

THE CARDINALITY CONSTRAINED MULTIPLE KNAPSACK PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT ASLAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

INDUSTRIAL ENGINEERING

NOVEMBER 2008

Approval of the thesis:

THE CARDINALITY CONSTRAINED MULTIPLE KNAPSACK PROBLEM

submitted by Murat ASLAN in partial fulfillment of the requirements for the
degree of Master of Science in Industrial Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Nur Evin Özdemirel _____________________
Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu _____________________
Supervisor, Industrial Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Ömer Kırca _____________________
Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu _____________________
Industrial Engineering Dept., METU

Asst. Prof. Dr. F. Can Çetinkaya _____________________
Industrial Engineering Dept., Çankaya University

Asst. Prof. Dr. Sedef Meral _____________________
Industrial Engineering Dept., METU

Asst. Prof. Dr. Seçil Savaşaneril _____________________
Industrial Engineering Dept., METU

 Date: 21.11.2008

 iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Murat ASLAN

Signature :

 iv

ABSTRACT

THE CARDINALITY CONSTRAINED MULTIPLE KNAPSACK
PROBLEM

ASLAN, Murat

M.S., Department of Industrial Engineering

Supervisor : Prof. Dr. Meral AZİZOĞLU

November 2008, 61 pages

The classical multiple knapsack problem selects a set of items and assigns

each to one of the knapsacks so as to maximize the total profit. The knapsacks have

limited capacities. The cardinality constrained multiple knapsack problem assumes

limits on the number of items that are to be put in each knapsack, as well. Despite

many efforts on the classical multiple knapsack problem, the research on the

cardinality constrained multiple knapsack problem is scarce.

In this study we consider the cardinality constrained multiple knapsack

problem. We propose heuristic and optimization procedures that rely on the optimal

solutions of the linear programming relaxation problem. Our computational results

on the large-sized problem instances have shown the satisfactory performances of

our algorithms.

Keywords: Cardinality Constrained Multiple Knapsack Problem, Linear

Programming Relaxation, Optimization

 v

ÖZ

SAYI KISITLI ÇOKLU SIRT ÇANTASI PROBLEMİ

ASLAN, Murat

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Meral AZİZOĞLU

Kasım 2008, 61 sayfa

Klasik çoklu sırt çantası problemi toplam kazancı en çoklayan parça kümesini

seçer ve seçilen her parçayı sırt çantalarından birine atar. Sırt çantalarının sınırlı

kapasiteleri vardır. Sayı kısıtlı çoklu sırt çantası problemi her bir sırt çantasına konan

parça sayısında da kısıt olduğunu varsayar. Klasik çoklu sırt çantası problemi için

pek çok çaba sarf edilmiş olsa da, sayı kısıtlı çoklu sırt çantası problemi üzerindeki

araştırmalar sınırlıdır.

Bu çalışmada sayı kısıtlı çoklu sırt çantası problemini ele aldık. Doğrusal

programlama gevşetmesi probleminin en iyi çözümlerine dayanan sezgisel ve

eniyileme yöntemleri önerdik. Büyük boyutlu problemler üzerinde aldığımız

deneysel sonuçlar yöntemlerimizin tatmin edici performansını göstermektedir.

Anahtar Kelimeler: Sayı Kısıtlı Çoklu Sırt Çantası Problemi, Doğrusal

Programlama Gevşetimi, En İyileme

 vi

 To my parents, Çağlayan and Yasemin

 vii

ACKNOWLEDGEMENTS

 I am deeply grateful to my thesis supervisor Prof. Dr. Meral Azizoğlu for her

efforts, guidance and support throughout the study. She not only guided me perfectly,

but also encouraged me to perform better in the study.

 I would like to thank jury members for their valuable contributions on the

thesis.

 I would like to thank to my family members: Hasan Aslan, Nuray Aslan,

Çağlayan Aslan and Yasemin Saldanlı for their moral support.

 I would like to thank my company, ASELSAN, for the support about thesis

study permissions.

 I would like to thank my manager Zafer Dokuzoğlu for allowing me to go for

thesis study whenever I needed and covering my vacancy.

 I would like to thank my dear friends Alper Taş and Güvenç Değirmenci for

their invaluable help; Altay Emre Poyraz for the articles he supplied from the Library

of Bilkent University and cheerful company; Şafak Baykal for her support and

guidance; Zafer Yahşi and Tunç Taner Gürlek for their insight and wisdom; Banu

Lokman, Eda Göksoy and Neslihan Özlü for their moral support, and my dear friends

from the group of “Endustri Tayfasi” for their useful feedbacks and invaluable

friendship.

 And finally, thanks to TÜBİTAK for the scholarship, which is provided

throughout my master study.

 viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ..v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS .. viii

LIST OF TABLES ... x

LIST OF FIGURES... xi

CHAPTER

1 INTRODUCTION ..1

2 PROBLEM DEFINITION AND LITERATURE REVIEW4

2.1 Problem Definition..4

2.1.1 Classical Knapsack Problem ..4

2.1.2 Subset Sum Problem (SSP) ..5

2.1.3 Multiple Knapsack Problem (MKP)...5

2.1.4 Cardinality Constrained Single Knapsack Problem6

2.1.5 Cardinality Constrained Multiple Knapsack Problem................7

2.2 Literature Survey for Cardinality Constrained Multiple Knapsack

Problem ...8

2.2.1 Single Knapsack Problems with the Cardinality Constraint9

2.2.2 Literature Related With Multiple Knapsack Problems11

3 THE kMKP...12

3.1 Upper Bounds and Heuristic ...13

3.1.1 Upper Bounds...13

3.1.2 Heuristic Procedure ..17

3.2 Branch and Bound...28

4 COMPUTATIONAL RESULTS..39

4.1 Input Generation..39

4.2 Performance Measures ..40

4.3 Strategy Selection..41

 ix

4.4 Effects of Parameters ..42

4.5 Effects of Mechanisms..46

4.6 Main Runs ...50

4.7 Limit of Our Solution Method ..56

5 CONCLUSIONS ..58

REFERENCES..60

 x

LIST OF TABLES

Table 3.1: The Profit and Weight Values for the 12-Item and 2-Knapsack Example

Problem .. 20

Table 3.2: The Optimal Integer Programming Solution of the k-MKP 21

Table 3.3: LP-Relaxed Solution of the k-MKP.. 22

Table 3.4: Greedy Assignment of Items According to Maximum pj Rule 24

Table 3.5: Greedy Assignment of Items According to Maximum 1/wj Rule............. 25

Table 3.6: Greedy Assignment of Items According to Maximum pj/wj Rule 26

Table 3.7 : The Profit and Weight Values for the 8-Item 2-Knapsack Example

Problem .. 32

Table 3.8: The Optimal LPR Solution of 8-Item 2-Knapsack Example Problem 33

Table 3.9: The Data for the 6-Item 2-Knapsack Example Problem........................... 36

Table 4.1: Generated Problems... 40

Table 4.2: Branching Strategy Evaluation for B&B .. 42

Table 4.3: Capacity Effect on the Performance of B&B ... 43

Table 4.4: Cardinality Effect on the Performance of B&B.. 44

Table 4.5: Weight Effect-Lower Bound Comparison .. 45

Table 4.6: Weight Effect-Branch and Bound Comparison .. 46

Table 4.7: Effects of UB1 ... 47

Table 4.8: Effects of UB2 ... 48

Table 4.9: Effects of UB3 ... 49

Table 4.10: Effects of LB on Branch and Bound CPU Values. 50

Table 4.11: Upper Bound Performances at Root Node.. 51

Table 4.12: Performance of Naïve Lower Bound .. 52

Table 4.13: Performance of Heuristic Algorithm (LB2)... 53

Table 4.14: Number of Fractional
jix Variables... 54

Table 4.15: Performance Evaluation for B&B Part ... 55

Table 4.16: Performances of B&B and CPLEX algorithms 56

Table 4.17: Limit Run Experiments... 57

 xi

LIST OF FIGURES

Figure 3.1: Summary of Problem in Item Representation. .. 20

Figure 3.2: Knapsacks on Nodes Representation... 29

Figure 3.3: Items on Nodes B&B Representation.. 30

Figure 3.4: Branching Tree .. 31

Figure 3.5: 6-Item 2-Knapsack Branch and Bound Tree ... 38

1

CHAPTER 1

1 INTRODUCTION

Consider a capable sportsman who is good at playing several branches of

sports including football, basketball, volleyball and tennis. The sportsman gets

different utility from each sport branch. To play a game he has to take the

corresponding ball having a specified volume. His sport bag has a limited capacity so

that he cannot take all balls one at a time. His problem is to find the set of balls to

take, hence the set of sports to play, so that the capacity of bag is not exceeded and

the total utility is maximized. This optimization problem is known to be the Single

Knapsack Problem (KP) in OR literature. If the sportsman has more than one sport

bag then the associated problem is referred to as Multiple Knapsack Problem (MKP).

Additionally, if there are limits on the number of balls that each sports bag can take,

then the associated problem is the Cardinality Constrained Multiple Knapsack

Problem (kMKP).

The part selection problem in automated manufacturing systems is analogous

to the kMKP. Assume there are n part types that are to be selected for processing by

m Computerized Numerically Controlled (CNC) machines where machine i has a

limited capacity of Ci time units. Part type j has a processing requirement of wj time

units and there is a profit pj money units if selected for processing. The problem is to

select a subset of the part types so as to maximize the total profit. The cardinality

constraints of the KMKP may correspond to the tool magazine capacities of the CNC

machines in the part selection problem. The number of setups that can be made on

each machine may also define the cardinality constraints.

2

The knapsack problems have several practical application areas in the

manufacturing and service industries. One application area for the KP is the hitch-

hiker problem that is stated in Martello and Toth (1990). The hitch-hiker has to fill

up his knapsack among various possible objects so as to maximize his comfort. In

the problem pi is the measure of his comfort taken from object i, wj is its size, and C

is the size (volume) of the knapsack.

The cutting stock problem is another area where the knapsack problems find

their applications. The cutting stock problem can be stated as follows: Assume you

work in a paper mill and you have a number of rolls of paper of fixed width waiting

to be cut, yet different customers want different numbers of rolls of various-sized

widths. The problem is to find a way to cut the rolls so that the scrap is minimized.

Solving this problem to optimality can be economically significant: a difference of

1% for a modern paper machine can be worth more than 1 million US$ per annum

(Wikipedia, free encyclopedia). The KP is used as a subproblem in solving the

cutting stock problems with column generation technique.

In the business environments, the KP is used for investment planning.

Consider an investor who has a certain amount of money (C) and a list of possible

investment alternatives. Each investment alternative has a capital required (wj) and an

expected return (pj) over a planning period. The problem is to select the set of

investment alternatives so that the budget is not exceeded and the total return is

maximized. Clearly, such an investment problem associates to the KP.

Despite its simple structure, the solution of the KP is not that easy. Each item

selection is defined by a binary decision variable that takes value 1 if the item is

selected and 0 otherwise. A simple approach would be to examine all possible

arrangements of the binary variables. For n items problem there are 2n such binary

variables. As Martello and Toth (1990) state, on a computer that examines one

billion variables per second, it takes 30 years to enumerate the possible solutions

when there are 60 items. If you increase the number of items to 65 then it will take

ten centuries.

3

The knapsack problems have been studied for several decades as they are the

simplest maximization problems. Mathews (1897) shows how several constraints

may be compiled into one single knapsack constraint. What Mathews (1897) had

done is now called as “reduction of an integer program to KP”.

Garey and Johnson (1979) focus comprehensively on the theory of

intractability and NP-completeness of the KP. They show that the KP is NP-hard in

the ordinary sense. The problem can be solved by pseudopolynomial time dynamic

programming algorithm. On the other hand, the Multiple Knapsack Problem is

strongly NP-hard, hence there cannot exist polynomial, even pseudopolynomial

algorithm, to find optimal solutions. The cardinality constrained multiple knapsack

problem is strongly NP-hard, as all generalizations of the MKP.

 The KP and MKP are widely studied in the literature. However, there are

limited reported studies on the kMKP. Recognizing this fact, we introduce solution

algorithms for the kMKP. We observe that the linear programming relaxation of the

problem produces very satisfactory results and can be used as a basis in developing

solution algorithms.

 The rest of the thesis is organized as follows. In Chapter 2 we give the

mathematical representation of the knapsack problems and review the related

literature. Chapter 3 is the main body of our work where the heuristic algorithm and

branch and bound algorithm are presented. In Chapter 4 we present the results of our

computational experiments. In Chapter 5 we conclude by pointing our main results

and possible future research directions.

4

CHAPTER 2

2 PROBLEM DEFINITION AND LITERATURE

REVIEW

In this chapter, we first discuss several versions of the knapsack problem. We

then review the literature on cardinality constrained single knapsack problem and

multiple knapsack problem. Those two problems appear as special cases of the

cardinality constrained multiple knapsack problem.

2.1 Problem Definition

2.1.1 Classical Knapsack Problem

The classical knapsack problem can be formally defined as follows: Consider

a set of items N={1,….,n} and a knapsack with capacity of C time units. Item j in set

N has a profit pj and capacity usage of wj time units. The profit can be interpreted as

the relative importance of the item or simply the benefit (like money) brought due to

its selection. The capacity usage wj for item j can as well be interpreted as the

amount of space occupied by the item. In a production environment, wj can represent

the processing time, i.e., requirement, by item j. C is the knapsack capacity which

may represent the amount of space available. In production environments, C may

represent the time capacity, i.e, available machine time. One more important point is

that wj and C are in the same units. Usually pj, wj and C are assumed to be positive

integer numbers. The classical knapsack problem, denoted as KP, is the simplest

non-trivial integer programming model with binary variables, with a single constraint

and n binary variables. The model is presented below.

5

 (KP) maximize ∑
=

n

j

jjp
1

x

subject to Cxw
n

j

jj ≤∑
=1

 }1,0{∈jx j=1,….,n

 The single knapsack problem is shown to be NP-hard in the ordinary sense

(Garey and Johnson, 1979).

 The studies in the literature assume that

 ,Cw j ≤ j =1,….,n and Cw
n

j

j >∑
=1

 Cw j ≤ is required as otherwise item j would be trivially removed.

Cw
n

j

j >∑
=1

 is assumed as otherwise a trivial solution that assigns all items would be

found.

2.1.2 Subset Sum Problem (SSP)

If the profits and weights are identical for all items, i.e., pj=wj for all j, we get

the well known Subset Sum Problem (SSP). The SSP finds a subset of N items such

that the corresponding total profit is maximized without exceeding the available

capacity C. In production environments, the objective function can be interpreted as

the used capacity which is to be maximized. The SSP is NP-hard in ordinary sense.

(Martello and Toth, 1990)

2.1.3 Multiple Knapsack Problem (MKP)

The Multiple Knapsack Problem is a generalization of the single classical

knapsack problem. In the MKP we are given a set of items N = {1,….,n} with profits

pj and weights wj, j=1,…..,n and set of knapsacks M = {1,….,m} with positive

capacities Ci, i=1,….,m. The MKP is NP-hard in the strong sense (Martello and

Toth, 1990).

6

The MKP Model can be stated as

maximize ∑∑
==

n

j

ijj

m

i

xp
11

 subject to i

n

j

jij Cxw ≤∑
=1

 i=1,…..,m

 1
1

≤∑
=

m

i

jix j=1,…..,n

jix }1,0{∈ i=1,……,m j=1,……,n.

The following assumptions are made for the MKP in the literature.

1. Every item must fit to at least one of the knapsacks, i.e.,

maxmax Cw ≤

where Cmax=max{C1,C2,…Cm} and wmax=max{w1,w2,….,wn} otherwise the associated

items are trivially eliminated.

2. All knapsacks should take at least one item, i.e.,

 minmin Cw ≤

where Cmin=min{C1,C2,…Cm} and wmin=min{w1,w2,….,wn} otherwise the associated

knapsacks are eliminated.

3. Moreover, the trivial solutions that select all items should be avoided, i.e.,

 max
1

Cw
n

j

j >∑
=

otherwise all items would be put to the maximum capacity knapsack.

2.1.4 Cardinality Constrained Single Knapsack Problem

If there is a constraint on the number of items included in each knapsack, the

associated problem is referred to as cardinality constrained single knapsack problem.

When the selection of the item causes explicit handling, the solutions with a small

number of larger items will be preferred to the one with large number of smaller

items.

7

The number of items ∑
=

n

j

jx
1

can be included in the objective function so as to

obtain a bi-objective knapsack problem, or ∑
=

n

j

jx
1

can be a constraint, i.e., Kx
n

j

j ≤∑
=1

.

The latter problem is a cardinality constrained single knapsack problem, which is

denoted as kKP in the OR literature. The kKP model is given below.

(KP) maximize ∑
=

n

j

jjp
1

x

subject to Cxw
n

j

jj ≤∑
=1

 Kx
n

j

j ≤∑
=1

 }1,0{∈jx j=1,….,n

Recall that the KP is NP-hard but pseudopolynomially solvable by a dynamic

program. Caprara et al. (2000) show that the kKP is NP-hard in the ordinary sense, as

well.

2.1.5 Cardinality Constrained Multiple Knapsack Problem

If the cardinality constrained single knapsack problem has multiple knapsacks

then it is referred to as the cardinality constrained multiple knapsack problem

(kMKP). That means each bag has a limit on the number of balls you put in the bag.

In production environments, there can be limits on the number of jobs if each job

requires a set-up, hence they can have upper bounds on the number of the items.

MKP is a special case of the kMKP with infinite knapsack cardinalities. MKP

is strongly NP-hard, so is the kMKP.

The kMKP model is expressed below:

8

Let Ki be the maximum number of items that can be assigned to knapsack i.

Then the kMKP model is expressed below.

maximize ∑∑
==

n

j

ijj

m

i

xp
11

 subject to i

n

j

jij Cxw ≤∑
=1

 i=1,…..,m

 1
1

≤∑
=

m

i

jix j=1,…..,n

 i

n

j

ji Kx ≤∑
=1

 i=1,…….,m

jix }1,0{∈ i=1,……,m j=1,……,n.

The model has mxn binary decision variables
jix and 2m+n constraints

2.2 Literature Survey for Cardinality Constrained Multiple

Knapsack Problem

The classical knapsack problem and its variations are studied enormously in

the OR literature due to its simple structure and ability to model many industrial

situations. The practical implications include but not limited to, capital budgeting,

cargo loading, production planning or cutting stock cases.

We study the literature on the knapsack problems that are most closely related

to our problem: namely single knapsack problem with cardinality constraints and

multiple knapsack problem. For both problems, we make the survey in the

chronological order.

For the classical single and multiple knapsack problems and their variations,

we refer the reader to the book by Kelleler, Pferschy and Psinger (2004). In the

book, the models and the associated solution algorithms are studied thoroughly.

9

2.2.1 Single Knapsack Problems with the Cardinality Constraint

Campello and Makulan (1987) are one of the first researchers who focused on

the cardinality constrained single knapsack problem (kKP). They study the

cardinality constrained linear programming relaxation of the knapsack problem

(LPK-k). They introduce the following model:

Q(k) = max ∑
=

n

j

jj xp
1

subject to

Cxw
n

j

jj ≤∑
=1

Kx
n

j

j =∑
=1

10 ≤≤ jx j=1,….,n

An O(n3) algorithm is developed by Campello and Makulan (1987) for

solving the problem (LPK-k).

Dudzinski (1989) also deals with the cardinality constrained linear

programming knapsack problem (LPK-k). To find an upper bound he presents a

more relaxed model than the one introduced by Campello and Makulan (1987).

Dudzinski (1989) revises the notation used in Campello and Maculan (1987) as

follows,

Q(k) = max))((
1

j

n

j

iji xppKp ∑
=

−+

subject to

i

n

j

jij kwTxww −≤−∑
=1

)(

Kx
n

j

j =∑
=1

10 ≤≤ jx j=1,….,n

10

Dudzinski (1989) improves the O(n3) algorithm, developed by Campello and

Makulan (1987) and proposes O(n2) algorithm for the cardinality constrained linear

programming knapsack problem (LPK-k) and obtains the following model LPK-i-k.

Q i (k) = ∑
=

−+
n

j

jiji xppkp
1

)(max

subject to

∑
=

−≤−
n

j

ijij KwTxww
1

)(

10 ≤≤ jx j=1,….,n

Q(k) ≤ Qi(k) Ni ∈∀

Caprara et al. (2000) study the k-item Knapsack Problem (kKP) and exact k-

item Knapsack Problem (E-kKP). The kKP can be formulated as KP with an

additional constraint. The E-kKP is a variant of the kKP where the number of items

must be exactly K, i.e., Kx
n

j

j =∑
=1

. Caprara et al. (2000) show that the kKP and E-

kKP can be transformed to each other, hence any kKP instance can be solved using

the methods developed for the E-kKP.

Caprara et al. (2000) develop a ½ approximation algorithm that runs in O(n)

by using the LP relaxation of the kKP. This algorithm is used by, Caprara et al.

(2000) in developing a Polynomial Time Approximation Scheme. The scheme runs

in (O1/ε -1) time and requires a linear space.

Finally in 2006, Mastrolilli and Hutter study the same problem and present a

linear-storage polynomial time approximation scheme (PTAS) and a fully

polynomial time approximation scheme (FPTAS). They use input rounding

(arithmetic or geometric rounding) techniques and show that PTAS requires linear

space and has a running time of O(n+k(log1/ε)O(1/ε)). Hence it is superior to PTAS

proposed by Caprara et al. (2000).

11

2.2.2 Literature Related With Multiple Knapsack Problems

Ingargiola and Korsh (1975) propose an algorithm for 0-1 Loading Problem

in which ten random instances are solved with 15 items and 6 knapsacks. This paper

was one of the first papers focusing on the Multiple Knapsack Problem. Hung and

Fisc (1978) also focus on the Multiple Knapsack Problem and present Lagrangean

and Surrogate relaxation techniques. A branch-and-bound algorithm that avoids the

redundancy of the partial solutions is presented. They compare their results by those

of Ingargiola and Korsh (1975) and show the superiority of their approach.

Martello and Toth (1981) propose a heuristic algorithm for the Multiple

Knapsack Problem (MKP). They solve practical instances with up to 1000 items and

100 knapsacks and show that their solutions are satisfactory.

A Polynomial Time Approximation Scheme (PTAS) is provided by Murgolo

(1987). Hochbaum and Shymoys (1988) give PTAS using the dual based approach

where they convert the scheduling problem into a bin packing problem. Lawler et al.

(1993) also propose a PTAS that uses the ideas from uniform multi-processor

scheduling. The objective is to assign a set of jobs with given processing times to the

machines of different speeds so as to minimize the makespan. The most recent PTAS

is proposed by Chekuri and Khanna (2000).

12

CHAPTER 3

3 THE kMKP

The mathematical model of the kMKP is restated below for the ease of

reference.

maximize ∑∑
==

n

j

ijj

m

i

xp
11

 subject to 1
1

≤∑
=

m

i

jix j=1,…..,n (1)

i

n

j

jij Cxw ≤∑
=1

 i=1,…..,m (2)

 i

n

j

ji Kx ≤∑
=1

 i=1,…….,m (3)

jix }1,0{∈ i=1,……,m j=1,……,n.

where,

Objective : Maximizing the total profit

Parameters

pj : profit of item j

wj : weight (capacity usage) of item j

Ci : capacity of knapsack i

Ki : cardinality of knapsack i

Decision Variables

ijx : the binary decision variable about whether item j is assigned to knapsack i or

not.

13





=
 otherwise 0

iknapsack toassigned is j item if 1
ijx

Constraint sets 1, 2 and 3 explain assignment, capacity and cardinality

constraints respectively.

In this chapter, we present our approach to study the kMKP. We first discuss

our bounding mechanism: upper bound and lower bound (heuristic), and then present

our branch and bound algorithm.

3.1 Upper Bounds and Heuristic

In this section, we first present several upper bounds that are obtained

through various relaxations of the problem. We then present our heuristic procedure

that aims to find a satisfactory approximate solution. The heuristic solution is used as

an initial feasible solution in our branch and bound algorithm, discussed in Section

3.2.

3.1.1 Upper Bounds

Recall that our problem has a maximization type objective function. This

follows that any relaxation of the problem provides an upper bound on the optimal

objective function value. In this study we use two types of relaxations: constraint

relaxation and continuous relaxation.

 Each of these relaxations is discussed below;

3.1.1.1 Constraint Relaxation

 Our problem has three constraint sets: assignment, capacity and cardinality

constraints. When any one of the capacity and cardinality constraint sets is removed,

an optimal solution to the resulting problem provides an upper bound on the

maximum total profit value. If the resulting solution, by chance satisfies the removed

constraints, then the optimal solution is also optimal for the original problem. We

now discuss each of these constraint relaxations.

14

Relaxation of the Capacity Constraints:

When the capacity constraints are removed, the resulting model can be stated

as follows:

kMKP Model (Capacity Constraint Relaxed) :

maximize ∑∑
==

n

j

ijj

m

i

xp
11

 subject to 1
1

≤∑
=

m

i

jix j=1,…..,n

 i

n

j

ji Kx ≤∑
=1

 i=1,…….,m

jix }1,0{∈ i=1,……,m j=1,……,n.

An optimal solution to this relaxed problem assigns a total of 







∑

=

nKMin
m

i

i ,
1

items.

If ∑
=

≤
m

i

iKn
1

then all n items will be assigned with a total profit of ∑
=

n

j

jp
1

.

If ∑
=

>
m

i

iKn
1

then the items having the maximum ∑
=

m

i

iK
1

profits will be

assigned to m knapsacks. In such a case, the maximum total profit is []∑
=

R

j

jp
1

where

[]jp is the jth largest profit and R=∑
=

m

i

iK
1

. The overall upper bound is []∑
=

},{

1

,
RnMin

j

jp and is

denoted as UB1.

Relaxation of the Cardinality Constraints:

When the cardinality constraints are removed, the resulting model is a

classical multiple knapsack model that is stated below.

kMKP Model (Cardinality Constraint Relaxed) :

maximize ∑∑
==

n

j

ijj

m

i

xp
11

15

 subject to i

n

j

jij Cxw ≤∑
=1

 i=1,…..,m

 1
1

≤∑
=

m

i

jix j=1,…..,n

jix }1,0{∈ i=1,……,m j=1,……,n.

Recall that the multiple knapsack problem is strongly NP-hard. In place of

using optimal solutions that are obtained in exponential time, a polynomial time

upper bound can be used. An upper bound on the multiple knapsack problem is a

valid upper bound for our problem. This is due to the fact that an upper bound for

any relaxation of a maximization problem is a valid upper bound on the original

problem.

In the literature, several upper bounds are proposed for the multiple knapsack

problem. An optimal solution to the continuous relaxation of the problem (that

replaces {0,1}x ij ∈ with 1x0 ij ≤≤) is an upper bound. This optimal solution is

stated below:

Consider a single surrogate knapsack with capacity .∑ iC Order the items in

their nonincreasing pj/wj values, and assign them to the knapsack according to the

order until the capacity is fully used or no item remains, whichever is observed first

(Martello and Toth, 1990). Note that such an assignment ends up with at most one

fractional item.

 We refer the bound found by the continuous relaxation of the multiple

knapsack problem as UB2. Formally the upper bound, UB2, is stated below:

Assume R satisfies,

[] ∑∑ ≤
=

i

R

j

j Cw
1

 and [] ∑∑ >
+

=

i

R

j

j Cw
1

1

[]∑∑
=

−
R

j

ji wC
1

is the total capacity remaining to the (R+1)th item.

The contribution of the (R+1)th item to the total profit is,

16

[]

[]

[]1

1

1

+

=

+

∑∑ −

×
R

R

j

ji

R
w

wC

p

The overall upper bound, UB2 , becomes

UB2 = [] []

[]

[]1

1

1
1 +

=

+

=

∑∑
∑

−

×+
R

R

j

ji

R

R

j

j
w

wC

pp

3.1.1.2 Linear Programming Relaxation (LPR)

When the constraints on the integrality of the assignment variables are

removed the problem becomes

maximize ∑∑
==

n

j

ijj

m

i

xp
11

 subject to i

n

j

jij Cxw ≤∑
=1

 i=1,…..,m

 1
1

≤∑
=

m

i

jix j=1,…..,n

 i

n

j

ji Kx ≤∑
=1

 i=1,…….,m

 10 ≤≤
jix i=1,……,m j=1,……,n.

 The above model is the Linear Programming Relaxation (LPR) of the original

problem, and its optimal solution provides an upper bound on the maximum total

profit value. To the best of our knowledge, no simple algorithm is available to solve

the LPR of the problem. Hence an optimal solution, UB3, can be found by using any

commercial LP software.

 We use the upper bounds in the following sequel: UB1-UB2-UB3, i.e., from

easiest to hardest. That is, we first evaluate the partial solutions by UB1, if we cannot

make any elimination then we compute UB2. If UB2 is not of any help then we

compute the most powerful, however most costly upper bound, UB3.

17

 We benefit from the optimal LPR solution in finding a feasible solution to our

problem as well. The associated heuristic is discussed in the next section.

3.1.2 Heuristic Procedure

 In the heuristic procedure, we basically follow three steps that are stated

below:

Step 1. Solve the LP relaxed problem, LPR.

 Let LP

ijx
 be the optimal LP assignment.

 Assign item j to knapsack i only if LP

ijx =1 for all i and j.

Such an assignment results in a feasible solution as it satisfies the capacity

and cardinality constraints and the integrality requirements. This value is a

lower bound too but it is naive. We call it as naive lower bound (LB1).

Step 2. Let T be the set of items that are not assigned in Step 1, and S be the set of

assigned in Step 1, i.e., S={1,2,…..n}/T. Then, solve the following reduced problem.

 maximize ∑∑
∈Tj i

ijj xp

 subject to ∑∑
∈

−≤
Sj

ijji

j

ijj xwCxw i=1,…..,m

 1
1

≤∑
=

m

i

jix j=1,…..,n

 ∑∑
∈

−≤
Sj

iji

j

ij xKx i=1,…..,m

jix }1,0{∈ i=1,……,m j=1,……,n.

 The reduced problem is strongly NP-hard, as well. However due to the

exponential nature of the problem finding an optimal solution to the problem is much

easier than finding an optimal solution to the original problem. Alternately the

reduced problem can be solved heuristically through the following procedure.

18

Step 2.1 Assign the unassigned items according to a greedy procedure.

Step 2.2 Improve the solution obtained in Step 2.1 via interchanges. Step 2.1 is

referred to as construction phase whereas Step 2.2 is an improvement phase.

3.1.2.1 Construction Phase

 The items are sorted according to a priority rule and they are assigned to a

knapsack according to an assignment rule. We use the following three priority rules

for item ordering:

1. Maximum pj Rule: The items are sorted in their nonincreasing order of pj values.

According to this rule, priority is given to the items having higher profit values.

2. Minimum wj Rule: The items are sorted in their nondecreasing order of wj

values. According to this rule, priority is given to the items having lower capacity

usages.

3. Maximum pj/wj Rule: The items are sorted in their nonincreasing order of pj/wj

values. According to this rule, priority is given to the items having higher unit profit

values.

 We use the following four knapsack assignment rules:

1. Maximum Remaining Capacity Rule: The first item of the order is assigned to

the knapsack having the maximum unused capacity.

2. Minimum Capacity Used Rule: The first item of the order is assigned to the

knapsack having the minimum used capacity. As the capacities of the knapsacks are

not necessarily identical, the knapsack with maximum remaining capacity is not

necessarily the one having the minimum used capacity.

3. Maximum Remaining Cardinality Rule: The first item of the order is assigned

to the knapsack having the maximum number of items that can be assigned.

19

4. Minimum Number of Items Used Rule: The first item of the order is assigned

to the knapsack having the minimum number of items already assigned. As the

cardinalities of the knapsacks are not necessarily identical, the knapsack with the

maximum remaining cardinality is not necessarily the one having the minimum used

cardinality.

 Note that we have 3 priority rules and 4 assignment rules. This results in 12

solutions, some of which may be identical. We obtain all these solutions and select

the one having the maximum total profit value. The selected solution is improved by

the improvement phase discussed next.

3.1.2.2 Improvement Phase

 The improvement phase looks for the possibility of increasing the maximum

total profit by putting an unassigned item to a knapsack in place of an already

assigned item. We let r be an unassigned item and s be an assigned item. We check

whether putting item r in place of item s is feasible and pr>ps, i.e., the exchange

increases the total profit value. Among all feasible pairs that increase the total profit,

we select the one that leads to a maximum improvement. We terminate either all

pairs lead to infeasible or nonimproving solutions.

Example:

 We illustrate the heuristic via an example problem.

 Table 3.1 gives the profit and weight values in a 12-item 2-knapsack problem

20

Table 3.1: The Profit and Weight Values for the 12-Item and 2-Knapsack Example Problem

Item 1 2 3 4 5 6 7 8 9 10 11 12

pj 50 50 64 46 50 5 50 40 70 62 16 28

wj 56 59 80 64 75 17 25 20 35 31 12 10

Capacities of knapsacks are C1 = 190 and C2= 170.

Cardinalities for knapsacks are K1= 4 and K2=4.

 Figure 3.1 summarizes the problem environment. The representation

is
profit

weight
ItemNumber . For example, 1

50

56

states that item 1 has a profit of 50 units and a

weight of 56 units.

1
50

56

 2
50

59

 3
64

80

 4
46

64

 5
50

75

 6
5

17

 7
50

25

 8
40

20

 9
70

35

 10
62

31

 11
16

12

 12
28

10

Figure 3.1: Summary of Problem in Item Representation.

We first construct the knapsack model for the example problem as

k-MKP Model

maximize ∑∑
==

12

1

2

1 j

ijj

i

xp

 subject to 190
12

1
1 ≤∑

=j

jj xw

 170
12

1
2 ≤∑

=j

jj xw

21

 1
2

1

≤∑
=i

jix j=1,…..,12

 4
12

1
1 ≤∑

=j

j
x

 4
12

1
2 ≤∑

=j

j
x

jix }1,0{∈ i=1,2 j=1,……,12.

The optimal values of the decision variables are summarized in the below table.

Table 3.2: The Optimal Integer Programming Solution of the k-MKP

Variable Value Variable Value

x11 0 x17 0

x21 0 x27 1

x12 1 x18 1

x22 0 x28 0

x13 0 x19 1

x23 1 x29 0

x14 0 x110 0

x24 0 x210 1

x15 1 x111 0

x25 0 x211 0

x16 0 x112 0

x26 0 x212 0

Next we find an approximate solution with the heuristic procedure.

Heuristic Method Solution:

Step 1. Solve the following LP relaxed problem, LPR.

22

maximize ∑∑
==

12

1

2

1 j

ijj

i

xp

 subject to 190
12

1
1 ≤∑

=j

jj xw

 170
12

1
2 ≤∑

=j

jj xw

 1
2

1

≤∑
=i

jix j=1,…..,12

 4
12

1
1 ≤∑

=j

j
x

 4
12

1
2 ≤∑

=j

j
x

 10 ≤≤
jix i=1,2 j=1,……,12.

Solution:

 The optimal LP Relaxed solution has an objective function value of 428.89,

and the solution values of the decision variables are tabulated below.

Table 3.3: LP-Relaxed Solution of the k-MKP

Variable Value Variable Value

x11 0 x17 1

x21 1 x27 0

x12 0 x18 0.45

x22 1 x28 0.55

x13 1 x19 1

x23 0 x29 0

x14 0 x110 0

x24 0 x210 1

x15 0.55 x111 0

x25 0.13 x211 0

x16 0 x112 0

x26 0 x212 0,32

23

We assign item j to knapsack i if LP

ijx =1

Accordingly, x21=1, x22=1, x13=1, x17=1, x19=1 and x210=1.

The remaining items 4, 5, 6, 8, 11 and 12 are either partially assigned or unassigned.

Step 2. Solve the following problem with the remaining items and reduced capacities

and cardinalities

 maximize ∑∑
∈Tj i

ijj xp

 subject to ∑∑
∈

−≤
Sj

jj

j

jj xwxw 11 190

 ∑∑
∈

−≤
Sj

jj

j

jj xwxw 22 170

 1
2

1

≤∑
=i

jix j=1,…..,12

 ∑∑
∈

−≤
Sj

j

j

j xx 11 4

 ∑∑
∈

−≤
Sj

j

j

ij xx 24

jix }1,0{∈

where assigned items set { }10,9,7,3,2,1=S and unassigned items set

{ }12,11,8,6,5,4=T . Next we solve the reduced problem with our heuristic assignment

procedures.

Step 2.1 Assign the unassigned items according to a greedy procedure (construction

phase)

This step is summarized in the tables below;

In each column the items are listed according to their pj, 1/wj or pj/wj values.

In case of a tie in pj, 1/wj and pj/wj orders we select according to 1/wj and pj and pj

orders, respectively. For further ties we use pj/wj and pj/wj and 1/wj, respectively.

The remaining items are assigned to the remaining capacities and cardinalities

according to the assignment rules: maximum capacity left, minimum capacity used

maximum cardinality left and minimum cardinality used.

24

Table 3.4: Greedy Assignment of Items According to Maximum pj Rule

pj

Max Capacity

Left

Min Capacity

Used

Max Cardinality

Left

Min

Cardinality

Used

 Rem C1=50

Fixed:

3
64

80

, 7
50

25

, 9
70

35

Assigned:

8
40

20

Used C1=140

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

8
40

20

Rem K1=1

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

8
40

20

Used K1=3

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

8
40

20

5
50

75

4
46

64

8
40

20

12
28

10

11
16

12

6
5

17

Rem C2=24

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

12
28

10

Used C2=146

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

12
28

10

Rem K2=1

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

12
28

10

Used K2=3

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

12
28

10

Obj

Value

414

346(fixed) +

68 (greedy as)

414

346(fixed) +

68 (greedy as)

414

346(fixed) +

68 (greedy as)

414

346(fixed) +

68 (greedy as)

25

Table 3.5: Greedy Assignment of Items According to Maximum 1/wj Rule

1/wj

Max Capacity

Left

Min Capacity

Used

Max Cardinality

Left

Min Cardinality

Used

Rem C1=50

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

Used C1=140

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

Rem K1=1

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

Used K1=3

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

12
28

10

11
16

12

6
5

17

8
40

20

4
46

64

5
50

75

Rem C2=24

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

11
16

12

Used C2=146

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

11
16

12

Rem K2=1

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

11
16

12

Used K2=3

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

11
16

12

Obj

Value

390

346(fixed) +

44 (greedy as)

390

346(fixed) +

44 (greedy as)

390

346(fixed) +

44 (greedy as)

390

346(fixed) +

44 (greedy as)

26

Table 3.6: Greedy Assignment of Items According to Maximum pj/wj Rule

pj/wj

Max Capacity

Left

Min Capacity

Used

Max Cardinality

Left

Min Cardinality

Used

Rem C1=50

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

Used C1=140

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

Rem K1=1

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

Used K1=3

Fixed:

3
64

80

, 7
50

25

, 9
70

35

 Assigned:

12
28

10

12
28

10

8
40

20

11
16

12

4
46

64

5
50

75

6
5

17

Rem C2=24

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

8
40

20

Used C2=146

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

8
40

20

Rem K2=1

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

8
40

20

Used K2=3

Fixed:

1
50

56

, 2
50

59

, 10
62

31

 Assigned:

8
40

20

Obj

Value

414

346(fixed) +

68 (greedy as)

414

346(fixed) +

68 (greedy as)

414

346(fixed) +

68 (greedy as)

414

346(fixed) +

68 (greedy as)

We obtain all these solutions and select the one having the maximum total profit

value. Accordingly, Max{ 414,414, 414,414,390,390,390,390, 414,414, 414,414} =

414 is the total profit value of the selected solution.

27

Step 2.2 Improve the solution obtained in Step 2.1 via interchanges.

Unassigned Set (T): The set consists of items which are not assigned to any knapsack

in previous steps.

T = {5
50

75
,4

46

64
, 6

5

17
, 11

16

12
 }

Assigned Set (S): The set consists of items which are assigned to any knapsack in the

previous steps.

S= { 3
64

80

, 7
50

25

, 9
70

35

, 1
50

56

, 2
50

59

, 10
62

31

, 8
40

20

, 12
28

10

}

 This phase looks for the opportunity of increasing the maximum total profit

by putting an unassigned item to a knapsack in place of an already assigned item. We

terminate when all pairs lead to infeasible or nonimproving solutions.

 Pick the pair that causes the maximum improvement

5
50

75
 ���� 12

28

10
 Violates the capacity constraint.

4
46

64
 ���� 12

28

10
 Violates the capacity constraint.

5
50

75
 ���� 8

40

20
 Violates the capacity constraint.

4
46

64
 ���� 8

40

20
 Violates the capacity constraint.

 Note that any pair does not lead to an improvement, hence the solution is not

changed.

28

 The optimal total profit value is 414. Note that construction phase, by chance,

has ended up with the optimal solution. Hence, no improvement is possible in the

succeeding phase.

3.2 Branch and Bound

 Recall that, the cardinality constrained multiple knapsack problem is strongly

NP-hard. This justifies the use of an implicit enumeration technique to find an exact

solution. In this study, we design a branch and bound algorithm that uses the

bounding mechanisms discussed so far.

Our branching scheme is based on the optimal solution of the LPR problem.

We observe that the LPR produces very few continuous variables, hence base our

branching scheme on these variables.

 There are different branching methods that are used for the knapsack problem

in the literature. According to the first scheme, the levels are represented by items. At

each level, for a particular item, there are m+1 nodes where the first node represents

the decision of not assigning the item to any knapsack, and each of the remaining

nodes represents the assignment of an item to a particular knapsack. This branching

scheme is proposed by Valerio (1996) and is figured below.

29

Figure 3.2: Knapsacks on Nodes Representation

 At each level, m+1 decisions are considered. There are n levels. At the last

level, all possible nm+1
 decisions become available.

 The second branching scheme first considers knapsack 1 and tries to fill the

knapsack as much as possible, and then proceeds to the second knapsack, when the

first knapsack is full, i.e., cannot take an additional item. The branching terminates

whenever all knapsacks are considered.

 The below figure gives the associated branching scheme. The scheme is

proposed by Kelleler et al. (2004).

Root Node

Item 1

 Item 2

Node 1 : No assignment

Node k : Asssignment of related item to knapsack k-1.

30

Figure 3.3: Items on Nodes B&B Representation

. . .

.

.

.
.

.

.

. . .

.

.

.

31

 Instead of using the above alternatives we construct our branching method

based on the fractional xij solutions. As mentioned before the optimal LPR solution

produces very few continuous variables and this motivates us using this type of

branching.

 We use the result of the optimal LPR solution to define our branching

structure. At every branch, we solve the LP problem and branch on a fractional

variable of the LP solution. For the chosen fractional variable
jix such that 10 <<

jix ,

we generate the following two subproblems.

Subproblem 1.
jix =0

Subproblem 2.
jix =1

 The associated tree is given in the figure below.

 (main node) 0<
jix <1

(left node) (right node)

 Figure 3.4: Branching Tree

xij

xij=1 xij=0

32

 We employ the following three strategies to select the fractional variable

from which two subproblems are generated.

• Strategy 1 : Select the highest
jix value

• Strategy 2 : Select the lowest
jix value

• Strategy 3 : Select the
jix value randomly

 Strategies 1 and 2 expect that the optimal integer solution is close to the

optimal LP relaxed solution. This forces big
jix values to one (Strategy 1) and small

jix values to zero (Strategy 2). Strategy 3, on the other hand, selects a fractional

variable randomly, thereby looking for the effect of a solution found without any

intuitive reasoning.

 Example :

 We illustrate the branching strategies via an example problem, having 8 items

and 2 knapsacks. The data are tabulated in Table 3.7.

Table 3.7 : The Profit and Weight Values for the 8-Item 2-Knapsack Example Problem

Items 1 2 3 4 5 6 7 8

pj 35 65 64 46 60 5 50 40

wj 56 59 80 64 75 17 25 20

Capacity of knapsacks: C1 = 65 and C2= 120

Cardinalities for knapsacks: K1= 2 and K2=2

33

 Above mentioned three strategies are based on the LP Relaxed solution of the

kMKP. The LP Relaxed solution of the kMKP is given in below table.

Table 3.8: The Optimal LPR Solution of 8-Item 2-Knapsack Example Problem

Variable * Value

x12 0.59

x22 0.41

x23 1

x25 0.02

x17 0.43

x27 0.57

x18 0.98

* The variables that do not appear in the table receive value zero.

 Strategy 1 forces the fractional variable having the biggest fractional variable,

i.e., x18. If strategy 2 is selected, then branching starts with the smallest fractional

variable, i.e., x25. On the other hand Strategy 3 depends on picking randomly

between variables x12, x22, x25, x17, x27 and x18.

 Note that the highest fraction 0.98 associates to the variable x18. In the

optimal solution, it is very likely to have value one for variable x18, hence Strategy 1

makes a conscious choice.

 We find an initial feasible solution using our heuristic procedure discussed in

Section 3.1.2. We update the best known, i.e., incumbent, solution wherever we find

a feasible solution with higher total profit value.

34

 We fathom the node if any one of the following cases occurs:

i. The LP solution is infeasible. This occurs for the partial solution in which

jix =1, but not for
jix =0.

ii. The solution has all integer decision variables. In such a case, an optimal

solution from that node is already found. The incumbent solution is updated, if the

resulting solution value is better.

iii. Whenever the upper bound is no greater than the incumbent solution. In such a

case, the resulting solution cannot lead to a unique optimal solution, i.e., it is not

promising.

 We backtrack whenever both nodes at a level are fathomed. We stop

whenever we reach the root node; hence search all partial solutions implicitly.

 For a particular node, we calculate the total realized profit by collecting the

profits of the items that are already assigned to any knapsack. We let

TC(S) = ∑)(Sxp iji where)(Sxij is the value of
jix for node S and TC(S) is the total

realized profit.

 The upper bound is found by adding the associated constraint, ‘
jix = 0’ or

‘
jix =1’ to the problem solved in the parent node. We calculate the upper bounds in

sequel from the easiest to the hardest to compute. Accordingly we first find UB1 then

UB2 and finally compute the LP based upper bound, UB3. We benefit from the LP

solution of the node in deriving lower bounds. We compute a naïve lower bound by

taking the integer part of the solution and update the incumbent if the lower bound at

the node is higher.

In place of solving the LP at each node, we implement the addition and

deletion of a constraint idea. In doing so, we solve the LP only at the root node and

use the addition of a constraint option while branching and the deletion of a

constraint while backtracking. The added or deleted constraints are
jix = 0 or

jix = 1.

35

 Below is the algorithmic description of our branch and bound algorithm, we

state the algorithm according to Branching Strategy 1.

Branch and Bound Algorithm:

Step 0. Find an initial feasible solution using the procedure discussed in Section

3.1.2.

Let INC be the total profit of schedule, and set the incumbent solution to INC.

Level=1

Solve the LP relaxation of the problem, and let the solution be LPR

If LPR produces all integer decision variables then it is optimal, STOP.

Step 1. Let
rkx = Max{

jix / 0<
jix <1} where

jix is the optimal LP relaxation

solution. Generate the following two subproblems:

Subproblem 1.
rkx =1

Subproblem 2.
rkx =0

Fathom subproblem i if any of the following conditions holds:

i. The solution has all integer variables.

 If LPR > INC

 INC = LPR

ii. The solution is infeasible.

This happens only for subproblem 1.

iii. UBi ≤ INC, (first try i=1, then i=2 and finally i=3) i.e., the subproblem

cannot lead to a unique optimal solution.

Step 2. If both subproblems in Step 1 are eliminated then go Step 3.

If both subproblems remain, branch from the one having the largest upper bound

value.

If only a single subproblem remains, continue from this subproblem.

Level=Level+1

 Go to Step 1

 Step3. Level=Level-1

 If Level=1 then Stop else Go to Step 1.

36

 We implement our Branch and Bound algorithm on an example problem,

with 6 items and 2 knapsacks. The profit and weight values are tabulated in the

below table.

Table 3.9: The Data for the 6-Item 2-Knapsack Example Problem

Items 1 2 3 4 5 6

pj 35 65 64 46 60 5

wj 56 59 80 64 75 17

Capacity of knapsacks are C1 = 65 and C2= 95

Cardinalities for knapsacks are K1= 1 and K2=1

At the root node:

UB1 = 189

UB2 = 145.8

UB3 = 145.8

LB Naïve = 65

LB Heuristic = 116

INC = 116

 The branch and bound solution is summarized in the below figure. The

numbers on the nodes show the solution path. The maximum fractional variables are

shown in nodes.

 There are three fathoming conditions as stated in algorithm: ALL: we hit a

full integer solution, INF: the subproblem is infeasible, UBi (i=1,2,3) : the branch is

37

fathomed as UBi ≤ INC. The type of upper bound that fathoms the branch is shown on

the nodes. UB1 means that UB2 and UB3 are not computed as UB1 ≤ INC.

 Note that Initial Incumbent Solution (INC) is updated only once at the 14th

node where it becomes 130.

 The branches following nodes 2, 4, 7, 9, 11, 13, 17, 23 and 28 are fathomed

due to infeasibility. The other branches are fathomed by upper bounds, i.e., they are

not promising.

 The solution is found at the 8th level. A total of 32 nodes are searched and the

optimal solution is found at the 14th node.

38

Figure 3.5: 6-Item 2-Knapsack Branch and Bound Tree

39

CHAPTER 4

4 COMPUTATIONAL RESULTS

4.1 Input Generation

In this chapter, we first present the data generation scheme and then discuss

the results of our computational experiment. Our aim here is to test the efficiency of

our algorithms and detect the effects of certain parameters on the difficulty of the

solutions.

To generate pj, wj and Ci values, we use the scheme proposed by Martello

and Toth (1990) for the multiple knapsack problem. According to this scheme, the pj

and wj values are generated from discrete uniform distribution [10,100] and Ci values

are discrete uniform between 0 and ∑∑
−

==

−
1

11

5.0(
i

k

k

n

j

j Cw). We set the lower limit of the

discrete distribution to wmin for Ci values, otherwise the knapsack having a capacity

between 0 and wmin-1 would never be used.

We generate the cardinality of knapsack i, i.e., Ki from discrete uniform

distribution U[1,( mn / -1)]. Our upper limit somewhat guarantees that the

cardinality constraint is forcing, i.e., nonredundant.

We use two discrete uniform distributions U[10,100] and U[10,250] for low

and high profit variability. We hereafter call these profit sets as Set I and Set II.

The number of items and number of knapsacks are tabulated below.

40

Table 4.1: Generated Problems

Number of

Items (n)

Number of

Knapsacks (m)

100 5

100 8

150 5

150 8

200 10

For each combination in the table, we generate and solve 10 problems and we

perform the experiments for both sets I and II.

We also generate large-sized problem instances with up to 1900 items and 20

knapsacks to set the solution capability of our branch and bound algorithm.

Input generation part is coded with C programming language with Microsoft

Visual 6.0. (2003). The experiments are conducted with C# programming language

with Microsoft Visual 8.0.(2005).

4.2 Performance Measures

In this section we set our performance measures that are used to evaluate the

performance of the heuristic algorithm, branch and bound algorithm and upper

bounds. The performances measures used are as listed below:

41

For Upper Bounds

• The average and maximum percentage deviation from the optimal solution.

The percentage deviation is defined as 100×
−

OPT

OPTUB
where UB is the upper bound

value and OPT is the optimal total profit.

For Heuristic Algorithm

• The average and maximum CPU times in seconds

• The average and maximum percentage deviation from the optimal solution

The percentage deviation is defined as 100×
−

OPT

LBOPT
 where LB is the lower

bound value.

For Branch and Bound Algorithm

• The average and maximum CPU times

• The average and maximum number of nodes generated

• The average and maximum number of nodes generated until OPT is found.

• The average and maximum level of the tree reached (the depth of the branch)

The algorithms are coded with C# programming language with Microsoft

Visual 8.0.(2005) and run on Microsoft Windows XP. For optimization problems

Cplex version 10.1 is used. The instance runs are performed on the Intel ® 4 CPU

3.20 GHz and 1 MB of Ram computer.

4.3 Strategy Selection

In Section 3.2 we mentioned that the branching strategy of selecting highest

fractional variable is likely to be the best strategy. Now we will perform an

experiment to verify this issue. In below table results of three cases are observed.

Remember that strategy 1 refers to selecting maximum fractional
jix value, strategy

42

2 refers to selecting minimum fractional
jix value and strategy 3 refers to selecting

random fractional
jix value while performing branch and bound algorithm.

Table 4.2: Branching Strategy Evaluation for B&B

 Strategy 1 Strategy 2 Strategy 3

 # of nodes
CPU

(seconds) # of nodes
CPU

(seconds) # of nodes
CPU

(seconds)

n m avg max avg max avg max avg max avg max avg max

100 5 96,3 212 1,5 4,1 112,4 233 1,7 4,8 136,2 233 2,4 5,9

100 8 116,4 245 1,6 3,0 136,1 301 2,5 5,1 159,3 325 3,6 7,2

150 5 86,5 253 1,5 5,1 121,8 319 2,6 4,7 139,6 321 3,4 6,1

150 8 97,1 264 1,6 4,1 112,4 321 2,8 5,2 128,3 340 3,2 5,6

200 10 126,6 281 1,8 5,4 141,2 345 3,1 5,8 158,6 369 4,2 7,1

 Note that selecting the maximum fractional variable, i.e., Strategy 1, produces

smaller number of nodes and CPU times, when compared with the other strategies.

Hence, we use Strategy 1 in our experiments.

We next analyze the effects of parameters and mechanisms on the problem,

and base our main runs on the results from these experiments.

4.4 Effects of Parameters

The kMKP has certain parameters; number of items n, number of knapsacks

m, profit value pj, weight usage wj, capacity usage Ci and cardinality amount Ki. In

this section we analyze the effects of these parameters on the difficulty of the

solutions.

43

Our main runs include the n, m and pj effects. In this section, we analyze the

effects of Ci, Ki and wj values.

Effect of Capacity Value Ci

 To see the effect of the capacity value on the difficulty of the problem we use

two different capacity settings. We first use U[wmin, ∑∑
−

==

−
1

11

)5.0(
i

k

k

n

j

j Cw] to generate

Ci s and then generate another class by halving the capacities of the first two

knapsacks.

We refer to first set as C1 and second set as C2. Note that C2 has restricted

capacity.

Table 4.3: Capacity Effect on the Performance of B&B

 SET C1 SET C2

 CPU(seconds) # of nodes CPU(seconds) # of nodes

n m avg max avg max avg max avg max

100 5 1,5 4,1 96,3 212 1,4 3,6 81,1 138

100 8 1,6 3,0 116,4 245 1,3 2,7 104,6 212

150 5 1,5 5,1 86,5 253 1,4 4,9 83,8 221

150 8 1,6 4,1 97,1 264 1,5 3,9 78,1 169

200 10 1,8 5,4 126,6 281 1,6 5,9 97,2 191

As can be observed from the above table, the average number of nodes and

CPU times decrease when capacities become tighter. This is due to the fact that more

solutions become feasible when the capacities are larger and this leaves more nodes

for further investigation. Note that when n=150 the maximum number of nodes

44

searched is 253 when the capacities are larger, this number reduces to 221 when the

capacities are decreased.

We continue our runs with harder problem combination, i.e., with set C1.

Effect of Cardinality Value Ki

The effect of the cardinality value on the difficulty of the solutions is same as

the capacity case. We use two cardinality values. Initially we use U[1,( mn / -1)] to

generate Ki values. We then generate another set by halving the cardinalities of the

first two knapsacks.

We refer to the first set as K1 and second set as K2. Note that K2 has

restricted cardinality.

Table 4.4: Cardinality Effect on the Performance of B&B

 SET K1 SET K2

CPU
(seconds) # of nodes

CPU
(seconds) # of nodes

n m avg max avg max avg max avg max

100 5 1,5 4,1 96,3 212 1,4 3,8 72,5 179

100 8 1,6 3,0 116,4 245 1,4 2,7 107,1 237

150 5 1,5 5,1 86,5 253 1,4 4,7 75,6 221

150 8 1,6 4,1 97,1 264 1,3 4,1 71,2 248

200 10 1,8 5,4 126,6 281 1,5 4,0 112,6 265

We observe that as we decrease the cardinality, the number of nodes and CPU

times decrease because more solutions become feasible when the remaining

cardinalities are larger and this leaves more nodes for further investigation. For

example when there are 100 items and 8 knapsacks, the average numbers of nodes

searched are 116 and 107 for large and small cardinality cases respectively.

45

We continue our main runs with larger combination, i.e., with set K1. Now

we analyze the effect of weight (usage).

Effect of Weight Value wi

 A weight, i.e., capacity usage, increase is similar to the knapsack capacity

decrease. Hence, we expect the problem becomes easier when we increase the

weights of the items.

We will analyze the effects of the weights by changing the distribution range

of weight values from U[10, 100] to U[10, 250] and call these sets as W1 and W2

respectively.

The construction and lower bound deviations are also included for this effect.

The below table indicates the heuristic deviation before and after improvement.

Table 4.5: Weight Effect-Lower Bound Comparison

 SET W1 SET W2

%Dev of

Construction
%Dev of

Heuristic-LB2
%Dev of

Construction
%Dev of

Heuristic-LB2

n m avg max avg max avg max avg max

100 5 3,1% 19,6% 1,0% 3,0% 3,1% 18,7% 1,4% 4,4%

100 8 2,6% 5,0% 2,6% 5,0% 3,1% 7,1% 2,6% 4,4%

150 5 1,7% 4,0% 1,4% 4,0% 2,4% 4,2% 1,8% 2,9%

150 8 3,4% 7,1% 1,6% 2,8% 4,1% 7,2% 1,9% 3,6%

200 10 2,8% 5,1% 1,1% 2,4% 3,6% 6,1% 1,8% 4,2%

As we observe, deviations increased on average for both construction and

heuristic parts. If W2 is used, the branch and bound algorithm starts with a weaker

lower bound.

46

 Next, we focus on the branch and bound performance.

Table 4.6: Weight Effect-Branch and Bound Comparison

 SET W1 SET W2

CPU
(seconds) # of nodes

CPU
(seconds) # of nodes

n m avg max avg max avg max avg max

100 5 1,5 4,1 96,3 212 1,6 3,2 97,6 158

100 8 1,6 3,0 116,4 245 1,2 2,7 104,1 214

150 5 1,5 5,1 86,5 253 1,3 4,8 81,3 214

150 8 1,6 4,1 97,1 264 1,2 2,9 101,2 202

200 10 1,8 5,4 126,6 281 1,4 3,4 108,6 191

In general the instances of W2 set are solved easier but there exist counter

cases like 100 items and 5 knapsacks case. The number of the generated nodes is

higher for set W2, which can be attributed to the random effect.

 We continue our main experiment with smaller weight values, i.e, with set

W1.

So far we have focused on the parameter effects; now we analyze the effects of

the mechanisms on the difficulty of solution.

4.5 Effects of Mechanisms

In this section, we investigate the effects of the mechanisms we developed on

the performance of our branch and bound algorithm. These mechanisms decide

branching strategies and bounding schemes.

47

Effects of Upper Bounds-UB1:

Note that removing UB1 does not affect the number of nodes generated

because the stronger bound UB3 already covers it. However, when UB1 fathoms a

branch UB3, i.e., the most complex upper bound, is not necessarily computed.

The effects of UB1 on the CPU times of branch and bound algorithm are

tabulated below.

Table 4.7: Effects of UB1

With UB1, UB2 and

UB3 With UB2 and UB3

BB-CPU
(seconds)

BB-CPU
(seconds)

 n m avg max avg max

100 5 1,5 4,1 1,4 4,0

100 8 1,6 3,0 1,6 2,8

150 5 1,5 5,1 1,5 4,5

150 8 1,6 4,1 1,4 3,6

200 10 1,8 5,4 1,7 4,1

Note that, when UB1 is not used, the average and maximum seconds are

smaller. Therefore, we conclude that reduction due to UB1 is outweighed by the

effort spent to compute it. Hence, we do not use UB1 in our main runs.

Effects of Upper Bounds-UB2:

Now we analyze the effects of UB2 on the performance of the algorithm. As

in UB1 case, the number of nodes generated is not expected to change because UB3 is

stronger than UB2. On the other hand; when UB2 fathoms a branch there is no need to

compute UB3.

48

The table below reports on the performance of branch and bound algorithm

that uses and does not use UB2.

Table 4.8: Effects of UB2

With UB1, UB2 and

UB3 With UB1 and UB3

BB-CPU
(seconds)

BB-CPU
(seconds)

n m avg max avg max

100 5 1,5 4,1 1,7 4,2

100 8 1,6 3,0 1,7 3,2

150 5 1,5 5,1 1,6 5,2

150 8 1,6 4,1 1,8 4,9

200 10 1,8 5,4 2,1 4,1

As can be observed from the above table UB2 when used together UB3,

reduces the solution times. Hence, we use UB2 in our main runs.

Effects of Upper Bounds-UB3:

 UB3 does not only help for fathoming but also it decides the branching path.

We experiment on the performance of branch and bound algorithm with and without

UB3 in evaluating the nodes. We always continue for xij=1 branch and use UB2 in

evaluation.

The effects of UB3 on the CPU times of branch and bound algorithm are

tabulated below.

49

Table 4.9: Effects of UB3

 With UB1, UB2 and UB3 With UB1 and UB2

BB-CPU
(seconds) # of nodes

BB-CPU
(seconds) # of nodes

n m avg max avg max avg max avg max

100 5 1,5 4,1 96,3 212 5,9 11,1 292,5 512

100 8 1,6 3,0 116,4 245 7,3 12,1 408,6 596

150 5 1,5 5,1 86,5 253 9,7 14,4 389,6 485

150 8 1,6 4,1 97,1 264 8,2 13,8 326,4 445

200 10 1,8 5,4 126,6 281 10,6 15,8 421,1 635

As can be observed from the above table, using UB3 greatly reduces the

number of nodes and CPU times. The reduction is about 4 times for both. We can

conclude that UB3 is quite powerful and should be used to evaluate the nodes.

Considering all upper bound experiments, we decide to use UB2 and UB3 in sequel.

Now we will focus on heuristic lower bound.

Effects of Lower Bound-Heuristic Solution:

To investigate the effect of the lower bounds on the performance of the

branch and bound algorithm, we compare two cases: the algorithm that uses no lower

bounds as initial feasible solution (i.e., starts with value zero) and the algorithm that

uses our heuristic procedure to produce an initial feasible solution. The results are

reported below.

50

Table 4.10: Effects of LB on Branch and Bound CPU Values.

 With LB2 Without LB2

 CPU(seconds) # of nodes CPU(seconds) # of nodes

n m avg max avg max avg max avg max

100 5 1,5 4,1 96,3 212 3,8 7,0 165,4 312

100 8 1,6 3,0 116,0 245 7,3 11,5 236,6 446

150 5 1,5 5,1 86,0 253 6,3 11,4 186,3 341

150 8 1,6 4,1 97,1 264 7,1 10,8 225,2 325

200 10 1,8 5,4 126,6 281 6,7 9,8 201,4 295

As can be observed from the above table, incorporating of initial lower bound

highly improves the performance of the branch and bound algorithm. This means

finding an LP solution with all integer variables takes significant time. The most

significant reduction is due to 100 items and 8 knapsacks case.

We next discuss our main runs.

4.6 Main Runs

 Recall that in Section 3.1.1 three different upper bounds namely capacity

relaxed upper bound, cardinality relaxed upper bound and integrality relaxed upper

bound are developed and referred to as UB1, UB2 and UB3 respectively. In Section 4.4

we found that removing UB1, but not UB2 and UB3, results in better solutions. We

now report on the performances of UB2 and UB3. The performance of an upper

bound for instance i is measured by its deviation from optimal solution as a

percentage of the optimal solution and calculated as;

100×
−

=
OPT

OPTUB
DevU i

i

Hence ∑
=

=
10

1

10/
i

iDevUAvgDev and MaxDev= maxi{DevUi}

51

The deviations for 10 combinations are reported in Table 4.11

Table 4.11: Upper Bound Performances at Root Node

 SET I SET II

 %Dev. UB2 %Dev. UB3 %Dev. UB2 %Dev. UB3

n m avg max avg max avg max avg max

100 5 55,3% 99,0% 0,5% 2,1% 47,5% 102,7% 0,3% 0,6%

100 8 33,2% 77,2% 0,5% 3,0% 37,6% 93,1% 0,6% 3,2%

150 5 180,7% 418,7% 0,5% 2,8% 231,9% 456,8% 0,5% 3,1%

150 8 48,3% 108,1% 0,5% 1,4% 51,6% 118,3% 0,8% 2,6%

200 10 70,5% 207,6% 0,1% 0,4% 76,1% 232,8% 0,6% 1,3%

Note from the above table that UB3 is the most powerful upper bound,

deviates from the optimal by less than 0.5% on the average over all combinations and

the deviations do not deteriorate when the problem sizes become larger. This is due

to the satisfactory behavior of the LPR solution. From Table 4.14, it can be observed

that the number of fractional variables by LP is much smaller than the total number

of the integer variables.

The average deviation of UB2 is not satisfactory, however it is very quick.

Due to its high speed we first compute UB2 if it cannot eliminate we compute UB3.

Note that, as the ranges for the profit values increase, the upper bound deviations

increase. This is due to the fact that the feasible solutions are apart from each other

when distributions have wider ranges.

Now we evaluate the performance of the lower bounds that is found by the

heuristic method, stated in Section 3.1.2.

Note that the higher the lower bound deviation, the stronger it is.

For instance i we compute,

52

100×
−

=
OPT

LBOPT
DevLB i

i ,

The lower bound is constructed in three steps; first, we find a naive lower

bound then construction step is performed followed by the improvement step.

Table 4.12 reports on the performance of the naïve lower bounds.

Table 4.12: Performance of Naïve Lower Bound

 SET I SET II

n m

%Dev LB1
avg

%Dev LB1
max

%Dev LB1
avg

%Dev LB1
max

100 5 12.1% 36,8% 10.6% 22.5%

100 8 15.5% 23,7% 15.4% 26.6%

150 5 14.4% 47.1% 12.5% 31.1%

150 8 10.4% 12.7% 13.5% 16.5%

200 10 10.1% 17.4% 13,0% 19.6%

The average deviations are between 10 and 15 percent, and maximum

deviations are close to 50%. We observe that the deviations are smaller when the

profit ranges are wider. We did not report on the CPU times, as they are negligibly

small.

The below table summarizes the percentage deviation of the heuristic lower

bound from the optimal solution.

53

Table 4.13: Performance of Heuristic Algorithm (LB2)

 SET I SET II

% Dev. of

Construction
% Dev. of

Heuristic (LB2)
% Dev. of

Construction
% Dev. of

Heuristic (LB2)

n m avg max avg max avg max avg max

100 5 3,1% 19,5% 1,0% 3,0% 2,5% 9,1% 1,1% 3,6%

100 8 2,6% 5,0% 2,6% 5,0% 4,5% 8,1% 2,4% 5,1%

150 5 1,7% 4,0% 1,4% 4,0% 3,2% 6,1% 2,7% 4,2%

150 8 1,5% 2,4% 1,5% 2,4% 2,1% 4,0% 1,8% 2,8%

200 10 1,2% 2,9% 1,0% 2,2% 1,3% 2,6% 2,1% 4,2%

As can be observed from Table 4.13, the heuristic performs quite satisfactory.

The worst maximum deviation is 5.1%. The average deviations are mostly below

1.5%. The deviations do not deteriorate with an increase in problem size. Note that

the minimum average deviation is observed for the maximum problem size, i.e., 200

items and 10 knapsacks. We also observe that if the construction phase results in

high deviations, the improvement phase recovers. Note that for the first combination,

the construction heuristic deviates about 3% on average, whereas this deviation is

reduced to 1% by the improvement phase.

We observe that the lower bound deviations are higher when the variability of

the profits is higher.

Due to its satisfactory performance we use the improvement heuristic as an

initial feasible solution in our branch and bound algorithm.

The number of fractional variables by LP and total number of fraction

variables are reported in below table.

54

Table 4.14: Number of Fractional
jix Variables

 SET I SET II

n m

of
fractional

jix

variables
avg

of
fractional

jix

variables -
max

of
fractional

jix

variables
avg

of
fractional

jix

variables
- max

of total

jix variables

100 5 7,1 11 7,2 12 500

100 8 9,6 20 10,8 17 800

150 5 7,1 14 8,4 13 750

150 8 13,2 20 16,7 21 1200

200 10 15,5 23 16,2 19 2000

 The above table shows that the number of fractional
jix variables is quite

small when compared to the total number of the decision variables. Note that the

LPR gives at most 23 fractional variables out of 2000 decision variables. These

computational results motivate us to base our branching rule on the fractional

variables of the LPR solution. Due to the satisfactory behavior of UB3, its closeness

to the optimal total profit values, and few continuous variables, we expect a

satisfactory performance from our branch and bound algorithm.

We next discuss the performance of the branch and bound algorithm that is

measured by the CPU times and the number of nodes searched. Clearly the lower and

upper bounds highly affect the performance.

In general all bounds, in particular UB3 and LB2, perform quite satisfactory

even at the root node (see Tables 4.11, 4.12 and 4.13). Hence one can expect

satisfactory behavior from a branch and bound algorithm that employs these bounds.

The table below reports on the performance results of our branch and bound

algorithm.

55

Table 4.15: Performance Evaluation for B&B Part

 SET I SET II

 # of nodes
optimality

node
depth of
search # of nodes

optimality
node

depth of
search

n m avg max avg max avg max avg max avg max avg max

100 5 96,3 212 14,3 35 27,4 62 82,6 220 15,2 43 27,8 62

100 8 116,4 245 17,1 32 32,7 49 118,6 262 18,3 41 34,9 54

150 5 86,5 253 12,6 48 24,1 63 93,7 271 14,9 61 26,0 52

150 8 135,2 288 13,3 26 35,6 69 149,6 296 18,3 43 41,3 76

200 10 116,8 285 13,7 26 37,2 72 115,2 287 14,0 32 35,6 51

Note there are nxm decision variables, hence 2nxm complete solutions. The

number of the partial solutions used to generate these complete solutions is thus

much higher. Due to the power of the LPR solution, both in leading our branch

strategy and fathoming the partial solutions, we only generate a small portion of

those solutions. Note from the Table 4.15 that we generate at most 296 nodes.

We also report on the CPU times of the CPLEX algorithm and compare them

with our branch and bound algorithm.

56

Table 4.16: Performances of B&B and CPLEX algorithms

 SET I SET II

BB-CPU
(seconds) IP-CPU (seconds)

BB-CPU
(seconds) IP-CPU (seconds)

n m avg max min avg max avg max min avg max

100 5 1,5 4,1 0,2 8139,5 27150 1,8 4,4 0,1 3280,4 28389

100 8 1,6 3,0 1,5 4563,5 30000 1,8 4,2 0,3 6089,3 30000

150 5 1,5 5,1 0,1 6984,4 30000 1,8 5,3 0,1 2515,1 30000

150 8 2,4 6,4 0,6 2290,2 14315 3,4 5,8 0,2 7859,6 29659

200 10 2,0 7,1 0,2 1900,5 18950 3,8 6,4 0,1 5216,3 18354

For CPLEX runs, we set a termination limit of 30.000 seconds

(approximately 8 hours). The instances that are not solved in 30.000 seconds

contribute to the total CPU time by 30.000 seconds.

 As can be observed from the above table, the CPU times by CPLEX

algorithm are too high. Moreover, unlike our branch and bound algorithm the

CPLEX performs too inconsistent that there is a huge gap between minimum and

maximum CPU time values. Hence the need for an implicit enumeration algorithm is

well justified. Note that our algorithm returns optimal solutions in very small CPU

times, consistently.

 We solve the problem instances with up to 200 items 10 knapsacks easily. As

the number of the knapsacks and items increase, the performance of our algorithm

deteriorates. This is due to an increase in the search size and the effort spent by LP at

each node.

4.7 Limit of Our Solution Method

We aim to find the limit on the problem size that our algorithm can handle,

using the profit set II (U[10,250]).

57

 Table 4.17 gives the performance of our branch and bound algorithm on

large-sized problem instances, for problem set includes item sizes from 500 to 1900

and knapsack sizes 10, 15 and 20.

Table 4.17: Limit Run Experiments

n

m

Total

CPU- avg

minutes

Number of

solved

instances

(10)

500 10 5,56 10

800 15 10,20 10

1200 15 16,65 10

1400 20 28,28 10

1700 20 49,38 8

1800 20 54,39 6

1900 20 62,59 2

As can be observed from the above table, all problems can be solved in

reasonable times when n=1400 and m=20. When n is 1700, 1800 and 1900, the

number of problems (out of 10) that can be solved in one hour reduces to 8, 6 and 2

respectively.

58

CHAPTER 5

5 CONCLUSIONS

In this study, we consider the Cardinality Constrained Multiple Knapsack

problem (kKMP). The knapsack problems in general and kKMP in particular find

their application both in service and manufacturing industries. Despite this fact, the

associated reported research on the kKMP is quite limited.

We observe that the kKMP cannot be solved to optimality, even by the most

powerful Integer Programming Solver, CPLEX. So, efficient implicit enumeration

techniques are required to arrive at optimal solutions. Recognizing this fact, we

propose optimization and approximation procedures with the hope of generating

satisfactory solutions in reasonable times.

We first study the Linear Programming Relaxation (LPR) of the problem and

verify its quality in producing very few continuous variables. Hence we base our

approximation (heuristic) and optimization algorithms on the optimal LPR solutions.

Our heuristic procedure first finds an initial solution by taking the integer part of the

optimal LPR solution and then improves this solution by pair wise interchanges. We

introduce the total profit value of the heuristic procedure as an initial feasible

solution for the branch and bound algorithm. We use the optimal LPR solutions not

only to evaluate the partial solutions but also to guide our search by setting the

branching strategy.

The results of our extensive computational experiment show that our heuristic

procedure generates solutions that deviate from the optimal solutions by no more

than three percentages on average. Moreover, at the root node, our LPR based upper

bound deviates from the optimal solution by at most one percent. Our branch and

59

bound algorithm finds optimal solutions to the problem instances with up to 1400

items and 20 knapsacks in less than 1800 seconds, on average.

The lower and upper bounds used and the branching strategy employed are

quite significant in improving the efficiency of the branch and bound algorithm. The

most efficient results are obtained when the LPR based upper bounds together with

maximum fractional variable strategy are employed. Moreover using our heuristic

procedure as a lower bound at the root node reduced the solution times.

We observe that as the number of items or the number of knapsacks

increases, the solution times increase, however not in exponential rate. We also

observe that the capacities, cardinalities, weights and profits are significant

parameters that affect the problem complexity.

We hope our work opens new research avenues some note-worthy of which

are listed below:

• Investigating the special cases of the kMKP like identical knapsack

cardinalities or capacities.

• Studying the kMKP with dependent profit and weight values, i.e., the

profit and weight values are dependent on the knapsack assigned.

• Studying the assignment restricted the kMKP, i.e., there is an assignment

restriction such that some items cannot be put in all knapsacks.

• Investigating the properties of the LPR solution.

• Developing Polynomial Time Approximation Schemes for the kMKP.

60

REFERENCES

A. Caprara, H. Kelleler, U. Pferschy, D. Pisinger, Approximation Algorithms for

Knapsack Problems with Cardinality Constraints, European Journal Operations

Research, 123: 333-345, 2000.

C.Chekuri and S. Khanna, A PTAS for the Multiple Knapsack Problem, Proceedings

of the 11
th

 Annual ACM-SIAM Symposium on Discrete Algorithms, 213-222, 2000.

D.S. Hochbaum and D.B. Shymos, A Polynomial Time Approximation Scheme for

Scheduling on Uniform Processors: Using Dual Approximation Approach, SIAM

Journal on Computing, 17(3): 539-551, 1988.

E.L. Lawler, J.K. Lenstra, A.H. G. Rinooy Kan, and D.B. Shymoys, Sequencing and

Scheduling: Algorithms and Complexity, Handbooks in OR&MS, 4: 445-522, 1993.

F.D. Murgolo, An Efficient Approximation Acheme for Variable-Sized Bin Packing,

SIAM Journal on Computing, 16(1):149-161,1987.

G.B. Mathews, On the Partition of the Numbers, Proceedings of the London

Mathematical Society, 28:486-490,1897.

G. Ingargiola and J. Korsh, An Algorithm for the Solution of 0-1 Loading Problems,

Operations Research, 23:1110-1119,1975.

H. Kelleler, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, 2004.

J.M. Valerio de Carvalho, Exact Solution of Bin-Packing Problems Using Column

Generation and Branch-and-Bound, Annals of Operations Research, 86: 629–659,

1996.

61

K. Dudzinski, On a Cardinality Constrained Linear Programming Knapsack

Problem, Operations Research Letters, 8: 215-218, 1989.

M. Mastrolilli, M. Hutter, Hybrid Rounding Techniques for Knapsack Problems,

Discrete Applied Mathematics, 154: 640-649, 2006.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to The Theory

of NP-Completeness, W. H. Freeman, 1979.

M.S. Hung and J.C. Fisk, An Algorithm for 0-1 Multiple Knapsack Problems, Naval

Research Logistical Quarterly, 24:571-579, 1978.

R.E. Campello and N.F. Maculan, An O(n3) Worst Case Bounded Special LP

Knapsack (0-1) with two Constraints, Recherce Operationelle / Operational

Research, 22: 27-32, 1988.

S. Martello and P. Toth, Heuristics Algorithms for the Multiple Knapsack Problem,

Computing, 27:93-112, 1981.

S. Martello and P. Toth, Knapsack Problems Algorithms and Computer

Implementations, Chichester ; J. Wiley & Sons, 1990.

