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ABSTRACT

A BDI-BASED MULTIAGENT
SIMULATION FRAMEWORK

Yikselen, Murat
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

September 2008, 70 pages

Modeling and simulation of military operations are becognpopular with the widespread
application of artificial intelligence methods. As the dgmn makers would like to analyze
the results of the simulations in greater details, engtyel simulation of physical world and
activities of actors (soldiers, tanks, etc) is unavoidabiehis thesis, a multiagent framework
for simulating task driven autonomous activities of actmrgroup of actors is proposed. The
framework is based on BDI-architecture where an agent isposed of beliefs, goals and
plans. Besides, an agent team is organized hierarchicadlydacisions at diierent levels of

the hierarchy are governed by virtual command agents win thvn beliefs, goals and plans.
The framework supports an interpreter that realizes ei@ctuaf single or multiagent plans

coherently. The framework is implemented and a case stuaipdstrating the capabilities of

the framework is carried out.

Keywords: Multiagent simulation, multiagent systems,dabur modeling, agent-based mod-

eling and simulation, semi-automated forces
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BDI TABANLI COKLU ETMEN
SIM ULASYON CATISI

Yikselen, Murat
Yiksek Lisans, Bilgisayar Muihendisligi Bolumu

Tez Yoneticisi: Prof. Dr. Faruk Polat

Eylul 2008, 70 sayfa

Askeri operasyonlarin modelleme ve similasyonu yapay 3gktemlerinin daha yaygin
uygulanmasi ile populerlesmektedir. Kararverici inaam similasyon sonuclarini daha de-
tayll analiz etme istegi ile fiziksel dinyanin ve aktéirie(asker, tank vb.) aktivitelerinin
varlik seviyesi similasyonlari kaginilmaz hale getinidBu tezde bir aktdriin veya bir grup
aktoriin gorev tabanl otonom davraniglarini simiifeek icin cok etmenli bir yazihm catisi
onerilmektedir. Cati bir etmenin inang, amagc ve pleffda olustugu BDI mimarisine dayan-
maktadir. Bunun yani sira, bir etmen takimi hiyerarsikakeorganize edilir ve hiyerarsinin
farkll seviyelerindeki kararlari sanal etmenler kendingaamac ve planlari ile yonetirler.
Yazilim c¢atisi tek ve ¢coklu etmen planlarinin uyumlu alagerceklesmesini saglayan bir yo-
rumlayici saglamaktadi©nerilen yazilim catisi gerceklestirilmis ve yazimkabiliyetlerini

gostermek icin 6rnek bir calisma hazirlanmistir.

Anahtar Kelimeler: Coklu etmen simulasyonu, ¢oklu etnsestemleri, davranis modelleme,

etmen tabanli modelleme ve similasyon, yarl otonom kiewet
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CHAPTER 1

INTRODUCTION

Knowledge is naively acquired through trial-error sessiddsing simulation in every aspects
of these trial sessions is a codfestive way. Software simulation is applied to numerous
fields that can be modelled mathematically and pushes catigutimits in order to capture
the most possible level of detail. As computation technsqadvances, it enables simulation
developers new openings to explore. Currently simulatoruinning on computer hardware
but new openings in computation mediums such as quantumugatign or biological com-

puting are still a possibility.

Simulation of rational reasoning entities is the field of timglent systems (MAS). Multiagent
systems can be defined as a system having several indepéntgdiigent agents interacting
together to accomplish their goals. MAS research includerde topics of interest such as co-
operation, coordination, communication, negotiatiorgiganteractions. MAS applications

range from training systems to online computer games.

Belief Desire Intention (BDI) model captures the mentdtates of an agent in three distinct
representations. Belief represents the knowledge of taetagDesire represents motivations
of the agent. Intentions of an agent represents the actks faursued by the agent. Archi-
tectures based on the BDI model represent beliefs, desiigsngentions explicitly as data

structures and defines the operation of the agent througlyeat anterpreter. BDI architec-

ture is an abstract architecture that enables realizafi@utonomous agents for multiagent
systems. There exist many agent framewaorks realizing BEHieacture. These frameworks

provide mature agent-oriented software development peofog multiagent systems.

In this thesis, a BDI-based multiagent simulation frameawisrproposed. The framework is



mainly targeted for entity level simulations where eaclitgig controlled by an independent
agent. A sample application area of military simulation iwsen to explore its top down
command control and hierarchical nature. The frameworkfaeciities to address possible
problems that are common while developing a MAS simulatibnese facilities are defined
from an abstract view and related to the presented framewark example case study is
engineered to illustrate to showcase how facilities cap tekolve common simulation ap-
plication problems. The realization of the framework isrigatt out by extending a solid BDI

agent interpreter called Jadex[20]. The case study notasriyonstrates the framework but

gives reader how to grasp the simulation problem and fit ivéhdroposed solution.

In this work, overview of the BDI architectures and framekgare discussed first. Chapter 3
presents the proposed abstract simulation framework aedigitails about agent architecture
behaviors. Chapter 4 and chapter 5 delivers the detaileeaftplementation of the proposed

simulation framework and explains the usage with a casey/.stud



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 BDI Agent Model

Belief Desire Intention (BDI) model tries to capture humaagbical reasoning in order to
formalize developing rational agents [4]. After its intcadion, BDI model is refined [23, 21]

to be used in real agent based systems.

BDI model represents mental attitudes of an agent in threegosees : Beliefs, desires and
intentions. Beliefs corresponds to knowledge of the agboutitself and outside world.
Desires are also named as goals and they define the objeatittesagent trying to reach. At
a time instance, agent can not pursue all of its desires. UBeoaf this fact, intentions of the
agent describe the current behaviours in action targetkdfiibits selected desires. Behavior
of an agent is described through plans and they can be seer-asmpiled agent actions.

Intentions of the agent can be seen as the running plan gestan

Figure 2.1 describes a BDI agent architecture. Circle denibte agent and agent is connected
to the outside world by sensor input and action output. Coithe BDI architecture is the
agent interpreter. This event based interpreter consuems®gy information and executes the
behaviours defined in the plan library. Intentions hold ttag in execution. Plan execution
can trigger belief and desire changes in the agent whichlsoeirgernal events that will be
processed by the interpreter. Action output of the agenbigrolled by the running plan

instances, which are intentions.

BDI is a widely accepted and matured model in describing &sgand their behavior. There

are numerous implementations of BDI formalism and sundgjsfbout their properties.

3
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Figure 2.1: A BDI Agent Architecture

2.2 BDI-Based Agent Oriented Programming Languages and Pta

forms

The Procedural Reasoning System (PRS) [6] is one of the fiygleimentation in lisp lan-
guage based on BDI architecture developed by SRI Intemmetid he system is developed as
a representation of an expert’s procedural reasoning. usésl for evaluating maintainance

procedures for the space shuttle in a simulation.

After the success of PRS, it is rewritten in-€ known as distributed Multi-Agent Reason-
ing System (dMARS) [5] at Australian Al Institute. The impientation of the platform
also includes graphical editors, compiler and interprigiea goal-oriented logical language.
dMARS is used in industrial applications such as Oasis affi¢rmanagement system han-
dling over 100 aircraft arrival to an airport and Swarmm [agEnt-based simulation system
to simulate air mission dynamics and pilot reasoning. A samynof dMARS applications

can be found in [7].

AgentSpeak(L) [22] starts by evolving from PRS and dMARS #&ordhalizes its operation.
It is based on a restricted first-order language with evemdsaations. Jason [3] is one of the

implementations of AgentSpeak(L) that extends with spesxth [25].



3APL [9] architecture has many similarities with other arettures such as PRS. flErent
from other architectures, 3APL is designed to control amisestodo goals of agent. 3APL
also incorporates practical reasoning rules to revise ahattitudes. A 3APL agent is defined

with a set of actions and a set of rules.

Dribble [24] is a propositional language that constitutesyiathesis between the declarative

features of the language GOAL [10], and the procedural feataf 3APL.

Coo-BDI (Cooperative BDI) [1] is based on the dMARS spectfaaand extends it by in-

troducing cooperations among agents to retrieve exteflaakgfor achieving desires. The
cooperation strategy is defined by a set of agents to coepeaian retrieval policy and plan
acquisition policy. The mechanism for retrieving relevexiernal plans involves cooperation

with trusted agents.

JAM is an intelligent agent architecture that grew out ofdmraic research and extended
during the last five years of use, development, and apmicatiAM combines ideas drawn
from the BDI theories, the PRS system and its UMPRS and PR8xplementations, the
SRI International’s ACT plan interlingua [18], and the Sftwred Circuit Semantics (SCS)
representation [13]. It also addresses mobility aspeota fkgent Tcl [8], Agents for Remote

Action (ARA) [19], Aglets [12] and others.

Jack is a commercial and mature Java implementation of BEHitacture [14, 11]. Jack
introduces agent oriented programming concepts on topjetbbriented Java language and
supplies a runtime to support this agent oriented exteassideck agents are defined in a Java
like language. The language files are compiled to varioesnmédiate Java files in the process
and a runtime library helps agent interpretation. Ageninitédins can use notion of capability
that allows modularity by encapsulation and promotes ftegggn reuse. Jack treats goals as

a special kind of event in its event based interpretation.

Jadex [20] is an open source BDI architecture implememtatidava. Jadex emphasizes use
of goal as a first class data structure unlike other BDI imgetation where a goal is treated
as a special event type whose handling results in plan #iotivaladex is a BDI interpreter
that is not bound to underlying agent software middlewaraurréhtly Jadex supports its
standalone middleware, Jade[2] and Diet-agents[15]@iatf Jadex is also flexible in terms

of runtime adaptability which allows an agent to add anydiefjoal and plan definition in



runtime.

JACK has an extension that provides dynamic team formatimhtaam based agent pro-
gramming to support team-oriented modelling. A JACK teasodlas all the properties of
an agent. It uses the notion of roles in which a team can regiecific roles to accomplish
its assignment. Team are then dynamically formed by fulfjlliole containers and execution
starts after the team formation. JACK Teams also providesitiata, a way to communicate
belief between agents either from bottom up or top down. dwottip aproach is used for
information fusion for higher level of abstraction in tearigam plans are slightly extended

to support these extensions.

In this thesis, Jadex is chosen as an extension point beitasispen source, has explicit goal

processing and solid codebase.

2.3 Jadex

Jadex is an agent-oriented reasoning engine supportifegetit agent middlewares. An agent
middleware is a software platform for agents and deals vggnamanagement and commu-
nication services. From the perspective of the agent midate, a jadex agent is a black
box that can only receive and send messages. Jadex providasaning engine for agent

implementation and it is based on BDI-model.

Jadex enables writing rational agents with XML files and Jamguage as illustrated in Figure
2.2. An agent is defined with an XML file called Agent Definitiite (ADF). ADF mainly
encapsulates definitions of beliefs, goals, plans and svénirthermore, Jadex supports to
engineer capabilities to group related belief, goal, plat event structures. These defined
capabilities can be extended and used by other capabditiésagents. Notion of capabilities

introduces information hiding and encapsulation in ageignted modelling.

Jadex uses Java language mainly in plan body definition,sfiateture definition to be used
as beliefs and expressions that can be evaluated inlineofatittons. A plan body is a Java
class that extends Jadex abstract plan and holds procedfgahation how a plan should

work.



Agent Platform

Jadex Agent

ADF

<agent name="">
<beliefs>

<goals>

<plans>

</agéHt>

{
.

Plan

Public class SearchPlan
extends Plan

public void body()

Figure 2.2: Composition of a Jadex Agent

2.4 Motivation

Motivation behind the design of a BDI-based multiagent sation framework is to deliver

a generic framework for team oriented agent programminge gioposed architecture in-
corporates facilities that eases agent coordination, utixec control, synchronization and
information exchange. These facilities are domain inddpat and form foundations for
team behavior implementation. Coordination, synchrdiinaand information exchange are

fundamental problems that can be encountered in any meitiggiplementation involving

cooperation between agents.




CHAPTER 3

A BDI-BASED MULTIAGENT
SIMULATION FRAMEWORK

Military simulation is a valuable tool used in analysis, lamraining and asset acquisitions.
In this work, a framework to simulate agent behaviours faniseutomated military task force
is presented. Main motivation of the framework is to enalpial\yzing various factors of the

simulated environment. This fact presents several requ@ings such as:

Closed simulation: It should be possible to run the simulation without humaseradttion.
This requirement removes the possible human performaiiieet &om the simulation
run. This feature enables to analyze th@atent factors present between the simulation
runs in a controllable way. For example user can change tigeraf sight of a sensor

and rerun the simulation to analyze tHeeets.

Autonomous simulation run: Simulation will conduct the task flows present in the scemari
Each agent team will try to accomplish the task defined in aoremmous way. Defini-

tion of task flows is the users responsibility.

A simulation application using the framework can be implated with the following ingre-
dients:

e Environmental dynamics and properties that define physioallation.

e Task implementations that models agent behaviours.

e Scenario definition that command and control task forces.



Analysis of the simulation can be conducted offietent factors. Being able to run the simula-
tion closed to human interaction gives the user the oppityttmexperiment with the factors

present in a systematic and controlled manner.

Physical simulation and environment: Physical environment carffact how the agents ob-

serve and act in the simulation. In military domain,

e terrain,

e whether conditions,
e Wweapon systems,

e ammunition,

e platform mobility,

e Sensors,

e damage etc.

can be tested. Environmental dynamics can hafferdint €fects on the performance

of task units.

Task behaviour: A task defines a clear objective. Achievement of this objectian be in-
terpreted and conductedfidirently. A task implementation is done programmatically
to conduct a chosen behaviour and tries to capture intra-terdination. In order to
test diferent behaviours, user is free to implemefietent tasks or change the current

ones prior to simulation.

Task flows: Task flows defines how a side behaves in possible conditiche &ighest level.
Definition of the task flows is a tedious process because ekfisnential nature. User
has to reflect all possible decisions in task flow definitiorcer#rio can be seen as
a medium to define strategic decisions and inter team caatidin  For example, to
test diferent tactics, user can run the simulation witffetient task flows. Also it is
possible to define more comprehensive scenarios by updattirey factors to see the

current shortcomings of the task flows.

A simulation run is defined by a scenario. With this scenagbnition, the framework can

be run without human interaction. This enables the analywindifferent parameters of the



simulation, running the same simulation several times tieciostatistical information about
the outcomes. Although the same simulation can be run gxt#wl same, environment’s

physical simulation presents randomness to each run thawi up in diferent results.

A scenario is defined using three components :

Agent hierarchy definitions: Agent hierarchies define the existing military forces in the
simulation environment. Each team is represented by arblgraand can follow a

task flow.

Task flows: Task flow defines how an agent behave in the simulation. It implglike struc-
ture where nodes represent the task to be pursued and edgesergting the conditions
that will lead to task switch in the graph. In order to captstrategic decisions at criti-
cal states of the simulation, high level situation awarsraasl decision making should
be encoded in conditions for each team that would be invoirgte course. Cover-
ing all states is not practically feasible and not an easggs®. However task flow
definitions can be enriched after the analysis making thelnatalle broader situations

successfully.

Conditions: Conditions can be defined to be referenced from the flow. A itiondcan be
evaluated by a single physical agent in the simplest caseelder beliefs of a single
agent may not be slicient to define a complex condition that is meaningful to augro
of agent in the course of action. Conditions can be definec tevialuated distributed

over the interested team or by other teams.

A task is the smallest building block of a scenario definititincan be seen as a command
given to a group of agents where agents will autonomousliotperform the given command.

Task implementation involves coordination of agents. Adeararchies is used to organize
coordination by representingftirent task responsibilities as separate sub hierarchash E
task implementation can be studied separately and reuséstihg hierarchies and their goals

and plans is possible.

A group of agents can only pursue a single task defined in theasio at a time. In other
words, no single agent can have two tasks assigned. In thik, \aaask is referred to an

abstract, scenario level well defined objective.

10



A task can have one or more subtasks that is defined to run etehpkeparated from the
task. The implementation of a subtask is exactly the samdaskaA runlevel represents all
running plans and issued goals of a task distributed oveadieat hierarchy. When the run-
ning task triggers to handle the situation with a subtaskytimlevel of the team changes and
subtask is started. In other words, all the goals and platisedhitial task is suspended in the
hierarchy and a new runlevel is created to hold new goals kams pf the new subtask. After
finishing the subtask, team continues its task executioridmadding the current runlevel and

resuming the previous runlevel.

The framework can also be used in training simulations. Tmeilation needs to run in a
constant rate and allow trainees to command group of agethtassigning tasks. A graphical
environment is needed for trainees to help assessing traisit. It should also support easy
task instantiation to be followed by the agent teams. Indghisulation setting, trainees are
performing high level situation assessment and strategpisibns and agents autonomously

follow the given orders.

The framework can also serve as a testbed for cooperativatapes defined with procedural
knowledge. An example can be an evacuation simulation tactegrage of the emergency

procedures that will be followed byfiicers.

3.1 Definitions

Every military unit is controlled either by a single phydiegent if it is a single actor or by a
team agent if it has more than one physical agents. Phygjeala and team agent’s beliefs,

goals and plans may ftier significantly.

Available military units for the scenario are called scémével actors in the simulation and

task flows are defined for their operation.

3.1.1 Physical Agent

A physical agent represents a single physical actor in thee@mment. Environment holds

only physical agents.

11



A physical agent’s goals and plans can be specialized tahsuitontrolled physical entity in
the simulation. For a given simpfaoveToLocatiogoal, a soldier and a vehicle can generate

and use dferent dash actions in the environment.

3.1.2 Team Agent

Team agents are used to coordinate lower level agents ofiehar¢hy where these agents
can be either team agents of physical agents. Team agentgtaed agents which are not
represented in the environment. A team agent governs thei@epower of its level in the
hierarchy. A hierarchy of a group of agents are driven by #s& they run. A simple task
may need a hierarchy that top level team agent treats alrl@wel agents as equal. However
complex tasks need to subgroup the agents to fulfiledent objectives. For example, agents
can be grouped in two so that the group behind has the regildpsio defend the leading

group ahead in case of attack.

Team agents are used to represent higher level of decisihigrarchy in a task. Each team
agent can have fierent goals and plans dictated by the implementation ofabk. tSince
hierarchy of an agent group is determined by the task impiatien and this hierarchy
should be changeable from task to task, team agents shouteed to store and access any

belief between tasks.

3.1.3 Agent Hierarchies

There can be situations where a group of agents should baeipegiaprecisely. In order to
address this need , agents can be defined with a tree likedfigratructure where the leaf
nodes are the actual physical agents present in the envérdniNodes other than the leaves
can be seen as virtual team agents. They are virtual bedaexséave no physical existence
in the environment. Also, they are team agents whose puipdsecoordinate the necessary

actions of the leaf agents.

Figure 3.1 shows two common agent hierarchies. A tree witfsiphl agents as leaves and
team agents as nodes is a valid agent hierarchy. Figureicsmatabreviations PA for physical

agent, STA for sub team agent and TA for team agent. For exaiifijal tank team will travel

12
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Figure 3.1: Agent Hierarchies

Team Agents

/\

together in column formation, hierarchy on the left is ajppiate. However If the team need
to travel overwatch, a sub group should be covering the ahaup leading the route, the

hierarchy with 2 STA is the appropriate for this task.

Agent hierarchy abstraction gives the opportunity to statégher level objective that should
be pursued with a group of agents. Furthermore agent higratostraction enables reuse of

other defined objectives for hierarchies, top-down andbottip objective modelling.

While physical agents interact with the environment, tegenés need not to be able to inter-
act with the environment. Team agents also do not need toseeltario specific information.
All the necessary information is included in the operatiargmeters or physical agent beliefs.
This makes hierarchy handling easier and enables to chhadedrarchy totally between op-

erations.

3.2 Simulation Framework Abstract Model

The proposed simulation framework is suitable for evenedasmulation where time is incre-
mented in discrete time steps and simulation needs agéomséor each time frame. Agents
are expected to run classical sense-think-act cycle atigaaktion in these simulations. Agent
interpretation is based on BDI architecture and enableg agent implementation and reuse
of building blocks. This section will try to introduce thestfact agent framework design and

its components.

Figure 3.2 shows a simple overview of the framework. Enviment and agent simulation
is handled separately. At each time tick, environment plesiperception information to the

agent simulator, which includes percepts of all individuhlat physically exist in the environ-
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Figure 3.2: Abstract Architecture

ment. After receiving perception, agent simulation fraragwwill perform computations to
generate actions and deliver them to the environment. Agjamilation realizes the activities
dictated by the simulation scenario. These ingredientesemts how the agent simulation is

decoupled from the environment simulation.

Figure 3.3 contains the design of the agent simulation freonke Perception distribution and
action collection components have only one purpose, exterf) with the environment. Agent
interpreter is the component that all the created agergslid run. Scenario manager sitting
on the top has the responsibility to read and prepare thet agtempreter for simulation.
In simulation, scenario manager is responsible to answeri@giof the agents about their
next task and conditions to follow. Scenario manager is edgmble of manipulating agent

hierarchies for fulfilling aggregate deaggregate opesatotaskflows.

A group of agents has one root team agent which is resportsildeordinate the group and
pursue the given task with its conditions. The coordinagind interaction between the agents
in the hierarchy is defined by the task implementation. Eask¢an use flierent mechanisms
to implement the necessary coordination of the task andctuisresult in dierent agent

hierarchy usages.

Agent interpreter in Figure 3.3, represents the interpimtaof a group of agents presented
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Figure 3.3: Detailed Abstract Architecture

with dotted rectangles namely TA, STAL, STA2, PAL, PA2, PA8 &A4 with their black-
board on upper left inside a dashed rectangle. TA is the $biort for Team Agent, STA for
Sub Team Agent and PA for Physical Agent respectively. Aarprieter can have arbitrary

number of agent groups with arbitrary hierarchy settings.

Since only physical agents have presence in the environraetitns to be interpreted by the

environment are issued by only physical agents.

3.3 Scenario Manager

Scenario manager accesses scenario information and cithategents in the agent inter-
preter. After agent creation, simulation can start. Ageetation can also be done during
simulation run. Agents in the simulation may query the sdermaanager which task to fol-

low. Scenario manager is also responsible to change agearthies based on the course of

task flows with aggregate and deaggregate operators.
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3.3.1 Simulation Flow and Interaction between EnvironmentSimulation and

Agent

The overall simulation system is designed to operate attaohsme intervals.

When simulation is advanced, sensor information compugeth® environment is fed into

the physical agents. This feed triggers per simulation fi@ee decisions coded in terms of
plans. Within this decision time, physical agents can cioaité with team agents and send
primitive actions to the environment. When computationlbfree agents are completed, the

simulation advances the time.

Update t, ) o ) Update t,,
Perception Decision Action
Environment Agent Environment
Simulation Simulation Simulation

Figure 3.4: Simulation Flow

Figure 3.4 shows the simulation flow of a single cycle for ajkdmphysical agent. At each
cycle, agent receive sensory information and handles ttepeeception. After perception
related updates, decision phase should take place to de&ethe necessary actions. Action

phase includes action collection and delivering them tcethhéronment.

y <
Team
Event | Decision _ Agent
- é_ y
% . Sub Team
g Event | Decision - Agents
e
> K Y&
|> Perception |Decision Decision | Action Physical
Agents
Env Agent Env n
Sim Simulation Sim Agent Hierarchy

Figure 3.5: Detailed Simulation Flow
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Figure 3.5 illustrates a single cycle of the agent simutaf@r a team of agents. Since team
agents are not represented in the environment, only pHyejemts can receive perception.
This perception phase is followed by the decision phase hyaipal agent, and it can trigger

upper team agents through events. Relevant informatiota$tirexecution can be propagated
upward in plan implementation and necessary high levekdatiare propagated to physical

agents making them to generate correct primitive actions.

In real-time simulations, simulation is incremented wittoastant time frame that is parallel
with the outside world. The frequency of time frame incretagon and yet its duration is de-
termined by the requirements of its simulated model. Fomgta, incrementing a simulation

of a human recognition simulation with 1 minute time fram#ois rough.

Some simulations can not be made real-time because of hschigputation needs. In these
cases, simulation can be ticked on constant intervals buakhmcrementation of time is

slower than real. In such settings, real world interactippastunity is lost.

Time requirements of simulation are not constant in evenetirame. In order to utilize
computation power, a mechanism to detect when to increrimeatftame should be available.
Plans can be written in a way that will tell the simulationttivéhas completed its computation
for that time frame. By this way, the simulation is increnezhis soon as all the plans are
completed computation relevant to the current time framelah is able to work arbitrarily
long. A plan can force the simulation to wait its computatiorfinish by not telling it is ready

for time increment.

In this framework, a mechanism is introduced that can be usgdans to signal that the
plan is ready for next tick. With this mechanism, simulatican be run in two dferent
modes without fiecting the task implementations. In the first mode, simohadvances
with constant time frames at constant rate. In the seconcepsnhulation advancement is
not at constant rate although time frame is constant. lwalloomputationally light time
frames to be skipped fast. Computationally heavy time fiagen consume all necessary
time for their processes. The advancement rate is solelgrdkgmt on computation load of

the time frames.
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3.3.2 Task Queries and Scenario Manager

Scenario manager is the first point to handle the scenamon#tion. With this information,
it creates the agents in the agent interpreter. Also, it $pamsible to manage hierarchy
properties of the agents. The generated agents have tw fstlenario goalas default goal.
When the agents start to execute, these goals will make gaci ® request its first task from

the scenario manager.

é —
Team Agent | TA I Task Query -
: Scenario
Sub Team Agents [ STA ] [ STA ] Manager
> / N\ 7/ AN Task Query
Physical Agents [ PA] [ PA] [ PA] [ PA] [PA I
| Agent Interpreter

Figure 3.6: Scenario Manager and Task Queries

Figure 3.6 shows how top level agents communicate with teea® manager. From the
perspective of scenario manager, each query should commesiitber a single physical agent
or from a team agent that is also at the top of the hierarchyeterthine next task to follow

and conditions to trigger task change. Scenario managereasshe query with a task and a

set of conditions, which can trigger task change, as defimélki taskflow.

Agent then starts executing the given task and checks thditaors at each time frame. If no
condition evaluates to true, task execution is done noynaaltl agent pursues the task until it
completes either with success or failure. The next taskyquékrinclude the result of the last
pursued task. If one of the conditions evaluates to true yrtiame frame, agent stops the task

execution and makes a query stating which condition triggjéask change.

An agent can encounter aggregate and deaggregate opérndt®taskflow. Scenario manager
is responsible to create new team agent or dispose unnecesss for the agent hierarchy.

These operators are not treated as a task in agents.
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A taskflow of an actor can be defined in a tree structure. Bogykikg of task positions of all
agents are done by the scenario manager. If an agent is iteandtare no task is defined,

scenario manager will reply the task query with empty task.

As the reply of task query contains a task and a set of comditia condition can trigger while
pursuing the task. The taskflow of the agent contains thetasks for each given condition.

In this circumstance, agent will query its next task by stativhich condition triggered this

query.

3.3.3 Follow Scenario Goal

Each created agent initiatésllow scenariogoal as default. With the help of this goal, agents

pull their tasks from the scenario manager and start puysthiem.

Only the agents that represent scenario level actor is meditp make task queries to the
scenario manager. Physical agent can only make queries ivigenepresenting a single
scenario level actor. In simulation run, physical agents lmacome a member of an agent
hierarchy. In this settings, physical agent’s goal will n@ke queries as it has an upper level
agent pursuing scenario tasks. Only the team agents that dretop of the agent hierarchies
can make scenario queries. In simulation run, physicaltagean leave the agent hierarchy
either by deaggregate operator or by death. The team agkmotvimake any queries if its
hierarchy does not have any physical agents. In other wordg,the agent at the top of an

agent hierarchy is responsible to make scenario queries.

public class FollowScenarioPlanextends Plan {
public void body() {

Agentldentifier scenarioManage+x searchScenarioManagerAgent();
Agent myself;

TaskChange cause TaskChange.INITIAL;
QueryAnswer qresult;

registerForTickWait () ;
while (true) {
//wait if not root
while (true) {
myself = (Agent)getBeliefbase ().getBelief("mpelf”).
getFact();
if (myself.getHierarchy().isRoot(myself))
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break;
waitForNextTick () ;

}
// i am root of the hierarchy
while (true) {
gresult = queryNextTask(scenarioManager , cause);

for (ScenarioCondition ¢ : qgresult.getConditions ())
prepareConditon(c);

}
Goal goal = startTask(qresult.getTask());

// execute task
while (qresult.getTask 4 null) {
if (myself.getHierarchy().isRoot(myself))
break;
if (goal.finished()) {
cause= goal.getFinishState () ;
break;
}
//check for conditions
for (ScenarioCondition ¢ : qresult.getConditions (){)
if (c.isTrue()) {
cause= c.getTaskChange () ;
gresult.getTask= null;
}

}
waitForNextTick () ;

3.3.4 Distributed Condition Evaluation

A taskflow incorporates conditions to ensure synchroropatietween relevant taskflows.
Each task has its default success and failure conditionaatkfn the task implementation.
In a taskflow, these default conditions can be used as a degisint for choosing next task.
These triggers can be enriched by assigning user definedtionisgd enabling task change
whenever the user defined conditions hold. For example rateténse team will rendezvous
with a tank team at a position. The air defense team can wait fwedefined time so that if
no tank team reaches the rendezvous point in that time, gpiatation will fail. However a

condition representing tank team arrival to the predefir@dtigan be given. If this condition

triggers, joint operation encoded in the taskflow after thiedition will be followed.
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A task finishes whenever a default condition (success arr&ilor user condition triggers.
Then, agent queries the scenario manager to fetch its rekt &cenario manager will reply

the query with a task and condition set as defined in the tagkflo

Agents can watch a condition to trigger various activitiés.a distributed multiagent envi-
ronment, complex conditions can emerge with the necessifysion diferent information
among other agents. The presented distributed conditianaion mechanism is intended to

address this gap.

The conditions can be constructed from well formed formalag can be defined to be eval-
uated with dfferent agents. When an agent needs the value of the condkt@opndition is
decomposed for each relevant agent and requested for gealu@his request establishes a
value link between the requester and the evaluator. Thigeaik is only utilized when the
condition value changes. The link is also disposed whendhdition evaluation is no longer

required.

3.3.5 Aggregate and Deaggregate Operators

It is possible to change agent hierarchies in taskflow d&fitst Aggregate and deaggregate
operators are defined for this purpose. A tank team can begtEgaged to 4 single tanks.
With this deaggregation, user can define more precise andelml taskflows. Another ex-
ample would be to aggregate 4 single tanks to form again atéamk and make this tank team

pursue team taskflows as before.

Although aggregate and deaggregate are used in taskflow,interpretation is dferent.
Tasks are interpreted by agents but aggregate and deatggmugrators are interpreted by

scenario managetr.

Deaggregate operator can only be issued to scenario leigkaghich are also made up of
smaller scenario level actors. For example, if a tank teamade up of 4 single tanks and
a single tank is also a scenario level actor, user can degajgré to 4 single tanks and use
them in taskflows. Deaggregate operator makes a group of tmelivide into sub groups.

Scenario manager sets the hierarchies of the agents inrthiegs by adding or removing

team agents. Each subgroup will pursue its own taskflow feitbw scenariogoal.
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Aggregate operator can only be issued to actors which wslilteagain in a scenario level
actors. For example, if there is no actor defined made up &fteams, user can not aggre-
gate tank teams to form bigger agent groups. Execution oagjgeegate operator is harder
because the two agent groups need to be synchronized. Mostlgf agent groups will want

to participate in aggregate operator while other agentmmursuing another task. In this
state, first group will make a task query to scenario manadmrevscenario manager will

not answer. Unanswered queries will be re-sent next timmadragain. Meanwhile, scenario
manager knowing an actor ready for aggregate operator,méke that agent wait for the

other agent. When both participants are ready for aggreqsgeator, scenario manager will
manage their hierarchies. This will result in a new task gdimm the top most team agent

as other actors will no longer be the top most agents in thautaiey.

3.4 Agent Interpreter System

Agent interpreter system is the core of agent execution.s Thimework uses Jadex BDI

interpreter as a base for agent interpretation. BDI agdiats acalability and distribution.

3.4.1 Blackboard

A team of agents should be well synchronized to fulfill thelgdhey are pursuing. Agents
need to communicate for synchronization in their plan etiens. The need to communicate

can be just to synchronize at a time point or to exchangernmdtion necessary for plans.

Implementing the behaviour of a group of agents centrallysingle algorithm is not suitable
in the nature of the framework. The central algorithm indead be converted to distributed
goals and plans utilizing messaging between them. Howeawptementing plans with ex-

plicitly messaging not only complicates the plan implenaéinh, it can introduce overhead

compared to using a blackboard.

Blackboard addresses the need of synchronization fasil&nd joint beliefbase for coordina-
tion between the running plan instances. In a fully distebusetting, blackboard can utilize
messaging. For performance improvements, it can serveiateaface to bypass and simplify

the need for messaging. For example, it is possible to ugedmemory and semaphores
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in a single computer while being able to fallback to a mes&mged approach whenever the

participant agent is not locally available.

Jadex is a fully asynchronous event based interpreter.der @o ensure synchronization, one
has to define several messages, handlers in terms of evehfdaars. Using blackboard in

plan implementations eliminates these need infAnient way.

Blackboard : board1

Region : region2 IV ]

Region : region1
Agentorder: 1 [«
2 [=
Beliefbase 3
4
Agent 1 Agent 2
(] ()
o ()
[ c
c® c @
T n T n
o £ [aI=

Figure 3.7: Blackboard

Blackboard has two functionality that can ease coordingtad writing. First functionality
is to address synchronization offfdirent plans of team agents. Second functionality is to
address the need of common beliefbase shared between afjeam. Figure 3.7 illustrates

a blackboard.

Blackboard properties are defined below:

Blackboard regions : A blackboard is used in a task implementation as a tool. Altlaard
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Figure 3.8: Blackboard Agent Order for Plan Execution

can have independent regions that can be used isolated frmnsub teams.

Agent orders : Some tasks require decision of actions in a single time frafrtee agents
in the hierarchy runs their plan in parallel. If there is achémensure execution order
of some plan steps, agent orders in the blackboard can be éspthn can wait for
its execution order before committing plan steps. For exarpthe simple setting,
the programmer wants 4 agents to run orderly. He can definecilimard region with
agents in order and he can use synchronization in the plapbysical agents. Each
agent will decide where to go and write it to blackboard blse, and the next agent
will decide based on previous agent. This facility enabligsnés to synchronizefie-
ciently in order and generate primitive actions at each frame. Figure 3.8 illustrates
the usage of agent order of a region for a single time framthdmexample figure, phys-
ical agents execute common steps of plan but then uses aglentfor synchronously

executing rest of the plan steps.

Blackboard beliefs : Utilizing blackboard as a common beliefbase between agemsssi-
ble. However the lifetime of a blackboard is intended to breafsingle task, like beliefs

of team agents, which are disposable between tasks.

A blackboard is intended to be used by agents of a single goalyp in other words no two
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team is supposed to use the same blackboard for the sakerdfudion. In distributed agent
execution setting, this property can help agent relocdi@meen the machines, enabling ef-
ficiency gain by using local machine blackboard interacfamilities. If task implementation
needs blackboard usage, the team agent is responsible twed#tion and setting. Necessary
information to access the created blackboard can be passgohl parameters afterwards

while delegating goals to sub agents.

3.4.2 Runlevel

A task is executed by a group of agents organized in a hiegahalorder to start a new task,
previous task and its relevant goals and plans should beetiogRunlevel enables to control

all running plans of a task distributed over the agents irhibearchy whenever necessary.

Function calling another function is a way to decompose amudment tasks. The analogy
in BDI architecture is to issue sub goals in a plan. Theseagmes are for single control

flow and called function stack and intention stack respeltiv

Figure 3.9: Runlevel

Runlevel is an interpreter control mechanism that can nbt control a single agent goals

and intentions but also control the whole agent hierarchy.

Runlevels can be seen as a stack where each level is on topesfartid only the top most
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Figure 3.10: Task execution with Runlevels

level runs. Figure 3.9 tries to illustrate runlevel stack dogroup of agents. In the figure,
agents in the hierarchy has gears, representing the ruphang, aligned in runlevels. With
this abstraction, a task is running with all its relevantlg@ad plans on a level. With runlevel
functionality, one can call subtasks on a higher runlevelkimg the current runlevel sus-
pended. These subtasks can be executed to harftdeedit conditions and help maintain the
task to be pursued. After handling the situation, the rwgllean be disposed and all agents
can continue from the states of the previous runlevel. EidulO illustrates the explained

task execution.

Runlevels are named with integers starting from 0. Runl@vsla special runlevel that helps
to easily define service plans that should not be suspenddten\& subtask or team plan

should be run, runlevel is suspended and incremented.

Below is a list of possible runlevel usage:

Runlevel O : Follow scenariogoal runs in this runlevel and never discarded through aait th
simulation. This runlevel can be seen as a special contiingoals that should not be
affected by task executiorollow scenariogoal starts the given task in runlevel 1 and

controls its execution.

Runlevel 1 : This runlevel is suitable for task execution. All goals amahg of the task are

interpreted in runlevel 1.

Runlevel 2 : This runlevel and higher runlevels are available for subtagcution. A sub-
task is triggered when its condition evaluates to true. Tingevel is discarded when

the subtask execution is finished and suspended lower rlrgeresumed.

Runlevel is controlled with a message passing mechanististtiaated specially by the agent

interpreter. The message can create a new runlevel or dighescurrent one. Creation of
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a runlevel suspends the current runlevel and it is not redunméil the created runlevel is
disposed. The message also includes the agents in thechigiso that this control message

can be broadcasted from the top agent to all runlevel ppaits.

3.4.3 Conditions and Subtasks

A plan can have various conditions watched in parallel vigmbrmal plan execution. When

one of these conditions holds, the condition triggers werimeasures.

1. It can finish the plan execution with either success ouffail

2. It can call a subtask with a higher runlevel, making itseifl all subtask below the

hierarchy suspended.

3. It can replace the current triggering goal with anothealgo

3.4.4 Inter Agent Goal Request, Observation and Control

In a hierarchic team programming framework, ability to resfuan activity from another agent
is a key control facility. Observing the requested activtyd having opportunity to control

the request is also crucial. It enables to abort activitieas &re no longer necessary.

This extension is designed like the distributed conditival@ation in terms of value links.
When a requester asks another agent to pursue a goal, a bok thie goal status is estab-
lished. With this link, observer is informed about the stftéhe goal. This link also enables

the observer to cancel the goal request as soon as the faliillaf the goal is not necessary.

3.4.5 Definition of a Scenario Task

A task in scenario is defined with parameters. The task hasraspmnding goal that is

pursued by the top level team agent in the hierarchy.

The plan that will fulfill the goal also can have conditiongittican trigger dferent runlevel

operations.
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3.5 Perception Distribution

Perception distribution component illustrated in Figur@ 3 an interface used to feed the
agent simulation with the generated sensory informatidhérenvironment simulation. Agent
health states are fed to scenario manager too. If an ageities ik the simulation, scenario
manager updates the hierarchy that the agent is member dfidsthe interpreter of the

agent.

3.6 Action Collection

Action collection component is illustrated in Figure 3.8islalso an interface point like per-
ception distribution component. It simply collects allmpiiive actions from physical agents

and delivers them to environment simulation.

3.7 Realization of Scenario Tasks in Agent Interpreter

Scenario tasks can be assigned to scenario level actorsk&da be given either to a single
physical agent or to a team agent. Agents that should actemrawill organize themselves
in an agent hierarchy. For example, if a tank team consigifng) tanks should operate in
two sections, the team hierarchy will need 3 team agentsradeaseen in Figure 3.11. If
the task and its implementation does not need subdivisidicamesponding subteam agents,

The team will contain only 1 team agent as in Figure 3.12.
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Figure 3.11: Agent Hierarchy Containing Subdivision

Team Agents

\
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Team Agent

Physical Agents

Figure 3.12: Simple Agent Hierarchy

A task has conditions that can trigger task change when atealuo true. The agent that is at
the top of the hierarchy is responsible for evaluation oféheonditions. In order to fulfill task
objective, agent at top will utilize lower agents by sendijzgls. A task implementation in-
cludes all necessary goals and plan definitions that hatftdss goals and events. Utilization

of the blackboard and subtasks will be explicitly stated wdeilling section of tasks.

Team agents are virtual in the simulated environment. lerotlords, they can not send prim-
itive actions to manipulate the environment or receive amsery information directly from
the environment. Team agents are used to organize phygieatsacentrally and accommo-
date coordination between them. Team agents decide whidérlying agent should do by
sending goal. Physical agents that receive goals will imigtee a plan as an intention. From
this point on, a physical agent can generate primitive astaccording to their plans and send

these actions to the environment.

Task definitions has failure and subtask conditions. Thiglitmns will be watched with the
plan offollow scenariogoal in runlevel 0. During execution of a task, any of the ¢tons
can trigger. If the failure condition triggers, the goal lné task will return with failure. In the
case subtask condition triggers, the current task is sdgokeand a new runlevel is created to
run the defined subtask. When the execution of subtask eémelsunlevel of the subtask is

disposed and the suspended runlevel is resumed to contiask execution.

In task implementation, a subtask that can be triggered lmp&ask condition can be speci-
fied. Implementation of a subtask is exactly the same as a Tdsk task will be suspended
temporarily when a subtask starts to execute. This prodidys a subtask to run without

any interference from other tasks.
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CHAPTER 4

IMPLEMENTATION ON JADEX

During thesis work, a proof of concept implementation of pheposed architecture is made
and an example case study is carried out. Since abstradeatane is based on BDI paradigm,
a BDI implementation is needed that is suitable for extamsiod open source. Jadex, which

is a well known BDI Agent Interpreter, is chosen becausedpisn source and extensible.

Jadex source distribution also comes with various multiaggamples but none of them con-
tains dificulties attacked by the approach introduced in this thesikwn order to demon-
strate the capabilities, a small scale military scenariotaioing 2 sides, one ally and one

enemy, is prepared.

The detailed case study is presented top down in three skBpsscenario and its ingredients
are stated first. Modelling of the tasks that are used in thaag@ is given later. Finally, an
example run is narrated at the last section. In this chaiptgtementation details carried out

on Jadex interpreter is presented.

4.1 Implementation of Environment, Scenario Manager and Gb-

sed Simulation

Jadex platform provides its all functionality through wars built-in agents. Jadex Control
Center agent is a GUI front end to control everything runranghe platform and it has sev-
eral debug and introspection tools that can ease agentopeneht besides overall platform
control. Agent Management System (AMS) agent enables difemtycle control by giving

the ability to create, suspend, resume and kill. Jadex img@hdation also provides a Direc-
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tory Facilitator (DF) agent whose purpose is to provideaory services to help agents find
information easily. In Jadex platform, all agents commatgcwith sending and receiving

messages.

For the implementation of the case study, an agent namedoanvént is created that is re-
sponsible for environment simulation. The environmentnagjgen registers itself on director

facilitator agent. All other created agents fetch the emvinent information through directory

facilitator.

File Edit
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Map GL Settings
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Moveream <]
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Figure 4.1: Environment Gui

Environment agent has a GUI (Figure 4.1) to show the sinariattate and states of the con-
nected agents. The environment GUI also allows control efsimulation execution. The
suspend toggle button enables to pause the simulation.e Ransbe used to study the logs
of the ongoing simulation. Button named as fast as poss#uiebe used to toggle between
normal realtime incrementation of the simulation and fastementation as soon as the com-
putation of the plans finishes. For easy and basic testingoges, GUI has a simple goal

editor that lets chosing a goal and editing of the goal patarae After setting the goal pa-
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rameters, the goal can be dragged and dropped onto any agbatdgents view. If the agent

has the goal defined, it will start to execute the goal imntetia

In order to simplify coding, scenario manager componentss huilt into the environment
agent. However, creating affirent agent for scenario manager is also possible. Scenario
manager has two main purposes: initialization of agent ksitimn framework and task query

answering.

In initialization phase, scenario is read by the managemagssary setting of the environ-
ment is also done. Afterwards, all agents defined in the siteisecreated and their hierarchy

is set up accordingly.

In simulation run phase, scenario manager has no activs, tisknain responsibility is an-

swering queries about which agent should follow which task.

In order to answer queries, scenario manager keeps traakloflow positions of each agent.
This book keeping process is carried out through out the lation. Each query involves an
advancement of the agent in its taskflow: asking for next tagbursue. The latest given

answer to the query is the current position of the agent ira#kflow.

Scenario manager is informed when an agent is destroyee iertfironment. Scenario man-

ager than kills the agent and removes from the interpreter.

Task following from the agent perspective is also needecktioriplemented. This is accom-
plished by a simple initial goal that queries a task to foliova loop. The details of this goal

is given in previous chapter as follow scenario goal.

Closed simulation property makes scheduling of the ageartdein. In order to utilize comput-
ing resourcesféciently, advancement of the simulation time frame shouldnagle as soon
as possible. From the nature of distributed systems and teatemvironment, completion
of decision relevant to the current time frame should beafeteand simulation should be
advanced. In order to address this need, wait manager i®mngpited in the environment
agent and team plans coordinate with this manager by megsagi time consuming plan
can register itself on wait manager to ensure it has enoughdk each time frame. The plan
signals when it has completed its computation for that tiraene. Wait manager keeps track

of these plans and advances the simulation time whenevaeaal are ready for the next time
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frame. Using this facility from plans is accomplished by tiuaction calls.

registerForTickWait() : This function immediately returns after sending a registessage

to the wait manager.

waitForNextTick() : This function signals that the plan has completed necessamputa-
tion for the current time frame and ready to advance. Thistfan returns when the

simulation time is incremented.

If a plan is registered for tick wait, upon plan terminatidrautomatically unregisters itself

from the wait manager.

Wait manager keeps track of all requests in a list identifigetdgentld, plan instance pair.
If a plan is unresponsive, which means it does notwaltForNextTick for a defined humber

of time frames, it is automatiaclly discarded. Wait managgr operate in two modes.

Normal : In this mode, wait manager advances time based on simuld¢ifaults which is 1

tick per second.

As fast as possible :Wait manager is utilized in this mode. It keeps track of afjiseered
plans and advances as soon as all of them completes theiutatiops. Wait manager
increments the time frame at worst case as in normal modes @ be caused by
plans having heavy computation loads or unresponsive plahs plan instances that

slows the execution are logged for further investigation.

4.2 Implementation of Runlevel

Runlevel mechanism is incorporated into the Jadex agesrpirgter. Jadex agent interpreter is
event based and event processing is done with the help oeswlaghat organizes the pending
events in tree structures. Running plans may not have ardim@pavent on agenda. However,

when a plan goes to sleep waiting for a condition, the comlitian generate an event to wake
up the plan. The triggered event will first take its place ia #genda. Interpreter processes

events in the agenda one by one.
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Runlevel information is incorporated on running plans amelinterpreter holds the current
runlevel. When a new plan starts to run, it is created withctimeent runlevel. Two field and
a couple of management function are added to JadexInterpoietss. These additions are

shown below.

private int currentRunLevel= 1;

private Stack<lAgenda> suspendedRunlLevels new Stack<lAgenda>();
public synchronized void newRunLevel(RunLevelRequest rlreq);
public synchronized void removeRunLevel();

public int getCurrentRunLevel();

public IAgenda getAgendaOfRunLeveift runLevel);

Runlevel change is triggered by a message event. The mesgagecontains three type
of information: command, agents and goal. Command speeifiether the request is new
runlevel or remove runlevel. The request is initially semtthe root agent on top of the
hierarchy. The request also specifies all the other agerttsedifierarchy. A simple request
consisting of only the command is then broadcasted to alitagspecified in the request by

the root agent. Goal information is used to run the initisdlgef the new runlevel.

Jadex interpreter can be extended by tool adapters. A tagtadis a special class that
can handle message events when the agent first receivesthiitapability, Jadex control
center has implemented various debugger and introspexdts: in order to add runlevel tool

adapterconfigruntime.properties.xmile is edited adding the line below.

<property name”tooladapter.runlevel®new y_ thesis.runlevel.
RunlevelAdapter ($agenk)/ property>

This runlevel adapter handleunLevelRequestessages and handles them by calliegyRun-
Levelor removeRunLevdlction in theJadexInterpreteclass. Broadcasting of messages are

done within the runlevel adapter.

When a new runlevel is triggered, agent actually starts aplawthat will start and monitor
the given goal. The runlevel goal takes fRanLevelRequeshessage as parameter and it is
dispatched as a top level godRunLevelPlarhandles the runlevel goal and start the given
goal as a subgoal. The runlevel is automatically remove®yLevelPlarwhen the given
goal is finished.RunLevelPlarsends itself the same runlevel request with remove runlevel

command. Below is the source codeRainLevelPlan
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public class RunLevelPlan extends Plajn
public void body() {
RunLevelRequest rlreg= (RunLevelRequest)getParameter("request”).
getValue ();

// start the goal

if(rlreq !'= null & rlreq.getGoalname() + null) {
String goalname= rlreq.getGoalname();

Map<String , Object params= rlreq.getGoalparams();

IGoal goaknull;

IRGoal rgoaknull;

try {

rgoal = getRCapability () .getAgent().getGoalbase ().create@oa
goalname);

goal = new GoalWrapper(rgoal);

} catch (RuntimeException re)

logger.severe ("runlevelcan.not.create.goal.: .

}

+ goalname);

// set parameters

if (params E null) {

for(String param:params. keySet())
goal.getParameter (param).setValue (params.get(pajam)
}

}

// run the goal and wait
dispatchSubgoalAndWait(goal);
}

// end the run level
RunLevelRequest reg new RunLevelRequest(rireq);
req.setCommand ("remove”);

//From ToolRequestPlan

IMessageEvent requeshsg = createMessageEvent("toolequest”);

requestmsg.getParameterSet(SFipa.RECEIVERS).addValue (reqAd
(0));

requestmsg.getParameter (SFipa.REPMITH) . setValue (SFipa.
createUniqueld (null));

requestmsg.getParameter (SFipa.CONVERSATION) . setValue (null);

requestmsg.setContent(req);

sendMessage(requesitisg) ;

}
}

Runlevel change request is specially treated by the agtrpieter. Internal data structures

are need to be handled prior to any runlevel related goakssicg begins.
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When a new runlevel is created, a new agenda for the runleveleiated and the current
agenda is stored in a stack. Since interpreter will work andbents generated, previous
events will not be considered. However, wake up events f@rstispended plans related to
the previous can emerge. In this case, event is pushed teldhant runlevel agenda. That
way, when the runlevel is resumed, previous events will lmegssed. This functionality is

implemented in addAgendaEntry function of JadexIntegrelass.

4.3 Implementation of Blackboard

Blackboard facility can be seen as an interface, as memtionprevious chapter, and there
can be diterent implementations providing this interface. In casetblackboard facility is

implemented to work on a local Java runtime instance whéigahts of the group assumed
to live. Although this assumption seems limiting, its apation has performance benefits. In
order to gain performance, all agents of the group can beuge@on the same Java runtime

instance.

—»{ Blackboard : board1

Blackboard —ILBIackboard : board2
Manager Region : region2 . .1 I
|: Region : region1 Agent order - 1
2
Beliefbase 3
4
|
Agent 3 ° Agent 4 °
o »n o v
oc o<
|
Agent 1 Agent 2

Plan
Instance
Plan
Instance

Figure 4.2: Blackboard Manager

The blackboard can also be implemented fully distributed m@ssage based. This imple-
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mentation will probably have overheads but it will enabladiboard utilization wherever

possible.

In case study implementation, each Java runtime instanee lidackboard manager(Figure
4.2) as a singleton. Blackboard manager is used to createegigler blackboards. After
blackboard usage is over, the creator plan should removerit the blackboard manager.
Blackboard manager holds a list of available blackboard tha be accessed with names.
Blackboard names are passed to other agents in goal param&lleagents of the group can

access blackboard after receiving the name.

A blackboard is a container of regions. All functionalityingplemented in blackboard region.

Below is the interface of the blackboard region with comraeshtortly explaining its usage.

//used to set the order of agents in creation
public void addAgent(Agentldentifier aid);

//used by an agent to query its place in agent order
public int getAgentindex(Agentlidentifier self);

//used to query how many agents are in agent order
public int getNumberOfAgents () ;

//agent can query if it needs to wait for order
public boolean isWaitRequired(Agentldentifier self);

//called to block current agent to wait order, timeout in
milliseconds
public boolean blockAgent(Agentldentifier self ,long ms);

//signal activity for the agent is done
public void agentDone(Agentldentifier self);

//get common beliefbase as a hashmap
public Map<String ,Object- getBeliefbase ();

4.4 Implementation of Scenario Conditions

A scenario condition is an expression where its evaluatidnue triggers task change. Jadex

has support for expressions that can use functions anlesipresent in beliefbase.

Jadex also has support for conditions. In Jadex manual iessribed that a condition is
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a monitored boolean expression. Usage of conditions isigeswithin plans but it does
not allow to explicitly wait for multiple of condition instaeces. A task can have multiple
conditions that can trigger task change. Because of these @mings condition facility of

Jadex could not be used for demonstration.

In this case study, distributed condition evaluation isdaeke A scenario condition is defined
with a list of <agentld, boolean Jadex expressigrairs. Agentld defines which agent should
monitor the expression. If the agentld refers to anothentage value link is established
between agents to monitor the expression. After value Istlldishments, all of them is

combined by AND binary operator and monitored.

A value link is implemented message based and uses bekefadue link usage has three

phases as initiation, update and termination.

Link initiation :  Initiator reserves a new belief to hold value of the expssihen initiator
sends a message to the remote agent containing the expressiadhe belief name.

Receiver registers this information for later evaluation.

Value update : Receiver monitors the expressions once in every time fraris.is triggered
in follow scenario plan. If the value of the expression chema@ value update message
is sent to the agent containing the belief name and its valMigh this information,

initiator agent directly updates its belief based on theining update message.

Link termination : Link termination is done with belief removal and sendingre ltermi-

nation message to receiver. Receiver removes any settirxfpoession monitor.

Evaluation of scenario conditions is handledfalow scenarioplan. When a new task is
received with scenario conditions, all scenario condgiare prepared for monitoring. A task
change is triggered whenever one of the scenario condigealkiate to true or the task goal
finishes with success or failure. Task change handled bgvahtleaning and a task query to

the scenario manager.

Although Jadex condition facility could not be used in theecatudy, it is possible use after
extending the Jadex internals. Condition facility of Jaderently more #icient than the

case study implementation.
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CHAPTER 5

EXAMPLE CASE STUDY

5.1 Case Study : Air Defense of Tanks

Scenario can be briefly stated as an air defense escort igperatgroup of tanks accompa-
nied by air defense vehicles will go thorough a valley. Thesiain has a high risk of failure

because the valley is suitable for an enemy helicopterlattac

This scenario outline describes air defense units theieatie: escort the tank group and
engage enemy helicopters. The success of this missionh/hdgpended on the capability
of air defense units. With this scenario, utilization of #iedefense units and how they should
be operated can be studied. For this purpose, case studsefbom the implementation of the
tasks of air defense units and their task flow. Implementatibthe enemy helicopters and

tank group is not in detail and mostly hardcoded.

Map is a simple grid with obstacles that blocks the availabte/es. Figure 5.1 shows the
beginning of the simulation. Map size is a 32 by 32 cells. Ewearhicle in the simulation

moves at most 1 grid in a time frame. Tanks and air defensebeshtan not move through
obstacles. Helicopters can move over the obstacles. No amesee anything behind an
obstacle. In this implementation, only a generic blockagdefined which is called a mine
field. This mine field can be detected when the agents comerclibss assumed that relevant
actions can be taken by infantry to clean the mines. Basedism$sumption, implemented
environment simulation vanishes the mine field after a dieee time. If the vehicle moves

in the mine field, it can be damaged with a probability.
Enemy consists of a group of helicopters. Enemy tries torsemuiarea and avoid penetration
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“airl air2

“air3 air4

Figure 5.1: Initialization of Simulation

of other forces from the valley.

Friendly units consists of a tank group and a group of airederehicles. The tank group has
the mission to reach and secure an area that is of utmost tamger. The area is located on
the upper right corner of the map. Tank group is aware of tliedpger strike risk and will be
accompanied by air defense vehicles. The air defense wilemdth the tanks for protection.
The key capabilities of the framework will be demonstratedaisk implementations of this

unit.

Enemy scenario and friendly scenario are run completelars¢gd. In other words, it is

possible to run enemy agents on &elient computer.
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5.1.1 Example Scenario

There are two friendly teams on the map, namely air deferesm tnd tank team. Initially
they are located far away from each other on the map as canebeoseFigure 5.2. Main
activity of the scenario is to carry out air defenses of thekteeam. In order to start this
mission, air defense team should travel near the tank tedtar &ir defense team covers the

tank team, tank team can start to follow the route in the yatenorth.

Friendly intelligence also states enemy presence guatdegorth of the valley. It is reported

that helicopter teams may be patrolling the north of the map.

“airl "air2

air3 _air4

Figure 5.2: Scenario Overlay

Scenario has two phases for friendly units, first prepamadiod escorted travel to north.

Phase 1 :In the first phase, tank team takes position on their init@rdinates. This position
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is highlighted with green 1 in Figure 5.2. Tank team will waittil accompanied by
air defense team. Air defense coverage of positioned tak te designated with blue
circle on the map. Meanwhile, air defense team travels ta twggach tank team. The
route is highlighted with a blue 1 on the figure. When posii®neached, air defense

team will cover tank team to protect from air attacks.

Phase 2 : Tank team follows the green route highlighted with numben ghie valley. Tank
team travels at a suitable speed to let air defense veh@lelsainge position appropri-
ately. Air defense team pursues its defensive move taskdfenblue path in the valley
highlighted with blue number 2. Based on the intelligenazssible enemy encounter
is awaited in this phase. At the end of this phase, tank tealraardefense team take

positions on the north where the green route ends.

Scenario for enemy helicopters is very simple and invol@gaordination. It can be sum-

marized as:

e Patrol the red line on the north continuously.

e Attack any threat in vision range.

5.2 Scenario Level Actors

Scenario level actor refers to a single physical agent ooamof agents that is suitable for
task assignment in task flow definitions. A group of agents kdle a hierarchy and the

topmost team agent is responsible for pursuing the task.

Air Defense Team: This actor is composed of 4 air defence vehicles.

Single Air Defence Vehicle: This is the only physical agent that is defined as a scenario
level actor. User can define a single air defence vehicle toncand from the beginning or

deaggregate an air defense team and command all vehiclesnia by one.
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Tank Team: The tank team consists of 4 tanks. The team agent has 2 sulatgants each

corresponding to a tank buddy. A tank buddy is made up of 2stank

Helicopter Team: The helicopter team is composed of 2 attack helicopters.

A single tank or a single helicopter is not defined as a scerevel actor. Thus user is not
given the opportunity to define detailed taskflows for thesesuHowever implementation of
each physical agent is exactly the same whether it is a Sodesel actor or not. Defining

scenario level actors is a design decision and can be diredgth the desired detail level of

the simulation.

5.3 Modeling of Tasks

Below sections presents the modelling details of the taskd in the case study. Some of the

tasks reuse existing goals and plans from other tasks.

5.3.1 Goto Location Task

This task is the simplest task that can be given to a physgeita The agent will find a route
to the desired location and immediately start moving. If abdsroute to the location found,

the task fails.

Applicable Actors:

Single Air Defense Vehicle.

Task Parameters:

Table 5.1 defines the task parameters.
Preconditions and Assumptions:

e Actor should have mobility.

e A route to the location should exist

43



Table 5.1: Goto Location Task Parameters

Task Parameters Description Data Type

Location The target point that should he2D Map Coordinate
reached by the agent

Task Implementation

The physical agent tries to find a path to the target locatish fif the route exists, it follows
the route and finishes the task successfully. Task will f&iem/there is no route. However
temporary route blockages will not fail the task. The taskcall subtasks to handle the route

blockages.

Hierarchy

] Physical Agent

Figure 5.3: Goto Location Task Hierarchy

Single PA physical agent has no hierarchy (Figure 5.3).

Success Condition
The task is successful when the physical agent reaches ¢a tavget location. Th&ask-

Goal GotoLocationgoal will finish successfully.

Failure Condition

If there is no applicable route is present to reach the tatgstination, Th&askGoalGoto-

Locationgoal will finish with failure.
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Subtask Conditions
The route can be blocked temporarily by a mine field. In thiswrnstance, the subta$¥ait

Mine Cleaningcan be activated in a new runlevel to handle the situation.

Blackboard Usage

There is no blackboard usage for this solo task.

Belief Usage
Environment obstacles and agent positions are accesddd the plan to calculate possible

moves. Subtask checks environment to see whether the midésfiemnished.

Task Goals and Plans

PA Physical Agent
TaskGoalGotoLocation: This goal represents the task. Goal paramete same as

the task parameters.

Plan GotoLocation: This plan handles the gdalskGoalGotolLocation

public class GotoLocationPlanextends Plan {
public void body() {
Location loc = (Location)getParameter("location”).getValue

O

String boardname= (String)getParameter("boardname”).

getValue () ;

String regionname= (String)getParameter(”"regionname”).
getValue () ;

if (boardname== null || boardname.equals ("")){
logger.severe ("boardnameés._empty”) ;
fail ();

}

BlackBoardRegion region= BlackBoardManager.getinstance ().
getBlackBoard(boardname).regions.get(regionname);

//termination
Boolean done= (Boolean)region.content.get(”done”);

//1oop
while (!done) {
Agent myself = (Agent)getBeliefbase ().getBelief ("mgelf”
).getFact();
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int agentno= region.getAgentindex(myself.getAID());

String action= "";
done = (Boolean)region.content.get(”"done”);

// wait
for (int t=0; t<8;t++) {
if (region.isWaitRequired(myself.getAID()))X // need to
wait
boolean ret = region.blockAgent(myself.getAID (), 100)

if (ret == false) {
continue;
}
}
}

// action

Environmentinfo einfo= (Environmentinfo) getBeliefbase ()
.getBelief("enwvinfo”).getFact();

Location currLoc= myself.getLocation();

Location nextLoc;

//TODO done condition?

if (einfo.getManhattanDistance(currLoc, locs= 0) {
region.content.put(”done” new Boolean (rue));
action = RequestMove .DIRECTIONNONE;

}

// wait the next
if (agentnel !'= region.getNumberOfAgents () )
Location nextAgentLoc= (Location)region.content.get(”
loc”+(agentnorl));
if (nextAgentLoc == null || einfo.getManhattanDistance(
currLoc, nextAgentLoc »3) {
action = RequestMove .DIRECTIONNONE;
}
}

if (action == "") {
//normal move
Location leaderLoc;
if (agentno== 0) {
leaderLoc= loc;
} else {
leaderLoc= (Location)region.content.get(”loc#(
agentno-1));

}

action = RequestMove .DIRECTIONNONE;
if (leaderLoc & null) {
if (agentne==0 || einfo.getManhattanDistance(leaderLoc
, currLoc) > 1) {
String dirs[] = einfo.getDirections(currLoc,
leaderLoc);
action = dirs[0];
}
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}
}

// write our desired next loc
nextLoc = einfo.calculateLocation (currLoc, action);
region.content.put(”loctagentno, nextLoc);

// tell
region.agentDone(myself.getAlID());

// make move
move(action); // this function ends when environment
gives reply

Subtask : Wait Mine Cleaning

There is only one subtask defined for this task. The subtésik Mine Cleanings started
when the route is blocked by a mine field. In order to contiragent has to wait until the
mine field is cleaned. This subtask could call for mine clesn&dhe example simulation
is not interested in mine cleaning and there is no actorsailitfafor mine cleaning. Mine
cleaning is modelled simply by expiration in the environtdrhe simulation assumes a mine

field is cleaned after a predefined time of its exposition.

PA Physical Agent

Goal WaitMineCleaning: This is the goal faiait Mine Cleaningsubtask. Table 5.2

lists the goal parameters.

Table 5.2: Wait Mine Cleaning Goal Parameters

Goal Parameters | Description Data Type

Mine Field Region| The mine field region the agentMine Field Id

waits for cleaning

PlanWaitMineCleaning: This plan handles the g@dal WaitMineCleaning
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public class WaitMineCleaningPlanextends Plan {
public void body() {
Agent myself;
registerForTickWait () ;
while (true) {
myself = (Agent)getBeliefbase () .getBelief ("mpelf”).
getFact();
if (myself.getVision().getMineFields ()= null)
break;
waitForNextTick () ;
}
}
}

5.3.2 Team Goto Location Task

This task is one of the simplest team level tasks that is diwengroup of agent. The group
will go to the location given as a parameter in line formatidhe leader waits other agents in

order to maintain the formation. The task succeeds where#uel reaches the given location.

Applicable Actors:

Air Defense Team, Tank Team, Helicopter Team.

Task Parameters:

Table 5.3 defines the task parameters.

Table 5.3: Team Goto Location Task Parameters

Task Parameters Description Data Type

Location The target point that should be2D Map Coordinate

reached by the team

Preconditions and Assumptions:

e Physical agents should have mobility.

e A route to the location should exist

48



Task Implementation

The team hierarchy defines the order of physical agents. Aie PA2, PA3 and PA4 are
defined by the hierarchy and TA prepares the blackboard dicepto this information and
delegates coordinated movement by giving th@wal CoordinatedGotoLocatian The TA
team agent observes all agent positions and finishes theataskdingly. Also it is TA's

responsibility to check for subtask conditions.

The leader agent (PA1) tries to find an applicable route tal#stination. All other agents try
to follow the agent prior to itself. For example, PA2 folloRAl. If any of the agents looses

mobility or killed, the gap will be filled in order.

Hierarchy

Team Agent

Physical Agents

Figure 5.4: Team Goto Location Task Hierarchy

Team agent TA is responsible for delivering necessary goadgents PA1l, PA2, PA3 and
PA4, and coordinating them (Figure 5.4).

Success Condition
The task is successful when the leader agent reaches to kgt location. Thelask-

Goal TeamGotoLocatiogoal will finish successfully.

Failure Condition
If there is no applicable route is present to reach the tatgstination, Th@askGoalTeam-

GotoLocationgoal will finish with failure.
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Subtask Conditions
The route can be blocked temporarily by a mine field. In thiswrnstance, the subta$¥ait

Mine Cleaningcan be activated in a new runlevel to handle the situation.

Task Goals and Plans

TA Team Agent

TaskGoalTeamGotoLocation: Parameters of this goal is the same @askearame-
ters. In order to reuse from other tasks, additional pararadbr blackboard definition

is added and shown in Table 5.4.

Table 5.4: Team Goto Location Goal Parameters

Goal Parameters Description Data Type

Mine Field Region The mine field region the agentMine Field Id

waits for cleaning

Blackboard Namg The name of the blackboard foBlackboard Id

(Optional) be used

Blackboard  Region The region of the blackboard toBlackboard Region Id

(Optional) be used

PlanTeamGotoLocation: This plan handles the géatkGoalTeamGotoLocatian

public class TeamGotoLocationPlanextends TeamPlan {
public void body() {
TeamAgent myself= (TeamAgent) getBeliefbase ().getBelief(”
my_self”).getFact();
BlackBoardManager bbm= (BlackBoardManager)getBeliefbase ().
getBelief("blackboardmanager”).getFact();

Location loc = (Location)getParameter(”location”).getValue
0;

String boardname= (String)getParameter("boardname”).
getValue () ;

String regionname= (String)getParameter(”"regionname”).
getValue () ;
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// blackboard management

BlackBoard board;

if (boardname=null || boardname.equals ("")){
boardname= bbm.generateBoardName () ;
board = new BlackBoard () ;
regionname= "";
bbm.addBlackBoard (boardname, board);

} else {
board = bbm. getBlackBoard(boardname);

}

BlackBoardRegion region;

if (regionname=null || regionname.equals ("")){
regionname= bbm.generateRegionName () ;
region = new BlackBoardRegion () ;
board.regions.put(regionname, region);

} else {
region = board.regions.get(boardname);

}

//for termination
region.content.put(”’done” new Boolean (false));

registerForTickWait () ;

for (Agentldentifier taid: myself.getChildAIDs () ){
region.addAgent(taid);//setup agent orders

}

//send goals to sublevel agents

RequestGoal rg= new RequestGoal(”"gotolocation”);
rg.addParameter(”location”, loc);
rg.addParameter(”"boardname”, boardname);
rg.addParameter(”"regionname”, regionname);

// send goal request to all children

for (Agentldentifier raid: myself.getChildAIDs ()) {
IGoal sendgoal= createGoal("sendgoal”);
sendgoal .getParameter(”"goal”).setValue(rg);
sendgoal .getParameter("receiver”).setValuedid);
dispatchSubgoal (sendgoal);

}

//watch termination

while (true) {
Boolean b= (Boolean) region.content.get(”done”);
if (b !'= null & b == true) {

break;

}
waitForNextTick () ;

}

}
}

PA1, PA2, PA3 and PA4 Physical Agents
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Goal CoordinatedGotoLocation: This goal is sent fréan TeamGotoLocatiomo all
physical agents with the same blackboard and region infiiomaAll agents runs their

plan in coordinated with the blackboard.

PlanCoordinatedGotoLocation: This plan handles the geabl CoordinatedGoto-

Location

public class CoordinatedGotoLocationPlarextends Plan {
public void body() {
Location loc = (Location)getParameter(”location”).getValue

O

String boardname= (String)getParameter ("boardname”).

getValue () ;

String regionname= (String)getParameter("regionname”).
getValue () ;

if (boardname== null || boardname.equals("")){
logger.severe ("boardnamés._empty”) ;
fail ();

}

BlackBoardRegion region= BlackBoardManager. getinstance ().
getBlackBoard(boardname).regions.get(regionname);

//termination
Boolean done= (Boolean)region.content.get(”done”);

//loop
while (! done) {
Agent myself = (Agent)getBeliefbase ().getBelief("mgelf”
).getFact();
int agentno= region.getAgentindex(myself.getAID());
String action= "";
done = (Boolean)region.content.get("done”);

// wait
for (int t=0; t<8;t++) {
if (region.isWaitRequired(myself.getAID()))X // need to
wait
boolean ret = region.blockAgent(myself.getAID(), 100)

if (ret == false) {
continue;
}
}
}

// action

Environmentinfo einfo= (Environmentinfo) getBeliefbase ()
.getBelief("enwvinfo”).getFact();

Location currLoc= myself.getLocation();

Location nextLoc;
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//TODO done condition?

if (einfo.getManhattanDistance(currLoc, locs= 0) {
region.content.put(”done” new Boolean (rue));
action = RequestMove .DIRECTIONNONE;

}

// wait the next
if (agentnel !'= region.getNumberOfAgents () )
Location nextAgentLoc= (Location)region.content.get(”
loc”+(agentnorl));
if (nextAgentLoc == null || einfo.getManhattanDistance(
currLoc, nextAgentLoc »3) {
action = RequestMove .DIRECTIONNONE;
}
}

if (action == "") {
//normal move
Location leaderLoc;
if (agentno== 0) {
leaderLoc= loc;
} else {
leaderLoc= (Location)region.content.get(”loc#(
agentno-1));

}

action = RequestMove .DIRECTIONNONE;
if (leaderLoc E null) {
if (agentne==0 || einfo.getManhattanDistance(leaderLoc
, currLoc) > 1) {
String dirs[] = einfo.getDirections(currLoc,
leaderLoc);
action = dirs[0];
}
}
}

// write our desired next loc
nextLoc = einfo.calculateLocation (currLoc, action);
region.content.put(”loctagentno, nextLoc);

// tell
region.agentDone(myself.getAlD());

// make move

move(action); // this function ends when environment
gives reply
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Subtask : Wait Mine Cleaning

There is only one subtask defined for this task. The subféaik Mine Cleanings started
when the route is blocked by a mine field. In order to contirieam have to until the mine
field is cleaned. This subtask can call for mine cleaners. &tample simulation is not
interested in mine cleaning and there is no actors or faddit mine cleaning. Mine cleaning
is modelled simply by expiration. The simulation assumesigerfield is cleaned after a

predefined time of its exposition.

TA agent reuse&oal WaitMineCleaningrom Goto Location Tasknd sends to all physical

agents. When one of the agents succeeds, TA finishes theslkuwtita success.

TA Team Agent

Goal TeamWaitMineCleaning: This goal represents the subtaskpamameters are

shown in Table 5.5.

Table 5.5: Team Wait Mine Cleaning Goal Parameters

Goal Parameters | Description Data Type

Mine Field Region| The mine field region the agentMine Field Id

waits for cleaning

PlanTeamWaitMineCleaning: This plan handiés®al TeamWaitMineCleaning

public class TeamWaitMineCleaningPlarextends TeamPlan {
public void body() {
Agent myself;
registerForTickWait () ;
Vector<Goal> goals = new Vector<Goal>();

RequestGoal rg= new RequestGoal(”"waitminecleaning”);
// send goal request to all children
for (Agentldentifier raid: myself.getChildAIDs ()) {
Goal goal = sendGoal(raid, rg);
goals.add(goal);
}
boolean bwait = true;
while (bwait) {
waitForNextTick () ;
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for (Goal g : goals.toArray()){
if (g.isfinished ())
bwait = false;

5.3.3 Team Air Defense Task

This task is given to a team of air defense vehicles to covéidafiend an area cooperatively.

Position of the team members and weapon range of the veliefe®w the area.

Center Point

Figure 5.5: Team Air Defense

As can be seen on Figure 5.5, covered area is the sum of déd<inhere a circle is defined
by the agent position and weapon range. Center point of thatagre the mean value of
their positions. Each responsibility direction of agestgéfined as the opposite vector to the

center point. The responsibility direction is used in thagsignment.

The task will end when the maximum execution time is reaclietthe maximum execution

is zero, the task will work forever unless a scenario coaditiolds true.

Applicable Actors:

Air Defense Team.
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Task Parameters:

Table 5.6 defines the task parameters.

Table 5.6: Team Air Defense Task Parameters

Task Parameters Description Data Type

Weapon Mode | States whether agents can engage enemy | Boolean

Maximum Time | States the maximum execution time of the tasBeconds

Preconditions and Assumptions:

e Physical agents should have the ability to fire their weapons

Task Implementation

The team hierarchy defines the order of physical agents. AltgFA2, PA3 and PA4 are de-
fined by the hierarchy. The team agent prepares the bladklaoar delegates the coordinated

air defense goals to physical agents. TA observes the tirapddhe task successfully.

Hierarchy

Team agent TA in Figure 5.6 is responsible for ensuring aperarchy is as above and

Team Agent

Physical Agents

Figure 5.6: Team Air Defense Hierarchy

delivering necessary goal to agents PAL, PA2, PA3 and PA4.
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Success Condition
The task will end when the maximum execution time is reachBEde TaskGoalTeamAir-

Defensegoal will finish successfully.

Failure Condition
There is no explicit failure condition defined. ThaskGoalTeamAirDefensgoal will not

finish with failure. It will try to continue until all agentsra destroyed.

Subtask Conditions

There is no need for subtask condition.

Task Goals and Plans

TA Team Agent
TaskGoalTeamAirDefense: This goal represents the task. Goal pdeasnare same

as the task parameters.

PlanTeamAirDefense: This plan handles the gdatkGoalTeamAirDefense

Subtask Goals and Plans

There is no subtask defined for this task.

5.3.4 Air Defense Task

Air Defense task is given to a single physical agent to watckehemy and engage if it is in

weapon range. The agent is stationary in this task.

Applicable Actors:

Single Air Defense Vehicle.

Task Parameters:

Table 5.7 defines the task parameters.
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Table 5.7: Air Defense Task Parameters

Task Parameters Description Data Type

Weapon Mode | States whether agents can engage enemy | Boolean

Maximum Time | States the maximum execution time of the tasBeconds

Preconditions and Assumptions:

e Physical agents should have the ability to fire their weapons

5.3.5 Team Change Positions Task

This task is given to a team of air defense vehicles to chaog#igns cooperatively. How
team changes positions are defined with task parameteriseAcbving agents can be limited

during the task. The change list also specifies the orderarigd movements.

Applicable Actors:

Air Defense Team.

Task Parameters:

Table 5.8 defines the task parameters.

Preconditions and Assumptions:

e Physical agents should have the ability to fire their weapons

5.3.6 Team Defensive Move Task

Team Defensive Move task is a high level task that involvesrdinated moving and col-
lective defense of the area covered by the air defense @hymients. The air defense team

accompanies the given escorted agent as parameters vathifa them.
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Table 5.8: Team Change Positions Task Parameters

Task Parameters Description

Data Type

Change List

the hierarchy.

This list defines which agent should changeAgentNo, Lo-
its current position to the new position.cation>list

AgentNo is the order of the physical agent|in

Weapon Mode

States whether agents can engage enemy

Boolean

Maximum
Moveable

Agent Limit

while moving.

Defines how many agents are allowed to movateger

at a time. Agents can not use their weagothan O

greater

Applicable Actors:

Air Defense Team

Task Parameters:

Table 5.9 defines the task parameters.

Preconditions and Assumptions:

e Physical agents should have mobility.

e Physical agents should have the ability to fire their weapons

e When none of the escorted agents is seen, team holds lagbposi
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Table 5.9: Team Defensive Move Task Parameters

Task Parameters Description Data Type
Route The route to be followed automatically based.ocation list

on position of escorted agents. The routg is

used in selecting appropriate defensive posi-

tion.
Defensive Posiq This array contains location pairs. NormallyLocation pair
tion Pairs air defense is carried out by 4 agents gnlist

2 item from this list appropriate for cover-

age. The list contains position pairs that will

be chosen when searching for good defensive

positions
Advance Type | Defines how agents will advance to their neWwbounds” or

defensive positions "follows”.
Maximum Defines how many agents are allowed to movateger greatef
Moveable at a time. Agents can not use their weagothan O
Agent Limit while moving.
Escorted This list defines the escorted agents. Based &gentld list
Agents their positions, air defense team tries to cover

them as they move.

5.4 Scenario File

contains task flows utilizing the tasks modelled in 5.3.

<?xml version="1.0" encoding="UTF-8"7?>

Below listing is the scenario file in XML file format that is wbéo define the scenario dis-

cussed in section 5.1. Scenario file starts by defining theéamment and agents. It also

<tns:scenario xmlns:tns http: //wwww. yukselen.web. tfy_thesis/

scenario” xmlins:xs+”"http: //wwv.w3.0rg/2001/XMLSchema-instance”

xsi:schemalLocatioa”http: //www. yukselen .web.tfy_thesis/scenario

.scenario.xs

d”>

<tns:environment sizex="32" size-y="32">

<tns:obstacl

e-map-mapl.png/tns:obstacle-map-
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</tns:environment
<tns:agents
<tns:team-agent name’teaml” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
DefenseTeam/tns:configuration-file >
<tns:agent nam€ airl” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperatives/tns:configuration-file >
<tns:location x"24" y="5"/>
<tns:icon-file >AirDefense .png/tns:icon-file >
</tns:agent
<tns:agent nam€ air2” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperatives/tns:configuration-file >
<tns:location x"27" y="5" />
<tns:icon-file >AirDefense .png/tns:icon-file >
</tns:agent
<tns:agent nam€ air3” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperative/tns:configuration-file >
<tns:location x"24" y="2" />
<tns:icon-file >AirDefense .png/tns:icon-file >
</tns:agent
<tns:agent nam€ air4” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperative/tns:configuration-file >
<tns:location x"27" y="2" />
<tns:icon-file>AirDefense .png/tns:icon-file>
</tns:agent
</tns:team-agent

<tns:agent nam€tankl” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperativer/tns:configuration-file >
<tns:location x"4” y="5" />
<tns:icon-file>Tank.png/tns:icon-file >
</tns:agent
<tns:agent nam€tank2” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperativer/tns:configuration-file >
<tns:location x"6” y="4" />
<tns:icon-file>Tank.png/tns:icon-file >
</tns:agent
<tns:agent nam€tank3” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperativer/tns:configuration-file >
<tns:location x"3” y="3" />
<tns:icon-file>Tank.png/tns:icon-file >
</tns:agent
<tns:agent nam€tank4” side-id="1">
<tns:configuration-file>y_thesis.agents.teamagents.
Cooperativey/tns:configuration-file >
<tns:location x"5" y="2" />
<tns:icon-file>Tank.png/tns:icon-file >
</tns:agent
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</tns:agents

<tns:flows>
<tns:flow flow—-name="flowl” assigned-agent”teaml”>
<tns:flow-element
<tns:goal goalname”teamgotolocation®
<tns:goalparam paramnamélocation”>
<tns:valuesnew Location (5,5%/tns:value-
</tns:goalparam
</tns:goabk
</tns:flow-element
<tns:flow-element
<tns:operator operation’deaggregate” operato+id="opl” />
<tns:flow flow—-name="flowll” assigned-agent”airl”>
<tns:flow-element
<tns:goal goalname”gotolocation™
<tns:goalparam paramnamélocation”>
<tns:value-new Location (3,3%/tns:value-
</tns:goalparam
</tns:goabk
</tns:flow—-element
<tns:flow-element
<tns:operator operatioxn’aggregate” operatorid="aggopl
" s
</tns:flow—-element
</tns:flow>
<!—— 3 more flow for each agent to cover tank team>
</tns:flow-element
</tns:flow>

<tns:flow flow—name="flow2” assigned-agent”teaml” after—
operator-id="aggopl™
<tns:flow-element
<tns:goal goalname”teamdefensivemove¥

<tns:goalparam paramnaméroute”>
<tns:valuesnew Location (5,5%/tns:value-
<tns:valuesnew Location(12,133)/tns:value-
<tns:valuesnew Location (25,163/tns:value-
<tns:valuesnew Location (22,30)/tns:value-

</tns:goalparam

<tns:goalparam paramnamédefensivePositionPairs”
<tns:value-new LocationPair(new Location(3,3), new

Location (5,3) kx/tns:value-
<tns:valueenew LocationPair(new Location(6,4), new
Location (9,5) k/tns:value-
<!—— DELETED : to conserve space—>

</tns:goalparam

<tns:goalparam paramnam€advanceType?
<tns:valuesbounds/tns:value-

</tns:goalparam

<tns:goalparam paramnamé&maximumMoveableAgentLimit3
<tns:value-2</tns:value-

</tns:goalparam

<tns:goalparam paramnaméescortedAgents?
<tns:value-tankl</tns:value-
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<tns:value-tank2</tns:value-
<tns:value-tank3</tns:value-
<tns:value-tank4</tns:value-
</tns:goalparam
</tns:goabk
</tns:flow-element
<tns:flow—-element
<tns:goal goalname”teamairdefense?
<tns:goalparam paramnamé&veaponMode?®
<tns:value-true</tns:value-
</tns:goalparam
<tns:goalparam paramnam&maksimumTime™
<tns:value-1000/tns:value-
</tns:goalparam
</tns:goabk
</tns:flow-element
</tns:flow>
</tns:flows>
</tns:scenaric

5.5 Simulation Run

This section tries to narrate a sample simulation run. lreotd visualize the sample run,
Figure 5.7 is given with colored overlays. Blue overlays fareair defense team and green
overlays are for tank team. Red is used for enemy units ondtta of the map. Orange box

on the south is used to visualize a mine field.

Throughout the simulation run, enemy is constantly patrglthe are designated with red
arrow back and forth. The enemy was programmed to attacktornfyreats that are in fire

range.
Simulation of friendly units are controlled with a scenaridwo phases.

In the first phase, tank team is positioned to a location (gdgeo wait for air defense team
to arrive. Air defense team (near blue 1) wants to travel éopgbsition to rendezvous with
the tank team. Air defense starts to move west in column foomavith ateam goto location
task. In the middle of their task, they encounter a mine fiakh(¢ blue 2). How to handle
this situation is encoded in the task implementation as #éaskb Exposition of the mine
field triggers the subtask condition. Air defense team starexecute thevait mine cleaning
subtask to handle the situation. Implementation of theaskbts simply waiting until the

mine field is removed from the environment. As stated preshigienvironment vanishes the
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“airl air2

“air3 air4

Figure 5.7: Sample Simulation Run

mine field after its predefined time passes. Removal of thefiiid from the environment
is enough to finish the running subtask. Air defense teamiroges its task execution and
follows the route again (near blue 3). After reaching rendag point, air defense vehicles
scatter around (blue 4) to take cover of the tank team. Atien®; air defense team starts
to executedeam defensive movask monitoring the movement of 4 tanks. Start of tilsem

defensive moviask ends the phase 1 of the scenario.

Phase 2 of the scenario begins by movement of tank team. Eank tries to follow the
green line in the valley that reaches to north. Region nezergnumber 4 is the target point
to reach by the tank team. Tank team does not move at full dpeealise air defense team
need to follow and take cover of the tanks easily. Movemertank team is monitored by
team defensive movask. This task tries to keep tanks in the coverage for ackst In
order to accomplish this, air defense vehicles needs togehteir location. The rules of the

behaviour is encoded in the task definition. Along the waydafense team changes location
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near the tank team whenever tanks crosses the safe regiereddwy the air defense team.

Tank team moves at a slow constant speed in this region.

Opening of the valley to the north has clear visibility batih Enemy helicopters and friendly
vehicles. At this region near green number 3, tank team eriecaienemy helicopters. Enemy
helicopters do not stop their patrol when they encountervaicles. They open fire to each
vehicle in their attack range while they are continuing rtipgitrol task. Air defense team is
still executingteam defensive movask around blue number 4 on figure. Each vehicle will
choose a suitable target based on their attack range ininatich and respond to enemy

presence.

After enemy contact, one of the sides eventually destroyeddefense team has more fire
power than enemy helicopters and can survive with less ttgstfowever the tanks are to-
tally vulnerable to air attack and success of this scenarsubjectively assessed with vehicle
casualty numbers. Air defense vehicles reorganizes thositipn based on their casualties.
They continuegteam defensive mowask until reaching region highlighted by blue number
7 on the figure. Alive tank team actors reaches to north anel t@kposition around green

number 4. This task was the last task defined in the scenario.
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CHAPTER 6

CONCLUSION

Modelling and implementing simulation applications inxed software engineeringficul-
ties that should be solved. Team-oriented modelling of iaqgéint systems increases the com-
plexity of the architecture. With the framework presentedhis thesis, we try to introduce

facilities that will ease application of team-oriented slations in multiagent systems.

Proposed solution is generic enough to be applied to any-te@nted problem with well
defined task coordination that is definable by team agenspl8everal types of global syn-
chronization issues are handled with facilities such asdblaard and runlevel management in
a team. Inter team coordination is address@ectively by introducing distributed condition

evaluation.

Scenario definition and management with conditions presehigh level control mechanism.
This control mechanism enables to glue the missing gap leettap down problem solution

and bottom up agent implementation in the framework.

As the implementation is based on extending Jadex, which @pan source mature platform
for BDI agents, application of the framework will ease thealepment process and yet leave

room for extensibility.

Application of the framework to cases with higher sociakmattivity can be studied as a
future work. Application of the framework to domains withok®e agent cooperation can

bring out the need of additional facilities to be served lgy/filamework.

The process of scenario definition is the most labor intensagk to perform. Additional

graphical tools and visualization techniques can easetbisess.
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Scenario definition has also an open problem for verificatiédthough giving semantic
meaning to the scenario definition is a hard problem, it cablkerhigh level scenario planners
to be developed. Syntactic verification of the scenario d&fincan help detecting definition

errors prior to simulation run. This verification
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