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Computer Engineering, METU

Asst. Prof. Dr. Buğra Koku
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Signature :

iii



ABSTRACT

TO FLOCK OR NOT TO FLOCK: PROS AND CONS OF FLOCKING IN
LONG-RANGE “MIGRATION” OF MOBILE ROBOT SWARMS

Gökçe, Fatih

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Erol Şahin

September 2008, 46 pages

Every year, certain animal and insect species flock together to make long-range migra-

tions to reach their feeding or breeding grounds. A number of interesting observations

can be made regarding this phenomenon. First, individuals tend to create large flocks,

which can include millions of individuals in fishes, for these migrations. Second, migra-

tions typically cover long distances. Third, despite all kinds of disturbances affecting

the individuals during these migrations, the flocks can reach the very same breeding

or feeding grounds with remarkable accuracy. Biological studies indicated that these

animals mainly use the magnetic field of earth (among many other environmental

cues) to determine the direction of their travel. It was also claimed that migrating in

flocks has been the key factor behind the accuracy of reaching the same grounds at

the end of the migration.

In this thesis, we take a constructivist approach towards investigating the effects of

flocking in long-range travels using a swarm of physical and simulated mobile robots.

Specifically, we extend a self-organized flocking behavior that was developed by Turgut

et al. (2008) that allows the long-range migration of a robotic swarm in space using

the magnetic field of the earth. Using this behavior, we analyze how the accuracy of

the robotic swarm reaching a particular “breeding ground” is affected by four factors;
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namely, (1) averaging through the heading alignment, (2) noise in sensing the homing

direction, (3) differences in the characteristics of the individuals, and (4) disturbances

caused by the proximal interactions of the robots during flocking. Through systematic

experiments with physical and simulated robots, we analyze how these factors affect

the accuracy along with the flock size and different sources of noise.

Keywords: swarm robotics, flocking, migration
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ÖZ

SÜRÜ HALİNDE HAREKET ETMEK YA DA ETMEMEK: SÜRÜ HALİNDE
HAREKET ETMENİN GEZER ROBOT SÜRÜLERİNİN UZUN MESAFE “GÖÇ”

ETMESİNDEKİ AVANTAJ VE DEZAVANTAJLARI

Gökçe, Fatih

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Erol Şahin

Eylül 2008, 46 sayfa

Her yıl belirli hayvan ve böcek türleri beslenme veya üreme alanlarına ulaşmak için,

uzun mesafeler katederek sürü halinde göç ederler. Bu olgu üzerinde çeşitli gözlemler

yapılabilir. Birincisi, bireyler kalabalık sürüler oluşturarak göç etme eğilimindedirler;

örneğin balıkların oluşturduğu sürüler, milyonlarca bireyi içerebilir. İkincisi, göçler

sırasında çok uzun mesafeler katedilir. Üçüncüsü, bireyleri bu göçler sırasında etk-

ileyebilecek her türlü olumsuz etmene rağmen sürüler, aynı beslenme veya üreme

alanlarına çok yüksek bir hassasiyetle ulaşırlar. Biyolojik çalışmalar bu hayvanların

yön bulmada genellikle yerin manyetik alanını kullandıklarını göstermektedir (Güneş,

yıldızlar, koku gibi diğer birçok mekanizma da kullanılabilmektedir.). Ayrıca, elde

edilen hassasiyetin arkasındaki temel faktörün, göçlerin sürü halinde yapılması olduğu

da öne sürülmüştür.

Bu tezde, yapıcı bir yaklaşımla, sürü halinde hareket etmenin uzun mesafe yolcu-

luklardaki etkisini, hem fiziksel robotlarla hem de benzetim ortamında inceledik. Özel

olarak, Turgut ve arkadaşları (2008) tarafından geliştirilen kendi kendine sürü halinde

hareket etme davranışını, bir robot sürüsünü yerin manyetik alanını kullanarak uzun

mesafe göç ettirecek şekilde genişlettik. Bu davranışı kullanarak, robot sürüsünün be-

lirli bir üreme alanına ulaşmadaki hassasiyetinin şu dört faktörden nasıl etkilendiğini
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analiz ettik: (1) yön ayarlama davranışı ile ortalama alınması, (2) hedef yönü belir-

lemedeki gürültü, (3) robotlar arasındaki karakteristik farklılıklar, (4) yakınlık kon-

trolünün yarattığı bozucu etkiler. Fiziksel robotlarla ve benzetim ortamında yap-

tığımız deneylerle, bu faktörlerin sürünün büyüklüğüne ve çeşitli gürültü kaynaklarının

varlığına bağlı olarak hassasiyeti nasıl etkilediğini inceledik.

Anahtar Kelimeler: oğul robot bilimi, sürü halinde hareket etme davranışı, göç
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I must thank Emre Uğur for his never-ending encouragement and for always being

a positive source of energy.

I am deeply thankful to all Kovan Research Lab. members, Levent Bayındır, Maya
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CHAPTER 1

INTRODUCTION

In the near future, advances in technology is likely to enable the mass production of

robots. The availability of swarms of relatively simple and cheap robots would allow

us to take an alternative approach to real-world problems, such as the surveillance of

large regions or the de-mining of mine fields. However, tackling such problems require

the development of robust and scalable coordination algorithms.

Swarm robotics, is an approach that aims to develop robust, scalable and flexible

coordination algorithms for robots using inspiration from nature. In this approach, a

complex task, which is beyond the capability of a single individual, is performed by a

swarm of robots with only local interactions among the individuals and between the

individuals and environment [3].

As inspiration sources, one needs to take look at the amazing coordination strate-

gies that are observed in social insects and animals. Ants build and maintain a colony

through which they can successfully forage preys from large regions. Termites can

build large mounds from earth. Bird flocks can make long-range migration flights

that not only warn off their predators but also allow them to take precise paths to

their breeding or feeding grounds.

Swarm robotics works at the intersection of science and engineering. On one hand,

it provides a constructive approach to test the hypothesis that has been developed in

biological studies on the observed coordination taking place among organisms. On the

other, it aims to develop coordination algorithms that can be used to control swarm

robotic systems in real-world problems.

In real-world problems, one particular example of coordination problems arises

when a swarm of robots needs to travel from an initial point to an operation range.

Let’s assume that we have a swarm of robots that are assigned to carry out a certain
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mission in a distant operation area. Other than the coordination problem in the

operation area, we have another crucial problem which is the long-range migration of

the swarm of robots to and from the operation area. In such a task, the expectation

is that the swarm of robots should reach to the operation range with a high accuracy.

One approach to this problem could be to improve the robots individually, so that each

of them follows an accurate path and arrives the operation area in an accurate manner.

This approach will require development of complex algorithms and even improvement

of hardware components. But what if to use the swarm robotics approach and to

exploit being together in a swarm?

As inspiration source, we have a widely observed phenomenon in nature, long-

range migration. Every year, certain animal and insect species flock together to make

long-range migrations to reach their feeding or breeding grounds. A number of inter-

esting observations can be made regarding this phenomenon. First, individuals tend

to create large flocks, which can include millions of individuals in fishes, for these mi-

grations. Second, migrations typically cover long distances. Third, despite all kinds of

disturbances affecting the individuals during these migrations, the flocks can reach the

very same breeding or feeding grounds with remarkable accuracy. Biological studies

indicated that these animals mainly use the magnetic field of earth (among many other

environmental cues) to determine the direction of their travel. It was also claimed that

migrating in flocks has been the key factor behind the accuracy of reaching the same

grounds at the end of the migration.

In this thesis, we take a constructivist approach towards investigating the effects of

flocking in long-range travels using a swarm of physical and simulated mobile robots.

Specifically, we extend a self-organized flocking behavior that was developed by Turgut

et al. [1] that allows the long-range migration of a robotic swarm in space using the

magnetic field of the earth. Using this behavior, we analyze how the accuracy of

the robotic swarm reaching a particular “breeding ground” is affected by four factors;

namely, (1) averaging through the heading alignment, (2) noise in sensing the homing

direction, (3) differences in the characteristics of the individuals, and (4) disturbances

caused by the proximal interactions of the robots during flocking. Conducting sys-

tematic experiments with physical and simulated robots, we analyze how these factors

affect the accuracy along with the flock size and different sources of noise.

The rest of the thesis is organized as follows. In the next chapter, we review
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the related work in biology and robotics. In Chapter 3, we describe the robotic

platform and the simulator we used. Then, the flocking behavior is presented in

Chapter 4. Chapter 5 presents the setups used in the experiments and the metrics

utilized. In Chapter 6, the factors that influence the accuracy of the flocking behavior

are introduced and described. The experiments and their results are presented in

Chapter 7. The conclusions are provided in Chapter 8.
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CHAPTER 2

RELATED WORK

“The story of migrating birds is the story of a promise: The promise to
return.”

— from Winged Migration movie [4]

Each year certain insect and animal species make long travels to reach their feed-

ing or breeding places which is called as migration. Migration is an impressive phe-

nomenon because of its three important properties: (1) Very long distances scaling

up to several thousands of kilometers are travelled during migration. (2) Migratory

animals and insects typically migrate in flocks rather than as individuals. These flocks

involve individuals up to several millions. (3) Migration occurs in an accurate way

despite the effect of different environmental conditions and hazards.

Arctic terns migrate from Arctic to Antarctic and back making a round-trip jour-

ney nearly 35400 km each year. The flocks formed during the migration include large

number of individuals. During their migration they utilize a variety of sensing abilities

for orientation and navigation. Some birds are shown to use sun compasses. They are

also shown to sense [5, 6, 7] and even see [8] the magnetic field of the earth. Some

visual landmarks and olfactory cues are also shown to be used in navigation.

Migratory behavior is also observed in fish species, such as sardines. They migrate

from east coasts of South Africa to north creating shoals often 7 km long, 1.5 km wide

and 30 meters deep. There are some hypothesis for fishes to use magnetic field of the

earth like birds and also oceanic electric fields [9].

Among the insects, the monarch butterflies migrate from southern Canada to

central Mexico every year where they spend the winter after traversing a distance

nearly 3200 km. These insect are shown to use a combination of circadian rhythm

and the position of the sun in the sky for navigation [10].
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The precision obtained by animals during the migration has attracted many re-

searchers to find an answer to this captivating phenomenon. Although researchers

have been working on the navigational mechanisms utilized by individuals and in-

creasing our knowledge on the abilities of the individuals, the underlying value of

flocking behavior in the navigational accuracy is still remains an open question. It

was Bergman and Donner [11] first suggesting that the flock migration “increases the

accuracy of orientation mechanism” which is known as the many wrongs principle.

They suggested that flocking suppresses the tendencies of the individuals to migrate

in slightly different directions, hence the flock can align to an average direction of the

preferences of the individuals giving a more accurate direction when compared to the

case of individual birds.

Hamilton [12] and Wallraff [13] reiterated the many wrongs principle in their the-

oretical studies. Hamilton suggested that “the orientation of groups of animals is

more accurate than that of individuals”. Assuming that (1) spatial goal is same for

all individuals, (2) inaccuracies are represented by the deviation of the individuals

from the goal and (3) individuals adopt their orientation to the mean direction of the

individuals in the flock, he drawed a series of theoretical curves with respect to flock

size showing that average deviation from goal decreases with the flock size. Wallraff

suggested some methods to analyze the observational data to investigate the effect of

flocking to the accuracy of orientation toward the goal direction and described their

statistical implications.

In [14], Rabøl et al. observed skylark flocks of different sizes (1,2, 3-5, and 6 or

more) on their spring migration. They showed that the dispersion of the migratory

directions becomes less scattered with the size of the flock. Later, Tamm [15] observed

similar results testing the hypothesis on homing pigeons with three to six flocks. By

selecting flocks in a random fashion, he obtained that the flocks are more accurate

than individuals and their homing time is shorter than that of singles.

Besides the promising field observations, some contradictory observations are also

reported. In [16], Keeton compared mean bearings of single pigeons with that of flocks

of four pigeons. He reported no significant difference between single birds and flocks

in terms of accuracy. In [17], Benvenuti et al. performed experiments to compare

orientation behavior of single birds with that of small flocks including three and ten

birds. Their results showed that small flocks do not orient more accurately than
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single birds. In [18], Guilford et al. performed experiments by releasing pairs of

homing pigeons in which none, one or both of the birds had previously been trained.

They investigated whether unexperienced birds exploit the knowledge of other bird to

achieve a navigational advantage or not. They found that unexperienced birds do not

prefer to home together with their pairs, be it experienced or not.

Recently, Simons has brought the almost forgotten many wrongs principle to light

as a null model and general framework for testing the advantage of group navigation

empirically [19]. Taking the many wrongs principle in its simplest form in which there

are no characteristic differences between individuals and contribution of individuals

to the direction of flock are equal, he showed that large group size increases the

accuracy of group navigation. He emphasized that the principle can be generalized

to more complex scenarios in which there are differences between individuals and the

individuals contribute to flock direction in an unequal manner.

The work of Simons has attracted some attention to the many wrongs principle.

In [20], Hancock et al. developed a model to investigate the navigational foraging ad-

vantages of aggregation behavior in nomadic animals in particular bearded pigs. They

modeled the movement and aggregation strategies of individuals with two parameters.

The first parameter controls the food sensing ability of an individual, whereas the sec-

ond one controls the tendency of an individual to aggregate or avoid its neighbors.

The latter parameter is evolved via a genetic algorithm. Their results show that the

evolved parameter indicate optimality of aggregation if two conditions both hold: (1)

the environment has high quality but rare food sources, (2) the use of decision of

other group members is sufficient due to the uncertainty in the sensing power of an

individual. The optimality of aggregation under these two conditions demonstrate the

many wrongs principle.

In another study, Codling et al. studied the many wrongs principle in a scenario

resembling to the migration of animals [21]. They developed a point-mass movement

model incorporating a biased random walk behavior and the group interactions. They

investigated the effect of navigational error, group size, interaction radius size and

environmental turbulence to the performance of the behavior to navigate a group

from one location to another. They find that, other than the high environmental

turbulence case, the group movement has a navigational advantage.

A related problem was also studied in robotics. Gutierrez et al. proposed a fully-
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distributed strategy for the improvement of odometry in collective robotics [22]. In

this strategy, the robots improve their estimate of location by exploiting the estima-

tions of their neighbors. The estimate of each robot is associated with a confidence

level decreasing with the distance travelled by the corresponding robot. Each robot

combines its own estimate and the received estimates of its neighbors using the con-

fidence level of each estimate to get a more precise location information. Authors

evaluated their strategy in simulations on a foraging task in which the duty of the

robots is to bring items from a resource site to a central place. They found that

as the group size is increased both the quality of the individuals’ estimates and the

performance of the group are improved.

Although the interest in the role of flocking in long-range migrations, as reviewed

above, have produced a number of hypotheses and models in biological systems, many

questions remain unanswered. Despite the results obtained in simulations, coupled

with few, sometimes contradictory observational data from animal flocks, the problem

begs a constructivist approach.

2.1 Thesis Problem

In this thesis, we are interested in how flocking affects the accuracy of long-range

migration in a swarm of individuals. Inspired by the biological studies reviewed above,

we are interested in developing a flocking behavior for a swarm of robots that use the

magnetic field of the earth to emulate a simple form of long-range migration in space.

Through a systematic set of experiments conducted using physical robots as well as

physics-based realistic robot simulations, we aim to analyze pros and cons of flocking

in the long-range“migration”of mobile robot swarms and to expand our understanding

of this interesting phenomenon in an artificial system to shed light on the biological

studies.
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CHAPTER 3

EXPERIMENTAL PLATFORMS

In this study, we used Kobot, a mobile robot platform developed as a testbed for

swarm robotic research (See Figure 3.1(a)) and its simulator.

3.1 The Kobot Robot Platform

Kobot is a CD-sized, differentially driven and power efficient platform weighing only

350 gr with batteries. Figure 3.2 shows the block diagram of Kobot. It has 8 in-

frared (IR) sensors capable of kin and obstacle detection and a digital compass. The

communication among robots as well as between the robots and a console is car-

ried out through an IEEE 802.15.4/ZigBee compliant wireless communication module

with a range of approximately 20 m indoors. The main processor of robot is a 20 MHz

PIC184620A microcontroller. Thanks to low-power design of the robot, Kobot has

an autonomy of 10 hours reported with a 2000 mAh lithium-polymer battery.

In the following two subsections, we give the details of the short-range sensing and

the heading sensing sub-systems because of their importance in the behavior we have

developed. For the details of other sub-systems please refer to [2].

3.1.1 The Infrared Short-range Sensing Sub-system

The infrared short-range sensing sub-system (IRSS) measures the range and bearing of

kin-robots and other objects in close proximity. It consists of eight IR sensors placed

uniformly at 45◦ intervals, as shown in 3.1(b) and 3.3(a) and a main sensor controller.

Each sensor is capable of measuring distances up to 20 cm at seven discrete levels and

distinguishing robots from obstacles/walls at a rate of 18 Hz. The IR signals utilized

in the measurement is modulated at 38 kHz to eliminate environmental noise.
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Figure 3.1: (a) Photo of a Kobot. (b) The scaled drawing of Kobot illustrating
the circular body, wheels, placement of the sensors and range for 2nd sensor. The
sensors are placed uniformly at 45◦ intervals. Each square patch in the gray scale blob
indicates the output of the sensor averaged over 200 samples. A white plastic stick
with a diameter of 2 cm is used as the target. Darker colors denote higher values of
sensor measurement. (Images are taken from [1].)
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Figure 3.2: Block Diagram of Kobot. (Image is taken from [2].)
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Figure 3.3: (a) Photo of a sensor board. (b) Block diagram of an individual sensor.
(Images are taken from [2].)

Figure 3.3(b) illustrates the block diagram of an individual sensor. Each sensor

contains an IR LED, an IR receiver, a PIC12F683 microcontroller, a low pass filter,

an op-amp and a driving circuit. The function of each component is as follows. The

PIC12F683 is responsible for the operation of the sensor and as well as for the trans-

mission of the result to the main sensor controller, the PIC16F877A, upon its request.

The pulse width modulation (PWM) module of the PIC12F683, the low-pass filter

and the op-amp generate the voltage that drives the IR LED through the driving cir-

cuit. There are seven different levels of the voltage used in the measurements. Level 1

and Level 7 indicates the minimum and maximum levels of the voltage, respectively.

The analog-to-digital converter (ADC) module of the PIC12F683 is used to control

whether the desired value of the voltage is reached or not after outputting necessary

PWM signals. When the desired voltage level is reached, IR LED is turned on and off

at 38 kHz by PIC12F683 and an IR burst is emitted. IR receiver detects IR signals

and indicates the detection to the PIC12F683.

The sensing algorithm is given in Algorithm 1. The algorithm iterates on three

states transitions between which are controlled by the main sensor microcontroller:

• Kin-detection. This is the initial state of the sensor. In this state, the sensor

turns off the IR LED and only “listens” to the environment to detect any IR

signal. The detection indicates a nearby kin-robot.

• Proximity-sensing. In this state, the proximity measurement is performed. Since

there can be another sensors around emitting IR signals which would disturb
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the measurement, the sensor first checks the environment if there is an incoming

IR signal. If an incoming IR signal is detected, the sensor waits for the other

sensor to finish its measurement. This is done by looking for a safety interval

which takes approximately 6.7 ms without detecting any IR signal. The amount

of the interval is the maximum possible time spent by a sensor to detect an

object. Here, we should note that the incoming IR signal that causes a delay

in the measurement of the sensor could be emitted from a sensor on the same

robot, hence can not be inferred as a kin-robot. Upon catching a safety interval,

the sensor starts its measurement safely. In the measurement, the sensor deter-

mines the minimum voltage level at which an object is detected. This minimum

voltage level gives the distance from the object whose kind is determined in the

last kin-detection state as a kin-robot or an obstacle. For a particular voltage

level, object detection is done by first adjusting the voltage to the desired level

and then sending an IR burst. The detection of reflecting IR burst by the IR

receiver indicates the detection of the object at the corresponding level (See

Algorithm 2). In order to determine the distance of an object in a fast way,

the sensing algorithm applies a divide and conquer like approach in switching

between voltage levels. The algorithm first looks for an object at the minimum

voltage level to determine a nearby object in the first place. If an object is not

detected at the minimum level, the sensor switches to the maximum level. The

detection of an object at the maximum level makes the algorithm to switch to

internal levels, whereas, if an object is not detected, it is taken as no detection

case. Between the internal levels, the sensor first switches to the middle voltage

level (Level 4). If an object is detected at the middle level, the sensor switches

to lower levels; if not, it switches to upper levels to determine the distance of

the object. With this approach, the sensor determines a nearby object and no

detection case in a fast way and the distance of an object is measured after at

most 5 voltage level switches.

• Data-transmission. In this state, the result of the measurement is sent to the

main sensor controller. The result of kth sensor is an integer pair (rk, ok). rk ∈

{0, 1} shows whether the detected object is a kin-robot or not. ok ∈ {0, 1, · · · , 7}

denotes the distance from the object being sensed. ok = 1 and ok = 7 indicate
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Figure 3.4: Timing diagram of a sensor detecting an obstacle. (Image is taken
from [2].)
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Figure 3.5: The order and timing of sensors put into the proximity-sensing state by the
main sensor controller. First, even numbered sensors and after 2 ms, odd numbered
sensors are put into the proximity-sensing state.

a distant and a nearby object, respectively. ok = 0 stands for no detection.

Figure 3.4, depicts the timing diagram of a sensor for detection of an obstacle at

Level 3. C1 command puts the sensor in the kin-detection state where no IR signal

is detected meaning that there is no kin-robot around. Then, after receiving C2 com-

mand, the sensor enters the proximity-sensing state. In this state the sensor detects an

IR signal and delays its measurement. After the time interval exceeds approximately

6.7 ms without receiving an IR signal, the sensor starts the measurement and detects

an obstacle at Level 3. The sensor sends the result to the main sensor controller upon

receiving the C3 command.

The main sensor controller is responsible for the coordination of the sensors and

the transmission of all results obtained from the sensors to the main processor of the

robot. It coordinates the sensors first putting all of them into the kin-detection state.

The amount of this state is determined randomly between 11-15 ms to guarantee that

the sensors of two different robots do not synchronize. After the kin-detection state,

12



Algorithm 1: Sensing algorithm

switch STATE do

/* STATE is set by interrupt service routine (ISR) that

handles the main sensor controller commands. */

case Kin-detection
rk=0;

while STATE = Kin-detection do

if IR Receiver detected an IR signal then

rk=1;

case Proximity-sensing

if measurementCompleted = 0 then

/* measurementCompleted is cleared in ISR */

while STATE = Proximity-sensing do

if IR Receiver detected an IR signal then

Time = 0;

else

Time ++;

if Time > 6.7 ms then break;

if lookForObject (Level 1) = 1 then ok=7;

else if lookForObject (Level 7) = 0 then ok=0;

else if lookForObject (Level 4) = 1 then

if lookForObject (Level 2) = 1 then ok=6;

else if lookForObject (Level 3) = 1 then ok=5;

else ok=4;

else

if lookForObject (Level 5) = 1 then ok=3;

else if lookForObject (Level 6) = 1 then ok=2;

else ok=1;

measurementCompleted = 1;

break;

case Data-transmission
transmit rk;

transmit ok;
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Algorithm 2: lookForObject routine

input : An integer, l indicating the voltage level

output: 1, If an object is detected; 0, if not.

Set PWM signal for voltage level l ;

repeat

Read ADC value.

until ADC value = Desired voltage level ;

Send an IR burst;

if IR Receiver detected an IR signal then

return 1 ;

else

return 0 ;

the main sensor controller first puts the even numbered sensors into the proximity-

sensing state as depicted in Figure 3.5. Then, after 2 ms the odd numbered sensors

are put into the proximity-sensing state. This ensures that two neighboring sensors do

not start the measurement at the same time and any interference caused by crosstalk

is prevented. After 33 ms which is an appropriate period of time for the sensors to

finish their measurements, the sensors are put into the data-transmission state and

the results are collected. The main sensor controller transmits these results to the

main processor via I2C protocol, when requested.

3.1.2 The Heading Sensing Sub-system

The compass and the communication module of the robots are used to create a head-

ing sensing system, called as the virtual heading sensor (VHS), which lets the robots

to sense the relative headings of their neighbors. At each control step which is ap-

proximately 110 ms, a robot measures its own heading (θ) an then broadcasts it to

the robots within the communication range. The heading measurement is done in

clockwise direction with respect to the sensed North as shown in 4.2. The neighbors

whose heading values are received in a control step are called as VHS neighbors.

The received heading value (θrj) from the jth VHS neighbor is converted to the

body-fixed reference frame of the robot as1:

1 The heading of the robot, θ is the angle between the sensed North and the y-axis of its body-fixed
reference frame in clockwise direction, see Figure 4.2. π

2
is added to θ − θrj to obtain the heading of
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θj = θ − θrj +
π

2
(3.1)

where θj is the heading of the jth VHS neighbor with respect to the body-fixed refer-

ence frame of the robot.

The most important drawback with the VHS is that the hard-iron effect, local

changes in the magnetic field of the Earth due to a magnetized ferrous metal or a

permanent magnet, causes deviations in the sensed North direction especially indoor

environments where the metal objects are abundant.

3.2 The Simulator: Co-Swarm

A physics-based simulator, called Co-Swarm Simulator (CoSS) is used in computer

simulations. CoSS is implemented using Open Dynamics Engine (ODE). The body

and the wheels of the robot as cylinders and collision of the bodies and slippage in

wheels are simulated within ODE.

The actuation and sensing characteristics of the Kobot robot platform are obtained

from systematic experiments and implemented in CoSS. IRSS is modelled based on

samples collected in real robot experiments performed to characterize the proximal

sensing and kin-detection capabilities of the robot [1]. VHS is modelled using the

experiments conducted in Prowler [23], an event-driven probabilistic wireless network

simulator, to characterize the effect of the wireless communication range (R) to the

number of VHS neighbors (Nc) [1]. The range of wireless communication in CoSS is

taken as 20 m in accordance with the range of communication module of Kobot. The

number of VHS neighbors is limited at 20, a value determined from the experiments

performed with Prowler. In a previous study [1], it was shown that results obtained

from CoSS were similar to the ones obtained from Kobots.

the jth neighbor in the body-fixed reference frame.
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CHAPTER 4

THE FLOCKING BEHAVIOR

In this study, we extend the flocking behavior proposed in [1] to include a homing

direction. Specifically, the behavior consists of heading alignment, proximal control

and homing components combined in a weighted vector sum:

~a =
~h + β ~p + γ ~g

‖~h + β ~p + γ ~g‖
(4.1)

where ~h is the heading alignment vector, ~p and ~g are the proximal control and homing

direction alignment vectors with weights β and γ respectively. ~a is the desired heading

vector for the robot that is normalized by Euclidean norm shown as ‖ · ‖ .

4.1 Heading Alignment Behavior

The aim of the heading alignment behavior is to align the robot with the average

heading of its neighbors. Using the the received headings of the VHS neighbors, the

heading alignment vector (~h) is calculated as:

~h =

∑

j∈NR
eiθj

‖
∑

j∈NR
eiθj‖

where NR denotes the set of VHS neighbors, when the communication range of VHS

is set to R. θj is the heading of the jth neighbor in the body-fixed reference frame.

4.2 Proximal Control Behavior

The proximal control behavior aims to maintain the cohesion of the flock while avoiding

the obstacles. Using the data obtained from the IRSS, the normalized proximal control

vector, ~p, is calculated as:
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~p =
1

8

8
∑

k=1

fke
iφk (4.2)

where k refers to the sensor placed at angle φk = π
4 k with the x-axis of the body-fixed

reference frame (Figure 3.1(b)). fk is the virtual force applied by the kth sensor to

the robot which is calculated as:

fk =







− (ok−odes)
2

C
if ok ≥ odes

(ok−odes)
2

C
otherwise

(4.3)

where C is a scaling constant. ok indicates the detection level for the kth sensor,

namely the distance from the object. odes is the desired detection level that is taken

as a finite value for kin-robots, and 0 for obstacles. In Figure 4.1, the virtual force is

drawn for both obstacles and kin-robots. odes values are also indicated.
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Figure 4.1: Plot of the virtual force with respect to ok. odes is set to 3 for kin-robots.
The value of ok increases as the distance gets closer. The virtual force always takes
values within [−1, 1] interval. (Image is taken from [2].)

4.3 Homing Behavior

The homing behavior aims to align the robot with the desired homing direction (θd).

The homing direction alignment vector ~g is calculated as:

~g = ~gd − ~ac

where ~gd is the desired homing direction vector in the body-fixed coordinate frame
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Figure 4.2: The body-fixed reference frame of Kobot is depicted. It is fixed to the
center of the robot. The x-axis of the body-fixed reference frame coincides with the
rotation axis of the wheels. The forward velocity (u) is along with the y-axis of the
body-fixed reference frame. The angular velocity of the robot is denoted with ω. vR

and vL are the velocities of the right and left motors, respectively. θ, current heading
or the robot, is the angle between the y-axis of the body-fixed reference frame and
the sensed North direction (ns). l is the distance between the wheels. (Image is taken
from [2].)

and ~ac is the current heading vector of the robot coincident with the y-axis of the

body-fixed reference frame (see Figure 4.2).

In this thesis, we assume that the desired homing direction is a constant that

is provided to all the robots a priori. The starting point of the flock is fixed and

initially all robots are aligned to homing direction. The duration of the travel is

predetermined and no landmarks are used. With these assumptions, the behavior can

be said to “migrate” a flock of robots to a particular “breeding location” and is only a

partial model of long-range animal migration. Since landmarks are used and the goal

direction may change during the travel in animal migration, our behavior should be

considered to model a part of animal migration in which a long distance is travelled

while the goal direction is fixed.

It should be noted that the homing behavior only modulates the orientation of the

robot and does not provide a criteria as to whether a homing position is reached or

not.

We should also note that the original flocking behavior (corresponding to the case

when γ is set to 0) that was proposed in [1], would make the flock to wander aimlessly

within an environment, avoiding obstacles on its path, with no preferred direction.
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4.4 Motion Control

The forward (u) and angular (ω) velocities are calculated using the desired heading

vector (~a). The forward (u) velocity is calculated as:

u =







(~a · ~ac) umax if ~a · ~ac ≥ 0

0 otherwise
(4.4)

The dot product of the desired (~a) and current heading (~ac) vectors in Equation 4.4

is used to modulate the forward velocity of the robot. When the robot is moving in

the desired direction the dot product results in 1 and the robot attains its maximum

forward velocity (umax). If the robot deviates from the desired direction, the dot

product and hence u decreases and converges to 0 when the angle between the two

vectors gets closer to 90◦. If the angle exceeds 90◦ then the dot product is negative.

In this case, u is set to 0 and the robot makes only rotation.

The angular velocity (ω) of the robot is controlled by a proportional controller

using the angular difference between the desired and current heading vectors:

ω = (6 ~ac − 6 ~a)Kp

where Kp is the proportional gain of the controller.

The rotational speeds of the right and left motors (Figure 4.2) are eventually

calculated as follows:

NR =
(

u −
ω

2
l
) 60

2πr

NL =
(

u +
ω

2
l
) 60

2πr

where NR and NL are the rotational speeds (rotations per minute) of the right and

left motors respectively, l is the distance between the wheels of the robot (meters), u

is the forward velocity (meters per second) and ω is the angular velocity (radians per

second).
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CHAPTER 5

EXPERIMENTAL FRAMEWORK

This chapter describes the experimental setups and the metrics utilized to evaluate

the accuracy and efficiency of the flocks in long-range migration.

5.1 Setup

The flocking behavior, described in the previous chapter, has a number of parameters;

namely the weight of proximal control (β), the weight of goal direction (γ), the pro-

portional gain for angular velocity (Kp), the maximum forward speed (umax) and the

desired detection level (odes). The optimization of these parameters is a challenging

problem with which we do not deal in the scope of this thesis. Rather, we used a

default set of parameters whose sensitivity analysis is performed in [1] and that are

known to generate an acceptable flocking behavior in Kobots and in CoSS. These

parameters are listed in Table 5.1.

The experiments are conducted in an open and obstacle-free environment with

approximately constant magnetic field. Initially the robots are placed on a hexagonal

grid with default 25 cm center spacing and aligned to the desired homing direction

which is fixed to an a priori determined value for all robots. Figure 5.1 illustrates the

placement of the robots for different flock sizes. However, when we need to disable

proximal control behavior in our experiments, we increased the spacing to 20 m to

hypothetically disable proximal control behavior. In this case, the range of wireless

communication is also increased to 1600 m with the same scale up as in inter-robot

spacing. The center of flocks is always fixed at the same initial point.

The features specific to the experimental setups of Kobots and CoSS are described

below.
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Figure 5.1: The topology of the robots for different flock sizes. The arrow indicates
the homing direction.

Table 5.1: The default parameter settings for the behavior.

Parameter Default Value

weight of proximal control (β) 12
weight of goal direction (γ) 4

proportional gain for angular velocity (Kp) 0.5
maximum forward speed (umax) 0.07 m/s

desired detection level (odes) 3

5.1.1 Kobots

In the experiments conducted with Kobots, we used flocks including up to 7 Kobots.

We conducted our experiments in the hall at the deanery building of Faculty of Arts

and Sciences at Middle East Technical University, Ankara, Turkey. The arena is of

size 4 × 12 m and is shown in Figure 5.2(a).

The magnetic field in the experiment arena, as shown in Figure 5.2(b), shows that

the magnetic field in the arena is not uniform and deviates approximately 6-degrees

to the left, between the starting and finishing lines of the course.

The finishing line of the experiment arena at 12 m is marked at equal intervals. At

the end of each experiment, a top view image of each robot in the flock is taken with an

overhead camera preserving that at least two markers are also included in the image.

Using these images, we determine the deviation of the center of each robot from initial

direction which is the perpendicular distance of robot center to initial direction. This

procedure requires the manual indication of robot center and two markers. Then the

deviation of the flock from initial direction is calculated by averaging the deviations
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Figure 5.2: (a) An overhead view of the experiment arena. (b) The magnetic field
measured in the experiment arena. The field is tilted to the left approximately 6-
degrees. The units of the axes are in meters.

of the robots in the corresponding flock.

5.1.2 CoSS

In CoSS, the experiments are conducted with flocks that include up to 91 simulated

robots. The experiments are executed for 1558 control steps which corresponds to

approximately 171.38 seconds of simulated time. This duration is determined from

a reference experiment in which a flock of 7 simulated robots traversed 12 m in an

ideal world. The length of the experiments can be seen as contradicting with “long-

range” term. But, this length is only determined for analysis purposes considering the

accordance with real world experiments and the computational costs. The behavior

is itself able to migrate the robot flocks to long ranges with the assumptions stated in

Section 4.3. In Figure 5.3(a), there is a snapshot of the simulator showing the path

followed by a single robot in a world with noise. The uniform magnetic field in the

simulator is illustrated in Figure 5.3(b).
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Figure 5.3: (a) The path followed by the center of a single robot. (b) The magnetic
field model in the simulations. The units of the axes are in meters.

5.2 Metrics

In this section, we describe two metrics used to evaluate the accuracy and efficiency

of the flocks in long-range migration. The first metric includes the inter-quartile

and whisker ranges and is used to evaluate the accuracy of flocks in migrating along

homing direction. The second metric is defined as the average speed for evaluating

the efficiency of movement of flocks.

5.2.1 Inter-quartile and Whisker Ranges

In an ideal world free of noise and other external disturbances, the robots starting

from a fixed place would always reach the exact same “breeding ground” at all times

with perfect accuracy (Figure 5.4(a)). However in physical systems (whether they are

robots or biological organisms), factors such as sensor noise would cause deviations at

final positions reached at the end of the migration and hence the accuracy decreases.

Therefore, accuracy of a flock in migrating along a homing direction is directly related

to the amount of scatter of the paths followed by the flock in different runs.

In order to measure the amount of scatter of the paths, we utilize some parameters

obtained from a boxplot plotted using the deviations of the center of the group from
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Figure 5.4: (a) In an ideal world, the robots migrate with perfect accuracy. The units
of the axes [in (a) and (b)] are in meters. (b) The paths followed by the center of a flock
in an environment with noise are drawn for illustrative purposes. (c) Distributions of
the center positions, the boxplot of distribution and IQR and WR are illustrated.

initial direction calculated at the final position. The final position is the position

reached around the finishing line for Kobots and the position reached at the end of the

experiment in CoSS. For example in Figure 5.4(c), the final positions are depicted for

the paths given in Figure 5.4(b). The distribution of deviations from initial direction

at the final positions are shown in Figure 5.4(c). The boxplot of the distribution of

these deviations is plotted on the right side of Figure 5.4(c). In this boxplot, the

ends of the boxes and the horizontal line in between correspond to the first and third

quartiles and the median values, respectively. The top and bottom whiskers indicate

the largest and smallest non-outlier data, respectively. The data in between the first

and third quartiles lie within the 50% confidence interval, while the data in between the

whiskers lie within the 99.3% confidence interval. The distance between first and third

quartiles is called as inter-quartile range (IQR) and the distance between the whiskers

is referred as whisker range (WR). We use IQR and WR as a metric to quantify the

amount of scatter. Lower values of IQR and WR indicate a more accurate path.
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Since we are interested in the scatter, the median of the deviations is not informa-

tive for us. The variance of the deviations is also not an appropriate metric because

of the possible outliers.

5.2.2 Average Speed

We use average speed (Va) of flocks calculated by dividing total displacement of a

flock to the time of operation as a measure of the efficiency of the movement. A high

average speed is a sign of efficient movement driving the flock smoothly whereas a low

average speed indicates inefficient and jerky motion.
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CHAPTER 6

FACTORS THAT INFLUENCE LONG-RANGE

MIGRATION OF FLOCKS

In this thesis, we study, from a constructivist view, how flocking affects the variance

in the final positions reached. Moving the flock of robots to an arbitrary “breeding

location” in space is out of the scope of this work. Rather we are interested in in-

vestigating pros and cons of flocking in the accuracy of motion towards the desired

breeding location. Considering the flocking behavior we have developed and as well as

the robotic platform we use, we hypothesize that four factors influence this variance

in accordance with their possible counterparts involved in animal migration:

• Averaging through heading alignment (HA). The heading alignment behavior

aims to align the individuals to the average heading of their neighbors. This

allows the individuals to suppress the sensor noise in sensing the homing direction

improving the accuracy of their alignment. The dynamics captured here can be

considered to correspond to the many wrongs principle.

• Noise in sensing the homing direction (HD). The homing direction, typically

obtained from Earth’s magnetic field, can be considered to have noise. This noise

can be caused by the characteristics of the sensor as well as external fluctuations

in the magnetic field. In this study, we use the natural or artificially created

noise in the compass of our robots to model this.

The noise in sensing the homing direction is inherent in Kobots due to the

hard-iron effect and is modelled in CoSS using the vectorial noise model [24] as:

θd = 6 {eiθ′
d + ηSeiξS} (6.1)
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Figure 6.1: Histogram of simulated noisy sensing the homing direction.

where θ′d represents the actual homing direction, ηS is a parameter determining

the magnitude of noise vector and ξS is the direction of the noise chosen from

a Gaussian distribution N(µ = θ′d, σ = ±π
2 ) where µ and σ are the mean and

standart deviation, respectively. In the experiments the default value of ηS is

taken as 0.5.

We simulated the proposed noise model, in order to demonstrate the nature and

the scale of disturbances in the homing directions sensed. Taking θ′d as 0 and

assuming that the noise vector has a distribution characterized by N(µ = θ′d,

σ = ±π
2 ), we conducted an experiment by varying ηS . We collected 10000

readings for each value of ηS and plotted the histogram of the noisy readings

in Figure 6.1. These results show that the standard deviation of the resultant

distribution is controlled by the value of ηS .

• Differences in the characteristics of the individuals (CD). Not all individuals in

a flock are identical. For example, the birds in a migratory flock have different

wing lengths, weights, etcetera. Similarly, even the robots that are manufactured

from the same components using the same process, tend to have slightly different

sensor/actuator characteristics.

In this study, we assume that the distribution of individual differences at the

population level is fixed. Therefore, individuals run without any fail or any other
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unexpected behavior during the experiments.

The Kobots are inherently different from each other in terms of actuation as

will be investigated later in Chapter 7. In CoSS, we implement the individual

differences as a bias term added to the right motor speed as:

NR = N ′
R + ξm (6.2)

where N ′
R is the actual speed of the right motor and ξm is the bias term in rpm.

ξm is chosen from a Gaussian distribution N(µ = µi, σ). σ is fixed for all robots

as 0.05 rpm, whereas, µi for the ith robot is chosen from a Gaussian distribution

N(µ = 0, σ = 0.05) to diversify the robots.

This bias gives the robot a tendency to deviate towards to left or right instead

of moving straight. The direction of the tendency depends on the sign of µi.

• Disturbances caused by proximal control behavior (PD). During flocking, the

proximal control behavior aims to keep the flock cohesive yet make sure that

no collisions happen among the individuals. This creates disturbances on the

heading direction of the individuals.

These disturbances are implicit in the proximal sensing and need not to be

explicitly included.
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CHAPTER 7

EXPERIMENTS

In the experiments reported in this chapter, we analyze how the four factors described

in the previous chapter contribute to the accuracy of long-range migration of robot

flocks through experiments conducted with physical and simulated robots.

In an ideal world, where there is no sensing and actuation noise, flocks of all sizes

will follow the same straight line as illustrated in Figure 7.1. However, the accuracy

of a flock would be affected depending on the parameters under influence of noise, the

amount of noise and the size of the flock.

In this chapter, we will add one or more noise sources to the system at a time and

then investigate pros and cons of flocking under these disturbing effects to understand

whether there is a benefit of flock size or not in terms of accuracy. We conducted four

sets of experiments. The factors tested in each set is presented in Table 7.1. Since

the heading alignment is crucial for flocking behavior, it is enabled in all experiments

without noise.

In the first set of the experiments our aim is to understand the effect of disturbances

caused by proximal control. In the second set of the experiments, we evaluate the effect

of noise in sensing the homing direction alone. In the third set of the experiments,

we added the proximal control behavior while the individuals are identical and the

 0  2  4  6  8 10 12
−0.5

0
0.5

Figure 7.1: With no noise in sensing or actuation the flock of any number of robot
always follows the same path. The units of the axes are in meters.
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Table 7.1: Investigated factors in the experiments. The four factors considered are
HA: Averaging through heading alignment, HD: Noise in sensing the homing direction,
CD: Differences in the characteristics of the individuals and PD: Disturbances caused
by proximal control behavior.

Experiment HA HD CD PD Platform

1 + - - + CoSS

2 + + - - CoSS

3 + + - + CoSS

4a + + + - CoSS

4b + + + + CoSS & Kobots

noise in sensing the homing direction is also present. The last set of the experiments

in which the effect of individual differences is analyzed is divided into two subsets. In

the first subset, proximal control is disabled whereas in the second it is enabled.

The first three sets of the experiments and the first subset of the fourth experiment

are performed in only simulation while experiment 4b is conducted both in simulations

and with Kobots. The experiments performed with CoSS and Kobots are repeated

500 and 5 times, respectively, unless otherwise stated.

7.1 Effect of Proximal Disturbance

The proximal control behavior aims to avoid collisions with robots and obstacles and

to maintain the cohesion of the flock using the readings obtained from the IRSS.

Since IRSS has a noisy characteristic, the movement of the robots is disturbed due to

the false readings. Therefore, the accuracy of the flock in moving along the homing

direction is affected.

In order to understand the effect of disturbances caused by the proximal control

behavior, we conduct an experiment in which we leave only the IRSS as a source of

noise in the system and perform experiments for different flock sizes. In Figure 7.2(a),

IQR and WR are plotted for each flock size. Figure 7.2(b) shows the average speeds

for different flock sizes.

In Figure 7.2(a), IQR & WR follow a bell-shaped curve trend whose maximum is

reached for 3-robot flock. Since the proximal control behavior is implicitly disabled

for a “single robot flock”, it follows always the same path resulting a zero IQR & WR.

The average speed of single robot is at its maximum value as expected. For the
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increasing flock size the average speed decreases slightly.
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Figure 7.2: (a) Plot of IQR & WR for different flock sizes while the only noise source
is proximal control. (b) Plot of average speed for different flock sizes. The horizontal
axis is in log scale. The dashed line indicates the value of the maximum forward speed
umax = 0.07 m/s.

7.2 Effect of Noise in Sensing the Homing Direction

The homing behavior aims to align the robots with the desired homing direction.

Therefore, any error in sensing the homing direction would generate undesired devia-

tions in the heading of the robots.

In order to investigate the effect of noise in sensing the homing direction, we varied

ηS and conducted experiments with different sizes of flocks composed of identical

robots. The proximal control is disabled in the experiments. The paths followed by

the flocks for ηS = 0.5 are plotted in Figure 7.3. Figure 7.4 shows the resulting IQRs

of the flocks in different noise conditions. Figure 7.5(a) and 7.5(b) plot the change

in IQR & WR for different flock sizes for ηS = 0.1 and ηS = 0.9, respectively. In

Figure 7.6(a) and 7.6(b), the average speeds are given with respect to flock size and

ηS , respectively.

In Figure 7.3, the distribution of the paths gets narrower as the flock size increases.

This is an indication of increase in the accuracy of the flocks with the flock size.

In Figure 7.4, we see that the IQR is zero for all flock sizes when ηS = 0, which

corresponds to the ideal case. When we increase the noise, IQR of small flocks in-

creases rapidly while the increase in IQR of large flocks is slow. In a large flock, the

individuals have more VHS neighbors with more variety and therefore, the efficiency of
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Figure 7.3: The paths followed by the flocks for ηS = 0.5. The units of the axes are
in meters. [0,0] is the starting point. (a) 1 robot, (b) 3 robots, (c) 7 robots, (d) 19
robots, (e) 91 robots.

the averaging through heading alignment increases creating a robustness to the noise.

In Figure 7.5(a) and 7.5(b), both IQR and WR show a decreasing trend as the

flock size increases. In both figures, the advantage of large flock size is evident in

suppressing the noise in sensing the homing direction more efficiently.

The average speeds in Figure 7.6(a) and 7.6(b) decrease for the increasing noise

and remain almost constant for the increasing flock size. The decrease in the average

speeds for the increasing noise is a result of large fluctuations in homing direction that

cause the robots to turn more and hence get slower. For a fixed ηS , one may expect

that as the flock gets larger, the number and variety of VHS neighbors interacted

would increase and the fluctuations in the homing direction would be suppressed more

efficiently. This would eventually results in an increase in the average speeds of large
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Figure 7.4: Effect of ηS . Plot of IQR with respect to ηS for different flock sizes.

flocks. However, our results are insufficient to explain why the average speeds remain

almost constant as the flock size increases and it needs further investigation.

7.3 Effect of Proximal Disturbance with Noise in Sensing the Hom-

ing Direction

We repeated the second set of the experiments with the proximal control behavior

is enabled. The noise in sensing the homing direction is also included in order to

understand the combined effect of both factors.
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Figure 7.5: Plot of IQR & WR for different flock sizes while (a) ηS = 0.1, (b) ηS = 0.9.
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Figure 7.6: (a) Plot of Va with respect to flock size for different values of ηS . Horizontal
axis is in log scale. (b) Plot of Va with respect to ηS for different flock sizes. The
dashed lines indicate the value of the maximum forward speed umax = 0.07 m/s.

Plot of IQRs with respect to ηS is given in Figure 7.7 for different values of flock

size. Figure 7.8(a) and 7.8(b) illustrates the change in IQR & WR for different flock

sizes for ηS = 0.1 and ηS = 0.9, respectively. The changes in the average speeds with

respect to flock size and ηS are plotted in Figure 7.9(a) and 7.9(b), respectively.

In Figure 7.7, IQR of 1-robot flock increases rapidly as ηS gets larger, whereas IQR

of 91-robot flock shows only a slight increase. This indicates the remedial effect of

large flock size. As the flock size gets larger, robustness to noise increases as a result

of large number of varying VHS neighbors utilized in heading alignment behavior.

ηS = 0 in Figure 7.7 corresponds to the first set of the experiments where the only

noise source is proximal control. In this case, the peak in the IQR of 3-robot flock

is prominent in parallel to the results obtained in the first set of the experiments.

However, the increase in the IQR of 3-robot flock due to proximal disturbances is

suppressed when the noise is increased. This interesting dynamic could be a result of

discrete size effects and needs futher investigation.

In Figure 7.8(a), the effect of proximal disturbances is prominent due to the small

amount of noise and we have a similar trend as in Figure 7.5(a) which shows the effect

of only proximal control. When the noise is increased, the trend changes as shown in

Figure 7.8(b). Beginning from a high value, IQR & WR decrease with the flock size.

Average speeds in Figure 7.9(a) and 7.9(b) decrease as the noise gets larger. As

the flock size increases, the average speed decreases slightly for small values of ηS .

But, the average speed remains almost constant for high values of ηS .
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Figure 7.7: Plot of IQR with respect to ηS for different flock sizes.

7.4 Effect of Individual Differences with Noise in Sensing the Hom-

ing Direction

If the individuals of a flock have different actuation characteristics, each of them is

likely to follow a different path when they “migrate” alone. These different paths of

different individuals create a large distribution in total. But what if they are“migrate”

together? Could there be an improvement in the accuracy? In the last set of the

experiments, we search for answers to these questions.

We split the experiments conducted in this section into two subsets. In the first

subset, we conduct experiments only in CoSS and disabled the proximal control by

increasing the inter robot distance to 20 m as mentioned in Chapter 5. In the second

subset of the experiments, we enabled the proximal control and conducted experiments

with CoSS and Kobots. In CoSS experiments, a noise with ηS = 0.5 is used in sensing

the homing direction. In Kobots, this noise is assumed to be inherent due to the

hard-iron effect of the metal objects in the environment.

In order to model the individual differences in simulations, we diversify the robots

by adding actuation noises as described in Chapter 6. Having diversified 91 robots,

we first perform an experiment by running each robot separately. The results are

given in Figure 7.10. As can be seen, the differences between the robots are large.
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Figure 7.8: Plot of IQR & WR in proximal disturbance experiments for different flock
sizes while (a) ηS = 0.1, (b) ηS = 0.9.
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Figure 7.9: (a) Plot of Va with respect to flock size in proximal disturbance experiments
for different values of ηS . Horizontal axis is in log scale. (b) Plot of Va with respect
to ηS for different flock sizes. The dashed lines indicate the value of the maximum
forward speed umax = 0.07 m/s.

Then, we create flocks of different sizes from the 91 diversified robots to be used in

the CoSS experiments. The selection is done in a random fashion and Table 7.2 shows

the number of different flocks for each size. The number of different flocks are kept

constant for different sizes to guarantee that the IQR and WR metrics are calculated

over the same number of experiments. For a flock size of 91, we obtain different flocks

by changing the initial positions of the robots.
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Figure 7.10: Characteristics of different robots after adding actuation noise. (a) Box-
plot of deviations, (b) IQR & WR plots.

Table 7.2: The number of the groups selected from 91 diversified robots randomly.

Flock size 1 2 3 5 7 19 37 91

# of different flocks 91 91 91 91 91 91 91 91

7.4.1 Without Proximal Control

By using different flocks constituted from 91 diversified robots, we performed exper-

iments by disabling the proximal control behavior and repeating the experiments 10

times for each flock. From these experiments, the IQR & WR are plotted for different

flock sizes in Figure 7.11. In Figure 7.11, the metrics for a particular flock size are cal-

culated using the combined distribution of all different flocks. As can be seen, the IQR

& WR decreases indicating the increase in the accuracy while the flock size increases.

This clearly shows that the tendencies of the individuals to migrate to different direc-

tions are suppressed with heading alignment and the effect of the suppression increases
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Figure 7.11: IQR & WR plots for individual difference experiments while the proximal
control is disabled and enabled.

as the flock size gets larger resulting in an increase in the accuracy.

7.4.2 With Proximal Control

The experiments in this subset are performed in COSS and with physical robots while

the proximal control is enabled.

7.4.2.1 CoSS Experiments

In this experiment, we enabled the proximal control behavior and performed the same

experiments performed in Section 7.4.1 and plotted the resulting IQR & WR again in

Figure 7.11. As can be seen the IQR & WR decreases while the flock size increases,

which is an indication of improvement in the accuracy through the suppression of

tendencies of the individuals to migrate to different directions via heading alignment.

The IQR & WR values are a little bit higher than the experiments without proximal

control due to the effect of disturbances of proximal control.

7.4.2.2 Kobot Experiments

The Kobots are inherently not identical. The inequalities in the sensing system are

quite acceptable due to the precise manufacturing processes. However, this is not the

case for the actuation system.

Therefore we evaluated the actuation characteristics of each robot we use. In

this experiment, we do not utilize the flocking behavior. Instead, we commanded the

38



1 2 3 4 5 6 7

−500

0

500

D
e
v
ia

ti
o
n
 [
m

m
]

Kobot ID

Figure 7.12: Actuation characteristics of Kobots at 2 m while moving forward.

robots to move forward and measured the deviation of the robots from initial direction

in each run at 2 m. Figure 7.12 shows the distribution of the deviations for each robot

for 3 different runs. As can be seen, the characteristics of the robots differ much from

each other. The main reason of these large differences is the lack of a closed-loop

speed control for the DC motors of the robots.

In order to understand the effect of group size in real-world conditions, we first

conducted experiments with single robots. The resulting distributions of deviations at

final position and IQR and WR metrics are given in Figure 7.13(a) and Figure 7.13(b),

respectively. Then, we perform experiments with 1-, 3-, 5- and 7-Kobot flocks by

selecting 7 different flocks for each flock size. Figure 7.14 illustrates the selection and

initial placement of the flocks. Performing only one experiment for a particular flock

in Figure 7.14, we plotted IQR and WR for each flock size in Figure 7.15. IQR and

WR values for a particular flock size in Figure 7.15 are calculated using the combined

distribution of 7 experiments performed for that flock size. Other than 3-Kobot flocks,

there is a decreasing trend in IQR and WR indicating that the increase in the flock

size increases the accuracy which is similar to the results obtained in simulations.
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Figure 7.13: The individual differences between Kobots. (a) Distribution of deviations
at final position are given. Note that due to a 6-degrees deviation to the one side of
the corridor, deviation values are mostly negative. (b) IQR and WR plots calculated
from the boxplots in (a).
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Figure 7.14: The selection and initial placement of the flocks are given for Kobot
experiments.
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Figure 7.15: IQR and WR of joint distributions of single robot experiments and two
5-Kobot flocks and 7-Kobot flock.

42



CHAPTER 8

CONCLUSION

This thesis investigated the pros and cons of flocking in long-range migration of mobile

robot swarms under influence of different factors. We present a flocking behavior as an

extended version of a self-organized flocking behavior based on three simple behaviors:

(1) heading alignment, (2) proximal control, and (3) alignment to the desired homing

direction. The behavior migrates a flock of robots from one place to another utilizing

the magnetic field of the earth. The aim of the behavior is to move the flock to a

“breeding location” rather than moving to an arbitrary location.

We pointed out four factors that influence the accuracy of the behavior in reaching

the desired breeding location. These are: (1) averaging through the heading alignment

behavior, (2) the sensor noise in sensing the homing direction, (3) differences in the

characteristics of the individuals, and (4) disturbances caused by proximal control

behavior. The pros and cons of flocking is investigated under effect of these factors

via experiments conducted both physical and simulated robots. We found that:

• The effect of proximal disturbances makes a peak for a 3-robot flock and is then

suppressed with the increasing flock size.

• The increase in the sensor noise in sensing the homing direction results in a

decrease in the accuracy of flocks. The smaller flocks are affected more than

larger flocks.

• When both proximal disturbances and sensor noise affects the behavior, the ef-

fect of proximal disturbances, which creates a peak for a 3-robot flock, disappears

as the noise increases.

• For a fixed amount of sensor noise, the average speed does not change with the
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flock size. But the increase in noise decreases the average speed.

• The disturbances of proximal control behavior decreases the average speed slightly

as the flock size increases.

• When the individual characteristics differ from each other, the flocking improves

the accuracy of the behavior.
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