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ABSTRACT 

AN IMPLEMENTATION OF MONO AND STEREO 

SLAM SYSTEM UTILIZING EFFICIENT MAP 

MANAGEMENT STRATEGY 

 

Kalay, Adnan 

 

M. S., Department of Electrical and Electronics Engineering  

Supervisor : Assist. Prof. Dr. İlkay Ulusoy 

 

September 2008, 181 pages 

 

For an autonomous mobile robot, localization and map building are vital 

capabilities. The localization ability provides the robot location information, so the 

robot can navigate in the environment. On the other hand, the robot can interact 

with its environment using a model of the environment (map information) which is 

provided by map building mechanism. These two capabilities depends on each other 

and simultaneous operation of them is called SLAM (Simultaneous Localization 

and Map Building). While various sensors are used for this algorithm, vision-based 

approaches are relatively new and have attracted more interest in recent years. 

In this thesis work, a versatile Visual SLAM system is constructed and presented. In 

the core of this work is a vision-based simultaneous localization and map building 

algorithm which uses point features in the environment as visual landmarks and 

Extended Kalman Filter for state estimation. A detailed analysis of this algorithm is 

made including state estimation, feature extraction and data association steps. The 

algorithm is extended to be used for both stereo and single camera systems. The 
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core of both algorithms is same and we mention the differences of both algorithms 

originated from the measurement dissimilarity. The algorithm is run also in 

different motion modes, namely predefined, manual and autonomous. Secondly, a 

map management strategy is developed especially for extended environments. 

When the robot runs the SLAM algorithm in large environments, the constructed 

map contains a great number of landmarks obviously. The efficiency algorithm 

takes part, when the total number of features exceeds a critical value for the system. 

In this case, the current map is rarefied without losing the geometrical distribution 

of the landmarks. Furthermore, a well-organized graphical user interface is 

implemented which enables the operator to select operational modes, change 

various parameters of the main SLAM algorithm and see the results of the SLAM 

operation both textually and graphically. Finally, a basic mission concept is defined 

in our system, in order to illustrate what robot can do using the outputs of the 

SLAM algorithm. All of these ideas mentioned are implemented in this thesis, 

experiments are conducted using a real robot and the analysis results are discussed 

by comparing the algorithm outputs with ground-truth measurements. 

Keywords: Robot Localization, Map Building, Visual SLAM, Extended Kalman 

Filter, Landmark Detection, Map Management 
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ÖZ 

ETKİN HARİTA YÖNETİM STRATEJİSİ KULLANAN 

MONO VE STEREO SLAM SİSTEMİ UYGULAMASI 

 

Kalay, Adnan 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yard. Doç. Dr. İlkay Ulusoy 

 

Eylül 2008, 181 sayfa 

 

Otonom bir robot için lokalizasyon ve harita çıkarma yetenekleri hayati önem 

taşımaktadır. Lokalizasyon kabiliyeti robota konum bilgisi sağlayarak robotun 

navigasyonuna katkı sağlar. Harita çıkarma mekanizması ise robotun çevresiyle 

etkileşimde bulunması için ihtiyaç duyabileceği çevresel modeli, yani haritayı 

oluşturur. Bu iki yetenek birbirine bağımlıdır ve aynı anda işletilme durumuna 

SLAM (Eş Zamanlı Lokalizasyon ve Harita Çıkarma) denir. Birçok sensörün 

kullanıldığı bu algoritmada, görüntü tabanlı yaklaşımlar nispeten yenidir ve son 

yıllarda daha çok ilgi  çekmektedir. 

Bu tez çalışmasında, çok yönlü bir Görsel SLAM sistemi oluşturulmakta ve 

sunulmaktadır. Çalışmanın özünü çevredeki noktasal işaretleri görsel işaretler 

olarak algılayan, durum tahmini için de Genişletilmiş Kalman Filtresini kullanan 

görüntü tabanlı eş zamanlı lokalizasyon ve harita çıkarma algoritması 

oluşturmaktadır. Bu algoritmanın durum kestirimi, işaret çıkarımı ve veri eşlenmesi 

adımlarını da içerecek şekilde detaylı bir analizi yapılmaktadır. Algoritma, stereo ve 
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tek kameralı sistemlerde kullanılabilecek şekilde genişletilmektedir. İki 

algoritmanın da özü aynıdır ve ölçüm farklılıklarından doğan farklı sonuçlara 

değinilmektedir. Algoritma ayrıca ön tanımlı, manuel ve otonom olmak üzere farklı 

hareket modlarında çalıştırılmaktadır. İkinci olarak, özellikle geniş ortamlarda 

kullanılmak üzere bir harita yönetim stratejisi geliştirilmektedir. Robot SLAM 

algoritmasını geniş ortamlarda çalıştırdığında, oluşturulan harita doğal olarak fazla 

miktarda işaret içermektedir. Toplam işaret sayısı sistem için kritik bir seviyeyi 

aştığında, verimlilik algoritması devreye girmektedir. Bu durumda harita, yer 

işaretçilerinin geometrik dağılımını kaybetmeyecek şekilde seyreltilmektedir. 

Ayrıca geliştirilen grafiksel kullanıcı arayüzü ile operatöre operasyonel mod seçimi, 

ana SLAM algoritmasının çeşitli parametrelerini değiştirme ve SLAM 

operasyonunun sonuçlarını metinsel ve grafiksel olarak görme imkanı 

sunulmaktadır. Son olarak, SLAM algoritmasının çıktılarını kullanarak robotun 

neler yapabileceğini göstermek için, basit bir görev konsepti tanımlanmaktadır. Bu 

tezde tüm bu bahsedilen fikirler uygulanmakta, gerçek bir robot üzerinde deneyler 

yapılmakta ve analiz sonuçları algoritma çıktılarının gerçek konum ölçümleriyle 

karşılaştırılması suretiyle tartışılmaktadır. 

Anahtar Kelimeler : Robot Lokalizasyonu, Harita Çıkarma, Görsel SLAM, 

Genişletilmiş Kalman Filtresi, Yer İşareti Tespiti, Harita Yönetimi  
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CHAPTER 1  

 

INTRODUCTION 

1.1 Problem Definition and Motivation 

 

With the continuous evolution of the technology, it becomes possible to use remote 

agents in many areas in order to attain several goals such as increasing the 

automation, removing the human operators from dangerous conditions, defense and 

mining. Development of new technologies provides better opportunities in terms of 

cost, speed and tractable algorithms which results in increased intelligence of these 

agents.  

Robotic systems have taken a great progress for the last decades. Having the ability 

of implementing predefined instructions in many areas, robots are now attracting 

more attention due to their autonomy. Many independently acting systems have 

been constructed in different areas such as industry, space and underwater [7, 8, 9, 

10 and 11]. The development of such systems requires reliability, safety and 

robustness properties in order to be acceptable in real world applications. For an 

autonomous robot, localization is a crucial capability that enables the robot to know 

where it is and navigate accordingly.  In order to localize accurately, the map of the 

environment should be known. For some indoor applications such as industrial 

robots, the map is pre-known and localization is done according to this map. But in 

most cases, especially for outdoor applications the environment that the robot roams 

is not pre-known and the robot has to construct a map as it moves. 
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SLAM (Simultaneous Localization and Map Building) is the combination of two 

crucial tasks for autonomous robot localization, namely localization and map 

building. These tasks are done simultaneously in a way that the output of one task 

becomes the input of the other. The ability to simultaneously estimate the position 

of a robot and build the model of the environment is a challenging problem. Several 

methods making use of various sensors have been proposed to solve this problem. 

One of the most interesting methods employs cameras which are generally called as 

vision-based methods. The vision-based approaches for the SLAM problem are 

relatively new solution suggestions and need to be investigated in detail. There are 

two main solutions for the vision-based SLAM problem from the quantity of used 

sensors point of view, namely the methods utilizing single camera so called “Mono 

SLAM” [12, 13, 14] and utilizing stereo cameras so called “Stereo SLAM” [15, 16]. 

While the former suggests a solution with lower cost, the latter one seems to be still 

more robust. The advantages and the disadvantages between these two types of 

SLAM also need to be compared and present a considerable motivation for research 

[17]. 

1.2 Thesis Contribution 

The major contributions of this thesis are related with constructing partially and 

fully autonomous simultaneous localization and map building capabilities utilizing 

visual sensors. The thesis develops a mathematical solution to the SLAM problem 

similar to the solutions based on Extended Kalman Filter in the literature, presents 

SLAM administration strategies and experimental results.  

The principal contributions of this thesis are as follows: 

• An online vision-based SLAM implementation employing Extended 

Kalman Filter is presented. Two main visual SLAM types, namely Mono 

SLAM and Stereo SLAM, are investigated, implemented and compared. 

• A map management strategy to efficiently administer the SLAM operation 

in large environments and achieve adaptability to long-term runs is 
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presented. This strategy is also responsible for other important decisions 

such as adding new landmarks to the map, deleting obsolete features from 

the map etc. As it can be understood, the proposed map management 

technique provides necessary decision making mechanisms for necessary 

conditions. 

• The thesis presents a mission concept, which means that the robot is given a 

mission to reach a specified destination. The constructed system provides 

the robot with necessary intelligence in order to achieve the given mission, 

although there may be obstacles on the potential robot path. 

• A well-organized software tool, called SLAM Suite, which allows changing 

various parameters related to SLAM subtasks such as data association, 

landmark detection, feature deletion, feature remeasurement, robot system 

configuration, real-time efficiency algorithm parameters, camera parameters 

and predefined motion patterns is presented. One can interact with the robot 

system through this interface and make it run in various operational modes. 

Moreover, the running SLAM algorithms can be paused, continued or 

terminated at any time and the constructed maps can be viewed in graphical 

or textual formats. 

• All of the approaches mentioned above are executed on a real and a 

simulator Pioneer robot, experiments are conducted, analyses are made and 

results are presented.      
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CHAPTER 2  

 

THEORETICAL BACKGROUND AND RELATED 

WORKS 

In this chapter, a theoretical background is provided and related works are given. 

The topics to be touched in this chapter are localization, map building, simultaneous 

localization and map building (SLAM), sensors used for SLAM and Visual SLAM. 

2.1 Localization 

Localization is the ability to answer the question “Where am I?” for a questioner’s 

point of view, that is to determine the location of the questioner with respect to a 

defined reference frame. In order for a robot to operate autonomously, one of the 

most crucial capabilities it must have is the localization ability. An autonomous 

robot having the knowledge of its location can decide what to do in the next step; 

perform a given mission if it has communication with a master, explore its 

environment and avoid obstacles. The robot localization problem is so important 

that it has been mentioned to be the most fundamental problem to provide robots 

truly autonomous capabilities by some authors [2]. Accurate localization is 

especially crucial for navigation and map building tasks, since following a path and 

gathering relative positions of the landmarks are highly dependent on the location of 

the robot. In this thesis, the location of the robot is defined by its x , z  and heading 

components in a world coordinate system. Although the degree of the accuracy 

depends on the specific operation, autonomy of the robot without a notion of 
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location is unthinkable. If the localization information does not exist, the robot is 

unable to plan further actions that are beyond its measurement range. 

There are two main approaches for localization, namely incremental localization 

and global localization. The first one assumes that the initial position is known and 

the distributions are Gaussian. The robot position is then estimated using the 

measurements at each time step, while the robot is navigating in the environment. 

This type of localization is also called “position tracking”. The global positioning 

problem is a more challenging one because of the unknown initial pose. The 

localization has to be done from scratch. Although the latter approach does not 

require the assumption of a pre-known initial position and Gaussian distribution, it 

has high memory requirements. In both of these approaches the map of the 

environment needs to be known for the localization task. 

One complication for the localization task is the disturbance of the robot position 

via a collision with an obstacle or even a harder situation is that the robot may be 

transferred to a new position unknowingly. Then the localization property plays an 

important role when the robot is relocated to an unknown position by an external 

force meaning that the robot is kidnapped. In this situation the robot has to realize 

that it is kidnapped and determine its new location. Another complication is the 

dynamics of the environment that the robot roams in. In general, the environments 

are assumed to be static, while the localization task is being performed. But this is 

not usually valid for the real world case. Localization in dynamic environments 

becomes a more complicated task, since the robot is not the only moving object. 

The moving objects may corrupt the localization information and cause the robot to 

get lost. 

Localization can be classified into four main types each of which is described in the 

following subsections: 
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2.1.1 Dead Reckoning Localization 

Dead reckoning is the most simple and cost-effective localization type that relies on 

estimating the position of the robot by integration of its motion estimates such as 

translation and rotation without making use of any external observations. In spite of 

its simplicity, dead reckoning is the most error prone localization type. Errors in the 

location accumulate proportional to the distance traveled and sensor inaccuracies, 

therefore the pose uncertainty increases at each time step.  Because there is no 

chance to verify the new position, lower rate of uncertainty increase can be 

achieved by only with improvements on motion and sensor models. Still, at some 

time the uncertainty of robot location grows too much that it never provides useful 

information making this approach unsuitable for long-term localization [19, 20]. 

Odometry and INS (composed of accelerometers and gyroscopes) are the main 

sensors for the dead reckoning localization. This localization type is also referred as 

relative (local) localization, since the position and orientation evaluations are made 

by only on-board sensors. 

2.1.2 Beacon (Artificial Landmark) Based Localization 

Beacon based localization uses the specified beacons to determine the location of 

the robot. These landmarks are generally uniquely identifiable, therefore they can 

reliably be used for robot position determination and unambiguous global 

localization becomes possible [21]. Knowing the positions of these artificial 

landmarks, the robot is able to localize itself for long time periods accurately which 

makes this approach suitable for long-term localization.  Since the localization 

relies on observing the positions of the known landmarks rather than observing the 

motion, the accumulation of errors does not exist and the accuracy does not 

deteriorate [22]. Some examples of these intentionally placed landmarks are GPS 

satellites, reflecting tapes, visual patterns, acoustic beacons and infrared beacons. 

These landmarks may be passive (reflecting) such as acoustic beacons and active 

(emitting) such as GPS satellites and infrared beacons. In spite of the high accuracy 

of the beacon based localization, there are some problems including installation 
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cost, situation of getting damaged and obscurity. The installation of some beacons 

may be too expensive or not suitable for some kind of environments. Moreover, the 

artificial landmarks may be damaged or occluded by other objects causing them not 

to provide localization information. 

2.1.3 A Priori Map (with Natural Landmarks) Based Localization  

This type of localization requires a previously known map which means that the 

environment related with the map has to be explored beforehand. Similar to the 

beacon based localization, a priori map based localization provides long term 

localization and the uncertainty of the robot location remains bounded. Since the a 

priori map consists of natural landmarks of the environment, usage of it clears the 

installation cost away which is present in the beacon based localization. These 

natural landmarks include corners, edges, walls, doors etc. present in the 

environment. Another advantage of this method is the robustness of these natural 

landmarks to damage. On the other hand, difficulties of the a priori map 

construction for each new environment, static nature of the map that cannot handle 

the dynamics of the environment and the fragility of the landmarks under variations 

of viewing direction and lighting conditions are regarded as the disadvantages. 

2.1.4 Simultaneous Localization and Map Building (SLAM) 

SLAM is the main topic of this thesis and thoroughly examined in the section 2.3.  

There are several methods to solve the localization problem in the literature some of 

which are briefly presented: 

2.1.5 Kalman Filter Localization 

In this thesis this type of localization is used. The information about Kalman Filter 

is given in chapter 4 and Kalman Filter Localization is mentioned in chapter 6. 
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2.1.6 Markov Localization 

The main idea of Markov localization is to compute a discrete approximation of a 

probability distribution over all possible poses in the environment and use Bayes 

rule to update the belief when the robot moves or senses [4, 6]. In Markov 

localization, each possible robot state is represented by a probability value resulting 

in many states. High amount of probability values require large memory and high 

processing time. Localization can be possible starting from any unknown position. 

But a discrete representation of the space using grids is required to update the 

probability of all positions in the state space. Memory and time requirements 

increase with the number of grids that will be used. This grid-based localization 

method is more robust than Kalman Filter localization, while the latter is more 

efficient and accurate [3]. The Markov localization is used for global positioning 

with high robustness on sensor noise and fast recovering from manual robot 

displacement [5]. In this type of localization “multi-modal probability densities are 

allowed and propagated through the motion model” [7]. 

2.1.7 Monte Carlo Localization (MCL) 

This type of localization is a sample-based Bayesian method and can be viewed as a 

Markov method with random sampling. In this method particle filters are used 

which represent the probability distribution as a set of discrete particles which 

occupy the state space. Each particle stands for a possible robot location with a 

probability value. Initially, a large number of hypothetical configurations are 

randomly scattered. In a particle filter update cycle; [18] 

• New particle distribution is generated given the motion model and controls 

applied, 

• For each particle, an importance weight is assigned by comparing the 

particle’s prediction of measurements with actual measurements, 

• Particles are resampled based on their weights. 



 9 

When the probability of a particle becomes very low, a new random particle takes 

place. At first, the robot does not know its position, so the particles are evenly 

distributed over the potential locations. In the next time steps, the samples 

(particles) next to the actual position become more likely. Only a subset of total 

states (poses), which is probabilistically chosen, is tracked and analyzed. A particle 

filter has an advantage of ability to represent multi-modal distributions. However, 

the number of particles needed to represent a posterior grows exponentially with the 

dimensionality of the state space, that is n  particles for d−1 , 2
n  particles for 

d−2  and so on. Each particle indicates a robot pose and feature measurements are 

correlated with the robot poses. But, if the robot pose is known, features will be 

uncorrelated. Even though the Monte Carlo Localization is less robust than Markov 

Localization, its computational cost is considerably lower.  

2.2 Map Building 

Building and maintaining a map of the environment are other vital requirements for 

autonomous robotics in addition to localization. The map of the environment can be 

defined as a set of objects with defined positions and attributes needed to help 

navigation and localization of the robot. These objects have to be distinct, so that 

they can easily be recognized. Even though there are some other objects in the 

environment they don’t contribute to the map, unless they have salient 

characteristics [25]. These map features are sensed via the sensors of the robot and 

navigation is done accordingly. The relationships between the map features are 

generally geometrical, but other characteristics such as shape and color can also be 

incorporated to the map by making use of suitable sensors [26]. A map can also be 

composed of equal or variable size of cells instead of features. In this case, the 

navigation task can be achieved by considering the probabilities of the occupancies. 

Robots use the maps to plan their actions and act accordingly in order to achieve the 

necessary tasks such as obstacle avoidance and reaching a destination. The maps are 

constructed by the measurements obtained from the sensors and the current location 

information of the robot, so that a world model is generated in this way. During the 
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map building process the changes in the environment, accessible and inaccessible 

regions are also identified. In order to attain a consistent map, reliability of the 

localization has to be high. 

In map building task, there are some criteria that influence the quality of the map. 

First of all, the uncertainty needs to be modeled accurately in order to reflect the 

error between predicted and the actual system states. The map convergence can be 

achieved by well handling of the uncertainty, so that as new measurements are 

made the estimated map converges to the real map. Data association comes as 

another important factor for mapping. The correspondence between the map and the 

measurements obtained via sensors must be reliable. Here, real time efficiency of 

the mapping algorithm and robustness to variability of several aspects such as 

distance and viewing angle play an important role. For loop closing cases, the loop 

detection is the most significant feature of the mapping job that if the loop detection 

fails the map diverges and loses its functionality. One of the requirements for 

successful loop detection is the data association in a more global manner.  Another 

important issue is the accumulated error handling at the loop detection time. The 

error must be handled so carefully that the map does not diverge in the next cycles. 

Map capacity and the computational complexity are the other criteria. The map 

must contain minimum amount of information sufficient to allow proper navigation 

tasks. In this way, the computational cost for the map management also stays 

minimum improving real time performance [20]. 

The maps can be classified with respect to their reference as relative maps and 

absolute maps. 

In relative maps the relationships between landmarks are maintained. Considering 

geometric maps for instance, the relative relationship between two landmarks is the 

displacement between them.  The relative map of an environment with n landmarks 

can be expressed with minimum 1−n  and maximum 2/)1( −nn  relations. 

Actually, the minimum number is sufficient for the map expression and the 

relations not specified explicitly can be derived [27]. 
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In absolute maps the locations of the landmarks with respect to a defined reference 

frame are stored. While using absolute maps, an absolute state vector can be formed 

via combining the robot state and landmark locations expressed in the same 

coordinate frame [27]. 

The navigational maps can also be classified as geometric maps, topological maps 

and hybrid maps of former types: 

2.2.1 Geometric Maps 

These types of maps store the metric information about the relationships and 

positions of the objects existing in the environment [28]. When a fine grained map 

and precise motion control are desired the spatial information is required to be in 

geometric form, so that an exact navigation control can be achieved. The sensors 

measure the geometric attributes of the environment generally, so these maps are 

the natural outputs of the map building task. On the other hand, geometric maps are 

expensive to maintain, especially for large environments. The real time operation 

limits are exceeded, when the robot goes too much from the origin or the 

granularity of the map is asked to be higher. Moreover, a geometrical map of the 

environment with dynamic nature is difficult to maintain, since it probably will 

change with time [20].  

There are two types of geometric maps, namely occupancy maps and feature 

(landmark) maps: 

2.2.1.1 Occupancy (Evidence) Maps 

Occupancy maps, also called dense maps, evidence maps or certainty maps, 

represent the environment as an array of rectangular grids associated with 

occupancy belief of corresponding cell. In general, this belief is probabilistic having 

a value in the interval [0, 1] and updated for each observation according to the 

Bayes Rule. These updates are tightly related with the sensor models being used. In 

graphical representation of occupancy maps, the intensity of each cell shows the 
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probability of being occupied. While the dark cells stand for the obstacles such as 

walls, light ones indicate the free area. The unobserved regions are specified with 

gray tone [28]. Using evidence grids can be an appropriate solution for relatively 

small environments. The occupancy and free space information facilitate the robot 

path planning. Furthermore, they can be used for representing the unstructured 

regions. Another advantage is that there is no requirement for a feature extractor 

[30].   As the size of the environment increases, the computational requirements rise 

too, but the cost can be kept reasonable by increasing the cell dimensions at the 

expense of accuracy. The navigational tasks also become computationally 

expensive in the case of high granularity. Some map building methods that apply 

variable granularity have been proposed in order to attain the optimal solution [31]. 

For SLAM applications, the occupancy grids devoid of an appropriate uncertainty 

model and diverge in long term localizations. Although the occupancy maps are 

suitable for either localization or map building, not for the SLAM task due to lack 

of integrated modeling of motion and sensor uncertainties and their correlations. 

The cells are considered to be independent and no relationship between them is 

maintained. Since the occupancy grids can not represent the uncertainty globally, 

loop closing task becomes challenging. There is also not any mechanism to recover 

from the errors at the end of the loop in occupancy mapping [20]. In order to 

achieve convergence for an occupancy map, many observations of each grid must 

be done. Occupancy grids are well suited to the range scan matching 

implementations, where high resolution sensors such as laser range finders are 

employed. 

2.2.1.2 Feature (Landmark) Maps 

These types of maps represent the environment as a set of distinct features with 

defined locations. Landmarks are simple parametric features such as points and 

lines. This kind of representation is more suitable for mapping the large regions 

than occupancy maps, since it conveys a sparse set of objects. Unlike the occupancy 

grids, the free areas are not represented and so no computation is required for them. 

The disadvantage of this situation is that some crucial tasks such as obstacle 
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avoidance and path-planning must be achieved via different mechanisms other than 

the map knowledge [20]. Although these maps are more useful for large 

environments, they are not well suited for small rooms as occupancy grids. Because 

these maps do not contain so much detail as the occupancy maps do. As a result, the 

estimation procedure used in map building may suffer. Another disadvantage is the 

requirement for a feature extraction method in order to observe the necessary 

landmarks. This type of mapping also requires a structured environment in some 

way, meaning that the environment contains appropriate objects to be sensed 

through the available sensors. The features of the map are sensed through the robot 

sensors and localization is accomplished by the association of the map features with 

the measurements. In this thesis, this representation of environment is used, 

employing the corner detection methods.  With knowledge of these features and 

observations, the localization problem becomes an estimation problem. The 

incorrect data associations result in inconsistent maps and in order to mitigate this 

problem, batch associations where a number of measurements are used at the same 

time can be used.  

In landmark mapping, the feature initialization can be a problem depending on the 

sensors used. If the available sensor provides sufficient information about the 

observed landmark, initialization process can be done easily. But for some sensors, 

especially infrared, sonar sensors and monocular cameras, single observation is not 

enough and several data must be gathered from several robot locations. 

2.2.2 Topological Maps 

Another way for map representation is encoding the topology of the environment 

instead of the geometry. The topology of the environment simply holds the 

structural information and the relationships of the places existing in the 

environment. Construction of these maps does not depend on metric information 

and is achieved by using the places and the paths connecting them. They have a 

graph structure, where nodes correspond to distinctive places and edges define 

distinctive paths between these places [20, 28, and 32]. The robot must have 
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capabilities such as localizing relative to the nodes and traveling between the nodes 

in order to navigate in the environment robustly. The most important advantage of 

topological mapping is the capability of path planning and navigating according to a 

topological map using the straight forward graph search methods. In these maps, the 

navigation from one node to another one is achieved by a sequence of node 

transitions. Since no metric information is employed, the uncertainty estimation of 

the robot pose becomes unnecessary. There are some disadvantages of using these 

maps. One of them is the reliability issue especially for the complex environments. 

Although this type of mapping is sufficient for static and simple environments, pure 

topological data without any metric information may fail in complex and dynamic 

environments. Actually, the most critical problem is the misrecognition of places. In 

this case, topological structure in the map is broken and the map can give no more 

useful localization information. This possibility may generally come true for 

environments with similar places. 

2.2.3 Hybrid Maps 

This type of mapping makes use of both geometric and topological maps in order to 

combine their advantages and eliminate their limitations. The complementary nature 

of these maps makes them appropriate to use together. For example, geometric 

maps have much power on representing local relationships more accurately with 

appropriate uncertainty estimation. They are also crucial for optimal path 

computations. On the other hand, the topological maps are composed of locally 

connected regions with reduced representations and can get global information 

without a global reference frame [20, 28]. Furthermore, they present more 

understandable information for humans and symbolic systems [33]. While metric 

maps are suitable for relatively small areas due to computational reasons, the 

topological maps only permit for coarse localization and so suboptimal path 

planning.  Because of these reasons, the hybrid maps have the accuracy of metric 

maps and the scalability of the topological maps. Although geometric maps are used 

in this thesis, these maps can be incorporated to hybrid maps. The hybrid maps can 
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differ in terms of heterogeneity, hierarchy and separability, but the most common 

ones are geometrical maps on topological nodes and local submaps [28, 33].  

2.3 Simultaneous Localization and Map Building (SLAM) 

Simultaneous Localization and Map Building (SLAM), also called Concurrent 

Mapping and Localization (CML), is the concurrent execution of robot localization 

and map building tasks to achieve autonomous navigation goal. These tasks depend 

on each other, since map building without knowledge of position or localization 

without a known map is unthinkable. While sensor measurements are employed in 

map estimation, the robot motion also influences the map construction since 

measurements are relative to the robot location. Therefore there is a chicken and 

egg relationship between them. At one step of this cycle the robot observes its 

environment via its sensors and determines landmark locations making use of its 

current position estimate, whereas at the other step it improves its position estimate 

by reobserving the existing landmarks. As this cycle goes on and the landmarks are 

measured repeatedly, the uncertainties of landmark positions decrease and present 

more reliable localization information. Since the map of environment is constructed 

incrementally, a priori map is not needed eliminating the disadvantages of beacon 

based and a priori map based localization. Even so, the map can be built based on 

some initial information. Furthermore, the dynamic nature of the algorithm allows 

the robot to adapt to the environmental changes.  

SLAM algorithm provides the robot with fully autonomous navigation capability 

allowing long term operations in unknown environments. By this capability the 

robot can be left to wander in an unmapped place and explore the area without any 

external aid, although some kind of intervention may still be required in the case of 

physical handicaps that robot cannot handle with its available sensors such as stair 

wells, hollows or transparent objects. Moreover having the necessary information 

about the environment and the self-location, the robot can also perform other high 

level tasks. 
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There are some technical difficulties related to the SLAM problem including 

uncertainty, complexity, linearization, feature extraction and data association [23, 

24]. For SLAM solutions, stochastic methods are suggested generally in order to 

handle the uncertainty in the motion and measurement models. The uncertainties in 

the models need to be bounded in order for the robot to be able to localize itself 

accurately. Computational complexity is especially a crucial problem for real time 

systems. The cost increases with the size of the map making it limited to a 

maximum value to allow the real time operation. Linearization may be another 

problem for the systems in which this assumption is made. In Extended Kalman 

Filtering, the system is assumed to be linear ignoring the relatively small nonlinear 

components. As the map grows too much, this assumption may begin to fail and the 

map may become inconsistent. Feature extraction is a task to be handled for feature-

based methods and has the meaning of obtaining the distinct entities that are easily 

recognizable in the environment. The feature representation is generally decided by 

considering the environment and the sensors used. In order the obtained features to 

be useful they must be salient and invariant to some extent in terms of viewing 

angle and scale. Another difficulty about SLAM is the data association problem. It 

is the correspondence between the features of the map and the measurements. The 

computed correspondence is used to improve the estimates. If the data association is 

done incorrectly, the estimation process will diverge.  

There are generally two types of SLAM, namely Full SLAM and Online SLAM. 

Both types are probabilistic approaches to the SLAM problem.  In Full SLAM [35] 

the entire path and the map is estimated. To say more obviously, this type requires 

that a state vector containing all the states in the robot model and all landmark states 

have to be maintained and updated after each measurement. In the following 

figures, X  is the system state, U  is the control input, Z  is the sensor input and m  

stands for map of the environment with all subscripts denoting the time steps. 
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Figure 2-1 Full SLAM [43] 

 

Fast SLAM, which uses a sampled particle filter distribution model, is an example 

solution for Full SLAM problem. 

Online SLAM estimates the most recent robot state with map features and is 

expressed with the following equation [43]: 

 121:1:1:1:1:1 ...),|,(),|,p( −∫ ∫ ∫= ttttttt dxdxdxuzmxpuzmx Κ  (2-1) 
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Figure 2-2 Online SLAM [43] 

 

Extended Kalman Filter SLAM is an example solution for Online SLAM problem 

[34]. A linearized Gaussian posterior over the positions of environmental features 

and the robot position are calculated in this solution. This method is used in this 

thesis in order to solve the SLAM problem. 

2.4 Sensors Used For SLAM 

There are various sensors that can be used in SLAM applications including 

odometry, laser ranging and detection (LIDAR), acoustic sensors, radar, inertial 

navigation sensors (gyroscopes, accelerometers), GPS, visual sensors (monocular, 

omnidirectional, stereo cameras) and even sun sensors. These sensors should be 

chosen by considering the application characteristics. Noise, dimensionality of the 

output, range, the frame of reference, sample rate, robustness, cost, accuracy and 

operational conditions are some characteristics to consider during sensor selection.  

A group of these sensors are called external sensors, since they provide localization 

information with respect to external environment [25]. Global Positioning System 
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(GPS), laser scanners, ultra-sonic scanners, acoustic sensors, radar, vision-based 

sensors, sun sensors and compass can be regarded as in this class of sensors.  The 

sensors that do not give information referenced to the external world are internal 

sensors. Inertial navigation systems, gyroscopes, steering sensors and odometers are 

these types of sensors. Their measurements generally provide information about 

position variation rates. The information obtained from the internal sensors is 

utilized with the help of a vehicle model, so that the robot pose can be estimated. 

The measurement errors are then integrated in time, due to this incremental nature 

of information gathering. For instance, odometry-based sensing which relies on 

vehicle dynamics such as wheel diameters, wheel speeds and axle length is exposed 

to accumulated errors. These errors are originated from unequal wheel diameters, 

wheel misalignment, wheel slippage and surface irregularities [36]. As a result, 

accurate long-term localization cannot be achieved. Though odometry based 

localization is erroneous, it is still the most basic localization type due to its simple 

operation. In spite of these limitations, internal sensors have some advantages one 

of which is that they work independently from the environmental features, allowing 

them to be employed in various vehicles. Another advantage is their high frequency 

sampling. The fact that they do not have to emit waves in order to sense and their 

energy efficiency are also good characteristics. These properties make their usage 

advantageous especially for slip-free regions. 

Other sensors also have several advantages and disadvantages. For instance, sonar 

sensors are cheap and work fast, but their measurement accuracies are low. Laser 

range finders have high accuracy; however they are relatively slow devices. With 

the advent of sun sensors, they are able to provide absolute heading updates in order 

to correct the heading information obtained from gyros [37]. 

Vision-based sensing has several advantages. Visual sensors provide high resolution 

data allowing high level tasks such as feature extraction, object recognition and 3D 

reconstruction. By extracting features with their depths, the robot can build a map 

of the environment and localize itself. In the meantime, it can process the visual 

data for other missions. Vision-based techniques can provide good state estimates 
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for SLAM problem even in slippery terrains. On the other hand; there are some 

drawbacks of these sensors. Variations of illumination, viewing angles and scales, 

as well as occlusions deteriorate the data association performances of the methods 

utilizing these sensors. Moreover, they have high power requirements and 

limitations on the speed of maneuvers [37]. Even so, the advantages of them 

outweigh the disadvantages and their limitations can be compensated to some extent 

with appropriate ways. Because of these reasons, visual sensors are used in this 

thesis in order to solve the SLAM problem. 

For the sake of robustness, different techniques utilizing different sensors are tried 

to be fused in order to obtain more accurate systems and compensate for each 

other’s limitations. Especially a long-term and long-distance navigation entails both 

a low rate of error growth and robustness. A very successful example for a system 

with combination of several sensors is NASA’s MER mission rovers Opportunity 

and Spirit. Odometry and gyro data were fused and used with an Extended Kalman 

Filter for state estimation. A sun sensor was used to correct the heading 

information. In the case of slippery areas, a vision based approach was utilized for 

compensating odometry error [37]. In this thesis, this kind of approach is also used 

for autonomous SLAM. While the robot moves through the unknown environment 

and observe its surroundings via visual sensors, it also detects obstacles next to it by 

the help of it sonar sensors. In this way, an autonomous navigation capability for the 

robot system becomes possible. 

2.5 Visual SLAM 

Visual SLAM is the process of constructing a map of the environment and staying 

localized by mainly using vision-based information. The vision-based 

measurements are effectively utilized, so that necessary distinct features are 

extracted with their depth information and data association is done in order to 

correct the state estimations. The map of the environment is built incrementally by 

adding the obtained landmarks to the current map, while the robot determines its 

pose relative to this changing map. In Visual SLAM operation, different number of 
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cameras can be used. The two main approaches are those using a single camera, 

called Mono SLAM methods and those using two cameras, called Stereo SLAM 

methods. More than two cameras can also be used in order to make more certain 

observations, but in most cases this approach is redundant. In this thesis, Mono 

SLAM and Stereo SLAM approaches are investigated, implemented and presented 

by comparing their different properties. 
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CHAPTER 3  

 

STEREO VISION 

In this chapter, some stereo vision concepts will be presented which are used for the 

thesis. The first subject to touch is the camera calibration process. In order to 

effectively use the visual information obtained from the cameras, their internal and 

external parameters must be known and this can be achieved via a calibration 

procedure. Second, several camera models will be explained including the basic 

pinhole camera model and finite projective model. Finally, the techniques to 

determine the distances of the objects, especially the depth extraction for point 

features will be examined. 

 

3.1 Camera Calibration 

Camera calibration is the process of determining the internal and external 

parameters of the camera. Internal parameters are the quantities internal to the 

camera that play important role in imaging such as focal length, image center 

(principal point), skew factor, scaling factor and lens distortion. They represent the 

relationships between the pixel coordinates and the camera coordinates. External 

parameters, on the other hand, are the parameters that define the relative position of 

the camera, location and orientation of the camera, in the 3D world coordinate 

system. Camera calibration is necessary for the mapping of the camera pixel 

coordinates to rays in the scene, and also the points in the scene to camera pixel 
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coordinates. In this way, 3D quantitative measures of the objects existing in the 

observed scene can be recovered from the 2D images such as depth and height of an 

object. 

In this thesis, Caltech Camera Calibration Toolbox for Matlab is used for camera 

calibration which is easy to use and works on various Matlab versions and different 

operating systems [38]. For the calibration procedure, a chessboard like pattern has 

to be photographed from a number of different viewing angles as shown in Figure 

3-1. 

 

 

Figure 3-1 Calibration Images 

 

After loading all photographs, the outermost corners of each pattern must be 

marked manually, the tool then automatically determines the remaining corners. 
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Figure 3-2 Automatically found corners 

 

After corner extraction is done, the calibration process is started and the calibration 

parameters are stored in the specified variables with some uncertainties. The 

specified parameters are focal length, principal point, skew coefficient and the 

distortion coefficients. These parameters are determined by the toolbox via the true 

and the projected positions of the grid points. The focal length is modeled in pixels 

for both x  and y  directions independently. Similarly, the image center is 

determined in pixels. The skew coefficients which stand for the deviation of the 

coordinates of the camera pixels from perfect orthogonality are calculated. Their 

values are zero, when perfect orthogonality exists as in the calibration procedure 

made in this thesis. Lastly, the lens distortion coefficients are determined which 

represent the radial and tangential components of the distortion. After the 

calibration has been done, the reprojection errors of the grid points and the extrinsic 

parameters can be seen graphically, in addition to the textual representation of the 

intrinsic camera parameters. 
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Figure 3-3 Reprojection Error (in pixel) 

 

 

 

Figure 3-4 Extrinsic Parameters 
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After stereo calibration has been done, the extrinsic parameters of the stereo camera 

system are determined and can be viewed graphically as indicated in Figure 3-5. 

 

 

 

Figure 3-5 Extrinsic Parameters of the Stereo Camera System 

 

Table 3-1 Intrinsic Camera Parameters 

Intrinsic Parameters 

 Right Camera Left Camera 

fu (pixels) 901.47 904.69 

fv (pixels) 907.71 911.04 

u0 (pixels) 359.91 368.308 

v0 (pixels) 302.26 307.804 

s (degrees) 0 0 

d0 -0.29042 -0.27717 

d1 0.42845 0.36902 

d2 -0.00054 0.00045 

d3 -0.00143 -0.00121 



 27 

After the calibration has been done, the parameters are found as in Hata! Başvuru 

kaynağı bulunamadı. where uf  and vf  are focal length parameters; 0u  and 0v  are 

image center parameters; s  is skew parameter; 0d , 1d , 2d  and 3d  are the image 

distortion coefficients. 

 

Table 3-2 Extrinsic Camera Parameters 

Extrinsic Parameters 

 Right Camera Left Camera 

α (radians) 0 -0.00931 

β (radians) 0 -0.02528 

γ (radians) 0 -0.0037 

tx (mm) 0 -94.48839 

ty (mm) 0 0.20305 

tz (mm) 0 -0.28431 

 

The extrinsic parameters of our stereo camera system are shown in After the 

calibration has been done, the parameters are found as in Hata! Başvuru kaynağı 

bulunamadı. where uf  and vf  are focal length parameters; 0u  and 0v  are image 

center parameters; s  is skew parameter; 0d , 1d , 2d  and 3d  are the image distortion 

coefficients. 

 

Table 3-2, whereα , β  and γ  are the rotational parameters; xt , yt  and zt  are the 

translational parameters. Since the right camera is chosen as reference, the 

corresponding parameters have zero values. 



 28 

3.2 Camera Models 

A camera model is a theoretical model which represents the transformation of scene 

points into an image, a mapping from point space 3R  to image space 2R . Various 

camera models exist which describe different characteristics of the cameras. While 

some of these models rely on physical camera parameters, called explicit camera 

models, some of them represent only a projection of the scene points into the image, 

called implicit camera models [39].  In this section, the pinhole camera model and 

the finite projective model will be examined. 

3.2.1 The Pinhole Camera Model 

The pinhole model indicates the mathematical relationship between the coordinates 

of a 3D point and its projection on the image plane of the camera. Only rotation and 

translation of the camera followed by a perspective projection is represented. Other 

cases such as geometric distortions and blurring of unfocussed objects are not taken 

into account. 

 

 

 

Figure 3-6 The Pinhole Camera Model 

 

The model can be well understood by the help of Figure 3-6. If the camera center is 

taken as the origin of the Euclidean coordinate system, there is an image plane at 
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the focal length of the z-axis. Then the projection of a scene point X  on the image 

plane is the point where the line between the camera origin and the point X  

intersects the image plane. The image point coordinates can be easily determined as 

( ZfX / , ZfY / ) from similar triangles. The line originated from the camera center 

and perpendicular to the imaging plane is the principal axis. The point at which the 

principal axis intersects the image plane is the principal point.  

The projection of a 3D point can be expressed as follows: 
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3.2.2 Finite Projective Camera Model  

In this model, the mapping between scene points and the image space is constructed 

by a projection matrix P  as follows [36]: 

 

 PXx =  (3-2) 

 

where x = Tyx )1,,(  and X = TZYX )1,,,( . The point X  is in a 3D homogeneous 

coordinate system and x is in a 2D homogeneous coordinate system in the image 

plane. P  is a 3×4 matrix and expressed by: 

 

 [ ]tRKP |=  (3-3) 

 

where K  is a 3 x 4 calibration matrix (internal calibration of the camera), R  is a    

3×3 rotation matrix, t  is a 3×1 translation matrix and they represent an inverse 
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motion of the camera in the world coordinate system. R  and t  matrices are called 

the external calibration of the camera, since they are dependent on the world 

coordinate system [40]. By concatenating the translation vector to the end of the 

rotation matrix, the transformation matrix [ ]tR  is formed. The calibration matrix 

which conveys the information of internal characteristics of the camera is expressed 

as follows: 
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where 0x  and 0y  are the coordinates of the image center, s  is the skew parameter; 

xα  and yα  are focal lengths in pixels. Even though the principal point is assumed 

to be at the center in pinhole model, this does not hold generally and for this reason 

the image center parameters are incorporated into the calibration matrix. The image 

coordinate system and the camera coordinate frame does not coincide and the 

relationship between them is shown in Figure 3-7. 

 

 

Figure 3-7 Relationship between image and camera coordinate systems [36] 
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The image coordinates are expressed in pixels and the principal point has the values 

that are half of the image width and height in the ideal case.  

In some cases x  and y -axis may not be perpendicular, then the skew parameter 

takes non-zero value in this cases in order to model the skewness and non-

rectangular pixels. But most of the cameras are manufactured perfect enough today, 

so that the skew is generally assumed to be 0.  

When we consider xm  and ym  as number of pixels per unit distance, the focal 

lengths can be expressed as xx fm=α  and yy fm=α . There are different focal 

lengths, because pixels can be rectangular. The ratio xy ff /  is called the aspect 

ratio and it takes value of 1 in the case of square pixels. 

There is a need for a relationship between the camera and world coordinate frames, 

since it is necessary to make conversions from one frame to another for various 

tasks. This relationship is expressed by the rotation matrix R  and translation matrix 

t  and illustrated in the Figure 3-8. These parameters depend on the world 

coordinate system, so they are called external parameters. 

 

 

Figure 3-8 Transformation from world frame to camera frame 
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When the camera and world coordinate systems coincide, R  becomes the identity 

matrix and t  becomes the zero vector. 

3.3 Depth Perception 

Depth perception is the visual ability to perceive surroundings and get information 

about the 3D structure of the world. At least two images of an object is needed in 

order to perceive its depth. Therefore, multiple camera systems such as stereo 

camera pairs or multiple image shots of the same object taken by a single camera 

from different point of views are used in order to obtain the distance information. 

The multiple images provide the disparity information which is defined as the 

relative movement of an object in two or more views. In stereo systems, the 

cameras are separated by some amount and the disparity is related with the depth. 

The disparity is computed by corresponding points in the images and the depth 

information is extracted from the disparity. An alternative approach to using two 

cameras is to use a single camera and take images from different views. In both 

approaches when the lines of sight of the cameras are not parallel, perspective 

distortion must be considered while the point correspondence between images is 

being done. Since the images cannot be taken at the same time in the second 

approach, the depth sampling rates are lower. 

3.3.1 Non-parallel Image Planes 

In a non-planar stereo camera system, the cameras view the 3D objects from 

different positions and viewing angles and there are geometric relations between 

these 3D object points and their corresponding image points which put some 

constraints between the image pairs. The epipolar geometry is the geometry of 

stereo vision and explains the situation of intersecting image planes with the plane 

defined by image points and camera centers. It is actually the intrinsic projective 

geometry of the two views and do not rely on the scene but only intrinsic camera 

parameters and their relative poses. This geometry is usually used for image 
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correspondence search and matching for image pairs. In the Figure 3-9, the epipolar 

geometry is presented: 

 

 

Figure 3-9 The Epipolar Geometry 

 

There are some terms to be defined in epipolar geometry in order to explain the 

geometric relations. These terms are epipolar plane, epipolar line and epipole. In the 

Figure 3-9, X  is the object point with its projection points x  and 'x  on the left and 

right image planes, C  and 'C  points are the camera centers. The epipolar plane is 

the plane defined by the points X , C  and 'C  and contains the baseline. The epipole 

is the point at which the baseline intersects with the image plane. Moreover, it is the 

image of the camera center belonging to other camera. The epipolar line is the 

intersection of the epipolar plane with the image plane. The epipolar plane 

intersects the left and right image planes at the corresponding epipolar image planes 

and a correspondence is defined between the epipolar lines. The object point, 

corresponding image point and epipolar lines are all on the same plane, the epipolar 

plane, which means the corresponding image point of an image point on the 

epipolar line is on the other epipolar line. By utilizing this fact, the image search 

and matching tasks for stereo images become much simpler. 
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In order to recover the depth of a 3D object point X , it is needed to find the x  and 

'x  values. When these values are known, the depth can be found by back projecting 

the lines defined by the camera centers and the corresponding image points 

transforming the problem of depth determination into the problem of finding the 

corresponding image point of the known image point. For this purpose, the relation 

between the epipolar lines and the image points needs to be known. The 

fundamental matrix is the algebraic representation of the epipolar geometry and 

constructs this relationship. According to this relationship given an image pair, for 

each image point x  in one image, there is a corresponding epipolar line 'I  in the 

second image. In this way, the fundamental matrix provides a projective mapping 

from points to lines. This mapping is indicated as follows: 

 

 FxI ='  (3-5) 

 

where x  is the image point, F  is the 3×3 fundamental matrix and 'I  is the 

corresponding epipolar line. The fundamental matrix F  is a matrix of rank 2. 

Since the image point x’ lies on the epipolar line 'I , 

 

 0'' =Ix
T  (3-6) 

 

From the equations 3-5 and 3-6, the following relation can be obtained, which is 

called the epipolar constraint: 

 

 0' =Fxx
T  (3-7) 
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Since the fundamental matrix is a representation of the epipolar geometry and the 

epipolar geometry depends on the intrinsic parameters and relative poses of the 

cameras, this matrix contains this information also. After some calculations the 

fundamental matrix F  is computed as follows: 

 

 [ ] 1' −−= RKtKF x

T  (3-8) 

 

where [ ]xt  is the skew-symmetric matrix and indicated as follows for 
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3.3.2 Image Planes with Parallel Optical Axes 

This is the simplest case for a stereo camera system, in which the two cameras are 

separated by a baseline distance b  with their parallel optical axes. In this coplanar 

system, the image of an object occurs on different locations at the planes 

determined by the baseline distance and depth of the object. 

 



 36 

 

Figure 3-10 Coplanar Image Planes with Baseline Distance b 

 

The following equations can be obtained by using the basic triangular similarity 

rules: 
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where ),( ll yx  and ),( rr yx  stand for the left and right image point coordinates. In 

this model, the displacement of corresponding points between two images is called 

disparity and indicated by d . The disparity is inversely proportional to the depth of 

the object, whereas it is proportional to the focal length and baseline distance. 

Therefore the knowledge of disparity, focal length and baseline distance is 

sufficient to determine the depth of the object. 

Considering the epipolar geometry presented in the section 3.3.1, the resulting 

geometry for parallel image planes is viewed as follows: 

 

 

Figure 3-11 Epipolar Geometry for Parallel Image Planes 

 

In this case, the epipolar lines are parallel to the baseline and the epipoles are at the 

infinity since the baseline and image planes intersect at the infinity. Moreover, 

epipolar lines become parallel also and they correspond to image rows. As a result, 

the point correspondance problem simply becomes searching the corresponding 

point on the other image with the same vertical coordinate of the image point. 



 38 

3.3.3 Triangulation 

In order to compute the depth of an object, the image points are back projected to 

lines which intersect at the depth of the object ideally. However, in real applications 

these lines do not intersect due to the noise present in the correspondence task. 

There are a number of suggestions for this problem one of which is the finding mid-

point of the common perpendicular to the two rays, the mid-point of the line 

segment perpendicular to both lines from the closest points. Unfortunately, this 

procedure does not give the optimum results in most cases such as the case where 

the angles are not equal [41]. The method using the projection matrices presents 

more accurate results; therefore this procedure is used in this thesis. 

We defined the P  and 'P  matrices as the projection matrices of the corresponding 

images so that the images of an object point X  are represented as PXx =  

and XPx ''= . The cross products PXx ×  and XPx ''×  are equal to zero and we get 

two linearly independent equations from each cross product. Furthermore, in order 

to get a unique solution, we put the constraint 1=X  into the problem. If we 

define the projection matrices as follows: 
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where iP  and 'iP  are the 1×4 row vectors of the matrices P  and 'P  respectively, 

the equations obtained from the cross products are given as: 

 

 0)()( 13 =− XPXPx  (3-16) 

 0)()( 23 =− XPXPy  (3-17) 
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            0)()( 12 =− XPyXPx  (3-18) 

                                     

                                                         

                                                       

            0)'()'(' 13 =− XPXPx  (3-19) 

            0)'()'(' 23 =− XPXPy  (3-20) 

            0)'(')'(' 12 =− XPyXPx  (3-21) 

 

                                                 

By selecting the first two linearly independent equations of the each equation set, 

the equation AX = 0 is formed as follows: 
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where the matrix A is: 
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As stated earlier, the back projected rays do not intersect usually and optimal 

solutions are tried to be found. An optimal solution can be attained using the 

Singular Value Decomposition of the matrix A , which is expressed as T
UDVA =  
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where U  and V  are orthogonal and D  is a diagonal matrix. Solving this equation, 

the optimal solution is found as the last column of V  in least square sense.   

 

3.4 Landmark Detection and Matching 

In order to achieve robot localization, the objects existing in the environment are 

measured somehow and their distance information is extracted from these 

measurements. These distance values are incorporated in the current map of the 

environment with unique labels. The distance information of the objects is used for 

determining the robot location in the environment. In order this scenario to be 

correct, the environment should contain distinct objects recognizable via vision-

based methods, which are called as feature  or landmark . In the following 

subsections the landmark type used in this thesis and its properties, detection 

methods and matching task are described. 

 

3.4.1 Landmark Type and Characteristics 

 

The map building and localization system presented in this thesis uses point features 

that exist in the environments such as corners of walls, doors or other objects. These 

features exist in the environment naturally, that’s why they are called natural 

landmarks. These are discrete features and do not have continuous appearance, so 

that recognition of them can be achieved unambiguously. In order for a robot to 

have long-term localization ability, these landmarks should have invariant 

characteristics with respect to some criteria such as viewing angle, measuring 

distance etc.  The most important elements of these characteristics are repeatedly 

detectability and measurability, reliability and longevity. First of all, the landmarks 

should be stationary in the environment. In this way a landmark can present reliable 

localization information and the robot can accurately update its position. Landmarks 

that have regular motion patterns in the environment  may also present reliable 
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information, but derivation of this information is of course more challenging and 

only static landmarks are used for SLAM operation in this thesis. Another property 

that affects the reliability of the landmarks is that they should not be occluded 

frequently for long time periods. Otherwise, they cannot be seen and detected by the 

robot system although they have good characteristics for detection and matching 

task. Furthermore, the landmarks should be recognizable from a varying set of 

distances and viewing angles, since the robot moves in the environment and 

probably does not view the landmarks from the same distance and angle with the 

distance and angle that it first measures them. 

In order to represent the landmarks, we use simple image patches with dimensions    

15×15. The selection of this patch size is due to a tradeoff between computational 

complexity and probability of mismatch. When the size is smaller, the probability of 

mismatch increases. On the other hand, higher patch size slows down the matching 

task by increasing the computation time. In a robot system with more powerful 

processor and utilizing a steerable camera head, a larger image patch is more 

appropriate reducing the probability of mismatch. Since our system has a non-

steerable camera system and moderate processing properties, the specified patch 

size is selected to give quite good results. 

Apart from the patch size, there is another important factor that increases the 

computational cost of the SLAM operation: number of landmarks. In fact, this 

number dominates the computational complexity of the algorithm, when it exceeds 

a particular threshold, because the Kalman Filter estimation used in this thesis has 

covariance calculations which get more complex with increasing number of 

elements. Therefore the number of landmarks must have a reasonable value, in 

order to achieve a real-time operation. For this reason, a real-time efficiency 

algorithm will be presented in the section 6.3. Moreover, various experiments with 

different number of landmarks can be conducted with our tool SLAM Suite, since it 

presents a parameterization infrastructure for various SLAM characteristics. The 

experimental and analysis results of these observations will also be presented in the 

experiments section.  
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3.4.2 Detecting Landmarks 

In order to make use of the salient features in the environment for localization and 

map building purposes, they must first be detected via a feature detection method. 

We use the Shi and Tomasi’s feature detection method in this thesis, which is 

essentially a corner detection algorithm [42]. This method is similar to the Harris 

corner detector, but it is better in detecting salient features that can easily be 

distinguished from their surroundings. The image patches with high intensity 

variation can be identified using this detector. 

The method introduced by Shi and Tomasi first calculates the horizontal and 

vertical gradients of the image intensity for each image pixel and sums up the 

values belonging to the current searching patch as follows: 
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where xg  and yg  are horizontal and vertical image intensity gradients and P  is the 

image patch. After the summation both eigenvalues of the matrix Z  are calculated 

and used as selection criteria. When the smaller of them is greater than a predefined 

threshold, the patch is accepted to be corner. The case in which there is a single 

large value among the eigenvalues indicates that the patch contains a one directional 

variation such as an edge.  

In order to find good features, this operator is applied all over the image and the 

patches with high smaller eigenvalues are chosen. When the patches are selected, 

some criteria are also considered one of which is the quality level. This criterion is 

used to determine the acceptable quality of the image patches to be selected. 

Another factor affecting the patch selection is the minimum possible distance 

between corners. When the Euclidean distance between two adjacent corners is 

below this value, the less strong corner is eliminated. To achieve real-time operation 
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this distance should be kept large, so that the vision system works on a sparse set of 

strong features and does less processing. All of these criteria can also be changed 

and tuned by our tool SLAM Suite. OpenCV library has a function called 

kuresToTraccvGoodFeat  which implements this algorithm and this function is 

used as a feature detector in this thesis. 

Of course all of the corners detected by this detector are not good features. The 

selected image patches may include some bad features such as light reflections and 

shadows. But the algorithm presented in the next section detects these bad features, 

when the robot cannot reobserve them for several times. When a bad feature is 

detected, the SLAM system gets rid of it and updates the map. 

 

3.4.3      Landmark Searching and Matching 

Landmarks are searched on the taken camera image for the purpose of adding new 

landmarks to the current map and detecting the existing landmarks to use them in 

system update. Searching for new landmarks needs to be done all over the image 

surely, but searching the existing features all over the image is a computationally 

complex burden. In fact, in a state estimation system this is unnecessary and every 

landmark has an uncertainty region to search for. The probability of detecting the 

pre-known feature in this area is quite high, so that only this region is searched. 

This subject will be discussed with technical details in section 6.1.5. 

After finding the landmarks in the image, it is time for matching task. Matching is 

required for several reasons. One reason is to detect an existing landmark in the 

image. The features added to the map are associated with the image patches taken 

when they are first observed. The associated image patch is matched with the 

corners found in the search region. When a high correlation is detected, the feature 

is said to be reobserved. Another reason for matching is to determine the stereo 

image pair of the same landmark. When an existing or new landmark is detected on 

the right camera image, it also needs to be found in the left camera image by 
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matching process. In this way, the depth of the landmark in question can be 

extracted and fed to the system for correction. 

In order to find corresponding pair during matching, several similarity criteria can 

be utilized using the matching methods such as sum of squared differences, cross 

correlation and correlation coefficient, also with their normalized forms. The 

normalized sum of squared differences is defined as follows: 
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where ),( yxT  is the image patch and ),( yxI  is the image which is being searched. 

This similarity checking method compares all of the image patches of the same size 

with image patch for each pixel on the main image by taking difference of image 

patch pairs. These differences are added up and the result is divided by a 

normalizing factor. For a perfect match, the result must be zero. However, this is 

not achievable for real cases and a specified threshold is used generally for decision. 

If the most matching patch has also a similarity values below the threshold, it is 

accepted to be matched. The OpenCV function that we use detects strong features 

on the image, so it is enough to apply the similarity checking for only those detected 

corners. 

Another method used for similarity checking is cross correlation. The equation that 

belongs to the normalized cross correlation method is as follows: 
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where ),( yxT  is the image patch and ),( yxI  is the image being searched. The 

template image is compared with the image blocks constructed around the corners 
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detected by the feature detection algorithm. These image blocks are constructed to 

be of the same dimensions with the template image. Ideally, the result must be 1 for 

a perfect match; however this cannot be attained in real life because of viewpoint 

variances, illumination changes and noise, so a pre-determined threshold should be 

employed to be checked for decision. The values below this threshold are then 

discarded. 

The last similarity checking method utilized in this thesis is correlation coefficient. 

The normalized version of this algorithm has the following form: 
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where ),( yxT  is the image patch and ),( yxI  is the image being searched, 
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and 
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While searching a stereo pair of a landmark, it is enough to search it in the image 

regions proximate to the epipolar line. If the corner with highest similarity value 

also passes the threshold control, then it is selected and the depth information of 

that feature is extracted by triangulation. 
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CHAPTER 4  

 

STATE ESTIMATION 

Estimating the state of the robot and its environment is a fundamental problem. An 

efficient state estimator can compute the current state of the robot recursively based 

on the previous state. This computation can be done using Bayesian Filter. In this 

chapter, we will first introduce the basic Bayesian Filter. Then, we will present the 

Kalman Filter which is a form of Bayesian Filter. Finally, we will explain the 

extended version of the Kalman Filter for nonlinear systems, namely the Extended 

Kalman Filter. 

 

4.1 Bayesian Filter [44] 

Bayesian Filter recursively calculates the posterior distribution:  

            )|()( TTT ZxPxBel =  (4-1) 

 

Estimation of the robot state given the data is  

 

            )|()( Ttt ZxpxBel =  (4-2) 

The robot’s data TZ  includes observations io  and actions ia . 
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            ),...,,,,|()( 0211 oaoaoxpxBel tttttt −−−=  (4-3) 

Using Bayesian Theorem we get: 
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),...,|(),...,,|(
)(

01

0101

oaop

oaxpoaxop
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ttttt

t

−

−−=  (4-4) 

Since the denominator is constant with respect to tx , we can assume it constant with 

value η/1 . So the resulting equation is, 

            ),...,|(),...,,|()( 0101 oaxpoaxopxBel tttttt −−=η  (4-5) 

First-order Markov assumption shortens first term: 

            ),...,|()|()( 01 oaxpxopxBel ttttt −=η  (4-6) 

Using the theorem of total probability, we expand the last term, 

            1011011 ),...,|(),...,,|()|()( −−−−−∫= ttttttttt dxoaxpoaxxpxopxBel η  (4-7) 

First-order Markov assumption again shortens middle term: 

            101111 ),...,|(),|()|()( −−−−−∫= ttttttttt dxoaxpaxxpxopxBel η  (4-8) 

Finally, substituting the definition of )1( −txBel  we obtain the probability 

distribution estimated from the robot’s data: 

            1111 )(),|()|()( −−−−∫= tttttttt dxxBelaxxpxopxBel η  (4-9) 

For Bayesian Filter iteration, motion model and sensor model can be considered as 

follows: 
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•••• Propagation of motion model: Current state estimate is computed before 

taking a sensor reading by integrating over all possible previous state estimates 

and applying the motion model.    

 

            ∫ −−−−− = 1111 )(),|()( tttttt dxxBelxaxPxBel  (4-10) 

 

•••• Sensor model update: Current state estimate is computed by taking a sensor 

reading and multiplying by the current estimate based on the most recent motion 

history. 

 

            )()|()( tttt xBelxoPxBel −=η  (4-11) 

There are some requirements to be realized for the implementation of the Bayesian 

Filter as follows: 

 

• Representation for the belief function 

• Update equations  

• Motion model 

• Sensor model 

• Initial belief state 

 

Representation of the belief function can be sample-based or parametric. Particle 

filter is an example for the sample-based representations. An example for a 

parameterized Bayesian Filter is the Kalman Filter. 
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4.2 Kalman Filter [44] 

Kalman Filters represent posterior belief by a Gaussian (normal) distribution. Initial 

belief )( 0xBel  is a Gaussian distribution. 

 

State at time 1+t  is a linear function of state at time t : 

 

            )(1 actiontttt BuFxx ε++=+  (4-12) 

 

Observations are also linear: 

 

            )( nobservatiottt Hxz ε+=  (4-13) 

Error terms are zero-mean random variables which are normally distributed. Motion 

model and sensor model are Gaussian. Each belief function is uniquely 

characterized by its mean µ  and covariance matrix Σ . Computing the posterior 

state implies to compute a new mean µ  and covariance Σ  from old data using 

actions and sensor readings.  

The motion model of a linear dynamic system can be expressed as: 

 

            ttttttt wGuBxFx ++=+1  (4-14) 

where tF  is state transition function, tB  is control input function, tG  is noise input 

function with covariance Q , 1+tx  and tx  are posterior and prior states respectively, 

tu  is control input and tw  is process noise. 

 

The measurement equation of the system can be expressed as: 
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            1111 ++++ += tttt nxHz  (4-15) 

where 1+tH  is sensor function, 1+tz  is sensor reading and 1+tn  is sensor noise with 

covariance R . 

Noise components for the above equations, namely tG , tw  and 1+tn , are introduced 

to deal with the uncertainties that the deterministic system models cannot manage. 

These uncertainties are imperfections in the models, the environmental effect that 

are out of control and the noise in sensor measurements. 

According to the Fundamental Theorem of Estimation, the state and covariance will 

be: 
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The following notation will be used for next: 

            

]|[ˆ

]|[ˆ

]|[ˆ

1|1

|

111|1

tttt

tttt

tttt

ZxEx

ZxEx

ZxEx

++

++++

=

=

=

 (4-17) 

Using the notation described in 4-17, we obtain the following equations for the state 

estimates: 

 

• Predicted state: 

            ttttttt uBxFx +=+ ||1 ˆˆ  (4-18) 

• Predicted measurement: 

            ttttt xHz |11|1 ˆˆ +++ =  (4-19) 

• Predicted state covariance: 

            T

ttt

T

tttttt GQGFPFP +=+ ||1  (4-20) 
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• Innovation covariance: 

            11|11|1 +++++ += t

T

tttttt RHPHS  (4-21) 

• Residual: 

            tttt zzr /111 ˆ +++ −=  (4-22) 

• Kalman gain: 

            1

11/11

−

++++ = t

T

tttt SHPK  (4-23) 

• Corrected state estimate: 

            11/11/1 ˆˆ
+++++ += tttttt rKxx  (4-24) 

• Corrected state covariance: 

            tttttttt PHKPP /111/11/1 ++++++ −=  (4-25) 

4.3 Extended Kalman Filter [44] 

It is one of the first probabilistic SLAM algorithms and solves the Online SLAM 

problem using linearized Kalman Filter. It is an extension of Kalman Filter to apply 

it to the non-linear systems. 

In mobile robot applications the odometry estimate is rather treated as a sensor than 

a reflection of the robot’s control system. Mobile robot dynamics are not linear as in 

the case of many other systems. A linear process model should be built out of the 

non-linear system dynamics to model such systems. Extended Kalman Filter is an 

extended version of Kalman Filter, where state and sensor models of the non-linear 

systems can be linearized at the current state estimate with the cost of state error 

residual increase since it is not the best estimate. 

Non-linear dynamic model indicates the change of robot state with time:      

 

            tttt wuxfx +=+ ),(1  (4-26) 
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where f  is a non-linear function and ),0( tt Nw σ= . Non-linear measurement 

model predicts the measurement value given the robot state: 

 

            ttt vxhz += )(  (4-27) 

where h  is a non-linear function and ),0( tt Nv σ= . Since Gaussian probability 

distribution functions are not preserved under non-linear transformations, resulting 

vectors for above equations are not Gaussian and state estimation cannot be done 

recursively. In order to linearize the systems, the non-linear functions f  and h  are 

expanded in Taylor series around the previous estimate ttx |ˆ . In this expansion, if the 

higher order terms are neglected, the resulting equations behave linearly and 

computational cost for solving these equations reduces. But these equations do not 

give the best estimates and they are suboptimal. 

Based on the linearized model equations, Extended Kalman Filter is a suboptimal 

state estimator and its equations can be obtained similarly with linearization 

assumption above in two phases. 

The equations for the prediction phase are given below: 

 

• Predicted State 

            ttttt uxfx +=+ )ˆ(ˆ ||1  (4-28) 

• Predicted Measurement 

            )ˆ(ˆ ||1 tttt xhz =+  (4-29) 

• Predicted State Covariance 

            t
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tttt Q
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f
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∂
=+ ||1  (4-30) 

• Innovation Covariance 
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            t
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=+ |1  (4-31) 

 

The equations for the correction phase are as follows: 

 

• Residual 

            tttt zzr /111 ˆ +++ −=  (4-32) 

 

• The filter gain 

            1
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∂

∂
= tttt S
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PK  (4-33) 

• Corrected State 

            11/11/1 ˆˆ
+++++ += tttttt rKxx  (4-34) 

• Corrected State Covariance 

            tttttttt PHKPP /111/11/1 ++++++ −=  (4-35) 

Due to linearization for extension to Kalman Filter, some limitations are introduced 

such as non-zero mean of state prediction error and singular innovation state 

covariance matrix. As in Kalman Filter, process and measurement covariances 

specify the reliability of the filter and both should be small. Because at each time 

step Jacobian matrices are calculated, system becomes time-variant and this 

increases the computational cost compared to case where Kalman Filter is used for 

a time-invariant system. 

There are some problems with EKF. First, it uses uni-modal Gaussians to model 

non-Gaussian probability density function. To cope with this problem, multiple 

EKFs can be used. Multi-Gaussian approach permits to represent arbitrary 

probability densities. In such multiple hypothesis tracking, consistent hypothesis are 
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tracked while inconsistent ones are dropped. In this manner, it is similar to particle 

filters except that the number of filters to track is much smaller. Second, only one 

set of measurement-feature associations is considered and maximum likelihood 

association is used. This reduces the recovery chance for inconsistent associations. 

Another problem with a Kalman Filter is that if the uncertainty of the robot 

becomes too large because of a collision or another reason, filter fails and the 

position is definitely lost. 
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CHAPTER 5  

 

THE ROBOT SYSTEM 

In this chapter, the hardware and software components of our robot system are 

described first. Then, the robot models used in this thesis are discussed. 

5.1 System Composition 

There are three main components that our robot system is composed of: 

• The robot vehicle 

• The camera system 

• The processing unit 

The camera system is mounted on the vehicle platform and they are the mobile 

components of the robot system. This mobile part is controlled by a stationary 

processing and coordination unit. In the following subsections, these components 

are described in detail. 

The composition of our robot system is shown in Figure 5-1. 
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Figure 5-1 Robot System Composition 

 

5.1.1 The Robot Vehicle 

The robot vehicle used in our thesis is a Pioneer 2 DX8 model manufactured by 

ActiveMedia Robotics Company. It has a differential 3-wheeled robot base with 

two bigger wheels at the front and the third one is at the back. The two wheels at the 

front of the vehicle are able to move independently by driving two servo motors, 

whereas the wheel at the back of the vehicle is just a free-running one and used for 

stabilization purpose. The servo motors are controlled by a Hitachi microcontroller 

and controller board. The vehicle has 3 degrees of freedom for motion, which are 

translation in two axes and rotation around the axis perpendicular to the motion 

plane. The wheel revolutions of the vehicle are read by shaft encoders and these 

readings are used to specify the robot location with respect to its starting point. The 

midpoint between two wheels at the front is the center of the vehicle and the robot 

location is specified considering this point. However, to determine the robot 

location in this way, namely odometry, is error-prone; because the cases such as 

slippage and skidding cannot be handled. We will show the capability of our system 

for handling these cases in Experiment 3 of chapter 7, by comparing with the 

odometry readings. 

At the front of the robot there is a sonar arc composed of several sonar sensors, 

which is used for proximity sensing. Although it can be used for depth perception 

also, it is not in this thesis; because its depth range is small and uncertainty of depth 
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measurement is high. The sonar arc of the robot vehicle is used for only proximity 

sensing and so for obstacle avoidance in this thesis, whereas the depth perception 

task is achieved by visual tools. The sonar arc of the vehicle is illustrated in Figure 

5-2. 

 

 

Figure 5-2 The Sonar Arc of the Robot Vehicle 

 

The communication between the robot vehicle and the processing unit is established 

by a RS-232 serial cable, which has Rx, Tx and GND pins for signal transmission. 

The vehicle is supplied power via the rechargeable 12V batteries. 

The vehicle is controlled by the software provided by the ActiveMedia Robotics, 

which is called Aria. The Aria library involves a complete set of functions in order 

to control the vehicle and make it perform the desired commands. Moreover, the 

library provides an infrastructure for reading vehicle current state characteristics 

such as odometry values, velocity and acceleration of the vehicle, battery voltage 

etc. We will utilize the odometry readings at most in chapter 7 in order to compare 

and show our experimental results. 
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5.1.2 The Camera System 

There is a stereo camera system mounted on our robot vehicle, which was 

constructed previously for the theses [36 and 40]. The system has two identical 

Sony color board cameras, composite video cables and a board on which the 

cameras are mounted. The stereo camera system is depicted in Figure 5-3. 

 

 

Figure 5-3 The Stereo Camera System 

 

The cameras give analog interlaced outputs and they are transferred via composite 

video cables. Cameras are fixed on the board and their positions do not change 

significantly in time. So, the camera calibration parameters obtained can be used for 

long time periods. The cameras have resolution of 768×576 in PAL standard. They 

have also 18× optical zoom and 10× digital zoom capabilities. But they are used in 

wide angle mode in this thesis, in order to view wider scene and determine better 

features to track in this way. Moreover the opportunity of tracking a feature for 

longer periods is gained, since it exists in the field of view longer. Therefore, the 

camera calibration procedure is also done in wide angle mode. The grayscale 

outputs are taken from the cameras and used, since color is not needed for our 

system. The general characteristics of the cameras are given in Table 5-1. 
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Table 5-1 Technical Characteristics of the Cameras 

 

 

 

 

 

 

 

The right camera is the reference camera in the stereo construction. Its center is the 

origin of the camera coordinate frame. The camera coordinate frame and the robot 

vehicle coordinate frames coincide, therefore the depth information gained by the 

camera system is also obtained with respect to the vehicle and there is no need for 

any transformation between these frames. The right camera is also selected as the 

active camera, when our SLAM system is operating in single camera mode.   

5.1.3 The Processing Unit 

The processing and coordinating unit of our robot system is a stationary PC host. It 

has a Pentium 4 - 2.4 GHz processor and 512 MB ram. These processing and 

memory specifications are sufficient for image processing tasks. PC has also a hard 

disk with enough storage capacity for the necessary programs and intermediate 

files, Matrox Meteor II frame grabber card and 64 MB GeForce 4 MX440 video 

graphics card. Although the video graphics card is not directly influential on image 

processing tasks, it is needed for visualizing our system via its graphical user 

interface. 

As stated earlier, the cameras give analog outputs which are needed to be converted 

into digital form in order to perform image processing. The conversion process is 

achieved by the help of Matrox Meteor II frame grabber card. It samples the analog 

 Right Camera Left Camera 

Model Sony FCB-IX47AP Sony FCB-IX47AP 

Serial No 1001512 1001511 

Resolution 768×576 768×576 

Focal Length 3.1 – 31 mm 3.1 – 31 mm 

Optical Zoom 18× 18× 

Digital Zoom 10× 10× 
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output of the cameras and forms digital data. The card supports up to 12 video 

inputs, which is quite sufficient for our system. But, there is a time limitation for the 

stereo case, since the card processes the video inputs by multiplexing them one at a 

time. 

The operating system of our PC is Microsoft Windows XP. This operating system 

with necessary hardware components can satisfy the time requirements of our 

SLAM system. The main reason for this selection is that all of the software tools 

which we use for developing our system are compatible with this operating system. 

We have developed our system in Visual C++ .NET 2003 environment using the 

programming language C++. Aria and MIL (Matrox Imaging Library) C++ libraries 

are integrated into our code and used for controlling the robot vehicle and the frame 

grabber card respectively. Aria library is free but MIL is a commercial one. Luckily, 

there is a free version with limited features called MIL-Lite. This version allows 

only image and video acquisition. Therefore an open source and free library, 

namely Intel Open Source Computer Vision Library (OpenCV) is used for image 

processing tasks. The graphical user interface (GUI) of our system is developed 

using Windows Forms framework provided by our development environment. We 

have also built and used C++ shared libraries from the MATLAB code that we have 

formed, for plotting the maps constructed by our system via its GUI.  

5.2 Robot System Models 

In this section, the mathematical models associated with the robot vehicle and the 

camera system are presented. 

5.2.1 The Vehicle Model 

Our robot is assumed to be running always on a ground plane without inclination. 

With this assumption a world coordinate frame is defined to determine the robot 

location at the time that robot starts its motion, which has x  and z  axes forming 
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the ground plane and y -axis perpendicular to that plane. Since the plane has no 

inclination, the robot has a constant position which is 0 in the y -axis. Therefore, 

the translational position of the robot with respect to the world coordinate frame is 

defined by only the x  and z -axis components. The rotational position of the robot 

is defined by a single angleθ , since it has one degree of freedom from the rotational 

point of view. As a result, the robot position with respect to the world coordinate 

frame is represented by Tyx ),,( θ , where x  and z  are the coordinates of the robot 

center and θ  is the robot’s orientation with respect to the z -axis. The 

representation of the robot location in the world coordinate frame is illustrated in 

Figure 5-4. 

 

 

Figure 5-4 The Location of the Robot Vehicle in the World Coordinate Frame 

 

At starting position, all of the robot position parameters have zero values and the 

robot coordinate frame coincides with the world coordinate frame. 
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In our thesis, translational and rotational displacements are taken as control inputs 

instead of velocities. In the latter case displacement cannot be calculated exactly 

during acceleration and deceleration and incorporating acceleration in the model 

makes calculations complicated which is not desired. The other reason for this 

selection is the time difference between the channel switching of the frame grabber 

card. The switching time is about 100 ms for our system, and this causes an extra 

positional difference at the time of grabbing image proportional to the speed 

between the cameras. The depth calculations can still be made by taking account 

this positional difference, but the calculation of the displacement is not certain as 

the one in the first case and in the latter case camera model becomes dependent on 

the vehicle model which is also not desired. While the second reason applies only to 

stereo operation, the first reason applies both stereo and mono modes of our system. 

Because of these reasons, the motion types of our vehicle are moving some amount 

of distance d  forward or backward and turning some amount of angle ψ  in the 

requested direction. Fortunately Aria library includes exactly these displacement 

commands, so our control input vector is Td ),( ψ . At a single time step one of these 

control inputs can be applied to the robot vehicle. 

The new robot location can be calculated as follows: 

            )(sin)()()1( kkdkxkx θ+=+  (5-1) 

            )(cos)()()1( kkdkzkz θ+=+  (5-2) 

            )()()1( kkk ψθθ +=+  (5-3) 

Surely the robot vehicle cannot attain the exact displacements and come to final 

positions specified above due to wheel slippages, surface irregularities and internal 

imperfection of the vehicle itself; that’s why we seek to utilize vision tools to 

correct the robot position. Therefore some uncertainty should be modeled for the 

motion defined. We model the uncertainty in the control inputs as Gaussian with 

zero mean. In this uncertainty model we selected standard deviations for the control 

inputs proportional to the inputs. The standard deviation values are as follows: 
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            kdd =σ  (5-4) 

            Ψ=Ψ kσ  (5-5) 

where 2.0=k . 

We define the estimated robot position vf  and the control input u  as follows: 
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Then we can calculate the covariance of vf  as follows: 
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where 
u
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∂
 is the Jacobian of vf  with respect to u  and U  is the covariance matrix 

of u : 
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This uncertainty model is verified to be an appropriate one during the experiments 

and it gives good results. Therefore we do not need to add other higher order error 

sources which would certainly complicate the calculations. 
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5.2.2 The Camera Model 

The finite projective camera model mentioned in section 3.2.2 is used in this thesis. 

The internal camera calibration parameters are found as follows in chapter 3, where 

the skew is zero. 
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After substituting parameters by the actual values found in the calibration procedure 

in chapter 3, we obtain the following projection matrices to be used in depth 

calculations. The projection matrix for the right camera is as follows:  
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And the projection matrix for the left camera is as follows: 
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As stated earlier, the rotation matrix is an identity matrix and the translation matrix 

is a zero matrix for the right camera since it is the reference camera. By the help of 

these projection matrices and the triangulation method defined in 3.3.3, the depth of 

the detected features can be calculated. 

For the measurement model, scalar measurement noise matrices are taken as 

follows for the stereo and mono cases: 
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As it can be seen, the single camera SLAM operation has much more uncertainty in 

the measurement model, since it depends on the vehicle model. 
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CHAPTER 6  

 

SIMULTANEOUS LOCALIZATION AND MAPPING 

SYSTEM 

The knowledge of its own location is a fundamental requirement for a robot, in 

order to navigate autonomously in an environment and perform necessary tasks. 

Moreover, the knowledge of environment enables robot to fulfill various tasks such 

as path planning and obstacle avoidance. Since inference of self-location and map 

of environment entails each other, they are performed sequentially and this process 

is called Simultaneous Localization and Map Building.  

In this chapter, we will explain our simultaneous localization and mapping system 

by defining its components, operational modes and work flows. Our SLAM system 

has several components such as state estimation, map management, environment 

perception and graphical user interface. These components will be presented in 

detail in the following subsections. Furthermore, our system has various operating 

modes some of which are active concurrently. These concurrent modes are robot 

modes (real-simulator), SLAM modes (stereo-mono) and motion modes 

(predefined-manual-autonomous). Various combinations of these working modes 

can be realized via the user interface component. 
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Our simultaneous localization and map building system is composed of several 

functional components each performing different tasks. These various components 

are presented in Figure 6-1 as follows: 

 

 

 
Figure 6-1 SLAM System Components 

 

 

6.1 State Estimation 

The first main part of the SLAM algorithm is state estimation. Continuously 

estimating its next state, the robot can localize itself in the map that it is creating. 
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6.1.1 The State Vector 

The current estimates of the robot position and the landmark positions are 

maintained in the state vector x̂ , which is defined as follows: 
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where vx̂  is the robot position estimate and the iŷ ’s are the landmark position 

estimates belonging to subscripted features. These vectors are defined as: 
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The state vector x̂ contains )1(3 +n  elements, where n  is the number of landmarks. 

These elements indicate positions with respect to world coordinate frame, which is 

set at the start of the robot motion. The state vector has a dynamic nature, so it is 

expanded as new landmarks are added to the map and shrinked as existing 

landmarks are deleted from the map. 

 

6.1.2 The State Covariance Vector 

This vector maintains the uncertainties at the robot and landmark position estimates. 

The state covariance matrix P  is defined as follows: 



 69 

 



















=

ΟΜΜΜ

Κ

Κ

Κ

22122

21111

21

yyyxy

yyyyxy

xyxyxx

PPP

PPP

PPP

P

y

 (6-3) 

 

Each of the elements of the state covariance matrix indicated above is a 3×3 

covariance matrix belonging to the subscripted vectors. The state covariance vector 

is also dynamic and its size changes parallel to the changes in the state vector. 

6.1.3 System Initialization 

Since the starting position of the robot is taken as the origin of the map to be 

constructed, in system initialization, the robot position variables are all set to zero. 

Furthermore, as we know these values definitely, the state covariance matrix also 

has all entries equal to zero as below: 
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6.1.4 State Prediction Phase 

The robot is able to make linear motion or turn motion at each time step. These 

discrete motion steps are denoted by k  and the state estimation due to the motion is 

made according to the robot motion model given in section 5.2.1. The predicted 

state vector after a motion is given below: 

 

 ))(),|(ˆ()|1(ˆ kukkxfkkx v=+  (6-5) 
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where vf  is the state transition function defined in section 5.2.1 taking the current 

corrected robot state )|(ˆ kkx  and the input motion vector )(ku  as arguments. Since 

the features are assumed to be stationary in our system, their predicted positions are 

taken as the current corrected landmark positions. So, the resulting equation is: 
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In prediction phase, the new state covariance is constructed according to the general 

EKF covariance prediction equation given below: 
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where 
x

f

∂

∂
 is the full state transition Jacobian matrix, )( kkP  is the current 

corrected state covariance matrix and the )(kQ  is the process noise covariance 

matrix. These matrices have the following forms for our system: 
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Since the landmarks observed and used to construct the map are assumed to be 

stationary, the full state transition Jacobian matrix has identity matrices and the 

process noise covariance matrix has zero matrices for the corresponding entries. 

Therefore, the resulting predicted covariance matrix for our system is as follows:  
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where vf  and vQ  are defined in section 5.2.1.  

 

6.1.5 Measurement Prediction Phase 

The landmark observations and measurement of their locations are done with 

respect to the robot coordinate frame. Since we maintain the robot and landmark 

positions in world coordinate frame in the constructed map, the landmark 

observations must be associated with global landmark and robot positions, so that 

the landmark measurement predictions can be done by using this relation as 

follows:  
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where ix , iy , iz  are the positional values of the ith landmark and x , y , z  are the 

positional values of the robot with respect to the world coordinate frame. By this 

equation, the predicted measurement for each landmark is calculated and in this 

way ))|1(ˆ( kkxh +  prediction is constructed which is given below: 
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When a measurement is predicted, its innovation covariance that defines the amount 

of deviation from the predicted values is also calculated using the general 

innovation covariance equation as follows: 
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where 
x

h

∂

∂
 is the  Jacobian matrix of h  with respect to state vector x . 

The innovation covariance defines a potential volume around the predicted measure 

of the landmark in which the probability of finding the landmark is high. In order to 

utilize this information, that volume must be projected on to the camera image 

planes for the sake of forming a search region for the associated landmark. By this 

way, we convert the information defined in metric sense into the one described by 

pixels. This conversion can be achieved using the projection equation and internal 

camera matrix defined in chapter 3 as follows: 
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for right and left cameras respectively. Since Rs  and Ls  values are zero for our 

camera system, these equations take the following forms: 
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The innovation covariance for the image vector 
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
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 is calculated by using the 

following equation: 
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where the Jacobian matrix of the Ru  with respect to h  is as follows: 
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In the same way, the predicted image point and the image covariance is calculated 

for left image. These calculated RU  and LU  covariances define elliptic search 

regions on the right and left images by specifying a number of standard deviations. 
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By using these search regions, the computational cost of template matching is pretty 

much reduced. Moreover, chance for mismatch of the image templates is decreased.  

While selecting small number of standard deviations may cause not to find the 

feature in the constructed region, large numbers increase the number of potential 

mismatches. 

6.1.6 State Vector and Covariance Correction Phase 

After prediction of the state vector and its covariance, these predictions are 

corrected by taking measurements. This update is done according to the Extended 

Kalman Filter correction rules. Therefore, the Kalman gain is computed as a first 

step as follows: 
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After gain calculation, the filter update is performed: 

 

 )))|1(ˆ()1()(1()|1(ˆ)1|1(ˆ kkxhkzkKkkxkkx +−++++=++  (6-20) 

 TkKkSkKkkPkkP )1()1()1()|1()1|1( +++−+=++  (6-21) 

 

By the help of these correction equations the state vector and state covariance are 

updated. 

6.2 Map Creation and Evolution 

The second main part of the SLAM algorithm is map building. In this process, the 

observed landmarks with respect to the estimated robot position are inserted into the 

map under construction, after their coordinates are converted into the world frame. 

At system initialization, the observed landmarks are added into the empty map and 
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in this way the map building process starts. Since we want to use our resources 

efficiently, the number of features to be tracked at the same time is tried to be kept 

below a threshold which can be defined by the user interface component. So, when 

the number of tracked features is enough, the usual prediction and correction cycle 

goes on without any landmark insertion. However this condition does not last for 

long time, especially for a moving system. After the number of active features, 

features being tracked currently, goes down below this threshold, the new landmark 

searching and inserting mechanism takes place. 

On the other hand, some landmarks added to the map previously may be the bad 

ones that they cannot be measured most of the time, even though they are predicted 

to be observed. In these cases, it is needed to have a method for deletion of these 

landmarks. We propose a deletion condition similar to one in [45] for the landmarks 

by defining some variables. In order to figure out if a feature is useless, some 

number of measurement attempts has to be done. We define this number as 15 by 

default, however this variable with all other ones can be altered via the user 

interface in order to adapt to the current conditions. When this number is reached, 

the landmarks are started to be continuously checked for deletion. If the ratio of 

immeasurable attempts to the measurable ones is greater than a specified threshold 

which we define as 0.5 by default, then the landmark is deleted by the system. Of 

course the measurement attempt is done for a landmark if the robot state satisfies 

the condition for that landmark as stated earlier, which is if the robot distance to the 

landmark and the view direction are in the ranges specified when the landmark is 

first initialized. The deletion of landmarks is also required when a total number of 

features exceed a threshold and the real time efficiency control is active, which will 

be described in section 6.3. 

Having explained the landmark addition and deletion conditions, we can now 

present how these processes are performed. 
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6.2.1 Addition of New Landmarks 

At system initialization, new landmarks are searched and added into the map. The 

addition process is also required, when the number of active landmarks to track and 

correct the state prediction, becomes below a threshold. New landmark addition 

enlarges the state vector and the state covariance with new elements associated with 

the landmark added. Since the state vector contains landmark positions with respect 

to world frame and landmark measurements are obtained with respect to robot 

frame, these measurements are converted to appropriate frame as follows: 
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After obtaining the position of the new landmark with respect to world frame, this 

vector is simply added at the end of the state vector: 

 

 



















=

i

v

new

y

y

y

x

x

ˆ

ˆ

ˆ

ˆ

ˆ
2

1  (6-23) 

 

The new state covariance is constructed after calculating the Jacobians 
x
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 as follows: 
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where R  is the scalar measurement noise covariance.  

6.2.2 Deletion of Landmarks 

When a feature existing in the map is figured out to be a bad one, it is removed 

from the map in order to make room for more strong and detectable landmarks. 

Deletion process is simply removing the row and column associated with the feature 

to be deleted from the state vector and associated covariance matrix. Deletion of the 

ith feature is illustrated below: 
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6.3 Map Management 

During the map building process, a map management strategy is required in order to 

run the algorithm effectively and get rid of useless features. One part of this strategy 
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is explained in the previous section. The other part of the strategy takes role when 

the total number of landmarks reaches a threshold. Even though a deletion strategy 

is defined for bad features, the number of landmarks can reach high levels 

especially when the robot runs in large environments. In this case, the algorithm’s 

real time performance degrades, since it conveys a covariance matrix for the state 

vector which becomes very huge with high number of elements and calculations get 

more complex. In order to avoid this situation, some landmarks need to be removed 

from the current map. The selection of landmarks for deletion is done by 

considering the uncertainties and the geometric distribution of them in the current 

map. Since the landmarks with low uncertainties provide more reliable information 

they must be preserved. However, this protection is limited by the geometric 

conditions. To state more clearly, after the deletion process the remaining 

landmarks should still represent the whole environment. Therefore the smallest 

rectangular prism which encapsulates all of the landmarks is formed. Then this 

prism is divided into sub blocks, the number of which is defined via the user 

interface. For division of the map we defined division parameters countx , county  

and countz , which designate the number of intervals in the corresponding axes. After 

parceling the environment, the deletion process of the most uncertain landmarks is 

started. At the end of this process, each parcel containing at least one landmark at 

the beginning should still contain at least one landmark, so that the geometric 

distribution of the landmarks is preserved. An example geometric division of the 

mapped environment and the landmarks in it are shown in the following figure, 

where 3=countx , 3=county  and 4=countz : 
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Figure 6-2 Division of the map into sub blocks 

 

6.4 Data Perception and Association 

This part of the system is discussed in detail in chapter 3. 

6.5 Graphical User Interface 

This part of the system is presented in detail in appendix. 

6.6 Mission Concept 

Having gained the localization capability, the robot can complete the given tasks 

and missions such as goal reaching. The mission concept for our system is about the 

capability of the robot for reaching an assigned location. This task is achieved by 

the robot by simply calculating the angle it must turn and the distance it must go 

using the line defined by its current position and the target position. After these 

calculations have been made, robot can arrive to the goal location making necessary 

movements. However, there may be an obstacle on the path that the robot has 

planned. In this case robot just avoids the obstacle by the help of its sonar sensors, 

and then new angle and distances are calculated to plan the new path. 
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6.7 Operational Modes of the SLAM System 

The Simultaneous and Mapping System has several concurrent modes. The system 

can run various operations with combination of different operating modes. 

First of all, there are two main robot modes which are simulation and real modes. In 

simulation mode the system connects the simulator robot, which is named 

MobileSim  in this application. In this mode, the motion control of the robot can be 

run and tested without a real robot. In real mode, a real Pioneer robot is tried to be 

connected. After connection has been established, one can perform various 

operations that SLAM system provides. The simulator and real robots are illustrated 

in the following figures: 

 

 

 

Figure 6-3 Simulator Robot: MobileSim 
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Figure 6-4 Real Robot: Pioneer 

 

 

Another working mode is SLAM mode which has two alternatives, namely Stereo 

SLAM and Mono SLAM. If the system has two calibrated cameras, a Stereo SLAM 

operation can be done by selecting Stereo mode. In Stereo mode, the depth 

perception for the landmarks is achieved immediately, since the calibrated stereo 

camera system allows triangulation by using the left and right camera images. 

However, the system also allows running with single camera if selected. While 

operating in Mono mode, the system uses only the right camera for image grabbing 

task. Since one image is not enough for depth perception quantitatively, the system 

takes grabs of environment two times in a specified consequent time steps, 

compared to Stereo case. By making use of the motion parallax obtained during 

robot movement, system can detect the landmark depths again by triangulation. For 

mono operation, normally the camera optical axis should be perpendicular to the 

motion direction in order to obtain motion parallax and derive the depth 

information. But the cameras are mounted parallel to the motion direction in our 

robot system, so the robot has to grab an image, then turn some angle (usually 90º) 

and move some distance to provide a baseline distance for parallax, and again turns 

to its initial direction to grab the second image. Having grabbed two images from 
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different positions, the robot provides itself a motion parallax and makes usual 

triangulation calculations explained in chapter 3. Since the uncertainty in the robot 

motion to get parallax is much higher than the stereo calibration parameters, the 

depth information obtained in this way has more error rate than the one obtained by 

the stereo camera system. Nevertheless, the depth measurement experiment results 

of the mono operation are not bad and presented in chapter 6. In [17], also two 

kinds of SLAM approaches, stereo and monocular, are presented. Their EKF based 

stereo SLAM solution is similar to ours. However for single camera SLAM, which 

they called SLAMOnlyBearings − , they use sum of Gaussians approach. In this 

approach, they initialize the representation of a feature with a sum of Gaussians. 

Then this representation is updated as robot moves, until a single hypothesis 

remains. In this method the camera principal axis is nearly perpendicular to the 

motion direction, so a smooth hypothesis tracking is possible which is not valid for 

our static camera system. 

To show using a single camera for the SLAM operation is important due to several 

reasons. These reasons are related with the system requirements to be implemented 

of course. For instance, if a system that localizes itself roughly in the environment 

while mapping also is enough and there is no need for a much accurate localization, 

SLAM with a single camera will be the first choice due to its lower cost. Another 

reason may be a requirement for an error recovery in the system. System may 

operate in stereo mode normally, to localize itself in the constructed map. However, 

the system stops working when one of the cameras fails to work if there is no mono 

operation capability. Having the ability to operate with a single camera, a robot 

system can just switch to mono operation mode in the case of an error in one of the 

cameras. In this way, more robust robot systems can be built up. 

The main SLAM algorithm, that is state estimation and map building parts, are 

same for both stereo and mono modes. Only the depth perception ways differ in 

these operational modes. We have also mentioned that the camera construction in 

our robot system is not appropriate for mono operation and our robot does not have 

unfortunately moving head. Therefore in the experiments chapter, only the depth 
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perception and “backward-forward” motion performances of mono and stereo 

modes are compared, in which they only differ. The other experiments are related 

with the common components of both modes and the results are obtained using the 

stereo mode. 

The parallel operational modes of our SLAM system are shown as a statechart 

representation in Figure 6-5: 

 

 

 
Figure 6-5 Parallel System Modes 
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The motion control of the SLAM system can also be determined with respect to the 

motion mode choice. There are three motion modes for our system. In Predefined 

mode, the user has to prepare a predefined list of motion commands and load it to 

the system via the graphical user interface. Then the robot operates with these 

commands, until the last command is processed.  As motion commands are 

executed, the Extended Kalman Filter prediction and correction phases are fulfilled. 

The detailed flowchart of this operational mode is depicted in Figure 6-6.  

 

 

 
Figure 6-6 Flowchart of SLAM with Predefined Motion 



 85 

In Manual mode, the system waits for keyboard requests from the operator in order 

to control robot. These commands then construct the robot’s path and SLAM 

operation continues, until no more user request is received. The corresponding 

flowchart is given below. 

 

 

 

 

Figure 6-7 Flowchart of SLAM with Manual Inputs 
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Lastly, the system has an autonomous control capability, which permits it to control 

the robot without any external intervention. In this case, the robot freely moves 

forward until it reaches an obstacle. Then the obstacle is avoided by changing 

movement direction, and the movement is carried on in the new direction. A fully 

autonomous SLAM operation can be achieved in this way and corresponding 

flowchart is illustrated in Figure 6-8. 

 

 

 

Figure 6-8 Flowchart of SLAM in Autonomous Mode 
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CHAPTER 7  

 

EXPERIMENTS AND RESULTS 

As stated earlier our system has both simulator and real robot modes, so that it can 

be tested under both modes. The simulation mode provides us a great deal of 

opportunities for testing our system especially during development time. 

Nevertheless, the actual performance of the system can be seen exactly in the real 

mode. Therefore, a number of experiments have been carried out in our laboratory 

in order to evaluate the system performance and discuss the results. 

In the middle of our laboratory there is necessary space for the robot to operate, and 

there are tables, chairs, windows and bookshelves which the robot can make use of 

their strong features as its landmarks for map construction. In order to evaluate the 

robot localization and map building performance we need a ground truth reference. 

Luckily our laboratory has a grid which was marked previously. Although some 

parts of the grid are erased it still gives necessary information. The grid contains 

regularly spaced squares with dimensions of 50 millimeters. By the help of this 

grid, we can measure the position of the robot metrically. Of course some detected 

landmarks have been out of the grid range and the ground truth measurements of 

these features have been made by using an extra ruler.  

The colors of the squares that designate the found corners on the image have the 

following meaning. If the color of the square is green, the landmark it surrounds is 

observed for the first time and added to the map. However the landmark is an 

existing one and said to be tracked by the system, if the color of the square is blue. 
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Our experimental setup is illustrated in Figure 7-1: 

 

 

 

 

Figure 7-1 Experimental Setup 

 

 

Experiment 1: Depth Measurement Tests 

 

In this experiment, we conduct depth test with both stereo and mono camera 

operational modes of our system. In order for the SLAM algorithm operates 

accurately, the measurements should be accurate enough and error range must not 

be high. Of course the measurement errors are tried to be compensated by defining 

some noise and uncertainty terms, but it is certain that more accurate measurements 

lead a more accurate system. 

For the test setup, a white board with a black filled square pasted on it is placed in 

front of the camera. For the stereo depth measurements we take the right camera as 

reference and the measurements are conducted with respect to the principal axis of 
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the right camera. The different distances are measured by changing the position of 

the robot. 

The depth measurement test results for the stereo case are given below: 

 

Table 7-1 Stereo Camera Depth Measurement Test Results 

Actual Depth 

(mm) 

Measured Depth 

(mm) 

Error Percentage 

(%) 

500 506 1.2 

1000 1011 1.1 

1500 1540 2.66 

2000 2060 3 

2500 2572 2.8 

3000 3100 3.3 

3500 3581 2.3 

4000 4142 3.5 

4500 4653 3.4 

5000 5182 3.6 

 

 

The results are quite good since the measured values are close to the actual values. 

The error percentages are also given in the table. We think that the irregularities in 

the error percentages originate from the placement errors of the robot in front of the 

white board. 

For the single camera depth measurement tests we use the right camera which is 

also used during the mono mode in the real system operation. The measurements 

are conducted as follows: 
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1. The first image is grabbed by the right camera 

2. The robot turns a right angle and goes 100 mm straight ahead 

3. The robot comes back to its initial direction and grabs second image 

 

The depth measurement test results for the single camera case are given below: 

 

Table 7-2 Single Camera Depth Measurement Test Results 

Actual Depth 

(mm) 

Measured Depth 

(mm) 

Error Percentage 

(%) 

500 560 12 

1000 1152 15.2 

1500 1670 11.3 

2000 2212 10.6 

2500 2763 10.5 

3000 3377 12.5 

 

 

The results are worse than that of the stereo case as we expected, since the 

measurements are done by assuming that the robot makes the specified motions 

exactly without errors and the surface that the robot stands on does not have local 

inclinations. But of course, our robot makes its movements with some errors, that’s 

why we are implementing a state estimation algorithm, and the surface may have 

some little irregularities. Although these results are worse than the stereo case, they 

still indicate the applicability of the mono SLAM algorithm within some error 

boundary. 
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Experiment 2: Backward and Forward Motion 

 

In this experiment the robot is again placed in front of the white board with black 

square and forced to move forward or backward at each time step. The distance 

request to travel at one step is 100 mm. At specific time steps, we have read the 

estimated results by our system, odometry values and the ground truth values. 

The test results for this experiment are given below. Since our ground truth 

measurements are not accurate to measure the magnitudes shorter than millimeters, 

we have not specified values after the decimal point. Moreover we have set the 

ground truth values to zero for the x-axis position and angle of the robot, again 

because we cannot measure too little changes. 

The notes in parentheses next to time steps in which the experimental results are 

illustrated indicate the motion pattern that is made between the associated step and 

the time step in which the last experimental results are presented.  

The legend for the constructed maps for the experiments is shown in Figure 7-2. 

 

 

 

Figure 7-2 Legend for Constructed Maps 
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Initialization: 

 

 

         

Figure 7-3 Camera Images for Initialization of Experiment 2 

 

Table 7-3 Real Landmark Positions 

 X (mm) Y (mm) Z (mm) 

Landmark 1 185 130 2050 

Landmark 2 10 -50 2000   

Landmark 3 -195 160 2050 

 

 

Table 7-4 Estimated Landmark Positions 

 X (mm) Y (mm) Z (mm) 

Landmark 1 187.39 144.28 2008.67   

Landmark 2 20.72 -27.46 2053.65    

Landmark 3 -188.44 173.10 2000.71   
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5th Step (After 5 Movements Forward): 

 

       

Figure 7-4 Camera Images for 5th Step of Experiment 2 

 

 

Table 7-5 Estimated Landmark Positions at 5th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 188.15 127.98 2022.59   

Landmark 2 19.52 -46.55 2037.80   

Landmark 3 -188.17 153.51 1987.45   
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Figure 7-5 Predicted 2D Map for 5th Step of Experiment 2 

 

 

 

Figure 7-6 Corrected 2D Map for 5th Step of Experiment 2 
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10th Step (After 5 Movements Forward): 

 

 

       

Figure 7-7 Camera Images for 10th Step of Experiment 2 

 

Since the similarity threshold in this experiment is 0.9 and similarity value obtained 

for landmark 1 is 0.87, it cannot be observed. 

 

 

 

Table 7-6 Estimated Landmark Positions at 10th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 189.75 125.52 2025.09   

Landmark 2 19.24 -50.99 2030.32   

Landmark 3 -189.55 150.03 1992.43   
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Figure 7-8 Predicted 2D Map for 10th Step of Experiment 2 

 

 

 

 

Figure 7-9 Corrected 2D Map for 10th Step of Experiment 2 
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15th Step (After 5 Movements Backward): 

 

 

      

Figure 7-10 Camera Images for 15th Step of Experiment 2 

 

 

Table 7-7 Estimated Landmark Positions at 15th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 188.77 123.20 2016.04   

Landmark 2 19.76 -51.25 2026.37   

Landmark 3 -189.08 149.91 2005.43   
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Figure 7-11 Predicted 2D Map for 15th Step of Experiment 2 

 

 

 

 

Figure 7-12 Corrected 2D Map for 15th Step of Experiment 2 
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20th Step (After 5 Movements Backward): 

 

 

      

Figure 7-13 Camera Images for 20th Step of Experiment 2 

 

 

 

 

Table 7-8 Estimated Landmark Positions at 20th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 189.04 123.88 2009.07   

Landmark 2 20.40 -50.76 2027.11   

Landmark 3 -189.84 151.93 2011.65   
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Figure 7-14 Predicted 2D Map for 20th Step of Experiment 2 

 

 

 

Figure 7-15 Corrected 2D Map for 20th Step of Experiment 2 
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25th Step (After 5 Movements Backward): 

 

 

      

Figure 7-16 Camera Images for 25th Step of Experiment 2 

 

 

 

Table 7-9 Estimated Landmark Positions at 25th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 188.92 124.29 2004.13   

Landmark 2 20.72 -50.12 2028.13   

Landmark 3 -189.99 153.23 2015.57   
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Figure 7-17 Predicted 2D Map for 25th Step of Experiment 2 

 

 

 

Figure 7-18 Predicted 2D Map for 25th Step of Experiment 2 
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30th Step (After 5 Movements Forward): 

 

 

      

Figure 7-19 Camera Images for 30th Step of Experiment 2 

 

 

Table 7-10 Estimated Landmark Positions at 30th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 187.27 124.28 2005.04   

Landmark 2 20.32 -48.81 2031.08   

Landmark 3 -188.54 152.65 2011.77   
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Figure 7-20 Predicted 2D Map for 30th Step of Experiment 2 

 

 

 

 

Figure 7-21 Predicted 2D Map for 30th Step of Experiment 2 
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After final step, it is seen that the estimated robot position is close to the real one, 

whereas the odometry reading deviates some amount from the actual position even 

though the motion of the robot on the laboratory surface is regular and not much 

slippage is encountered. The impressing results for the case where some slippage is 

introduced to the system will be shown in the next experiment. The landmark 

position estimations are also close to real ones. 

The camera images for left and right cameras while robot is tracking the landmarks 

are as follows: 

 

 

Table 7-11 Robot Positional Values for Experiment 2 

 

Time Step Estimated (mm) Odometry (mm) Ground Truth (mm) 

0 0 0 0 

5 447.45 497.61 475 

10 911.30 1000.07 940 

15 489.90 512.65 490 

20 -51.32 0.49 10 

25 -512.65 -506.34 -470 

30 -39.07 5.82 10 
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Figure 7-22 Estimated 3D Map of Experiment 2 

 

The robot positional covariance variation is shown in Figure 7-23. Robot position 

uncertainty increases with time. But the uncertainty decreases at time step 30, where 

the robot is at its initial position. 
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Figure 7-23 Robot Position Covariance Variation of Experiment 2 (mm2) 
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The robot estimated and odometry position errors are nearly similar for this 

experiment. 
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Figure 7-24 Robot Positional Error Variation of Experiment 2 (mm) 

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 5 10 15 20 25 30

Time Step

In
n

o
v
a
ti

o
n

 C
o

v
a
ri

a
n

c
e

Landmark 1

Landmark 2

Landmark 3

 

Figure 7-25 Innovation Covariance Variation of Experiment 2 (mm3) 
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The innovation covariances of landmarks first increase and then decrease after some 

time steps. 
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Figure 7-26 Landmark Positional Covariance Variation of Experiment 2 (mm3) 

 

The landmark positional uncertainties decrease with time by reobserving them as 

depicted in Figure 7-26. 

 

Experiment 3: Backward and Forward Motion with Slippage Introduced 

 

In this experiment the robot is again placed in front of the white board with black 

square and forced to move forward or backward at each time step. The distance 

request to travel at one step is 100 mm. At specific time steps, we have read the 

estimated results by our system, odometry values and the ground truth values. The 

difference of this experiment from the Experiment 2 is that after 15th time step we 

introduce 200 mm slippage to the system by simply carrying the robot 200 mm 

forward without rotating the wheels. In this way we can simulate as if the system 

runs long period so that the slippage errors are accumulated to 200 mm. Also this 
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experiment tests the system performance, when a sudden disturbance is applied to 

the system such as a collision with an obstacle and slips some distance as a result.  

 

The test results for this experiment are given below: 

 

Initialization: 

 

 

      

Figure 7-27 Camera Images for Initialization of Experiment 3 

 

 

 

Table 7-12 Real Landmark Positions for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 185 130 2050   

Landmark 2 10 -50 2000 

Landmark 3 -195 160 2050 

 

 

 

 



 110 

Table 7-13 Estimated Landmark Positions at Initialization for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 189.90 150.88 1965.47   

Landmark 2 26.93 -20.20 2007.19   

Landmark 3 -181.87 181.99 2001.69   

 

 

5th Step (After 5 Movements Forward): 

 

 

      

Figure 7-28 Camera Images for 5th Step of Experiment 3 

 

 

 

Table 7-14 Estimated Landmark Positions at 5th Step for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 191.55 128.87 1992.31   

Landmark 2 25.32 -43.82 2010.29   

Landmark 3 -181.98 155.14 1968.32   
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Figure 7-29 Predicted 2D Map for 5th Step of Experiment 3 

 

 

 

 

Figure 7-30 Corrected 2D Map for 5th Step of Experiment 3 
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10th Step (After 5 Movements Forward): 

 

 

      

Figure 7-31 Camera Images for 10th Step of Experiment 3 

 

 

Table 7-15 Estimated Landmark Positions at 10th Step for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 193.35 124.72 1995.60   

Landmark 2 25.09 -49.75 2004.28   

Landmark 3 -183.68 150.49 1971.07   
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Figure 7-32 Predicted 2D Map for 10th Step of Experiment 3 

 

 

 

 

Figure 7-33 Corrected 2D Map for 10th Step of Experiment 3 
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15th Step (After 5 Movements Backwards): 

 

 

      

Figure 7-34 Camera Images for 15th Step of Experiment 3 

 

 

 

Table 7-16 Estimated Landmark Positions at 15th Step for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 192.15 122.10 1988.36   

Landmark 2 25.90 -51.11 2001.17   

Landmark 3 -183.23 149.13 1981.42   
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Figure 7-35 Predicted 2D Map for 15th Step of Experiment 3 

 

 

 

Figure 7-36 Corrected 2D Map for 15th Step of Experiment 3 
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At the end of 15th step the robot is carried 200 mm forward to introduce slippage. 

 

20th Step (After 5 Movements Backward): 

 

 

      

Figure 7-37 Camera Images for 20th Step of Experiment 3 

 

 

Table 7-17 Estimated Landmark Positions at 20th Step for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 191.65 122.76 1983.72   

Landmark 2 26.08 -50.06 2001.55   

Landmark 3 -182.94 150.42 1985.68   
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Figure 7-38 Predicted 2D Map for 20th Step of Experiment 3 

 

 

 

Figure 7-39 Corrected 2D Map for 20th Step of Experiment 3 
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25th Step (After 5 Movements Backward): 

 

 

      

Figure 7-40 Camera Images for 25th Step of Experiment 3 

 

 

Table 7-18 Estimated Landmark Positions at 25th Step for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 190.78 122.08 1980.18   

Landmark 2 26.03 -49.69 2001.80   

Landmark 3 -182.19 150.39 1988.97   
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Figure 7-41 Predicted 2D Map for 25th Step of Experiment 3 

 

 

 

 

Figure 7-42 Corrected 2D Map for 25th Step of Experiment 3 
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30th Step (After 5 Movements Forward): 

 

 

      

Figure 7-43 Camera Images for 30th Step of Experiment 3 

 

 

Table 7-19 Estimated Landmark Positions at 30th Step for Experiment 3 

 X (mm) Y (mm) Z (mm) 

Landmark 1 191.66 123.34 1983.56   

Landmark 2 25.86 49.16 2002.26   

Landmark 3 -182.72 151.27 1985.13   
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Figure 7-44 Predicted 2D Map for 30th Step of Experiment 3 

 

 

 

Figure 7-45 Corrected 2D Map for 30th Step of Experiment 3 
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Figure 7-46 Estimated 3D Map of Experiment 3 

 

After final step, we have obtained really impressing results which are so close to the 

real values, whereas odometry value for z-axis position of robot excessively 

deviates from the actual value. Our state prediction and correction algorithm has 

easily recovered from this error introduced to the system, after few time steps. 

 

Table 7-20 Robot Positional Values for Experiment 3 

Time Step Estimated (mm) Odometry (mm) Ground Truth (mm) 

0 0 0 0 

5 440.40 498.58 470 

10 900.71 996.68 940 

15 485.19 510.22 490 

20 240.25 21.34 260 

25 -201.94 -468.51 -205 

30 264.87 9.70 260 
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Figure 7-47 Robot Positional Covariance Variation of Experiment 3 (mm2) 
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Figure 7-48 Robot Positional Error Variation of Experiment 3 (mm) 

 

The robot odometry positional greatly deviates from the ground truth, after the 

slippage has been introduced to the sytem, whereas our SLAM system still 

estimated the robot position with little error. 
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Figure 7-49 Landmark Innovation Covariance Variation of Experiment 3 (mm3) 
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Figure 7-50 Landmark Positional Covariance Variation of Experiment 3 (mm3) 
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Experiment 4: Backward and Forward Motion in Mono Mode 

In this experiment the Experiment 2 is repeated in Mono SLAM mode.  

 

Initialization: 

 

         

Figure 7-51 Camera Image for Initialization of Experiment 4 

 

Table 7-21 Real Landmark Positions 

 X (mm) Y (mm) Z (mm) 

Landmark 1 185 130 2050 

Landmark 2   -195  160 2050  

Landmark 3 10 -50 2000 

 

Table 7-22 Estimated Landmark Positions 

 X (mm) Y (mm) Z (mm) 

Landmark 1 259.93 132.64 1962.38   

Landmark 2 -112.93 167.25 2024.78   

Landmark 3 91.20 -36.49 1971.76   
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5th Step (After 5 Movements Forward): 

 

 

       

Figure 7-52 Camera Image for 5th Step of Experiment 4 

 

 

 

Table 7-23 Estimated Landmark Positions at 5th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 264.38 131.89 1970.24   

Landmark 2 -117.38 159.67 1972.66   

Landmark 3 89.76 -41.11 1958.01   

 

 

Since our static camera construction does not allow smooth mono operation, the 

robot continuously changes its x coordinate also in order to create motion parallax 

for depth measurements. Therefore the robot paths have the form shown in Figure 

7-53. 
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Figure 7-53 Predicted 2D Map for 5th Step of Experiment 4 

 

 

 

Figure 7-54 Corrected 2D Map for 5th Step of Experiment 4 
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10th Step (After 5 Movements Forward): 

 

 

       

Figure 7-55 Camera Image for 10th Step of Experiment 4 

 

 

Table 7-24 Estimated Landmark Positions at 10th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 269.20 126.42 1955.92   

Landmark 2 -120.06 155.13 1978.22   

Landmark 3 87.57 -47.83 1950.58   
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Figure 7-56 Predicted 2D Map for 10th Step of Experiment 4 

 

 

 

Figure 7-57 Corrected 2D Map for 5th Step of Experiment 4 
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15th Step (After 5 Movements Backward): 

 

 

      

Figure 7-58 Camera Image for 5th Step of Experiment 4 

 

 

Table 7-25 Estimated Landmark Positions at 15th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 264.90 122.58 1896.55   

Landmark 2 -112.40 150.87 1924.59   

Landmark 3 90.52 -47.88 1895.22   
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Figure 7-59 Predicted 2D Map for 15th Step of Experiment 4 

 

 

 

 

Figure 7-60 Corrected 2D Map for 5th Step of Experiment 4 
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20th Step (After 5 Movements Backward): 

 

 

      

Figure 7-61 Camera Image for 20th Step of Experiment 4 

 

 

Table 7-26 Estimated Landmark Positions at 20th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 253.98 117.17 1778.32   

Landmark 2 -102.97 144.39 1802.88   

Landmark 3 89.62 -44.45 1778.39   
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Figure 7-62 Predicted 2D Map for 20th Step of Experiment 4 

 

 

 

 

Figure 7-63 Corrected 2D Map for 20th Step of Experiment 4 
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25th Step (After 5 Movements Backward): 

 

 

      

Figure 7-64 Camera Image for 25th Step of Experiment 4 

 

 

Table 7-27 Estimated Landmark Positions at 25th Step for Experiment 2 

 X (mm) Y (mm) Z (mm) 

Landmark 1 258.36 121.40 1779.22   

Landmark 2 -107.50 150.06 1821.34   

Landmark 3 90.17 -44.85 1787.49   
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Figure 7-65 Predicted 2D Map for 25th Step of Experiment 4 

 

 

 

Figure 7-66 Corrected 2D Map for 25th Step of Experiment 4 
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After final step, it is seen that the estimated robot position is close to the real one, 

whereas the odometry reading deviates some amount from the actual position even 

though the motion of the robot on the laboratory surface is regular and not much 

slippage is encountered.  In the last time steps the system estimates the landmark 

positions over confidently, so that the real landmark positions are outside the 

uncertainty ellipses of the estimated values. 

 

Table 7-28 Robot Positional Values for Experiment 4 

Time Step Estimated (mm) Odometry (mm) Ground Truth (mm) 

0 0.00 -14.55 0 

5 485.23 423.89 530 

10 968.30 858.94 1045 

15 362.64 169.75 520 

20 -144.48 -404.49 90 

25 349.08 29.58 630 
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Figure 7-67 Robot Position Covariance Variation of Experiment 4 (mm2) 
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The robot positional uncertainty increases with time as shown in Figure 7-67. The 

increasing measured robot positional error in Figure 7-68 justifies this situation. 
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Figure 7-68 Robot Positional Error Variation of Experiment 4 (mm) 
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Figure 7-69 Landmark Innovation Covariance Variation of Experiment 4 (mm3) 



 138 

0

50000

100000

150000

200000

250000

0 5 10 15 20 25

Time Step

L
a
n

d
m

a
rk

 P
o

s
it

io
n

a
l 

C
o

v
a
ri

a
n

c
e

Landmark 1

Landmark 2

Landmark 3

 

Figure 7-70 Landmark Positional Covariance Variation of Experiment 4 (mm3) 

 

 

 

 

 

Experiment 5: A Complete Run of the SLAM algorithm by Closing Loop 

 

In this experiment, the robot travels a loop in the laboratory by moving forward by 

100 mm requests and turning the corners by 90º.  At specific time steps, we have 

read the estimated results by our system, odometry values and the ground truth 

values. Since this experiment is a full run of our algorithm by making the robot go 

around the laboratory and build its map, its value is high. Therefore, we will show 

each important steps of this experiment to get insight of our SLAM system. 

 

The test results for this experiment are given below: 
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Initialization: 

 

 

      

Figure 7-71 Camera Images for Initialization of Experiment 5 

 

 

Table 7-29 Position Values for Experiment 5 

 Estimated (mm) Odometry (mm) Ground Truth (mm) 

Time 

Step 
X Z Φ X Z Φ X Z Φ 

0 0 0 0 0 0 0 0 0 0 

10 -2.04 905.37 0.92   0.48 995.22 0.00   0 950 0 

12 167.16 904.87 89.76   99.91 987.46 99.05   167.16 904.87 89.76   

19 815.05 879.49 91.68   795.89 876.88 99.05   810 910 92 

21 800.06 696.30 -177.37   767.76 772.60 -161.72   790 720 -175   

25 776.65 299.10 -177.18   640.69 387.03 -161.81   720 330 -175   

36 159.61 -70.27 -87.15   -15.52 267.72 -62.93   110 70 -85   

38 65.54 -64.46 3.71   -110.10 317.19 35.68   75.54 100 5 
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Table 7-30 Estimated Landmark Positions at Initialization for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 187.78 139.65 2522.93   

Landmark 2 -190.89 167.74 2534.06   

Landmark 3 17.17 -31.19 2539.40   

 

 

 

Table 7-31 Real Landmark Positions at Initialization for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 185 130 2550 

Landmark 2 -195 160 2550 

Landmark 3 10 -50 2500 

Landmark 4 4200 800 1750 

Landmark 5 4200 -220 1800 

Landmark 6 2500 -35 1050 

Landmark 7 3500 -200 1950 

Landmark 8 2570 125 700   

Landmark 9 100 1000 -3000    

Landmark 10 100 900 -3100 

Landmark 11 -50 900 -3100 

Landmark 11 -1850 500 600 
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10th Step (After 10 Movements Forward): 

 

 

      

Figure 7-72 Camera Images for 10th Step of Experiment 5 

 

 

Table 7-32 Estimated Landmark Positions at 5th Step for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 191.77 133.04 2531.16   

Landmark 2 -194.59 156.08 2468.63   

Landmark 3 16.59 -44.98 2533.02   
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Figure 7-73 Predicted 2D Map for 10th Step of Experiment 5 

 

 

 

Figure 7-74 Corrected 2D Map for 10th Step of Experiment 5 
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11th Step (After 90º Turning to Right): 

 

 

      

Figure 7-75 Camera Images for 11th Step of Experiment 5 

 

 

 

12th Step (After 1 Movement Forward): 

 

 

      

Figure 7-76 Camera Images for 12th Step of Experiment 5 
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Table 7-33 Estimated Landmark Positions at 14th Step for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 191.77 133.04 2534.71   

Landmark 2 -194.59 156.08 2464.87   

Landmark 3 16.59 -44.98 2533.25   

Landmark 4 3827.11 778.62 1719.59   

Landmark 5 4446.26 -165.79 1933.54   

Landmark 6 2533.04 -4.01 1074.91   

Landmark 7 3432.67 -123.14 1964.64   

 

 

 

 

 

Figure 7-77 Predicted 2D Map for 11th Step of Experiment 5 
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Figure 7-78 Corrected 2D Map for 11th Step of Experiment 5 

 

 

 

14th Step (After 2 Movements Forward): 

 

 

      

Figure 7-79 Camera Images for 14th Step of Experiment 5 
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19th Step (After 5 Movements Forward): 

 

 

      

Figure 7-80 Camera Images for 19th Step of Experiment 5 

 

 

 

Table 7-34 Estimated Landmark Positions at 24th Step for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 192.72 133.04 2529.53   

Landmark 2 -193.73 156.08 2470.50   

Landmark 3 17.53 -44.98 2532.98   

Landmark 4 3826.48 762.13 1620.36   

Landmark 5 4384.64 -171.84 1793.28   

Landmark 6 2552.34 -21.32 1028.37   

Landmark 7 3408.51 -127.98 1855.77   

Landmark 8 2677.82 127.77 696.94   
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Figure 7-81 Predicted 2D Map for 19th Step of Experiment 5 

 

 

 

Figure 7-82 Corrected 2D Map for 19th Step of Experiment 5 
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21st Step (After 1 Movement Forward): 

 

 

 

Figure 7-83 Wrong Data Association in 21st Step of Experiment 5 

 

 

 

Table 7-35 Estimated Landmark Positions at 27th Step for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 192.72 133.04 2529.54   

Landmark 2 -193.73 156.08 2470.50   

Landmark 3 17.53 -44.98 2532.98   

Landmark 4 3826.43 762.13 1620.46   

Landmark 5 4384.60 -171.84 1793.40   

Landmark 6 2552.24 -21.32 1028.44   

Landmark 7 3408.47 -127.98 1855.86   

Landmark 8 2677.69 127.77 697.01   

Landmark 9 466.27 620.65 -1831.47   

 

Since the detected image patches on the left and right camera images are different, 

the estimated position for landmark 9 is wrong. 
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25th Step (After 4 Movement Forward): 

 

 

Table 7-36 Estimated Landmark Positions at 28th Step for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 192.77 133.04 2529.36   

Landmark 2 -193.71 156.08 2470.70   

Landmark 3 17.59 -44.98 2532.97   

Landmark 4 3825.51 762.13 1616.67   

Landmark 5 4383.88 -171.84 1788.99   

Landmark 6 2550.67 -21.32 1025.93   

Landmark 7 3407.81 -127.98 1852.44   

Landmark 8 2675.75 127.77 694.33   

Landmark 9 461.05 620.65 -1831.67   

Landmark 10 220.44 874.79 -3126.67   

Landmark 11 -2.80 915.17 -3279.54   
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Figure 7-84 Predicted 2D Map for 25th Step of Experiment 5 

 

 

 

Figure 7-85 Corrected 2D Map for 25th Step of Experiment 5 
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32nd Step (After 4 Movements Forward, 90º Turning to Right and 2 

Movements Forward): 

 

 

 

Figure 7-86 Predicted 2D Map for 32nd Step of Experiment 5 

 

 

Figure 7-87 Corrected 2D Map for 32nd Step of Experiment 5 
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38th Step (After 90º Turning to Right): 

 

 

      

Figure 7-88 Camera Images for 38th Step of Experiment 5 

 

 

 

Table 7-37 Estimated Landmark Positions at 31st Step for Experiment 5 

 X (mm) Y (mm) Z (mm) 

Landmark 1 192.82 132.94 2528.37   

Landmark 2 -193.46 156.19 2471.71   

Landmark 3 17.57 -44.85 2532.97   

Landmark 4 3827.36 762.13 1597.04   

Landmark 5 4386.60 -171.84 1766.35   

Landmark 6 2549.50 -21.32 1012.88   

Landmark 7 3410.84 -127.98 1834.85   

Landmark 8 2672.91 127.77 680.51   

Landmark 9 443.45 620.65 -1833.86   

Landmark 10 192.86 881.29 -3144.14   

Landmark 11 -22.25 911.75 -3242.23   

Landmark 12 -1899.30 574.89 570.74   
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Figure 7-89 Predicted 2D Map for 38th Step of Experiment 5 

 

 

 

 

Figure 7-90 Corrected 2D Map for 38th Step of Experiment 5 
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In last step of the experiment robot completes the loop and reobserves the 

landmarks that were added in the initialization time. Therefore the robot position 

uncertainty decreases. It is clearly seen that the robot estimated path is more close 

to the actual path compared to odometry case. 

 

 

 

Figure 7-91 Estimated 3D Map of Experiment 5 

 

 

0

200

400

600

800

1000

1200

1400

0 10 12 19 21 25 36 38

Time Step

R
o

b
o

t 
P

o
s
it

io
n

 C
o

v
a
ri

a
n

c
e

Predicted Robot Position

Covariance

Corrected Robot Position

Covariance

 

Figure 7-92 Robot Position Covariance Variation of Experiment 5 (mm2) 
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The robot positional error increases firstly, the starts to decrease with 

reobservations. At time step 38, the robot position uncertainty diminishes greatly 

where the robot reobserves the landmarks at initialization. 
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Figure 7-93 Robot X Positional Error Variation of Experiment 5 (mm) 
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Figure 7-94 Robot Z Positional Error Variation of Experiment 5 (mm) 
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Figure 7-95 Robot Orientation Error Variation of Experiment 5 (degrees) 

 

 

To summarize the experimental results, it is seen that in almost all steps the position 

and orientation of the robot is estimated better than the odometry readings. The 

robot position uncertainty increases in first steps, and then begins to decrease 

reobserving landmarks in the map. The uncertainties of landmark positions also 

decrease with time by reobserving them. The uncertainties of some landmarks 

shrinks to much that the system becomes over confident about their places and the 

ground truth positions of these landmarks stands outside the uncertainty ellipses. 

 

Experiment 6: Map Management Strategy for Real-Time Efficiency  

 

When the number of landmarks in the current map exceeds a threshold, typically 

100, the algorithm cannot run in real time. Therefore in order to preserve the real-

time efficiency for our system an algorithm is implemented which is explained in 

the previous chapter. In this experiment, we just want to show how the efficiency 

algorithm works. Therefore, we have not waited for 100 landmarks to be added to 

the map but specify this number as 10. Moreover, we specify the percentage of 

landmarks to be deleted as 50% of all the landmarks. We define the number of 
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blocks that the 3D map is divided into as 4 by specifying both the number of x-axis 

and z-axis intervals as 2. 

At some step, the robot has added total of 11 landmarks into the map as follows: 

 

Table 7-38 Estimated Landmark Positions for Experiment 7 Before Real-Time 
Efficiency Algorithm Is Run 

 X (mm) Y (mm) Z (mm) 

Landmark 1 115.07 24.67 1752.03   

Landmark 2 109.98 147.69 1762.22   

Landmark 3 264.60 157.75 1783.05   

Landmark 4 268.84 32.22 1776.09   

Landmark 5 2225.49 177.66     1058.02   

Landmark 6 2230.46 -19.86 902.54   

Landmark 7 1384.36 -144.84 -1998.74   

Landmark 8 907.60 1164.17    -4058.31   

Landmark 9 1180.43 -88.64 -2111.05   

Landmark 10 -15.25 920.88 -4092.15   

Landmark 11 -74.19 1083.47 -4017.29   
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Figure 7-96 Constructed 3D Map for Experiment 6 Before Real-Time Efficiency 
Algorithm Is Run 

 

 

 

 

Figure 7-97 Constructed 2D Map for Experiment 6 Before Real-Time Efficiency 
Algorithm Is Run 
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After the algorithm has been run with the specified parameters, the number of 

landmarks has been reduced to 5, and then immediately a new landmark has been 

initialized with ID 6. In this step, the landmarks seen by the robot have also been 

tracked and correction is done, so that the remaining landmarks have their position 

estimates with little changes. 

 

Table 7-39 Estimated Landmark Positions for Experiment 6 After Real-Time 
Efficiency Algorithm Is Run 

 X (mm) Y (mm) Z (mm) 

Landmark 1 115.18 24.67 1753.19   

Landmark 2 110.17 147.69 1763.47   

Landmark 3 264.99 157.75 1781.87   

Landmark 4 2212.28 177.66 1025.83   

Landmark 5 1104.69 -88.64 -2121.04   

Landmark 6 -114.68 906.71 -4026.69   

 

 

 

 

Figure 7-98 Constructed 3D Map for Experiment 6 After Real-Time Efficiency 
Algorithm Is Run 
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Figure 7-99 Constructed 2D Map for Experiment 6 After Real-Time Efficiency 
Algorithm Is Run 

 

 

As it can be seen clearly from the Figure 7-99, the most uncertain landmarks have 

been deleted from the second, third and fourth quarters of the map until only there 

remains only one landmark at each sub block. On the other hand, the first quarter 

block has 2 landmarks just after the algorithm has finished. Since the newly 

initialized feature after the algorithm has been run, exists also in the first block, that 

part of the map contains three landmarks eventually. 
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CHAPTER 8  

 

SUMMARY AND CONCLUSIONS 

 

In this chapter of the thesis we will summarize what we have done throughout this 

work, review the conclusions that we have gained from the experiments and present 

some possible extensions and potential future work for our thesis.  

We will first review our contributions and mention the conclusions. 

• We have implemented an accurate algorithm for simultaneous localization and 

map building problem by utilizing Extended Kalman Filter. The results of the 

experiments indicate that our algorithm works accurately and determines the 

robot and landmark positions within small error ranges. But it has been seen that 

the error amount has increased when wrong feature associations were made. 

Because wrong data associations cause depth measurements to be incorrect 

which are used during the correction phase of the algorithm. We have testified 

that the performance of the SLAM algorithm’s localization capability improves 

over the odometry in time, which is expected due to accumulation errors in the 

odometry. This difference is clearly seen, when a manual wheel slippage is 

introduced to the system. After some time steps the SLAM algorithm recovered 

the error, whereas the odometry values had drift from the ground truth 

proportional to the slippage amount. 

• In our work, we have defined a search region on the camera images similar to 

[36] for remeasurement of the existing features. We have seen that while the 



 162 

probability of finding a feature on the region decreases with decreasing number 

of standard deviations, the probability of the mismatches increases with 

increasing number of standard deviations on the other hand. Therefore a 

compromise should be attained between these two conditions and 5 standard 

deviations are found to be good choice for this situation. 

• We have defined a set of conditions for the remeasurement of the existing 

features similar to [45]. In this way deletion of the strong features is avoided, 

because even strong features would be deleted when tried to be measured from a 

position that is too different from the robot position of initializing that feature. 

We have also seen that while robot is making small angular motions the features 

can still be tracked, they cannot be tracked for large angular motions since they 

disappear from the field of view. 

• Stereo and single camera modes of SLAM are defined. In [17], these two modes 

of SLAM are also implemented. Our single camera implementation differs from 

that one in order to be appropriate for our static camera construction. The 

measurement model of the stereo mode is more certain since its calibration 

parameters are obtained from the static camera calibration procedure. Thus, the 

depth measurement test results are much better for the stereo case. In the mono 

case the uncertainties in the measurement model are high, since the camera 

model depends on the vehicle model and the uncertainties in the robot motion 

are much greater than the measurements of the static camera calibration 

procedure. Nevertheless, it is good to have both operation modes in case of 

emergency. Although the mono operation does not give as good results as the 

stereo one, it can be needed when one of the cameras has problems. In this 

situation, the mono operation can be activated and robot may be said to run in a 

degraded mode. Furthermore, the mono operation can be the first choice for 

some systems that do not require high accuracy and where the cost is more 

important. 

• We have built a map management strategy like in [45] that takes care of the 

quality and the size of the map. The strategy eliminates the bad features from 
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the map by defining a rule set for remasurement of the existing landmarks. The 

landmarks that cannot achieve the requirements of the strategy are removed 

from the map and the map quality is kept high in this way. We have extended 

the strategy in order to provide a mechanism that takes role when the size of the 

maps becomes too large for efficient operation. So, the size of the map is kept in 

acceptable values and performance of the algorithm remains high. These 

mechanisms have been tested during the experiments and seen to work well. 

• We have also defined a mission concept in order to see the beyond of 

localization and map building operation. When a reliable SLAM algorithm is 

run in an unknown environment for enough time, the robot will have built the 

map of the environment and localized itself in it. After this point, the robot is 

now ready for a mission to accomplish. One of the basic missions that can be 

assigned to the robot is obviously to reach a goal point. Having learned its goal 

point coordinates, robot simply calculates the necessary parameters and plans its 

path. We believe that this extra feature of our system is important; since it takes 

our vision one step further and indicates how the results of the SLAM algorithm 

can be utilized for further operations. 

• Lastly, we have constructed a complete SLAM system which has various 

operating modes and various components including a graphical user interface, 

SLAM Suite. By the help of this GUI, it is easy to interact with the SLAM 

system, to change the necessary parameters related to the SLAM operation and 

to see the results of the algorithm visually.  

 

We have also some suggestions for the future to extend this work: 

• We mention that there may be switching between the stereo and mono 

operational modes in the case of a camera error. Some intelligence can be given 

to the SLAM system to decide the operational modes by considering the states 

of its elements. In this way, a more autonomous system can be formed. The 
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similar intelligence can also be provided for selection of the parameter values. 

During the operation time, the robot system can evaluate its current performance 

somehow and make a decision for specifying a new set of operating parameters. 

• We also mention that tracking of the existing features during large angular 

movements cannot be achieved. However this situation can be dealt with, if the 

robot system has a movable camera system. In this way, the features can be 

tracked more longer periods which means that more accurate results can be 

obtained. 

• In this thesis, only the strong corners and cornerwise features are used. In order 

to widen the utilizable range of landmarks, other features such as edges and 

planes can be incorporated to the system in addition to the corners. 

• Finally, the obstacle avoidance task in the autonomous operational mode and the 

mission concept is achieved by making use of the sonar information. By 

constructing maps visually in the form of occupancy grids as stated in 2.2.1.1, 

the obstacle avoidance can be achieved by considering the occupancies in the 

map. 
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APPENDIX A 

SLAM SUITE 

 

 

SLAM Suite allows the user to change various parameters related with feature 

detection, feature correlation, feature deletion, feature remeasurement, robot 

configuration, real-time efficiency parameters, camera parameters, motion patterns 

in addition to capability of different mode selections such as robot operation mode, 

SLAM mode and motion type.  The SLAM operation can be paused and continued 

in any time during execution, and analysis can be done via graphical and textual 

information provided by SLAM Suite. Since lots of various SLAM tasks are 

allowed to be performed with changing several parameters, the program can be seen 

as a suite of SLAM operations and that’s why it is called SLAM Suite. 

A.1 The Default View 

 

 

Figure A-1 SLAM Suite: Default View 
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The default view of SLAM Suite is illustrated in Figure A-1. The connection is not 

established in this view, only connection and menu items are active. The user can 

connect to the simulator robot or actual Pioneer robot by selecting the appropriate 

option and pressing the “Connect” button shown by  icon.  

A.2 The Main View 

After the connection is established, the view becomes as shown in Figure A-2. In 

this view, SLAM mode selection, motion type selection, mission concept and map 

plotting functionalities are active. The user can choice the SLAM mode and motion 

modes and then begin the operation by just clicking the “Run” button designated by 

 icon. 

 

 

 

Figure A-2 SLAM Suite: Robot Connection Established 

 

After the SLAM algorithm has started, the operation can be paused in predefined 

and autonomous modes by clicking the “Pause” button labeled by  icon or 

terminated by “Terminate” button labeled by  icon as shown in Figure A-3. 

Since the system waits for keyboard input request from the operator for next motion 
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in manual mode, pausing is not needed but termination process also applies to this 

mode. The parameter menus, mode selections, mission concept ad map plotting 

interface becomes disabled during the operation. 

 

 

 

Figure A-3 SLAM Suite: Operation Started 

 

A.3 Map Drawing Interface 

When the desired operation is completed or by pausing the algorithm at the middle 

of the operation information about the robot location and current map contents can 

be obtained by the map drawing interface of SLAM Suite. The map drawing 

interface is shown in Figure A-4, when the SLAM operation is paused. The 2 

dimensional representation of the current map can be plotted by clicking the “Draw 

2D Map” button labeled by  icon. In the 2D representation the x and z-axis 

components of the robot and landmark locations are plotted. When the 3 

dimensional representation of the current map is desired to be seen, “Draw 3D 

Map” button labeled by  icon can be clicked. Lastly, SLAM Suite also presents a 

textual way of gathering the location data. When the user clicks “Export to File” 

button labeled by  icon, the system forms a file named “ConstructedMap.txt” in 

the current directory, which contains the information about the robot and landmark 
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locations. If a file with the same name already exists, it is overridden with the 

current values. The number of the landmarks existing in the current map is also 

shown in the main view. 

 

 

Figure A-4 SLAM Suite: Map Drawing Interface 

 

A.4 Mission Interface 

The robot can be stopped in any time during the operation and given a goal point to 

arrive. The goal point is defined by its x-axis and z-axis coordinates. These values 

can be entered into the system by the mission interface of SLAM Suite as shown in 

Figure A-5. After specifying the coordinates of the goal point, the user can assign 

the mission to the robot by simply clicking the “GO” button labeled by  icon. 
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Figure A-5 SLAM Suite: Mission Interface 

 

A.5 Configuration 

The configuration of the SLAM system by specifying various parameters is 

achieved by the configuration menu interface of SLAM Suite. The sub items of the 

configuration menu are depicted in Figure A-6. 

 

 

Figure A-6 SLAM Suite: Configuration Menu 

Various parameters of our SLAM algorithm can be changed via the sub menus of 

the configuration menu. 
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A.5.1 Feature Detection Configuration 

In this menu, parameters associated with the feature detection algorithm that we use 

in this thesis, namely “Good Features to Track”, can be adjusted. These parameters 

are number of features, quality level and minimum distance. Number of features is 

the number of corners to be detected in the image. Quality level specifies the 

minimum accepted quality of the image corners. Lastly, minimum distance specifies 

the minimum possible distance between the detected corners. Other parameters such 

as minimum number of active features and image showing can also be changed via 

this menu interface. While minimum number of active features specifies the 

minimum number of features which are tracked by our SLAM system, image 

showing attribute determines whether the images grabbed by the cameras are shown 

on the screen. The feature detection Configuration menu is shown in Figure A-7. 

 

 

Figure A-7 SLAM Suite: Feature Detection Configuration 
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A.5.2 Feature Correlation Configuration 

The correlation method to be used in feature correlation is selected via this 

interface. The possible options are “Squared Difference”, “Normalized Squared 

Difference”, “Cross Correlation”, “Normalized Cross Correlation”, “Correlation 

Coefficient” and “Normalized Correlation Coefficient”. The correlation threshold 

value can also be specified under this menu. This value must be chosen between 0 

and 0.5 for the first two options, whereas it must be chosen between 0.5 and 1 for 

other methods. The feature correlation configuration menu is illustrated in Figure 

A-8. 

 

 

Figure A-8 SLAM Suite: Feature Correlation Configuration 

 

A.5.3 Feature Deletion Configuration 

In the SLAM operation, weak features are deleted after some conditions are met. In 

this menu, these conditions are defined. One of the parameters for the conditions is 

the minimum number of attempts. After this value is reached for a landmark, the 

feature is started to check for correlation performance with a ratio for the next steps. 

If the ratio of the number of measurement attempts with failure is to total number of 

attempts is greater than the delete ratio, the feature is deleted by the algorithm. This 

configuration menu is shown in Figure A-9. 
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Figure A-9 SLAM Suite: Feature Deletion Configuration 

 

A.5.4 Feature Remeasurement Configuration 

There are some conditions to be met for the existing features to be remeasured. The 

limiting factors for the feature remeasurement are the initial distance between the 

robot and the landmark and the initial robot angular position. When a feature is 

initialized (measured for the first time and added to the map), the distance between 

itself and robot vehicle and the angular position of the robot vehicle are also saved 

to be used for comparison in the next steps. In the prediction step, feature 

measurements are also predicted. Current distance between the vehicle and the 

current landmark is calculated by the help of these predictions. If the distance is in 

the distance range one of the conditions is met. The range is defined by multiplying 

the numbers minimum distance ratio and maximum distance ratio with the 

initializing distance of the landmark. Second condition parameter is the angular 

robot position. If the absolute difference of the current angular position and initial 

angular position during initializing the landmark is below the maximum angle 

difference value, then the second condition is also met. After both of these 

conditions are met, a search region is formed on the image for the purpose of 

remasurement. This region is defined by the measurement uncertainties and the 

specified number of standard deviations. The number of standard deviations can be 



 178 

set via this menu interface. The feature remeasurement configuration menu is 

depicted in Figure A-10. 

 

 

Figure A-10 SLAM Suite: Feature Remeasurement Configuration 

 

A.5.5 Robot Configuration 

There are various operating parameters for also the robot itself. For instance the 

moving distance and turning angle values for control inputs can be defined via this 

menu. The avoidance distance parameter which specifies distance of the robot to an 

obstacle that the robot must turn and avoid in autonomous mode is also valued in 

this menu. Moreover camera system parallelism and active camera channels for the 

right an left cameras are specified here. Camera system parallelism defines the 

alignment of the camera coordinate frame and the robot coordinate frame. For 

example in our case, the robot and camera coordinate frames coincide and the angle 

between them is 0. But the camera system can be placed in different positions due 

to some reasons and this parameter must be specified in this situation. The robot 

configuration menu is shown in Figure A-11. 
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Figure A-11 SLAM Suite: Robot Configuration 

 

A.5.6 Real-time Efficiency Configuration 

The last configuration menu is the efficiency configuration. In this menu, the 

parameters associated with the map management strategy which takes place at the 

time total number of landmarks reaches a specified threshold are specified. First of 

all, the attribute that specifies whether the real-time efficiency strategy is active or 

not can be determined. Then the total number of landmarks can be defined as the 

threshold for the strategy to take control. The percentage of the landmarks to delete, 

when the efficiency strategy runs is also specified via this interface. When it is time 

to run the real-time efficiency, the map of the environment is divided into equal 

sized blocks firstly. The number of blocks is determined by the number of intervals 

along the x-axis, y-axis and z-axis dimensions of the smallest 3D rectangular prism 

that contains all of the landmarks. These interval numbers of the corresponding axes 

can be defined in this menu. This menu is illustrated in Figure A-12. 
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Figure A-12 SLAM Suite: Real-time Efficiency Configuration 

 

A.6 Camera Parameters Loading Interface 

The intrinsic and extrinsic camera calibration parameters can be written in a file and 

it can be loaded via this menu interface. The camera parameters loading interface is 

depicted in Figure A-13. 

 

 

Figure A-13 SLAM Suite: Camera Parameters Loading Interface 
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A.7 Motion Pattern Loading Interface 

The motion pattern can be defined in a file and loaded to the system for the 

predefined motion mode. The motion pattern loading interface is shown in Figure 

A-14. 

 

 

Figure A-14 SLAM Suite: Motion Pattern Loading Interface 


