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ABSTRACT

DESIGN OF KALMAN FILTER BASED
ATTITUDE DETERMINATION ALGORITHMS FOR A LEO SATELLITE
AND FOR A SATELLITE ATTITUDE CONTROL TEST SETUP

Kutlu, Aykut
M.S., Aerospace Engineering Department

Supervisor :  Prof. Dr. Ozan Tekinalp

September 2008, 169 pages

This thesis presents the design of Kalman filter based attitude determination
algorithms for a hypothetical LEO satellite and for a satellite attitude control test
setup.

For the hypothetical LEO satellite, an Extended Kalman Filter based attitude
determination algorithms are formed with a multi-mode structure that employs the
different sensor combinations and as well as online switching between these
combinations depending on the sensor availability. The performance of these
different attitude determination modes are investigated through Monte Carlo
simulations. New attitude determination algorithms are prepared for the satellite
attitude control test setup by considering the constraints on the selection of the
suitable sensors. Here, performances of the Extended Kalman Filter and Unscented
Kalman Filter are investigated. It is shown that robust and sufficiently accurate
attitude estimation for the test setup is achievable by using the Unscented Kalman

Filter.

Keyword: Extended Kalman Filter, Unscented Kalman Filter, Attitude
Determination System, Satellite Attitude Control Test Setup, Sensor Fusion

Algorithms, Attitude Determination Algorithms.

v



0z

BiR ALCAK YORUNGE UYDUSU VE BiR UYDU YONELIM
KONTROL TEST DUZENEGI iCIN KALMAN FILTRE TABANLI
YONELIM SAPTAMA AGORITMALARI TASARIMI

Kutlu, Aykut
Yiiksek Lisans, Havacilik ve Uzay Miihendisligi Bolimii

Tez Yoneticisi :  Prof. Dr. Ozan Tekinalp

Eyliil 2008, 169 sayfa

Bu tez bir algak yoriinge uydusu ve bir uydu yonelim kontrol test diizenegi igin

Kalman filtre tabanli yonelim saptama algoritmalar1 tasarimin1 sunmaktadir.

Hayali bir algak yoriinge uydusu i¢in, farkli algilayici birlesimleri kullanan ve de bu
birlesimler arasinda algilayici kullanilirliklarina gbre ¢evrimigi anahtarlama yapan
coklu-mod yapisinda Genisletilmis Kalman Filtresi tabanli yonelim tahmin
algoritmalar1 olusturulmustur. Tasarlanan bu farkli algoritmalarin basarimlar1 Monte
Carlo benzetimleriyle incelenmistir. Uydu yonelim kontrol test diizenegi sistemi i¢in
kullanilabilir algilayici1 kisitlar1 géz oniinde bulundurularak yeni yonelim saptama
algoritmalar1 hazirlanmistir. Burada, Genisletilmis Kalman Filtresi ile Yansiz
Kalman Filtresi basarimlar1 incelenmistir. Bu ¢aligmalar sonucu test diizenegi igin
giirbiiz ve yeterli hassasiyette yonelim tahminine Yansiz Kalman Filtresi kullanilarak

erisildigi gosterilmistir.

Anahtar Kelimeler: Genisletilmis Kalman Filtresi, Yansiz Kalman Filtresi,
Yonelim Saptama Sistemi, Uydu Yonelim Kontrol Test Diizenegi, Algilayici

Birlestirme Algoritmalari , Y6nelim Tahmin Algoritmalari.
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CHAPTER 1

INTRODUCTION

There has been a great progress in the development of the satellite attitude
determination and control systems during the past few decades. Especially the
subject of the Earth observation by using low Earth orbit satellites and satellite
constellations has increased the importance of the satellite attitude determination and
control systems for both civil and military applications. The increasing demands for
high resolution missions (and decreasing swath widths in such) require very accurate
and stable attitude determination and control system to keep the satellite at a specific
orientation with respect to a defined reference frame. In order to obtain such a
successful attitude control, this control system must be fed with an accurate and
robust attitude determination system. For this reasons, this thesis addresses satellite
attitude determination problems and contains the studies of the Kalman filter based

attitude determination algorithms.

The Kalman filter is the most widely used method to incorporate multiple sensors for
navigation and attitude determination of aerospace vehicles. The advances in digital
computing made the usage of this filter practical and its applications has gone along
way since the original work is published by R.E. Kalman in 1960 [1]. Kalman filter
is applied in Apollo program and subsequent spacecraft attitude determination
problems [2]. Kalman filters are used also to determine the attitude and gyro bias
values by measuring angular rates directly form strapdown 3-axis gyros [2]. Psiaki
et.al. used Kalman filter to estimate the attitude, attitude rates and constant
disturbance torques for a 3-axis stabilized spacecraft [3]. The problem of filtering
and estimation using nonlinear system and/or sensor measurement models is
inherently more difficult than for the case of linear models. The Extended Kalman

Filter (EKF) gives a good estimation results for the nonlinear systems where the first



order Taylor series linearization sufficiently approximates the nonlinear motion
characteristics [4]. However, the estimation performance and accuracy of the EKF
will not be adequate for the high order systems and this may cause the instability and
divergence problem on estimation. The possible method to overcome these problems
may lead the calculation errors because of their high computational burden.
Therefore, the standard EKF has stayed the most popular filter for nonlinear
estimation to this day. Other design approaches are investigated only when high
performance is required [4]. For instance, Unscented Kalman Filter (UKF) that has
been developed by Julier, Uhlman and Durrant-White [5]. The UKF may be applied
in order to achieve more accurate estimation performance compared to EKF,
therefore UKF applications can be experienced for the ground based satellite attitude
control test setup. The reason to establish and use these test setups is to demonstrate
the performance of the hardware and algorithms in ground and mitigates the risk to
lose the high-cost satellite system in orbit. However, it is difficult to experimentally
simulate satellite dynamics in ground laboratory because of the influences of gravity
and friction. An air bearing provides a nearly torque-free environment. For this
reason it is the preferred technology for ground-based research in satellite dynamics
and control. Generally, spherical air bearings are one of the most common test setups
used in spacecraft attitude dynamics, attitude determination and control researches
because they provide three degrees of rotational freedom. Several satellite ground
based test setups are investigated in order to determine the differences and the
similarities between the dynamics and attitude determination systems of a satellite
and a test setup. The first test setups examined are TASS (Three Axis Satellite
Simulator) and TASS-2 which belong to Naval Postgraduate School (Monterey,
California) [6]. The second test setups belong to Virginia Polytechnic Institute and
State University (Blacksburg, Virginia, USA) and they called as WHORL-1 and
WHORL-2. WHORL-1 is a tabletop style spherical air bearing and WHORL-2 is a
dumbbell style spherical air bearing [7]. Other examples for test setups are IACS-1
(Integrated Attitude Control System) and IACS-2 that appertain to Georgia Institute
of Technology (Atlanta, USA) [8][9]. The details about these investigated satellite
test setup are given in the Appendix D. These foregoing examples are given in order

to show the wide usage areas of the Kalman filter in aerospace fields.



The objective of this thesis is twofold. The first one is to generate Kalman filter
based attitude determination system simulation for satellites including all required
subcomponents such as satellite motion model, environmental disturbances model,
sensor measurements model and attitude determination algorithms. The second one is
to implement the algorithms for a ground based satellite control test setup. The
original contributions in this thesis are developing a multimode attitude
determination system for a hypothetical LEO satellite, which contains the sensor
availability flag logic and comparing the performance of these different modes by
applying Monte Carlo simulations. An additional contribution is to design a
sufficiently accurate attitude determination system for satellite attitude control test
setups by using different type of estimation algorithms instead to use additional

reference sensor.

This thesis consists of three main chapters. Chapter 2 gives all the components that
are required for the design of a satellite attitude determination system such as
satellite motion model, disturbances torques model and sensor measurement models.
The details of the several coordinate systems used in order to define the satellite’s
motion and attitude parameterization, the definition and notations used in this thesis

are given in Appendix A.

Chapter 3 presents the details of the Kalman filter theory. EKF algorithms are
formulated for different stages of mission phases such as angular rate estimation
during detumbling phase of the satellite, coarse and accurate full state estimation
during regular orbital phase. The performance of these different modes are

investigated and compared at the end of this chapter.

Chapter 4 presents the Kalman filter based attitude determination system prepared
for satellite attitude control test setup. Here, the capability of the sensor suite used is
different then a usual satellite. The performance comparison between two different

filter types, EKF and UKF, is given in this chapter. This chapter and related



Appendix D contain the general information about the satellite test setups existing on

the some institutes and universities.

Finally, Chapter 5 summarizes the conclusions of all the studies performed in this

thesis and provides recommendations for the future research.



CHAPTER 2

SATELLITE SIMULATION MODEL

This section presents the components of the simulation code developed for the design
of a satellite attitude determination system. First the satellite motion model is given,
and then the disturbance torques that act on satellites are modeled. Next, the satellite
orbit propagator model, sun position model and Earth magnetic filed model are
given. These are used for sensors measurements. In addition sensor models also are
presented in detail considering all type of the measurement noises. Then, satellite
attitude determination system structure and the Kalman filter’s details are explained.
Finally the results obtained from the simulations of the attitude determination

algorithms are presented.

2.1  Satellite Rotational Motion Model

A mathematical model of the satellite attitude motion is derived in this section. This
model can be considered into two sections: one is the dynamics of the satellite which
describes the behavior under the effects of the external forces; the other is the
kinematics of the satellite which defines the relation between the Body frame and the
Orbit frame, the attitude of the satellite.

2.1.1 Dynamic Equations

The dynamics of the satellite is given by Euler’s equations of motion. In order to
derive to dynamic equations, a rigid body in a circular orbit is considered. At the

following



Figure 2-1, the ECI frame, the ORB frame and the BODY frame for an orbiting
satellite are illustrated [10].

Figure 2-1: Axis Frames

The rotational equation of motion of a rigid body with an angular momentum H in a

circular orbit is given by:

o
dt

_dH

—~B a B
- +a)IBXHB:T (211)
Tt

B

as H=1& and I =0, the following equation is obtained:

|y + O x |y =1° (2.1.2)



where | is the inertial moments matrix, @, is the angular velocity of the BODY

frame relative to the ECI frame expressed in the BODY frame and z° is the total

torque acting on the satellite.

The dynamics of the satellite can be reformulated by using the diad notation as:

02 =1" (o 1wf +7°) (2.13)
where;
0 a)IBBz wlBBy
E)Ig = a)IBBz 0 - a)IBBx (214)
wlBBy a)lBBx 0

The torques, 7°, acting on the satellite can be divided into disturbances and control
torques [11]:

B —_— —
T = Tyigt + Ten = ng + Tsol + z-mag + Taero + Tetrl (2 1 5)

1. Disturbances Torques
a. Gravity Gradient Torque
b. Solar Radiation Torque
c. Magnetic Field Torque
d. Aerodynamics Torque

2. Control Torques

The detailed explanations about the disturbances torques are given in the Section 2.2.



2.1.2 Kinematics Equations

The kinematics propagation of the satellite is done by using the quaternion
representation. The following differential equation is given for the formulation of the

satellite’s attitude [10]:

A R
G =~ Q%0 (2.1.6)
2
where;
B B B B |
0 Wog, — Wosy Wosy
B B B
o=|" Wog, 0 Wogy  Wopy
- B _ B O B (2. 1 .7)
Wopy Wop y Wog,
B B B
|~ @osx ~ @osy ~ Wog, 0 |

here, wg, is the angular velocities from BODY frame with respect to the ORBIT

frame, expressed in BODY frame.

The body angular rates referenced to the orbit following coordinates can be obtained

from the inertially referenced body rates as follows:

ol =0l —Clop (2.1.8)

where C2 is the DCM from orbital frame to body frame, and 02 =[0 —w, 0] is
the known angular velocity of the Orbit frame relative to the ECI frame, expressed in
Orbit frame. This velocity depends on the altitude of the orbit, and can be calculated

according to @, =+/GM, /R’ where G is the gravitational constant of the Earth,

M | is the mass of the Earth and R is the distance from the centre of the Earth to the

e

satellite. Finally the angular body rates obtained can be written as:



a)OX a)X 0
oS = o, | =0, —-Col -y (2.1.9)
a)oz oB Cl)z 1B 0
2.1.3 Satellite Specifications

The hypothetical satellite model used in this report has a shape of rectangular prism
with the dimensions HxWxL = 2.0x1.7x1.5 meters and weight of 200 kg. A rough
calculation of the inertial moments is done with the assumption that the satellite

structure has a uniform mass distribution. The inertia matrix then is:

Figure 2-2: Satellite Dimensions

mass = 200 kg
104.17 0 0
I=| 0 11483 0 | kgm?
0 0  85.67



The orbital parameters selected for this virtual satellite are given in the following

table:

Table 2-1: Orbital Parameters of the Hypothetical Satellite

Inclination(i): 97.8°
Eccentricity(e): 0° (circular orbit)
Altitude(h): 650 km

Semi Major Axis(@): | R_,, +h=(6378+650) km

The satellite dynamics module that defines the satellite rotational motion model
containing dynamics and kinematics is prepared by Matlab/SIMULINK. This

module with its inputs and outputs is given in the following Figure 2-3.

; .
w_ib b
s RESULTS
CONSTANTS
- | GRAPHS
Inertia_matrix dyn_model  dw bk 1 o dy 1
q

Tdist - w b1 w2 e

Pl b kine_modsl  w_ob b —| g1 Int_w3
Jisit TIYNAVIC MODEL] Do = -
o KINEMATIC MODELI

RPY

Figure 2-3: Satellite Rotational Motion Model

2.2  Disturbances Torques

In a Low Earth orbit, the spacecraft is exposed to several external torques caused by
the space environment conditions. These disturbance torques arise from the gravity

gradient force, solar radiation pressure, magnetic field and aerodynamic forces. The

10



magnitude of these torques depends on the spacecraft’s orbital altitude, geometry,
orientation, and mass properties. The most significant of these are gravity gradient
torques. Depending on the satellite dimensions, the solar radiation, and magnetic
field torques can be also taken into consideration on the model, but generally
aerodynamic forces are not a design issue for most Low Earth Orbit (LEO) satellites

above an altitude of 250 km [11].

The detailed descriptions and the calculation methods for the torques mentioned
above are given in the following subchapters. The figures that show the magnitude of
these torques and the block diagram of the disturbance model created for simulations

also are included this following subchapters.

2.2.1 Gravity Gradient Torque

The Gravity Gradient torque is the one of the largest torque source that affects a LEO
satellite; therefore, the solution of most satellite dynamics and control problems
requires a consideration of this gravitational torque source. This disturbance, created
by the distance between the opposite ends of the spacecraft, makes a small difference
in the force acting on those end points. As a result, a torque occurs about the
spacecraft's center of mass. This Gravity Gradient torque is expressed in dyadic form

as [12]:

7 =3.05.Ko x 1K (2.2.1)

where; @, is the orbital mean motion and K, is the unit vector along the Z axis of

the ORB frame (Z o) expressed as:

Ko =Ci3d5 +Coy. ] +Ci kg (2.2.2)

here, { g Jas IZB } are the unit vectors of the BODY frame.
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Finally the Gravity Gradient torque can be written in dyadic form as follows:

_ 0 _C33 C23 C13
1, =305 kol ko =3.05] C;; 0 —C, |I]Cy (2.2.3)
_C23 C13 0 C33

where C =C¢ is DCM from ORB frame to BODY frame.
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Figure 2-4: Gravity Gradient Torque

The above Figure 2-4 shows the values of the Gravity Gradient torque acting on the

satellite during the 1 orbital period navigation. As seen on the Figure 2-4, the

magnitude of this torque is of the order 107> Nm.

2.2.2

Solar Radiation Torgue

The distance between the satellite's center of pressure and its center of gravity causes

the solar radiation pressure torque. While solar radiation reflected off by the sun, the

satellite will create a torque about its center of gravity. On an Earth orbiting satellite

12



these disturbances are cyclic over an orbital period and are a function of the

spacecraft's reflectivity.

The Solar Radiation torque can be calculated using the following equation [11]:

sol — F (Cps _Cg) (224)

T

where;

F :%As(1+q)cos(i) (2.2.5)

and,
Fs = solar constant (1358 W/m2)
C = speed of light, (3.0E8 m/s)
As = surface area, (0.6993 m?)
Cps = center of solar pressure
Cg = center of gravity
q = reflectance factor, (0.6 worst case)

i = angle of incidence of the sun (degrees)

In order to calculate the solar radiation torque for the virtual satellite model given in
the foregoing Section 2.1.3, formula are governed by taking into consideration the

sun light position vector with respect to satellite.
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1L

Figure 2-5: Sun Light Position Vector with respect to Satellite

The sun lights will create solar torques depending on the angle of incidence of the

related surface of the satellite. The position angles @ and £ can be calculated by
using the position vector of the sun with respect to the spacecraft

Vg,sc = [SX S, Sz]T . This sun position information will be obtained by using the

Ephemeris reference model (See Section 2.3.1):

a=tan"' (Sy /SX) (2.2.6)
B =sin"(S,) (2.2.7)
FS
Tsol x = E AX (1 + Q)COS(CZ) dx

Tt y = % A, (1+q)sin(a) dy (2.2.8)

z-sol_z = % AZ (1 + q)Sll’l(ﬂ) dZ

where, A, ,A,,A, are the surface areas and dx,dy,dz are the diagonal distances of

these surfaces. These diagonal distances are taken as the distance between center of

gravity and center solar pressure for the purpose of simulating the worst conditions.
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Figure 2-6: Solar Radiation Torque

Solar Radiation torque acting on the hypothetical satellite is given in the above

Figure 2-6 and its magnitude is of the order 10~ Nm which is similar to the

calculated Gravity Gradient torque magnitudes.

2.2.3 Magnetic Field Torque
The interactions between the spacecraft residual magnetic dipole and the Earth’s

magnetic field create Magnetic Field torque. For the preliminary design a 1 Am’

residual dipole is selected as a good approximation for a small satellite.

The calculations were made using the following equation [11]:

2M

R3

Tyag =D.B=D. (2.2.9)

where;
D = residual dipole (amp.m2)
B = Earth magnetic field (Tesla)
M = magnetic moment of the Earth, (7.96E15 tesla.ms3)
R = radius of orbit (m)
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% 10° Torque Magnetic Disturbance

Tmag [Nm]

time [orbit]

Figure 2-7: Magnetic Field Torque

Earth magnetic field value will be obtained by using Magnetic Model, presented in

the Section 2.3.2. Magnetic Field torque acting on a satellite with 1 Am? residual

dipole at the orbital conditions stated in Table 2-1 1is given in the Figure 2-7 and the
magnitude of this torque is about 10> Nm, similar to the Gravity Gradient and Solar

Radiation torques.

2.2.4 Aerodynamics Torque

Aerodynamics torque is the results of the atmospheric drag acting on the satellite.

Especially for LEO satellites this torques can be quite significant (with magnitudes

up to107* Nm ), but at altitudes above 600 km these torques are negligible.
This torques is difficult to calculate because parameters such as cross sectional area
can change rapidly with time depending on the attitude of the satellite. And also,

atmospheric density varies significantly with solar activity. Torque calculations were

made using the following equations [11]:

aero — F (Cpa _Cg) (2210)
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where;

and;

F=05 (pC,.AV?) 2.2.11)

Cd = coefficient of drag

A = cross-sectional area (m2)

V = spacecraft velocity (m/s)

Cpa = center of aerodynamic pressure
Cy = center of gravity

p = atmospheric density (kg/m3)

Torque Aerodynamic Disturbance
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Figure 2-8: Aerodynamic Torques

Aerodynamics torque calculated for 1 orbital period for hypothetical satellite’s

orbital parameters defined in Table 2-1 is given in the following Figure 2-8.

Magnitude obtained for this torque is of the order 10~ Nm which is 2 orders of

magnitude smaller than the other disturbances torques. As mentioned above,

according to the results obtained it can be stated that Aerodynamic torque is the

smaller torque acting to the satellite when its altitude is about 600 km -700 km.
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2.2.5 Total Disturbances Torque

The model including all of the disturbance torques is generated in order to simulate
the space environment of the LEO satellite. The block diagram of this model is given

in the following Figure 2-9.

The total disturbances torques acting on the hypothetical satellite is shown in Figure
2-10.

W0
- [Ey———s GG_dist Tog
" E>—»
! GRAVITY GRADIENT
TORQUE
H S_orh_vect »
Ll
S_arh_vect
(E > . @D
¥ ] . I "
[Hs———— e SOL_dist Tzol ™ Tdist
Hsc >
(S —wfwe
WS Add
Lsc SOLAR RADIATION
TORALUE
() iac_orb
MAG_orh MAG_dist Tmag
q
g MGMETIC FIELD
TORAUE
2> o
Yoo -
q
q N .
[Hse> plsc  AERO_dist  Taero
Hscl
) S
Wiscd
(D>
Lscl AERODYNAMIC
TORQUE

Figure 2-9: Disturbances Model
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« 10° Torque Total Disturbance
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Figure 2-10: Total Disturbance Torques

It may be observed from the above results that the most dominant torques are the
Gravity Gradient and Magnetic Field torques. It is also seen that for altitude around

600-700 km, the aerodynamics torques has no significance. As a result, the total

magnitude of the disturbances torques is of the order10™* Nm .

2.3 Reference Models

In order to determine the attitude of the satellite from the reference sensors, it is
needed to know the satellite’s orbit and its position in orbit. It is necessary to know
the rotational relationship between the ECEF frame, in which the Earth magnetic
field vector is given, the ECI frame, in which the Sun position vector is given and the
ORB frame in which the measurements are taken by the reference sensors attached to
the body frame. Therefore an Orbit Propagator Model is constructed to obtain the
attitude relations mentioned above. Furthermore, reference sensors such as sun
sensors and magnetometers require reference models to compare the measured data
with. For the purpose of defining the measurements of the sensors Sun Position
Model and Earth Magnetic Field Model are also created. The block diagram that

shows the input and output relations between these models are given in Figure 2-11.

19



Faan

o_pery

Trrrr

nc

mEan_anomaly
SC_F eci
inc

=

S_E eci

S_arb_vect

"

SUN POSITION MODEL

raan
arg_pery
mean_anomaly
S_E ecl
SC_E eci

Gryw_Wern

SC_E_ecef

raan

ORBIT PROPAGATOR
MODEL

ary_perg

mEsn_snomaly

Griy_Wem

MAG_orb

MAG_orb

SC_E_scef

MAGMETIC FIELD MODEL

b
-

S_orh_vect

Figure 2-11: Reference Models

In the following subchapters the detailed explanations about these reference models

are given.

2.3.1 Orbit Propagator Model

The physical laws describing the motion of planets were first described by Johann

Kepler. Kepler’s three laws state that:

1. The orbit of each planet is an ellipse, with the Sun at one of the foci.
2. The line joining the planet to the Sun sweeps out equal areas in equal times.
3. The square of the period of a planet is proportional to the cube of its mean

distance from the Sun.

Kepler’s laws are the basis for the Keplerian elements, called also orbital elements,
which are used in predicting a satellite’s orbit and position. The Earth is at one focus
of the ellipse. The two foci coincide with the center in the case of the circular orbit

and as a result, the Earth takes its place at the center of the ellipse [10].

The Orbit Propagator Model used in the simulation is given in Keplerian elements.

See Figure 2-12 and Figure 2-13 for visual description of all the Keplerian elements:
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1. Orbital Inclination

2. Right Ascension of Ascending Node (R.A.A.N.)
3. Argument of Perigee

4. Eccentricity

5. Mean Motion

6. Mean Anomaly

i Inclinatian

0 Right Ascension of ascending node
w Argument ef perigee
v Trug anomahy Satellite

Vernal
aguinox

o (LR

meridian

Line ol
MNodes

Figure 2-12: The Keplerian Elements [10]

ECM Earth's Cenler of Mass
A semimajor-axs

b semiminor-axs

& accentriciy

w True anomaly b
E Ecceniric Il'lﬂl'ﬂﬂlj

ECM

Figure 2-13: The Keplerian Elements in plane [10]
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These elements describe the position of the satellite at a specific time. The most
widely used format for this time is called epoch (Julian Date) that gives the year and
day of the year as a decimal number. Based on this time, the ascension of the zero
meridians (0), can also be calculated. Using Eq. (A.3.3), with A = 0, the rotation
between ECI and ECEF reference frame given by:

cosd sinf 0
cl =C, ,=|—sin@ coséd 0 (2.3.1)
0 0 1

The following four Keplerian elements specify the orientation of the orbital plane,
the orientation of the orbit ellipse in the orbital plane, and the shape of the orbit
ellipse [10]:

Orbital Inclination (i):

The inclination is the angle between the orbital and equatorial plane. By convention,
inclination is a number between 0 and 180 degrees. Orbits with inclination near 0
degrees are called equatorial orbits and orbits with inclination near 90 degrees are
called polar. The intersection of the equatorial plane and the orbital plane is a line
which is called the line of nodes. The line of nodes is more thoroughly described

below.

Right Ascension of Ascending Node (()):

The line of nodes intersects the equatorial plane two places: One of them the satellite
passes from south to north, this is called the ascending node and the other node
where the satellite passes from north to south is called the descending node. The
angle between the ascending node and the vernal equinox is called the right

ascension of ascending node. By convention, the right ascension of ascending node is
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between 0 and 360 degrees. The combination of the right ascension of ascending

node and the inclination defines the orbital plane in which the elliptic orbit lies.

Argument of Perigee (w):

In the ellipse, the closest point to the focus point, in which the earth lies, is called
perigee, and the farthest point from the earth is called apogee. The angle between the
line from perigee through the center of the earth to the apogee and the line of nodes
is the argument of perigee. This angle is defined as the angle from the ascending

node and by convention it is between 0 and 360 degrees.

Eccentricity (e):

The eccentricity is given as

e=,1-— (2.3.2)

where a is the semimajor-axis and b is the semiminor-axis. The semimajor-axis is
half the distance between the apogee and the perigee, and semiminor-axis half the
length between the edges perpendicular to a. For an ellipse, e is between 0 and 1.

For a perfect circle a=band thus e=0.

The following Keplerian elements is time varying and specify the position of the

satellite in orbit using the previous four elements describing above [4]

Mean Motion (n):

The mean motion is the average angular velocity describes the size of the ellipse. It is

related to the semimajor-axis using Kepler’s third law:
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n=_|*e (2.3.3)

where u, =G.M,, G is the Earth’s gravitational constant and M, is the mass of the

Earth.

Mean Anomaly (M):

Mean Anomaly defines the position of the satellite in the ellipse. It is an angle that
marches uniformly in time from 0 to 360 degrees during one revolution. It is defined

to be 0 degrees at perigee and 180 degrees at apogee.

There is an important point to note that in a non-circular ellipse, this angle does not
give the direction towards the satellite except at perigee and apogee. This is because

satellite does not have a constant angular velocity.

The different anomalies used are shown in Figure 2-13. The direction from the earth
center towards the satellite is called true anomaly (v) and the direction from the
center of the ellipse towards the point on a circle is called eccentric anomaly (E).

The relationship between true anomaly and eccentric anomaly is

cosv=LE_e (2.3.4)
1—ecosE
J— 2 1
siny= =€ SmE (2.3.5)
l1—ecosE

And the relationship between mean anomaly and eccentric anomaly is
M =E —esin E(t) (2.3.6)

The orbit propagotor model can now be made by using the cahnge of the mean

anomaly in time. The prediction of the future position becomes relatively straight
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forward tahnks to keplerian elements for a single point in time. Given the Keplerian

elements for a time, t,, a prediction of the orbit is

M(t, +t) = M(t,)+n-t (2.3.7)

where t is the time passed since t,. Equation (2.3.7) describes the motion of the

spacecraft in ECOF, coordinates. To transform this to ECEF frame it is required to

solve Kepler’s equation which relates the eccentric anomaly to the mean anomaly.
E(t)=M(t)+e-sin E(t) (2.3.8)
This equation can be solved iteratively such as:
E.,, =M +esinE, (2.3.9)

It is taken E, =0 for the initial condition as does Newton method and finally the

following solution is obtained:

N M +esinE, — E;
1-ecosE;

i+1 i

(2.3.10)

Finally, the vector from the center of the Earth to the satellite expressed in the ECOF

is formulated by using the eccentric anomaly as follows:

cosE—e
ro¢ —alv1-e’sinE (2.3.11)
0

The orbit propagator can now be implemented in ECI frame and ECEF frame using

the rotation in Eq. (A.3.1) and Eq. (A.3.2)
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r' =Cir® =C,(-Q) C,(-i) C,(~w) r (2.3.12)

rf=ctr=c,(-Q+6)C,(-i) C,(~o) r°° (2.3.13)

where € is the Right Ascension of Ascending Node, i is the inclination of the

satellite,  is Argument of Perigee and 0 is the ascension of the zero meridians.

An orbit propagator based only on the Keplerian elements will degrade in accuracy
over time. In order to prevent from this error, certain improvements utilizing known
irregularities can be made. The biggest source of degradation is the nonspherical
shape of the Earth.. The deformation is often parameterized by the geopotentional
function as described in Wertz and Larson (1999), which uses the deformation
coefficients J, for i" order deformations. The other error sources which are less
influence on the perturbations of the spacecraft’s orbit can be listed as gravitational
forces from the sun and the moon, tidal earth and ocean, and different
electromagnetic radiations [13]. In the following sub-sections the descriptions of

these perturbations are given respectively:

Perturbations due to the nonspherical Earth

The earth has not a perfect spherical shape; actually it has a bulge at the equator, is
flattened at the poles and is slightly pear-shaped. This imperfect form leads to
perturbations in all Keplerian elements. In the second order deformation of the Earth
it is considered that the Earth is partly flattened, and leads to the largest perturbations
in the Keplerian elements. According to the Lagrange planetary equations, the

flattening factor J,is governed by using the time derivatives functions of the right

ascension of the ascending node and the argument of perigee:
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3 L, 5cos’i—1

@y, =—na; ———-J 2.3.14b
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where a, is the Earth radius, and the numerical value of J, for the Earth is

1.08284-10°.

Perturbations due to the sun and the moon

The Sun and the moon cause periodic variations in all Keplerian elements. There are
only secular perturbations to the right ascension of the ascending node and the

argument of perigee. An approximation is suggested by Wertz and Larson (1999) for

nearly circular orbits as [13]:

cosi

Q. =-0.00154"—~ (2.3.15)
n
Q... =-0.00338°%! (2.3.16)
n
and
2 -
o, =0.00077205 =1 (2.3.17)
n
2 i —
o =0.00169°2°5 171 (2.3.18)
n

where n is the number of the revolution per day and Q and @ units are given in

degree/day.

Perturbations due to the atmospheric drag

The atmospheric drag is a force which causes acceleration in the opposite direction

of the spacecraft’s velocity. The magnitude of this acceleration depends on the
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velocity V , mass m, cross section area A, drag coefficient C of the satellite and on

the density of the atmosphere p . This relation is given by the following formula:

A
a, =1 S0y (2.3.19)
2 m

The atmospheric drag is a breaking force and it causes the energy loss of the satellite
in orbit. This energy loss leads to a decrease in orbital height, but the magnitude is a

very low rates. Therefore this effect is not included in orbit propagator model.

Perturbations due to the solar radiation

The acceleration caused by the solar radiation creates the perturbations on satellite’s

orbit. The magnitude of this acceleration is given as:

a, =—4.5-10°(1+ r)% (2.3.20)

where r is the reflection factor between 0 and 1, A is the cross section area and m is
the mass. The magnitude of these perturbations is less for lower orbit, for this reason

it is not included on the orbit propagator model.

The improved orbit propagator; that all perturbations are included; can be
reformulated in ECEF frame as follows:

rE=CZ(—(QO+(QJZ+QSUH+Q )+€0+a)e)-CX(—i)-

moon

cosE—e 2391
Cz(_ (a)o +(d)J2 +a)sun +d)moon)t))'a Vl_ez sin E ( o )
0
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The position of the satellite can be indicated also in spherical coordinate system by

using the radius ¥, latitude @ and longitude A parameters. The radius of the
satellite orbit can be computed as Eq. (2.3.22) by using the position vector given in
the Eq. (2.3.21). After that latitude and longitude values are calculated by the
trigonometric functions given below (Eq. (2.3.23) & Eq. (2.3.24)):

Z .,
I
S I
I l YE
~ ———1f- =£140"
q) ~
2
80 €0° Piog Eq;:cimr o k ————
4c°
60°
o,
8 XE

Figure 2-14: Satellite Position in Spherical Coordinates

re= \/ (rXE )2 + (ryE )2 + (rZE )2 (2.3.22)
® =sin”' (rf/7F) (2.3.23)
A=tan(rE/rF) (2.3.24)

This orbit propagator model will also degrade with time, but this degradation is not

as fast as the simple orbit propagator. It is possible to update this model with the

accurate Keplerian elements in order to keep it accurate [10]
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Figure 2-15: Orbit Propagator Model Block Diagram

The simulation module of the orbit propagator model is prepared in
Matlab/SIMULINK. This module with its inputs and outputs is given in the
foregoing Figure 2-15

2.3.2 Sun Position Model

It is known that the sun sensor measures the direction and/or intensity of the lights,
origin from the Sun, in body frame of the satellite. In order to utilize the measured
body frame sun vector, the sun vector in orbit frame must be known in such a way

that the rotation between the two could be calculated. For the computation of the sun

30



vector, the sun movement with respect to the Earth is modeled given the classical

orbital parameters as a two body problem.

Sun position with respect to the Earth is calculated by using the classical orbit
parameters for the Earth’s movement around the sun and reference time denoted
epoch (Julian Date). As a first step, by using the Kepler’s equation the eccentric

anomaly ¥ is calculated from the mean anomaly M and the eccentricitye.

M =¥ —esin(¥) (2.3.25)

In order to find ¥, the solution of the Kepler’s equation has to be sought for
iteratively. In fact, there is no closed form solution but for very near circular orbit

suggest a series expansion that results in the following approximation [14]

Y=M+e-sinM-(1+e-cosM) (2.3.26)

Since the Earth’s orbit around the Sun has a very small eccentricity, the approach
given above is sufficiently accurate [14]. After calculation of the eccentric anomaly,

the following equations are used to compute the true anomaly:

R, =R cos®=a (cos‘P —e) (2.3.27)
R,=R sin®=a (\/l—e2 sin ‘P) (2.3.28)
®=tan' (R, /R,) (2.3.29)

and the distance from Earth to Sun is found as:

R=,/R;+ Rj (2.3.30)

From the knowledge of the argument at perihelion @ and the true anomaly ®, the

suns longitude is calculated as below:
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lon,, =0+ w (2.3.31)

The coordinates of the sun position expressed in rectangular coordinates in elliptic

plane system can be given as:

X, =R cos(long,,)
y, =R sin(lon,,) (2.3.32)
z,=0

and finally these rectangular coordinates expressed in inertial geocentric coordinate

system can be written as follows:

X = X,
Y. =Y cos(e) (2.3.33)

2, =Y, sin(e)

The simulation module of the sun position model, prepared by Matlab/SIMULINK,

is given with its inputs and outputs in the following Figure 2-16.

[Ege>—#|udte  SunEarh  SEco @D

Jdate S_E_eci
Sun_Earth
._ arg_pery
inc
._ mean_anormaly
@ MATLAB
-_ Function
3 orh
tl Rotation
eciZarh
- SC_F_eci __
SC_E_eci 5 E25 5C 5 sC eni
g P narmalizatian 5_orb_vect
5_E25.8C

5_orb wect

Figure 2-16: Sun Position Model Block Diagram
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This sun position model will be used to get the direction of the sun light with respect
to satellite and simulate the sun sensor measurements as indicated in the beginning of
this subchapter. However there is one lighter source that effects the measurements of
sun sensor called Earth Albedo. Earth Albedo is the reflection of the suns energy
from the Earth. This effect seen on the sun sensor measurements should be taken into
consideration in order to get more accurate attitude knowledge. Implementation of
combining the sun model and Earth Albedo model is not considered in this thesis; it

should be done as part of future work.

2.3.3 Earth Magnetic Field Model

In order to determinate the magnetic vector and compare this vector with
magnetometer measurements, the earth’s magnetic field must be known. As seen on

Figure 2-17, the magnetic field is highly varying over the Earth’s surface, hence
usage of the high-resolution lookup-table, where each entry represents the magnetic
field at that given position, would demand a very large memory on board a satellite’s
microcontroller. Therefore, a model called International Geomagnetic Reference
Field (IGRF) model is used to obtain the Earth’s magnetic filed values at a specific

satellite’s orbital position.

20000 30000 40000 SO00) BO000 70000 0.4 0.3 0z R oo LA} 02

[nT] [%]

Figure 2-17: Magnitude of the Earth’s Magnetic Field [14]
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IGRF is an attempt by the International Association of Geomagnetism and
Aeronomy (2003), IAGA, to provide a model acceptable to a variety of users. It
gives a reasonable approximation of the Earth’s magnetic field originating from the
Earth’s core. The IGRF specifies the numerical coefficients of a truncated spherical
harmonic series at any given time and position. The IGRF model is specified every 5
years, for epochs 2000.0, 2005.0 etc. IAGA released the 10™ Generation
International Geomagnetic Reference Field, the latest version of a standard
mathematical description of the Earth's main magnetic field. IAGA decided in 2001
that the main-field coefficients of the IGRF from the year 2000 onwards should
extend to degree n_max=13 and be quoted to 0.1 nT precision. Pre-2000 coefficients
extend to degree 10 or 8 and are quoted to 1 nT precision. The predictive secular
variation coefficients for the upcoming five-year epoch are given to degree 8 with a

precision of 0.1 nT/year [14].

The IGRF model consists of a set of spherical harmonic coefficients called Gauss
coefficients, g, and h;", in a truncated series expansion of a geomagnetic potential

function of internal origin given in the following Eq. (2.3.34).

V=a) Z(%j (g™ cos(mA) +h™ cos(mA)) P" cos(¢) (2.3.34)

where V is the geomagnetic scalar potential, a is the mean radius of Earth (6371.2
km) and r,1,¢ are the geocentric spherical coordinates: r is the distance from the
centre of the Earth, A s the longitude eastward from Greenwich, ¢ is the colatitudes
equal 90" minus the latitude. The maximum spherical harmonic degree of the
expansion is N. P" cos(¢) is the Schmidt quasi-normalized associated Legendre

functions of degree n and order m, wheren>1 and m <n.

Magnetic field estimation can be made by using IGRF model and the orbit
propagator model together. As the IGRF model is rotating with the Earth, it is given
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in ECEF frame. The magnetic field in earth centered orbit frame is defined by using

the inverted rotation given in Eq. (2.3.13):

MAG™ =(C,(-Q+0) C,(-i) C,(- »)] ' MAGE (3.3.35)

= MAG®® =C,(w) C,(i) C,(Q—-6) MAGE (3.3.36)
where MAG®“*" is the resulting vector obtained from the IGRF model.

Finally, a rotation from Earth centered orbit frame to orbit frame is done by the

following transformation:

MAG® =C, (7/2) C,(v+z/2) MAG®® (2.3.37)

I 0 O||-sinv cosv O
MAG®={0 0 1||-cosv —sinv 0| MAG®® (2.3.382)
0 -1 0 0 0 1

—sinv cosv O
MAG® =| 0 0 1| MAG®® (2.3.38b)

cosV sinv O

where V is the true anomaly.

The three components of the magnetic field in orbit frame for 5 orbits navigation,
based on orbit data from the enhanced orbit estimator, are shown in the following
Figure 2-18. The Y axis of the orbit frame point in more or less the same direction all
the time, and this cause the small variation on the y component of the magnetic field

vector.
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Figure 2-18: The Earth’s Magnetic Field from IGRF Model
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Figure 2-19: Earth Magnetic Field Model Block Diagram

The simulation module of the Earth Magnetic Field Model is prepared on
Matlab/SIMULINK. This created block diagram can be seen in the following
Figure 2-19 with its inputs and outputs.
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2.4  Sensor Measurements Models

In this section, the detailed explanations about the mathematical measurement model
of the sensors, which are used on the spacecraft to obtain its angular velocity and
attitude, are given. The main targets of constituting the measurement model of the
sensors are to simulate the sensors’ measurements, to obtain the performance of these

sensors and to see the accuracy of the attitude determination system.

Generally, the attitude determination system of a LEO satellite consists of inertial
sensors and reference sensors. In this thesis, sensor systems of the hypothetical
satellite, which specifications are given in Section 2.1.3, is composed of one inertial
sensor (three axis rate gyroscope) and three reference sensors (three axis
magnetometers, three axis sun sensor and 3 axis star tracker). The details about the

measurements model of these sensors are given in the following subchapters.

24.1 Rate Gyroscopes

A gyroscope is an instrument which uses a spinning mass with a high velocity for the
purpose of sensing and responding to changes in the inertial orientation of its spin
axis [12]. Nowadays, the usage of the new technological product, called Micro-

Electro-Mechanical Systems (MEMS) based rate gyros also become widespread.

Rate Gyros are usually the basic sensor of an automatic control system for either
angular velocity control or attitude control. Rate Gyros measures the angular velocity
of the vehicle with respect to the inertial reference frame [15]. For perfect

measurement, without noises and errors, its output may be defined as follows:

B
Oyveps perfect — DB (2.4.1)

It is clear that the real measurements will not be perfect; therefore the simulation of
the Rate Gyros measurement model is created that includes various errors. In the

following Table 2-2, the error parameters defined for Rate Gyros are given and the
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explanations about these parameters are listed respectively in the following

subchapters.

Table 2-2: Error Parameters of the Rate Gyros Model

a. Turn on Bias
b.1. Bias Stability
2. The Correlation Time of the Bias Stability
c.1. Random Walk
2. Bandwidth of the random walk
d. Scale Factor Error
e. Misalignment Error

2.4.1.1 Turn On Bias

Turn on Bias error is modeled as a Gaussian distribution and defined with 1o
standard deviation value. This bias is computed at the beginning of the simulation,
when t, =0sec, and then it is taken constant during the simulation. The block

diagram of the Turn on Bias model created on Matlab/SIMULINK is given in the
following Figure 2-20 [16].

12:34 ul it ==0) l

Digital Clock .

b b It o ———» (1)

turn_on_bias
Randam hrdsec degZrad If Action - -
Source

Figure 2-20: Rate Gyro Turn on Bias Error Model

2.4.1.2 Bias Stability

Bias is a long term average of the data and it has no meaning in terms of a single data
point. Thus, a long sequence of data must be taken and the average of these data
must be computed in order to determine the bias. A Bias Stability term refers to

changes in the bias measurements [17].
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In the computation of bias stability, the time sequence is also an important parameter
when collecting the measurements. The rate gyros outputs are read at a fixed
frequency denoted t and the variance of the measurements are computed depending

on this 1. This parameter 7t is called as The Correlation Time of the Bias Stability.

The block diagram of the Bias Stability model created on Matlab/SIMULINK can be
seen in the following Figure 2-21. In this model the correlation time value is taken as

20 seconds [17].

KT
2 2 K »(D
) z1 . bias_
Random hrzses deg2rad Discrete-Time stability
Soutce Integratar

Carrelation_Time
1/ tau)

Figure 2-21: Bias Stability Error Model

2.4.1.3 Random Walk

The Allan Variance parameter, which is related to the bias stability error parameter,
should be stated before explaining the Random Walk (RW) error. In order to obtain a
quantitative measure of how much the bias stability value of the rate gyro
measurements change at that particular value of averaging time (correlation time) T,

the Allan Variance equation is derived [17]:

)Z (YD) = Y(@)) (2.4.2)

where AVAR(Z’) is the Allan Variance as a function of the averaging time t; Yy(7); is

the average value of the measurement in set i; and nis the total number of

measurements. After computing the AVAR(T) values for the different averaging time
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T, a graph the AVAR(r) results as a function of t. Figure 2-22 shows the results for

this data, along with the error in the calculation. For clarity, the AVAR(z) data is

plotted on a log-log scale [17].

For the short correlation times 7, the Allan Variance is dominated by the noise in the
sensor. There is a direct correlation between the standard deviation o (the noise) of
the output vs. time with the slope of the Allan Variance at small 7. This is also

referred to as Angle Random Walk (ARW) [17].

As seen in the Allan Variance plot (Figure 2-22), a better measure of the bias is
obtained by increasing the correlation time 7 . However at some point, an interesting
behavior on the measurements error happens as thez increases. At some point the
Allan Variance starts to increase again because of the Rate Random Walk (RRW) in
the sensor, this is an inherent instability in the output of the sensor. The standard
definition of bias instability used by inertial sensor manufacturers is the minimum
point on the Allan Variance curve. This is the best stability that can be achieved with

a fully modeled sensor and active bias estimation [17].
Square Root of Allan Variance
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Figure 2-22: The Allan Variance Result for The Rate Gyros Data [14]
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In the rate gyro measurement model used in this thesis, the Random Walk is taken as
a Gaussian distribution white noise and defined with 1o standard deviation value.

The converter equation used to obtain 16 value from RW is formulated as follows:

RW =y ; White_ Noise =2z (lo)

L y(degj: (deg)m: y(degja)@(m]_}

Jor )=\ e ) e hr Jhz

1 (deg
=Yy 60— —
y v Hz ( hr j

(2.4.3)

where Hz is the Bandwidth of the measurements taken.

The block diagram of the Random Walk model created on Matlab/SIMULINK is
given in the following Figure 2-23.

deghr
. bb ’b radizec >. )
randam_noise

Randam hrlsec degZrad
Source

Figure 2-23: Random Walk Error Model

2.4.1.4 Scale Factor Error

The Scale Factor Error is a kind of error that depends on the measured values. This
error is defined as a Gaussian distribution and the 1o standard deviation value is
given in the product specification sheets. Therefore, this error is computed at the
beginning of the simulation, when t; =0sec, by considering the loc error

distribution. The following Figure 2-24 shows the block diagram of the Scale Factor
Error model created on Matlab/SIMULINK.
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Figure 2-24: Scale Factor Error Model

2.4.1.5 Misalignment Error

The sensor Misalignment Error is kind of manufacturing error and it occurs because
of the no coincidence between the sensor axis frame and the measurement axis
frames. The block diagram model created for the misalignment error has the same

structure with the scale factor error; therefore Figure 2-24 describes also the

misalignment error model.

The Rate Gyros Measurement Model is created by using all the error types defined

above, and the block diagram of this model can be seen in the Figure 2-25.
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Figure 2-25: Rate Gyro Measurement Model Block Diagram




Rate Gyro selected for the simulations of the satellite attitude determination system
is a Fiber Optic Gyro of the Northrop Grumman called FOG200. The specification
sheet of this product is given in the Appendix B.1. The values of the error determined
depending on the specification document of the product are listed in the following

Table 2-3.

Table 2-3: NG FOG-200 specifications

RG PARAMETERS NG FOG 200

a. Turn on Bias (deg/hr) 0.01

b.1. Bias Stability (deg/hr) 0.25, 3 (over temp.)
2. The Correlation Time 20
of the Bias Stability (sec)

c.1. Random Walk (deg/rt-hr) 0.012

2. Bandwidth of the 500

random walk (Hz)

d. Scale Factor Error (ppm) 100, 2000 (over temp.)

e. Misalignment Error (mrad) 10

2.4.2 Sun Sensor

Sun sensors are the most widely used sensor type in the attitude determination and
control system of the spacecrafts because of the several factors: for most
applications, the Sun can be considered as a point-source because the angular radius
of the Sun is nearly orbit independent and sufficiently small (0.267 deg at 1 AU); this
independence simplifies both sensor design and attitude determination algorithms;
Sun is sufficiently bright to permit the use of simple, reliable equipment without

discriminating among sources; and their power consumption is low [15].

The Sun sensor measures the Sun position vector with respect to the satellite axis
frames. From the knowledge of the Sun and satellite orbital locations, the current and
expected measurements can be compared to determine the attitude of the satellite.

The Sun position vector is computed by using the Sun position model described in

Section 2.3.2.
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The Sun sensor measurements are simulated by using the attitude matrix of the
satellite. The measurement noise for this sensor is defined as a Gaussian distribution
with 1o standard deviation.

Seas =CE S +vg,, (2.4.4)

where; S is the measurement vector that gives the Sun position vector, S° is the

meas
vector of the Sun position defined in orbital reference frame, CJ is the attitude
matrix from orbital frame to body frame, v, is the measurement noise vector of the

Sun sensor.

The simulation module formed on Matlab/SIMULINK for the Sun sensor is given in
Figure 2-26. This block diagram shows related inputs and outputs of the Sun Sensor

Measurement Model.

- P S_meas

quat sun_sensar_maodel 5_bady

Yy
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L J

S _orh

Add 5_meas

S_orb

S_orb25_body

. white_noise S_hody

Randaorm
Source

L

Figure 2-26: Sun Sensor Measurement Model Block Diagram

Sun Sensor selected for the simulations of the satellite attitude determination system
is a product of Optical Energy Technologies (Model 0.5 Sun Sensor). The
specification sheet of this product is given in the Appendix B.2. This Sun sensor is 2
axis sensor which has a accuracy 0.5° with a 100° of Field of View (FoV). In order to
obtain 3 axis reference knowledge 2 unit of this sensor are used in the satellite

attitude determination simulations.
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2.4.3 Magnetometers

Magnetometers are widely used in the attitude sensor system of the spacecrafts for a
variety of reasons: they provide both the direction and magnitude of the magnetic
field as they are reference sensors; they are lightweight and their power consumption

is low, have a wide operating temperature and they have no moving parts [15].

However, magnetometers are not accurate sensor because the magnetic field is not
completely known and the models used to estimate the magnetic field magnitude and
direction at the spacecraft’s position may have substantial errors. Furthermore,

because the Earth’s magnetic field magnitude decrease depending on the distance

from the Earth (as 1/r?), the total magnetic field measurement are dominated by the
residual spacecraft magnetic biases. Because of this effect, the magnetometers are

not effective for the spacecraft at altitudes above 1000 km [15].

Magnetometer measures the magnitude of the magnetic field with respect to the
spacecraft axis frames. In practice, in order to determine the attitude of the
spacecraft, these measurements are compared with the magnitude of the magnetic
field known with respect to orbital reference frame. Magnetic field values defined in
orbital reference frame are computed by using the IGRF model and Orbit Propagator

that detailed descriptions are given in the Section 2.3.3.

The magnetometer measurements are formulated using the attitude matrix that gives
the rotation information between the satellite and orbital reference frames and the
measurement noises defined as a Gaussian distribution with 1o standard deviation
value.

MAG = Cg -MAG®° + Vs (2.4.5)

meas

where MAG

vector of the magnetic field values defined in orbital reference frame, C is the

eas 18 the vector of the magnetometer measurements, MAG® is the

attitude matrix from orbital frame to body frame, Vv,,s 1s the vector of the
measurement noises.
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The simulation module of the Magnetometer is prepared on Matlab/SIMULINK.
This created block diagram is given in the following Figure 2-27 with its inputs and

outputs.
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s e |
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Figure 2-27: Magnetometer Measurement Model Block Diagram

Magnetometer selected for the simulations of the satellite attitude determination
system is a product of Zarm Technik. The specification sheet of this product is given
in the Appendix B.3. The values of the error determined depending on the

specification document of the product are listed in the following Table 2-4.

Table 2-4: Magnetometer Specifications

MAG PARAMETERS ZARM
Range +/- 64e-6 T
Scale Factor App.0.5¢-9T
Resolution/Noise 100e-12 T @ 1Hz
5¢-9 T@ 50 Hz

Accuracy 0.64e-6 T
Alignment 1 deg
Sampling rate 50 Hz

2.4.4 Star Sensor

Star sensor measures the star directions in the satellite body axis frame. This sensor
provides attitude information by comparing its measurements with known star

directions from its star catalog. Star sensors are the most accurate sensors used in the
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attitude system. It is possible to obtain accuracy in arc-second range. However, they
are expensive, heavy and they need more power then most other sensors.
Furthermore, they need extensive computation. The usage of the star sensors also
suffers due to the obscuration and interference from the Sun, the Earth, and other
bright sources. However, in spite of these disadvantages, the accuracy and the
versatility of the star sensors have led to applications in a variety of different

spacecraft attitude environments [15].

Since the star sensor fuses the measurements of stars directions, it is possible to
obtain the quaternion direction, as output. Therefore, in the star sensor measurement
model the quaternion knowledge obtained from the satellite kinematics model is
used. In order to simulate the real measurements, a Gaussian distribution white noise
is added to the quaternion values. Consequently, quaternion measurements are

formulated as follows:

Ormeas = 0 +Vq (2.4.6)

where; . 18 the measured quaternion, q is the real quaternion and v, is the white

noise with 1o variance value. The block diagram of the Star sensor measurement
model can be seen in the following Figure 2-28 with its inputs and outputs. This

simulation module is prepared on Matlab/SIMULINK.

q_meas
ot < r<nen |
quat o+
Add q_meas
. white_noize
Fandom
Source

Figure 2-28: Star Sensor Measurement Model Block Diagram
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Star Sensor selected for the simulations of the satellite attitude determination system

is a product of Jena Optronik.

Table 2-5: Star Sensor Specifications

STAR SENSOR ASTRO 15
Star Accuracy: Bias (1 sigma) 2.5 arcsec
Star Accuracy: Noise (1 sigma) 2.5 arcsec
LOS Accuracy:
pitch & yaw (1 sigma) 1 arcsec
roll (1 sigma) 10 arcsec

The specification sheet of this product is given in the Appendix B.3. The errors

determined depending on the specification document of the product are listed in the
Table 2-5.
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CHAPTER 3

KALMAN FILTER BASED SATELLITE ATTITUDE
DETERMINATION

This chapter presents a Kalman filter based satellite attitude determination system
designed for the hypothetical LEO satellite defined in the previous chapter. In first
section the general information about Kalman filter is given, afterwards the theory of
the Kalman filter with detailed explanations about different types of the Kalman
filters are given. Then, Satellite Attitude Determination System Structure created for
a LEO Satellite is presented. In the last section, the sensor fusion algorithms of the
attitude determination modes which are related to the sensor activation situation are
explained in details. Finally simulation results are given for different orbit navigation

and attitude scenarios.

3.1 Kalman Filter Theory and Modeling

This section describes the derivation of the Kalman filter using the system models
and measurement models. Kalman filter contains different structures depending on
the linearity and nonlinearity of the system and measurements. In the following
subsections the explanations about the linear Kalman filter, Linear Discrete Kalman

filter, and Extended Kalman filter is given in details.

3.1.1 Linear Continuous Kalman Filter

In this section the Kalman Filter is derived using continuous-time models and
measurements and this derivation approach provides some unique perspectives that

are especially useful for small sampling intervals. However, due to the extensive use
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of digital computers in today’s time, the continuous-time Kalman filter is not widely

used in practice [4].

Consider the following truth linear system model and linear measurement model

defined in continuous time:

(1) = FOx() + B(Hu(®) + GHw(t) (3.1.1a)

() = HOxX() + V() (3.1.1b)

where x(t) is the nx1 state vector, F(t) is the nxn state matrix of the system,
H(t) is the mxm measurement matrix, w(t) and v(t) are zero-mean Gaussian white

noise processes with covariances given by:

E {W(t)WT (2')} =Q(t) 8(t—1); (3.1.2a)
E {v(t)vT (r)} ~R(t) 5(t-7) (3.1.2b)
17 t = T, . .
where, o(t—7) = {O is the Kroneker expression. (3.1.2¢)
E {v(t)wT (r)} =0 (3.1.2d)

The last equation implies that w(t) and v(t) are uncorrelated. The Kalman Filter

structure for the estimation of the states and outputs is given by the following

equations:

K(t) = F(O)K(t) + B(t)u(t) + K®[¥(t) - HOK®)] (3.1.3a)

y(t) = HOX() (3.1.3b)
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The dynamics of the state vector estimation error parameters ( X(t) =X(t)—x(t)) can

be reformulated by using the Eq. (3.1.1) and Eq. (3.1.3) as follows:

X(t) = E(O)X(t) + z(t) (3.1.4)

where;
EM)=FO-KOH(®) (3.1.5)
z(t) =-G(Hw(t) + K(t)v(t) (3.1.6)

When using the matrix exponential solution for the Eq. (3.1.6), the following

expression is obtained for the state propagation:

t
X() = P(t.t)R(t) + [ @(t.Y) 2(7) d (3.1.7)
to

Here, it is noted that u(t) cancels in the error state. Since the system error w(t) and
measurement error Vv(t) are uncorrelated the following expression is obtained as the

covariance matrix of the measurement error:

E{z(t)zT (r)} - [G(t)Q(t)GT () + KOROKT (t)] S(t-1) (3.1.8)

The state error covariance is defined by

P(H) =E{x0)% ()] (3.1.9)

As a result, using the Eq. (3.1.7) and Eq. (3.1.8) the time derivative expression of the
covariance matrix is obtained. The simplified form of this expression is given as

follows:
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P(t)= [F(t) - KMOH®]P®)+PO[F (1) - K(t)H (t)]T

3.1.10
+GMQMGT () + KMRMKT (1) ( )

In order to determine the Kalman gain K(t), the minimization on Eq. (3.1.10) with

respect to K(t) is done. The necessary conditions lead to:

al _ T
—aK(t)_O_ZK(t)R(t) 2PMHT (1) (3.1.11)

Solving Eq. (3.1.11) for K(t), the following expression is obtained:

Kt)=P®HT R (t) (3.1.12)

By substituting this gain expression into Eq. (3.1.10), the following expression

known as the continuous Riccati Equation is obtained

Pt)=F®)Pt)+PH)FT (t)-P®HT )R(H)H (t)Pt) +GH)QM)G' (t) (3.1.13)

Table 3-1: Continuous-time Linear Kalman Filter [4]

Model X(t) = F(t)x(t) + B(tyu(t) + G(Hw(t), w(t) ~ N(0,Q(t))
y(©) =H@Ox()+Vv(t), v(t) ~ N(O,R(1))
Initialize X(ty) =X
Py = E{%(t)X' (ty)]
Gain K®=POHT HOR™ @)
Covariance | p(t) = F(t)P(t)+ P(t)FT (t)- P(t)HT ()R (t)H ()P (t) + GH)QM)G” (1)
Estimate (1) = F(OK(®) + B(Ou(t) + KO[§(1) - HDR()]

A summary of the continuous-time Kalman filter is given in the Table 3-1. At first

step state and error covariance are initialized. Then, the Kalman gain is calculated
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with the initial covariance value. Next, the covariance and estimated states are
numerically integrated using the continuous-time measurement. The integration of
the estimated state and covariance continues until the final measurement time is

reached.

3.1.2 Linear Discrete Kalman Filter

In this section the Kalman Filter is derived assuming that both the models and
measurements are available in discrete-time form. The truth linear system model and

linear measurement model for this discrete-time case is given by [4]:

Xeo = QX + LUy +Ww, (3.1.14a)

Vi = HXy +v, (3.1.14b)

where W, and v, are assumed as zero-mean Gaussian white noise processes with

covariances given by:

Efvv,” |=R.d, (3.1.15a)

A
Eww; j=Q,dy (3.1.15b)

k=]
where; §,; = ’ J 3.1.15¢
900 sk j ( )
.

Ew,"|=0 (3.1.15d)

This Kroneker delta requirement preserves the block diagonal structure of the

covariance and weight matrices, and it is also assumed that v, and w, are

uncorrelated.
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The propagation of the current estimate and the update of the state by using the

Kalman gain and measurements are done by using the equations given below:

R, =@, % +T,U, (3.1.16a)

Ko =>”<k‘+1+Kk[Vk—Hk>”<k‘] (3.1.16b)

The state error covariance matrix is defined by using the following expression:

Pk7 = E{ )N(Q?’k;r }1 Pk11 = E{ Yk;lykjrl-r }’
T T (3.1.17a)
Pk+ = E{ ’)\(’k+’)‘(‘k+ }’ Pk-:-l = E{ Y;+1Yk++1 }
Xe =X =X Xy =K = Xiars
(3.1.17b)

I+t — ot -G Ot -
X =X = Xes X = XK — Xas

The expressions given in Eq. (3.1.17b) are the state errors using in the state

prediction and state update. Here, the aim is to derive an expression for both P,
andP,,, and also an optimal expression for the Kalman gain K,. Since eqn.
(3.1.16a) is not a direct function of the gainK, , it is fairly straightforward to derive
the expression P, . After substituting the Eq. (3.1.14a) and Eq. (3.1.16a) into Eq.

(3.1.17b), than the following expression for P, is obtained:

_ ~_ ~_ T
Pk+1 = E{ Xk+lxk+1 }
ot ot T or T
:E{(Dkxk+1xk+1 CDkT }_E{d)kaWk lPkT} (3.1.18)

~as T T
~EWW WX, @ (+E¥ww, ¥,

After carrying out certain simplifications, finally the following expression is obtained

for the state covariance propagation:
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P, =®P @ +¥QV¥’ (3.1.19)

The next step is to obtain an expression for the state covariance update. For this

purpose the state propagation and the measurement update equations are used. This

derivation for the expression for P, is listed in the following set of equations:

%= (1= K H R + K H e + Ky =, (3.1.20)

P = E{ Y|<+Y|<+T}
_ E{(I CKHRCR (1 —Kka)T}

.o . ) (3.1.21a)
+E{1 =K, H, )XV, K, }+E{Kkvkik- (1-K,H,) }
+EK Vv, K,
. ~_ )~ _ T ~_T
Since V, and X, are uncorrelated = E{xk vV, }: E{vkxk }:0 (3.1.21b)
P/ =[I-K,H, P [ -K.H, ] +K.RK," (3.1.22)

In order to determine the Kalman gain K, , the minimization on Eq. (3.1.22) with

respect to K, is done. The necessary conditions lead to:

83
oK,

=0=-2(1-K.H, )P H, +2K,R, (3.1.23)
T iy T 1
K, =P H[HPHT+R, | (3.1.24)

Substituting Eq. (3.1.24) into Eq. (3.1.22), the simplified expression for the state

covariance update is obtained:

P =[I-K,H, [P (3.1.25)
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The above Eq. (3.1.25) infer that while the propagation step in Eq. (3.1.19) increase
the covariance; in the opposite side, the update stage of the discrete-time Kalman
filter decreases the covariance. This observation is instinctively consistent since in

general more measurements improve the state estimate [4].

A further expression for the state update can be derived by using Kalman gain, real

measurements and expected measurements as follows:

)2k+ :[I _Kka])A(k_ +Kk7k :)A(k_ _Kk[yk _Hk)’zk_] (3.1.26)

A summary for the algorithms of the discrete-time Kalman filter is given in Table
3-2. First, the initialization for the state and covariance are done. If a measurement is
available, the state and covariance are updates by using Kalman gain values and the
propagation of the state estimate and covariance are calculated for the next step. If a
measurement is not available, state and covariance are propagated and this process is

repeated until the new measurement is available.

Table 3-2: Discrete-time Linear Kalman Filter [4]

Model X, =® X% +Lu +¥w, w, ~N(@0Q,)
Y. =H/.Xx, +Vv,, v, ~N(O,R,)

Initialize X(ty) =%,
Py = E{%(t)X" (t)}

Gai - - :

ain K, =P H,[HPHT+R, |

Update R :f(k‘_Kk[Vk —ka(k‘]
Pk+ :[I - Kka]Pk_

Propagation | g~ =, % +I,u,
Pai = q)kpk+q)kT +\PkalPkT
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3.1.3 Extended Kalman Filter

As described above, the Kalman filter addresses the general problem of trying to
estimate the states of a linear discrete-time process; however a large class of
estimation problem involves nonlinear models. A vast majority of such nonlinear
applications use a Kalman filter that linearizes about the current mean and

covariance, and this type of filter is called as an Extended Kalman filter (EKF) [18].

In order to derive the algorithm for EKF, first the discrete nonlinear system and

measurement model are expressed as follows:

X = f (X Uy Wi, K) (3.1.27a)

¥, =h(x.,v,.k) (3.1.27b)

where, random variables W, and v, again represent zeros-mean Gaussian process
and measurement noise. In practice the values of the noise w, and v, are unknown

at each step time. However, the state and measurement vector can be defined without

considering these values:

e = F(%,Up1,0.k) (3.1.28a)

Vi =h(%,,0,k) (3.1.28b)

The main difference between the linear and extended Kalman filter is in use of the
linearized system and measurement model on the steps of the filtering algorithm. The
linearization is done by using first-order Taylor series expansion. The first-order

expansion of the system and measurement model is given as follows:

aly

f (Xk’uk+l’k)E f (Yk’ukﬂﬂk)+ GX

X =%, (3.1.29a)

X
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h(x.k) = h(%,.k)+— [x —%] (3.1.29b)

The propagation of the current estimate and covariance matrix are done by using the

following equations:

k+1
Ren =% + [ £ (R k)t = (1 + Fdt)x; (3.1.30)

k
P, =(1+F.dt)P (1 +F.dt) +Q (3.1.31)

where;
of, (% k)
F — kK \"*k »

TR (3.1.32)

Then Kalman gain K, is computed when the measurement is available. In this

computation the linearized measurement model is used:

K, =P H[H P HT+R, [ (3.1.33)

_oh, (%K)

k A
8Xk+l

(3.1.34)

In order to determine the error between the actual measurement and expected

measurement the innovation step is executed:
e, =Y, —HX, (3.1.35)

Finally the expressions that provide the state update and covariance update is given

as follows:
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)A(;H = ﬁ;"’l - Kkek (3136)

Pk++1 = [I - Kk Hk]Pk_+1 (3.1.37)

The following Table 3-3 summarizes the procedures of the EKF. Fist the
initialization is done for both state and covariance matrix. Then, Kalman gain is
computed when the measurement is available. After computing the error between the
real measurements and expected measurements, the state update and covariance

update steps are implemented.

Table 3-3: Discrete-time Extended Kalman Filter [4]

Model X, =P X% +LUu, +¥Pw, w, ~N(@0Q,)
Vk =H/ X +Vv, v ~N(O,R)

Initialize X(ty) =%,
Po = E{%(t)X" (t)}

- _ B 1

Gain KkzpkaT[HkPkaT+RJ

Update R =% —K, [Vk - Hk)ik‘]
Pk+ = [I - Kka]Pk_

Propagation Ry =@ Xy +T,U,
Poi = (I)kPk+(I)kT "'\Pka\PkT

It is clear that extended Kalman filter works well only in the region where the first-
order Taylor series linearization sufficiently approximates the nonlinear behavior of
the system. For this reason, when the estimated initial state is far from the true state,
instabilities may occur in estimation process. To overcome these instabilities EKF
can be reconfigured by adding the second-order terms in Taylor series, but in that
case the computational burden becomes important factor. Therefore in practice this
standard EKF has remained the most popular method for nonlinear estimation
problems. Other filters (like Unscented and Particle Kalman filters) are investigated
only when the performance of the standard EKF is not sufficient, and the quantity or

the performance of the sensors is limited [4].
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In this thesis EKF is used for satellite attitude determination algorithms and several
sensor measurements are fused through EKF. The details about this system are given
in the following sub-chapters. However, for a satellite test setup system, it is
experienced that the performance of the EKF is insufficient because of the constraint
on the sensor types used. Therefore the Unscented Kalman filter (UKF) algorithm is
studied on this test setup system. The details about the satellite test setup and UKF

are presented in Chapter 4.

3.1.4 Filter Tuning

The performance of the Kalman filter depends on the filter tuning: the selection of
the covariances matrices P, , Q and R. Filter tuning has two main objectives: to
obtain maximum estimation accuracy and to converge to an accurate estimate timely
[3]. The P, matrix determines the rapidity of the initial convergence and this matrix
has no contribution on the steady-state performance of the filter. A P, matrix with
large entries, compared to the Q and R, provide a rapid initial convergence on

estimation. In filter, the tradeoff between the rapid tracking of disturbance noise

induced state variations is determined by the selection of the covariance matrices Q
and R [3]. These matrices filter also the measurement noises. The Q andR also
determine the filter stability in steady-state condition. Generally the values of Q is
selected as the one hundredth or one thousandth of the P, ; and the measurement

noise level determines the value of R matrix.

3.2  Satellite Attitude Determination System Structure

This section presents Kalman filter based satellite Attitude Determination System
(ADS) structure that processes the sensor measurements to obtain attitude knowledge
of the spacecraft. The block diagram of the ADS constituted for the hypothetical
LEO satellite is given in Figure 3-1.
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Figure 3-1: Satellite Attitude Determination Block Diagram

In this system the standard extended Kalman filter is applied to the sensor outputs in
order to fuse different types of measurements and to acquire the angular rates and the
attitude of the vehicle. The sensor packet of this system contains rate gyroscopes,

magnetometers, sun sensors and a star sensor (see Section 2.4).

ADS contains six different modes which are created with respect to the different
sensors combinations by considering sensor outputs rates and sensor availability at
different orbital positions and at different mission phases (coarse or accurate attitude
determination). For instance, the initial detumbling phase of the satellite after the
separation from the launcher is taken into consideration. During this phase the only
sensor can be used is the magnetometer and the main aim is to damp the satellite’s
motion, to control the angular rates. For this reason an attitude determination mode

that estimates satellite’s angular rates is prepared. Furthermore, when the star sensor
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is exposed to the Sun lights directly, it is not possible to obtain measurements from
star sensor. For this reason during this period star sensor is closed and attitude
estimation filters are fed by other sensors measurements. On the other hand, when
satellite is in the eclipse of the Earth, it is not possible to use Sun sensor. During the
eclipse periods star sensor provides accurate attitude measurements by working

together with the rate gyroscopes and the magnetometer.

The modes prepared for the satellite ADS, the function of the related mode, the

sensor used and the state estimated are summarized in the following Table 3-4.

Table 3-4: Satellite ADS Modes

Function ADS Sensor Used Estimated
Mode State Vector

Angular Rate Mode-1 Magnetometer R = a}SB
Estimation:
Coarse Full State Mode-2 Rate Gyros o_[~B 4
Estimation: X= [w'B q]T
Coarse Full State Mode-3 Rate Gyros + R = [&)B Q]T
Estimation: Magnetometer 18
Coarse Full State Mode-4 Rate Gyros + g = [ OB q]T
Estimation: Sun Sensor 18
Accurate Full State | Mode-5 Rate Gyros + R = [&)B Q]T
Estimation: Magnetometer + Sun Sensor 1B
Accurate Full State | Mode-6 Rate Gyros + Star Sensor o _ [A B A]T
Estimation: X=10e

In the ADS structure, sensor availability is flagged for each sensor. Related flag
values is equal to one when sensor is available and give an outputs, otherwise it gives
always zeros values. Furthermore, a sub-module named ADS mode selection is
prepared in order to select suitable ADS mode depending on the sensor availability
knowledge’s during the orbit navigation. This module output feed the Kalman Filters
module and suitable Kalman filter algorithm is run. The details about the ADS

modes are given respectively on the following subsections.
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3.3 Angular Rate Estimation at Detumbling Mode

This section presents an extended Kalman filter algorithm that estimate the
approximate angular rate of the satellite from magnetometer measurements. This
estimator is planed for the initial detumbling phase of the satellite’s life after
separation from the launcher. The rate gyroscopes normally provide direct
measurements of the body angular rate. However, these sensors are rarely used due
to their power and cost constraints [2]. For this reason in this phase angular rate
estimation is done using only magnetometer measurements. Magnetometers measure
the geomagnetic field vector with respect to the satellite’s body. The rate of change
of these vectors relative to the body axes are used to extract the body angular rates.
In the following explanations, first the system model is given. Then, measurement

model and next the EKF steps are given in details.

System Model:

The dynamic model given in Eq. (2.1.3) is used in this EKF and this expression can
be rewritten as follows. This expression can be also redefined in terms of the orbit

referenced body angular rates by using the Eq. (2.1.8) as follows:
- B -1 ~B B B
02 =17 (@ lwf +7°) (3.3.1)
0% = ~Cewd =1~ @L 1wl +7°)-Clwd (33.2)

The last term in the Eq. (3.3.2), C2w?2 , is normally in the same order of magnitude

as the disturbance torques. Therefore, it is modeled as system noise with the

disturbance torques acting on the satellites.

The discrete-time system model which will be used in the EKF can be rewritten as

follows:

G- B G+
Xt = Oopyyy = Py X LUy +5, (3.3.3)
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with,

@, =(I +F, .dt) (3.3.4)
_ (%K)

F. B (3.3.5)

r,=1"dt (3.3.6)

s, =N(0,Q) (3.3.7)

where Q is the discrete zero mean system noise covariance matrix

Measurement Model:

In EKF, the measurement model is formed by making use of the small-angle

approximation of the direction cosine matrix:

1 v -0
Coky=|l-w 1 ¢ (3.3.8)
6 -¢ 1

By reducing the sampling rate dt, it is possible to acquire small rotations between
two successive sampling instances. Furthermore, it can be assumed almost constant
angular rates during sampling period Kk, and as a result of this the direction cosine
matrix can be redefined by using these small roll, pitch and yaw rotation angles as

given in the following expression:

P = a)ng(k).dt
0, = a)gBy(k).dt (3.3.9)
Vi = a)ng(k)'dt

CEM) ~ 1, + Ao (k)] (3.3.10)
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0 wgg, (K).dt —a)gBy(k)dt
Al (0] =| - 0, () dt 0 o, (K)dt (33.11)
a)gBy(k).dt — w5y, (K)dt 0
In this algorithm, the relationship between two successive magnetic filed

measurement vectors is taken as the angular rate measurement and this relation can

be formulated as follows:
Vins (K) = C5 (K) Vyyag (k = 1) (3.3.12)
The measurement model defined for these successive measurements is defined as:
Y(K) = Wy = H(K)X(K) + m(k) (3.3.13)

with, m(k) = N(0,R)andR is the discrete zero mean measurement noise covariance

matrix.

Finally the measurement matrix used in EKF is derived by using the following steps:

&/MAG = Vuac (k) —Vmac (k -1)
= Cg (K)Vyag (K =1) = Vyae (K =1)

(3.3.14)
= [Cg (k) - |53 ]VMAG (k=1)
= A{wgs (k)}'VMAG (k-1)
H = AV (K=D)
o,
0 _VMAsz(k _1)'dtmeas VMAny(k _1)'dtmeas (3315)
= VMAsz (k - 1)‘dtmeas 0 - VMAGfx (k - 1)'dtmeas
_VMAny(k _1)‘dtmeas VMAGix(k - 1)'dtmeas 0
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Extended Kalman Filter Algorithm:

Here, the EKF steps for ADS Mode-1 are given. Actually these explanations are just
a repetition of the algorithm given at Section 3.1.3 for EKF. The first two steps are
running each sampling time and when the measurements come from the

magnetometer the following steps are executed.

1. State vector propagation using Eq. (3.3.2)

R =0 Xy +T U, +5,

2. Covariance matrix propagation using Eq. (3.1.31)

Poi = q)kpk+q)kT +Q

3. Kalman Gain computation using Eq. (3.1.33)

K,=PH, [HkPk‘HkT +RJ1

4. Innovation computation using Eq. (3.1.35)

€ =Yy — HX|I+1

5. State Update using Eq. (3.1.36)

ot - ~ n_
K1 = Xy — Kk [yk - Hka+1]

6. Covariance Update using Eq. (3.1.37)

Pk++1 = [I - Kka]Pkll
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Simulation Results:

The simulation of the Kalman Filter Based Satellite ADS is run for Mode-1 for 20
minutes at 1 Hz sampling time and the results that show the performance of the
estimation are given in the following figures. In this simulation sampling time for the

magnetometer measurements is also taken as 1 Hz.

The real and estimated body angular rates and estimation errors can be seen in the

following Figure 3-2. These results show that the estimation error does not

exceed0.2°/sec for all three components of the angular rates.

In order to point out the performance of the Mode-1, Monte Carlo analysis is also
performed to the system. The results of the Monte Carlo analysis provides to
determine the statically distribution characteristics of the estimation error. The mean

4y and standard deviation o, of the estimation errors are computed recursively

between the estimation convergence time (150 sec) and simulation end time (1200
sec) for each simulation. In total, 20 simulations are run to determine the estimation
performance. The results obtained for each simulation are given in the Figure 3-3.

The results given in the Table 3-5 are obtained by computing the mean values of x

and oy obtained at the end time for each simulation.
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Table 3-5: Mode-1 Statistical Results of the Estimation Error

uy (°lsec) | o, (°/sec)
Cbgsfx err. 0.000 0.090
GA)C?BJ err. 0.016 0.094
é)gafz err. -0.026 0.085

Consequently, from the results of Mode-1 given above, it is observed that the
estimated parameters converge to the real one with an acceptable accuracy and this

convergence time is approximately 150 seconds. The estimation error after the
convergence is in the band interval of +0.2°/sec. Regarding to the statistical

computations, some amount of bias is seen on the estimation of @3, , and wg, ,;
however, the standard deviation for all three components of the @@, is about

approximately 0.09°/sec and these results shows that Mode-1 perform a successful

estimation for detumbling phase of the satellite.

3.4  Coarse Full State Estimation

In this section, three EKF based estimators are presented that estimate the inertially
referenced body angular rates (@, ) and the attitude (quaternions @) of the satellite
by using rate gyroscope, magnetometer and sun sensor measurements for suitable
coarse attitude determination. These sensor combinations do not require too much

power.

All of the three estimators use rate gyros as the inertial sensor while for Mode-2 rate
gyro is the only sensor available. Mode-3 includes a magnetometer used as a
reference sensor in addition to rate gyros. This latter mode is suitable for the eclipse
periods of the satellite. Mode-4 may be used when sun sensor is available. Thus,

Mode-4 fuses the measurements from the rate gyros and Sun sensor.
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The detailed explanations about these three modes are given in the following
sections. First, the system model which is common for all these modes are explained.
Then, the measurements models related to the particular ADS modes are given.

Finally the simulation results are presented.

System Model:

The dynamic and kinematics model given in Eq. (2.1.3) and Eq. (2.1.6) can be

rewritten as follows:

B

02 =17 (@B 1wf +7°) (3.3.16)

g :%Qng (3.3.17)

The discrete-time system model which will be used in the EKF is formulated as

follows:

fen=lop ] =@, & +Tu, +s, (3.3.18)

with, @, =(I + F,dt); F =0f, (8;,k)/6% ; T, =17t and s, = N(0,Q) where

Q is the discrete zero mean system noise covariance matrix as before.

Measurement Model:

Rate gyros measure directly the inertial referenced body angular rates @y, so the
measurement model in discrete-time can be defined as follows:

Yre (K) =g (K) =hgg (X, Vi, k) = Hpg (K)X(K) + Mgg (K) (3.3.19)
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with x(k) = [a),BB (k) ¢ (k)] "is the state vector, Hg;(K) is the measurement matrix
for rate gyros Hgg(K)=0hgg ()?,ZH , k)/ OX,,,- Here, mg(k)=N(0,R;;) is the
discrete zero mean measurement noise with R, covariance matrix of the rate gyros.

Then the measurement matrix H.g is:

Hee = [|3x3 03x4] (3.3.20)

Magnetometer measures directly the magnitude of the magnetic field with respect to

the satellite body axis frames (see Section 2.4.3). Magnetic field direction vector

expressed in orbital reference frame (MAG®) are computed by using the IGRF
model and the measurement model defined in body frame are created by using the

rotation matrix from orbit to body.

yMAG (k) = MAGmeas = Cg ' MAGO +Vyvac

= hMAG(Xk,Vk,k)z H yyac KIX(K) +my, .6 (K) (3.3.21)

where, m,,,;(K) =N(0,R,,c) is the discrete zero mean measurement noise with
Ruac covariance matrix of the magnetometer. TheH,,; is extracted by the

linearization of the measurement model as follows:

H MAG = [03X3 H 1MAG H 2MAG H 3MAG H 4'MAG ] (33223)
d ¢ d;
Hiye =216, -4, 4, | MAG® (3.3.22b)
q3 - A4 -0,
_qz Q1 _Q4
H2ye =2[ 6, 4, G; | MAG® (3.3.22¢)
‘j4 qs _QZ
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-d; 4, q
H3u =2(-4, -6, 6 | MAG® (3.3.22d)
4 49, 4G,
A4 ‘j3 _QZ
H4,.=2-6 G, 4 |MAG®° (3.3.22¢)
qZ _ql q4

Sun sensor measures the Sun position vector defined in the satellite body axis

frames and the unit Sun position vector expressed in orbital reference frame (S°) is
computed by using the Sun position model (see Section 2.4.2). The measurement

model defined in body frame are formed by using the rotation matrix from orbit to

body as follows

ySUN (k) = Smeas = Cg -§° + Vaun

= hgyy (X, Vi, K) = Hgyy (K)X(K) + Mgy (K) (3.3.23)

As seen from this last equation, measurement models of the Sun sensor and

magnetometer have the same structure. So, the measurement matrix Hg,, can be

expressed by rearranging the H,,,; as follows:

Hsun :[03x3 Higow H2gn H3guy H4SUN] (3.3.24a)
4 6 q
Hig,y =2/4, -6, 4, |S° (3.3.24b)
q3 _q4 _Q1
_qz ql _CI4
H2gw =2 4 6, G |S° (3.3.24¢)
Q4 Q3 _(jz
_qa j ql
H3uw =2/-4, -6, ¢ |S° (3.3.24d)
9 6 4
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| S° (3.3.24e)

Extended Kalman Filter Algorithm:

The EKF used for ADS Mode-2, Mode-3 and for Mode-4 has the same structure with
the steps given in Section 3.3 which is based on the algorithm explained in section
3.1.3. The main difference between these ADS modes are the measurement matrix
and the measurement noise covariance matrix that is related to the sensors used. In
the following equations the measurement and noise covariance matrix for each

coarse ADS modes are listed respectively.

Ruop 2 = I5x3-Ree (3.3.25)
Hyoo > = Hge (3.3.26)
Ryop 3 = [ ixs Reg O3 } (3.3.27)
2 0y lixs-Rume
Hyop o = | Heg } (3.3.28)
- _HMAG
Ry, <| R Oua } (3.3.29)
- L 055 I3x5-Rsun
Huoo s = :Re} (3.3.30)
L' "SUN

Simulation Results:

The Satellite ADS simulation is run at 5 Hz sampling time for 300 seconds at each
coarse attitude determination modes. Results obtained for each mode are given
separately in the following sections. The measurement sampling time for the each

sensor also 1s selected as 5 Hz.
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Mod-2 Results

ADS Mode-2 use only rate gyros measurement to estimate the state vector. The real

and estimated states and estimation errors are given respectively in the following

Figure 3-4, Figure 3-5 and Figure 3-6.
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Regarding to the Mod-2’s estimation results, it can be clearly seen that it is not

possible to accurately estimate the attitude by using only rate gyros measurements

when the initial values of the real and estimated states are different. Therefore Monte

Carlo analysis is applied only to the estimated angular rates for this Mode-2. The

statistical results are taken by repeating the simulation 20 times for Mode-2. The

mean /i, , and the standard deviation o of the estimation errors are given in the

Figure 3-7, Figure 3-8 and Table 3-6.
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Table 3-6: Mode-2 Statistical Results of the Estimation Error

ty (°lsec) | o, (°/sec)
aA)lBafx err. 0.000 0.0125
C‘A)l?afv err. 0.000 0.0097
(‘A)l?afz err. 0.000 0.0163

Consequently, Mode-2 shows a good estimation performance for only angular rate
estimation. It is observed that the accurate attitude estimation can not be realized
without using a reference sensor. The only possibility to get also good attitude
estimation in Mode-2, is to have the same initial values for real and estimated states.
Regarding to the results, it is seen that the convergence time for angular rate
estimation is approximately 5 seconds. The angular rate estimation error is in the

band interval of+ 0.03°/sec. From the statistical computations, standard deviation of

the estimation error is obtained approximately 0.015°/sec.

Mod-3 Results

ADS Mode-3 use rate gyros as an inertial sensor and magnetometer as a reference
sensor in the estimation of the angular rate and attitude of the satellite. In order to
examining the performance of Mode-3, a motion profile containing sinusoidal part
followed by a fixed attitude part is used. The initial attitude angles are given as
¢=60=w =20°. The real and estimated states and estimation errors under this

defined motion profile are given respectively in the following Figure 3-9, Figure

3-10 and Figure 3-11.
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Regarding to the Mod-3’s simulation results, it is seen that the performance of the
attitude estimation is not successful. The only relatively satisfactory estimation is
obtained in pitch angle @, but during the attitude hold motion the estimation start to

diverge from the real values. This divergence can be seen also in the yaw angley .
The roll angle ¢ estimation obtained is very noisy. The inaccuracy of attitude
estimation has a negative effect on the angular rate estimation. Since the pitch angle

estimation is better compared to the other attitude angles’ estimation, the c?),BBiY also

is stable. However different estimation error behaviors are obtained for the others

angular rates during the sinusoidal changing attitude and fixed attitude profiles.

Monte Carlo analysis is applied and the statistical results are calculated during

simulations. Each simulation is repeated 20 times for Mode-3. The mean x; and the

standard deviation o, values of the estimation errors are given in the following

figures and Table 3-7.
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Table 3-7: Mode-3 Statistical Results of the Estimation Error

Sinusoidal Motion Fixed Attitude
>2err lu)Z O-X IIJX O-X
aaﬁafx err. (°/ sec) 0.000 0.0082 | 0.000 0.0006
aA)IBBJ err. (°/sec) 0.000 0.0095 | 0.000 0.0007
aA)IBBJ err. (°/sec) 0.000 0.0108 | 0.000 0.0005
qlerr -0.1785 0.0067 | -0.1728 0.0072
4, -0.0138 0.0268 | 0.0057 0.0283
err
qmr -0.0317 0.0467 | -0.0645 0.0381
4. -0.0199 0.0256 | 0.0139 0.0080
err
i (0 -20.8956 | 1.4281 | -19.6820 | 2.0353
¢err ( )
0 °) -0.6059 2.5354 | -1.7041 3.0326
err
l/}e” ©) -3.3871 5.1887 | -3.3795 5.0734

Consequently, Mode-3 results point out that the magnetometer is not sufficient to
obtain a successful attitude estimation performance. The results of the Monte Carlo
analysis also show the estimation performance statistically and it is seen that
magnetometer measurements provide better attitude estimation for the pitch and yaw
angles. The reason of the bias problem on the roll angle estimation may be the type
of the orbit selected for the hypothetical satellite and as this satellite navigates in a
nearly polar orbit, the magnetic filed measurements may cause accuracy problems on
this roll axis which is nearly parallel to the polar axis of the Earth. It can be also
expressed that one reference sensor is not sufficient to preserve the convergence in

case of the attitude hold motion.

Mod-4 Results

ADS Mode-4 uses rate gyros as inertial sensors and a Sun sensor as the reference

sensor. Sinusoidal changing attitude and fixed attitude motion profiles are used again

The initial attitude angles are given as ¢ = @ = = 20°. The real and estimated states
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and estimation errors under this defined motion profile are given respectively in the

Figure 3-18, Figure 3-19 and Figure 3-20.
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Figure 3-20: Mode-4 Real and Estimated RPY Angles

The results of Mode-4 show that by using Sun sensor as a reference source, a
sufficient performance for coarse attitude estimation is obtained, since Sun sensors
are more accurate sensors then magnetometers. However, the divergence problem for
the attitude hold motion can be seen also in Mode-4. This problem can be resolved
by using more than one reference sensor in ADS. This situation is studied in Mode-5

below.

Statistical results also are taken by running the Monte Carlo analysis 20 times for

Mode-4. The mean p, and the standard deviation o of the estimation errors are

given in the following Figure 3-21 to Figure 3-26 and Table 3-8.
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Table 3-8: Mode-4 Statistical Results of the Estimation Error

Sinusoidal Motion Fixed Attitude

Xerr Hy Oy Hy Oy
~ . 0.0091 . 0.0006

a),BU err. (°/sec) 0.000 0.000

~ 0.0115 0.0007

a)IBBfY err. (°/sec) 0.000 0.000

~ 0.0117 0.0005

a)IBsz err. (°/sec) 0.000 0.000

q -0.0046 0.0131 -0.0219 0.0107
lerr

q -0.0022 0.0122 -0.0037 0.0013
2err

q 0.0040 0.0099 0.0171 0.0072
3err

q -0.0044 0.0017 -0.0035 0.0006
4err

n o -0.3304 1.9001 -2.8894 1.4371

¢err ( )

A -0.6710 1.5964 -1.1922 0.3186

99”’ (0)

l/}err (0) 0.3708 1.4419 2.5908 1.0659

As a result, Mode-4 provides a successful attitude estimation performance for coarse

state estimation.

Consequently, regarding to the simulations results obtained for Mod-2, Mode-3 and
Mode-4, it can be stated that rate gyros are sufficient to estimate the body angular
rates, but for the attitude estimation a reference sensor is necessary. Magnetometer
does not provide a sufficiently accurate attitude determination due its noisy
measurements. Sun sensor is a more accurate sensor then magnetometer and
therefore the estimation performance obtained by using this sensor is better.
However, the divergence problem for the attitude hold motion may not be prevented
by using an accurate reference sensor alone. The reason of this insufficiency may be
the lack of the attitude knowledge for the some type of the rotations; observability
problems may occur depending on the rotation and measurement axis and this may
cause the divergence problems. In the following sections, more than one reference

sensor cases will be examined.

89



3.5 Accurate Full State Estimation

In this section, two EKF based estimators are presented to be used for more accurate
attitude determination. The first EKF, Mode-5, fuses the rate gyros with
magnetometer and Sun sensor measurements. The second one, Mode-6, uses star

sensor measurements instead of sun sensor.

In the following sections, first the common system model is given; then, the
measurements models related to the ADS modes are presented. Finally the

application of the EKF steps is repeated.

System Model:

The system model used in EKF for Mode-5 and Mode-6 is the common system that
explains in the previous Section 3.4. The dynamic and kinematics model of the

satellite can be seen in the Egs. (3.3.16, 3.3.17, 3.3.18).

Measurement Model:

The measurements model (the rate gyros, magnetometer and sun sensor models) used
in EKF for the Mode-5 and Mode-6 can be seen with details in previous Section 3.4.
Here the additional sensor used is the star sensor and its measurement model is given

in the equations listed below.
Star Sensor selected for the ADS gives directly the attitude measurements, the

measured quaternions as outputs. The measurements model in discrete-time can be

defined as follows:

Y51 (K) = Omeas (K) = hst (X, Vi -k ) = Hgy (K)x(K) + Mgy (k) (3.3.31)
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with x(k) = [a),?3 (k) ¢ (k)] "is the state vector, Hgp (k) is the measurement matrix
for star sensor Hgr (k) =0ohgr ()qu +1,k)/ 0%, - Here, mgr (k)=N(0,Rg7) is the discrete

zero mean measurement noise with Rg;r covariance matrix of the rate gyros. After
linearization of the measurement equation, measurement matrix Hgr is obtained as

follows:

Hst =[0ss  laxa] (3.3.32)

Extended Kalman Filter Algorithm:

The EKF used for ADS Mode-5 and Mode-6 has the same structure with the steps
given in Section 3.3 which is based on the algorithm explained in Section 3.1.3. The
main difference between these accurate ADS modes are the measurement matrix and
the measurement noise covariance matrix that is related to the sensors used.
Following equations gives the measurement and noise covariance matrix for each

accurate ADS modes respectively.

13x3-Reg 033 03x3
Rvoo s=| 0Osx3 I3x3-Rmac 03x3 (3.3.33)
033 033 3% 3-Rsun
HRG
Hyoo s =| Huwae (3.3.34)
_HSUN
13x3-Reg O3x 4
R =
MOD 6 04 5 lixa-Rer (3.3.35)
'H
Huop 6 = HRG} (3.3.36)
L ST
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Simulation Results:

The Satellite ADS simulation sampling time and measurement sampling time for the
each sensor is selected as 5 Hz. Results are obtained by running the simulations

during 300 seconds and these results are given separately in the following sub-

sections.
Mod-5 Results

ADS Mode-5 use rate gyro, magnetometer and sun sensor measurements in the
estimation of the angular rates and attitude of the satellite. As applied in previous

sections, a motion profile containing the sinusoidal and fixed attitude is tested. The

_ _ _ 0o
initial attitude angles are given as ¢=0=y =20" The real and estimated states and

estimation errors are given respectively in the following Figure 3-27, Figure 3-28 and

Figure 3-29.

o™ & o EST o™ Est.Ermr.

j,y [degls]

oy ESLE. [deg/s]

Ojpy [deg/s]

Oppy Est.Erm. [deg/s]

o, [deg/s]

oy, ESLE. [deg/s]

time [s] time [s]

Figure 3-27: Mode-5 Real and Estimated Angular Rates
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In this mode a very accurate attitude determination is achieved by using two
reference sensors. The accuracy and the divergence problem on the estimation, seen

in Mod-3 and Mod-4, are not observed in this mode due to two reference sensors.

Statistical results are taken by running Monte Carlo simulation 20 times. The mean

4y and the standard deviation o, of the estimation errors are given in the Figure

3-30 to Figure 3-35 and Table 3-9.

Sinusoidal Motion Fixed Attitude

@, Mean
(4 3 o, Mean

[deg/s]

i 1 1 L 1
1} a0 100 180 200 250 300

[deq/s]
o

1} a0 100 180 200 250 300

[den/s]

I I 1 1 180 200 250 300
o 50 100 150 200 250 300 time (s
time ()

Figure 3-30: Mode-5 Mean of the Angular Rates Estimation Error

Sinusoidal Motion Fixed Attitude
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Figure 3-31: Mode-5 Standard Deviation of the Angular Rates Estimation Error
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Figure 3-32: Mode-5 Mean of the Quaternions Estimation Error

4ty Std.Deviation

Sinusoidal Motion

ot 1 Std. Deviation

b2

“n 100 200

time (s)

%10

time (g}

4 1 Std Deviation

5 i i
0 100 200

o

%10

4

4y td.Deviation

Fixed Attitude

10-4 1y Std. Deviation

100 200
time (g)

ty Std Deviation

300 0 100 200 300

time (g)

4 1, Std.Deviation

time (s)

Figure 3-33: Mode-5 Standard Deviation of the Quaternions Estimation Error
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Figure 3-34: Mode-5 Mean of the RPY Estimation Error
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Figure 3-35: Mode-5 Standard Deviation of the RPY Estimation Error
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Table 3-9: Mode-5 Statistical Results of the Estimation Error

Sinusoidal Motion Fixed Attitude

><err lu)Z O-X IIJX O-X
A . 0.0103 . 0.0006

a),BU err. (°/sec) 0.000 0.000

~ 0.0160 0.0007

a)IBBiY err. (°/sec) 0.000 0.000

A 0.0075 0.0007

60'387Z err. (°/sec) 0.000 0.000

q 0.000 0.0004 0.000 0.0003
lerr

q 0.000 0.0003 0.000 0.0002
2err

q 0.000 0.0002 0.000 0.0002
3err

q 0.000 0.0001 0.000 0.0001
4err

2 0 0.0204 0.2696 -0.0054 0.0327

¢err ( )

) 0.0240 0.2611 -0.0045 0.0311

eerr (0)

l/}err (0) 0.0257 0.2597 0.0015 0.0181

Consequently, Mod-5 results show that the accurate full state estimation is obtained
by using one inertial and two reference sensors. Second reference sensor prevents the
divergence in the estimation by using Mode-3 and Mode-4 that occurs in the case of

the attitude hold maneuver. Mode-5 attitude estimation error is in the band interval of

+0.5° for a sinusoidal motion defined in simulations. This error values decrease

when the satellite does an attitude hold maneuver and this value is approximately

+0.05°.

Mod-6 Results

ADS Mode-6 use rate gyro and star sensor measurements for the accurate full state

estimation. In his part same motion profile is used as before. The initial attitude
angles are ¢ = @ = = 20°. The real and estimated states and estimation errors under

this defined motion profile are given respectively in the following Figure 3-36,

Figure 3-37 and Figure 3-38.
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Figure 3-38: Mode-6 Real and Estimated RPY Angles

Consequently, the simulation results obtained for Mod-6 demonstrates extremely
accurate attitude determination since one inertial sensor and one very accurate
reference sensor, which both has a linear measurement models, are used together in
ADS. It means that since satellite’s states are measured directly by accurate sensors,
good state estimation is obtained. The results of the Monte Carlo analysis are given
in the figures Figure 3-39 to Figure 3-44 and in Table 3-10 for sinusoidal attitude and
fixed attitude profiles.
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Figure 3-42: Mode-6 Standard Deviation of the Quaternions Estimation Error
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Table 3-10: Mode-6 Statistical Results of the Estimation Error

Sinusoidal Motion Fixed Attitude

Xerr Hy Oy Hy Oy
~ . 0.0105 . 0.0007

a),BU err. (°/sec) 0.000 0.000

~ 0.0116 0.0007

a)IBBfY err. (°/sec) 0.000 0.000

~ 0.0128 0.0006

a)lBsz err. (°/sec) 0.000 0.000

q 0.000 3e-5 0.000 2.5e-5
lerr

q 0.000 3e-5 0.000 2.0e-5
2err

q 0.000 3e-5 0.000 2.5e-5
3err

q 0.000 le-5 0.000 le-5
4err

n 0 0.0228 0.2641 -0.0016 0.0020

¢err ( )

é 0 0.0226 0.2506 -0.0037 0.0029
err ( )

l/}err (0) 0.0227 0.2628 -0.0017 0.0020

As a result, Mode-6 provides very accurate attitude estimation. Attitude estimation
error is in the band interval of +0.4° for a sinusoidal motion. This error values
decrease to +0.005° for an attitude hold maneuver. Monte Carlo analysis show that
the standard deviation values of the attitude estimation is approximately +0.26° for

sinusoidal motion profile and approximately +0.003° for attitude hold maneuver
profile and the mean values of the errors shows that there is no divergence problem

on the state estimation.

Regarding to the results of the Mode-5 and Mode-6, it can be concluded that highly
accurate full state estimation can be achieved by using one inertial and more than one
reference sensors. These reference sensors give the components of the direction
vector as measurement; however the rotation of the satellite about that direction is
unknown and as a result the divergence problem occurs on estimation and estimation
error increases. In order to resolve this observability problem, it is necessary to use a
second reference sensor; but in that case the mounting location and the direction of

the source of the second sensor will become an important parameter that must be
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taken into consideration. The divergence problem and bad estimation will occur
again when the measured direction vectors of these two sensors become parallel to
each other. On the other hand, as seen at Mode-6, it is possible to obtain a perfect full
state estimation by using one accurate inertial and one accurate attitude sensor if the

measurement model is linear (H,, =1), these sensors measure directly the full state.

Here, it is suitable to remember the working principal of the star sensor. As mention
in the section 2.4.4, star sensor measures star coordinates by comparing its

measurements with known star directions from its star catalog.

3.6 A Multimode Attitude Determination System

This section presents ADS mode selection module and gives the performance of the
ADS during the orbit navigations. Here the motivation is to generate an ADS which
uses various sensors according to their availability. For this reason sensor flag logic
is created for each sensor that is based on the availability of the sensor. This flag
logic gives one as output when sensor is available at its measurement frequency and

it gives zeros for other cases.

A sub-module named ADS mode selection is prepared that selects suitable Kalman
Filter algorithm depending on the sensors activity and it sends the ADS Mode
knowledge as output to the Kalman Filter Module. Here, sun sensor and star sensor
availability are related to the satellite orbital position. For instance, sun sensor flag is
zero when the satellite is in the Earth eclipse and on the contrary star sensor flag is

zero for the cases that sensor is exposed to the sun light.

This autonomous ADS simulation is run for 1 orbital time period (approximately 100
minutes) at 5 Hz (sampling time = dt ). Different measurements rates are appointed

to each sensor: measurement sampling rate for the rate gyros is 0.2 sec. (dtx1), for
magnetometer it is 1 sec (dtx5), for sun sensor it is 0.4 sec (dtx2), and finally for
star sensor it is 0.6 sec (dtx3). The graphics that show the sensor flag values and the

selected ADS mode values is given at the following Figure 3-45.
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Figure 3-45: Sensor Flags and Selected ADS Mode

Regarding to the selected ADS mode number, related Kalman Filter algorithms is
run; then the estimated state X values and the system covariance matrix P are
conserved between the mode transition, and they are used as initial inputs to the next
ADS mode. The working principal of this module is simulated on the following
figures. The Figure 3-46 shows the selection of the ADS mode and related KF
algorithms when rate gyro and magnetometer give measurements. The second Figure
3-47 shows the situation and mode transition phases when Sun sensor becomes
active and give a measurement. From these figures, it can be seen that the outputs X

and P are used as initial inputs to the next selected ADS mode.
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Figure 3-47: Mode Selection Scenario-2

In order to determine the performance of the autonomous ADS during one orbital
period time, a motion profile scenario that contains several attitude maneuvers is
formed. In the Figure 3-48 the simulation results of the attitude estimation are given

for this motion profile.
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Figure 3-48: Attitude Estimation Performance For Several Successive Maneuvers

Regarding to the results, it can be concluded that the successful attitude
determination is obtained by the multimode ADS. For this kind of motion profile that

contains successive attitude maneuvers, the attitude estimation error is approximately
+0.2° when star sensor is not used. When the star sensor is available, the estimation

error decreases to approximately +0.01°. Actually, these numbers do not show the
estimation performance clearly. Note that Monte Carlo simulation results given in
the previous sections are the true performance of each mode. However by using a

multimode AS, the initial convergence problem is alleviated.
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3.7 Conclusion

In this third section, Kalman Filter Based Attitude Determination System is presented
and it is shown that to increase the attitude determination accuracy different
reference sensors shall be used. A multimode attitude determination is also

demonstrated successfully.
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CHAPTER 4

ATTITUDE DETERMINATION FOR THE SATELLITE
ATTITUDE CONTROL TEST SETUP

This chapter presents the Kalman filter based attitude determination system prepared
for the satellite control test setup. Here, the main objective is to generate a cost-
effective, relatively accurate and stable attitude determination system by using only
an Inertial Measurement Unit (IMU) including 3 axis rate gyros and 3 axis
accelerometer. For this purpose two different Kalman filters are prepared; the first
one is based on extended Kalman filter and the second one is based on unscented

Kalman filter algorithms.

In the following sections the information about the satellite test setups, the details
about the rotational motion model test setup, the sensor measurement models used,
the attitude determination system structure and the results and of the estimation

algorithms are given and discussed respectively.

In this thesis, a test setup model is created named Satellite Attitude Determination
and Control Test Setup (SACoTS) and the following sections contain its rotational
motion model, its sensor measurement models and the attitude determination

algorithms prepared specially for SACoTS depending on the sensors used.

41 SACO0TS Simulation Model

In this section, rotational motion model of a ground based satellite test setup is
derived. Basically the dynamics and kinematics equations are similar to the satellite’s
motion equations that given in Section 3.1. However there are some differences

because of the gravity and the environment effects. The main difference is the torque
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acting on the system due to the eccentricity between the center of gravity (CG) and
center of rotation (CR). The air bearing table has a 3 axis rotational freedom on a one
point called CR and in reality the CG never coincides with the CR due to the mass
distribution which is not uniform on the air bearing table. The second difference is
to the environmental characteristics. The disturbance torques level caused by the
space environment has some differences with the disturbance level existing on the
ground, in a laboratory environment. These two differences are taken in to
consideration on the SACoTS simulation model. The axis frames used in the

SACoTS are given in the following Figure 4-1.

S
Figure 4-1: Axis Frames used for SACoTS

Here, X;,Y;,Z; is the Earth-Centered Inertial (ECI) Reference Frame, X,,Y,,Z, is the
Earth-Centered Earth fixed (ECEF) Reference Frame, X,,Y,,Z, is the SACoTS
Body Axis Reference Frame that is fixed on the SACoTS and X,.Y,,Z, is the

Navigation Reference Frame fixed on the SACoTS that coincide with the center of

the Body Reference Frame. This navigation frame can also be considered as the
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orbital referenced frame that used on the satellite system but there is only one
difference between them; in SACoTS condition, this navigation frame is fixed on the

Earth, on the laboratory.

The dynamics model of the SACoTS is derived by using the Euler’s equations of
motion and the kinematics model is expressed by using the quaternions

representation. The dynamic equations of this system can be reformulated as follows:

- B -1 ~B B B B
@ = | (— Oplog + 75 +TEXT) 4.1.1)

where @;, is the dyadic form of the angular rates, | is the inertial matrix, 7, and

rS . are the internal and external torques acting to the system. z.. occurs due to

eccentricity between the CG and CR of the air bearing table. The aerodynamics and

other unknown torques can be classified as external toque sources. 7., can be

defined as follows:
Tt = Tece = Foge X MO (4.1.2)

where T is the distance vector between the CG and CR, M is the total mass and §

ecc

is the gravity vector.

SACoTS kinematics model defined by quaternions representation is given as follows.
In this kinematics model the angular rates of the body are expressed with respect to
the navigation axis frame because the attitude of the air bearing table will be defined
in this navigation frame. The turn rate of the Earth and the coordinates of the

SACoTS in terms of longitude and latitude are used in the attitude expressions as

follows:
o1
Q=§Qﬁaq (4.13)
a),EB = a)lBB - Cﬁa),“é (4.1.4)
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where C; is the direction cosine matrix from navigation frame to body frame and

o\ is the Earth turn rate expressed in navigation frame. This expression can be

written by using the latitude value of the SACoTS as follows:

o) = [a)E cos® 0 -, sinCI)]T (4.1.5)

where @ is the Earth turn rate and @ is the latitude of the SACoTS.

The dynamic and kinematics models of the SACoTS are formed in Matlab Simulink
by using the equations given below and the block diagram of these models can be
seen in the Figure 4-2. The physical propertied of the SACoTS are given in the
following Table 4-1.

w b w b .;-b
COMSTANTS E)dem_arID\slurtJance wb w b )
orues dat
iy o = ——r@ll
T dist e g7 gist et w_dat w_th [racs] —;-U Y o oh !
T_cartrol ¥os e ] il ] —_
-—b inertia i InL_w RFY
SACOTS Kinematics model
SACOTS Dynamic model
Figure 4-2: SACoTS Rotational Motion Model
Table 4-1: SACoTS Parameters
Mass (m): 150 kg
Inertia Matrix (I): 12 08 095
I=| 08 15 1.05| kg.m?
095 1.05 20
CoG/CoR eccentricity (r_ecc): 10-8
r ecc={10"| m
1078
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4.2 SACOTS Sensor Measurements Models

In this section, explanations about the mathematical model of the sensors used on
SACoTS are given. The main sensor of this test setup is an Inertial Measurement
Unit (IMU) that contains 3 axis rate gyros and 3 axis accelerometers. In SACoTS
simulations, the same rate gyroscopes measurement model given in the Section 2.4.1
is used. Therefore, this section represents only the 3 axis accelerometer measurement
model. The specifications of the sensor used on this system are given at the end of

this section.

A vehicle that moves on the Earth is exposed also to the gravitational force. For this

reason the total force acting on a vehicle can be expressed as follows:

F =ma=mg + mf 4.2.1)

where, § is the gravitational acceleration and f is the acceleration produced by

forces other than gravitational field. An accelerometer is insensitive to the
gravitational acceleration and therefore, it gives an output proportional to the non-
gravitational force per unit mass f to which the sensor is exposed along its sensitive
axis. This force is called as specific force exerted on the sensor. For instance, taking
the case of an accelerometer that is falling freely within gravitational field. In this
situation the output of the sensor will be zeros because the specific force is equal to

zero, @ = § . Conversely, in the case where the sensor is held stationary, the specific

force is not zero and the sensor will give only the gravitational force f= —gJ as

output. It is clear therefore, that knowledge of gravitational field is essential to enable
the measurement provided by the accelerometer to be related to the inertial
acceleration. Furthermore, the output of the sensor is related also to the attitude of

the vehicle for the 3 axis measurements because the accelerometers sense §

depending on their measurement axis.

In addition to this, the accelerometer will also measure the Coriolis force and

centrifugal force when the vehicle has an angular rate and angular acceleration if the
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sensor is not mounted on the mass center of the vehicle. The measurement errors
occurred by these kinds of forces are called as methodical errors and the other errors
caused by the sensor such as noises, biases, are called as instrumental errors. These

errors are listed in the following Table 4-2 as follows:

Table 4-2: Accelerometer Error Parameters

a. Methodical Errors
a.1. Angular Rate Effect
a.2. Angular Acceleration Effect
b. Instrumental Errors
b.1. Turn on Bias
b.2.i. Bias Stability
ii. Bias Stability Correlation Time
b.3.1. Random Walk
11. Random Walk Band Width
b.4. Scale Factor Error
b.5. Alignment Error

The three axis accelerometer measurement equation that gives perfect measurements

(without noise) is formulated by considering the methodical error as follows:
Zuoo (1) = F 420X T + (1) x Ty + BA)@(t) x Toe ) - G(CE) K (4.2.2)

where, @(t) is the inertial referenced body angular rates, F,.. is the coordinate
vector that define the mounting location of the accelerometer with respect to center
of mass of the vehicle and it is assumed to be fixed, thus F+20xF=0 , Cé\' is the
direction cosine matrix from body frame to navigation frame and K is the unit vector

at the gravitational force direction. The measurement equation in matrix form can be

reformulated by adding the instrumental noises as follows:

Zpcc (t)= CT) Face +o (5) IrAcc)_ g(CS)T [0 0 I]T + Wace

(4.2.3)
= Npcc (X) +Wyee
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Accelerometer instrumental error parameters listed in the Table 4-2 have the same
characteristics with error model that given for rate gyroscopes in Section 3.4.1.
However, there is only one difference about the conversion from random walk to
white noise parameter. The converter that provides the transformation from random
walk error to white noise error with 1o standard variation is given by the following

equation:

RWEy;

White _Noise=z (lo)
. y(m/sec}_ y( m/sec J_lﬂ( 1 J (4.2.4)
Jhr \3600sec ) 60 sec| +/sec

_yom (see |y m ooy 1 ( m j
= = sec = > ——
60 sec’ («/secJ 60 sec’ 60 +/Hz \ sec’

where, the unit given as Hz is the bandwidth of the random walk error.

The block diagram of the accelerometer measurement model including all the error

types defined above is given in the following Figure 4-3.

r_ace

maunting coord.

w_dot
-——-—pA Cross
Product Ecel bias_ stabilit random_noize
w_dot r_aco C = ¥ =
- = B C=AB
ALCC ACLC
-_ 33 Cross BIAS_STABILITY | RANDOM_WALK
w Froduct
LUl
w
W Cross tum_on_bias
BEr Froduct ¢
% plb o= a8 Y
33 Croms TURN_ON_BIAS
Product wla  Cross
>
Froduct ¢ aced

War_aw B C = foB

ACC_Meas

3x3 Cross

- -
g
% N ACC_
-—b Heel QuatzDCM e T 8 matrix_vactor | 3%%3] SCALE_FACTOR
b Selactor QuatzDCw Transpose J—’ my
L]
[0}

ACE_
Constant MISALIGNMENT

Figure 4-3: Block Diagram of the Accelerometer Measurement Model
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IMU selected for the attitude determination system of the SACoTS is the product of
the Crossbow Inc. called VG700AB which is a combination of the 3 axis fiber optic
gyros and 3 axis MEMS (Micro Electromechanical Sensor) accelerometers. The
specification sheet of this product is given in the Appendix C. The values of the error

determined depending on the specification document of the product are listed in the

following Table 4-3.

Table 4-3: The Specifications of the IMU

PARAMETERS RATE GYROS ACCELEROMETERS
Turn on Bias 20 °/hr (30) 12 mg (30)

Bias Stability 20 °/hr (30) 12 mg (30)

Bias Stability Correlation Time | 20's 20s

Random Walk 04 ° /\/m 1 (m/s)/\/ﬁ

Random Walk Band Width 100 Hz 100 Hz

Scale Factor Error %2 %1

Alignment Error Imrad Imrad

Resolution 0.025 °/s 0.6 mg

Range +200 ° /s +4 g

4.3  SACOTS Attitude Determination System and Algorithms

This sub-chapter presents Kalman filter based Attitude Determination System (ADS)
of the Satellite Attitude Control Test Setup. The objective of this system is to obtain
attitude knowledge of the test setup by processing the IMU measurements. The block
diagram of the ADS constituted for a SACoTS is given in the Figure 4-4.
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Figure 4-4: SACOTS Attitude Determination System Block Diagram

Two separate Kalman filters are implemented: Extended Kalman filter (EKF)

algorithm and Unscented Kalman Filter (UKF) algorithm.

The following sections contain the detailed explanations about UKF algorithms, the
results of the EKF, UKF and their comparison (The EKF’s explanations can be seen
in the Section 3.1.3).

4.3.1 Unscented Kalman Filter

This section contains the explanations about UKF. The structure of this unscented
filter is based to estimate a fixed number of parameters which have Gaussian

distribution characteristics than to estimate an arbitrary nonlinear function [4][5].
The UKF is presented for discrete-time nonlinear systems and measurement models.

The equations that define the system state vector and measurements are given as

follows:
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x(k/k+1)=f (x(k/k),u(k +1),k +1)+w(k) (4.3.1a)

y(k +1) = h(x(k + 1), u(k + 1),k +1) + v(k) (4.3.1b)

where f(X(k/k),u(k +1),k + 1) is the process model, x(k) is the state vector of the
system at time step k, u(k+1) is the input vector and w(k) is the process noise. In
the  measurement  equation y(k+1) is the  observation  vector,

h(X(k +D),u(k +1),k + 1) is the observation model, v(k) is the measurement noise.

The noises w(k) and v(k) added to the system and measurement model respectively

are assumed as Gaussian uncorrelated white noises. The expression of their

covariances can be formulated as follows:

E[w(i) w' (J)]=5;Q0) (4.3.22)
E:v(i) vT(j)} = 5;R() (4.3.2b)
E:w(i) vT(j)] -0 (4.3.2¢)

The Kalman filter update equations for the estimated state vector x(k+1/k +1) and

for the covariance matrix P(k +1/k +1) are given by the following expressions:

Kk +1/k+1)=X(k +1/k) + K(k).o(k) (4.3.3)

P(k+1/k+1)=P(k +1/k)= K(K+1)P,, (k + 1/K)KT (k +1) (4.3.4)

where v(k) is the innovation process given by;

vk+1)=yk+D—gk+1)=yk+1)—hRK/Kk+1D),uk+1),k+1) (4.3.5)
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The covariance matrix expression of the innovation process v(k) is given by;

P, (K+1/K)=P, (k+1/k)+R(k+1) (4.3.6)

where P,,(k +1/k) is the covariance matrix of the measurements and R(k +1) is the

covariance matrix of the measurement errors.

The equation that gives the Kalman filter gain is formulated as follows:

Kk+1)=P,(k+1/k)P;  (k+1/k) (4.3.7)

where P, (k+1/k) is the cross-correlation matrix between the state vector and

measurement vector.

The prediction of the system covariance matrix is given by;

P(k +1/k) = d(K)P(k/K)D" (k) +Q(k) (4.3.8)

where ®(k) is the Jacobian matrix of the system equation

The basic steps of the developed UKF are listed in the following part. The estimated

state vector X(k/k) and system covariance matrix P(k/k) are computed at time step

k by using the equations given above. The objective of the UKF algorithm is to
obtain the propagated values of X(k+1/k), P(k+1/k) and calculate the Kalman gain

K(k +1). The UKF algorithm’s steps are listed below:

1. Computation of the translated sigma o points by using P(k/k) matrix

o(k/k) < 2n columns from +,/(n+«)P(k/k) (4.3.9)
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Xo(k/K) = R(k/K)

X.(k/K) = o (k/K)+ R(k /K)

2. Computation of the weights

"ot x)

3. Computation of the predicted mean

X;(k+1/k) = f (X;(k/k),u(k),k) for 0<i<2n

2n
(K +17K) =D W, X; (k +1/K)
i=0

4. Computation of the predicted covariance

2n
P(k+1/k)=zwi [Xi(k+1/k)—>2(k+1/k)][xi(k+1/k)—f((k+1/k)]T

i=0

5. Computation of the predicted observations

Y, (k +1/k) = h(X, (k +1/k),u(k),k)

2n
Yk +1/k) =Y WY, (k+1/k)

i=0

6. Computation of the observation’s covariance
P, (k+1/k) =W, [Y,(k +1/k) = 9(k + 1/K)[Y, (k +1/k) = 9k + 1/K)['

+Wii[Yi(k+1/k)—YO(k+1/k)][Yi(k+1/k)—YO(k+1/k)]T

i=1
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7. Finally, computation of the cross correlation matrix
P, (K+1/k) =W,[X(k +1/K) = R(k +1/K)JY, (k + 1/k) = 9(k + 1/K)]

+Wi§:[xi(k +1/k) = X (k+1/0JY, (kK +1/k) =Y, (k +1/K)]|  (4.3.18)

i=1

The filter gain is then computed by substituting eqn. (4.3.16), (4.3.17) and (4.3.18)
into (4.3.7). The state vector X(k+1/k+1) is updated by using Eq. (4.3.3) with

Kalman gain and innovation values. The covariance matrix of the innovation process

is computed by using eqn. (4.3.6) and (4.3.17).

The values of the weights, it means that the selection of the K value affects directly
the estimation performance. The appropriate choice of the x reinforces the
estimation performance since the magnitude of the higher order errors are reduced,
consequently the estimation error can be diminished by tuning the x parameter [5].
The following Section 4.3.2 contains the implementations and the results of the EKF
and UKF on the SACoTS in order to estimate the full state (angular rates and

attitude) by using the IMU as a main sensor.

4.3.2 Full State Estimation of SACoTS

In this section, two types of Kalman filter used in the SACoTS Attitude
Determination System are presented. Basically, two different full state estimation
modes are prepared depending on the structure of the EKF and UKF algorithms. First
EKF is applied to the system. Next UKF is implemented in order to obtain more
accurate estimation performance. A summary of these modes, sensors and filter types

used are given in the following Table 4-4.
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Table 4-4: SACoTS ADS Modes

SACoTS ADS Modes | Sensors Estimated State Kalman
Vector Filter
Mode-S1 RG + ACC N A A EKF
ode X= [a)IBB Q]T
Mode -S2 RG+ ACC N A A UKF
ode X= [a)lBB Q]T

Monte Carlo analysis is implemented to the SACoTS system in order to determine
the performance of the EKF and UKF by pointing out the statistical distribution
characteristics of the estimation error of the angular rates and attitude. This Monte
Carlo analysis is applied to the system given at Figure 4-4 after that estimation

converged (approx. 10sec). Than, the mean values uy , and the standard deviation
values o, of the estimation error are obtained by running the system 5 minutes and

20 times for related ADS mode. A motion profile containing the sinusoidal and fixed
attitude are selected for the purpose of determining the performance of the filter for
both rich and fixed motion. The common system model, the explanation of the ADS
modes including sensor measurement models and filter algorithms are given

respectively in the following sections.
System Model:

System model used in filter is derived from SACoTS motion model. The following

equations are used to predict the estimated state vector and covariance matrix.

1. State vector prediction
The system model is used on the prediction of the estimated state. The rotational

motion and attitude differential equations in discrete time are given as follows:

R =Ry + J. fk(kk,kak)dt (4.3.19)
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g=|e2 qf (4.3.20)

62 =17 a81ag +°): let & =& 4.321a)
k+l

Dy = Oy + J.Cbkﬂ,kdt (4.3.21b)
k

A 1 AB &

q= EQNBQ (4.3.22a)
k+l

an,k = qk,k + J.an,kdt (4.3.22b)
k

2. Covariance matrix prediction
The linearized system model is used on the prediction of the system covariance

matrix and this matrix is propagated by adding the system noise covariance matrix as

follows:
Pk = Poii Ps @iy +Q (4.3.23)
where,
Dy~ (1 4+ FyAt) (4.3.24)
Feiik =w (4.3.25)
Xk+1,k

Hereafter this point, the measurement models, steps of the Kalman filters and the

results of the simulations are given respectively for each SACoTS ADS mode.
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4.3.2.1 SACoTS ADS Mode-s1

This section presents the measurement model used in EKF, the steps of the EKF

algorithms and the simulation results. The estimates stated vector is X = [C?),BB Q]T

that given in the Eq. (4.320) and the sensor packet is IMU containing 3 axis rate

gyros and 3 axis accelerometers.
Measurement Model:

The measurements equations are derived from the rate gyros and accelerometers
models given in the following equations:
Zpg = @+V = e (X) + S+, (4.3.26)

ZACC = Cb I’-acc + C?)(GB racc)_ gAT [0 0 I]T +W= hACC(X)+W (4327)

Extended Kalman Filter Algorithm:

In this section the steps of the EKF algorithms are not given again in order to avoid
repetition. The detailed explanations about the EKF steps can be seen at section
3.1.3. Here, the sensor noise covariance matrix and measurement matrix used in EKF

are given respectively for rate gyros and accelerometers.

Ly <R 0
RMOD s = 3X3-"*RG 3X3 (4328)
- 03%3 I3%3-Racc
1 00
oh.. (X
HRG:_RgX() 1o 1 o0 (4.3.29)
1o 0 1

124



_ MNyee (X) __
Acc x|
— Hx = Hee 054
05 Hace

Simulation Results:

d 4 G
CI3 qz _fh (4-3-30)
_Q2 Q3 q4
[H 0
S H _ RG 3x4
MOD Sl _03X3 HACC (4-3~31)

The SACoTS ADS Mode-sl simulation is run at 10 Hz sampling time during 5

minutes. The measurement sampling time for the each sensor also is selected as 10

Hz. The real and estimated states and estimation errors are given respectively in the

following Figure 4-5, Figure 4-6 and Figure 4-7.

Ojpy [deg/s] Ojp [deg/s]

o, [degls]

time [s]

Oppy Est.Err. [deg/s] oy ESLET. [deg/s]
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o, EStEm.

I
| |

-0.02 L
0

0.02

I
150
time [s]

100

0.0Lf — - — —

1
150
time [s]

200 300

Figure 4-5: Mode-s1 Real and Estimated Angular Rates
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Figure 4-7: Mode-s1 Real and Estimated RPY Angles

The results of Mode-s1 show that the estimation errors for both roll (¢ ) and pitch
(0) angles are about 0.5° and it can be accepted as a successful performance for this



level of accuracy and for nonexistence of the divergence problem during the attitude
hold maneuver. However, there is a significant bias problem on the third axis, yaw
(w ) angle estimation. This bias occurs due to the absence of reference measurement
on third axis. As mentioned above in section 4.3, three axis accelerometers are used
as a reference sensor by comparing the direction of measured acceleration vector and
the direction of the gravity vector; but it is impossible to measure the rotation around
the gravity vector. An additional reference sensor mounted on this third axis shall

overcome this problem.

The statistical analysis called Monte Carlo analysis also is implemented to the
system in order to determine the exact estimation performance of Mod-sl. The
statistical results are taken by running simulation 20 times for 5 minutes at 10 Hz.

The mean g , and the standard deviation o, of the estimation errors are given in

the Figure 4-8 to Figure 4-13 and Table 4-5.
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Figure 4-8: Mode-s1 Mean of the Angular Rate Estimation Error
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Figure 4-9: Mode-s1 Standard Deviation of the Angular Rate Estimation Error
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Figure 4-13: Mode-s1 Standard Deviation of the RPY Angles Estimation Error

Table 4-5: Mode-s1 Statistical Results of the Estimation Error

Sinusoidal Motion Fixed Attitude

Xerr ﬂX O-X 'ux U)Z
~B o 0.0000 0.0040 0.0005 0.0038

W5 x EIr.(°/sec)

~B o 0.0002 0.0040 -0.0004 0.0040

g y BIT. (°/sec)

~B o 0.0002 0.0040 0.0003 0.0034

g 7 €Ir. (°/sec)

q -0.0006 0.0031 -0.0070 0.0017
lerr

q -0.0003 0.0027 0.0047 0.0017
2err

q -0.0158 0.0096 -0.0362 0.0007
3err

q -0.0003 0.0022 0.0045 0.0004
4err

n -0.0116 0.3141 0.0683 0.2161

¢err (0)

%) -0.0041 0.3183 -0.0320 0.1933

eerr (0)

l/;e" (0) -1.8384 1.1190 -4.3171 0.1113

Consequently Monte Carlo results point out that the estimation performance for this
Mode-sl is successful by using only IMU, and there are no divergence and instability
problems on the estimation. However, it can be clearly observed that there is a

substantial error on the yaw (y ) angle estimation since there is no reference sensor
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along this third axis. EKF results have different estimation accuracy for different
motion types. In order to avoid this problem an additional reference sensor that uses
a different kind of reference source can be added to the system. Here it must stated
that the mounting position of this second sensor on the system and the position of the
reference source are very important. For example when a sun sensor is selected as a
second reference sensor, the light source of this sensor should not be mounted on the
same direction with gravity vector, otherwise the absence of the measurement

problem will occur again for the third axis measurements.

The bias problem that occurs on the yaw angle estimation is studied to compensate
by using a more complex estimation algorithms called UKF in Mode-s2. The details

and the results of this Mode-s2 are given in the following section.

4.3.2.2  SACoTS ADS Mode-s2

This section presents the measurement model used in UKF, the steps of the UKF

algorithms and the estimation performance of this filter. Here, again the subject is to

estimate state vector X = [aB,BB Q]T by using IMU measurements.

Measurement Model:

UKF is an algorithm that provides to use nonlinear measurement models in the filter
(See Section 4.4.1). These linear and nonlinear sensor measurement equations are
derived for each sigma points that used in UKF. The rate gyros and accelerometer
measurement models and UKF predicted observations expression are listed again in
the following equations

Z(kﬂjk):{zm(kﬂ,k)}

Zpee (K+1,k)

| hee (X, (k+ Lk),u(k),k)
[ Pace (X, (K +1,K),u(k), k)

(4.3.32)
}: h(X; (k +1,k),u(k),k)
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2n
2k +1/k)=> W Z(k +1/K) (4.3.33)
i=0

where, X . (k +1,k) are the sigma point derived from X;(k/k)=o;(k/k)+ X(k/k) Eq.
(4.3.11).

Unscented Kalman Filter Algorithm:

The details about the UKF formulization is given in the Section 4.3.1 and for this
reason, here only the sensor noise covariance matrix is given by the following

equation:

IR 0,,
Ruop s2 :{ RS . :| (4.3.34)

03x3 |3x3 RACC

Simulation Results:
The SACoTS ADS simulation is run at 10 Hz sampling time during 5 minutes for

Mode-s2. The real and estimated states and estimation errors are given respectively

in the following Figure 4-14, Figure 4-15 and Figure 4-16.
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Figure 4-16: Mode-s2 Real and Estimated RPY Angles

Regarding to the Mod-s2 simulation results, it can be seen that UKF has a successful
estimation performance since there is no divergence or high level accuracy problem
on the estimation. Furthermore, UKF does not display a large error in the yaw angle

w estimation. Here one additional advantage of the UKF also is obtained from the

simulation results: Since the UKF uses nonlinear system model and nonlinear
measurement model on the computations, the estimation error signal does not show
different behaviors for different maneuver types. Here, the same orders of errors are

obtained for both sinusoidal and attitude hold maneuver and these values are

approximately 0.5° for each attitude angles.

Monte Carlo analysis is implemented to the system and the statistical results are

taken by running simulation 20 times for Mode-s2. The mean 4, and the standard

deviation o of the estimation errors are given in the figures Figure 4-17 to Figure

4-22 and Table 4-6.

134



[degfs]

[degis]

[denis]

[dens]

[deais]

[dens]

Sinusoidal Motion
iy, Mean

Fixed Attitude

-3 ., Mean

time ()

[deq/s]

[deg/s]

[deqg/s]

time (s)
3 Dy Mean

time (s)

Figure 4-17: Mode-s2 Mean of the Angular Rate Estimation Error

Sinusoidal Motion

0y, Std. Deviation

time (g)
Oy Std Deviation

1
150
time (g)
. St Deviation

300

150
time (g)

[deg/s]

[deg/s]

135

Fixed Attitude
0y, St Deviation

|
150
time (5)
By Std. Deviation

time (g)

time (g)

Figure 4-18: Mode-s2 Standard Deviation of the Angular Rate Estimation Error



iy

0.01

0.006 -

0.006

=
0.004

0.002¢-

Sinusoidal Motion

o 100 200
time (g)

300 ~o 100 200 300

time (s)

Fixed Attitude

100 200
time ()

gy Mean

time (s)

1, Mean

100 200
tirne (s)

300 “n 1

un] 200
time (s)

Figure 4-19: Mode-s2 Mean of the Quaternions Estimation Error

-3 4y Std.Deviation

Sinusoidal Motion

“n 100 a0

time (5)
-3 4y Std.Deviation

300

3 ) Std. Deviation

time (s)

3

time (s)

Figure 4-20: Mode-s2 Standard Deviation of the Quaternions Estimation Error

0 100

200 300
time (s)

136

%10
5

i

ty Std. Deviation

Fixed Attitude

10’
3

1, Std. Deviation

300

92
=

3

tirne (5)

g 5td. Deviation

100 200
tirme (5]

1 Std.Devation

300

100 200
time (s}

100 200
time (s}

300



Sinusoidal Motion

Fixed Attitude
¢ Mean

& [deg]

"o 50 100 150 200 250 300
time (s)
0 Mean

6 [deq]

y [deg]

i i i
0 50 180 200 20 300
tirme (s)

Figure 4-21: Mode-s2 Mean of the RPY Angles Estimation Error

Sinusoidal Motion Fixed Attitude

¢ Std. Deviation ¢ Std Deviation
T

& [deq]
& [deg]

a0 100 180 200 250 300 o a0 100 180 200 280 300
time (s

time (s)
6 Std.Deviation 6 Std Deviation

i g i
a0 100 150 200 20 300 0 0 100 150 200 250 0
time (3)

time (3)
y Std Desiation W Std. Deviation

yr [ded]
y [deq]

Figure 4-22: Mode-s2 Standard Deviation of the RPY Angles Estimation Error

137



Consequently Monte Carlo results show that the estimation performance for this
Mode-s2 is successful for both sinusoidal and fixed attitude motion profile since
there are no divergence, instability and offset problems on state estimation. A better
estimation performance is achieved due to the usage of the nonlinear system and
measurements model on the UKF algorithms and by tuning the UKF parameter x

the bias problem on the yaw angle estimation is resolved.

Table 4-6: Mode-s2 Statistical Results of the Estimation Error

Sinusoidal Motion Fixed Attitude

Xer Hy oy Hy oy
~B 0 0.0001 0.0061 0.0007 0.0037
g x BIr.(°/sec)
~B o -0.0001 0.0060 0.0000 0.0041
g y Brr. (°/sec)

-0.0001 0.0060 0.0002 0.0034

P 5 €rr.(°/sec)

qlerr -0.0007 0.0023 -0.0006 0.0024
Oyerr 0.0002 0.0022 | -0.0002 | 0.0022
Gserr 0.0017 0.0036 | 0.0006 0.0030
q4e” 0.0000 0.0007 0.0000 0.0008
ée" (0) -0.0875 0.2974 -0.0886 0.3537
éerr (0) 0.0188 0.2428 -0.0238 0.2855
Verr (°) 0.1986 | 04327 | 0.0977 | 0.3844

A comparison between the EKF and UKF algorithms used on the SACoTS system is

given in the following conclusion section with some comments.

4.4  Conclusion

In this chapter, Kalman Filter Based Attitude Determination System that is
implemented for Satellite Attitude Control Test Setup is presented. This chapter
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contains also SACoTS motion model, IMU measurement model used in the system

and the attitude determination algorithms.

In the ADS system of the SACoTS, two types of Kalman filters, EKF and UKF are
implemented to the system. The main objective of this chapter was to determine the
performance comparison between these filters and to obtain relatively accurate
estimation without using additional reference sensor on the system. The results
obtained from the statistical analysis of the EKF and UKF are summarized in the

following Table 4-7 in order to compare the performance of these two filters.

Table 4-7: The Performance Comparison Table of the EKF and UKF

Sinusoidal Motion Profile Fixed Attitude
Hy Hy O% % Hy Hy 9% Ox
) ) ) °) °) °) ) )
EKF UKF EKF UKF EKF UKF EKF UKF

4 -0.0116 | -0.0875 | 0.3141 | 0.2974 | 0.0683 | -0.0886 | 0.2161 | 0.3537
err

2 -0.0041 | 0.0188 | 0.3183 | 0.2428 | -0.0320 | -0.0238 | 0.1933 | 0.2855
err

W, | -1.8384 | 0.1986 | 1.1190 | 0.4327 | -4.3171 | 0.0977 | 0.1113 | 0.3844

The performances of the EKF and UKF are considered for both sinusoidal motion
profile and fixed attitude. For sinusoidal motion profile, it can be seen that the EKF
results are successful for roll angle and pitch angle estimation. The mean values of

the estimation error are nearly zeros and the standard deviation of the estimation

errors is about 0.32° for these first two attitude angles. However, the EKF is not

sufficient for the yaw angle estimation. A constant offset is obtained on the
estimation (~1.85°) and an instability also can be observed as the o values of the
yaw angle estimation which is ~1.12°. For attitude hold maneuvers, the estimation
performance on roll and pitch angle increase to ~0.20°, but on the contrary, an
augmentation of the bias values on the yaw angle estimation is observed (~4.3°)

even if the related o is decrease to = 0.1° values.
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The UKF estimation performance also is appreciated for both sinusoidal and attitude
hold maneuver. Regarding to the statistical results, it is seen that UKF improves the
estimation performance for sinusoidal motion profile. Especially, the bias problem
occurred on the yaw angle estimation is resolved by using the additional tuning

parameters of the UKF algorithm. The bias values of the estimation errors can be
accepted as less than 0.1° for roll and pitch angle, 0.2° for yaw angle. The standard
deviation values of the estimation errors also decrease to < 0.3° for roll and pitch

angle, <0.5° for yaw angle. For the attitude hold maneuver also there is a clear
improvement on the bias problem that occurred on the yaw angle estimation. It is
also observed that there is a little increment on the estimation error for all three
attitude angles when considering the o values. However, one important result
obtained for UKF is that the performance of this filter is similar regardless of the
motion types. Depending on the simulation results, it is seen that very close
estimation errors characteristics are obtained for both kinds of the motion profiles.
As mentioned above in section 4.3.1, EKF contains only first order Taylor series
expansion in order to simulate the behavior of the nonlinear systems and
measurements, but UKF uses the nonlinear models and this provides an advantage

for nonlinear systems.

Consequently, regarding to the simulation results obtained for both EKF and UKF, it
may be stated that UKF algorithms improves the estimation performance compared
to the EKF. This improvement is achieved thanks to the usage of the nonlinear

system and nonlinear motion models in the filter.
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CHAPTER 5

CONCLUSION

The purpose of this thesis was to generate a Kalman filter based attitude
determination algorithms for a hypothetical LEO satellite and for a ground based

satellite attitude control test setup.

In order to estimate the angular rates of the satellite during the initial detumbling
phase, and additionally to estimate the attitude during to orbital navigation, six
different Kalman filter estimation algorithms, depending on six different sensor
combinations called modes, are created. The performance of each mode is computed
by applying Monte Carlo simulations and the success of various modes are compared
to each other. The two important inferences are obtained from the results of the
satellite ADS simulations. The first one is about the angular rate estimation at
detumbling mode. Here the important point is the sampling rate of the system. Since
the magnetometer measurements are very noisy compared to the other reference
sensors, the sampling rate is chosen 1 Hz with a goal to catch the difference between
two successive measurements. The rotation frequency of the satellite, the
measurement frequency of the sensor and the frequency of the estimation system, all
together are important factors that affect the estimation performance. For this reason
it is very important to select the right sampling rate for the system. The second
inference is about the reference sensor used in the system. Some reference sensors do
not provide a sufficient attitude determination due to the absence of the sufficient
measurement knowledge. It is shown that when satellite rotation vector and
measured vector direction become parallel to each other, it is impossible to measure
the rotation angle around this axis accurately. Furthermore, a divergence problem on
estimation also occurs for the fixed attitude motions. These problems can only be
resolved by adding another reference sensor to the system which use different

measurements source. Finally, it can be stated that a powerful attitude determination
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system for a hypothetical LEO satellite is created and it is shown that extended
Kalman filter is an efficient method to fuse the sensor measurements to estimate the

states of the spacecraft.

In the second part of this thesis, a cost-effective and relatively accurate attitude
determination system is created for the satellite attitude control test setup by using
only an IMU as a sensor suite. Two different types of Kalman filter algorithms, EKF
and UKF, are implemented to this system. Here, the main objective was to obtain
sufficiently accurate estimation performance without using an additional reference
sensor on the system. Regarding to the simulation results, it is observed that UKF
algorithms improves the estimation performance compared to the EKF due to the

usage of the nonlinear system and nonlinear motion model in this filter.
In the future, other filtering methods and algorithms shall be examined. Their

estimation accuracy versus the computational loads introduced as well as the

associated convergence and divergence problems shall be investigated.
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APPENDIX A

DEFINITIONS AND NOTATIONS

Several different coordinate systems are used in order to describe the motion and the
attitude of the satellite and to simulate the satellite’s environment. Also, some
notational expressions are required to define the orientation of the satellite, to
develop the mathematics behind the sensor measurements and to build the Kalman

Filters used at sensor fusion algorithms.

In this appendix, detailed explanations are given related to these references frames

notations and to the mathematical tools used in this report.

A.1 Reference Frames

The detailed explanations of the different coordinate systems used throughout this
report are given in this appendix. It is necessary to define these references frames
with a view to represent the motion and the attitude of the spacecraft. Each Cartesian
coordinate reference frames used in this document are an orthogonal, right-handed

axis set [13].

A.1.1 Earth-Centered Inertial (ECI) Reference Frames

The ECI frame is assumed to be a non-accelerated frame used for navigation, which

1s fixed in space with respect to the fixed star defined by the axes X,,Y,,Z,. The

origin of the ECI is located at the center of the Earth with the z-axis pointing towards
the North Pole. The x-axis is in the vernal equinox direction, the point where the
plane of the Earth’s orbit about the Sun, crosses the Equator going from south to
north. The y-axis completes the right hand Cartesian coordinate system. The motions
of the satellite, the velocity of the Orbit frame and the motion of the Sun is directly

compared to this frame. The frame is denoted | [10].
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A.1.2 Earth-Centered Earth Fixed (ECEF) Reference Frame

The ECEF frame has its origin at the center of the Earth and axes which are fixed

with respect to the Earth ( X,,Y,,Z,). The x-axis lies along the intersection of the

plane of the Greenwich meridian with the Earth’s equatorial plane. The y-axis

completes the right hand system. The earth frame rotates, with respect to the inertial

frame, at a rate @, =7.2921x10rad /s (15.0417 °/h) about the z-axis. The ECEF

frame can be used to express the geomagnetic field around the Earth, along with an

orbit estimator to create a reference model. The frame is denoted E [10].

A.1.3 Orbit (ORB) Reference Frame

The ORB frame has its origin at the mass center the satellite, defined by the axes

X,,Y,,Z, . This origin rotates relative to the ECI frame, with a rate of @, depending

on the altitude of the orbit. The z-axis lies towards the center of the Earth. The x-axis
points in the direction of motion tangentially to the orbit. It is important to note that
the tangent is perpendicular to the radius vector only in case of a circular orbit. In
case of a elliptic orbits, the x-axis does not align with the satellite’s velocity vector.
The y-axis completes the right hand system. The satellite attitude is described in this

frame. The orbit reference frame is denoted O [10].

A.1.4 Earth-Centered Orbit (ECOF) Reference Frame

This is the frame in which the Keplerian elements are defined. The axes of this frame

are expresses as X.,Y,.,Z The ECOF frame has its origin at the center of the

oc? c>™oc*

Earth. The x-axis lies towards perigee, y-axis along the semiminor-axis and z-axis

perpendicular to the orbit plane. The earth centered orbit frame is denoted OC [10].
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A.1.5 Body (BODY) Reference Frame

The body reference frame is a right orthogonal axes system fixed in the center of the

satellite body and defined by the axes X,,Y,,Z, . This body frame shares it’s origin

with the orbit frame and is denoted B. The nadir side of the satellite (z-axis)
intended to point towards the Earth, and the last two axes, X-axis and y-axis,
coincides with x-axis and y-axis of the Orbit frame when the satellite has an attitude
of 0° in roll, pitch and yaw. The satellite dynamic equations are expressed in this

coordinate system [10] [13].

A.2 Attitude Representation

The formulation of satellite attitude dynamics involves knowledge of kinematics of a
rigid body. Kinematics describes the orientation of a body which has a rotational
motion. There are various mathematical representations used to define this
orientation with respect to a reference frame. Through this section, three attitude
representation methods are described. It is important to note that the attitude
knowledge defined with each method can be stored within a computer and can be
updated as the satellite rotates using the measurements of turn provided by the rate

gyros [20].

A.2.1 Direction Cosine Matrix

The Direction Cosine Matrix is a 3x3 rotation matrix which describes the

orientation between two frames. The rotation matrix C from frame A to B is

denoted C; or Cg,,. Consider reference frames A and B with a right-hand set of

three orthogonal unit vectors. Basis vectors {51 ,52,53} of B are expressed in terms of

basis vectors {,,d,,d, } of A as follows:
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= Cllé‘l +C12_>2 +C13§3
b, =C,a +C,a, +C,,3, (A2.1)
3 = C31§1 + C32§2 + C33§3

where C; EBi -@; 1is the cosine of the angle between 6, and &;, and C; is simply

called the direction cosine. Eq. (A.2.1) can be rewriten in a matrix form as follows:

|

Y Ci Cn Cyja 4, 4,
2 |7 C, C, C,|a |=Ci|& [=C4,|a, (A.2.2)
3 Cy Gy Gyl a, a,

where C;,, is called Direction Cosine Matrix (DCM). DCM is also called the

Rotation Matrix or Coordinate Transformation Matrix.

The rotation matrix is also an orthonormal matrix because each set of basis vectors of

A and B consists of orthogonal unit vectors and it is also orthogonal matrix because
the product of Cg,,.Cy,, is an identity matrix. So this orthonormallity can be

expressed as follows [12]:

CB/A :(CA/B)_I :(CA/B)T (A.2.3)

A.2.2 Euler Angles

Euler angles method is a transformation from one coordinate frame to another and it
is defined by three successive rotations about diferent axes taken in turn. For
example, a transformation from references axis to a new coordinate frame may be

expressed as follows:
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a. Rotation through angle i about reference z -axis

cosyy siny 0

C,=|-siny cosy O (A.2.4)
0 0 1

b. Rotation through angle € about reference Y -axis
cosd 0 —sind

C,=| 0 1 0 (A.2.5)
sind 0 cos@

c. Rotation through angle ¢ about reference X -axis
1 0 0
C,=|0 cos¢ sing (A.2.6)

0 —sing cos¢

where y,0,¢ are referred to as the Euler rotation angles.

For instance, a transformation from A reference frame to B referrence frame may

be expressed as the product of these three separate transformation as follows:

Cr=C,C,.C, (A.2.7)

Similarly, the inverse transformation will give the rotation information from B

reference frame to A reference frame, expressed as follows [20]:

ch=c'c,'c (A.2.8)
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clcy —-copsy+sgsfcy sgsy+copsfcy
Cl=|cOsy cocy+sgsfsy —spCy+CpsOsy

-sé sgco cogcl
4 ¢ (A.2.9)
where;
Cax=cosox
Sa =sin«

A.2.3 Quaternions

Although the Euler angles representation has a clear physical interpretation,
unfortunately there is always a possibility to be at a singularity because of the
trigonometric expressions which exist in the transformation matrix. To overcome the
problem with singularities in the attitude representation, quaternions are used in

computations.

The quaternion attitude representation allows a transformation from one coordinate
frame to another to be efected by a single rotation () about a vector () defined in
the reference frame. The quaternion is a four element vector representation, the

elements of which are functions of the orientation of a vector and the magnitude of

the rotation.

q, | | (e / p)sin(y/2)
G | _| (uy / p)sin(y /2)

q= . (A.2.10)
a | | (u,/p)sin(y/2)
q, cos(y/2)
The unit quaternions satisfy the constraint q'q = 1, or
q’ +0," +a," +q,” =1 (A2.11)
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For instance, a transformation from B reference frame to A referrence frame by

using quaternions can be given as follows [20]:

cl=
9’ -a," -q," +q,’ 2(a,0, - 9,0,) 2(a,q; +9,9,)
2(9,9, +9,9,) -9, +0q,° -q," +q,’ 2(9,9; - 9,9,) (A.2.12)
2(q,0; —9,0,) 2(a,q; +9,0,) -0, -9," +9," +q,’

A.2.4 Relationships Between DCM, Euler Angles and Quaternions

As seen in the previous sections, the direction cosines may be expressed in terms of
Euler angles or quaternions. In the following Eq. (2.2.13), the relationship between

DCM, Euler angles and quaternions for the rotation from frame B to A is given:

cOcy —-Ccopswy+sSgpsfcy SgSy+CosOcy
Cl=|cOsy copcy+spsOsy —sgcy+CosOsy

—sd s¢ co co co
(A.2.13)
9’ -9, -a,” +q,’ 2(a,q, —0,0,) 2(0,0; +9,09,)
2(qo, +950,)  -a7+a, -a +a” 2(a,0,-9,q,)
2(q1q3 - q2q4) Z(qzqz + q1q4) - ql2 _qz2 + q32 + q42

When the elements of the above Eq. (A.2.13) are compared, it can be noticed that
Euler angles may be expressed in terms of direction cosines or quaternions, and also
similarly, the quaternion elements may be written directly in terms of Euler angles or
direction cosines. In the following equations some of these relationships are

summarized [20]:
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Quaternions expressed in terms of Direction Cosines

qI:L(CQH—CQB) qzzL(CQU_CQn)

4q, 4q,
1 1
a; =H(C$21 _Cé\12 Qs :5\/1+CQ11+CQ22+CA
4
Quaternions expressed in terms of Euler angles

q, = cosgcosgcosﬂ + sinﬁsingsinZ
2 2 2 2 2

q = singcosgcosZ - cosgsingsinZ
2 2 2 2 2 2

q, = cosﬁsingcosZ + sinﬂcosgsinZ
2 2 2 2 2 2

g, = cosﬁcosgsinZ + singsingcosZ
2 2 2 2 2 2

Euler angles expressed in terms of direction cosines

C A
¢=tan" (—i” J
Ces

0 =sin” (— CE’?}I)

CA
W= tan"l[ﬂ]
Cou

A.3 Transformation Between Different Frames

(A.2.14)

(A.2.15)

(A.2.16)

The different rotations between frames used in this report are described in this

section. It is necessary to define these transformations with a view to obtain the

different sensor measurements done in different frames [10].
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A.3.1 Transformation From ECOF to ECI and ECEF Frames

The rotation between these frames can be required for the orbit estimator model and
for the comparison of the some kind of reference sensors measurements with their
respective reference model. In the following equations the rotation matrix from

ECOF to ECI and ECEF are given.

Cle =C,(-Q) C,(-i) C,(- ) (A.3.1)

Cs. =C,(-Q+40) C,(-i) C,(- o) (A.3.2)

where Q is the Right Ascension of Ascending Node, i is the inclination of the
satellite, @ is Argument of Perigee and @ is the ascension of the zero meridian.

C,and C, are the different simple rotations defined by Eq. (A.2.4) and Eq. (A.2.6),

respectively.

A.3.2 Transformation From ECEF to ECI Frame

The rotation of the ECEF relative to the ECI is a rotation through angle 4 =w,.t

(longitude position) about reference coincident Z, and Z. axes, where . is the

Earth rotation rate and t is the time passed since the ECEF and ECI frame were

aligned. This rotation can be expressed as follows:

cosA sindA 0
Cl =C, ,=|—sin4 cosd 0 (A.3.3)
0 0 1

A.3.3 Transformation From ECI to ORB Frame

The rotation from ECI to ORB frame is dependent on the satellite rotation velocity

@®,. The ORB is rotated an angle L about Y,axis and it is expressed as
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L=L,+aw,t. Here L, is the latitude position of the satellite and tis the time since

last passing of 0° lattitude. This rotation can be expresses as:

cosL 0 sinL
CYI 5= 0 1 0 (A.3.4)
—sinL O cosL

An addition -90 degree turn is needed about Y, axis to obtain the Orbit frame relative

to the ECI frame. This motivates the following rotation:

o O

(A.3.5)

Y, ,-7 =

S = O
S o =

the combination of the Eq. (A.3.4) and Eq. (A.3.5) gives the total rotation which is

necessary to transform a vector given in ECI frame to an ORB frame representation:

—-sinL 0 cosL
C’=| 0 1 0 (A.3.6)
—cosL 0 -sinL

where L represent the latitude position of the satellite.

A.3.4 Transformation From ECEF to ORB Frame

The rotation from ECEF to ORB frame is dependent on the latitude and longtitude
position of the satellite. This rotation can be expressed by the combination of the

following rotations:

C?=C/.CL (A.3.7)
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So the total rotation which is used to transform a vector from ECEF to ORB can be

written as:

—sinLcosA -—sinlsinA 0
Cd=| -sind cos 0 (A.3.8)
—cosLcosA —cosLsinA —sinL

A.3.5 Transformation From ORB to BODY Frame

The rotation matrix used frequently in this report with a view to obtain the attitude of
the satellite is the transformation between Orbital frame and Body frame expressed
in quaternion parameters. Using Eq. (A.2.12), rotation matrix from BODY frame to

ORB frame can be expressed as follows:

ql2 - q22 - q32 + q42 2(q1q2 - q3q4) 2(q1q3 + q2q4) (A.3.9)
Co=| 20a+a0) -a°+q -0’ +q°  2(,9,-90,)
2(q1q3 - q2q4) 2(q2q3 + q1q4) - q12 - qzz + q32 + q42

Similarly, rotation from ORB frame to BODY frame can be written by using the

orthonormallity property of the matrix (Eq. (2.2.3)):

Q12 - %2 - Q32 + Q42 2(Q1Q2 + q3q4) 2(q1q3 - q2q4)
Cg = 2(q1q2 _q3Q4) _q12 +q22 _q32 +q42 2(q2q3 +qlq4) (A.3.10)
2(q,0; +9,0,) 2(9,0,-0q,0,) -9 -0g,"+0," +q,’

A.4 Kinematics Differential Equations

In preceding sections the problem of describing the attitude of a rigid body with

respect to a reference frame is studied. In this section, the kinematics, in which the
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relative orientation between two reference frames is time dependent, is presented by
using the kinematics differential equations. Kinematics differential equations may be
derived by propagating the attitude representations with time and these propagations

are formulated as follows [12] [20]:

Propagation of the direction cosine matrix with time:

The propagation of the direction cosine matrix is given as follows:

Co=Cinl, (A.4.1)
where;
0 -0 o
Q= o, 0 -0 (A4.2)
-0, o, 0

here, Qg is the skew-symmetric matrix form of the angular rate vector

0, o, ]T , which represents the turn rate of the B-frame with respect to

B _
Wog = [a)x y

O-frame expressed in body axes.

Propagation of the Euler angles with time:

The propagation of the body rates depending on the Euler angles is formulated as

follows:

o | |4 0 0
o, |=]0|+C;|8|+C,C,| O (A.4.3)
@, 0 0 W
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The above equation can be rearranged and expressed in component form. As a result

Euler angles rate expression related to the body rates can be written as follows:

¢ = (a)y sin ¢ + w, cos ¢)tan 0+ o,
0= o, COs ¢ — w, sin ¢ (A4.4)

W= (a)y sin ¢ + w, cos ¢)sec 0

Propagation of the quaternions with time:

Quaternions are propagated in accordance with the following equation:

.1
q= EQ q (A.4.5)
where;
0 0, -0, o,
-o, 0 o, o,
Q= (A.4.6)
o, -0 0 o
-0, -0, -0, 0
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APPENDIX B

SENSORS USED ON SATELLITE ADS SIMULATIONS

This appendix contains the product specification sheets of the sensors used on the

satellite attitude determination system simulations.

B.1 Rate Gyroscopes
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B.2 Sun Sensor
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B.3 Magnetometer
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B.3 Star Sensor
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APPENDIX C

SENSORS USED ON SACOTS

This appendix contains the product specification sheet of the IMU used on the

satellite attitude control test setup simulations.

-
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APPENDIX D

THREE AXIS SATELLITE ATTITUDE CONTROL TEST
SETUPS

This appendix presents the details about the satellites test setups that are mentioned
on the Section 4.1. The characteristics of the investigated test setups are listed as

follows:

D.1 TASS (Three Axis Satellite Simulators)

TASS and TASS-2 are the three axis satellite test simulator that exist at Naval
Postgraduate School (Monterey, California). TASS is the first generation of the
satellite simulator. Attitude determination of the TASS contains one 3 axis rate
gyros, one 3 axis sun sensor and one 3 axis magnetometer. The signal processing
algorithms are used because of the high level noises occurred on the sensor
measurements. Two light sources are used in order to obtain three axis attitude
information from the sun sensor, one of them provide the roll and pitch angles
measurements, the other provide the yaw angle measurement. Here, it is seen that it
is very difficult to adjust the sun sensor and it is important to select the right light
sources for acquiring a correct measurements. It is also stated that magnetometer is

never used during the tests because of its noisy measurements.

The second generation of TASS, called TASS-2, contains more complex sensor
system in order to obtain accurate attitude knowledge. In this test setup one Inertial
Measurement Unit (including 3 axis rate gyro and 3 axis accelerometer), 3 axis
magnetometer, 3 axis inclinometer and 3 axis sun sensor are used. The following

figures show the configuration of the TASS and TASS-2 respectively [6]
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Figure App.D.1: TASS [6] Figure App.D.2 TASS-2 [6]

D.2 WHORL-1 and WHORL-2

WHORL-1 and WHORL-2 are the test setups used to carry out the formation flight
tests. These test setups belong to Virginia Polytechnic Institute and State University
(Blacksburg, Virginia, USA). WHORL-1 is a tabletop style and WHORL-2 is a
dumbbell style spherical air bearing. The dumbbell style provides more rotational
freedom in three axis as seen on the following figures. The only sensor used in both
of the system is the Inertial Measurement Unit containing 3 axis rate gyros and
accelerometer. Here rate gyros are used as inertial sensor and accelerometers are
used as reference sensor by comparing its measurements with the gravity vector

direction [7].

Figure App.D.3: WHORL-1 and WHORL-2 [7]
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D.3 IACS-1 and IACS-2

IACS-1 (Integrated Attitude Control System) and IACS-2 are respectively the first
and the second generation satellite test setups of the Georgia Institute of Technology.
The sensor system of the first generation contains only a dynamic measurement unit-
attitude heading referenced sensor (DMU-AHRS [Crossbow Technologies, Inc])
including 3 axis rate gyros, accelerometer and magnetometer. In the IACS-2 sensor
packet is completely different. A 3 axis rate gyros (RG02-32) is used as inertial
sensor and reference sensors packet contains 3 axis magnetometer (Humphrey
(Goodrich Sensor Systems) FM02-0101), 2 axis sun sensor (by ACEi, Corp.). the
following figures show the configuration of the IACS-1 and IACS-2 respectively [8]

[9].

Figure App.D.4: IACS-1 and IACS-2 [8][9]
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