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ABSTRACT

A BDI-BASED MULTIAGENT

SIMULATION FRAMEWORK

Yükselen, Murat

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

September 2008, 70 pages

Modeling and simulation of military operations are becoming popular with the widespread

application of artificial intelligence methods. As the decision makers would like to analyze

the results of the simulations in greater details, entity-level simulation of physical world and

activities of actors (soldiers, tanks, etc) is unavoidable. In this thesis, a multiagent framework

for simulating task driven autonomous activities of actorsor group of actors is proposed. The

framework is based on BDI-architecture where an agent is composed of beliefs, goals and

plans. Besides, an agent team is organized hierarchically and decisions at different levels of

the hierarchy are governed by virtual command agents with their own beliefs, goals and plans.

The framework supports an interpreter that realizes execution of single or multiagent plans

coherently. The framework is implemented and a case study demonstrating the capabilities of

the framework is carried out.

Keywords: Multiagent simulation, multiagent systems, behaviour modeling, agent-based mod-

eling and simulation, semi-automated forces
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ÖZ

BDI TABANLI ÇOKLU ETMEN

SİM ÜLASYON ÇATISI

Yükselen, Murat

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Eylül 2008, 70 sayfa

Askeri operasyonların modelleme ve simülasyonu yapay zeka yöntemlerinin daha yaygın

uygulanması ile popülerleşmektedir. Kararverici insanların simülasyon sonuçlarını daha de-

taylı analiz etme isteği ile fiziksel dünyanın ve aktörlerin (asker, tank vb.) aktivitelerinin

varlık seviyesi simülasyonları kaçınılmaz hale gelmiştir. Bu tezde bir aktörün veya bir grup

aktörün görev tabanlı otonom davranışlarını simüle etmek için çok etmenli bir yazılım çatısı

önerilmektedir. Çatı bir etmenin inanç, amaç ve planlardan oluştuğu BDI mimarisine dayan-

maktadır. Bunun yanı sıra, bir etmen takımı hiyerarşik olarak organize edilir ve hiyerarşinin

farklı seviyelerindeki kararları sanal etmenler kendi inanç, amaç ve planları ile yönetirler.

Yazılım çatısı tek ve çoklu etmen planlarının uyumlu olarak gerçekleşmesini sağlayan bir yo-

rumlayıcı sağlamaktadır.̈Onerilen yazılım çatısı gerçekleştirilmiş ve yazılımın kabiliyetlerini

göstermek için örnek bir çalışma hazırlanmıştır.

Anahtar Kelimeler: Çoklu etmen simülasyonu, çoklu etmen sistemleri, davranış modelleme,

etmen tabanlı modelleme ve simülasyon, yarı otonom kuvvetler
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CHAPTER 1

INTRODUCTION

Knowledge is naively acquired through trial-error sessions. Using simulation in every aspects

of these trial sessions is a cost effective way. Software simulation is applied to numerous

fields that can be modelled mathematically and pushes computation limits in order to capture

the most possible level of detail. As computation techniques advances, it enables simulation

developers new openings to explore. Currently simulation is running on computer hardware

but new openings in computation mediums such as quantum computation or biological com-

puting are still a possibility.

Simulation of rational reasoning entities is the field of multiagent systems (MAS). Multiagent

systems can be defined as a system having several independentintelligent agents interacting

together to accomplish their goals. MAS research include diverse topics of interest such as co-

operation, coordination, communication, negotiation, social interactions. MAS applications

range from training systems to online computer games.

Belief Desire Intention (BDI) model captures the mental attitudes of an agent in three distinct

representations. Belief represents the knowledge of the agents. Desire represents motivations

of the agent. Intentions of an agent represents the active tasks pursued by the agent. Archi-

tectures based on the BDI model represent beliefs, desires and intentions explicitly as data

structures and defines the operation of the agent through an agent interpreter. BDI architec-

ture is an abstract architecture that enables realization of autonomous agents for multiagent

systems. There exist many agent frameworks realizing BDI architecture. These frameworks

provide mature agent-oriented software development process for multiagent systems.

In this thesis, a BDI-based multiagent simulation framework is proposed. The framework is
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mainly targeted for entity level simulations where each entity is controlled by an independent

agent. A sample application area of military simulation is chosen to explore its top down

command control and hierarchical nature. The framework hasfacilities to address possible

problems that are common while developing a MAS simulation.These facilities are defined

from an abstract view and related to the presented framework. An example case study is

engineered to illustrate to showcase how facilities can help to solve common simulation ap-

plication problems. The realization of the framework is carried out by extending a solid BDI

agent interpreter called Jadex[20]. The case study not onlydemonstrates the framework but

gives reader how to grasp the simulation problem and fit it in the proposed solution.

In this work, overview of the BDI architectures and frameworks are discussed first. Chapter 3

presents the proposed abstract simulation framework and give details about agent architecture

behaviors. Chapter 4 and chapter 5 delivers the details of the implementation of the proposed

simulation framework and explains the usage with a case study.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 BDI Agent Model

Belief Desire Intention (BDI) model tries to capture human practical reasoning in order to

formalize developing rational agents [4]. After its introduction, BDI model is refined [23, 21]

to be used in real agent based systems.

BDI model represents mental attitudes of an agent in three categories : Beliefs, desires and

intentions. Beliefs corresponds to knowledge of the agent about itself and outside world.

Desires are also named as goals and they define the objectivesof the agent trying to reach. At

a time instance, agent can not pursue all of its desires. Because of this fact, intentions of the

agent describe the current behaviours in action targeted tofulfill its selected desires. Behavior

of an agent is described through plans and they can be seen as pre-compiled agent actions.

Intentions of the agent can be seen as the running plan instances.

Figure 2.1 describes a BDI agent architecture. Circle denotes the agent and agent is connected

to the outside world by sensor input and action output. Core of the BDI architecture is the

agent interpreter. This event based interpreter consumes sensory information and executes the

behaviours defined in the plan library. Intentions hold the plans in execution. Plan execution

can trigger belief and desire changes in the agent which are also internal events that will be

processed by the interpreter. Action output of the agent is controlled by the running plan

instances, which are intentions.

BDI is a widely accepted and matured model in describing agents and their behavior. There

are numerous implementations of BDI formalism and surveys[16] about their properties.
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Figure 2.1: A BDI Agent Architecture

2.2 BDI-Based Agent Oriented Programming Languages and Plat-

forms

The Procedural Reasoning System (PRS) [6] is one of the first implementation in lisp lan-

guage based on BDI architecture developed by SRI International. The system is developed as

a representation of an expert’s procedural reasoning. It isused for evaluating maintainance

procedures for the space shuttle in a simulation.

After the success of PRS, it is rewritten in C++ known as distributed Multi-Agent Reason-

ing System (dMARS) [5] at Australian AI Institute. The implementation of the platform

also includes graphical editors, compiler and interpreterfor a goal-oriented logical language.

dMARS is used in industrial applications such as Oasis air traffic management system han-

dling over 100 aircraft arrival to an airport and Swarmm [17]agent-based simulation system

to simulate air mission dynamics and pilot reasoning. A summary of dMARS applications

can be found in [7].

AgentSpeak(L) [22] starts by evolving from PRS and dMARS andformalizes its operation.

It is based on a restricted first-order language with events and actions. Jason [3] is one of the

implementations of AgentSpeak(L) that extends with speech-acts [25].
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3APL [9] architecture has many similarities with other architectures such as PRS. Different

from other architectures, 3APL is designed to control and revise todo goals of agent. 3APL

also incorporates practical reasoning rules to revise mental attitudes. A 3APL agent is defined

with a set of actions and a set of rules.

Dribble [24] is a propositional language that constitutes asynthesis between the declarative

features of the language GOAL [10], and the procedural features of 3APL.

Coo-BDI (Cooperative BDI) [1] is based on the dMARS specification and extends it by in-

troducing cooperations among agents to retrieve external plans for achieving desires. The

cooperation strategy is defined by a set of agents to cooperate, plan retrieval policy and plan

acquisition policy. The mechanism for retrieving relevantexternal plans involves cooperation

with trusted agents.

JAM is an intelligent agent architecture that grew out of academic research and extended

during the last five years of use, development, and application. JAM combines ideas drawn

from the BDI theories, the PRS system and its UMPRS and PRS-CLimplementations, the

SRI International’s ACT plan interlingua [18], and the Structured Circuit Semantics (SCS)

representation [13]. It also addresses mobility aspects from Agent Tcl [8], Agents for Remote

Action (ARA) [19], Aglets [12] and others.

Jack is a commercial and mature Java implementation of BDI architecture [14, 11]. Jack

introduces agent oriented programming concepts on top of object oriented Java language and

supplies a runtime to support this agent oriented extensions. Jack agents are defined in a Java

like language. The language files are compiled to various intermediate Java files in the process

and a runtime library helps agent interpretation. Agent definitions can use notion of capability

that allows modularity by encapsulation and promotes code/design reuse. Jack treats goals as

a special kind of event in its event based interpretation.

Jadex [20] is an open source BDI architecture implementation in Java. Jadex emphasizes use

of goal as a first class data structure unlike other BDI implementation where a goal is treated

as a special event type whose handling results in plan activation. Jadex is a BDI interpreter

that is not bound to underlying agent software middleware. Currently Jadex supports its

standalone middleware, Jade[2] and Diet-agents[15] platform. Jadex is also flexible in terms

of runtime adaptability which allows an agent to add any belief, goal and plan definition in

5



runtime.

JACK has an extension that provides dynamic team formation and team based agent pro-

gramming to support team-oriented modelling. A JACK team also has all the properties of

an agent. It uses the notion of roles in which a team can require specific roles to accomplish

its assignment. Team are then dynamically formed by fulfilling role containers and execution

starts after the team formation. JACK Teams also provides teamdata, a way to communicate

belief between agents either from bottom up or top down. Bottom up aproach is used for

information fusion for higher level of abstraction in teams. Team plans are slightly extended

to support these extensions.

In this thesis, Jadex is chosen as an extension point becauseit is open source, has explicit goal

processing and solid codebase.

2.3 Jadex

Jadex is an agent-oriented reasoning engine supporting different agent middlewares. An agent

middleware is a software platform for agents and deals with agent management and commu-

nication services. From the perspective of the agent middleware, a jadex agent is a black

box that can only receive and send messages. Jadex provides areasoning engine for agent

implementation and it is based on BDI-model.

Jadex enables writing rational agents with XML files and Javalanguage as illustrated in Figure

2.2. An agent is defined with an XML file called Agent Definitionfile (ADF). ADF mainly

encapsulates definitions of beliefs, goals, plans and events. Furthermore, Jadex supports to

engineer capabilities to group related belief, goal, plan and event structures. These defined

capabilities can be extended and used by other capabilitiesand agents. Notion of capabilities

introduces information hiding and encapsulation in agent-oriented modelling.

Jadex uses Java language mainly in plan body definition, datastructure definition to be used

as beliefs and expressions that can be evaluated inline for conditions. A plan body is a Java

class that extends Jadex abstract plan and holds proceduralinformation how a plan should

work.

6



Figure 2.2: Composition of a Jadex Agent

2.4 Motivation

Motivation behind the design of a BDI-based multiagent simulation framework is to deliver

a generic framework for team oriented agent programming. The proposed architecture in-

corporates facilities that eases agent coordination, execution control, synchronization and

information exchange. These facilities are domain independent and form foundations for

team behavior implementation. Coordination, synchronization and information exchange are

fundamental problems that can be encountered in any multiagent implementation involving

cooperation between agents.
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CHAPTER 3

A BDI-BASED MULTIAGENT

SIMULATION FRAMEWORK

Military simulation is a valuable tool used in analysis, human training and asset acquisitions.

In this work, a framework to simulate agent behaviours for semi-automated military task force

is presented. Main motivation of the framework is to enable analyzing various factors of the

simulated environment. This fact presents several requirements such as:

Closed simulation: It should be possible to run the simulation without human interaction.

This requirement removes the possible human performance effect from the simulation

run. This feature enables to analyze the different factors present between the simulation

runs in a controllable way. For example user can change the range of sight of a sensor

and rerun the simulation to analyze the effects.

Autonomous simulation run: Simulation will conduct the task flows present in the scenario.

Each agent team will try to accomplish the task defined in an autonomous way. Defini-

tion of task flows is the users responsibility.

A simulation application using the framework can be implemented with the following ingre-

dients:

• Environmental dynamics and properties that define physicalsimulation.

• Task implementations that models agent behaviours.

• Scenario definition that command and control task forces.

8



Analysis of the simulation can be conducted on different factors. Being able to run the simula-

tion closed to human interaction gives the user the opportunity to experiment with the factors

present in a systematic and controlled manner.

Physical simulation and environment: Physical environment can affect how the agents ob-

serve and act in the simulation. In military domain,

• terrain,

• whether conditions,

• weapon systems,

• ammunition,

• platform mobility,

• sensors,

• damage etc.

can be tested. Environmental dynamics can have different effects on the performance

of task units.

Task behaviour: A task defines a clear objective. Achievement of this objective can be in-

terpreted and conducted differently. A task implementation is done programmatically

to conduct a chosen behaviour and tries to capture intra-team coordination. In order to

test different behaviours, user is free to implement different tasks or change the current

ones prior to simulation.

Task flows: Task flows defines how a side behaves in possible conditions atthe highest level.

Definition of the task flows is a tedious process because of itsexponential nature. User

has to reflect all possible decisions in task flow definition. Scenario can be seen as

a medium to define strategic decisions and inter team coordination. For example, to

test different tactics, user can run the simulation with different task flows. Also it is

possible to define more comprehensive scenarios by updatingother factors to see the

current shortcomings of the task flows.

A simulation run is defined by a scenario. With this scenario definition, the framework can

be run without human interaction. This enables the analyzing of different parameters of the

9



simulation, running the same simulation several times to collect statistical information about

the outcomes. Although the same simulation can be run exactly the same, environment’s

physical simulation presents randomness to each run that will end up in different results.

A scenario is defined using three components :

Agent hierarchy definitions: Agent hierarchies define the existing military forces in the

simulation environment. Each team is represented by a hierarchy and can follow a

task flow.

Task flows: Task flow defines how an agent behave in the simulation. It is a graph like struc-

ture where nodes represent the task to be pursued and edges representing the conditions

that will lead to task switch in the graph. In order to capturestrategic decisions at criti-

cal states of the simulation, high level situation awareness and decision making should

be encoded in conditions for each team that would be involvedin the course. Cover-

ing all states is not practically feasible and not an easy process. However task flow

definitions can be enriched after the analysis making them tohandle broader situations

successfully.

Conditions: Conditions can be defined to be referenced from the flow. A condition can be

evaluated by a single physical agent in the simplest case. However beliefs of a single

agent may not be sufficient to define a complex condition that is meaningful to a group

of agent in the course of action. Conditions can be defined to be evaluated distributed

over the interested team or by other teams.

A task is the smallest building block of a scenario definition. It can be seen as a command

given to a group of agents where agents will autonomously tryto perform the given command.

Task implementation involves coordination of agents. Agent hierarchies is used to organize

coordination by representing different task responsibilities as separate sub hierarchies. Each

task implementation can be studied separately and reuse of existing hierarchies and their goals

and plans is possible.

A group of agents can only pursue a single task defined in the scenario at a time. In other

words, no single agent can have two tasks assigned. In this work, a task is referred to an

abstract, scenario level well defined objective.
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A task can have one or more subtasks that is defined to run completely separated from the

task. The implementation of a subtask is exactly the same as atask. A runlevel represents all

running plans and issued goals of a task distributed over theagent hierarchy. When the run-

ning task triggers to handle the situation with a subtask, the runlevel of the team changes and

subtask is started. In other words, all the goals and plans ofthe initial task is suspended in the

hierarchy and a new runlevel is created to hold new goals and plans of the new subtask. After

finishing the subtask, team continues its task execution by discarding the current runlevel and

resuming the previous runlevel.

The framework can also be used in training simulations. The simulation needs to run in a

constant rate and allow trainees to command group of agents with assigning tasks. A graphical

environment is needed for trainees to help assessing the situation. It should also support easy

task instantiation to be followed by the agent teams. In thissimulation setting, trainees are

performing high level situation assessment and strategic decisions and agents autonomously

follow the given orders.

The framework can also serve as a testbed for cooperative operations defined with procedural

knowledge. An example can be an evacuation simulation to test coverage of the emergency

procedures that will be followed by officers.

3.1 Definitions

Every military unit is controlled either by a single physical agent if it is a single actor or by a

team agent if it has more than one physical agents. Physical agent’s and team agent’s beliefs,

goals and plans may differ significantly.

Available military units for the scenario are called scenario level actors in the simulation and

task flows are defined for their operation.

3.1.1 Physical Agent

A physical agent represents a single physical actor in the environment. Environment holds

only physical agents.
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A physical agent’s goals and plans can be specialized to suitthe controlled physical entity in

the simulation. For a given simplemoveToLocationgoal, a soldier and a vehicle can generate

and use different dash actions in the environment.

3.1.2 Team Agent

Team agents are used to coordinate lower level agents of the hierarchy where these agents

can be either team agents of physical agents. Team agents arevirtual agents which are not

represented in the environment. A team agent governs the decision power of its level in the

hierarchy. A hierarchy of a group of agents are driven by the task they run. A simple task

may need a hierarchy that top level team agent treats all lower level agents as equal. However

complex tasks need to subgroup the agents to fulfill different objectives. For example, agents

can be grouped in two so that the group behind has the responsibility to defend the leading

group ahead in case of attack.

Team agents are used to represent higher level of decision ina hierarchy in a task. Each team

agent can have different goals and plans dictated by the implementation of the task. Since

hierarchy of an agent group is determined by the task implementation and this hierarchy

should be changeable from task to task, team agents should not need to store and access any

belief between tasks.

3.1.3 Agent Hierarchies

There can be situations where a group of agents should be organized precisely. In order to

address this need , agents can be defined with a tree like hierarchy structure where the leaf

nodes are the actual physical agents present in the environment. Nodes other than the leaves

can be seen as virtual team agents. They are virtual because they have no physical existence

in the environment. Also, they are team agents whose purposeis to coordinate the necessary

actions of the leaf agents.

Figure 3.1 shows two common agent hierarchies. A tree with physical agents as leaves and

team agents as nodes is a valid agent hierarchy. Figure contains abbreviations PA for physical

agent, STA for sub team agent and TA for team agent. For example, if a tank team will travel
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Figure 3.1: Agent Hierarchies

together in column formation, hierarchy on the left is appropriate. However If the team need

to travel overwatch, a sub group should be covering the othergroup leading the route, the

hierarchy with 2 STA is the appropriate for this task.

Agent hierarchy abstraction gives the opportunity to statea higher level objective that should

be pursued with a group of agents. Furthermore agent hierarchy abstraction enables reuse of

other defined objectives for hierarchies, top-down and bottom-up objective modelling.

While physical agents interact with the environment, team agents need not to be able to inter-

act with the environment. Team agents also do not need to holdscenario specific information.

All the necessary information is included in the operation parameters or physical agent beliefs.

This makes hierarchy handling easier and enables to change the hierarchy totally between op-

erations.

3.2 Simulation Framework Abstract Model

The proposed simulation framework is suitable for event based simulation where time is incre-

mented in discrete time steps and simulation needs agent actions for each time frame. Agents

are expected to run classical sense-think-act cycle at eachiteration in these simulations. Agent

interpretation is based on BDI architecture and enables easy agent implementation and reuse

of building blocks. This section will try to introduce the abstract agent framework design and

its components.

Figure 3.2 shows a simple overview of the framework. Environment and agent simulation

is handled separately. At each time tick, environment provides perception information to the

agent simulator, which includes percepts of all individuals that physically exist in the environ-
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Figure 3.2: Abstract Architecture

ment. After receiving perception, agent simulation framework will perform computations to

generate actions and deliver them to the environment. Agentsimulation realizes the activities

dictated by the simulation scenario. These ingredients represents how the agent simulation is

decoupled from the environment simulation.

Figure 3.3 contains the design of the agent simulation framework. Perception distribution and

action collection components have only one purpose, interfacing with the environment. Agent

interpreter is the component that all the created agents live and run. Scenario manager sitting

on the top has the responsibility to read and prepare the agent interpreter for simulation.

In simulation, scenario manager is responsible to answer queries of the agents about their

next task and conditions to follow. Scenario manager is alsocapable of manipulating agent

hierarchies for fulfilling aggregate deaggregate operators in taskflows.

A group of agents has one root team agent which is responsibleto coordinate the group and

pursue the given task with its conditions. The coordinationand interaction between the agents

in the hierarchy is defined by the task implementation. Each task can use different mechanisms

to implement the necessary coordination of the task and thiscan result in different agent

hierarchy usages.

Agent interpreter in Figure 3.3, represents the interpretation of a group of agents presented
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Figure 3.3: Detailed Abstract Architecture

with dotted rectangles namely TA, STA1, STA2, PA1, PA2, PA3 and PA4 with their black-

board on upper left inside a dashed rectangle. TA is the shortform for Team Agent, STA for

Sub Team Agent and PA for Physical Agent respectively. An interpreter can have arbitrary

number of agent groups with arbitrary hierarchy settings.

Since only physical agents have presence in the environment, actions to be interpreted by the

environment are issued by only physical agents.

3.3 Scenario Manager

Scenario manager accesses scenario information and creates the agents in the agent inter-

preter. After agent creation, simulation can start. Agent creation can also be done during

simulation run. Agents in the simulation may query the scenario manager which task to fol-

low. Scenario manager is also responsible to change agent hierarchies based on the course of

task flows with aggregate and deaggregate operators.
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3.3.1 Simulation Flow and Interaction between EnvironmentSimulation and

Agent

The overall simulation system is designed to operate at constant time intervals.

When simulation is advanced, sensor information computed by the environment is fed into

the physical agents. This feed triggers per simulation timeframe decisions coded in terms of

plans. Within this decision time, physical agents can coordinate with team agents and send

primitive actions to the environment. When computation of all the agents are completed, the

simulation advances the time.

Figure 3.4: Simulation Flow

Figure 3.4 shows the simulation flow of a single cycle for a single physical agent. At each

cycle, agent receive sensory information and handles them as perception. After perception

related updates, decision phase should take place to determine the necessary actions. Action

phase includes action collection and delivering them to theenvironment.

Figure 3.5: Detailed Simulation Flow
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Figure 3.5 illustrates a single cycle of the agent simulation for a team of agents. Since team

agents are not represented in the environment, only physical agents can receive perception.

This perception phase is followed by the decision phase in a physical agent, and it can trigger

upper team agents through events. Relevant information fortask execution can be propagated

upward in plan implementation and necessary high level decision are propagated to physical

agents making them to generate correct primitive actions.

In real-time simulations, simulation is incremented with aconstant time frame that is parallel

with the outside world. The frequency of time frame incrementation and yet its duration is de-

termined by the requirements of its simulated model. For example, incrementing a simulation

of a human recognition simulation with 1 minute time frame istoo rough.

Some simulations can not be made real-time because of its high computation needs. In these

cases, simulation can be ticked on constant intervals but actual incrementation of time is

slower than real. In such settings, real world interaction opportunity is lost.

Time requirements of simulation are not constant in every time frame. In order to utilize

computation power, a mechanism to detect when to increment time frame should be available.

Plans can be written in a way that will tell the simulation that it has completed its computation

for that time frame. By this way, the simulation is incremented as soon as all the plans are

completed computation relevant to the current time frame. Aplan is able to work arbitrarily

long. A plan can force the simulation to wait its computationto finish by not telling it is ready

for time increment.

In this framework, a mechanism is introduced that can be usedin plans to signal that the

plan is ready for next tick. With this mechanism, simulationcan be run in two different

modes without affecting the task implementations. In the first mode, simulation advances

with constant time frames at constant rate. In the second mode, simulation advancement is

not at constant rate although time frame is constant. It allows computationally light time

frames to be skipped fast. Computationally heavy time frames can consume all necessary

time for their processes. The advancement rate is solely dependent on computation load of

the time frames.
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3.3.2 Task Queries and Scenario Manager

Scenario manager is the first point to handle the scenario information. With this information,

it creates the agents in the agent interpreter. Also, it is responsible to manage hierarchy

properties of the agents. The generated agents have to follow scenario goalas default goal.

When the agents start to execute, these goals will make each agent to request its first task from

the scenario manager.

Figure 3.6: Scenario Manager and Task Queries

Figure 3.6 shows how top level agents communicate with the scenario manager. From the

perspective of scenario manager, each query should come from either a single physical agent

or from a team agent that is also at the top of the hierarchy to determine next task to follow

and conditions to trigger task change. Scenario manager answers the query with a task and a

set of conditions, which can trigger task change, as defined in the taskflow.

Agent then starts executing the given task and checks the conditions at each time frame. If no

condition evaluates to true, task execution is done normally and agent pursues the task until it

completes either with success or failure. The next task query will include the result of the last

pursued task. If one of the conditions evaluates to true in any time frame, agent stops the task

execution and makes a query stating which condition triggered task change.

An agent can encounter aggregate and deaggregate operatorsin its taskflow. Scenario manager

is responsible to create new team agent or dispose unnecessary ones for the agent hierarchy.

These operators are not treated as a task in agents.
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A taskflow of an actor can be defined in a tree structure. Bookkeeping of task positions of all

agents are done by the scenario manager. If an agent is in a state where no task is defined,

scenario manager will reply the task query with empty task.

As the reply of task query contains a task and a set of conditions, a condition can trigger while

pursuing the task. The taskflow of the agent contains the nexttasks for each given condition.

In this circumstance, agent will query its next task by stating which condition triggered this

query.

3.3.3 Follow Scenario Goal

Each created agent initiatesfollow scenariogoal as default. With the help of this goal, agents

pull their tasks from the scenario manager and start pursuing them.

Only the agents that represent scenario level actor is designed to make task queries to the

scenario manager. Physical agent can only make queries whenit is representing a single

scenario level actor. In simulation run, physical agents can become a member of an agent

hierarchy. In this settings, physical agent’s goal will notmake queries as it has an upper level

agent pursuing scenario tasks. Only the team agents that areat the top of the agent hierarchies

can make scenario queries. In simulation run, physical agents can leave the agent hierarchy

either by deaggregate operator or by death. The team agent will not make any queries if its

hierarchy does not have any physical agents. In other words,only the agent at the top of an

agent hierarchy is responsible to make scenario queries.

pub l i c c l a s s F o l l o w S c e n a r i o P l a nex tends Plan {
pub l i c vo id body ( ) {

A g e n t I d e n t i f i e r scena r ioManage r= sea rchScena r ioManage rAgen t ( ) ;
Agent myse l f ;

TaskChange cause= TaskChange . INITIAL ;
QueryAnswer q r e s u l t ;

r e g i s t e r F o r T i c k W a i t ( ) ;
whi le ( t rue ) {
/ / wa i t i f no t r o o t
whi le ( t rue ) {

myse l f = ( Agent ) g e t B e l i e f b a s e ( ) . g e t B e l i e f ( ” m ys e l f ” ) .
g e t F a c t ( ) ;

i f ( myse l f . g e t H i e r a r c h y ( ) . i s R o o t ( myse l f ) )
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break ;
wa i tFo rNex tT i ck ( ) ;

}

/ / i am r o o t o f t h e h i e r a r c h y
whi le ( t rue ) {

q r e s u l t = queryNex tTask ( scenar ioManager , cause ) ;

f o r ( S c e n a r i o C o n d i t i o n c : q r e s u l t . g e t C o n d i t i o n s ( ) ){
p r e p a r e C o n d i t o n ( c ) ;

}

Goal goa l = s t a r t T a s k ( q r e s u l t . ge tTask ( ) ) ;

/ / e x e c u t e t a s k
whi le ( q r e s u l t . ge tTask != n u l l ) {

i f ( myse l f . g e t H i e r a r c h y ( ) . i s R o o t ( myse l f ) )
break ;

i f ( goa l . f i n i s h e d ( ) ) {
cause = goa l . g e t F i n i s h S t a t e ( ) ;
break ;

}

/ / check f o r c o n d i t i o n s
f o r ( S c e n a r i o C o n d i t i o n c : q r e s u l t . g e t C o n d i t i o n s ( ) ){

i f ( c . i s T r u e ( ) ) {
cause = c . getTaskChange ( ) ;
q r e s u l t . ge tTask= n u l l ;

}

}

wa i tFo rNex tT i ck ( ) ;
}

}

}

}

}

3.3.4 Distributed Condition Evaluation

A taskflow incorporates conditions to ensure synchronization between relevant taskflows.

Each task has its default success and failure conditions defined in the task implementation.

In a taskflow, these default conditions can be used as a decision point for choosing next task.

These triggers can be enriched by assigning user defined conditions, enabling task change

whenever the user defined conditions hold. For example, an air defense team will rendezvous

with a tank team at a position. The air defense team can wait for a predefined time so that if

no tank team reaches the rendezvous point in that time, jointoperation will fail. However a

condition representing tank team arrival to the predefined point can be given. If this condition

triggers, joint operation encoded in the taskflow after the condition will be followed.
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A task finishes whenever a default condition (success or failure) or user condition triggers.

Then, agent queries the scenario manager to fetch its next task. Scenario manager will reply

the query with a task and condition set as defined in the taskflow.

Agents can watch a condition to trigger various activities.In a distributed multiagent envi-

ronment, complex conditions can emerge with the necessity to fusion different information

among other agents. The presented distributed condition evaluation mechanism is intended to

address this gap.

The conditions can be constructed from well formed formulasand can be defined to be eval-

uated with different agents. When an agent needs the value of the condition,the condition is

decomposed for each relevant agent and requested for evaluation. This request establishes a

value link between the requester and the evaluator. This value link is only utilized when the

condition value changes. The link is also disposed when the condition evaluation is no longer

required.

3.3.5 Aggregate and Deaggregate Operators

It is possible to change agent hierarchies in taskflow definitions. Aggregate and deaggregate

operators are defined for this purpose. A tank team can be deaggregated to 4 single tanks.

With this deaggregation, user can define more precise and lowlevel taskflows. Another ex-

ample would be to aggregate 4 single tanks to form again a tankteam and make this tank team

pursue team taskflows as before.

Although aggregate and deaggregate are used in taskflow, their interpretation is different.

Tasks are interpreted by agents but aggregate and deaggregate operators are interpreted by

scenario manager.

Deaggregate operator can only be issued to scenario level actors which are also made up of

smaller scenario level actors. For example, if a tank team ismade up of 4 single tanks and

a single tank is also a scenario level actor, user can deaggregate it to 4 single tanks and use

them in taskflows. Deaggregate operator makes a group of agent to divide into sub groups.

Scenario manager sets the hierarchies of the agents in this process by adding or removing

team agents. Each subgroup will pursue its own taskflow withfollow scenariogoal.
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Aggregate operator can only be issued to actors which will result again in a scenario level

actors. For example, if there is no actor defined made up of tank teams, user can not aggre-

gate tank teams to form bigger agent groups. Execution of theaggregate operator is harder

because the two agent groups need to be synchronized. Mostlyone of agent groups will want

to participate in aggregate operator while other agent group pursuing another task. In this

state, first group will make a task query to scenario manager where scenario manager will

not answer. Unanswered queries will be re-sent next time frame again. Meanwhile, scenario

manager knowing an actor ready for aggregate operator, willmake that agent wait for the

other agent. When both participants are ready for aggregateoperator, scenario manager will

manage their hierarchies. This will result in a new task query from the top most team agent

as other actors will no longer be the top most agents in the hierarchy.

3.4 Agent Interpreter System

Agent interpreter system is the core of agent execution. This framework uses Jadex BDI

interpreter as a base for agent interpretation. BDI agents allow scalability and distribution.

3.4.1 Blackboard

A team of agents should be well synchronized to fulfill the goals they are pursuing. Agents

need to communicate for synchronization in their plan executions. The need to communicate

can be just to synchronize at a time point or to exchange information necessary for plans.

Implementing the behaviour of a group of agents centrally ina single algorithm is not suitable

in the nature of the framework. The central algorithm indeedcan be converted to distributed

goals and plans utilizing messaging between them. However,implementing plans with ex-

plicitly messaging not only complicates the plan implementation, it can introduce overhead

compared to using a blackboard.

Blackboard addresses the need of synchronization facilities and joint beliefbase for coordina-

tion between the running plan instances. In a fully distributed setting, blackboard can utilize

messaging. For performance improvements, it can serve as aninterface to bypass and simplify

the need for messaging. For example, it is possible to use shared memory and semaphores
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in a single computer while being able to fallback to a messagebased approach whenever the

participant agent is not locally available.

Jadex is a fully asynchronous event based interpreter. In order to ensure synchronization, one

has to define several messages, handlers in terms of events and plans. Using blackboard in

plan implementations eliminates these need in an efficient way.

Figure 3.7: Blackboard

Blackboard has two functionality that can ease coordinatedplan writing. First functionality

is to address synchronization of different plans of team agents. Second functionality is to

address the need of common beliefbase shared between agentsof team. Figure 3.7 illustrates

a blackboard.

Blackboard properties are defined below:

Blackboard regions : A blackboard is used in a task implementation as a tool. A blackboard
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Figure 3.8: Blackboard Agent Order for Plan Execution

can have independent regions that can be used isolated from other sub teams.

Agent orders : Some tasks require decision of actions in a single time frame. The agents

in the hierarchy runs their plan in parallel. If there is a need to ensure execution order

of some plan steps, agent orders in the blackboard can be used. A plan can wait for

its execution order before committing plan steps. For example in the simple setting,

the programmer wants 4 agents to run orderly. He can define a blackboard region with

agents in order and he can use synchronization in the plans ofphysical agents. Each

agent will decide where to go and write it to blackboard beliefbase, and the next agent

will decide based on previous agent. This facility enables agents to synchronize effi-

ciently in order and generate primitive actions at each timeframe. Figure 3.8 illustrates

the usage of agent order of a region for a single time frame. Inthe example figure, phys-

ical agents execute common steps of plan but then uses agent order for synchronously

executing rest of the plan steps.

Blackboard beliefs : Utilizing blackboard as a common beliefbase between agentsis possi-

ble. However the lifetime of a blackboard is intended to be for a single task, like beliefs

of team agents, which are disposable between tasks.

A blackboard is intended to be used by agents of a single grouponly, in other words no two
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team is supposed to use the same blackboard for the sake of distribution. In distributed agent

execution setting, this property can help agent relocationbetween the machines, enabling ef-

ficiency gain by using local machine blackboard interactionfacilities. If task implementation

needs blackboard usage, the team agent is responsible for its creation and setting. Necessary

information to access the created blackboard can be passed in goal parameters afterwards

while delegating goals to sub agents.

3.4.2 Runlevel

A task is executed by a group of agents organized in a hierarchy. In order to start a new task,

previous task and its relevant goals and plans should be stopped. Runlevel enables to control

all running plans of a task distributed over the agents in thehierarchy whenever necessary.

Function calling another function is a way to decompose and implement tasks. The analogy

in BDI architecture is to issue sub goals in a plan. These approaches are for single control

flow and called function stack and intention stack respectively.

Figure 3.9: Runlevel

Runlevel is an interpreter control mechanism that can not only control a single agent goals

and intentions but also control the whole agent hierarchy.

Runlevels can be seen as a stack where each level is on top of other and only the top most
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Figure 3.10: Task execution with Runlevels

level runs. Figure 3.9 tries to illustrate runlevel stack for a group of agents. In the figure,

agents in the hierarchy has gears, representing the runningplans, aligned in runlevels. With

this abstraction, a task is running with all its relevant goals and plans on a level. With runlevel

functionality, one can call subtasks on a higher runlevel, making the current runlevel sus-

pended. These subtasks can be executed to handle different conditions and help maintain the

task to be pursued. After handling the situation, the runlevel can be disposed and all agents

can continue from the states of the previous runlevel. Figure 3.10 illustrates the explained

task execution.

Runlevels are named with integers starting from 0. Runlevel0 is a special runlevel that helps

to easily define service plans that should not be suspended. When a subtask or team plan

should be run, runlevel is suspended and incremented.

Below is a list of possible runlevel usage:

Runlevel 0 : Follow scenariogoal runs in this runlevel and never discarded through out the

simulation. This runlevel can be seen as a special containerfor goals that should not be

affected by task execution.Follow scenariogoal starts the given task in runlevel 1 and

controls its execution.

Runlevel 1 : This runlevel is suitable for task execution. All goals and plans of the task are

interpreted in runlevel 1.

Runlevel 2 : This runlevel and higher runlevels are available for subtask execution. A sub-

task is triggered when its condition evaluates to true. Thisrunlevel is discarded when

the subtask execution is finished and suspended lower runlevel is resumed.

Runlevel is controlled with a message passing mechanism that is treated specially by the agent

interpreter. The message can create a new runlevel or dispose the current one. Creation of
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a runlevel suspends the current runlevel and it is not resumed until the created runlevel is

disposed. The message also includes the agents in the hierarchy so that this control message

can be broadcasted from the top agent to all runlevel participants.

3.4.3 Conditions and Subtasks

A plan can have various conditions watched in parallel with its normal plan execution. When

one of these conditions holds, the condition triggers various measures.

1. It can finish the plan execution with either success or failure.

2. It can call a subtask with a higher runlevel, making itselfand all subtask below the

hierarchy suspended.

3. It can replace the current triggering goal with another goal.

3.4.4 Inter Agent Goal Request, Observation and Control

In a hierarchic team programming framework, ability to request an activity from another agent

is a key control facility. Observing the requested activityand having opportunity to control

the request is also crucial. It enables to abort activities that are no longer necessary.

This extension is designed like the distributed condition evaluation in terms of value links.

When a requester asks another agent to pursue a goal, a link about the goal status is estab-

lished. With this link, observer is informed about the stateof the goal. This link also enables

the observer to cancel the goal request as soon as the fulfillment of the goal is not necessary.

3.4.5 Definition of a Scenario Task

A task in scenario is defined with parameters. The task has a corresponding goal that is

pursued by the top level team agent in the hierarchy.

The plan that will fulfill the goal also can have conditions that can trigger different runlevel

operations.
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3.5 Perception Distribution

Perception distribution component illustrated in Figure 3.3 is an interface used to feed the

agent simulation with the generated sensory information inthe environment simulation. Agent

health states are fed to scenario manager too. If an agent is killed in the simulation, scenario

manager updates the hierarchy that the agent is member of andkills the interpreter of the

agent.

3.6 Action Collection

Action collection component is illustrated in Figure 3.3. It is also an interface point like per-

ception distribution component. It simply collects all primitive actions from physical agents

and delivers them to environment simulation.

3.7 Realization of Scenario Tasks in Agent Interpreter

Scenario tasks can be assigned to scenario level actors. A task can be given either to a single

physical agent or to a team agent. Agents that should act as a team will organize themselves

in an agent hierarchy. For example, if a tank team consistingof 4 tanks should operate in

two sections, the team hierarchy will need 3 team agents as can be seen in Figure 3.11. If

the task and its implementation does not need subdivision and corresponding subteam agents,

The team will contain only 1 team agent as in Figure 3.12.

Figure 3.11: Agent Hierarchy Containing Subdivision
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Figure 3.12: Simple Agent Hierarchy

A task has conditions that can trigger task change when evaluated to true. The agent that is at

the top of the hierarchy is responsible for evaluation of these conditions. In order to fulfill task

objective, agent at top will utilize lower agents by sendinggoals. A task implementation in-

cludes all necessary goals and plan definitions that handlesthese goals and events. Utilization

of the blackboard and subtasks will be explicitly stated in modelling section of tasks.

Team agents are virtual in the simulated environment. In other words, they can not send prim-

itive actions to manipulate the environment or receive any sensory information directly from

the environment. Team agents are used to organize physical agents centrally and accommo-

date coordination between them. Team agents decide which underlying agent should do by

sending goal. Physical agents that receive goals will instantiate a plan as an intention. From

this point on, a physical agent can generate primitive actions according to their plans and send

these actions to the environment.

Task definitions has failure and subtask conditions. This conditions will be watched with the

plan of follow scenariogoal in runlevel 0. During execution of a task, any of the conditions

can trigger. If the failure condition triggers, the goal of the task will return with failure. In the

case subtask condition triggers, the current task is suspended and a new runlevel is created to

run the defined subtask. When the execution of subtask ends, the runlevel of the subtask is

disposed and the suspended runlevel is resumed to continue its task execution.

In task implementation, a subtask that can be triggered by a subtask condition can be speci-

fied. Implementation of a subtask is exactly the same as a task. The task will be suspended

temporarily when a subtask starts to execute. This propertyallows a subtask to run without

any interference from other tasks.
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CHAPTER 4

IMPLEMENTATION ON JADEX

During thesis work, a proof of concept implementation of theproposed architecture is made

and an example case study is carried out. Since abstract architecture is based on BDI paradigm,

a BDI implementation is needed that is suitable for extension and open source. Jadex, which

is a well known BDI Agent Interpreter, is chosen because it isopen source and extensible.

Jadex source distribution also comes with various multiagent examples but none of them con-

tains difficulties attacked by the approach introduced in this thesis work. In order to demon-

strate the capabilities, a small scale military scenario containing 2 sides, one ally and one

enemy, is prepared.

The detailed case study is presented top down in three steps.The scenario and its ingredients

are stated first. Modelling of the tasks that are used in the scenario is given later. Finally, an

example run is narrated at the last section. In this chapter,implementation details carried out

on Jadex interpreter is presented.

4.1 Implementation of Environment, Scenario Manager and Clo-

sed Simulation

Jadex platform provides its all functionality through various built-in agents. Jadex Control

Center agent is a GUI front end to control everything runningon the platform and it has sev-

eral debug and introspection tools that can ease agent development besides overall platform

control. Agent Management System (AMS) agent enables agentlife cycle control by giving

the ability to create, suspend, resume and kill. Jadex implementation also provides a Direc-
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tory Facilitator (DF) agent whose purpose is to provide directory services to help agents find

information easily. In Jadex platform, all agents communicate with sending and receiving

messages.

For the implementation of the case study, an agent named environment is created that is re-

sponsible for environment simulation. The environment agent then registers itself on director

facilitator agent. All other created agents fetch the environment information through directory

facilitator.

Figure 4.1: Environment Gui

Environment agent has a GUI (Figure 4.1) to show the simulation state and states of the con-

nected agents. The environment GUI also allows control of the simulation execution. The

suspend toggle button enables to pause the simulation. Pause can be used to study the logs

of the ongoing simulation. Button named as fast as possible can be used to toggle between

normal realtime incrementation of the simulation and fast incrementation as soon as the com-

putation of the plans finishes. For easy and basic testing purposes, GUI has a simple goal

editor that lets chosing a goal and editing of the goal parameters. After setting the goal pa-
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rameters, the goal can be dragged and dropped onto any agent in the agents view. If the agent

has the goal defined, it will start to execute the goal immediately.

In order to simplify coding, scenario manager component is also built into the environment

agent. However, creating a different agent for scenario manager is also possible. Scenario

manager has two main purposes: initialization of agent simulation framework and task query

answering.

In initialization phase, scenario is read by the manager andnecessary setting of the environ-

ment is also done. Afterwards, all agents defined in the scenario is created and their hierarchy

is set up accordingly.

In simulation run phase, scenario manager has no active tasks, its main responsibility is an-

swering queries about which agent should follow which task.

In order to answer queries, scenario manager keeps track of task flow positions of each agent.

This book keeping process is carried out through out the simulation. Each query involves an

advancement of the agent in its taskflow: asking for next taskto pursue. The latest given

answer to the query is the current position of the agent in itstaskflow.

Scenario manager is informed when an agent is destroyed in the environment. Scenario man-

ager than kills the agent and removes from the interpreter.

Task following from the agent perspective is also needed to be implemented. This is accom-

plished by a simple initial goal that queries a task to followin a loop. The details of this goal

is given in previous chapter as follow scenario goal.

Closed simulation property makes scheduling of the agents harder. In order to utilize comput-

ing resources efficiently, advancement of the simulation time frame should bemade as soon

as possible. From the nature of distributed systems and a central environment, completion

of decision relevant to the current time frame should be detected and simulation should be

advanced. In order to address this need, wait manager is implemented in the environment

agent and team plans coordinate with this manager by messaging. A time consuming plan

can register itself on wait manager to ensure it has enough time at each time frame. The plan

signals when it has completed its computation for that time frame. Wait manager keeps track

of these plans and advances the simulation time whenever allplans are ready for the next time
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frame. Using this facility from plans is accomplished by twofunction calls.

registerForTickWait() : This function immediately returns after sending a registermessage

to the wait manager.

waitForNextTick() : This function signals that the plan has completed necessarycomputa-

tion for the current time frame and ready to advance. This function returns when the

simulation time is incremented.

If a plan is registered for tick wait, upon plan termination it automatically unregisters itself

from the wait manager.

Wait manager keeps track of all requests in a list identified by <agentId, plan instance> pair.

If a plan is unresponsive, which means it does not callwaitForNextTick, for a defined number

of time frames, it is automatiaclly discarded. Wait managercan operate in two modes.

Normal : In this mode, wait manager advances time based on simulationdefaults which is 1

tick per second.

As fast as possible :Wait manager is utilized in this mode. It keeps track of all registered

plans and advances as soon as all of them completes their computations. Wait manager

increments the time frame at worst case as in normal mode. This can be caused by

plans having heavy computation loads or unresponsive plans. The plan instances that

slows the execution are logged for further investigation.

4.2 Implementation of Runlevel

Runlevel mechanism is incorporated into the Jadex agent interpreter. Jadex agent interpreter is

event based and event processing is done with the help of an agenda that organizes the pending

events in tree structures. Running plans may not have any pending event on agenda. However,

when a plan goes to sleep waiting for a condition, the condition can generate an event to wake

up the plan. The triggered event will first take its place in the agenda. Interpreter processes

events in the agenda one by one.
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Runlevel information is incorporated on running plans and the interpreter holds the current

runlevel. When a new plan starts to run, it is created with thecurrent runlevel. Two field and

a couple of management function are added to JadexInterpreter class. These additions are

shown below.

p r i v a t e i n t c u r r e n t R u nLe ve l= 1 ;
p r i v a t e Stack<IAgenda> suspendedRunLeve ls= new Stack<IAgenda> ( ) ;
pub l i c synchron ized vo id newRunLevel ( RunLeve lRequest r l r e q ) ;
pub l i c synchron ized vo id removeRunLevel ( ) ;
pub l i c i n t ge tCu r ren tRunLeve l ( ) ;
pub l i c IAgenda getAgendaOfRunLevel (i n t r unLeve l ) ;

Runlevel change is triggered by a message event. The messageevent contains three type

of information: command, agents and goal. Command specifieswhether the request is new

runlevel or remove runlevel. The request is initially sent to the root agent on top of the

hierarchy. The request also specifies all the other agents ofthe hierarchy. A simple request

consisting of only the command is then broadcasted to all agents specified in the request by

the root agent. Goal information is used to run the initial goal of the new runlevel.

Jadex interpreter can be extended by tool adapters. A tool adapter is a special class that

can handle message events when the agent first receives. Withthis capability, Jadex control

center has implemented various debugger and introspector tools. In order to add runlevel tool

adapter,config/runtime.properties.xmlfile is edited adding the line below.

<p r o p e r t y name=” t o o l a d a p t e r . r u n l e v e l ”>new y t h e s i s . r u n l e v e l .
Run leve lAdap te r ($ a g e n t )< / p r o p e r t y>

This runlevel adapter handlesRunLevelRequestmessages and handles them by callingnewRun-

Levelor removeRunLevelfuction in theJadexInterpreterclass. Broadcasting of messages are

done within the runlevel adapter.

When a new runlevel is triggered, agent actually starts a newplan that will start and monitor

the given goal. The runlevel goal takes theRunLevelRequestmessage as parameter and it is

dispatched as a top level goal.RunLevelPlanhandles the runlevel goal and start the given

goal as a subgoal. The runlevel is automatically removed byRunLevelPlanwhen the given

goal is finished.RunLevelPlansends itself the same runlevel request with remove runlevel

command. Below is the source code ofRunLevelPlan.
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p u b l i c c l a s s RunLevelPlan e x t e n d s Plan{
p u b l i c vo id body ( ) {
RunLeve lRequest r l r e q= ( RunLeve lRequest ) g e t P a r a m e t e r ( ” r e q u e s t ” ) .

ge tVa lue ( ) ;

/ / s t a r t t h e goa l
i f ( r l r e q != n u l l && r l r e q . getGoalname ( ) != n u l l ) {

S t r i n g goalname= r l r e q . getGoalname ( ) ;
Map<S t r i n g , Ob jec t> params = r l r e q . ge tGoa lparams ( ) ;

IGoa l goa l=n u l l ;
IRGoal r g o a l=n u l l ;
t r y {

r g o a l = g e t R C a p a b i l i t y ( ) . ge tAgen t ( ) . ge tGoa lbase ( ) . c r e a t e G o al (
goalname ) ;

goa l = new GoalWrapper ( r g o a l ) ;
} c a t c h ( Run t imeExcep t ion r e ){

l o g g e r . s e v e r e ( ” r u n l e v e lcan no t c r e a t e goa l : ” + goalname ) ;
}

/ / s e t p a r a m e t e r s
i f ( params != n u l l ) {
f o r ( S t r i n g param:params . keySet ( ) ){

goa l . g e t P a r a m e t e r ( param ) . s e t V a l u e ( params . g e t ( param )) ;
}

}

/ / run t h e goa l and wa i t
d i spa tchSubgoa lAndWa i t ( goa l ) ;
}

/ / end t h e run l e v e l
RunLeve lRequest req= new RunLeve lRequest ( r l r e q ) ;
r eq . setCommand ( ” remove ” ) ;

/ / From Too lReques tP lan
IMessageEven t r e q u e s tm s g = c rea teMessageEven t ( ” t o o lr e q u e s t ” ) ;
r e q u e s t m s g . g e t P a r a m e t e r S e t ( SFipa . RECEIVERS) . addValue ( req . ge tA id

( 0 ) ) ;
r e q u e s t m s g . g e t P a r a m e t e r ( SFipa . REPLYWITH) . s e t V a l u e ( SFipa .

c r e a t e U n i q u e I d ( n u l l ) ) ;
r e q u e s t m s g . g e t P a r a m e t e r ( SFipa . CONVERSATIONID) . s e t V a l u e ( n u l l ) ;
r e q u e s t m s g . s e t C o n t e n t ( r eq ) ;

sendMessage ( r e q u e s tm s g ) ;
}

}

Runlevel change request is specially treated by the agent interpreter. Internal data structures

are need to be handled prior to any runlevel related goal processing begins.
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When a new runlevel is created, a new agenda for the runlevel is created and the current

agenda is stored in a stack. Since interpreter will work on the events generated, previous

events will not be considered. However, wake up events for the suspended plans related to

the previous can emerge. In this case, event is pushed to the relevant runlevel agenda. That

way, when the runlevel is resumed, previous events will be processed. This functionality is

implemented in addAgendaEntry function of JadexInterpreter class.

4.3 Implementation of Blackboard

Blackboard facility can be seen as an interface, as mentioned in previous chapter, and there

can be different implementations providing this interface. In case study, blackboard facility is

implemented to work on a local Java runtime instance where all agents of the group assumed

to live. Although this assumption seems limiting, its application has performance benefits. In

order to gain performance, all agents of the group can be executed on the same Java runtime

instance.

Figure 4.2: Blackboard Manager

The blackboard can also be implemented fully distributed and message based. This imple-
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mentation will probably have overheads but it will enable blackboard utilization wherever

possible.

In case study implementation, each Java runtime instance has a blackboard manager(Figure

4.2) as a singleton. Blackboard manager is used to create andregister blackboards. After

blackboard usage is over, the creator plan should remove it from the blackboard manager.

Blackboard manager holds a list of available blackboard that can be accessed with names.

Blackboard names are passed to other agents in goal parameters. All agents of the group can

access blackboard after receiving the name.

A blackboard is a container of regions. All functionality isimplemented in blackboard region.

Below is the interface of the blackboard region with comments shortly explaining its usage.

/ / used t o s e t t h e o rde r o f a g e n t s i n c r e a t i o n
pub l i c vo id addAgent ( A g e n t I d e n t i f i e r a i d ) ;

/ / used by an agen t t o query i t s p l a c e i n agen t o rde r
pub l i c i n t ge tAgen t I ndex ( A g e n t I d e n t i f i e r s e l f ) ;

/ / used t o query how many a g e n t s a re i n agen t o rde r
pub l i c i n t getNumberOfAgents ( ) ;

/ / agen t can query i f i t needs t o wa i t f o r o rde r
pub l i c boo lean i s W a i t R e q u i r e d ( A g e n t I d e n t i f i e r s e l f ) ;

/ / c a l l e d t o b l o c k c u r r e n t agen t t o wa i t order , t i m e o u t i n
m i l l i s e c o n d s

pub l i c boo lean b lockAgen t ( A g e n t I d e n t i f i e r s e l f , long ms ) ;

/ / s i g n a l a c t i v i t y f o r t h e agen t i s done
pub l i c vo id agentDone ( A g e n t I d e n t i f i e r s e l f ) ;

/ / g e t common b e l i e f b a s e as a hashmap
pub l i c Map<S t r i n g , Ob jec t> g e t B e l i e f b a s e ( ) ;

4.4 Implementation of Scenario Conditions

A scenario condition is an expression where its evaluation to true triggers task change. Jadex

has support for expressions that can use functions and variables present in beliefbase.

Jadex also has support for conditions. In Jadex manual it is described that a condition is
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a monitored boolean expression. Usage of conditions is possible within plans but it does

not allow to explicitly wait for multiple of condition instances. A task can have multiple

conditions that can trigger task change. Because of these short comings condition facility of

Jadex could not be used for demonstration.

In this case study, distributed condition evaluation is needed. A scenario condition is defined

with a list of<agentId, boolean Jadex expression>pairs. AgentId defines which agent should

monitor the expression. If the agentId refers to another agent, a value link is established

between agents to monitor the expression. After value link establishments, all of them is

combined by AND binary operator and monitored.

A value link is implemented message based and uses beliefbase. Value link usage has three

phases as initiation, update and termination.

Link initiation : Initiator reserves a new belief to hold value of the expression. Then initiator

sends a message to the remote agent containing the expression and the belief name.

Receiver registers this information for later evaluation.

Value update : Receiver monitors the expressions once in every time frame.This is triggered

in follow scenario plan. If the value of the expression changes, a value update message

is sent to the agent containing the belief name and its value.With this information,

initiator agent directly updates its belief based on the incoming update message.

Link termination : Link termination is done with belief removal and sending a link termi-

nation message to receiver. Receiver removes any setting for expression monitor.

Evaluation of scenario conditions is handled infollow scenarioplan. When a new task is

received with scenario conditions, all scenario conditions are prepared for monitoring. A task

change is triggered whenever one of the scenario conditionsevaluate to true or the task goal

finishes with success or failure. Task change handled by runlevel cleaning and a task query to

the scenario manager.

Although Jadex condition facility could not be used in the case study, it is possible use after

extending the Jadex internals. Condition facility of Jadexcurrently more efficient than the

case study implementation.
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CHAPTER 5

EXAMPLE CASE STUDY

5.1 Case Study : Air Defense of Tanks

Scenario can be briefly stated as an air defense escort operation. A group of tanks accompa-

nied by air defense vehicles will go thorough a valley. The mission has a high risk of failure

because the valley is suitable for an enemy helicopter attack.

This scenario outline describes air defense units their objective: escort the tank group and

engage enemy helicopters. The success of this mission is highly depended on the capability

of air defense units. With this scenario, utilization of theair defense units and how they should

be operated can be studied. For this purpose, case study focused on the implementation of the

tasks of air defense units and their task flow. Implementation of the enemy helicopters and

tank group is not in detail and mostly hardcoded.

Map is a simple grid with obstacles that blocks the availablemoves. Figure 5.1 shows the

beginning of the simulation. Map size is a 32 by 32 cells. Every vehicle in the simulation

moves at most 1 grid in a time frame. Tanks and air defense vehicles can not move through

obstacles. Helicopters can move over the obstacles. No one can see anything behind an

obstacle. In this implementation, only a generic blockage is defined which is called a mine

field. This mine field can be detected when the agents come closer. It is assumed that relevant

actions can be taken by infantry to clean the mines. Based on this assumption, implemented

environment simulation vanishes the mine field after a predefined time. If the vehicle moves

in the mine field, it can be damaged with a probability.

Enemy consists of a group of helicopters. Enemy tries to secure an area and avoid penetration
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Figure 5.1: Initialization of Simulation

of other forces from the valley.

Friendly units consists of a tank group and a group of air defense vehicles. The tank group has

the mission to reach and secure an area that is of utmost importance. The area is located on

the upper right corner of the map. Tank group is aware of the helicopter strike risk and will be

accompanied by air defense vehicles. The air defense will move with the tanks for protection.

The key capabilities of the framework will be demonstrated in task implementations of this

unit.

Enemy scenario and friendly scenario are run completely separated. In other words, it is

possible to run enemy agents on a different computer.
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5.1.1 Example Scenario

There are two friendly teams on the map, namely air defense team and tank team. Initially

they are located far away from each other on the map as can be seen on Figure 5.2. Main

activity of the scenario is to carry out air defenses of the tank team. In order to start this

mission, air defense team should travel near the tank team. After air defense team covers the

tank team, tank team can start to follow the route in the valley to north.

Friendly intelligence also states enemy presence guardingthe north of the valley. It is reported

that helicopter teams may be patrolling the north of the map.

Figure 5.2: Scenario Overlay

Scenario has two phases for friendly units, first preparation and escorted travel to north.

Phase 1 : In the first phase, tank team takes position on their initial coordinates. This position
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is highlighted with green 1 in Figure 5.2. Tank team will waituntil accompanied by

air defense team. Air defense coverage of positioned tank team is designated with blue

circle on the map. Meanwhile, air defense team travels to west to reach tank team. The

route is highlighted with a blue 1 on the figure. When positionis reached, air defense

team will cover tank team to protect from air attacks.

Phase 2 : Tank team follows the green route highlighted with number 2 in the valley. Tank

team travels at a suitable speed to let air defense vehicles to change position appropri-

ately. Air defense team pursues its defensive move task along the blue path in the valley

highlighted with blue number 2. Based on the intelligence, possible enemy encounter

is awaited in this phase. At the end of this phase, tank team and air defense team take

positions on the north where the green route ends.

Scenario for enemy helicopters is very simple and involves no coordination. It can be sum-

marized as:

• Patrol the red line on the north continuously.

• Attack any threat in vision range.

5.2 Scenario Level Actors

Scenario level actor refers to a single physical agent or a group of agents that is suitable for

task assignment in task flow definitions. A group of agents will have a hierarchy and the

topmost team agent is responsible for pursuing the task.

Air Defense Team: This actor is composed of 4 air defence vehicles.

Single Air Defence Vehicle: This is the only physical agent that is defined as a scenario

level actor. User can define a single air defence vehicle to command from the beginning or

deaggregate an air defense team and command all vehicles in it one by one.
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Tank Team: The tank team consists of 4 tanks. The team agent has 2 sub teamagents each

corresponding to a tank buddy. A tank buddy is made up of 2 tanks.

Helicopter Team: The helicopter team is composed of 2 attack helicopters.

A single tank or a single helicopter is not defined as a scenario level actor. Thus user is not

given the opportunity to define detailed taskflows for these units. However implementation of

each physical agent is exactly the same whether it is a scenario level actor or not. Defining

scenario level actors is a design decision and can be directed with the desired detail level of

the simulation.

5.3 Modeling of Tasks

Below sections presents the modelling details of the tasks used in the case study. Some of the

tasks reuse existing goals and plans from other tasks.

5.3.1 Goto Location Task

This task is the simplest task that can be given to a physical agent. The agent will find a route

to the desired location and immediately start moving. If no valid route to the location found,

the task fails.

Applicable Actors:

Single Air Defense Vehicle.

Task Parameters:

Table 5.1 defines the task parameters.

Preconditions and Assumptions:

• Actor should have mobility.

• A route to the location should exist
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Table 5.1: Goto Location Task Parameters

Task Parameters Description Data Type

Location The target point that should be

reached by the agent

2D Map Coordinate

Task Implementation

The physical agent tries to find a path to the target location first. If the route exists, it follows

the route and finishes the task successfully. Task will fail when there is no route. However

temporary route blockages will not fail the task. The task can call subtasks to handle the route

blockages.

Hierarchy

Figure 5.3: Goto Location Task Hierarchy

Single PA physical agent has no hierarchy (Figure 5.3).

Success Condition

The task is successful when the physical agent reaches to given target location. TheTask-

Goal GotoLocationgoal will finish successfully.

Failure Condition

If there is no applicable route is present to reach the targetdestination, TheTaskGoalGoto-

Locationgoal will finish with failure.
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Subtask Conditions

The route can be blocked temporarily by a mine field. In this circumstance, the subtaskWait

Mine Cleaningcan be activated in a new runlevel to handle the situation.

Blackboard Usage

There is no blackboard usage for this solo task.

Belief Usage

Environment obstacles and agent positions are accessed inside the plan to calculate possible

moves. Subtask checks environment to see whether the mine field is vanished.

Task Goals and Plans

PA Physical Agent

TaskGoalGotoLocation: This goal represents the task. Goal parameters are same as

the task parameters.

PlanGotoLocation: This plan handles the goalTaskGoalGotoLocation.

pub l i c c l a s s GotoLoca t i onP lan ex tends Plan {
pub l i c vo id body ( ) {

Loca t i on l o c = ( Loca t i on ) g e t P a r a m e t e r ( ” l o c a t i o n ” ) . ge tVa lue
( ) ;

S t r i n g boardname= ( S t r i n g ) g e t P a r a m e t e r ( ” boardname” ) .
ge tVa lue ( ) ;

S t r i n g reg ionname= ( S t r i n g ) g e t P a r a m e t e r ( ” reg ionname” ) .
ge tVa lue ( ) ;

i f ( boardname== n u l l | | boardname . e q u a l s ( ” ” ) ){
l o g g e r . s e v e r e ( ” boardnamei s empty ” ) ;
f a i l ( ) ;

}

BlackBoardRegion r e g i o n= BlackBoardManager . g e t I n s t a n c e ( ) .
ge tB lackBoard ( boardname ) . r e g i o n s . g e t ( reg ionname ) ;

/ / t e r m i n a t i o n
Boolean done= ( Boolean ) r e g i o n . c o n t e n t . g e t ( ” done ” ) ;

/ / l oop
whi le ( ! done ) {

Agent myse l f = ( Agent ) g e t B e l i e f b a s e ( ) . g e t B e l i e f ( ” m ys e l f ”
) . g e t F a c t ( ) ;
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i n t agen tno = r e g i o n . ge tAgen t I ndex ( myse l f . getAID ( ) ) ;
S t r i n g a c t i o n = ” ” ;
done = ( Boolean ) r e g i o n . c o n t e n t . g e t ( ” done ” ) ;

/ / wa i t
f o r ( i n t t =0; t <8; t++) {

i f ( r e g i o n . i s W a i t R e q u i r e d ( myse l f . getAID ( ) ) ){ / / need t o
wa i t

boolean r e t = r e g i o n . b lockAgen t ( myse l f . getAID ( ) , 100)
;

i f ( r e t == f a l s e ) {
cont inue ;

}

}

}

/ / a c t i o n
Env i ronmen t I n fo e i n f o = ( Env i r onmen t I n fo ) g e t B e l i e f b a s e ( )

. g e t B e l i e f ( ” e n v i n f o ” ) . g e t F a c t ( ) ;
Loca t i on cu r rLoc = myse l f . g e t L o c a t i o n ( ) ;
Loca t i on nex tLoc ;
/ / TODO done c o n d i t i o n ?
i f ( e i n f o . g e t M a n h a t t a n D i s t a n c e ( cur rLoc , l o c )== 0) {

r e g i o n . c o n t e n t . pu t ( ” done ” ,new Boolean (t rue ) ) ;
a c t i o n = RequestMove . DIRECTIONNONE ;

}

/ / wa i t t h e n e x t
i f ( agen tno+1 != r e g i o n . getNumberOfAgents ( ) ){

Loca t i on nextAgentLoc= ( Loca t i on ) r e g i o n . c o n t e n t . g e t ( ”
l o c ” +( agen tno+1) ) ;

i f ( nextAgentLoc == n u l l | | e i n f o . g e t M a n h a t t a n D i s t a n c e (
cur rLoc , nextAgentLoc )>3) {

a c t i o n = RequestMove . DIRECTIONNONE ;
}

}

i f ( a c t i o n == ” ” ) {

/ / normal move
Loca t i on l e a d e r L o c ;
i f ( agen tno == 0) {

l e a d e r L o c = l o c ;
} e l s e {

l e a d e r L o c = ( Loca t i on ) r e g i o n . c o n t e n t . g e t ( ” l o c ”+(
agen tno−1) ) ;

}

a c t i o n = RequestMove . DIRECTIONNONE ;
i f ( l e a d e r L o c != n u l l ) {

i f ( agen tno==0 | | e i n f o . g e t M a n h a t t a n D i s t a n c e ( leade rLoc
, cu r rLoc ) > 1) {

S t r i n g d i r s [ ] = e i n f o . g e t D i r e c t i o n s ( cu r rLoc ,
l e a d e r L o c ) ;

a c t i o n = d i r s [ 0 ] ;
}
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}

}

/ / w r i t e our d e s i r e d n e x t l o c
nex tLoc = e i n f o . c a l c u l a t e L o c a t i o n ( cu r rLoc , a c t i o n ) ;
r e g i o n . c o n t e n t . pu t ( ” l o c ”+agen tno , nex tLoc ) ;

/ / t e l l
r e g i o n . agentDone ( myse l f . getAID ( ) ) ;

/ / make move
move ( a c t i o n ) ; / / t h i s f u n c t i o n ends when env i ronmen t

g i v e s r e p l y
}

}

}

Subtask : Wait Mine Cleaning

There is only one subtask defined for this task. The subtaskWait Mine Cleaningis started

when the route is blocked by a mine field. In order to continue,agent has to wait until the

mine field is cleaned. This subtask could call for mine cleaners. The example simulation

is not interested in mine cleaning and there is no actors or facility for mine cleaning. Mine

cleaning is modelled simply by expiration in the environment. The simulation assumes a mine

field is cleaned after a predefined time of its exposition.

PA Physical Agent

Goal WaitMineCleaning: This is the goal forWait Mine Cleaningsubtask. Table 5.2

lists the goal parameters.

Table 5.2: Wait Mine Cleaning Goal Parameters

Goal Parameters Description Data Type

Mine Field Region The mine field region the agent

waits for cleaning

Mine Field Id

PlanWaitMineCleaning: This plan handles the goalGoal WaitMineCleaning.
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pub l i c c l a s s Wai tMineClean ingPlan ex tends Plan {
pub l i c vo id body ( ) {

Agent myse l f ;
r e g i s t e r F o r T i c k W a i t ( ) ;
whi le ( t rue ) {

myse l f = ( Agent ) g e t B e l i e f b a s e ( ) . g e t B e l i e f ( ” m ys e l f ” ) .
g e t F a c t ( ) ;

i f ( myse l f . g e t V i s i o n ( ) . g e t M i n e F i e l d s ( )== n u l l )
break ;

wa i tFo rNex tT i ck ( ) ;
}

}

}

5.3.2 Team Goto Location Task

This task is one of the simplest team level tasks that is givento a group of agent. The group

will go to the location given as a parameter in line formation. The leader waits other agents in

order to maintain the formation. The task succeeds when the leader reaches the given location.

Applicable Actors:

Air Defense Team, Tank Team, Helicopter Team.

Task Parameters:

Table 5.3 defines the task parameters.

Table 5.3: Team Goto Location Task Parameters

Task Parameters Description Data Type

Location The target point that should be

reached by the team

2D Map Coordinate

Preconditions and Assumptions:

• Physical agents should have mobility.

• A route to the location should exist
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Task Implementation

The team hierarchy defines the order of physical agents. The PA1, PA2, PA3 and PA4 are

defined by the hierarchy and TA prepares the blackboard according to this information and

delegates coordinated movement by giving themGoal CoordinatedGotoLocation. The TA

team agent observes all agent positions and finishes the taskaccordingly. Also it is TA’s

responsibility to check for subtask conditions.

The leader agent (PA1) tries to find an applicable route to thedestination. All other agents try

to follow the agent prior to itself. For example, PA2 followsPA1. If any of the agents looses

mobility or killed, the gap will be filled in order.

Hierarchy

Figure 5.4: Team Goto Location Task Hierarchy

Team agent TA is responsible for delivering necessary goalsto agents PA1, PA2, PA3 and

PA4, and coordinating them (Figure 5.4).

Success Condition

The task is successful when the leader agent reaches to giventarget location. TheTask-

Goal TeamGotoLocationgoal will finish successfully.

Failure Condition

If there is no applicable route is present to reach the targetdestination, TheTaskGoalTeam-

GotoLocationgoal will finish with failure.
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Subtask Conditions

The route can be blocked temporarily by a mine field. In this circumstance, the subtaskWait

Mine Cleaningcan be activated in a new runlevel to handle the situation.

Task Goals and Plans

TA Team Agent

TaskGoalTeamGotoLocation: Parameters of this goal is the same as thetask parame-

ters. In order to reuse from other tasks, additional parameters for blackboard definition

is added and shown in Table 5.4.

Table 5.4: Team Goto Location Goal Parameters

Goal Parameters Description Data Type

Mine Field Region The mine field region the agent

waits for cleaning

Mine Field Id

Blackboard Name

(Optional)

The name of the blackboard to

be used

Blackboard Id

Blackboard Region

(Optional)

The region of the blackboard to

be used

Blackboard Region Id

PlanTeamGotoLocation: This plan handles the goalTaskGoalTeamGotoLocation.

pub l i c c l a s s TeamGotoLocat ionPlanex tends TeamPlan {
pub l i c vo id body ( ) {

TeamAgent myse l f= ( TeamAgent ) g e t B e l i e f b a s e ( ) . g e t B e l i e f ( ”
m y s e l f ” ) . g e t F a c t ( ) ;

BlackBoardManager bbm= ( BlackBoardManager ) g e t B e l i e f b a s e ( ) .
g e t B e l i e f ( ” b lackboa rdmanage r ” ) . g e t F a c t ( ) ;

Loca t i on l o c = ( Loca t i on ) g e t P a r a m e t e r ( ” l o c a t i o n ” ) . ge tVa lue
( ) ;

S t r i n g boardname= ( S t r i n g ) g e t P a r a m e t e r ( ” boardname” ) .
ge tVa lue ( ) ;

S t r i n g reg ionname= ( S t r i n g ) g e t P a r a m e t e r ( ” reg ionname” ) .
ge tVa lue ( ) ;
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/ / b lackboa rd management
BlackBoard board ;
i f ( boardname==n u l l | | boardname . e q u a l s ( ” ” ) ){

boardname= bbm . generateBoardName ( ) ;
board = new BlackBoard ( ) ;
reg ionname= ” ” ;
bbm . addBlackBoard ( boardname , board ) ;

} e l s e {
board = bbm . ge tB lackBoard ( boardname ) ;

}

BlackBoardRegion r e g i o n ;
i f ( reg ionname==n u l l | | reg ionname . e q u a l s ( ” ” ) ) {

reg ionname= bbm . generateRegionName ( ) ;
r e g i o n = new BlackBoardRegion ( ) ;
board . r e g i o n s . pu t ( reg ionname , r e g i o n ) ;

} e l s e {
r e g i o n = board . r e g i o n s . g e t ( boardname ) ;

}

/ / f o r t e r m i n a t i o n
r e g i o n . c o n t e n t . pu t ( ” done ” ,new Boolean (f a l s e ) ) ;

r e g i s t e r F o r T i c k W a i t ( ) ;
f o r ( A g e n t I d e n t i f i e r t a i d : myse l f . ge tCh i ldAIDs ( ) ){

r e g i o n . addAgent ( t a i d ) ; / / s e t u p agen t o r d e r s
}

/ / send g o a l s t o s u b l e v e l a g e n t s
RequestGoa l rg= new RequestGoa l ( ” g o t o l o c a t i o n ” ) ;
rg . addParame te r ( ” l o c a t i o n ” , l o c ) ;
rg . addParame te r ( ” boardname” , boardname ) ;
rg . addParame te r ( ” reg ionname” , reg ionname ) ;

/ / send goa l r e q u e s t t o a l l c h i l d r e n
f o r ( A g e n t I d e n t i f i e r r a i d : myse l f . ge tCh i ldAIDs ( ) ) {

IGoa l sendgoa l= c r e a t e G o a l ( ” sendgoa l ” ) ;
sendgoa l . g e t P a r a m e t e r ( ” goa l ” ) . s e t V a l u e ( rg ) ;
sendgoa l . g e t P a r a m e t e r ( ” r e c e i v e r ” ) . s e t V a l u e ( ra i d ) ;
d i s p a t c h S u b g o a l ( sendgoa l ) ;

}

/ / watch t e r m i n a t i o n
whi le ( t rue ) {

Boolean b = ( Boolean ) r e g i o n . c o n t e n t . g e t ( ” done ” ) ;
i f ( b != n u l l && b == t rue ) {

break ;
}

wa i tFo rNex tT i ck ( ) ;
}

}

}

PA1, PA2, PA3 and PA4 Physical Agents
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Goal CoordinatedGotoLocation: This goal is sent fromPlan TeamGotoLocationto all

physical agents with the same blackboard and region information. All agents runs their

plan in coordinated with the blackboard.

PlanCoordinatedGotoLocation: This plan handles the goalGoal CoordinatedGoto-

Location.

pub l i c c l a s s C o o r d i n a t e d Go t oL oca t i onP l anex tends Plan {
pub l i c vo id body ( ) {

Loca t i on l o c = ( Loca t i on ) g e t P a r a m e t e r ( ” l o c a t i o n ” ) . ge tVa lue
( ) ;

S t r i n g boardname= ( S t r i n g ) g e t P a r a m e t e r ( ” boardname” ) .
ge tVa lue ( ) ;

S t r i n g reg ionname= ( S t r i n g ) g e t P a r a m e t e r ( ” reg ionname” ) .
ge tVa lue ( ) ;

i f ( boardname== n u l l | | boardname . e q u a l s ( ” ” ) ){
l o g g e r . s e v e r e ( ” boardnamei s empty ” ) ;
f a i l ( ) ;

}

BlackBoardRegion r e g i o n= BlackBoardManager . g e t I n s t a n c e ( ) .
ge tB lackBoard ( boardname ) . r e g i o n s . g e t ( reg ionname ) ;

/ / t e r m i n a t i o n
Boolean done= ( Boolean ) r e g i o n . c o n t e n t . g e t ( ” done ” ) ;

/ / l oop
whi le ( ! done ) {

Agent myse l f = ( Agent ) g e t B e l i e f b a s e ( ) . g e t B e l i e f ( ” m ys e l f ”
) . g e t F a c t ( ) ;

i n t agen tno = r e g i o n . ge tAgen t I ndex ( myse l f . getAID ( ) ) ;
S t r i n g a c t i o n = ” ” ;
done = ( Boolean ) r e g i o n . c o n t e n t . g e t ( ” done ” ) ;

/ / wa i t
f o r ( i n t t =0; t <8; t++) {

i f ( r e g i o n . i s W a i t R e q u i r e d ( myse l f . getAID ( ) ) ){ / / need t o
wa i t

boolean r e t = r e g i o n . b lockAgen t ( myse l f . getAID ( ) , 100)
;

i f ( r e t == f a l s e ) {
cont inue ;

}

}

}

/ / a c t i o n
Env i ronmen t I n fo e i n f o = ( Env i r onmen t I n fo ) g e t B e l i e f b a s e ( )

. g e t B e l i e f ( ” e n v i n f o ” ) . g e t F a c t ( ) ;
Loca t i on cu r rLoc = myse l f . g e t L o c a t i o n ( ) ;
Loca t i on nex tLoc ;
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/ / TODO done c o n d i t i o n ?
i f ( e i n f o . g e t M a n h a t t a n D i s t a n c e ( cur rLoc , l o c )== 0) {

r e g i o n . c o n t e n t . pu t ( ” done ” ,new Boolean (t rue ) ) ;
a c t i o n = RequestMove . DIRECTIONNONE ;

}

/ / wa i t t h e n e x t
i f ( agen tno+1 != r e g i o n . getNumberOfAgents ( ) ){

Loca t i on nextAgentLoc= ( Loca t i on ) r e g i o n . c o n t e n t . g e t ( ”
l o c ” +( agen tno+1) ) ;

i f ( nextAgentLoc == n u l l | | e i n f o . g e t M a n h a t t a n D i s t a n c e (
cur rLoc , nextAgentLoc )>3) {

a c t i o n = RequestMove . DIRECTIONNONE ;
}

}

i f ( a c t i o n == ” ” ) {

/ / normal move
Loca t i on l e a d e r L o c ;
i f ( agen tno == 0) {

l e a d e r L o c = l o c ;
} e l s e {

l e a d e r L o c = ( Loca t i on ) r e g i o n . c o n t e n t . g e t ( ” l o c ”+(
agen tno−1) ) ;

}

a c t i o n = RequestMove . DIRECTIONNONE ;
i f ( l e a d e r L o c != n u l l ) {

i f ( agen tno==0 | | e i n f o . g e t M a n h a t t a n D i s t a n c e ( leade rLoc
, cu r rLoc ) > 1) {

S t r i n g d i r s [ ] = e i n f o . g e t D i r e c t i o n s ( cu r rLoc ,
l e a d e r L o c ) ;

a c t i o n = d i r s [ 0 ] ;
}

}

}

/ / w r i t e our d e s i r e d n e x t l o c
nex tLoc = e i n f o . c a l c u l a t e L o c a t i o n ( cu r rLoc , a c t i o n ) ;
r e g i o n . c o n t e n t . pu t ( ” l o c ”+agen tno , nex tLoc ) ;

/ / t e l l
r e g i o n . agentDone ( myse l f . getAID ( ) ) ;

/ / make move
move ( a c t i o n ) ; / / t h i s f u n c t i o n ends when env i ronmen t

g i v e s r e p l y
}

}

}
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Subtask : Wait Mine Cleaning

There is only one subtask defined for this task. The subtaskWait Mine Cleaningis started

when the route is blocked by a mine field. In order to continue,team have to until the mine

field is cleaned. This subtask can call for mine cleaners. Theexample simulation is not

interested in mine cleaning and there is no actors or facility for mine cleaning. Mine cleaning

is modelled simply by expiration. The simulation assumes a mine field is cleaned after a

predefined time of its exposition.

TA agent reusesGoal WaitMineCleaningfrom Goto Location Taskand sends to all physical

agents. When one of the agents succeeds, TA finishes the subtask with success.

TA Team Agent

Goal TeamWaitMineCleaning: This goal represents the subtask and parameters are

shown in Table 5.5.

Table 5.5: Team Wait Mine Cleaning Goal Parameters

Goal Parameters Description Data Type

Mine Field Region The mine field region the agent

waits for cleaning

Mine Field Id

PlanTeamWaitMineCleaning: This plan handlesGoal TeamWaitMineCleaning.

pub l i c c l a s s TeamWaitMineClean ingPlanex tends TeamPlan {
pub l i c vo id body ( ) {

Agent myse l f ;
r e g i s t e r F o r T i c k W a i t ( ) ;
Vector<Goal> g o a l s = new Vector<Goal> ( ) ;

RequestGoa l rg= new RequestGoa l ( ” w a i t m i n e c l e a n i n g ” ) ;
/ / send goa l r e q u e s t t o a l l c h i l d r e n
f o r ( A g e n t I d e n t i f i e r r a i d : myse l f . ge tCh i ldAIDs ( ) ) {

Goal goa l = sendGoal ( r a i d , rg ) ;
g o a l s . add ( goa l ) ;

}

boolean bwa i t = t rue ;
whi le ( bwa i t ) {

wa i tFo rNex tT i ck ( ) ;
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f o r ( Goal g : g o a l s . t oA r ray ( ) ) {
i f ( g . i s f i n i s h e d ( ) )

bwa i t = f a l s e ;
}

}

}

}

5.3.3 Team Air Defense Task

This task is given to a team of air defense vehicles to cover and defend an area cooperatively.

Position of the team members and weapon range of the vehiclesdefine the area.

Figure 5.5: Team Air Defense

As can be seen on Figure 5.5, covered area is the sum of all circles where a circle is defined

by the agent position and weapon range. Center point of the agents are the mean value of

their positions. Each responsibility direction of agents is defined as the opposite vector to the

center point. The responsibility direction is used in target assignment.

The task will end when the maximum execution time is reached.If the maximum execution

is zero, the task will work forever unless a scenario condition holds true.

Applicable Actors:

Air Defense Team.
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Task Parameters:

Table 5.6 defines the task parameters.

Table 5.6: Team Air Defense Task Parameters

Task Parameters Description Data Type

Weapon Mode States whether agents can engage enemy Boolean

Maximum Time States the maximum execution time of the taskSeconds

Preconditions and Assumptions:

• Physical agents should have the ability to fire their weapons.

Task Implementation

The team hierarchy defines the order of physical agents. The PA1, PA2, PA3 and PA4 are de-

fined by the hierarchy. The team agent prepares the blackboard and delegates the coordinated

air defense goals to physical agents. TA observes the time toend the task successfully.

Hierarchy

Team agent TA in Figure 5.6 is responsible for ensuring agenthierarchy is as above and

Figure 5.6: Team Air Defense Hierarchy

delivering necessary goal to agents PA1, PA2, PA3 and PA4.
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Success Condition

The task will end when the maximum execution time is reached.The TaskGoalTeamAir-

Defensegoal will finish successfully.

Failure Condition

There is no explicit failure condition defined. TheTaskGoalTeamAirDefensegoal will not

finish with failure. It will try to continue until all agents are destroyed.

Subtask Conditions

There is no need for subtask condition.

Task Goals and Plans

TA Team Agent

TaskGoalTeamAirDefense: This goal represents the task. Goal parameters are same

as the task parameters.

PlanTeamAirDefense: This plan handles the goalTaskGoalTeamAirDefense.

Subtask Goals and Plans

There is no subtask defined for this task.

5.3.4 Air Defense Task

Air Defense task is given to a single physical agent to watch for enemy and engage if it is in

weapon range. The agent is stationary in this task.

Applicable Actors:

Single Air Defense Vehicle.

Task Parameters:

Table 5.7 defines the task parameters.
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Table 5.7: Air Defense Task Parameters

Task Parameters Description Data Type

Weapon Mode States whether agents can engage enemy Boolean

Maximum Time States the maximum execution time of the taskSeconds

Preconditions and Assumptions:

• Physical agents should have the ability to fire their weapons.

5.3.5 Team Change Positions Task

This task is given to a team of air defense vehicles to change positions cooperatively. How

team changes positions are defined with task parameters. Active moving agents can be limited

during the task. The change list also specifies the order of change movements.

Applicable Actors:

Air Defense Team.

Task Parameters:

Table 5.8 defines the task parameters.

Preconditions and Assumptions:

• Physical agents should have the ability to fire their weapons.

5.3.6 Team Defensive Move Task

Team Defensive Move task is a high level task that involves coordinated moving and col-

lective defense of the area covered by the air defense physical agents. The air defense team

accompanies the given escorted agent as parameters with following them.
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Table 5.8: Team Change Positions Task Parameters

Task Parameters Description Data Type

Change List This list defines which agent should change

its current position to the new position.

AgentNo is the order of the physical agent in

the hierarchy.

<AgentNo, Lo-

cation>list

Weapon Mode States whether agents can engage enemy Boolean

Maximum

Moveable

Agent Limit

Defines how many agents are allowed to move

at a time. Agents can not use their weapon

while moving.

Integer greater

than 0

Applicable Actors:

Air Defense Team

Task Parameters:

Table 5.9 defines the task parameters.

Preconditions and Assumptions:

• Physical agents should have mobility.

• Physical agents should have the ability to fire their weapons.

• When none of the escorted agents is seen, team holds last position.
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Table 5.9: Team Defensive Move Task Parameters

Task Parameters Description Data Type

Route The route to be followed automatically based

on position of escorted agents. The route is

used in selecting appropriate defensive posi-

tion.

Location list

Defensive Posi-

tion Pairs

This array contains location pairs. Normally

air defense is carried out by 4 agents and

2 item from this list appropriate for cover-

age. The list contains position pairs that will

be chosen when searching for good defensive

positions

Location pair

list

Advance Type Defines how agents will advance to their new

defensive positions

”bounds” or

”follows”.

Maximum

Moveable

Agent Limit

Defines how many agents are allowed to move

at a time. Agents can not use their weapon

while moving.

Integer greater

than 0

Escorted

Agents

This list defines the escorted agents. Based on

their positions, air defense team tries to cover

them as they move.

AgentId list

5.4 Scenario File

Below listing is the scenario file in XML file format that is used to define the scenario dis-

cussed in section 5.1. Scenario file starts by defining the environment and agents. It also

contains task flows utilizing the tasks modelled in 5.3.

<?xml ve rs ion=” 1 .0 ” encod ing=”UTF−8” ?>
< t n s : s c e n a r i o x m l n s : t n s=” h t t p : / /www. yukse len . web . t r/ y t h e s i s/

s c e n a r i o ” x m l n s : x s i=” h t t p : / /www. w3 . o rg/2 0 0 1/XMLSchema− i n s t a n c e ”
x s i : s c h e m a L o c a t i o n=” h t t p : / /www. yukse len . web . t r/ y t h e s i s/ s c e n a r i o

s c e n a r i o . xsd”>
< t n s : e n v i r o n m e n t s i z e−x=” 32 ” s i z e−y=” 32 ”>
< t n s : o b s t a c l e−map>map1 . png< / t n s : o b s t a c l e−map>
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< / t n s : e n v i r o n m e n t>
< t n s : a g e n t s>
< t n s : t e a m−a g e n t name=” team1 ” s ide− i d=”1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

DefenseTeam< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : a g e n t name=” a i r 1 ” s ide− i d=” 1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 24 ” y=”5 ” />
< t n s : i c o n− f i l e >Ai rDefense . png< / t n s : i c o n− f i l e >

< / t n s : a g e n t>
< t n s : a g e n t name=” a i r 2 ” s ide− i d=” 1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 27 ” y=”5 ” />

< t n s : i c o n− f i l e >Ai rDefense . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>
< t n s : a g e n t name=” a i r 3 ” s ide− i d=” 1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 24 ” y=”2 ” />

< t n s : i c o n− f i l e >Ai rDefense . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>
< t n s : a g e n t name=” a i r 4 ” s ide− i d=” 1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 27 ” y=”2 ” />

< t n s : i c o n− f i l e >Ai rDefense . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>

< / t n s : t e a m−a g e n t>

< t n s : a g e n t name=” t ank1 ” s ide− i d=”1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 4 ” y =” 5 ” />

< t n s : i c o n− f i l e >Tank . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>
< t n s : a g e n t name=” t ank2 ” s ide− i d=”1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 6 ” y =” 4 ” />

< t n s : i c o n− f i l e >Tank . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>
< t n s : a g e n t name=” t ank3 ” s ide− i d=”1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 3 ” y =” 3 ” />

< t n s : i c o n− f i l e >Tank . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>
< t n s : a g e n t name=” t ank4 ” s ide− i d=”1 ” >
< t n s : c o n f i g u r a t i o n− f i l e > y t h e s i s . a g e n t s . teamagen ts .

C o o p e r a t i v e< / t n s : c o n f i g u r a t i o n− f i l e >
< t n s : l o c a t i o n x=” 5 ” y =” 2 ” />

< t n s : i c o n− f i l e >Tank . png< / t n s : i c o n− f i l e >
< / t n s : a g e n t>
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< / t n s : a g e n t s>

< t n s : f l o w s>
< t n s : f l o w f low−name=” f low1 ” ass igned−a g e n t=” team1”>
< t n s : f l o w−e lemen t>
< t n s : g o a l goalname=” t e a m g o t o l o c a t i o n ”>
< t n s : g o a l p a r a m paramname=” l o c a t i o n ”>
< t n s : v a l u e>new Loca t i on ( 5 , 5 )< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< / t n s : g o a l>

< / t n s : f l o w−e lemen t>
< t n s : f l o w−e lemen t>
< t n s : o p e r a t o r o p e r a t i o n=” d e a g g r e g a t e ” o p e r a t o r− i d=” op1 ” />
< t n s : f l o w f low−name=” f low11 ” ass igned−a g e n t=” a i r 1 ”>
< t n s : f l o w−e lemen t>
< t n s : g o a l goalname=” g o t o l o c a t i o n ”>
< t n s : g o a l p a r a m paramname=” l o c a t i o n ”>
< t n s : v a l u e>new Loca t i on ( 3 , 3 )< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< / t n s : g o a l>

< / t n s : f l o w−e lemen t>
< t n s : f l o w−e lemen t>
< t n s : o p e r a t o r o p e r a t i o n=” a g g r e g a t e ” o p e r a t o r− i d=” aggop1

” />
< / t n s : f l o w−e lemen t>

< / t n s : f l o w>
< !−− 3 more f l ow f o r each agen t t o cove r tank team−−>

< / t n s : f l o w−e lemen t>
< / t n s : f l o w>

< t n s : f l o w f low−name=” f low2 ” ass igned−a g e n t=” team1” a f t e r−
o p e r a t o r− i d=” aggop1 ”>
< t n s : f l o w−e lemen t>
< t n s : g o a l goalname=” teamdefens ivemove ”>
< t n s : g o a l p a r a m paramname=” r o u t e ”>
< t n s : v a l u e>new Loca t i on ( 5 , 5 )< / t n s : v a l u e>
< t n s : v a l u e>new Loca t i on ( 1 2 , 1 3 )< / t n s : v a l u e>
< t n s : v a l u e>new Loca t i on ( 2 5 , 1 6 )< / t n s : v a l u e>
< t n s : v a l u e>new Loca t i on ( 2 2 , 3 0 )< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< t n s : g o a l p a r a m paramname=” d e f e n s i v e P o s i t i o n P a i r s ”>
< t n s : v a l u e>new L o c a t i o n P a i r ( new Loca t i on ( 3 , 3 ) , new

Loca t i on ( 5 , 3 ) )< / t n s : v a l u e>
< t n s : v a l u e>new L o c a t i o n P a i r ( new Loca t i on ( 6 , 4 ) , new

Loca t i on ( 9 , 5 ) )< / t n s : v a l u e>
< !−− DELETED : t o conse rve space−−>

< / t n s : g o a l p a r a m>
< t n s : g o a l p a r a m paramname=” advanceType”>
< t n s : v a l u e>bounds< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< t n s : g o a l p a r a m paramname=” maximumMoveableAgentLimit ”>
< t n s : v a l u e>2< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< t n s : g o a l p a r a m paramname=” e s c o r t e d A g e n t s ”>
< t n s : v a l u e> t ank1< / t n s : v a l u e>
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< t n s : v a l u e> t ank2< / t n s : v a l u e>
< t n s : v a l u e> t ank3< / t n s : v a l u e>
< t n s : v a l u e> t ank4< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< / t n s : g o a l>

< / t n s : f l o w−e lemen t>
< t n s : f l o w−e lemen t>
< t n s : g o a l goalname=” t e a m a i r d e f e n s e ”>
< t n s : g o a l p a r a m paramname=”weaponMode”>
< t n s : v a l u e> t r u e< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< t n s : g o a l p a r a m paramname=”maksimumTime”>
< t n s : v a l u e>1000< / t n s : v a l u e>

< / t n s : g o a l p a r a m>
< / t n s : g o a l>

< / t n s : f l o w−e lemen t>
< / t n s : f l o w>

< / t n s : f l o w s>
< / t n s : s c e n a r i o>

5.5 Simulation Run

This section tries to narrate a sample simulation run. In order to visualize the sample run,

Figure 5.7 is given with colored overlays. Blue overlays arefor air defense team and green

overlays are for tank team. Red is used for enemy units on the north of the map. Orange box

on the south is used to visualize a mine field.

Throughout the simulation run, enemy is constantly patrolling the are designated with red

arrow back and forth. The enemy was programmed to attack onlyto threats that are in fire

range.

Simulation of friendly units are controlled with a scenarioin two phases.

In the first phase, tank team is positioned to a location (green 1) to wait for air defense team

to arrive. Air defense team (near blue 1) wants to travel to the position to rendezvous with

the tank team. Air defense starts to move west in column formation with ateam goto location

task. In the middle of their task, they encounter a mine field (near blue 2). How to handle

this situation is encoded in the task implementation as a subtask. Exposition of the mine

field triggers the subtask condition. Air defense team starts to execute thewait mine cleaning

subtask to handle the situation. Implementation of the subtask is simply waiting until the

mine field is removed from the environment. As stated previously, environment vanishes the
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Figure 5.7: Sample Simulation Run

mine field after its predefined time passes. Removal of the minefield from the environment

is enough to finish the running subtask. Air defense team continues its task execution and

follows the route again (near blue 3). After reaching rendezvous point, air defense vehicles

scatter around (blue 4) to take cover of the tank team. Afterwards, air defense team starts

to executeteam defensive movetask monitoring the movement of 4 tanks. Start of theteam

defensive movetask ends the phase 1 of the scenario.

Phase 2 of the scenario begins by movement of tank team. Tank team tries to follow the

green line in the valley that reaches to north. Region near green number 4 is the target point

to reach by the tank team. Tank team does not move at full speedbecause air defense team

need to follow and take cover of the tanks easily. Movement oftank team is monitored by

team defensive movetask. This task tries to keep tanks in the coverage for air attacks. In

order to accomplish this, air defense vehicles needs to change their location. The rules of the

behaviour is encoded in the task definition. Along the way, air defense team changes location
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near the tank team whenever tanks crosses the safe region covered by the air defense team.

Tank team moves at a slow constant speed in this region.

Opening of the valley to the north has clear visibility both for enemy helicopters and friendly

vehicles. At this region near green number 3, tank team encounters enemy helicopters. Enemy

helicopters do not stop their patrol when they encounter anyvehicles. They open fire to each

vehicle in their attack range while they are continuing their patrol task. Air defense team is

still executingteam defensive movetask around blue number 4 on figure. Each vehicle will

choose a suitable target based on their attack range in coordination and respond to enemy

presence.

After enemy contact, one of the sides eventually destroyed.Air defense team has more fire

power than enemy helicopters and can survive with less casualty. However the tanks are to-

tally vulnerable to air attack and success of this scenario is subjectively assessed with vehicle

casualty numbers. Air defense vehicles reorganizes their position based on their casualties.

They continueteam defensive movetask until reaching region highlighted by blue number

7 on the figure. Alive tank team actors reaches to north and take up position around green

number 4. This task was the last task defined in the scenario.
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CHAPTER 6

CONCLUSION

Modelling and implementing simulation applications involves software engineering difficul-

ties that should be solved. Team-oriented modelling of multiagent systems increases the com-

plexity of the architecture. With the framework presented in this thesis, we try to introduce

facilities that will ease application of team-oriented simulations in multiagent systems.

Proposed solution is generic enough to be applied to any team-oriented problem with well

defined task coordination that is definable by team agent plans. Several types of global syn-

chronization issues are handled with facilities such as blackboard and runlevel management in

a team. Inter team coordination is addressed effectively by introducing distributed condition

evaluation.

Scenario definition and management with conditions presents a high level control mechanism.

This control mechanism enables to glue the missing gap between top down problem solution

and bottom up agent implementation in the framework.

As the implementation is based on extending Jadex, which is an open source mature platform

for BDI agents, application of the framework will ease the development process and yet leave

room for extensibility.

Application of the framework to cases with higher social interactivity can be studied as a

future work. Application of the framework to domains with loose agent cooperation can

bring out the need of additional facilities to be served by the framework.

The process of scenario definition is the most labor intensive task to perform. Additional

graphical tools and visualization techniques can ease thisprocess.
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Scenario definition has also an open problem for verification. Although giving semantic

meaning to the scenario definition is a hard problem, it can enable high level scenario planners

to be developed. Syntactic verification of the scenario definition can help detecting definition

errors prior to simulation run. This verification
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