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ABSTRACT 

THE CARDINALITY CONSTRAINED MULTIPLE KNAPSACK 
PROBLEM 

 

 

ASLAN, Murat 

M.S., Department of Industrial Engineering 

Supervisor : Prof. Dr. Meral AZİZOĞLU 

 

November 2008,    61 pages 

 

The classical multiple knapsack problem selects a set of items and assigns 

each to one of the knapsacks so as to maximize the total profit. The knapsacks have 

limited capacities. The cardinality constrained multiple knapsack problem assumes 

limits on the number of items that are to be put in each knapsack, as well. Despite 

many efforts on the classical multiple knapsack problem, the research on the 

cardinality constrained multiple knapsack problem is scarce.  

 

In this study we consider the cardinality constrained multiple knapsack 

problem.   We propose heuristic and optimization procedures that rely on the optimal 

solutions of the linear programming relaxation problem.  Our computational results 

on the large-sized problem instances have shown the satisfactory performances of 

our algorithms. 

 

Keywords: Cardinality Constrained Multiple Knapsack Problem, Linear 

Programming Relaxation, Optimization 
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ÖZ 

SAYI KISITLI ÇOKLU SIRT ÇANTASI PROBLEMİ  

ASLAN, Murat 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Meral AZİZOĞLU 

 

Kasım 2008,   61 sayfa 

 

Klasik çoklu sırt çantası problemi toplam kazancı en çoklayan parça kümesini 

seçer ve seçilen her parçayı sırt çantalarından birine atar. Sırt çantalarının sınırlı 

kapasiteleri vardır. Sayı kısıtlı çoklu sırt çantası problemi her bir sırt çantasına konan 

parça sayısında da kısıt olduğunu varsayar.  Klasik çoklu sırt çantası problemi için 

pek çok çaba sarf edilmiş olsa da, sayı kısıtlı çoklu sırt çantası problemi üzerindeki 

araştırmalar sınırlıdır.  

 

Bu çalışmada sayı kısıtlı çoklu sırt çantası problemini ele aldık.  Doğrusal 

programlama gevşetmesi probleminin en iyi çözümlerine dayanan sezgisel ve 

eniyileme yöntemleri önerdik.  Büyük boyutlu problemler üzerinde aldığımız 

deneysel sonuçlar yöntemlerimizin tatmin edici performansını göstermektedir. 

 

Anahtar Kelimeler: Sayı Kısıtlı Çoklu Sırt Çantası Problemi, Doğrusal 

Programlama Gevşetimi, En İyileme 
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CHAPTER 1 

 

1 INTRODUCTION 

 

Consider a capable sportsman who is good at playing several branches of 

sports including football, basketball, volleyball and tennis. The sportsman gets 

different utility from each sport branch. To play a game he has to take the 

corresponding ball having a specified volume. His sport bag has a limited capacity so 

that he cannot take all balls one at a time. His problem is to find the set of balls to 

take, hence the set of sports to play, so that the capacity of bag is not exceeded and 

the total utility is maximized. This optimization problem is known to be the Single 

Knapsack Problem (KP) in OR literature. If the sportsman has more than one sport 

bag then the associated problem is referred to as Multiple Knapsack Problem (MKP). 

Additionally, if there are limits on the number of balls that each sports bag can take, 

then the associated problem is the Cardinality Constrained Multiple Knapsack 

Problem (kMKP).  

 

The part selection problem in automated manufacturing systems is analogous 

to the kMKP.  Assume there are n part types that are to be selected for processing by 

m Computerized Numerically Controlled (CNC) machines where machine i has a 

limited capacity of Ci time units.  Part type j has a processing requirement of wj time 

units and there is a profit pj money units if selected for processing. The problem is to 

select a subset of the part types so as to maximize the total profit. The cardinality 

constraints of the KMKP may correspond to the tool magazine capacities of the CNC 

machines in the part selection problem.  The number of setups that can be made on 

each machine may also define the cardinality constraints.  
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The knapsack problems have several practical application areas in the 

manufacturing and service industries. One application area for the KP is the hitch-

hiker problem that is stated in Martello and Toth (1990). The hitch-hiker has to fill 

up his knapsack among various possible objects so as to maximize his comfort.  In 

the problem pi is the measure of his comfort taken from object i, wj is its size, and C 

is the size (volume) of the knapsack.  

 

The cutting stock problem is another area where the knapsack problems find 

their applications. The cutting stock problem can be stated as follows: Assume you 

work in a paper mill and you have a number of rolls of paper of fixed width waiting 

to be cut, yet different customers want different numbers of rolls of various-sized 

widths. The problem is to find a way to cut the rolls so that the scrap is minimized. 

Solving this problem to optimality can be economically significant: a difference of 

1% for a modern paper machine can be worth more than 1 million US$ per annum 

(Wikipedia, free encyclopedia). The KP is used as a subproblem in solving the 

cutting stock problems with column generation technique. 

 

In the business environments, the KP is used for investment planning. 

Consider an investor who has a certain amount of money (C) and a list of possible 

investment alternatives. Each investment alternative has a capital required (wj) and an 

expected return (pj) over a planning period. The problem is to select the set of 

investment alternatives so that the budget is not exceeded and the total return is 

maximized. Clearly, such an investment problem associates to the KP. 

 

Despite its simple structure, the solution of the KP is not that easy. Each item 

selection is defined by a binary decision variable that takes value 1 if the item is 

selected and 0 otherwise. A simple approach would be to examine all possible 

arrangements of the binary variables. For n items problem there are 2n such binary 

variables. As Martello and Toth (1990) state, on a computer that examines one 

billion variables per second, it takes 30 years to enumerate the possible solutions 

when there are 60 items. If you increase the number of items to 65 then it will take 

ten centuries.  
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The knapsack problems have been studied for several decades as they are the 

simplest maximization problems. Mathews (1897) shows how several constraints 

may be compiled into one single knapsack constraint. What Mathews (1897) had 

done is now called as “reduction of an integer program to KP”.  

 

Garey and Johnson (1979) focus comprehensively on the theory of 

intractability and NP-completeness of the KP. They show that the KP is NP-hard in 

the ordinary sense. The problem can be solved by pseudopolynomial time dynamic 

programming algorithm. On the other hand, the Multiple Knapsack Problem is 

strongly NP-hard, hence there cannot exist polynomial, even pseudopolynomial 

algorithm, to find optimal solutions. The cardinality constrained multiple knapsack 

problem is strongly NP-hard, as all generalizations of the MKP.  

 

 The KP and MKP are widely studied in the literature. However, there are 

limited reported studies on the kMKP. Recognizing this fact, we introduce solution 

algorithms for the kMKP. We observe that the linear programming relaxation of the 

problem produces very satisfactory results and can be used as a basis in developing 

solution algorithms.  

 

 The rest of the thesis is organized as follows. In Chapter 2 we give the 

mathematical representation of the knapsack problems and review the related 

literature.  Chapter 3 is the main body of our work where the heuristic algorithm and 

branch and bound algorithm are presented. In Chapter 4 we present the results of our 

computational experiments. In Chapter 5 we conclude by pointing our main results 

and possible future research directions.  

 

 

 

 

 

 

 

 



 

 

4 

 

CHAPTER 2 

 

2 PROBLEM DEFINITION AND LITERATURE 

REVIEW 

 

In this chapter, we first discuss several versions of the knapsack problem. We 

then review the literature on cardinality constrained single knapsack problem and 

multiple knapsack problem. Those two problems appear as special cases of the 

cardinality constrained multiple knapsack problem.  

 

2.1 Problem Definition 

2.1.1 Classical Knapsack Problem 

The classical knapsack problem can be formally defined as follows: Consider 

a set of items N={1,….,n} and a knapsack with capacity of  C time units. Item j in set 

N has a profit pj and capacity usage of wj time units. The profit can be interpreted as 

the relative importance of the item or simply the benefit (like money) brought due to 

its selection. The capacity usage wj for item j can as well be interpreted as the 

amount of space occupied by the item. In a production environment, wj can represent 

the processing time, i.e., requirement, by item j. C is the knapsack capacity which 

may represent the amount of space available. In production environments, C may 

represent the time capacity, i.e, available machine time. One more important point is 

that wj and C are in the same units. Usually pj, wj and C are assumed to be positive 

integer numbers. The classical knapsack problem, denoted as KP, is the simplest 

non-trivial integer programming model with binary variables, with a single constraint 

and n binary variables. The model is presented below. 
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 (KP) maximize ∑
=

n

j

jjp
1

x  

subject to Cxw
n

j

jj ≤∑
=1

 

  }1,0{∈jx  j=1,….,n  

 The single knapsack problem is shown to be NP-hard in the ordinary sense 

(Garey and Johnson, 1979). 

 The studies in the literature assume that  

    ,Cw j ≤  j =1,….,n and Cw
n

j

j >∑
=1

 

 Cw j ≤  is required as otherwise item j would be trivially removed. 

Cw
n

j

j >∑
=1

 is assumed as otherwise a trivial solution that assigns all items would be 

found.  

 

2.1.2 Subset Sum Problem (SSP) 

If the profits and weights are identical for all items, i.e., pj=wj for all j, we get 

the well known Subset Sum Problem (SSP). The SSP finds a subset of N items such 

that the corresponding total profit is maximized without exceeding the available 

capacity C. In production environments, the objective function can be interpreted as 

the used capacity which is to be maximized. The SSP is NP-hard in ordinary sense. 

(Martello and Toth, 1990) 

 

2.1.3 Multiple Knapsack Problem (MKP) 

The Multiple Knapsack Problem is a generalization of the single classical 

knapsack problem. In the MKP we are given a set of items N = {1,….,n} with profits 

pj and weights wj, j=1,…..,n and set of knapsacks M = {1,….,m} with positive 

capacities Ci, i=1,….,m. The MKP is NP-hard in the strong sense (Martello and 

Toth, 1990). 

 

 



 

 

6 

The MKP Model can be stated as  

maximize    ∑∑
==

n

j

ijj

m

i

xp
11

 

 subject to     i

n

j

jij Cxw ≤∑
=1

  i=1,…..,m 

           1
1

≤∑
=

m

i

jix   j=1,…..,n 

           
jix }1,0{∈   i=1,……,m j=1,……,n. 

 

The following assumptions are made for the MKP in the literature. 

1. Every item must fit to at least one of the knapsacks, i.e., 

   
maxmax Cw ≤   

where Cmax=max{C1,C2,…Cm} and wmax=max{w1,w2,….,wn} otherwise the associated 

items are trivially eliminated.  

 

2. All knapsacks should take at least one item, i.e.,   

   minmin Cw ≤  

where Cmin=min{C1,C2,…Cm} and wmin=min{w1,w2,….,wn} otherwise the associated 

knapsacks are eliminated.  

 

3. Moreover, the trivial solutions that select all items should be avoided, i.e.,  

                               max
1

Cw
n

j

j >∑
=

 

otherwise all items would be put to the maximum capacity knapsack.  

 

2.1.4 Cardinality Constrained Single Knapsack Problem 

If there is a constraint on the number of items included in each knapsack, the 

associated problem is referred to as cardinality constrained single knapsack problem. 

When the selection of the item causes explicit handling, the solutions with a small 

number of larger items will be preferred to the one with large number of smaller 

items.  
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The number of items ∑
=

n

j

jx
1

can be included in the objective function so as to 

obtain a bi-objective knapsack problem, or ∑
=

n

j

jx
1

can be a constraint, i.e., Kx
n

j

j ≤∑
=1

. 

The latter problem is a cardinality constrained single knapsack problem, which is 

denoted as kKP in the OR literature. The kKP model is given below. 

 

(KP) maximize ∑
=

n

j

jjp
1

x  

subject to Cxw
n

j

jj ≤∑
=1

 

       Kx
n

j

j ≤∑
=1

 

       }1,0{∈jx  j=1,….,n 

 

Recall that the KP is NP-hard but pseudopolynomially solvable by a dynamic 

program. Caprara et al. (2000) show that the kKP is NP-hard in the ordinary sense, as 

well.    

 

2.1.5 Cardinality Constrained Multiple Knapsack Problem 

If the cardinality constrained single knapsack problem has multiple knapsacks 

then it is referred to as the cardinality constrained multiple knapsack problem 

(kMKP). That means each bag has a limit on the number of balls you put in the bag. 

In production environments, there can be limits on the number of jobs if each job 

requires a set-up, hence they can have upper bounds on the number of the items.  

 

MKP is a special case of the kMKP with infinite knapsack cardinalities. MKP 

is strongly NP-hard, so is the kMKP.  

 

The kMKP model is expressed below: 
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Let Ki be the maximum number of items that can be assigned to knapsack i. 

Then the kMKP model is expressed below. 

maximize    ∑∑
==

n

j

ijj

m

i

xp
11

 

 subject to     i

n

j

jij Cxw ≤∑
=1

  i=1,…..,m 

           1
1

≤∑
=

m

i

jix   j=1,…..,n 

           i

n

j

ji Kx ≤∑
=1

                   i=1,…….,m 

           
jix }1,0{∈     i=1,……,m j=1,……,n. 

The model has mxn binary decision variables
jix  and 2m+n constraints  

 

2.2 Literature Survey for Cardinality Constrained Multiple 

Knapsack Problem 

 

The classical knapsack problem and its variations are studied enormously in 

the OR literature due to its simple structure and ability to model many industrial 

situations. The practical implications include but not limited to, capital budgeting, 

cargo loading, production planning or cutting stock cases.   

 

We study the literature on the knapsack problems that are most closely related 

to our problem: namely single knapsack problem with cardinality constraints and 

multiple knapsack problem. For both problems, we make the survey in the 

chronological order.  

 

For the classical single and multiple knapsack problems and their variations, 

we refer the reader to the book by Kelleler, Pferschy and Psinger (2004).  In the 

book, the models and the associated solution algorithms are studied thoroughly. 
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2.2.1 Single Knapsack Problems with the Cardinality Constraint 

Campello and Makulan (1987) are one of the first researchers who focused on 

the cardinality constrained single knapsack problem (kKP). They study the 

cardinality constrained linear programming relaxation of the knapsack problem 

(LPK-k). They introduce the following model: 

 

Q(k) = max ∑
=

n

j

jj xp
1

 

subject to 

Cxw
n

j

jj ≤∑
=1

 

Kx
n

j

j =∑
=1

 

10 ≤≤ jx          j=1,….,n 

 

An O(n3) algorithm is developed by Campello and Makulan (1987)  for 

solving the problem (LPK-k).  

 

Dudzinski (1989) also deals with the cardinality constrained linear 

programming knapsack problem (LPK-k). To find an upper bound he presents a 

more relaxed model than the one introduced by Campello and Makulan (1987). 

Dudzinski (1989) revises the notation used in Campello and Maculan (1987) as 

follows, 

 

Q(k) = max ))((
1

j

n

j

iji xppKp ∑
=

−+  

subject to 

i

n

j

jij kwTxww −≤−∑
=1

)(  

Kx
n

j

j =∑
=1

 

10 ≤≤ jx  j=1,….,n 
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Dudzinski (1989) improves the O(n3) algorithm, developed by Campello and 

Makulan (1987)  and proposes O(n2) algorithm for the cardinality constrained linear 

programming knapsack problem (LPK-k) and obtains the following model LPK-i-k. 

 

Q i (k) = ∑
=

−+
n

j

jiji xppkp
1

)(max  

subject to 

∑
=

−≤−
n

j

ijij KwTxww
1

)(  

10 ≤≤ jx   j=1,….,n 

Q(k) ≤  Qi(k)        Ni ∈∀   

 

Caprara et al. (2000) study the k-item Knapsack Problem (kKP) and exact k-

item Knapsack Problem (E-kKP). The kKP can be formulated as KP with an 

additional constraint. The E-kKP is a variant of the kKP where the number of items 

must be exactly K, i.e., Kx
n

j

j =∑
=1

. Caprara et al. (2000) show that the kKP and E-

kKP can be transformed to each other, hence any kKP instance can be solved using 

the methods developed for the E-kKP.  

 

Caprara et al. (2000) develop a ½ approximation algorithm that runs in O(n) 

by using the LP relaxation of the kKP. This algorithm is used by, Caprara et al. 

(2000) in developing a Polynomial Time Approximation Scheme. The scheme runs 

in (O1/ε -1) time and requires a linear space.  

 

Finally in 2006, Mastrolilli and Hutter study the same problem and present a 

linear-storage polynomial time approximation scheme (PTAS) and a fully 

polynomial time approximation scheme (FPTAS). They use input rounding 

(arithmetic or geometric rounding) techniques and show that PTAS requires linear 

space and has a running time of O(n+k(log1/ε )O(1/ε )). Hence it is superior to PTAS 

proposed by Caprara et al. (2000).  
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2.2.2 Literature Related With Multiple Knapsack Problems 

Ingargiola and Korsh (1975) propose an algorithm for 0-1 Loading Problem 

in which ten random instances are solved with 15 items and 6 knapsacks. This paper 

was one of the first papers focusing on the Multiple Knapsack Problem. Hung and 

Fisc (1978) also focus on the Multiple Knapsack Problem and present Lagrangean 

and Surrogate relaxation techniques. A branch-and-bound algorithm that avoids the 

redundancy of the partial solutions is presented. They compare their results by those 

of Ingargiola and Korsh (1975) and show the superiority of their approach. 

 

Martello and Toth (1981) propose a heuristic algorithm for the Multiple 

Knapsack Problem (MKP). They solve practical instances with up to 1000 items and 

100 knapsacks and show that their solutions are satisfactory. 

 

A Polynomial Time Approximation Scheme (PTAS) is provided by Murgolo 

(1987).  Hochbaum and Shymoys (1988) give PTAS using the dual based approach 

where they convert the scheduling problem into a bin packing problem. Lawler et al. 

(1993) also propose a PTAS that uses the ideas from uniform multi-processor 

scheduling. The objective is to assign a set of jobs with given processing times to the 

machines of different speeds so as to minimize the makespan. The most recent PTAS 

is proposed by Chekuri and Khanna (2000). 
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CHAPTER 3 

 

3   THE kMKP 

 

The mathematical model of the kMKP is restated below for the ease of 

reference.  

 

maximize     ∑∑
==

n

j

ijj

m

i

xp
11

 

 subject to      1
1

≤∑
=

m

i

jix   j=1,…..,n          (1) 

i

n

j

jij Cxw ≤∑
=1

  i=1,…..,m          (2) 

              i

n

j

ji Kx ≤∑
=1

             i=1,…….,m       (3) 

               
jix }1,0{∈   i=1,……,m j=1,……,n. 

where, 

Objective : Maximizing the total profit  

Parameters  

pj  :  profit of item j 

wj  :  weight (capacity usage) of item j 

Ci  :  capacity of knapsack i 

Ki   : cardinality of knapsack i 

 

Decision Variables 

ijx  :  the binary decision variable  about whether item j is assigned to knapsack i or 

not.  
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



=
 otherwise 0

iknapsack   toassigned is  j item if 1
ijx    

 

Constraint sets 1, 2 and 3 explain assignment, capacity and cardinality 

constraints respectively. 

 

In this chapter, we present our approach to study the kMKP. We first discuss 

our bounding mechanism: upper bound and lower bound (heuristic), and then present 

our branch and bound algorithm. 

 

3.1   Upper Bounds and Heuristic 

 

In this  section, we first present several upper bounds that are obtained 

through various relaxations of the problem. We then present our heuristic procedure 

that aims to find a satisfactory approximate solution. The heuristic solution is used as 

an initial feasible solution in our branch and bound algorithm, discussed in Section 

3.2. 

3.1.1 Upper Bounds 

Recall that our problem has a maximization type objective function. This 

follows that any relaxation of the problem provides an upper bound on the optimal 

objective function value. In this study we use two types of relaxations: constraint 

relaxation and continuous relaxation.  

  Each of these relaxations is discussed below; 

3.1.1.1 Constraint Relaxation 

  Our problem has three constraint sets: assignment, capacity and cardinality 

constraints. When any one of the capacity and cardinality constraint sets is removed, 

an optimal solution to the resulting problem provides an upper bound on the 

maximum total profit value. If the resulting solution, by chance satisfies the removed 

constraints, then the optimal solution is also optimal for the original problem. We 

now discuss each of these constraint relaxations. 
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Relaxation of the Capacity Constraints: 

When the capacity constraints are removed, the resulting model can be stated 

as follows: 

kMKP Model (Capacity Constraint Relaxed) :  

maximize    ∑∑
==

n

j

ijj

m

i

xp
11

 

 subject to     1
1

≤∑
=

m

i

jix             j=1,…..,n 

           i

n

j

ji Kx ≤∑
=1

                   i=1,…….,m 

           
jix }1,0{∈    i=1,……,m j=1,……,n. 

An optimal solution to this relaxed problem assigns a total of 







∑

=

nKMin
m

i

i ,
1

 

items.  

If ∑
=

≤
m

i

iKn
1

then all n items will be assigned with a total profit of ∑
=

n

j

jp
1

. 

 

If ∑
=

>
m

i

iKn
1

then the items having the maximum ∑
=

m

i

iK
1

profits will be 

assigned to m knapsacks. In such a case, the maximum total profit is [ ]∑
=

R

j

jp
1

where 

[ ]jp  is the jth largest profit and R=∑
=

m

i

iK
1

.  The overall upper bound is [ ]∑
=

},{

1

,
RnMin

j

jp  and is 

denoted as UB1. 

 

Relaxation of the Cardinality Constraints: 

When the cardinality constraints are removed, the resulting model is a 

classical multiple knapsack model that is stated below. 

 

kMKP Model (Cardinality Constraint Relaxed) :  

maximize    ∑∑
==

n

j

ijj

m

i

xp
11
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 subject to     i

n

j

jij Cxw ≤∑
=1

  i=1,…..,m 

           1
1

≤∑
=

m

i

jix   j=1,…..,n 

            
jix }1,0{∈   i=1,……,m j=1,……,n. 

 

Recall that the multiple knapsack problem is strongly NP-hard. In place of 

using optimal solutions that are obtained in exponential time, a polynomial time 

upper bound can be used. An upper bound on the multiple knapsack problem is a 

valid upper bound for our problem. This is due to the fact that an upper bound for 

any relaxation of a maximization problem is a valid upper bound on the original 

problem. 

 

In the literature, several upper bounds are proposed for the multiple knapsack 

problem. An optimal solution to the continuous relaxation of the problem (that 

replaces  {0,1}x ij ∈ with 1x0  ij ≤≤ ) is an upper bound. This optimal solution is 

stated below: 

 

Consider a single surrogate knapsack with capacity .∑ iC Order the items in 

their nonincreasing pj/wj values, and assign them to the knapsack according to the 

order until the capacity is fully used or no item remains, whichever is observed first 

(Martello and Toth, 1990). Note that such an assignment ends up with at most one 

fractional item. 

 

  We refer the bound found by the continuous relaxation of the multiple 

knapsack problem as UB2. Formally the upper bound, UB2, is stated below: 

Assume R satisfies, 

[ ] ∑∑ ≤
=

i

R

j

j Cw
1

 and [ ] ∑∑ >
+

=

i

R

j

j Cw
1

1

 

[ ]∑∑
=

−
R

j

ji wC
1

is the total capacity remaining to the (R+1)th  item.  

The contribution of the (R+1)th item to the total profit is, 
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[ ]

[ ]

[ ]1

1

1

+

=

+

∑∑ −

×
R

R

j

ji

R
w

wC

p  

The overall upper bound, UB2 , becomes  

UB2 = [ ] [ ]

[ ]

[ ]1

1

1
1 +

=

+

=

∑∑
∑

−

×+
R

R

j

ji

R

R

j

j
w

wC

pp  

 

3.1.1.2 Linear Programming Relaxation (LPR) 

When the constraints on the integrality of the assignment variables are 

removed the problem becomes 

maximize    ∑∑
==

n

j

ijj

m

i

xp
11

 

 subject to     i

n

j

jij Cxw ≤∑
=1

  i=1,…..,m 

           1
1

≤∑
=

m

i

jix   j=1,…..,n 

           i

n

j

ji Kx ≤∑
=1

                   i=1,…….,m 

           10 ≤≤
jix   i=1,……,m j=1,……,n. 

 

  The above model is the Linear Programming Relaxation (LPR) of the original 

problem, and its optimal solution provides an upper bound on the maximum total 

profit value. To the best of our knowledge, no simple algorithm is available to solve 

the LPR of the problem. Hence an optimal solution, UB3, can be found by using any 

commercial LP software.  

 

  We use the upper bounds in the following sequel: UB1-UB2-UB3, i.e., from 

easiest to hardest. That is, we first evaluate the partial solutions by UB1, if we cannot 

make any elimination then we compute UB2. If UB2 is not of any help then we 

compute the most powerful, however most costly upper bound, UB3.  
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  We benefit from the optimal LPR solution in finding a feasible solution to our 

problem as well. The associated heuristic is discussed in the next section. 

 

3.1.2 Heuristic Procedure 

  In the heuristic procedure, we basically follow three steps that are stated 

below: 

 

Step 1. Solve the LP relaxed problem, LPR. 

 Let LP

ijx
 be the optimal LP assignment. 

 Assign item j to knapsack i only if LP

ijx =1 for all i and j.  

Such an assignment results in a feasible solution as it satisfies the capacity 

and cardinality constraints and the integrality requirements. This value is a 

lower bound too but it is naive. We call it as naive lower bound (LB1). 

 

Step 2. Let T be the set of items that are not assigned in Step 1, and S be the set of 

assigned in Step 1, i.e., S={1,2,…..n}/T. Then, solve the following reduced problem. 

 

  maximize   ∑∑
∈Tj i

ijj xp  

 subject to ∑∑
∈

−≤
Sj

ijji

j

ijj xwCxw        i=1,…..,m 

   1
1

≤∑
=

m

i

jix    j=1,…..,n 

   ∑∑
∈

−≤
Sj

iji

j

ij xKx                i=1,…..,m 

  
jix }1,0{∈        i=1,……,m j=1,……,n. 

 

  The reduced problem is strongly NP-hard, as well. However due to the 

exponential nature of the problem finding an optimal solution to the problem is much 

easier than finding an optimal solution to the original problem. Alternately the 

reduced problem can be solved heuristically through the following procedure. 
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Step 2.1 Assign the unassigned items according to a greedy procedure. 

 

Step 2.2 Improve the solution obtained in Step 2.1 via interchanges. Step 2.1 is 

referred to as construction phase whereas Step 2.2 is an improvement phase.  

 

3.1.2.1 Construction Phase 

  The items are sorted according to a priority rule and they are assigned to a 

knapsack according to an assignment rule. We use the following three priority rules 

for item ordering: 

 

1. Maximum pj Rule: The items are sorted in their nonincreasing order of pj values. 

According to this rule, priority is given to the items having higher profit values. 

 

2. Minimum wj Rule: The items are sorted in their nondecreasing order of wj 

values. According to this rule, priority is given to the items having lower capacity 

usages. 

 

3. Maximum pj/wj Rule: The items are sorted in their nonincreasing order of pj/wj 

values. According to this rule, priority is given to the items having higher unit profit 

values.  

 

 We use the following four knapsack assignment rules: 

1. Maximum Remaining Capacity Rule: The first item of the order is assigned to 

the knapsack having the maximum unused capacity. 

 

2. Minimum Capacity Used Rule: The first item of the order is assigned to the 

knapsack having the minimum used capacity. As the capacities of the knapsacks are 

not necessarily identical, the knapsack with maximum remaining capacity is not 

necessarily the one having the minimum used capacity. 

 

3. Maximum Remaining Cardinality Rule: The first item of the order is assigned 

to the knapsack having the maximum number of items that can be assigned. 
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4. Minimum Number of Items Used Rule: The first item of the order is assigned 

to the knapsack having the minimum number of items already assigned. As the 

cardinalities of the knapsacks are not necessarily identical, the knapsack with the 

maximum remaining cardinality is not necessarily the one having the minimum used 

cardinality. 

 

  Note that we have 3 priority rules and 4 assignment rules. This results in 12 

solutions, some of which may be identical. We obtain all these solutions and select 

the one having the maximum total profit value. The selected solution is improved by 

the improvement phase discussed next. 

3.1.2.2 Improvement Phase 

  The improvement phase looks for the possibility of increasing the maximum 

total profit by putting an unassigned item to a knapsack in place of an already 

assigned item. We let r be an unassigned item and s be an assigned item. We check 

whether putting item r in place of item s is feasible and pr>ps, i.e., the exchange 

increases the total profit value. Among all feasible pairs that increase the total profit, 

we select the one that leads to a maximum improvement. We terminate either all 

pairs lead to infeasible or nonimproving solutions. 

 

Example:  

   

  We illustrate the heuristic via an example problem. 

 

  Table 3.1 gives the profit and weight values in a 12-item 2-knapsack problem  
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Table 3.1: The Profit and Weight Values for the 12-Item and 2-Knapsack Example Problem 

Item 1 2 3 4 5 6 7 8 9 10 11 12 

pj 50 50 64 46 50 5 50 40 70 62 16 28 

wj 56 59 80 64 75 17 25 20 35 31 12 10 

 

 

 

Capacities of knapsacks are C1 = 190 and C2= 170. 

Cardinalities for knapsacks are K1= 4 and K2=4.  

 

  Figure 3.1 summarizes the problem environment.  The representation 

is
profit

weight
ItemNumber . For example, 1

50

56

states that item 1 has a profit of 50 units and a 

weight of 56 units. 

 

 

 

1
50

56

 2
50

59

 3
64

80

 4
46

64

 5
50

75

 6
5

17

 7
50

25

 8
40

20

 9
70

35

 10
62

31

 11
16

12

     12
28

10

 

Figure 3.1: Summary of Problem in Item Representation. 

 

 

We first construct the knapsack model for the example problem as 

 

k-MKP Model  

maximize    ∑∑
==

12

1

2

1 j

ijj

i

xp  

 subject to     190
12

1
1 ≤∑

=j

jj xw       

           170
12

1
2 ≤∑

=j

jj xw       
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           1
2

1

≤∑
=i

jix   j=1,…..,12   

           4
12

1
1 ≤∑

=j

j
x       

            4
12

1
2 ≤∑

=j

j
x       

           
jix }1,0{∈   i=1,2 j=1,……,12. 

The optimal values of the decision variables are summarized in the below table. 

 

 

 

Table 3.2: The Optimal Integer Programming Solution of the k-MKP  

Variable Value Variable Value 

x11 0 x17 0 

x21 0 x27 1 

x12 1 x18 1 

x22 0 x28 0 

x13 0 x19 1 

x23 1 x29 0 

x14 0 x110 0 

x24 0 x210 1 

x15 1 x111 0 

x25 0 x211 0 

x16 0 x112 0 

x26 0 x212 0 
 

 

 

Next we find an approximate solution with the heuristic procedure. 

 

Heuristic Method Solution: 

Step 1. Solve the following LP relaxed problem, LPR. 
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maximize    ∑∑
==

12

1

2

1 j

ijj

i

xp  

 subject to     190
12

1
1 ≤∑

=j

jj xw       

           170
12

1
2 ≤∑

=j

jj xw       

           1
2

1

≤∑
=i

jix   j=1,…..,12   

           4
12

1
1 ≤∑

=j

j
x       

            4
12

1
2 ≤∑

=j

j
x       

           10 ≤≤
jix   i=1,2 j=1,……,12. 

Solution:  

  The optimal LP Relaxed solution has an objective function value of 428.89, 

and the solution values of the decision variables are tabulated below. 

 

 

 

Table 3.3: LP-Relaxed Solution of the k-MKP 

Variable Value Variable Value 

x11 0 x17 1 

x21 1 x27 0 

x12 0 x18 0.45 

x22 1 x28 0.55 

x13 1 x19 1 

x23 0 x29 0 

x14 0 x110 0 

x24 0 x210 1 

x15 0.55 x111 0 

x25 0.13 x211 0 

x16 0 x112 0 

x26 0 x212 0,32 
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We assign item j to knapsack i if LP

ijx =1 

Accordingly,  x21=1, x22=1, x13=1, x17=1, x19=1 and x210=1.  

 

The remaining items 4, 5, 6, 8, 11 and 12 are either partially assigned or unassigned.  

 

Step 2. Solve the following problem with the remaining items and reduced capacities 

and cardinalities 

  maximize   ∑∑
∈Tj i

ijj xp  

 subject to ∑∑
∈

−≤
Sj

jj

j

jj xwxw 11 190   

   ∑∑
∈

−≤
Sj

jj

j

jj xwxw 22 170  

   1
2

1

≤∑
=i

jix   j=1,…..,12 

   ∑∑
∈

−≤
Sj

j

j

j xx 11 4    

    ∑∑
∈

−≤
Sj

j

j

ij xx 24  

  
jix }1,0{∈  

where assigned items set { }10,9,7,3,2,1=S  and unassigned items set 

{ }12,11,8,6,5,4=T . Next we solve the reduced problem with our heuristic assignment 

procedures. 

Step 2.1 Assign the unassigned items according to a greedy procedure (construction 

phase) 

This step is summarized in the tables below; 

In each column the items are listed according to their pj, 1/wj or  pj/wj values. 

In case of a tie in pj, 1/wj and  pj/wj orders we select according to 1/wj  and pj and pj 

orders,  respectively. For further ties we use pj/wj and pj/wj and 1/wj, respectively. 

The remaining items are assigned to the remaining capacities and cardinalities 

according to the assignment rules: maximum capacity left, minimum capacity used 

maximum cardinality left and minimum cardinality used. 
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Table 3.4: Greedy Assignment of Items According to Maximum pj Rule 

pj 

 

Max Capacity 

Left 

Min Capacity 

Used 

Max Cardinality 

Left 

Min 

Cardinality 

Used  

  Rem C1=50  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

Assigned: 

8
40

20

 

Used C1=140 

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

8
40

20

 

Rem K1=1  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

8
40

20

 

Used K1=3  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

8
40

20

 

5
50

75
 

4
46

64

 

8
40

20

 

12
28

10

 

11
16

12

 

6
5

17
 

 

Rem C2=24   

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

12
28

10

 

Used C2=146 

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

12
28

10

 

Rem K2=1  

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

12
28

10

 

Used K2=3  

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

12
28

10

 

Obj 

Value 

414 

346(fixed) +    

68 (greedy as)          

 

414 

346(fixed) +      

68 (greedy as)          

 

414 

346(fixed) +       

68 (greedy as)          

 

414 

346(fixed) +    

68 (greedy as)          
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Table 3.5: Greedy Assignment of Items According to Maximum 1/wj Rule 

1/wj 

Max Capacity 

Left 

Min Capacity 

Used 

Max Cardinality 

Left 

Min Cardinality 

Used  

Rem C1=50  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

12
28

10

 

Used C1=140 

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

12
28

10

 

Rem K1=1  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

12
28

10

 

Used K1=3  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

  Assigned: 

12
28

10

 

12
28

10

 

11
16

12

 

6
5

17

 

8
40

20

 

4
46

64

 

5
50

75
 

 

Rem C2=24   

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

11
16

12

 

Used C2=146 

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

11
16

12

 

Rem K2=1  

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

11
16

12

 

Used K2=3  

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

  Assigned: 

11
16

12

 

Obj 

Value 

390 

346(fixed) +    

44 (greedy as)          

 

390 

346(fixed) +       

44 (greedy as)          

 

390 

346(fixed) +        

44 (greedy as)          

 

390 

346(fixed) +       

44 (greedy as)          
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Table 3.6: Greedy Assignment of Items According to Maximum pj/wj Rule 

pj/wj 

Max Capacity 

Left 

Min Capacity 

Used 

Max Cardinality 

Left 

Min Cardinality 

Used  

Rem C1=50  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

 Assigned: 

12
28

10

 

Used C1=140 

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

 Assigned: 

12
28

10

 

Rem K1=1  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

 Assigned: 

12
28

10

 

Used K1=3  

Fixed:  

3
64

80

, 7
50

25

, 9
70

35

 

 Assigned: 

12
28

10

 

12
28

10

 

8
40

20

 

11
16

12

 

4
46

64

 

5
50

75
 

6
5

17
 

 

Rem C2=24   

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

 Assigned: 

8
40

20

 

Used C2=146 

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

 Assigned: 

8
40

20

 

Rem K2=1  

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

 Assigned: 

8
40

20

 

Used K2=3  

Fixed:  

1
50

56

, 2
50

59

, 10
62

31

 

 Assigned: 

8
40

20

 

Obj 

Value 

414 

346(fixed) +    

68 (greedy as)          

 

414 

346(fixed) +       

68 (greedy as)          

 

414 

346(fixed) +        

68 (greedy as)          

 

414 

346(fixed) +         

68 (greedy as)          

 

 

We obtain all these solutions and select the one having the maximum total profit 

value. Accordingly, Max{ 414,414, 414,414,390,390,390,390, 414,414, 414,414} = 

414  is the total profit value of the selected solution. 
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Step 2.2 Improve the solution obtained in Step 2.1 via interchanges. 

Unassigned Set (T): The set consists of items which are not assigned to any knapsack 

in previous steps.  

T = {5
50

75
,4

46

64
, 6

5

17
, 11

16

12
 } 

 

Assigned Set (S): The set consists of items which are assigned to any knapsack in the 

previous steps. 

S= { 3
64

80

, 7
50

25

, 9
70

35

, 1
50

56

, 2
50

59

, 10
62

31

, 8
40

20

, 12
28

10

} 

 

  This phase looks for the opportunity of increasing the maximum total profit 

by putting an unassigned item to a knapsack in place of an already assigned item. We 

terminate when all pairs lead to infeasible or nonimproving solutions. 

 

  Pick the pair that causes the maximum improvement   

5
50

75
 ���� 12

28

10
 Violates the capacity constraint.  

4
46

64
  ���� 12

28

10
 Violates the capacity constraint. 

5
50

75
 ����  8

40

20
     Violates the capacity constraint. 

4
46

64
 ����  8

40

20
     Violates the capacity constraint. 

  Note that any pair does not lead to an improvement, hence the solution is not 

changed. 
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  The optimal total profit value is 414. Note that construction phase, by chance, 

has ended up with the optimal solution. Hence, no improvement is possible in the 

succeeding phase. 

3.2  Branch and Bound  

  Recall that, the cardinality constrained multiple knapsack problem is strongly 

NP-hard. This justifies the use of an implicit enumeration technique to find an exact 

solution. In this study, we design a branch and bound algorithm that uses the 

bounding mechanisms discussed so far.  

Our branching scheme is based on the optimal solution of the LPR problem. 

We observe that the LPR produces very few continuous variables, hence base our 

branching scheme on these variables. 

 There are different branching methods that are used for the knapsack problem 

in the literature. According to the first scheme, the levels are represented by items. At 

each level, for a particular item, there are m+1 nodes where the first node represents 

the decision of not assigning the item to any knapsack, and each of the remaining 

nodes represents the assignment of an item to a particular knapsack. This branching 

scheme is proposed by Valerio (1996) and is figured below.   
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Figure 3.2: Knapsacks on Nodes Representation  

 

 

  At each level, m+1 decisions are considered. There are n levels. At the last 

level, all possible nm+1
 decisions become available.  

  The second branching scheme first considers knapsack 1 and tries to fill the 

knapsack as much as possible, and then proceeds to the second knapsack, when the 

first knapsack is full, i.e., cannot take an additional item. The branching terminates 

whenever all knapsacks are considered.  

 The below figure gives the associated branching scheme. The scheme is 

proposed by Kelleler et al. (2004). 

 

 

 

 

Root Node 

Item 1 

       Item 2 

Node 1 : No assignment 

Node k : Asssignment of related item to knapsack k-1. 
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Figure 3.3: Items on Nodes B&B Representation  
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 Instead of using the above alternatives we construct our branching method 

based on the fractional xij solutions. As mentioned before the optimal LPR solution 

produces very few continuous variables and this motivates us using this type of 

branching. 

  We use the result of the optimal LPR solution to define our branching 

structure. At every branch, we solve the LP problem and branch on a fractional 

variable of the LP solution. For the chosen fractional variable
jix such that 10 <<

jix , 

we generate the following two subproblems.  

Subproblem 1.   
jix =0 

Subproblem 2.   
jix =1 

 The associated tree is given in the figure below. 

 

   

 (main node) 0<
jix <1 

 

     

 

 

(left node)     (right node) 

            

 

  Figure 3.4: Branching Tree 

 

 

xij 

xij=1 xij=0 
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 We employ the following three strategies to select the fractional variable 

from which two subproblems are generated. 

• Strategy 1 : Select the highest 
jix  value 

• Strategy 2 : Select the lowest 
jix  value 

• Strategy 3 : Select the 
jix  value randomly 

  Strategies 1 and 2 expect that the optimal integer solution is close to the 

optimal LP relaxed solution. This forces big 
jix  values to one (Strategy 1) and small 

jix  values to zero (Strategy 2).  Strategy 3, on the other hand, selects a fractional 

variable randomly, thereby looking for the effect of a solution found without any 

intuitive reasoning.  

  Example : 

  We illustrate the branching strategies via an example problem, having 8 items 

and 2 knapsacks. The data are tabulated in Table 3.7.  

 

 

Table 3.7 : The Profit and Weight Values for the 8-Item 2-Knapsack Example Problem 

Items 1 2 3 4 5 6 7 8 

pj 35 65 64 46 60 5 50 40 

wj 56 59 80 64 75 17 25 20 

 

 

 

 

Capacity of knapsacks: C1 = 65 and C2= 120 

Cardinalities for knapsacks: K1= 2 and K2=2 
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  Above mentioned three strategies are based on the LP Relaxed solution of the 

kMKP. The LP Relaxed solution of the kMKP is given in below table. 

 

 

 

Table 3.8: The Optimal LPR Solution of  8-Item 2-Knapsack Example Problem 

Variable * Value 

x12 0.59 

x22 0.41 

x23 1 

x25 0.02 

x17 0.43 

x27 0.57 

x18 0.98 

* The variables that do not appear in the table receive value zero. 

  

 

 Strategy 1 forces the fractional variable having the biggest fractional variable, 

i.e., x18. If strategy 2 is selected, then branching starts with the smallest fractional 

variable, i.e., x25. On the other hand Strategy 3 depends on picking randomly 

between variables x12, x22, x25, x17, x27 and x18. 

 Note that the highest fraction 0.98 associates to the variable x18. In the 

optimal solution, it is very likely to have value one for variable x18, hence Strategy 1 

makes a conscious choice.     

  We find an initial feasible solution using our heuristic procedure discussed in 

Section 3.1.2. We update the best known, i.e., incumbent, solution wherever we find 

a feasible solution with higher total profit value. 
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  We fathom the node if any one of the following cases occurs: 

i. The LP solution is infeasible. This occurs for the partial solution in which 

jix =1, but not for 
jix =0.  

ii. The solution has all integer decision variables. In such a case, an optimal 

solution from that node is already found. The incumbent solution is updated, if the 

resulting solution value is better. 

iii. Whenever the upper bound is no greater than the incumbent solution. In such a 

case, the resulting solution cannot lead to a unique optimal solution, i.e., it is not 

promising. 

  We backtrack whenever both nodes at a level are fathomed. We stop 

whenever we reach the root node; hence search all partial solutions implicitly. 

  For a particular node, we calculate the total realized profit by collecting the 

profits of the items that are already assigned to any knapsack. We let                   

TC(S) = ∑ )(Sxp iji where )(Sxij is the value of 
jix  for node S and TC(S) is the total 

realized profit.  

  The upper bound is found by adding the associated constraint, ‘
jix = 0’ or 

‘
jix =1’ to the problem solved in the parent node. We calculate the upper bounds in 

sequel from the easiest to the hardest to compute. Accordingly we first find UB1 then 

UB2 and finally compute the LP based upper bound, UB3. We benefit from the LP 

solution of the node in deriving lower bounds. We compute a naïve lower bound by 

taking the integer part of the solution and update the incumbent if the lower bound at 

the node is higher.  

In place of solving the LP at each node, we implement the addition and 

deletion of a constraint idea. In doing so, we solve the LP only at the root node and 

use the addition of a constraint option while branching and the deletion of a 

constraint while backtracking. The added or deleted constraints are 
jix = 0 or     

jix = 1. 
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  Below is the algorithmic description of our branch and bound algorithm, we 

state the algorithm according to Branching Strategy 1.  

Branch and Bound Algorithm: 

 

Step 0. Find an initial feasible solution using the procedure discussed in Section 

3.1.2.  

Let INC be the total profit of schedule, and set the incumbent solution to INC. 

Level=1 

Solve the LP relaxation of the problem, and let the solution be LPR 

If LPR produces all integer decision variables then it is optimal, STOP. 

Step 1. Let 
rkx = Max{

jix / 0<
jix <1} where 

jix  is the optimal LP relaxation 

solution. Generate the following two subproblems: 

Subproblem 1.  
rkx =1 

Subproblem 2.  
rkx =0 

Fathom subproblem i if any of the following conditions holds: 

i. The solution has all integer variables.  

 If  LPR > INC 

 INC = LPR 

ii. The solution is infeasible.  

This happens only for subproblem 1. 

iii. UBi ≤  INC, (first try i=1, then i=2 and finally i=3) i.e., the subproblem 

cannot lead to a unique optimal solution. 

 

Step 2.  If both subproblems in Step 1 are eliminated then go Step 3. 

If both subproblems remain, branch from the one having the largest upper bound 

value.   

If only a single subproblem remains, continue from this subproblem.  

Level=Level+1 

 Go to Step 1 

 

 Step3.  Level=Level-1 

 If Level=1 then Stop else Go to Step 1. 
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  We implement our Branch and Bound algorithm on an example problem, 

with 6 items and 2 knapsacks. The profit and weight values are tabulated in the 

below table. 

 

 

 

Table 3.9: The Data for the 6-Item 2-Knapsack Example Problem 

Items 1 2 3 4 5 6 

pj 35 65 64 46 60 5 

wj 56 59 80 64 75 17 

 

 

 

 

Capacity of knapsacks are C1 = 65 and C2= 95 

Cardinalities for knapsacks are K1= 1 and K2=1 

 

At the root node:  

UB1 = 189 

UB2 = 145.8 

UB3  = 145.8 

LB Naïve = 65 

LB Heuristic = 116 

INC = 116 

 

 The branch and bound solution is summarized in the below figure. The 

numbers on the nodes show the solution path. The maximum fractional variables are 

shown in nodes. 

 

 There are three fathoming conditions as stated in algorithm: ALL: we hit a 

full integer solution, INF: the subproblem is infeasible, UBi (i=1,2,3) : the branch is 



 

 

37 

fathomed as UBi ≤ INC. The type of upper bound that fathoms the branch is shown on 

the nodes. UB1 means that UB2 and UB3 are not computed as UB1 ≤ INC. 

 

 Note that Initial Incumbent Solution (INC) is updated only once at the 14th 

node where it becomes 130.  

 

 The branches following nodes 2, 4, 7, 9, 11, 13, 17, 23 and 28 are fathomed 

due to infeasibility. The other branches are fathomed by upper bounds, i.e., they are 

not promising.  

  

 The solution is found at the 8th level. A total of 32 nodes are searched and the 

optimal solution is found at the 14th node.  
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Figure 3.5:  6-Item 2-Knapsack Branch and Bound Tree 
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CHAPTER 4 

 

4 COMPUTATIONAL RESULTS 

 

4.1   Input Generation 

 

In this chapter, we first present the data generation scheme and then discuss 

the results of our computational experiment. Our aim here is to test the efficiency of 

our algorithms and detect the effects of certain parameters on the difficulty of the 

solutions.  

 

To generate  pj, wj  and Ci values,  we use the scheme proposed by Martello 

and Toth (1990) for the multiple knapsack problem. According to this scheme, the pj 

and wj  values are generated from discrete uniform distribution [10,100] and Ci values 

are discrete uniform between 0 and ∑∑
−

==

−
1

11

5.0(
i

k

k

n

j

j Cw ). We set the lower limit of the 

discrete distribution to wmin for Ci values, otherwise the knapsack having a capacity 

between 0 and wmin-1 would never be used.  

 

We generate the cardinality of knapsack i, i.e., Ki from discrete uniform 

distribution U[1,(  mn / -1)]. Our upper limit somewhat guarantees that the 

cardinality constraint is forcing, i.e., nonredundant.  

 

We use two discrete uniform distributions U[10,100] and U[10,250] for low 

and high profit variability. We hereafter call these profit sets as Set I and Set II.  

 

The number of items and number of knapsacks are tabulated below. 
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Table 4.1:  Generated Problems 

Number of 

Items (n) 

Number of 

Knapsacks (m) 

100 5 

100 8 

150 5 

150 8 

200 10 

 

 

 

 

For each combination in the table, we generate and solve 10 problems and we 

perform the experiments for both sets I and II. 

 

We also generate large-sized problem instances with up to 1900 items and 20 

knapsacks to set the solution capability of our branch and bound algorithm. 

 

Input generation part is coded with C programming language with Microsoft 

Visual 6.0. (2003). The experiments are conducted with C# programming language 

with Microsoft Visual 8.0.(2005).  

 

4.2 Performance Measures 

 

In this section we set our performance measures that are used to evaluate the 

performance of the heuristic algorithm, branch and bound algorithm and upper 

bounds. The performances measures used are as listed below: 
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For Upper Bounds 

• The average and maximum percentage deviation from the optimal solution.  

The percentage deviation is defined as 100×
−

OPT

OPTUB
where UB is the upper bound 

value and OPT is the optimal total profit. 

 

For Heuristic Algorithm 

• The average and maximum CPU times in seconds 

• The average and maximum percentage deviation from the optimal solution  

The percentage deviation is defined as 100×
−

OPT

LBOPT
 where LB is the lower 

bound value. 

  

For Branch and Bound Algorithm 

• The average and maximum CPU times  

• The average and maximum number of nodes generated 

• The average and maximum number of nodes generated until OPT is found. 

• The average and maximum level of the tree reached (the depth of the branch)  

 

The algorithms are coded with C# programming language with Microsoft 

Visual 8.0.(2005) and run on Microsoft Windows XP. For optimization problems 

Cplex version 10.1 is used. The instance runs are performed on the Intel ® 4 CPU 

3.20 GHz and 1 MB of Ram computer.  

 

4.3 Strategy Selection 

 

In Section 3.2 we mentioned that the branching strategy of selecting highest 

fractional variable is likely to be the best strategy. Now we will perform an 

experiment to verify this issue. In below table results of three cases are observed. 

Remember that strategy 1 refers to selecting maximum fractional 
jix value, strategy 
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2 refers to selecting minimum fractional 
jix value and strategy 3 refers to selecting 

random fractional 
jix value while performing branch and bound algorithm. 

 

 

 

 

Table 4.2: Branching Strategy Evaluation for B&B 

  Strategy 1 Strategy 2 Strategy 3 

  # of nodes  
CPU 

(seconds) # of nodes  
CPU 

(seconds) # of nodes  
CPU 

(seconds) 

n m  avg max  avg max  avg max  avg max  avg max  avg max 

100 5 96,3 212 1,5 4,1 112,4 233 1,7 4,8 136,2 233 2,4 5,9 

100  8  116,4 245 1,6 3,0 136,1 301 2,5 5,1 159,3 325 3,6 7,2 

150 5 86,5 253 1,5 5,1 121,8 319 2,6 4,7 139,6 321 3,4 6,1 

150 8 97,1 264 1,6 4,1 112,4 321 2,8 5,2 128,3 340 3,2 5,6 

200 10 126,6 281 1,8 5,4 141,2 345 3,1 5,8 158,6 369 4,2 7,1 

  

  

 

 Note that selecting the maximum fractional variable, i.e., Strategy 1, produces 

smaller number of nodes and CPU times, when compared with the other strategies. 

Hence, we use Strategy 1 in our experiments. 

 

We next analyze the effects of parameters and mechanisms on the problem, 

and base our main runs on the results from these experiments. 

 

4.4 Effects of Parameters 

 

The kMKP has certain parameters; number of items n, number of knapsacks 

m, profit value pj, weight usage wj, capacity usage Ci and cardinality amount Ki. In 

this section we analyze the effects of these parameters on the difficulty of the 

solutions.  
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Our main runs include the n, m and pj effects. In this section, we analyze the 

effects of Ci, Ki and wj values. 

 

Effect of Capacity Value Ci 

 To see the effect of the capacity value on the difficulty of the problem we use 

two different capacity settings. We first use U[wmin, ∑∑
−

==

−
1

11

)5.0(
i

k

k

n

j

j Cw ] to generate 

Ci s and then generate another class by halving the capacities of the first two 

knapsacks.  

 

We refer to first set as C1 and second set as C2. Note that C2 has restricted 

capacity. 

 

 

 

Table 4.3: Capacity Effect on the Performance of B&B 

    SET C1  SET C2  

  CPU(seconds) # of nodes  CPU(seconds) # of nodes  

n  m  avg max avg  max avg max avg  max 

100 5 1,5 4,1 96,3 212 1,4 3,6 81,1 138 

100 8 1,6 3,0 116,4 245 1,3 2,7 104,6 212 

150 5 1,5 5,1 86,5 253 1,4 4,9 83,8 221 

150 8 1,6 4,1 97,1 264 1,5 3,9 78,1 169 

200 10 1,8 5,4 126,6 281 1,6 5,9 97,2 191 

 

 

 

As can be observed from the above table, the average number of nodes and 

CPU times decrease when capacities become tighter. This is due to the fact that more 

solutions become feasible when the capacities are larger and this leaves more nodes 

for further investigation. Note that when n=150 the maximum number of nodes 
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searched is 253 when the capacities are larger, this number reduces to 221 when the 

capacities are decreased.  

  

We continue our runs with harder problem combination, i.e., with set C1. 

 

Effect of Cardinality Value Ki 

The effect of the cardinality value on the difficulty of the solutions is same as 

the capacity case. We use two cardinality values. Initially we use U[1,(  mn / -1)] to 

generate Ki values. We then generate another set by halving the cardinalities of the 

first two knapsacks. 

 

We refer to the first set as K1 and second set as K2. Note that K2 has 

restricted cardinality. 

 

 

 

Table 4.4: Cardinality Effect on the Performance of B&B 

    SET K1  SET K2  

  

CPU 
(seconds) # of nodes  

CPU 
(seconds) # of nodes  

n m avg max avg max avg max avg max 

100 5 1,5 4,1 96,3 212 1,4 3,8 72,5 179 

100 8 1,6 3,0 116,4 245 1,4 2,7 107,1 237 

150 5 1,5 5,1 86,5 253 1,4 4,7 75,6 221 

150 8 1,6 4,1 97,1 264 1,3 4,1 71,2 248 

200 10 1,8 5,4 126,6 281 1,5 4,0 112,6 265 

 

 

 

We observe that as we decrease the cardinality, the number of nodes and CPU 

times decrease because more solutions become feasible when the remaining 

cardinalities are larger and this leaves more nodes for further investigation. For 

example when there are 100 items and 8 knapsacks, the average numbers of nodes 

searched are 116 and 107 for large and small cardinality cases respectively. 
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We continue our main runs with larger combination, i.e., with set K1. Now 

we analyze the effect of weight (usage). 

 

Effect of Weight Value wi 

 A weight, i.e., capacity usage, increase is similar to the knapsack capacity 

decrease. Hence, we expect the problem becomes easier when we increase the 

weights of the items. 

  

We will analyze the effects of the weights by changing the distribution range 

of weight values from U[10, 100] to U[10, 250] and call these sets as W1 and W2 

respectively. 

 

The construction and lower bound deviations are also included for this effect. 

The below table indicates the heuristic deviation before and after improvement.  

 

 

 

Table 4.5: Weight Effect-Lower Bound Comparison 

    SET W1  SET W2  

  
%Dev of  

Construction 
%Dev of  

Heuristic-LB2 
%Dev of  

Construction 
%Dev of  

Heuristic-LB2 

n m avg max avg max avg max avg max 

100 5 3,1% 19,6% 1,0% 3,0% 3,1% 18,7% 1,4% 4,4% 

100 8 2,6% 5,0% 2,6% 5,0% 3,1% 7,1% 2,6% 4,4% 

150 5 1,7% 4,0% 1,4% 4,0% 2,4% 4,2% 1,8% 2,9% 

150 8 3,4% 7,1% 1,6% 2,8% 4,1% 7,2% 1,9% 3,6% 

200 10 2,8% 5,1% 1,1% 2,4% 3,6% 6,1% 1,8% 4,2% 

 

  

 

As we observe, deviations increased on average for both construction and 

heuristic parts. If W2 is used, the branch and bound algorithm starts with a weaker 

lower bound. 
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 Next, we focus on the branch and bound performance. 

 

 

 

Table 4.6: Weight Effect-Branch and Bound Comparison 

    SET W1  SET W2  

  

CPU 
(seconds) # of nodes  

CPU 
(seconds) # of nodes  

n m avg max avg max avg max avg max 

100 5 1,5 4,1 96,3 212 1,6 3,2 97,6 158 

100 8 1,6 3,0 116,4 245 1,2 2,7 104,1 214 

150 5 1,5 5,1 86,5 253 1,3 4,8 81,3 214 

150 8 1,6 4,1 97,1 264 1,2 2,9 101,2 202 

200 10 1,8 5,4 126,6 281 1,4 3,4 108,6 191 

 

  

 

In general the instances of W2 set are solved easier but there exist counter 

cases like 100 items and 5 knapsacks case. The number of the generated nodes is 

higher for set W2, which can be attributed to the random effect.  

 

 We continue our main experiment with smaller weight values, i.e, with set 

W1.  

 

So far we have focused on the parameter effects; now we analyze the effects of 

the mechanisms on the difficulty of solution.  

 

4.5 Effects of Mechanisms 

 

In this section, we investigate the effects of the mechanisms we developed on 

the performance of our branch and bound algorithm. These mechanisms decide 

branching strategies and bounding schemes.   
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Effects of Upper Bounds-UB1: 

Note that removing UB1 does not affect the number of nodes generated 

because the stronger bound UB3 already covers it. However, when UB1 fathoms a 

branch UB3, i.e., the most complex upper bound, is not necessarily computed.   

 

The effects of UB1 on the CPU times of branch and bound algorithm are 

tabulated below.  

 

 

Table 4.7: Effects of UB1 

    

With UB1, UB2 and 

UB3 With UB2 and UB3 

  

BB-CPU    
(seconds) 

BB-CPU 
(seconds) 

  n m avg max avg max 

100 5 1,5 4,1 1,4 4,0 

100 8 1,6 3,0 1,6 2,8 

150 5 1,5 5,1 1,5 4,5 

150 8 1,6 4,1 1,4 3,6 

200 10 1,8 5,4 1,7 4,1 

  
 

 

 

Note that, when UB1 is not used, the average and maximum seconds are 

smaller. Therefore, we conclude that reduction due to UB1 is outweighed by the 

effort spent to compute it. Hence, we do not use UB1 in our main runs.   

 

Effects of Upper Bounds-UB2: 

Now we analyze the effects of UB2 on the performance of the algorithm. As 

in UB1 case, the number of nodes generated is not expected to change because UB3 is 

stronger than UB2. On the other hand; when UB2 fathoms a branch there is no need to 

compute UB3.  
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The table below reports on the performance of branch and bound algorithm 

that uses and does not use UB2. 

 

 

  

Table 4.8: Effects of UB2 

    

With UB1, UB2 and 

UB3 With UB1 and UB3 

  

BB-CPU     
(seconds) 

BB-CPU     
(seconds) 

n m avg max avg max 

100 5 1,5 4,1 1,7 4,2 

100 8 1,6 3,0 1,7 3,2 

150 5 1,5 5,1 1,6 5,2 

150 8 1,6 4,1 1,8 4,9 

200 10 1,8 5,4 2,1 4,1 

 

 

 

As can be observed from the above table UB2 when used together UB3, 

reduces the solution times. Hence, we use UB2 in our main runs.  

 

Effects of Upper Bounds-UB3: 

 UB3 does not only help for fathoming but also it decides the branching path. 

We experiment on the performance of branch and bound algorithm with and without 

UB3 in evaluating the nodes. We always continue for xij=1 branch and use UB2 in 

evaluation.  

 

The effects of UB3 on the CPU times of branch and bound algorithm are 

tabulated below.  
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Table 4.9: Effects of UB3 

    With UB1, UB2 and UB3 With UB1 and UB2 

  

BB-CPU 
(seconds) # of nodes  

BB-CPU    
(seconds) # of nodes  

n m avg max avg max avg max avg max 

100 5 1,5 4,1 96,3 212 5,9 11,1 292,5 512 

100 8 1,6 3,0 116,4 245 7,3 12,1 408,6 596 

150 5 1,5 5,1 86,5 253 9,7 14,4 389,6 485 

150 8 1,6 4,1 97,1 264 8,2 13,8 326,4 445 

200 10 1,8 5,4 126,6 281 10,6 15,8 421,1 635 

 

 

 

As can be observed from the above table, using UB3 greatly reduces the 

number of nodes and CPU times. The reduction is about 4 times for both. We can 

conclude that UB3 is quite powerful and should be used to evaluate the nodes. 

Considering all upper bound experiments, we decide to use UB2 and UB3 in sequel.  

 

Now we will focus on heuristic lower bound.  

 

Effects of Lower Bound-Heuristic Solution: 

To investigate the effect of the lower bounds on the performance of the 

branch and bound algorithm, we compare two cases: the algorithm that uses no lower 

bounds as initial feasible solution (i.e., starts with value zero) and the algorithm that 

uses our heuristic procedure to produce an initial feasible solution. The results are 

reported below. 
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Table 4.10: Effects of LB on Branch and Bound CPU Values. 

    With LB2 Without LB2 

  CPU(seconds) # of nodes  CPU(seconds) # of nodes  

n m avg max avg max avg max avg max 

100 5 1,5 4,1 96,3 212 3,8 7,0 165,4 312 

100 8 1,6 3,0 116,0 245 7,3 11,5 236,6 446 

150 5 1,5 5,1 86,0 253 6,3 11,4 186,3 341 

150 8 1,6 4,1 97,1 264 7,1 10,8 225,2 325 

200 10 1,8 5,4 126,6 281 6,7 9,8 201,4 295 

 

 

 

As can be observed from the above table, incorporating of initial lower bound 

highly improves the performance of the branch and bound algorithm. This means 

finding an LP solution with all integer variables takes significant time. The most 

significant reduction is due to 100 items and 8 knapsacks case. 

 

We next discuss our main runs. 

 

4.6 Main Runs 

 

 Recall that in Section 3.1.1 three different upper bounds namely capacity 

relaxed upper bound, cardinality relaxed upper bound and integrality relaxed upper 

bound are developed and referred to as UB1, UB2 and UB3 respectively. In Section 4.4 

we found that removing UB1, but not UB2 and UB3, results in better solutions. We 

now report on the performances of UB2 and UB3. The performance of an upper 

bound for instance i is measured by its deviation from optimal solution as a 

percentage of the optimal solution and calculated as; 

100×
−

=
OPT

OPTUB
DevU i

i  

Hence ∑
=

=
10

1

10/
i

iDevUAvgDev  and  MaxDev= maxi{DevUi} 
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The deviations for 10 combinations are reported in Table 4.11 

 

 

 

Table 4.11: Upper Bound Performances at Root Node 

  SET I SET II 

  %Dev. UB2 %Dev. UB3 %Dev. UB2 %Dev. UB3 

n m avg max avg max avg max avg max 

100 5 55,3% 99,0% 0,5% 2,1% 47,5% 102,7% 0,3% 0,6% 

100 8 33,2% 77,2% 0,5% 3,0% 37,6% 93,1% 0,6% 3,2% 

150 5 180,7% 418,7% 0,5% 2,8% 231,9% 456,8% 0,5% 3,1% 

150 8 48,3% 108,1% 0,5% 1,4% 51,6% 118,3% 0,8% 2,6% 

200 10 70,5% 207,6% 0,1% 0,4% 76,1% 232,8% 0,6% 1,3% 

 

 

 

Note from the above table that UB3 is the most powerful upper bound, 

deviates from the optimal by less than 0.5% on the average over all combinations and 

the deviations do not deteriorate when the problem sizes become larger. This is due 

to the satisfactory behavior of the LPR solution. From Table 4.14, it can be observed 

that the number of fractional variables by LP is much smaller than the total number 

of the integer variables.  

 

The average deviation of UB2 is not satisfactory, however it is very quick. 

Due to its high speed we first compute UB2 if it cannot eliminate we compute UB3. 

Note that, as the ranges for the profit values increase, the upper bound deviations 

increase. This is due to the fact that the feasible solutions are apart from each other 

when distributions have wider ranges. 

 

Now we evaluate the performance of the lower bounds that is found by the 

heuristic method, stated in Section 3.1.2. 

 

Note that the higher the lower bound deviation, the stronger it is.  

For instance i we compute, 
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100×
−

=
OPT

LBOPT
DevLB i

i , 

The lower bound is constructed in three steps; first, we find a naive lower 

bound then construction step is performed followed by the improvement step. 

 

Table 4.12 reports on the performance of the naïve lower bounds. 

 

 

 

Table 4.12: Performance of Naïve Lower Bound 

  SET I SET II 

n m 

%Dev LB1 
avg  

%Dev LB1 
max 

%Dev LB1 
avg  

%Dev LB1 
max 

100 5 12.1% 36,8% 10.6% 22.5% 

100 8 15.5% 23,7% 15.4% 26.6% 

150 5 14.4% 47.1% 12.5% 31.1% 

150 8 10.4% 12.7% 13.5% 16.5% 

200 10 10.1% 17.4% 13,0% 19.6% 

 

 

 

The average deviations are between 10 and 15 percent, and maximum 

deviations are close to 50%. We observe that the deviations are smaller when the 

profit ranges are wider. We did not report on the CPU times, as they are negligibly 

small.   

 

The below table summarizes the percentage deviation of the heuristic lower 

bound from the optimal solution.  
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Table 4.13: Performance of Heuristic Algorithm (LB2) 

  SET I SET II 

  
% Dev. of 

Construction 
% Dev. of 

Heuristic (LB2) 
% Dev. of 

Construction 
% Dev. of 

Heuristic (LB2) 

n m avg max avg max avg max avg max 

100 5 3,1% 19,5% 1,0% 3,0% 2,5% 9,1% 1,1% 3,6% 

100 8 2,6% 5,0% 2,6% 5,0% 4,5% 8,1% 2,4% 5,1% 

150 5 1,7% 4,0% 1,4% 4,0% 3,2% 6,1% 2,7% 4,2% 

150 8 1,5% 2,4% 1,5% 2,4% 2,1% 4,0% 1,8% 2,8% 

200 10 1,2% 2,9% 1,0% 2,2% 1,3% 2,6% 2,1% 4,2% 

 

 

 

As can be observed from Table 4.13, the heuristic performs quite satisfactory. 

The worst maximum deviation is 5.1%. The average deviations are mostly below 

1.5%. The deviations do not deteriorate with an increase in problem size. Note that 

the minimum average deviation is observed for the maximum problem size, i.e., 200 

items and 10 knapsacks. We also observe that if the construction phase results in 

high deviations, the improvement phase recovers. Note that for the first combination, 

the construction heuristic deviates about 3% on average, whereas this deviation is 

reduced to 1% by the improvement phase.  

 

We observe that the lower bound deviations are higher when the variability of 

the profits is higher. 

 

Due to its satisfactory performance we use the improvement heuristic as an 

initial feasible solution in our branch and bound algorithm.  

 

The number of fractional variables by LP and total number of fraction 

variables are reported in below table.  
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Table 4.14: Number of Fractional 
jix  Variables 

 SET I SET II  

n m 

# of 
fractional 

jix  

variables  
avg 

# of 
fractional 

jix  

variables - 
max 

# of 
fractional 

jix  

variables  
avg 

# of 
fractional 

jix  

variables 
- max 

# of total 

jix variables 

100 5 7,1 11 7,2 12 500 

100 8 9,6 20 10,8 17 800 

150 5 7,1 14 8,4 13 750 

150 8 13,2 20 16,7 21 1200 

200 10 15,5 23 16,2 19 2000 

 

 

 

 The above table shows that the number of fractional 
jix  variables is quite 

small when compared to the total number of the decision variables. Note that the 

LPR gives at most 23 fractional variables out of 2000 decision variables. These 

computational results motivate us to base our branching rule on the fractional 

variables of the LPR solution. Due to the satisfactory behavior of UB3, its closeness 

to the optimal total profit values, and few continuous variables, we expect a 

satisfactory performance from our branch and bound algorithm.  

 

We next discuss the performance of the branch and bound algorithm that is 

measured by the CPU times and the number of nodes searched. Clearly the lower and 

upper bounds highly affect the performance. 

 

In general all bounds, in particular UB3 and LB2, perform quite satisfactory 

even at the root node (see Tables 4.11, 4.12 and 4.13). Hence one can expect 

satisfactory behavior from a branch and bound algorithm that employs these bounds. 

The table below reports on the performance results of our branch and bound 

algorithm.  
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Table 4.15: Performance Evaluation for B&B Part 

  SET I SET II 

  # of nodes  
optimality 

node  
depth of 
search  # of nodes  

optimality 
node  

depth of 
search  

n m avg max avg max avg max avg max avg max avg max 

100 5 96,3 212 14,3 35 27,4 62 82,6 220 15,2 43 27,8 62 

100 8 116,4 245 17,1 32 32,7 49 118,6 262 18,3 41 34,9 54 

150 5 86,5 253 12,6 48 24,1 63 93,7 271 14,9 61 26,0 52 

150 8 135,2 288 13,3 26 35,6 69 149,6 296 18,3 43 41,3 76 

200 10 116,8 285 13,7 26 37,2 72 115,2 287 14,0 32 35,6 51 

 

 

 

Note there are nxm decision variables, hence 2nxm complete solutions. The 

number of the partial solutions used to generate these complete solutions is thus 

much higher. Due to the power of the LPR solution, both in leading our branch 

strategy and fathoming the partial solutions, we only generate a small portion of 

those solutions. Note from the Table 4.15 that we generate at most 296 nodes. 

 

We also report on the CPU times of the CPLEX algorithm and compare them 

with our branch and bound algorithm. 
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Table 4.16: Performances of B&B and CPLEX algorithms 

    SET I SET II 

  

BB-CPU 
(seconds)             IP-CPU (seconds) 

BB-CPU 
(seconds)             IP-CPU (seconds) 

n m avg max min avg max avg max min avg max 

100 5 1,5 4,1 0,2 8139,5 27150 1,8 4,4 0,1 3280,4 28389 

100 8 1,6 3,0 1,5 4563,5 30000 1,8 4,2 0,3 6089,3 30000 

150 5 1,5 5,1 0,1 6984,4 30000 1,8 5,3 0,1 2515,1 30000 

150 8 2,4 6,4 0,6 2290,2 14315 3,4 5,8 0,2 7859,6 29659 

200 10 2,0 7,1 0,2 1900,5 18950 3,8 6,4 0,1 5216,3 18354 

 

 

 

For CPLEX runs, we set a termination limit of 30.000 seconds 

(approximately 8 hours). The instances that are not solved in 30.000 seconds 

contribute to the total CPU time by 30.000 seconds.  

 

 As can be observed from the above table, the CPU times by CPLEX 

algorithm are too high. Moreover, unlike our branch and bound algorithm the 

CPLEX performs too inconsistent that there is a huge gap between minimum and 

maximum CPU time values. Hence the need for an implicit enumeration algorithm is 

well justified. Note that our algorithm returns optimal solutions in very small CPU 

times, consistently.  

 

 We solve the problem instances with up to 200 items 10 knapsacks easily. As 

the number of the knapsacks and items increase, the performance of our algorithm 

deteriorates. This is due to an increase in the search size and the effort spent by LP at 

each node. 

 

4.7 Limit of Our Solution Method 

 

We aim to find the limit on the problem size that our algorithm can handle, 

using the profit set II (U[10,250]). 
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 Table 4.17 gives the performance of our branch and bound algorithm on 

large-sized problem instances, for problem set includes item sizes from 500 to 1900 

and knapsack sizes 10, 15 and 20. 

 

 

  

Table 4.17: Limit Run Experiments 

 

 

n 

 

 

m 

Total 

CPU- avg  

minutes  

Number of 

solved 

instances 

(10)  

500 10 5,56 10 

800 15 10,20 10 

1200 15 16,65 10 

1400 20 28,28 10 

1700 20  49,38 8 

1800 20  54,39 6 

1900 20 62,59 2 

 

 

 

 

As can be observed from the above table, all problems can be solved in 

reasonable times when n=1400 and m=20. When n is 1700, 1800 and 1900, the 

number of problems (out of 10) that can be solved in one hour reduces to 8, 6 and 2 

respectively.  
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CHAPTER 5 

5 CONCLUSIONS 

In this study, we consider the Cardinality Constrained Multiple Knapsack 

problem (kKMP). The knapsack problems in general and kKMP in particular find 

their application both in service and manufacturing industries.  Despite this fact, the 

associated reported research on the kKMP is quite limited.  

 

We observe that the kKMP cannot be solved to optimality, even by the most 

powerful Integer Programming Solver, CPLEX. So, efficient implicit enumeration 

techniques are required to arrive at optimal solutions.  Recognizing this fact, we 

propose optimization and approximation procedures with the hope of generating 

satisfactory solutions in reasonable times. 

 

We first study the Linear Programming Relaxation (LPR) of the problem and 

verify its quality in producing very few continuous variables. Hence we base our 

approximation (heuristic) and optimization algorithms on the optimal LPR solutions. 

Our heuristic procedure first finds an initial solution by taking the integer part of the 

optimal LPR solution and then improves this solution by pair wise interchanges. We 

introduce the total profit value of the heuristic procedure as an initial feasible 

solution for the branch and bound algorithm. We use the optimal LPR solutions not 

only to evaluate the partial solutions but also to guide our search by setting the 

branching strategy.  

 

The results of our extensive computational experiment show that our heuristic 

procedure generates solutions that deviate from the optimal solutions by no more 

than three percentages on average. Moreover, at the root node, our LPR based upper 

bound deviates from the optimal solution by at most one percent.  Our branch and 
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bound algorithm finds optimal solutions to the problem instances with up to 1400 

items and 20 knapsacks in less than 1800 seconds, on average.  

 

The lower and upper bounds used and the branching strategy employed are 

quite significant in improving the efficiency of the branch and bound algorithm. The 

most efficient results are obtained when the LPR based upper bounds together with 

maximum fractional variable strategy are employed. Moreover using our heuristic 

procedure as a lower bound at the root node reduced the solution times. 

 

We observe that as the number of items or the number of knapsacks 

increases, the solution times increase, however not in exponential rate.  We also 

observe that the capacities, cardinalities, weights and profits are significant 

parameters that affect the problem complexity. 

 

We hope our work opens new research avenues some note-worthy of which 

are listed below: 

 

• Investigating the special cases of the kMKP like identical knapsack 

cardinalities or capacities. 

• Studying the kMKP with dependent profit and weight values, i.e., the 

profit and weight values are dependent on the knapsack assigned. 

• Studying the assignment restricted the kMKP, i.e., there is an assignment 

restriction such that some items cannot be put in all knapsacks.  

• Investigating the properties of the LPR solution. 

• Developing Polynomial Time Approximation Schemes for the kMKP. 
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