
FUNCTIONAL SIMILARITY IMPACT ON THE RELATION BETWEEN
FUNCTIONAL SIZE AND SOFTWARE DEVELOPMENT EFFORT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖZDEN ÖZCAN TOP

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

SEPTEMBER 2008

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife Baykal

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

 Prof. Dr. Yasemin Yardımcı

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Dr. Onur Demirörs

 Supervisor

Examining Committee Members

Prof. Dr. Semih Bilgen (METU, EE) _____________________

Assoc. Prof. Dr. Onur Demirörs (METU, IS) _____________________

Assoc. Prof. Dr Ali Doğru (METU, CENG) _____________________

Dr. Altan Koçyiğit (METU, IS) _____________________

Prof. Dr.Hayri Sever (HU, CENG) _____________________

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this wok.

Name, Surname : Özden Özcan Top

Signature : _________________

 iv

ABSTRACT

FUNCTIONAL SIMILARITY IMPACT ON THE RELATION
BETWEEN FUNCTIONAL SIZE AND SOFTWARE

DEVELOPMENT EFFORT

ÖZCAN TOP, Özden

M.S., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur DEMĐRÖRS

September 2008, 78 pages

In this study, we identified one of the reasons of the low correlation between

functional size and development effort which is overlooking the similarity of the

functions during the mapping of the functional size and development effort. We

developed a methodology (SiRFuS) that is based on the idea of the reuse of the

similar functions internally to provide high correlation between functional size and

development effort.

The method is developed for the identification of the similar functions based on the

method of Santillo and Abran. Similarity percentages among the functional processes

and Similarity Reflective Functional Sizes are computed to attain adjusted functional

 v

sizes. The similarity reflective functional sizes were named as Discrete Similarity

Reflective Functional Size and Continuous Similarity Reflective Functional Size

based on the characteristics of the adjusted functional sizes. The SiRFuS method

consists of three stages: measurement of the software product with COSMIC

Functional Size Measurement (FSM) method; identification of the functional

similarities bases on the measurement results and calculation of the similarity

reflective functional sizes.

In order to facilitate the detection of similar functions, calculation of the percentage

of the similarities and similarity reflective functional sizes; a software tool is

developed based on the SiRFuS method.

Two case studies were performed in order to identify the improvement opportunities

and evaluate the applicability of the method and the tool.

Keywords: Functional Size Measurement, Software Development Effort and

Functional Size Relation, Functional Similarity

 vi

ÖZ

FONKSĐYONEL BENZERLĐKLERĐN FONKSĐYONEL BÜYÜKLÜK
VE YAZILIM GELĐŞTĐRME ĐŞGÜCÜ ARASINDAKĐ ĐLĐŞKĐYE

OLAN ETKĐSĐ

ÖZCAN TOP, Özden

Yüksek Lisans, Bilişim Sistemleri

Tez Yöneticisi: Doç. Dr. Onur DEMĐRÖRS

Eylül 2008, 78 sayfa

Bu çalışmada, fonksiyonel büyüklük ile yazılım geliştirme işgücü arasındaki ilişkinin

düşük olmasının nedenlerinden birinin bu ilişki oluşturulurken benzer fonksiyonların

göz ardı edilmesi olduğunu belirledik. Benzer fonksiyonların aynı ürün içerisinde

tekrar kullanılma fikrinden yola çıkarak fonksiyonel büyüklük ile işgücü arasındaki

ilişkinin yüksek olmasını sağlayacak bir yöntem geliştirdik (SiRFuS).

Yöntem, Santillo ve Abran’ın yaklaşımından yola çıkarak ürün içerisindeki

fonksiyonel benzerliklerin ve benzerlik yüzdelerinin belirlenmesi ve Benzerlik

Etkisindeki Fonksiyonel Büyüklüklerin hesaplanarak yazılım işgücü ve fonksiyonel

büyüklük arasındaki ilişkiyi güçlendirecek uyarlanmış bir büyüklük elde etmek

amacıyla geliştirilmiştir. Benzerlik etkisindeki fonksiyonel büyüklükler, uyarlama

 vii

yaklaşımının özelliklerine göre “Ayrık Benzerlik Etkili Fonksiyonel Büyüklük” ve

“Devamlı Etkili Fonksiyonel Büyüklük” olarak adlandırılmıştır. SiRFuS yöntemi üç

aşamadan oluşmaktadır: Yazılım ürününün COSMIC Fonksiyonel Büyüklük Ölçüm

(FBÖ) yöntemi ile belirlenmesi, ölçüm sonuçlarından fonksiyonel benzerliklerin elde

edilmesi ve benzerlik etkisindeki fonksiyonel büyüklüklerin hesaplanması.

Benzer fonksiyonların bulunarak fonksiyonel süreçler arasındaki benzerliklerin

yüzdelerinin belirlenmesi ve benzerlik etkisindeki uyarlanmış fonksiyonel

büyüklüklerin bulunmasını kolaylaştırmak için bir araç geliştirilmiştir.

Gelişim fırsatlarını belirleyebilmek ve yöntemin ve aracın uygulanabilirliğini

değerlendirebilmek için iki durum çalışması yapılmıştır.

 Anahtar Kelimeler: Fonksiyonel Büyüklük Ölçümü, Yazılım Geliştirme Đşgücü ve

Fonksiyonel Büyüklük Đlişkisi, Fonksiyonel Benzerlikler

 viii

To my beloved Can Barış Top

&

to the Great Memory

of

my Grandmother

Ayşe Güroğlu

 ix

ACKNOWLEDGMENTS

I would like to express my special thanks to Assoc. Prof. Dr. Onur Demirörs, for his

great support, enlightening ideas, criticism and insight. He was always patient and

kind to me throughout the research. I am literally saying that, he was one of the most

important powers of my finalization this study by encouraging me and providing me

to believe in myself.

I am grateful to Dr. Oktay Türetken for his valuable ideas on functional size

measurement. I am doubtful if I could understand this concept so well without his

enlightening thoughts. He always answered my questions and didn’t hesitate to

explain the concepts when I was confused.

I would like to thank my friend Barış Özkan for his ideas and suggestions on

functional size measurement methods. Special thanks to Dr. Çiğdem Gencel for the

literature repository on functional size measurement. And thanks to Seçkin Tunalılar

for the ideas on functional similarity concept.

I am grateful to Elif Urgun, Emre Ergüden and Onur Şentürk, since they provided me

the case products and measurement results that were used in this study. Elif and Onur

answered my question through the emails despite the density of their work. Thanks

to Farid Khalikov for his support on counting LOCs of case products.

Hearthfelt thanks to my colleague Selim Nar who has allocated his limited time to fix

the structure of my thesis.

I would like to thank my friends Hüseyin Küçükcığa and Devran Dönmez for their

valuable friendships, and considerations.

 x

Finally, very special gratitudes go to my mother Münevver Özcan, my father

Mustafa Özcan, and my sister Zeynep Özcan, for their love and support throughout

all my life.

AND my spouse Can Barış, who had provided me very valuable suggestions during

the thesis study. It was not possible to accomplish the analysis of the huge amounts

of data without his technical support. Besides, I always felt his love and support with

me.

 xi

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ ... vi
DEDICATION……………………………………………………………………..viii
TABLE OF CONTENTS .. xi
LIST OF TABLES ... xii
LIST OF FIGURES .. xiii
LIST OF ABBREVIATIONS ... xiv
CHAPTER
1.INTRODUCTION .. 1

2.LITERATURE SURVEY ... 7

2.1 Related Research on Functional Size Measurement Methods 7

2.2. Related Research on Functional Similarity Methods 10

2.3. Effort Estimation Models .. 13

3.2.1 Expert Judgment.. 14

3.2.2 Top-Down Effort Estimation .. 14

3.2.3 Bottom-Up Effort Estimation .. 18

3.SIMILARITY REFLECTIVE FUNCTIONAL SIZE: A SYHTHESIS METHOD
TO RELATE EFFORT AND FUNCTIONAL SIZE .. 20

3.1 Similarity Reflective Functional Size (SiRFuS) .. 20

3.1.1. Measurement of the Functional Size of the Product 22

3.1.2. Functional Similarity Identification Process .. 22

3.1.3. Determination of the Similarity Reflective Functional Sizes 25

3.1.4. Example for the application of the SiRFuS Method 29

4.CASE STUDIES TO DETERMINE FUNCTIONAL SIZE CONSIDERING
FUNCTIONAL SIMILARITIES ... 33

4.1 Overview .. 33

4.2 Conduct of Case Studies .. 35

4.2.1 Description of the Case Products .. 39

4.2.2 General Discussions on the Case Studies and the Results 45

5.CONCLUSIONS ... 60

5.1 Conclusions .. 60

REFERENCES ... 66

APPENDIX
A: MOVIE MANAGER .. 72

B: SR TOOL PROGRAM CODE .. 76

 xii

LIST OF TABLES

Table 1 Variables of Basic and Intermediate COCOMO formulas 16

Table 2 Example of Comparison Data ... 23

Table 3 Discrete Functional Similarity Percentage Value ... 25

Table 4 Functional Similarity Matrix of Functional Process A and B 27

Table 5 Functional Similarity Matrix of Functional Process C and D 27

Table 6 An Example set from the Measurement Data of Movie Manager 30

Table 7 Functional Similarity Matrix of Movie Manager .. 31

Table 8 Plain, Discrete and Continuous Functional Sizes of Movie Manager 31

Table 9 Development Effort of the CN .. 40

Table 10 Development Efforts of the SN ... 40

Table 11 Development Efforts of the TN .. 41

Table 12 Development Efforts of the AN .. 42

Table 13 Development Efforts of the KN .. 44

Table 14 Measurement Results of the Case Products based on COSMIC v3.0 45

Table 15 Actual and COCOMO II Based Estimated Work Efforts 46

Table 16 Average Functional Similarity of Each Case Product 47

Table 17 Plain and Similarity Reflective Sizes of the Case Products 48

Table 18 Total Effort and LOC Values of the Case Products 48

Table 19 Productivity Ratios of the Cases in which the Supporting Processes
Included to Total Effort (man-hour) .. 50

Table 20 Productivity Ratios of the Cases in which the Supporting Processes
Excluded from Total Effort (man-hour) ... 51

Table 21 Productivity Ratios of the Cases in which the Supporting Processes
Included to Total Effort (man-month).. 53

Table 22 Productivities of the Cases Calculated Based on DS and Varying Reuse
Overhead Values .. 54

Table 23 Efforts Required for Functional Similarity Calculation and Functional Size
Measurement .. 57

Table 24 LOCs per CFP for the Cases ... 58

Table 25 COSMIC Measurement Results of Movie Manager 74

 xiii

LIST OF FIGURES

Figure 1 Symbolic Demonstration of Data Movements .. 10

Figure 2 SiRFuS Process Flow .. 21

Figure 3 Distribution of the Productivity Ratios Based on the values in Table 19 50

Figure 4 Distribution of the Productivity Ratios Based on the values in Table 20 52

Figure 5 Distributions of the LOCs per CFPs of the Case Products 58

 xiv

LIST OF ABBREVIATIONS

AN : Name of the Case Product

ASR : Average Similarity Affected Functional Size

BFC : Base Functional Component

BN : Name of the Case Product

CFP : COSMIC Function Point

Cfsu : COSMIC functional size unit

COSMIC : Common Software International Consortium

CN : Name of the Case Product

CS : Continuous Functional Size

DG : Data Group

DM : Data Movement

DS : Discrete Functional Size

FSM : Functional Size Measurement

FP : Functional Process

FUR : Functional User Requirements

KM : Name of the Case Product

OOI : Object of Interest

PS : Plain Functional Size

SiRFuS : Similarity Reflective Functional Size Method

SM : Software Management

SN : Name of the Case Product

TN : Name of the Case Product

WBS : Work Breakdown Structure

 1

CHAPTER 1

INTRODUCTION

Unrealistic estimations are one of the major reasons for software failures (Tucker &

Boehm, 2002) and estimation of a software project frequently depends on the

software size. In most estimation techniques which use either functional size or

length of code as input, it is possible to determine the required effort, cost, and

duration to complete a software product with estimation models. That is, by knowing

the accurate size of a software product and the relation between size and

development effort it is possible to plan, execute and monitor projects successfully.

However, there are problems with the identification of these sizes. Although, source

of lines of code (SLOC) is commonly used and easy to measure, it is not probable to

attain a reliable SLOC value in the early phases of a project (Valerdi, Chen, & Yang,

2004).

On the other hand, since Functional Size Measurement (FSM) methods measure the

size by identifying the functionalities provided to the user; they are appropriate to be

used in the beginning of the projects. Although, the functional size of a software

product greatly relies on the assumptions and interpretations of the measurer;

contributions of the functional size on effective project management are deeply

investigated by (Ozkan, Turetken, & Demirors, 2008) in their research. As Ozkan

(2008) emphasized, functional size is a base for project integration management,

since it can be identified in the early stages of the software life cycle. It is also a base

for scope, time and cost management since the functional size of each activity is

known with the decomposition of the Functional User Requirements (FURs) into

 2

Base Functional Components (BFCs) which refer to the tasks within the work

packages of the work breakdown structure (WBS) of the projects.

The opportunities of using functional size as input for project management given

above are an indicator of the importance of functional size as software measure.

Therefore, the functional size should be determined precisely. Although the

functional size of a software product can be measured with current methods, there

are still difficulties in measuring the functional size and the relation between the

functional size and the required effort (Gencel & Demirors, 2008). Besides the

structural weaknesses of FSM methods, one of these difficulties is related with the

functional similarity of functional processes which enlarges the functional size of the

product, leading to unrealistic effort and cost estimation.

The functional similarity concept can be best explained by an example. Assuming

that after the decomposition of a functional user requirement, two functional

processes were identified as “Constitution of an Entity Model Element” and

“Constitution of an Actor Model Element” for the measurement of the size of the

product with COSMIC. Although these two functional processes (FP) have two

different objects of interest (OOI) which are “Actor” and “Entity”; the OOIs are

composed of exactly the same data groups (DG) such as “general information, source

of information, properties, and relationships”. Since FPs have same data groups, they

consist of same attributes as expected. Therefore, the data movements which are the

determiner of the functional size of the product, input to (Entry), read from (Read),

write to (Write) and represents (eXit) same data groups . In addition to these, they are

constituted by using the same screens. Because of these reasons, they are 100%

similar functional processes and good candidates for internal reuse.

The similar functions can be reused within the same or a new software product, since

very similar software issues are required for the development of these functions. Our

research focuses on the reuse of similar functions; however, whether the reusability

of these similar functions is probable and effective is not within the scope of this

study.

 3

The software reuse concept which can be described as the creation of software

systems based on the existing software, improves the productivity and software

quality, and it has been subject to many researches since 1968 (Krueger, 1992),

(Frakes & Terry, 1996). In addition to source code; specifications, design structures,

test data and documentation can also be reused (Krueger, 1992).

Reuse is named “internal”, when an object, module or procedure created for a system

is used multiple times within the same system and “external” when a module from a

different system is used one or more times within a new system (Banker, Kauffman,

& Zweig, 1993). Organizations usually take into account the functional similarity

effect on effort in terms of external reuse. However, as external reuse, internal reuse

has a significant impact on the total required effort, time, and cost.

Although software products have functionally similar modules or similar functional

processes, it is not always easy to determine functionally similar software

entities/processes especially at the beginning of the projects. Moreover it is not clear

whether the functionally similar entities require exactly the same effort for the

development or not, and what the impact of the similarity on the development effort

should be (Ozcan Top, Tunalilar, & Demirors, 2008).

In the literature, there are a few approaches to determine functional similarities. One

of the approaches which is also the subject of this study is functional reusability

approach which determines the similarities among functional processes by assessing

data groups and data movement action types on the products measured by COSMIC

(Santillo & Abran, 2006). The other approach consists of the entity

generalization/specialization practices which are widely used in object oriented

methodologies and can be used in the grouping of the similar functional processes

into one and as a result can be used to eliminate the replication of the same/similar

functions (Turetken, Demirors, Ozcan Top, & Ozkan, 2008).

In this study, identified the functional similarities among functional processes which

later can be internally reused and developed a methodology which provides us to

 4

reach more reliable equivalent functional size values correlated with software

development effort.

The methodology developed, SiRFuS, has three stages: the first one is the

measurement of the software by using COSMIC method which is one of the

commonly used functional size measurement methods; the second stage is the

identification of the functional similarities among the functional processes from the

measurement data set; and the last stage is the calculation of the similarity reflective

functional sizes: Discrete Similarity Reflective Functional Size (DS) and Continuous

Similarity Reflective Functional Size (CS).

The discrete similarity reflective functional sizes (DS) are calculated by using

constant functional similarity percentage values which change depending on five

conditions. Besides the conditions, constant similarity values correspond to the

conditions are determined by analyzing NESMA’s reuse approach for enhancement

projects (NESMA, 2001). Based on the constant similarity intervals that the highest

functional similarity of a functional process corresponded, the DS is calculated.

On the other hand, the continuous similarity reflective functional sizes (CS) are

calculated by using continuous functional similarity percentage values which are

derived from the functional similarity matrix of the products. Based on the identified

similarity values and the formulas the CS is calculated.

We performed two case studies as a part of this thesis study with the research

objectives given below:

− to assess the functional similarity identification process of the current

COSMIC based methods.

− to evaluate how the current COSMIC based functional similarity

determination methods impact on the relation between functional size and the

total effort.

 5

− to determine the difficulties and the improvement opportunities of COSMIC

based functional similarity identification methods with the case studies.

− to develop a method which provides high correlation between functional size

and effort based on the research results.

− to evaluate the applicability of the methodology developed.

The first case study is a single-case study which was conducted to identify the

problems of the current functional similarity identification approaches and bring into

light the improvement opportunities related to the functional similarity identification

approaches. The case product, KN (Karagöz, 2008), was chosen as the single case

study, since it included so many similar functional processes, data entities and

attributes that it can be described as a challenging application from the planning

perspective.

The second case study is a multiple case study which involves eight cases. In this

multiple case study, our purpose was to explore the applicability of the SiRFuS

method. The case products were selected since they had well documented SRSs and

COSMIC functional size measurement results. Another reason for the selection of

these cases was the consistency and the accuracy of the collected effort and lines of

code values. All of the case products are Information Systems Projects except from

AN which is a Complex Data Driven System Project.

The case studies involved the measurement of the case products, (some of which

were measured previously as a part of another study as explained in Section 4.2), by

using the COSMIC Method, verification of the measurement results, and

identification of the functional similarities and the adjusted functional sizes, by using

Similarity Reflective Functional Size Method (SiRFuS).

The remainder of this thesis is organized as follows: In Chapter 2, the literature

review related with the FSM methods, effort estimation methods and functional

similarity identification methods is presented.

 6

In Chapter 3, the method that we developed with the enlightenment of the results of

the case study is described. The method is based on the idea that “the identification

of the functional similarities within the product and evaluation of them to be reused

and finding an equivalent size which provides high relation between effort and size”.

A detailed example is given to better explain the method at the end of this chapter.

In Chapter 4, the two case studies are explained in detail.

In Chapter 5, the contribution of our research to software project management and

the lessons we learned from this study are given. Finally future research suggestions

are explained in this section.

 7

CHAPTER 2

LITERATURE SURVEY

This chapter presents a review of literature survey related to size measurement

methods, the methods used for identification of functional similarities, and the effort

estimation approaches. Although size of a software product can be measured by

using various measures such as functionality measure, length measure, and object

measure (Gencel, 2005); the scope of the related research consists of the functional

size measurement methods since this thesis is related with the identification of

functional similarities. Therefore expert judgment method, length of code, objects

based estimation methods are out of the scope of this research.

2.1 Related Research on Functional Size Measurement Methods

The idea of measuring size of a software product in terms of its functionality was

first introduced by Alan Albrecht in 1979 (Albrecht, 1979). The method is called

Function Point Analysis (FPA) and has gained a considerable interest because it

focuses on measuring the size from user perspective independent of the application

itself.

Based on Albrecht’s method several measurement techniques have been developed,

each of which aims at the extension of the applicability of the techniques in different

functional domains. Due to the proliferation of the techniques, the ISO/IEC

workgroup has been initiated to identify fundamental concepts and to establish an

international standard for functional size measurement (ISO/IEC, 1998), (ISO/IEC,

2002a), (ISO/IEC, 2003a), (ISO/IEC, 2002b), (ISO/IEC, 2004), (ISO/IEC, 2005a).

 8

Today, IFPUG FPA (ISO/IEC, 2003c), Mark II (ISO/IEC, 2002c), COSMIC FSM

(ISO/IEC, 2003b), NESMA FSM (ISO/IEC, 2005b) and FISMA (ISO/IEC, 2008) are

accepted as international standards for functional size measurement by ISO/IEC. All

these methods measure the functionality from the perspective of the functionality

provided to the user; however, they use different units and rules during measurement.

This thesis study is based on the measurement of the products by COSMIC

Functional Size Measurement (FSM) Method (ISO/IEC, 2003b). Therefore, the

details of COSMIC are explained in the following paragraphs.

Since the COSMIC Functional Size Measurement Method was first introduced in

1999, it has been improved in time and new versions have been released.

The COSMIC Method is applicable in Business Application Software such as human

resources management system or banking system; it is applicable in Real-Time

Software such as the software embedded in devices like computers or telephones and

the hybrids of these two domains such as airline and hotel reservation systems.

However, it is not applicable for the measurement of the algorithmic complex

systems, self-learning systems, simulation systems (ISO/IEC, 2003b).

In COSMIC v3.0, the functional size is measured from the “Functional User”

viewpoint instead of the “End User” or “Developer” viewpoints introduced in

COSMIC v2.2 since all size measurements are functionalities provided to the users.

Another improvement has been made on the unit of the functional size. It has been

changed from Cfsu (COSMIC functional size unit) to CFP (COSMIC Function

Point) with the latest version.

The measurement process begins with the identification of the purpose and the scope

of the measurement and the extraction of the Functional User Requirements (FURs)

from the artifacts of software to be measured. In addition to these “functional users”

and the “levels of granularity” should be determined in the beginning of the

measurement.

 9

In the mapping phase, with the purpose and scope of the measurement, “functional

processes” are determined by decomposing the FURs.

A functional process (FP) is described as “an elementary component of a set of

Functional User Requirements comprising a unique, cohesive and independently

executable set of data movements. It should be triggered by an Entry a functional

user that informs the piece of software that the functional user has identified a

triggering event. It is totally complete when it has executed” (ISO/IEC, 2003b).

The next phase is the identification of the Object of Interest (OOI) and Data Groups

(DG). OOIs can be any “entity” which is related with FURs, on the other hand Data

Group is a distinct, non empty, non ordered and non redundant group of attributes

related with one OOI.

Lastly in the measurement phase, functional processes are decomposed into the sub-

processes known as data movements and data manipulations. Data Movements are

the Entries, eXits, Reads and Writes crossing the boundary between the functional

user and the application measured by moving the data groups (ISO/IEC, 2003b). On

the other hand, Data Manipulations are not separately measured in the scope of the

measurement since they have already been associated with one of the data

movements and counted within them.

The data movements are described as follows:

• An Entry moves a data group from a functional user across the boundary into

the functional process where it is required. It may have one to several data

attributes.

• An eXit moves a data group from a functional process across the boundary to

the functional user that requires it.

• A Read moves a data group from persistent storage within reach of the

functional process which requires it.

• A Write moves a data group lying inside a functional process to persistent

storage.

 10

Figure 1 Symbolic Demonstration of Data Movements

The result of the measurement of a software product is calculated by aggregating the

number of data manipulations.

��������	
��
����� ���������
� � �������
������

� � ��������
��� � � ������������ � � ��������
����

2.2. Related Research on Functional Similarity Methods

In terms of functionality, similarities on software applications have been subject to

research projects and defined by using different terminologies. Fenton defined a

concept called “private reuse” as the extent to which modules within a product are

reused within the same product (Fenton, 1991). Cruickshank and Gaffney also make

first distinction for “internal” and “external” reuse in the literature from economical

perspective (Cruickshank & Gaffney, 1992).

Whatever the terminology is, the functional similarity concept has a significant effect

on all phases of the life-cycle of the projects. For example, the effect of functional

 11

similarities and reusability in maintenance was evaluated by Abran and Desharnais in

(A. Abran & Desharnais, 1995). They have developed an approach for the

identification and measurement of reuse in the enhancement projects by considering

Function Point Analysis Method. Their approach depends on two key concepts: reuse

indicator and predictor ratio. The study depicts how an alternative size measure can

be obtained by combining predictive ratio and reuse indicator.

Functional similarity has been subject to one of the common functional size

measurement methods, COSMIC. It defines the functional similarity concept in its

Guideline for Sizing Business Applications document (Consortium, 2005). It is

stated that developers might avoid duplications by realizing the functional reuse

opportunities among functional processes; however, the user point of view ignores

the functional similarities since the FURs are measured independently instead of

grouping similar functional processes.

(A Abran & Maya, 1997) have evaluated similarities within a software product from

a functional similarity perspective. They refined and extended the functional

similarity measures to create a more precise measurement basis for the cost

estimation and productivity models.

In addition to above, in the literature there are considerable numbers of research

studies evaluating the software reuse performed at the source code level. However,

few of these studies focus on developing methods to identify the functional

similarities in the early phases of the software life cycle (Albrecht & Gaffney Jr,

1983), (Leach, 1996). (Ho, Abran, & Oligny, 2000) emphasized the importance of

measuring the functional reuse impact in the early phases of the software life cycle

rather than coding phase to improve the performance of the software engineering

processes. Their work is based on extending the method of (A. Abran & Desharnais,

1995) by using the COSMIC FFP method. The approach proposed in the paper

considers only the reuses without modification and called black box approach. The

approach utilizes the functional relationships among functional layers.

 12

The development effort and the functional size correlation have been subject to

research studies as well. (Meli, 2000) discussed the problems faced during the

development effort and functional size correlation. He stated that in some situations,

it is possible to aggregate much different logical functionality which leads to rapid

and economic implementations with a small amount of working effort. As a result of

this, the effort needed to realize the overall system will decrease, and will not be

proportional at all to the logical functionalities required.

Only a few research studies focus on methods about the association of the size and

the effort considering the functional similarity. Santillo and Della Noce proposed a

model named as “Worked Function Model” to achieve a more significant “work

size” to be correlated with effort. Model includes “reuse”, “replication” and

“similarity” adjustments (Santillo & Della Noce, 2005).

In their study Santillo and Abran proposed the approach called “functional

similarity” to identify the software reuse from a functional perspective (Santillo &

Abran, 2006). The technique is based on uncovering the functional similarities from

a data set that comprises functional processes, data movements and data

manipulations which are evaluated by using the COSMIC method. Although their

study comprises a method sorting out functional similarities, it does not provide an

approach for the relation of functional size and development effort.

The functional similarity is described as “if two functions can be identified with the

same set of data movements and/or data manipulations, they can be considered as

similar functions” by Santillo and Abran (2006).

The method of Santillo and Abran consists of two stages. The first one which is

called as “the first order evaluation” compares the functional processes only from

data movements’ point of view. Similarity among functional processes are

determined by comparing the data group and data movement relationships; in

addition to this, in some cases where the comparison technique does not suffice, it is

suggested that the analyst make her best judgments in order to identify the functional

similarities. The second stage, “second order evaluation” determines the functional

 13

similarities by considering both data group - data movement and data group - data

manipulation action types. Santillo and Abran preferred to evaluate the data

manipulations in the “second order evaluation” even if the measurement method does

not include the data manipulations into the measurement process.

After the functional similarities are identified, the average, minimum, and maximum

similarities are calculated. These calculated data are used for the assessing the

potential reuse and decide to apply internal reuse or not.

Lastly, entity abstraction methods are also valid approaches for eliminating the

measurement variances based on different point of views, providing abstract data sets

by grouping similar functional processes and as a result eliminating the replication of

the same functions. Although, they can be evaluated as methods for determining the

impact of functional similarities on functional size, they can not be used as a method

for identification of the similar functions. A research study considering this approach

has been conducted by (Turetken, et al., 2008). They depicted the utilization of entity

generalization concept in COSMIC and IFPUG FPA Methods and evaluated the

effect of different interpretations on the measurement results.

2.3. Effort Estimation Models

Since accurate effort estimation is one of the most important tasks in software

management; various effort estimation models have been developed considering the

condition of the project in the software life cycle and management needs. Effort

estimation models can be grouped considering various aspects. For instance, top

down effort estimation approaches are suitable in the early phases of the software life

cycle; whereas bottom up estimation approaches are suitable when each software

component is known in detail.

Researchers used different assumptions to classify the effort estimation techniques.

Boehm considered the effort estimation techniques in the scope of cost estimation

models (BW Boehm, 1981). Cost estimation is determined as the process of

estimating the required effort (Leung & Fan, 2002), and these models are used for;

 14

effort estimation, duration estimation, and cost estimation. However, when the main

idea is to predict the required effort for software development; we believe that there

is a conflict between the name and the function of the methods and they should be

named as effort estimation models instead of cost estimation models.

First, Boehm classified the effort estimation methods into seven titles which are

Algorithmic Models, Expert Judgment, Analogy, Parkinson, Price-to-Win, Top-

Down, and Bottom-Up (BW Boehm, 1981). In his classification, “expert estimation

and bottom-up approach” is taken into account as a different approach. However,

since analogy techniques work by comparing the current projects with previous ones;

expert estimation and bottom-up approach can be considered in the scope of analogy

based effort estimation techniques (Jørgensen, Indahl, & Sjøberg, 2003).

Later on, some of the researchers grouped these models under two types: non-

algorithmic models and algorithmic models (Leung & Fan, 2002). Algorithmic

models are based on mathematical formulas and/or statistical analysis (Leung & Fan,

2002). Boehm emphasized that none of the methods has superiority to another.

Besides this, the methods can be used as complementary to each other such as expert

judgment and mathematical models, and top-down approach and bottom-up approach

(BW Boehm, 1981). Frequently used effort estimation approaches, can be explained

briefly as follows:

3.2.1 Expert Judgment

Effort is identified based on the judgments of one or more expert(s) (Anderson, et al.,

1999). This approach is suitable when the consultants are familiar with the projects

to be developed. New technologies, applications and languages increase the

judgment errors. However, Delphi and Wide Delphi Methods are structured

approaches to minimize the judgment errors (Demirors, 2008).

3.2.2 Top-Down Effort Estimation

These methods are suitable for the early phases of the software life cycle (Anderson,

et al., 1999). Based on the historical information in the organization, and comparing

 15

the project with previous similar ones, overall effort for the project is estimated at a

high level (Jørgensen, 2004). Later, the effort is distributed over the lower level

components considering life-cycle phases. Although top-down approach is easy and

fast to implement, it is less accurate when compared to bottom-up approach, since

the top down approach requires minimum project data (Anderson, et al., 1999).

Curve Fitting Estimation Models such as COCOMO, SLIM and PRICE-S; which are

based on mathematical formulas and statistics; can be considered in the scope of the

top-down approach. The details of COCOMO can be found in the following

paragraphs.

COCOMO (Constructive Cost Model)

COCOMO 81 is a regression based model. Since it has been published in 1981 by

Boehm, it is the most widely used effort estimation model. It is a methodology that

allows the user to estimate effort, schedule and cost of the software projects

(http://sunset.usc.edu/csse/research/COCOMOII/cocomo81.htm, 2008). The latest

version of COCOMO has been published in 2000 with the name of COCOMO II.

There are three different levels of COCOMO 81: Basic, Intermediate, and Detailed.

The effort is calculated based on three different difficulty modes of the projects, with

Basic COCOMO. This level of COCOMO provides a rough estimation. The

difficulty modes are as follows (Horowitz, 1994):

Organic mode is used to calculate effort for small size projects. The development

team is familiar with application and language and constraints are not rigid.

Semi-Detached mode is used to calculate effort for the projects in which the

constraints are greater than the organic mode. The team is not very familiar with the

application to be developed.

Embedded mode is used to calculate effort for relatively large scale projects in which

the constraints are rigid.

 16

Based on these difficulty modes above, the formula given below is used with three

different variables as in Table 1.

� !"# � $ % &'()*

Table 1 Variables of Basic and Intermediate COCOMO formulas

 Basic Intermediate
Mode a b a b
Organic 2.4 1.05 3.2 1.05
Semi-Detached 3.0 1.12 3.0 1.12
Embedded 3.6 1.20 2.8 1.20

Intermediate COCOMO 81 uses the formula given above and takes into account 15

cost factors which are classified into four categories (Horowitz, 1994):

Product Attributes are the characteristics of the product to be developed which are

reliability, database size, and product complexity. Computer Attributes are constrains

on software implied by the hardware platform: The four attributes in this category are

execution time constraints, main storage constraints, virtual machine volatility, and

computer turnaround time. Personnel Attributes describe the qualification and

experience of the development team. The five attributes in this category include:

Analyst capability, applications experience, programmer capability, programming

language experience, and virtual machine experience. Project Attributes include use

of modern programming practices, use of software tools, and required development

schedule.

These attributes which affect the effort are rated from “very low” to “extremely

high” and the scales are aggregated. The result of this scale which is “Effort

Adjustment Factor (EAF)” is multiplied with the effort.

Detailed COCOMO 81 includes some additional steps. First of all, the software

product is decomposed into sub-components and cost drivers are evaluated for each

component separately (Demirors, 2008). Detailed COCOMO uses different effort

multipliers for each phase of a project (Masse, 1997). Masse emphases that although

detailed model increases the predictability of efforts by considering each phase of the

 17

development life cycle, it is not robust enough to predict efforts at all phases of the

development accurately. Because, the inputs of the later phases, such as design and

coding, can not be estimated reliably in the early phases.

Since COCOMO is one of the most used effort estimation method, its ineffectiveness

has been subject to many researches. Kemerer has investigated the accuracy of the

effort estimation techniques including Basic COCOMO and Intermediate COCOMO

(Kemerer, 1987). He performed his study in 15 case products and published that

when the actual and estimated effort values compared, average percentage error is

610.1% and 583.8% for Basic COCOMO and Intermediate COCOMO respectively.

COCOMO II

COCOMO II was developed, to resolve the accuracy problem defined above, with

the consortium of organizations and graduate students during 1990s and first released

in 1996 (B. Boehm, Abts, Horowitz, & Madachy, 2000). The new method depends

on three major steps and it supports software development models other than

Waterfall model (Anderson, et al., 1999).

In stage 1, which is called as Application Composition, object point method is used

for estimation of software size. This stage supports prototyping to identify risky

issues and includes productivity rating. Developer’s capability and experience are

taken into account as an impact of effort required for software development.

The second stage, which is called Early Design, supports the measurement of the

software in the early phase by using function point or source of lines of code

measures. Since the SLOC is input to the model, function point results are converted

to SLOC by a conversion table. In this stage, seven cost factors evaluated are:

Product Reliability, Complexity, Required Reuse, Platform Difficulty, Personnel

Capability, Personnel Experience, and Facilities and Required Development

Schedule (Anderson, et al., 1999).

In stage 3, additional seventeen effort multipliers are evaluated some of which are

the extension of the attributes in Intermediate COCOMO 81 (Dillibabu &

 18

Krishnaiah, 2005), (Anderson, et al., 1999). These cost attributes are as follows:

Required Reliability, Database Size, Product Complexity, Required Reusability,

Documentation Required, Execution Time Constraints, Main Storage Constraint,

Platform Volatility, Analyst Capability, Applications Experience, Programmer

Capability, Personnel Continuity, Platform Experience, Language and Tools

Experience, Use of Software Tools, Multiple Site Development, Required

Development Schedule.

In the calculation of the required effort for software development, the cost attributes

above, and the scale factors, which are Precedentedness, Development Flexibility,

Architecture / Risk Resolution, Team Cohesion, Process Maturity, are taken into

account as variables in the formula given below (Anderson, et al., 1999).

+, � -. % �/012~�4 % �,5 � +,.6

where, PM is estimated effort in person months. Coefficient A can be set

conditionally based on the organization’s culture.

Size~ = Size (1 + BRAK/100) where BRAK is the percentage of code thrown away

due to requirements volatility. Size is the sum of new and adapted KSLOC.

B = 0.91 + 0.01 (SF), where SF is the sum of five scale factors that vary between 0

and 5. EM is the impact of product of 17 effort multipliers. PMAT is the effort for

components automatically translated (Anderson, et al., 1999).

3.2.3 Bottom-Up Effort Estimation

To be able to use bottom-up estimation, each task in the work break down structure

of the project should be well known, and historical data that involves productivity

should be reliable. Since detailed information about the requirements and tasks are

required to use this method, it is not suitable in the early phases. When the detail

level of the requirements is suitable to use the method, the size of each task or

component is estimated, and the required effort is calculated using historical

productivity of the organization or the team (Demirors, 2008). The method is

 19

sufficiently reliable when the productivity of the team is consistent; however, it

requires too much time to calculate (Anderson, et al., 1999) Therefore, it can be

perceived as a time consuming process.

 20

CHAPTER 3

SIMILARITY REFLECTIVE FUNCTIONAL SIZE: A
SYHTHESIS METHOD TO RELATE EFFORT AND

FUNCTIONAL SIZE

In this chapter, the structure and the process of the similarity reflective functional

size calculation method and the tool developed to automate the method - Similarity

Reflective Functional Size Measurement Tool, abbreviated as “SR Tool” - are

explained in detail. A full example which explains how the method is applied is

given in the last section of this chapter.

3.1 Similarity Reflective Functional Size (SiRFuS)

As discussed in the literature review section, (Santillo & Abran, 2006) defined a

method which is used to identify the functional similarities within the products

measured by COSMIC. SiRFuS is based on the approach of Santillo and Abran and

extends its applicability.

SiRFuS consists of three stages. The first one is the measurement of the functional

size of the product with COSMIC. The second one is the identification of the

functional similarities within the product by comparing the data group data

movement couples. The third one is the determination of the similarity reflective

sizes which can be either discrete or continuous. The flow of the process is given on

Figure 2.

 21

Figure 2 SiRFuS Process Flow

request for size

measurement

measure the
functional size

SR Program

functional
size

measured

COSMIC Manual

compare the data group - data

movement couples based on
the functional processes

functional

similarites are
identified

Determine the highest

functional similarity value
for a FP

equivalent size doc.

CS is

identified

SR Program

Functional
Processes

Data Groups

Data

Movement
Types

calculate the similarities
among all FPs based on

the formula

functional

similarity matrix

DS is

identified

apply the

discrete
formula

apply the

continuous
formula

highest
similarity

value

SR Program

equivalent size doc.

SR Program

 22

3.1.1. Measurement of the Functional Size of the Product

According to the structure of the COSMIC method, functional user requirements

(FURs) can be decomposed into the functional processes which are consisted of sub-

processes known as data movements and data manipulations. Data Movements are

the Entries, eXits, Reads and Writes crossing the boundary of software by moving

data groups. Data groups are consisted of specific set data attributes which may

belong to a single object of interest (ISO/IEC, 2003b). On the other hand, Data

Manipulations are not separately measured in the scope of the measurement since

they have already been associated with one of the data movements and counted

within them.

During the measurement of the product, the measurer should use a specific

measurement format which is an Excel table consisting of functional process name,

data movement type, the number of the data movement, and data group name cells

respectively. The names within the cells should be written without any space for the

data to be used by the tool developed as part of this study. The format of the

measurement table can be seen on Table 2. Another constraint related with the

measurement process and the tool is the naming of the data groups: the measurer

should use the same name for the data groups which are consisted of the same

attributes. This kind of notation will provide the integrity of the measurement and the

tool to distinguish similar functions.

3.1.2. Functional Similarity Identification Process

We described the similarity of the two functional processes as “If two functions

contain common data movement (DM) and data group (DG) tuples, they can be

considered as similar functions”. Therefore in the second stage of the method, the

similarity of two functional processes is determined by comparing the data group

data movement couples within the functional processes. An example set of the

comparison data are given on Table 2. Same data movement and data group couples

are marked with the same color.

 23

Table 2 Example of Comparison Data

Functional Process
Name

Data Movement Number Data Group
FunctionalProcessA Entry 1 DataGroupA
 Read 2 DataGroupB
 Exit 3 DataGroupD

 Read 4 DataGroupD
 Exit 5 DataGroupC
FunctionalProcessB Entry 6 DataGroupA

 Read 7 DataGroupB
 Exit 8 DataGroupD
 Exit 9 DataGroupE

Functional size of a process is a set of Data Movement and Data Group Tuples. The

number of tuples in the Functional Process set is the functional size of the process in

COSMIC. The similarity of the two functions can be defined formally as follows:

The examples of these conditions can be found in section 3.1.4.

(A) SimilarFunctionalProcesses ==

{	��: 	
��
����� ������� ���� | 9 :, <: 	
��
����� ��������� · : > 	�� ? < >
	�� ? 9 �@�A: ���
� @�B�@��
, ��
�A��
�� · �@�A �� < > :}

(B) 100%SimilarFunctionalProcesses ==

{	��: 	
��
����� ������� ���� | 9 :, <: 	
��
����� ��������� · : > 	�� ? < >
	�� ? C �@�A: ���
� @�B�@��
, ��
�A��
�� · �@�A �� < >
: ? C �@�A: ���
� @�B�@��
, ��
�A��
�� · �@�A �� : > < }

(C) Non-SimilarFunctionalProcesses ==

{	��: 	
��
����� ������� ���� | 9 :, <: 	
��
����� ��������� · : > 	�� ? < >
	�� ? C �@�A: ���
� @�B�@��
, ��
�A��
�� · �@�A �� < D :}

When the functional process A and the functional process B in Table 2 are compared,

we reach the following results:

Functional size of A is 5 CFP where as functional size of B is 4 CFP. The three data

movements within the functional process B are exactly the same as those within the

functional process A. Therefore, B is % 60 functionally similar to A, which means B

can use 60 % of the data movements of A and A is 75 % functionally similar to B

which means A can use 75 % of the data movements of B.

 24

Based on the approach described above, we identify the functional similarities

manually which requires comparison of all the functional processes with each other

in terms of data movement and data group couples. We observed the magnitude and

complexity of this task when the comparison process was started and realized that a

tool will provide significant improvement for the accuracy and required effort.

We developed the Similarity Reflective Functional Size Measurement Tool,

abbreviated as “SR Tool” by using the MATLAB (MathWorks, 2007), which

automatically compares the functional processes. The tool takes the COSMIC

measurement results as input and presents a functional similarity matrix, and results

of the similarity reflective sizes at the end of the process. The format of the

measurement results which are input to the tool should have been formatted

manually as given on Table 2.

Functional similarity matrix, which is a base for the calculation of similarity

reflective sizes, consists of similarity percentages of the similar functional processes.

The first horizontal and vertical cells of the matrix identify the functional processes

and the numbers on the table are the functional similarity percentages among

functional processes. An example of a functional similarity matrix can be seen on

Table 7.

Other outputs of the tool, which are calculated based on the similarities among

functional processes and the formulas, are “Discrete Similarity Reflective Functional

Size” and “Continuous Similarity Reflective Functional Size”. These adjusted sizes

are presented within an Excel table, an example of which can be seen on Table 8.

Although, with the automation of the process, comparison time was decreased to

seconds and a significant improvement was provided on the prevention of making

mistakes during the comparison, it is not possible to make heuristic interpretations in

the identification of functional similarities. Therefore, it is insufficient in the

situations where the best judgment of the analyst is required.

 25

3.1.3. Determination of the Similarity Reflective Functional Sizes

The third phase of the methodology is the identification of the similarity reflective

functional sizes: Discrete Similarity Reflective Functional Size (DS) and Continuous

Similarity Reflective Functional Size (CS). The calculation of these two sizes bases

on the principles explained below. At the end of the calculation, the SR Tool

represents two different similarity reflective sizes in addition to the functional

similarity matrix.

Discrete Similarity Reflective Size (DS)

Discrete Similarity Reflective Functional Size (DS) is calculated by using constant

functional similarity percentage values which change depending on five conditions.

Constant similarity values are determined based on the functional similarities of the

related functional process with remaining processes in the functional similarity

matrix. The values within the rows on the functional similarity matrix show the

similarity values of a functional process with other functional processes. The SR

Tool determines the highest value from diagonal of the matrix to the left side of the

row; checks one of the five conditions explained below and calculates the reflective

functional size according to the formulas given below.

The constant functional similarity values, used within the DS formulas are derived

from the software enhancement approach of NESMA (NESMA, 2001). In NESMA,

sizes of data functions are multiplied by an impact factor, based on amount of the

changes. The amount of change in NESMA is considered as the amount of functional

similarity and the impact factors are taken as constants in our application. Discrete

Functional Similarity Percentage Values can be seen on Table 3.

Table 3 Discrete Functional Similarity Percentage Value

Left Most Highest Similarity
Percentage Value

Functional Similarity
Percentage Constants

max<=34 % 0.25
0.34<max<=0.67 0.50
0.67<max<1.0 0.75
Max=1.0 0.1

 26

Table 3 (Cont.)

Max=0 1.0

Continuous Similarity Reflective Size (CS)

Continuous Similarity Reflective Functional Size (CS) is calculated by using

continuous functional similarity percentage values which are derived from the

functional similarity matrix.

Continuous functional similarity percentage values, which are used within the

formulas, are the highest values from diagonal of the matrix to the left side of the

row in the Functional Similarity matrix. We assume that the highest similarity values

are the closest candidates to be used in the reflective functional size calculations.

The other assumption is that the position of the functional process in the comparison

data set depicts the functional process’ production order. When functional process

(FP) A is followed by functional process B; this means: FP A is coded before the FP

B. Therefore the leftmost highest functional similarity percentage is chosen as the

continuous similarity value.

To explain the structure of the method, let’s consider six functional processes A, B,

C, D, E and F. AX, BX, CX, DX, EX and FX shows the data movement and data

group couples where X is the numbers.

1st Condition

A : A1, A2, A3, A4, A5, A6

B : B1, B2, B3

As can be seen above, A is 6 CFP while B is 3 CFP. Assuming that A1=B1, A2=B2

and A3=B3; we can say that B is % 50 similar to A and A is % 100 similar to B. The

functional similarity matrix of this analysis is given on Table 4.

 27

Table 4 Functional Similarity Matrix of Functional Process A and B

FP Name A B
A 1 0.5
B 1 1

When functional process A is coded before B and all of the data movements

belonging to B occurs within the FP A; then to calculate the CSs; FP A’s count is

multiplied by 1, since it is the first functional process in the data set (1) and FP B’s

count is only multiplied by the reuse overhead since all its actions have been coded

in A (2). To calculate the DS; FP A’s count is multiplied by 1 (3), and FP B’s count

is only multiplied by the reuse overhead for the same reason above (4).

CSA = (count A) * 1 (1)

CSB = (count B) * reuse overhead (2)

DSA = (count A) * 1 (3)

DSB = (count B) * reuse overhead (4)

Since an investigation of the code is required for the previously produced DM-DG

couples, the functional size of the process is multiplied by a reuse overhead. We have

taken the reuse overhead as %10 for the all DS and CS formulas.

2nd Condition

C : C1, C2, C3, C4, C5

D : D1, D2, D3, D4

FP C’s functional size is 5 CFP while D is 4 CFP. Assuming that C1=D1, C2=D2

and C3=D3; we can say that D is % 60 similar to C and C is % 75 similar to D. The

functional similarity matrix of this analysis is given on Table 5.

Table 5 Functional Similarity Matrix of Functional Process C and D

FP Name C D
C 1 0.6
D 0.75 1

 28

When functional process C is coded before D and some of the data movements

belonging to C occurs within the FP D; then to calculate the CSs; FP C’s count is

multiplied by 1, since it is the first functional process in the data set (1) and FP D’s

size is calculated by the formula given in (5). To calculate the DSs; FP C’s count is

multiplied by 1 (3) because of the same reason above and FP D’s size is calculated

by the formula given in (6).

CSC = (count C) * 1 (1)

CSD = ((count D) * leftmost highest similarity value * reuse overhead) + ((count D) -

(count D)* counter leftmost highest similarity value) (5)

CSD = (4*0.75*0.1) + (4 - 4*0.75) = 1.3

DSC = (count C) * 1 (3)

DSD = (count D)* functional similarity percentage constant* reuse overhead) +

((count D) - (count D)* functional similarity percentage constant) (6)

DSD = (4*0.75*0.1) + (4 - 4*0.75) = 1.3

3th Condition

E : E1, E2, E3, E4

F : F1, F2, F3, F4, F5

FP E’s functional size is 4 CFP while FP D’s is 5 CFP. Assuming that none of the

data movement and data group couples is the same, we conclude that these two

functional processes are not similar to each other, therefore each of them should be

coded alone and their size shouldn’t be modified.

CSE = (count E) * 1

DSF = (count F) * 1

 29

4th Condition

If two functional processes are 100 % similar to each other, then the second

functional process’ size should multiplied by the reuse overhead value while the

other’s size remain the same as described in condition # 1.

3.1.4. Example for the application of the SiRFuS Method

In this subsection, we give an example to better explain how the method is applied.

The example handled here is developed as a case product for the Software

Management (SM) students who learn the measurement of the functional size with

COSMIC. The measurement of the case was performed by the supervisor of the SM

students’ thesis. The requirements and the COSMIC measurement results of the

example case can be found in Appendix A. Partial measurement data and the

functional similarity matrix for this example are represented in Table 6 and Table 7

respectively.

The functional size of the example case is 68 CFP. It is constituted of 11 Functional

Processes; 15 Entries, 22 Exits, 19 Reads and 12 Writes.

The functional similarity matrix of the case product which is calculated by SR Tool

is given on Table 7. On this table, the first vertical and horizontal cells identify the

functional processes, and the numbers identify the functional similarity percentages.

The values in the diagonal of the matrix which are the same and 1 for all functional

processes are colored with grey.

This similarity matrix was constituted by comparing the DM and DG tuples. The

order of functional processes in the functional similarity matrix corresponds to the

implementation order of the functions. For instance, we assumed that the first

functional process will be developed before the second functional process. To

identify the similarity of a functional process with other processes, the matrix should

be read horizontally. For example 4th functional process (FP) is 100% similar to 1st

FP; 5th FP is 33.3% similar to 1st FP whereas 1st FP is 7.6% similar to 5th FP (they are

colored as blue in Table 7) and finally there is no similarity between 6th FP and 1st

 30

FP. If we analyze three examples given above, we are able to explain all the

conditions that can be seen during the similarity evaluation.

The similarity between FP 5 and FP 1 refers to condition A given in Section 3.1.2.

The only similarity between these two functional processes is the “error

conformation messages” which are colored with grey in Table 6. Therefore the FP 5

is 33% (1/3) similar to FP 1 which means FP 5 can makes use of the 33% of the

tuples of FP1. Besides FP 1 is 7.6% (1/13) similar to FP 5 which means FP 1 can

makes use of the 7.6% of the tuples of FP5.

On the other hand, the similarity between FP 4 and FP 1 refers to condition B given

in Section 3.1.2. Since the all (DM, DG) tuples within these functional processes are

the same; they are 100% similar to each other. However, if one of the functional

processes were the subset of the other functional process, there wouldn’t be two-way

100% similarity.

The similarity between FP 6 and FP 1 refers to condition C given in Section 3.1.2.

Since any of the DM-DG tuples of these processes are the same; there is no similarity

between them.

Table 6 An Example set from the Measurement Data of Movie Manager

FP ID FP Name No DM DG
1 AddPerson 1 Entry Personinfo
 2 Write Personinfo
 3 Exit Error/Confirmation
2 ListPersons 4 Entry Listpersonsrequest
 5 Read Personinfo
 6 Exit Personinfo
3 RetrievePerson 7 Entry Retrivepersondetailsrequest
 8 Read Persondetailsinfo
 9 Exit Persondetailsinfo
4 UpdatePerson 10 Entry Personinfo
 11 Write Personinfo
 12 Exit Error/Confirmation
5 AddMovie 13 Entry MovieInfo
 14 Read Personinfo
 15 Exit Personinfo
 16 Entry Writerinfo

 31

Table 6 (Cont.)

 17 Entry Producerinfo
 18 Entry Castinfo
 19 Entry Directorinfo
 20 Write MovieInfo
 21 Write Writerinfo
 22 Write Producerinfo
 23 Write Castinfo
 24 Write Directorinfo
 25 Exit Error/Confirmation
6 QueryMovie 26 Entry QueryParameters1
 27 Read MovieInfo
 28 Exit MovieInfotitleyear

Table 7 Functional Similarity Matrix of Movie Manager

FP 1 2 3 4 5 6 7 8 9 10 11
1 1 0 0 1 0.333

33
0 0 0 0 0 0

2 0 1 0 0 0.666
67

0 0 0.666
67

0.666
67

0 0

3 0 0 1 0 0 0 0 0 0 0 0

4 1 0 0 1 0.333
33

0 0 0 0 0 0

5 0.076
923

0.153
85

0 0.076
923

1 0 0 0.153
85

0.153
85

0 0.384
62 6 0 0 0 0 0 1 0.333

33
0 0.333

33
0.333

33
0.333

33 7 0 0 0 0 0 0.076
923

1 0 0.769
23

0.153
85

0.230
77 8 0 0.666

67
0 0 0.666

67
0 0 1 0.666

67
0 0

9 0 0.153
85

0 0 0.153
85

0.076
923

0.769
23

0.153
85

1 0.153
85

0.153
85 10 0 0 0 0 0 0.333

33
0.666

67
0 0.666

67
1 0.666

67 11 0 0 0 0 0.625 0.125 0.375 0 0.25 0.25 1

The Plain (PS), Discrete (DS) and Continuous Functional Sizes (CS) of case product

Movie Manager is given on Table 8. The second row in the table gives the plain size

of each functional process separately. The values in the third and the fourth rows are

calculated by applying the formulas of DS and CS given in section 3.1.3.

Table 8 Plain, Discrete and Continuous Functional Sizes of Movie Manager

Size/FP 1 2 3 4 5 6 7 8 9 10 11 TOTAL

PS 3 3 3 3 13 3 13 3 13 3 8 68

DS 3 3 3 0.3 10.07 3 10.07 1.65 4.2 1.65 4.4 44.37

CS 3 3 3 0.3 11.2 3 12.1 1.2 4 1.2 3.5 45.5

 32

As can be seen from the table above, the functional size of the Movie Manager was

decreased from 68 to 44.375 and 45.5 when the functional similarities were

considered for reuse.

The first functional process’ size is preserved as is; since there is no functional

process to be candidate for reuse produced before it. The 3rd functional process’ DS

and CS sizes are determined by multiplying its plain size (PS) by one; since FP3 is

similar to neither FP1 nor FP2. The 4th functional process’ PS size is multiplied only

by the reuse overhead factor to calculate DS and CSs, since the FP4 is 100% similar

to FP1. The 5th functional process’ situation is a good example for the 2nd condition

given in Section 3.1.3. The DS and CS sizes are calculated by the formulas given

below.

DS5 = (count FP5)* functional similarity percentage constant* reuse overhead) +

((count FP5) - (count FP5)* functional similarity percentage constant)

DS5 = (13*0.25*0.1) + (13 - 13*0.25) = 10.075

CS5 = ((count FP5) * leftmost highest similarity value * reuse overhead) + ((count

FP5) - (count FP5)* counter leftmost highest similarity value)

CS5 = (13*0.153*0.1) + (13 - 13*0.153) = 11.21

 33

CHAPTER 4

CASE STUDIES TO DETERMINE FUNCTIONAL SIZE
CONSIDERING FUNCTIONAL SIMILARITIES

4.1 Overview

We have conducted a single case study to analyze the reasons of the low correlation

between functional size and development effort and to identify the improvement

opportunities for this problem. After we had observed the reason of problem was the

similarity of the functions, we applied the functional similarity identification method

of Santillo and Abran. After identifying the reasons of the correlation problem

between the functional size and development effort and the deficiencies of the

method of Santillo and Abran, we developed a method to solve the problem. In

addition to the single case study, we conducted a multiple case study involving eight

cases in order to better evaluate the applicability of the functional similarity

determination methods and to evaluate the impact of SiRFuS on the correlation of

functional size and effort. Main goals were, to observe if the functional similarities

would improve the relation between functional size and total effort and to total effort

and to determine the best functional size (plain or adjusted) for the highest

correlation.

For the single case study, KN (Karagöz, 2008) is chosen to evaluate the reasons of

the correlation failures and improvement opportunities. KN included so many similar

functional processes, data entities and attributes that it can be described as a

challenging application from the planning perspective. The boundaries of KN’s

 34

 processes and of data entities can be changed based on the measurer’s estimations

and assumptions (Turetken, et al., 2008). This case is later included in the scope of

the multiple case studies because of the reasons explained below.

For the multiple case study, we aimed to evaluate a number of products in different

domains of application, to be able to generalize the applicability and the accuracy of

the method we suggested. We have started case study research with 17 cases. We

have selected only the 8 case products among these 17 cases. This is because we

were not able to get the Software Requirements Specification (SRS) Documents or

the measurement results for the six of the case products and the three case products

were not proper for the functional similarity analysis, since their functional size

measurement data were not collected and written in a systematic order.

As a result we have selected the case products; CN, SN, TN, AN, BN, DN, MN and

KN since they had well documented SRS and functional size measurement results.

Another reason for the selection of these cases was the consistency and the accuracy

of the collected effort values for the cases. However, we have identified that there

were major inconsistencies for the effort values of DN and MN. In DN we obtained

only the programming effort value which was only 6 man-days. When compared to

the other case products’ efforts, it does not seem so accurate. In MN, the total effort

for the development of the project was 280 man-hours which is not possible for a

project whose size is 208 CFP; because of the reasons above, we used the Lines of

Codes values for the observation of the effect of functional similarities for these two

cases.

All of the selected case products are Information Systems (IS) Projects, except for

the AN, which is a Complex Data Driven Control System Project with respect to the

CHAR Method defined in (ISO/IEC, 2004). As almost all of them were IS projects,

we grouped the case products based on their organizations. The productivity ratios of

the teams could diverge for different organizations for different teams, and for

different applications whereas they are expected to be similar for the teams that work

 35

in the projects for the same application domain in the same organization (Jones,

1998).

The case studies involved the measurement of the case products, (some of which

were measured previously as a part of another study as explained in Section4.2), by

using the COSMIC Method; and identification of the functional similarities and the

equivalent functional sizes, by using Similarity Reflective Functional Size Method

(SiRFuS). The aim of SiRFus is to determine an equivalent size which provides a

relation with the total effort utilized to build a software product. Therefore, the

equivalent sizes were determined using the method that gave the best analysis results

among the four candidates. The first approach applied is called as “Plain Functional

Size (PS)”, in which the functional sizes of the products are measured according to

the rules given in COSMIC Guideline (ISO/IEC, 2003b), and functional similarities

are not taken into account. The second one is called as “Average Similarity

Reflective Functional Size (ASR)”, which is determined by applying the average

functional similarity percentage values to the PSs. The third one “Discrete Functional

Size (DS)” and the fourth one “Continuous Functional Size (CS)” are determined

according to the SiRFuS method explained in Chapter 3. Best approaches, which

provide a better relation between functional size and total effort, are determined by

analyzing the case study results.

This chapter presents the details of the case studies.

4.2 Conduct of Case Studies

The size of a software product is the main input for most estimation models to

determine the effort and the cost of software projects. Functional size is one of the

size measures that can be calculated at the early phases of the software life cycle.

Although the functional size measurement methods are improving and the functional

size results reflect the real situation better, the mapping of the functional size with

the total effort can not be achieved precisely by using the conventional approaches.

However, one of the indicators of the size and effort relation, Productivity, should be

similar for the teams in the same organization and for the projects that belong to the

 36

same application domain. Therefore, we hypothesized that the quantitative relation of

the functional size and the total effort can be improved by determining the functional

similarities in a software product and reflecting them to the functional size

measurement results.

Considering the problem and the possible solution above; we determined the

following research questions, and conducted a multiple case study to evaluate the

hypothesis above.

− Are estimated efforts using COCOMO II for the case products consistent with

actual software development efforts?

− What is the use of the identification of the functional similarities?

− How do the current COSMIC based functional similarity quantification

methods including SiRFuS improve the relation between functional size and

the total effort?

− What are the problems and the difficulties of the current COSMIC based

functional similarity quantification methods and the improvement

opportunities?

− Do the COSMIC based functional similarity identification methods efficient

or is the effort required to evaluate the functional similarities acceptable?

The case study process progressed as follows:

Firstly, all of the case products were measured by using COSMIC v3.0 by the four

measurers, one of whom is the author of this thesis, and the others were the former

MSc students of the Software Management (SM) Program in Informatics Institute at

METU. SM Program’s students measured the case products in the scope of their term

project studies based on the software requirement specification documents of the

products’. The studies were coordinated by Dr. Onur Demirörs and Dr. Oktay

Türetken.

 37

In the scope of the term projects studies, each measurer first read and worked on the

measurement manual of COSMIC and then measured a fictitious project (explained

in Chapter 3) to be applicable for the size measurement and to provide the accuracy

of the measurement results. The results of the fictitious project were verified by the

supervisors of the term projects.

To provide the integrity among the size measurement results, students measured the

functional sizes of the case products’ by filling a preformatted Excel table which

consisted of “functional process name”, “data movement type”, and “data group

description”. In addition to this, students were asked to fill the data collection

questionnaire of the International Software Benchmarking Standards Group (ISBSG,

2007) that includes Project Progress, Technology, People and Work Effort

information.

After all of the case products had been measured, they were controlled and verified

by the supervisors of the term projects and the author of this thesis.

The second phase of the research consisted of the identification of the functional

similarities within the software products. Therefore, all of the measurement data sets

were arranged as to be inputs to the SR Tool. Measurement results, which were kept

in Excel tables, were rearranged so as to include the “functional process name”, “data

movement number”, “data group description”, and “data movement type”

information, and file formats were changed from “xls” to “txt”.

The functional similarities were identified by comparing the functional processes

based on the data movement - data group couples with the help of SR Tool (see

section 3.2.2). The SR Tool takes the txt files as input and generates a functional

similarity matrix table, a Discrete Functional Size (DS) result table and a Continuous

Functional Size (CS) result table for each case product as output. The functional

similarities, DSs and CSs are calculated according to the rules given in Chapter 3.

Based on the functional similarity matrices, the average functional similarity of each

product and the Average Similarity Reflective Functional Size (ASR) were

calculated based on the formulas given in equations (9) and (10). Santillo and Abran

 38

had suggested the calculation of average similarities for the identification of the

reuse potentials of the products. However, a formula is not presented by them in their

work; we used the formula given in (9). We took the average similarity calculation a

step further and developed the formula given in (10) and used average similarities of

the products to calculate the ASRs.

Average Similarity � SRS TU VWX YWTZX S[V\]^ – # TU FRbcV]Tb[Z P\TcXeeXe
TU FRbcV]Tb[Z P\TcXeeXefg# TU FRbcV]Tb[Z P\TcXeeXe . 100 (9)

 :�� � ��. �kllgmnopqro s�t�uqp�vw�
kll (10)

After this step, effort values to develop, manage and maintain the case products were

gathered from the ISBSG questionnaires in which the students filled out. The effort

details of the case products can be found in the section 4.2.1 where the cases are

described.

The case products’ effort values except for KN were in terms of man–hours.

Therefore, KN’s effort values were converted from man-days to man-hours, by

multiplying the efforts with the utilization factor which is assumed as “5” as can be

seen on Table 13.

Since the total effort of each case product does not include the supporting processes,

the effort values of the supporting processes were removed in the case products CN,

SN, TN and KN, to make the comparisons among the case products to be consistent

as can be seen on the 4th column of Table 18. For the case products DN and MN, the

Lines of Codes values were used for the comparison instead of the total effort.

The last stage of the case study research is the calculation of the productivity ratios,

since the productivity is a measure, from which the relation between the size and

effort can be observed. The details of products subject to the case studies can be

found in section 4.2.1.

 39

4.2.1 Description of the Case Products

Eight case products were evaluated in the context of the multiple case studies. The

details and characteristic of the cases are explained in this section.

Organization#1

Three case products in this section were developed within the same organization by

the same team. All of the products had web-based graphical user interfaces and are

developed using the waterfall life-cycle model. Software Requirements Specification

(SRS) documents of the products were conformant with the IEEE Standard 830-1998

(IEEE, 1998).

The software tools and programming languages used throughout the software life

cycle were as follows (Urgun, 2008): JAVA as the programming language, IBM

WebSphere Application Developer as the development environment, Borland

Together Architect as the analysis and design tool, CA All Fusion Harvest as the

change management and version controlling tool and Telelogic DOORS as the

traceability tool. Database Management Systems were DB2 in the products.

Case Product-1: CN

CN is a support tool that provides a paperless flow of information for change

management activities in design processes. It is possible to initiate, review and

approve change requests; organize configuration control board meetings and analyze

change effects by using the tool.

The project was initiated in April 2007 and completed in June 2007. The project

staff consisted of 8 people; 1 Project Leader, 1 Software Quality Assurance

Representative, 1 Configuration Manager, 1 System Analyst, 1 System Designer, 1

System Developer, 1 Tester, 1 Database Administrator.

Total Effort required to develop this project is 1200.42 person-hours. Details of the

effort utilized are given on Table 9.

 40

Table 9 Development Effort of the CN

Software Development
Life Cycle Phase

Effort (person-
hours)

Development Processes 502.74
 Software Requirements Analysis 102.6
 Software Design 71.82
 Software Coding & Unit Testing 184.68
 Testing 143.64
Management 410.4
Supporting Processes 287.28
Total 1200.42

Case Product-2: SN

SN, a Stationery Requisition System project, was developed for the purpose of

managing the requests of stationary material purchase of departments throughout an

approval workflow, on an electronic, paperless environment (Urgun, 2008). With the

help of the tool, human effort on the purchase process is minimized, possible errors

are handled and request approval mechanism is automated.

The project started in May 2007 and was completed in December 2007. The project

staff consisted of 9 people; 1 Project Leader, 2 Software Quality Assurance

Representative, 1 Configuration Manager, 1 System Analyst, 1 System Designer, 1

System Developer, 1 Tester, 1 Database Administrator.

Total Effort required to develop this project is 1256.36 person-hours. Details of the

effort utilized are given on Table 10.

Table 10 Development Efforts of the SN

Software Development
Life Cycle Phase

Effort (person-
hours)

Development Processes 532.41
 Software Requirements Analysis 129.72
 Software Design 70.93
 Software Coding & Unit Testing 161.74
 Testing 170.02
Management 207
Supporting Processes 516.95
Total 1256.36

 41

Case Product-3: TN

TN is a system that is used to follow up the Letters of Credit, received or sent by the

Finance and Accounting Management, Material Planning and Procurement

Management and Facilities Management Departments of the organization (Urgun,

2008). TN provides the interaction among General Accounting, Purchase

Management, Authorization, and Human Resources Systems of the organization.

Received Letters of Credits can be registered to the system; registered or sent letters

of credits can be followed up; reports are provided to the related users throughout the

system.

The project started in January 2007 and completed in January 2007. The project staff

consisted of 8 people; 1 Project Leader, 1 Software Quality Assurance

Representative, 1 Configuration Manager, 1 System Analyst, 1 System Designer, 1

System Developer, 1 Tester, and 1 Database Administrator.

Total Effort required to develop this project is 1400.08 person-hours. Details of the

effort utilized are given on Table 11.

Table 11 Development Efforts of the TN

Software Development
Life Cycle Phase

Effort (person-hours)

Development Processes 774.15
 Software Requirements Analysis 171.09
 Software Design 120.27
 Software Coding & Unit Testing 118.58
 Testing 364.21
Management 354.89
Supporting Processes 271.04
Total 1400.08

Organization # 2

AN and BN were developed within the same organization. These two case products

were web based projects developed with JAVA and generated with AJAX and Struts.

Database Management Systems were Oracle 9i and 10i used in the products.

 42

Case Product # 4:AN

AN was developed to provide management interfaces for water subscribers. System

has interfaces with outer system components like hand terminals for reading water

meter, and banks for payment information (Ergüden, 2008).

The project started in March 2006 and completed in March 2007. The project staff

consisted of 3 people; 1 Project Manager who is also Technological Leader, 1 Senior

Software Engineer, and 1 Junior Software Engineer. Total Effort required to develop

this project is 5950 person-hours. However, only the 32% of the whole project was

subject to the measurement. Therefore the effort required to develop the measured

module is 3594 person-hours. Details of the effort utilized are given on Table 12.

Table 12 Development Efforts of the AN

Software Development
Life Cycle Phase

Effort (person-
hours)

Development Processes 3038
 Software Requirements Analysis 452
 Software Design 2287
 Software Coding & Unit Testing 64
 Testing 235
Management 556
Supporting Processes ---
Total 3594

Case Product # 5: BN

BN was developed to manage the budgeting process automatically. BN gathers

budget’s expenditure information from “accounting module” through an interface

and then consolidates this information with budget items (Ergüden, 2008).

The project started in January 2008 and completed in August 2008. The project staff

consisted of 2 people; 1 Senior Software Engineer, and 1 Junior Software Engineer.

Total Effort required to develop this project is 1584 person-hours. However, we do

not have the details of this actual effort values. The only information we have is that

the total effort value does not include the effort required for supporting processes.

 43

Organization # 3

Following two web based case products were developed within the same

organization by using JAVA (J2ee) and generated with Hibernate and Struts. The

applications were run on Oracle IAS 10 Application Server and Oracle 10g Database

Server (Şentürk, 2008).

We could not reach the reliable effort values of the projects; therefore these two

projects will be evaluated from the Lines of Code (LOC) and functional size relation

perspective.

Case Product # 6: MN

MN was developed to manage the finance applications of the organization (Şentürk,

2008).

The project staff consisted of 2 people; 1 Senior Software Engineer, and 1 Junior

Software Engineer.

The size of the product in LOC is determined as 1950 by measurements with the

“Practiline Source Code Line Counter v1.1”(Software, 2008).

Case Product # 7: DN

DN was developed to be used for management of vehicle activities in the “General

Directorate of Highways” and “Radio and Television Supreme Council” as a sub

module of Human Resource Management System. The project staff consisted of 5

people; 1 Project Manager, 1 Team Leader, 1 Senior Software Engineer, and 2 Junior

Software Engineer.

The total size of the product in LOC is determined as 46270 by measuring with the

“Practiline Source Code Line Counter v1.1”. However, the size of the part that

subject to the measurement is calculated as 12087.

 44

Organization # 4

The last case product, KN, was developed as a conceptual modeling tool with the

consortium of two organizations. For the software analysis and design, Rational

Software Architect tool; for the requirements management, Requisite Pro tool; and

C# as the programming language have been utilized in KN. Unified Modeling

Language (UML) (Group, 2005) was used for representing analysis and design, and

Subversion Tool was used for configuration control (Karagöz, 2008).

Case Product # 8: KN

KN is a conceptual modeling tool development project. The tool provides a common

notation and a method for the conceptual model developers in different modeling and

simulation development projects, particularly in the military domain.

The project staff utilized in the projects consisted of 21 people; 1 Project Manager, 1

Assistant Project Manager, 2 Steering Committee Members, 1 Project Coordinator, 8

Researchers, 1 Software Development Team Leader, 1 Quality Assurance Team

Leader, 4 Software Engineers (1 part-time), 1 Part-time Test Engineer and 2 Quality

Engineers (1 part-time).

It was assumed that the project staff could work 5 hours a day by considering the

work capacity. The efforts utilized for the project totaled up to 1,832 person-days

which equals to 9160 person-hours. Details of the effort utilized are given on Table

13.

Table 13 Development Efforts of the KN

Software Development
Life Cycle Phase

Effort
(man-day)

Effort
(man-hour)

Development Processes 1287 6435
 Software Requirements Analysis 227 1135
 Software Design 185 925
 Software Coding & Unit Testing 670 3350
 Testing 205 1025
Management 135 675
Supporting Processes 410 2050
Total 1832 9160

 45

4.2.2 General Discussions on the Case Studies and the Results

The case study results and our inferences based on these results are explained in the

following paragraphs.

The functional sizes of the case products were measured with COSMICv3.0. The

summary of the measurement results are given on Table 14.

Table 14 Measurement Results of the Case Products based on COSMIC v3.0

Org.
No

Case
Product

No. of
Functional
Processes

No. of
Entries

No. of
Reads

No. of
Writes

No.
of

Exits

Total
Functional
Size (CFP)

Org. #
1

CN 16 32 22 25 29 108
SN 10 24 24 10 18 76
TN 27 49 39 16 52 156

Org. #
2

AN 36 49 98 17 117 281
BN 34 37 51 20 70 178

Org. #
3

DN 45 45 68 18 86 217
MN 44 44 55 31 78 208

Org. #
4

KN 136 324 419 657 596 1996

To be able to compare the estimation accuracy of widely used methods, we estimated

the efforts with COCOMO II. In COCOMO II, there are six scales for the cost

drivers which change from very low to extremely high (see section 3.2.2). As we did

not have detailed information to identify the scale factors and the effort multipliers

we assumed that “normal level” is acceptable for scale factors and effort multipliers

for all the case products. COCOMO II uses SLOC values to estimate effort. Since,

we don’t have the SLOC values for case products CN, SN and TN; we converted

their functional size results to SLOCs based on the conversion equation given in

(http://www.qsm.com/FPGearing.html, April 2005). The results are depicted in

Table 15. In the second column of the table, functional sizes of the case products; in

the third column, LOCs of the case products; in the fourth column, actual work effort

and in the last column estimated effort values using COCOMO II are listed.

 46

Table 15 Actual and COCOMO II Based Estimated Work Efforts

Case
Product

Functional
Size (CFP)

LOC
Actual Work
Effort (MM)

Estimated Work Effort
with COCOMO II

(MM) CN 108 6372 7.5 21.2
SN 76 4484 7.8 13.5
TN 156 9499 8.7 32.9
AN 281 36154 22.4 151.3
BN 178 18269 9.9 70.6
KN 1996 91609 57.25 419.5

As can be seen from the table, there are significant deviations between the estimated

and the actual work efforts. Deviations change between 5.6 man-months to 362.3

man-months. We can observe that COCOMO II overestimated the required effort.

Actually, there are various factors that can have impact on the estimation of efforts of

the cases. One of them is the estimation of LOC values for the first three cases. The

estimated LOCs may be different from the actual ones.

COCOMO II takes into account the external reused code. None of the case products

used similar code from previous projects; however, they have considerable potential

for the internal reuse. We think that another reason of this failure is, not evaluating

the impact of functional similarities and the reuse potential during the effort

estimation.

The other objective of this study is the evaluation of the current COSMIC based

functional similarity identification methods. After the functional similarity matrices

had been constituted by comparing each data movement and data group tuples within

the functional processes, we calculated the average functional similarity values for

each case product by applying the formula given in (9) in section 4.2, which can be

found in Table 16. The average functional similarity values given on the 3rd column

of the Table 16 were calculated to be used in the calculation of the Average

Similarity Reflective Functional Size (ASR) values to evaluate the impact of average

functional similarity of the whole product in FS and effort correlation. After we had

calculated the average similarities given on Table 16, we observed a problem of the

approach of Santillo and Abran. In their research, Santillo and Abran, calculates the

 47

average similarities and decides to apply reuse internally based on the attained

Average Similarities. In fact, we observed that the average functional similarities of

the whole product do not indicate the real reuse capacity within the products,

especially when the number of functional processes increases. For instance, although

we easily observed the similarities among functional processes while reading the

Functional User Requirements of one of the case products, KN; we only had a 12.6

% similarity for the whole product. On the other hand, if KN did not have the

potential for reuse with its high similarities; it wouldn’t be possible to approximate

the productivity of KN to other case projects as can be seen on Figure 3 and Figure 4.

The reason of the difference between the average similarity and the potential

similarity of the product may be caused by the fact that when we calculate the

average similarity, we take the non similar functions in to consideration. When the

number of non similar functions increased which means 0% percentages, the average

similarity decreased unrealistically.

Table 16 Average Functional Similarity of Each Case Product

Organization Case Product
Average Similarities

(%)

Org. # 1
CN 18.01
SN 25.25
TN 31.70

Org. # 2
AN 12.77
BN 13.45

Org. # 3
DN 11.32
MN 12.69

Org. # 4 KN 12.70

After the functional similarity matrices were constituted, we calculated three adjusted

functional size values (ASR, DS and CS) in addition to Plain Functional Size (PS),

which are given on Table 17. Plain Functional Size (PS) is just the COSMIC v3.0

functional size measurement results of the case products. The PS values of the case

products can be seen on the 3rd column of Table 17. Average Similarity Reflective

(ASR) Functional Sizes were calculated by applying the average similarity values

given on the Table 16 to PS values, based on the formula given in (9). Discrete (DS)

and Continuous (CS) Similarity Reflective Functional Sizes were calculated based on

 48

the highest functional similarity values of the functional processes derived from the

functional similarity matrix. The only difference between DS and CS is that; the DSs

were calculated considering a constant similarity interval based on the highest

similarity values; on the other hand CS were calculated based on the value of highest

functional similarity itself. The formulas for calculating DS and CS can be found in

Section 3.2.3.

Table 17 Plain and Similarity Reflective Sizes of the Case Products

Org Case Product PS ASR DS CS

Org. # 1
CN 108 88.55 61.43 63.0
SN 76 56.81 40.45 42.7
TN 156 109.97 61.10 58.4

Org. # 2
AN 281 246.86 167.80 161.5
BN 178 154.05 103.75 101.5

Org. # 3
DN 217 192.44 103.15 99.1
MN 208 181.60 106.98 100.9

Org. # 4 KN 1996 1742.57 682.22 601.9

One of the objectives of this study was to investigate the relation between functional

size and total effort. Therefore, after we had attained the functional size measurement

results; we obtained the total effort values of the case products given on Table 18.

The values on the 2nd column of the table are for the total efforts in which the

supporting processes are included; whereas the values on the fourth column are the

total efforts in which the supporting processes are excluded. Both the values on the

2nd column and 4th column are used for the observation of the differences between

these two conditions in the productivity analysis.

Table 18 Total Effort and LOC Values of the Case Products

Org. Case Product
Effort (1)

(man –hour)
Supporting

Process Efforts
Effort (2)

(man –hour)
LOC

Org. # 1
CN 1200.42 287.28 913.14 -
SN 1256.36 516.95 739.41 -
TN 1400.08 271.04 1129.04 -

Org. # 2
AN 3594 - 3594 36154
BN 1584 - 1584 18269

Org. # 3 DN - - - 12087
Org. # 3 MN - - - 19690
Org. # 4 KN 9160 2050 7110 91609

 49

We calculated the functional size per hour and the lines of code per function point

values for each type of functional size of each case product, in order to observe the

correlation between functional size and total effort, and the correlation between

functional size and lines of code, respectively. The productivity values of the case

products which are indicators of the correlation between functional size and total

effort are given on Table 19 and Table 20, whereas the LOC per CFPs are given on

Table 24.

Based on the effort values in 3rd column of Table 18, in which the supporting

processes are included, and the functional sizes on Table 17, the productivity ratios

were calculated as seen on Table 19, for every size value of each case product. The

Productivity#1 indicate the plain functional size per hour; the Productivity#2 indicate

the average similarity functional size per hour; the Productivity#3 indicate the

discrete similarity reflective functional size per hour and finally the Productivity#4

indicate the continuous similarity reflective functional size per hour. In Figure 3, the

productivity ratios for case products on Table 19 are plotted. The first three and the

following two case products were developed by different organizations. It can be

deduced from the figure that the variances for Productivity#1 and 2 are higher than

Productivity#3 and 4. The standard deviation of Productivity#1 and 2 is about 0.0556

and 0.0508 whereas the standard deviation of Productivity#3 and 4 is about 0.0154

and 0.0127 respectively. These significant decreases on the deviations reveal that the

adjusted functional sizes calculated based on the rules of SiRFuS method, provide

better correlation with total effort. One of the objectives of this study was to improve

the relation between functional size and development effort which is seen to be

accomplished observing these facts. Since we showed up the correlation of

functional size and effort with the productivity values in which the DS or CS sizes

were used, the effort and the cost to develop software projects can be identified

reliably using effort and cost estimation models.

 50

Table 19 Productivity Ratios of the Cases in which the Supporting Processes
Included to Total Effort (man-hour)

Org.
Case

Product
PS/Effort ASR/Effort DS/Effort CS/Effort

 P#1 P#2 P#3 P#4

Org. # 1

CN 0.090 0.074 0.051 0.052
SN 0.060 0.045 0.032 0.034
TN 0.115 0.079 0.044 0.042

Org. # 2
AN 0.079 0.069 0.047 0.045
BN 0.112 0.097 0.065 0.064

Org. # 3
DN - - - -

MN - - - -

Org. # 4 KN 0.218 0.190 0.074 0.066
Std. Deviation 0.0556 0.056 0.051 0.015

Figure 3 Distribution of the Productivity Ratios Based on the values in Table 19

For the purpose of identifying the relationship between functional size and the total

effort in which the supporting processes are excluded, we calculated the productivity

measures for the same case products as above, and for each type of functional size.

Based on the effort values in 5th column of Table 18, in which the supporting

processes are excluded; and the Plain and Similarity Reflective functional sizes on

0.000

0.050

0.100

0.150

0.200

0.250

CN SN TN AN BN KN

F
u

n
ct

io
n

a
l S

iz
e

/T
o

ta
l

E
ff

o
rt

Case Products

Productivity #1

Productivity #2

Productivity #3

Productivity #4

 51

Table 17, the productivity ratios were calculated as seen on Table 20, for every size

value of each case product. The Productivity#1 indicate the plain functional size per

hour; the Productivity#2 indicate the average similarity functional size per hour; the

Productivity#3 indicate the discrete similarity reflective functional size per hour and

finally the Productivity#4 indicate the continuous similarity reflective functional size

per hour. In Figure 4, the productivity ratios for case products on Table 20 are

plotted. As emphasized previously, the first three and the following two case

products were developed by different organizations. It can be deduced from the

figure that, as they are in Figure 3, the variances for Productivity#1 and 2 are higher

than Productivity#3 and 4. The standard deviation of Productivity#1 and 2 is about

0.0724 and 0.0655 whereas the standard deviation of Productivity#3 and 4 is about

0.0174 and 0.014 respectively. These significant decreases on the deviations reveal

that the adjusted functional sizes calculated based on the rules of SiRFuS method and

the efforts in which the supporting processes excluded, provide better correlation

with total effort with compared to the Plain Size and Average Similarity Reflective

Size. This high correlation with the correlation given on Figure 3; reveal that

significant improvement was provided by identifying the functional similarities and

considering the founded similarities on functional size calculation. To emphasize the

improvement; the functional size values attained by using SiRFuS method, will lead

to analyst better plan, monitor and control software projects as reliable inputs.

Table 20 Productivity Ratios of the Cases in which the Supporting Processes
Excluded from Total Effort (man-hour)

Org.
Case

Product
PS/Effort ASR/Effort DS/Effort CS/Effort

 P#1 P#2 P#3 P#4

Org. # 1

CN 0.118 0.097 0.067 0.069
SN 0.103 0.077 0.055 0.058
TN 0.143 0.097 0.054 0.052

Org. # 2
AN 0.079 0.069 0.047 0.045
BN 0.112 0.097 0.065 0.064

Org. # 3
DN - - - -

MN - - - -

Org. # 4 KN 0.281 0.245 0.096 0.085
Std. Deviation 0.072 0.072 0.066 0.017

 52

Figure 4 Distribution of the Productivity Ratios Based on the values in Table 20

To verify the accuracy of the productivity ratios given on Table 19, they were

compared with the values published in (Jones, 1998). Jones mentioned that the

productivity of cumulative software development activities range from 1.9 to 13.88

function points per month. The software development process he analyzed for the

calculation of the productivities comprised of 25 activities such as requirements,

prototyping, coding, configuration management, documentation, quality assurance,

project management etc. Therefore, the values on Table 19 were preferred to be used

in the comparison, since they include the efforts of the supporting process activities

and there are no such considerable differences between the productivities in Table 19

and Table 20. Since the productivity values in Table 19 were calculated based on the

effort values in man-hour scale; they were converted to man-month scale by

assuming that total work hour per month is 160. The productivity ratios of the case

products in man-month scale can be seen on Table 21. Although the measurements

of Jones are performed by IFPUG and can not be directly compared to COSMIC, as

their measurement scales are different, it is known that the conversion between

IFPUG and COSMIC are almost one to one (Desharnais, Abran, & Cuadrado-

0.000

0.050

0.100

0.150

0.200

0.250

0.300

CN SN TN AN BN KN

F
u

n
ct

io
n

a
l S

iz
e

/D
e

v
e

lo
p

m
e

n
t

E
ff

o
rt

Case Products

Productivity #1

Productivity #2

Productivity #3

Productivity #4

 53

Gallego, 2006), (Urgun, 2008). Therefore there is no obligation to use the interval of

Jones as is for comparison.

Table 21 Productivity Ratios of the Cases in which the Supporting Processes
Included to Total Effort (man-month)

Case

Product
 PS ASR DS CS

 P#1 P#2 P#3 P#4

CN 14.4 11.8 8.2 8.4

SN 9.7 7.2 5.2 5.4

TN 18.4 12.6 7.0 6.7

AN 12.6 11.0 7.5 7.2

BN 18.0 15.6 10.5 10.3

KN 34.9 30.4 11.9 10.5

Analyzing the values in Table 21, it was observed that the interval of Productivity#3

which was calculated based on the Discrete Similarity Reflective Functional Size

values (DS) on Table 19, changes between 5.15 and 11.9 whereas the interval of

Productivity#4 which was calculated based on the Continuous Similarity Reflective

Functional Size values (CS) on Table 19, changes between 5.43 and 10.5. This

means that both the Productivity# 3 and Productivity# 4 are in accordance with the

productivity values provided by Jones (Jones, 1998). Since the interval of the

productivity values provided by Jones is 1.9 to 13.88; the Productivity#1 and

Productivity#2 fails for this comparison by exceeding the bounds referenced. In other

words, if an organization use plain functional sizes (PS) for effort or cost estimation,

it will probably overestimate the effort or the cost required to complete a project

which leads to commitment of too many resources to the project.

When we analyze the Productivity#2 data which was calculated based on the

Average Similarity Reflective Functional Size (ASR) values from the same

perspective above; we observe that the ASR values also fail in the verification test.

We detected that; consideration of the average similarity percentage values of the

products is not an appropriate approach to attain an adjusted functional size, ASR.

Even when we take the approach of Santillo and Abran a step further, we can not

obtain satisfying results. We think the reason of this failure is that the Average

 54

Similarities does not reflect the real similarity values of the products, since during

the average similarity calculation, the value of the non similar functions decrease the

similarity value as explained in the beginning of this section.

For the calculation of adjusted functional sizes, we had identified the reuse overhead

as the 10% of the functional size in the beginning of this study. Later, we

investigated the most suitable reuse overhead value which provides the best linear

productivity line and tested whether the current reuse overhead assumption was

precise or not. By changing the reuse overhead value from 0 to 0.3 with a 0.01

interval, we calculated the DS and CS sizes and the productivity#3 and

productivity#4 values. At the end of this analysis we observed that we can not attain

a more reliable productivity value by changing the reuse overhead. However, when

the reuse overhead decreases, the deviation between the highest point and the lowest

point of a productivity line decreases as well. For instance, at 0.01 point, the

difference between the highest point and the lowest point of the productivity discrete

functional size of the case products is 0.01 and it is 0.05 when the reuse overhead is

0.3.On the other hand, the difference is 0.3 when the reuse overhead is taken as 0.1.

The reuse overhead should be in the “0.01 and 0.17” interval, to fit the interval of

Jones. When the reuse overhead is identified as 0.18 or more, the productivity values

exceed the acceptable boundaries. The reuse overhead values and the changing

productivity values can be found in Table 22. These productivities are calculated

changing the reuse overhead values on the Discrete Similarity Reflected Size

formulas.

Therefore, we can not say that a 0.1 reuse overhead is the most suitable reuse

overhead value. Although a 0.1 reuse overhead is acceptable, further analysis should

be performed with larger data sets to analyze the accurate overhead value.

Table 22 Productivities of the Cases Calculated Based on DS and Varying Reuse
Overhead Values

Reuse
Overhead

CN SN TN AN BN KN

0.01 0.049 0.031 0.034 0.042 0.059 0.051

 55

Table 22 (Cont.)

0.02 0.049 0.032 0.035 0.042 0.060 0.052

0.03 0.050 0.032 0.036 0.042 0.060 0.054

0.04 0.050 0.032 0.037 0.043 0.061 0.056

0.05 0.050 0.033 0.038 0.043 0.061 0.057

0.06 0.051 0.033 0.039 0.043 0.062 0.059

0.07 0.051 0.033 0.039 0.044 0.063 0.061

0.08 0.052 0.033 0.040 0.044 0.063 0.062

0.09 0.052 0.034 0.041 0.045 0.064 0.064

0.1 0.053 0.034 0.042 0.045 0.064 0.066

0.11 0.053 0.034 0.043 0.045 0.065 0.067

0.12 0.053 0.035 0.043 0.046 0.065 0.069

0.13 0.054 0.035 0.044 0.046 0.066 0.071

0.14 0.054 0.035 0.045 0.046 0.066 0.073

0.15 0.055 0.036 0.046 0.047 0.067 0.074

0.16 0.055 0.036 0.047 0.047 0.067 0.076

0.17 0.055 0.036 0.047 0.048 0.068 0.078

0.18 0.056 0.036 0.048 0.048 0.068 0.079

0.19 0.056 0.037 0.049 0.048 0.069 0.081

0.2 0.057 0.037 0.050 0.049 0.069 0.083

0.21 0.057 0.037 0.051 0.049 0.070 0.084

0.22 0.058 0.038 0.052 0.049 0.071 0.086

0.23 0.058 0.038 0.052 0.050 0.071 0.088

0.24 0.058 0.038 0.053 0.050 0.072 0.089

0.25 0.059 0.038 0.054 0.051 0.072 0.091

0.26 0.059 0.039 0.055 0.051 0.073 0.093

0.27 0.060 0.039 0.056 0.051 0.073 0.095

0.28 0.060 0.039 0.056 0.052 0.074 0.096

0.29 0.060 0.040 0.057 0.052 0.074 0.098

0.3 0.061 0.040 0.058 0.052 0.075 0.100

The other objective of this study was to evaluate the efficiency of the functional

similarity quantification methods and assess the effort required to identify functional

similarities.

When we first started to apply the method of Santillo and Abran to the case product

KN, as a part of the first case study; our aim was to observe the applicability of the

method in large projects; since the defined methodology of Santillo and Abran was

verified only small scale projects. Although only for the initial part of the case,

which was approximately 75 CFP, similarities were identified among functional

 56

processes by evaluating the measurement results (which does not include the data

preparation time) took 7 hours. Since KN had 136 functional processes and 1996

DM-DG tuples; 1996*1995 numbers of comparisons is required for the evaluation of

the functional processes. This means approximately 103 hours are required for

comparison of 1996*1995 tuples when our initial productivity is considered. As

Santillo and Abran emphasized, this process is very time consuming; besides, it is

impossible to accomplish such a job without errors.

In order not to evaluate 1996*1995 action types one by one, the best solution was to

develop a tool that automatically calculates the similarity percentage of the

functional processes. With the automation of the process, comparison time was

decreased to seconds and possibility of occurrence of an error was decreased. Since

the SR Tool provided a significant improvement to constitute a similarity matrix; we

extended its applicability to be calculating the DS and CS sizes automatically.

Although we developed the SR tool and provided a significant improvement on the

time required for detection of similar functions and constitution of the similarity

matrices; it still takes time to prepare the measurement results to be the input for SR

Tool, if they are not constructed based on the constraints of the Matlab Code

initially. Measurement results are arranged so as to include the “functional process

name”, “data movement number”, “data group description”, and “data movement

type” information in the cells of an Excel table. The important point to care about is

to write all of the information within the cells without any space.

The efforts required for Functional Similarity calculation for each case product is

given on the 4th column of Table 23. The effort required for functional size

measurement highly depends on the experience of the measurer, complexity of the

measured product and well defined requirement documents; therefore, we should

search for a correlation between the magnitudes and the efforts for FS Calculation of

the products instead of the measurement time and effort of functional similarity

calculation. Even if a linear correlation is not observed between functional size and

 57

effort for functional similarity calculation; we observed that when the size of the

product increases the effort required for FS calculation increases.

Table 23 Efforts Required for Functional Similarity Calculation and Functional
Size Measurement

Case
Product

Functional
Size

Effort for Functional
Size Measurement

(minute)

Effort for Functional
Similarity Calculation

(minute)
CN 108 600 25

SN 76 480 20

TN 156 900 30

AN 281 480 45

BN 178 240 30

KN 1996 5400 300

DN 217 2400 35

MN 208 1200 35

Besides the direct observations, we made some indirect observations based on the

results of the case studies. One of them is the distributions of the productivity values

given in Figure 3 and Figure 4. The considerable variances on the Productivity#1 and

2 in Figure 3 and Figure 4 revealed how the functional size and effort relation is a

problematic area and this subject is worth to work on it.

Another indirect observation was the negligible difference between productivity

values attained by the effort values in which the supporting processes are included

and the effort values in which the supporting processes are excluded in Table 19 and

Table 20. This negligible difference between the standard deviation values of CS on

Table 19 (0.01265) and on Table 20 (0.01400) can also be used as an indicator of

how the quality procedures are implemented in these organizations. For the case

product KN, although the effort of supporting processes is 22.4% of the total effort, it

has the highest productivity value. This can also be used as an indicator to show that

the 4th organization in which the KN developed, utilizes mature processes.

The last indirect observation is related to the granularity level and the functional

similarity relation. Based on the measurement structure of COSMIC, the functional

similarities are identified only to the data group level. However, if the attributes

 58

within these data groups were known, the probability of analyst to make an error

would be decreased, and the similarities which can be unnoticed would be detected.

This situation was observed during the analysis of the case product KN. Two of the

functional processes of KN are the constitution of Entities and constitution of Actor

model elements. Although these two functional processes are 100% similar, they can

be treated as two different processes and can be measured separately because of the

granularity level that the COSMIC provided, however, the effort required to develop

the second functional process is not the same as the first FP.

For the case products that the reliable effort values couldn’t be attained, the LOC and

functional size values were compared in order to observe the effect of the SiRFuS.

Table 24 LOCs per CFP for the Cases

Case Product LOC/PS LOC/ASR LOC/DFS LOC/CFS

AN 127.75 146.46 215.46 223.86

BN 102.64 118.59 176.09 179.99

KN 45.90 52.57 134.28 152.20

DN 55.70 62.81 117.18 121.97

MN 94.66 108.42 184.06 195.14

Std Deviation 33.98 39.31 39.57 39.21

Figure 5 Distributions of the LOCs per CFPs of the Case Products

0.00

50.00

100.00

150.00

200.00

250.00

AN BN KN DN MN

F
u

n
ct

io
n

a
l S

iz
e

/L
O

C

Case Products

PLAIN FS/LOC

ASR FS/LOC

DFS/LOC

CFS/LOC

 59

Six of the case products have been developed using JAVA and the remaining case

product has been developed using C# programming language. According to the data,

stated by Quantitative Software Management, Inc in

(http://www.qsm.com/FPGearing.html, April 2005), JAVA and C# are assumed to

have the same numbers of SLOCs for the same functionality. Therefore we used the

LOC values as it is for comparison.

When the Figure 5 is analyzed, it seems as if a significant improvement couldn’t not

be provided on the CS and DS values which were calculated by the application of the

SiRFuS method. However, the ratio between the highest point value and the lowest

point value of the Plain Size and the highest point value and the lowest point value of

the Continuous Functional Size was decreased from 2.78 to 1.83. The reason that we

failed to observe the improvement on the correlation between LOC and the effort

may base on the counting style of the LOCs of the products. Case products; DN, MN

and KN includes no comments, blank lines or library; on the other hand, we don’t

know if the LOC of the case products AN and BN were counted based on the same

rules.

Based on all of the discussion above we can conclude that it is a necessity to take

into consideration the functional similarities if the correlation of functional size and

development effort is desired which leading to successful planning, monitoring and

controlling of the software projects successfully. Besides this significant

improvement, functional similarity identification method can be used for the

organizations which wonder the similarity of their products.

 60

CHAPTER 5

CONCLUSIONS

In this chapter, the results and the contribution of our study is explained briefly.

5.1 Conclusions

In this thesis study, we studied the problem of functional size and effort correlation,

since the underestimated and overestimated effort values are one of the major causes

of failure of a software project (Tucker & Boehm, 2002).

Since the functional size is the primary input for effort estimation of a product, we

deal with the problem of the adjustment of COSMIC functional size results. We

thought that one of the reasons of the underestimated and the overestimated effort for

the software development is, overlooking the important issues that have impact on

the functional size such as functional similarities, varying complexity of the

algorithms, differences in the software development environment, expertise of the

developers etc...

We have conducted a single case study to analyze the problem and identify the

improvement opportunities. With the enlightenment of the results of the case study,

we decided that similarity of the functions enlarges the functional size, leading to

unrealistic effort estimation.

Our solution to the problem is based on the adjustment of the COSMIC functional

size measurement results by calculating the functional similarities within product by

evaluating the functional size measurement results. We have developed the

 61

Similarity Reflective Functional Size Methodology, SiRFuS, which involves

identification of the similar functions, based on the method of Santillo and Abran and

calculation of the similarity reflective functional sizes; Discrete and Continuous

Functional Size.

Discrete Similarity Reflective Functional Size (DS) of a product is calculated using

constant functional similarity percentage values, based on the interval in which the

functional similarity value belongs. The constants used within the DS formulas are

derived from the software enhancement approach of NESMA (NESMA, 2001). On

the other hand Continuous Similarity Reflective Functional Size (CS) is calculated

using variable functional similarity percentage values which are derived from the

functional similarity matrix.

When we used the COCOMO II Model, we observed that estimated efforts have

significant deviations from the actual efforts. Deviations change between 5.6 man-

months to 362.3 man-months. We think there might be three reasons for the failures

of effort estimation: the impact of functional similarities, problems during conversion

from functional size to LOC, and differences between the assumptions and the real

situations for the scale factors and effort multipliers.

To verify the applicability of our method, we evaluated the method in eight case

products. Although we had very few points for the comparison of the relation

between functional size and the effort, we were able to observe significant

improvements on this relation. The improvements have been observed by comparing

the productivity values of the case products which were calculated using both

adjusted and unadjusted functional size values. The productivity values which were

calculated by using adjusted functional size values, DS and CS, had an interval from

5.15 to 11.9 function points per month and from 5.43 to 10.5 function points per

month respectively. On the other hand; the productivity values which were calculated

by using unadjusted functional size values, PS, change from 9.6 to 34.8. The

reference productivity values provided by Jones (Jones, 1998), range from 1.9 to

13.88 function points per month. As can be observed, the productivity values attained

 62

using DS and CS lie within the interval given by (Jones, 1998), while the

productivity values attained using PS are out of the bounds. Although the ASR is an

adjusted functional size, it is not in the bounds of the reference values, since the

interval of the productivity attained by using ASR changes from 7.2 and 30.4; which

also supports the idea that the average functional similarities does not reflect the real

similarity potential of the product.

The case study results revealed that there is not a big difference between the DS and

CS sizes; however, we recommend the usage of Continuous Similarity Reflective

Functional Size for the determination of the required effort. Because, although the

functional similarities of the case products approximated to the constant percentage

values in this study; this is not a general rule. When the functional similarities show

significant changes based on the complexity of the application, the constant

similarity values which are derived from the NESMA enhancement approach, may

not converge with the continuous similarity values.

We assumed that a reuse overhead is essential to calculate similarity reflective DS

and CS sizes. Because of this is; even if two functional processes are 100% similar,

an effort is still required for the investigation and the reuse of one of the functional

processes. Therefore, at first we had identified the reuse overhead value as 0.1. After

that we investigated the most suitable reuse overhead value which provides the best

linear productivity line. After the analysis, we observed that none of the reuse

overhead values between 0.01 and 0.17 provided superiority to another, although, the

difference between the highest point and the lowest point of the productivity discrete

functional size of the case products decreased, as the reuse overhead decreased.

Although a 0.1 reuse overhead value is acceptable, further analysis should be

performed with larger data sets to analyze the accurate overhead value.

One of the challenges of the functional similarity identification is that the

implementation process is error prone and requires too much effort. Observing this

problem, we developed the SR Matlab Tool to automate the process and to decrease

the possibility of occurrence of an error. In addition to this, the comparison time was

 63

decreased to a few seconds. The program takes the COSMIC functional size

measurement results as input, and generates the functional similarity matrix, DS and

CS results of the product being analyzed.

Although the method of Santillo and Abran is suitable for the identification of

functional similarities; their research was limited with the evaluation process. Their

approach is based on the identification of the functional similarities and calculation

of the average, minimum and maximum similarity percentages for the whole product

which are later used for the internal reuse decisions. Since we observed that average

similarity of the product does not reflect the real potential of the product for reuse;

we evaluated a new similarity reflective functional size value for every functional

process in our study. By identifying adjusted functional sizes for every functional

process; we made possible the identification of the adjusted functional sizes of each

work package. When the goal is; to plan, execute and monitor software projects

successfully, the size of each work package has a considerable significance. Since

the functional size can be defined more reliably with the method of SiRFuS, the

effort required for the work packages will also be estimated more reliably.

The methodology SiRFuS has also some weaknesses, in addition to the strengths

explained above. In our study we assumed that the cases are developed under the

same conditions, although some of them are not. When the SiRFuS method is applied

within organizations in the long term, and organizations’ own historical data are

collected, the formulas and the structure of the method can be validated more

precisely with larger data sets.

Although the SR Tool, provided a significant improvement on the process of

evaluation and calculation of the functional similarities, it is still error prone. Since,

it identifies the similarities by comparing the names within the cells, the names

should be written identically and without any space. If the analyst leaves a space by

mistake between the functional processes or the data group descriptions, the tool

perceives each separate name as separate functional process or data group, leading to

incorrect results. Therefore the results should be checked carefully.

 64

Although significant improvements were observed on the deviations of the

productivity values, they still vary. The reasons of the variances may be the varying

complexity of the algorithms, differences in the software development environment,

and different level of expertise of the developers, which are not in the scope of thesis

study.

As a result, this study has three major contributions to the field of software project

management; indication of the significance of the identification of the functional

similarities for the adjustment of the functional sizes; the development the SiRFuS

methodology, which provides the correlation of the functional size; and effort and the

development of the SR Tool, which partially automates the method and decreases the

analysis time.

5.2 FUTURE RESEARCH SUGGESTIONS

We have used the CHAR method to define the functional domains of the case

products in this research. However, we had a chance to evaluate the SiRFuS only on

Information Systems and Complex Data Driven Systems Projects, since the data we

have was limited. Therefore, the applicability of the method should be verified on the

other functional domains defined in the CHAR Method, such as Controlling

Calculation Systems, Scientific Information Systems, and Scientific Controlling Data

Processing Systems.

Although we have improved the correlation between functional size and effort, there

is still need to identify other factors obstructing the exact correlation. More research

is needed to be conducted to identify these factors. One of these factors can be the

complexity of the algorithms within the functional processes. The granularity level of

functional size measurement methods does not evaluate this level of information.

Therefore, SiRFuS should be refined to consider the complexity of the algorithms

besides functional similarities.

The accuracy of the method can be verified within the organizations with much more

data with various functional domains.

 65

In the scope of the thesis we only evaluated the internal reuse of the similar

functions, however, the external reuse can be evaluated within the projects in the

same organizations with the SiRFuS Method.

The functional similarities were identified only considering the functional processes,

however, some of the functions may be more similar when they are compared with

clustering (Ozcan Top, et al., 2008).

We assumed that the similar functions will be used within the product; however the

effectiveness of the reuse of the similar functions should be analyzed.

The correlation of the adjusted functional size values and the effort and cost models

should be analyzed.

The method which is based on the measurement of the case products by COSMIC

can be extended to be used with other common functional size measurement methods

such as IFPUG and MkII.

 66

REFERENCES

Abran, A., & Desharnais, J. M. (1995). Measurement of Functional Reuse in

Maintenance. Journal of Software Maintenance: Research and Practice, 7(4), 263-

277.

Abran, A., & Maya, M. (1997). Measurement of Functional Reuse. WISR8, Ohio

State University, Columbus, Ohio, USA, March, 23-26.

Albrecht, A. (1979). Measuring Application Development Productivity. Proceedings

of the Joint SHARE/GUIDE/IBM Application Development Symposium, 83, 92.

Albrecht, A., & Gaffney Jr, J. (1983). Software function, source lines of code, and

development effort prediction: A software science validation. IEEE Transactions on

Software Engineering, 9(6), 639-647.

Anderson, J., Branch, E., Luedtke, T., Carson, S., Falconi, J., & Janda, R. (1999).

Parametric Estimating Handbook: Reinvention Laboratory, DOD, NASA.

Banker, R., Kauffman, R., & Zweig, D. (1993). Repository evaluation of software

reuse. IEEE Transactions on Software Engineering, 19(4), 379-389.

Boehm, B. (1981). Software engineering economics: Prentice-Hall Englewood Cliffs,

NJ.

Boehm, B., Abts, C., Horowitz, E., & Madachy, R. (2000). COCOMO II Model

Definition Manual: Center for Software Engineering, USC.

 67

Consortium, T. C. S. M. I. (2005). Guideline for Sizing Business Applications

Software Using COSMIC-FFP, Version 1.0.

Cruickshank, R., & Gaffney, J. (1992). A software cost model of reuse within a

single system. MITRE-Washington Econ. Analysis Ctr. Conf. on Analytical Methods

in Software Eng. Econ. II, Washington, DC, July.

Demirors, O. (2008). Software Management Lecture Notes.

Desharnais, J., Abran, A., & Cuadrado-Gallego, J. (2006). Convertibility of Function

Points to COSMIC-FFP: Identification and Analysis of Functional Outliers.

MENSUR A.

Dillibabu, R., & Krishnaiah, K. (2005). Cost estimation of a software product using

COCOMO II. 2000 model?a case study. International Journal of Project

Management, 23(4), 297-307.

Ergüden, E. (2008). Application of the Unification Model For Functional Size

Measurement Methods: A Case Study in WEB Applications. Middle East Technical

University, Ankara.

Fenton, N. (1991). Software Metrics: A Rigorous Approach. London, UK: Chapman

& Hall, Ltd

Frakes, W., & Terry, C. (1996). Software reuse: metrics and models. ACM

Computing Surveys (CSUR), 28(2), 415-435.

Gencel, C. (2005). An Architectural Dimensions Based Software Functional Size

Measurement Method. Middle East Technical University, Ankara.

Gencel, C., & Demirors, O. (2008). Functional size measurement revisited. ACM

Transactions on Software Engineering and Methodology, 17(3).

Group, O. M. (2005). Unified Modelling Language (UML) v2.0.

Ho, V., Abran, A., & Oligny, S. (2000). Using COSMIC-FFP to Quantify Functional

Reuse in Software Development: ESCOM-SCOPE.

 68

Horowitz, E. (1994). USC COCOMO Reference Manual.

http://sunset.usc.edu/csse/research/COCOMOII/cocomo81.htm (2008). COCOMO

81

http://sunset.usc.edu/research/COCOMOII/expert_cocomo/expert_cocomo2000.html

(2000). COCOMO II with Heuristic Risk Assessment

http://www.qsm.com/FPGearing.html (April 2005). LOC compatibility: Quantitative

Software Management Function Point Programming Languages Table.

IEEE (1998). IEEE Std 830-1998: IEEE Recommended Practice for Software

Requirements Specifications.

ISBSG (2007). Data Collection Questionnaire- New development, redevelopement,

or enhancement (COSMIC FFP) v5.10.

ISO/IEC (1998). 14143-1: Information Technology – Software Measurement -

Functional Size Measurement - Part 1: Definition of Concepts.

ISO/IEC (2002a). 14143-2: Information Technology – Software Measurement -

Functional Size Measurement - Part 2: Conformity Evaluation of Software Size

Measurement Methods to ISO/IEC 14143-1:1998.

ISO/IEC (2002b). 14143-4: Information Technology – Software Measurement -

Functional Size Measurement - Part 4: Reference Model.

ISO/IEC (2002c). IS 20968:2002: Software Engineering - MK II Function Point

Analysis - Counting Practices Manual.

ISO/IEC (2003a). 14143-3: Information Technology – Software Measurement -

Functional Size Measurement - Part 3: Verification of Functional Size Measurement

Methods.

ISO/IEC (2003b). 19761:2003: Software Engineering - COSMIC-FFP: A Functional

Size Measurement Method.

 69

ISO/IEC (2003c). IS 20926:2003: Software Engineering - IFPUG 4.1 Unadjusted

Functional Size Measurement Method - Counting Practices Manual.

ISO/IEC (2004). IS 14143-5 Information Technology – Software Measurement -

Functional Size Measurement - Part 5: Determination of Functional Domains for Use

with Functional Size Measurement.

ISO/IEC (2005a). IS 14143-6: Guide for the Use of ISO/IEC 14143 and related

International Standards.

ISO/IEC (2005b). IS 24570:2005: Software Engineering – NESMA functional size

measurement method Ver.2,1- Definitions and counting guidelines for the

application of FPA.

ISO/IEC (2008). 29881:2008 Information Technology-- Software and systems

engineering—FĐSMA 1.1 functional size measurement method.

Jones, C. (1998). Estimating Software Costs: McGraw-Hill Companies.

Jørgensen, M. (2004). Top-down and bottom-up expert estimation of software

development effort. Information and Software Technology, 46(1), 3-16.

Jørgensen, M., Indahl, U., & Sjøberg, D. (2003). Software effort estimation by

analogy and "regression toward the mean". The Journal of Systems & Software,

68(3), 253-262.

Karagöz, A. (2008). A Framework For Developing Conceptual Models of the

Mission Space For Simulation Systems. Middle East Technical University, Ankara.

Kemerer, C. (1987). An empirical validation of software cost estimation models.

Communications of the ACM, 30(5), 416-429.

Krueger, C. (1992). Software reuse. ACM Computing Surveys (CSUR), 24(2), 131-

183.

Leach, R. (1996). Methods of Measuring Software Reuse for the Prediction of

Maintenance Effort. Journal of Software Maintenance.

 70

Leung, H., & Fan, Z. (2002). Software Cost Estimation. Handbook of Software

Engineering, Hong Kong Polytechnic University.

Masse, R. (1997). Software Metrics: An Analysis of the Evolution of COCOMO and

Function Points, from http://www.rogermasse.com/papers/software-metrics/

MathWorks (2007). MATLAB R-2007.

Meli, R. (2000). Functional and technical software measurement: Conflict or

integration. FESMA-AEMES Conf, 18-20.

NESMA (2001). Function Point Analysis for Software Enhancement.

Ozcan Top, O., Tunalilar, S., & Demirors, O. (2008). Evaluation of the Effect of

Functional Similarities on Development Effort. Paper presented at the EuroMicro

SEAA.

Ozkan, B., Turetken, O., & Demirors, O. (2008). Software Functional Size: For Cost

Estimation and More. Paper presented at the EuroSPI, Dublin, Ireland.

Santillo, L., & Abran, A. (2006, May 10-12). Software Reuse Evaluation based on

Functional Similarity in COSMIC-FFP Size Components. Paper presented at the

Software Measurement European Forum, SMEF, Rome, Italy.

Santillo, L., & Della Noce, I. (2005). A Worked Function Point model for effective

software project size evaluation. Paper presented at the SMEF 2005, Rome(Italy).

Software, P. (2008). Practiline Source Code Line Counter v1.1.

Tucker, A., & Boehm, B. (2002). Point/Counterpoint: On the Balance between

Theory and Practice/Software Engineering Is a Value-Based Contact Sport. IEEE

Software, 19, 94-97.

Turetken, O., Demirors, O., Ozcan Top, O., & Ozkan, B. (2008). The Effect of Entity

Generalization on Software Functional Sizing: A Case Study Product-Focused

Software Process Improvement (Vol. Volume 5089/2008, pp. 105-116): Springer

Berlin / Heidelberg.

 71

Urgun, E. (2008). A Detailed Evaluation COSMIC-FFP AND IFPUG-FPA

Conversion Approaches. Middle East Technical University, Ankara.

Valerdi, R., Chen, Y., & Yang, Y. (2004). System Level Metrics for Software

Development Estimation. Paper presented at the International Symposium on

Empirical Software Engineering, ISESE.

Şentürk, O. (2008). A Case Study on the Unification Model for Functional Size

Measurement Methods: Enterprise Solutions Web Applications Middle East

Technical University, Ankara.

 72

APPENDICES

APPENDIX A: MOVIE MANAGER

The application shall maintain the following information:

Movies: The application shall maintain a unique id, the movie title, year of

production, Production Company & genre of the movies. The genre can be of the

following type or a combination of these types: Comedy, thriller, animation,

documentary, science-fiction, action, horror, drama, musical and western.

Movies shall also have director, producer, writer and cast information where all can

have more than one records each.

Person: The application shall maintain a unique id, name of the person and date of

birth & place of birth.

A person might be acting as an actress/actor, or might be a producer, writer or

director of the movie. In relation to a movie, it is also possible for a person to be all

or a combination of these (both writer and director, etc.).

• If a person is an actress/actor in a movie, the application shall also

maintain the character name in the movie.

• A producer shall also be noted whether he/she is the co-producer,

executive producer or just the producer.

 73

• A writer shall also be noted whether he/she is the story writer, screenplay

writer or both?

• There is no additional attributes to be maintained for directors.

The functional requirements to be measured:

1. The application shall enable the entry and update of persons. For updates,

first the application shall provide a list of all persons. Once a person is

selected, the application shall display the details of the person on an editable

form.

2. The application shall enable the entry of movie information. Genre shall be

entered via a drop-down list. Similarly, for producer, director, writer and cast

information, persons shall be selected among the ones in the application via

drop-down lists.

3. The application shall enable an enquiry of movies over the title and the year

the movie is produced. The application shall list the title and the year of the

movies that match with the query parameters. Once user selects a specific

movie, details of the movie shall be listed. The output shall include the

following information:

a. title, year of production, production company, genre(s)

b. director(s),

c. producer(s) [co-/executive],

d. writer(s) [story/screenplay/story & screenplay],

e. cast (person name, character name)

4. The application shall enable an enquiry of persons over the name. The

application shall list the name of the persons that match with the query

parameter. Once the user selects a specific person, details shall be listed. The

output shall include the following information:

 74

a. name, date of birth & place of birth

b. movies directed,

c. movies produced (with co-/executive/producer indicated),

d. movies written (with story/screenplay/story & screenplay indicated),

e. movies acted (with character name indicated)

5. The application shall enable the deletion of movies. First the application shall

provide a list of all movies. Once a movie is selected, the application shall

delete all related information from its database and return to the list as a

confirmation.

Table 25 COSMIC Measurement Results of Movie Manager

FP ID FP Name Number DM DG
1 AddPerson 1 Entry Personinfo
 AddPerson 2 Write Personinfo
 AddPerson 3 Exit Error/Confirmation
2 ListPersons 4 Entry Listpersonsrequest
 ListPersons 5 Read Personinfo
 ListPersons 6 Exit Personinfo
3 RetrievePerson 7 Entry Retrivepersondetailsrequest
 RetrievePerson 8 Read Persondetailsinfo
 RetrievePerson 9 Exit Persondetailsinfo
4 UpdatePerson 10 Entry Personinfo
 UpdatePerson 11 Write Personinfo
 UpdatePerson 12 Exit Error/Confirmation
5 AddMovie 13 Entry MovieInfo
 AddMovie 14 Read Personinfo
 AddMovie 15 Exit Personinfo
 AddMovie 16 Entry Writerinfo
 AddMovie 17 Entry Producerinfo
 AddMovie 18 Entry Castinfo
 AddMovie 19 Entry Directorinfo
 AddMovie 20 Write MovieInfo
 AddMovie 21 Write Writerinfo
 AddMovie 22 Write Producerinfo
 AddMovie 23 Write Castinfo
 AddMovie 24 Write Directorinfo
 AddMovie 25 Exit Error/Confirmation
6 QueryMovie 26 Entry QueryParameters1
 QueryMovie 27 Read MovieInfo
 QueryMovie 28 Exit MovieInfotitleyear

 75

Table 25 (Cont.)

7 ListMovieDetails 29 Entry Selectionofthemovie
 ListMovieDetails 30 Read MovieInfo
 ListMovieDetails 31 Read Writerinfo
 ListMovieDetails 32 Read Producerinfo
 ListMovieDetails 33 Read Castinfo
 ListMovieDetails 34 Read Directorinfo
 ListMovieDetails 35 Read Personinfo2
 ListMovieDetails 36 Exit MovieInfo
 ListMovieDetails 37 Exit Writerinfo
 ListMovieDetails 38 Exit Producerinfo
 ListMovieDetails 39 Exit Castinfo
 ListMovieDetails 40 Exit Directorinfo
 ListMovieDetails 41 Exit Personinfo2
8 QueryPerson 42 Entry QueryParameters2
 QueryPerson 43 Read Personinfo
 QueryPerson 44 Exit Personinfo (name)
9 ListPersonDetails 45 Entry Selectionoftheperson
 ListPersonDetails 46 Read Personinfo
 ListPersonDetails 47 Read Writerinfo
 ListPersonDetails 48 Read Producerinfo
 ListPersonDetails 49 Read Castinfo
 ListPersonDetails 50 Read Directorinfo
 ListPersonDetails 51 Read MovieInfo
 ListPersonDetails 52 Exit Personinfo
 ListPersonDetails 53 Exit Writerinfo
 ListPersonDetails 54 Exit Producerinfo
 ListPersonDetails 55 Exit Castinfo
 ListPersonDetails 56 Exit Directorinfo
 ListPersonDetails 57 Exit MovieInfo
10 ListMovies 58 Entry Requestforalistofmovies
 ListMovies 59 Read MovieInfo
 ListMovies 60 Exit MovieInfo
11 DeleteMovie 61 Entry Selectionofthemovie
 DeleteMovie 62 Write MovieInfo
 DeleteMovie 63 Write Writerinfo
 DeleteMovie 64 Write Producerinfo
 DeleteMovie 65 Write Castinfo
 DeleteMovie 66 Write Directorinfo
 DeleteMovie 67 Read MovieInfo
 DeleteMovie 68 Exit MovieInfo

 76

APPENDIX B: SR TOOL PROGRAM CODE

function sr_discrete_continuous(filename)

fid = fopen(filename);

C = textscan(fid,'%s%s%s%s');

fclose(fid);

a=size(C{1,1});

lenght=a(1);

a1=C{1,1};

a3=C{1,3};

a4=C{1,4};

m1=zeros(lenght,1);

m1(1)=1;

m2=eye(lenght,lenght);

temp=1;

k=1;

for i=2:lenght

 if(strcmpi(a1(i-1),a1(i))==0)

 k=k+1;

 end

 m1(i)=k;

end

t=1;

for i=2:lenght

 as=m1(i)-m1(i-1);

 if (as==0)

 temp=temp+1;

 end

 if (as==1 || i==lenght)

 77

 say(t)=temp;

 temp=1;

 t=t+1;

 end

 end

m3=zeros(m1(lenght),m1(lenght));

 m2=inv(m2);

%

for i=1:lenght

 for j=i:lenght

 if(strcmpi(a3(i),a3(j))==1 && strcmpi(a4(i),a4(j))==1)

 if (i~=j)

 m3(m1(i),m1(j))=m3(m1(i),m1(j))+m2(i,i);

 m3(m1(j),m1(i))=m3(m1(i),m1(j));

 end

 end

 end

end

 for i=1:m1(lenght)

m4(i,:)=m3(i,:)./say(i);

m4(i,i)=1;

end

m5=zeros(1,m1(lenght));

%

m5(1)=say(1);

 %%%%%%% continuous %%%%%%%%

 for i=2:m1(lenght)

mak=max(m4(i,1:i-1));

 if (mak==1)

 m5(i)=say(i)*0.1;

elseif (mak==0)

 78

 m5(i)=say(i);

else

 m5(i)=say(i)*mak*0.1 + say(i)*(1-mak);

end

 end

 %%%%%%% discrete %%%%%%%

 m6=zeros(1,m1(lenght));

%

 m6(1)=say(1);

 for i=2:m1(lenght)

mak=max(m4(i,1:i-1));

 if (0<mak && mak<=0.34)

 m6(i)=say(i)*0.25*0.1 + say(i)*0.75;

elseif (0.34<mak && mak<=0.67)

 m6(i)=say(i)*0.5*0.1 + say(i)*0.5;

elseif (0.67<mak && mak<1)

 m6(i)=say(i)*0.75*0.1 + say(i)*0.25;

elseif (mak==1)

 m6(i)=say(i)*0.1;

else

 m6(i)=say(i)*1;

 end

 end

m5

m6

 dlmwrite('similarity_result.txt',m4,'\t');

dlmwrite('continuous_result.txt',say,'\t');

dlmwrite('continuous_result.txt',m5,'-append','delimiter','\t');

dlmwrite('discrete_result.txt',say,'\t');

dlmwrite('discrete_result.txt',m6,'-append','delimiter','\t');

