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ABSTRACT

COUPLING SPEECH RECOGNITION AND RULE-BASED MACHINE

TRANSLATION

Köprü, Selçuk

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yazıcı

September 2008, 130 pages

The objective of this thesis was to study the coupling of automatic speech

recognition (ASR) systems with rule-based machine translation (MT) systems. In

this thesis, a unique approach to integrating ASR with MT for speech translation

(ST) tasks was proposed. The proposed approach is unique, essentially because

it includes the first rule-based MT system that can process speech data in a word

graph format. Compared to other rule-based MT systems, our system processes

both a word graph and a stream of words. Thus, the suggested integration

method of the ASR and the rule-based MT system is more detailed than a simple

software engineering practice. The second reason why it is unique is because this

coupling approach performed better than the first-best and N-best list techniques,

which are the only other methods used to integrate an ASR with a rule-based

MT system. The enhanced performance of the coupling approach was verified

with experiments.

The utilization of rule-based MT systems for ST tasks is important; however,

there are some unresolved issues. Most of the literature concerning coupling
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systems has focused on how to integrate ASR with statistical MT rather than

rule-based MT. This is because statistical MT systems can process word graphs

as input, and therefore, the resolution of ambiguities can be moved to the MT

component. With the new approach proposed in this thesis, this same advantage

exists in rule-based MT systems. The success of such an approach could facilitate

the efficient usage of rule-based systems for ST tasks.

Keywords: speech translation, machine translation, chart parsing
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ÖZ

SES TANIMA VE KURAL-TABANLI OTOMATİK ÇEVİRİ

SİSTEMLERİNİN ENTEGRE EDİLMESİ

Köprü, Selçuk

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Adnan Yazıcı

Eylül 2008, 130 sayfa

Bu tezin amacı, Otomatik Ses Tanıma (OST) sistemleri ile kural tabanlı

Otomatik Çeviri (OÇ) sistemlerinin bağdaştırılmasını incelemektir. Bu tezde, Ses

Çevirisi (SÇ) amacıyla OST ve OÇ sistemlerini entegre eden özgün bir yaklaşım

sunuyoruz. Sunulan yöntem, kelime grafiği formatındaki ses verilerini işleye-

bilen ilk kural tabanlı OÇ sistemini içermesi açısından özgündür. Diğer kural

tabanlı OÇ sistemleri ile kıyaslamak gerekirse, bizim sistemimiz kelime dizisine

ek olarak kelime grafikleri de işleyebilmektedir. Dolayısıyla, OST ve kural tabanlı

OÇ arasında önerilen entegrasyon yöntemi basit bir yazılım mühendisliği uygula-

masından ötedir. Bağdaştırma yöntemimizin ilk-en iyi ve N-en iyi tekniklerinden

daha iyi performans gösterdiklerini de ortaya koyuyoruz. İlk-en iyi ve N-en iyi

teknikleri, OST ve kural tabanlı OÇ sistemlerini bağdaştırmak için kullanılan,

bizim sunduğumuz yaklaşım haricindeki tek yöntemlerdir. Argümanlarımızın

doğruluğunu deneylerle de kanıtlıyoruz.
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Kural tabanlı OÇ sistemlerinin SÇ işinde kullanılmasının önemli olduğunu

düşünüyoruz ve bu konuda cevaplanması gereken sorular hala mevcuttur. Bağ-

daştırma ile ilgili literatürün çok önemli kısmı OST ile istatistiksel OÇ sistem-

lerinin entegrasyonu üzerinedir. Bunun sebebi, istatistiksel OÇ sistemlerinin

kelime-grafiklerini girdi olarak işleyebiliyor olmasıdır. Bu şekilde, belirsizliklerin

çözümlendiği yer OÇ bileşenine ötelenmektedir. Bu tezde sunduğumuz yeni yak-

laşımla birlikte, aynı avantaj kural tabanlı OÇ sistemleri için de geçerli olacaktır.

Bu kazanım, kural tabanlı OÇ sistemlerinin SÇ işinde etkin olarak kullanılmasını

sağlayacaktır.

Anahtar Kelimeler: ses çevirisi, otomatik çeviri, çizelge ayrıştırımı
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CHAPTER 1

INTRODUCTION

Language is defined as “a systematic means of communicating ideas or feelings by

the use of conventionalized signs, sounds, gestures, or marks having understood

meanings” in Merriam-Webster (2003). From this definition, we can describe

language processing in computer science as the formalization of the systematics

behind languages. Language processing involves a wide variety of sub-tasks at-

tempting to address different aspects of language. This formalization has proved

to be a difficult task, considering the limited advancements gained up to now. As

part of this process, the existing schema of a natural language has to be disclosed

in detail, including all exceptions. The evolving nature of languages over time

has made the simulation of human linguistic behavior in computers a complex

task. This dynamism brings drastic changes with time; thus, how a language is

spoken and written from one generation to the next will most likely be different.

This may give some insight as to why there are many different languages around

the world.

People who speak different languages can communicate efficiently only with
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the help of a translator. Currently, human translation is expensive and it is

used only if there is a need for perfect translation. Moreover, there is the speed

bottleneck for human translators. When and if machine translation (MT) systems

which can produce human quality translations are developed, this can take cross-

linguistic communication to a different level.

Other than MT, processes in this field that aid the cross-linguistic commu-

nication are the transcription of a spoken language and speech generation from

text. Automatic speech recognition (ASR) systems convert acoustic signals into

a stream of words in a specific language. In the reverse direction, text to speech

(TTS) systems generate acoustic signals from a sequence of words. Figure 1.1

shows an integrated solution that incorporates ASR, MT and TTS technologies.

Each person who communicates using the speech-to-speech system uses his or

her own native language.

Target Speech

ASR

ASR Output

Target Text

TTS

MT

Source Speech

Figure 1.1: Integrated solution for speech-to-speech cross-linguistic communica-

tion.
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The scenario in Figure 1.1 requires that all technologies used be as perfect

as possible in order to achieve an acceptable quality of communication. Another

important factor in the realization of this scenario is the integration of each mod-

ule. Specifically, the integration of ASR and MT systems is significant because

it can help improve the performance and quality of the overall system.

There are two basic methods that are being used to integrate ASR and rule-

based MT (RBMT) systems: First-best method and the N-best list method. Both

techniques are motivated from a software engineering perspective. In the first-

best approach (Figure 1.2.a), the ASR module sends a single recognized text

to the MT component to translate. Any ambiguity existing in the recognition

process is resolved inside the ASR. In contrast to the first-best approach, in the

N-best List approach (Figure 1.2.b); the ASR outputs N possible recognition

hypotheses to be evaluated by the MT component. The MT picks the first

hypothesis and translates it if it is grammatically correct. Otherwise, it moves

to the second hypothesis and so on. If none of the available hypotheses are

syntactically correct, then it translates the first one.

We propose a new method to couple ASR and rule-based MT system as an

alternative to the approaches mentioned above. Figure 1.2 represents the two

currently in-use coupling methods followed by the new approach we introduce

(Figure 1.2.c). In the newly proposed technique, which we call the N-best word

graph approach, the ASR module outputs a word graph containing all N-best

hypotheses. The MT component parses the word graph, thus, all possible hy-

potheses at one time. We investigate the details and advantages of this approach

3



in Chapter 4.

c)

Speech

Speech

Recognizer

Recognizer

Speech

Recognizer

Rule−based

MT

Rule−based

Rule−based

MT

MT

Target Text

Target Text

Target Text

Recognized Text

1. Recognized Text

N. Recognized Text
...

a)

b)

Figure 1.2: ASR and rule-based MT coupling: a) First-best b) N-best list c)

N-best word graph.

There are some previous studies which address the coupling of heterogeneous

components of NLP Systems (Arranz et al., 2004; Boitet & Seligman, 1994).

However, our research is unique because it presents a new approach and findings

in coupling statistical SR systems with a rule-based MT system. It would be very

beneficial to employ rule-based MT systems for ST task because manually created

linguistic resources are used extensively in RBMT. The rules and lexicons have

been created over many years and are based on broad studies and experience.
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Therefore, the utilization of these existing linguistic resources for both coupling

and analysis would be an asset to ST.

1.1 Related Work

There is a wide range of studies available in literature that addresses the cou-

pling issue. Harper et al. (1994) is the first study that classified coupling into

three categories: tightly-coupled, loosely-coupled, and semi-coupled. According

to Ringger (1995), tightness describes how closely the SR system and the syntac-

tic parser interact with each other. In a tightly-coupled system, speech and pars-

ing are packed into an inseparable unit. In a loosely-coupled system, processing

units are contained within independent modules. Finally, semi-coupled systems

lie between the previous two approaches in terms of isolation. Tight coupling

is only possible if both modules are statistically-based because the unit of infor-

mation interchanged between systems is meaningful for both sides. Thus, it is

considered to be a difficult task to tightly couple a statistical SR with a rule-based

MT. The architecture proposed in this thesis is categorized as a loosely-coupled

system.

The coupling method suggested in Ney (1999) is a tightly coupled system

where the whole process is based on Bayes decision rule. The work in Zhang

and Kikui (2006) and Matusov et al. (2005) is similar to Ney (1999) and all are

applicable only for statistical MT systems. In Saleem et al. (2004), the authors

discuss another approach towards tightly coupling SR and statistical MT systems.
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They conclude that using word graphs as the information exchange unit does

improve performance when the weighted acoustic scores are incorporated into

the MT unit. An alternative to a word graph is a confusion network, which is

another type of directed graph where each path from start to finish includes all

existing nodes. Using confusion network as the unit of exchanged information

between SR and statistical MT is explored in Bertoldi and Federico (2005) and

in Shen et al. (2006).

While integrating the SR system with the rule-based MT system, this study

uses word graphs and chart parsing with new extensions. Parsing of word lattices1

has been a topic of research over the past decade. The idea of chart parsing the

word graph in SR systems has been previously used in different studies in order

to resolve ambiguity. Tomita (1986) introduced the concept of lattice parsing for

the purpose of speech recognition and used an LR parser. Next, Paeseler (1988)

used a chart parser to process lattices. However, to the best of our knowledge,

the specific method for chart parsing a word graph introduced in this thesis has

not been previously used for coupling purposes.

Previous work on language modeling can be classified according to whether

a system uses purely statistical methods or whether it uses them in combination

with syntactic methods. In this thesis, the focus is on systems that contain

syntactic approaches. In general, these language modeling approaches try to

parse the ASR output in word graph format in order to choose the most probable

hypothesis. Chow and Roukos (1989) used a unification-based Cocke-Younger-
1Word graph, word lattice and lattice are interchangeably used throughout the thesis.
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Kasami (CYK) parser for the purpose of speech understanding. Chien et al.

(1990a) and Weber (1994) utilized probabilistic context free grammars (PCFG)

in conjunction with unification grammars to chart-parse a word lattice. There

are various differences between the work of Chien et al. and Weber and the work

presented in this thesis. First, in the previously mentioned studies, the chart

is populated with the same word graph that comes from the speech recognizer

without any pruning, whereas in our approach the word graph is reduced to

an acceptable size. Otherwise, the efficiency becomes a big challenge because

the search space introduced by a chart with over thousands of initial edges can

easily be beyond current practical limits. We determinize and minimize the word

graph using FSM algorithms before parsing it. Another important difference

in our approach is the modification of the chart parsing algorithm to eliminate

spurious parses. We preserve the two-dimensional structure of the word graph

during parsing instead of converting it to a confusion network.

Table 1.1 summarizes the studies that work on lattice parsing. Ney (1991)

deals with the use of probabilistic CYK parser for continuous speech recognition

task. Stolcke (1995) summarizes extensively their approach to utilize probabilistic

Earley parsing. Chappelier et al. (1999) gives an overview of different approaches

to integrate linguistic models into speech recognition systems. They also research

various techniques of producing sets of hypotheses that contain more “semantic”

variability than the commonly used ones. Some of the recent studies about

structural language modeling extract a list of N-best hypotheses using an N-gram

and then apply structural methods to decide on the best hypothesis (Chelba,
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Table 1.1: Summary of lattice parsing studies.

Probabilistic Unification-Based Parser

Tomita (1986) LR

Paeseler (1988) Earley

Chow and Roukos (1989)
√

CYK

Chien et al. (1990a)
√

Active chart

Ney (1991) CYK

Chien et al. (1993)
√ √

Active chart

Weber (1994)
√ √

Active chart

Chappelier et al. (1999)
√

CYK

Roark (2002)
√

Left-corner

Hall (2005)
√

Active chart

8



2000; Roark, 2001). This contrasts with the approach presented in this study

where, instead of a single sentence, the word lattice is parsed. Parsing all sentence

hypotheses simultaneously enables a reduction in the number of edges produced

during the parsing process. This is because the shared word hypotheses are

processed only once compared to the N-best list approach, where the shared

words are processed each time they occur in a hypothesis. Similar to the current

work, other studies parse the whole word lattice without extracting a list (Hall,

2005). A significant distinction between the work of Hall and our study is the

parsing algorithm. In contrast to our chart parsing approach augmented by

unification-based feature structures, Charniak parser is used in Hall’s along with

PCFG. Hall’s results and our results are compared based on word error rate

(WER) in Chapter 6.

1.2 Contributions of the thesis

The aim of this work is to contribute to the state-of-the-art in ST by employing

heterogeneous components. This is accomplished through the development of a

new coupling model and related algorithms. Scientific contributions achieved by

this thesis are as follows:

• In this work, we introduce a new coupling approach for rule-based MT

systems and ASR systems. There are some other coupling methods based

on simple software engineering practices. Our approach is different from

these methods because it utilizes the first rule-based MT system that can
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process speech data in the form of a word graph.

• We utilize N-best word graphs produced by SR systems as an input to

the MT. Ordinary unification-based chart-parsing algorithm is extended in

order to handle speech lattices. The extended algorithm also eliminates

spurious parse trees that occur in a confusion network.

• The approach we propose performs better than the first-best and N-best

approaches. Parsing multiple hypotheses in parallel enables to drastically

reduce the total number of edges in chart parsing.

• The proposed approach enables to utilize legacy rule-based MT systems

effectively in speech translation task due to the ability of parsing word

graph inside the MT.

• We propose a way of using statistical information in syntactic parsing which

leads to the hybridization of an ordinary rule-based MT system. Statis-

tical information is exploited by extending chart parsing, not only with

unification-based feature structures, but also with functional expressions

capable of modifying the feature structures.

• The experimental results obtained in this study prove that structural ap-

proaches are as competitive as statistical approaches for the language mod-

eling task.

• The commonly-held belief that statistical MT systems are more appropriate

than rule-based MT systems for speech translation task is not true anymore

as a result of this thesis.
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• The implementation that occurs in this thesis is more than a prototype

system to be used in the experiments to prove the ideas. The developed

system is a full-fledged language parser capable of processing complex gram-

mar rules augmented with functional expression. The system is ready to

be used in practical applications and it can be extended to a complete MT

system.

1.3 Structure of the thesis

In the next chapter we cover the background concepts and techniques employed

in this thesis. The background information contains a general review of the MT,

SR, and ST concepts, along with other complementary material. In Chapter 3,

we introduce our speech translation system and its components. This chapter

explains the whole system from an architectural point of view. Chapter 4 focuses

on the word graph pruning and word graph parsing methods. In Chapter 5, we

elaborate on further enhancements of the word graph. Next, we present a set of

experiments that explore the performance and quality of the proposed system.

Finally, in Chapter 7 we provide a short summary of the work and conclude the

thesis with future directions for research.
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CHAPTER 2

BACKGROUND

In this chapter, we give a detailed overview of different material used extensively

throughout the thesis.

2.1 Statistical Approaches in NLP

In natural language processing (NLP) history, structural approaches were first

used for the interpretation of natural languages. Next, statistical methods were

developed that claimed to perform better than their predecessors. The debate

over which method is more appropriate continues because none alone could dom-

inate the field. Meanwhile, combining these two different approaches under one

system has been a significant challenge. It is now the era of hybrid systems.

Although the mathematics behind statistical modeling was defined some time

ago, this approach was ignored by early computational linguists. The basic idea

in statistical language modeling is to predict the solution using previously ac-

quired knowledge. This knowledge is usually represented as the probability of
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the occurrence of a possible word or word class sequence. Probabilities of word

sequence occurrences can be used effectively to identify words in different NLP

tasks such as SR or MT.

A very essential tool in statistical speech and language processing is the N-

gram, which is a probabilistic model making use of word sequences. An N-gram

model is built by looking N-1 words into the past. If the system only looks one

word into the past, then that model is called a bigram. If it looks two words into

the past then it is called a trigram. Probabilities in these N-grams are based on

counting words in a training corpus. The success of the model is very dependent

on the size of the training corpus and on the order N. High-level estimators,

which encode context information in an extensive manner, perform better than

low-level estimators. For example, state-of-the-art ASR systems have to use 4-

grams or 5-grams. However, after a certain level, there is no contributive effect

on the performance. This is exemplified in previous research, which found that 5-

grams and 6-grams perform in the same manner for English ASR tasks (Jurafsky

& Martin, 2008).

It is often the case that a certain word sequence is not found in a training

corpus, even for low level N-Grams. So, the language model contains a zero

probability value for many word sequences, which leads to poor estimates. This

sparse data problem can be overcome through different smoothing algorithms.

Good-Turing smoothing (Good, 1953) or Kneser-Ney smoothing (Kneser & Ney,

1995) are used widely to combat sparseness. The idea in smoothing is to gen-

erate a smoother distribution by discounting non-zero probability values and
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incrementing the zero probability values proportionately using that discount.

Other techniques used to overcome sparseness are back-off and interpolation.

In these approaches, high order N-gram values are estimated using lower-order N-

grams. In interpolation, available N-gram estimates are merged to calculate the

final probability, independent of the existence of a non-zero probability. In back-

off, a low-order estimate is used only if the corresponding high-order estimate is

zero.

There are different toolkits available for building language models. Many

of them are publicly accessible for R&D purposes and they implement many

useful algorithms including the ones mentioned above to overcome the sparseness

problem in N-grams. The HTK toolkit (Woodland, 2000) from the University

of Cambridge is portable and it is used for building and manipulating language

models. Similarly, the SRILM toolkit (Stolcke, 2002) and the CMU-Cambridge

toolkit (Clarkson & Rosenfeld, 1997) facilitate the construction and testing of

statistical language models.

The type of corpus being used for training language models is another im-

portant facet of statistical approaches. Different language tasks require different

types of training corpora. To illustrate, a corpus containing only sentences would

be enough for a language generation task. Another example is part-of-speech

(POS) tagging which would require a corpus with tokens tagged with appropri-

ate word classes. Unlike these two examples, an MT task requires a parallel and

aligned corpus including sentences from the source and target language.
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2.2 Speech Recognition

By definition, the goal in ASR is to convert an acoustic signal to a sequence of

words (Jurafsky & Martin, 2008). Figure 2.1 depicts the basic architecture of

a speech recognition system. An input signal is converted into acoustic feature

vectors. Analog waveforms are first digitized and quantized for further process-

ing. Next, a sequence of extraction steps (e.g. discrete Fourier Transform) are

applied to obtain the feature vectors to be used by the acoustic model. The

acoustic model maps the feature vectors into symbols in order to be able to com-

pute probabilities in decoding. A simple method of this mapping can be done

using the Euclidean distance. A better approximation method to use in comput-

ing probability with acoustic vectors is to use Gaussian probability distribution

functions. The Viterbi algorithm is used for the decoding process in ASR. Once

decoding is complete, the most probable sequence of words is generated.

Feature

Extraction Observation Likelihood
Feature Vectors

Acoustic

Model

Language

Model

Decoder

N−gram

... a b c ...

Prior Probability

Figure 2.1: Basic ASR architecture from Jurafsky and Martin (2008).
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There are certain conditions that affect the performance of an ASR system.

Some of these are quality of the input signal, being noise-free or not, speaker

dependency, domain, and continuity of speech. If the number of words to be

recognized is low or is from a closed vocabulary, the ASR task gets simplified

because the search space is reduced. In contrast, if the task is to transcribe free

human conversation, then recognition becomes much harder. Another aspect of

ASR involves determining whether to transcribe continuous speech or to just

capture pre-specified keywords, i.e. keyword spotting.

In order to achieve a reasonable success rate, the system has to be trained

with the same accented speech and language dialect as the target. For example,

a system trained on Modern Standard Arabic (MSA) cannot be used successfully

on Levantine or Iraqi dialects. Similarly, performance can drop radically while

transcribing the speech of a Turkish-accented English speaker if the training

corpus is a collection of native English speakers. The standard evaluation metric

for ASR is the word error rate (WER).

2.2.1 Word Graphs

A word graph or a word lattice is a compact representation of multiple sentence

hypotheses formed by word hypotheses. The compactness makes word graphs a

popular data structure in natural language processing where ambiguity is faced

in any task. A word lattice L is represented by a 2-tuple < N ,A > where N

is the list of nodes representing the word hypotheses and A is the list of arcs

representing the sequence of words. Each word hypothesis is represented by a
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5-tuple < b, e, w, a, l >, where b is the begin time, e is the end time, w is the

word, a is the acoustic likelihood of the node and l is the N-gram language model

likelihood. Each arc is represented by a 3-tuple < f, t, a >, where f is the start

node, t is the end node and a is the acoustic likelihood of the arc. A sample word

graph is illustrated in Figure 2.2.

The similarity between a word-lattice and a finite state machine (FSM) en-

ables the former to benefit from standard FSM theory and algorithms. Each node

in the graph represents a unique state. Each arc connects one node to another,

and is labeled with a word from within a string. Each path from the starting

node to the final node describes an alternative hypothesis.

The informativeness of the FSM is increased by assigning a probability value

to each label. This new form of the word graph is useful in statistical processing

of natural languages. Speech recognition systems and tools use word graphs as

the principal unit of output. The structure lattice format (SLF) provided by the

HTK toolkit has become the standard format to describe word graphs. A word

graph in SLF notation is represented by a list of nodes, a list of arcs, a start

symbol and an end symbol.
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Figure 2.2: A sample word graph.
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2.3 Machine Translation

Machine Translation (MT) is described as automatically producing a translated

text in a target language so that the meaning remains the same as the input text

in a source language (Nirenburg et al., 1994). MT research and development

efforts have advanced significantly since their beginning in the 1950’s; however,

there is still more research to be done in order to produce human quality MT

output.

Later in this section, after discussing some general issues related to machine

translation, we explore the different architectural approaches. We elaborate

mainly on rule-based MT systems because this thesis focuses primarily on these

systems. Statistical MT is explained briefly to give a comparison to rule-based

approaches. Other MT approaches such as example-based MT (EBMT) systems

are not presented here because they are out of the scope of this thesis.

2.3.1 Differences in Languages

Translation can be viewed as the process of mapping structural differences be-

tween languages in addition to transferring the words from the source into the

target language. The divergence between languages can be very large if they are

from different families. Nevertheless, translating between languages within the

same language family is a relatively simple task.

The differences in languages that contribute to the difficulty of the MT task

may be various. There might be morphological differences such as those between
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Turkish and Chinese; the former being highly agglutinative and the latter with-

out any morphology at all. Thus, morphological constructions in Turkish have to

be mapped to Chinese words. Similarly, syntax of languages diverges. One diver-

gence is different word ordering in translation language pairs. For example, while

translating from Arabic, which is a verb-subject-object (VSO) language, to En-

glish, a subject-verb-object (SVO) language, the required sequence manipulation

has to be performed.

While doing MT, we have to face differences in any particular linguistic con-

struction. The dissimilarity can be in a simple grammatical category as in gen-

der (e.g. compare German and Turkish) or number (some languages like Arabic

have dual marking). Moreover, the dissimilarity can also be on a grammatical

description; for example, the method of relative clause construction can vary

from one language to another.

2.3.2 Controlled Language

It is possible to utilize MT with a very high success rate despite the general

difficulty of the task. One way of doing this is to use a controlled language as

the source. Controlled language is a portion of a natural language acquired by

limiting the grammar and vocabulary. In Rychtyckyj (2006), a successful imple-

mentation of a controlled language is presented. The language that is machine-

translated is a restricted subset of English with a restricted grammar and lexicon.

The sentences are pre-processed before they are sent to MT to check for compli-

ance with the controlled language. In the same study, it is determined that the
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utilization of MT technology in this manner results in considerable success, with

high accuracy rates.

2.3.3 Rule-Based MT Approaches

The famous Vauquois triangle in Figure 2.3 shows the three mainstream ap-

proaches to MT: direct translation approach, the transfer approach and the in-

terlingua approach. The above-mentioned figure does not include the statistical

approach because the diagram pre-dates the use of statistical approaches. In

direct translation, the syntactic representation of the source is not built. Rather,

just a simple morphological analysis is carried out to extract word stems. No

understanding of the source at the syntactic level is required. Target language

constructions are built on the basis of this morphological analysis by simple word

replacements and some word ordering. This approach is used in systems where

the translation quality is not important and where the aim is to give the user a

slight idea of what the source text is about.

The transfer approach (studied in detail in Section 2.3.4) requires a deeper

level of analysis compared to the direct approach. It lies between the other

two approaches in terms of complexity and extendibility. Transfer-based MT

systems are composed of three main modules: analysis, transfer, and generation.

In the analysis stage, morphologic and syntactic representation of the source

language is constructed with the help of a linguistic grammar framework (e.g.

LFG, HPSG, and CCG). Next, in the transfer stage, transfer rules are applied

to the representation in order to map grammatical information from the source
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Target Text

Transfer

Interlingua

Source Text Direct Translation

Analysis Generation

Figure 2.3: The Vauquois triangle.

language to the target language. Finally, in the generation stage, morphological

generation rules and word ordering rules are executed to output the translation

in the target language.

In the interlingua approach, there is no transfer module; only analysis and

generation modules exist. However, this approach requires a more complex anal-

ysis and generation than the transfer approach. At the end of the analysis, the

source language is converted to an interlingua, which is a language indepen-

dent representation of meaning and plays the central role in this approach. The

interlingua has to be rich enough to represent all possible semantic roles of con-

stituents from different source languages. This requirement makes the analysis

process much more comprehensive and forces it to go beyond syntactic analysis

to include semantic analysis and real-world knowledge. In Köprü (1999), the

three structural approaches are compared according to the number of necessary

structural components.
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2.3.4 Transfer-Based MT

In this section, we delve into transfer-based MT systems as they are used as the

MT component of the proposed speech translation system. In a transfer-based

MT system, the translation is obtained in three stages. Figure 2.4 represents

the simplified architecture and the components used in such a system. In each

stage, the system makes use of different lexicons: source lexicon, transfer lexicon,

and target lexicon. The source lexicon contains lexical entries and information

related to the analysis of the source language. The transfer lexicon contains the

lexical translations of words from source to target language. Meaning selection

rules are also placed in the transfer lexicon. The target lexicon contains lexical

entries and information related to the generation of the target language.

Morphological

Analysis

Syntax

Source

Lexicon

Morphological

OrderingLexical

Structural

Transfer Generation

Source Target

Transfer

Lexicon Lexicon

Target

Figure 2.4: Transfer-Based MT Architecture.

In the analysis stage, morphological analysis and syntactic analysis (explored

in detail in Section 2.5) are carried out. During morphological analysis, inflected
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forms of the words in the source sentence are stemmed and looked up in the

source lexicon. The syntactic analyzer parses the string of words to catch all

linguistic information existing in the source sentence. At the end of parsing,

an intermediate representation specific to the source language is constructed.

This intermediate description is usually a complex data structure that facilitates

the representation of the grammatical features and values required during the

processing. It must be capable of representing both simple values and complex

values such as lists and sets. Detailed examples of these structures are given in

Section 3.3 and Section 3.4.

In the transfer stage, the source-language-specific information is mapped to a

target language representation. This mapping is accomplished in two dimensions.

First, the intermediate representation is modified structurally. This modification

is dictated by the transfer rules according to the target language specifications.

Second, word forms in the source language are replaced with appropriate mean-

ings in the target language. Meaning selection rules that investigate the internal

representation can be utilized at this stage to pick the most proper meaning.

At the final stage of a transfer-based MT system, the output in the target

language is generated. Generational morphology rules are applied to the stem

forms in the intermediate representation in order to synthesize the inflected word

forms. During this morphological processing, information contained in the target

lexicon can be utilized. Once the eventual word forms are ready, word-ordering

rules are used to generate the ultimate translation.
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2.3.5 Statistical MT

Statistical approaches to build the MT have been utilized since MT was first

introduced. However, statistical approaches were abandoned quickly because

their capabilities were underestimated. After they proved to be useful in similar

language-processing tasks, such as ASR, researchers started to utilize them again

for MT in the beginning of 1990s (Brown et al., 1990).

Statistical MT is very different from rule-based MT approaches. Analogous

to other statistical applications like ASR, it is based on N-gram language models.

The similarity in the tools being used in statistical MT and ASR leads to efficient

coupling of these two components.

Given a sentence S in a source language to be translated to a sentence T in

a target language, the aim is to maximize the probability P (T |S). The sentence

with the highest probability T̂ is:

T̂ = argmax
T

P (T |S) (2.1)

T̂ = argmax
T

P (S|T )P (T ) (2.2)

The fundamental equation of statistical MT (2.2) includes the following two

components: P (S|T ), the translation model, and P (T ), the language model of

the target language. The language model component keeps track of the fluency

of the generated text, and the translation model keeps track of the faithfulness

of the translation (Jurafsky & Martin, 2008).
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In Och (2002), different advantages of the statistical MT approach over the

other rule-based approaches are listed. The main advantage is the relatively

smaller amount of time and human resources required to develop an MT for a

new language pair.

2.3.6 Hybrid MT

As mentioned in previous sections, rule-based MT and statistical MT approaches

have different advantages and disadvantages. The motivation behind the idea of

hybridization is to complement the advantages of rule-based and statistical ap-

proaches. The rule-based approach tries to understand the basic principles of

each language and encodes the principles and the transfer into rules. In the sta-

tistical approach, large quantities of parallel corpus is analyzed and a translation

model is learned. The former approach claims that language is too complex to

be represented by alignments and the latter approach claims that language is too

complex to be represented by abstract rules.

Recent systems (Llitjos & Vogel, 2007; Oepen et al., 2007) try to combine

linguistic and statistical techniques in a single system to improve translation

quality. There are many challenges in developing a hybrid system: First, the re-

sulting hybrid system should only inherit the best features of the two approaches

rather than inheriting the worst features. Otherwise the translation quality will

decrease. Next, the complexity of the final system should be at a maintainable

level. Combining different technologies into a single system will introduce some

complexity which should not obstruct the benefits. Finally, how the two ap-
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proaches are combined is also very important, e.g. complementing a rule-based

MT with stochastic tools versus complementing a statistical MT with structural

tools. The degree of hybridity inside each component is likewise significant. For

example, a transfer based MT is fully hybrid if at each step of the processing

(i.e. analysis, transfer and generation), structural and statistical tools are used

in combination. These challenging problems must be overcome so that the hy-

bridization becomes feasible.

Figure 2.5 shows the relation between rule-based MT, statistical MT and hy-

brid MT. By definition, an MT system is said to be hybrid if it utilizes structural

and statistical tools together. A system is described to be fully hybrid, only if

structural and statistical tools are included in a balanced manner. As depicted in

Figure 2.5, a hybrid MT can be located in a wide range in terms of the exploited

technologies.

Tools

Rule−based MT Statistical MTHybrid MT

Structural
Tools

Statistical

Figure 2.5: The relation between hybrid MT and others.
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2.4 Speech Translation

Figure 1.1 represents the main goal of the speech translation (ST) task. In order

to build an ST application, different components such as ASR and MT have

to work in a composed manner. Depending on the type and tightness of such

integration, the input to the MT component can be different from the text input.

In many ST systems, including Mathias and Byrne (2006), Ney (1999), Vidal

(1997), and Lavie et al. (1996), the MT is fed with the “speech input”, which is

actually a word graph containing many possible recognition hypotheses.

In state-of-the-art speech translation systems, the implementation is not just

a simple sequential operation where speech is first transformed into text form and

then translated into the target language. If implemented in this manner, then the

probability of translating a text with recognition errors is high. A proper coupling

mechanism should allow for the handling of possible recognition errors inside the

translation component (Ney, 1999). In other words, the coupling mechanism

should not restrict the speech translation system to one single recognized text;

instead it should tolerate recognition errors to a certain extent. We explore in

detail different coupling approaches used in ST in the following section.

2.4.1 Coupling

In Harper et al. (1994), the authors use the term “coupling” to define the integra-

tion of the language model with the speech recognition system. We use the same

terminology to indicate the integration of the translation system with the speech
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recognition system. As mentioned briefly in Section 1.1, Harper et al. (1994) clas-

sified the level of integration into three categories: tightly-coupled, semi-tightly

coupled, and loosely-coupled. The representation in Figure 2.6, taken from Ring-

ger (1995), depicts the architectural differences in the three approaches.

In a tightly-coupled system, the border between the recognizer and the parser

is barely identifiable. The input to the system is processed incrementally at all

levels. Tight coupling has a psycholinguistic motivation in the sense that humans

seem to perform acoustic and linguistic analysis similarly in an incremental man-

ner (Ringger, 1995). Knowledge-sources are shared by the recognizer and the

parser. Tightly-coupled systems are hard to scale because of the inseparable

and complex architecture. This method of coupling is not feasible for intricate

language models because of the difficulty of implementation.

Parser
Speech

Speech

Recognizer

Recognizer

Speech

Recognizer

a)

b)

c)

Parser

Parser

Figure 2.6: Tightness of coupling: a) tight, b) semi-tight, and c) loose.

28



Loosely-coupled systems are constructed from available components that were

independently designed and implemented. This is done with a software engineer-

ing motivation. In such systems, components try to resolve ambiguities inde-

pendently. Each module has its own isolated knowledge-source; these sources

are not shared between the components. There is a one-way data flow from the

recognizer to the parser. In this approach, it is considerably easier to scale the

components because of this independence. Loosely-coupled systems are feasi-

ble for large problems and complex language models. Loose coupling enables

the utilization of different approaches in each component. A statistically-based

recognizer can be coupled with a rule-based parser in a loose manner.

Semi-tight coupling is somewhere between the other two approaches in terms

of the degree of tightness, scalability and computational complexity. There is a

two-way information exchange between the recognizer and the parser. Table 2.1

summarizes the features for all three coupling approaches.

2.5 Parsing

Parsing, in its simplest form, is the process of converting an input string to a

structural representation. A more descriptive definition of parsing would be “the

process of determining if a string of tokens can be generated by a grammar”

(Aho et al., 1986). Before going into the details of parsing, we give some basic

definitions of related key terms in parsing.

From the theory of computation perspective, a formal language is the set
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Table 2.1: Summary of features for coupling approaches (Ringger, 1995).

feature tight semi-tight loose

Motivation Psycholinguistic
evidence Compromise

Software
Engineering

Modularity of
Knowledge-
Sources

All KSs
integrated in
single model

KSs can be
removed but not

isolated
Isolated KSs

Inter-module
Communication N/A Two-way One-way

Scalability Hard Reasonable Easy

Computation
Complexity

Feasible only
with simple

language models

Feasible for
models of
moderate
complexity

Feasible for
large problems
and complex

language models

of strings over an alphabet (Σ). The set of acceptable forms define the syntax

of the language (Sudkamp, 1991). Grammars are used to specify which forms

are syntactically correct or incorrect. The sentences that can be derived by

using a specific grammar are said to be grammatical sentences. Ungrammatical

sentences cannot be derived according to that specific grammar. Similarly, a

natural language can be regarded as the infinite set of sentences over the words

of the language. A grammatical sentence in Turkish means that the sentence can

be derived using the words and rules of the Turkish grammar.

For the purpose of parsing natural languages, we are interested in context-free
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grammars (CFG). A CFG is defined using a 4-tuple (V ,Σ,R,S):

• V is the finite set of variables, or non-terminal elements.

• Σ is the finite set of terminal symbols disjoined from V .

• R is the finite set of rules where each rule is a production of the form

A → a. A is a non-terminal from V and a is a string of variables and

terminals.

• S is the starting symbol from V .

Table 2.2: Grammar G1 describing a small fragment of Turkish.

1. Sentence → Noun-Phrase Verb-Phrase

2. Noun-Phrase → Pronoun

3. Noun-Phrase → Noun

4. Noun-Phrase → Pronoun Noun

5. Verb-Phrase → Verb-Phrase Adv-Phrase

6. Verb-Phrase → Noun-Phrase Verb

7. Verb-Phrase → Verb

8. Adv-Phrase → Adverb

9. Pronoun → o

10. Noun → kitap

11. Adverb → dün

12. Verb → okudu
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The grammar G1 in Table 2.2 is an example of a CFG describing a small

fragment of the Turkish language. There are in total 12 rules or productions.

The set of non-terminals V is {Sentence, Noun-Phrase, Verb-Phrase,

Adv-Phrase, Pronoun, Noun, Adverb, Verb}. The starting symbol of

the grammar is Sentence. The set of terminals S is {o, dün, kitap, okudu}.

Derivation is the process of substituting the grammar rules until no variable

remains and the sentence is formed. Thus the derivation for the Turkish sentence

“o kitap okudu” (he read [a] book, literally “he book read”), according to context-

free grammar G1 is as shown in Table 2.3.

Table 2.3: Sample derivation according to grammar G1.

Sentence ⇒ Noun-Phrase Verb-Phrase (rule 1)

⇒ Pronoun Verb-Phrase (rule 2)

⇒ o Verb-Phrase (rule 9)

⇒ o Noun-Phrase Verb (rule 6)

⇒ o Noun Verb (rule 3)

⇒ o kitap Verb (rule 10)

⇒ o kitap okudu (rule 12)

In the derivation shown in Table 2.3, the non-terminal in the leftmost position

is substituted at each step. This type of derivation is called leftmost derivation.

Alternatively, in a rightmost derivation, the variable in the rightmost position

is substituted at each step. Another aspect of the above derivation is that the
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most recent non-terminal is substituted until it is resolved into its terminal con-

stituents. This type of derivation is called depth-first derivation. The opposite is

breadth-first derivation in which all of the non-terminals in a step are expanded

only one level before proceeding to the next level downwards.

A parse tree is a graphical way of representing the derivation sequence. Fig-

ure 2.7 depicts the parse tree for the derivation of the Turkish sentence “o kitap

okudu” (he read a book). The starting symbol of the grammar is the root node at

the top in the parse tree for a grammatical sentence. Leaf nodes at the bottom

are the terminals, or the words in the language. The nodes in between the root

and the leaves are built out of the non-terminal variables, or the syntactic cate-

gories in the grammar. A parse tree is an appropriate representation to decide

whether a sentence is grammatical or not. The structure of the tree gives infor-

mation about the derivations applied on the input, but it does not indicate the

direction (leftmost vs. rightmost) or the strategy (depth-first vs. breath-first).

Finally, we define parsing as the process of searching for the derivation se-

quence for an input string according to a grammar. At the end of parsing, we

convert the input into a structural representation like a parse tree.

2.5.1 Ambiguity

It is usually the case that, for a certain input, there is more than one possible

derivation sequence. Thus, there will be many corresponding parse trees instead

of one. The possibility of multiple parses is called ambiguity and it is quite
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sentence

noun-phrase verb-phrase

pronoun noun-phrase verb

noun

o kitap okudu
(he) (book) (read)

Figure 2.7: Parse tree for the derivation of “o kitap okudu” (he read [a] book).

common in natural language parsing. A different parsing indicates a different

meaning. Syntactic knowledge is not enough to resolve ambiguities. Semantic

clues and contextual information are also needed to deal with ambiguities.

Consider the same input “o kitap okudu” (he read [a] book) and the same

grammar G1. Another syntactically possible derivation is listed in Table 2.4.

This new derivation requires one less substitution compared to the previous one.

The English translation for the same input form with the below derivation would

be “that book read [sth]”. Although this ambiguous derivation is grammatical

according to G1, it is meaningless in the sense that it states that an inanimate

object reads something.

In general, a different derivation pattern is obtained by applying different

rules. Thus, the decision to pick the appropriate rule becomes very important in
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Table 2.4: Ambiguous derivation according to grammar G1.

Sentence ⇒ Noun-Phrase Verb-Phrase (rule 1)

⇒ Pronoun Noun Verb-Phrase (rule 4)

⇒ o Noun Verb-Phrase (rule 9)

⇒ o kitap Verb-Phrase (rule 10)

⇒ o kitap Verb (rule 7)

⇒ o kitap okudu (rule 12)

order to get the desired parsing. Figure 2.8 shows the alternative parse tree for

the derivation listed above. Structural ambiguity can occur at any level during

the parsing process. It is also possible that only one correct parse tree exists, but

there are some local ambiguities that fail and do not reach the final parse tree.

These kinds of local ambiguities introduce parsing inefficiency.

2.5.2 Top-down vs. Bottom-up Parsing

A top-down parser starts to build the parse tree from the topmost root node

down to the leaves. The root node is expanded using the appropriate rules in

grammar. The search for the final parse tree continues in this top-down manner

until all the words in the input are assigned a leaf node. Parsing fails if a parse

tree that spans all the words in the input sentence cannot be built; otherwise,

parsing succeeds.

In bottom-up parsing, on the other hand, the building of the parse tree starts

from the leaf nodes. Appropriate rules are applied, and the nodes are extended
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sentence

noun-phrase verb-phrase

pronoun noun verb

o kitap okudu
(he) (book) (read)

Figure 2.8: Parse tree for “o kitap okudu” (that book read [sth]).

from bottom to top toward the root node. Parsing succeeds if the root node, i.e.

the starting variable S in grammar, can be reached and no words are left out of

the tree.

In top-down parsing, there is the risk of building sub-trees that will not be

part of the final parse tree. Still it does not waste time on sub-trees that do not

lead to the starting variable S. In bottom-up parsing, the opposite advantages

and disadvantages exist. While it never builds sub-trees inconsistent with the

input, this method wastes time on sub-trees that do not lead to S. In order to

avoid sacrificing the advantages of both approaches, the best parsing strategy

would be to combine the two.

36



2.5.3 Chart Parsing

Because of the high cost of backtracking, algorithms with error recovery tech-

niques are not utilized for parsing natural languages. Priority is given to al-

gorithms employing dynamic programming; approaches such as the CKY parser

(Younger, 1967), the Earley parser (Earley, 1970), or the chart parser (Kay, 1986).

These parsers keep a table of partial solutions constructed and used during the

analysis process.

Using a table or chart in parsing eliminates the need for backtracking by

avoiding the multiplication effort. Another very important advantage of this

technique is that it allows partial parsing of the input. This is a vital feature

in syntactic parsing of natural languages in MT. Even if there is no successful

parse tree for the whole sentence at the end of the analysis, different sub trees

can be joined to cover the whole input. The use of a chart provides a compact

representation for local ambiguities mentioned in Section 2.5.1.

The CKY parser is a bottom-up parser. It requires the grammar to be in

Chomsky Normal Form (CNF), where each rule is in the form of A → B C

or A → a. This requirement forces the original grammar to be transformed

into CNF before parsing. Thus, the resulting parse tree will include different

categories that do not exist in the initial grammar. Additional processing is

needed to convert back to a parse tree consistent with the grammar. The details

of the CKY parser have been omitted, since it is out of the scope of this thesis.

A chart is a collection of nodes connected by edges labeled with syntactic
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category information. Figure 2.9 represents a sample chart in a graphical way.

As new edges are constructed, they are inserted into the chart. Duplicate edges

are not allowed in the chart. Note that the chart contains edges from both the

parse tree in Figure 2.7 and the parse tree in Figure 2.8. For the purpose of

simplicity, some edges in the chart have been discarded.

1 2 3 4o kitap okudu

pronoun

noun-phrase

noun

verb-phrase

sentence

verb

Figure 2.9: Graphical representation of a sample chart.

In an active chart parser, the parsing process is guided in a dynamic manner

by an agenda which sets the order of the parsing. An Earley chart parser is

passive in the sense that the processing is static. The parser proposed in (Kay,

1986) uses an agenda and is active because the processing is dynamic. In this

thesis, whenever a chart parser is mentioned, an active chart parser should be

understood, unless otherwise specified.
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1 2 3 4o kitap okudu

sentence → noun-phrase • verb-phrase

verb-phrase → • noun-phrase verb

Figure 2.10: Chart containing incomplete edges.

In Figure 2.9, only complete edges are shown. However, a chart also contains

incomplete or active edges. An incomplete edge represents a stage during pro-

cessing and it is usually illustrated with a dotted rule. The variables on the left of

the dot indicate that they are consumed at that specific stage. The variables on

the right of the dot are the remainder parts, waiting to be matched. Figure 2.10

depicts a chart with two incomplete edges.

Algorithm 2.1 presents the chart parsing algorithm in pseudo-code format.

The agenda and the chart are the two essential data structures in the parser.

The agenda is simply a list of edges waiting to be inserted into the chart. Before

any edge is inserted into the chart, it is put into the agenda. The strategy

used in the agenda determines the order that the edges are added to the chart.

Using a stack data structure in the agenda results in a depth-first search strategy.

Likewise, a queue results in a breath-first search strategy.

The algorithm starts with the initialization of the chart and agenda. Addi-
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Algorithm 2.1: The chart parsing algorithm.

input : grammar , sentence output : char t

algorithm Chart−Parse

Initialize ( chart , agenda , sentence )

while agenda is not empty

edge ← Pop ( agenda )

Process−Edge ( edge )

end while

end algorithm

procedure Process−Edge ( edge )

Push ( chart , edge )

Fundamental−Rule ( edge )

Predict ( edge )

end procedure

tionally, the input words are looked up in the source lexicon, and for each word, a

complete edge is inserted into the agenda. As a general rule, an edge is inserted

into the chart and agenda, only if not done so before. Thus, it is guaranteed

that any given edge is processed only once. After initialization, the while loop

pops up one edge at a time from the agenda and processes it. The algorithm

terminates if the agenda is empty.

At the first step of Process-Edge, the edge parameter is inserted into the

chart. Next, the fundamental rule of chart parsing is applied to the current edge.

This rule checks for two adjacent edges; the first of which should be incomplete

and the second of which should be complete. If this condition is satisfied, and if
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the first variable in the remainder of the incomplete edge and the rule variable

of the complete edge match, then a new edge spanning both edges is inserted

into the agenda. The dot in the incomplete edge is advanced to the appropriate

position in the new edge.

After the execution of the Fundamental-Rule, listed in Algorithm 2.2, new

edges, based on the current edge, are predicted. The prediction is the creation

of new edges to be inserted into the agenda according to a strategy. Top-down,

bottom-up, or an integrated strategy can be followed. Finally, after the algorithm

terminates and the chart is filled, the parse tree is extracted. The extraction

begins with the starting symbol, and all constituent edges are retrieved by tracing

down until the leaf levels are reached.

In Stock et al. (1988), the concept of bidirectional charts is introduced.

Instead of starting from the beginning of the sentence and extending toward

the end of the sentence, the processing starts from previously determined words,

called “islands”, and extends in both directions. This enables the processing to

be carried out in a selective manner.

2.5.4 Unification Based Parsing

The basic form of CFG is satisfactory for modeling formal languages, but it is

rarely adequate for natural languages. In order to represent complex phenomena

existing in natural languages, some extensions are required. Most of the time, it is

insufficient to use only the generalized forms of syntactic categories in grammar.
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Algorithm 2.2: Fundamental rule of chart parsing and the prediction procedure.

procedure Fundamental−Rule (A → α • D, [j, k])
i f D = Bβ // edge i s incomple te

for each (B → γ•, [k, l]) in char t

Push ( agenda , (A → αB • β, [j, l]) )

end for

else // edge i s complete ; D i s empty

for each (C → γ • Aβ, [i, j]) in char t

Push ( agenda , (C → γA • β, [i, k]) )

end for

end i f

end procedure

procedure Predict (A → α • D, [j, k])
i f D is null // edge i s complete

for each C → Aβ in grammar

Push ( agenda , (C → A • β, [j, k]) )

end for

else If D = Bβ // edge i s incomple te

for each B → γ in grammar

Push ( agenda , (B → •γ, [k, k]) )

end for

end i f

end procedure

Additional features in the constituents are required to decide whether a sentence

is grammatical or not. For example, in Turkish, the subject and the verb in

a phrase have to agree with each other in terms of the person and number

categories. A possible solution to formalize this requirement in the grammar is

to introduce new variables which reflect the new information (e.g. noun-1-sg

and verb-1-sg). Then, to account for the subject-verb agreement, we can write
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a new rule as shown below:

verb-phrase→ noun-1-sg verb-1-sg (2.3)

However, this approach is not promising, considering the excessive number

of rules and variables that need to be inserted into the grammar. A better

approach would be to associate each variable with a list of features and values.

These feature-value lists are called the attribute-value matrix (AVM). The values

associated with each attribute in the AVM can be simple (e.g. atomic string,

id) or complex (e.g. list). This extension with features and values leads to an

augmented grammar. The rule in (2.3) can be rewritten as follows:

verb-phrase → noun verb

person 1

number sg






person 1

number sg




(2.4)

It is not enough to associate variables in the grammar with feature-value

lists. Additionally, there is a need for a mechanism to make use of these features.

Therefore, parsers are extended with functional power in order to employ the as-

sociated AVMs. This functionality is used to formulate constraints on the rules.

In this augmented parsing approach, for the problem of subject-verb agreement,

a constraint can be specified so that the rule will succeed only if the associated

AVMs unify successfully. This unification mechanism is also used for other pur-

poses. To make use of the feature-values in subsequent rules, the features are

propagated toward newly built categories. The AVM structures coming from
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the constituents are unified into one AVM, and that newly built structure is

associated with the rule variable.




form ‘okudu’

tense past

number sg

person 1

subj




form ‘o’

number sg

person 1




obj




form ‘kitap’

number sg

animate minus







Figure 2.11: Attribute value matrix.

These extensions give the parser a Turing-equivalent power, which is more

than enough to parse any context-sensitive grammar, where natural languages are

placed in the Chomsky-hierarchy. It has to be noted that parsing with unification-

based grammars is more expensive compared to standard parsing approaches.

Additional constraint operations introduce an extra processing load on the parser;

however, the value they add is worth the price.
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2.5.5 Optimization in Parsing

The number of rules required in a grammar to model a natural language can

range from a couple hundred (if using unification-based parsing) to more than

10.000 (if using direct parsing of CFGs). In any case, efficiency is a significant

issue in parsing. As a fundamental principle, any possible analysis is inserted

into the chart, whether it is useful at the end of parsing or not. The aim in

optimization is to get rid of the edges that can be predicted to be ineffectual.

Bottom-up filtering, a strategy used in top-down parsing, aims to optimize the

parsing process. The strategy is introduced in Rosenkrantz and Lewis (1970) and

it is based on the detection of the first constituent of a phrase which is the left-

corner of the tree. A table containing the left-corner categories for each variable

is constructed before parsing. This table is consulted during parsing to block

edges that will fail in the long term. In a more formal way, no edge of the form

(A → α • B, [i, j]) is inserted into the agenda unless αj+1 is a left-corner of B. The

implementation is done by adding new constraints to the fundamental rule and

to the prediction process of chart-parsing. The new constraints check left-corners

before inserting any edge into the agenda. Blache and Morin (1990) propose a

parser which combines bottom-up filtering and unification-based parsing.

In Moore (2004), a chart parser for non-augmented CFG grammars is pre-

sented. Different additional optimization strategies are combined in this parser.

The author claims to achieve improvements that result in increases in speed

averaging 38% or more.
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CHAPTER 3

THE SPEECH TRANSLATION SYSTEM

The general architecture of the proposed speech translation system is depicted

in Figure 3.1. The system is loosely coupled; in other words, there is a one-

directional information flow between the SR and MT. The original word graph

created by the SR is determinized and minimized according to FSM minimization

algorithms (Mohri & Riley, 1997) and N-best hypotheses are extracted based on

acoustic scores (Mohri et al., 1998). The extracted data format is again a word

graph. The pruned word graph is processed by the MT component (described in

Her (1996)) of the speech translation system.

The MT task deploys a transfer-based approach, and processing is divided

into three clear-cut phases: analysis, transfer and generation. At the end of the

analysis, any ambiguity is resolved and the best-sentence hypothesis is chosen

for the transfer stage. The analysis is accomplished in two consecutive tasks.

First, morphological analysis is performed at the word level, and any information

carried by the word is extracted to be used in later stages. Next, syntactic analysis

is performed at the sentence level.
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Source Language Speech

Generation

Word Graph Processor

Transfer

Analysis

MT

Target Language Text

N−Best Word Graph

Time−State Lattice

ASR

Figure 3.1: Speech Translator.

3.1 The ASR and the Word Graph Processor

The ASR component used in the proposed architecture can be any ASR system

that outputs hypotheses in word graph format. All state-of-the-art ASR systems

produce word graph format. Thus, the speech translation architecture is not

bound to a specific ASR system. Details of the word graph processing component

is explored in Chapter 4.
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3.2 Morphological Analysis

A chart parser augmented with unification-based feature structures (fs) lies in

the heart of the morphological analyzer. The parser is responsible for both anal-

ysis and generation tasks. Morphological rules are used to derive the uninflected

form of an inflected word during analysis. An imaginary rule definition is given

in Algorithm 3.1. The sample rule states that a complete edge with category

‘word-cat’ is built if all essential elements in the definition are matched. A

morpheme label is defined with a fs and a set of string operations. A morpheme

is matched if at least one of the string operations in the set succeeds. Moreover,

the fss of all matching morphemes and the fs that comes from the lexical stem

should unify. A morpheme with a non-unifying fs is not matched.

Algorithm 3.1: Imaginary morphology rule definition.

morph−rule : :

stem

( morph1 )

{ morph2 morph3 }

morph4 ∗
< morph5 morph6 >

→
word−cat

The rule definition is composed of morpheme categories bundled with regu-

lar expression formalism. Parentheses represent optionality; the asterisk and the

plus are the signs for kleene-star and kleene-plus, respectively. Disjunction is rep-
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resented by curly brackets and morpheme categories listed inside angle brackets

represent free ordering. The regular expression formalism is recursive; disjunctive

or optional elements can also contain disjunctive or optional elements. A valid

ordering that can be matched with the rule in Algorithm 3.1 could be ‘morph5

morph6 morph2 stem’. It is important to note that the ordering does not

imply concatenative morphotactics; instead, the ordering refers to the sequence

of the application of the morpheme operations, which might or might not be

concatenative, on the word.

Edges in the chart represent arcs spanning morpheme categories and the

lexical category of a word. A complete edge remaining inactive in the chart

describes a successfully matched word with its lexical stem and all its morphemes.

An incomplete edge represents already matched morphemes and is active in the

chart and is looking for other morphemes or a lexical stem in order to build a

complete edge.

Morphological rules in the grammar are compiled into deterministic FSMs.

Each morpheme category in the rule definition corresponds to an arc in the

FSM. During analysis, processing starts from the last morpheme category in

the rule definition and continues toward the stem. The morphemes used in the

rule definition are associated with allomorph tables and typed feature structures.

Each row in the allomorph table contains an allomorph described by a set of

morphological string operations.

The successful matching of a morpheme indicates that at least one of the

string operations in the corresponding allomorph table is performed successfully.
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String operators are unary functions that allow prefixal, suffixal, circumfixal and

infixal modification of the word. String modifications applied during analysis

and generation employ opposing operations (e.g., cut vs. add, geminate vs. de-

geminate). In analysis, feature structures associated with the matching arc are

unified in order to build the final feature structure. A similar system integrating

feature structures and a finite-state model is presented in Zajac (1998).

3.3 Syntactic Parsing

The syntactic analyzer consists of a chart parser in which the rules modeling the

source language grammar are augmented with feature structures. The grammar

is implemented using Lexical Functional Grammar (LFG) paradigm. The pri-

mary data structure to represent the features and values is a directed acyclic graph

(dag). The system also includes an expressive Boolean formalism, used to rep-

resent functional equations to access, inspect, or modify features or feature sets

in the dag. Complex feature structures (e.g., lists, sets, strings, and conglomer-

ate lists) can be associated with lexical entries and grammatical categories using

inheritance operations. Unification is used as the fundamental mechanism to

integrate information from lexical entries into larger grammatical constituents.

3.3.1 Bidirectional Chart Parsing

The chart parsing algorithm given in Algorithm 2.1 processes input texts from

left to right. Given a grammar rule like A → BCD, the parser tries to match
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first B then C and finally D. The beginning state is expressed with a dotted rule

as A → •BCD. The dot is advanced one position at a time while each category

is matched. Different from this approach, in Steel and de Roeck (1987), the

idea of bidirectional parsing is introduced. In bidirectional parsing, processing

can start on any selected category in the right-hand-side of the grammar rule.

Then, it continues outwards from the selected category, called trigger, to both

directions. The states in bidirectional parsing are represented with double-dotted

rules. Assuming that C is the trigger, the state in which the trigger is matched

is represented as A → B •C •D. At a next state, the first dot is advanced to the

left if B is matched or the second dot is advanced to the right if D is matched.

Bidirectional parsing requires modifications on the original chart parsing al-

gorithm. Algorithm 3.2 shows the updated Fundamental-Rule procedure in

bidirectional chart parsing. Basically, it checks adjacent edges on both dots.

Thus, the processing continues to both directions after starting from the trigger

category.

Similarly, the Predict procedure in the one directional version of the chart

parsing algorithm should be adapted to work in a bidirectional way. Algorithm

3.3 shows the updated BD-Predict procedure. If the parameter to the proce-

dure is a complete edge and if the category built by that complete edge matches

the trigger in a bottom-up rule, then a new edge is created and inserted into

the agenda with that bottom-up rule. However, if the parameter is an incom-

plete edge, then the top-down rules that build the categories expected in both

directions are inserted into the agenda as new edges.
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Algorithm 3.2: Updated fundamental rule in bidirectional chart parsing.

procedure BD−Fundamental−Rule (A → B • α • C, [j, k])
i f B = βD // edge i s incomple te

for each (D → •δ•, [i, j]) in char t

Push ( agenda , (A → β • Dα • C, [i, k]) )

end for

end i f

i f C = Dγ // edge i s incomple te

for each (D → •δ•, [k, l]) in char t

Push ( agenda , (A → B • αD•γ, [j, l]) )

end for

end i f

i f B is null and C is null // edge i s complete

for each (D → βA • γ • δ, [k, l]) in char t

Push ( agenda , (D → β • Aγ • δ, [j, l]) )

end for

for each (D → β • γ • Aδ, [i, j]) in char t

Push ( agenda , (D → β • γA • δ, [i, k]) )

end for

end i f

end procedure

3.3.2 Constituent Structure and Functional Structure

The constituent structure (c-structure) represents the composition of syntactic

constituents for a phrase. It is the term used for parse tree in LFG. The func-

tional structure (f-structure) is the representation of grammatical functions in

LFG. Attribute-value-matrices are used to describe f-structures. A sample c-

structure and the corresponding f-structures in English are shown in Figure 3.2.
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Algorithm 3.3: Updated prediction procedure in bidirectional chart parsing.

procedure BD−Predict (A → B • α • C, [j, k])
i f B is null and C is null // edge i s complete

for each D → βAγ in grammar where A is t r i g g e r

Push ( agenda , (D → β • A • γ, [j, k]) )

end for

else

i f B = βD // edge i s incomple te

for each D → γ in grammar

Push ( agenda , (D → γ•, [j, j]) )

end for

end i f

i f C = Dγ // edge i s incomple te

for each D → γ in grammar

Push ( agenda , (D → •γ, [k, k]) )

end for

end i f

end i f

end procedure

For simplicity, many details and feature values are not given. The dag containing

the information originated from the lexicon and the information extracted from

morphological analysis is shown on the leaf levels of the parse tree in Figure 3.2.

The final dag corresponding to the root node is built during the parsing process

in cascaded unification operations specified in the grammar rules.
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


cat s

form ‘look’

tense past

subj


form ‘he’

proper plus




obleak




form ‘kids’

def plus

pform ‘after’







s

np vp

pro v pp

p np

det n

he looked after the kids




cat pro

proper plus

case nom

num sg

person 3





cat v

tense past




[
cat prep

] 
cat det

def plus







cat n

proper minus

num pl

person 3




Figure 3.2: The c-structure and the associated f-structures.

3.3.3 Parse Evaluation

After all rules are executed and no more edges are left in the agenda, the chart

parsing process ends and parse evaluation begins. The chart is searched for com-
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plete edges with the final symbol of the grammar (e.g. sbar) as their category.

Any such edge spanning the entire input represents the full parse. If there is no

such edge then the parse recovery (Section 3.3.4) process takes control.

If the input sentence is ambiguous, then, at the end of parsing, there will be

multiple parse trees in the chart that span the entire input. Similarly, a grammar

built with insufficient constraints can lead to multiple parse trees. In this case,

all possible edges are evaluated for completeness and coherence (Bresnan, 1982)

starting from the edge with the highest weight. A parse tree is complete if all

the functional roles (subj, obj, scomp etc.) governed by the verb are actually

present in the c-structure; it is coherent if all the functional roles present are

actually governed by the verb. The parse tree that is evaluated as complete and

coherent and has the highest weight is selected for further processing.

3.3.4 Parse Recovery

In general, a parsing process is said to be successful if a parse tree can be built

according to the input sentence. The building of the parse tree fails when the

sentence is ungrammatical. For the goal of MT, however, a parse tree is required

for the transfer stage and the generation stage even if the input is not grammat-

ical. Therefore, for any input sentence, a corresponding parse tree is built at the

end of parsing.

If parsing fails, i.e. if all rules are exhausted and no successful parse tree has

been produced, then the system tries to recover from the failure by creating a
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tree like structure. Appropriate complete edges in the chart are used for this

purpose. The idea is to piece together all partial parses for the input sentence, so

that the number of constituent edges is minimum and the weight of the final tree

is maximum. While selecting the constituents, overlapping edges are not chosen.

The recovery process functions as follows:

• The whole chart is traversed and a complete edge is inserted into a candi-

date list if it has the highest weight for that start-end position. If two edges

have the same weight, then the farthest one to the leaf level is preferred.

• The candidate list is traversed and a combination with the minimum num-

ber of constituents is selected. The edges with the widest span get into the

winning combination.

• The c-structures and f-structures of the edges in the winning combination

are joined into a whole c-structure and f-structure which represent the final

parse tree for the input.

3.4 Transfer

Transfer is the process of converting source language representations (i.e. c-

structure and f-structure) into target language representations. The parse tree,

either selected at the end of parse evaluation or built at the end of parse recovery,

is further processed to be used in generation. Processing is directed by trans-

fer rules contained in transfer entries. The differences between the functional

56



structure of the source language and that of the target language are resolved at

the end of the transfer. Figure 3.3 depicts a sample mapping from English to

Turkish f-structures. There are two types of dissimilarities between the source

and target f-structures. First, English word forms are replaced (Section 3.4.1)

with Turkish word forms. Second, f-structure created according to the English

language analysis rules is modified (Section 3.4.2) so that it complies with proper

Turkish syntax analysis.

English Turkish




form ‘be’

tense pres

ncomp




form ‘book’

number plural

poss



form ‘you’

case gen







subj
[
form ‘these’

]




⇒




form ‘kitap’

number plural

tense present

poss



form ‘sen’

case gen




subj



form ‘bu’

number plural







‘These are your books’ ‘Bunlar senin kitapların’

Figure 3.3: Source language to target language transfer.
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3.4.1 Word replacement

Source language words represented in the f-structure under the label of form

are looked up in the transfer lexicon. If the word has multiple senses in the

lexicon, then the transfer meaning corresponding to the same category as in the

analysis is selected. The source language meaning is replaced with the selected

target language meaning. Figure 3.4 shows an abstract representation of the

English-Turkish transfer entry ‘book’. The word ‘book’ is analyzed as in the

sentence ‘these are your books’ as shown in Figure 3.3. Thus, one of the transfer

meanings listed under the category noun in the transfer entry is chosen and

inserted into the dag. The selection among multiple meanings in a category

is determined according to the selection rules contained in each meaning dag.

Selecting the correct word translation is important as this affects the translation

quality directly. So, selection rules must represent syntactic and semantic criteria

properly.

book


noun




fe action-1

value







form ‘kitap’

srule selection-1


,



form ‘defter’

srule selection-2


, · · ·








verb




fe action-2

value

{[
form ‘yer ayır’

]}







Figure 3.4: Abstract representation of ‘book’ transfer entry.
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3.4.2 Structural transfer

The dag in Figure 3.3 undergoes structural modifications other than word replace-

ment in order to be utilized in the generation module. In the English analysis of

the sentence, the copula verb ‘be’ is supplemented with a nominal complement

at the head position in the dag. Copulative constructions in Turkish are formed

without a verb, therefore, the head inside ncomp in the analysis dag becomes

the head of the entire dag. All the contents of ncomp are moved one level up

and the final dag is formed. The actions that modify the dag are specified in the

transfer entry under label fe (functional expression). The selection rule can also

contain dag manipulation expressions.

Any kind of deviation between the two languages should be resolved during

this stage using the tools explained above. For example, if the source language

does not mark gender information while the target language does, then default

gender information should be inserted at this stage.

3.5 Text Generation

Any processing done prior to this step can be regarded as a preparation to gener-

ation. The aim in generation is to produce a sentence in the target language with

proper word forms and in proper sequence. Three different jobs are performed

in consecutive order to accomplish the generation task.
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3.5.1 Target Word Lookup

form values in the f-structure are looked up in the target language lexicon and

the contents are extended into the dag. This operation is necessary to get infor-

mation specific to the target language generation task. For example, in Arabic,

there exist around 300 different plural inflection paradigms for nouns. The target

lexicon is referred to in order to decide on the inflection paradigm of a specific

noun. Without the target lexicon look-up, it is impossible to determine the

paradigm as this information does not exist in the f-structure coming from the

analysis and transfer.

It is important, however, that any new information that would generate a

sentence with a different meaning from the source sentence not be introduced

into the dag. For example, if a source verb is not marked for tense, then no tense

related information that can change the morphological generation of the target

word should be augmented from the target lexicon.

3.5.2 Morphological Generation

The aim in morphological generation is to produce the inflected form of a word

according to the features and values in the fs. The entire f-structure is traversed

and all form values, which indicate the stem forms, are supplied to the associated

morphology rules. At the end of the execution of the morphological rule, the

inflected form of the word is inserted into the dag as a new feature-value. This

label is used later to generate the target sentence. The Turkish f-structure in
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Figure 3.3 is presented after morphological generation in Figure 3.5.




form ‘kitap’

iform ‘kitapların’

number plural

tense present

poss




form ‘sen’

iform ‘senin’

case gen




subj




form ‘bu’

iform ‘bunlar’

number plural







Figure 3.5: Sample f-structure containing inflected forms.

From a practical point of view, morphological generation is the reverse action

of morphological analysis. A rule similar to the analysis rule can be used to

generate the desired word form. An important difference is in the direction of

the elements’ order of execution in the rule definition (explained in Section 3.2).

This is achieved by reversing the corresponding FSM. The starting state and final

states are switched and the directions of the arcs are changed.

Another deviation from analysis is in the string manipulation operations; re-

verse actions have to be carried out in generation. For example, cut operation in

analysis is replaced with add operation and vice versa. In general, morphological

generation can be described as a less difficult task compared to morphological
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analysis. The search space in generation is greatly reduced because of the linguis-

tic features available. The morphology rule and the morphotactic transformation

to be applied can be deduced from the available fs. In contrast, in morpholog-

ical analysis, all rules and transformations in the grammar have to be tested to

determine whether they succeed or not.

3.5.3 Word Ordering

In the word ordering stage, parts of the f-structure are projected onto a target

language sentence in accordance with ordering rules. The word ordering opera-

tion can be regarded as the reverse of parsing. A target language word ordering

grammar similar to the one in analysis is used in generation. There are even

some studies, e.g. Shieber (1988), that explore the usage of exactly the same

grammar in both analysis and generation.

The idea in word ordering is to traverse the functional structure and to gen-

erate the strings in a head-driven fashion. The generation rules actually describe

the order of the traversal. Similar approaches are presented in Shieber et al.

(1989), Kay (1996) and Neumann (1998). The sentence is generated by applying

the ordering rules at each level of the dag. A sample word ordering grammar is

represented in Table 3.1. Note that the rules contain functional roles instead of

the lexical categories.

Assuming that the rules in Table 3.1 are given, the derivation for the sample

f-structure will be as shown in Table 3.2. Each line represents both the rule
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Table 3.1: A small fragment of word ordering rules for Turkish.

# LHS RHS

1. sentence → copula-sentence

2. copula-sentence → subj poss iform

3. subj → iform

4. poss → iform

that is applied and the derivation that is obtained at the end of the step. The

process starts with the final symbol of the grammar. All non-terminal symbols

are expanded with appropriate rules. The operation continues until the derivation

string consists of all terminal symbols.
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Table 3.2: Sample derivation.

# Derivation String Rule

1. sentence

2. copula-sentence rule 1

3. subj poss iformfs rule 2

4. iformsubj poss iformfs rule 3

5. bunlar poss iformfs

6. bunlar iformposs iformfs rule 4

7. bunlar senin iformfs

8. bunlar senin kitapların
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CHAPTER 4

WORD GRAPH PROCESSING

In this chapter, the stages in word graph processing are explained. The elucidated

stages start from the moment the ASR produces an output and continue until

the final hypothesis is chosen at the end of the parsing process. The word graph

plays a fundamental role in the proposed system in order to integrate statistical

ASR with rule-based MT systems.

4.1 ASR Output

Speech recognition components produce output in a variety of different forms.

The structure of the output depends on the intended use of the ASR component.

If no further processing is required after ASR, then a single stream of recog-

nized words can simply be generated. However, if there is a need for additional

processing after ASR (e.g. in ST), then the generated output contains multiple

hypotheses. N-best list is an ordinary way of representing multiple hypotheses in

string form. Alternatively, a time-state lattice contains a lot more information

than the N-best list. A sample time-state lattice is shown in Figure 4.1.
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Figure 4.1: A sample time-state lattice.

4.2 Pruning the Word Graph

The word graphs produced by an ASR are far bigger than the one shown in

Figure 4.1. A small-sized lattice from the NIST HUB-1 (Pallett et al., 1994) data

set can easily contain a couple of hundred states and more than one thousand

arcs. The smallest lattice F1 in the set is shown in Figure 4.2. Another lattice

with 422 states and 1030 arcs, which is still far smaller than the largest one, from

the same data set is depicted in Figure 4.3. The largest word graph in the NIST

HUB-1 data set has 25 000 states and almost 1 million arcs. No unification-based

chart parser is capable of coping with an input of this size. It is impractical and

unreasonable to parse the FSM in the same form as it is output from the ASR.

Instead, the word graph is pruned to a reasonable size so that it can be parsed

according to acceptable time and memory limitations.

The pruning process contains the below listed steps in the specified order. The
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Figure 4.2: The smallest lattice F1 in the NIST HUB-1 data set.

tools used in stages 2 to 4 are taken from the ‘AT&T FSM LibraryTM’ (Mohri

et al., 1998).
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Figure 4.3: A sample mid-sized lattice from the NIST HUB-1 data set.
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1. Word graph to FSM conversion.

2. FSM determinization

3. FSM minimization

4. N-best list extraction

The above steps are explained in detail in the coming sub-sections.

4.2.1 Word Graph to FSM Conversion

The pruning process starts by converting the time-state lattice to a finite state

machine. This way, algorithms and data structures for FSMs are utilized in the

following processing steps. Each word in the time-state lattice corresponds to

a state node in the new FSM. The time slot information is also dropped in the

recently built automata. The links between the words in the lattice are mapped

as the FSM arcs.

In the original representation in a lattice, the word labels in the time-state

lattices are on the nodes, and the acoustic scores and the statistical language

model scores are on the arcs. Similarly, as depicted in Figure 4.2, the words

are also on the nodes. This representation does not fit into the chart definition

where the words are on the arcs. Therefore, the FSM is converted to an arc

labeled FSM, F2, as shown in Figure 4.4. The conversion is accomplished by

moving back the word label on a state to the incoming arcs. The start state in

F1 is also trimmed. The weights on the arcs represent the negative logarithms
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of probabilities. In order to find the weight of a path in the FSM, all weights on

the arcs existing on that path are added up.
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Figure 4.4: The arc-labeled FSM F2.

4.2.2 FSM Determinization

By looking closer into F2, one can discover that the FSM contains a high level

of redundancy. Many arcs correspond to the same word with a different score.

F2 is nondeterministic because, at a given state, there are different alternative
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arcs with the same word label. Before parsing the converted FSM, it is essential

to find an equivalent finite automata that is deterministic and that has as few

nodes as possible. This way, the work necessary during parsing is reduced and

efficient processing is ensured.

Any standard FSM can be determinized by the classical determinization al-

gorithm. However, this principle does not apply to weighted FSMs. In general, a

weighted finite automata that is not acyclic can be determinized (Mohri, 1997).

Figure 4.5 depicts the equivalent FSM F3 obtained after applying the deter-

minization algorithm given in Mohri and Riley (1997). F3 does not contain any

redundancy and there is at most one arc labeled with a word at any node.
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Figure 4.5: Equivalent FSM F3 obtained after determinization.

4.2.3 FSM Minimization

Like the weighted determinization algorithm, the classical finite state machine

minimization algorithm is generalized to deal properly with the probabilities

of alternative hypotheses (Mohri & Riley, 1997). Similar to standard FSMs,

any deterministic and weighted FSM can be minimized (Mohri, 1997). F4 is
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equivalent to F2 and F3 and it has the smallest number of nodes and the smallest

number of arcs among all.
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Figure 4.6: Equivalent FSM F4 obtained after minimization.

The weighted minimization algorithm works in two steps. In the first step,

the weights are pushed toward the initial state as much as possible. The aim in

this step is to obtain arcs with zero weights. In the second step, the arc label

and the weight are combined as a new label in order to make use of the classical

minimization algorithm.

4.2.4 N-best List Selection

The minimization process serves to shrink down the FSM to an equivalent au-

tomata with a suitable size for parsing. However, it is usually the case that the

size is not small enough to meet the time and memory limitations in parsing.

N-best list selection can be regarded as the last step in constricting the size.

A subset of possible hypotheses is selected among many that are contained in

the minimized FSM. The selection mechanism favors only the best hypotheses

according to the scores present in the FSM arcs.
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In Chow and Schwartz (1989), a Viterbi-style beam search algorithm that

finds the most likely N pattern alternatives is introduced. The algorithm guaran-

tees that the selected hypotheses are, in fact, the most likely sentence hypotheses.

The exhaustive search algorithm presented in Tran et al. (1996) also makes use

of Viterbi decoding. Likewise, the N-best path selection method implemented in

Mohri et al. (1998) utilizes also Viterbi decoding. Figure 4.7 depicts the first-best

hypothesis F5 that is extracted from F4. The path with the minimum weight is

the first-best path.
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Figure 4.7: F5, first-best hypothesis selected from F4.

4.2.5 A∗ Decoding

An alternative pruning method to the FSM approach explained in the previous

sections is A∗ decoding (Chelba & Jelinek, 1999). This method is based on the A∗

search algorithm (Nilsson, 1971). In contrast to the FSM approach, the essence

of the A∗ decoder is defined as a structural language model (SLM). A broad

introduction of the SLM is presented in Chelba and Jelinek (1998). The model

assigns a probability to every hypothesis and to every possible binary parse tree.
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Next, the A∗ search algorithm is utilized to find the maximum scoring hypoth-

esis by dynamic programming techniques. The whole approach is designed as a

two-pass mode where, in the first pass, the hypotheses containing acoustic and

language model scores are produced. In the second pass, the lattice accommodat-

ing the hypotheses is re-scored with A∗ algorithm to find the best hypothesis. The

structured language model is trained on a treebank corpus before the decoding

process.

4.3 Word Graph Parsing

The essential idea behind the system proposed in this study is to initialize the

chart of the MT parser using the simplified word graph. This way, all selected

sentence hypotheses are processed simultaneously. The initialized chart is parsed

until the first sentence hypothesis is selected. In its basic form, the chart models

a confusion network which might lead to spurious parse trees. We extend the

original chart representation and its processing in order to avoid spurious parses.

The advantage of the approach lies essentially in its ability to rule out non-

syntactic hypotheses in a parallel fashion.

The steps in word graph parsing is summarized below:

1. Initialize chart with the word graph

(a) Calculate for each node the distance to the starting node

(b) Calculate for each arc the length
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(c) Create an edge for each arc

i. Starting position is equal to distance

ii. Span is equal to length

iii. Contains start and end node labels

iv. Contains score

2. Process the chart until no new edges can be created

3. At the end of parsing

(a) If parsing succeeds, return the edge with highest score

(b) If parsing fails, recover from the failure.

4.3.1 Chart Initialization

The chart initialization procedure Chart-Init, listed in Algorithm 4.1, creates

from an input FSM a valid chart that can be parsed in an active chart parser.

The initialization starts with filling in the distance value for each node through

the Fill-Distance procedure given in Algorithm 4.2. The distance of a node in

the FSM is defined as the number of arcs on the longest path from the start

state to the current state. The length of an arc is defined as the difference of the

distance values of the starting and ending nodes of the arc. After the distance

and length values are set for all nodes and arcs in the FSM, an edge is created

for each arc. The while loop in the Chart-Init procedure passes over the arcs and

copies the appropriate information onto the newly built edge. The edge structure also

contains the start and end values in addition to the weight and label data fields. These
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position values represent the edge location relative to the beginning of the chart. The

starting and ending node information for the arc is also copied to the edge. This node

information is later utilized in chart parsing to eliminate spurious parses. The newly

created edge is inserted into the chart at each iteration of the while loop. The number

of edges in the chart is equal to the number of edges in the input FSM.

Algorithm 4.1: The chart initialization procedure.

input : fsm

output : char t

procedure Chart−Init ( fsm )

Fill−Distance ( fsm . s t a r t , 0)

temp = fsm . a r c l i s t . f i r s t

while temp is not null

edge . l a b e l = temp . l a b e l

edge . weigh t = temp . weigh t

edge . s t a r t = temp . s t a r t . d i s t ance

edge . f i n i s h = temp . f i n i s h . d i s t ance

edge . a r c s t a r t = temp . s t a r t . i d

edge . a r c f i n i s h = temp . f i n i s h . i d

char t . e d g e l i s t . push ( edge )

temp = temp . next

end while

end procedure

Consider the simple FSM F6 depicted in Figure 4.8, the corresponding two-dimensional

chart and the related hypotheses. Using Chart-Init algorithm, the chart is populated

with the converted word graph before parsing begins. Words in the same column can
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Algorithm 4.2: Procedure to find distance for each node in an FSM.

input : node , d i s t ance

output : updated node

procedure Fill−Distance (node , d i s t ance )

i f node . d i s t ance < d i s t ance

node . d i s t ance = d i s t ance

end i f

temp = node . outarcs . f i r s t

while temp is not null

next = temp . next

i f next . d i s t ance < d i s t ance + 1

next . d i s t ance = d i s t ance + 1

end i f

next . v i s i t o r++

i f next . v i s i t o r == next . i narc s . s i z e

Fill−Distance ( next , node . d i s t ance + 1)

end i f

temp = temp . next

end while

end procedure

be regarded as a single lexical entry with different senses (e.g., ‘boy ’ and ‘boycott ’ in

column 2). Words spanning more than one column can be regarded as idiomatic en-

tries (e.g. ‘escalated ’ from column 3 to 5). Merged cells in the chart (e.g., ‘the’ and

‘yesterday ’ at columns 1 and 6, respectively) are shared in both sentence hypotheses.
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F6:

0 1the

2boycott

3

escalated

4
yesterday

5
boy

6
goes

7to
school

Chart:

0 1 2 3 4 5 6

0 the 1

1 boy 5 5 goes 6 6 to 7 7 school 3

3 yesterday 4

1 boycott 2 2 escalated 3

Hypotheses:

• The boy goes to school yesterday

• The boycott escalated yesterday

• * The boy escalated yesterday

Figure 4.8: Sample FSM F6, the corresponding chart and the hypotheses.

4.3.2 Extended Chart Parsing

In a standard active chart parser, the chart depicted in Figure 4.8 could produce some

spurious parses. For example, both of the complete edges in the initial chart at location

[1-2] (i.e. ‘boy ’ and ‘boycott) can be combined with the word ‘goes’, although ‘boycott

goes’ is not allowed in the original word graph. We have eliminated these kinds of spu-

rious parses by making use of the arcstart and arcfinish values. These labels indicate
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the starting and ending node identifiers of the path spanned by the edge in subject.

The application of this idea is illustrated in Algorithm 4.3. Different from the previous

implementation of BD-Fundamental-Rule, the procedure has the additional parame-

ters to define starting and ending node identifiers. Before creating a new incomplete

edge, it is checked whether the node identifiers match or not.

When we consider the chart given in Figure 4.8, ‘1 boycott 2’ and ‘5 goes 6’ cannot be

combined according to the new fundamental rule in a parse tree because the ending

node id, i.e. 2, of the former does not match the starting node id, i.e. 5, of the latter.

In another example, ‘0 the 1’ can be combined with both ‘1 boy 5’ and ‘1 boycott 2’ because

their respective node identifiers match. After the two edges, ‘boycott ’ and ‘escalated ’,

are combined and a new edge is generated, the starting node identifiers for the entire

edge will be as in ‘1 boycott escalated 3’. A small fragment of the chart at the end of

parsing is depicted in Figure 4.9.

The utilization of the node identifiers enables the two-dimensional modeling of a

word graph in a chart. This extension to chart parsing makes the current approach

word-graph based rather than confusion-network based. Parse trees that conflict with

the input word graph are blocked and all the processing resources are dedicated to

proper edges.

Another important extension as presented in Algorithm 4.3 is the utilization of the

ASR scores. Each edge has a weight that comes from the initial lattice. Whenever a new

edge is created during parsing, its weight score is assigned the sum of the compounding

edge scores. The scores in the edges are used at the end of parsing to select the most

feasible edge. For example, if there is more than one edge with the final symbol category,

than the one having the highest weight is selected as the succeeding edge. The time
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0 the 1

1 boy 5 5 goes 6 6 to 7 7 school 3

3 yesterday 4

1 boycott 2 2 escalated 3

...

0 the boy 5 5 goes to school 3 3 yesterday 4

... 1 boy goes 6 ...

... * 1 boy 5 6=2 escalated 3 ...

... * 1 boycott 2 6=5 goes 3 ...

...

0 the boy goes to school yesterday 4

0 the boycott escalated yesterday 4

* 0 the boy 56=2 escalated yesterday 4

Figure 4.9: A sample fragment of the chart at the end of parsing. Edges marked

with a star are not built at all.

complexity of the algorithm is O(n3), which is similar to the one of the regular chart

parsing algorithm.

4.3.3 Parse recovery

As described in Section 3.3.4, parse recovery process takes control if no successful parse

tree can be constructed. Trying to parse a word graph instead of a stream of words

already introduced some complexities into the chart parsing process. Similarly, word

graphs bring up new difficulties into the parse recovery process. The original parse
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Algorithm 4.3: Updated fundamental rule to parse a word graph.

procedure BD−Fundamental−Rule (A → B • α • C, [j, k], [ns, ne], we )

i f B = βD // edge i s incomple te

for each (D → •δ•, [i, j], [nr, ns], wc ) in char t

Push ( agenda , (A → β • Dα • C, [i, k], [nr, ne], we + wc ) )

end for

end i f

i f C = Dγ // edge i s incomple te

for each (D → •δ•, [k, l], [ne, nf ], wc ) in char t

Push ( agenda , (A → B • αD•γ, [j, l], [ns, nf ], we + wc ) )

end for

end i f

i f B is null and C is null // edge i s complete

for each (D → βA • γ • δ, [k, l], [ne, nf ], wi ) in char t

Push ( agenda , (D → β • Aγ • δ, [j, l], [ns, nf ], we + wi ) )

end for

for each (D → β • γ • Aδ, [i, j], [nr, ns], wi ) in char t

Push ( agenda , (D → β • γA • δ, [i, k], [nr, ne], we + wi ) )

end for

end i f

end procedure

recovery process can produce a sequence of words that does not belong to the set of

hypotheses that are represented by the initial word graph. As in the parsing stage, this

obstacle originates from the two dimensional structure of the word graph.

Regarding the word graph depicted in Figure 4.8, ‘the boycott goes to the school

yesterday ’ is not part of the input hypotheses. However, this sentence can be generated

at the end of the recovery process if the final chart contains the edges ‘the boycott ’

and ‘goes to the school yesterday ’. To avoid these kind of spurious parses, the idea
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of start and end node identifiers will be used as in parsing. The node identifiers in

‘0the boycott2’ and ‘5goes to the school yesterday4’, i.e. 2 and 5, do not match and the

spurious hypothesis is not generated.

Weights associated to edges are also used in the parse recovery process. Whenever

there is more than one possible edge to include in the parse tree than the one that has

the highest weight is included in the final parse tree.

4.4 N-best word graph vs. N-best list

There are two main differences between parsing a word graph and parsing a list of

sentences. The first difference arises from the existence of scores in arcs of the word

graph. Exploiting the scores moves the entire parsing process to a hybrid level. This

benefit is discussed in previous sections in detail. The second deviation originates from

the fact that multiple sentences are parsed at the same time by using the word graph.

Unlike parsing a single sentence at a time as in N-best lists, the whole word graph is

parsed in parallel. In this part, we comment on the parallel parsing mechanism of the

N-best word graph approach.

The most important benefit of the parallel parsing approach is that it processes

shared edges one time only. This fact introduces an important benefit in the number

of created edges during parsing. In the N-best list approach, every word in every

hypothesis is inserted into the chart. If a word occurs in all the hypothesis then it is

inserted to the chart N times as a leaf node. Consequently, the edges that are derived

from the leaf node are reproduced N times. This reproduction causes an excess in the

number of edges. Identical edges are created at each instance of list parsing in contrast
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with the word graph parsing. Thus, we can visualize the N-best word graph approach

as an optimization to the N-best list approach. All the edges that are placed into the

chart are unique edges in lattice parsing. No other edge with the same features are ever

created.
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CHAPTER 5

ENHANCEMENT OF THE WORD

GRAPH

In standard and traditional ASR systems, acoustic model (AM) and language model

(LM) alone appoint the system architecture. The output word graph produced by

these standard ASR systems contain scores associated with AM and LM only. Other

applications that make use of this word graph utilize these two scores. In this chapter,

we elaborate on how the word graph can be enhanced further to include different model

scores.

5.1 Prosody in Speech Processing

ASR systems that are composed of AM and LM alone ignore high level prosodic in-

formation that is present in the utterance. Prosody is defined as the rhythmic and

intonational aspect of an utterance. Although it is one of the most well-studied fea-

tures in ASR, it is not captured in most large vocabulary continuous speech recognition

(LVCSR) systems (Shriberg & Stolcke, 2002). However, the interest to use prosody in

speech tasks is increasing (Ostendorf, Shafran, & Bates, 2003). Humans use prosody ex-
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tremely in everyday communication because it provides valuable information to disam-

biguate meaning. Speech that is cleared from natural prosody requires higher cognitive

load (Chen & Hasegawa-Johnson, 2003).

Low level features in speech, e.g. duration, pitch accents and boundary tones, F0,

voicing, energy and spectral tilt form the prosody and it is closely related with the

syntax and semantics of the speech. In general, prosodic features are extracted directly

from the speech signal and from the output of an automatic speech recognizer.

There are different challenges in the integration of prosody into ASR systems. First,

processing of prosodic features, e.g. extracting and normalizing, should be done auto-

matically. Next, the proposed model should be able to tolerate errors. Finally, it must

be feasible to use in different speech applications.

In Shriberg and Stolcke (2004), an approach is described to use prosody in various

speech related tasks: Structural tagging (e.g. finding sentence boundaries and dis-

fluencies), pragmatic and paralinguistic tagging (e.g. classifying dialog acts, emotion

etc.), speaker recognition and word recognition. Kim and Woodland (2001) incorpo-

rate prosodic information with acoustic and language model information to create a

combined system for punctuation generation and speech recognition.

Chen and Hasegawa-Johnson (2003) present a novel approach that improves ro-

bustness by leveraging the dependence between prosody and syntax. The presented

model describes the joint probability distribution of concurrent word and prosody se-

quences. In Szaszak and Vicsi (2007), the impact of using prosodic features in the

recognition of agglutinating and fixed stress languages is investigated. Ananthakrish-

nan and Narayanan (2007) introduce a system which includes prosody-enriched word

graphs. Syllable level lattices are generated by a standard ASR and later enriched with
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prosodic information. 2% of relative improvement is claimed to be obtained in syllable

error rate. Syllable and related sub-word unit recognition is used in tasks such as name

recognition. Speech recognizers that produce word hypotheses perform poorly on tasks

which have to account for out-of-vocabulary words.

Not only in speech recognition is intonation information important, but it also plays

significant role in the speech synthesis task. In Prevost and Steedman (1994), a model

for generating prosodically appropriate speech synthesis is presented. The authors

demonstrate the ability of the proposed model to generate a variety of intonational

possibilities depending on the discourse context. Other studies presenting the utilization

of prosody in speech synthesis task is widely available in literature.

5.2 The Prosody Model

Prosodic model has to be combined with other knowledge sources in order to use it in

speech recognition tasks. A common approach is to integrate it with lexical information

(Shriberg & Stolcke, 2004). Prosodic modeling is tied to LM to improve disambiguation

efficiency.

In Chen and Hasegawa-Johnson (2003), the task of speech recognition is reduced

to find W = (w1, . . . , wM), the sequence of word labels, that maximize the recognition

probability given in Equation 5.1. The basic idea in the equation is to condition the

language model on prosody.

[W̃ ] = argmax p(O|W,P ) p(W,P ) (5.1)

= argmax p(O|Q,H) p(Q,H|W,P ) p(W,P ) (5.2)
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In Equation 5.1 and Equation 5.2, P = (p1, . . . , pM) is the sequence of prosody

labels, O = (o1, . . . , oT ) is the sequence of observed acoustic feature vectors, Q =

(q1, . . . , qL) is the sequence of sub-word units, H = (h1, . . . , hL) is the sequence of

discrete “hidden mode” vectors. In this probabilistic model, wm and pm together denote

the prosody dependent word label and ql and hl denote the allophone label. In Equation

5.2, p(O|Q,H) component represents the acoustic model, p(Q,H|W,P ) represents the

pronunciation model and p(W,P ) represents the language model.

Prosody dependent N-gram language modeling requires a large amount of prosodi-

cally transcribed data. In Chen and Hasegawa-Johnson (2003), prosody-syntax depen-

dence is utilized to diminish the data sparseness.

5.3 Prosody and Word graph

In various systems that make use of prosodic information, the word graph is enriched

after a baseline recognizer produces the lattice including only AM and LM scores.

For example, the syllable-level time-state alignments are used in Ananthakrishnan and

Narayanan (2007) to extract acoustic-prosodic features which function as a binary clas-

sifier, i.e. presence vs. absence of pitch accent. Each arc in the final lattice contains

the binary prosody information as depicted in Figure 5.1.

Once the word graph is enriched with prosodic information, processing in following

stages should make use of this information. In the case of syntactic parsing, a prosody-

aware grammar is required. That is, the parsing grammar should be able to make use

of the prosodic information. Otherwise the enhancement of the word graph does not

have any impact on the results.
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k aa n

t in n

t ah

k aa n : 0

k aa n : 1

t in n : 0

t in n : 1
t ah : 0

t ah : 1

Figure 5.1: Baseline word graph and enriched word graph (Ananthakrishnan &

Narayanan, 2007).

5.4 Prosody and Syntax

The suprasegmental nature of prosodic features is a problem in developing a combined

model to process prosody and syntax together. Prosodical units and syntactic units do

not share always the same boundaries. However, there has been attempts to integrate

phonological structures into different syntactic frameworks as in Butt and King (1998)

and Steedman (2000). Steedman develops a new semantics for intonation structure that

is fully integrated into Combinatory Categorial Grammar (CCG). Butt and King sug-

gest a new phonological component called p-structure in order to integrate phonological

representations into Lexical Functional Grammar (LFG). This new addition is based

on LFG’s projection architecture. In brief, the p-structure is constructed by domains

corresponding to the prosodic hierarchy. A sample p-structure representation is shown

in Figure 5.2.
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Figure 5.2: A sample representation of the p-structure taken from Butt and King

(1998) for a three word intonational phrase.
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CHAPTER 6

EXPERIMENTS AND EVALUATION

In this chapter, we present the experiments from different perspectives in order to

evaluate the proposed system. The aspects of any evaluation should be closely related

to the task that the system is working on. In translation, accuracy and fluency are

important aspects that provide information about the conformity of the result to the

correct solution. In addition, the method by which the inspection is accomplished, e.g.

whether manually or automatically, is also important.

Another aspect in evaluation is the decision of whether to assess the system as

a whole or each component separately. Evaluating the performance of the total ap-

plication from beginning to end is called extrinsic evaluation. The opposite is the

component-based evaluation, which is defined as intrinsic. Extrinsic evaluation is more

expensive compared to intrinsic evaluation since the former requires the involvement

of all ingredients in a system. However, it is important to verify that an intrinsic

improvement yields an extrinsic improvement. In this section, we conduct intrinsic

and extrinsic experiments to put forth the gains of our approach based on standard

evaluation metrics.
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6.1 Metrics

The metrics established for NLP tasks generally try to estimate the closeness of the

results to the solution. Different NLP tasks use different metrics to evaluate the system

performance. Recall and precision values are used in evaluating information extraction

systems. Speech recognition systems are mainly evaluated using the word error rate

(WER) metric, which reports how much the proposed string differs from a reference

transcription. WER can be calculated as given in Equation 6.1, where S is the number

of substitutions, D is the number of the deletions, I is the number of the insertions and

N is the number of words in the reference text.

WER =
S +D + I
N (6.1)

Metrics for the translation task give details about the closeness of the output trans-

lation to one or more available reference translations. One of the most popular methods

in the automatic evaluation of MT is BLEU (Papineni et al., 2002). As mentioned be-

fore, it requires at least one human translation for comparison. The idea is to use the

weighted average of variable length phrase matches in the reference translation. The

more common patterns that exist between two translations, the higher the BLEU score.

This fact makes the statistical MT systems more advantageous than rule-based MT sys-

tems, because statistical systems are trained on aligned corpora with a pattern-based

approach. Similar to BLEU, the NIST metric (Doddington, 2002) also uses an N-gram

co-occurrence-scoring approach. There are some other methods proposed to overcome

the proved weakness of the BLEU and NIST methods. The METEOR evaluation

method (Banerjee & Lavie, 2005; Lavie & Agarwal, 2007) makes two main additions to
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the BLEU method. It utilizes a stemmer and a dictionary of synonyms to get rid of the

strict matching approach. WordNet (Miller & Fellbaum, 2008) is used in METEOR to

query the stem and synonyms. In the output translation, if a phrase contains the same

stem with a different surface form, or if it contains a synonym, the translation still gets

a score. In BLEU and NIST, stems and synonyms are not taken into consideration.

Currently, METEOR is available for English, French, German, Spanish and Czech only.

Another automatic evaluation method, different from the previous ones because

it does not rely directly on co-occurrences, is the TER method (Snover et al., 2006).

TER, which is inspired by the WER metric, is calculated with the minimum number

of edits required to modify the output translation so that it exactly matches one of the

reference translations.

It is important to mention that all the discussed automatic evaluation methods show

a strong correlation between the obtained scores and human assessments of translation

quality. In our experiments, we present WER and BLEU scores to evaluate the system.

We do not present METEOR scores as it is not available for the target language (i.e.

Arabic) we have chosen for the experiments.

6.2 Experimental Setup

The experiments carried out in this thesis are run on word graphs based on 1993

benchmark tests for the ARPA spoken language program (Pallett et al., 1994). In the

large-vocabulary continuous speech recognition (CSR) tests reported by Pallett et al.

(1994), Wall Street Journal-based CSR corpus material was made use of. The tests

intended to measure basic speaker-independent performance on a 64K-word read-speech
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test set which consists of 213 utterances. Each of the 10 different speakers provided

from 20 to 23 utterances. An acoustic model and a trigram language model is trained

using Wall Street Journal data by Chelba (2000) who also generated the 213 word

graphs used in the current experiments. The word graphs, referred as HUB-1 data set,

contain both the acoustic scores and the trigram language model scores. Previously,

the same data set was used in other studies (Chelba, 2000; Roark, 2001; Hall, 2005) for

language modeling task in ASR.

6.2.1 N-best list pruning

The 213 word graphs in the HUB-1 data set are pruned as described in Section 4.2 in

order to prepare them for chart parsing. AT&T toolkit (Mohri et al., 1998) is used for

determinization and minimization of the word graphs and for n-best path extraction.

Prior to feeding in the word graphs to the FSM tools, the acoustic model and the

trigram language model in the original lattices are combined into a single score using

Equation 6.2, where S represents the combined score of an arc, A is the acoustic model

(AM) score, L is the language model (LM) score, α is the AM scale factor and β is the

LM scale factor.

S = αA+ β L (6.2)

Figure 6.1 depicts the word error rates for the first-best hypotheses obtained by

using α = 1 and β values from 1 to 25. The lowest WER (13.32) is achieved when

α is set to 1 and β to 15. This result is close with the findings from Hall (2005) who

reported to use 16 as the LM scale factor for the same data set. WER score for LM-only

was 26.8 where in comparison the AM-only score was 29.64. The results imply that
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the language model has more predicting power over the acoustic model in the HUB-1

lattices. For the rest of the experiments, we used 1 and 15 as the acoustic model and

language model scale factors, respectively.
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WER

β

10.00

13.32

29.64 b

b

b

b

b

b

b

b

b

b

b

b b b b b b b
b

b
b

b b
b

b
b

Figure 6.1: WER for HUB-1 first-best hypotheses obtained using different

language-model scaling factors and α = 1.

6.2.2 Word graph accuracy

Using the scale factors found in the previous section we built N-best word graphs for

different N values. In order to measure the word graph accuracy we constructed the

FSM for reference hypotheses, FRef , and we took the intersection of all the word graphs

with the reference FSM. Table 6.1 lists the word graph accuracy rate for different N
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Table 6.1: Word graph accuracy for different N values in the data set with 213

word graphs.

N Accuracy

1 30.98

10 51.17

20 56.34

30 58.22

40 59.15

50 59.15

60 59.15

70 59.15

80 59.15

90 60.10

100 60.10

full 66.67

values. For example, an accuracy rate of 30.98 denotes that 66 word graphs out of

213 contain the correct sentences. The accuracy rate for the original word graphs in

the data set is 66.67 which indicates that only 142 out of 213 contain the reference

sentence. In 71 of the instances, the reference sentence is not included in the untouched

word graph. The accurate rates express the maximum sentence error rate (SER) that

can be achieved for the data set.
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6.2.3 Linguistic Resources

The English grammar used in the chart parser contained 20 morphology analysis rules

and 225 syntax analysis rules. All the rules and the unification constraints were im-

plemented in LFG formalism as part of an MT project. The number of rules to model

the language grammar is quite few compared to probabilistic CFGs which contain more

than 10 000 rules. The monolingual analysis lexicon consists of 40 000 lexical entries.

The English to Arabic bilingual transfer lexicon also contains 40 000 entries.

6.3 Chart parsing experiments

We conducted experiments to compare the performance of N-best list parsing and N-

best word graph parsing. Compared to the N-best list approach, in N-best word graph

parsing approach, the shared edges are processed only once for all hypotheses. This

saves a lot on the number of complete and incomplete edges generated during parsing.

Hence, the overall processing time required to analyze the hypotheses are reduced. In

an N-best list approach, where each hypothesis is processed separately in the analyzer,

there are different charts and different parsing instances for each sentence hypothesis.

Shared words in different sentences are parsed repeatedly and same edges will be created

at each instance.

Table 6.2 represents the number of complete and incomplete edges generated for the

NIST HUB-1 data set. For each hypothesis, 164 complete edges and 2490 incomplete

edges are generated in the N-best list approach. In the N-best word graph approach,

the average number of complete edges and incomplete edges reduced to 31 and 341,

respectively. The decrease is 81.1% in complete edges and 86.3% in incomplete edges
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Table 6.2: Number of complete and incomplete edges generated for the NIST

HUB-1 data set for N-best list and N-best word graph approaches.

Approach Hypotheses Complete edges Incomplete edges

N-best list 4869 798 K 12.125 M

1 164 2490

N-best 4869 150.8 K 1.662 M

word graph 1 31 341

Table 6.3: Number of complete edges generated for the NIST HUB-1 data set

using different approaches.

Approach Edges

N-best word graph 150.8 K

PCFG parser 880.9 K

Charniak Parser 2,950.7 K

for the NIST HUB-1 data set. The profit introduced in the number of edges by using

the N-best word graph approach is immense.

The comparison of the number of complete edges produced for the same data set in

the PCFG parser (Hall & Johnson, 2003), Charniak parser (Charniak, 2001) and our

approach is given in Table 6.3. As expected, our unification-based active chart parser

produces the least number of edges because of its unification and functional expression

mechanism.
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6.4 Language modeling experiments

In this part of the experiments we tested the proposed approach from a language mod-

eling perspective. The aim of this experiment is to test how the N-best word graph

approach can be used as the LM component in an ASR system. Table 6.4 reports the

WER results of different language models. The other scores presented in Table 6.4 are

taken from Hall (2005). NIST HUB-1 data set is used in all of the results.

The Charniak parser (Charniak, 2001) scores the best result (11.8) in the language

modeling tests. Multi stage PCFG parsing complemented with attention shifting (Hall

& Johnson, 2004) scores the second best result. Our approach, in which the ASR lattice

is preprocessed and parsed with manually created rules scores 12.2. Five other models

score below our result. The quantitative result obtained in this experiment shows that

parsing the N-best word graph using a unification-based active chart parser does a

decent job. This proves that we can support the LM component in an ASR system

with the parsing engine of a rule-based MT system.

6.5 Machine Translation experiments

The aim of this experiment was to evaluate the proposed approach from the MT per-

spective. The NIST HUB-1 data set is used as in the previous experiments. The 213

hypothesis that are obtained in the first-best approach and the N-best word graph ap-

proach are utilized as the source text in the MT experiment. We used a freely and

publicly available MT system for our purpose. Our objective in this MT experiment is

not to maximize the scores, instead, we want to figure out the impact of the WER on

the MT results. Therefore, we did not apply any normalization to the input text (e.g.
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Table 6.4: WER for different language models on the NIST HUB-1 data set

including N-best word graph parsing approach that is presented in this study.

Model WER

Charniak Parser (Charniak, 2001) 11.8

Attention Shifting (Hall & Johnson, 2004) 11.9

PCFG (Hall, 2005) 12.0

N-best word graph (this study) 12.2

A* decoding (Xu, Chelba, & Jelinek, 2002) 12.3

PCFG (Roark, 2001) 12.7

PCFG (Hall & Johnson, 2004) 13.0

40m-word trigram (Hall & Johnson, 2003) 13.7

PCFG (Hall & Johnson, 2003) 15.5
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Table 6.5: BLEU and NIST scores for first-best and N-best word graph ap-

proaches.

Model BLEU NIST

First-best 0.0285 2.2888

N-best word graph 0.0289 2.2969

converting “does n’t” to “doesn’t”).

The BLEU and NIST scores for the two different approaches are reported in Ta-

ble 6.5. The slight improvement in WER from 13.3 to 12.2 as reported in the language

modeling experiments are also reflected in the scores. Between the first-best approach

and the N-best word graph approach, there is a 1.4% improvement in terms of the

BLEU scores and 0.4% improvement in terms of the NIST scores. We can conclude

that there is a linear relation between WER in language modeling and BLEU/NIST

score in MT.

6.6 Evaluation

In this section we compare the different approaches from a qualitative perspective.

Table 6.6 lists the different approaches and their properties. All the approaches listed

in Table 6.6 have statistical components. Except the trigram approach, all others also

utilize structural techniques. Our approach and Hall’s approaches (Hall & Johnson,

2004; Hall, 2005) include some preprocessing steps in order to prune the ASR lattice

before parsing.
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Different from all other systems, our approach utilizes a unification-based active

chart parser and manually created grammar rules. This feature enables the approach

to be applied as a perfect integrator between the ASR and a rule-based MT system.

Other approaches are designed to be used only as a language model. The N-best word

graph approach, however, is used at the same time as a language model and as an

analysis component in a rule-based MT system.
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CHAPTER 7

CONCLUSIONS AND FUTURE

DIRECTIONS

The primary aim of this research was to develop a new and efficient method for integrat-

ing an ASR system with a rule-based MT system. The innovative idea is to populate

the chart parser inside the MT analyzer with the word graph that comes out of the

ASR component. This way, structural language modeling task in ASR and the analysis

task in MT are combined. This combination has enabled the usage of legacy rule-based

MT systems in speech translation task to be as effective as statistical MT systems.

Language modeling task is achieved because the parse tree that is generated at the end

of lattice parsing belongs to the winning hypothesis. On the other hand, analysis task

is achieved because the parse tree is also associated with an attribute value matrix to

be used in later stages of the MT task. We also utilize the statistical information that

comes from the ASR inside the chart parser. This utilization hybridizes the system and

it supplements the process of resolving the ambiguity in syntactic analysis.

We present in this thesis an attempt to blend statistical ASR systems with rule-

based MT systems. The objective of the tight assembly of these two components
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was to obtain an enhanced ST system. This approach can be generalized to any MT

system employing chart parsing in its analysis stage. In addition to utilizing rule-based

MT in ST, this study also used word graphs and chart parsing with new extensions.

Specifically, we expand the regular chart parsing algorithm to parse the speech lattice

while eliminating spurious parses.

We call the newly developed coupling approach as N-best word graph. We have

shown in our experiments that this approach performs better than the alternative first-

best and N-best list approaches. Before our new approach, all rule-based MT systems

were utilized inside an ST system either using the first-best method or the N-best list

method.

The architectural design and details of the devised ST system are explored in Chap-

ter 3. Elements of the MT system are provided including the morphological analysis,

parsing, transfer and generation. In Chapter 4, we explored the particular stages of

word graph processing in detail. The word graph is minimized and pruned before it is

being parsed. Later in the same chapter, we provided the details of word graph parsing

using a unification-based active chart parser. We also elaborated on further enhance-

ments of the word graph in Chapter 5. An ordinary ASR system generates a lattice

that contains only acoustic and language model scores. We have researched how other

prosodic information can be integrated into the ASR lattice.

The experiments described in this thesis show that parsing the word graph at one

instance improves the translation performance, compared to parsing all sentence hy-

potheses separately. In terms of the number of complete edges, N-best word graph

approach produces 81.1% less edges during parsing if compared to the N-best list ap-

proach. We also conducted language modeling experiments and compared our scores
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to other scores available in the literature based on NIST HUB-1 data set. The scores

obtained in this study prove that structural approaches are as competitive as statistical

approaches.

For further improvement of the ST system, our future studies include the following:

1. Preprocessing the pruned word graph before parsing to improve the language

modeling capability of the system.

2. Extension of the optimization capabilities of the parser to further improve the

efficiency of the chart parser.

3. Implementing the transfer and generation modules to achieve a complete MT

system. Similar to the analysis module, transfer and generation modules should

also utilize statistical tools in order to achieve a fully hybrid MT system.

4. Enhancing the ASR word graph with prosody information and using it in the

disambiguation process inside the syntactic analyzer. Forwarding the prosody

information from MT toward the TTS to utilize it in speech generation.
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APPENDIX A

WORD GRAPH PRUNING SCRIPT

:::: clean up previous files
del *fsm
del *pdf

for %%1 in (*.slf) do (
:::: Convert slf format to at&t format
slf2fsm %%~n1.slf

:::: Compile node-labeled lattice into an fsm as a reference
rem fsmcompile -s%%~n1.sta -F%%~n1.lat.fsm %%~n1.lat
rem fsmdraw -p -s%%~n1.sta %%~n1.lat.fsm

| dot -Tpdf > %%~n1.lat.fsm.pdf
rem del %%~n1.lat.fsm
del %%~n1.lat
del %%~n1.sta

:::: Compile the arc-labeled fsm
fsmcompile -i%%~n1.sym -F%%~n1.fsm %%~n1.txt
rem fsmdraw -p -i%%~n1.sym %%~n1.fsm

| dot -Tpdf > %%~n1.fsm.pdf
del %%~n1.txt

:::: nfa 2 dfa conversion of the fsm
fsmdeterminize -F%%~n1.det.fsm %%~n1.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.det.fsm
| dot -Tpdf > %%~n1.det.fsm.pdf
del %%~n1.fsm

:::: Remove epsilons
fsmrmepsilon -F%%~n1.noeps.det.fsm %%~n1.det.fsm
del %%~n1.det.fsm

:::: Minimize the deterministic fsm
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fsmminimize -F%%~n1.mini.fsm %%~n1.noeps.det.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.mini.fsm

| dot -Tpdf > %%~n1.mini.fsm.pdf
del %%~n1.noeps.det.fsm

:::: Extract First-best hypothesis
fsmbestpath -F%%~n1.first1.fsm %%~n1.mini.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.first1.fsm

| dot -Tpdf > %%~n1.first1.fsm.pdf
fsmprint -i%%~n1.sym %%~n1.first1.fsm > %%~n1.first1.fsm.txt

:::: Extract 10-best hypotheses
fsmbestpath -n 10 -F%%~n1.first10.fsm %%~n1.mini.fsm
fsmdeterminize -F%%~n1.first10.det.fsm %%~n1.first10.fsm
fsmrmepsilon -F%%~n1.first10.noeps.fsm %%~n1.first10.det.fsm
fsmminimize -F%%~n1.first10.fsm %%~n1.first10.noeps.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.first10.fsm

| dot -Tpdf > %%~n1.first10.fsm.pdf
fsmprint -i%%~n1.sym %%~n1.first10.fsm > %%~n1.first10.fsm.txt
del %%~n1.first10.det.fsm
del %%~n1.first10.noeps.fsm

:::: Extract 30-best hypotheses
fsmbestpath -n 30 -F%%~n1.first30.fsm %%~n1.mini.fsm
fsmdeterminize -F%%~n1.first30.det.fsm %%~n1.first30.fsm
fsmrmepsilon -F%%~n1.first30.noeps.fsm %%~n1.first30.det.fsm
fsmminimize -F%%~n1.first30.fsm %%~n1.first30.noeps.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.first30.fsm

| dot -Tpdf > %%~n1.first30.fsm.pdf
fsmprint -i%%~n1.sym %%~n1.first30.fsm > %%~n1.first30.fsm.txt
del %%~n1.first30.det.fsm
del %%~n1.first30.noeps.fsm

:::: Extract 50-best hypotheses
fsmbestpath -n 50 -F%%~n1.first50.fsm %%~n1.mini.fsm
fsmdeterminize -F%%~n1.first50.det.fsm %%~n1.first50.fsm
fsmrmepsilon -F%%~n1.first50.noeps.fsm %%~n1.first50.det.fsm
fsmminimize -F%%~n1.first50.fsm %%~n1.first50.noeps.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.first50.fsm

| dot -Tpdf > %%~n1.first50.fsm.pdf
fsmprint -i%%~n1.sym %%~n1.first50.fsm > %%~n1.first50.fsm.txt
del %%~n1.first50.det.fsm
del %%~n1.first50.noeps.fsm

:::: Extract 100-best hypotheses
fsmbestpath -n 100 -F%%~n1.first100.fsm %%~n1.mini.fsm
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fsmdeterminize -F%%~n1.first100.det.fsm %%~n1.first100.fsm
fsmrmepsilon -F%%~n1.first100.noeps.fsm %%~n1.first100.det.fsm
fsmminimize -F%%~n1.first100.fsm %%~n1.first100.noeps.fsm
rem fsmdraw -p -i%%~n1.sym %%~n1.first100.fsm

| dot -Tpdf > %%~n1.first100.fsm.pdf
fsmprint -i%%~n1.sym %%~n1.first100.fsm > %%~n1.first100.fsm.txt
del %%~n1.first100.det.fsm
del %%~n1.first100.noeps.fsm
del %%~n1.mini.fsm
rem del %%~n1.sym
)
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APPENDIX B

SAMPLE WORD GRAPH
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Figure B.1: Pruned lattice 4oac020a from the NIST HUB1 data set containing

10 hypotheses.

Corresponding listing for the word graph in Figure B.1.

0 1 <s>
1 2 a
1 2 any 1.62598
1 3 in 9.24121
1 3 bayer 9.82031
2 4 reading
3 5 reading
4 6 above
5 7 above
6 8 fifty
7 9 fifty
8 10 percent
9 11 percent
10 12 generally
11 13 generally
12 14 indicates
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13 15 indicates
14 16 that
15 17 that
16 18 the
17 19 the
18 20 economy
19 21 economy
20 22 is
21 23 is
22 24 expanding
23 25 expanding
24 26 a
24 25 to 5.33594
24 26 its 2.13281
24 25 at 3.22559
25 26 a
26 27 figure
27 28 below
28 29 fifty
29 30 percent
30 31 indicates
31 32 a
32 33 weakening
33 34 economy
34 35 </s>
35 6789.37
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APPENDIX C

SAMPLE C-STRUCTURE

TILT:1139
| BOSS:1
| NP:351
| | NP3:315
| | | QFR:2 a
| | | NP2:272
| | | | NP1:249
| | | | | N:70
| | | | | | NSTEM:8 reading
| | | | | PP:223
| | | | | | PBAR:191
| | | | | | | P:13 above
| | | | | | | NP:167
| | | | | | | | NP3:159
| | | | | | | | | NP2:156
| | | | | | | | | | NP1:149
| | | | | | | | | | | N:137
| | | | | | | | | | | | QFR:101
| | | | | | | | | | | | | QNUM:76
| | | | | | | | | | | | | | QSTEM:18 fifty
| | | | | | | | | | | | PERCENT:20 percent
| ADVP:169
| | ADVBAR:125
| | | ADV|L:103
| | | | ADV:78
| | | | | ADVSTEM:22 generally
| V|R:854
| | V:25 indicates
| | NP:848
| | | NP3:794
| | | | DET:30 that
| NP:209
| | NP3:151
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| | | DET:34 the
| | | NP2:129
| | | | NP1:107
| | | | | N:82
| | | | | | NSTEM:36 economy
| V|R:452
| | V:38 is
| V|R:527
| | V:44 expanding
| | PP:394
| | | PBAR:380
| | | | P:53 at
| | | | NP:364
| | | | | NP3:328
| | | | | | QFR:54 a
| | | | | | NP2:283
| | | | | | | NP1:264
| | | | | | | | N:87
| | | | | | | | | NSTEM:56 figure
| | | | | | | | PP:237
| | | | | | | | | PBAR:200
| | | | | | | | | | P:59 below
| | | | | | | | | | NP:176
| | | | | | | | | | | NP3:164
| | | | | | | | | | | | NP2:163
| | | | | | | | | | | | | NP1:162
| | | | | | | | | | | | | | NP1:155
| | | | | | | | | | | | | | | N:145
| | | | | | | | | | | | | | | | QFR:114
| | | | | | | | | | | | | | | | | QNUM:90
| | | | | | | | | | | | | | | | | | QSTEM:60 fifty
| | | | | | | | | | | | | | | | PERCENT:61 percent
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APPENDIX D

SAMPLE F-STRUCTURE

C 527, 7689, (12-22), V|R, VBARn 3 w:-22, b

| [
| RULES [ 1 [ V|R $ PREVERBAL, V|RCOMMA $ ] ]
| TNOD
| | [
| | VFORM ING
| | NEEDS
| | | [
| | | 27 [ PFORM at ]
| | | C-OB {
| | | | | [
| | | | | PFORM on
| | | | | STRINGS [ STRING2 on sth ]
| | | | | ],
| | | | | [
| | | | | PFORM into
| | | | | STRINGS [ STRING2 into sth ]
| | | | | ] }
| | | C-ACOB {
| | | | | [
| | | | | PFORM into
| | | | | STRINGS [ STRING2 sth into sth ]
| | | | | ] }
| | | ]
| | AMBIG MINUS
| | ALLOWS [ C-OBJ1 $ STD-FE-HATE-TIME-OBJ $ ]
| | HATES [
| | | C-INTRDEST $ STD-FE-HATE-OB $
| | | C-INTRLOC $ STD-FE-HATE-OB $
| | | C-INTR $ STD-FE-HATE-OB $
| | | C-OBJ1 $ STD-FE-HATE-ACOB, STD-FE-HATE-ACC-PPOB $
| | | C-ACCLOC $ STD-FE-HATE-ACOB $
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| | | C-ACCDEST $ STD-FE-HATE-ACOB $
| | | ]
| | ]
| FE
| | [
| | 0 [ CTYPE-N OPT VBAR OPT ]
| | 1 [
| | | VBAR $ STD-FE-ACC, STD-FE-INTR, STD-FE-OB, STD-FE-ACOB $
| | | AUX $ STD-FE-NOAUX $
| | | CTYPE-N $ STD-FE-ACC, STD-FE-INTR, STD-FE-OB, STD-FE-ACOB $
| | | CTYPE-AJL-PRENP $ STD-FE-ACC-AJL, STD-FE-INTR-AJL, STD-FE-ACOB-AJL $
| | | WHWORD $ STD-FE-ACC-REL, FAIL-FE, STD-FE-ACOB-REL $
| | | ]
| | ]
| FS
| | [
| | CTOPIC MINUS
| | GAP MINUS
| | SUBJ
| | | [
| | | DEAR MINUS
| | | REEFER PLUS
| | | ]
| | COMPID 3001
| | PRED # SUBJ, OBJ1 #
| | PTOPIC MINUS
| | FORM expand
| | CTYPE-N $ STD-COMPL-ACC, STD-COMPL-INTR, STD-COMPL-OB, STD-COMPL-ACOB $
| | VERBAL PLUS
| | NOMINAL MINUS
| | WALANG-TYPE WV
| | CANBE # WV, WN, WADJ, WING, WEN #
| | VOICE ACTIVE
| | PROGRES PLUS
| | CAPFLAG MINUS
| | ACTFORM expanding
| | ADJUNCTS {
| | | | [
| | | | PFORM at
| | | | PSLOT SLONP
| | | | PCASE # LOCT, TEMP #
| | | | WALANG-RES P
| | | | DEFINITE MINUS
| | | | WHATAMI MINUS
| | | | COUNT PLUS
| | | | ADJUNCTS {
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| | | | | | [
| | | | | | PFORM below
| | | | | | PSLOT # SLOVP, SLONP, SLADJ #
| | | | | | PCASE LOCT
| | | | | | WALANG-RES P
| | | | | | LONGNOSE PLUS
| | | | | | PERSON THIRD
| | | | | | DEFINITE MINUS
| | | | | | FORM indicates
| | | | | | PROFORM IT
| | | | | | USE GENERAL
| | | | | | NUMBER PL
| | | | | | VERBAL MINUS
| | | | | | NOMINAL PLUS
| | | | | | REEFER PLUS
| | | | | | WALANG-TYPE WN
| | | | | | ENDING other
| | | | | | NOMAD
| | | | | | | [
| | | | | | | CASE MINUS
| | | | | | | DEFINITE UNMARKED
| | | | | | | ENDING other
| | | | | | | REEFER PLUS
| | | | | | | WALANG-TYPE # WNUM, WN #
| | | | | | | VERBAL MINUS
| | | | | | | NOMINAL PLUS
| | | | | | | PROPER PLUS
| | | | | | | COUNT PLUS
| | | | | | | NOMAD MINUS
| | | | | | | PROFORM IT
| | | | | | | USE # PART, MONEY, MEASURE #
| | | | | | | FORM %
| | | | | | | QUANTIFIER {
| | | | | | | | | [
| | | | | | | | | CARD PLUS
| | | | | | | | | ACTFORM ten
| | | | | | | | | QFORM NUMERIC
| | | | | | | | | CAPFLAG MINUS
| | | | | | | | | ABBFORM fifty
| | | | | | | | | MULTIPLIER
| | | | | | | | | | [
| | | | | | | | | | FORM five
| | | | | | | | | | FINGER 5
| | | | | | | | | | ]
| | | | | | | | | POWER TEN1
| | | | | | | | | COUNT PLUS
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| | | | | | | | | WALANG-TYPE WNUM
| | | | | | | | | DEGREE MINUS
| | | | | | | | | FORM ten
| | | | | | | | | ] }
| | | | | | | ]
| | | | | | ] }
| | | | ACTFORM figure
| | | | KYUEKS MINUS
| | | | KYU MINUS
| | | | EKS MINUS
| | | | ESS MINUS
| | | | NUMBER SG
| | | | USE GENERAL
| | | | CAPFLAG MINUS
| | | | PROFORM IT
| | | | HEWMN MINUS
| | | | ANIM MINUS
| | | | PROPER MINUS
| | | | PERSON THIRD
| | | | PASSITEM MINUS
| | | | MROFBBA MINUS
| | | | ABBFORM MINUS
| | | | REEFER PLUS
| | | | WALANG-TYPE WN
| | | | NOMINAL PLUS
| | | | VERBAL MINUS
| | | | FORM figure
| | | | APPLE MINUS
| | | | GAP OPT
| | | | ENDING other
| | | | QUANTIFIER {
| | | | | | [
| | | | | | CARD PLUS
| | | | | | DEGREE MINUS
| | | | | | WALANG-TYPE WNUM
| | | | | | COUNT PLUS
| | | | | | QFORM NUMERIC
| | | | | | DEFINITE MINUS
| | | | | | NUMBER SG
| | | | | | SARPFORM ANY
| | | | | | POWER TEN0
| | | | | | FINGER 1
| | | | | | FORM a
| | | | | | ] }
| | | | ] }
| | OBJ1
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| | | [
| | | CASE ACC
| | | PERSON THIRD
| | | DEFINITE MINUS
| | | FORM weaken
| | | VERBAL PLUS
| | | NOMINAL MINUS
| | | WALANG-TYPE WV
| | | CANBE # WV, WN, WADJ, WING, WEN #
| | | CTYPE-N $ STD-COMPL-INTR $
| | | VOICE ACTIVE
| | | PROGRES PLUS
| | | CAPFLAG MINUS
| | | ACTFORM weakening
| | | PROFORM IT
| | | NUMBER SG
| | | USE ING
| | | PROPER MINUS
| | | PRIORESS 1
| | | PRIOR 1
| | | COUNT MINUS
| | | HEWMN MINUS
| | | ANIM MINUS
| | | REEFER PLUS
| | | ENDING cn
| | | QUANTIFIER {
| | | | | [
| | | | | CARD PLUS
| | | | | DEGREE MINUS
| | | | | WALANG-TYPE WNUM
| | | | | COUNT PLUS
| | | | | QFORM NUMERIC
| | | | | DEFINITE MINUS
| | | | | NUMBER SG
| | | | | SARPFORM ANY
| | | | | POWER TEN0
| | | | | FINGER 1
| | | | | FORM a
| | | | | ] }
| | | ]
| | ]
| CAT V|R
| SPRE MINUS
| ]
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