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ABSTRACT 
 

 

 

 

2D/3D IMAGING SIMULATOR 

Bozkurt, Nesli 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 

November 2008, 84 pages 

 

 

3D modeling of real objects has an increasing importance in numerous areas. 

Although many methods and solutions are already proposed for 3D data acquisition, 

research continuing in this area is still intense. However, a crucial drawback about 

3D data extraction algorithms is their testing and validation difficulty. Additionally, 

obtaining calibrated 2D and 3D imaging systems is troublesome due to their high 

effort demand for calibration and high cost. In this thesis, a 2D/3D Imaging 

Simulator is proposed in order to ease development and testing of 3D data 

interpretations of different methods and also to generate synthetic images for 

miscellaneous use. Furthermore, an example application on FRGC database is 

explained in detail. 

 

Keywords: 2D/3D Imaging, Simulation, Face Model Preprocessing, FRGC, Scanner 



 
 
 v 

 

 

ÖZ 
 

 

 

 

2B/3B GÖRÜNTÜLEME SİMÜLATORÜ 

Bozkurt, Nesli 

Yüksek Lisans,  Elektrik ve Elektronik Mühendisliği Bölümü  

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 

Kasım 2008, 84 sayfa 

 

 

Gerçek cisimlerin 3B modellenmesi çeşitli alanlarda artan bir öneme sahiptir. 3B veri 

elde edilmesi konusunda halihazırda birçok yöntem ve çözüm önerilmiş olmasına 

rağmen, bu alandaki çalışmalar halen yoğun bir şekilde sürmektedir. Ancak, testleri 

ve geçerlilik denetimleri, 3B veri çıkarım algoritmaları ile ilgili önemli bir 

dezavantaj teşkil etmektedir. Ayrıca, kalibre edilmiş 2B ve 3B görüntüleme 

sistemlerinin edinimi, kalibrasyon için yüksek çaba ihtiyacından ve yüksek 

masrafından dolayı sıkıntılıdır. Bu tezde, farklı yöntemlerle 3B veri analizlerinin 

geliştirilmesini, test edilmesini kolaylaştırma ve bunun yanında muhtelif kullanım 

amaçlı yapay veri üretme amacıyla bir 2B/3B Görüntüleme Simülatörü 

önerilmektedir. Ek olarak, FRGC veri tabanı üzerinde bir örnek uygulama da detaylı 

olarak anlatılmıştır. 

 

Anahtar Kelimeler: 2B/3B Görüntüleme, Simülasyon, Yüz Modelleri Ön-işlemesi, 

FRGC, Tarayıcı 
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CHAPTERS 

CHAPTER 1 

 

 

INTRODUCTION 
 

 

 

Today, computer graphics technology is capable of rendering very realistic images of 

the 3D models. In both hardware and software cases, powerful graphics tools are 

available. 3D models are used for different purposes such as; documentation of 

fragile and unique objects like historical artifacts [1] or masterpieces, entertainment, 

web commerce and also in dental and orthopedics. 

 

At this point, a strong need for easy and low-cost acquisition of 3D models is 

developed. At the very beginning, even before the existence of 3D modeling 

packages, everything was digitized by hand or sketched on graph paper and the 

numbers were entered by using any text editor. 

 

After the 3D modeling packages came out, the workload was a bit decreased but it 

was still a very time consuming process and the achievable level of detail and 

realism was not enough. Therefore, many different approaches for “sampling” the 

world were born and this research area is still expanding rapidly [2]. 

 

In order to create 3D models of the world, today’s one of the best solutions is 3D 

non-contact scanners. 3D scanner is a device to analyze an object to mainly collect 

data on its shape. The purpose of this device is to create a point cloud of geometric 
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samples on the surface of the subject. Using these points, the shape of the object can 

be reconstructed. Like cameras, 3D scanners also have a cone-like field of view and 

they can not collect the depth information for the obscured surfaces. Eventually, a 

“depth-image” is produced by the 3D scanner which includes the distance to a 

surface at each point of the picture. 

 

Many kinds of non-contact scanners exists which can be classified as active and 

passive. Active scanners function by emitting some kind of radiation or light and 

detect its reflection to interpret a distance value. Whereas, passive scanners take 

advantage of the visual cues that already exist in the scene.  

 

In both cases, interpreting and processing the obtained data which can be done by 

using dozens of algorithms, is crucial. However, it is not an easy task to test and 

verify those algorithms used. Multiple scan models of different kinds are needed for 

verification. For instance, a laser scan data may be needed as the ground truth when a 

stereo system or the post-processing results of the same system is to be tested. Apart 

from high cost of the scanning systems, it also needs a remarkable effort to merge 

imaging systems and calibrate them accordingly. Additionally, acquiring these two 

data simultaneously is not very straightforward. Usually, the images are taken 

consecutively and most of the time, the unstable scene and human imperfection 

prevent the two images to be identical. 

 

As in many situations dealing with similar issues, the best option is using computer 

simulations. Simulators are tools that imitate real systems and can be utilized for 

analysis of the system for research, development and testing of new algorithms or 

sub-systems. Simulation is the process of designing a model of a real or imagined 

system and conducting experiments with that model. It allows the analysis of a 

system’s capabilities, capacities, and behaviors without requiring the construction of 

or experimentation with the real system [3]. 

 

In our case, simulator is being used referring to a “virtual environment” that allows 

users to manipulate the objects within this environment and collect the needed data. 
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The functioning and the use of the 2D/3D Imaging Simulator will be explained in 

detail in the following chapters, but before that, brief information about the 

applicable algorithms and methods will be presented. 

 

1.1 Computer Vision 
 

The advance in computer graphics, starting from early 60’s, let 3D modeling into 

both academic and industrial world as well as making it an important part of  the 

everyday life. With the technologic improvements in computer graphics hardware, 

we have entered a new era, where the acquisition of 3D data is massively demanded. 

 

Possible applications of the 3D data are [29]: 

• industrial inspection for 3-D objects (quality control, deformation analysis, 

food inspection, printed web defect analysis) 

• 3-D sensing (three dimensional measurement of objects), 3-D growth 

monitoring  

• Z-keying  

• novel view synthesis, image-based rendering, virtual environments  

• autonomous vehicles, robotics  

• medical, biomedical and bioengineering (stereoendoscopy, stereoradiographs, 

automatic creation of three dimensional model of a human face or dental 

structure from stereo images)  

• scanning electron microscope  

• surveillance (motion tracking and object tracking to measure paths)  

• transport (traffic scene analysis)  

• digital photogrammetry, remote sensing (generating Digital Elevation 

Models, surveying, cartography) 

• 3-D database for urban and town planning  

• stereolithography, stereosculpting (automatic acquisition of digital 3-D 

information used in CAD-CAM systems. This information can be fed into 

computer controlled milling machines for rapid solid modeling)  



 
 
 4 

• asset monitoring and management  

• 3-D model creation for e-commence or on-line shopping  

 

Today, for the computers, it is not enough only to see what is in front of them. 

Machines also would like to know how far the object that they see is. Thus, apart 

from the x and y coordinates, the z coordinate - depth - is also to be calculated. In the 

area of computer vision, researchers have been working for many years to provide 

these capabilities for machines. The initial work was targeted towards robotics and 

automation, e.g. allowing a robot to navigate through an unknown environment. In 

recent years the focus has shifted to visualization and communication, resulting in 

much more interaction with the computer graphics community [2].  

 

For this purpose, numerous methods are proposed. Here, three of them will be 

mentioned as they are applicable to the constructed simulator: 

 

1.1.1 Shape from Shading 

 

The method that is known as “shape from shading” method in the literature aims to 

resolve the problem to derive the 3D shape information from shading in a single two-

dimensional image of the object. It was first formulated by Horn [4] in 1975. In the 

first years, researchers focused on the computational part of the problem. 

Nevertheless, due to the poor quality of the results, questions about existence and the 

uniqueness of the solutions as well as the ones related to the convergence of 

numerical schemes for computing the solutions became central in the last decade of 

the 20th century [5]. Still known to be an ill-posed problem, the method is highly 

popular due to its minimal data requirement. 

 

The gradual variation of the shade in an image reveals very important information 

about the 3D shape of the surface. In order to understand the shape from shading 
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problem, firstly it is important to study how the image intensities are formed. Yet 

again, finding a unique solution is difficult and many assumptions have to be made. 

 

Assuming that a surface is composed of continuous patches, the measured brightness 

on the image E(x,y) will be determined by three main factors: Material properties of 

the patch, the direction of illumination and the patch orientation, or surface normal in 

other words. Now, let’s have a closer look at how the image brightness changes: 

 

Considering the geometry in Figure 1, the amount of light received by the sensor 

depends on the incident light intensity, the incidence angle, the emittance angle and 

the phase angle. If we assume that the incident ray intensity is I1 and the unit area 

illuminated is dS, then the light falling to this unit area is calculated as:  I1 cos(i) dS 

 

 

 

Figure 1 Lighting geometry and incidence (i), emittance (e) and phase angles 

 
Reflectance of a surface can be defined as the proportion of the reflected radiation 

intensity to the incident radiation intensity. The amount of light that is percepted by 

the sensor can be formulated as:  I2 cos(e) dS dw where I2 is the emitted ray intensity 

and dw is the solid angle subtended by the sensor area to the unit surface. So, 

reflectivity function is I2/I1. 
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The relation between the image brightness and the reflectivity map can be simplified 

to )),((),( 2121 xxnRxxE =  where x1 and x2 are the coordinates of a point P in the 

image, R reflectivity map and E is the image brightness[5]. Here, R is a function of 

surface normal at (x1,x2), in other words, the surface orientation. The surface 

orientation is characterized by the components of the surface gradient in x- and y- 

directions.  

 

 

x

z
p

δ

δ
=     

y

z
q

δ

δ
=     Tqpn )1,,( −−=     ),(),( qpRyxE =  Equation 1.1 

 

The Equation 1.1 describes the mapping between x,y coordinate space of the image 

and the p,q gradient-space of the surface. However, additional information is needed 

to uniquely solve the partial differential equation derived from this relation. This 

additional constraint is the assumption of surface smoothness. In this way, 

arbitrariness for the neighboring gradient assumptions is avoided. 

 

Starting from this point, the relation between gradient and image coordinates can be 

expressed in various ways for different conditions, such as orthographic SFS with a 

far light source in [6], [7], perspective SFS with a far light source in [8], [9], [10] or 

perspective SFS with a point light source at the optical center in [11], [12]. In most 

cases, taking the surface as Lambertian is sufficient where reflectance is the cosine of 

the incidence angle. 

 

By assuming a smooth surface, the differential equations for the gradient values at 

neighboring points can be solved for a specific direction. This way, strips of 3D 

models are obtained. 

 

However, in addition to the smoothness assumption for the surface, in order to obtain 

the whole surface, an initial point (x0,y0,z0,p0,q0) with known coordinates and 

gradients for each strip is needed. Such set of points can be obtained around a 
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neighborhood isolated (singular) maximum at R(p0,q0)=E(x0,y0) or occluding 

boundaries. [13] 

 

1.1.2 Stereo Reconstruction 

 

Stereo reconstruction method, based on the same principle as the human visual 

system, is one of the earliest solutions proposed for 3D reconstruction. The problem 

of reconstructing scene geometry from calibrated stereo image pairs has a 30-year 

history in computer vision. However, as pointed out in [14], biological evolution 

solved this problem million years ago, and humans have studied the concept of stereo 

vision since at least the time of Leonardo ad Vinci[15]. 

 

 

 

Figure 2 Stereo imaging geometry and the depth map [30] 

 

Contrary to shape from shading method, stereo reconstruction functions with at least 

two images of the same scene from different angles. Stereo image pairs contain the 



 
 
 8 

depth information about the scene. In each image, the same point in the scene is 

projected on different pixels due to the distance in between the point and the sensors. 

Using these relations, the 3D coordinates of the point can be extracted. The simplest 

case for stereo imaging is using two cameras with parallel viewing directions and 

separated by a distance d. In order to simplify the system further, the viewing 

directions can be perpendicular to the line connecting the camera sensors. 

 

 

 

Figure 3 A simplified stereo imaging system[31] 

 

 

If we consider a point (x,y,z) in the scene in 3D world coordinates, f as the focal 

length of both cameras and take (xl,yl) and (xr,yr) as its projection on left and right 

image planes respectively, following equations on geometric relations of these points 

are obtained: 

 

 

z

dx

f

xl 2/+
=       

z

dx

f

xr 2/−
=       

z

y

f

y

f

y
rl

==   Equation 1.2 

By solving these equations for (x,y,z), the 3D coordinate of the point can be 

calculated as: 
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Disparity is defined as the quantity “xl-xr” which appears in these equations. It can 

be analyzed from the equations that the depth – z coordinate of the point is inversely 

proportional to disparity. The disparity of a fix point in the scene increases with the 

distance between the cameras. This leads to the following trade-off: If more accurate 

disparity maps are to be obtained, the distance between the cameras should be 

increased. Disparity can only be measured in pixel differences, hence far away 

objects that yield to small disparity  cannot be distinguished in stereo pairs. By 

increasing the distance between the lenses, this problem can be overcome. However, 

as camera separation becomes larger, correlating the stereo images will be more 

difficult. The correlation problem is named as “stereo correspondence problem”. To 

gain a better understanding of the problem let’s look at the following Figure 4: 

 

 

 

Figure 4 The stereo correspondence problem[32] 

 

Each camera views 3 dots and the 9 dots represent all the possible matches that could 

be made, the black dots are correct matches whereas the rest are incorrect[27]. 

 

If we summarize the stereo approach with three distinct and widely accepted: 
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1. Detection and recording of the feature points in each image, 

2. Matching of the corresponding feature points across the stereo pair, 

3. Combination of left and right images using disparity equation and extraction 

of depth information, 

then one can point out that the hardest part of this method is the step 2 that of 

identifying corresponding points in the two images.  

 

To simplify this step, epipolar geometry is exploited. If we approximate the cameras 

by the pinhole camera model, geometric relations between a point in the scene and 

camera positions constraint the point’s projections onto the stereo images. ‘Epipolar 

Plane’ is the plane defined by the object point in the scene and the positions of the 

two cameras. This plane intersects the two image planes with the ‘Epipolar Line’s. 

The geometry of the system restricts that a point in one of the images must lie 

somewhere on the corresponding epipolar line in the other image. So, the matching 

problem of the feature points is somewhat simplified. Epipolar geometry is not valid 

only for parallel viewing angles, but also non-parallel ones. 

 

 

 

Figure 5 Epipolar plane and epipolar lines [13] 

 

Stereo matching has been studied over decades in computer vision. The proposed 

approaches for interest point extraction from the images can be broadly classified 

into feature-based and correlation-based approaches. For both approaches it is 

important for the feature points to be well-defined and stable across the view.  
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In correlation-based algorithms, small image windows of a fixed size are used for 

matching, and the correspondence is decided by using a measure of the correlation of 

these windows within each image. Some important correlation-based approaches 

were proposed by Marr and Poggio[16], Grimson[17], Pollard, Mayhem and 

Frisby[18], Gimmel’Farb[19], Baker and Binford[20] and Ohta and Kanade[21]. 

Typically, correlation-based algorithms yield to dense depth maps but they are 

susceptible to noise and surface foreshortening in the stereo images. On the other 

hand, feature-based methods use a set of features to find correspondence in two 

images. These algorithms are more robust against noise but give sparse depth maps 

and interpolation is necessary. Numerous successful correlation-based approaches 

were proposed such as, Okutomi and Kanade[22], Cox et al.[23], Koch[24] and 

Falkenhagen[25,26]. 

 

Using “Structured Light” on the object and marking the pattern projected on the 

object as the feature points in both images greatly simplifies the stereo 

correspondence problem. This special application of structured light in a stereo 

vision system will be explained in detail in the “1.1.3 Structured Light” section. 

 

1.1.3 Structured Light 

 

Binocular stereo can produce a dense depth map of a scene, but the computed depth 

values may not be very accurate. Structured light on the other hand produces more 

accurate depth values and is considered as one of the most frequently used 

techniques in computer vision. It is the process of projecting a known pattern of 

pixels (often grids or horizontal bars) on to a scene [27].  

 

As the light pattern is distorted by the surface shape, its projection onto the image 

plane carries more information on 3D model of the surface. 
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Figure 6 Different textures are projected onto the scene [34] 

 

In order to get dense depth information, the projected texture has to be moved in the 

scene. This way whole surface can be scanned. Another technique is to project 

multiple stripes at once onto the scene. Structured light method requires good 

lighting control and for this reason, it can give satisfactory results only at indoor 

environments. For distinguishing between the stripes Coded Light Approach is used 

in which the stripes are coded either with different brightness or different colors. 

Hence, there is no correspondence problem. 

 

 

 

Figure 7 Structured light system and the deformation of a single stripe [35] 

 

Actually, structured light system is an active stereo system where one of the cameras 

is replaced with a projector or laser unit. The triangulation concept that is used in 

stereo vision is also applicable in this system. The idea is that once the perspective 

projection matrix of the camera and the equations of the planes containing the sheets 
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of light relative to a global coordinate frame are computed from calibration, the 

triangulation for computing the 3-D coordinates of object points simply involves 

finding the intersection of a ray from the camera and a plane from the sheet of light 

of the projector or laser[33]. 

 

 

 

Figure 8 Structured light system geometry 

 

From the given geometry given in Figure 8, (X,Y,Z) can be found as: 

 

 

),,(
cot

),,( fyx
xf

b
ZYX

−Θ
=    Equation 1.4 

  

In order to explain a more general approach, let’s say that the calibrated camera has 

the perspective projection matrix C = [qij]. In the image captured by the camera, for 

any point (u,v) on a stripe of light following equations can be obtained using the 

calibration matrix: 
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0)()()()( 3414331332123111 =−+−+−+− uqqZuqqXuqqXuqq  Equation 1.5 

 

0)()()()( 3424332332223121 =−+−+−+− uqqZuqqXuqqXuqq  Equation 1.6 

 

In the same global coordinate system, the equation of the light stripe can also be 

written as in Equation 1.7. 

 

 

0=+++ dcZbYaX     Equation 1.7 

 

We have the three unknowns as the 3D coordinates of the point and we can transform 

the equations to the matrix multiplication representation given in Equation 1.8. 
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By solving this system, X,Y,Z coordinates can be calculated. 

 

The stripe detection, or in other words detection of the edge between illuminated and 

nom-illuminated areas is the crucial point for robustness of the method. Using the 

obtained equation system in Equation 1.8, points along the edges can be 

reconstructed and a dense range image can be computed to produce a realistic model 

of the surface. 

 

In literature, there are also studies on using both stereo vision and structured light at 

the same time. One of the reasons of doing this is to recover the geometry of a non-

rigid scene continuously in time[36]. Hence, the reconstruction of the human face 

while speaking is possible using stereo cameras for the capture. Structured light can 
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give  quite accurate depth information but it is restrictive about the illumination and 

rigidity. On the other hand, stereo vision can also be used for video images where the 

scene is captured with two cameras. The geometry of the scene is first calculated by 

using structured light and afterwards, stereo system is used to track the object in 3D 

scene. Since the geometry is known at time t, the next image at time t+dt can be 

estimated. This way, the correspondences in image colors are easier to predict using 

local matching process and the depth map of the scene  at t+dt is obtained. Finally, 

after all scenes are reconstructed, the video is transformed to have a third dimension. 

 

Another reason for using stereo vision and structured light simultaneously is to avoid 

obstructions. Hence, the 3D coordinates for the points that are obscure to one of the 

cameras, can be calculated using the other one. 

 

 

 

Figure 9 Fringe pattern recording system with 2 cameras [37] 

 

As more cameras inserted in the system, more calibration is required. Calibrating two 

cameras and a projector is not a really easy task. Additionally, even the small errors 

in the obtained calibration matrices can result in serious miscalculations about the 

surface shape and position. In order to validate the algorithm used in imaging 

exactly, these defects should be eliminated.  
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1.2 2.5D Recognition 
 

For decades, a lot of effort has been devoted to recognition - mostly face recognition, 

using images, namely 2D information. Many 2D recognition systems can achieve 

good results, however still the performances are highly dependent on the 

environmental effects. The difficulties arise with different illumination conditions 

and pose and facial expression variations.  

 

 

 

Figure 10 Examples for illumination, pose and gesture variations [44] 

 

Due to the mentioned problems, alternative approaches are being evaluated. One of 

these is the face recognition systems that use three-dimensional depth information 

and are becoming more and more important everyday[38, 39]. Obviously, unless the 

texture information is utilized, illumination drawback is eliminated. Still, negative 

effects of the pose and facial expression variations to the recognition system are to be 

handled. 

 

However, to analyze these variations properly, 3D scans of the faces with either pose 

or facial expression variations. If these two parameters change simultaneously, their 

contributions to the extracted features to be matched cannot be easily disassociated. 

However, in real systems, elimination of such system and subject defects is almost 

impossible. 
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Numerous methods have been applied and many more are still being developed for 

3d model based face recognition. These approaches can be simply exemplified as 

ICP based shape matching methods [38, 40] and 3d morphable model based methods 

[41, 42, 43]. 
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CHAPTER 2 

 

 

2D/3D Imaging Simulator 

 

 

 
2D/3D Imaging Simulator is a tool that enables the user to create an environment by 

loading 3D models of numerous objects in any desired position and rotation. The 

user can also set the camera position and rotation which is used to take the picture or 

the 3D scan of the scene in front of it. Moreover, lights and texture projections can 

be added according to the user’s inputs on various specifications. 

 

The reason of the need for such a tool will be explained in the ‘Motivation’ section. 

Afterwards, in the ‘Related Work’ section, few other examples of this kind of tools 

will be presented. Detailed information about the attributions and the abilities of the 

tool will be given in the ‘Features’ section. Finally, in the ‘Technical Specifications’ 

section the technical properties and limitations will be reported.  

 

2.1 Motivation 
 

As mentioned before, the construction and maintenance of an imaging system can be 

very laborious and costly. The calibration of the cameras and projectors to be use is 

laborious and troublesome. Additionally, even if we assume that we have the perfect 
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system for imaging, we cannot control the position, rotation and the expression of the 

objects and this makes it hard to verify our results. 

 

 

 

Figure 11 The stereo imaging system in METU VISION Research Laboratory 

 

Moreover, even if we assume that the objects are also completely controllable, the 

need for the ground truth, which is the real 3D model in most cases, is impossible to 

acquire. Hence, in real system applications, results from another dependable source 

are used for verification and testing. 

 

To overcome all this issues, 2D/3D Imaging Simulator can be utilized. As described 

previously, this tool imitates real systems and produces the corresponding 2D or 3D 

data according to the user’s choices. Using the simulator, one can take multiple 

images of the same object from different angles and distances. This way the 

variations for illumination and expression can be eliminated. 

 

The models reconstructed by using the methods that are explained in the previous 

chapter can be easily compared to the original model, and the success of the 

implementation can be measured correctly. 
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Additionally, in order to test the robustness of a 3D object recognition algorithm 

against rotation variations, multiple scans of a set of models can be taken from 

different angles and used in the recognition process. 

 

Synthetic data acquisition is also extremely helpful to enrich a database as a matter 

of divergence and variety.  

 

2.2 Related Work 
 

Today, very few programs which are developed to simulate an imaging environment 

can be found, at least on the internet. There maybe some other tools that function 

similarly, however the only reachable ones will be mentioned briefly in the following 

subsections. 

 

The first example is a virtual scanner developed in the Computer Science 

Department at the Johns Hopkins University, as a part of a 1.55 million dollar project 

called “Digital Hammurabi: High-Resolution 3D Imaging of Cuneiform Tablets”, to 

aid the researchers hardware and software development [45]. The second example is 

a virtual vision laboratory created by the Computer Science Department at the 

Columbia University, to provide some laboratory exercise for the students [46]. 

Finally, a realistic simulated robot for vision algorithms is designed by Claus C. 

Aranha, Schubert R. Carvalho and Luiz M.G. Goncalves, for ability to work on work 

on several aspects of cognition, attention, sensorimotor development, computer 

vision, and other research fields, without the immediate need of a real robot [47]. 

 

2.2.1 Virtual Scanner 

 

As a part of the “Digital Hammurabi: High-Resolution 3D Imaging of Cuneiform 

Tablets” project conducted at the Johns Hopkins University, Computer Science 
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Department, a virtual 3D surface scanner is developed that can take a 3D model and 

“scans” it in one pass, leaving, much as a real scanner would, holes in the data. This 

scan provides the means to calculate the next best view and angle for subsequent 

passes of the scanner in order to fill in the holes. 

 

The graphical user interface for setting the parameters of the virtual scanner is shown 

in the figure 12. 

 

 

 

Figure 12 The user interface for setting the parameters of the virtual scanner [45] 

 

This virtual scanner can model the noise consisting of holes that can be encountered 

in a real 3D scanner result. So that, as the subsequent scans are taken, the decision is 

made for the best view and angle so that the holes can be eliminated. 

 

2.2.2 Virtual Vision Laboratory 

 

Virtual Vision Laboratory [48] (VVL) is used create a realistic robotic vision lab that 

is accessible to students. The approach is to model a robotics lab that can be 

manipulated and moved as in a real work cell. All movement in the workspace is 

shown with animation, along with a simulated image from a robot mounted camera. 
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Apart from the robotic movements, stereo vision is realized for environment 

perception. 

 

VVL is an educational tool to assist in teaching various aspects of robotics/computer 

vision. It was developed as a joint project between Columbia University, Lehigh 

University, Georgia Institute of Technology and funded by NSF Combined Research 

and Curriculuum Development Program, Award Number 9315517. 

 

 

 

Figure 13 The tutorial window of the Virtual Vision Laboratory tool 

 

The environment contains two Puma 500 six degree-of-freedom robots as well as 

objects that the robots manipulate. One of the robots holds a camera, while the other 

holds a gripper. The output of the camera is used so that the robot holding the gripper 

can locate, pick up and move objects. Real algorithms are used to interpret the 

camera output. 

 

The tool has ‘Help’, ‘Tutorial’ and ‘Camera Calibration’ modules. ‘Help’ module 

gives information about the functionality and the features of the tool whereas the 
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‘Tutorial’ module lets the students follow the steps of an implemented experiment. 

Finally, in the ‘Camera Calibration’ module, the correspondence between the points 

in the acquired 2D images and the actual 3D locations. So that, eventually the robot 

can be instructed with the gripper to pick up an object in the real 3D world. 

 

 

 

Figure 14 The two virtual cameras used for stereo vision 

 

Due to the complexity, fragileness, and expense of actual robotic equipment, there 

are usually no hands-on resources available to students that would allow them to test 

topics they learn in class. However, this tool gives them to opportunity to visualize a 

realistic experiment and hence grasp the geometry behind. 

 

2.2.3 Cabrio: A Realistic Simulated Robot 

 

In [47], concepts and algorithms for control of visual motor commands and realistic 
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simulation of basic abilities as visual servoing and perception for robotics vision 

simulation are introduced. A humanoid robot, called Cambio, is simulated. This way, 

the usefulness of a simulated platform as an inexpensive alternative for testing and 

developing computer vision algorithms in real-time robotics applications is proven. 

 

 

 

Figure 15 Stereo “eyes” of the robot which are able to verge to a place in the world 

 

Similar to the Virtual Vision Laboratory, a dynamic simulation of a stereo head and 

its image processing capability and of two integrated arms for object manipulation is 

provided. 

 

 

   

Figure 16 Robot in front of several different shaped and positioned cubes and the 

views from the left and the right eyes 
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Parallel to the driving motivation of this thesis, the main goal of Cambio is to allow 

researchers in Computer and Robotics Vision to perform experiments at reduced 

costs, running different tests with different robotic setups, using different testing 

algorithms, and in different situations putting the robot to its limits without the fear 

of breaking it up. 

 

2.3 METU VISION 2D/3D Imaging Simulator 
 

2D/3D Imaging Simulator developed in this thesis is a powerful tool for simulating 

an imaging environment and generating output data. Generally speaking, using this 

simulator is actually creating a world that consists of single/multiple objects, lights, a 

camera and a texture projector. 

 

 

 

Figure 17 2D/3D Imaging Simulator graphical user interface 

 

The tool has a simple and easy-to-use graphical user interface that allows the user to 

see the world that he created from different views via the view screen. Through this 

interface, the user can see and change the settings for the virtual environment. 
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The detailed information and explanations about all parts of the tool will be given in 

the following subsections. Also, the user’s manual can be found in Appendix A. 

 

2.3.1 Object Settings 

 

The objects are the main components of the world that is created in 2D/3D Imaging 

Simulator. The user can load as many objects as desired provided that the object data 

have the compatible format with the programmed parser. The data format is very 

simple and yet adequate for satisfying results, and can be illustrated as the following: 

v x1 y1 z1 

v x2 y2 z2 

... 

f i11 i12 i13 

f i21 i22 i23 

... 

 

where the vectors at the beginning, indicated with 'v's are the vertices that constitute 

the object itself. On the other hand, the vectors that are indicated with 'f's are actually 

the indices that tell us which vertices the faces are composed of. This data is enough 

to define the surfaces that form an object. The files should be named with the 

extension “.obj” after they are created. 

 

For each object to be loaded, the user should enter the position (x, y, z) and the 

rotation around these axes. The corresponding fields in the GUI are necessary to fill 

in and their initial values are all zero. 

 

After the .obj files are ready, they can be chosen to be loaded into the simulator by 

browsing to the necessary folder and selecting the file. Next, the user should select 

the object’s type from the corresponding drop-list. The objects can be in two 

different types: 
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• With a matched bitmap image as their texture 

• Without such a texture image 

 

For objects with a matched texture image, the image file should be with the same 

name and in the same folder with the object file, and in this case, the object will be 

displayed with this image textured over its surface. On the other hand, the objects 

without a texture image will be displayed as gray objects with modifiable surface 

properties. This feature can be accessed in “material properties” section of the GUI. 

But, before switching to that part, the “matched texture image” concept should be 

emphasized: 

 

 

 

Figure 18 Matched image illustration 

 

If we think that the objects are represented in 2.5D data, the surface is defined as a 

regular mesh with depth values at each entry, namely as a depth image. Its matched 

texture image is the (R, G, B) image, having the same size with the depth image and 

storing the color data at each vertex. 

 

 

 

Figure 19 Object settings are highlighted in the GUI 
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After the required values are entered, “Add” button adds the object into the virtual 

world at the stated location, with the stated rotation and scale. This procedure can be 

repeated multiple times, before hitting the “Show” button which finalizes the world 

and displays it in the “View Screen”. After this step, the material properties can be 

adjusted unless the object loaded is with a matched texture file. In this case, user has 

the ability to change the surface reaction parameters to the light. Those parameters 

can be listed as: 

 

- Diffuse (R, G, B)  - Specular (R, G, B) 

- Ambient (R, G, B)  - Shininess 

 

 

 

Figure 20 Objects with different material properties, illuminated by identical light 

sources 

 

A material can have separate diffuse, ambient and specular colors. These (R, G, B) 

values define the material’s response to diffuse, ambient and specular light, 

respectively. The values are fixed to common face values for the objects with 

matched texture image. 



 
 
 29 

 

Figure 21 Material Properties section in the GUI 

 

Before finalizing the world, one more thing to complete is to determine the camera 

properties which will be explained in the next section. 

 

2.3.2 Camera Settings 

 

Within the tool, camera actually refers to a point in space where the image or scan is 

taken. To reset the world and start over, “Clear World” button erases all objects 

loaded.  For this reason, camera settings are rather simple. Similar to objects, camera 

has position and rotation parameters which determine the camera location and 

direction. The camera is designed as a pinhole camera, with a viewing angle and a 

focal length, which is referred as “image plane distance”. 

 

 

 

Figure 22 Camera design and parameters 
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Those two properties can be adjusted using the corresponding fields in the GUI. 

 

In the “View Screen” the view can be changed in many ways and the output data, 

either image or scan, can be taken as if the world were photographed in that 

direction. The “camera” aspect in the tool is for more precise data acquisition. With 

the “Align Camera” button, the view is aligned to the position and direction of the 

camera, so that the user would know the exact setup. 

 

 

 

Figure 23 Camera settings are highlighted in the GUI 

 

“Reset View” button, on the other hand, resets the view to the initial configuration, 

which is positioned at the origin, and directed towards “+z”. 

 

2.3.3 Lighting Settings 

 

When an environment is created and simulated in the 2D/3D Imaging Simulator tool, 

the world is initially illuminated by a global ambient light by default. This property 

makes it possible to see the objects when they are added, without any adjustments 

required. 

 



 
 
 31 

The global light is ambient, which means it reflects with equal intensity in all 

directions. This implies that it does not reveal any information about the shape of the 

objects, since the reflection does not depend on the surface orientation. The intensity 

and the color of this light can be changed via the user interface. 

 

Apart from the global light, eight other light sources can be added to the 

environment. These lights are not directional but point sources, meaning that they 

emit light on all directions. Hence the only spatial property to enter is the position of 

the light source. 

 

 

 

Figure 24 Light Properties section in the GUI 

 

Similar to the material properties, the light properties can also be stated as “ambient”, 

“diffuse” and “specular” R, G, B values. Unlike the ambient light, the diffuse light 

reflection from the surface is related to the angle between the surface normal and the 

incidence angle. On the other hand, specular lighting is reflected more in the manner 

of a mirror where most of the light bounces off in a particular direction defined by 

the surface shape. Specular lighting is what produces the shiny highlights and helps 

to distinguish between flat, dull surfaces such as plaster and shiny surfaces like 

polished plastics and metals.  

 

Those settings can be configured before adding the light as well as after adding all or 

some other lights and selecting the desired light source from the drop-list. This 

selection also enables the user to switch it on/off. 
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Figure 25 The first object is just with ambient light, second one is with the ambient 

light and a diffuse light positioned to its right and third one is with ambient light and 

two diffuse lights with different colors and positions 

 

2.3.4 Texture Projection Settings 

 

In the 2d/3D Imaging simulator, there is also the projection simulation, which is 

designed to realize structured light experiments to extract the shape information. Just 

like the camera, projector also has a position and a direction. 

 

 

 

Figure 26 Texture Projection Properties section in the GUI 
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The texture to be projected on to the object is assigned by browsing the folders and 

selecting the image file. The important requirements for image is to be square, its 

size to be a power of two and to have an at least one-pixel-width frame of color 

(150,150,150), stated in (R,G,B) format. These limitations are imposed by the 

OpenGL’s texturing tools. 

 

The texture projection can be switched on and refreshed after changing the position 

and rotation values by using the “ON” button in the user interface, in the Texture 

Projection section. 

 

 

 

Figure 27 Objects without and with the texture projection 

 

2.3.5 Outputs 

The aim of this tool is to generate synthetic data for testing and/or application 

procedures. The output date can be in two types: 
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• Depth data: Scanner output 

• Color date: Camera output 

 

 

 

Figure 28 Output settings are highlighted in the GUI 

 

After pressing the “Create Image” button, the tool generates the image data which is 

taken from the camera position, towards camera direction, in chosen type. 

 

2.3.6 View Screen 

 

The “View Screen” is the main part of the GUI, where the world created is displayed 

and the looking angles and positions are manipulated. The coordinate system used in 

the virtual environment is as shown in the following: 

 

 

 

Figure 29 The coordinate system used in the View Screen 

 

All the inputs for positions, rotations and directions are taken into account according 

to this configuration. 

z 

x 

y
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Figure 30 An example snapshot from the “View Screen” in the GUI 

 

In/Out buttons help user to zoom into and zoom out from the scene, whereas holding 

left-button down on the screen allows user to rotate the objects. 

 

2.4 Technical Details 
 

In this section, technical details on the development environment, the coding 

structure and the work flow of the 2D/3D Imaging Simulator tool will be explained.  

 

In computer program and software product development, the development 

environment is the set of processes and programming tools used to create the 

program or software product. During the development of this tool, its object-oriented 

software is implemented in C++, using Microsoft Visual Studio 6.0.  
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For the 3D visualization Open Graphics Library (OpenGL) is utilized. OpenGL is a 

standard specification defining a cross-language cross-platform application 

programming interface for writing applications that produce 2D and 3D computer 

graphics. The interface consists of over 250 different function calls which can be 

used to draw complex three-dimensional scenes from simple primitives. OpenGL 

was developed by Silicon Graphics Inc. (SGI) in 1992 and is widely used in 

computer-aided design, virtual reality, scientific visualization, information 

visualization, and flight simulation. OpenGL is managed by the non-profit 

technology consortium, the Khronos Group, Inc. [55] 

 

Finally, the graphical user interface is designed by using the Microsoft Foundation 

Class Library (MFC), which is a library that wraps portions of the Windows API in 

C++ classes. The classes are defined for many of the handle-managed Windows 

objects and also for predefined windows and common controls. [56] Those objects 

and controls are organized into the tool’s user interface for better convenience. 

 

2.4.1 The Coding Structure 

 

As mentioned before, the tool software is developed in object-oriented structure with 

C++. Except for some auxiliary code fractions, all parts are implemented as classes. 

Those classes can be listed and explained as: 

 

• CVirtualScannerDlg: This class is generated automatically in order to 

manipulate the objects and controls placed in the graphical user interface. All 

the methods of this class are the message handlers for MFC and are 

implemented according to the functions to be installed. It acts as an interface 

between the GUI and the main control class that is explained below. 

 

• OpenGLControl : This is the main class that administrates and realizes all 

the  main calculations and the applications. It creates and displays the virtual 
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world according to the user’s settings. It also creates the output images, either 

color or depth. 

 

• TexProj: This small class only enables the texture projection. It is invoked 

from the OpenGLControl class with the user inputs. It is originally 

implemented by Steve Butrimas, as a sample to show how a projected texture 

technique can be used to produce a light map. [58] 

 

• Matrix4x4: This is another small auxiliary class for some matrix calculations 

such as: taking inverse, taking transpose and the basic mathematical 

operations, written by Kevin Harris. 

 

• CVirtualScannerApp: CVirtualScannerApp is another automatically 

generated class for the GUI application, in which no additions or 

modification is made. 

 

• CFolderDialog: In MFC, the browse operation is only done for files, hence 

this class is added to the workspace to enable folder navigation. It is 

implemented by Mihai Filimon and can be found as an open source code. 

[57] 

 

Apart from the classes, a small source code for bitmap operations is used. It is 

written by John Burkardt in order to employ some routines to read a BMP file and 

extract and return the graphics information (RGB pixel arrays), or to write internal 

RGB pixel arrays into a properly formatted BMP file. [59] 

 

The detailed information about the main methods and their role in the whole picture 

can be found in Appendix B. In the next section, the work flow for the 2D/3D 

Imaging Simulator tool will be explained to give some idea about the way of 

operations. Additionally, the class-to-class and user-to-class interfaces within the 

software will be given. 
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2.4.2 The Work Flow 

 

Since the activation and the execution of the tool are triggered by the user, firstly the 

user-class interface will be explained. 

 

 

 

Figure 31 User inputs to the simulator 

 

The tool does not display anything until the user enters the object and the camera 

settings and hits the “Show” button. However before this step, the user has to select 

objects to be loaded and specify their positions and rotations. Each time the “Add” 

button is pressed, the .obj files are read by the program and all the vertex and color 

information are stored in the memory with an appropriate data structure. After that, 

“Show” button switches on the display and by using the OpenGL functions the 

triangles composed of the vertices are drawn in the view screen. 

 

The display functions in a loop by switching the buffers each time the loop is 

completed. This enables to refresh the image on the view screen and hence the user 

can change light, texture and viewing angle settings even after the world is finalized 

and displayed. 
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Figure 32 Work flow for the simulator display 

 

For creating the output images, again OpenGL brings in a big convenience with the 

built-in depth and color buffers. For the color information, the displayed pixels’ 
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green, red and blue components are read and written into a bitmap image. Similarly, 

for the depth information, the displayed pixels’ depth values are read and written into 

a text file. The depth information is also recorded into a grayscale bitmap image for 

visualization. 
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CHAPTER 3 

 

 

Example Application 

 

 

 
In order to check the usability and the performance of the METU VISION 2D/3D 

Imaging Simulator, an example application has been conducted on FRGC database 

and the 3D data acquisition method which utilizes structured light and was 

mentioned in part 1.1.3.  

 

In the following subsections, firstly detailed information will be given on the post-

processing of the scan data, which is a crucial process in 3D data related research. 

Afterwards, in the consequent sections, the example application will be explained 

and results will be given. 

 

FRGC Database 
 

In both post-processing and structured light method application parts, FRGC 

database has been used. FRGC, Face Recognition Grand Challenge, was conducted 

to fulfill the promise of the new techniques in automatic face recognition, which 

were boosted by advances in computer vision techniques, computer design, sensor 

design, and interest in fielding face recognition systems, from May 2004 to March 

2006. The design of the FRGC starts from performance in FRVT 2002, establishes a 
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performance goal that is an order of magnitude greater, and then designs a data 

corpus and challenge problem that supports meeting the FRGC performance goal 

[49]. 

 

The FRGC was designed to challenge researchers and advance the face recognition 

technologies [49]. FRGC ver1.0, which has been used in this thesis, was a small 

challenge problem designed to introduce researchers to the FRGC challenge problem 

protocol, procedures, and data formats. It includes 1126 images, consisting of 366 

training images, 152 controlled gallery images, and 608 uncontrolled probe images.  

 

 

 

 

 

Figure 33 Images from one subject session. (a) Four controlled stills, (b) two 
uncontrolled stills, and (c) 3D shape channel and texture channel pasted on 3D shape 

channel [49]. 
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The FRGC database was built at the University of Notre Dame. A “subject session” 

is the set of all images of a person taken each time a person’s biometric data is 

collected. For the FRGC data for a subject session consists of four controlled still 

images, two uncontrolled still images, and one three-dimensional image. Figure 24 

shows a set of images for one subject session [49]. 

 

The controlled images were taken in a studio setting, are full frontal facial images 

taken under two lighting conditions (two or three studio lights) and with two facial 

expressions; smiling and neutral. The uncontrolled images were taken in varying 

illumination conditions; e.g., hallways, atria, or outdoors. Each set of uncontrolled 

images contains two expressions, smiling and neutral. The 3D images were taken 

under controlled illumination conditions and they consist of both range and texture 

channels [49]. 

 

The 3D data from FRGC v1.0 database is supplied in .abs form. In this file, first row 

and column numbers are given in two lines and the data format is stated in the next 

line. Finally, flag, x-, y- and z- values are written in four consecutive lines, 

respectively. Flag value specifies the validity of the data, “0” value implies that the 

pixel is invalid and all entries belonging to that pixel is “-999999.000000”. 

 

 

 

Figure 34 Original scan data and a detail 
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Along with the coordinates of the pixels also their colors are provided with a 

registered bitmap file. 

 

The original data files are distorted with spikes and holes. The surfaces are also noisy 

due to the imaging system imperfectness. The models usually include shoulders, 

neck and the head as shown in Figure 25. 

 

Preprocessing 
 

The goal of the preprocessing is to obtain the optimum, the most convenient point 

cloud for 3D face application software which possibly serves for face recognition, 

morphing, modeling, animating etc. For this reason, it is important that while 

correcting the erroneous points, the new coordinates should be as close as possible to 

the real positions, the features should be preserved. Additionally, extraction of the 

face from the whole image yields to easier data storage and manipulation. 

 

Face Region Extraction 

 

Before all other corrections, the first step of preprocessing is to segment the facial 

region from the overall point cloud. Face region extraction is good for obtaining 

more manageable data sizes and hence helps the denoising part to be faster than 

otherwise. Additionally, in our case, face region is assumed to have the most 

valuable data within the model, since shoulders and neck can vary according to the 

clothes that are worn. 

 

For face segmentation, the assumption that face is closer to the scanner than other 

scanned parts of the body is used. Firstly, a threshold is applied and facial and non-

facial regions are separated from each other. Afterwards, similar to [50], by labeling 

the connected components, the facial component is located as the one which is 

positioned in the middle of the scan and has the largest connected area . 
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Figure 35 The facial region extraction 

 

Spike Removal 

 

First of all, the spikes should be detected. In order to decide whether a pixel value 

indicates a spike or not, the neighbor pixels are taken into account. The decision 

mechanism is rather simple. If the pixel value differs widely from more than the half 

of its valid neighbors in 5x5 kernels, it is treated as a spike and its value is changed 

to the mean of these neighboring pixels. 

 

Here is a pseudo code for the process is given below: 

 

For each pixel in the depth image 

Calculate the difference between this pixel and each neighboring pixel in its 

5x5 neighborhood  

If the number of pixels with higher difference than the threshold is higher 

than the half of the number of the valid pixels in the 5x5 kernel 

Set the value of the pixel to the mean of the neighboring pixels with 

high difference 

End 

End 
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Figure 36 A spike from an original scan data 

 

Hole Filling 

 

Holes in a scan data are composed of invalid pixels. Every model in the database has 

holes due to the scattering in the facial surface, especially around pupils.  

 

 

 

Figure 37 Holes can be seen around the eyebrows and the pupil in the example. 

 

The invalid pixels within the face can also be treated as spikes in the negative 

direction. Hence, the same algorithm for the spikes works for the small holes as well. 

 

However, some holes can be too large that they can not be fixed, since 5x5 kernels 

do not supply enough number of valid entries. 
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Figure 38 Holes around the eyebrows and the pupil in the example are filled. 

 

In this case, face symmetry with respect to the vertical line passing through the point 

at the tip of the nose is utilized to assign depth values to the invalid pixels. After 

symmetry is applied, if some small holes still remain, the hole-filling algorithm is 

repeated once more. After the hole-filling is completed, the surface is continuous, yet 

noisy.  

 

 

   

Figure 39 Results for the utilization of face symmetry and re-application of the hole 

filling method 

 

In order to have a smooth surface which is in better accordance with actual face 

model, the noise should be filtered out. 
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Smoothing 

 

In the final step, the input is the model of the face with the holes and spikes removed. 

After this point, the original depth data which is corrupted by noise is supposed to be 

processed in order to estimate the denoised point cloud. However, while computing 

the noise-free models, the main concern should be to preserve the features in the 

surface so that the shape effectiveness is improved for further applications. 

 

Among numerous methods, Bilateral Filtering is proven to be a powerful yet simple, 

non-iterative scheme for edge-preserving smoothing in 2D. Additionally, this image 

processing technique has also been successfully extended to 3D by making small 

modifications in the application. 

 

Bilateral filter is distinguished from Gaussian blur by its additional “range” term. In 

this case, not only the distances between positions matter, but also the variation of 

the intensities are also taken into account in order to keep the features from 

derogation. Consequently, the edges where high intensity differences occur are 

successfully preserved. 

 

In 2D, the intensity values are a function of position values, whereas in 3D the 

position in fact, is the signal itself. Hence, the modification of bilateral filter to be 

applied to 3D data is not very straightforward. Like the most image processing 

algorithms that are extended to surfaces, normal information at each point of the 

surface can be used to form an intensity space like in images. 

 

Several such extensions have also been proposed for 3D application. The bilateral 

filter is extended to polygonal meshes without connectivity in [51], to mostly 

connected meshes, using an iterative approach in [52]. Additionally, in [53] the 

bilateral filter for images was modified to use a type of first-order predictor, then to 

generalize this extension to meshes. 
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In our case, since the points are regularly located on a grid, instead of dealing with 

neighboring surfaces, square kernels of adjustable size are applied in which the range 

weights are calculated by using normal values at that points.  

 

The proposed bilateral filter for 3D is as follows: 
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where Pe is the point to be estimated and S’s are the points in the voxel V, which are 

going to contribute to the calculation of denoised position of P. Gσs is the spatial 

weight function, which is taken as a one-dimensional Gaussian filter. Hence, the 

weight decreases with the spatial distance to P. Fσr is the range weight function, 

which is again a one dimensional Gaussian function that decreases the influence of 

pixels S with a range value, Ns, much different from Np. This means, if a point in V, 

is very distant to the point to be denoised the drastic decline in Gσs will attenuate the 

weight of that point. Similarly, the difference between the normal value of a point in 

V and the point to be denoised is high; the falloff in Fσr will make that point less 

effective on the estimation. Without the range weight function, this filter simply 

applies a Gaussian blur. The range function is what provides us with the feature 

preserving behavior.  Finally, Wp is the normalization factor calculated by adding all 

weights for each point: 
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Two important parameters in the estimation are σs and σr, which mainly specify their 

corresponding weights. σs and σr are the standard deviations in space and intensity 

(range in 3D case) difference, respectively. In the calculations, σs is taken 
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proportional to the model size, in other words it is taken to be 2% of the largest 

distance that is between the points on each end of the diagonal. On the other hand, σr 

is taken proportional to normal variations throughout the point cloud. That is, it is 

calculated by taking the average of the values in the gradient of the normal image. 

To be able to utilize the first order information, normal values at each point should 

be calculated. Occasionally, this task is not very simple, for instance, when there is 

insufficient connectivity among the polygons or when the samples are consist of 

point clouds without any other information. However, in our case, since the point 

cloud is given a regular mesh, normal calculations are trivial. 

 

With the help of the following example, the effect of the bilateral filter will be 

understood and observed more easily. Firstly, a synthetic surface with an edge is 

generated as the test subject. 

 

 

 

Figure 40 Synthetically generated surface with an edge 

 

Afterwards, a random noise is added to this surface to simulate the noisy scan data. 

The noise range is taken to be 5% of the total range variation within the surface 

which is approximately the same proportion when compared to 3D scan data. 

 

In the figure below, the noisy surface and the normals at each point is shown. As you 

can notice, the major change in the normals is observed around the edge. This 

characteristic is what constitutes the essence of bilateral filtering. 



 
 
 51 

 

Figure 41 Artificially created noisy surface 

 

Firstly, the noisy surface is smoothed by the bilateral filter. It can be observed in the 

figure below that the points that are close to the edge are not affected by the steep 

downfall, contrary to Gaussian filter which is also applied to the noisy surface and 

shown in Figure 35. 

 

 

 

Figure 42 The denoised surface after applying the bilateral filter once 

 

Since the surface normals are getting closer to their perfect estimates, they are 

aligned and the differences between normals of the points on the same surface reduce 

and between the normals of the points on different surfaces increase. Hence, 

consecutive applications of this filter yields to better estimation. The result after the 

second and third applications of the filter is shown in the next figure. 
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Figure 43 The denoised surface after applying the bilateral filter two and three times 

 

On the other hand, applying the Gaussian filter only with the same standard deviation 

to the noisy surface yields to smoother surfaces but graded corners. Successive 

application of this filter does not fit for the purpose of corner conservation. 

 

 

 

Figure 44 The denoised surface after applying the Gaussian first time 
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Although the first application of the Gaussian filter does not seem to affect the 

cornerness too much, it is obviously needed to be reapplied to reach the same level of 

surface smoothness. Unfortunately, at this point, the advantage to preserve the shape 

sharpness is lost. 

 

 

 

 

Figure 45 The denoised surface after applying the Gaussian filter two and three 

times 

 

The Gaussian filter may seem to smooth the surface much more effectively than the 

bilateral filter, but this disadvantage of the edge-preserving smoothing can be 

countered by adjusting the weights to be more appropriate for the noise characteristic 

in the models. 

 

The difference between two filtering effects in edge-preserving sense can be seen 

more clearly in the following figure. 
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Figure 46 Surfaces denoised with Gaussian and Bilateral filters, respectively. 

 

The results of the bilateral filtering on the FRGC images are very satisfactory. The 

noisy scan data, and the same data after smoothing is given below for better 

comparison. The edge details around the eye is well preserved whereas the facial 

surface is cleared off the noise. 

 

 

    

Figure 47 The result of the bilateral filtering on the FRGC data 

 

The preprocessing on the depth data is completed after the denoising. As a result, 

smooth, hole and spike free face model with the edges preserved, is obtained. This 

model will be used to test the structured light method implemented by Ahmet Oğuz 

Öztürk as his master’s thesis in November, 2007 [54]. 
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Application of Stereo Images and Structured Light 
Method 

 

In this section, an example application of the 2D/3D Imaging Tool will be explained 

in detail. Briefly, a method for 3D data acquisition that combines stereo acquisition 

and structured light technique will be tested. 

 

As mentioned in the previous chapters, multiple cameras are used for capturing 

stereo images which can be used to build a depth map using the disparities between 

the interest points. Those points are not easy to detect correctly in the stereo image 

set, hence structured light projection is utilized. 

 

In the specific method that is applied here, the structured light is a projected texture 

onto the face that is composed of horizontal lines. After the images are obtained via 

our simulator, the tool, which is implemented by Ahmet Oğuz Öztürk as a part his 

master’s thesis is used to derive the 3D shape. 

 

Stereo Image Acquisition with a Projected Texture 

 

To start with a 3D model is obtained from the FRGC database to work with. This 

model is chosen to be the one that has been given as an example in the preprocessing 

part. 

 

As discussed before, using the 2D/3D Imaging Simulator, the 3D objects can be 

freely positioned and moved around in the virtual world, as well as the camera and 

the projector. For this application, the object is preferred to change position with 

respect to the camera for the sake of convenience. The camera is kept at the origin 

whereas the projector is placed according to the object. The steps of the stereo image 

acquisition with a projected texture are as follows: 
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First of all, the 3D model that is obtained from the FRGC database and preprocessed 

as explained previously is turned into an obj. file and made compatible to load into 

the simulator. After the preprocessing, the corresponding .obj file is created with the 

name “04202d356_oa.obj”. 

 

In order to obtain the stereo images, firstly the 3D model is added into the virtual 

world in the 2D/3D Imaging Simulator at the point (-0.5, 0, -5). The camera position 

is set as the origin and finally the projector is placed at (-0.5, 0, 0) with a direction 

towards (-0.5, 0, -5). This way the image that is simulated as taken form the right 

camera can be obtained by selecting the “Color Image” option and hitting the “Create 

Image” button. The same process is repeated by placing the object at (0.5, 0, -5) and 

the projector positioned at (0.5, 0, 0) with a direction towards (0.5, 0, -5). 

Consequently, the same scene is simulated to be shot by the left camera. 

 

The textures to be projected onto the face are created according to the needs of the 

simulator that were mentioned previously. The horizontal one-pixel-thick white lines 

on a gray (150,150,150) background are positioned with three pixel distance in 

between. In four texture images, the lines are shifting one pixel towards right to 

increase the resolution of the scanner.  

 

Additionally, in all texture images a point is marked with red in order to be set as the 

initial point while using the scanner tool. This point is adjusted to be on the forehead, 

where the transverse width has its maximum value. 

 

The process of obtaining right and left images is repeated with four different textures 

and without a texture. After creating each image, the bitmap file is renamed as 

“<name>Right<n>” where <name> is the name of the subject, and <n> is the image 

set number. Finally, all images are moved in to a folder named “Outputs” and this 

folder is copied into the folder where the scanner executable is. 

 

The resultant images and the setup of the simulator can be seen in the following 

figure and the table, respectively. 
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Figure 48 Right and left images with/without texture projection 

 

 

Values X (R/L) Y (R/L) Z (R/L) 

Camera Position  0.0 0.0 0.0 

Object Position -0.5/0.5 0.0/0.0 -5.0/-5.0 

Projector Position -0.5/0.5 0.0/0.0 0.0/0.0 

Projector Direction -0.5/0.5 0.0/0.0 -5.0/-5.0 

Table 1 The setup of the simulator 
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3D Shape Derivation 

 

After the “Outputs” folder is ready with 10 images from right and left cameras, the 

“3D Face Scanner” [54] tool is started by executing the “3DFaceScanner.exe” file. 

The graphical user interface of the tool is simple and friendly. The tool is actually 

designed to capture images in real-time and create the 3D model successively. 

Additionally, the user can also load the previously captured image to rescan the 

object later. This feature of the tool is utilized within this section.  

 

 

 

Figure 49 Graphical user interface of the 3D Face Scanner 

 

The “Person’s Name” field is filled with the name chosen for the subject while 

saving the images created by the 2D/3D Imaging Simulator tool. After pressing the 

“Scan From file” button, the 10 images in the “Outputs” folder will be displayed in 

order and the user is expected to mark the initial points in each image with a texture 

projection. After marking the initial point by left-clicking on the image, “Set Initial 

Point” button is pressed and the next picture is displayed. 
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After all images are displayed, “Start Scan” button is enabled and by clicking on it, 

the scan process can be started. The scanning takes approximately 10 seconds and 

the “Exit” button is enabled afterwards. 

 

 

 

Figure 50 Loading images from file and setting the initial points 

 

After exiting the 3D Face Scanner, a new folder with the name of the subject is 

created with shape data saved inside. However, these files are just the intermediate 

products of the process. The 3D data is to be post-processed and the corresponding 

.obj file is to be created. For this purpose, the “<name>.m” file is executed and 

finally after this execution the .obj file is obtained. 

 

In the “Outputs” folder, new images are observed to be created in which processing 

steps of the 3D Face Scanner can easily be seen. As mentioned before, the line 

information in the picture of the face is exploited to create a sparse but regular depth 

map. 
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Figure 51 Right and left image samples after the lines are extracted 

 

The output of the 3D Face Scanner can be viewed using numerous obj-viewers. In 

the next section, the 3D model obtained is given. However, visual observation is not 

enough to measure the success of a scanner. Hence, a comparison between the 

resultant and the actual models should be made. 

 

Comparison of the Result with the Actual Shape 

 

The .m file that is executed after the scanning is completed creates the .obj file as the 

last product. This program reads the text files created by the scanner and uses them 

to generate the .obj file where the 3D coordinates of the vertices are recorded along 

with the normal vector and texture coordinate information. 

 

Before writing the 3D coordinates, the Matlab program a median and a Gaussian 

filtering in order to smooth the facial surface. This gives a better look to the 3D 

model, however as in most filtering cases, it can also lead to important data loss 

and/or corruption. 

 

Below you can find the images of the 3D model obtained together with the original 

model itself: 
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Figure 52 The 3D model obtained (left) is compared with the actual model (right) 

 

The generated 3D model has a different scale from the original model; hence for the 

comparison of the two a preliminary processing should be made. This normalization 

can be done in numerous ways and in this work one of the simplest methods is 

chosen to be applied, which is to normalize Z vertices between 0 an 1. Thereby, a 

little more accurate evaluation can be done. 

 

The resultant depth maps are shown in the following figure. This pair exposes how 

the generated model is lacking detailed shape information to view. Moreover, the 
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scale discrepancy in the images should be noted. Hence, an interpolation has to be 

applied after the normalization. 

 

 

  

Figure 53 The normalized depth image obtained (left) is compared with the actual 

interpolated model (right) 

 

Certainly, for the evaluation the images need to be registered to each other. Image 

registration is the process of transforming the different sets of data into one 

coordinate system. Registration is necessary in order to be able to compare or 

integrate the data obtained from different measurements.  

 

 

 

Figure 54 The diff image between the two depth images 
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Since in this experiment, both scans are focused on the face and the faces are 

similarly oriented, the two 3D models are assumed to be registered. For better 

comparison, a registration algorithm should be used. However, this process is out of 

the scope of this thesis. 

 

As given in the previous figure, the error reaches its maximum at the eyes and 

forehead area and its minimum around the cheeks. The erroneous data that surrounds 

the whole face stems from both the lack of registration and the weakness of the 

structured light method around the edges. 

 

 

 

Figure 55 The error histogram for the compared depth images 

 

Since the depth values are normalized, the error histogram should be discussed with 

the percentage values. The mean of the error values are 0.1119 which is around 11% 

for the best case, in which the actual pixel value is 1. The absolute values of the 

differences between the depth images are accumulated around 0, 0.1 and 0.2. 
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As a result, 2D/3D Imaging Simulator enables the user to make a thorough result 

analysis for various algorithms and applications. In the next chapter, these 

advantages will be highlighted briefly along with the main points that are mentioned 

throughout the thesis. 
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CHAPTER 4 

 

 

CONCLUSION 

 

 

 
In this thesis, 2D/3D Imaging Simulator tool is presented. Today’s complex and 

versatile imaging systems are capable of acquiring high quality color and shape data. 

However, these are expensive systems which also demands arduous efforts for 

calibration, operation and maintenance. Taking all those disadvantages into account, 

the simulator presented here offers a great convenience. 

 

Algorithm development process requires easily accessed and controlled data to be 

tested, corrected and verified. 2D/3D Imaging Simulator allows the users to generate 

their own data with known setup parameters and environment conditions. 

Consequently, the algorithms developed and implemented can be correctly tested on 

the images synthesized. 

 

Additionally in the thesis, the usability of the developed tool is proven with an 

example application on 3D face reconstruction using stereo images and structured 

light. Images of the 3D models obtained from the FRGC database with a structured 

light projected on them are generated after the preprocessing. Those images are used 

in the “3D Face Scanner Tool” by Ahmet Oğuz Öztürk and 3D models are calculated 

using the disparity between the textures on the faces. It is shown that contrary to the 
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real systems; a detailed analysis can be enabled using the 2D/3D Imaging Simulator, 

since the actual model is available as the ground truth. 

 

In the following subsections, the difficulties encountered and the plans for the future 

work will be explained briefly. 

 

4.1 Encountered Difficulties 
 

There are several major difficulties faced in this study, such as texture projection, 

depth measurement and memory consumption optimization in the development stage 

of the tool and hole filling and feature-preserving smoothing in the application part. 

 

The difficulty in the texture projection arose from the misjudgment on interpreting 

how it can be simulated in OpenGL. Initial ideas on the topic was relating the texture 

projection to shadow casting in OpenGL, which makes sense if the structured light is 

considered as structured “shadow” on the surface. However, this is a very 

cumbersome and an ineffective method, contrary to the “Light Mapping” method 

used in this thesis. Lighting can be easily simulated by creating a texture map that 

mimics the light pattern and by applying it as a texture to the lit surface. 

 

Similarly, in the depth measurement, initial approach was to apply ray tracing to the 

scene. In computer graphics, ray tracing is a technique for generating an image by 

tracing the path of light through pixels in an image plane. However, this technique 

has a major drawback: its performance. Since no performance enhancement 

algorithms were inserted, the scanning process would take hours. This problem was 

overcome by utilizing the OpenGL’s depth buffer. Using the depth buffer accelerated 

the depth image generation drastically. 

 

About hole filling and feature-preserving smoothing issues, the solutions applied are 

explained in detail in Chapter 3. 

 



 
 
 67 

4.2 Future Work 

 

Even though the tool is capable of expanding user's test and analysis adequacy, it can 

stillbe accepted as its initial phase. Certainly, many additions and expansions can be 

applied in order to increase the usability of the tool. Some of the properties that 

would be a useful addition to the tool are explained in the following. 

 

One of the ideas for additional features is to enable the tool to conduct automated 

runs. In other words, the tool will automatically parse a script written or generated by 

the user, and it will function according to the commands typed in it. This simple 

modification would allow the user to generate the outputs according to the required 

setups without having to operate the tool while it is running. Thinking that the most 

time consuming part of the tool operation is the wait-time for the images to be 

generated, and with this ability, this idle time can be saved. 

 

Another efficacious property for the 2D/3D Imaging Simulator would be the realistic 

scanner and camera models defined within the tool. Firstly, modeling the scanner 

noise would give the user the opportunity to observe how an actual scan would be 

like and hence to develop and test 3D noise removal algorithms based on the applied 

noise model. Secondly, similar to adding scanner imperfections, predefined and user-

defined camera models can be added to the system. Namely, intrinsic and extrinsic 

parameters for the cameras can be defined and used in image acquisition and hence 

more realistic images can be generated that would help the user for instance, to test a 

camera calibration application. In conclusion, this realistic models for the scanner 

and the camera yields to an expanded observation and analysis opportunity. 

 

Lastly, one of the main missing features of the tool is the shadow casting in the 

virtual world. In real world, the objects occlude light in different ways and cast 

shadows on themselves or other objects. In OpenGL, shadows are not directly 

supported. However, there are many standard algorithms for rendering shadows that 

can be easily applied to the tool. For example, exploiting the stencil buffer in shadow 
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calculations has become fairly popular among computer graphics researchers due to 

its convenience and flexibility. Shadow rendering property would help to display 

much more realistic scenes as well as acquiring more accurate images. 

 

4.3 Notes 

 

In this last section, small notes about the virtual instruments designed in the METU 

VISION 2D/3D Imaging Simulator Tool will be given. The purpose of this section is 

to warn the users about the instruments functioning ideally. Certainly, the ideal 

behaviors of the camera, the scanner and the lights mutilate the resultant outputs. 

Those effects will be discussed in detail in the following. 

 

Firstly, as mentioned before, the camera implemented into the simulator, is a pinhole 

camera which is far away from modeling a real camera correctly. As shown in Figure 

22, the only parameters of this camera are the view angle and the focal length. As a 

matter of fact, this idealistic behavior removes all the distortions inserted into the 

images by the real cameras. This yields to both positive and negative characteristics. 

For the advantages, firstly, a perfect testing environment is created that discards all 

the side effects of a real camera and this leaves the user only with the imperfectness 

of his testing material. Secondly, it gives the user a ground truth image to compare 

his image rectification results. Image rectification is a transformation process used to 

project multiple images onto a common image surface. It is used to correct a 

distorted image into a standard coordinate system [61]. However, for the 

disadvantages, if we have a system that works on actual images and takes the actual 

camera model into account, this ideal assumption prevents the user from obtaining 

the simulated results correctly. Ideal camera model inserts a limitation into our 

simulating system that the outputs are only reliable with methods that have the same 

assumptions. Previously, in the future work section, design of realistic camera 

models is suggested to be a useful addition into the tool. 
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On the other hand, for the scanners, the situation is less complicated. The main 

deviation of the scanners from the ideal is the noise on the 3D model obtained. This 

noise can be modeled in various ways; however in our system this has not been 

realized. Similar to the camera, the scanning process in the simulator is also ideal. 

Again, as an advantage, since the scanner noise is eliminated, the user is left with the 

defects he created. Additionally, obtaining the perfect scan output enables the 

algorithms for noise removal from the actual 3D models to be verified easily. Again, 

the user should be aware that the simulator works correctly only if the simulated 

system adopts the same assumptions. 

 

Lastly, the results of ideal light behavior are similar but more influential since it is 

related to the created virtual world itself. In the METU VISION 2D/3D Imaging 

Simulator, the lights are modeled as directional sources, that emits light ideally in a 

specific direction and the light neither reflects back or nor scatters. In computer 

graphics, there are many techniques to produce very high degree of photorealism, 

such as ray tracing. However, the computational cost of those methods is high. The 

necessity of such an addition can be arguable, but of course, it would be a huge 

enhancement for more realistic scene simulation. As repeated several times before, 

the user should take the ideal light characteristic into account before applying his 

model in this simulator.  
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APPENDIX A 

 

 

THE USER’S MANUAL 

 

 

 
1. Starting Up 

a. Make sure that compatible .obj files are ready. 
b. Make sure that texture images matched with the .obj files are ready. 

(if needed) 
c. Make sure that texture images to be projected are ready in the 

compatible format. (if needed) 
d. Run the “VirtualScanner.exe” file. 

2. Creating the Virtual World 
a. Browse folders for the .obj file to be loaded. 
b. Choose the 3D object type: with or without texture.                                                                     
c. Enter scale. 
d. Enter object position and rotation. 
e. Press the “Add Object” button. 
f. Repeat a-e for more objects. 
g. Enter camera position and rotation. 
h. Press the “Show” button. 
i. Press the “Reset World” button to reset the world. 

3. Adjusting the Material Properties (for objects without texture) 
a. Adjust the ambient properties. 
b. Adjust the diffuse properties. 
c. Adjust the specular properties. 
d. Enter the “Shininess” value. 

4. Adjusting the Light Properties 
a. Adjust the global ambient light. 
b. Enter the light position. 
c. Adjust the ambient, diffuse and specular light properties. 
d. Press the “Add Light” button. 
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e. Repeat b-d for more lights. 
f. To change a light’s settings, select the light from the drop list. 
g. Adjust the light’s settings. 
h. Press “Switch” to turn the light on and off. 

5. Adjusting the Texture Projection Settings 
a. Browse folders for the texture image to be projected. 
b. Enter the projection position and rotation. 
c. Press the “ON” button. 
d. Repeat a-c to change the projection. 

6. Outputs 
a. Select the output type: color or depth image 
b. Enter the plane distance. 
c. Enter the view angle. 
d. Press the “Create Image” button. 

7. View Control 
a. Use the “In”/”Out” buttons to zoom in and out, respectively. 
b. Use the “Align Camera” button to align the view to the camera’s 

position and direction. 
c. Use the “Reset View” button to align the view to the origin and 

towards the -z direction. 
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APPENDIX B 
 

 

SOURCE CODE DEFINITIONS 
(In Alpabetical Order) 

 

 

 
1. Bmp_io 

 

bool bmp_24_write (char *file_out_name, unsigned long int width, long 

int height, unsigned char *rarray, unsigned char *garray, unsigned char 

*barray ) 

“bmp_24_write” writes the header and data for a BMP file using three colors. 

Inputs are the name of the output file, the X dimension of the image, the Y 

dimension of the image and the pointers to the red, green and blue color 

arrays. Output is true if an error occurs. 

 

2. folder_dialog 

 

CFolderDialog(CString* pPath) 

This class is used to navigate into a folder without being obliged to choose a 

file. The input argument represents string where selected folder is going to be 

saved. 
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3. matrix4x4 

 

OpenGL matrices are column major and can be quite confusing to access 

when stored in the typical, one-dimensional array often used by the API. In 

this class, there are some shorthand conversion macros, which convert a 

row/column combination into an array index. 

 

Matrix4x4f invertMatrix( const Matrix4x4f &matIn ) 

This method takes the inverse of a matrix and returns the result. 

 

void setMatrix(float *matrix) 

This method is used to set a private attribute “float m_matrix[16]” equal to 

the input matrix. 

 

4. OpenGLControl 

 

void AdjustLights() 

This method is called every time the OpenGL scene is redrawn. It manages 

the changes and modifications to the light settings in the virtual world by 

using OpenGL’s light related methods. 

 

void Create(CRect rect, CWnd *parent) 

This method is called only at the beginning of the execution to create the 

OpenGL display in the graphical user interface of the 2D/3D Imaging Tool. It 

handles some general initializations such as the display size and color 

resolution. It invokes the InitGL() function for further initialization. 

 

void CreateImage(CString ObjectPath) 

“CreateImage” method is invoked to prepare the outputs of the tool as depth 

or color images. It reads the depth and color buffers created as the OpenGL 

library attributes and writes them into png or bmp images, respectively. 
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void DrawGLScene() 

This is the main method that handles the OpenGL display screen. It sets the 

material properties for the objects without texture. It triggers the texture 

projection and invokes “AdjustLights” method for light manipulations. It 

realizes the translations, rotations and zoom in/out actions that are initiated by 

the user and the display of the virtual world after the “Show” button is 

pressed. 

 

void InitGL() 

This method makes main OpenGL initializations and settings for the view 

scene. 

 

void OnPaint() 

“OnPaint” method is the base method that is called repetitively and invokes 

the “DrawGLScene” function. In case an object is added to the scene, it calls 

the “SetupWorld” for required procedure. 

 

OpenGLControl() 

This is the class constructor in which the class attributes are initialized. 

 

void project(float fpx, float fpy, float fpz, float fdx, float fdy, float fdz) 

“project” method realizes the texture projection by calling the 

loadLightMapTexture method of the “projtex” class. 

 

void SetupWorld(VERTEX Pos, VERTEX Ang, char *File) 

“SetupWorld” appends the newly added objects to the rest of the vertices in 

the virtual world by reading the compatible .obj files and it organizes the 

storage of the corresponding color, texture and position data. 

 

void triangleNormal(VERTEX a, VERTEX b, VERTEX c, float 

*normal) 
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This is an auxiliary method to calculate the normal of a surface created by the 

given three vertices as the inputs. 

 

~OpenGLControl() 

The class destructor that deletes the display buffer and the “TexProj” class 

instance created. 

 

5. projtex 

 

void loadLightMapTexture(const char *name) 

This method sets up texture generation mode and the corresponding planes 

and builds the mipmaps to be used in texture projection. 

 

void loadTexture(const char *name, int *textsize) 

“loadTexture” method mounts the matched texture image of the object on its 

3D model. 

 

void textureProjection(Matrix4x4f &mv) 

Here, the transformations on the texture matrix for the light map are realized 

using the basic equation: M = Bias * Scale * ModelView for light map * 

Inverse ModelView. 

 

6. StdAfx 

 

This is a source file that includes just the standard includes. 

VirtualScanner.pch will be the pre-compiled header and stdafx.obj will 

contain the pre-compiled type information. 

 

7. VirtualScanner 

 

bool InitInstance() 
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Standard initialization function for the VirtualScannerDlg. 

 

8. VirtualScannerDlg 

 

void CVirtualScannerDlg(CWnd* pParent) 

It is the class constructor where the AFX data initializations are made. 

 

void DoDataExchange(CDataExchange* pDX) 

This method is called by the framework to exchange and validate dialog data 

that is entered or read by the user. 

 

void OnAddLight() 

It handles the GUI operations for the tool when a light is added and sets the 

related attributes of the OpenGLControl class. 

 

void OnAddObject() 

It reads the object settings entered by the user and transmits the data obtained 

to the OpenGLControl class. 

 

void OnAlighCamera() 

It sets the looking angle and the looking position variables in the 

OpenGLControl class equal to the camera settings and hence realizes the 

camera alignment. 

 

void OnBrowseObject() 

It opens the dialog box for file browsing for 3D object. 

 

void OnBrowseTexture() 

It opens the dialog box for file browsing for the texture image to be projected. 
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void OnChangeObjShininess() 

It updates the shininess information for the object every time this value is 

reentered by the user. 

 

void OnClearWorld() 

All variables and attributes for the OpenGLControl class are reset as id the 

tool is restarted. 

 

void OnColor() 

This method indicates that the output is going to be the color image. 

 

void OnCreateImage() 

“CreateImage” function of the OpenGLControl class is invoked with required 

arguments and attribute settings. 

 

void OnDepth() 

This method indicates that the output is going to be the depth image. 

 

bool OnInitDialog() 

The GUI components are initialized to their starting states and the “Create” 

function of the OpenGLControl class is invoked to start the OpenGL display 

in the GUI. 

 

void OnLButtonDown() 

This method controls the mouse button activity on the display screen for view 

angle and position modifications using the mouse. 

 

void OnLButtonUp() 

This method controls the mouse button activity on the display screen for view 

angle and position modifications using the mouse. 
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void OnMouseMove() 

This method controls the mouse button activity on the display screen for view 

angle and position modifications using the mouse. 

 

void OnPaint() 

This is the method that is called repetitively for GUI visualization. 

 

void OnProjectTexture() 

It invokes the “project” function of the OpenGLControl class. 

 

void OnResetView() 

It sets the viewing position and angle parameters of the OpenGLControl class 

to zero to reset them to the origin. 

 

void OnSelchangeLightList() 

“OnSelchangeLightList” method controls the selection of the added lights in 

the virtual world from the corresponding drop list and updates the slider 

controls in the GUI according to the light selected. 

 

void OnShowWorld() 

This method finalizes the setup of the virtual world by finally inserting the 

camera settings and switches the virtual world display on. 

 

void OnSwitchLight() 

It toggles the selected light on and off. 

 

void OnVScroll(UINT nSBCode, UINT nPos, CScrollBar* pScrollBar)  

This method manages the slider controls in the GUI. 

 

void OnZoomIn() 

It is called when the “In” button is pressed by the user and it moves the 

looking position “0.1” towards the looking direction. 
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void OnZoomOut() 

It is called when the “Out” button is pressed by the user and it moves the 

looking position “0.1” towards opposite of the looking direction. 

 


