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ABSTRACT 

 

THREE DIMENSIONAL NUMERICAL MODELLING OF 
DISCONTINUOUS ROCKS BY USING DISTINCT ELEMENT 

METHOD 

 

Koçal, Arman 

Ph.D., Department of Mining Engineering  

Supervisor :  Prof. Dr. Celal Karpuz 

Co-supervisor :  Assoc. Prof. Dr. H. Şebnem Düzgün 

 

September 2008, 198 pages 

  

 
Shear strength characterization of discontinuities is an important concept 

for slope design in discontinuous rocks. This study presents the 

development of a methodology for implementing Barton-Bandis empirical 

shear strength failure criterion in three dimensional distinct element code, 

3DEC, and verification of this methodology.  

Normal and shear deformation characteristics of discontinuities and their 

relations to the discontinuity surface characteristics have been reviewed in 

detail.  

First, a C++ dynamic link library (DLL) file was coded and embedded into 

3DEC for modelling the Barton-Bandis shear strength criterion. Then, a 

numerically developed direct shear test model was used to verify the 

normal and shear deformation behaviour with respect to empirical results 

of the Barton-Bandis shear strength criterion.  
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A three dimensional simple discontinuous rock slope was modelled in 

3DEC based on Barton-Bandis shear strength criterion. The slope model 

was first utilized by Mohr-Coulomb failure criterion. Then, with the use of 

the new model developed here, the effects of the discontinuity surface 

properties on shear strength were introduced to the slope problem. 

Applicability of the developed model was verified by three large scale real 

case studies from different open pit lignite mines of Turkish Coal 

Enterprises (TKİ), namely Bursa Lignites Establishment (BLİ) – 2 cases 

and Çan Lignite Establishment (ÇLİ). The results with the new model 

option, which allows users to use important discontinuity surface properties 

like joint roughness coefficient and joint wall compressive strength, 

compared well with results of previous studies using Mohr-Coulomb failure 

criterion. 

 

Keywords: Barton-Bandis Shear Strength Criterion, Numerical Modelling, 

Distinct Element Method, Slope Stability 
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ÖZ 

 

AYRIK ELEMAN METODU KULLANILARAK SÜREKSİZLİK 
İÇEREN KAYALARIN ÜÇ BOYUTLU SAYISAL 

MODELLENMESİ 

 

Koçal, Arman 

Doktora, Maden Mühendisliği Bölümü  

Tez Yöneticisi :  Prof. Dr. Celal Karpuz 

Ortak Tez Yöneticisi  : Doç. Dr. H. Şebnem Düzgün 

 

Eylül 2008, 198 sayfa 

 

Süreksizlik içeren kaya kütlelerinde şev tasarımında kesme dayanımı 

tanımlaması önemli bir kavramdır. Bu çalışma; üç boyutlu ayrık elemanlar 

programı 3DEC’e Barton-Bandis süreksizlik modelinin uygulanmasına 

yönelik bir yöntembilimi geliştirilmesini ve bu çalışmanın doğrulamasını 

sunmaktadır. 

Süreksizliklerin dikey ve kesme deformasyon özellikleri ve bunların 

süreksizlik yüzeyleri ile ilgisi ayrıntılı olarak gözden geçirilmiştir. 

Önce, Barton-Bandis kesme kriterinin modellenmesi için C++ programında 

bir DLL dosyası yazılıp 3DEC programına yerleştirilmiştir. Daha sonra, 

süreksizliklerin dikey ve kesme deformasyon davranışları, sayısal olarak 

oluşturulan bir direk kesme modeli kullanılarak Barton-Bandis makaslama 

dayanım kriterinin ampirik sonuçları ile doğrulanmıştır. 

Barton-Bandis kesme dayanımı kriterini esas alan üç boyutlu basit bir kaya 

şevi 3DEC’de modellenmiştir. Şev modelinde ilk olarak Mohr-Coulomb 
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yenilme kriteri kullanılmıştır. Ardından, yeni geliştirilen model kullanılarak, 

süreksizlik yüzey özelliklerinin kesme dayanımı üzerinde etkisi şev 

sorununa tanıtılmıştır. 

Geliştirilen modelin uygulanabilirliği, Türkiye Kömür İşletmeleri (TKİ) nin üç 

deüişik açık ocağında gerçek heyelan verileri ile doğrulanmştır. Bunlar, 

Orhaneli Linyitleri İşletmesi (BLİ) – iki heyelan ve Çan Linyitleri İşletmesi 

(ÇLİ) açık linyit ocaklarından değişik üç tane büyük ölçekli gerçek 

modellerle doğrulanmıştır. Kullanıcıya pürüzlülük katsayısı ve yüzey basınç 

dayanımı gibi önemli süreksizlik yüzey özelliklerini kullanma imkanı veren 

yeni geliştirilen model seçeneği ile alınan sonuçlar, Mohr-Coulomb yenilme 

kriteri kullanılarak elde edilen önceki sonuçlar ile uyumlu bulunmuştur. 

Anahtar kelimeler: Barton-Bandis Makaslama Dayanım Kriteri, Sayısal 

Modelleme, Ayrık Elemanlar Yöntemi, Şev Stabilitesi 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1  General Description 

 

Discontinuities are the key elements that affect the mechanical behaviour 

of rock masses disturbed by the engineering structures such as tunnel, 

rock slope etc. Therefore, it is very important to understand the failure 

mechanism of the discontinuities around such engineering structures.  

In a discontinuous rock mass, the stability of geotechnical structures can 

be controlled by the behavioural characteristics of the discontinuities rather 

than by the properties of rock mass. Therefore, discontinuity constitutive 

models have an essential role in numerical modelling of discontinuous 

media. A discontinuous medium is distinguished from a continuous 

medium by the existence of interfaces or contacts between the discrete 

bodies that comprise the system (Anon, 2007). 

Numerical methods are very useful tools to model the discontinuities in 

rock masses, since closed form solutions rarely exist. Among these 

methods, distinct element method is the commonly used one since it 

considers the large deformation of discontinuities.  

In numerical analyses of discontinuous rock masses, the failure is usually 

expected from the discontinuities. Therefore, the behaviour of the 

discontinuities under normal and shear stresses should be modelled truly. 
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Because of this reason, the shear strength criterion used for the stability 

purposes in discontinuous rocks becomes crucial.  

 

1.2  Statement of the Problem 

 
In geotechnical engineering, numerical programs are widely used for 

stability analyses purposes. The discontinuous rock masses are most 

effectively modelled by numerical programs working with discrete element 

methods. Two dimensional numerical analyses programs work in plane 

strain assumption that is the state of strain in which the strain normal to the 

sectional plane are assumed to be zero. Modelling the environment in 

three dimension is important since it also considers modelling the stress 

distribution and deformation characteristics in a more realistic way.  

In most of the numerical analyses which use distinct element method, the 

most widely used shear strength criterion is the Mohr-Coulomb criterion. 

Mohr-Coulomb criterion relates the shear strength with cohesive strength, 

normal stress and internal friction angle, which may not represent totally 

the real shear behaviour on rock discontinuities. Besides the strength 

parameters, discontinuity surface characterization plays an important role 

on the shear strength of discontinuities. Studies of Barton (1973), Barton 

and Choubey (1977), Bandis et al. (1981), Barton and Bandis (1982), 

Bandis et al. (1983) and Barton et al. (1985) showed clearly that, under low 

levels of normal stress, discontinuity roughness and the strength of the 

asperities along the discontinuities significantly affect the shear behaviour 

of discontinuities. Not only the shear behaviour but also the normal 

deformation of a discontinuity has not been truly expressed by the 

conventional Coulomb criterion. 

The need for combining those two aspects mentioned above, namely 

shearing and surface properties of discontinuities have always been an 

interest for investigators. Distinct element method better represents the 
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discontinuity behaviour since it considers large displacements of 

discontinuities. Therefore, distinct element modelling together with the 

Barton-Bandis failure criterion is the crucial topic for researchers who focus 

on the shear behaviour of rock discontinuities under low level of normal 

stresses and where the discontinuity surface characterization becomes 

important.  

Additionally, discontinuity behaviour should be considered in three 

dimensions to get rid of assumptions of 2D analysis. Not only the dip angle 

of the discontinuity but also the dip direction and strike are also important 

factors that may affect the stability.  

Three dimensional distinct element programs usually use Mohr-Coulomb 

slip criterion for discontinuity analyses. However, for totally representing 

the real shear behaviour of discontinuities, a non-linear shear strength 

criterion such as Barton-Bandis criterion should be used. There are two 

dimensional numerical programs which gives Barton-Bandis shear strength 

criterion as an option is available. However, the effect of third dimension in 

representing the insitu stresses is also an important factor. Thus a three 

dimensional numerical analyses method that works with discrete element 

method and based on Barton-Bandis failure criterion should be needed to 

represent large scale failure of discontinuities. 

 

1.3  Objective of the Thesis 

 
The objective of this study is to develop a methodology for implementing 

Barton-Bandis shear strength failure criterion into the 3 dimensional distinct 

element code, 3DEC, for analyzing discontinuity failure mechanism. 3DEC 

allows users to apply Mohr-Coulomb discontinuity slip model and 

continuously yielding joint model into discontinuity deformation studies. 

However, Barton-Bandis failure criterion can express several behaviours of 

discontinuities such as sliding and separating of discontinuities, by using 
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surface properties (surface roughness and surface strength), in a more 

realistic way.  

Following the development of the numerical 3DEC model for the analysis 

of discontinuity failure based on Barton-Bandis criterion, three different 

large scale failure occurred at Turkish Coal Enterprises’ (TKI) lignite mines 

were utilized to verify the developed model. In the verification, the input 

parameters of those actual cases were obtained from back analysis with 

Mohr-Coulomb slip model. 

 

1.4  Methodology of the Thesis 

 
Introducing the Barton-Bandis shear strength criterion, which also 

considers the geometry and slip property of the discontinuity surface is the 

first step to modelling. 3-dimensional distinct element code (3DEC) allows 

users to implement user defined discontinuity constitutive models that are 

derived in C++ and compiled into the main executable part. The models 

should exist as a runtime dynamic link library (DLL) files. Barton-Bandis 

shear strength failure criterion was coded by compiling a dynamic link 

library file which was written in C++.  

Following that, a numerical direct shear test model was prepared in order 

to verify the numerically developed mechanical model by empirical 

relations.  

After developing the model, the failure conditions occurred at Turkish Coal 

Enterprises (TKİ) open pit lignite mines were used to verify the model 

numerically. The flowchart of the study is given in Figure 1.1. 
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Figure 1.1 Flowchart representing the methodology of the thesis 

 

1.5  Organization of the Thesis 

 
Following the introductory chapter, a comprehensive study about the slope 

failure mechanisms, rock discontinuities and shear failure criterion along 

the discontinuities is presented. Besides this, the Barton-Bandis 

constitutive model is examined. The normal stress-closure relations and 

shear behaviour of the discontinuities and mechanical discontinuity 

3DEC 
Development of Barton-
Bandis joint constitutive 
model with C++ dynamic 

link file (.dll) 

3DEC 
Mohr-Coulomb slip model 

Verification 
Direct shear test model 

Application 
 Basic slope problem 
 TKİ Orhaneli Gümüşpınar Landslide 
 TKİ Orhaneli Dikmentepe Landslide 
 TKİ Çan western panlels design 

METHODOLOGY OF THE THESIS 
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properties (i.e. joint wall compressive strength, joint roughness coefficient 

etc.) that affect failure mechanism are examined. Also a study about 

numerical models and 3 dimensional distinct element code 3DEC is 

presented in Chapter 2. The theory and the background of the program is 

briefly explained. 

In Chapter 3, the development of the Barton-Bandis model for 3DEC is 

presented. How a C++ dynamic link library file (DLL) works and how it is 

implemented into 3DEC is explained in detail. The major commands for 

the discontinuity failure criterion are given in this chapter. 

Chapter 4 presents the empirical verification of the Barton-Bandis model 

for 3DEC. First, a direct shear test model is presented and by monitoring 

the normal stress-normal closure and shear stress-shear displacement 

behaviour, different tests are conducted in order to verify the discontinuity 

behaviour under different normal stresses. For the verification process, the 

empirical relations developed by Bandis et al. (1983) were used. 

Chapter 5 deals with the application of the proposed methodology in real 

case discontinuous mine slopes. The case studies were carried out with 

3DEC within the years 2005 – 2007 in different open pit mines of Turkish 

Coal Enterprises (TKİ). There are total of three case studies related to 

behaviour of discontinuous rock slopes. The analysis were first carried out 

with Mohr-Coulomb slip model and with the application of the proposed 

Barton-Bandis model, the results from different models were compared. 

The major conclusions drawn from this study along with the 

recommendations for further studies are summarized in Chapter 6. 

 

 

 

 



7 

 

 

CHAPTER 2 

 

BASIC MECHANICS OF DISCONTINUITIES 

 

 

2.1 Introduction 
 

All rock masses contain discontinuities such as bedding planes, joints, 

shear zones and faults. At shallow depth, where stresses are low, the 

behaviour of the rock mass is controlled by sliding on the discontinuities 

rather than rock mass itself. In order to analyze the stability of this system 

of individual rock blocks, it is necessary to understand the factors that 

control the shear strength of the discontinuities which separate the blocks 

(Hoek, 2007). In this Chapter, it is intended to investigate the basic 

mechanics of discontinuities under normal and shear stresses. 

 

2.2 Slope Failure Mechanisms 
 

Based on the geological structure and the stress state in the rock mass, 

some failure modes appear to be more common. These can be 

summarized as plane failure, wedge failure, circular failure and toppling. 

 

2.2.1 Plane failure 

One of the discontinuity governed failure types is the plane failure. Plane 

failure is comparatively rarely seen in rock slopes because there are 
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geometrical conditions that should satisfy for the failure to happen. The 

general conditions for a slope to slide along a single plane are; 

 The strike of the sliding plane should be within ±20° of the slope 

face, 

 The dip of the failure plane should be less than the dip of the slope 

face, 

 The dip of the failure plane should be greater than the friction angle 

of this plane, 

 Release surfaces which enable the sliding that defines the lateral 

extends of the sliding mass. (Hoek and Bray, 1981) 

The geometry of a plane failure is given in Figure 2.1. 

 

 
Figure 2.1 Geometry of plane failure (Hoek and Bray, 1981) 
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2.2.2 Wedge failure 

Another failure mode that is governed by discontinuities is wedge failure. It 

is different than plane failure in the way that the discontinuities which 

sliding takes place, strikes across the slope crest. And sliding takes place 

along the line of intersection of two planes. A pictorial view of a wedge 

failure is given in Figure 2.2 and a section view is given in Figure 2.3. 

 

 
Figure 2.2 Geometry of wedge failure (Hoek and Bray, 1981) 

 

 
Figure 2.3 Section view of wedge failure (Hoek and Bray, 1981) 
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2.2.3 Circular failure 

Circular failure mode of failure is also called rotational shear failure and the 

failure takes place along a circular arc and this is the typical failure mode in 

soils. As Hoek and Bray (1981) pointed out, circular failure could also occur 

in rock slopes if there are no strong structural patterns in the slope, for 

example, heavily discontinuous or highly weathered rock slope. A pictorial 

view of a circular failure is given in Figure 2.4 and simple cross sectional 

view of a circular failure surface is given in Figure 2.5.  

 

 
Figure 2.4 General circular slope failure (Hoek and Bray, 1981) 
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Figure 2.5 Circular slope failure surface, section view (Hoek and Bray, 

1981) 

 

2.2.4 Toppling failure 

Another group of failure modes is the toppling failure. Toppling 

corresponds to overturning of columns of rock formed by steeply dipping 

discontinuities and defined as primary toppling. Figure 2.6 presents the 

primary toppling of a slope. Characteristic of toppling failure is that a 

successive breakdown of the rock slope occurs (Sjöberg, 1996).  
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Figure 2.6 Primary toppling 

 

The failure can also be initiated by crushing the slope toe and this is called 

secondary toppling (Hoek and Bray, 1981). In situ stresses in relation to 

the rock strength are important in this failure mode. The stress 

concentration at the slope toe increases with the slope height. Therefore 

these types of failures are more common in deep slopes. A toppling failure 

caused by crushing of the toe is given in Figure 2.7. 

 

 
Figure 2.7 Secondary toppling 
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From the general description of the failure mechanism of slopes, it is seen 

that discontinuity governed slope failure mechanism has extensive types. If 

the rock is not a highly weathered and discontinuous, then the precaution 

that should be taken against a circular failure can easily be taken with 

arranging overall slope angle. On the contrary if a slope is to be produced 

in a discontinuous rock mass then discontinuity originated failure types 

should be considered. And to do this, the shear failure mechanism of rock 

discontinuities should be investigated in detail. 

 

2.3 Shear Strength of Discontinuities 
 

A discontinuity is a collective term referring to all structural breaks in rocks 

which usually have zero to low tensile strength.  Discontinuities comprise 

joints, bedding, shears, contacts, veins, and faults (Mining Life Web Page).  

Shear behaviour of rock discontinuities always take an important part in 

foundation stability studies both in surface and underground problems. 

There are several discontinuity shear failure criterion developed for the 

past half decade. The most common one is the linear Coulomb relation in 

which the peak shear ሺτሻ strength is expressed in terms of the effective 

normal stress (σn), cohesion (c) and angle of friction (Ø). The Mohr-

Coulomb relation is given as; 

τpeak=c+σn tan  (2.1)        ׎

This shear strength equation is derived by assuming that the discontinuity 

surface is planar. If such a surface is sheared at a constant normal stress 

at very small displacements, the surface behaves elastically, and so the 

shear stress acting on the discontinuity surface increases rapidly till the 

peak shear strength is reached. After that the stress required to continue 

sliding drops and becomes constant at the level which is called as residual 
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shear strength. Equation (2.1) can be expressed to give the residual shear 

strength as; 

τresidual=σn tan  r         (2.2)׎

Where the residual friction angle (Ør) is approximately equal to the basic 

friction angle (Øb), which is usually measured with sawn rock surfaces. 

However, a natural rock discontinuity may probably have some asperities 

that directly affect the shear strength of the discontinuity. As the 

discontinuity is under shear loading, the shear displacement will be on 

these asperities that causes the block move upward on the inclined 

surfaces of the asperities (dilation). For this reason the roughness 

component (i) should be added to the basic friction angle (Øb) (Øb+i), 

where ‘i’ is the angle of the inclined surface of the asperities.  

The condition of sliding along the asperity faces can occur only under very 

low normal stress. If the normal stress is increased, then the shear force 

tends to break or wear out the asperities and so the effect of discontinuity 

wall properties should also be considered.  

Barton-Bandis failure criterion includes discontinuity surface properties 

besides the effective normal stress and friction angle of the discontinuity. 

Barton (1973) derived an empirical relationship for determining the shear 

strength of discontinuities. It is written as follows:  

τ=σn tan ቂJRC ×log10 ቀJCS
σn

ቁ  bቃ       (2.3)׎+

Where; 

σn = effective normal stress 

JRC = joint roughness coefficient 

JCS = joint wall compressive strength 

Øb = basic friction angle (obtain from residual shear tests on flat 

unweathered rock surfaces) 
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2.3.1 Joint wall compressive strength (JCS) 

The joint wall compression strength (JCS) is known to generally reduce 

with water saturation compared to the dry state (Barton, 2007). This is 

because of the researched effect of moisture on the uniaxial compressive 

strength (σc). The value of JCS can be predicted from Schmidt hammer 

tests (ISRM, 1978). 

The measurement of this parameter is of major importance in rock 

engineering because it is largely the thin layers of rock adjacent to 

discontinuity walls that control the strength and deformation properties of 

the rock mass as a whole (Barton and Choubey, 1977). Generally 

detection of JCS parameter becomes an important aspect if the 

discontinuity walls are weathered. If the discontinuity walls are 

unweathered completely then it is expected that JCS will be equal to 

uniaxial compressive strength (σc) of the unweathered rock (Barton and 

Choubey, 1977). 

The depth of penetration of weathering into discontinuity walls probably 

depends on rock type, especially on its permeability. If the rock is 

permeable, it is expected that the rock is weakened throughout. On the 

other hand, an impermeable rock will just develop weakened discontinuity 

walls (Barton and Choubey, 1977). Barton and Choubey (1977) 

summarized the weathering in the following stages and determination 

methods of JCS: 

1. Discontinuity in intact rock; JCS = σc 

2. Reduction of joint wall strength if discontinuities are water-

conducting; JCS < σc 

3. Weathered, water conducting discontinuities, impermeable rock 

blocks between; JCS = σc x n, where n<1 

4. Weathering starts to affect the rock; JCS continues to reduce slowly, 

σc reduces progressively, 

5. Advance stage of weathering; σc = JCS, rock mass permeable 

throughout 
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For the stages 1 and 5, JCS can be obtained by conventional unconfined 

compression tests on intact cylinders, point load tests on irregular lumps. 

Point load tests can be performed on core discs down to a few centimetres 

in thickness; it might also be possible to use this test for stage 4. However, 

for stages 2 and 3 cannot be evaluated by standard rock mechanics tests. 

For these cases, the determination of JCS of weathered discontinuities can 

best be done by Schmidt hammer index test. 

 

2.3.2 Basic friction angle (Øb) and residual friction angle (Ør) 

Another major components of the shear strength criterion are the basic 

friction angle (Øb) of unweathered artificial, planar, dry rock surfaces and 

the residual friction angle (Ør) applying to flat, non-dilatant, saturated, well 

sheared surfaces, i.e. Ør ≤ Øb. The friction angles obtained from flat 

unweathered rock surfaces, which were most frequently prepared by 

diamond saw, will not be applicable to weathered rock discontinuities 

unless the effective normal stress is high enough for the thin layers of 

weathered rock to be worn away (Richards, 1975, in Barton and Choubey, 

1977). Low levels of effective normal stress the thin layers of weathered 

material, perhaps less than 1 mm in thickness, may continue to control the 

shear strength, post peak strength and even for displacements up to 

residual strength. Richards’ (1975) tests on weathered sandstone joints 

showed strong correlation between residual friction angles (Ør) and 

Schmidt rebound value (Figure 2.8).  
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Figure 2.8 Relation between residual friction angle with Schmidt rebound 

value (Richards, 1975, in Barton and Choubey, 1977) 

 

Richards’ (1975) looked for a simple method of estimating Ør from Schmidt 

hammer rebound values. The first empirical relationship tried was as 

follows: 

Ør = 10° + (r/R) (Øb - 10°)       (2.4) 

Where; 

r = Schmidt rebound on weathered discontinuity surface  

 R = Schmidt rebound on unweathered discontinuity surface 

Therefore the equation for shear strength (2.3) for the general case of 

weathered and unweathered discontinuities was rewritten as (Barton and 

Choubey (1977): 

 

τpeak=σn tan ቂJRC log10 ቀJCS
σn

ቁ  rቃ      (2.5)׎+

 

In the work of Barton and Choubey (1977), eight different rock types with 

total of 136 individual discontinuities were studied. The specimens were 

sawn from larger blocks containing throughgoing discontinuities. Following 
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this study another methodology for determining Ør by residual tilt test was 

introduced, which is basically a shear test under very low normal stress 

(Figure 2.9). In this test, pair of flat and sawn surfaces were mated, and the 

pair of blocks tilted until sliding occurred.  

 

 
Figure 2.9 Mechanism of residual tilt test (Bandis et al., 1985) 

 

An empirical equation was obtained from residual tilt tests that enable to 

relate Ør to Øb; 

Ør = (Øb - 20°) + 20(r/R)       (2.6) 

Where; 

Øb = basic friction angle estimated from residual tilt tests on dry 

unweathered sawn surfaces  

r = Schmidt hammer rebound value on the saturated joint wall, 

R = Schmidt hammer rebound value on the dry, artificially cut rock surfaces 
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Eq. (2.6) is preferred since it allows for a range of Ør values even when the 

discontinuity is highly weathered. Equation (2.3) tends to discount 

mineralogical differences since Ør tends to a single minimum value of 10° 

when (r) value is zero. 

 

2.3.3 Joint Roughness Coefficient (JRC) 

The strength measured along individual discontinuities by direct shear 

methods is strongly dependent on the roughness of the discontinuity 

surfaces (Barton, 1973). The roughness parameter represents an index of 

the unevenness and waviness of the adjacent discontinuity rock wall 

(Giani, 1992). Barton (1973) defined the term joint roughness coefficient 

(JRC), which varies from 0 to 20. Unlikely the JCS parameter, the JRC 

parameter is not significantly affected by the dry or wet condition, since it 

essentially represents a geometry (Barton, 2007). Figure 2.10 presents the 

laboratory-scale joint roughness profiles with their measured JRC values 

defined by Barton and Choubey (1977). 
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Figure 2.10 Laboratory scaled joint roughness profiles (Barton and 

Choubey, 1977) 

 

Besides the joint roughness profiles, simple residual tilt test may help to 

obtain JRC indirectly. In a tilt test on a rough joint, the angle (α) at which 

sliding occurs may be 40° or 50° more than Øb (higher than compared to 

Ør) (Barton and Choubey, 1977). This additional shear strength is a result 

of discontinuity surface roughness. The maximum dilation angle (do) when 
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sliding occurs is probably given by the following simple relationship derived 

by Barton and Choubey, 1977). 

do = α - Ør         (2.7) 

The tilt angle (α) is a function of shear stress and normal stress acting on 

the joint is given as: 

arctan=ן ቀτ0
σ0

ቁ             (2.8) 

The effective normal stress generated by the gravitational force acting on 

the upper half of the block is given as: 

σn=γh cosα         (2.9) 

Where; 

h = thickness of the top block (m) 

γ = rock density (kN/m3) 

The JRC value is estimated from tilt tests using Eq. (2.5), by substituting α 

and σn0 results in: 

JRC= α-׎r

log10ቀJCS
σn

ቁ
         (2.10) 

 

Barton and Choubey (1977) recommended “push” or “pull” tests in order to 

determine the JRC values of rougher discontinuities. In “push” or “pull” test 

the top block is pushed or pulled parallel to the discontinuity plane. First 

applying a dry tilt test then a dry push or pull test, it was found to be 

possible to test whole spectrum of joint roughness (0-20). However, they 

mentioned the fact that, discontinuous joints and discontinuities with cross 

jointing cannot be tested by such methods. 
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Another method for determining JRC was presented by Barton and Bandis 

(1982) by considering the amplitudes of the asperities of the discontinuity 

surface as shown in Figure 2.11.  

 

 
Figure 2.11 Measurement of asperity amplitude for determining joint 

roughness (Barton and Bandis (1982), in Hoek (2007)) 

 

After determining the asperity amplitude and the sample length the chart 

which is shown in Figure 2.12 can be used to determine JRC. 
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Figure 2.12 Chart for determining joint roughness coefficient from asperity 

amplitude and profile length (Barton and Bandis (1982), in Hoek (2007)) 

 

The chart of Barton and Bandis (1982) is a useful tool for determining joint 

roughness coefficient. From the chart the relation between asperity height, 

discontinuity length and joint roughness coefficient can be summarized as; 

 

Asperity height = 2 x JRC x Discontinuity length   (2.11) 
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 2.3.4 Dilation 

If the shearing of a non-planar discontinuity occurs, the asperities on either 

side of the discontinuity slide over each other and cause an increase in 

aperture which is called dilation. This process requires a finite 

displacement to get started, and occurs at an increasing rate as peak 

strength is approached (Barton et al., 1985). The peak dilation angle, dpeak, 

is the maximum dilation angle which occurs more or less at the same time 

with peak shear resistance (Barton and Choubey, 1977) and it is defined 

as: 

dpeak= 1
2ൗ ×JRC× log10 ቀJCS

σn
ቁ      (2.12) 

 

2.3.5 Scale effects 

The choice of an appropriate discontinuity size during a shear strength 

investigation is generally based on both economic and technical 

considerations (Bandis et al., 1981). Because of these scale restrictions in 

the experimental procedure, scaling of the laboratory determined 

discontinuity properties into the field has always been an interesting 

phenomenon. 

Pratt et al. (1974) (in Bandis et al. (1981)) studied the effect of scale on 

shear strength and concluded that the reduction in peak shear strength 
was due to the decrease in actual contact area. Their prediction was that, 

the scale effect would be negligible if the discontinuities are unweathered, 

perfectly mating under high normal stresses. Barton (1976) also interpreted 

similar results of scale effect on joint wall compressive strength (JCS). The 

study of Barton and Choubey (1977) showed that different lengths of 

discontinuities affect joint roughness coefficient (JRC) and thus the shear 

strength of the discontinuity. 
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Bandis et al. (1981) studied the scale effect on the shear strength of 

discontinuities with eleven types of discontinuities, of which was divided 

into four groups according to their roughness (Figure 2.13). The peak total 

friction angles (׎p= tan-1 ቀτ σnൗ ቁ) are described with different discontinuity 

lengths (Table 2.1). It is seen that Øp values decreases by approximately 

8°-20° as the length of individual blocks increases from 5-6 cm to 36-40 

cm. Besides this another remarkable effect of scale can be seen in the 

mean peak shear stress vs. average discontinuity area plots in Figure 2.14. 

 

 
Figure 2.13 Groups of discontinuity types according to their roughness 

(Bandis et al., 1981) 
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Table 2.1 Summary of results of work of Bandis et al. (1981) for scale 

effects 
Discontinuity length (L) Description of joint roughness 

 
 

Model 
(cm) 
[M] 

 
 
 
 

Model no 

 
 

Prototype 
(m) 
[P] 

 
 

Strongly 
undulating, 

rough 
 
 
 
 

1, 2, 3 

 
 

Strongly 
undulating, 
moderately 

rough 
 
 
 

4, 5 

 
 

Moderately 
undulating, 
very rough 

 
 
 
 

6, 7, 8 

Moderately 
undulating 
to almost 
planar, 

moderately 
rough to 
almost 
smooth 

 
9, 10, 11 

5, 6 1.5, 1.8 64.5°±6.8° 58.4°±8.3° 64.3°±6.3° 49.8°±6.4° 
10, 12 3.0, 3.6 59.4°±7.9° 58.7°±5.6° 60.7°±6.3° 46.1°±6.1° 
18, 20 5.4, 6.0 56.2°±3.8° 53.4°±3.2° 52.1°±5.9° 43.0°±5.02° 
36, 40 10.8, 12.0 51.9°±4.1° 48.1°± 45.5°±1.6° 41.5°±2.6° 

 

 

 

 

 
Figure 2.14 Graphs of mean peak shear stress vs. average joint area 

(Bandis et al., 1981) 

 

This study also showed that the peak shear displacement (δpeak) is affected 

from scale differences of discontinuities. The plots of δpeak vs discontinuity 

length showed that surface roughness has also an effect as the 

discontinuity size increases as shown in Figure 2.15. Peak shear 
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displacement is a measure of the distance that a discontinuity has to cover 

till the effective contact is made between the asperities controlling the peak 

resistance (Bandis et al., 1981). 

 

 
Figure 2.15 Graphs of peak shear displacement vs discontinuity length 

(Bandis et al., 1981) 

 

2.3.6 Empirical equations for the scale effects on the shear behaviour 
of rock discontinuities 

 
Studies of Barton and Bandis (1982) concluded with some empirical 

relations for the scale effects on the joint wall compressive strength, joint 

roughness coefficient and peak shear displacement. They developed some 

empirical relations for predicting the large scale joint wall compressive 

strength (JCSn), joint roughness coefficient (JRCo) from lab scale values 

(JCSo, JRCo) and the peak shear displacement (δpeak) of the discontinuity.  

The effects of scale on the dry or saturated state of the discontinuities are 

expressed below; 

Large-scale joint wall compressive strength (Barton and Bandis (1982), in 

Barton et al. (1985)) is: 
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JCSn=JCSo× ቀLn
Lo

ቁ
-0.03JRCo

       (2.13) 

Large-scale joint roughness (Barton and Bandis (1982), in Barton et al. 

(1985)) is: 

JRCn=JRCo× ቀLn
Lo

ቁ
-0.02JRCo

        (2.14) 

Displacement at the peak strength (Barton and Bandis (1982), in Barton et 

al. (1985)) is: 

δpeak=
Ln

500
× ቀJRCn

Lo
ቁ

1
3         (2.15) 

Where; 

Ln = in situ block size (m) 

Lo = lab scale sample length (m) 

Assuming that the lab scale sample length is 0.1 meters, then the empirical 

relation for joint roughness coefficient would be limited with a joint length of 

1.5 meters at most. Figure 2.16 represents the change of joint roughness 

coefficients with different lengths of joints with this scale correction relation.  
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Figure 2.16 Sensitivity of scale correction for joint roughness coefficient 

with a lab scale sample of 0.1 meters 

 

It can be seen from the scale corrected joint roughness coefficients plot of 

discontinuities with different length, the logic breaks down from 1.5 meters 

(when considering that the lab scale length is 0.1 m). In the field with large 

scale discontinuous rock slopes, this amount of discontinuity length would 

probably be unimportant to consider as a stability threat. Because of that 

reason, a more realistic joint roughness determination for large scale 

discontinuities, which has no limitation, should be used. The study of 

Barton and Bandis (1982) also offers a methodology for predicting large 

scale joint roughness coefficients from asperity amplitudes (height of 

undulations of the discontinuities), which was mentioned in Figure 2.11-12 

and Eq. (2.11).  

 

2.3.7 Mobilization of roughness during shear 

As introduced earlier, JRC is specifically related to the peak shear strength 

and the corresponding peak drained friction angle was expressed as 

(Barton et al., 1985): 

0,00

2,00

4,00

6,00

8,00

10,00

12,00

0 5 10 15 20 25Sc
al

e 
co

rr
ec

te
d 

jo
in

t r
ou

gh
ne

ss
 

co
ef

fic
ie

nt
, J

R
C

n

Lab-scale joint roughness coefficient, JRCo

Joint Length=0.5 m

Joint Length=1 m

Joint Length=1.5 m

Joint Length=2 m

Joint Length=10 m



30 

 

p׎
'=JRC× log10 ቀJCS

σn
ቁ  r        (2.16)׎+

This peak strength is mobilized following a peak shear displacement (δ୮ୣୟ୩) 

which is frequently about 1 % of the joint sample length (Barton et al. 

(1985). During this peak shear displacement first residual friction angle (Ør) 

is mobilized and then the roughness is mobilized causing dilation. Shear 

displacements larger than this range causes roughness gradually destroy 

or worn out. Rate of dilation also decreases continuously. Barton et al. 

(1985) formulated the case generally as: 

p׎
'ሺmobሻ=JRCሺmobሻ× log10 ቀJCS

σn
ቁ  r            (2.17)׎+

The gradual decrease in JRC was formulated by Barton et al. (1985). 

According to this study, JRCmob/JRCn corresponds to different values with 

respect to shear displacement to peak shear displacement ratio (i.e.൬ δ
δpeak

൰). 

The relation between them is illustrated in Table 2.2. For the calculation of 

mobilized roughness a relation called roughness contribution was 

introduced as; 

RUFF=JRCn. log10 ቀJCSn
σn

ቁ        (2.18) 
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Table 2.2 Values used for calculation of JRCmob (Anon, 2005) 

A 

ቆ
઼

ܓ܉܍ܘ઼
ቇ 

B 

൬
܊ܗܕ۱܀۸

ܖ۱܀۸
൰ 

0.00 -Ør / RUFF 

0.20 (-0.25) . Ør / RUFF 

0.30 0.00 

0.45 0.50 

0.60 0.75 

0.80 0.90 

1.00 1.00 

1.50 0.90 

2.00 0.85 

3.00 0.75 

4.00 0.70 

6.00 0.60 

8.00 0.55 

10.00 0.50 

20.00 0.40 

40.00 0.30 

60.00 0.20 

80.00 0.10 

100.00 0.00 

 

So the JRCmob parameter is found as; 

JRCmob=B.JRCn         (2.19) 

Introducing the mobilization of roughness, dilation angle of the discontinuity 

also mobilizes. Eq. (2.12) becomes for the dilation angle; 
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dmob= 1
2ൗ ×JRCmob× log10 ቀJCS

σn
ቁ        (2.20) 

 

2.3.8 Rock discontinuity deformation  

Under changing stress conditions, discontinuity deformation is a principal 

component of the behaviour of the discontinuous rock mass (Bandis et al., 

1985). The terms of joint normal stiffness and joint shear stiffness were 

defined in order to analyse the deformation characteristics of the joints. 

Normal stiffness (Kn) is defined as the normal stress increment required for 

a small closure of a joint or fracture, at a given level of effective stress. 

Similarly the shear stiffness (Ks) is taken as the average slope up to the 

shear strength-peak shear displacement curve. The units of joint stiffness 

values are stress/displacement (e.g. MPa/mm, MPa/m etc.). Therefore it is 

usually expected that Kn values get larger value than the shear stiffness Ks 

values (Barton, 2007). Typical normal stress-normal closure and shear 

stress-shear displacement curves are given in Figure 2.17. 

 

 

 

 

 

 

Figure 2.17 Typical graphs of normal stress-normal closure and shear 

stress-shear displacement (Choi and Chung (2004)) 
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Normal deformation 

Previous experimental studies show that, unlikely the Coulomb model the 

normal stress-normal closure and shear stress-shear displacement curves 

follow a non-linear path (Barton (1973), Barton and Choubey (1977), 

Bandis et al. (1981), Barton and Bandis (1982), Bandis et al. (1983) and 

Barton et al. (1985)). Therefore the normal stiffness of a discontinuity 

cannot be defined as a single value. For each increment of normal stress, 

the corresponding Kn value must be obtained. 

Experimental studies of Bandis et al. (1983) showed that normal stress-

normal closure relations for natural and unfilled discontinuity types are 

invariably non-linear. Goodman (1976) (in Bandis et al. (1983)) developed 

a relation between normal stress, initial normal stress and normal closure. 

The relation is given below; 

σn-σi
σi

=C ቂ ∆V
Vm-V

ቃ
t
           (2.21) 

Where; 

C and t are constants, 

σn is normal stress, 

σi is initial normal stress, 

Vm is maximum allowable closure, 

ΔV is joint closure. 

Bandis et al.(1983) developed that relation for normal stress; 

σn= Vj

a-b∆V
   or  σn= 1

a
∆V-b

        (2.22) 

Where a and b are constants that a/b =asymptote to the hyperbola = Vm 

(maximum closure). Initial normal stiffness is defined as 1/a and hence 

Eq.(2.22) becomes for the discontinuity normal stiffness at point ΔV; 

 



34 

 

Knൌ Kni

ቀ1‐∆V
Vm

ቁ
2         (2.23) 

Where; 

Kni = initial normal stiffness 

 

Maximum closure 

As mentioned above, the total deformation curve of a discontinuous block 

eventually becomes asymptotic to a limiting value of maximum allowable 

closure (Vm). Studies of Bandis et al. (1983) resulted to a relation between 

Vm and strength and geometrical properties of the discontinuities. 

According to the authors, maximum closure with similar aperture thickness 

(aj) depended mainly on the joint wall compressive strength (JCS). Figure 

2.18 presents the effect of the JCS and aj on Vm. 

 

 
Figure 2.18 Effects of the joint wall compressive strength (JCS) and 

mechanical aperture (aj) on maximum closure (Vm) (Bandis et al., 1983) 
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As it can be seen from the Figure, curve fitting of the results yield an 

empirical result between Vm, JCS and aj which is; 

Vm=C ൬JCS
aj

൰
D
          (2.24) 

Where C = 8.57 and D = -0.68 R2 = 0,865 for the first loading cycle, 

C = 4.46 and D = -0.65 R2 = 0.599 for the second loading cycle, 

C = 6.41 and D = -0.72 R2 = 0.607 for the third loading cycle, 

Where; JCS is in MPa and aj is in mm. 

Besides these results, authors investigated the relation between Vm and 

JRC. Figure 2.19 shows the well defined relation between them that is Vm 

decreases as the JRC increases. The authors came to a conclusion that 

explains this effect as: “upon initiation of loading, discontinuities undergo a 

rapid closure through readjustment of their initial seating condition. As σn 

increases, discontinuity closure depends almost exclusively on the 

deformability of asperities. The tight mechanical interlock between the 

protrusions of a rough surface creates a very effective confined 

environment, thus stiffening the deformational response of the asperities” 

(Bandis et al., 1983).  
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Figure 2.19 Relation between maximum closure (Vm) and joint roughness 

coefficient (JRC) (Bandis et al., 1983) 

 

The relations derived between Vm, aj, JCS and JRC were combined and 

the following empirical equation were obtained; 

Vm=A+BሺJRCሻ+C ൬JCS
aj

൰
D
        (2.25) 

Where; 

A = -0.2960  B = -0.0056 C = 2.2410 D = -0.2450 R2 = 0.675  for the 

first cycle 
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A = -0.1005 B = -0.0073 C = 1.0082 D = -0.2301 R2 = 0.546 for the 

second cycle 

A = -0.1032 B = -0.0074 C = 1.1350 D = -0.2510 R2 = 0.589 for the 

third cycle 

Bandis et al. (1983) empirically defined the mechanical aperture (aj) in mm 

as: 

aj=
JRC

5
ቀ0.2 σc

JCS
 - 0.1ቁ        (2.26) 

Where; 

σc = Uniaxial compressive strength of the rock. 

 

Shear deformation 

The non-linear stress - shear displacement behaviour of sheared 

discontinuities in the pre-peak range were frequently expressed by 

hyperbolic functions (Bandis et al., 1983). Kulhaway (1975) (in Bandis et 

al., 1983) refers to the relation; 

τ= δ
m+nδ

            (2.27) 

Where δ is the shear displacement at a given shear stress level and m and 

n are constants of the hyperbola. Constant m is the reciprocal of the initial 

shear stiffness and constant n is the reciprocal of the horizontal asymptote 

 ult to the hyperbolic τ-δ curve. Development of Eq.(2.27) results with theד

following relation for shear stiffness; 

Ks=Kjሺσnሻnj ൬1- τRf
τp

൰
2
        (2.28) 

Where; 

Kj = stiffness number, 

nj = stiffness exponent, 
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Rf = failure ratio = τ τultൗ ,  

τ୮ = peak shear strength. 

The indices Rf, nj and Kj describes the non-linearity in discontinuity shear 

behaviour. The stiffness exponent nj is the slope of log-log relation 

between initial shear stiffness Ksi and σn with a unit of (MPa)2/mm. Also the 

experimental studies Bandis et al. (1983) showed that stiffness number Kj 

(intercept of the log-log relation between initial shear stiffness Ksi and σn) 

can be written empirically as; 

Kj=-17.19+3.86 JRC         (2.29) 

With R = 0,835 for JRC > 4,5. 

The summary of the experimental discontinuity shear stiffness parameters 

of Bandis et al. (1983) are given in Figure 2.21. 
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Figure 2.20 Summary of experimental joint shear stiffness parameters 

(Bandis et al. (1983)) 

 

2.4 Distinct Element Modelling 
 
In geotechnical engineering applications there are several numerical 

modelling methods for the analysis of stress, deformation, fracture and 

breakage in mechanical systems. The most popular methods are; 

 Finite Element Method  

 Finite Difference Method 

 Boundary Element Method 

 Discrete Element Method  

Many continuum mechanics software (e.g., finite element and Lagrangian 

finite-difference programs) can simulate the variability in material types and 

non-linear constitutive behaviour associated with a rock mass 

successively. However, presenting the discontinuities in the system 
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requires a discontinuum-based formulation. Finite element, boundary 

element and finite difference codes may have interface elements that are 

limited to model discontinuous media in one or more of the following ways;  

1. The logic may break down when many intersecting interfaces are 

used,  

2. There may not be an automatic scheme for recognizing new 

contacts,  

3. The formulation may be limited to small displacements. (Anon, 

2007) 

For these reasons, continuum codes with interface elements are restrictive 

in their applicability for analysis of surface and underground excavations in 

discontinuous rock. Codes based upon a discontinuum mechanics 

formulation, which is described as discrete element codes, provides the 

capability of analyzing the motion of multiple intersecting discontinuities 

explicitly. Cundall and Hart (1992) provide the following conditions for a 

computer program to be represented as a discrete element method:  

(a) the method should allow finite displacements and rotations of discrete 

bodies, including complete detachment; and 

(b) the method should recognize new contacts automatically as the 

calculation progresses. (Anon, 2007) 

 

Cundall and Hart (1992) identify the following classes of codes which adopt 

discrete element method: 

1. Distinct element programs – use an explicit time-marching scheme to 

solve the equations of motion directly. Bodies may be rigid or deformable 

(by subdivision into elements); contacts are deformable. Representative 

codes are TRUBAL (Cundall and Strack 1979a, in Anon 2007), UDEC 

(Cundall 1980 and Cundall and Hart 1985, in Anon 2007, Anon 2005), 
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3DEC (Cundall 1988, Hart et al., 1988, in Anon 2007), DIBS (Walton 1980, 

in Anon 2007), 3DSHEAR (Walton et al., 1988, in Anon 2007) and PFC 

(Itasca 2005, in Anon 2007). 

2. Modal methods – are similar to the distinct element method in the case 

of rigid blocks, but, for deformable bodies, modal superposition is used. 

This method appears to be better-suited for loosely packed discontinua; in 

dynamic simulation of dense packing, eigenmodes are apparently not 

revised to account for additional contact constraints. A representative code 

is CICE (Hocking et al., 1985, in Anon 2007). 

3. Discontinuous deformation analysis – assumes that contacts are rigid 

bodies, and bodies may be rigid or deformable. The condition of no-

penetration is achieved by an iterative scheme; the deformability comes 

from superposition of strain modes. The relevant computer program is DDA 

(Shi 1989, in Anon 2007). 

4. Momentum-exchange methods – assume both the contacts and bodies 

to be rigid: momentum is exchanged between two contacting bodies during 

an instantaneous collision. Friction sliding can be represented. 

The distinct element technique was originally developed by Cundall (1971) 

and has resulted in formulation and development of three dimensional 

distinct element code (3DEC) and it progressed over a period of 35 years 

(Anon, 2007). 

3DEC is a three-dimensional numerical program based on the distinct 

element method for modelling discontinuous medium subjected to static or 

dynamic loading. A discontinuous medium is distinguished from a 

continuous medium by the existence of contacts between the discrete 

bodies that comprise the system (Anon, 2007).  

3DEC is based on a dynamic (time-domain) algorithm that solves the 

equations of motion of the block system by an explicit finite difference 

method. At each time step, the law of motion and the constitutive equations 

are applied. For both rigid and deformable blocks, sub-contact force-
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displacement relations are prescribed. The integration of the law of motion 

provides the new block positions, and therefore the contact displacement 

increments (or velocities). The sub-contact force-displacement law is then 

used to obtain the new sub-contact forces, which are to be applied to the 

blocks in the next time step. The cycle of mechanical calculations is 

illustrated in Figure 2.21 (Anon, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21 The calculation cycle of 3DEC program (Anon, 2007) 

 

3DEC also has a built in programming language called FISH which can be 

used for user specific purposes. 

Sub-Contact 
Force Update 

Block Centroid 
Forces or 

Gridpoint Forces 

Block/Gridpoint 
Motion Update 

Relative Contact 
Velocities 

Equation 
of 

motion 

Nodal velocities 

Strain rates

Constitutive law 

Equation 
of 

motion 



43 

 

3DEC has two constitutive models for analyzing discontinuity behaviour. 

The first one is the generalization of Coulomb friction law. This law works 

similarly for sub-contacts between both rigid and deformable blocks. Both 

shear and tensile failure is considered. In elastic range the model 

behaviour is governed by discontinuity normal stiffness and discontinuity 

shear stiffness.  

The force increments are found by using displacement increment and the 

input discontinuity stiffness. The normal force increment ∆F୬ is found as; 

∆Fn=-Kn∆ViAc           (2.30) 

And the shear force increment is found as; 

∆Fs=-Ks∆δAc           (2.31) 

Where; 

∆Vi = Normal displacement increment 

Ac= Area of contact 

∆δ = Shear displacement increment 

 

The total normal and shear forces, Fn and Fs are then updated for the next 

cycle as; 

Fn=Fn+∆Fn          (2.32) 

And, 

Fs=Fs+∆Fs          (2.33) 

For tensile failure; 

Fn<Tmax,  then  Fn=Tresidual            (2.34) 

Where; 

Tmax=-TAc         (2.35) 
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Tresidual=-TresidualAc         (2.36) 

Tmax = Peak tensile strength 

Tresidual = Residual tensile strength 

For shear failure; 

Fs<Fmax
s ,  then  Fs=Fs ቀFmax

s

Fs ቁ         (2.37) 

Where; 

Fmax
s =cAc+Fn tan  (2.38)         ׎

Shear displacement leads to a dilation that is; 

∆Vሺdilሻ=∆δ tan (d)                                 (2.39) 

Where d is the dilation angle specified. 

Then the normal force is corrected to consider the effect of dilation as; 

Fn=Fn+KnAc∆δ tan (d)                     (2.40) 

 

The second constitutive model of 3DEC for discontinuities is the 

continuously yielding joint model. The model attempts to account for some 

nonlinear behaviour observed in physical tests. The model generates the 

discontinuity shearing damage, normal stiffness dependence and decrease 

in dilation angle with plastic shear displacement.  

The normal stress is found incrementally as; 

∆σn=Kn∆Vi             (2.41) 

Where the normal stiffness Kn is given by; 

Kn=anσn
en             (2.42) 

Where an and en are model input parameters 
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For shear loading, the shear stress increments calculated as; 

∆τ=Fks∆δ               (2.43) 

Where the shear stiffness Ks is given by; 

Ks=asσn
es          (2.44) 

And where es and as are model input parameters and F is the tangent 

modulus factor which depends on the distance from the actual stress curve 

to the target or bounding strength; 

F = 
(1-τ τmൗ )

1-r
               (2.45) 

Where;  

r is the stress ratio at the last reversal and it is limited to 0.75 in order to 

avoid numerical noise. 

τmis the bounding strength and found as; 

τm=σn tan  m∆δ             (2.46)׎

 m is the friction angle at which the discontinuity is dilating at the maximum׎

dilation angle and it is continuously reduced according to the equation; 

-=m׎∆ 1
R

 δp           (2.47)∆(׎-m׎)

R is the model input parameter defines the surface roughness, 

The plastic increment ∆δp is found as; 

∆δp=(1-F)|∆δ|           (2.48) 

Studies related to 3DEC were mostly conducted by Coulomb slip model 

rather than continuously yielding joint model (Kulatilake et al. (1993), 

Konietzky et al. (2001), Hutri and Antikainen (2002), Corkum and Martin 

(2004). The reason for that would probably be the easiness of the 
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parameter determination. Only the discontinuity cohesion and discontinuity 

friction angle should be determined for the Coulomb slip model.  

Universal distinct element code (UDEC) is a two dimensional numerical 

program that offers users to use Barton-Bandis failure criterion in 

discontinuity behaviour analyses. Researchers, who were interested in 

discontinuity failure in detail, prefer to use Barton-Bandis failure criterion 

rather than Coulomb slip model, usually used UDEC for their numerical 

analyses (Bhasin and Hoeg (1997), Chryssanthakis et al. (1997), Hökmark 

(1998), Choi and Cung (2004), Bhasin and Kaynia (2004), Vardakos et al 

(2006), Kveldsvik et al. (2007)).  

Within these studies, some researchers investigated the difference 

between the Coulomb slip model and the Barton-Bandis model. Choi and 

Chung (2004) investigated a failed slope by both methods and concluded 

that Barton-Bandis method showed more realistic results.  

In the study of Kveldsvik et al. (2007), a back analyses of a 100 000 m3 

landslide was conducted and main focus was given to determination of 

roughness parameter (JRC). The authors had used limit equilibrium 

analyses together with UDEC. From the limit equilibrium analyses JRC was 

found to be the most effective parameter on the factor of safety. Also the 

probabilistic calculations showed that JRC was found to be the most 

important contributor to the total uncertainty over the whole set of 

variables. 

From the detailed information about the behaviour of rock discontinuities 

and recent numerical studies about discrete element modelling, it can be 

concluded that not only the strength parameters of discontinuities but also 

the surface characterization of them are important. The Barton-Bandis 

failure criterion includes the discontinuity surface properties into the shear 

failure such as joint wall compressive strength (JCS) and joint roughness 

coefficient (JRC).  
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In cases where the normal stress on discontinuity surface is low, linear 

Coulomb constitutive model appears to be inadequate in reflecting both the 

normal and shear deformation characteristics of discontinuities. Barton-

Bandis failure criterion allows the non-linear behaviour of the normal 

deformation until a limited amount (maximum allowable closure), shear 

behaviour with mobilization of roughness under shear stress and the 

dilation angle with the shear displacement of rock blocks.  

Another point is that, a great variety of numerical analyses programs are 

being developed. Different type of programs are available for different 

kinds of problems (e.g. distinct element programs for discontinuum 

analyses, finite difference programs for continuum based analyses, finite 

element programs for small displacement problems). An important point is 

that the choice of appropriate program and the related constitutive model 

among many kinds of these in order to obtain best results from the 

numerical analyses.  

Barton-Bandis failure criterion which is used within discrete element 

models is only available in two dimensional distinct element code (UDEC). 

In simulating the field stresses three dimensional programs yield to more 

realistic results. The application of Barton-Bandis approach in a three 

dimensional discrete element model is required for geotechnical 

applications.  

Another point that can be concluded from the detailed literature survey is 

that, the scale correction for the field discontinuity sets is restricted to 

some extend. In case of discontinuity lengths longer than 1,5 meters (with 

a 0.1 meters lab scale discontinuity length), the scale correction logic 

breaks down for the joint roughness coefficient and another methodology 

for determining field scale joint roughness coefficient is needed for the 

practical slope problems related to large scale discontinuities (e.g. 500 m). 

The study of Barton et al. (1982) was extended for large scale roughness 

determination. 
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CHAPTER 3 

 

DEVELOPMENT OF THE NUMERICAL MODEL 

 

 
3.1  Introduction  
 

3DEC allows users to implement user defined discontinuity constitutive 

models that are derived in C++ and compiled into the main executable part. 

The models should exist as a runtime dynamic link library (DLL) files that 

can be loaded whenever it is needed. The files that contain shareable 

routines are called dynamic link libraries (DLLs). Dynamic link libraries 

contain predefined functions that are linked with an application program 

when it is loaded (dynamically), instead of when the executable file is 

generated (statically) (Murray, 2002). In this chapter, the implementation of 

Barton-Bandis discontinuity constitutive model to 3DEC by constructing a 

dynamic link library file is explained. 

 

3.2 Basic Structure of the Program 
 

The main function of the model is to return new forces with the given 

displacement increments. However, the model must also provide other 

information, such as names, and perform operations such as writing and 

reading save files (Anon, 2007).  

In the C++ language, the emphasis is on an object-oriented approach to 

program structure, using classes to represent objects. The possibility to 
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orientate programming to objects allows the programmer to design 

applications from a point of view more like a communication between 

objects rather than on a structured sequence of code. In addition it allows a 

greater reusability of code in a more logical and productive way (C++ 

Resources Network). 

The data associated with an object is encapsulated by itself and is invisible 

outside it. Communication with the object is by member functions that 

operate on the encapsulated data. In addition, there is strong support for a 

hierarchy of objects: new object types may be derived from a base object, 

and the base-object’s member functions may be superseded by similar 

functions provided by the derived objects. This arrangement confers a 

distinct benefit in terms of program modularity. For example, the main 

program may need access to many different varieties of derived objects in 

many different parts of the code; but it is only necessary to make reference 

to base objects, not to the derived objects. The runtime system 

automatically calls the member functions of the appropriate derived objects 

(Anon, 2007). 

A base class provides a framework for actual constitutive models, which 

are classes derived from the base class. The base class, called 

JointModel, is termed an “abstract” class because it declares a number of 

“pure virtual” member functions. This means that no object of this base 

class can be created, and that any derived-class object must supply real 

member functions to replace each one of the pure virtual functions of 

JointModel. Partial listing of base class JointModel is given in Table A.1 in 

Appendix A. 

The model class definition should also contain a constructor that must 

invoke the base constructor (Anon, 2007). Initialization of data members 

may be performed by the constructor. Model constructor is illustrated in 

Table A.2 in Appendix A. 
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The most important link between the 3DEC main code and the developed 

model is the member-function Run (UByte nDim, State *ps), which 

computes the mechanical response of the model during cycling. A 

structure, State is used to transfer information to and from the model. The 

members of State are summarized in Table A.3 in Appendix A. 

The main task of member-function Run () is to compute new forces from 

displacement increments. In a slipping discontinuity, it is also useful to 

communicate the internal state of the model, so that the state may be 

plotted and printed. For example, the presented model indicates whether 

they are currently yielding or have yielded in the past. Both shear and 

tensile failure may occur together in the model.  

 

3.3 Implementation of the model 
 

In this section, the implementation of the algorithm of Barton-Bandis 

criterion into 3DEC with C++ dynamic link library is explained. The input 

parameters and calculation steps of the algorithm is explained in detail. 

  

3.3.1 Input data of the Barton-Bandis criterion 

The input parameters for the Barton-Bandis criterion into 3DEC are given 

below; 

 Joint initial normal stiffness, jkn, 

 Joint shear stiffness number, jks, 

 Joint residual friction angle, Ør, 

 Lab scale Joint compressive strength (JCSo), jcso, 

 Lab scale Joint roughness coefficient (JRCo), jrco, 

 Intact rock uniaxial compressive strength, sigmac, 

 Normal stress exponent, nj, 

 Lab scale joint length, lo, 

 In-situ joint length, ln. 
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3.3.2 Execution stage 

As the code starts to execute, first of all the size corrections were applied 

in the algorithm. In this part, the scale corrections of JCS and JRC 

parameters were done according to the results of the studies of Barton and 

Bandis (1982). As mentioned in Section 2.3.6 the scale correction for joint 

roughness coefficient, the logic breaks down for a 1.5 meters discontinuity 

length with a 0.1 meters lab scale discontinuity length. For large scale 

discontinuities, it was mentioned in Section 2.3.6 that using Eq.(2.11) for 

joint roughness coefficient determination would be appropriate.  

In addition to this, by using Eq.(2.13) for the scale correction, joint wall 

compressive strength value would get very small values as the 

discontinuity length reaches to few hundred meters. Because of this, it was 

decided that using a joint wall compressive strength value without scale 

correction would be appropriate. Therefore, an option was developed for 

deciding which joint roughness coefficient and joint wall compressive 

strength values are going to be used for the rest of the analyses. An 

optional input parameter namely “large” was defined. If the user does not 

enter the large parameter, the program continues with the algorithm that 

uses Eq.(2.13) and Eq.(2.14) for the scale correction. On the contrary, if 

the user decides to use the asperity related algorithm for joint roughness 

coefficient and joint wall compressive strength value without scale 

correction, the “large” input should be entered. The routine for introducing 

the “large” option is given in Table A.4 in Appendix A. 

Following that, normal and shear stiffness values were found in order to 

calculate the normal and shear force increments. Bandis et al. (1983) 

described the normal stiffness as given in Eq. (2.23) and shear stiffness as 

in Eq. (2.28). In order to calculate the normal stiffness dynamically, 

maximum closure value should be calculated first. Eq. (2.25) was used for 

determining the value of maximum closure (Vm). The empirical equation for 

determining Vm contains the parameter that represents the mechanical 
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aperture (aj) which was calculated by Eq. (2.26). The calculation of normal 

stiffness is given in Table A.5 in Appendix A. 

The stiffness relation (Eq.(2.28)) that was derived by Bandis et al. (1983) 

contains peak shear strength parameter in the denominator. The yield 

strength relation (i.e. Eq.(2.5)) contains normal stress component in it. As 

the cycling of the program starts the average normal stress across the 

contact is initially zero. As the normal stress is zero then the shear stiffness 

relation goes to infinity. Because of this reason, a numerical instability 

occurs. To overcome this weakness, Bandis et al. (1985) had yielded a bi 

linear shear stiffness relation that change with respect to the shear relative 

displacement (Anon, 2005). The relation is given below; 

 

Kୱ ൌ σ୬ ൬୲ୟ୬ሺ଴.଻ହሻ׎౨౛౩౟ౚ౫౗ౢ
଴.ଶஔ౦౛౗ౡ

൰ L       for ൬ ஔ
ஔ౦౛౗ౡ

൰ ൏ 0.20     (3.1) 

and 

Kୱ ൌ σ୬ ൬୲ୟ୬ሺ଴.ଶହሻ׎౨౛౩౟ౚ౫౗ౢ
଴.ଵஔ౦౛౗ౡ

൰ L       for ൬ ஔ
ஔ౦౛౗ౡ

൰ ൐ 0.20   (3.2) 

(Anon, 2005) 

 

The peak displacement was found by Eq.(2.13). 

For the initial loading steps (approximately൬ ஔ
ஔ౦౛౗ౡ

൰ ൏ 0.002) the shear 

stiffness relation that is described in Eq.(3.1) was used and after the 

normal stress of the contact was established the relation which was given 

in Eq. (2.28) was used. The ultimate shear strength parameter in Eq.(2.28) 

was taken equal to the peak shear strength value. The execution steps of 

the shear stiffness relation in the code are given in Table A.6 in Appendix 

A. 

Then the execution part of mobilization of joint roughness coefficient 

(JRCmob) parameter was inserted to the code. The values for determining 

the JRCmob was given in Table 2.1. The JRCmob values for the 
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corresponding ൬ ஔ
ஔ౦౛౗ౡ

൰ values are defined by an if-else if statement. The 

JRCmob calculation steps are given in Table A.7 in Appendix A. 

After the preliminary calculations of the Barton-Bandis model is finished, 

the calculation of the forces and the failure conditions are specified. First 

step is to calculate the normal force acting on the contact (discontinuity 

face). Program uses the previously determined kna value and the normal 

displacement increment (which is found from the law of motion after the 

first cycle) to find the normal force increment. After that the resultant 

normal force increment value is added to the normal force value found in 

the previous cycle. The normal force calculation is given in Table A.8 in 

Appendix A. 

When the normal force is calculated, the discontinuity is then checked for a 

tensile failure. If the discontinuity is stable against tension then the 

discontinuity behaviour under shear load is examined. The shear force 

found similarly with the normal force. The shear displacement increment 

and non-linear shear stiffness relation is used to calculate shear force 

increment. And the found value is added to the shear force that was 

calculated in the previous cycle.  

After determining the shear stress, then the shear strength value is 

calculated for the given discontinuity parameters. Every cycle, the current 

shear stress and the yield value is compared in order to determine if the 

discontinuity starts slipping. If the yield strength is obtained then the state 

of the discontinuity changes and the failure state of the discontinuity can be 

monitored from the display properties of 3DEC. 

The modelling procedure of the tensile and shear behaviour is given in 

Table A.9 in Appendix A. 

When the peak shear stress is achieved, dilation starts. The dilation angle 

is mobilized as previously mentioned and the relation was given in Eq. 

(2.20). Then the normal force is corrected according to the dilatational 
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component of the normal displacement as given in Eq.(2.40). The relation 

for calculating the corrected normal force is given below;   

The procedure of updating the normal force with respect to dilation is given 

in Table A.10 in Appendix A. The flowchart of the execution stage is given 

in Figure 3.1.  
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Figure 3.1 Flowchart of the execution part of the model 
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CHAPTER 4 

 

EMPIRICAL VERIFICATION OF THE NUMERICAL MODEL 

 

 

4.1 Introduction  
 

The proposed methodology for implementing the Barton-Bandis failure 

criterion into three dimensional distinct element code (3DEC) needs to be 

checked for reliability purposes. In this chapter, the empirical verification of 

the developed methodology is presented.  

The empirical relations that were derived from the empirical results of 

Barton (1973), Barton and Choubey (1977), Bandis et al. (1981), Barton 

and Bandis (1982), Bandis et al. (1983), Barton et al. (1985) were used for 

the verification.  

A simple direct shear test model was prepared in 3DEC for the verification 

of the numerically developed model. The block and discontinuity 

parameters were determined and several direct shear test modelling were 

carried out.  

At first, the normal deformation characteristics of the discontinuities were 

analyzed. Emphasis was given to maximum closure, discontinuity normal 

stiffness and irrecoverable closure values, and the numerically obtained 

values were compared with the results found from the empirical relations.  

Following that, the shear deformation behaviour was examined. The shear 

stiffness, peak shear displacement, peak shear strength and residual shear 
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strength values using different discontinuity properties were compared with 

the empirical results.  

4.2 Direct-shear Test Model 
 

For the empirical verification, a simple direct shear test model was 

prepared. The model consists of two deformable blocks with a defined 

discontinuity face between them. A normal stress is applied from the top 

block and the shear force is generated by applying a constant velocity in x-

direction to the upper block. The model geometry is given in Figure 4.1. 

The upper block’s dimensions are 0.2 meters in length and in height, 0.1 

meters in width.  The lower block’s dimensions are 0.3 meters in length, 

0.2 meters in height and 0.1 meters in width. When the numerical model is 

in progress, the average normal stress, average shear stress, average 

normal and shear displacements were monitored. The direct shear model 

blocks were zoned (finite difference mesh) and both blocks have nodes 

only at the corners. For the measurement purposes, the average values of 

the nodes in the contact are taken by a simple FISH function. The 

executable code of the direct shear test model is given in Appendix B. All 

the input discontinuity surface parameters that are joint roughness 

coefficient (JRC) and joint wall compressive strength (JCS) were 

considered as lab scale parameters. Therefore, the verification of the 

empirical scale correction of the model was also tested.  
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Figure 4.1 Direct shear test model used in the verification of the numerical 

model 

 

4.3 Normal Deformation of the Discontinuity Model 
 
In this section, the normal closure behaviour of the discontinuity is 

investigated in detail and verified according to the theory of empirical 

results. The normal stress-normal closure relation is explained. In addition, 

the effect of discontinuity surface properties such as joint roughness 

coefficient (JRC), joint wall compressive strength (JCS) and rock material 

property uniaxial compressive strength (σc) on the maximum closure 

behaviour on the discontinuity are investigated and verified with the 

empirical results. 

 

4.3.1 Normal stress – normal closure 

The theory and empirical approaches for the normal closure behaviour of 

discontinuities was presented in Chapter 2. The normal deformation 

characteristic of a discontinuity is governed mostly by the amount of 

maximum allowable closure. Various studies (Barton (1973), Barton and 
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Choubey (1977), Bandis et al. (1981), Barton and Bandis (1982), Bandis et 

al. (1983), Barton et al. (1985)) showed that the normal stress vs normal 

closure plots have non-linear behaviour that is different from the Mohr-

Coulomb model in. And the path followed by this plot is governed by the 

non-linear normal stiffness relation. The empirical relation of maximum 

allowable closure was given in Eq.(2.24) and the relation of normal 

stiffness was given in Eq.(2.22) in Chapter 2.  

The amount of maximum closure mainly depends on the JRC, JCS and 

mechanical aperture (aj) parameters. Aperture also depends on the JRC, 

JCS and σc values. As a result JRC, JCS and σc are the main properties 

that affect the amount of maximum allowable closure. 

For the verification of this behaviour, first JRC values were changed and 

JCS and σc were kept constant. The maximum allowable closure (Vm) was 

calculated both empirically and numerically by making model runs. The 

results of both methods were plotted and the amount of difference between 

two calculations was determined. The same procedure was repeated for 

the constant JRC-σc and JRC-JCS cases.  

Following that, the normal stiffness values were again calculated 

numerically and empirically for a set of discontinuity properties (i.e. JRC, 

JCS and σc). The results of the calculations were plotted and the 

corresponding Difference amount was calculated.  

In this part of the verification, the interest is given mainly to the normal 

deformation of the discontinuity rather than shear deformation. The normal 

stress was increased continuously, and the shear load was set to zero. For 

the application of the normal load displacement boundary condition was 

used in the program that is the normal force was formed by applying a 

constant velocity to the upper block.  

The model input properties for the blocks and the discontinuity between 

them are given in Table 4.1. 
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Table 4.1 Material and discontinuity properties of the direct shear test 
model 

Block Properties 
Block mass density  = 2600 kg/m3 

Bulk modulus of block, K = 4 GPa 

Shear modulus of block, G = 3 GPa 

Discontinuity 

Properties 

Initial discontinuity normal stiffness, kn = 100 GPa 

Discontinuity shear stiffness number, ks = 10 GPa 

Discontinuity stiffness exponent, nj = 0.8 (MPa)2/m 

Residual friction angle, Ør = 20° 

Discontinuity length of lab scale sample, Lo = 0.1 m

Discontinuity length of the model, Ln = 0.2 m 

 

 

The discontinuity stiffness exponent parameter, nj was selected as 0.8 by 

assuming the direct shear test model has a slightly weathered discontinuity 

with correspondence to Figure 2.22.  

 

Effect of joint roughness coefficient (JRC) on discontinuity normal 
closure 

For the comparison of the numerical and empirical values, JCSo and σc 

values were kept constant and different JRCo values were tried. For the 

JCSo value 100 MPa and for the σc value 150 MPa were selected. The 

results are given in Figure 4.2 and the corresponding data are given in 

Table 4.2. 
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Figure 4.2 Graph of maximum normal closure (Vm) vs lab scale joint 

roughness coefficient (JRCo) 

 

Table 4.2 Results of maximum closure (Vm) analyses with varying joint 

roughness coefficient (JRCo) (Ør = 20°, JCSo=100MPa and σc=150 MPa) 

JRCo 
Vm 

(empirical)
(mm) 

Vm 
(numerical)

(mm) 

Difference 
(%) 

2 0.083 0.080 3.61 
4 0.144 0.138 4.17 
6 0.182 0.174 4.40 
8 0.208 0.198 4.81 

10 0.227 0.218 3.97 
12 0.243 0.232 4.53 
14 0.255 0.243 4.71 
16 0.264 0.253 4.17 
18 0.272 0.259 4.78 
20 0.279 0.265 5.02 

Average 4.42 
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From Figure 4.2 and Table 4.2, it can be seen that the numerical response 

of the program gives an average of 4.42 % difference in the maximum 

allowable closure value. The difference between the results may have 

some possible reasons. First of all, 3DEC do not have any option that 

outputs the maximum allowable closure. After the normal stress-normal 

closure graph was generated, the maximum allowable closure amount was 

recorded by simply reading from the graph. There may be some errors 

while recording the actual amounts. Another reason can be stated as, for 

the calculation time hardware limitation, the mesh density was kept at 

minimum. By generating a finer mesh, the results can be closer. Despite 

these reasons, the results can be considered as acceptable. 

 

Effect of joint wall compressive strength (JCS) on discontinuity 
normal closure 

After determining the response of the numerical model to the change in 

JRCo parameter, the response to the change in JCSo parameter was 

analyzed in a similar way. Using constant values of JRCo and σc with 

different JCSo values, model runs were carried out. For the JRCo value, 8 

was used and the σc value was selected as 150 MPa. The results are given 

in Figure 4.3 and the corresponding data is presented in Table 4.3. 
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Figure 4.3 Graph of maximum normal closure (Vm) vs lab scale joint 

compressive strength (JCSo) 

 

Table 4.3 Results of maximum closure (Vm) analyses with varying joint wall 

compressive strength (JCSo) values (Ør = 20°, JRCo=8 and σc=150 MPa) 

JCSo 
(MPa) 

Empirical 
Vm (mm) 

Numerical 
Vm (mm) 

Difference 
(%) 

40 0.58 0.55 5.17 
50 0.47 0.447 4.89 
60 0.40 0.37 7.50 
70 0.34 0.315 7.35 
80 0.29 0.27 6.90 
90 0.24 0.23 4.17 

100 0.21 0.198 5.71 
110 0.18 0.167 5.99 
120 0.15 0.14 6.67 
130 0.12 0.116 3.33 
140 0.10 0.094 6.00 

Average 5.79 
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The corresponding data of varying JCSo shows that the numerical models’ 

responses have an average of 5.79 % difference with respect to the 

empirical results. Also the plots of JCSo vs normal closure show very 

similar trends with respect to each other. The possible errors for the 

differences can be restated as the recording errors of the numerical results 

and the mesh density of the block. This difference can also be considered 

as acceptable. 

 

Effect of uniaxial compressive strength (σc) on discontinuity normal 
closure 

The third parameter that affects the amount of maximum allowable closure 

is the unconfined compressive strength (σc) of the rock material. The same 

way was followed to see the response of the program to the change in σc. 

Constant JRCo and JCSo values were selected as 8 and 50 MPa 

respectively. Figure 4.4 shows the results and the corresponding data are 

given in Table 4.4. 

 

 
Figure 4.4 Graph of maximum normal closure (Vm) vs uniaxial compressive 

strength σc 
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Table 4.4 Results of maximum closure (Vm) analyses with varying uniaxial 

compressive strength (σc) values (JRCo=8 and JCSo=50 MPa) 

σc    
(MPa) 

Vm 
(empirical)

(mm) 

Vm 
(numerical)

(mm) 

Difference 
(%) 

60 0.25 0.24 4.00 
70 0.29 0.275 5.17 
80 0.32 0.305 4.69 
90 0.35 0.332 5.14 

100 0.38 0.356 6.32 
110 0.40 0.377 5.75 
120 0.42 0.396 5.71 
130 0.44 0.415 5.68 
140 0.46 0.432 6.09 
150 0.47 0.447 4.89 
160 0.49 0.462 5.71 

Average 5.38 
 

 

Results show that the program response to the change in σc has an 

average difference of 5.38 % when compared to the empirical results. And 

the corresponding plots have a similar trend for the empirical and 

numerical computations. 

 

4.3.2 Discontinuity normal stiffness 

As explained in Section 2.3.8, the nonlinear discontinuity closure behaviour 

is mainly governed by the ratio of current normal displacement to the 

maximum closure. From the discontinuity normal stiffness relation 

(Eq.(2.23)), it can be seen that, as the normal displacement approaches to 

the maximum closure value, the stiffness equation converges to infinity. As 

a result the normal deformation stops and the normal stress increases 
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rapidly. A typical normal stress-normal closure plot of a specific 

discontinuity is given in Figure 4.5.  

 

 
Figure 4.5 Graph of normal stress vs normal closure with Ør = 20°, JRCo = 

8, JCSo = 100 MPa, σc = 150 MPa 

 

For the comparison procedure, the discontinuity properties, which were 

used in previous analyses (Figure 4.5), were assigned to the model. When 

the discontinuity normal deformation reaches to the maximum closure 

point, cycling was stopped. From the graph of normal stress vs. normal 

displacement, slopes from nine different points were taken and the results 

were compared to the empirical ones. The numerical and empirical results 

of normal stiffness-normal closure data were plotted and the difference 

between them was found. Figure 4.6 presents the results of numerical and 

empirical methods and Table 4.5 gives the corresponding data. 
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Figure 4.6 Graph of normal stiffness (Kn) vs normal closure ΔV (Ør = 20°, 

JRCo = 8, JCSo = 100 MPa, σc = 150 MPa) 

 

Table 4.5 Empirical and numerical results of normal stiffness (Kn) 

Normal 
Closure 

(mm) 

Normal 
Stiffness 

(empirical)
(MPa/m) 

Normal 
Stiffness 

(numerical)
(MPa/m) 

Difference 
% 

0.04 162727 152939 6.02  
0.06 203939 196752 3.52 
0.08 253720 262490 3.46 
0.10 359565 367654 2.25 
0.12 530212 551458 4.01 
0.14 832889 917475 10.16 
0.16 1548759 1819283 17.47 
0.18 4267200 5193935 21.72 

Average 8.58 
 

 

Results show that, the difference between the empirical ones and the 

manually calculated numerical results increases as the stiffness increases.  
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The reason for that can be stated as, the manual drawing of the slopes 

become more difficult as the normal stress-normal closure graph becomes 

asymptotic. The increasing trend of the differences towards the maximum 

closure point is because of this reason. However, the results before the 

asymptote value show little difference. So the normal closure behaviour of 

the model can be considered as acceptable.  

 

 

4.4 Shear Behaviour of the Discontinuity Model 

 

Experimental studies of Bandis et al. (1983) showed that discontinuity 

shear stress – shear displacement behaviour mostly shows a non-linear 

behaviour in the pre-peak range, and the discontinuity shear stiffness that 

governs this non-linearity was empirically defined as given in Eq.(2.28). In 

this relation, as the shear stress increases, the discontinuity shear stiffness 

is reduced smoothly and the non-linearity is established. The peak shear 

stress was defined empirically in Eq.(2.5) in Chapter 2. From these 

relations, it can be seen that the parameters that govern the shear 

behaviour can be stated as; 

 Normal stress, σn 

 Residual friction angle, Ør 

 Joint roughness coefficient, JRC 

 Joint compressive strength, JCS 

In the verification procedure, a similar way as the normal deformation 

behaviour was followed. Every effective parameter was changed, and 

compared to the results obtained from empirical expressions. The 

corresponding differences were calculated.  

First, the effect of normal stress acting on the discontinuity face was 

examined. Peak shear strength and residual shear strength values were 

determined and the differences were calculated. 
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Second, the effect of JRC was studied in the same way and the shear 

strength values were found and compared with the results obtained from 

empirical expressions and the differences were calculated again. 

Following that, the effect of JCS was studied and the same critical values 

were determined with the resulting differences.  

Finally, the shear stiffness values obtained from numerical model were 

compared to the values obtained from empirical expressions and the 

differences were evaluated.  

In the modelling section, the same direct shear test model, which was 

presented in Figure 4.1, was used. The interest was given to the shear 

behaviour of the discontinuity, so the normal stress was applied as a 

boundary condition with a constant value. The shear stress on the 

discontinuity was generated by applying a constant velocity to the upper 

block in the shear direction, and the shear stress along the discontinuity 

was monitored.  

 

4.4.1 Shear strength behaviour of the model 

The shear strength values were determined under the effect of different 

normal stress levels and residual friction angles, JCS and JRC parameters. 

The same block properties were used in the analyses as described in 

Table 4.1.  

 

Effect of normal stress on shear strength 

The most important factor in the shear strength of a rock discontinuity is 

the magnitude of the normal stress acting across the discontinuity. In the 

Barton-Bandis shear strength failure criterion, it affects the shear strength 

as a linear factor.  
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For the verification of the normal stress effect, the direct shear model was 

tested under different normal stress levels, and the peak shear stress 

values were compared with the empirical results. The differences between 

the results were determined. In the analyses, joint roughness coefficient 

was set to 8, joint wall compressive strength was set to 100 MPa, residual 

friction angle was set to 20° and uniaxial compressive strength was set to 

150 MPa.  

Figure 4.7 shows the relation between peak shear strength values of 

numerical and empirical results. Figure 4.8 illustrates the graphs of 

numerical peak shear strength and empirical peak shear strength values vs 

normal stress. Table 4.6 gives the results of the analyses. Figure 4.9 

presents the plot of shear stress – shear displacement of the model with 

normal stress level of 2 MPa. The rest of the graphs are given in Appendix 

B. 

 

 
Figure 4.7 Graph of peak shear strength of empiric results vs numerical 

results under different normal stress levels 
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Figure 4.8 Graph of normal stress vs peak shear strength  

 

Table 4.6 Results of peak shear strength analyses under different normal 

stresses (σn) values (Ør = 20°, σc = 150 MPa, JRCo=8 and JCSo=100 MPa) 

σn    
(MPa) 

 peakד
(empirical)
(MPa) 

 peakד
(numerical)

(MPa) 

Difference 
(%) 

0.5 0.36 0.38 5.26 

2 1.23 1.25 1.63 

3 1.76 1.78 1.14 

4 2.26 2.29 1.33 

5 2.75 2.78 1.09 

6 3.22 3.26 1.24 

7 3.68 3.72 1.09 

8 4.14 4.17 0.73 

9 4.58 4.62 0.87 

10 5.02 5.05 0.60 

Average 1.50 
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Figure 4.9 Graph of shear stress – shear displacement (Ør = 20°, σn = 2 

MPa, JRCo=8 and JCSo=100 MPa) 

 

From Figure 4.7, the relation between the numerical and empirical peak 

shear strength values under different normal stresses can be found by 

finding the angle of the linear plot, α. The angle of the line can be found 

using the data in Table 4.6 as; 

α= tan-1 ሺ5.05-0.38ሻ
ሺ5.02-0.36ሻ =45.1° 

 

It can be concluded that, the numerical response of the program is slightly 

different from the empirical model, which can be considered as acceptable 

with an average difference of 1.50 %. The effect of normal stress on the 

discontinuity face was verified with the empirical results with the numerical 

model. Also the model shows consistency with the empirical results when 

normal stress acting on the discontinuity changes. 

 

Ør = 20°  
JRCo = 8  
JCSo = 100 Mpa  
σn = 2 MPa 
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Effect of joint roughness coefficient (JRC) on shear strength 

Joint roughness has a significant effect on the shear strength of a 

discontinuity. Not only it affects the shear strength, but also the joint 

roughness controls the post peak behaviour as it mobilizes after peak 

value and the roughness is completely destroyed as explained in Section 

2.3.7.  

In this part of the verification, the other parameters except the lab scale 

joint roughness coefficient (JRCo) were kept constant. With the variation of 

JRCo, different peak shear strength values were determined and compared 

to the empirical results.  

JRC mobilizes and it also controls the behaviour of the discontinuity after 

peak strength is passed. Because of that reason, the residual strength 

values of the model were also studied. 

Figure 4.10 shows the relation between the peak shear strength values of 

numerical results and empirical results with a joint wall compressive 

strength of 100 MPa, residual friction angle of 20° and under a normal 

stress of 5 MPa with uniaxial compressive strength of 150 MPa. Figure 

4.11 presents the graphs of numerical peak shear strength and empirical 

peak shear strength values vs lab scale joint roughness coefficient (JRCo). 

Table 4.7 presents the corresponding data.  
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Figure 4.10 Graph of peak shear strength (דpeak) of empirical results vs 

numerical results with different joint roughness coefficients (JRCo) 

 

 
Figure 4.11 Graph of lab scale joint roughness coefficient vs peak shear 

strength 
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Table 4.7 Results of peak shear strength (דpeak) analyses under different 

joint roughness coefficients (JRC) values (Ør = 20°, σc = 150 MPa, σn = 5 

MPa and JCSo=100 MPa) 

JRCo 
 peakד

(empirical)
(MPa) 

 peakד
(numerical)

(MPa) 

Difference 
(%) 

2 2.07 2.09 0.97 
4 2.31 2.34 1.30 
6 2.53 2.56 1.19 
8 2.75 2.78 1.09 
10 2.95 2.98 1.02 
12 3.14 3.17 0.96 
14 3.31 3.34 0.91 
16 3.48 3.5 0.58 
18 3.63 3.65 0.55 
20 3.77 3.79 0.53 

Average 0.91 
 

The shear stress-shear displacement plot of the case with JRCo = 8 is 

given in Figure 4.12. Graphs of other cases are given in Appendix C. 
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Figure 4.12 Graph of shear stress – shear displacement (Ør = 20°, σc = 

150 MPa, σn = 5 MPa and JCSo=100 MPa) 

 

The relation between the numerical and empirical peak shear strength 

values under different lab scale joint roughness coefficients can be found 

by finding the angle of the linear plot, α in Figure 4.10. The angle of the line 

can be found using the data in Table 4.6 as; 

α= tan-1 ሺ3.79-2.09ሻ
ሺ3.77-2.07ሻ =45° 

 

The results show that, the numerical results are very close the empirical 

ones, which can be considered as acceptable with an average difference of 

less than 1 % and can be considered as acceptable. The effect of joint 

roughness coefficient on the discontinuity face was verified with the 

empirical results with the numerical model. The response of the program is 

also consistent with the empirical results when joint roughness coefficient 

changes. 

Ør = 20°  
JRCo = 8  
JCSo = 100 Mpa  
σn = 5 MPa 
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As mentioned in Section 2.3.7, the joint roughness is mobilized as the peak 

shear strength is reached. As the shear displacement continues the joint 

roughness approaches to zero. From the Barton-Bandis shear strength 

criterion relation Eq.(2.5), when the joint roughness coefficient becomes 

zero the shear stress becomes; 

τ୰ ൌ σ୬ tan  ୰׎

According to the theory of the mobilization of the roughness, the joint 

roughness coefficient would become totally worn out (zero) at the ൬ ఋ
ఋ೛೐ೌೖ

൰ 

ratio of 100. So the direct shear test model was needed to be modified. 

The lower block length was increased to 0.4 meters.  

The verification of this behaviour is done on a model with a residual friction 

angle of 10°, JRC of 8, JCS of 100 MPa and a uniaxial compressive 

strength of 150 MPa and the normal force was set to 5 MPa. Figure 4.13 

shows the plot of shear stress vs shear displacement plot and Table 4.7 

gives the results of it. 
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Figure 4.13 Graph of shear stress – shear displacement (Ør, σc = 150 MPa, 

JRCo=8 and JCSo=100 MPa, σn = 5 MPa) 

 

Table 4.7 Results of residual shear strength analyses (Ør = 10°, σc = 150 

MPa, σn=5 MPa and JCSo=100 MPa) 

 residualד
(empirical)

(MPa) 

 residualד
(numerical)

(MPa) 

Difference 
(%) 

0.88 0.82 6.82 

 

The result of residual shear strength test was resulted with a difference of 

6.82 %. The reason for this difference, which is higher than the average 

difference in peak shear strength, was considered to be because of the 

model geometry. As the lower block size was changed and this resulted 

with a mesh problem. However, the difference can still be considered as 

acceptable. 

 

Ør = 10°  
JRCo = 8  
JCSo = 100 Mpa  
σc = 150 MPa 
σn = 5 MPa 
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Effect of joint wall compressive strength (JCS) on shear strength 

The effect of JCS parameter on the normal stress response was verified in 

the normal deformation part. For the shear deformation verification, the 

same procedure was followed. Model runs were conducted with different 

values of lab scale joint wall compressive strength (JCSo) values and the 

relation between the empirical and numerical values were obtained. In the 

analyses the joint roughness coefficient was set to 8, residual friction angle 

was set to 20° and the normal stress was set to 5 MPa. Figure 4.14 shows 

the plot of empirical results vs numerical results. Figure 4.15 presents the 

graphs of numerical peak shear strength and empirical peak shear strength 

values vs lab scale joint roughness coefficient (JCSo) and Table 4.8 gives 

the corresponding data.  

 

 
Figure 4.14 Graph of peak shear strength of empiric results vs numerical 

results with different joint compressive strengths (JCSo) 
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Figure 4.15 Graph of lab scale joint wall compressive strength vs peak 

shear strength 

 

Table 4.9 Results of peak shear strength (דpeak) analyses under different 

joint wall compressive strength (JCSo) values (Ør = 20°, σc = 150 MPa, 

JRCo=8 and σn=5 MPa) 

JCSo 
(MPa) 

 peakד
(empirical)

(MPa) 

 peakד
(numerical)

(MPa) 

Difference 
(%) 

40 2.43 2.48 2.06 

50 2.51 2.55 1.59 

60 2.57 2.61 1.56 

70 2.62 2.66 1.53 

80 2.67 2.71 1.50 

90 2.71 2.75 1.48 

100 2.75 2.78 1.09 

110 2.78 2.82 1.44 

120 2.81 2.85 1.42 

130 2.84 2.87 1.06 

140 2.87 2.89 0.70 

Average 1.41 
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The shear stress-shear displacement plot of the case with JCSo = 80 MPa 

is given in Figure 4.16. Graphs of other cases are given in Appendix C. 

 

 
Figure 4.16 Graph of shear stress – shear displacement 

 

The relation between the numerical and empirical peak shear strength 

values under different lab scale joint roughness coefficients can be found 

by finding the angle of the linear plot, α in Figure 4.10. The angle of the line 

can be found using the data in Table 4.6 as; 

α= tan-1 ሺ2.89-2.48ሻ
ሺ2.87-2.43ሻ =42.98° 

 

The effect of change in joint wall compressive strength was verified with 

the numerical model with an average difference of 1.41 %. This difference 

can be considered as acceptable. This small difference can be considered 

as negligible and in the limits of numerical response of the program. Also 

Ør = 20°  
JRCo = 8  
JCSo = 80 Mpa  
σn = 5 MPa 
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the response of the program with different joint wall compressive strength 

values is consistent with the empirical results. The angle in the plot in 

Figure 4.14 is approximately 43°. 

 

Effect of residual friction angle on shear strength 

Another factor that has major effect in shear strength of discontinuities is 

the residual friction angle. The verification of the model was done with 

different residual friction angles. The joint roughness coefficient was set to 

8, joint wall compressive strength was set to 100 MPa and the normal 

stress was set to 5 MPa. Figure 4.17 shows the relation between the 

empirical and numerical values and Table 4.10 shows the corresponding 

data.  

 

 
Figure 4.17 Graph of maximum shear stress of empiric results vs numerical 

results with different discontinuity residual friction angles (Ør) 
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Figure 4.18 Graph of residual friction angle vs peak shear strength 

 

Table 4.10 Results of peak shear strength (דpeak) analyses under different 

residual friction angle (Ør) values (σc = 150 MPa, JRCo=8 and JCSo=100 

MPa) 

Ør 
(°) 

 peakד
(empirical)

(MPa) 

 peakד
(numerical)

(MPa) 

Difference 
(%) 

10 1.70 1.73 1.77 

15 2.21 2.24 1.36 

20 2.75 2.78 1.09 

25 3.35 3.38 0.90 

30 4.02 4.05 0.75 

35 4.79 4.82 0.63 

40 5.71 5.72 0.18 

Average 0.95 

 

The shear stress-shear displacement plot of the case with Ør = 25° is given 

in Figure 4.19. Graphs of other cases are given in Appendix C. 
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Figure 4.19 Graph of shear stress – shear displacement (Ør = 25°, σc = 

150 MPa, JRCo=8 and JCSo=100 MPa) 

 

The angle α in Figure .17, which shows the relation between the numerical 

and empirical peak shear strength values with different residual friction 

angles, can be found by using the data in Table 4.6 as; 

α= tan-1 ሺ5.72-1.73ሻ
ሺ5.71-1.70ሻ =44.86° 

 

The effect of change in joint wall compressive strength was verified with 

the numerical model with an average difference of 0.96 %. This difference 

can be considered as acceptable. This small difference can be considered 

as negligible and in the limits of numerical response of the program. Also 

the numerical response of the program shows consistency with the 

empirical results as the residual friction angle changes as can be seen 

from the angle of the plot in Figure 4.17. 

 

Ør = 25°  
JRCo = 8  
JCSo = 100 Mpa  
σn = 5 MPa 
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4.4.2 Dilation 

As mentioned in Section 2.3.7, mobilization of roughness causes the 

dilation angle to mobilize. Therefore the maximum angle of dilation should 

occur as the peak shear strength is reached. The verification of this 

behaviour was verified with a model with joint roughness coefficient of 12, 

joint wall compressive strength of 100 MPa, residual friction angle of 20°, a 

uniaxial compressive strength of 150 MPa and under a normal stress of 5 

MPa. Figure 4.20 illustrates the dilatational behaviour of the test. From the 

figure, it can be seen that the peak dilation angle coincides with the peak 

shear displacement.  
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Figure 4.20 Graph of shear displacement vs dilation and shear stress vs 

shear displacement (Ør = 20°, σc = 150 MPa, JRCo=12, JCSo=100 MPa 

and σn = 5 MPa) 
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From empirical relation for calculating dilation angle Eq.(2.20) was used 

and from this relation peak dilation angle can be found as; 

d୮ୣୟ୩ ൌ 1
2ൗ ൈ JRC୬୮ୣୟ୩ ൈ logଵ଴ ቀJCS

஢౤
ቁ  

By using Eq.(2.14) scale corrected joint roughness coefficient (JRCn) 

becomes; 

JRC୬ ൌ JRC୭ ൈ ቀL౤
L౥

ቁ
ି଴.଴ଶJRC౥

  

JRC୬ ൌ 12 ൈ ቀ଴.ଶ
଴.ଵ

ቁ
ି଴.଴ଶൈଵଶ

  

JRC୬ ൌ 10.2  

Similarly by using Eq.(2.13) joint wall compressive strength becomes; 

JCS୬ ൌ JCS୭ ൈ ቀL౤
L౥

ቁ
ି଴.଴ଷJRC౥

  

JCS୬ ൌ 100 ൈ ቀ଴.ଶ
଴.ଵ

ቁ
ି଴.଴ଷൈଵଶ

   

JCS୬ ൌ 77.92 MPa  

Then Eq. (2.20) becomes; 

d୮ୣୟ୩ ൌ 1
2ൗ ൈ 10.2 ൈ logଵ଴ ቀJCS

஢౤
ቁ  

d୮ୣୟ୩ ൌ 6.1°  

 From the results the difference between the results was calculated as 11.5 

%. Considering the numerical response, mesh formation and calculation of 

dilation angle from the plot, the difference can be considered as 

acceptable. The dilation vs shear displacement graphs of models with joint 

roughness coefficients of 16 is given in Appendix D. 
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4.4.3 Discontinuity shear stiffness 

It was mentioned in Section 2.3.8 that discontinuities under shear show a 

non-linear load-deformation behaviour in the pre-peak range. Hyperbolic 

functions were frequently used for expressing this behaviour empirically. In 

this section it is intended to compare the results of shear stiffness values to 

results obtained from empirical expressions. For the verification Eq.(2.27) 

was used to calculate shear stiffness empirically. Numerical results were 

calculated by drawing tangent lines to the shear stress shear displacement 

curves. The results were plotted and the differences between them were 

found. In the numerical analyses, joint roughness coefficient was set to 8, 

joint wall compressive strength was set to 100 MPa, uniaxial compressive 

strength of the rock was set to 150 MPa and the residual friction angle was 

set to 20°. The shear stiffness vs shear displacement plot is given in Figure 

4.21 and Table 4.11 gives the data of the analyses.  

 

 
Figure 4.21 Graph of shear stiffness (Ks) vs shear displacement 
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Table 4.11 Empirical and numerical results of shear stiffness (Ks) 

Shear 
displacement 

ΔU 
(mm) 

Shear 
Stiffness 

(empirical)
(MPa/m) 

Shear 
Stiffness 

(numerical)
(MPa/m) 

Difference 
% 

0.02 27078 25500 5.83 

0.04 19291 18750 2.80 

0.06 12234 13333 8.98 

0.08 7862 8625 9.71 

0.10 5160 5900 14.34 

0.12 3406 3910 14.80 

0.14 2399 2817 17.42 

0.16 1741 2063 18.50 

0.18 1264 1510 19.46 

Average 12.43 

 

 

The results show that as the shear stress is approaching to its peak value 

the error percentage increases. The possible reason for that can be stated 

as the shear stiffness values converge to zero as peak shear stress is 

approaching. And taking slopes from these points become difficult so the 

possibility of drawing errors increases. 

  

4.5 Results and Discussion 

 

From the detailed analyses carried out, it can be concluded that the 

implementation of Barton-Bandis approach in three dimensional distinct 

element code (3DEC) was successfully implemented.  
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In all direct shear test model analyses, the joint normal and shear 

displacements and discontinuity normal and shear stress values were 

calculated by a FISH function which takes the average of the values in 

each node. 

The percentage difference of the shear strength values, which were 

obtained by model runs with different discontinuity properties, were very 

low (approximately 1%) and the reason for that may be explained by the 

numerical response of the software.  

The results of the normal deformation behaviour of the discontinuity were 

very close to the empirical results. The percentage difference was 

approximately 5. As mentioned above, the values were obtained by taking 

average of the four nodes. Probably a finer mesh can give closer results to 

the empirical results, but this occasion has a deficiency of slowing down 

the analyses and limiting down the total step number that can be reached 

in an efficient way. Despite of this, the results can be considered as 

acceptable.  

The difference in verification of the normal and shear stiffness values of 

the discontinuities seemed to be increasing because of the reason that the 

results of numerical analyses were obtained by calculating slopes 

manually. The stiffness values which were close to the asymptotic values, 

drawing slopes manually gets difficult. A very small deviation can result 

with a great difference. Because of this reason, the results can be 

considered as acceptable. 
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CHAPTER 5 

 

APPLICATION OF THE PROPOSED NUMERICAL MODEL 
FOR FIELD SCALE SLOPE PROBLEMS 

 

 

5.1 Introduction  
 

In this chapter, results of the application of the proposed Barton-Bandis 

method into large scale slope models are presented, some of which are 

real case studies. First, the method was applied to a basic slope model. A 

methodology for converting Mohr-Coulomb parameters to Barton-Bandis 

parameters was developed. The basic slope model was used to check the 

reliability of that methodology. Also the effect of discontinuity surface 

properties on the shear strength of the discontinuity, which is both in 

equilibrium and sliding, were examined. Following that, some previously 

failed open pit mine slopes are verified.  

In the first part, a basic slope model with plane failure geometry was 

modelled. With this basic slope model, Mohr-Coulomb slip model and 

Barton-Bandis model was compared for the equilibrium condition. After that 

Barton-Bandis model was examined for the failure condition and the effect 

of joint roughness on the sliding behaviour was examined. 

Second part includes case studies from Orhaneli open pit lignite mine 

which belongs to Bursa Lignite Estabilishments (BLİ) and Çan Lignites 

Establishments (ÇLİ) of Turkish Coal Enterprises (TKİ) were used. In these 

studies, Karpuz et al. (2006) studied the reasons of Gümüşpınar landslide 

(A-6 panel) and Karpuz et al. (2007) studied the reasons of Dikmentepe (A-
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5 panel) landslide in the mine. The former failure was governed by two 

intersecting faults from sides and a weak contact layer from the bottom. In 

Dikmentepe landslide, a similar mechanism was also seen in the field but 

the major difference is that the side faults were not intersecting each other. 

The south border of the landslide was formed by unconformity zone that 

was formed by the neogene basin border formations.  

Karpuz et al. (2007) studied the stability of the slopes of the western panels 

in Çan open pit mine. These panels were planned to be on production in 

year 2009. Two main faults which have unfavourable dips and dip 

directions exist in the field. Minimum distance between the crest of the 

slope and the faults and the stripping plans were examined in this study. 

The material properties were obtained from back analyses studies of 

Karpuz et al.(2005). All three cases were analyzed by Barton-Bandis 

criterion and verified.  

 

5.2  Basic Slope Model 
 

A simple slope model with plane failure geometry was generated by 3DEC. 

A 70° dipping 50 m height slope was cut with a 25° dipping discontinuity 

plane as seen in Figure 5.1. The model was run with Mohr-Coulomb slip 

model and Barton-Bandis model, and the displacement on the slope crest 

(Point A) was monitored. 
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Figure 5.1 Geometry of basic slope model 

 

Table 5.1 Material and discontinuity parameters of the basic slope model 

with Mohr-Coulomb slip criterion 

Material 
Material density 

Material bulk modulus 

Material shear modulus 

Material cohesion 

Material internal friction angle 

Discontinuity 
Discontinuity normal stiffness 

Discontinuity shear stiffness 

Discontinuity friction angle 

Discontinuity cohesion  

 

2000 kg/m3 

4 GPa 

3 GPa 

5 MPa 

50° 

 

100 GPa/m 

100 GPa/m 

25° 

0 
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In order to run the model with Barton-Bandis discontinuity constitutive 

model, the relevant parameters (i.e. joint roughness coefficient, joint wall 

compressive strength and residual friction angle) should be determined. 

The residual friction angle of the discontinuity can be estimated 

approximately. In general the residual friction angles are between the 80-

100 % of the peak friction angle. For the field scale joint roughness 

coefficient determination, the chart which was illustrated in Figure 2.12 can 

be used with the corresponding equation Eq.(2.11). The joint wall 

compressive strength of the faults in the field can be found by Schmidt 

hammer rebound tests or if the weathering at the discontinuity plane is 

known, an approximation from the uniaxial compressive strength of the 

intact rock can be used.  

In a case of which the joint wall compressive strength parameter cannot be 

measured and, if the Mohr-Coulomb parameters cohesion and peak friction 

angle is known, the shear stresses from both criterions can be equated and 

the unknown parameter can be determined. For this procedure the 

maximum normal stress acting on the discontinuity plane should be 

determined because for both criterions the main parameter affecting the 

shear strength is the normal stress acting on the discontinuity plane.  The 

maximum normal stress acting on the discontinuity wall can be calculated 

from the geometry of the slope and the discontinuity plane.  

Calculation of the normal stress acting on the discontinuity plane is 

controlled by the gravitational force of the upper block.  So the weight of 

the upper block must be calculated. Following that the discontinuity face 

area should be used to calculate the normal stress acting on it. The 

sectional view of the slope geometry is given in Figure 5.2.   
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Figure 5.2 Sectional view of the basic slope geometry 

 

The weight of the upper block is calculated as; 

W=Areasection×γ×t          (5.1) 

Where; 

Areasection = Cross sectional area of upper block, 

γ =unit weight (kg/m3) 

t = thickness of the model  

 

Areasection=
b×h

2
=

ሺ18.199+89.027ሻ×50
2

=2680.65 m2 

Therefore;  

W=2680.65×2000×100=536130000 kg = 5259435300 Newtons 

Areadiscontinuity=118×100=11800 m2  

σv= W
Areadiscontinuity

=445714.86 Pa=0.45 MPa    (5.2) 
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σn=σv× cosα          (5.3) 

Therefore; 

σn=0.45× cos 25° =0.41 MPa 

After the normal stress acting on the discontinuity was determined, the 

shear stress acting on the discontinuity plane should be equal with the two 

methods; 

τൌc൅σn tan ׎ ൌσn tan ቆ׎r൅JRCൈlog10 ቀJCS
σn

ቁቇ    (5.4) 

For a cohesionless discontinuity Eq.(5.2) becomes; 

r+JRC×log10׎=׎ ቆ
JCS
σn

ቇ 

     

Where; 

Ør is accepted as the 90 % of the peak friction angle that is approximately 

22°, 

The discontinuity was assumed to be planar and the joint roughness 

coefficient was assumed to be 2.  

So turning back to Eq.(5.3) and the joint wall compressive strength for the 

discontinuity plane is found as; 

r+JRC×log10׎=׎ ቆ
JCS
σn

ቇ 

25=22+2×log10 ቆ
JCS
0.41

ቇ 

JCS=12.97 MPa 
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5.2.1 2-D verification of parameter determination 

The basic slope model was also modelled in Slide program to check the 

parameters reliability. Slide program is capable of determining safety 

factors for both Mohr-Coulomb models and Barton-Bandis models. Slide 

program is a 2D limit equilibrium slope stability program for evaluating the 

stability of circular or non-circular failure surfaces in soil or rock slopes. the 

program do not have any discontinuity or interface options so the 

discontinuity plane was generated by a thin layer with discontinuity 

properties and a non-circular failure plane was passed along it for the 

analyses of a failure along it. The safety factors for Mohr-Coulomb and 

Barton-Bandis analyses are given in Figures 5.3 and 5.4 respectively. 

 

 
Figure 5.3 2-D Limit equilibrium factor of safety analyses with Mohr-

Coulomb parameters 
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Figure 5.4 2-D Limit equilibrium factor of safety analyses with Barton-

Bandis parameters 

 

From the two dimensional safety factor analyses, it can be concluded that 

the methodology for determining Barton-Bandis joint wall compressive 

strength from existing Mohr-Coulomb parameters is accurate.  

 

5.2.2 3-D verification of parameter determination 

First the basic slope model was run with Mohr-Coulomb parameters with 

the equilibrium conditions (i.e. zero cohesion and friction angle is equal to 

discontinuity dip angle) that were verified with the two dimensional Slide 

analyses. Following that the basic slope model was run with Barton-Bandis 

model in 3DEC with the equilibrium conditions that were again verified with 

Slide analyses.  

First the model was run with elastic model properties to set the insitu 

stresses. When the vertical displacement was stabilized and the 

unbalanced force had become zero the stresses were set and the model 

was ready to plastic analyses. The model was run with previously 

mentioned material and discontinuity parameters (Table 5.1). The 
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displacements were resetted to zero before starting to plastic run. The 

shear displacement graphs of point A for the equilibrium state are given in 

Figure 5.5. 

 

 
Figure 5.5 Shear displacement of point A with Mohr-Coulomb criterion 

(c=0, Ø = 25°) 

 

From the analyses with Mohr-Coulomb slip model, it can be seen that the 

slope stays in equilibrium along the discontinuity. This result confirms the 

theory that, if the friction angle of the cohesionless discontinuity is equal to 

the discontinuity dip angle, then the block stays in equilibrium.   

Following the Mohr-Coulomb slip model analyses, the basic slope model 

was run with different Barton-Bandis model parameters to see the effect of 

discontinuity surface properties JRC and JCS on the stability of the 

discontinuity. The analyses were carried out after the elastic model run in 

M-C 
C = 0 
Ø = 25° 
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order to generate the stresses. The parameters of the Barton-Bandis 

model are given in Table 5.2. 

 

Table 5.2 Discontinuity parameters of the basic slope model for Barton-

Bandis criterion 

 

 

 

Barton-Bandis model was run after the elastic run process for the 

generation of insitu stresses. Point A was again monitored for shear 

displacement (Figure 5.6). The Barton-Bandis model was run with the large 

option that was mentioned in Section 3.3.2. For the peak shear 

displacement calculation from Eq.(2.15) the lab scale discontinuity length 

was assumed as 0.1 meters. In general, direct shear testing apparatus can 

be done to samples with lengths between 0.10 – 0.30 meters in laboratory 

or up to 0.70 meters for insitu tests (ISRM, 1974). In this section, the lab 

scale discontinuity length was assumed to be 0.1 meters and the response 

of the developed model was examined according to this assumption. 

 

 

Discontinuity  normal stiffness 

Discontinuity  shear stiffness 

Discontinuity  residual friction angle 

Joint  roughness coefficient 

Joint  wall compressive strength 

100 GPa/m 

100 GPa/m 

22° 

2 

12.97 MPa 
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Figure 5.6 Shear displacement of Point A with Barton-Bandis criterion (Ør = 

22°, JRC = 2, JCS = 12.97 MPa) 

 

The analyses showed that besides the two dimensional limit equilibrium 

analyses; three dimensional distinct element code 3DEC also verifies the 

Barton-Bandis criterion parameter determination from existing Mohr-

Coulomb parameters and for the equilibrium condition the model was 

verified with the basic slope model. The discontinuity with approximately 

100 meters in length would have approximately 0.55 meters peak shear 

displacement from Eq.(2.15). The analyses showed that the block slips 

until the discontinuity’s roughness gets its peak value at the peak shear 

displacement and then remains stable. Therefore the mobilization of 

roughness behaviour and the peak shear strength criterion was also 

verified with this example.  

 

 

 

B-B 
Ør = 22° 
JRC = 2 
JCS = 12.97 MPa 
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5.3 Effect of discontinuity surface properties on slope stability 

The joint roughness coefficient (JRC) and joint wall compressive strength 

(JCS) has significant effect on the shear behaviour of discontinuities. In a 

discontinuous slope, the residual friction angle of the discontinuity may be 

much smaller than the discontinuity dip angle. However, if the discontinuity 

surface is very rough, then this drawback may be tolerated by the 

roughness. Similarly, joint wall strength also affects the stability of such a 

case. Basic slope model was used to test different discontinuity parameters 

to verify the effect of them on stability of the slope.  

First the effect of joint roughness was examined. For 25° discontinuity dip 

angle, the discontinuity properties for the equilibrium state were previously 

found as; 

Ør = 22° 

JRC = 2 

JCS = 12.97 MPa 

A rock discontinuity may have a low residual friction angle but may also 

have a rough and undulating surface. In such a case, the discontinuity may 

still be stable. Following analyses shows the results of a discontinuity with 

the following properties; 

Ør = 17° 

JRC = 8 

JCS = 12.97 MPa 

Another property that represents the discontinuity surface is the joint wall 

compressive strength (JCS). A similar occasion with the previous case that 

a discontinuity with higher joint wall compressive strength with less joint 

roughness coefficient as;  

Ør = 17° 

JRC = 5 

JCS = 80 MPa 
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Shear displacement plot of Point A (Figure 5.7) for both conditions verifies 

that the block is still in equilibrium. 

 

 
Figure 5.7 Shear displacement of Point A with Barton-Bandis criterion  

 

From the analyses above, it can be concluded that discontinuity surface 

properties had significant effect on the shear behaviour of a rock 

discontinuity. Besides the direct shear test model that was mentioned in 

Chapter 4, this behaviour was also verified by the field scale basic slope 

model. Also the mobilization of roughness until the peak shear 

displacement concept was also verified again with these analyses. 

 

5.4 Example for large scale slope deformation behaviour – Sliding 
block 

 
In this section, large scale deformation behaviour of the sliding block in the 

basic slope model is presented. Different joint roughness coefficient values 

were analyzed with the basic slope model by monitoring the displacement 

amounts under specific time step of the program.  
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For the sensitivity analyses of the joint roughness coefficient parameter, a 

discontinuity with specific residual friction angle and joint wall compressive 

strength values was selected and the difference of the shear displacement 

amounts in the basic slope model were analyzed. The residual friction 

angle was selected as 13° in order to force the block to slide. The joint wall 

compressive strength was selected as 100 MPa. The joint roughness 

coefficient was changed between 2 and 6 and the shear displacement of 

the sliding block was recorded every time. Figure 5.8 represents the shear 

displacement amounts of the sliding block with different joint roughness 

coefficients.  

 

 
Figure 5.8 Shear displacement of the sliding block under different joint 

roughness coefficients 

 

From the plot it can be seen that joint roughness coefficient has significant 

effect on the discontinuity when it starts to slip. As mentioned in Chapter 2, 

the joint roughness coefficient is a mobilized parameter. It gets its peak 

value at the peak shear displacement. The discontinuity length is 
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approximately 100 meters and from Eq.(2.15) the peak shear displacement 

of the block can be calculated. For JRC = 6 the peak shear displacement 

becomes approximately 0.77 meters (assuming the lab scale discontinuity 

length is 0.1 meters) and the block becomes stable just before it reaches 

the peak shear displacement value.  

It is also clear that, as the peak shear displacement is passed, the 

displacement increases continuously as the joint roughness is mobilized 

and shear strength decreases continuously.   

 

5.5 Orhaneli Gümüşpınar (A-6 panel) Slope Failure 
 
Orhaneli open pit lignite mine is located in Orhaneli district of Bursa, which 

is approximately 65 km from city centre (Figure 5.9). Gümüşpınar Village is 

approximately 22 km from Orhaneli district.  
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Figure 5.9 Location and geological map of Orhaneli district (Karpuz et 

al.(2006)  

(1. Jurassic cretaceous aged limestone, 2. Gümüşpınar miocene basin 
stowage, 3. Quaternary alluvium, 4. Normal fault) 
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In year 2004, the slope of A-6 panel of Orhaneli open pit lignite mine had 

failed. Operating with high slope angles in the fault zones had caused this 

failure. The failure mechanism was governed by two intersecting faults 

Fault 11 (F11) and Fault 12 (F12) (Figure 5.10). Besides these faults which 

determine the lateral borders of the slump, weak contact layer right above 

the lignite seam had caused the slump to slide along it. The weak contact 

layer thickness was 2-4 meters with a very low friction angle. So in 

numerical analyses this zone was simulated as a discontinuity. The 

lithological section of the Orhaneli miocene basin is given in Figure 5.11. 

The two dimensional section view of the landslide is illustrated in Figure 

5.12. As it can be seen from cross section (S-S') in Figure 5.12, water table 

level was assigned to the model approximately 10 meters below from the 

surface. 

 

 
Figure 5.10 Orhaneli A-6 panel slope failure 
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Figure 5.11 Lithological section of Orhaneli miocene basin 

 

 
Figure 5.12 Cross section (S-S') of the A-6 panel landslide 

 

Karpuz et al. (2006) studied the reasons of the landslide, progressive 

mechanism and the material and discontinuity properties in order to use for 

design purposes in the field.  As the failure was governed by discontinuities 

the numerical studies had been done by 3DEC in order to obtain large 
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displacements along the discontinuities in the back analyses as observed 

in the field.  

The parameter determination for rock mass and discontinuities were done 

in 3DEC by back analyses of the failure. The corresponding model 

geometry is given in Figure 5.13.  

 

 
Figure 5.13 Gümüşpınar 3DEC model geometry 

 

In the field studies, extend of the failure was examined. At the point of 

intersection of F11 and F12 faults a vertical displacement of approximately 

5 m was observed. Horizontal displacements of the slope toe had reached 

to 30 meters. Different displacement monitoring points were determined in 

order to compare the behaviour of the model with the field results. The 

displacement monitoring points and the location of the cross section S-S' 

are given in Figure 5.14. 
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Figure 5.14 Gümüşpınar model displacement monitoring points 

 

The result of studies concluded the input parameters for the material and 

discontinuity properties of the Mohr-Coulomb model. The parameters for 

rock mass and discontinuities are given in Table 5.3 and Table 5.4 

respectively. The corresponding horizontal and vertical displacement 

graphs are given in Figure 5.15 and Figure 5.16 respectively. 

 

Table 5.3 Material properties of Gümüşpınar landslide obtained from back 

analyses 

Property Overburden Lignite Footwall 

Density 

Young’s modulus 

Poisson’s’ ratio 

Cohesion  

Internal friction angle 

1667 kg/m3 

50 MPa 

0,2 

55 kPa 

26° 

1500 kg/m3 

500 MPa 

0,2 

500 kPa 

25° 

2000 kg/m3 

20 GPa 

0,2 

5MPa 

35° 
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Table 5.4 Discontinuity properties of Gümüşpınar landslide obtained from 

back analyses 

Property F11 F12 Weak 
contact layer

Length 

Normal stiffness 

Shear stiffness 

Cohesion 

Friction angle 

1500 m 

160 MPa/m 

160 MPa/m 

5 kPa 

20° 

1000 m 

160 MPa/m 

160 MPa/m 

5 kPa 

20° 

1055 m 

400 MPa/m 

400 MPa/m 

5 kPa 

11° 

 

 

 
Figure 5.15 Horizontal displacement plots of monitoring points with Mohr-

Coulomb model 
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Figure 5.16 Vertical displacement plots of monitoring points with Mohr-

Coulomb model 

 

After generating the field conditions in the model, the model was run with 

Barton-Bandis criterion. The critical part for this analysis is the 

determination of the discontinuity parameters. From the field studies the 

asperity amplitudes were obtained and the joint roughness coefficients 

were determined by using Eq. (2.11).  

From the field studies, the amplitude of the asperity (caused by undulation) 

for fault F11 was found to be at most 6,6 meters and F12 was found to be 

at most 4,4 meters. From the Eq.(2.11) the joint roughness parameters can 

be found as; 

 

JRCFଵଵ ൌ ଺଺଴଴
ሺଵହ଴଴ൈଶሻ

ൌ 2,2    

JRCFଵଶ ൌ ସସ଴଴
ሺଵ଴଴଴ൈଶሻ

ൌ 2,2  
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The joint roughness coefficient of the weak contact layer was assumed to 

be a lower value because of the stratification of the formations and it is not 

expected to have undulations. Thus the joint roughness coefficient for the 

weak contact layer was assumed to be 1.5.  

The residual friction angle was assumed to be 90 % of the peak value. And 

the joint wall compressive strength value was back calculated as it was 

done in the basic slope model. For the back calculation of the joint wall 

compressive strength, the maximum normal stress acting on the 

discontinuity was calculated for the slope geometry that is shown in Figure 

5.17 the maximum overburden depth in the Gümüşpınar landslide 

geometry was 150 meters.  

 

 
Figure 5.17 Gümüşpınar landslide cross sectional model geometry 

 

The maximum normal stress acting on the weak contact layer was 

calculated from Eq. (5.2) as; 

 

σnmax=
150×1667×9,81

106 =2,45 MPa 
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 Then by using the JRC parameter, residual friction angle and the average 

normal stress acting on the discontinuity plane, the shear stresses with 

Mohr-Coulomb and Barton-Bandis criterion were equated and the joint wall 

compressive strength was calculated. 

After the normal stress acting on the discontinuity was determined, the 

shear stress on the discontinuity should be equal with the two methods. 

Therefore Eq.(5.4) becomes; 

0.005+2.45× tan 11 =2.45× tan ቆ׎r+JRC× log10 ቆ
JCS
σn

ቇቇ 

Where; 

JRCweak contact layer= 1.5 MPa, 

Ør = 10° 

So the relation becomes; 

0.48=2.45× tan ቆ10+1.5× log10 ቆ
JCS
2.45

ቇቇ 

Then JCSweak contact layer becomes; 

JCSweak contact layer = 12.95 MPa 

 

The normal stress calculation for a fault line which outcrops at surface is 

different than the horizontal lying bedding plane. The vertical stress affects 

the fault plane with the cosine of the dipping angle as previously shown in 

Figure 5.2.   

The normal stress acting on the F11 and F12 faults were calculated with 

this manner. The faults were dipping with 85° and 70° respectively. The 

maximum height of the overburden was 150 meters. So the maximum 

normal stresses acting on the F11 and F12 faults were calculated from 

Eq.(5.3) as; 
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σnmaxF11=
150×1667×9,81

106 × cos 85° =0.21 MPa 

  

σnmaxF12=
150×1667×9,81

106 × cos 70° =0.84 MPa 

 

Therefore by using Eq.(5.4) JCS for F11 fault becomes; 

0.005+0.21× tan 20 =0.21× tan ቆ׎r+JRC× log10 ቆ
JCS
σn

ቇቇ 

0.081=0.21× tan ቆ18+2.2× log10 ቆ
JCS
0.21

ቇቇ 

JCSF11 = 5.95 MPa 

 

And JCS for F12 fault becomes;  

0.005+0.84× tan 20 =0.84× tan ቆ׎r+JRC× log10 ቆ
JCS
σn

ቇቇ 

0.311=0.84× tan ቆ18+2.2× log10 ቆ
JCS
0.84

ቇቇ 

JCSF12 = 9.49 MPa 

 

The uniaxial compressive strength values were taken as equal to the joint 

wall compressive strength values. The final Barton-Bandis discontinuity 

properties are given in Table 5.5. The shear stiffness exponent, nj, was 

selected as 0.9 with reference to Figure 2.20, considering the 

discontinuities were weathered. 
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Table 5.5 Barton-Bandis discontinuity geotechnical properties of the 

Gümüşpınar landslide 

Property 
F11 
fault 

F12 
fault 

Weak 
contact 

layer 

Length 

Initial normal stiffness 

Shear stiffness number 

Stiffness exponent (nj) 

JRC 

JCS 

Residual friction angle 

1500 m 

160 MPa/m 

160 MPa/m 

0.9 

2,2 

5.95 

18° 

1000 m 

160 MPa/m 

160 MPa/m 

0.9 

2,2 

9.49 

18° 

1055 m 

400 MPa/m 

400 MPa/m 

0.9 

1,5 

12.95 

10° 

 

The horizontal and vertical displacement amounts are given in Figure 5.18 

and Figure 5.19. 

 

 
Figure 5.18 Horizontal displacement plots of monitoring points with Barton-

Bandis model 
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Figure 5.19 Vertical displacement plots of monitoring points with Barton-

Bandis model 

 

The failure mechanism of Gümüşpınar landslide was in the form of rotating 

of the failed volume by slipping along the weak contact layer and breaking 

into slices.  

From the analyses, it can be concluded that the displacement amounts of 

Barton-Bandis model is higher than the Mohr-Coulomb’s. The horizontal 

extend of the slope was approximately 1100 meters. The horizontal 

displacement was found to be approximately 3.3 % from Mohr-Coulomb 

model and 3.9 % from Barton-Bandis model with respect to the total length 

of the slope. The reason can be stated as the shear strengths of the 

discontinuities were reduced as the shear failure occurs. Therefore higher 

amounts in displacements had been expected. Besides the slip along the 

discontinuities, the weak rock material also fails so the displacement 

amounts had become that much.  
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5.6 Orhaneli Dikmentepe (A-5 panel) Slope Failure 

 

In year 2006, A-5 panel slopes of the Orhaneli open pit lignite mine had 

failed along the neogene contact of the coal basin which extends over 600 

m along the slope crest. The lateral extends of the mobilized slump was 

limited by two main faults of the area, which were Bayırpınar fault from the 

west and D1 fault from the east as seen in Figure 5.20. 
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Figure 5.20 Geological map of Orhaneli coal basin (Karpuz et al.,2007) 

(1. Jurassic cretaceous aged limestone, 2. Late cretaceous offiolite, 3. 

Miocene basin stowage, 4. Reverse fault, 5. Normal fault, 6. Strike 

slip fault with normal component, 7. Strike slip fault, 8. Dikmentepe 

slump slip surfaces, 9. Bedding dip, 10. Slip vectors measurement 

stations, 11. Dikmentepe slump) 
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The simple cross sectional (T-T') model geometry of Dikmentepe landslide 

is given in Figure 5.21. As seen from Figure 5.21 the water table was 

assigned to the model approximately 10 meters below from the surface. 

The 3DEC model geometry is given in Figure 5.22. 

 

 
Figure 5.21 Cross section of the Dikmentepe (A-5 panel) landslide (T-T') 

 

 
Figure 5.22 Dikmentepe 3DEC model geometry 



121 

 

In the field, the displacements were observed at the outcrop neogene 

contact of the landslide was approximately 15 meters and at the toe of the 

slope 10 meters. Different displacement monitoring points were determined 

in order to compare the behaviour of the model with the field results. The 

displacement monitoring points are given in Figure 5.23. 

 

 
Figure5.23 Dikmentepe displacement monitoring points (Top view) 

 

The studies about the back analyses concluded the input parameters for 

the material and discontinuity properties of the Mohr-Coulomb model. The 

parameters for rock mass for the Orhaneli open pit mine were given in 

Table 5.3 previously and discontinuities are given in Table 5.6. The 
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corresponding horizontal and vertical displacement graphs are given in 

Figure 5.24 and Figure 5.25 respectively. 

 

Table 5.6 Discontinuity properties of Dikmentepe landslide obtained from 

back analyses 

Property D1 fault 
Bayırpınar 

fault 
Weak 

contact layer

Length 

Normal stiffness 

Shear stiffness 

Cohesion 

Friction angle 

820 m 

160 MPa/m 

160 MPa/m 

5 kPa 

20° 

880 m 

160 MPa/m 

160 MPa/m 

5 kPa 

20° 

1150 m 

400 MPa/m 

400 MPa/m 

5 kPa 

11° 

 

 

 
Figure 5.24 Horizontal displacement plots of monitoring points with Mohr-

Coulomb model 
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Figure 5.25 Vertical displacement plots of monitoring points with Mohr-

Coulomb model 

 

For the Barton-Bandis parameter determination, first the joint roughness 

coefficients were calculated from the field measurements of the asperity 

amplitudes. Similar to the previous case, the joint roughness coefficient 

was assumed to be 1.5 for the weak contact layer and the neogene contact 

and the residual friction angle is 10°. And joint roughness coefficient for the 

Bayırpınar fault and the D1 fault was calculated from Eq. (2.11). The field 

measurements of asperity (undulation) amplitudes for the faults were 

resulted with maximum 3.5 meters. The faults were approximately 850 

meters in length. So the joint roughness coefficients were found as; 

JRCfaults=
3500

(850×2)
؆2 

   

The maximum normal stress acting on the weak contact layer is calculated 

by using the cross sectional view of the model as given in Figure 5.26.  
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Figure 5.26 Simplified cross sectional model geometry of Dikmentepe 

model 

 

From Figure 5.26, it can be seen that the maximum depth on the 

discontinuity plane is 120 meters. So the maximum normal stress acting on 

the weak contact layer was found from Eq.(5.2) as; 

 

σnmax=
120×1667×9,81

106 =1,96 MPa 

 

After determining the joint roughness coefficients and normal stress acting 

on the discontinuity plane, joint wall compressive strength values were 

found by substituting the determined parameters in Eq.(5.4) as; 

0.005+1.96× tan 11 =1.96× tan ቆ10+1.5× log10 ቆ
JCS
1.96

ቇቇ 

Then; 

JCSweak contact layer = 11.3 MPa, 
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The normal stress acting on the D1 and Bayırpınar faults were calculated 

in this manner. The faults were dipping with 80°. The maximum height of 

the overburden was 120 meters. So the maximum normal stresses acting 

on the D1 and Bayırpınar faults were calculated from Eq.(5.3) as; 

 

σnmaxfaults=
120×1667×9,81

106 × cos 80 =0.34 MPa 

  

After determining the maximum normal stress acting on the fault planes, 

the joint wall compressive strength of the faults were calculated from 

Eq.(5.4) as; 

0.005+0.34× tan 20 =0.34× tan ቆ18+2× log10 ቆ
JCS
0.34

ቇቇ 

Then; 

JCSfaults = 7.98 MPa 

 

The uniaxial compressive strength values were taken as equal to the joint 

wall compressive strength values. The final Barton-Bandis discontinuity 

properties are given in Table 5.7. 
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Table 5.7 Barton-Bandis discontinuity properties of the Dikmentepe 

landslide 

Property 
D1 

fault 
Bayırpınar 

fault 
Weak 

contact 
layer 

Initial normal stiffness 

Shear stiffness number 

Stiffness exponent (nj) 

JRC 

JCS 

Residual friction angle 

160 MPa/m 

160 MPa/m 

0.9 

2 

7.98 

18° 

160 MPa/m 

160 MPa/m 

0.9 

2 

7.98 

18° 

400 MPa/m

400 MPa/m

0.9 

1,5 

11.3 

10° 

 

The horizontal and vertical displacement amounts are given in Figure 5.27 

and Figure 5.28. 

 

 
Figure 5.27 Horizontal displacement plots of monitoring points with Barton-

Bandis model 
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Figure 5.28 Horizontal displacement plots of monitoring points with Barton-

Bandis model 

 

Similar to the Gümüşpınar landslide, the displacement amounts with 

Barton-Bandis model were higher than those of Mohr-Coulomb model. The 

horizontal extend of the slope was approximately 1150 meters. The 

horizontal displacement was found to be approximately 3 % from Mohr-

Coulomb model and 5.2 % from Barton-Bandis model with respect to the 

total length of the slope. The difference in the failure mechanism from the 

previous model was that the dip direction and the dip amount of the weak 

contact layer were in an unfavourable position which was forcing to slide. 

Because of this reason, the differences between the two models become 

higher. However, the result can be considered as acceptable. 
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5.7 Çan Open Pit Mine Western Panel Slopes 

Çan open pit lignite mine is located in Çan district of Çanakkale, which is 

approximately 55 km from city centre (Figure 5.29).  

 

 
Figure 5.29 Location map of Çan district 

 

In the future development plans of the mine management; a need for 

detailed stability analyses was arised. In some panels the total depth 

exceeds 200 meters. In the development stage of the western panels, 

some critical faults were examined in the field by geophysical studies of 

Karpuz et al. (2006). Because of this reason a stability analyses with 

respect to discontinuities (besides rock mass) was needed. A similar slope 

stability study was also carried out by Paşamehmetoğlu et al. (1991) at the 

other panels of the Çan lignite mine. 

The western panel is located just besides the basin border. A basin border 

fault and another fault (F5), which was intersecting it perpendicularly was 

dipping in an unfavourable position (forcing failure). Besides these, a 

N 
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similar formation with the Orhaneli coal basin, a weak contact layer was 

lying beneath the lignite seam. The critical distance of slope crest to the 

outcrop of F5 fault was wound with SLIDE program and then the details of 

that critical position was analyzed (i.e. the amounts of total deformation) 

with 3DEC. The lithological section of Çan coal miocene basin is given in 

Figure 5.30. The cross sectional model geometry and factor of safety of the 

western panel slope is given in Figure 5.31. The 3DEC model geometry is 

given in Figure 5.32. The top view of the model which also shows 

displacement monitoring points is given in Figure 5.33. As shown from 

Figure 5.30 the water table was assigned to the model approximately 15 

meters below from the surface. 

 

 
Figure 5.30 Lithological section of Çan miocene basin  

 

 



130 

 

 
Figure 5.31 Cross section of Çan western panel slopes (U-U') 

 

 
Figure 5.32 Çan western panel slopes 3DEC model 

 



131 

 

 
Figure 5.33 Çan western panel slopes model with displacement monitoring 

points (top view) 

 

The Mohr-Coulomb material and discontinuity properties were determined 

by Karpuz et al. (2006) by back analyses, which were obtained from 

previously failed Çan-5 panel, are given in Table 5.8 and Table 5.9 

respectively. The corresponding horizontal and vertical displacement 

graphs are given in Figure 5.34 and Figure 5.35 respectively. 
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Table 5.8 Material properties of Çan open pit coal basin from back 

analyses 

Property Overburden Lignite Footwall 

Density 

Young’s modulus 

Poisson’s ratio 

Cohesion 

Internal friction angle 

1661 kg/m3 

100 MPa 

0,2 

16 kPa 

20° 

1500 kg/m3 

500 MPa 

0,2 

500 kPa 

25° 

2000 kg/m3 

25 GPa 

0,2 

5 MPa 

35° 

 

 

Table 5.9 Discontinuity properties of Çan open pit coal basin from back 

analyses 

Property F5 
Basin border 

fault 
Weak 

contact layer

Length 

Normal stiffness 

Shear stiffness 

Cohesion 

Friction angle 

250 m 

160 MPa/m 

160 MPa/m 

5 kPa 

20° 

840 m 

160 MPa/m 

160 MPa/m 

5 kPa 

20° 

700 m 

400 MPa/m 

400 MPa/m 

9.87 kPa 

8° 
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Figure 5.34 Horizontal displacement plots of monitoring points with Mohr-

Coulomb model 

 

 
Figure 5.35 Vertical displacement plots of monitoring points with Mohr-

Coulomb model 
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From the field studies, the amplitude of the asperity (caused by undulation) 

for fault F5 was found to be at most 6 meters and basin border fault was 

found to be at most 4.6 meters. From the Eq.(2.11) the joint roughness 

parameters can be found as; 

JRCF5=
6000

(1500×2)
=2 

   

JRCbasin border=
4600

(1000×2)
=2.3 

 

Similar to the previous cases, the joint roughness coefficient of the weak 

contact layer was assumed to be a lower value because of the stratification 

of the formations. Thus the joint roughness coefficient for the weak contact 

layer was assumed to be 1.5.  

The residual friction angle was assumed to be 90 % of the peak value as 

18° for the faults and 7° for the weak contact layer. And the joint wall 

compressive strength value was back calculated as it was done in the 

previous cases. For the back calculation of the joint wall compressive 

strength, the maximum normal stress acting on the discontinuity was 

calculated for the slope geometry that is shown in Figure 5.36 the 

maximum overburden depth in the Çan western panels geometry was 200 

meters. 
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Figure 5.36 Simplified cross sectional model geometry of Çan western 

panel slope 

 

The maximum normal stress acting on the weak contact layer was 

calculated from Eq. (5.2) as; 

 

σnmax=
200×1661×9.81

106 =3.26 MPa 

   

Then by using the JRC parameter, residual friction angle and the average 

normal stress acting on the discontinuity plane with respect to the Mohr-

Coulomb parameters which were listed in Table 5.9, similar to the previous 

cases, by equating the shear stresses with Mohr-Coulomb and Barton-

Bandis criterion the analyses for determining the joint wall compressive 

strength were carried out. 

After the normal stress acting on the discontinuity was determined, the 

shear stress on the discontinuity should be equal with the two methods. 

Therefore Eq.(5.4) becomes; 
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0.00987+3.26× tan 8 =3.26× tan ቆ׎r+JRC× log10 ቆ
JCS
σn

ቇቇ 

Where; 

JRCweak contact layer = 1.5 MPa, 

Ør = 7° 

So the relation becomes; 

0.47=3.26× tan ቆ7+1.5× log10 ቆ
JCS
3.26

ቇቇ 

Then JCSweak contact layer becomes; 

JCSweak contact layer = 20.69 MPa 

 

F5 and basin border faults were dipping with 60° and 80° respectively. The 

maximum height of the overburden was 200 meters. So the maximum 

normal stresses acting on the F5 and basin border faults were calculated 

from Eq.(5.3) as; 

 

σnmaxF5=
200×1661×9,81

106 × cos 60° =1.63 MPa 

 

σnmaxbasinborderfault=
200×1661×9,81

106 × cos 80° =0.57 MPa 

Therefore by using Eq.(5.4), JCS of F5 fault becomes; 

0.005+1.63× tan 20 =1.63× tan ቆ׎r+JRC× log10 ቆ
JCS
σn

ቇቇ 

0.60=1.63× tan ቆ18+2× log10 ቆ
JCS
0.21

ቇቇ 
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JCSF5 = 2.67 MPa 

JCS for basin border fault;  

0.005+0.57× tan 20 =0.57× tan ቆ׎r+JRC× log10 ቆ
JCS
σn

ቇቇ 

0.21=0.57× tan ቆ18+2.3× log10 ቆ
JCS
0.84

ቇቇ 

JCSbasin border = 7.79 MPa 

The uniaxial compressive strength values were taken as equal to the joint 

wall compressive strength. The final Barton-Bandis discontinuity properties 

are given in Table 5.10. 

 

Table 5.10 Barton-Bandis discontinuity properties of the Çan western panel 

slopes 

Property 
F5 

fault 

Basin border 
fault 

Weak 
contact 

layer 

Initial normal stiffness 

Shear stiffness number 

Stiffness exponent (nj) 

JRC 

JCS 

Residual friction angle 

160 MPa/m 

160 MPa/m 

0.9 

2 

2.67 

18° 

160 MPa/m 

160 MPa/m 

0.9 

2,3 

7.79 

18° 

400 MPa/m

400 MPa/m

0.9 

1,5 

20.69 

7° 

 

The horizontal and vertical displacement amounts are given in Figure 5.37 

and Figure 5.38. 
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Figure 5.37 Horizontal displacement plots of Çan open pit mine western 

panel slope monitoring points with Barton-Bandis model 

 

 

Figure 5.38 Vertical displacement plots of Çan open pit mine western panel 

slope monitoring points with Barton-Bandis model 
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From the analyses carried out for Çan open pit mine western panel slopes, 

it can be seen that the amounts of displacements with two methods are 

close to each other. The horizontal extend of the slope was approximately 

840 meters. The horizontal displacement of the slope was approximately 

3.5 % with Mohr-Coulomb model and 3.9 % with the Barton-Bandis model 

with respect to total length of the slope. The result can be considered as 

acceptable. 

 

5.8  Results and Discussion 

 
Besides the lab scale test model, it was intended to verify the discontinuity 

behaviour with large scale slope models.  

Barton-Bandis constitutive model presents the mobilization of joint 

roughness coefficient before and after the peak shear displacement. The 

roughness reaches its peak value at the peak shear displacement. From 

the basic slope model, this behaviour was verified for equilibrium condition. 

Before reaching its peak shear displacement value, the block had 

significantly higher shear displacement than Mohr-Coulomb model and 

then remains stable with the same shear strength.  

For the slipping condition of the block, the effect of joint roughness 

coefficient was also verified. As the joint roughness coefficient increases, 

the amount of shear displacement occurred within a fixed time step 

decreases.  

The model was then used for real case large scale slope problems. The 

open pit lignite mines of Bursa Lignite Establishments (BLİ) and Çan 

Lignite Establishments (ÇLİ). The cases were run with previously 

determined Mohr-Coulomb discontinuity and rock mass properties by 

Karpuz et al. (2006) and Karpuz et al. (2007). The parameters were 

determined from back analyses in all three cases. After that the Barton-

Bandis shear parameters were determined. The joint roughness 
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coefficients were determined from the field measurements of the 

undulations of the discontinuities. After that the maximum normal stress 

acting on the discontinuity plane was calculated and the joint wall 

compressive strength values that would equate the shear strengths to the 

ones obtained from Mohr-Coulomb parameters. From the results, it can be 

concluded that the models with Barton-Bandis parameters resulted with 

more deformation with respect to Mohr-Coulomb models. The average 

maximum horizontal displacement value of Mohr-Coulomb model was 3.27 

% when considering the total length of the slopes of the three cases. 

However, the Barton-Bandis model had resulted with an average of 4.33 % 

horizontal displacements of these cases. The reason for this can be stated 

as the mobilization of the joint roughness coefficient after the peak shear 

displacement has reached. The shear strengths of the discontinuities were 

continuously decreasing as the shear displacement increases. Besides the 

reduction of the shear strength, all three cases had weak rock masses. The 

failure mechanisms did not governed only by the discontinuities. The failure 

mechanisms of the three cases were the combination of discontinuity 

failure and rock mass failure following that. As the slipping along the 

discontinuities had occurred, rock masses were failed because of the 

rotational movement of the body.  
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

Main conclusions derived from this study and recommendations are 

outlined below; 

 

1. A methodology has been developed based on Barton-Bandis shear 

strength failure criterion in the three dimensional distinct element code 

3DEC. A code in C++ was written for calculation steps of discontinuity 

surfaces of three dimensional models. 

 

2. The developed model better represents the discontinuity failure, 

since it considers discontinuity geometrical properties as well as non-

linear nature of loading towards failure along discontinuities. 

 

3. A numerically developed mechanical model for direct shear testing 

was used to verify the behaviour of the discontinuity under normal and 

shear stresses. The results obtained from numerically developed direct 

shear test model were found to be within acceptable limits and therefore 

the reliability of the developed model was verified. 

 
4. The developed model was also verified by modelling three actual 

discontinuity originated slope failures from different open pit lignite mine 

sites of TKİ. 

 
5. From the case study analyses, the Mohr-Coulomb failure model 

resulted with an average displacement of 3.27 % when the total length of 
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slope was considered, while the developed Barton-Bandis failure model 

resulted with an average displacement of 4.33 %. This behaviour can be 

explained with the mobilization of discontinuity roughness as the shear 

displacement along the discontinuity increases, since the shear strength 

of the discontinuity decreases. 

 

6. The developed model also includes an option for using joint 

roughness coefficient and joint wall compressive strength values either 

with the scale correction relations or with large scale field values. 

 
7. The model should also be verified by a case which it’s Mohr-

Coulomb and Barton-Bandis parameters are determined separately.  

 
8. The model should also be verified for hard rock discontinuous rock 

slope. 
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APPENDIX A 

STRUCTURE OF THE PROGRAM 

 
The partial definition of the constitutive model, model constructor and 

execution part of the code is given in Table A.1-A11. 

 

Table A.1 Partial class definition for base class, ConstitutiveModel 
class JmodelBartonBandis : public JointModel { 
public: 
      JmodelBartonBandis(); 
      virtual String getName() const; 
      virtual String getFullName() const; 
      virtual UInt getMinorVersion() const; 
      virtual String getProperties() const; 
      virtual String getStates() const; 
      virtual Variant getProperty(UInt index) const; 
      virtual void setProperty(UInt index,const Variant &p); 
      virtual JModelBartonBandis *clone() const { return new 
JModelBartonBandis(); } 
      virtual Double getMaxNormalStiffness() const { return kn_; } 
      virtual Double getMaxShearStiffness() const { return ks_; } 
      virtual void copy(const JointModel *mod); 
      virtual void run(UByte dim,State *s); 
      virtual void initialize(UByte dim,State *s); 
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Table A.2 Model constructor 
JModelBartonBandis::JModelBartonBandis() :     
    kn_(0), 
    ks_(0), 
    friction_(0), 
    dilation_(0), 
    tension_(0), 
    zero_dilation_(0), 
    jcso_(0), 
    jrco_(0), 
    sigmac_(0), 
    nj_(0), 
    lo_(0), 
    ln_(0), 
    res_friction_(0), 
    res_dilation_(0),     
    res_tension_(0), 
    tan_friction_(0), 
    tan_dilation_(0), 
    tan_res_friction_(0), 
    tan_res_dilation_(0), 
    large_(0), 
  { 
  } 
 

 

Table A.3 Summary of members of structure State 

Double area_;              

Double normal_force_;      

DVect3 shear_force_;       

Double normal_disp_;       

DVect3 shear_disp_;        

Double normal_disp_inc_;   

DVect3 shear_disp_inc_;    

Double normal_force_inc_; 

DVect3 shear_force_inc_;   

Double dnop_;              

Contact area 

Contact normal force 

Contact shear force 

Normal displacement 

Shear displacement 

Normal displacement increment 

Shear displacement increment 

Normal force increment 

Shear force increment 

Fraction of normal displacement increment that 

causes contact tension or separation 
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Table A.4 Scale correction step 
Double exp1 = -0.02 * jrco_; 
Double exp2 = -0.03 * jrco_; 
Double ratio1 = ln_ / lo_ ; 
 
Double jrcn; 
Double jcsn; 
  
 bool large_ = false;      
 
  if (large_)           
  {     
   jrcn = jrco_;     
   jcsn = jcso_; 
  } 
  else  
  {     
    
   jrcn = jrco_ * pow(ratio1,exp1);     
   jcsn = jcso_ * pow(ratio1,exp2); 
  } 

  

 

 

Table A.5 Normal stiffness calculation step 

// Normal stiffness 
          // Maximum allowable closure 
 Double ar = 0.2 * sigmac_ / jcso_; 
 Double ic = ar - 0.1; 
 Double aj = (jrco_/5) * ic; 
 Double vic = jcso_ / aj; 
 Double po = pow (vic,-0.245); 
 Double vm = -0.296 - (0.0056 * jrco_) + (2.241 * po); 
  
           //Normal stiffness equation for loading 
 Double frac = - (s->normal_disp_ *1000) / vm; 
 Double brac = 1 - frac; 
 Double power = pow (brac,2); 
 Double kna = kn_ / power;           
            Double kni = kna * s->area_; 
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Table A.6 Calculation steps for shear stiffness of the joint 

           Double ratio2 = jrcn / lo_ ; 
           Double peakdisp = (ln_ / 500) * pow(ratio2,0.33); 
 
 Double sheardisp = s->shear_disp_.mag(); 
 Double dispratio = sheardisp / peakdisp ; 
 
 //shear stiffness conditions 
 Double ini = 0.75 * res_friction_; 
 Double tani = tan (ini * dDegRad); 
 Double div = tani / (0.2 * peakdisp); 
   
 //peak shear strength calculation 
            Double loga = log10 (jcsn / (s->normal_force_ / s->area_)); 
 Double tanici = res_friction_ + jrcn * loga; 
 Double tanp = tan (tanici * dDegRad); 
 Double fsmax = (s->normal_force_ / s->area_) * tanp; 
 
 //current shear stress and shear strength ratio 
            Double fsm = s->shear_force_.mag() / s->area_; 
 Double rat = fsm / fsmax; 
 
 Double pran = pow(rat,2); 
 Double parant = 1 - rat; 
 Double povv = pow(parant,2); 
 Double normal = s->normal_force_ / s->area_; 
 Double normalpov = pow(normal,nj_); 
 
 //shear stiffness  
 Double ksi; 
 if (dispratio <= 0.002) 
  ksi = normal * div * ln_ * s->area_; 
 else 
  ksi = ks_ * normalpov * povv * s->area_; 
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Table A.7 Calculation steps for mobilization of roughness coefficient during 
shear 

          Double ratio3 = jcsn / normal; 
 
          Double ruff = jrcn * log10 (ratio3); 
 
 //Mobilization of roughness 
 Double jrcmob; 
 if ((0<=dispratio)    && 
  (dispratio<0.2)) 
  { 
   jrcmob = jrcn * (-res_friction_ / ruff); 
  } 
 else if ((0.2<=dispratio)  && 
  (dispratio<0.3)) 
  { 
  jrcmob = jrcn * (-0.25 * res_friction_ / ruff); 
  } 
 else if ((0.3<=dispratio)   && 
  (dispratio<0.45)) 
  { 
  jrcmob = jrcn * 0; 
  } 
 else if ((0.45<=dispratio)  && 
  (dispratio<0.6)) 
  { 
  jrcmob = jrcn * 0.50; 
  } 
 else if ((0.6<=dispratio)  && 
  (dispratio<0.8)) 
  { 
  jrcmob = jrcn * 0.75; 
  } 
 else if ((0.8<=dispratio)  && 
  (dispratio<1)) 
  { 
  jrcmob = jrcn * 0.90; 
  } 
 else if ((1<=dispratio)  && 
  (dispratio<1.5)) 
  { 
  jrcmob = jrcn * 1; 
  } 
 else if ((1.5<=dispratio)  && 
  (dispratio<2)) 
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Table A.7 continued 

{ 
  jrcmob = jrcn * 0.90; 
  } 
 else if ((2<=dispratio)  && 
  (dispratio<3)) 
  { 
  jrcmob = jrcn * 0.85; 
  } 
 else if ((3<=dispratio)  && 
  (dispratio<4)) 
  { 
  jrcmob = jrcn * 0.75; 
  } 
 else if ((4<=dispratio)  && 
  (dispratio<6)) 
  { 
  jrcmob = jrcn * 0.70; 
  } 
 else if ((6<=dispratio)  && 
  (dispratio<8)) 
  { 
  jrcmob = jrcn * 0.60; 
  } 
 else if ((8<=dispratio)  && 
  (dispratio<10)) 
  { 
  jrcmob = jrcn * 0.55; 
  } 
 else if ((10<=dispratio)  && 
  (dispratio<20)) 
  { 
  jrcmob = jrcn * 0.50; 
  } 
 else if ((20<=dispratio)  && 
  (dispratio<40)) 
  { 
  jrcmob = jrcn * 0.40; 
  } 
 else if ((40<=dispratio)  && 
  (dispratio<60)) 
  { 
  jrcmob = jrcn * 0.30; 
  } 
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Table A.7 continued 

else if ((60<=dispratio)  && 
  (dispratio<80)) 
  { 
  jrcmob = jrcn * 0.20; 
  } 
 else if ((80<=dispratio)  && 
  (dispratio<100)) 
  { 
  jrcmob = jrcn * 0.10; 
  } 
 else   
  { 
  jrcmob = jrcn * 0; 
  } 

 

 

Table A.8 Normal force calculation 

 // normal force 
            s->normal_force_inc_ = -kni * s->normal_disp_inc_; 
          s->normal_force_ += s->normal_force_inc_; 

 

 

Table A.9 Tensile failure decision step and shear force calculation steps 
// tensile strength 
    Double ten; 
    if (s->state_) 
      ten = -res_tension_ * s->area_; 
    else 
      ten = -tension_ * s->area_; 
 
    // check tensile failure 
    Bool tenflag = false; 
    if (s->normal_force_ <= ten)  
    { 
      s->normal_force_  = ten; 
      if (!s->normal_force_) 
      { 
        s->shear_force_ = DVect3(0,0,0); 
        tenflag = true; // tensile failure is completed 
      } 
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Table A.9 continued 

s->state_ |= tension_now; 
      s->normal_force_inc_ = 0.0; 
      s->shear_force_inc_ = DVect3(0,0,0); 
    } 
 
    // shear force 
    if (!tenflag)  
    { 
      s->shear_force_inc_ = s->shear_disp_inc_ * -ksi; 
      s->shear_force_ += s->shear_force_inc_; 
   Double fsm = s->shear_force_.mag() / s->area_; 
       
     // shear strength 
   Double loga = log10 (jcsn / (s->normal_force_ / s->area_)); 
   Double tanici = res_friction_ + jrcmob * loga; 
   Double tanp = tan (tanici * dDegRad); 
   Double fsmax; 
       
   fsmax = (s->normal_force_ / s->area_) * tanp ; 
 
   if (!s->state_) 
        fsmax = (s->normal_force_ / s->area_) * tanp; 
      else  
       
     { // the residual value where jrc is totally worn out 
    Double resamueff = tan_res_friction_; 
     
        fsmax = s->normal_force_ / s->area_ * resamueff; 
      } 
      
       
   if (fsmax < 0.0) fsmax = 0.0; 
 
      //  check for slip 
      if (fsm >= fsmax)  
      { 
        Double rat = 0.0; 
        if (fsm) rat = fsmax / fsm; 
        s->shear_force_ *= rat; 
        s->state_ |= slip_now; 
        s->shear_force_inc_ = DVect3(0,0,0); 
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Table A.10 Calculation steps for dilatational component of normal force 
// dilation 
        if (!dilation_) 
        { 
          Double zdd = zero_dilation_; 
          Double usm = s->shear_disp_.mag(); 
          if (!zdd) zdd = 1e20; 
          if (usm < zdd)  
          { 
            Double dusm  = s->shear_disp_inc_.mag(); 
            Double dil = 0.0; 
 
   if (!s->state_)              
   dil = tan((0.5*jrcmob*log10(jcsn/(s->normal_force_ / s-
>area_))) * dDegRad); 
   
   else 
            { 
              
  Double resdileff = tan((0.5*jrcmob*log10(jcsn/(s->normal_force_ / 
s->area_))) * dDegRad); 
   
             if (!resdileff) resdileff = tan((0.5*jrcmob*log10(jcsn/(s->normal_force_ / s-
>area_)))*dDegRad); 
              dil = resdileff; 
            } 
    
            s->normal_force_ += kni * dil * dusm;    
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APPENDIX B 

NORMAL DEFORMATION BEHAVIOUR 

 

In this part, the executable code of the direct shear test model and the 

maximum closure plots with different joint roughness coefficients (JRC), 

joint wall compressive strength (JCS) and uniaxial compressive strength 

(σc) are given in Figure B.1-B.32; 

The executable code for the direct shear test model is; 

; direct shear test 
 
config cppudm 
 
;bottom block 
poly brick -0.15,0.15 -0.10,0.10 -0.10,0.0 
gen edge 1 
 
;top block 
poly brick -0.10,0.10 -0.1,0.10 0.0,0.10 
gen edge 0.2 
 
set jcondf 1 
set jmatdf 1 
prop mat 1 jkn 1e2 jks 1e4 jfric 10 jcoh 5e3 
 
jmodel model exampled 
 
;material property assignment 
prop mat=1 density = 0.0026 k=4e3 g=3e3 
 
;joint property assignment 
jmodel jkn=1e5 jks=1e4 resfriction=20.0 jcso=100 jrco=15 sigmac=150 nj = 
0.8 lo = 0.1 ln=0.2   
hide range z 0 .1 
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bound xvel = 0 zvel=0 range zr -1 0.01 
 
seek 
; normal load 5MPa 
bound str 0 0 -5 0 0 0 range z .09 .11 
 
 
;time step for initial settling 
step 1000 
pl block 
pl reset 
 
;fish function for calculating average stresses and displacement for the joint 
plane 
 
def av_str 
whilestepping 
sstav = 0.0 
nstav = 0.0 
njdisp = 0.0 
sjdisp = 0.0 
ncon = 0 
jarea = 0.04 
ic = contact_head 
loop while ic # 0 
icsub = c_cx(ic) 
loop while icsub # 0 
ncon = ncon + 1 
sstav = sstav + cx_xsforce(icsub) 
nstav = nstav + cx_nforce(icsub) 
njdisp = njdisp + cx_ndis(icsub) 
sjdisp = sjdisp + cx_xsdis(icsub) 
icsub = cx_next(icsub) 
endloop 
if ncon # 0 
sstav = sstav / jarea 
nstav = nstav / jarea 
njdisp = -1800 * njdisp / ncon 
sjdisp = - sjdisp / ncon 
endif 
ic = c_next{ic) 
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endloop 
end 
 
reset disp 
reset jdisp 
 
; shear load 
hide range z -.1 0 
bound xvel=0.8 range z -.1 1.1 
bound yvel=0.0 range z -.1 1.1 
seek 
 
; displacement and stress monitoring 
hist unbal ncyc 5 
hist @sstav @nstav @njdisp @sjdisp 
 
hist sdis -1 -1 0 ndis -1 -1 0 
hist sdis -1 1 0 ndis -1 1 0 
hist sdis 0 0 0 ndis 0 0 0 
hist sstr -1 -1 0 nstr -1 -1 0 
hist sstr -1 1 0 nstr -1 1 0 
hist sstr 0 0 0 nstr 0 0 0 
hist sfor -1 -1 0 nfor -1 -1 0 
hist szz 0 0 0.1  
hist zdisp 0 0 0.1 
hist zdisp 0 0 0 
 
hist label 2 'Shear Stress' 
hist label 3 'Normal Stress' 
hist label 4 'Normal Displacement' 
hist label 5 'Shear Displacement' 
 
 
cyc 20000 
; 
return 
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Figure B.1 Normal stress – normal closure plot with JRC = 2 

 

 
Figure B.2 Normal stress – normal closure plot with JRC = 4 
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Figure B.3 Normal stress – normal closure plot with JRC = 6 

 

 
Figure B.4 Normal stress – normal closure plot with JRC = 8 
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Figure B.5 Normal stress – normal closure plot with JRC = 10 

 

 
Figure B.6 Normal stress – normal closure plot with JRC = 12 
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Figure B.7 Normal stress – normal closure plot with JRC = 14 

 

 
Figure B.8 Normal stress – normal closure plot with JRC = 16 
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Figure B.9 Normal stress – normal closure plot with JRC = 18 

 

 
Figure B.10 Normal stress – normal closure plot with JRC = 20 
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Figure B.11 Normal stress – normal closure plot with JCS = 40 MPa 

 

 
Figure B.12 Normal stress – normal closure plot with JCS = 50 MPa 
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Figure B.13 Normal stress – normal closure plot with JCS = 60 MPa 

 

 
Figure B.14 Normal stress – normal closure plot with JCS = 70 MPa 
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Figure B.15 Normal stress – normal closure plot with JCS = 80 MPa 

 

 
Figure B.16 Normal stress – normal closure plot with JCS = 90 MPa 
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Figure B.17 Normal stress – normal closure plot with JCS = 100 MPa 

 

 
Figure B.18 Normal stress – normal closure plot with JCS = 110 MPa 
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Figure B.19 Normal stress – normal closure plot with JCS = 120 MPa 

 

 
Figure B.20 Normal stress – normal closure plot with JCS = 130 MPa 
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Figure B.21 Normal stress – normal closure plot with JCS = 140 MPa 

 

 
Figure B.22 Normal stress – normal closure plot with σc = 60 MPa 
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Figure B.23 Normal stress – normal closure plot with σc = 70 MPa 

 

 
Figure B.24 Normal stress – normal closure plot with σc = 80 MPa 
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Figure B.25 Normal stress – normal closure plot with σc = 90 MPa 

 

 
Figure B.26 Normal stress – normal closure plot with σc = 100 MPa 
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Figure B.27 Normal stress – normal closure plot with σc = 110 MPa 

 

 
Figure B.28 Normal stress – normal closure plot with σc = 120 MPa 
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Figure B.29 Normal stress – normal closure plot with σc = 130 MPa 

 

 
Figure B.30 Normal stress – normal closure plot with σc = 140 MPa 

 

(M
Pa

) 
(M

Pa
) 

(m) 

(m) 



176 

 

 
Figure B.31 Normal stress – normal closure plot with σc = 150 MPa 

 

 
Figure B.32 Normal stress – normal closure plot with σc = 160 MPa 
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APPENDIX C 

SHEAR DEFORMATION BEHAVIOUR 

 

The shear stress vs shear displacement plots with different residual friction 

angle (Ør), joint roughness coefficients (JRC), joint wall compressive 

strength (JCS) and normal stress (σn) are given in Figure C.1-C.38. 

 

 
Figure C.1 Shear stress –shear displacement plot with Ør = 10° 
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Figure C.2 Shear stress –shear displacement plot with Ør = 15° 

 

 
Figure C.3 Shear stress –shear displacement plot with Ør = 20° 
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Figure C.4 Shear stress –shear displacement plot with Ør = 30° 

 

 
Figure C.5 Shear stress –shear displacement plot with Ør = 35° 
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Figure C.6 Shear stress –shear displacement plot with Ør = 40° 

 

 
Figure C.7 Shear stress –shear displacement plot with JRC = 2 
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Figure C.8 Shear stress –shear displacement plot with JRC = 4 

 

 
Figure C.9 Shear stress –shear displacement plot with JRC = 6 
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Figure C.10 Shear stress –shear displacement plot with JRC = 10 

 

 
Figure C.11 Shear stress –shear displacement plot with JRC = 12 
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Figure C.12 Shear stress –shear displacement plot with JRC = 14 

 

 
Figure C.13 Shear stress –shear displacement plot with JRC = 16 
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Figure C.14 Shear stress –shear displacement plot with JRC = 18 

 

 
Figure C.15 Shear stress –shear displacement plot with JRC = 20 
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Figure C.16 Shear stress –shear displacement plot with JCS = 40 MPa 

 

 
Figure C.17 Shear stress –shear displacement plot with JCS = 50 MPa 
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Figure C.18 Shear stress –shear displacement plot with JCS = 60 MPa 

 

 
Figure C.19 Shear stress –shear displacement plot with JCS = 70 MPa 
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Figure C.20 Shear stress –shear displacement plot with JCS = 90 MPa 

 

 
Figure C.21 Shear stress –shear displacement plot with JCS = 100 MPa 

 



188 

 

 
Figure C.22 Shear stress –shear displacement plot with JCS = 110 MPa 

 

 
Figure C.23 Shear stress –shear displacement plot with JCS = 120 MPa 
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Figure C.24 Shear stress –shear displacement plot with JCS = 130 MPa 

 

 
Figure C.25 Shear stress –shear displacement plot with JCS = 140 MPa 
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Figure C.26 Shear stress –shear displacement plot with σn = 0.5 MPa 

 

 
Figure C.27 Shear stress –shear displacement plot with σn = 3 MPa 
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Figure C.28 Shear stress –shear displacement plot with σn = 4 MPa 

 

 
Figure C.29 Shear stress –shear displacement plot with σn = 5 MPa 
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Figure C.30 Shear stress –shear displacement plot with σn = 6 MPa 

 

 
Figure C.31 Shear stress –shear displacement plot with σn = 7 MPa 
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Figure C.32 Shear stress –shear displacement plot with σn = 8 MPa 

 

 
Figure C.33 Shear stress –shear displacement plot with σn = 9 MPa 
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Figure C.34 Shear stress –shear displacement plot with σn = 10 MPa 
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APPENDIX D 

DILATATIONAL BEHAVIOUR 

 

In this part, dilation vs shear displacement and shear stress shear 

displacement graphs of the sample with residual friction angle of 20°, lab 

scale joint roughness coefficient of 16, lab scale joint wall compressive 

strength value of 100 MPa, uniaxial compressive strength of 150 MPa and 

under a normal stress of 5 MPa is given; 
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Figure D.1 Graph of Shear displacement vs dilation and shear stress vs 

shear displacement (Ør = 20°, σc = 150 MPa, JRCo=16, JCSo=100 MPa 

and σn = 5 MPa) 
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