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ABSTRACT

PATIM: PROXIMITY AWARE TIME MANAGEMENT

Okutano§lu, Ayd�n

Ph.D., Department of Computer Engineering

Supervisor: Prof. Dr. Müslim Bozyi§it

September 2008, 148 pages

Logical time management is used to synchronize the executions of distributed

simulation elements. In existing time management systems, such as High Level

Architecture (HLA), logical times of the simulation elements are synchronized.

However, in some cases synchronization can unnecessarily decrease the perfor-

mance of the system. In the proposed HLA based time management mechanism,

federates are clustered into logically related groups. The relevance of federates

is taken to be a function of proximity which is de�ned as the distance between

them in the virtual space. Thus, each federate cluster is composed of relatively

close federates according to calculated distances.

When federate clusters are su�ciently far from each other, there is no need

to synchronize them, as they do not relate each other. So in PATiM mechanism,

inter-cluster logical times are not synchronized when clusters are su�ciently dis-

tant. However, if the distant federate clusters get close to each other, they will

need to resynchronize their logical times. This temporal partitioning is aimed at

reducing network tra�c and time management calculations and also increasing

the concurrency between federates.
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The results obtained based on case applications have veri�ed that clustering

improves local performance as soon as federates become unrelated.

Keywords: Clustering, Data Distribution Management, HLA, Interest Manage-

ment, Logical Time, RTI, Time Management
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ÖZ

PAT�M: YAKINSALLIK TABANLI ZAMAN YÖNET�M�

Okutano§lu, Ayd�n

Doktora, Bilgisayar Mühendisli§i Bölümü Bölümü

Tez Yöneticisi: Prof. Dr. Müslim Bozyi§it

Eylül 2008, 148 sayfa

Mant�ksal zaman yönetimi da§�t�k bir ³ekilde çal�³an simülasyonlar�n senkro-

nizasyonlar�nda kullan�lmaktad�r. Bugüne kadar geli³tirilmi³ olan zaman yöne-

timi sistemlerinde, örne§in Yüksek Seviye Mimari, simülasyon elemanlar�n�n man-

t�ksal zamanlar� simülasyon içerisindeki zaman� düzenleyen tüm di§er elemanlara

ba§l�d�r. Ancak baz� simülasyon uygulamalar�nda bu ko³ul gereksiz olarak sis-

temin performans�n� dü³ürmektedir. Önerilen zaman yönetimi mekanizmas�nda,

da§�t�k simülasyon içerisindeki federeler mant�ksal olarak birbirleriyle ili³kisiz

kümelere ayr�lmaktad�rlar. Federelerin birbirleriyle ili³kileri onlar�n simülasyon

uzay� içerisindeki yak�nsall�klar�yla ölçülmektedir. Bu sayede federe kümeleri

göreceli olarak birbirlerine daha yak�n federelerden olu³maktad�r.

Federe kümeleri aras�ndaki mesafe belirli bir miktardan daha fazla oldu§unda,

bu federeler aras�daki mant�ksal zaman sekronizasyonunu devam ettirmeye gerek

yoktur. PATiM mekanizmas� içerisinde federe kümeleri birbirleriyle uzak mesafel-

erde olduklar�nda federe kümelerinin mant�ksal zamanlar� senkronize edilmemek-

tedir. Ancak bu federe kümeleri birbirlerine tekrar yakla³maya ba³lad�klar�nda,

mekanizman�n onlar�n mant�ksal zamanlar�n� tekrar senkronize etmesi gereke-

cektir. Simülasyon s�ras�ndaki bu geçici bölünmelere izin verilmesi sayesinde
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mesajla³ma tra�§ini ve zaman yönetimi hesaplama zamanlar�n� azaltmay� ve fed-

ereler aras�daki paralleli§i artt�rmak amaçlanmaktad�r.

Örnek uygulamalardan elde edilen sonuçlar federe kümelenmesi yöneteminin

federeler birbirlerinden uzakla³t�klar� andan itibaren yerel performans� artt�rd�§�n�

göstermi³tir.

Anahtar Kelimeler: HLA, Ilgi yönetimi, Kümelenme, Mant�ksal Zaman, RTI, Veri

Da§�t�m Yönetimi, Zaman Yönetimi
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CHAPTER 1

INTRODUCTION

Parallel and distributed simulation is an emerging technology for collaborative

simulation. It enables models to be run at geographically dispersed sites and it

deals with ways of using multiple processors in a single simulation. Each partici-

pant constructs his/her own model, and agrees upon the information interchange

mechanisms that are going to be used for the interoperation of the models. These

types of simulation systems �nd relevance in many applications, including civilian

applications such as telecommunication networks, physical system simulations,

tra�c simulations, transportation simulations, distributed multi-player gaming,

and non-civilian applications like battle�eld simulations.

Ideally, the results produced by a parallel simulation run must match those

that are produced by an equivalent sequential run. To achieve this match, parallel

execution must be properly synchronized in order to preserve the right orderings

and dependencies during computation of the simulation states across the proces-

sors. One of the challenges of this synchronization is encountered in minimizing

the runtime execution overheads incurred during parallel execution. Thus, it is

important to keep the overhead within acceptable limits to produce better overall

execution times in comparison with sequential runs.

A large simulation system is usually built up by a combination of various sim-

ulation components which are developed at di�erent times by di�erent teams. To

promote the interoperability and reusability of such simulations, the USA Defense

Modeling and Simulation O�ce (DMSO) has been working on the formation of

a common technical framework for simulations since 1995. The e�orts of the
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DMSO led to the advent of the High Level Architecture (HLA).

The HLA generalizes and builds upon the results of Distributed Interactive

Simulation (DIS) and other related e�orts such as Aggregate Level Simulation

Protocol (ALSP). The primary mission of HLA is to create a synthetic, vir-

tual simulation environment by systematically connecting individually developed

simulations that are executed at geographically dispersed locations. It de�nes

an architecture where simulation components, referred as federates in the HLA,

complying with a set of HLA rules can interact with each other via the services

de�ned in the HLA Runtime Infrastructure (RTI) to create a combined large scale

simulation.

Ideally, simulations exactly reproduce the temporal relationships among the

events that occur in the real world being modeled. However, the heterogeneous

delays associated with the modeling computations and message transmissions

over the network may lead to a violation of such relationships. For example, an

observer may see a tank destroyed before it was hit by an aircraft, where the tank

and aircraft are simulated at two separate computers. These temporal anomalies

or distortions in the event ordering cause simulations to deviate from the real

world.

The objective of time management services of HLA is to reduce the occurrence

and e�ects of these temporal anomalies in order to meet the requirements of the

simulation. To facilitate the reuse and interoperation of the separate simulations,

a number of design rationales have been proposed and incorporated into the def-

initions of current time management services. Some important design principles

are time management transparency, �exibility of accommodating various inter-

nal time management mechanisms, minimal communication latency, and minimal

computational and communication overhead.

A fundamental issue to be addressed by the time management services of the

HLA is the ordering of the messages that are processed by a federate. Each

federate in the federation generates a stream of events modeling its behavior and

exchanges messages representing those events to other federates. Since each of

these events takes place at an exact moment in time, the messages representing

the respective events must be handled in the correct order at all federates.

2



Although there are a group of ordering mechanisms in the distributed syn-

chronization area, such as receive order, priority order, causal order, causal and

totally delivered order and timestamp order, in distributed synchronization area,

timestamp ordering is the main focus in which every event is given a timestamp

indicating the time the event occurred.

Each federate has a logical time value indicating its point on the timeline of

the simulation environment. When a federate wants to send an event, its current

logical time is given as a timestamp to this event. On the receiving side, events

are processed with ascending timestamps.

The main problem of conservative time management mechanisms like the

time stamp ordering mechanism, is the high overhead of interchanging and pro-

cessing the synchronization information. In distributed implementations of time

management mechanisms, individual elements need to know about time related

states of other elements in order to advance their internal logical time. However,

distributing this information between simulation elements decreases the perfor-

mance because of both time and resource required to transfer and process this

information.

1.1 Motivation

In existing time management systems, such as in HLA, the logical times of the

federates are regulated by all the federates that take part in the simulation. A

federate can advance its logical time only after states of all other federates allow.

This approach, in fact, should decrease the level of concurrency during the overall

simulation.

During simulations, a group of federates could come logically close but fall

apart from the rest of the federates. For example, in a space-based simulation ap-

plication, there could be a number of federates simulating spaceships and ground

stations. Initially when they are all on Earth, they could regularly interact. It

is normal that logical times of all federates are synchronized. However, after a

while, a group of spaceships may leave Earth to go to other planets, making the

communication with Earth impossible. In this case, there will not be any inter-

3



action between spaceships and ground stations for a period of time. Thus, the

federates on di�erent planets, including Earth, will constitute di�erent groups.

In this study, these logically related group of federates are referred as Federate

Clusters.

In fact, there will be no need to synchronize the logical times of federates that

are not related. If the logical time dependency between two federate clusters is

broken, their concurrency level is expected to increase as their logical times will be

constrained by less number of federates. Additionally, there will be performance

improvements in the time management algorithm with reduced problem space,

in terms of the number of federates [50, 51].

The only standard HLA supplied mechanism that could be used to break

logical time dependencies between two or more groups of federates is disabling

or enabling time regulating properties of the federates. By disabling time man-

agement, a federate could not send or receive TSO messages, as its logical time

synchronization with other federates is broken. However, in most cases, disabling

time management is not a desired feature. First of all, the aim is to construct

two di�erent time consistency groups; not disabling time any group. Secondly,

having disabled time management, federates in that group start processing events

in receive order, which is not a desired situation.

1.2 Summary of Contributions

In this study, a new time management mechanism is proposed, in which feder-

ates are divided into logically related groups referred as Federate Clusters. The

dynamic clustering of this mechanism is based on proximity relations between

federates, in which federates are grouped into federate clusters by comparing the

distances between them in the virtual space. Distances of the federates are cal-

culated using the declared update and subscribe regions of the federates by the

Data Distribution Management services of HLA. Federate cluster structure could

dynamically change during the simulation execution due to the movements of the

federate within the virtual space. On the other hand, federates of the clusters

are always related with each other, maintained by dynamic property of proposed
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clustering algorithm, named as Proximity Aware Time Management (PATiM).

In PATiM mechanism, logical times of federate clusters can be independent

of each other. When federates are distant to each other, there is no need to

synchronize their logical times as there will not be any interaction between these

federates as long as they are distant. In this study, this logical time independency

is utilized in order to increase the performance of the underlying time management

algorithm.

The aim of this algorithm is to reduce overhead of the time management

mechanism by increasing concurrency, thus reducing unnecessary blocking of the

federates. Performance improvements are made possible as the whole federation

is divided into small synchronization groups. The required synchronization re-

lated messages and LBTS calculation time are dramatically reduced due to this

dynamic division.

The notion of distance is very important in PATiM mechanism. Distance

changes between the federates are measured in order to break and reconstruct the

logical time consistency. Thus, the formation of federate clusters is completely

dependent on the distances between the federates. In order to measure distances

that are meaningful, the simulations should use time-stepped algorithms; in that

case, position of the federate will not change dramatically and immediate changes

or jumps will not occur. Even if the term of distance in PATiM does not have

any relation with the real distance, it is easier to understand it with physical

simulations of real systems.

To test the proposed mechanisms, they are implemented within the scopes of

example simulations. Currently there are not any fully implemented and open

source HLAs; therefore a middleware architecture for integrating the PATiM

mechanism to RTI-NG 1.3, which is a free but not open source HLA implemen-

tation, is developed. This implementation is used to make a group of validations

and performance analyses in order to show the e�ectiveness of the PATiM mech-

anism.
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1.3 Organization of the Thesis

This thesis is organized as follows: Chapter 2 gives some background informa-

tion, which includes distributed simulations, parallel and distributed simulations,

distributed interactive simulations, High Level Architecture and federation com-

munities. Chapter 3 describes the theory behind the proposed dynamic clustering

mechanism and proximity aware time management mechanism. Chapter 4 gives

information about the design and implementation of the proposed mechanisms.

Additionally, in this chapter there is a validation section of the PATiM mech-

anism. In Chapter 5, an analytical analysis of the proposed method is given.

Finally, Chapter 6 states the conclusion of this study and suggests future work.
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CHAPTER 2

BACKGROUND ON

DISTRIBUTED SIMULATIONS

2.1 Distributed Simulation

Distributed simulation has attracted considerable amount of interest in recent

years. This interest is mainly a result of the fact that large simulations in many

applications consume enormous amount of time and processing power on sequen-

tial computers. The need for a distributed system that combines simulation

environments that are distributed over many computers and locations is another

reason for this interest. The main issues in the distributed simulation area are

synchronization of time and data, fault tolerance, locality management, paral-

lelization of simulation processes, scalability, interaction and coordination be-

tween simulation processes and event distribution [66, 31, 14, 73, 37, 7].

The classi�cation of distributed simulations is based on the involvement of

real world entities to the simulation system [28]. The simulation systems that fall

in the �rst category are fully composed of logical components. These types of sim-

ulations, called Parallel and Distributed Simulations (PADS), are generally used

for statistical purposes or for performance evaluations. Distributed synchroniza-

tion, discrete events and time management [36, 40] are the issues in these simula-

tions. For the simulation systems of the second category, entities from real world

are directly included in the interactions within the simulation systems. These

types of real-time simulation systems are generally referred as Distributed Inter-
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active Simulations (DIS). DIS tools form a simulation infrastructure intended to

support interoperability between separately developed simulators, systems and

human participants.

2.2 Parallel and Distributed (Discrete Event) Sim-

ulations

In Parallel and distributed Simulation (PADS), a set of real world entities are

modeled as logical processes. In this process oriented approach, there are con-

tinuous interactions between logical processes, which simulate the interactions

between physical objects in the real world. The logical processes contain a set

of state information corresponding to the physical process and logical simulation

clock. The interactions between physical processes are modeled by time-stamped

messages that are exchanged between the logical processes. In order to lead a cor-

rect simulation, logical processes should process events in an ascending timestamp

order.

PADS systems can be divided into two main categories based on their syn-

chronization techniques as conservative or optimistic [26, 52]. Conservative algo-

rithms strictly avoid the possibility of incorrect sequencing of events by including

strategies to determine which events are safe to process at each point in the sim-

ulated time. As a result, this creates the potential for a deadlock. Optimistic

algorithms, on the other hand, use a detection and recovery approach, which

is based on detecting incorrect event execution sequences, and determining a

rollback mechanism for recovery. Both techniques are discussed further in the

following subsections.

2.2.1 Conservative PADS Techniques

Conservative PADS techniques are based on the idea of determining when it

is safe to process an event. By processing only safe event, simulation systems

guarantee that no incorrect executions can be generated. This safety information

can be generated using the timestamps of the events that are sent within the
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event messages.

The �rst conservative algorithm is the CMB (Chandy, Misra and Bryant)

algorithm [18, 17]. In this algorithm, every logical process send the outgoing

event messages in the timestamp order. This rule guarantees that the last message

from an incoming channel has the highest timestamp value within the messages

received from that channel, which is the clock of that channel. Incoming messages

are kept in a queue in a descending timestamp order. The process repeatedly

selects the channel with the smallest channel clock and gets the smallest message

to include in the process. The important point here is that the logical process

blocks if not all the channel queues have messages. The reason for this is to

ensure that all processes have sent a message, so that no other messages with

smaller timestamp values than the selected message, has been undelivered. Of

course, this method can lead to deadlock conditions because of in�nite blockings

of the logical processes. These blocking operations are the sources of unnecessary

waiting, because generally new messages from other logical processes have higher

timestamp values than the smallest message in the local queues. To overcome

this problem, null messages are used. Every logical process regularly sends null

messages, which carry correct timestamp values indicating the current logical

time. By using this method, blocking times are bounded to the interval where the

null messages are sent and deadlocks caused by recursive blockings are avoided.

However, this method brings the overhead of sending too many null messages. An

improvement is the demand based null messages, in which the logical process that

has an empty message queue will request a null message from the corresponding

process.

Another method to ensure safety of processing of an event is using the time

windows. In this method, only unprocessed events with timestamps larger than

the lower edge of the window can be processed. Dividing the physical system into

subparts, for which time windows are de�ned, increases the concurrency. Addi-

tionally, there are some mechanisms making assumptions about the underlying

network topologies in order to improve the performance [60]. Besides CMB, there

are other time management mechanisms reported in the literature [33, 57, 25, 34].
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2.2.2 Improvements to CMB Algorithm

The basic problem of the CMB algorithm is its high number of message require-

ment for synchronization of distributed simulation elements. In this algorithm,

logical processes send several null messages for each processed message. A num-

ber of methods have been developed in order to reduce the number of these

synchronization messages [49, 69, 10, 10, 55].

The Null Message Cancellation [56] algorithm is based on the fact that null

messages do not contain any other information other than the synchronization

data. Therefore, total number of null messages can be reduced by removing un-

necessary ones. There are two types of unnecessary null messages. The �rst one

includes null messages that appear before any real message. These messages are

not necessary because immediately after sending this message, CMB algorithm

will send a real data message containing the necessary synchronization informa-

tion. The other type of unnecessary null messages includes null messages that

appear after the last real message, except the last one. This last null message

represents the greatest timestamp of the queue. Information carried by any null

message between the last real message and the last null message will be overwrit-

ten by the null message next to it. So, these messages can also be cancelled. Null

message cancellations can be implemented by using a modi�ed message queue

structure so that messages holding the greatest timestamp of all null messages

can be cancelled individually. This value could be used in the deciding whether

to send or cancel the current null message.

Another optimization on CMB algorithm is applied by optimizing the sim-

ulation loop algorithm [54]. In standard CMB algorithm, all created messages

related to events are released to output channels after every event processing. If

the simulation loop is changed, logical processes �rst process all available events

coming from incoming channels and bu�er outgoing messages. After event pro-

cessing is �nished, all generated messages are released. If the simulation loop

does not generate an outgoing message for a channel, a null message that carries

information about current logical time of the logical process is generated and

released. Thus, only necessary null messages are sent over the communication
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network.

2.2.3 Optimistic PADS techniques

In optimistic approaches [70, 16, 5], the system lets the logical processes to con-

tinue their executions without blocking them. On an error condition, optimistic

techniques will detect the error and recover from it. The most known optimistic

mechanism is the Time Warp. In Time Warp, a causality error condition is spec-

i�ed as the time a logical process receives an event that has a smaller timestamp

value than the local time clock.

In this algorithm, if a process receives an event from another process that has

a timestamp earlier than the local clock, the process rolls back and repeats its

simulation to take the new messages into account. In addition, the e�ects of the

rolled back processes should be undone, which can lead to successive rollbacks

of other logical processes. The state of each process since the last correct time,

called Global Virtual Time [63] (GVT), must be stored periodically in order to

be able to roll back more than one logical process. GVT is the minimum of the

logical time vectors for all logical processes and the timestamps of all messages

that are sent but not acknowledged, i.e. message on the network. Additionally,

irrecoverable operations, such as disk I/O, should not be committed until GVT

is larger than the logical time of the operation.

2.2.4 Hybrid Techniques

Conservative and optimistic approaches to PADS are likely to encounter some

limitations when the size and complexity of the simulation system increases. The

blocking problem and the sensitivity to look ahead in the conservative protocols,

cascading rollbacks and state saving problems in the optimistic protocols are

the key limitations for the respective approaches. A hybrid algorithm can be

dynamically switched between optimistic and conservative mechanisms whenever

it encounters too many numbers of rollbacks. Clustering of closely related logical

processes is another hybrid technique. In this mechanism, intra-cluster events are

handled optimistically whereas inter-cluster events are handled conservatively.
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2.2.5 Casual Ordering

Conservative and optimistic approaches provide message ordering schemes that

use a "all" or "nothing" type of ordering. On the other hand, casual ordering

provides a partial message ordering scheme for simulations. This new approach

captures the "cause and e�ect" relationship among the events and enforces an

ordered processing of two events only when such a "cause and e�ect" relationship

exists between them [41, 13].

The notion of causality was �rst introduced by Lamport [40] in a general

context of a distributed system. A distributed system consists of a group of

asynchronous processes that cooperate to achieve a common goal by exchanging

messages. Those processes do not have a shared memory and a common clock

does not exist for them. The action of each process in a distributed system can

be modeled as three types of events: internal event, send message event, and

receive message event. Causality captures the "cause and e�ect" relationship

among events and establishes a partial order called "happened before".

If an event e2 is �red after another event e1 is received there is a cause-and-

e�ect relation between these events and e1 is "happened before" e2. Thus, these

events are delivered to another simulation node in that order. However, if there is

not any cause-and-e�ect relation between two events, they are assumed to occur

concurrently and causal ordering does not guarantee the delivery of them. So,

this ordering could relax the total ordering of the timestamp ordering, but it is

undesirable in some cases. For example, let us assume that two planes, A and B,

�re to a tank without having an existing cause-and-e�ect relation. Assume that

the event of plane A is delivered to the tank node in the �rst place and has �red

it. There is no guarantee about the ordering of these two �re events and a third

observer could receive the �re event of B �rst and may think that plane B �red

the tank rather than A.

To maintain causality, any message M should not be delivered to a process

Pi until all other messages sent to Pi, which are called the causal predecessors of

M and the SEND events of which occur before SEND(M), have been processed.

By attaching message M the information about all its causal predecessors, desti-
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nation processes of M are able to process the message only after all of its causal

predecessors have been delivered. This traditional approach requires control in-

formation packaged within each message with N2 size.

Underlying network topologies or communication patterns of processes are

used to decrease the size of the required control information. Thus, a more

promising approach is based on the direct dependency tracking technique, where

only the immediate causal predecessors of message M, whose delivery state may

not be known, are tracked and propagated with M. The foremost advantage of

the direct dependency tracking technique is that it achieves optimality without

relying on assumptions over the underlying communication network and thus is

feasible for a wider class of applications. Although the upper bound of the space

complexity of the control information appended to messages is still O(N2), the

size of the control information is likely to be much smaller on the average.

2.2.6 Fault Tolerance

In a distributed simulation, a crash of any logical process causes the entire com-

putation to halt. In such a case, if there is no any fault tolerance system present,

the only solution would be to restart the entire system. However, this would re-

sult in losing all the simulation work data of hours or even days, which is clearly

unacceptable. Thus, some form of fault-tolerance is required to minimize the

amount of lost work data.

Most of the studies on fault tolerant distributed simulations are focused on

optimistic simulations because of their natural implementation of rollback and

checkpoint mechanisms [22, 72]. Therefore, in this section fault tolerance issue

for optimistic mechanisms is mentioned.

On a crash of a process, it is assumed that it loses all of its volatile memory. To

reduce the amount of wasted computation, it periodically writes its checkpoints

to a stable storage. After a failure, it is restarted from its last stable checkpoint.

Here, the time warp protocol provides a useful mechanism for the fault tolerance.

Crash of a logical process is similar to a late event in a time warp mechanism.

However, the original mechanism provided by the time warp cannot be applied to
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a fault situation such as a process crash. In a native time warp algorithm, when

a roll back occurs because of a late message, a process should send anti-messages

corresponding to messages it sent after the last checkpoint. However, in a process

crash this process cannot be succeeded.

There is a fault tolerance protocol especially designed for distributed simula-

tions [22]. In fact, this algorithm is very similar to the standard fault tolerance

mechanism used for a group of distributed communicating processes. In this al-

gorithm each logical process saves its states to stable storages periodically. After

a crash, it restores the latest checkpoint and starts its execution from there. At

that point, the process broadcasts a message indicating the rollback event with

a timestamp checkpoint. Upon receiving this message, other processes check for

any dependencies. Dependency here means that the processes receive and process

an event message from the rolled back process which was sent between the check-

point time and the rollback time. Of course, this message is an orphan message

that should not be sent at all in a rolled back state. If other processes �nd such

invalid dependencies, they are also rolled back to the previous situation.

2.3 Distributed Interactive Simulations

Distributed Interactive Simulations (DIS) [1] can be viewed as a collection of

autonomous simulators (e.g. tank simulators), each generating its own virtual

environment representation (e.g. battle�eld). Each simulator sends messages,

called Protocol Data Units (PDUs), whenever its state changes in a way that

might a�ect another simulator. Typical PDUs include movement to a new lo-

cation, such as �ring, etc. For the interoperability among separately developed

simulators, a set of standards are de�ned. These standards de�ne not only the

format and content of the PDUs but also the information of when to send PDUs.

DIS systems are designed especially for training systems that include human

interactions. Additionally, testing real world systems is another purpose of the

DIS systems. In order to properly model these requirements, DIS systems have

some design principles [26]:

• Autonomy of simulation nodes: Each simulation node in the distributed
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environment is an autonomous agent, which can independently enter or

exit the simulation. Nodes have their own local real-time clock. Simulators

are not required to determine which other simulators must receive PDUs.

They either broadcast all the messages to others and receivers decide to

process the PDU, or a runtime system decides which nodes should receive

the PDU.

• Transmission of state change information only: In order to minimize the

amount of messages sent over the network, nodes only send state changes.

For example, while traveling in a straight line with constant velocity, it

is not necessary to send location update messages. Only a "keep alive"

message is sent regularly, so that newcomers can get the state information

of other nodes.

• Dead Reckoning [11] algorithms: All simulators use common algorithms to

extrapolate the current state of other entities between state updates. Dead-

reckoning model (DRM) is an approximation of the true simulator node. In

practice, DRM is a simpli�ed model of the true simulator and it can lead

to errors. For this reason, the true simulator node also facilitates a copy of

its own DRM and compares the real value and the DRM generated value.

Whenever the di�erence between them exceeds a threshold value, it sends

an update message.

• Simulation time constraints: Because humans cannot distinguish time dif-

ferences smaller than 100 milliseconds, a communication latency of up to

this is required. Lower latencies can be necessary for other simulators such

as non-training simulators, e.g. testing of weapon systems.

Even with dead-reckoning, DIS protocols require enormous amount of mes-

sages to be sent over the network. The main decrease is achieved by using rel-

evance �ltering, in which messages are not broadcasted but sent only to the

relevant nodes. The relevance here is data dependent and the nodes have to de-

cide which data are related to which nodes. Other methods are compression of

messages, bundling two or more messages in one, and �delity management [61],
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in which di�erent degrees of details are sent to di�erent nodes.

2.3.1 Synchronization and Time Management

The synchronization and time management mechanisms are responsible to en-

sure temporal correlation between simulation nodes. While PADS simulation

protocols guarantee that all logical processes observe the same timestamp or-

dered sequence of events, DIS does not guarantee this. Correlation problems can

occur because of lost messages and lack of a mechanism that ensures that events

are processed in a timestamp order. Partial solution for this problem is that

the receiver compensates late arrivals by determining the communication delay

in transmitting the message. This communication delay can be calculated using

past message transmission delays, or it can be assumed that there is a synchro-

nized real-time clock between the sender and receiver to determine the latency

by simply computing the di�erence between the send and receive times.

In general, time synchronization problem is solved by synchronizing local

clocks to a standard clock called Coordinated Universal Time (UTC). By us-

ing some methods, the UTC time is broadcasted to all simulation nodes. Radio

broadcasting, dial-up time service, global positioning system (GPS) or Network

Time Protocol (NTP) is used for this purpose [44].

2.4 High Level Architecture (HLA)

The High Level Architecture (HLA) [21, 6] provides a speci�cation of a common

technical architecture to use with a wide range of distributed simulation environ-

ments. Its main purpose is to support interoperability among di�erent simulation

systems, which is actually a similar requirement for distributed interactive simu-

lation systems.

HLA architecture is composed of a number of functional components which are

shown in Figure 2.1. The �rst key components are the simulations themselves,

or more generally the federates. A federate can be a computer simulation, a

supporting utility (e.g. a viewer or data collector), or an interface to a live

player.
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Figure 2.1: HLA Architecture

The second functional component is the Runtime Infrastructure (RTI). In fact,

RTI is a kind of distributed operation system for the federation. It provides a set

of services that support the interaction. All interactions between the federates

�ow through the RTI. Between the federates and the RTI there is the runtime

interface which provides a standard way for the federates to interact with the

RTI.

The HLA is a blueprint to be used to develop the necessary infrastructure in

order to promote interoperability and reusability within the modeling and sim-

ulation community. A key component of the HLA is the Interface Speci�cation

that de�nes the standard services that simulations utilize for coordination and

collaboration during an exercise. There are two sides of the Interface Speci�ca-

tion; the services implemented by the individual simulations themselves and the

services implemented by the common Runtime Infrastructure (RTI).

As the RTI is an interface speci�cation, it is envisioned that multiple imple-

mentations, potentially providing domain speci�c bene�ts, could be developed.

The RTI provides services that fall into six categories:
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• Federation Management, which deals with the creation of new federates,

• Declaration Management, dealing with the declaration of objects and their

attributes and operations such as subscribe and update declarations

• Object Management

• Ownership Management, which deals with which federate currently owns

objects,

• Time Management, which deals with time and message ordering, and

• Data Distribution Management dealing with distribution of update infor-

mation on object attributes to other federates.

The speci�cations of these services have evolved through prototyping and

working group activities. Modules that compose the RTI architecture are shown

in Figure 2.2.

Figure 2.2: RTI Modules
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As it can be seen in the �gure, the federate accesses the RTI via the Presen-

tation Manager, which presents the language-speci�c API to the user. Internally,

the Presentation Manager converts the supported APIs into a common format

before passing service requests and data to other RTI components. There are a

group of services to support the Presentation Manager, including the Time Man-

ager, Queues and the Object Manager. The Time Manager maintains the order-

ing information for the local federate and determines which data items within

the Queues may be released to the federate without violating the data ordering

requirements of the federate.

The Time Calculator in the RTI architecture is a support module for the

Time Manager. The Time Manager is responsible to maintain an up-to-date

value for the system-wide Lower Bounds Time Stamp (LBTS) and use LBTS in

determining data that can be released to the federate.

The Object Manager is responsible to maintain the current list of objects

produced and consumed by the local federate. It uses the Data Distribution

component to e�ciently transport data from producers to consumers.

Internal to the Data Distribution component, the Global Addressing Knowl-

edge component maintains the information needed to segment data �ow in order

to minimize undesired package receipt.

The Virtual Network component abstracts communications with the other

RTI components and isolates the RTI from variations in networking technology.

A generic Channel is used to provide both point to point and point to multi-

point communications. Internal to the Virtual Network, a Reduction Network

component provides support to RTI components that require e�cient access to

system-wide information. The Multi-Level Distributor is an optional component,

which supports large-scale federations through hierarchical message transmission.

2.4.1 Data Distribution Management

The aim of Data Distribution Management (DDM) is to limit and control the

volume of the data exchanged during the simulation, and to reduce the processing

requirements of simulation hosts by relying events and state information only
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to those applications which require them, while exploiting the features of the

computer network architectures [8, 64, 46].

The fundamental Data Distribution Management construct is a routing space.

A routing space is a multidimensional coordinate system through which the fed-

erates either express an interest in receiving data (subscribe) or declare their

intention to send data (publish). These intentions are expressed through:

• Subscription Region: Bounding routing space coordinates that narrow the

scope of interest of the subscribing federate.

• Update Region: Bounding routing space coordinates which are guaranteed

to enclose an object's location in the routing space.

Both subscription and update regions can change in size and location over

time as the interests of the federate can change or the location of an object in

the routing space can change. An object is discovered by a federate when at least

one of the attribute of the object gets into the scope of the federate, i.e. if an

only if:

• the federate has subscribed to the attribute

• the update region of the object overlaps the federate's association to another

region.

DDM enables federates to specify by object class and attribute name the types

of data they will send or receive, while narrowing down the speci�c instances of

data. Federates decide which of the federation routing spaces are more useful

for them and de�ne the portions of those routing spaces that specify regions, or

logical areas of interest particular to the federate, by putting bounds (extents)

on the dimensions of the selected routing space. Specifying a subscription region,

the federate tells the Run Time Infrastructure (RTI) the data in which it is

interested in and which fall within the extents of the region speci�ed by that

federate. Specifying an update region and associating this update region with a

particular object instance is a contract from the federate to the RTI. Due to this

contract, the federate will ensure that the characteristics of the object instance,
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which map to the dimensions of the routing space, fall within the extents of the

associated region at the time the attribute update is issued. This implies that

the federate is monitoring the added characteristics for each of the attribute it

owns. As the state of the objects changes, the federate may need to either adjust

to the extents of the associated regions or alter its association to another region.

Figure 2.3 shows one update region (U1) and two subscription regions (S1,

S2) within a two dimensional routing space. In this example, U1 and S1 overlap

so attribute updates from the object associated with U1 will be routed to the

federate that created S1. In contrast, U1 and S2 do not overlap so attributes will

not be routed from the federate that created U1 to the federate that created S2.

Figure 2.3: Two-dimensional Routing Space Example

When an update region and subscription region of di�erent federates overlap,

the RTI establishes a communication between the publishing and subscribing fed-

erates. The subscribing federates receive only the object class attributes to which

they subscribed, although they may receive individual updates outside their sub-

scription region, depending on the precision of the routing space implementation.

In Figure 2.3, S1's federate will receive attribute updates from the object associ-
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ated with U1 as their regions overlap even though the object itself is not within

S1.

Each federate can create multiple update and subscription regions. Update

regions are associated with individual objects that have been registered to the

RTI. A federate might have a subscription region for each sensor system being

simulated.

The fundamental observation leading to this strategy is that practically all

of the real world objects being simulated will be interested in only a fraction of

the objects contained in the entire simulation. For example, a plane is primarily

interested only in ground vehicles, such as tanks, that are close to it. It is prob-

ably not concerned with the position of any other tanks, some of which might be

thousands of miles away. This real-world phenomenon of limited interest would

not be taken into account if a DDM is not omni-present. The host that simulates

the plane cannot choose to receive only the information about certain objects,

i.e., the ones that are within the plane's radar range. Instead, it gets an update

message every time when a tank, vehicle or aircraft changes its position. Con-

sequently, this information is always transmitted to all hosts, just in case one

should need it.

The cost of this irrelevant data transmission can be very high. If a host

receives a large amount of transmissions containing data that are irrelevant, it

will waste a signi�cant amount of time and processing resources while receiving

and perhaps reading the data. Even if unnecessary data are somehow dismissed

by the host without requiring any computation, they will have contributed to

increase the tra�c on the network. Sending unwanted data to a host puts an

unnecessary burden on the sending host (and especially on the receiving host),

as well as on the network, which may be inundated by such useless transmissions

that will most probably be ignored when they reach their destination.

In RTI implementations multicasting is used to e�ectively distribute the data

to the distributed federates. It is a good way of data distribution; however, it

has its own challenges: multicast hardware currently supports a limited number

of multicast groups, on the order of a couple thousand. A second drawback is the

time required to recon�gure multicast routers as this time can be as big as the
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total allowable latency for message delivery. As a result, most implementations

using multicast have used static assignments of multicast groups, usually �xed

to geographic regions. In this type of assignment, when a federate enters to a

geographic location, local RTI component joins the multicast groups associated

with that region so that the messages for that region can be delivered to that

federate.

There are a couple of methods that utilize the multicasting protocol for data

distribution management. These methods are mainly divided into two groups as

�xed grid-based algorithms and sender based algorithms.

Fixed Grid-Based

Fixed grid-based allocation of multicast groups scheme was used in the initial

implementations of the HLA-RTI. It associates multicast groups with cells de�ned

by a grid system overlaid on the terrain [65].

To illustrate how this scheme works, a simple scenario can be illustrated. In

Figure 2.4, a grid overlay on the terrain to de�ne cells, and a two-dimensional

grid system are shown. Second part of the �gure shows how the grid cells are

populated with subscribing and publishing regions. The plane is subscribing to

the terrain within its radar range, which has been mapped to thirteen cells that

are distinguished in the �gure by gray shading. Each tank is publishing to a

terrain area mapped to one or two cells, which are illustrated in the �gure by

placing a tank icon in them. The four cells representing both the subscribing

region of the plane and the publishing region of a tank have both gray shading

and a tank icon.

After publication and subscription regions are mapped to cells, each cell has

been associated with a multicast group, i.e., all units within a speci�c grid cell

are assigned to a membership of that multicast group.

In the Fixed Grid-Based (FGB) approach, cell size, and the one-to-one map-

ping of cells to multicast groups is �xed at the initialization step of the system.

The advantage of this approach is that it minimizes inter-federates communication

needed to perform DDM because a federate does not need any information from

other federates in order to set up multicast group assignments for its units. Us-
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Figure 2.4: Region Grids

ing the fully distributed grid algorithm implemented for the RTIs routing spaces

means that determining the destination address was fully deterministic. In this

context, routing spaces refer to grids. Therefore, at run-time a federate can as-

sign its units to multicast groups simply by checking the cell-to-group mapping

already established during the initialization step [45].

A disadvantage of this strategy is that it requires large number of multicast

groups to cover a wide terrain. Experimental studies of this algorithm have found

that the optimal cells size is about 2 to 2.5 km. Thus, for a large battle�eld, the

cell size might easily require thousands of multicast groups. Optimizing the cell

size is the main concern in this approach [4]. Associating multiple cells to the

same multicast group would reduce the number of groups needed but it decrease

the accuracy of DDM �ltering, and it would require additional �ltering at the

source. This tradeo� might not be acceptable in terms of increased cost and

complexity.

Multi-level Grids

To combat the problem of using large numbers of multicast groups, the use of

multi-level grids has been proposed. This approach is based on the observation

that the limit on the number of multicast groups and their associated maintenance

overhead is most critical at the wide area network level. A hierarchy of grid-based

�lters is used, and the cell resolution increases from the wide area network to local

area network layers so as to decrease the number of multicast groups needed at
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the wide area network level while still obtaining the bene�ts of �ner �ltering

at the local area network level. Another multi-tiered �ltering algorithm uses a

grid for the �rst tier of �ltering and the Sender-Based strategy for the second

tier. However, these approaches are signi�cantly more complex than the �xed

grid-based approach.

Sender-Based

Instead of performing a cell-to-group mapping at system initialization, the RTI

1.3 allocates multicast groups dynamically. Like its predecessor RTI-s, the RTI

1.3 uses a grid to determine intersections of subscription and publication regions.

However, multicast groups are allocated based on which federates need to send

data they are publishing, not on which cells are part of the intersection. For each

publisher, a subscriber set is derived specifying which federates are subscribing

to cells to which that publisher is publishing.

The approach used by the RTI 1.3 is similar to the distribution list algorithm

where each mover maintains a list of sensors that want information about it.

A distributed grid-based approach is used, as in the RTI 1.3, to determine the

intersection between the areas in which a mover is operating in a sensor's coverage.

Here, movers can be linked to publishers, sensors to subscribers, and distribution

lists to subscriber sets.

The assignment of multicast groups based on subscriber sets, or distribution

lists, can be done by dynamically assigning a multicast group to each publisher

created in the simulation, and then have each subscriber in the subscriber set

join that group. Subscribers to the group will change as the publisher and sub-

scribers regions of interest change. A possible optimization designed to reduce

the number of multicast groups used involves assigning multicast groups only to

those publishers that have a non-empty subscriber set.

Clustering

Assigning multicast groups dynamically, based on the number of publishers that

have non-empty subscriber sets, may have the disadvantage of requiring large

number of multicast groups if there are many publishers. Clustering is a technique
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that has been used to reduce the number of multicast groups needed. In this

technique, multiple publication regions are grouped into a cluster, which is then

treated as a single unit and is assigned to one multicast group.

Clustering publication regions, whose cells are in close proximity in the rout-

ing space, has the advantage of reducing the number of multicast groups that a

subscriber may need to join. This is true, since the subscriber might join only the

groups assigned to the cluster instead of all the groups associated with multiple

publishers. However, clustering publication regions for publishers that have dis-

join subscriber sets may cause several subscribers to receive data in which they

have no interest, which partially defeats the purpose of DDM. Nonetheless, the

subscriber can of course �lter out the unneeded data.

Dynamic Grid-Based

Dynamic grid-based algorithm [67] is a hybrid approach of the static grid based

and the sender based approaches. It combines the simplicity and ease of im-

plementation that is associated with grid based method, and the reduction of

multicast groups used, which is connected with the sender based strategy.

As in the grid-based method, in this strategy cells are de�ned by overlapping

the terrain with a grid. However, multicast groups are not statistically assigned to

all of the cells in the grid. As in the sender-based approach, multicast groups are

dynamically allocated based on the current publication and subscription regions

in the system. A multicast group is allocated to each cell that has been determined

to be part of the intersection of a publication region and a subscription region.

In that algorithm, a distributed grid is created by distributing the cells among

the nodes that participate in the simulation. The node to which a cell is dis-

tributed is said to be the Owner of that cell. Cells can be distributed over the

nodes for example modulo operation. The publishing and subscribing informa-

tion is hold by the nodes that own the cells. Federates that want to publish and

subscribe to such cells should send a message to the owners of that cells (possibly

more than one owner)

Publishing and subscribing information of the federates is hold in a bit ar-

ray, which contains an entry for each federate. When an owner node receives a
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subscription, it checks if there is a publisher/subscriber match for that cell. If

there is one, the requesting federate simply joins that cell, and its information is

recorded. If there is no previous match, owner checks whether this new publish-

ing/subscribing creates a match for that cell. If yes, a new multicast group for

that cell is created and the requesting federate as well as all previous subscriber

and publisher federates join that cell. If this new request does not generate a pub-

lisher/subscriber match, the information related with the operation is recorded.

The owner informs federates on which should join or leave the multicast groups

according to subscribe/unsubscribe and publish/unpublish operations.

Published events should be distributed to the subscribed federates only if cor-

responding regions overlap. Brute force algorithms [53] check all pairs of regions

to �nd an overlap. Grid-based or hybrid approaches try to reduce the space of

the check operation by dividing the total space. However the �nal decision for

overlapping regions should be made by checking the extents of these regions. A

group of improvements are proposed for this overlap �nding operation [38, 59, 58].

State Update Frequency Optimizations

HLA DDM mechanism is constructed on relevance �ltering, in which interests of

the federates are de�ned by the update and subscribe regions. Another group

of message tra�c reduction techniques is based on arranging the state update

frequency. This frequency can be determined by the distance between objects,

speed of these objects, and the number of objects around them, etc.

In a space-based quantization scheme [42], the distance between two agents

can be more than one critical distance corresponding to spatial relations, thus

allowing communication in a more tunable fashion. A quantum is assigned to

each distance range created by critical distances. A quantum refers to a rule

for transferring or discarding messages from sender agent to receiver agent, and

this rule is called a "�ltering policy". The quantum size determines how big a

change must occur before a message is sent across the network. This approach

allows multiple quantum sizes, and thereby allowing communication frequency to

be controlled as a smoother function of distance (Figure 2.5).

Another frequency determination method is the �exible state update mech-
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Figure 2.5: Space-based quantization scheme

anism [75] designed for war game simulations. An entity's update frequency is

determined by its potential impact on the simulation, i.e. by its moving speed,

its distance to other entities and the number of entities around it. Relative im-

portance of the simulation entities is determined and formalized based on the

following observations:

An entity has an area of in�uence on other entities:

• If the entity has in�uence on a large number of entities, then the state

update of entity e may have a great impact on the whole simulation.

• If the entity is close to some other entities, then the state update of the

entity may have great impact on other entities (e.g. for collision detection)

• If the speed of the entity is high, it should be updated frequently in order

to eliminate anomalies.

2.4.2 Time Management

Time management in HLA [23, 24] is concerned with the mechanism to control

the advancement of each federate in the simulation time. A federate may specify

whether it wants to use a coordinated or an uncoordinated time. The time man-

agement mainly deals with the coordinated time advancement of the federates.

The most critical information in time management is the Lower Bound on Time

Stamp (LBTS) value and its calculation. LBTS is the minimum of logical time
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plus the lookahead values of all federates in the federation. It bounds the logical

times of individual federates, so that the logical time of any federate could be

greater than this value.

Time management services mainly deal with two aspects of federation execu-

tions. These are transportation services and time advancement services.

Transportation Services

Both transportation services and time advancement services together manage

how the messages are delivered to the federates with di�erent reliability, message

ordering and cost. Reliable message delivery means that RTI utilizes some mech-

anisms, like retransmission, so that a sent message will eventually be delivered to

the intended destination. These mechanisms will bring some extra latency during

transmissions. On the other hand, the best e�ort message delivery service can

attempt to minimize this latency, but with cost of lower probability of delivery.

Message ordering characteristics specify the order and time at which the mes-

sages may be delivered to the federates. Five di�erent ordering mechanisms are

speci�ed in the early speci�cations of HLA: receive, priority, causal, causal and

totally ordered, and timestamp ordered. These �ve mechanisms, in turn, give

increased functionality but at increased cost. In current HLA speci�cation (HLA

1516 [2]) only two of these ordering schemes are supported, which are Receive or-

der and Timestamp order. The reason for this reduction is that the complexity of

the implementation and execution cost of these ordering mechanisms is relatively

high in comparison to their usage frequency.

• Receive order: Messages are delivered to the federate in the order they are

received. A FIFO queue is used for this purpose.

• Priority order: Incoming messages are placed in a priority queue, with the

timestamp used to specify their priority. Messages are passed to the federate

in the order of having the lowest timestamp. This method does not prevent

to deliver a message that is in the past of the federate; that is, a message

delivered to a federate can have a smaller timestamp than the federate
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• Causal order: This service guarantees that if an event E "causally precedes"

another event F, then any federate receiving messages for both events will

have the message for E delivered to it before the message of F [74].

• Causal and totally ordered: The causal and totally ordered service extends

causal ordering to guarantee that for any pair of concurrent events, messages

will be delivered to all federates in the same order, thereby de�ning a total

ordering of events. This type of ordering is referred as CATOCS (casually

and totally ordered communications support).

• Timestamp order (TSO): In this service, messages are delivered to the fed-

erates in a timestamp order. Further, RTI guarantees that no messages are

delivered to federates in their past. All federates receiving the same set of

events will receive those messages in the same order, so that total ordering

of events is provided.

Receive order is the unmanaged ordering mechanism working as FIFO. This

mechanism is generally used in human-in-the-loop training simulations in which

each update event overrides previous information. Timestamp ordering is a total

ordering mechanism and it is perfectly suited for analysis simulations. Causal

ordering is somewhere between receive ordering and timestamp ordering [41, 13].

In this ordering, events are distributed according to cause-and-e�ect relations.

Lookahead

The timestamp order services require speci�cation of lookahead. Lookahead [35]

is de�ned as the minimum distance to the future where a TSO event will be

scheduled. A lookahead value is associated with each federate. If the lookahead

value of the federate is L, all TSO events from that federate must have at least

the timestamp value of the federate plus L. This lookahead value means that

the federate is able to look ahead into the future for the given unit of time.

In other words, the federate predicts events at least L time units ahead of its

current logical time. Lookahead value is very important for simulations requiring

guaranteed message ordering services to achieve acceptable performance.
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A single lookahead value is designated by each federate. This value may

change during execution, but reductions in the lookahead do not take e�ect im-

mediately. If a federate reduces its lookahead by K units, this change takes e�ect

after federate advances this amount of time in order to prevent incorrect opera-

tions.

In order to explain the reasons for a lookahead speci�cation, consider a fed-

eration consisting of many federates. Suppose a federate D is at logical time 10.

This federate could generate a TSO message with timestamp 10 to each other

federates. This implies that none of the other federates can advance beyond log-

ical time 10, which is a very undesirable situation. With a lookahead value, for

example 5, all other federates can advance their times up to 15, which increases

the concurrency between the federates.

Determining lookahead is completely dependent on the simulation domain

information, and cannot be determined by RTI automatically. Some lookahead

determination clues could be:

• Physical limitations concerning how quickly a federate can react to an ex-

ternal event

• Physical limitations about how quickly one federate can e�ect another fed-

erate

• Possible tolerance to temporal inaccuracies

• In time-stepped simulations, lookahead value will probably be the time step

amount

• Non-preemptive behavior in the simulation model

Time advance services

In HLA federates may or may not want to use coordinated time in their exe-

cutions. In such an environment, time management services should know which

federates' information should be counted in time computations and which feder-

ates require the results of these computations. When the federate declares that

it will be time regulating, it declares that it could generate timestamp ordered
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events and so it should be in the LBTS computation. When a federate declares

that it is time constrained, it declares that it can receive timestamp ordered mes-

sages and so it requires the results of LBTS computations. Time management

has some services that can be used by federates in order to declare these time

related information �ags.

At any instant during the execution, di�erent coordinated time federates may

be at di�erent logical times. Federates should explicitly advance their times,

and this operation is not completed until RTI grants the request. The RTI will

only grant an advance to logical time T when it can guarantee that all timestamp

ordered messages with timestamp less than T have been delivered to the federate.

There are two primitives which can be used by federates to advance their logical

times: Time Advance Request, which is used by time-stepped federates, and Next

Event Request, which is used by event-driven federates.

Invocation of Time Advance Request service implies that all messages with

timestamps less than or equal to the given value are eligible to delivery to the

federate that invokes the request. After a federate invokes Next Event Request

either all timestamp ordered messages, with less than or equal to given timestamp

value, will be delivered to this federate and the federate will advance its logical

time to that given time or if there is not an event that satis�es these conditions,

it only advances its logical time to the given value.

Implementation Example

There are not any standard methods for implementing time management func-

tionality. In general, there are two main divisions for the implementation of

these services: Central approach and distributed approach. Central approach is

straightforward in implementation. Every federate in a distributed simulation

environment sends its time related requests (Time Advance Request, Next Event

Request, etc.) to the central RTI component. Central RTI calculates the global

LBTS (or GALT in HLA 1516) and according to this limiting value, responses to

the requesting federate.

Distributed time management algorithms are more challenging. Without

having a central component, global time management related state information
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should be hold in the distributed environment. State information contains the

individual logical time and lookahead values of each federate. Also LBTS calcu-

lation should be done on each federate in order to advance the logical time of the

local federate. The main constraint of distributed time management techniques

is the reduction on state update messages. On the other hand, these techniques

are standard advantages of distributed systems over central techniques, includ-

ing non-existence of single point of failure and distribution of system load over a

number of processing nodes, etc.

General discussion about distributed time management algorithms are given in

section 2.2.1 Conservative PADS techniques. In this section, a fully distributed

time management architecture for time advance services implemented in RTI

version F.0 [15] is mentioned.

The time advance services serve several purposes. First, they provide a proto-

col for the federate and the RTI to jointly control the advancement of logical time.

The RTI can only advance the logical time of the time constrained federate to T

when it can guarantee that all TSO events with timestamps less than or equal to

T have been delivered to the federate. At the same time, conservative federates

must delay processing any local event until their logical time has advanced to the

time of that event, while optimistic federates will aggressively process events and

rollback when they receive a TSO event that occurred in their past.

To insure that the RTI properly delivers TSO events, a conservative synchro-

nization protocol implements the TSO event delivery service and it is used to

advance logical time. The principal task of the protocol is to determine a value

called Lower Bound on Time Stamp (LBTS) for each federate, which is de�ned

as a lower bound on the timestamp of future TSO events that the federate will

receive from other federates.

Among time constrained federates, there are three subclasses of federates: (i)

conservative event-driven, (ii) conservative time-stepped, and (iii) optimistic. For

each of these federate subclasses, the following three time advance services have

been devised.

Time advance request with parameter t requests an advance of the logical time

of the federate to t. This service is intended to be used by conservative time-
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stepped federates where t denotes the time of the next time step. Invocation of

this service by a time constrained federate implies that the following events are

eligible for the delivery to the federate: (i) all receive order events, and (ii) all

TSO events with the same timestamp that are less than or equal to t. When

the RTI can guarantee that it has passed to the federate all such events, the RTI

invokes Time Advance Grant service.

Next Event Request with parameter t requests an advance to logical time t,

or to the timestamp of the next TSO event from the RTI, whichever is smaller.

By invoking this request, the federate guarantees that it will not produce any

new TSO messages in the future with a timestamp less than t plus its lookahead.

After invocation of this service, the RTI will deliver all receive order events and

either (i) deliver the next TSO event (and all other TSO events with exactly the

same timestamp) if the timestamp of that event is less than or equal to t and

advance logical time to the time of that TSO event, or (ii) not deliver any TSO

events and advance logical time to t.

Flush Queue Request with parameter t requests an advance to logical time t,

or to the timestamp of the next TSO event, or LBTS, whichever is smaller, and

deliver all receive order and TSO events currently residing within the RTI. This

service is intended to be used by optimistic federates, where t denotes the time

of local event within the federate that is to be processed.

RTI F.0 time management implementation assumes that all federates are fully

connected by point-to-point, reliable, FIFO communication links. Additionally,

this RTI is a single-threaded library that links directly to the program of the

federate. By having a single threaded RTI, the possibility of race conditions and

deadlocks is reduced. Moreover, time consuming IPCs and context switches are

eliminated. However, the consequence of this decision is that it complicates the

implementations of the federate. In particular, the federate must explicitly yield

control to the RTI so that the RTI can process service requests and deliver data

to the federate.

As shown in Figure 2.6, RTI is composed of three main parts: (i) RTI ambas-

sador, which serves as an interface for marshaling service requests to appropriate

RTI internal managers, (ii) Federate ambassador, which serves as an interface for
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marshaling service request responses, and (iii) Internal RTI Managers

Figure 2.6: RTI F.0 Object Hierarchy

The Internal RTI Managers support �ve categories of runtime services. The

Object Manager service implements the object creation, destruction, ownership,

publication and subscription services. The Interaction Manager implements the

services that create and destroy interactions as well as interaction publication

and subscription services. The Time Manager implements the services for ad-

vancing logical time. The Transportation Manager is used to send and receive

data and supports the services provided by other managers. The federation man-

agement services are implemented in the RTI Ambassador. Tick Manager is used

to give control to the RTI, which is invoked by a tick service implemented in RTI

Ambassador.
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The process is as follows: when a federate requests the tick service, that re-

quest is sent to the Tick Manager. The Tick Manager then invokes the tick service

provided by each of the RTI Internal Managers to perform their necessary func-

tions. For example, suppose a federate issues a Time Advance Request for some

time, t. For the RTI, to process this request, the tick service must be invoked.

Upon doing so, the Tick Manager would invoke the Transportation Manager's

tick service. Having the single thread of control, the Transportation Manager

would deliver pending events from the network up to the Time Manager, where

they are enqueued to the appropriate queue (either TSO or receive order). When

the tick service of the Transportation Manager is completed, control is returned

back to the Tick Manager which immediately gives control to the Time Manager

by invoking its tick service. Then, the Time Manager, seeing there is a pending

Time Advance Request, examines the receive order and TSO queues, and delivers

the appropriate events to either the Object Manager or the Interaction Manager,

which directly forward the event, if necessary, to the Federate Ambassador. Note

that the Tick Manager was bypassed during the delivery of events from the Time

Manager to the Federate Ambassador. This was done to expedite the event de-

livery process. After the tick service of the Time Manager is completed, the Tick

Manager gains control and invokes the tick services on the Object Manager and

the Interaction Manager. Once, the Tick Manager has "ticked" all the managers,

control is returned to the federate. In practice, the federate will need to invoke

the tick service more than once (i.e. "poll" the RTI) before the Time Advance

Grant will be issued.

Time Advance Request

The algorithm that is executed when a federate issues time advance requests

is shown in Figure 2.7.

First, the Time Manager checks whether the requested time is bigger than

the current logical time of the federate. Because the federate can shrink its

lookahead during federation execution, the time manager must rearrange the

current lookahead. This shrinking requires gradual decrease in the lookahead.

This operation is done using currentLookahead = max(speci�edLookahead, LT

+ currentLookahead − t) operation, where LT is current logical time and t is
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the requested time. In this operation, the Lookahead value is the lookahead

value speci�ed by the federate. This expression guarantees that the federate will

advance k units of time before shrinking its lookahead k units.

Figure 2.7: Time Advance Request Service

Next, a newLT message that contains LT + currentLookahead and the request

time is broadcasted to all other federates. This message can be viewed as a null

message from the CMB null message algorithm. When another time constrained

federate receives the newLT message, the logical time plus the lookahead value

is stored and it is used to compute LBTS. LBTS for a federate is de�ned as

the minimum of all other federates' logical clock plus lookahead values and it is

computed every time a new LT value arrives.

Afterwards, having sent the newLT message, the state of the Time Manager

is set to Time Pending. Now, to tell the Tick Manager that the Time Manager

has more work to complete, more is set to TRUE.

At this point, the size of the receive order event queue is stored before return-

ing control to the federate. When the federate yields control to the RTI via the
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tick service, the Tick Manager will invoke the Time Manager's tick service. In

this service, the delivery of all receive-order events occurs before any TSO events

are considered for delivery. Delivering all receive order events will take several

invocations of this service since only one event is delivered per invocation.

Figure 2.8: Do Time Pending Services

Next, after the receive order events have been delivered, TSO events may be

delivered if the federate is time constrained. As the state of the Time Manager is

Time Pending, the Do Time Pending decision service (see Figure 2.8) is invoked,

which determines which, if any, TSO events are to be delivered to the federate

so that the Time Advance Grant is issued. By comparing the request time, the

timestamp of the head event of the TSO event queue and the LBTS, the proper

case grouping can be determined.

In this determination, the RTI must consider the relationships between (i) the

timestamp of the event at the head of the TSO queue, (ii) the requested time to

which the federate wishes to advance and (iii) the LBTS. Shown in Figure 2.8,

there are six relationship cases between these three factors determining how a

decision is reached on whether the RTI should (a) grant, (b) deliver a TSO event,

or (c) do nothing. Head denotes the timestamp of the event at the head of the

TSO queue. LBTS denotes the lower bound timestamp on any event that could

be sent to this federate in the future. t denotes the time to which the federated
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has requested to advance.

The case grouping names shown in Figure 2.9 denote the action taken by the

Time Manager generally in a particular case. Consider the Grant Cases (cases

1, 3, and 5): it is observed that the request time is always smaller than either

the head of the TSO queue or the LBTS. Because of this, it is safe for the Time

Manager to issue a Time Advance Grant to the request time, t. Likewise, in the

Deliver Data Case (case 2), since the head of the TSO queue is the smallest of the

three factors, the event that is at the head of the TSO queue can be delivered.

Last, in the Pending Cases (cases 4 and 6), the RTI can neither grant nor deliver

data since both the request time and the head of the TSO queue are greater than

or equal to the LBTS. Note that, there are some exceptions to the actions taken

by the Time Manager, depending on the time advance service.

Figure 2.9: Timestamp Order Event Queue Case Groupings

If the case is Deliver Data, this service will deliver a single TSO event and set

more equal to TRUE. If the case is Grant, then a Time Advance Grant is issued

for the logical time of the federate, LT, and the state is set to Idle and more is

set to FALSE, indicating this service request is completed and the Time Manager
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has no pending work to perform. If the case is Pending, no actions can be taken

and the number of receive order events is recalculated to be used in delivering of

receive order events in future invocations of the Time Manager's tick service. If

there are receive order events to deliver, more is set to TRUE. Otherwise it is set

to FALSE.

2.5 Federation Communities

The federation communities are a group of communicating federations and RTIs.

The purpose for federation communities is to connect separated federates. This

federation division generally exists because of di�erent network locations. As the

existing RTIs do not have the feature that connects federates on, for example,

di�erent WANs, a gateway is generally used to get them together [47, 30]. These

gateways become the communication channels between sub-federations (see Fig-

ure 2.10).

Figure 2.10: Federation Community

Hierarchical federation [48] is a type of the federation communities in which

every lower level federation is a federate of a higher level federation. In this

type of federation community, gateway federate is connected to both lower level

user federation and higher level gateway federation, and re�ects the updates of
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local federation to other user federation through the gateway federation(s). A

hierarchical federation is shown in Figure 2.11 as an example.

Figure 2.11: Hierarchical Federation

Hierarchical federations aim also to hide the critical information between fed-

erate groups. Information that is produced within federates are distributed to

other federates with speci�cations de�ned in the object models in FOM and SOM.

In some applications, information is needed to be hidden from some group of other

federates. For example, in a battle�eld simulation, information of movement of

a group of war elements should be only shared within ally federates. This kind

of information hiding can be realized using subscriptions to only related parts of

simulation objects. However, this kind of policy cannot be forced.

Hierarchical federation architecture can be used to force information hiding

between federations. Additionally, the gateways or proxies that are used to con-

nect federations in hierarchical federations cannot be trusted by any of federa-

tions because these gateways join to all federations. In a sample architecture [12],

there is a corresponding gateway federate for each federation. These gateways

are added only to owner federations. Connections between federations are sup-

plied by the RTI Gateway. Gateway federates of each federation connect to RTI

Gateway and the exchange of information is completed there. Thus, information
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hiding is guaranteed as each gateway federate is under the responsibility of the

federations.

2.5.1 Time Management in Hierarchical Federations

All user federates in hierarchical federations act as they are in the same local

federations. This brings the issue that logical time of all time constrained feder-

ates are determined by the all time regulating federates in the global federation

community. As not all user federates in the hierarchical federations are connected

to the same RTI, low level RTIs cannot handle time synchronization operations.

The gateway federates should get the time requirements of user federates and

synchronize their logical time to each other.

Hierarchical federations are oriented so that federations are hierarchically

grouped in a tree structure manner. In a study [20], federate proxy components

that connect di�erent federations are distributed over the network. Distributed

Federate Proxy Components (DFPC) architecture is shown in Figure 2.12. In

this architecture, DFPC components are joined to each federation. They are also

connected to upper level gateways called SimNode. This hierarchical architec-

ture of distributed federate proxy results in �ner information sharing in between

federations.

This distributed and hierarchical structure of DFPC is used to manage logical

time between federations. In this study, all DFPC are de�ned as time regulating

and time constrained, so that their logical time depend on both lower level user

federates and higher level gateway federates. In addition, their logical times a�ect

both user federates and gateway federates. However, if there is not user federates

present that are time regulating, there is no need to make the gateway federate as

time regulating, because this federation will not generate time-stamped events.

Similarly, if there is not user federates present that are time constrained, there is

no need to make gateway federate as time constrained.

Logical time of each DFPC is constrained by its lower level federation and

upper level SimNode [20]. Similarly, each DFPC regulates logical time of these.

Similar conditions are applied for SimNode elements. In this architecture, the top
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Figure 2.12: Distributed Federate Proxy Architecture

level component of the hierarchical federation is to determine the element used as

a base for the logical times of the rest of the federation community. Thus, LBTS

of root element is at most the earliest possible timestamp assigned to a message

generated by any federate in the entire hierarchical federation community. This

implies that all time advance decisions are made by this top level element.

2.5.2 Data Distribution Management in Hierarchical Fed-

erations

In hierarchical federations, individual federates are connected to each other with

a connection node such as a gateway federate or a proxy. In this architecture, any

event that has an e�ect on a special region in one federation should be re�ected

to all other federations with the same e�ect.

In the hierarchical �ltering mechanism [43], each subscription region of a gate-

way for an event (an interaction or an attribute update) is determined by the

union of subscription regions of the lower level federations of the gateway. In or-
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der to construct this mechanism, whenever a federate in a lower level federation

subscribes to an event with a region, the gateway federate should subscribe the

same event with the same region. Thus, in the federation, events are re�ected to

the next federate only when update and subscription regions overlap.

Figure 2.13: DDM implementation in Hierarchical Federations

In Figure 2.13, an example is shown for hierarchical �ltering. Both Fed a1

and Fed a2 in User Federation A subscribe to the same object attribute A within

region R1 and R2 respectively. Their subscriptions are propagated via the gate-

way a to Gateway Federation A. Thus, in Gateway Federation A, the subscription

region for object attribute A is the union of the region R1 and R2. Similarly, in

Fed b2 of User Federate B, object attribute A is associated with region R3. Its

associated region is also propagated via gateway b to the Gateway Federation A.

So if Region R3 has no overlap with the union of Region R1 and R2, the attribute

updates are �ltered at Gateway Federation A.
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CHAPTER 3

PROXIMITY AWARE TIME

MANAGEMENT

3.1 Problem Statement

In HLA, simulation elements that are distributed around computing nodes use

logical times in order to synchronize their events. Logical times ensure that

events in simulations are processed by federates in synchrony. In a distributed

simulation environment, there are time regulating federates and time constrained

federates constrained by these regulating federates. In order to simplify the case,

assume that all federates in the federation are both time regulating and time con-

strained. This means that all federates could generate timestamp ordered events

and could process timestamp ordered events. In existing time management al-

gorithms, a federate could advance its logical time only if the global state of the

federation allows this operation. The condition to allow a federate to advance

its logical time is that after the federate advances its logical time, for example,

to LT1, distributed simulation architecture should not deliver any timestamp or-

dered messages which have smaller timestamps than LT1. The time management

architecture should check all logical time states of all federates before allowing a

time advance operation.

Each federate can advance its logical time only after states of all other fed-

erates allow this operation. This fact actually decreases the overall concurrency

level of the simulation. The objective of this study is to improve the concurrency
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whenever possible.

In some of the simulations, a group of federates could be separated from others

and these federates could interact only within themselves. For example, in a

space simulation, there could be a number of federates simulating spaceships and

ground stations. Initially, when they are all on Earth, they could interact with

each other. It is normal that logical times of all federates are synchronized with

each other at this level. After a while, one or more spaceships may leave Earth in

order to go to Mars or to some other planet on which communication with Earth

is not possible. In this case, there will not be any interaction between spaceships

and ground stations for a period of time. When spaceships are on Mars, federates

simulating spaceships and ground stations constitute two di�erent groups, and

federates in each group interact only with federates of the same group. In this

study, these logically related group of federates are called Federate Clusters.

In fact, there is no need to synchronize the logical times of federates that

are currently not related with each other. If the logical time dependency between

these two federate clusters are broken, their concurrency level is possibly increased

as their logical times will be constrained on less number of federates. Additionally,

because of this partitioning, there will be some performance improvements in the

time management algorithms.

The only standard HLA supplied mechanism that could be used to break the

logical time dependency between two or more groups of federates is disabling

and enabling time constrained and time regulating properties of the federate.

Federates using these properties are removed from the dependency list of time

management. By disabling time management, the federate could not send or

receive TSO messages, and its logical time synchronization with other federates

will be broken. Thus, in most cases, disabling time management is not a de-

sired feature. First of all, the aim is to construct two di�erent time consistency

groups, not disabling time management in one group. Because, after disabling

time management, federates in that group start processing events in the receive

order, which is not a desired situation.
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3.2 Proximity Awareness in Time Management

In a distributed simulation environment, the federates move around the virtual

space de�ned by the simulation. In some cases, the federates become so dis-

tant that they could not communicate with each other for a period of time. If

these non-interacting periods can be determined, these separated federates can

be allowed to advance their logical times independent of each other.

In this study, a new time management mechanism is proposed in which fed-

erates are divided into logically related groups. These groups are called federate

clusters. In this context, a Proximity Aware Time Management (PATiM) mech-

anism to manage federate clusters' logical times is proposed. The aim of this

mechanism is to increase performance of time management mechanism through

increasing concurrency by reducing unnecessary blocking of federates.

The proposed proximity-awaremechanism tries to detect the non-interacting

time periods between federate clusters by checking distances between federate

groups in the virtual space. In this proximity relation, a volume in routing space

is calculated for every federate cluster and distances, in turn, are calculated ac-

cording to these volumes. When a distance between two federate clusters exceeds

a prede�ned threshold value, it is decided that these two federate clusters are

distant to each other and they will not interact as long as they continue to be far

from each other.

Separate federate clusters do not need to be time consistent because of the

non-interacting period between them. Breaking the logical time dependency be-

tween federate clusters will result in inconsistencies between their logical times.

Of course, broken logical time synchronizations between clusters should be recon-

structed if they want to interact again.

When the logical time dependency between two di�erent clusters is broken, a

number of performance improvement opportunities are expected. The �rst one

is the dramatic decrease in the number of synchronization related messages, be-

cause the big federation is divided into smaller synchronization groups. Another

performance improvement occurs in the form of reduction in the LBTS calcu-

lation. Further, because of the broken logical time constraint between groups
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of federates, the concurrency of the federation will be increased. The detailed

analyses of these performance improvements are given in Chapter 5.

The data distribution management described in HLA speci�cation allows de-

tection of intervals in which federates are not interested in each other's events.

When regions of two federates do not overlap, or when there is a distance be-

tween them, it can be said that these federates will not interact. The amount of

distance between these regions determines how long this non-interaction period

will continue.

Logical divisions between federates in a federation could dynamically change.

For instance, in a battle �eld simulation example, sub-battles could take place in

distant parts of battle �eld. So, federates in the same sub-battle would constitute

a federate cluster. However, at some point in time, a group of airplanes in a sub-

battle at Diyarbakir could move to Istanbul to join the battle there as a result

of a tactical decision. In this case, logical relations between these airplanes and

other war elements at Diyarbakir are broken and they become logically related

with battle elements in Istanbul. It is also possible that they remain unrelated

for the rest of the battle.

In the proposed dynamic cluster formation mechanism, a federate cluster is

formed for each group of federates that are close and related to each other. During

simulation execution time, federates could move away from their federate cluster

and become closer to another cluster because of their internal logic. In this case,

moving federates will also leave the previous federate cluster and join the new

cluster to which it gets closer. Because of this dynamic property of federate

cluster formation, the membership in a cluster will always change.

The scope of the time management is based on proximity degree between the

federates. Federates are said to be time consistent when they are in the same

cluster and they are said to be time inconsistent when they belong to di�erent

clusters.

In the proposed synchronization method, a volume in routing spaces for each

federate cluster is calculated. By measuring the distances between these calcu-

lated volumes, a decision is reached on whether some federate clusters are distant

to each other, based on a distance threshold value. When clusters are distant
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from each other, none of the subscribe and update regions will overlap with each

other, so no interactions could take place between them in terms of the Data

Distribution Management states.

During the design of Proximity Aware Time Management (PATiM) mecha-

nism, some assumptions are made. In this subsection, these assumptions are

analyzed.

Firstly, it is assumed that federates work with time-stepped manner. This

means that each federate iterates in order to advance its logical time. Logical

time must have a one-to-one relationship with physical time. This assumption is

required because our local synchronization and resynchronization mechanisms re-

quire that federates should not jump instantaneously from one location in routing

space to another location. If this occurs, critical distance calculation of PATiM

will fail. Simulations obeying this assumption are generally physical world simu-

lations such as particle simulations.

The second assumption is that the federates should strictly use the DDM ser-

vices in order to publish and receive events. PATiMmechanism uses subscribe and

update regions to determine the non-interaction periods between federate clus-

ters. If a federate sends events without using the DDM services, non-interacting

period determination operation will fail. Additionally, these declared regions are

used to calculate the distances between the federates. If a federate �res an inter-

action without a region, this interaction will be delivered to the entire federation.

If federates are distant to each other at that time and if their logical times are

not synchronized, the receiving federate could process an event in its past. This

interaction event will break our assumption that these federates will not interact

when they are distant.

As an important assumption for performance the simulation is expected to

have non-interacting periods between some groups of federates, to be able to

divide them into federate clusters. In a tra�c simulation example, federates

simulating vehicles possibly declare that they are interesting in for example 2

km radius area. These federates will not be interested in events occurring outside

this boundary. Using this boundary information, PATiM mechanism could divide

the group of federates that are distant to construct federate clusters. However,
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if federates in the simulation could process events from all over the virtual envi-

ronment, then there is no chance of clustering the federation and there will not

be any advantage of the proposed mechanism.

In this work we mainly focus on the simulations of real world spatial environ-

ments. In such simulations, routing space is composed of dimensions of spatial

coordinate system which have continuous property. Thus approaching speed con-

cept is understandable in the usual sense.

3.3 Dynamic Cluster Formation

In the proposed dynamic cluster formation mechanism, a federate cluster is

formed for each group of federates that are close and related. During simula-

tion execution, federates could move away from their federate cluster and become

closer to another cluster because of their internal logic. In this case, the moving

federate should leave the previous federate cluster and join the cluster to which it

gets closer. Because of this dynamic property of federate cluster formation, feder-

ates in a cluster will always be logically related with each other during simulation

execution.

The relevance of federates is taken to be a function of a degree of proximity

which is de�ned as the distance between them in the virtual space of the sim-

ulation. In PATiM, a federate is represented in virtual space by the union of

the update and subscribe regions that are de�ned by the federate. These regions

actually determine the positions of any federate in the virtual space. The dis-

tances between federates are calculated by measuring the distances between their

unioned volumes.

In order to be able to calculate meaningful distances, dimensions of rout-

ing spaces should have continuous property allowing the distance between two

federate clusters to shrink or expand. An example routing space obeying this

condition is the world's coordinate system. Federates in such a space could only

move continuously, without jumping. However, in discrete routing spaces, feder-

ates could jump from point to point, as in the gears of a ground vehicle. A third

kind of routing space has discrete representation with continuous property. For
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example, a routing space representing �oors of an apartment would be declared

as discrete. However, a change of the value of the federate from 1 to 3 means that

this federate will have to pass through �oor 2 as well. So, these kind of routing

spaces are also treated as continuous.

During the course of the simulation, cluster formation algorithm continuously

repeats two actions:

• Checks distances among federates within federate clusters to validate dy-

namic formation.

• Checks distances between pairs of federate clusters to determine whether

they should be changed.

3.3.1 New Cluster Formation

This step checks whether an existing federate cluster should be decomposed into

two di�erent federate clusters. An increase in distance between groups of federates

is an indication of a breakaway in logical relation between these groups. In this

case, the unrelated groups of federates in this cluster are divided into two di�erent

clusters as shown in Figure 3.1.

Figure 3.1: Federate Cluster Division

In distance calculations, subscribe and update regions de�ned by the DDM

services are used in a modi�ed version of Sweep-and-Prune algorithm [19]. This

algorithm constructs a list for each dimension of routing space that includes the
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values of end points of update and subscribe regions of the federates. Sorted

distance lists give information on relative positions of the federates in the virtual

space.

In calculation of the sorted list, temporal coherence property [19] is exploited,

meaning that positions of these federates in virtual space do not change dramat-

ically between successive time steps. In a tra�c simulation, for example, the

federates simulating tra�c vehicles advance positions of vehicles according to the

simulated speed of the vehicle and the amount of the time step. Most probably,

this position update moves the vehicle by an amount in meters (not kilometers)

which is relatively very small compared to the size of the virtual terrain. The

locations of the federates will not change drastically during these updates. Thus,

the distance lists sorted will have close values of distances, and re-sorting them us-

ing insertion sort is expected to have linear complexity in the number of federates

in the cluster.

A federate cluster is divided into two parts according to the proximity criteria

if there is a su�ciently large gap in at least one of the sorted lists. When the

di�erence between two successive values in any of the sorted lists is greater than

a prede�ned threshold value, the algorithm divides the federate cluster into two

di�erent clusters.

Figure 3.2 gives sorted lists for two dimensions of the clusters, which were

shown in Figure 3.1 (b). For simplicity, only one end point value is shown for

each federate. Assuming the threshold is 10, there is a gap between values of F6

and F3 in the sorted list in X dimension. As a result, the original federate cluster

is divided into two clusters.

Figure 3.2: Sorted lists in two dimensions
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In this cluster formation algorithm, the amount of the gap is the approximate

distance between federate groups. It is an approximate value because an exact

calculation for distance between two points is not done. The algorithm searches

for a gap in sorted lists and takes the value of this gap as the distance. In fact,

this value is smaller than the actual distance between these two federates.

Figure 3.3: Dimensional distances

The distance between two federates is approximated by the maximum of di-

mensional distances because the algorithm tries to �nd a gab in at least one of the

dimensionally sorted lists. Gaps in these lists represent the dimensional distances

between the federates. In Figure 3.3, distance components for two federates are

shown. In the new cluster formation algorithm, dimensional distances, dx and

dy, are known, however the actual distance d is not calculated. Approximate

distances are enough for the proposed algorithm because the important issue is

just determining the proximity of the federates. In fact, this algorithm just tries

to determine whether the distance between two federates exceeds a prede�ned

threshold value. If one of the dimensional distances exceeds this threshold, it is

obvious that the actual distance will also be exceeded because of the triangle rule.

The only e�ect of using approximate distances is the possible late division

of federate clusters. The algorithm checks for dimensional distances to �nd a

gap that exceed the threshold. However, the actual distance is greater than any
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dimensional distance. Thus, the cluster could possibly be divided earlier if the

algorithm would have checked whether the actual distance exceeds the threshold.

On the other hand, the possible late division of the proposed algorithm does not

generate any problems.

3.3.2 Merging two clusters

In this step, the proposed algorithm tries to determine if two di�erent federate

clusters should be joined because of the decrease in the distance between them.

For this purpose, the algorithm calculates the positions of federate clusters and

then checks if the distance between the federates is smaller than a threshold value.

If this condition holds, the two clusters are joined to form a new cluster.

In order to determine the location of the federate clusters, union of all up-

date and subscribe regions of the federates in the cluster is calculated. This

multi-dimensional volume represents a cluster in a given routing space. Unioned

volumes are constructed by getting the maximum of the end point values of all

update and subscribe regions. In Figure 3.4, the unioned volume of an example

federate cluster including �ve federates is shown.

Figure 3.4: Union mechanism for a 3-dimensional routing space

The union of update and subscribe regions of federate cluster (FC) in the
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routing space RSk is computed as:

URSk
FCi

= ∪
{
SRRSk (Fj) ∪ URRSk (Fj)

}
∀Fj ∈ FCi (3.1)

In this formula, SRRSk (Fj) is the subscribe region of jth federate (Fj) in kth

routing space (RSk) and URRSk (Fj) is the update region of Fj in RSk.

Distance between FCa and FCb according to routing space RSi is computed

as

dRSi (FCa, FCb) = Distance
(
URSi

FCa
, URSi

FCb

)
(3.2)

Distance() relation calculates the distance between two regions in terms of the

distance between two rectangular volumes in a n-dimensional space.

When distance between two federate clusters is smaller than a prede�ned

threshold value for a given routing space, the algorithm combines these two clus-

ters. The condition for this decision is formulated as following:

dRSi (FCa, FCb) ≤ ωRSi ∀RSi (3.3)

The threshold given in the formula above is called the Cluster Join Threshold.

These threshold values for routing spaces should be given to the algorithm as

explicit parameters.

The proposed method assumes that as time passes, uni�ed update and sub-

scribe regions of federates or clusters either get closer or get away from each

other. This means that, the combined regions move in the corresponding rout-

ing space. As a result of this movement, the distance between these federate

clusters changes. This change determines the corresponding approaching speeds

of the clusters. Actually the movement of combined regions could have two dif-

ferent meanings. One of them is that individual regions, to which the federates

registered for update or subscribe, move in the routing space; meaning that the

federate owning the region, updates its parameters so that the position of the

region in the routing space is changed. The other possibility is that the federate

unregisters from one of the regions and registers to another one that has a di�er-
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ent location. In both cases, the resulting combined region of the federate cluster

will be moved from one location to another.
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3.3.3 Clusterability of distributed simulation

In the proposed method, the federates are separated into interest groups called

federate clusters because of their mobility around the virtual terrain. PATiM

mechanism utilizes the clustering of federations in order to increment the time

management performance. Proposed mechanism, on the other hand, is based on

the observation that distant federates are not interested in the events of each

other. By using Data Distribution Management services, the federates guarantee

that they are not interested in events that happened out of their subscribe area.

The tra�c simulation example perfectly �ts to these observations. Vehicles

in a tra�c simulation move around the virtual city and they can only see events

that occur around them. However, the situation seems to be more complex for

some type of simulation objects like radar systems. It can be very though that

they can see everything in the virtual terrain. But generally, they have also a

range in which they can see events around them. Of course their ranges are much

bigger than a car in a tra�c simulation.

How much a federation is divided into clusters is mainly dependent on the

simulation domain. If simulation objects move in a small region, then there will

not be many clusters. On the other hand, if federates are spread around on a wide

virtual space, there will be a number of clusters. In a tra�c simulation example,

if vehicles turn around one or two blocks, there will be possibly only one cluster.

However, when they move around the whole city, there will be more clusters.

Advantages of the PATiM mechanism appear when there are two or more

clusters. Thus, higher average cluster count in a federation is better. Average

cluster count is related to the duration of divisions as well as the total number of

clusters. For example, if two groups of tra�c vehicles are getting closer repeatedly

and become distant only in small periods, there are two clusters but the average

cluster count is smaller than two. In another case, if these two groups of vehicles

become distant for longer periods, average cluster count and gain of PATiM will

be higher.

Another factor a�ecting average cluster count is the selection of clustering

and joining thresholds. The threshold values determine when to divide and join
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clusters during the simulation execution. Small threshold values result in early

division and late join of clusters. Of course, these operations result in higher

cluster counts. However, having small threshold values may lead to the ping-

pong e�ect. This e�ect occurs when clusters rejoin after a small amount of time

they have divided. This e�ect downgrades the performance of PATiM mechanism

because of the overhead of dividing and joining the clusters. Therefore, threshold

values should be selected so that after the distances between the federates exceed

these values, there should not be any logical relation between the federates.

In general, performance gain of PATiM mechanism is highly dependent on

the increased clustering within the federation. If there is a simulation element

which is interested in the whole simulation space, there could not be a clustering

in the simulation. Of course, in this situation, there will not be any performance

improvements supported by the PATiM mechanism. During the simulation exe-

cution, average cluster count should be high in order to maximize the performance

improvement, and this condition is mainly dependent on the simulation domain

and on the behaviors of the simulation objects that are owned by the federates.

3.4 Time Management

PATiM federates are said to be time consistent when they are part of the same

cluster, otherwise they are said to be time inconsistent. As an example, consider

a space simulation, in which a group of spaceships travels to a distant planet and

then returns. It is assumed that at a large distance to Earth, the communication

between the spaceships and the Earth station will be broken. In a distributed

simulation environment, a routing space representing a 3-dimensional space could

be created for this application. Using update and subscribe regions, broken com-

munication situation could be simulated. The group of spaceship federations

constitutes a federate cluster because there is a tight logical relation between

them. Let's assume that the computing nodes that execute space ship federa-

tions have higher capacity and could run faster than computing nodes of Earth

station federates. When the spaceship cluster is getting far from the Earth, a

non-interactive period begins between the spaceship group and the earth station
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group. During this period, the faster cluster, in this case the spaceship cluster,

would be unnecessarily blocked from advancing its logical time. According to

the proposed algorithm, when the distance between the spaceship group and the

Earth exceeds a threshold value, the faster federate cluster could advance its log-

ical time without waiting for the slower Earth federate cluster. The threshold

value in this case could be selected according to the distance after which the

communication equipments could not contact each other.

The time management is based on a sequence of consistent and inconsistent

execution periods. It initiates with a single federate cluster containing all the

federates with synchronized logical times. When the distance between federates

gets bigger, the cluster will be divided into two new clusters and the logical time

dependency between them will be broken. This inconsistent period is called as

the local synchronization period.

On the other hand, inconsistent distant clusters may approach to each other

during future time periods. In this case, they will start to interact when they

are joined because of the proximity criteria. These possible interactions must

occur in a time synchronized environment. Thus, a resynchronization operation

is executed to synchronize the logical times of the approaching clusters.

3.4.1 Local Synchronization Period

When two federate groups are in di�erent federate clusters, they enter into the lo-

cal synchronization period. In the local synchronization period, the logical times

of distant parties are not dependent on each other. This means that logical time

dependencies of these federates are broken. Logical times of time-constrained

federates are only dependent on time-regulating federates of the federate clusters

they belong to. This will be achieved by modifying the LBTS calculation algo-

rithm. The LBTS value of each federate will be the minimum value of logical

time plus the lookahead values of time-regulating federates in the current federate

cluster.

As federates always use DDM based message �ltering, when they are on dif-

ferent federate clusters, their updates are not destined to each other. Thus, the
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individual cluster-wide logical times will not cause any logical problems. Logical

problems could occur if a federate receives an external event from a federate that

is in another federate cluster; as in this case, it may have to process the event in

its past. However, this is not possible as all of the federates declare their interest

areas using the update and subscribe regions and the PATiM mechanism breaks

logical time dependencies with the help of the proximity degree that is calculated

using these regions.

3.4.2 Resynchronization Period

During simulation executions, di�erent federate clusters may get close because of

the internal logic of the federates. Before these clusters are joined, their logical

time should be synchronized as federates will initiate interaction when they get

in the same cluster. The purpose of this resynchronization period is to prepare

federate clusters for the joining operation. In this period, some operations are

done in order to synchronize logical times of federate clusters. There are two dif-

ferent methods for this resynchronization; the �rst one is the optimistic approach

and the second one is the conservative approach.

Optimistic Approach

Optimistic approach is the naive way of resynchronization of two federate clusters

that get closer to each other. In this approach, logical time of the slower federate

is advanced to the logical time of the faster one.

This method delivers the messages in a logically consistent order. However,

this method may not work for simulations that contain internal timed events,

because these internal events in slower federate clusters could be missed when

the logical time is jumped to a future value. For example, if the federate cluster 1

has an internal event scheduled to occur at logical time 5, this internal event will

be missed when the logical time is advanced to logical time 6. Especially time

stepped simulations will have internal events at each time step. For example, in

a tra�c simulation, the federates simulating the vehicles will have time steps of

2 unit of logical time. In all of these time increments in steps, vehicles forward

60



their positions with a calculated amount. These position change operations are

of course an internal event in each federate.

One solution to this problem is processing these internal events at the mo-

ment of the jump operation. However, it cannot be guaranteed that these early

processing of internal events have no negative side e�ect on the system.

Conservative Approach

Conservative approach is designed to overcome the internal event problem of the

optimistic approach. In this method, logical times of the federate clusters are

aimed to be synchronized slowly. Because of the local synchronization period,

logical time of one of the clusters is smaller than the other one before initiating

the resynchronization period. Conservative approach provides a chance to the

slower federate to catch up the faster one.

In this approach, the faster cluster is blocked from advancing its logical time

so that the slower cluster could catch it up before the proximity condition is

broken. In this resynchronization period, the slower federate cluster continues its

execution normally and advances its logical time. At some point in time, the logi-

cal times of both clusters become synchronized. At that point, resynchronization

period will �nish and the normal synchronized execution continues.

In Figure 3.5, there are two federate clusters each consisting of three federates.

Messages are shown with timestamps within parentheses. For example, m5(3)

indicates a message sent from P2 with timestamp 3. Subscript value 5 indicates

the identi�cation number of this message. In this example, four successive periods

are shown. The �rst one is a normal single cluster period. In this period, all six

federates are in the same cluster. All messages are forwarded to the entire federate

cluster and logical times of all the federates are synchronized. At real time t1, two

federate groups become distant and their logical time synchronization is broken

at that point. The original cluster is divided into two new clusters. Federates

in these di�erent clusters advance their logical times independent of each other.

During this period there is a single event in cluster 1 and there are 4 events in

cluster 2. At the end of the local synchronization period, cluster 1 has logical

time 3 and cluster 2 has logical time 6. At time t2, the clusters start getting
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closer to each other and resynchronization period begins. In this period, the

faster cluster, cluster 2, is blocked from advancing its logical time. During this

blocked period, cluster 1 continues to advance its logical time. Resynchronization

ends when logical times of both clusters are synchronized. At the end of the

resynchronization period, the federate clusters join into a single cluster and all

the federates continue their normal synchronized execution.

Figure 3.5: Resynchronization Period

The most critical point of resynchronization operation is to �nd the starting

time of the resynchronization period. The idea is that the resynchronization

period should be long enough to provide the opportunity to the slower federate

cluster to catch up with the faster one. If there is not enough time for the slower

cluster to catch up the faster one, they cannot become logical time synchronized

when they become interested in the interactions of each other.

In order to detect the resynchronization start time, a relation between the

distances of clusters and their logical times is constructed. In this relation, move-

ments of the federate clusters and their logical time di�erences are checked in

order to initiate the resynchronization period. The conservative resynchroniza-

tion method emphasizes the required opportunity provided to the slower federate
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to catch up with the faster cluster by using the distance between them. The slower

federate will take some distance during the resynchronization period. Conserva-

tive approach tries to �nd a minimum distance which is traveled by the slower

federate between the resynchronization start time and the logical time synchro-

nization point. This minimum distance is called as the critical distance. The

resynchronization period initiates when the distance between two federate clus-

ters becomes equal to the critical distance.

Main parameter to detect the minimum distance to initiate the resynchro-

nization period is the speed of approaching federate clusters. Approaching Speed

(AS) is the amount of distance change between these clusters in one unit time. In

other words, approaching speed is the distance traveled by two federate clusters

in one unit time.

For example, in a distributed war simulation, there could be two federates

simulating tanks that are getting closer to each other. In Figure 3.6, there are

two snapshots of this simulation example. In part (a) logical time of the �rst

tank F1 is 10 and the logical time of the second tank F2 is 9. The distance

between them is 60 at this point in the simulation. After a while, the simulation

progresses to another state, shown in part (b). Tanks move toward each other and

the distance between them is down to 50. Their logical times are also advanced

to 13 and 11, for F1 and F2 respectively. These two federates get closer to each

other by 10 units of distance after advancing their logical times 5 units in time.

The approaching speed of these two federates is 2 during this period.

During the simulation runtime, the approaching speeds of cluster pairs are

computed in regular intervals for all routing spaces. The AS between two federate

clusters (FCa and FCb) for a given routing space RSi is formulated as

ASRSi (FCa, FCb) = − ∇d
RSi (FCa, FCb)

∇LTFCa +∇LTFCb

(3.4)

Where ∇LTFCa is the logical time di�erence of FCa, ∇LTFCb
is the logical

time di�erence of FCb and ∇dRSi (FCa, FCb) is the change in distance between

these clusters. Dividing this distance change by the total logical time change

value, the approaching speed value is calculated, which means how much these

federate clusters are getting closer per unit logical time. The division result is
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Figure 3.6: Approaching speed example

negated so that the approaching speed is positive as clusters approach each other

and is negative otherwise.

When the distance between clusters becomes smaller or equal to the critical

distance, it means that the minimum distance required for the slower cluster to

catch up with the faster one is being reached, and the algorithm initiates the

resynchronization period.

Critical distance of two federate clusters, CDRSi (FCa, FCb), is calculated as:

CDRSi (FCa, FCb) = ASRSi (FCa, FCb) . (Abs (LTFCa
− LTFCb

))+∂. (Abs (LTFCa
− LTFCb

))

(3.5)

The �rst part of this formula is the core approaching distance of the two fed-

erate clusters, and it represents the distance that could be taken by the slower

non-blocked cluster. This is a function representing the current logical time di�er-

ence. This component guarantees that when these two federate clusters approach

each other with the current Approaching Speed, they could diminish and end the

logical time di�erence between them. However, this part does not guarantee the

correct joining operation if the clusters dramatically change their approaching

speeds during the approaching phase.

The second part of this formula is the slack distance amount which is added to

critical distance value in order to consider a possible speed change of the clusters.

∂ is a simulation domain dependent value determined for each simulation. It is
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the maximum speed for all simulation objects in the simulation and it should

be externally supplied to the algorithm. For example, in a tra�c simulation,

the simulation designer could easily say that none of the simulation objects, i.e.

vehicles in the tra�c environment, will exceed the speed of 400 km/h. This value

should be given to the PATiM mechanism by considering the logical time step

value. For example, one unit of logical time represents one second of simulation

time and one unit of routing space value represents one meter; so, the ∂ value

should be 1440 by changing km value to meter and hour value to second.

In calculation of critical distance, ∂ value is multiplied by the logical time

di�erence of the clusters in order to �nd the required distance to diminish the

current time di�erence, even if the clusters move with maximum speed. Adding

this value to the distance based on the current approaching speed gives the critical

distance value, which takes into account any speed increase or any new simulation

object with a higher speed during the resynchronization phase.

Handling simulation maximum speed (∂) PATiM algorithm guarantees that

if two federate clusters enter the local synchronization period, they will be safely

resynchronized when they get close to each other.

When the distance for one of the routing spaces is smaller or equal to the crit-

ical distance of that routing space, the resynchronization period will be initiated.

This condition is depicted as:

dRSi (FCa, FCb) ≤ CDRSi (FCa, FCb) ∃RSi (3.6)

The resynchronization period is completed when the slower federate cluster

catches up with the faster one. After the resynchronization period, the clusters

enter their normal period.

3.4.3 An example case for time management

In order to understand time management mechanisms better, an example case

is analyzed in this section. In a distributed war simulation example, there is

a federation containing six federates which are simulating di�erent planes in a

battle environment. The federation de�nes a two-dimensional routing space for
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this terrain. The virtual space of this simulation is composed of a large two

dimensional terrain. In part (a) of Figure 3.7, initial placement of the six planes

on the virtual space is shown. At this state of the simulation, there is only one

federate cluster and its logical time is 3. One unit of logical time represents one

minute in the simulation. The federates are also shown at their locations in this

two dimensional routing space. In part (b) of this �gure, dimensional sorted lists

are shown for this initial state. End point values in these tables are in kilometers.

As it can be seen, there are not any gaps in these sorted lists.

Figure 3.7: Initial normal period

During the simulation execution, three of the federates, P2, P3 and P5, are

getting away from the other federates. In the situation shown in Figure 3.8, ,

these three federates are relatively more distant to the other federates. However,

currently there is not any gap that exceeds the threshold value of 8 kilometer as

it can be seen from part (b) of the �gure.

After a while, the gap value in sorted list of the X dimension becomes 9,

which is greater than the threshold value. In parts (a) and (b) of Figure 3.9,

the positions of the federates and dimensional sorted lists are shown respectively,

which depict the case before the division operation. In part (c) of this �gure,

the state after the division operation is shown. In this case, the original cluster

is divided into two clusters from the gap point of the X dimensional sorted list.

At that point, logical time dependency between these federate groups is broken.

The current distance between these two clusters is 9 km.
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Figure 3.8: Federate groups getting distant

Figure 3.9: Division case

After a while, the distance between these two clusters increases even more

and their logical times become inconsistent as it can be seen from Figure 3.10.

In this case, the approaching speed (AS) of these two federates is calculated as 2,

which means that the distance between these two clusters is changed by 2 km in

one minute. In critical distance (CD) calculation for this simulation, maximum

speed value of the simulation is de�ned as 3. This means that none of the planes

could move faster than 3 kilometers in a minute. The calculated critical distance

is 15 at this state. As the distance between these federates is smaller than the

critical distance, they are now in the local synchronization period.
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Figure 3.10: Distant case

After some time passes, the clusters get closer to each other and the distance

between them decreases and becomes smaller than the calculated critical distance,

as shown in Figure 3.11. In that case, they enter the resynchronization period.

After the resynchronization period, their logical times become consistent, and

they enter their normal synchronization period.

Figure 3.11: Resynchronization case

In order to show the relationship between distance, approaching speed and

critical distance graphically, a run scenario will be analyzed, in which there are
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two federate clusters, FCa and FCb. Graphical representations of the example

values are shown in Figure 3.12. In the scenario, the two clusters mentioned are

�rst in a normal period. After that, they begin to get away from each other and

then they get closer again. In the upper part of the �gure, the relation between the

logical times of the two clusters is shown. In the lower part, calculated distances,

critical distances and approaching speeds are shown. The threshold value ( τ ) is

assumed to be 20 in these calculations.

Figure 3.12: Graphs of example

Between wall-clock times t2 and t4, the distance between the two clusters in-

creases continuously. At time t4 the distance between them exceeds the threshold

value and they enter the local synchronization period. This period continues until

t5. At time t5, the distance between them becomes smaller than the calculated

critical distance and the resynchronization period begins. As the faster cluster
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is FCa, the algorithm blocks its logical time but allows FCb continue its exe-

cution. After their logical times become synchronized at time t6, both continue

their executions in a normal period.
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3.5 Multiple Cluster Handling

In this section, the proposed mechanism will be analyzed for cases containing

more than three federate clusters. In that case, all clusters could independently

become distant or get closer to each other. The proposed algorithm will never

lead to a deadlock, in which every federate cluster is blocked because of another

cluster. The reason for this is that, in the proposed algorithm, a cluster is only

blocked because of another cluster when its logical time is greater than the other.

On the other hand, there exists at least one federate cluster in the federation

which has the minimum logical time. This leads to the assumption that there

should be always at least one federate cluster that is not blocked. This non-

blocked cluster will unblock the cluster that waits for it after the resynchronization

period, and �nally, all clusters in the blocked clusters chain will eventually become

unblocked. In the following �gures an example for the multiple federate cluster

case is analyzed.

In Figure 3.13 there are 3 federate clusters. For simplicity, it is assumed

that there is only one routing space which contains two continuous dimensions.

Clusters are continuously getting closer to each other. Figure shows the real

time t1, in which all federate clusters are distant to each other. The left side

of the �gure shows the timelines of the federation and the right side depicts the

combined regions of clusters on the routing space of the federation. In this case,

logical times of all federate clusters are independent.

In Figure 3.14, a later point (real time t2) is shown. Between t1 and t2, FC2

gets closer to the FC1. Change of the logical times of the federate clusters is

shown in part (a) of this �gure. The distance between them becomes smaller or

equal to their critical distance at time t2. At that time, FC1 is blocked and FC1

and FC2 enter a resynchronization period. Blocked federate cluster FC1 is shown

with dashed red lines in part (b) of the �gure. During this period, FC3 is getting

closer to FC2 and FC2 is getting closer to FC1. However, the distance between

them is still greater than the critical distance.

In Figure 3.15, real time t3 is shown. Between t2 and t3, FC3 gets closer to

FC2. At time t3, FC2 is blocked for FC3. At this time, FC1 is waiting for FC2
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Figure 3.13: Example case, separate clusters

Figure 3.14: Real time t2

while FC2 is waiting for FC3; and only FC3 is running. The dashed line for FC1

between t2 and t3 in the timelines of clusters shows that this cluster is blocked

during this period.

Between t3 and t4, shown in Figure 3.16, FC3 gets closer to FC2 and at time

t4, their logical time di�erence between them becomes zero. In that case, FC2 and

FC3 are combined to form FC4. In the timeline part, it is shown that timelines

of FC2 and FC3 have ended. Before this merge operation, FC1 was blocked

for FC2, however, when FC2 was removed, FC1 becomes blocked for the newly

created federate cluster FC4, which has replaced FC2 and FC3.

In general, when a federate cluster is removed because of a joining operation,

the other clusters that were waiting this cluster, begin to wait the newly created
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Figure 3.15: Real time t3

cluster. After some time, the logical time of the new cluster becomes equal to

the blocked clusters and the resynchronization period will end.

Figure 3.16: Real time t4

Between t4 and t5, shown in Figure 3.17, FC4 gets closer to FC1 and their

logical times become equal at time t5. At that point, the algorithm merges these

two clusters to make FC5. At the end of this period, there is only one big federate

cluster in the federation.

The important point in the multiple federate cluster case of PATiM is that,

the "waits for graph" of blocking federate clusters has never a cycle in it. This
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originates to the fact that an edge of this graph is created only when the logical

time of a federate cluster is greater than the logical time of other clusters, and

this type of graph could not have a cycle at all.

Figure 3.17: Real time t5
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CHAPTER 4

DESIGN AND

IMPLEMENTATION

4.1 Design

The proposed algorithm could be implemented in both centralized and distributed

manners. In a distributed implementation case, there is not any central RTI com-

ponent in order to implement time management or dynamic clustering related op-

erations. Customized time management operations are done in each LRC (Local

Runtime Component) of the federates. Necessary time queues and LBTS calcula-

tions are the most critical ones of these operations. Additionally, in a distributed

time management algorithm, synchronization related messages (null-messages)

are necessary in order to calculate LBTS in each LRC. The distributed mecha-

nism has disadvantages such as increased number of synchronization messages,

replicated data structures like time queues and replicated LBTS calculation oper-

ations. However, distributing the time management algorithm removes the single

point of failure and shares the load of calculating LBTS for the entire federation.

Dynamic cluster management in distributed PATiM implementation is repli-

cated on the federate LRCs. In each federate cluster, a coordinator LRC is

selected to execute the cluster management algorithm. The LRC that owns the

minimum identi�cation number is selected as the coordinator for each cluster.

This selection algorithm quickly �nds a coordinator.

These coordinators continuously check for possible divisions of current clusters
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while checking the critical distances to other clusters to use in resynchronization

and joining operations as well. These operations �rst need the information about

subscribe and update regions of all the federates in the federations. This informa-

tion comes from the DDM implementation of RTIs. More detailed information

about how RTIs transfer this region information to all of the federates is given

in section 4.5. Other information required for the critical distance checks is the

LBTS values for all other clusters. Each coordinator transfers the LBTS infor-

mation of the cluster to all other coordinators. The received LBTS values are

used to calculate critical distances.

Another possible implementation is centralized time management. In this im-

plementation, there is a central RTI component and all federates send their time

related requests, like time advance requests, to this central component. This com-

ponent calculates corresponding LBTS for each of the federates and sends back

the grant messages declaring that it is appropriate. In central implementation,

dynamic cluster management is done by a central component where it calculates

the federate clusters and advances the logical times of these federates.

4.2 Middleware Approach

There are two main methods to implement the proposed mechanism. The �rst

one is to modify an existing HLA implementation in order to extend its time

management services for the PATiM mechanism. This approach is not feasible,

because currently there are not any fully implemented and open source RTI im-

plementations. Further, understanding and modifying an existing infrastructure

sometimes becomes much more complex and time consuming than initiating a

completely new implementation.

Another approach to implement the proposed mechanism is to use one of the

existing RTIs and extend it using a middleware approach. In this approach, it is

required to capture some HLA requests and responses in order to implement the

proposed mechanism.

PATiM proposes a time management mechanism in which there are a number

of federate groups that have time synchronization within the group but there
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are no time synchronizations across separate federate groups. The existing HLA

standard does not allow this kind of grouping; therefore, the time management

mechanism should be re-implemented. The middleware approach used in this

study re-implements the time management mechanism.

In a HLA based federation, every federate interacts with the RTI through the

interface composed of the RTIambassador and the FederateAmbassador. Before

the federate can invoke any RTI services, it must �rst create an instance of the

RTIambassador. It is natural to put the middleware between the federate and

the RTIambassador so that messages from the federate can be intercepted and

analyzed.

Figure 4.1: General PATiM design

In this PATiM middleware design, a number of federates are implemented, in-

teracting with each other via the RTI services. Each federate component contains

an original LRC (Local Runtime Component) which comes with the RTI imple-

mentation and a custom LRC which implements the PATiM time management

with the federate code itself, as it can be seen in Figure 4.1.

In Figure 4.2 there is a detailed diagram of a single federate component.

In order to implement the custom time management mechanism, the original

RTI ambassador and the federate ambassador are enveloped with the custom
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Figure 4.2: Middleware approach

ambassadors. In this �gure, blue components are original RTI implementations.

Greens ones are customized RTI components. Red components are implemented

by the federate designer to use the RTI services.

The user federate at the bottom of the �gure will use these custom ambas-

sadors in order to utilize HLA services. The proposed middleware layer forwards

all requests for HLA services to the original ambassador, except the ones related

to time management. Time management functionalities are to be performed

completely by the PATiM layer.

As a result of the insertion of these middleware classes, the only change to the

federate code is that the instance declaration of the RTIambassador is replaced

by an instance declaration of PatimRTIambassador. The method calls made by

the federate remain exactly the same. When the federate joins the federation, the
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PATiMRTIambassador initializes the instance of the PatimFederateAmbassador

by providing a reference as a parameter to the FederateAmbassador of the user

federate. The MiddleFederateAmbassador is then passed to the RTI, instead of

the FederateAmbassador of the user federate, as the callback reference to the

federation.

4.3 Time Management

In PATiM layer, time information that comes from the federates is encoded into

tag �elds of HLA services and on the receiving side, these tag �elds are decoded

so that receive-order messages are converted into timestamp ordered messages.

In PATiM, following time management services are implemented:

• Enabling/disabling time regulation property

• Enabling/disabling time constrained property

• Time advance request

• updateAttributeValues and re�ectAttributedValues with TSO messages

• sendInteraction and receiveInteraction with TSO messages

In Figure 4.3, a summarized initialization process of a federate is shown. The

�rst action of a federate in the initialization process is to join the federation exe-

cution. This request is directly forwarded to the original RTI component. When

a user federate enables time management by sending a request, PatimRtiAmb

will utilize this information within itself and will not forward this message to

original RTIAmb. Apparently, the RTI will recognize the federate as not time

managed at �rst. Then, the PatimRtiAmb informs the PatimTimeManager that

the federate tries to enable time regulation and time constraint properties. This

information, in turn, enables customized time management for that federate.

Later, the federate completes the desired publish and subscribe operations in the

initialization phase. These publish and subscribe operations are not related with

the customized time management and they are directly forwarded to the original

RTIAmb and then to the RTI.
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Figure 4.3: Federate initialization

As shown in Figure 4.4, when a federate tries to advance its logical time, it

makes a call to the PatimRtiAmb as a timeAdvanceRequest sending the desired

time as an argument as well. As the PatimTimeManager gets the request, it �rst

evaluates the LBTS (Lower Bound on Time Stamp) for this federate and then

decides whether it should allow this time advance. PatimTimeManager calculates

the LBTS value by considering logical time plus lookahead values of the federates

which are in the same cluster. To do this, it calls the calculateClusterLBTS

method of the PatimFederateCluster object. This method �nds the minimum

of logical time plus the lookahead values of all the federates, except the calling

federate.

If a time advance operation is appropriate according to the calculated LBTS

value, the time manager of the federate calls back the timeAdvanceGrant call-

back of the federate ambassador. Otherwise, owning federate enters into the

TimePending phase in which it wait for the LBTS value to become appropriate

to advance to the requested logical time.

As mentioned before, distributed time management algorithms require syn-

chronization related messages in order to distribute the logical time state of in-

dividual federates. PatimTimeManager uses broadcastNullMessage method for
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Figure 4.4: Advance time

this purpose. In this method, a null-message containing time-advance request

information is broadcasted to all federates that are in the same federate cluster

with the federate that made the request.

The broadcasted null-messages are used to evaluate LBTS values inside other

federates. In Figure 4.5, the operations that are completed when a null-message

is received are shown. Null messages are transported as an interaction within

the existing RTI infrastructure. In fact, these messages should be transported

as internal messages but as an existing RTI implementation is used, the internal

structure of it cannot be changed. When this special null-message interaction

is received by the PatimFedAmb, it is sent to the PatimTimeManager. Null

messages contain information of the logical time plus the lookahead values of the

sending federates. In each PatimTimeManager, there is a list of logical time plus

lookahead values for all other federates. This list is used to evaluate the LBTS

value by �nding the minimum among the values on the list.

When the PatimTimeManager receives a null message, it updates the corre-

sponding the logical time plus the lookahead value of the sending federate on its

list. After that update, PatimTimeManager �nds the minimum value of this list,

which will be the new LBTS value for the owning federate. At that point, the

time manager looks whether the owning federate is in a time pending phase. If so,

PatimTimeManager grants time advance request of the federate if the requested

time is appropriate compared to the new LBTS value.
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Figure 4.5: Null message receive

When a federate tries to send object updates, it calls the updateAttributeVal-

ues function of the PatimRtiAmb, as shown in Figure 4.6. As the federate uses

the time management services provided, it supplies also the time information of

update with this function call. PatimRtiAmb sends this logical time of update

to the time manager so that the manager checks the validity of the sent time

with respect to the current logical time and the lookahead value of the federate.

After this validity check, PatimRtiAmb encodes the logical time information to

a string format as a tag value and calls the updateAttributeValues of original

RTIAmb, which is not time managed. This is done because PATiM uses custom

time management services and the RTI sees this federate as non time managed;

thus the updateAttributeValues of original RTIAmb is called without any time

information. The RTI, then, delivers this update information with the receive

order constraint to the destination.

In the simulation iteration, the federate needs to call the tick method of the

RTI ambassador after updating object attributes and sending interactions in a

single threaded process model. The working mechanism of the customized tick

method is shown in Figure 4.7.

When the federate calls the tick method of the PatimRtiAmb, the customized

ambassador calls the tick method of the original RTI ambassador. After this

call, if there are some events (updates or interactions) waiting in the original

RTI, re�ectAttributeValues or receiveInteraction methods of the PatimFedAmb

are called by the RTI. As a custom time management is used in this mechanism,
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Figure 4.6: Send data

Figure 4.7: Federate update (tick)

RTI distributes events in receive order. If the federate sends events as timestamp

order, encoded time information is added to the tag �eld of the event callback.

Custom time management mechanism decodes this logical time information from

the tag. These receive order events are converted to timestamp order events and
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these events are enqueued in the PatimTimeManager. There will not be any

logical time information in the tag �eld because events are actually in receive

order. In this case these receive order events are distributed directly to the

original federate ambassador.

After the original RTI ambassador �nishes its job in the current tick call, Pa-

timRtiAmb calls the tick method of the PatimTimeManager in order to deliver

available timestamp ordered events to the federate ambassador. The time man-

ager holds a queue of timed events, which are sorted according to their logical

times. The customized time manager delivers events the logical time of which are

smaller than the LBTS value of the owning federate.
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4.4 Cluster Management

Dynamic federate clustering algorithm is executed in all iterations during the sim-

ulation execution. Cluster management is implemented by continuously checking

the clusters for possible join and divide operations, while controlling distances

and approaching speeds. The joining operation of federate clusters is used to join

clusters at the end of resynchronization period.

In distributed implementation of the PATiM mechanism, in each cluster, a

federate is selected as a coordinator. This coordinator federate has to manage

the federate clusters using the PatimManager class. Necessary information re-

quired for the management of clusters includes regions data of all the federates

in the federation and logical time values of all the clusters. Region information

is already transferred to all LRC components for the data distribution services.

Logical time values are also interchanged between coordinator federates. In the

central implementation, the same PatimManager class is used by the central RTI

component; thus all necessary information is already available.

Main method in the PatimManager class is the update() method, see Fig-

ure 4.8. First action of this method is to �nd the pair wise distances, approach-

ing speeds and critical distances of all federate clusters. In order to calculate the

distances between clusters, the invoked method needs to �nd the location of each

cluster in the virtual space. For this purpose, all update and subscribe regions

of all the federates that are joined are calculated. These joined regions represent

the clusters and the distance between them is calculated. After calculating the

distances, they are compared with the critical distance values. If the calculated

distance is smaller than the critical distance value, then the faster cluster will

be stopped. This will block all the federates inside that cluster and their time

advance requests will not be granted.

In order to �nd the clusters that should be joined, logical times of cluster

pairs, which previously entered a resynchronization period, are compared. If

their logical times are synchronized, a new cluster will be created that combines

both clusters.

The last operation is to �nd the divided clusters. This operation is done based
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on the dimensional sorted lists that are maintained in each cluster.

Figure 4.8: PATiM update
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4.5 Integration with Existing RTIs

In order to implement the distributed PATiM algorithm using existing RTI and

LRC implementations, some information is required for each customized LRC.

In the proposed algorithm, each federate calculates the cluster formations and a

federate is chosen as the master federate when the cluster is formed. This master

federate calculates also the critical distances for all other clusters. This critical

distance calculation requires the following information:

• Information on all publish and subscribe regions of local and remote fed-

erates: Each federate in the federation calculates the distances between

federates and then calculates clustering. Every federate knows the federa-

tion wide cluster formation information.

• Information on the logical times of the federate itself as well as the entire

federation: Each cluster is required to know logical times of its own and

all other remote federate clusters. This is required to calculate critical

distances, and periods of local synchronization and resynchronization.

4.5.1 Background on DDM implementations

In this section some background information on existing DDM implementations is

given. This information is focused on how existing DDM implementations handle

the regions of federates to �lter data.

RTI NG

Conceptual DDM model in RTI NG [32] is given in Figure 4.9. This �gure

represents an abstraction of the purposes of the processing and the data �ows

needed to support the DDM.

In this model, one subscriber and one publisher is presented. Object at-

tributes and interaction parameters are transferred through a communications

infrastructure. DDM permits federations to abstractly specify and communicate

their data requirements to the RTI. The RTI establishes connectivity so that the
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Figure 4.9: Conceptual Model of DDM in RTI 1.3

publisher's data is delivered to appropriate subscribers and the system resources

are used conservatively to meet the performance goals of the federation.

In order to establish the essential connectivity, publishers and subscribers

state their data requirements using associations and subscriptions. Associations

are used by publishers. These associations represent either the relations between

a region, an object, and the object attributes (depicted as <region, object, at-

tributes>), or the relations between a region and an interaction class (depicted

as <region, class>).

Subscriptions are used by subscribers and they are also represent relations,

similar to associations. As depicted in Figure 4.9, databases of associations and

subscriptions are maintained in the LRC. Local subscriptions and associations are

maintained in a Local Associations database and a Local Subscriptions database.

The contents of these local databases are re�ected remotely. As a result of this

re�ection, the contents of the Local Associations database of the publisher are

available to subscribers as a Remote Associations database. Similarly, local sub-

scriptions are re�ected remotely to publishers to construct Remote Subscriptions

databases.
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The matching operation consists of detecting intersections between regions

and classes/attributes of associations and subscriptions. The result of matching

is a subscriber set, which identi�es the owner of each subscription that each

association matches to. The subscriber set is used to determine destinations to

send a given data. Also an empty subscriber set means that the given data is

turned o� and cannot be transmitted.

MAK RTI

MAK RTI implements the DDM using the distributed region approach [71]. In

this approach, the LRC of each federate exchanges its region information with

remote LRCs (or with other RTI components); so the region information is dis-

tributed among all LRCs. The individual LRCs perform matching between local

and remote regions. The LRC uses these region matches to establish communi-

cation channels between publishers and subscribers.

The advantage of distributed region matching is that the LRC can estab-

lish communication channels that carry relevant data only to receiving federates.

Other unsubscribed attributes may also be carried through the channel, but this

multiple association problem exists practically in any approach, including the

�xed grid approach. Also, the transmissions of attributes and the interactions

are always sent to a single channel. The disadvantage is the considerable overhead

of distributing the region information and performing matching between regions.

In the implementation of this algorithm, each LRC distributes its region set

and region information to all other LRCs. When a federate changes region ex-

tends or changes the subscription information of the regions, the LRC immedi-

ately distributes this information to other LRCs. Each LRC, then, matches its

local region sets against any remote sets. Region set matching includes attribute

matches and the determination of region overlaps.

4.5.2 Integration

In order to implement the PATiM mechanism, it is needed to have all the region

information of the federation, and the subscriptions and associations to these
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regions performed by the federate. To implement the proposed mechanism in a

fully distributed manner, this information should be available to the distributed

nodes, which could be the LRCs. Additionally, the availability of this information

is dependent on the implementation of the DDM mechanisms. As the HLA does

not specify the implementation details, any speci�c RTI implementation may be

implemented in a way that this information is available in LRCs. Besides, even

if this information is available in LRCs, neither the HLA 1.3 nor the HLA 1516

speci�cations have any mechanisms to get them from the LRCs.

On the other hand, two of the main RTI implementations analyzed above,

MAK RTI and RTI 1.3, are implemented so that region related information,

which belong to all federates in the federation, is available to implement DDM

mechanisms. These LRC components could be extended so that this information

could be reached by using some interfaces.

In our PATiM implementation, region related information is distributed ex-

clusively by using extra messages. Currently, there are not any open source RTI

implementations that implement full DDM and Time Management services. So,

full integration to LRC components is not completed yet. Of course, distribut-

ing the region related information exclusively brings extra cost to the algorithm.

However, this performance penalty is not counted for the proposed mechanism

as this information is actually available in the LRC implementation.

4.6 Performance Visualization

During execution of simulation scenarios, performance measures of each iteration

are logged to a �le. Performance items that are measured separately are listed

below;

• Iteration Count: Current iteration number of simulation execution

• Null message count: Cumulative total null messages sent from all federates

• Total event count: Number of events (updates and interactions) generated

by all federates
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• War update time: Total update time of one simulation iteration

• Blocking iteration count: Cumulative total blocking iteration count of all

federates

• Working iteration count: Cumulative total working iteration count of all

federates

• RTI tick time: Tick execution time of RTI NG 1.3.

• PATiM tick time: Update execution time of PATiM mechanism. This value

is the total time management related time.

• PATiM update time: Update time of PATiM. This value is the cost of

dynamic cluster management algorithm.

• PATiM total time: Tick plus update time of PATiM.

• LBTS calculation time: Separate LBTS calculation time.

• Cluster count: Current cluster count of execution

• Inter-cluster distance calculation time: Distance calculation cost between

clusters.

• Intra-cluster distance calculation time: Distance calculation cost for check-

ing cluster division.

• Cluster maintenance time: Execution time for maintaining the clusters.

• Find blocking cluster time.

• Find joined cluster time.

• Find divided cluster time.

• XY positions of each federate.

• Logical time plus lookahead values of each federate.
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These logged values are used to analyze the performance of the proposed

mechanism. The �rst group of measurements is used to plot the time-location

graph for individual federates. A time-location graph contains three dimensions

for a simulation having a two dimensional virtual terrain. The two dimensions

represent the X and Y positions of the federate and the third dimension represents

the logical time of the federate. This graph represents the movement of the

federate as its logical time increases. An example for the time-location graph is

shown in Figure 4.10. In this �gure, time-location graph of the federate F1 is

shown, for both the normal and the PATiM mechanisms.

Figure 4.10: Time-location graph property

Performance visualization is done using two dimensional graphs. The values

that are plotted for each dimension can be selected using radio boxes placed on

the left side of the graphical user interface. By using this �exible comparison
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mechanism, di�erent perspectives of the implemented mechanism can be viewed

easily. An example performance graph comparing iteration count versus null mes-

sage count is shown in Figure 4.11. The graph mechanism includes some utilities

in order to simplify the visualization process. The values of the Y dimension

can be reorganized so that the graph plots the values as a cumulative for each

iteration. This property is used when the user wants to see cumulative results on

instantaneous values, such as cluster count. It is further possible to plot instanta-

neous values for a cumulative performance element, such as a null message count.

Small and noisy values can be averaged in order to determine the tendency of the

plotted values, such as the LBTS calculation time.

Figure 4.11: Performance measure graph property
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4.7 Validation of Proposed Algorithm

PATiM mechanism provides a better performance by reducing network messages

and calculation times of the LBTS value that is essential to realize time manage-

ment requirements. Beside this performance improvement, it is very critical to

get same simulation results with the ones that are produced by the normal time

management mechanisms. Getting the same results in same simulation execu-

tions means that every object in the federation should be in the same state in

a given logical time, and every event in distributed simulation should be at the

same logical time.

In order to show this equivalence of simulation executions, a distributed sim-

ulation example of a war scenario is analyzed. A distributed war simulation

contains a number of plane and tank federates. Each of the actors has its own

path to follow on the virtual terrain. Planes can �re to enemy planes and tanks,

tanks can �re to enemy tanks. There is no randomness in �ring and path fol-

lowing in order to get the same results. Each �re operation will be successfully

destroying the target, and a damaged target will not be able to make a further

operation.

The same war scenario is executed �rst with the normal time management

algorithm and then with the PATiM algorithm. During these executions, middle-

ware recorded the current logical time, federate position, and some other perfor-

mance related data to a �le. Another state analyzer program read �les of di�erent

executions of the same simulation scenario and drew a three dimensional repre-

sentation of the simulation states. Afterwards, the three dimensional graphs were

taken from this tool and the situations for these two time management algorithms

were depicted.

In the simulation state graphs, there are three axes which represent logical

time, x and y coordinates. These graphs represent the position of war elements

with respect to the logical simulation time. There are two data lines in Figure 4.12

representing war element Tank1's simulation state for the PATiM mechanism and

for the normal time management mechanism. As it can be seen from the graph,

Tank1 is on exactly the same point at each logical time for both the PATiM and
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Figure 4.12: Tank1 Simulation State Graph

the normal time management mechanisms. Simulation state graph for another

war element Plane1 is shown in Figure 4.13. Again, both PATiM and normal time

management mechanisms generate same states for the same logical time values.

In Table 4.1, events generated within the simulation scenario and logical time

values that these events exist at, for both PATiM and the normal time manage-

ment mechanisms, are listed. As it can be seen from the table, all events happen

at the same logical time for both time management mechanisms.

Table 4.1: Event times
Event Description PATiM Normal time management

Tank3 is �red by Plane1 456 456

Tank2 is �red by Plane2 890 890

95



Figure 4.13: Plane1 simulation state graph
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CHAPTER 5

ANALYTICAL RESULTS

In this chapter, analyses of the proposed PATiM mechanism from di�erent per-

spectives are given. In order to analyze the advantages and overheads of the

proposed mechanism, a group of distributed simulation scenarios are executed

and di�erent components of these executions are analyzed. The metrics chosen

are reduction of the number of synchronization related messages, logical time,

concurrency, and the LBTS computation overhead. Two di�erent simulation ap-

plications are modeled; the �rst one is a simple war game simulation and the

second one is a transportation simulation. Two common properties of these sim-

ulations are the involvement of real world physical entities and the time-stepped

organization of the simulation applications.

5.1 War Game Simulation

As mentioned before, the proposed mechanism is applicable to time-stepped sim-

ulations. Especially distributed simulations, in which there is a simulation of

physical entities, are perfectly suited. In order to evaluate the performance of

the proposed PATiM mechanism, a group of distributed simulations are created.

The �rst scenario is a distributed war simulation, in which there are two teams

composed of planes and tanks. There are di�erent numbers of federates (i.e.

war elements) in each simulation scenario. Each war element moves on the two-

dimensional space following a prede�ned path. In each iteration of the simulation

loop, war elements try to increment their logical time values by using the timeAd-

vance() method of the time management services. Each war element possibly has
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a di�erent time increment value which is used to increment its logical time. These

di�erent time increment values are used to simulate computational environments

of di�erent speeds.

In the real world, each federate most probably runs on di�erent computational

power and their logical time increments, i.e. their advance speed in the simulation,

is also di�erent. They further move on the virtual two dimensional terrain as their

logical time values are incremented. The movement amount is determined by the

time change value and the speed of the vehicle. A war element has a �re range

and when opposite side war elements enter its range, it �res at them. Every �re

operation has to be successful so that the simulation execution is repeatable.

All of the federates in the simulation environment are executed on the same

processor in order to simplify the setup process of this experimental environment

for di�erent scenarios. However, these federates communicated with each other

only using the HLA services, similar to the normal federates. The results of

these executions are logged in order to analyze the performance. The results

of these executions generated by the PATiM mechanism are compared with the

normal time management mechanism. The normal time management mechanism

implemented is based on the time management algorithm given in section 2.4.2.4.

5.1.1 Message Count Comparison

Distributed time management algorithms use null-messages in order to assure

consistency. Of course, these null messages are just extra messages which are

used to inform other federates about their internal states. Reducing the number

of null messages is very important for a synchronization algorithm.

In Figure 5.1, comparison of null message counts for both normal distributed

time management mechanism and PATiM mechanism is given. In this graph, the

change of the total null message count is depicted as simulation steps forward.

Iteration count is the number of steps that the simulation executes. As it can be

seen from the �gure, null message generation of the PATiM mechanism is dramat-

ically smaller than the normal mechanism. This reduction comes from the fact

that the PATiM mechanism partitions the federation by utilizing the clustering

98



mechanism, and null messages are only used for inter-cluster synchronization.

Figure 5.1: Null message count

As mentioned before, in a distributed time management mechanism, null mes-

sages should be distributed to all other time constrained federates with reliable

multi-unicast links. This means that every time an advance operation takes place,

a group of messages will be distributed to other federates in the federation. If all

of the federates try to advance their logical times there will be n(n−1) messages,

because all federates are dependent to all other federates. Here comes the �rst

performance improvement opportunity. When federation is divided into feder-

ate clusters and federate's logical times depend only on the federates within the

same cluster, this decreases the total number of synchronization messages dra-

matically. When we divide the whole federation into synchronization groups by

clustering the federates, there will be smaller number of federates within each

federate cluster than in the original federation.

In the inequality 5.1 below, the left side represents the message count of the

normal distributed time management mechanism. The right hand side represents

the message count of PATiM mechanism, where there are two federate clusters

in the federation.

n(n− 1) > k(k − 1) + t(t− 1) ∀n = k + t (5.1)
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When k is replaced with (n-t), the inequality is converted to following one.

n(n− 1) > (n− t)(n− t− 1) + t(t− 1) ∀n = k + t (5.2)

This inequality is reduced to n > t ∀n = k+t which is always true for positive

non-zero integer values. This inequality depicts that when a federation containing

n federates is divided into two federate clusters with k and t number of federates,

PATiM mechanism always results in smaller number of synchronization related

messages. This equation could be generalized to any number of federate clusters

as follows;

n(n− 1) >
m∑

i=1

(ki(ki − 1)) where n =
m∑

i=1

ki, m > 1 and ∀ki > 0 (5.3)

This inequality can be reduced as following;

n2 − n >
m∑

i=1

(k2
i − ki) (5.4)

n2 − n >
m∑

i=1

(k2
i )−

m∑
i=1

(ki) (5.5)

n2 − n >
m∑

i=1

(k2
i )− n (5.6)

n2 >
m∑

i=1

(k2
i ) (5.7)

This last inequality 5.7 can be proved by manipulating assumption condition;

n >
m∑

i=1

(ki) (5.8)

(n)2 >
( m∑

i=1

(ki)
)2

(5.9)

n2 >
(
k1 +

m∑
i=2

(ki)
)2

(5.10)

n2 > k2
1 + 2

m∑
i=2

kik1 +
( m∑

i=2

(ki)
)2

(5.11)
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n2 > k2
1 + 2

m∑
i=2

kik1 +
(
k2 +

m∑
i=3

(ki)
)2

(5.12)

n2 > k2
1 + 2

m∑
i=2

kik1 + k2
2 + 2

m∑
i=3

kik2 +
( m∑

i=3

(ki)
)2

(5.13)

When this operation continues until m number of steps we get the following

equation;

n2 >
m∑

i=2

k2
i +

m−1∑
i=1

(
2

m∑
j=i+1

kikj

)
(5.14)

m−1∑
i=1

(
2

m∑
j=i+1

kikj

)
> 0 where m > 1 and ∀ki > 0 (5.15)

As it is known that the above equations 5.14 and 5.15 are true, inequality

5.7 is always true for all positive non-zero integer n and ki values where n is

equal to summation of all ki. As it is known that the inequality 5.7 is true,

the original inequality 5.3 is always true. This theoretically proves that the

PATiM mechanism always generates less number of null messages because clusters

will always contain non-zero positive number of federates and the summation

of federate counts in clusters is equal to the total number of federates in the

federation.

Mainly, the simulation model determines the degree of clustering. This de-

pends on the ratio of total average distances between the federates and on the

clustering threshold values. If the federates in a distributed simulation widely

spread around the virtual space, then there will be higher number of clusters.

Widely spread means that federates are positioned at large distances. In this

case, the average distance between the federates is relatively higher than the

cluster thresholds. As mentioned before, threshold values are determined by the

nature of the simulation domain.

In fact, a threshold value is a distance in virtual space at which the commu-

nication between the federates is broken down. In an example simulation of the

tra�c environment, vehicles can process events happened within approximately

1 km distance. In this case, the simulation designer could assign the threshold

value as 2 or 3. If the terrain is about 100 km2 and the vehicle federates are more
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likely to travel distant points on the terrain, there may be higher number of clus-

ters during the execution. However, in another run, if the vehicles have special

radars on them and they can process events, i.e. could see other vehicles, within

60 km distance, probably the simulation designer will de�ne the threshold value

as 70 km. By having this threshold value and 100 km2 virtual terrain, clustering

algorithm would allow at most 2 clusters at the same time.

Figure 5.2 plots null message counts against the iteration counts comparing

highly clustered and lightly clustered federations.

Figure 5.2: Clustering e�ect on null message counts

In order to analyze the e�ect of clustering, two di�erent scenarios are executed.

In one of the scenarios, there are 4 di�erent federate groups. In this scenario,

the federates travel more distances in distant groups on the virtual terrain. In

Figure 5.2 the number of clusters is shown on the right part and the cumulative

total null message counts as a function of iteration count is plotted on the left.

As it can be seen from left graph of Figure 5.2, in the highly clustered fed-

eration less number of null messages is produced. Before the iteration t1 there

are 4 clusters in the high clustered scenario and the slope of the null message
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count curve is much smaller than the low clustered scenario. However between

iterations t1 and t2 there is only one cluster and the slope of both curves is nearly

the same. Between iterations t2 and t3 there are 3 clusters in the high clustered

scenario. This number of cluster results in a smaller null message count than in

the low clustered scenario, but in this case the slope of the message count curve

is higher than the one before the iteration t1.

Another factor that a�ects cluster count during simulation executions is the

values of clustering and joining thresholds. If these values are relatively smaller

than virtual space dimensions, there will be higher number of clusters at average.

Figure 5.3 shows the null message count as a function of iteration count for the

same scenario, but di�erent thresholds.

Figure 5.3: E�ect of threshold values on null message counts and cluster counts

The di�erence between executions in this �gure is the amount of thresholds.

In one of the executions, threshold values are 120 and 90 for clustering and

the joining thresholds respectively; for the other execution, they are 80 and 65,

respectively. In both executions, initially they have the same number of federate

clusters and null message counts. After a while, di�erent threshold values start

103



to a�ect the number of clusters and the null message counts. As it can be seen

from the left graph, null message counts for executions that have smaller threshold

values are less than the other one. By having smaller threshold values, the PATiM

mechanism divides existing clusters earlier and joins clusters later. This results

in higher average cluster counts and decreased null message counts.

Figure 5.4: E�ect of di�erent threshold values

A more dramatic di�erence between null message counts is obtained when

the di�erence between threshold values is increased. In Figure 5.4 there are null

message count and cluster count comparisons of di�erent executions of the same

simulation scenario that have di�erent threshold values. In the �rst execution,

values for clustering and joining thresholds are 300 and 270, respectively. In

other execution, these values are 80 and 65. As it can be seen from the graphs,

small thresholds generate higher average cluster counts and smaller null message

counts.
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5.1.2 Event Count Comparison

In the distributed war simulation there are a number of events involving attribute

updates and interactions to take place. In Figure 5.5, a comparison of total

number of events happened during the simulation executions are presented.

Figure 5.5: Event count comparison

In these graphs, event throughputs of both mechanisms are shown. The graph

on the left shows cumulative total event counts, where event count is the sum of

all previous event counts plus the current ones. The graph on the right shows

instant total events in each iteration. Before time t1, some of the federates are

in di�erent federate clusters. Thus, event generation of the PATiM mechanism

is higher than the normal time management mechanism. During this period, in

normal time management mechanism, event generation speed of each federate is

regulated by the slowest federate in the federation. This fact generates a relatively

constant total event generation speed during the simulation execution. However,

in the PATiM, federates are divided into three clusters and execution speeds of

these clusters are independent of each other. In this case, the fastest cluster could
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generate events more frequently than the slowest cluster, and therefore, there is

a higher total event generation in the PATiM mechanism.

Some of event generation capabilities could not be used in the normal time

management mechanisms because slower federates block the faster ones. This un-

used capabilities are allowed to be used only if federates are distant to each other

because of the logical time independency. However, when they are getting closer

to each other, their logical times have to be resynchronized. This resynchroniza-

tion operation is completed by blocking the faster clusters. This blocking results

in sharp decreases in the amount of event generation because blocked federates

cannot generate events. At time t1 in Figure 5.5, federate clusters start to get

closer to each other and they enter the resynchronization period, which starts at

t1 and ends at t2. In this period, faster federates are blocked and they could not

generate events. This blocking of some federates obviously decreases the total

simulation event generation speeds.

At time t2 resynchronization period ends and clusters are joined into one

greater cluster. Between times t2 and t3, there is only one federate cluster and

event generation speed of the PATiM and normal time management mechanism is

nearly the same. Between times t3 and t4, some of the federates again move away

from other federates and thus they are separated from the large cluster. In this

interval, there are two federate clusters in the PATiM execution. After t3 faster

federates again generate events more frequently than slower federates and total

event count amounts have greater values than in the normal time management

mechanism. At time t4, one of the clusters is divided and the total cluster count

of federation becomes three. In this case, event generation of federation in the

PATiM mechanism increases to even higher values.

In Figure 5.6 event count comparison for another execution containing 50

federates is shown. In part (a) and (b) of the �gure, cumulative total and total

event count graphs are shown. In part (c) cluster count changes are shown. In

this execution federates are highly distant to each other and the average cluster

count during this simulation is higher. This situation causes higher di�erences

between normal and PATiM executions in their event counts. In this simulation,

there are four clusters before iteration t1. Between t1 and t2, the cluster count has
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increased to �ve and event count generation has become higher. At iteration t2

the resynchronization period begins and it continues until t3. During this period,

event generation of the PATiM mechanism is dropped because a fast cluster is

blocked and could not generate any events. At iteration t3, the resynchronization

period ends and the event generation speed of the PATiM mechanism increases

to its original level.

Figure 5.6: Event count comparison for 50 federate
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5.1.3 Logical Time Comparison

In distributed simulations, each federate simulating an actor tries to advance

its logical time in each iteration. Of course, in some of the iterations, the time

management mechanism does not allow some of these time advance operations

because of the slower federates. In Figure 5.7, graphs of logical time changes of

the federate F4 are shown. On the left graph, logical time changes with respect

to simulation iteration count are shown. Similar to previous graphs, before time

t1, federates are distant to each other and there is more than one federate cluster.

Being in a faster cluster, logical time of F4 increases with a higher speed in the

PATiM mechanism when compared to the normal time management mechanism,

because slower federates block F4 in some iterations.

Figure 5.7: Logical time comparison of federate F4

In fact, before time t1, there are 3 clusters in the federation, FC1, FC2 and

FC3. Federate F4 is in FC1. During t1 and t2, two of them, FC1 and FC2,

are in resynchronization period because they are getting closer. During this

resynchronization period, F4 is blocked by the PATiM mechanism because the

108



cluster it belongs to is faster than FC2. Thus its logical time is constant during

this period while the logical times of slower federates increase and �nally reach

the logical time of F4 at time t2. At t2, the resynchronization period between

these two clusters ends and they construct a new cluster called FC4.

Between t2 and t3, there are two federate clusters in the federation, FC3 and

FC4. Federate F4 is in cluster FC4 with a slower federate. Thus, during this

period, logical time increase of F4 in both the normal and the PATiM mechanism

is the same. In the normal time management mechanism, logical times of all

federates are regulated by the slowest federate in the simulation. Thus, in normal

time management mechanisms, constant logical time increases are obtained.

Figure 5.8: Logical time comparison of federate F5

In Figure 5.8, logical time changes of federate F5 are shown. F5 is, in fact, the

slowest federate in the federation. Thus, in normal time management mechanism

its logical time value constrains all other logical times of the other federates. On

the graph, the logical time and iteration count comparison of the federate F5

is shown. As it can be seen from the graph, in both PATiM and normal time

management mechanisms, logical time values of F5 is the same. This result comes
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from the fact that F5 is the slowest federation in the system. In both mechanisms,

it has not been blocked by any of the other federates, but it blocks the others.
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5.1.4 Concurrency Comparison

The PATiM mechanism divides the federation into highly dependent subparts

based on the distance between the federate groups. Resulting clusters contain

federates that are dependent on each other but not related to the federates out-

side the group. For a period of time, the logical time dependency between fed-

erates of these clusters is broken and there will not be any interaction between

them. Thus, the concurrency within the federation is increased during this non-

interacting period. As mentioned in section 3.4.1, these periods are called local

synchronization periods.

In order to measure the concurrency within the federation, the total working

and blocking iteration counts for all the federates in the federation are measured.

Working iterations are iterations in which the federate advances its logical time

and forwards its position in the virtual terrain. In blocking iterations, the fed-

erate cannot advance because of at least one slower federate. In a time stepped

federation execution, the concurrency of that execution can be said to be high if

working iteration count is high and blocking iteration count is low.

The same simulation scenario is executed with 7 federates using the PATiM

and normal time management mechanisms. Graphs in Figure 5.9 show the to-

tal working and blocking iteration counts of all the federates as the simulation

iteration count increases. In parts (a) and (b) of this �gure, cumulative and nor-

mal blocking iteration counts in the PATiM execution are given respectively. In

parts (c) and (d), cumulative and normal working iteration counts of the normal

time management execution are given. As it can be seen from the graphs, in the

PATiM mechanism, blocking iterations are less and working iterations are higher

than in the normal time management mechanism. Before iteration t1, there are

three federate clusters in the PATiM and all federates in these clusters have equal

execution speeds. Thus, there is no blocking iteration during this period. Be-

tween iterations t1 and t2, these two federate clusters enter the resynchronization

period and the federates of the faster cluster are blocked. During this period, this

cluster blocking operation results in a high increase in the blocking counts. Be-

tween iterations t2 and t3, values are the same for both mechanisms. This comes
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from the fact that between these iterations, there is only one federate cluster in

the PATiM mechanism and it generates blocking iteration counts similar to the

normal time management mechanism. At iteration t3, the cluster count becomes

two and at iteration t4, the cluster count becomes three.

Figure 5.9: Concurrency results
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Blocking and working iteration counts in the PATiM mechanism is a�ected

mainly by two factors, one of which is the average cluster count. If the number

of clusters in the simulation execution is high, then the concurrency will increase.

The second factor is the formation of federate clusters. If there are federates

having similar execution speeds in each federate cluster, than the concurrency of

the execution will increase, because there are less blocking operations that would

result due to a slower federate.

In Figure 5.10, blocking and working iteration count graphs are given for a

di�erent simulation execution. In this execution, there are again 7 federates but

federate clusters are distant in most of the iterations and the average number of

clusters is higher than the previous execution. As it can be seen from the graphs,

the number of blocking iterations is less and the number of working iterations is

higher in this execution. Before iteration t1, there are two federate clusters in the

PATiM. These clusters contain federates that have similar execution speeds and

during this period, the number of blocking iterations is zero. At iteration t1, the

resynchronization operation between these two clusters is initiated and 4 of the

federates, which are in the faster cluster, are blocked.
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Figure 5.10: Concurreny results for a di�erent execution
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5.1.5 Execution Time Analysis

In order to evaluate the performance of the PATiM mechanism with respect to

the increase in the federate count, three di�erent distributed simulation scenarios,

containing 7, 20 and 50 federates, have been run. In fact, the following execu-

tion time analyses are only related with the time management executions. The

RTI data distribution and federation management related to execution times are

not important in this study because these algorithms are not optimized by the

proposed mechanism. In order to measure the performance of the PATiM mech-

anism, di�erent components of execution time values are separately analyzed.

These components are the LBTS computation time and the PATiM update time.

LBTS calculation time analysis

The LBTS computation is the hearth of the time management system. As men-

tioned before, this value determines the minimum logical time value for any fed-

erate in the distributed federation. E�ectively computing this value dramatically

increases the time management performance.

Figure 5.11: LBTS Calculation Times for 7 Federates
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In Figure 5.11, two LBTS calculation time graphs for a simulation execution

that contains 7 federates, are shown. In part (a) of the �gure, cumulative time

values are shown in milliseconds. In part (b) individual calculation time is given

for each iteration. As it can be seen from these graphs, the PATiM LBTS calcu-

lation times are relatively less than the normal time management mechanism.

In order to calculate the LBTS value for a federate, the minimum of all the

logical time plus the lookahead values should be calculated. Priority queues

that are implemented using heaps are used in order to �nd the minimum value.

Complexity of �nding the minimum is O(1). In each time advance operation,

the priority queue should be updated, so that the minimum value is on the top

of the heap. For this operation, the node containing the logical time plus the

lookahead value should be found and its value should be updated. After that,

the heap property of this list should be reconstructed. The worst case complexity

of this operation is O(log n). Total complexity of the LBTS calculation for n

federates is O(n log n). This complexity value is valid only in the normal time

management mechanism. In the normal method, the minimum value is needed

to be calculated for all federates in the federation. On the other hand, in PATiM

mechanism, this complexity value is reduced because the federation is divided

into smaller parts. Federates in the clusters need to �nd the minimum value

only across federates that are in the same cluster. When the whole federation

is divided into synchronization groups by the clustering federates, there will be

smaller number of federates within each federate cluster considering the entire

federation. The following inequality shows this condition;

n log n >
m∑

i=1

(ki log ki) where n =
m∑

i=1

ki, m > 1 and ∀ki > 0 (5.16)

In equation 5.16, the left side represents the total count of comparison opera-

tion to �nd the LBTS in a normal distributed time management mechanism. The

right side represents the comparison count of the PATiM mechanism where there

are m number of federate clusters in the federation. This equation depicts that,

when a federation containing n federates is divided into m numbers of federate

clusters, the PATiM mechanism always requires less comparison operation to �nd
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the LBTS value.

In order to proof this inequality, the right side can be extracted to the follow-

ing;

A =
m∑

i=1

(ki log ki) = k1 log k1 + k2 log k2 + ...+ km log km (5.17)

New value k
′
is introduced in order to change the equality 5.17 to an inequality.

If all ki values are replaced with a value which is greater or equal to it, the

following inequality is produced.

A ≤
( m∑

i=1

ki

)
log k

′

i where k
′
= max(ki) (5.18)

A ≤ n log k
′

(5.19)

n > k
′ ⇒ log n > log k

′ ⇒ n log n > n log k
′

(5.20)

From inequalities 5.19 and 5.20 the following inequality could be produced

n log n > n log k
′ ≥ A (5.21)

This resulting inequality 5.21 proves the original inequality of 5.16, which

states that the PATiM mechanism has always smaller LBTS calculation times

than the normal time management mechanism, when there is clustering during

simulation execution.

In Figure 5.12, tthere are LBTS calculation time graphs for two federation

executions, containing 20 and 50 federates. In part (a) and (b) of the �gure,

there are cumulative and individual LBTS calculation time value graphs for an

execution that contains 20 federates. In parts (c) and (d), LBTS calculation time

graphs are given for an execution containing 50 federates.
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Figure 5.12: LBTS Calculation Times for 20 and 50 federates
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PATiM Update Time Analysis

In the update method of PATiM mechanism, dynamic cluster formation related

operations are executed. This method is the actual overhead of the proposed

mechanism because in the normal time management mechanism, there is no dy-

namic clustering. In this section, execution time values of the update method

for di�erent simulation executions are given. Further, complexity analysis of this

method for di�erent operation groups is given.

Figure 5.13: PATiM Update times for 7 federates

On the graphs in �gure Figure 5.13, the execution times of the update method

of the PATiM mechanism are shown. In part (a) of the �gure, cumulative values

are shown. In part (b), instantaneous values for the iterations are shown. As

it can be seen from the graphs, the update time values for the normal time

management mechanism is zero because there is not any clustering in this method.

In the graph in part (b), there are some instant pick values in some iterations of

the PATiM mechanism. In fact, execution times for the update method are very

small. These small values are very sensitive to context switches that are caused
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by the operating system. These pick values are results of these context switches

and can be omitted.

Overhead time for the dynamic cluster formation inside the update method

includes di�erent components: intra-cluster distance calculation and inter-cluster

distance calculation. As mentioned in section 3.3, distance calculations are re-

quired to determine the relationships between the federates.

Inter-cluster distance calculation includes the determination of the position of

each cluster in the virtual space and the sorting of these positions in order to �nd

the distances between the clusters. The position of the cluster is found by taking

the union of regions of individual federates in the cluster. For one federate, this

operation has complexity of O(k) where k is the number of the federates in the

cluster. If all clusters are considered, total position �nding operation complexity

will be O(n) where n is the number of federates in the federation. A modi�ed

Sweep-and-Prune algorithm is used to sort the calculated distances. Because of

temporal coherence, the list will be nearly sorted and complexity of this sort

operation will be O(c) where c is the number of clusters. As c is a smaller value

than n, , the total complexity of the inter-cluster distance calculation is O(n).

Another factor related to the federate clusters is the Approaching Speed (AS).

Finding the AS value for two clusters is done by �nding the distance change and

the logical time change of these two clusters. Distance change is found using the

current and previously sorted lists, which are already available.

Intra-cluster distance calculation includes sorting of positions of federates in-

side all clusters using the Sweep-and-Prune algorithm. If the average number of

the federates inside a cluster is k, sorting for one cluster will has a complexity

of O(k). Having c number of clusters, total intra-cluster sorting complexity is

O(c.k) which is equal to O(n).

To detect transitions from local synchronization periods to resynchronization

periods, check operations should be performed for each cluster pair. These oper-

ations are controlling the distances and approaching speeds for all of the cluster

pairs. Complexity of these checking operations is O(k log k) where k is the av-

erage number of clusters. In general, the number of clusters is very small when

compared to the number of the federates. This fact leads that this O(k log k)
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complexity does not a�ect the overall overhead too much as the number of the

federates increases.

The complexity of operations required when the algorithm detects that one

cluster is divided into two clusters or two clusters are joined into one cluster,

has constant values and does not a�ect the overall complexity of the dynamic

cluster formation algorithm. In general, the overall complexity of dynamic cluster

formation algorithm is O(n) +O(k log k) where n is the number of the federates

and k is the average number of the clusters.

As mentioned before, the main component of the update method is the dis-

tance calculations, and these calculations are based on the modi�ed Sweep-and-

Prune algorithm. This algorithm is based on the idea of temporal coherence.

This means that, in a simulation environment, locations of federates and there-

fore clusters are not changed dramatically. For this reason, previously sorted lists

will be nearly the same in current sort operations. By keeping previous lists and

using a quick sort algorithm, complexity of the sorting operation will be O(n)

in average. However, if the federates change their positions dramatically during

the execution, complexity will become O(n log n), which is the worst case per-

formance of the PATiM dynamic cluster formation algorithm. In fact, temporal

coherence algorithm is an already required condition for the PATiM mechanism

as if federates jump around virtual terrain randomly, this algorithm could not

determine meaningful Approaching Speeds for the federate clusters. The physi-

cal simulations like the tra�c simulations or war simulations are good examples,

in which the federates do not change their locations dramatically in a single it-

eration of the simulation. This requirement of the PATiM mechanism makes the

average complexity applicable in most of the iterations during the execution.

In Figure 5.14, there are PATiM update time graphs for an execution con-

taining 20 federates. In part (a) and (b) of the �gure, cumulative and individual

update times of this execution are shown respectively. In part (c) of the �gure, the

graph of the federate cluster count of each iteration is shown. The �rst inference

from this graph is that these update values are not much bigger than the ones for

a federation containing 7 federates, given in Figure 5.13 (b). Another inference

is that the update method execution times are very a�ected by the cluster count.
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In the graph given in part (b), between the iterations i1 and i2, the cluster count

decreases to 2 and the update execution time also decreases to smaller values, in

comparison to values obtained with 3 clusters.

Figure 5.14: PATiM update times for 20 federates

In Figure 5.15, there are PATiM update time graphs for the execution con-
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taining 50 federates. In part (a) and (b) of �gure, the cumulative and individual

update times for this execution are shown. In part (c) of the �gure, the graph of

the federate cluster count in each iteration is shown. Execution time values for

the update method are very close to the values of Figure 5.14 (b). This shows

that increased federate counts do not a�ect the update method execution time

signi�cantly. However, as stated before, the number of clusters clearly a�ects the

update execution time. The changes in cluster counts at iterations i1, i2, i3 and

i4 directly changes update execution times.
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Figure 5.15: PATiM update times for 50 federates
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Simulation Step Execution Time

In order to compare the overall execution time performance of the PATiM over

the normal time management mechanism, execution times of simulation steps

are analyzed. In part (a) of the Figure 5.16 step execution times are shown

with respect to the iteration numbers. As it can be seen from the �gures, these

values are highly dependent on the cluster count. The main factor in determining

the step execution time is the working iteration amount in that step, because the

execution time increases when there are more working federates. It was mentioned

previously that higher cluster counts result in increase in the working iteration

amount (see Figure 5.9 and Figure 5.10).

Figure 5.16: Step Execution Times

In these graphs, there are three clusters before t1 and the PATiM generates

higher execution times. Between t1 and t2 the federate clusters enter the resyn-

chronization period and working iteration counts drop dramatically during this

period because of the blocking of the faster federate. This results in relatively

lower execution times for the PATiM. Between t2 and t3, there is only one cluster
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in the PATiM and execution times of both mechanisms are the same. After t3

cluster counts and execution times increase again.

5.2 Transportation Simulation

Intelligent Vehicle/Highway Systems (IVHS) is aimed to increase the highway

capacity and decrease the travel time without building new roads [68]. One

promising strategy towards this goal is to organize tra�c in platoons of closely

spaced vehicles. The design and implementation of the control tasks needed to

realize such an IVHS system will require a structured approach that uses control,

communication and computing technologies both to maintain the position and

the speed of a vehicle within a platoon and to coordinate platoon maneuvers.

The control tasks are arranged in a three layer hierarchy as shown in Fig-

ure 5.17. There is a single link layer for a long segment of the highway that

extends to several sections. Each section may be between 50m and 500m long.

The link layer has two functions. It assigns a path to each vehicle that enters

the highway and continuously determines the platoon optimal speed (denoted as

optspeed) and the optimal size (optsize) for each highway section. The values

of optspeed and optsize are selected to maintain smooth tra�c �ow and to re-

duce congestion. The link layer functions are proposed to be implemented in a

centralized manner [29, 3].

Figure 5.17: Control Hierarchy
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The remaining control tasks are proposed to be implemented in a distributed

manner. There is one platoon layer, one regulation layer, and one physical layer

per vehicle. Each platoon layer of a vehicle plans a sequence of maneuvers and

issues that correspond commands to the regulation layer, so that the trajectory

of the vehicle follows the assigned path closely, and the platoon speed and size

track the optspeed and optsize values. Each regulation layer of a vehicle exe-

cutes the commands issued by its platoon layer by implementing corresponding

pre-computed feedback control laws, which continuously determine the throttle,

braking, and steering actions of the vehicle. Finally, the physical layer of a vehicle

is a model of its dynamic behavior, against which the feedback control laws are

designed.

Tra�c is organized in platoons of vehicles in IVHS as shown in Figure 5.18.

The size of a platoon is between 1 and 20, depending on the tra�c �ow. The

headway within a platoon is small (about l m); the minimum headway between

platoons grows with the platoon size; reaching about 60 m for platoons of size 20.

The lead vehicle of a platoon is called its leader, and the rest are the followers.

A single vehicle platoon is called a free agent. Protocol exchanges are always

between leaders (including free agents) of neighbor platoons. If a follower wants

to initiate a maneuver, it must send a request to its leader. It is further the

task of the leader to track optspeed and optsize. The task of the followers is only

to execute a feedback control law, which maintains the tight headway with the

vehicle that is in front of it.

Figure 5.18: De�nition of Platoon
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The link layer is not implemented in this distributed simulation of IVHS

because of its centralized nature. It collects all the information from all over the

highway system to calculate the optimum speed and platoon size for the current

tra�c conditions. However, this continuous communication requirement does not

allow the clustering in the PATiM. In fact, optspeed and optsize parameters can

be taken as �xed values for di�erent simulation times; for example, for week

days and weekends. Additionally, the path assigning job of the link layer can be

performed by the leader vehicles according to the current road conditions and the

target locations.

The main focus of this example simulation is the platoon layer. During the

course of simulation, each platoon layer continuously checks its internal state and

the environment in order to keep its platoon size and speed close to optsize and

optspeed. For this purpose, it uses three elementary maneuvers named as merge,

split and change lane. The merge maneuver combines two successive platoons in

the same lane into a single platoon, as shown in Figure 5.19. The merge is always

initiated by the leader of the rear platoon, vehicle B. If the size of the platoon

of B (ownsize(B)), is smaller than the optsize, B requests permission from A to

merge. If A is not busy, and if this permission is granted, the platoon layer of B

then requests from its regulation layer to accelerate and join the platoon of A.

Figure 5.19: Merge

A split maneuver may be needed because a the size of a platoon may exceed

the optsize, a vehicle in an adjacent lane requests a change lane maneuver, or a

vehicle in a platoon initiates one or two splits in order to become a free agent.
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As indicated in Figure 5.20, a split may be initiated either by a leader (vehicle

A) or by a follower (vehicle B).

Figure 5.20: Split

Lane change maneuver can be initiated only by a free agent, i.e. a single

vehicle platoon. If a vehicle in a multi-vehicle platoon needs to change lanes, it

must �rst gain a free agent status by executing one split (if it is a leader) or two

split maneuvers (if it is a follower).

For each vehicle of the simulation, a federate is implemented that contains

platoon, vehicle and physical layers of the control hierarchy. Each vehicle has

a group of state information containing road identi�ers, position of vehicle, be-

longing platoon number and a busy �ag. It publishes state information to other

vehicles. Communication requirements of platoon layers, for example join re-

quests, are implemented using the interactions of HLA.

5.2.1 Simulation Implementation and Results

IHVS simulation is realized by implementing each vehicle actor by a federate that

contains a platoon and a regulation layer. The simulation program reads the high-

way structure and the vehicle properties from a con�guration �le and initializes

the vehicle federates. The structure of the example implementation is shown in

Figure 5.21. Each vehicle is implemented as a class inside the application process.

Platoon and regulation layer is implemented inside the vehicle federate. There is

no direct connection between federates and they only communicate through HLA

services.

There are two critical parameters of the PATiM, which should be determined

for each simulation application. The �rst one is the amount of clustering threshold
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Figure 5.21: Example Structure

of the PATiM for this IVHS simulation. The critical information here is the

optimal distance between two successive platoons. As mentioned before, this

value should be 60 meters in most cases. This means that the leader vehicle

should be able to monitor at least 60 meters distance. Further, the value of

breaking the distance should be added to this value, because a vehicle should

appropriately respond to an unexpected obstacle that appears in a 60 meters

distance. This value is calculated 40 meters for a vehicle of maximum speed. A

safety factor of 20 meters is further added in order to eliminate the ping-pong

e�ect of clustering. The resulting threshold value is 120 meters. The second

parameter is the maximum speed value used in the calculation of the approaching

speed. In the tra�c environment, maximum speed of vehicles can be accepted as

250 km/h in normal highways.

The null-message count, the LBTS calculation time and the PATiM update

time comparisons are given in following �gures. The graphs of Figure 5.22 show

null-message counts of the normal and the PATiM time management algorithms.

The parts (a), (b) and (c) are for simulations containing 7, 50 and 100 federates,

respectively. As it can be seen from the �gure, the number of null-messages

generated by the PATiM is signi�cantly smaller than those generated by the

normal mechanism.

The graphs of Figure 5.23 show the LBTS calculation times of the normal
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Figure 5.22: Null-message comparisons

and the PATiM time management algorithms. The parts (a), (b) and (c) are for

simulations containing 7, 50 and 100 federates, respectively. As it can be seen

from these graphs, PATiM LBTS calculation times are relatively less than those

of normal time management mechanism.

Comparisons of PATiM update times for the PATiM time management mech-
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Figure 5.23: LBTS Calculation time comparison

anisms are given in Figure 5.24 for simulations containing 7, 50 and 100 federates.

Update times for normal time management mechanism are not given because they

are all zero. Plots show that the increased federate count and update overhead

are linearly dependent.
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Figure 5.24: PATiM update time comparison
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CHAPTER 6

CONCLUSION AND FUTURE

DIRECTIONS

6.1 Summary

The High Level Architecture (HLA) provides a speci�cation of a common techni-

cal architecture for use with a wide range of distributed simulation environments.

Its main purpose is to support interoperability among di�erent simulation sys-

tems, which is a similar requirement for distributed interactive simulation sys-

tems. Time management services are one of the most expensive services in the

HLA, especially when there are enormous amount of federates in the federation.

Improving the performance of the time management services is very critical in

the distributed simulation domain.

In this study, a new mechanism to manage the logical time of federations by

dynamically clustering federates is presented. The proposed PATiM mechanism

is composed of two main parts, dynamic clustering and its time management.

The aim of the clustering mechanism is to partition the entire simulation into

federate clusters which contain proximity based logically related federates. The

new term "proximity" for federates is represented by the distance between them

within the virtual space. The key support to measure the proximity is given by

the Data Distribution Management services of the HLA speci�cations, through

subscribe and update regions. These regions are used to determine the position

of the federates which can be used to measure the distance between the federates.
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In PATiM, a relationship between time management and data distribution

management is constructed in order to manage the logical times of federate clus-

ters. This relationship is based on the idea that when a group of federates are

distant to each other, there will be no interaction between them as long as they

remain distant. Thus, there is no need to synchronize the logical times of such

clusters as long as they are distant. These temporal logical time inconsistencies

between clusters are utilized in order to increase the performance of the time

management algorithm. In the proposed method, logical time dependencies be-

tween federate clusters are broken when they are distant, as there will not be any

interaction during this period, thus there will not be any logical anomaly between

them.

Logical times of federate clusters should be resynchronized when they become

closer. For this purpose, PATiM runs a resynchronization period when it de-

tects that the previously distant federate clusters are getting closer. After the

resynchronization, these clusters are joined to form a single cluster.

In this study, a middleware approach is used to implement PATiM mechanism.

The HLA 1.3 implementation, called RTI NG, is used as the HLA API. Otherwise,

a new PATiM friendly RTI would need to be developed. At the moment, this is

found not feasible.

6.2 Concluding Remarks

PATiM mechanism divides the federation into federate groups with a dynamic

clustering algorithm. Breaking logical time dependencies between the federate

clusters allows a group of performance improvements in the time management

algorithms. These improvements can be listed as:

• Total number of exchanged synchronization messages,

• LBTS calculation overhead,

• Concurrency level

PATiM shows that the total synchronization related message exchanges are

reduced by dividing the federation into federate clusters and breaking the logical
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time dependencies between these clusters. Another improvement is the reduction

in execution time overhead of the LBTS calculation because this calculation is

done on a smaller set. This improvement is applicable to both our distributed time

management implementation and possible central implementation. Gains from

these improvements are exponential in number of federates and also increase with

higher number of clusters.

The concurrency of a distributed simulation is increased because the logical

time dependency between clusters is broken when they are distant. The increase

in the concurrency will be applicable only if there is a clustering in the fed-

eration so that the members of these clusters have di�erent execution speeds

from the members of other clusters. For example, consider a federation divided

into two clusters. One of them contains only faster federates and the other one

contains only slower federates. In PATiM mechanism, members of the faster clus-

ter will not be blocked by slower clusters and the concurrency of the federation

is increased in total compared to the concurrency in normal time management

mechanism. However, if the cluster is formed so that both clusters have some

faster and some slower federates, the overall concurrency of the federation will

not change because faster clusters are again blocked by slower clusters, which is

also shown by the example implementation.

Overhead of PATiM is the clustering calculations including measuring dis-

tances between the federates and the clusters. Complexity of intra-cluster dis-

tance calculations to detect cluster divisions is O(n) where n is the number of

the federates. The complexity of the inter-cluster distance calculations performed

to detect the start time of the resynchronization period and the cluster joining

is O(k log k), where k is the average number of clusters. These overheads are

relatively small in comparison to the advantages gained in the LBTS calculation

time and the reduction in the total amount of synchronization related messages.

The PATiM mechanism is based on the detection of the approaching and

drifting away federates. In order to detect such intervals, the simulation should

use a time-stepped structure where the federate will not jump in the virtual space.

Also actors in the simulation should spread away in the virtual space. Otherwise,

all federates are always close to each other and there will not be any clustering.
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In this work, we mainly focus on spatial simulation examples, methodology and

performance metric analysis for other types is left as a future work.

In conclusion, the results show that the PATiM approach performs well in

heterogeneous federation cases. When the federates in simulation have varying

execution speeds and they spread around the virtual space, advantages of the

PATiM become obvious. In a homogeneous federation, PATiM may not generate

any clustering and it works as normal time management mechanism.

6.3 Future Directions

PATiM is currently designed in order to increase the performance of time man-

agement services in a federation. This mechanism can be applied to federation

communities by modifying the federation connection components, especially when

di�erent federations become distant in the community. In this case, reduction in

the synchronization related messages are much more critical because di�erent

federates are possibly on di�erent LANs, and the communication between them

is more costly.

Another current research topic is the ad hoc distributed simulations. Such a

simulation is a collection of autonomous online simulations brought together to

model an operational system [27]. In the PATiM mechanism, dynamic clustering

algorithm can be applied in an ad hoc environment in order to manage possible

communication availabilities and breakdowns. The proposed proximity relation

can be used to construct the bottom-up structure of ad-hoc simulations.
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