show that this space can be represented
as the space of real-valued continuous functions on thesalarov duplicate. As a corollary,

we obtain the main result of [18].

Throughout this sectiory;, denotes a compact Hauséfaopology onK andT" denotes a lo-
cally compact Hausdéitopology on a non-empty subsatof K such that the identity map

i : (AI) — (AX)is continuous. These spaces are denote&pwnd Ar respectively. As
usual, the Banach lattice of real-valukég-continuous functions oK equipped with sup norm
and pointwise ordering is denoted BYKy). B(K) denotes the space of real-valued bounded
functions onK. We denote the s¢t € B(K) : d(k) = Ofor all k ¢ A, disT'-continuous on

A such thatV ¢ > 0, there exists a compact seM in Awith |d(k)| < ¢ for eachk € A\ M }

by Co(Ar) which is equipped with supremum norm and pointwise ordgrin

Lemma 3.88 Cy(Ar) is a closed subspace ofB).
Proof. Suppose that a sequence of functiofly {n Co(Ar) converges in supremum norm to
f € B(K). Fix e > 0, then||f, — f|| < &/2 for somen. It follows that

(ke A:|f(K)| = e} clke A:|fa(K)] = &/2}.

As {k € A : |Ty(K)| > €/2} is compact and the s¢k € A : |f(K)| > &} is closed so that
{ke A:|f(K)| > &} is compact. O
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It follows thatCo(Ar) equipped with sup norm and pointwise ordering is a Banaiticéa

C(Kz) xg(k) Co(Ar) is a special example of &b xg F as seen by the following lemma.

Lemma 3.89 C(Kx) xpk) Co(Ar) equipped with coordinatewise algebraic operations is a

Banach lattice with respect to the order
0<(f,d e0< f(kforallke Kand0< f(a) +d(a) foralla e A
and the norm

[|(f, d)||=max{|| f|l, |If + d|I} where]|.]| is the supremum norm.

Proof. it is enough to show thaZy(Ar) is an order ideal with respect €(Ky). That is to say
|f +d|—|f| € Co(Ar) for eachf € C(Ky) andd € Cy(Ar). Clearly,|f +d| —|f|isT-continuous

on A. Also for eachs > 0,
face A:|f(a)+d(@) - |f(a) <& cl{ae A:|da@) < &}.

ThenCo(Ar) is an order ideal with respect @Kx). SoC(Ks) xgk) Co(Ar) is a Riesz space
by Theorem 3.4. Moreover,

I(f, )l = (IfI,If +d —If]).
As C(Kx) andCy(Ar) are Banach lattice€;(Ks) Xg(k) Co(Ar) is a Banach lattice by Theorem

3.29. This completes the proof. O

From now onC(Ks) x Co(Ar) denotesC(Ks) xg) Co(Ar). If Kz has no isolated points and
A = K andT is discrete, thetC(Ks) N Co(Kr) = {0}, andCDg(Kz) = C(Ky) @ Co(Kr) is a
Banach lattice under pointwise ordering and supremum nbfaneover, it is easy to see that

CDo(Kz) andC(Kg) x Co(Kr) are isometrically Riesz isomorphic spaces.

LetK x {0} U Ax {1} be topologized by the open bage= A; U Ay, where

A ={H x {1} : HisT-openin A
and

Ar = {Gx{0,1} \ M x {1} : G isZ-open, M isT"-compact in A.

WhenT is discrete, this space is callédeksandrov duplicate and denoted by (K, A), see

[21]. For the sake of convenience, we denktex {0} U A x {1} under the topology defined
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above byD(Ks ® Ar). In the casd’ is discrete topology ané = K, we denote this space
by A(K). The spaceA(K) has been constructed by R. Engelking in [24] and it is gdize
for arbitrary locally compact Hausdorspace in [25]. It is known thaf(K) is a compact
Hausdoff space, see [24] and [16]. The spa&g0, 1]) (where [Q1] is topologized under
the usual metric) has been constructed by P. S. AleksandrdwasS. Uryson in [22] as an

example of a compact Hausdiospace containing a discrete dense subspace.

We now give the following proposition which will be usefultime proof of main result of this

section.

Proposition 3.90 (i) Ky and the subspace K {0} of D(Kz ® Ar) are homeomorphic.

(i) Ifk, — kin Ar, then(k,, 1) — (k, 1) in D(Ks ® Ar).

Proof.

() It is enough to show that the map: Ky — K x {0} defined byg(k) = (k,0) is a
homeomorphism. Letk) be a net inKg such thatk, — k in Kg. Let assume that
U =Gx{01}\ M x {1} is a neighborhood ofk(0) in D(Kz ® Ar) as above. Then
(k,0) € G x {0}. Sok € G. Ask, — k, there exists amg such thatk, € G for
eacha > ag. Then k,,0) € U for eacha > ap. So k,,0) — (k,0) in D(Ks ® Ar).
Conversely, assume th#¢,(0) — (k,0) in D(Kz®Ar). LetG be ax-open neighborhood
of k. ThenG x {0,1} \ M x {1} whereM is I"-compact is a neighborhood d,0) in
D(Ksy ® Ar). Then there exists aig such thatk,,0) € G x {0,1} \ M x {1} for each
a > ag. Sok, € G for eacha > ag. This implies thatk, — kin Ks. Sogis a

homeomorphism. This completes the proof.

(i) Let k, — kin Ar. LetU be a neighborhood ok(1) in D(Ky ® Ar). Then either
U = H x {1} whereH isT-open inAorU = G x {0, 1} \ M x {1} whereG is Z-open in
K andM is I'-compact inA.
If U = H x {1}, thenk € H. So there exists ang such thatk, € H for eacha > aq.
Then K, 1) € H x {1} for eacha > ap.
If U =Gx{0,1}\ Mx{1}, thenk € G butk ¢ M. As the identity map: (A,T') — (A,X)
is continuousk, — kin (A, X). So there exists aig such thak, € G for eacha > ag.

Then k,,1) e Gx{0,1} \ M x {1} asM isT-compact andk ¢ M.
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In both of two casesk(, 1) — (k, 1) in D(Ky ® Ar). This completes the proof.

Further, we will often identifyKy with K x {0}.

Lemma 3.91 D(Kz®Ar) is compact. In particular k{0} is a closed subspace o Rs®Ar).

Proof. Consider an open covéD;lic; of D(Ks ® Ar). By replacing each set in the cover by
a union of basic open neighborhoods of all points in the setcan assume that the cover is

formed by basic open neighborhoods. Hence the cover is dbothe
{Ha}QEI U {Gy X {O, 1} \ My X {1}}yEQ

whereH, is al’-open set inA andG,, is aX-open set andWl, is al'-compact set irA. It is
easy to see thdG, x {0}},cq is an open cover oK x {0}, so that there is a finite subcover

G,, x{0},...,G,, x {0}. But then
G,, x {0, J\ My, x {1} U...UG,, x {0, 1}\ M,, x {1}

only misses finitely many-compact setd1,, x {1},..., M,, x {1}.
As My, (j=1,2,...n) is compact i, then we haveM,, x {1} ¢ UH, x {1}. Therefore we have
My, x {1} c ngalj x {1}. Hence if we add the corresponding open sets from the coegar th

we obtain a finite cover of the entii2(Ks ® Ar). O

Note thatD(Ky ® Ar) is not a Hausddf space as we can not seperate the poiktS)(and

(k, 1) for eachk € K.

Definition which is similar to the following was introduceql [i34].

Definition 3.92 Let ((k,,ry)) be a net in Kx {0} U A x {1}. We say that the nd(Kk,,r,))
converges tgk,r) in K x {0} U A x {1} (in notation(k,,r,) — (k,r)) if

f(ke) + rod(ky) — (k) + rd(k)

for each fe C(Ky) and de Cy(Ar). D(K © A) denotes Kx {0} U A x {1} equipped with this

convergence.
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The proof of the following theorem is a simple consequenaa®fbove definition.

Theorem 3.93 Under the convergence in the previous definitio(K» A) is a Hausdoff

topological space (not necessariyn A cI).

In [34], it was proved thaD(K © K) is a compact Hausdfirspace under the convergence
given in the above definition Ky has no isolated point arit- is discrete. For certain Banach
lattices, some representations of it have been constructg4] with the topology induced

by this.
Mimicking the proof of Theorem 3 in [18], we can identi§(Ky) x Co(Ar) with the space of
real-valued continuous functions @{Kys ® Ar) as follows.

Theorem 3.94 C(D(Kz®Ar)) and OKx)xCo(Ar) are isometrically Riesz isomorphic spaces.

Proof. Let us assume thdt: Kx{0}JUAx{1} — Ris a map. We claim that € C(D(Kz®Ar))
if and only if

() the maph: K — R defined byh(k) = f(k, 0) is Z-continuous, and

(i) the mapd : A — R defined byd(k) = f(k, 1) — f(k, 0) belongs to the spac&(Ar).
Indeed, suppose thai) @nd (i) are satisfied. Then the m&p— f(k, 1) is'— continuous
on A. Because it is the sum afk) andh(k). The first one id"-continuous oA by (ii), the

second one i&— continuous by (i), and so 5-continuous oA asX N A c T. It follows that

f is continuous at each point éfx {1}.
Letk € K. Let us show thaf is continuous atk, 0). Lete > 0 be given. Then
H=tkeA:|f(k1)- f(k0)>¢&/2}

is I'- compact by (ii). Further, by (i) there is¥open seG containingk such that we have
|f(k,0)— f(l,0) < /2 for each € G.

SetU = (G x {0, 1})\H x {1}. Then we have thal is a neighborhood ok(0) in D(Ky ® Ar).
Further, if (,i) € U, then:

eitheri = 0, then|f(k, 0) - f(I,0)| < /2 < &,
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ori =1, thenl ¢ H and hence

110, 1) - f(k,0) < |f(l,1)— f(I,0) +|f(l,0) - f(k O) < &.

Conversely, suppose thais continuous. Then clearly (i) holds. Further, the rkap f(k, 1)

onAisT-continuous, and so &Kk). It remains to show that the set
H={keA:|dK)| =|f(k,1)- f(k 0) = &}

is I'- compact for eacl > 0.

Suppose that for some > 0, H is notI'-compact. Now, by compactness &, ) there is
k € K such thatlr(GNnA)NH is notI'-compact for ang- neighbourhoods of k (otherwiseH

would be covered by finitely mary- compact subsets and hence itself would s@mpact).

LetU = (G x {0,1}) \ M x {1} be a basic open set D(Ksz ® Ar) containing k, 0) such that
for each [,i) € U we have f(l,i) — f(k,0) < /2. Asclr(G n A) N H is notI'-compact, there
isl e HN(GnN A\ M). Then both ;i) and (,0) belong toU, hence|f(l,1) — f(I,0) < &.

However, f(l,1) — f(l,0)| > ¢ (asl € H), a contradiction. This proves the claim.

Define the map : C(Kz)xCo(Ar) — C(D(Ks®Ar)) by n(f,d)(k,r) = f(k) for eachk € K\ A
andr(f,d)(k,r) = f(k)+ d(k) for eachk € A. Itis clear thatr is a bipostive, one-to-one linear
operator. Letf € C(D(Ky ® Ar) be given. Defindn: K — R by h(k) = f(k,0) andd : A - R
by d(k) = f(k,1) — f(k,0). Then from the above observatiom ) € C(Ks) x Co(Ar) and
n(h,d) = f. Soxis also onto. It is also clear thgt(f, d)|| = ||(f, d)]|. O

As a corollary to the previous theorem, we obtain the maianltes [18].

Corollary 3.95 C(D(Kz®Kr)) and OKy)xCo(Kr) are isometrically Riesz isomorphic spaces.

The following theorem is a consequence of previous theorem.

Theorem 3.96 D(Kz ® Ar) and D(K © A) are homeomaorphic spaces.

Proof. It is enough to show that the identity map,D(Kz ® Ar) — D(K© A) is a homeomor-
phism. Let k,,r,) — (k,r) in D(Ky ® Ar). Then we have that(k,,r,) — F(k, r) for each
F € C(D(Kg ® Ar)). From the previous theorem,

F(ka re) = 7(f, d)(ke. Fo) = F(k 1) = 7(f, d)(k. 1)
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for eachf € C(Ky) andd € Cp(Ar).

This implies thatf(k,) + rod(k,) — f(k) + rd(k). So we getK,,r,) — (k,;r) in D(K © A).

This completes the proof. O

If Ky has no isolated point#, = K andT is discrete, then we get the following result of [34].

Corollary 3.97 If Ky has no isolated points, then the spacesg@d) and C(A(K)) are iso-

metrically Riesz isomorphic spaces.
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CHAPTER 4

LINEAR OPERATORS ON ABRAMOVICH — WICKSTEAD
SPACES

4.1 Linear Operators on Generalized Abramovich — WicksteadSpaces

In this section, we characterize some types of linear opeyain generalized Abramovich—
Wickstead spaces such as order continuous, weakly comyagteakly compactl.—weakly
compact and absolutely summing operators. Throughous#ugon, we assume thitand

F are Riesz subspaces of a Riesz sgaaauch thatF is an order ideal with respe&. Let

T : G —» X be a linear operator whei® and X are normed Riesz spaces. Consider the
operatorT : E xg F — X such thatT(e, f) = Te+ Tf = T(e+ f). Then we have the

following.

Proposition 4.1 Let G and X be normed Riesz spaces. {fG — X is a linear operator, then
T induces a linear maf : E xg F — X such thafT (e, f) = Te+ T f = T(e+ f). Moreover,
we have

(1) If T is a positive operator, thef is positive.

(2) If T is a Riesz homomorphism, th€rs a Riesz homomorphism.

(3) If T is a continuous operator, théhis a continuous operator with respect|ffiex. k.

Proof. The linearity of induced map directly follows from the limég of T.
(1) Suppose thar is positive and let (0) < (e, f) in Exg F. Then0< eand 0O< e+ f in
G. SoT(e f) = T(e+ f) is positive.

(2) Suppose thal is a Riesz homomorphism. Then
Ti(e )l = T(el.le+ f| - &) = T(le+ f) = [T(e+ )l = [T(e )L
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henceT is a Riesz homomorphism.
(3) Suppose that is a continuous operator. L&¢x,, yn)ll — 0 in E xXg F with respect to
the norm||(X, Y)llexce = max|[x|l,[IX + yll}. Then|[xn]| — 0 and||X, + ynll = 0inG. Then

IT (X, Yo)ll = IIT (%0 + Yn)ll = 0'in X, sinceT is a continuous operator. O

Concerning the order continuity of the induced rﬂTapve have the following characterization.

Proposition 4.2 Let G and X be Riesz spaces with X Dedekind complete. If T isce&m o

continuous operator, thefi is an order continuous operator.

Proof. Let (e,, fy) | (0,0) in E xXg F. This implies that, | 0 ande, + f, | 0inG. AsT is

order continuous,

inf [T(e,, f,)l = inf [T(e, + f,) = O,

henceT is an order continuous operator. O

Definition 4.3 The Riesz space L is said to have order continuity propergvéiry lattice

homomorphism on L is order continuous.

Proposition 4.4 Let G be a Riesz space with order continuity property and E im&rizing
Riesz subspace of G. Therxg F has order continuity property for every order ideal F with

respect to E.

Proof. Suppose thab is a Riesz space which has order continuity propettis a Dedekind
complete Riesz space afdis a majorizing Riesz subspace Gf LetT : Exg F — X
be a lattice homomorphism. Using the lattice embeddingE — E xg F, then the map
m: E - ExgF — Xis a lattice homomorphism. Then we may extentb G such that
the extended mag, is a lattice homomorphism. AS has order continuity property, then the

mapT is order continuous by previous proposition. O

Proposition 4.5 Let E be a Riesz subspace of G and X be a Riesz space adid— X be a
lattice homomorphism. If there is a lattice homomorphisteresion ofr to G, then there is a

lattice homomorphism extensionmfo E x¢ F.
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Proof. Let ®gy.r(7) anddg(7) denote the set of all possible lattice homomorphism exten-
sions ofr to E xg F andG respectively. We will show thabg,.r (1) # 0. Letw € Og(n).
Then define a mapg : E Xg F —» Xbyng(e, f) = 7(e+ f). As7wis a lattice homomorphism,

so ismp. Thereforerg € Oy p(7) # 0. O

Let G be a Banach lattice and be a Banach space. By using the linear map
T : G — X, we may characterize many properties of the induced map
T : E xg F —> X defined byT (e, f) = T(e+ f) whereE andF are Banach lattices i& such

thatF is an order ideal with respect & We consider the norm

I I = max{IXl, [[X + Vi
on E xg F. The details are in the following proposition.
Proposition 4.6 (1) Assume that T G — X is a compact operator. Théh: ExgF — X

is a compact operator. If the given operator T factors thio@gBanach space Z with

continuous factors, then so does the opera‘ﬁor

(2) If T : G > X is a weakly compact operator, th@n: E xg F — X is a weakly compact

operator.

(3) Let T : G — X be a continuous operator. If T is an order weakly compactaipe

thenT is an order weakly compact operator.

(4) Let T : G — X be a continuous operator. If T is an M-weakly compact operaen

Tisan M-weakly compact operator.

(5) Let T: G — X be a continuous operator. If T is an L-weakly compact operétenT

is an L-weakly compact operator.
(6) If T : G — X is a Dunford-Pettis operator, theh is a Dunford-Pettis operator.

(7) Let T : G — X be a continuous operator. If T is a cone absolutely summjregator,
i.e.,(IIT xl) € I, for every order bounded disjoint sequer{gg) € G*, thenT is a cone

absolutely summing operator.

Proof.
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(1) Let (X, Yn) be a norm bounded sequencebrnxg F. Then there existd! > 0 such
that ||(Xn, Yn)ll < M for eachn € N. This implies that ma{(xll, 1%, + Ynll} < M.
This gives us thatx,) and (, + yn) are norm bounded sequences@n As T is a
compact operatorT (X, + Yn) has a convergent subsequeriogs, + Yyn) in X. But
'F(xnk,ynk) = T(Xn, + Yn)- Sof(xn,yn) has a convergent subsequenceinTherefore
Tisa compact operator. Now assume thafactors through a Banach spagewith
continuous factors, i.e., there exist continous operd®ar& — ZandS : Z — X such
thatT = SR LetR: ExgF — Z be defined a§(e, f) = R(e+ f). AsRis a continuous
operator, so iR Then we have th#R(e, f) = SRe+ f) = T(e+ f) = T(e, f).

(2) Let (X,, yn) be a norm bounded sequencegxg F. Then there exist! > 0 such that
[l(%n, Yn)Il < M for eachn € N. This implies that ma{{x|l, [1Xn + Ynll} < M. This gives
us that &,) and &, + yn) are norm bounded sequences&&GnAs T is a weakly compact
operator,T (X, + Yn) has a weakly convergent subsequefi¢g,, + yn,) in X. But we
haveT (X Yn) = T(Xn, + Yn)- SOT(Xn. Yn) has a weakly convergent subsequence in

X. ThereforeT is a weakly compact operator.

(3) LetT : G — X be a continuous operator. Then the induced fMapE xg F — X is
a continuous operator. Lek{,yn) be an order bounded disjoint sequenceects F.
Then there exists a positive elemenrty)) in E xg F such thati(x,, yn)| < (X,y). This
implies thatjx,| < xand|X, + yn| < (X+Y). As (X,, Yn) is a disjoint sequence iB x¢g F,
we have thatXy) is an order bounded disjoint sequenceEiand , + Yy,) is an order
bounded disjoint sequence @ As T is an order weakly compact operator, we have

that lim||T (X, Yn)ll = lim [T (X.+Yn)ll = 0. ThusT is an order weakly compact operator.

(4) LetT : G — X be a continuous operator. Th@h: E xg F — X is a continuous
operator. Assume thaf is an M-weakly compact operator. Lek{,y,) be a norm
bounded disjoint sequence & xg F. Then &, + V) is a norm bounded disjoint
sequence 0o6. We have that Iinnf(xn,yn)ll = lim ||[T(%, + Yn)ll = O, sinceT is an

M-weakly compact operator. Sois anM-weakly compact operator.

(5) LetT : G — X be a continuous operator. Then the induced map defined above,
T : Exg F > Xis a continuous operator. Assume tAais an L-weakly compact
operator. LetX,) be a disjoint sequence in the solid hull BUgx.r), S o(T (Ugsxgr),

whereUg,.r denotes the closed unit ball Bfxg F. As f(U ExcF) C T(Ug) whereUg
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denotes the closed unit ball 6f we have thas o(T (U ExcF) C SO[(T(Ug)). So () is
a disjoint sequence I8 o[T(Ug)). Then lim||x,|| = 0, sinceT is anL-weakly compact

operator. Sd isan L-weakly compact operator.

(6) LetT : G — X be a Dunford-Pettis operator. Ledy(yn) — 0 be a weakly convergent
sequence e xg F. As the projection® : ExgF — EandQ : ExgF — F are norm
continuous, they are weakly continous, we have #jat> 0 weakly inE andy, — 0

weakly inF. Thenx, + y, — 0 weakly inG. Then

lim 1T (%, yo)ll = lim [T (%, + yn)ll = O,
sinceT is a Dunford-Pettis operator. Sois a Dunford-Pettis operator.

(7) LetT : G —» X be acone absolutely summing operator. xgfy,) be an order bounded
disjoint sequence inH xg F)*. Then ,) and &, + y,) are order bounded disjoint
sequences iG*. We get that|(T (xn, Yn)ll) € I1, since [T (%, yn)ll) = (IT (% + yn)l). So

T is cone absolutely summing.

4.2 Linear Operators on A New Type of Abramovich—Wickstead paces

Throughout this section, unless stated otherviseijll denote arelatively uniformly complete
vector latticeand for a vector valued functioh, yx ® f will denote the function which takes
f(k) atk and O otherwise. In this section we give two characterinati@mbout the regular and
order continuous regular operators fr@y(K, E) into a Dedekind complete vector lattice
F. The symbolsL" and Ly, will denote the space of regular and order continuous regula

operators respectively.

We start with the following lemma which will be used in the sel

Lemma 4.7 Let K be a compact Hausd@rspace and F be a Dedekind complete vector
lattice. Then for every positive linear operator TC,(K,E) — F there exists a positive

operator T : C(K) — L"(E, F) such that
T(e®e) =T (p)e forallp € C(K)and ec E.
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The correspondence + T’ is linear and one-to-one.

Proof. Let T : C;(K, E) — F be a positive linear operator. For eagle C(K) ande € E, the
function¢ ® edefined byy ® ek) = ¢(k)e belongs taC; (K, E); we put

T(p®e) =T'(p)e forallp € C(K) and e€ E.

For fixedg € C(K), the mappind’(¢) : e — T’(p)eof E into F is evidently linear. Moreover,
if0 <ee Eand0< ¢ € C(K), thenT’(p)e = T(¢ ® € > O, thereforeT’(p) € L.(E,F).
Thus, the mappin@”’ : ¢ — T’(¢) of C(K) into L"(E, F) is linear and positive.

It is easy to verify that the mappinD — T’ is linear. In order to prove that this mapping is

one-to-one, les : C;(K, E) — F be a positive linear operator such that
S(p®e) =T (p)e forpe C(K)and ec E.

Let f € C,(K,E). Then by Theorem 3.71, there exists a sequefgeof the form}’ i ® g
(finite sum) withg; € C(K) ande € E converging relatively uniformly td. Then we have
T(f,) = S(fy) for everyn. On the other hand@ andS are relatively uniformly continuous on
C/(K, E), therefore

T(f) = lim T(fn) = lim S(fn) = S(F),

consequentlyl = S. O

Theorem 4.8 Let K be a compact space F be a Dedekind complete vectordaifiten there
exists a lattice isomorphism’T« u between the set of regular operators T C(K) —
L"(E, F) and the set of countably additive quasiregular Borel meesur: K — L"(E,F)
given by the equality

T'(f) = f f du, forevery fe C(K).

Proof. Proof directly follows from Theorem 2.1, sint&(E, F) is a Dedekind complete vector

lattice. O

Let F be a Dedekind complete vector lattice gmce qcaK, L"(E, F)). Then the integral
l, : C(K) — L"(E,F) can be extended t6;(K, E). We can identify the algebraic tensor
productC(K) ® E with a subspace i€ (K, E), assigning the mapping — X ; ow(@)e
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(o € K)to Yp_; ¢k ® &, Whereg, € E andgy € C(K). Definel, onC(K) ® E by the formula

n n
'u[chmek} :=chpkduek-
k=1 k=1 YK

If feC/(K,E), thenusing Theorem 3.71, there ex@st E* and a sequencd{) c C(K)® E
such that

Suplf(a) - (o) < e

aeK

Put by definition
f fdu = 1,(f) = o-lim 1,(f,).
K

The soundedness of the above definitions easily follows fr@riollowing lemma.

Lemma 4.9 Let K be a compact Hausdgrspace and F be a Dedekind complete vector
lattice. Then for every positive linear operatof TC(K) — L"(E, F), there exists a unique

positive linear operator T: C, (K, E) — F such that

T (p)e=T(p®e€) for everyp € C(K) and e€ E.

Proof. Let T’ : C(K) — L'(E, F) be a positive operator. Define an operator

T : C(K)® E — F by setting
[Z K ® eK} ZT (e)(@) (px e C(K) and & € E).

As T’ is linear and positive']Tis a linear and positive operator.
Let f € C/(K,E). From Theorem 3.71, there exists a sequeriged C(K) ® E of the form
> ¢ ® & (finite sum) withg; € C(K) andeg € E converging relatively uniformly td. Then

(fn) is a relatively uniformly Cauchy sequence. Sifices linear and positive, we have
IT(f) = T(fen)l = T (fa = fen)] < T = fil.

This shows thatT(f,)) is a relatively uniformly Cauchy sequence fnbecause f,) con-
verges. A4 is Dedekind complete, theff_(fn)) converges relatively uniformly to an element
of F. Let (f,) and (f;;) be two sequences ©(K) ® E such thatf, — f andf;, — f relatively

uniformly. Then from the inequality,
|fn — ol < [fa = f]+|f; = £,
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we get that iy T(f,) = lim, T(f/). Hence we define a map: C,(K, E) — F by setting
T(f) = lim T(f).

The mappingl defined above coincides wifh on C(K) ® E since for each € C,(K, E) we
can setf, = f for eachn. This implies thafl’(¢)e = T(¢ ® €) for everyy € C(K) ande € E.

The linearity and positivity of come from the linearity and positivity af’.

For uniqueness, lef” be another extension af. We want to prove that if (a) = T”(a)
for everya € C(K)® E, thenT = T”. For eachf € C/(K, E), there exists a sequence
fn € C(K) ® E by density such that, — f relatively uniformly. We havd (f,) = T”(f,) and
SO

T() = im T(f) = im T (f) = T"(F).

This completes the proof. O

Theorem 4.10 Let K be a compact Hausdfrspace and F be a Dedekind complete vector
lattice. Then there exists a lattice isomorphism-T T’ between the space of regular opera-
tors T : C;(K, E) —» F and the space of regular operators TC(K) — L"(E, F) given by the
equality

Tle®e) =T (p)e foree C(K)and ec E.

If T and T are in correspondence, then there exists a common couraalolijive quasiregu-

lar Borel measure: : K — L"(E, F) such that

T(f):ffdy, for f € Ci(K, E),

and

T'(¢) = fcp du, for ¢ e C(K).

Proof. LetT : C;(K, E) — F be a regular operator. L&t : C(K) — L'(E, F) be the regular

operator corresponding T (Lemma 4.7) by the equality
T(e®X) =T'(¢)x, for¢ e C(K)and xe E.
We know that the correspondence is linear and one-to-oneéhake
Tle®) =T (x= [ vox
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for everyx € E, therefore

Tle®Xx) = fgo ®xdu, foreveryp e C(K).

Conversely, lef’ : C(K) — L'(E, F) be a regular operator, and jet K — L'(E, F) be the

countably additive quasiregular measure correspondifg.td we put
TN = [tdu feC(KE
thenT : C,(K, E) — F is aregular operator and we have

T(e®X) =T (¢)x, for ¢ e C(K)and xe E.

Now we give the following definition which will be useful in¢hsequel.

Definition 4.11 Let K be a non-empty set and F be a Dedekind complete vectizelal hen

we set

(1) co(N, E) = {(en) € E : Je € E* such that g € E(€) ¥Yn and||ey|le — O},

(2) 1[K,L"(E, F)] the space of operators : K — L"(E,F) such that the infinite sum
22 le(ko)l(lenl) € F for all (kn) € K and(ey) € co(N, E).

As usual,y.” ; la(kn)l(len]) is the supremum of the sumls.; la(kn)I(lenl). 11[K, L"(E, F)] is a

vector lattice under the pointwise operations.

Theorem 4.12 Let K and F be as above. Therd(&(K,E),F) is lattice isomorphic to
I1[K, L"(E, F)].

Proof. Let¢ : L'(cy(K,E), F) — 11[K,L"(E, F)] be defined byp(G)(K)(€) = G(xk ® €) for
eachG e L'(cj(K,E),F), k e K ande € E. Itis easy to verify thap is a linear mapping.
Theng(G)(K) is an order bounded operator frdiinto F as¢(G*)(k) and¢(G~)(Kk) are order
bounded for eacks. Thus¢(G) is a map fronK into L"(E, F).

Let us recall thapp(G) should also satisfy’” ; [#(G)(kn)I(lenl) € F for all sequenceskf) € K
and @) € co(N, E).
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LetG e L'(c(K, E), F). Then we have

IA

D @) kNlle) < ) GI(rk,  len)
n=1 n=1

Gl [Zm:/\/kn ® IenlJ <G|

n=1

i)(kn ® |en|] eF,

n=1

therefore N .
2 19(@)kn)l(lenl) = sup ) Gl(xk, @ len) € F.
n=1 m =1

Thus the ma(G) we have defined belongs tdK, L' (E, F)].

We now show thap is bipositive. Clearlyp(G)(k)(e) > 0 whenevere > 0 andG > 0, i.e.
#(G)(K) is positive for allG > 0. Suppose thap(G) > 0 for someG € L'(cj(K, E), F), and
take 0< f € (K, E). As Jies xk® f Ts fin (K, E), we havel s G(xk® f) — G(f). By
definition G(yk ® f) = ¢(G)(K)(f(k)) > 0 and thus5(f) > 0 for each 0< f € c{(K, E), i.e.
G=>0.

Let now ¢(G) = 0 for someG € L'(c(K, E),F). ThenG(yx ® f) = 0 for eachk € K and
0<fecyK E). As Yresxk® f s fin cf(K, E), we have 0= Y5 G(xk ® f) — G(f) or
G(f) = 0. The fact that{,(K, E) is vector lattice leads tG = 0.

To show thaip is surjective, let O< a € I1[K,L"(E, F)]. Let f € ¢{(K, E). Then there exists
an at most countable subsé&t) of K such thatf (k) = O for all k # k, and there exists some
e € E* such thatf (k,) € E(e) for eachn and||f (ky)|/le — 0. Hence we can define

G(f) = ) alka)(f (kn),

neN
which certainly belongs t6 asf (k) € cp(N, E). We now verify thap(G) = a. Let0< e€ E,

then

$(G)(0)(8) = Glxio ®€) = > a(kn) (ko ® &(kn)) = a(ko)(©).

neN
Sincee € E is arbitrary, we conclude that(G)(kg) = a(kg) andkg is arbitrary, we have

#(G) = a. Sincely[K,L"(E,F)] is a vector lattice, the proof of surjectivity af is now

complete. n

Now we are in a position to give one of the main result of thigise as follows:

Theorem 4.13 Let K be a compact Hausdfrspace without isolated points and F be a

Dedekind complete vector lattice. Then we have thé€ Di(K, E), F) is lattice isomorphic
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to qcaK, L"(E, F) @ I1[K, L' (E, F)] with the dual order on this direct sum defined by
<u,a>>0spu>0anda > 0andu({k}) > a(k)

for all k € K, which if we identifyr with a discrete measure on K, is precisely requiring that

u>a>0.

Proof. Let T € L"(CDy(K, E),F). Then certainlyT splits into two regular operatoif; and
T2 whereTy : C(K,E) —» F andT; : ¢{(K,E) — F. Then by Theorem 4.10 there exists
an element: € qcaK, L' (E, F) such thafT; can be identified withx . On the other hand, by
Theorem 4.12 there existswee I1[K, L' (E, F)] such thafT, can be identified witlkw. We thus
have a map fromi."(CD[(K, E), F) into qca(K, L' (E, F) @ I1[K, L"(E, F)].

Now suppose that € qcaK, L"(E, F)) anda € I31[K, L"(E, F)]. We can certainly define an
operatorT € L"(CD{(K, E), F) by
T() = [ fudi+ Y a9k
keK
for f = f1 + f2 € C(K,E) ® ¢{(K,E). The map fromgca(K, L"(E,F)) @ I1[K,L"(E, F)]
into L"(CDg(K, E), F) is easily seen to be lattice isomorphism by Theorem 4.10Téuedrem
4.12. ]

Now we give the following definition which will be used in ounél result.

Definition 4.14 Let K be a compact space and F be a Dedekind complete vedicelathen

we set (K, L!,(E, F)) the set of all mapg = (k) from K into L(E, F) satisfying

(1) supf.<1 2k BRI(f(K)) € F for each arbitrary but fixed & E* and f € CD(K, E)
where|| flle = SURck || T (K)lle.

(2) 2k IBK)I(fa(K)) Lo Oin F whenever f | 0 in CDL(K, E).

As usual, Y [BK)I((f(K)]) is the supremum of the suss [B(K)|(If(K)|) where S is a finite

subset of K.

I1(K, LL(E, F)) is a vector lattice under pointwise operations.

We close this section with a result about order continuowsaiprs orCD{(K, E)-spaces.
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Theorem 4.15Let K be a compact Hausdfirspace without isolated points and F be a

Dedekind complete vector lattice. Thelf(CD((K, E), F) is isomorphic to}(K, LL(E, F)).

Proof. Define¢ : L(CDy(K,E),F) — 11K, LI,(E, F)) via ¢(G)(K)(e) = G(xx ® €) for each
G € Ly(CD)(K,E),F), k e K ande € E. Itis easy to see that is linear. Thenp(G)(K)
is order bounded, sincg(G*)(k) and ¢(G~)(k) are order boundeéF-valued operators for
eachG on CD{(K,E). If e, | 0inE, thenyx ® e, | 0 in CD{(K, E) for eachk € K.
So ¢(G)(K)(e,) = G(xk ® &,) is order convergent to 0 so tha(G)(k) € Li(E, F) for each
G € Ly(CD{(K, E), F). Thus¢(G) is a map fronK into Li(E, F).

Now we will show thats(G) is an element of*(K, LL(E, F)). LetS be a finite subset dk
andG e L(CDy(K,E),F). Then

S B@RIIFR) = Y. I6(G* - G)RIIHK)

keS keS
< D GHRTFRN) + D ¢GRI
keS keS
= > G elf)+ ). G (elfl)
keS keS

_ G+[Z)(k®|f|}+6‘[2)(k®lfl}

keS keS

for eachf e CDf(K, E). Hence we get
D BGRINTD < G (1) + G (1)) = IGI( fI)
keS

asY kes xk®|f| 1s ||, GT andG™ are order continuous. Lete an arbitrary but fixed element

of E*. Then
sup Z H@MITCIN < sup (BT < 1GI(E) < F.

lIflle<1 [flle<1

as|f| < [[f|lee.

So far we have shown tha(G) satisfies the first condition of Definition 4.14. We also have

to show that

D 1@)®I(f(K) Lo Oin F
k

for eachf, € CDf(K, E) such thatf, | 0. Itis enough to show this for positive elements in

LL(CDL(K,E),F). Let 0< G € L(CD(K, E), F) andf, | 0in CDg(K, E). For a fixeda, we
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have) s vk ® fy Ts f,. AsGis order continuous and positive,

G

ZXk® f( } = ZG(XK® fa) T G(f(t)

keS keS

Thus
D BERI(fa) = > #G)R(fa(K) = Y Glrk® fa) = G(fa) L 0.

keK keK keK
Hence the map(G) we have defined belongs K, LL(E, F)).

We now show that it is bipositive. Certaing(G)(k)(e) > 0 whenever > 0 andG > 0, i.e.,
#(G)(K) is positive for allG > 0. Now assume that(G) > 0 for someG ¢ L{,(CD|(K, E), F)
and take O< f € CDg(K, E). We have} s G(xk ® f) — G(f), sinceXiesxk® f 1s fin
CD{(K,E). AsG(xk® f) = ¢(G)(K)(f) = 0, G(f) > 0 for each O< f € CDf(K,E), i.e.,
G > 0. We now show thag is one-to-one. Lep(G) = 0 for someG € Lj(CD{(K, E), F).
ThenG(yk ® f) = 0 for eachk € K and 0< f € CD|(K, E). As G is order continuous and
Ykesxk® T 1s f, this gives that G= Y s G(xk ® f) — G(f) or G(f) = 0. AsCDf(K,E) is a

vector lattice, we geB = 0.

To show thaty is surjective, take an arbitrary & o € 1}(K, LL(E,F)) and let us define
G : CDy(K,E)y — F by G(f) = Yyek a(K)(f(K)). G is additive onCDf(K, E) and so
G(f) = G(f*) — G(f~) extendsG to CD(K, E). We now verify thai(G) = a. If 0 < e€ E,

then
#(G)(ko)(€) = Gy, ®€) = Z a(K)(xk, ® €)(K) = a(ko)e.
keK
Sincee € E is arbitrary, we conclude that(G)(ky) = a(kg) andkg is arbitrary, we have
¢(G) = a. O

4.3 Linear Dominated Operators on Abramovich—Wickstead Spces

4.3.1 Dominated Operators orC(K, E)—spaces

Let K be a locally compact Hausdbispace andE be a Banach space. Recall that the sup-
port of a functionf : K — E is the closure of the sék : f(k) # 0}. The space of the
continuous functions with compact support is denotedgi(, E). If K is compact, then we
haveX (K, E) = C(K, E), whereC(K, E) is the space of continuous functiofis K — E. N.

Dinculeanu [19] has given some integral representatiomofinated operators oif(K, E).
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In this section, We adapt some results of N. Dinculeanu abmiintegral representations
of linear operators ofi{(K, E) to the integral representations of linear dominated dpesa
on C(K, E). The proofs of the theorems follow directly the lines in ieculeanu’s proofs.

Nevertheless, we give their proofs for the sake of convex@en

The regular Borel measures with finite variation will play iemportant role in this section.

We begin with the definition of variation of a vector measund give some properties of it.

Definition 4.16 Let B be ac-algebra of subsets of a set X and=E(E, ||.||) be a Banach

space. Then
(1) the function m 96 — E is called avector measure(or E-valued measurg if m() = 0
and m(Ux Ax) = >« m(Ax) for any sequencéAy) of pairwise disjoint sets fror®,

(2) the functionm| : 8 — R* U {+oo} defined by the following formula :

i i
Imi(A) = sup ) Im(AI 2 Ane B.| JAn=A Acn Ay =0k % p)
n=1 n=1

is called thevariation of m. |m| is additive and monotone. It is also a measure. m is
called a vector measure fihite variation if |m| is finite, i.e,Jm|(X) < +oo. It is easy to

see that m ig--finite or finite E-valued measure if and onlyrif is o-finite or finite.
We now give the following well-known fact which will be uséfn the sequel.

Theorem 4.17 Let K be a compact Hausdfrspace and E be a Banach space. Then the
space of the functiony, ¢; ® X; (finite sum) withy; € C*(K) and % € E is (uniformly) dense
in C(K, E).

Proof. Let f € C(K, E) and lete > 0. For evenk € K, there exists an open neighborhodd
of ksuch that ifk’ € V, then||f(k) — f(K')|| < 5. Then
If(K) - f(K) <e, if K',K"eV.

SinceK is compact, we can find a finite familyj) of open sets covering, such that for
eachi we have

IF(K) = F(K)) <&, if KK’ €Vi.
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Let (¢;) be a continuous partition of the unity subordinated to #maily (V;), i.e. 0< ¢ < 1,
the support ofy; is contained inV; and}’ ¢j(k) = 1 for k € K. For each take a poink; € V;
and putx; = f(k). Then for eackk € K,

1D @)% = FRI < > @®Ifk) - FRIl <&
so thatl] > ¢j @ X — || < e. O
By using the previous theorem, we have the following result.
Theorem 4.18 Let K be a compact space, E and F be Banach spaces. Then forlawear

and continuous operator T C(K,E) — F, there exists a linear and continuous operator
T’ : C(K) — L(E, F) such that

T(e®X) =T'(p)x, for ¢ e C(K)and xe E.

The correspondence # T’ is linear and one-to-one.

Proof. For everyy € C(K) andx € E, we havey ® x € C(K, E); we put
Te®Xx) =T (p)x
For fixedy € C(K), the mappindl’(¢) : x = T’(¢)x of E into F is linear and continuous:
IT" (@)Xl = IT(e ® Xlle < T lell 11X,
thereforel T (¢)llLe,r) < IITIl llgll andT’(¢) € L(E, F).
The mappingl’” : ¢ = T’(¢) of C(K) into L(E, F) is linear.

It is easy to verify that the mapping — T’ is linear. In order to prove that this mapping is

one-to-one, le§ : C(K, E) — F be a linear and continuous operator such that
S(e®Xx) = T'(p)x, fory e C(K)and xe E.

Let f € C(K,E). Then by Theorem 4.17, there exists a sequeifigeof the form 3}’ ¢i ® X
(finite sum) withg; € C(K) andx € E converging uniformly tof. ThenT(f,) = S(f,) for

everyn. On the other hand andS are continuous o€(K, E), therefore
T(f) = r!im T(fn) = r!im S(fn) = S(f),
consequentlyl = S. O
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Remark 4.19 There are linear and continuous mappings TC(K) — L(E, F) which do
not correspond to any linear mapping TC(K, E) — F. However, if T is dominated (see
Definition 4.20), in particular F= C and T is continuous, then’Tan be obtained from a

dominated linear mapping TC(K, E) — F (Theorem 4.25).

We now give the following definition which is given for the &ar operators

T : C(K,E) — F by N. Dinculeanu [19].

Definition 4.20 A linear mapping T: C(K, E) — F is said to be dominated (or majored) if

there exists a regular positive Borel measursuch that
Tl < [ 17l 9. for every fe C(K.B)

We say that T is dominated byor thatv dominates T. If T is dominated, then there exists
a least positive regular measure dominating T. We shall tiettee least regular measure

dominating T byur.

Proposition 4.21 Let K be a compact Hausdfiispace, E and F be two Banach spaces. If
the linear operator T: C(K, E) — F is dominated in the sense of Definition 2.8, then there

exists a regular Borel measure m such that

Tl < f If(lle dm(k)  (f € C(K, E)).

Proof. From Definition 2.8, the dominant df is a positive linear functiongb : C(K) —» R
such that
IT(OIIF < St (f € CK,E)).

By Riesz Representation Theorem, there exists a boundeathrdgprel measuren such that
S = [ 17109 dmi9 = [ 179l dm(o.

O

It follows from the previous proposition that Definition 2a8d Definition 4.20 coincide for

the dominated linear operatofs: C(K,E) — F.

Let u be a positive measure defined omralgebra® of subsets oK and E be a Banach

space. Lep be a real number such thakOp < co.
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We denote bySE(K,,u) the set of allu-measurable function$ : K — E such thatf|? is

u-integrable. For every functioh € SE(K,u), we put
1
p

Np(f. 1) = ( JCE du(k))

If a function f belongs tOEE(K, 1) we say thatf has thep-th power ofu-integrable. We
shall write also€P(u) or £8 instead of€2(K, 1), andNpy(f) or [|f|l, instead ofNy(f, z). If
E = R we shall write£P(u) instead otﬁug(,u). The setSE(u) is a vector space. In cage= 1,
the spacé}t defined here equals to the space of ghiategrable functions that is to sdyis

u-measurable anglf (K)|[g € £1(u).

Proposition 4.22 Let K be a compact Hausd@rspace, E be a Banach space gade a
positive regular Borel measure. Then the spa¢&, &) of continuous functions fK — E

is dense int2(u) for 1 < p < co.

Proof. See [Proposition 33 in section 5 of [19]]. O

We now give the following fact which will be used in obtaininge of the main results in this

section.

Proposition 4.23 Let K be a compact space, E and F be two Banach spaces, m anavo be t
regular Borel measures with finite variations, with valued{E, F). Then we have m n if

and only if

ff(k) dm(k) = f f(k) dn(k), forevery fe C(K,E).
Proof. If m = n, then evidentlyf f(k) dmk) = f f(k) dn(k), for everyf € C(K,E). Con-
versely, suppose that
ff(k) dm(k) = f f(k) dn(k), forevery fe C(K,E).
We havem| < |m| + [n| and|n| < |m| + |n|, therefore
L2(m +In) < £2(m) N £2(n).
We have also

[ s

< f 1R dmi(k) < f £ dimi + ) (K),
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| o anto] < [nr09ne dmco < [ 15091e g+ n)co.
therefore the linear mappings — ff dmandf — ff dn of 2%(|m| + |n|) into F are
continuous. On the other handj and|n| are regular sincen andn are regular (Proposition
22 of section 15 in [19]), thereforen| + |n| is regular, henc€(K, E) is dense irﬂé(|m| +n()
(Proposition 4.22). Since these two mappings coincide erdémse subspacyK, E), they
coincide on the whole spacéé(lml + [n]). In particular, ifA € B andx € E, thenyax €
LL(ml + [n)), therefore

[ xatoxdmtg = [ xatox arti,

hence

M(A)X = n(A)X.

It follows thatm(A) = n(A) for everyA € B, thereforem = n. O

Theorem 4.24 Let K be a compact space, E and F be Banach spaces. Then, Risiean
isomorphism T m between the set of linear dominated operatorsCiK, E) — F and the

set of regular Borel measures M3 — L(E, F) with finite variation|m|, given by the equality

T(f):ff(k)dm(k), for every fe C(K, E).

Moreover, if T and m are in correspondence, we haye= |m|.

Proof. Let firstm : B — L(E,F) be a regular Borel measure with finite variation and
consider the spacBie(B) of the totally®B-measurable functions such thfat K — E. Then
C(K,E) c 97tg(8) so that

T(f) :ff(k) dmk), for f € C(K,E).
From this equality, we deduce that
Tl < [ 110le dm).  for f € C(K.E)

thereforeT is dominated by the regular measymg. The correspondenaa « T is linear:
from Proposition 4.23, we deduce that this correspondenoad-to-one. It remains to prove
that every linear dominated operaibicorresponds to some countably additive regular Borel
measuran with finite variation|m| andut = |m|. LetT : C(K, E) — F be a linear dominated

operator. Lev be a positive regular Borel measure such that

IT(HIlF < fllf(k)IIE dv(k), for f e C(K,E).
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From this inequality we deduce thatis continuous orC(K, E) for the topology ofst(v).
Sincev is regular andC(K, E) is dense inﬁlE(v), the linear operatoil can be extended
uniquely to a continuous linear mapping %(V) into F denoted also by, and we still

have

Tl < [ 1101 W, for f e ££0)
For every sefA € 93, and for everyx € E we haveyaX € Eé(v). Put
M(A)X = T(yaX).

The mappingn(A) : x — m(A)x of E into F is linear and continuous:

IM(AXE = [T (eaX)lle < f Ilea®Xle Av(K) = IXIEV(A).

thereforem(A) € L(E, F) and

IMA)lILEr < v(A).

It is easy to verify that the set function: 8 — L(E, F) is additive. From the last inequality
we deduce thatn is regular, countably additive and with finite variatipn and|m| < v. We

now show that
T(f) = f f(k) dmk), fe i)
For every step functior = ) ya Xi, we have

T(H) =T xax) = D, Trax) = ), mA)X = f (k) dm(K).

Since|m| < v, we have€l(v) c £L(Im), therefore iff € £1(v) we have

Hff(k)dm(k)HF Sfllf(k)IIE dlml(k)sf||f(k)||E dv(K),

whence the mapping§ — ff dmof £1(v) into F is continuous. Since the two linear map-
pingsf f dmandT of £1E(v) into F are continuous and coincide on the set of step functions

which is dense, we deduce that they coincide on the wholeespac

T(f):ff(k)drr(k), feglw).

This equality is valid, in particular, fof € C(K, E). Sincev is an arbitrary regular Borel mea-
sure dominating and|m| < v, we deduce thdin| is the smallest regular measure dominating

T,i.e.ur =|m. O
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Theorem 4.25 There exists an isomorphismd T’ between the space of linear dominated
operators T: C(K,E) —» F and the space of linear dominated operators TC(K) —

L(E, F) given by the equality
T(e®X) =T (p)x, for¢ e C(K)and xe E.

If T and T" are in correspondence, then there exists a regular measur®m-» L(E, F) with

finite variation|m| such that

T(f):ff(k)drr(k), for f e C(K, E),

and
T'(e) = f o(K) dm(K),  for o € C(K),
and we have

pr = pro=|m.

Proof. LetT : C(K,E) — F be a linear dominated operator amd: 8 — L(E, F) be the

regular measure with finite variatigm| such that
T(f) :ff(k)dm, for every fe C(K, E).

LetT’ : C(K) — L(E, F) be the linear mapping correspondingTtdy the equality (Theorem
4.18)
Tle®X) =T (p)x, forye e C(K)and xe E.

We know that the correspondence is linear and one-to-onecéde
T =Tle®9) = [(0®09 dm=( [ 409 dn(i) x
for everyx € E, therefore
T'(p) = f(,o(k) dm(k), for everyyp e C(K).
From this equality we deduce that is dominated and that
put = pro=|m.

Conversely, le” : C(K) - X = L(E, F) be a linear dominated mapping, andiet 8 —
L(R, X) = X be the regular measure corresponding tdy Theorem 4.24. If we put

T(f):ff(k)dn(k), f e C(K,E),
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thenT : C(K, E) — F is a dominated linear mapping and we have

T(e®X) =T (¢)x, for ¢ e C(K)and xe E.

4.3.2 Dominated Operators orcy(K, E)—spaces

In this section we give some characterizations about dartinaperators ony(K, E)-spaces.
This section will play an important role in characterizingnuinated operators ddDg(K, E)
spaces. Throughout this section, the w@dmetrymeans vector norm preserving linear

bijective operator. We now give the following fact which Wik useful in the sequel.

Lemma 4.26 Let K be a non-empty set and E be a Banach space. Then the sptw o
functions}, ¢; ® x; (finite sum) withp; € cp(K) and % € E is (uniformly) dense ingK, E).

Proof. Let f € cp(K, E) ande > 0. Then there exists an at most countable sublegte K
such thatf (k) = 0 for all k # k, and there exists somg € N such that|f (k)| < & for each
n > ng. Let fm(ky) = f(ky) for each 1< n < mand 0 otherwise. Then for ea&re K,

1 fm(kn) — F(K)II = If(kns2)ll <& foreachn>N=no -1
This completes the proof sindg(kn) = X1, xk, ® f(Kn). O
Definition 4.27 Let K be a non-empty set, E and F be two Banach spaces. We define
I1(K, L(E, F)) as the set of mappings: K — L(E, F) such that

D (Rl < o, forall f e co(K, E).
keK

As usual,> ek lle(K)(f(K)IIF is the supremum of all the sums

s lle(K)(f(K)llr whereS is a finite subset oK .

[1(K, L(E, F)) is a lattice-normed space with norm lattigéK) (the set of real-valued abso-

lutely summable functions o).
Now we give the following result which will be used in the neetction.
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Theorem 4.28 Let K be a non-empty set and E and F be two Banach spaces. Theavee
that M(co(K, E), F) is isometrically isomorphic to (K, L(E, F)).

Proof. Let¢ : M(co(K, E), F) — I1(K, L(E, F)) be defined by(G)(k)(e) = G(yk®¢€) for each
G e M(co(K, E), F), k e K ande € E. Then¢(G)(K) is clearly a linear operator frof into F.
Sincecy(K, E) is decomposable (Proposition 3.79) ddthe norm lattice oF) is Dedekind
complete, the least dominal@| exists (Theorem 2.10) and is a linear continuous functional
on ¢o(K). We can identify|G| with a functiona € 11(K) = 11(K, R) in the sense that

GI(g) = ), @(g(K) (g € co(K)).

keK
Taking this observation into account we deduce that

lB(@)R©lF = Gk ellr < IGI(rk @ &) = Y (k)] llele.

keK
thereforellp(G)(K)lILE,F) < 2kek la(K)l < o0 and@(G)(K) € L(E, F). Thus¢(G) is a map from

Kinto L(E, F).
We now show tha}’ .k [l¢(G)(K)(f (K))||r < oo for eachf € cy(K, E).

For any finite subsée$ of K, we have

D 16@RER)IE = ) 160k @ Dl

keS keS

< Z IGl(lyk ® f]) = |G| [Z ”f(k)”EXk]
keS keS

< [GI(If1),

therefore

D 1@)R(FR)IE < [GI(Ifl) < oo.

keK
Hencep(G) satisfies the restriction to be an element; K, L(E, F)). Let 0 < g € ¢o(K) such

that|f| < gfor f € co(K, E), then we have from the previous inequality that

sup Y IB@R(FRIE = | IBCKer < SUpIGI( 1)

Ifl<g keK keK

Gl(@) = > a(g(k),

keK

IA
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thereforep(G) is dominated ant#(G)| < a = |G|.

It is easy to verify thap is a linear map. Assume tha(G) = 0 for someG € M(co(K, E), F).
ThenG(yx ® €) = 0 for eachk € K ande € E. This yields

G v ®e) = Y Gl ®8)=0.
i=1 i=1

Since}l, vk ® & is dense irgy(K, E) (Lemma 4.26), then (by continuity(f) = 0 for each
f € cg(K, E). This implies thatc = 0. Thusg is one-to-one.

To show thaw is surjective and an isometry, lete I1(K, L(E, F)) and define

G(f) = > a((f(K), e co(K,E)

keK

which certainly converges and it is clear tl@ais linear. We now verify thap(G) = «. Let

ec E, then

$(G)(ko)(€) = Gy, ®€) = Z a(K)(xk, ® e(K)) = a(ko)(€),
keK
Sincee € E is arbitrary, we conclude that(G)(ko) = a(ko) sinceky is arbitrary, we have

¢(G) = a. Also

IGI = 1) a(F(E < > la((f()lIe
keK keK
< D le®lluer I RIEe = D 1lK) ITIK),
keK keK
thereforeG is dominated ant5| < |a| = |#(G). O

4.3.3 Dominated Operators orCDy(K, E)—spaces

In this section, we give two characterizations about doteshandbo-continuous dominated

operators o€ Dy(K, E). The following theorem contains the first characterizatio

Theorem 4.29 Let K be a compact Hausdfrspace without isolated points, E and F be
two Banach spaces. Then we have thafCidy(K, E), F) is isometrically isomorphic to
rca(®B, L(E, F)) & 11(K, L(E, F)) where rcdB, L(E, F)) is the space of regular Borel mea-

sures m B — L(E, F) with finite variation|m|.
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Proof. Let T € M(CDg(K, E), F). Then certainlyT splits into two dominated linear operators
T1:C(K,E) » FandT, : co(K,E) —» F. By Theorem 4.24 and Theorem 4.28 , there exist
somem € rca(®B, L(E, F)) anda € 11(K, L(E, F)) such thafT; and T, can be identified with

m anda respectively. We thus have a mappingM{CDgy(K, E), F) into rca(8, L(E, F)) &
l1(K, L(E, F)).

Now suppose than € rca(B, L(E, F)) anda € 11(K, L(E, F)). We can certainly define a map
¢ on M(CDy(K, E), F) by
o(f) = f (k) dm(k) + > a(K)(fa(K)),

keK
for f = f1+ f» € C(K, E) @ co(K, E). It follows from Theorem 4.24 and Theorem 4.28 that the

map fromrca(*B, L(E, F))a®l1(K, L(E, F)) into M(CDg(K, E), F) is an isometric isomorphism.
O

Now we give a characterization abdad-continuous operators ddDy(K, E).

Theorem 4.30 Let K be a compact Hausdffispace without isolated points, E and F be two

Banach spaces. Then{CDo(K, E), F) is isometrically isomorphic to'{K, L(E, F)).

Proof. Let G € M,(CDo(K, E), F). Then|G]| is a positive order continuous linear functional
on CDy(K) (Theorem 2.13). Also from Theorem 6.1 in [33], we know tl@jtcan be iden-
tified with an elementy € [1(K) so that by using Theorem 2.11 integral part in Theorem
4.29 vanishes. Thusl,(CDg(K, E), F) is isometrically isomorphic to*(K, L(E, F)) again by
Theorem 4.29. O

4.4  Order Continuous Operators on Abramovich—Wickstead Spces

Throughout this section the symtd| denotes the space of regular order continuous operators
andyk ® f denotes the vector valued function which takes the va{igeatk and O otherwise.

The following definitions and theorems were given in [27].
Definition 4.31 Let K be a compact Hausdfrspace without isolated points and E be a
Banach lattice. Then the set of all mgps: B(k) from K into E; satisfying

sup > BOI(F(K)) < o0
k

Ifll<1
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where fe CDy(K, E) and X |8(K)I(f,(K)) lo Owhenever f | Owill be denoted by B(K, Ey).
As usual,} 1B(K)I(f(K)]) is the supremum of the sus |B(K)|(|f(K)[) where Sc K and is

finite. Dy(K, Ep) is a normed Riesz space under pointwise operations and rswjonenorm.

Theorem 4.32 Let K and E be as above. Then g(B, E), and Dy(K, E,) are isometrically

lattice isomorphic spaces.

Definition 4.33 Let K be a compact Hausdfrspace without isolated points and E be a
Banach lattice. Then the set of all mgps: B(k) from K into E; satisfying

sup > BT (K] < o0

Ifll<1 %

where fe CDy(K, E) and} |B(K)|(f.(K)) . Owhenever f | Owill be denoted by R(K, Ey).
As usual,y IB(K)I(If(K)]) is the supremum of the sug |B(K)|(I f (K)[) where S is a finite sub-

set of K. (K, Ep) is a normed Riesz space under pointwise operations and rswpnenorm.

Theorem 4.34 Let K and E be as above. Then G, E), and Dy(K, E) are isometrically

lattice isomorphic spaces.

In this section, we give a generalization of Theorem 4.32 Bnelorem 4.34 in two direc-
tions. In the first direction we replaceDy(K, E); (or CDyw(K, E)n) by L, (CDo(K, E), F) (or
L;,(CDw(K, E), F)) whereE andF are Banach lattices with Dedekind complete. We take
as a Dedekind complete Banach lattice to ensuretl{@&Dy(K, E), F) (or L;,(CDw(K, E), F))
is a Dedekind complete Banach lattice under the regular fidkmIn the second direction,
we replaceE by L|,(E, F). We now give the following definition which is a modificatiof

Definition 4.31.

Definition 4.35 Let K be a compact Hausdfspace without isolated points, E and F be two
Banach lattices with F Dedekind complete. Then we defifi¢ L!,(E, F)) as the set of all
mapsy = ¢(k) from K into Lj,(E, F) satisfying

D le(IIF) € F
k

where fe CDy(K, E) and X i l¢(K)|(fo(K)) Lo Oin F whenever f | 0in CDoy(K, E).
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As usual, > le(K)|( f(K)]) is the supremum of the sum¥s |¢(K)|(| f(K)) whereS c K and is

finite.
I1(K, LL(E, F)) is a Banach lattice under pointwise operations and supmemorm.

We now give the following theorem which is the main resultte$tsection.

Theorem 4.36 Let K, E and F be as above definition. Théf{@Dy(K, E), F) is isometrically
lattice isomorphic tod(K, L},(E, F)).

Proof. Let us define a map : L',(CDo(K, E), F) — I1%(K, L',(E, F)) ate € E by the formula
#(G)(K)(e) = G(yk ® €) for eachG € L|,(CDo(K, E), F) andk € K. Itis clear tha® is a linear
map. Using the linearity and the fact thgG")(k) and¢(G™)(k) are order boundeB-valued
operators for eacd onCDg(K, E), ¢(G)(K) is order bounded.

Moreover, ife, | 0in E, thenyx® e, | 0in CDg(K, E) for eachk € K. Using the order
continuity of G, we have thaG(yx ® €) is order convergent to 0 so thatG)(k) € Lj,(E, F) for
eachG € L;,(CDgy(K, E), F). We thus have a ma(G) from K into Ly,(E, F).

Now we will show that
D IR € F, e CD(K, E),
k
Let S be a finite subset df andG € L,(CDo(K, E), F). Then

S BE®ITR) = Y I6(G - GRIIFK)

keS keS

D ¢GRI + > #(GHRFK)

keS keS

= > G (welf)+ ) G (uelf)

keS keS
mem]m‘ wam]
keS

keS

IA

- G*

for eachf € CDg(K, E). But we know thaty s vk ® |f| Ts |f|, sinceG™ andG™~ are order

continuous, we obtain

Z IBG)RIATEI) < G () + G (If]) = IGI( 1),

keS
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so that

D @)K € F,

keK
sinceF is Dedekind complete. We also have to show that

D 1@)MI(f(K) Lo Oin F
k

for eachf, € CDg(K, E) such thatf, | 0. It is enough to show this for positive elements in
LL(CDo(K,E),F). Let 0< G € L[,(CDo(K, E), F) andf, | 0in CDgy(K, E). For a fixeda, we

have) s vk ® fy Ts f,. AsGis order continuous and positive,

G

ZXk ® fa} = Z G(Xk ® fa) T G(f(t),

keS keS

so that

D BOMIfK) = > dG)R(fa(K)

keK keK

> Gl ® f) = G(f) L O,

keK

Hence the map(G) is an element oft(K, L!,(E, F)).

We now show that it is bipositive. Certain(G) > 0 wheneverG > 0. Now assume
that¢(G) > 0 for someG € L (CDg(K, E), F) and let us take & f € CDgy(K, E). We have
Zkes Clxk® f) — G(f), sinceXyes xk® f Ts fin CDo(K, E). AsG(xk® f) = ¢(G)(K)(f) = 0
and thusG(f) > 0 for each O< f € CDo(K, E), i.e.,G > 0.

To show thai is one-to-one, lep(G) = 0 for someG € L (CDy(K, E), F). ThenG(yk®f) =0
for eachk € K and 0< f € CDy(K, E). As G is order continuous ang,.s vk ® f s f, this
gives that 0= X5 G(xyk ® f) — G(f) or G(f) = 0. As CDy(K, E) is a vector lattice, we get
G=0.

To show thatg is surjective, take an arbitrary & o € 1}(K, LL(E, F)) and let us define
G : CDo(K,E); — F, by G(f) = Xek a(K)(f(K)). As G is additive onCDg(K, E) and so
G(f) = G(f*) — G(f~) extendsG to CDy(K, E). We now verify thatp(G) = a. If 0 < e€ E,
then

$(G)(0)(®) = Glxio ®€) = > aK)(xip, ® §)(K) = a(ko)e.

keK
Sincee € E is arbitrary, we conclude that(G)(kg) = a(kg) andkg is arbitrary, we have

$(G) = a.
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Finally we show thaw is an isometry. LeG € L,(CDg(K, E), F) andf € CDy(K, E). Then

IGll- = supllGI(T) Il = supllIGIITD Il = SUpII €] Zm@lﬂ] I
Ifll<1 Ifll<1 IIf] keK
= supll ) [GlGxk @ Ifl) Il = l(GDII = ll(G)ll-
1< jex
This completes the proof. O

Definition 4.37 Let K be a compact Hausdfispace without isolated points, E and F be two
Banach lattices with F Dedekind complete. Then we defjti€, L,(E, F)) as the set of all
mapsy = ¢(k) from K into Lj,(E, F) satisfying

D le(IIF) € F
k

where fe CDy(K, E) and Yy l¢(K)I(f,(K)) l, Oin F whenever § | 0in CDy(K, E).

IL(K, L'(E, F)) is a Banach lattice under pointwise operations and supmemorm. The

following theorem is similar to Theorem 4.36 so we omit iteqit

Theorem 4.38 Let K, E and F be as above definition. Thel(CDy(K, E), F) is isometri-
cally lattice isomorphic to}(K, L!,(E, F)).
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