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ABSTRACT

CONTROL OF A MOBILE ROBOT SWARM VIA INFORMED ROBOTS

Çelikkanat, Hande

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Erol Şahin

September 2008, 50 pages

In this thesis, we study how and to what extent a self-organized mobile robot flock can

be guided by“informing”some of the robots within the flock about a preferred direction

of motion. Specifically, we extend a flocking behavior that was shown to maneuver a

swarm of mobile robots as a cohesive group in free space, avoiding obstacles. In its

original form, this behavior does not have a preferred direction and the flock would

wander aimlessly. In this study, we incorporate a preference for a goal direction in some

of the robots. These “informed” robots do not signal that they are informed (a.k.a.

unacknowledged leadership) and instead guide the swarm by their tendency to move

in the desired direction. Through experimental results with physical and simulated

robots we show that the self-organized flocking of a robot swarm can be effectively

guided by an informed minority of the flock. We evaluate the system using a number

of quantitative metrics: First, we propose to use the mutual information metric from

Information Theory as a dynamical measure of the information exchange. Then, we

discuss the accuracy metric from directional statistics and size of the largest cluster

as the measures of system performance. Using these metrics, we perform analyses

from two points of views: In the transient analyses, we demonstrate the information

exchange between the robots as the time advances, and the increase in the accuracy

of the flock when the conditions are suitable for an adequate amount of information
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exchange. In the steady state analyses, we investigate the interdependent effects of

the size of the flock in terms of the robots in it, the ratio of informed robots in the

flock over the total flock size, the weight of the direction preference behavior, and the

noise in the system.

Keywords: swarm robotics, flocking, control, informed robots, self-organization, un-

acknowledged leadership, decision making, multi-agent systems
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ÖZ

BIR GEZER ROBOT SÜRÜSÜNÜN BİLGİLENDİRİLMİŞ ROBOTLARLA
KONTROL EDİLMESİ

Çelikkanat, Hande

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Erol Şahin

Eylül 2008, 50 sayfa

Bu tezde, kendi kendine örgütlenen bir gezer robot sürüsünün akın etmesi (ing. flock-

ing) davranışının, sürüdeki bazı robotlara tercih edilen bir hareket yönü bilgisi ver-

ilerek nasıl ve ne dereceye kadar yönlendirilebileceği incelenmektedir. Bu amaçla,

önceki çalışmalarımızda geliştirdiğimiz, bir gezer robot oğulunu engellerden kaçınan

bütünleşik bir grup halinde gezdirebilen bir akın etme davranışı genişletilmektedir.

Bu davranışın orijinal halinde bir hedef yön bulunmamaktadır ve sürü amaçsız bir

şekilde hareket etmektedir. Bu çalışmada robotlardan bazılarına bir hedef yön bil-

gisi verilmektedir. Bilgilendirilmiş olan robotlar, bunu diğer robotlara iletmek yerine,

sürüyü kendilerinin istenen yönde gitme eğilimleri ile yönlendirmektedirler. Fiziksel

ve benzetimsel robotlarla yapılan deneylerle bir oğul robot sürüsünün kendi kendine

akın etmesi davranışının, sürüdeki azınlık bir grubu bilgilendirerek etkin bir şekilde

yönlendirilebileceği gösterilmektedir. Sistem bir dizi nesnel ölçütle değerlendirilmek-

tedir: Bunlardan birincisi, bilgi alışverişinin dinamik bir ölçütü olarak kullanmayı ön-

erdiğimiz, Bilgi Teorisinden karşılıklı bilgi ölçütüdür. Diğerleri ise sistemin başarımını

öçmek için kullandığımız, yönlü istatistikten doğruluk ölçütü ve sistemdeki en büyük

kümenin robot sayısıdır. Bu ölçütlerle iki tip analiz yapılmaktadır: Geçici rejim analiz-

lerinde, zaman ilerledikçe robotlar arasında gerçekleşen bilgi aktarımı, ve şartlar yeterli
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bilgi aktarımı için uygun olduğunda sistemin doğruluğundaki artış gösterilmektedir.

Sürekli rejim analizlerde, birbirine bağlı etkiler olan, sürüdeki robot sayısının etkisi,

bilgilendirilmiş robot sayısının sürü büyüklüğüne oranının etkisi, tercih edilen hareket

yönüne verilen önemin etkisi, ve sistemdeki gürültünün etkisi incelenmektedir.

Anahtar Kelimeler: oğul robot bilimi, sürü halinde akın etme davranışı, kontrol, bil-

gilendirilmiş robotlar, kendi-kendine örgütlenme, duyurusuz liderlik, karar verme, çok

erkinli sistemler
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104E066. I have been partially funded by TÜBİTAK BİDEB 2210 National Graduate
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CHAPTER 1

INTRODUCTION

There cannot be a human who has not once fancied themselves in a hammock by the

sea in a quiet summer evening, the sun setting behind the waves, a soft breeze running

through the leaves... A little bit of idleness is something that we all need every now

and then, if it is not our ultimate dream. Yet there are things to take care of, dishes

to clean, laundry to wash, dinner to cook... How can a man have a quiet time among

all these? The man has found a feasible answer: Somebody else must take care of

them.

Karel C̆apek in his play R.U.R. (Rossum’s Universal Robots) tells the story of such

artificial humanoid creatures who are made to serve. The word “robot”, originally

following from Czech word “robota” meaning “work”, has been borrowed from him,

and used for various mechatronic creatures as the technology advanced. There are

robots being used in factories for highly specialized work, which require much more

precision than can be trusted to a human, but much less other kinds of decisions

like when to run the drill: The drill will be run at every twentieth second, and the

piece is guaranteed to be ready in front of the drill by then. Or there are robots

which are made to resemble humans, like ASIMO, or even dogs, like AIBO. There are

robots which take on space missions, like Phoenix, and there are robots which clean

our houses, like Roomba. They have even gone a long way in the literature: Asimov

wrote about robots that were built to comply with the Three Laws of Robotics, but

who in the end find themselves guiding the construction of two Galactic Empires in

succession, by adding a Zeroth Law to them.

As the mechatronics technology advances even further, it is enabling the mass

production of cheaper and cheaper robots, even in micro or nano scale. What if we
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had thousands of robots, and it would not cause a financial breakdown if a hundred

of them suddenly collapsed? Where could we use them? In area coverage tasks,

for example, where a single robot would be a helpless officer in an area surveillance

mission, but a thousand of robots spread all around could mean any attacks detected

immediately. Risky tasks is another example, sending one robot to minesweeping

means that all care must be taken that the robot is safe, sending a thousand robots

means a hundred of them may survive the mission even if things go quite wrong. Yet

another is tasks that can require a larger or smaller number of attendants at any time,

such as when a leakage is detected in a station, many more robots becoming necessary

at once to stop the leakage from spreading further. In all these areas, it seems not only

beneficial, but also necessary that a group of robots must act together for a mission.

However, it is not very trivial to make a group of robots act together. First of all,

how will they decide what to do? Will we need to guide them by sending a signal to

each one? This does not seem very feasible, for there may be tasks where it is hard to

send a signal to, such as a mission on Mars, or infeasible, such as the environmental

monitoring of a lake continuing for years. If a human will not, then who will decide

in the name of the group? A dedicated “leader” robot? What if this leader is “killed”,

or is somehow damaged? Will it suffice to add a few more leaders? Another issue is

about scalability: If a robot needs to see the positions of all other robots via its camera

in order to plan its move, how large an area can it see? Ten robots, or a hundred?

And what if we have five hundred robots that goes beyond the field of view?

Swarm robotics approach has been proposed as an answer for these concerns. It

is defined in [2] as “a novel approach to the coordination of large numbers of rel-

atively simple robots which takes its inspiration from social insects”, which “stand

as fascinating examples of how a large number of simple individuals can interact to

create collectively intelligent systems”. These colonial beings demonstrate amazing

capabilities when working together, greatly surpassing their individual abilities: Huge

termite mounds, ants’ foraging raids, massive preys carried by ants are all examples

of this phenomenon. Together, they show many high level properties that we would

wish for the multi-robot systems: Robustness, the ability to operate even if a part

of the individuals become non-operational, or disturbances occur in the environment;

flexibility, the ability to produce various solutions to various problems using the same

basic behaviors; and scalability, the insensitivity to major increases or decreases in
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the number of the individuals. And what is most interesting is that they do not even

know about these capabilities. These capabilities merely occur as a side effect of their

local and simplistic interactions, or in other words, they are “emergent”.

The appealing property of biological swarm systems, as well as many physical and

chemical systems, is “self-organization”, which is, quoting from Camazine et al. [3],

“...is a process in which pattern at the global level of a system emerges solely from

numerous interactions among the lower-level components of the system”. Ant and

termite colonies are completely self-organized. And so is the spontaneous magnetiza-

tion of a substance, too. With this inspiration, swarm robotics also tries to achieve

self-organization in a large groups of robots with no centralized control, while putting

emphasis on flexibility, robustness and scalability. Therefore, most of the ongoing

studies have focused on the “application” of self-organization approach. Many coordi-

nation problems studied try to exploit this property: Aggregation is the gathering of

scattered robots in one large cluster, dispersion is the scattering of robots in order to

cover the largest possible area without losing contact with each other, pattern forma-

tion is the formation of prespecified global patterns, flocking is the coherent movement

of the robots in an environment as a super-organism which avoids obstacles on its way,

and self-assembly is the gathering of robots in specific ways to physically form complex

structures in order to solve certain problems. In all of these studies, these behaviors

are strived to be obtained using only local interactions between the robots, that is,

robots being only aware of their closest neighbors, and with no central control guiding

the whole process.

Meanwhile, from an engineering point of view, the “controllability” of a self-

organized robot swarm according to the objectives of a user is a subject that has

been not yet been fully achieved, leaving the question of how useful the approach can

be in real-world use, unanswered. If we have a swarm of unmanned air vehicles, we

will need to control which way they go, otherwise they can be of no use. How can

we tell this swarm to head to a specific goal direction, without disturbing their self-

organization ability? We certainly would not want to control each and everyone of

them separately, at the expense of all the autonomy advantages gained by the swarm

robotics approach. Is it possible that we should give them a hint of what we want

them to do, and that they just self-organize with this bias? In this study, we are

interested in how, and to what extent we can control the behavior of a swarm robotic
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system. Specifically, we are interested in how behaviors that lead to self-organization

in a robotic flock can be externally controlled via informing a (possibly quite small)

subset of the robots about a preferred direction to follow.

The organization of the work is as follows: In the subsequent chapter, a survey

of existing literature on swarm control, decision making in swarms and flocking is

presented. In Chapter 3, we present the experimental framework utilized in this

study, including the robotic platform and the corresponding simulation environment.

In Chapter 4, we propose the flocking behavior and the control scheme built on this

platform. Chapter 5 introduces some metrics for quantifying the performance, and

Chapter 6 analyzes systematic experiments using these metrics. Chapter 7 concludes

with stating the results and pointing future directions.

4



CHAPTER 2

RELATED WORK

In this section, a survey of the literature is presented as related to our work. The

related studies can be divided into three groups: (1) studies which are related to

the external control of swarm systems, (2) studies which are related to the control

of swarm systems with a number of controlled individuals inside the swarm, and (3)

studies which are related with the flocking behavior, and the implementations of the

flocking behavior in robotics.

2.1 External Control of Swarm Systems

There have been a number of studies that investigated external control in natural

swarms or in mixed robot-animal societies. One strategy is having an external shep-

herd outside the flock, which behaves in a certain way to act as a control input for

the flock members. In a very interesting work, Vaughan et al. [4] used a robotic

sheepdog to herd a duck flock to a predefined goal point. A simple model of flocking

was assumed stating that the ducks would be attracted to and repelled from each

other, while also being repelled from the walls and the robot. The robot, meanwhile,

was attracted to and repelled from the ducks, and repelled from the goal point. The

robot’s momentary velocity vector was calculated using an overhead camera system

which monitored its position and orientation, as well as the flock’s center position and

size. Real world experiments were conducted as well as simulations, which revealed a

successful, although oscillatory, motion. In a second set of experiments, the oscillation

was reduced by utilizing the flock’s distance to the goal point as the control input for

the attraction force between the robot and the ducks.

Lien et al. in [5] also discussed the“Shepherding Behaviors”using an external agent
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controlling the flock. They argued that the performance of flock control by an external

shepherd depends on its approaching and steering strategies, for which they compared

various methods. For the approaching strategy, they compared (1) approaching the

flock on a straight line, (2) approaching the flock by leaving a safe zone, and (3)

approaching the flock by using a dynamic roadmap. For the steering strategy, they

compared (1) steering the flock from straight behind it, (2) steering the flock from

sides, (3) initiating a turn by first stopping the flock by standing in front of it, and

(4) initiating a turn by first standing in a position to shift the flock’s heading towards

the goal. Then they utilized these strategies for developing a variety of shepherding

behaviors, namely herding (moving flock members towards a goal), covering (moving

flock members towards unvisited areas in the environment), patrolling (guarding flock

members off a prohibited area), and collecting (gathering scattered flock members

together), and compared the performances. In another work, Lien et al. extended

their work to the case of multiple shepherds with no explicit communication between

them [6].

2.2 Control of Swarm Systems via Informed Individuals

A quite different point for view of controlling a swarm system is having a number of

informed individuals in a swarm, which may be programmed agents that are somehow

“integrated” as if normal flock members. These members are expected to affect the

decisions of the whole swarm via their local interactions. The question is whether the

informed individuals, who possess no explicit means of signalling their information

or leadership to the others, can be perceived by the naive individuals to be acting

in particular way so that the naive individuals also mimic their actions, leading to a

global pattern.

Ward et al. [7] proposed that the decision making mechanisms in swarms may be

dependent on quorum responses, with individuals responding only when a threshold

number of other individuals are performing a behavior. They developed a probabilistic

model, in which the probability of an individual preferring left or right direction in-

creases with the number of individuals that have recently preferred the same direction.

The model incorporates a parameter k which indicates the steepness of the response.

When k = 1, it indicates a weak linear response, where the probability of choosing a
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direction is linearly proportional to the number of individuals recently preferred the

same direction. When k > 1, it indicates a quorum response, where the probability

increases once a quorum is met. Three sets of experiments were then conducted with

replica conspecifics to determine the underlying form of the response. In the first set,

the response of fish to the replica conspesifics was tested. In these experiments, fish

were observed to take the direction initiated by the majority of replica conspecifis. In

the second set, the response of fish were tested in the presence of a replica predator.

As the group size increased, more replica conspecifics were needed to deceive the fish

to choose the direction of the predator. The results of both experiments were best

fitted by a k value greater than 3, indicating a quorum response. The results also

suggested that quorum decision making decreased the likelihood that the effect of a

wrong choice made by a small number of individuals (which is going in the direction

of a predator) would be amplified by indiscriminative mimicry of others. In the final

set of experiments, the effect of quorum decision making on accuracy was investigated

by conducting simulations where the probability of an individual to detect a predator

correctly was 1/3. The results showed that, as the group size increased, nonlinear

quorum responses would become more accurate than independent decision making or

weak linear responses.

Halloy et al. [8] manipulated the collective shelter selection process of a group

of cockroaches with robots that were socially integrated into the group. In the test

environment there were two shelters under which the cockroaches can aggregate to

avoid light. A probabilistic model previously developed in [9] was employed, where

the cockroaches encountered shelters randomly while exploring the environment. Each

cockroach was assumed to have a probability of joining an encountered shelter which

decreased linearly with the ratio between the number of individuals present in the

shelter and the shelters carrying capacity (which stands for a crowding effect). Fur-

thermore, a cockroach currently in a shelter had the probability of leaving it which

was linearly affected from the quality of the shelter, i.e, its darkness, and exponentially

affected from the number of individuals currently in the shelter. The exponent n is

a parameter which indicates a quorum response in time when greater than 1. This

model was then run on robots which were coated with by a blend of hydrocarbons

obtained from cockroaches. In one set of experiments, the robots were programmed

to prefer darker shelters, just as the cockroaches do. Then, it was shown that, in
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an environment with two identically dark shelters, robots and cockroaches selected a

common shelter, suggesting that a collective decision making took place in the mixed

society, and that the group behaved as a whole. The second set of experiments were

conducted in an environment with one darker and one lighter shelter, and the robots

were programmed to prefer lighter shelters, in contrast with the cockroaches. Un-

der these conditions, the robots were able to manipulate the group decision making

process, and cause the whole group prefer the lighter shelter in most of the cases,

although they were in the minority (4 robots vs. 12 cockroaches). Yet, the selection

of the darker shelter was still possible, since the robots were also a part of the society,

and responded to the choices of the cockroaches, instead of merely acting as a source

of attraction.

A similar idea of swarm manipulation by informed individuals has recently been

exploited for understanding directional decision making in flocking animals. The ques-

tion now is whether a moving flock can be guided towards the right direction by a

number of unacknowledged individuals who “know” which way to go. Reebs [10] stud-

ied the decision making mechanisms in the foraging movements of fish schools, and

showed that relatively few individuals with a priori knowledge can guide the whole

school. He trained 12 golden shiners in a tank to move to a brightly lit corner in a

specific time of day to find food. Then, replacing 7, 9, and 11 of these trained indi-

viduals with untrained ones, he tested whether the minority of informed individuals

could manage to move the whole flock in the trained direction. He showed that in all

cases the flock could be guided, while the performance increased with the number of in-

formed individuals. Moreover, the flock could manage to continue as an unfragmented

group, and it was always led by the same fish, presumably the informed ones.

Couzin et al. [11] exploited the idea of a few number of informed individuals

for modeling the dynamics of decision making of flocks. In their model, the naive

individuals arranged their positions and alignments according to their neighbors, while

the informed individuals also incorporated their preferred directions in their decisions.

Numerical simulations showed that the accuracy of guiding increased as the size of

flock increased while the ratio of informed individuals was kept fixed. The importance

of the weight of the preferred direction was revealed to be less if the proportion of the

informed individuals was too small or large. For intermediate proportions of informed

individuals, increasing this weight increased the accuracy of the motion, however it
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also increased the fragmentation of the flock. The model furthermore predicted that

if there were two informed groups with different preferences, the resulting behavior

depended on the relative sizes of the groups. Although there were no mechanisms

for the informed individuals to assess whether they were in a majority or minority,

the flock moved collectively in the direction preferred by the majority of informed

individuals, even when the majority was very small. On the other hand, if the two

groups had the same number of informed individuals, the result depended on the

difference between the two preferred directions. In case of small disagreements, the

flock moved in the average of the two preferred directions, whereas in case of greater

disagreements, one of the two preferred directions was randomly chosen. The authors

mentioned that the capability of the group for averaging the preferences in case of small

differences, but achieving a consensus in case great differences is an important ability.

For achieving a similar and tunable capability in their model, they also incorporated

an adaptiveness of the weight of the preferred direction, which increased when the

informed individuals are moving in the same direction, and decreased otherwise.

In [12], Shi et al. investigated the effect of informing individuals in a flock with

an external reference signal from a control point of view, using point mass dynamics.

They introduced a number of control laws which depended of attraction/repulsion

and alignment forces, as well as the external reference signal, called as a “virtual

leader”. They showed that the velocities of all agents asymptotically approached to

the desired velocity, while collisions could be avoided, and a tight formation with

minimized potential could be reached. They also considered cases in which velocity

damping could not be ignored, and adding a velocity damping term into the control

laws, they showed that the same stable motion could again be achieved. Furthermore,

analyzing cases in which not all agents could receive the reference signal, they proved

that stable motion was achievable even if there was a single informed individual,

and increasing the number of informed individuals did not necessarily increase the

convergence rate. However, it increased the robustness to noise, which was modeled

as random forces acting on the agents, added to the control inputs.
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2.3 Flocking

The pioneer to show that flocking behavior could emerge from completely decentral-

ized, local interactions, was Reynolds [13], who was trying to obtain a realistic looking

flocking behavior in computer animations. He proposed a set of simple rules for the in-

dividuals, which inspired the studies thereupon. Assuming the individuals could sense

the bearing, range and orientation of their neighbors, if each individual tried to (1)

avoid collisions with other individuals, (2) align its heading with nearby flockmates,

and (3) move to the center of its nearby flockmates, then these local and individ-

ual based movements resulted in a totally decentralized flocking motion. Vicsek and

Czirók [14] developed the self-driven particles (SDP) model to study the emergence of

the self-aligned motion in biological systems. The SDP model incorporated a heading

alignment rule for particles which move at a constant speed, in which the particles

align themselves to the average of their neighbors. The model predicted that the

group reached alignment as the noise is decreased, or the density of the particles is in-

creased. Buhl et. al [15] analytically solved the SDP model in 1-dimension, and used

it to model the flocking behavior of desert locusts with accurate predictions. Gre-

goire et al. [16] added an attraction/repulsion term for obtaining coherent flocking in

open-space. Aldana and Huepe [17] proposed the vectorial network model (VNM), in

which the particles are stationary, and studied the necessity of long-range interactions

among particles for the settling of a common alignment (which can be considered as

a phase transition from a disordered state to an ordered state). In accordance with

the theorem of Mermin and Wagner [18], they showed that long-range interactions

are crucial, either through even a small amount of long range sensing, or through the

movements of individuals so as to change their local neighbors occasionally. Şamiloğlu

et al. [19] extended the SDP model to be as realistic as possible, and with this aim

they allowed for asynchronous sensing and actuation, as well as restrictions on the

turning angle due to physical limitations. With these settings, they compared three

different heading alignment strategies.

In the robotics side, Matarić [20] was one of the first to achieve flocking in a

collective homing behavior, composed of safe-wandering, aggregation, dispersion and

homing behaviors. The robots could localize themselves by stationary beacons and

broadcast this information. Kelly and Keating [21] used robots that were able to sense
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the obstacles via ultrasound sensors, and the relative range and bearing of neighbors

by a custom-made infrared (IR) system. A leader of the flock was elected by wireless

communication, which wandered in the environment while others follow. Hayes and

Tabatabaei [22] proposed a leaderless flocking algorithm, composed of collision avoid-

ance and velocity matching flock centering behaviors. The robots were assumed to

sense the range and bearing of their neighbors to compute the center-of-mass (CoM)

of the group, and its heading towards a goal. The CoM was used for cohesion, and

the change in CoM was used to align the robots. Although the algorithm was im-

plemented on the Webots simulator, in the physical reality the sensors had to be

emulated using an overhead camera system. Holland et al. [23] proposed a flocking

scheme for unmanned air vehicles (UAVs) based on avoidance, flock centering and

alignment behaviors. The range, bearing and velocity information were sent to the

UAVs from a base station. Campo et al. [24] used a specifically designed colored LED

system surrounding the body of s-bots, to have the s-bots negotiate their a priori esti-

mations of the nest location. The s-bots then carried a heavy prey collectively to the

collectively estimated nest location. Baldassarre [25] was the first to point out a link

between the behavior of multi-robot systems and phase transitions, by proposing that

self-organization in swarm systems could be considered as a phase transition from a

disordered to an ordered phase. The degree of self-organization in a robot swarm was

quantified by utilizing the Boltzmann Entropy metric, which measured the number

of microstates a system can be in at a certain time. Then the time evolution of the

Boltzmann Entropy was analyzed for viewing the phase transition from a disordered

to an ordered phase, and drawing an analogy between physical systems and swarm

systems. Nembrini et al. [26] developed a set of behaviors to achieve aggregation, col-

lective obstacle avoidance, and collective taxis towards a beacon. The behaviors were

developed on a swarm of 7 real robots that were equipped with a set of IR sensors for

obstacle detection, an omni-directional IR system for robot detection and a wireless

communication system. Although the simulations were successful, the experiments

with physical robots suffered from the shortcomings of the hardware [27].

Without resorting to use the emulated sensors, a priori knowledge of the goal

direction, or a leader to guide the flock, Turgut et al. [28] presented the first truly self-

organized, leaderless, decentralized flocking in a robot swarm. In [29], the sensitivity

of the system to the behavioral parameters and communication characteristics were
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investigated, and in [30] its transition from aligned to unaligned state was analyzed by

extending the vectorial network model in the stiff-vectorial network model (S-VNM)

to capture the robot dynamics.

The step that awaits to be taken now is towards controlling the direction of this

self-organized flocking motion, which is our aim in this work. Inspired by the findings

of [10], [11] and [12] on the decision making mechanisms in swarms, we extend the

flocking behavior in a way to include a preference for a goal direction in some of the

robots, which we call the “informed” robots. These “informed” robots do not signal

that they are informed, and instead guide the rest of the swarm by their tendency to

move in the desired direction. We present experimental results on both physical and

simulated robots, and show that the self-organized flocking of a swarm of robots can be

effectively guided by a minority of informed robots within the flock. Proposing a set of

quantitative metrics, we analyze the system’s performance under various conditions.

To the best of our knowledge, this is the first study in which the direction of motion

of a robotic flock is controlled via informing a subset of robots.
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CHAPTER 3

EXPERIMENTAL FRAMEWORK

In this chapter, we present the details of the experimental framework used in this

study, namely the Kobot, a robotic platform designed specifically for swarm robotics

research, and Controllable-Swarm Simulator, a physics based simulator which is mod-

eled according to the specifications of the Kobot platform.

3.1 Kobot Robotic Platform

As the experimental platform in this study, we use the Kobot, a CD-sized (12 cm diam-

eter) robotic platform which has been developed specifically for swarm robotic studies

(Figure 3.2) [29]. The Kobot hosts two differentially driven motors. There are eight

infrared (IR) sensors placed evenly at 45◦ intervals around its base, through which it

can measure the proximities of nearby artifacts in approximately 20 cm range, and

which has a novel design for distinguishing other kin robots from unknown obstacles.

It hosts a digital compass for measuring its own heading with respect to the magnetic

field of the Earth. An IEEE 802.15.4/ZigBee compliant wireless communication mod-

ule with a range of approximately 20 m indoors is used for communication between

Kobots. The main controller on Kobot is a 20 MHz PIC18F4620A microcontroller,

which can be programmed through the wireless communication channel. Kobot is

specifically designed with the aim of low power consumption, and it can operate for

10 hours with a 2000 mAh lithium-polymer battery.

3.1.1 Infrared Short-Range Sensing System

The infrared short-range sensing system (IRSS) is responsible for measuring the prox-

imities of nearby beings. It is specifically designed for distinguishing other kin robots
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Figure 3.1: (a) The Kobot. (b) The scaled sketch of Kobot. The rectangles indicate
the IR sensors located around the base. (c) The body-fixed reference frame of Kobot.
It is concentric with the base of the robot, and the x-axis coincides with the rotation
axis of the wheels. The forward velocity (u) is the velocity of the robot along its y-axis.
ω is the angular velocity. vR and vL are the velocities of the right and left motors. The
measured heading of the robot is θ, which is the angle of the y-axis with the sensed
North direction (ns). l is the distance between the wheels. Figures courtesy of [1].

from ordinary obstacles. It is composed of 8 IR sensors placed at 45◦ intervals around

the base (Figure3.1(b)). The sensors can sense artifacts within a range of approxi-

mately 20 cm at seven discrete levels at 18 Hz. The output of the kth sensor is a

2-tuple (ok, rk). ok ∈ {0, 1, · · · , 7} denotes the detection level to the object being

sensed (ok = 1 and ok = 7 indicate respectively a far and nearby object. ok = 0 indi-

cates no object is detected by the sensor), and rk ∈ {0, 1} indicates whether the sensed

object is another kin robot (rk = 1) or an ordinary obstacle (rk = 0). The utilization

of modulated IR signals provides minimum environmental interference from the Sun

and other light sources.

3.1.2 Virtual Heading Sensor

The virtual heading sensor (VHS) is composed of a digital compass, which measures

the robot’s heading (θ) in clockwise direction with respect to the sensed North (Fig-

ure 3.1(c)), and a wireless communication module, which broadcasts this information

at every control step, as well as collecting the information broadcasted by other robots.

In effect, the VHS virtually senses the relative orientations of the neighboring robots.
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Figure 3.2: (a) A photo of 7 Kobots. (b) A snapshot from the CoSS environment.
Figures courtesy of [1].

3.2 The Simulation Environment

A physics-based simulator, called Controllable-Swarm Simulator (CoSS) as shown in

Figure 3.2 has been developed for conducting experiments with more robots than phys-

ically available, and for longer durations than possible on the current experimental

setups [29]. CoSS is developed on the ODE (Open Dynamics Engine) physics engine

which provides a physically realistic environment, by modeling forces, collisions be-

tween physical bodies, friction and slippages. The DC motors are simulated using

virtual motorized hinge joints and the virtual weights of the components are adjusted

to obtain a similar movement pattern with similar motor torques.

The IRSS is modeled in the simulator according to systematic experiments [29].

Meanwhile, the VHS is modeled using three parameters, the range of the communica-

tion, the number of robots whose broadcasted heading values can be received at one

control step (referred to as the VHS neighbors), and the noise in the VHS. The range

is determined by the range of the wireless module, which is 20 m. The number of

VHS neighbors is set as 20 according to radio simulations [29]. The noise is added

to the self-heading measurements of each robot, since the noise in the VHS is mostly

due to the noise in the measurements of the digital compass, and the broadcasting

process of the wireless module is virtually noiseless. Although the inherent noise of

the compass is about ±0.5◦ in ideal operating conditions, the indoor environments

typically contain a large amount of ferrous metals, so the measurement noise is usu-

ally much higher than the provided range. We model the noise on the VHS with
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the vectorial noise model [16]. A random noise vector is added with a vector sum

to the heading measurements performed by each robot. The robots then broadcast

this noisy measurement, therefore, the heading values sensed by the VHS neighbors

are likewise noisy. The noise vectors are characterized by a random direction and a

constant magnitude. The direction (ξo) is chosen from a Gaussian distribution, whose

mean is the noiseless heading value, and standard deviation is π/2. The magnitude

(η) is a free variable which determines the effect of noise.
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CHAPTER 4

THE FLOCKING BEHAVIOR

In [29], a self-organized, fully distributed flocking algorithm for a swarm of robots

is proposed, which emerges from two simpler behaviors: (1) the heading alignment

behavior, which serves to obtain a common direction of motion for the whole flock,

and (2) the proximal control behavior, which prevents collisions and separations in the

flock. In the original form of the emergent flocking behavior, the flock does not have

a preferred direction of motion, and wanders aimlessly in the environment. In this

work, we aim to control the direction of motion of the flock, by including a predefined

direction as a bias. The resulting behavior can be expressed as a weighted vector sum

of these three terms:

~a =
~h + β ~p + γ ~d

‖~h + β ~p + γ ~d‖

where ~h is the heading alignment vector, ~p is the proximal control vector and ~d is

the preferred direction vector. ~a is the resultant desired heading vector, according to

which a robot calculates its own direction of motion. The relative importance of the

terms are controlled by β ∈ [0,∞), which is the weight of the proximal control vector,

and γ ∈ [0,∞), which is the weight of the direction preference vector. Each robot in

the flock calculates its own desired heading vector at each control step and updates

its forward and angular velocities accordingly.

It must be noted that not all robots need to have a direction of preference. Indeed,

this direction of preference may be known to only a subset of the robots. Therefore,

the direction preference term is meaningful for only these robots. We will call such

robots as the informed robots, and set their γ to a nonzero constant. The rest of the

robots are unaware that a directional preference exists, and they merely apply the

heading alignment and proximal control terms. They are called as the naive robots
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and their γ is set to 0, effectively discarding the third term.

An important aspect of the proposed behavior is that the informed robots cannot

signal that they are “informed” to the naive robots. Thus, our expectation is that

they will guide the swarm by their tendency to move in the desired direction, acting

as unacknowledged, distributed, and possibly redundant leaders of the flock.

The details of the three terms which constitute the overall behavior are discussed

in the following sections.

4.1 Heading Alignment Behavior

The aim of the heading alignment term is to align the robot with the average heading

of its neighbors. The heading values of the neighbors are obtained by the VHS which

collects the broadcasted heading values. We calculate the heading alignment vector ~h

as:

~h =

∑

j∈N eiθj

‖∑

j∈N eiθj‖

where N denotes the set of VHS neighbors, θj is the heading of the jth neighbor

converted to the body-fixed reference frame and ‖ · ‖ calculates the Euclidean norm.

The heading values received by the VHS are converted from global reference frame

to the robot’s body-fixed reference frame. The conversion is performed by θj = π
2 −

(θglobal
j −θ)), where θ is the robot’s own heading measurement. The π

2 term stands for

aligning the opposite positive directions of the global and body-fixed reference frames

(Figure 3.1(c)).

4.2 Proximal Control Behavior

The aim of the proximal control term is to keep the robots fixed at some desired

distance to each other so that collisions and separations are prevented. Obstacle

avoidance is also achieved through this term, by setting the desired distance from

an obstacle as infinity. For calculating the proximal control vector, infrared sensor

readings from the IRSS are utilized. When an obstacle or a robot is detected by an

IR sensor, a virtual force proportional to the square of the deviation of the current

detection level (ok) from the desired detection level (odes) is applied to the robot. The
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Figure 4.1: The virtual force (fk) versus detection level ok. Higher values of ok indicate
closer distances. The virtual force value is saturated in range [−1, 1]. Figure courtesy
of [1].

virtual force on sensor k, denoted by fk, is defined as:

fk =







− (ok−odes)
2

C
if ok ≥ odes

(ok−odes)
2

C
otherwise

(4.1)

where C is a scaling constant. odes is taken as a finite value for kin-robots, and 0 for

obstacles (remember that ok indicates the detection level, ok = 1 and ok = 7 denote

respectively a far and a very close obstacle/robot, and ok = 0 indicates no detection).

This setting keeps the flock together as a coherent body which avoids obstacles on its

way. The fk values for robots (rk = 1, odes = 3) and obstacles (rk = 0, odes = 0) are

plotted in Figure 4.1.

The normalized proximal control vector, ~p, is the vector sum of the forces acting

through the eight IR sensors:

~p =
1

8

∑

k

fke
iφk (4.2)

where k ∈ {0, 1, · · · , 7} is the index of the sensor which is located at φk = π
4 k with

the x-axis of the body-fixed reference frame (Figure 3.1(b)).

4.3 Direction Preference Behavior

The direction preference behavior is meaningful for only the informed robots, and

it acts as a bias favoring the externally dictated direction. We expect this term
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to asymptotically determine the steady-state direction of motion of the flock. The

direction preference vector ~d is calculated as:

~d = ~dp − ~ac

where ~ac is the current heading vector of the robot coincident with the y-axis of

the body-fixed reference frame (see Figure 3.1(c)), and ~dp stands for the preferred

direction.

4.4 Motion Control

At each control step, a robot updates its forward (u) and angular (ω) velocities using

the instantaneous desired heading vector, ~a. The forward speed is calculated as:

u =







(~a · ~ac) umax if ~a · ~ac ≥ 0

0 otherwise
(4.3)

where ~ac is the current heading vector of the robot coincident with the y-axis of the

body-fixed reference frame (Figure 3.1(c)).

The robot’s instantaneous “urge” to turn determines the instantaneous forward

velocity of the robot. The forward velocity takes a value between 0 and a “maximum”

forward velocity (umax) regarding the amount of this urge. The urge is calculated by

the dot product of the desired (~a) and current heading (~ac) vectors. If the two vectors

are in the same direction, i.e, the robot is already moving in the desired direction,

the urge to turn is small, and the dot product is approximately 1. In this case,

the forward velocity is at maximum. On the other hand, when the two vectors are

near to orthogonal to each other, the dot product diminishes to 0. In this case, the

forward velocity also diminishes, and the robot mostly rotates around its center. This

capability of the robot to turn in place in times of urgency provides it with increased

agility when avoiding collisions and aligning itself in case of sharp turns, such as when

the flock turning collectively away from a wall. When the angle between the two

vectors is greater than 90◦, u is not allowed to be negative, but it is bounded at 0.

The robot again rotates only around its center. Therefore a backward movement of

the robots does not occur, which would complicate the analysis of the behavior.

The angular velocity (ω) of the robot is controlled by a proportional controller

using the deviation of the desired heading from the current heading of the robot:
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ω = (6 ~ac − 6 ~a)Kp (4.4)

where Kp is the proportionality constant of the controller.

The rotational speeds of the right and left motors (Figure 3.1(c)) are eventually

calculated as follows:

NR =
(

u − ω

2
l
) 60

2πr

NL =
(

u +
ω

2
l
) 60

2πr

where NR and NL are the rotational speeds (rotations per minute) of the right and

left motors respectively, l is the distance between the wheels of the robot (meters), u

is the forward velocity (meters per second) and ω is the angular velocity (radians per

second).

4.5 Controlling Flocking: A Sample Case Analysis

In this section, we present three sample runs with Kobots in order to demonstrate the

controlling of the flock via a number of informed robots. In these runs, the behavioral

parameters are set as β = 4, γ = 1, umax = 7 cm/s and Kp = 0.5. The preferred

direction of the informed Kobots are changed in every 30 seconds, being 90◦ direction

in t = 0− 30 s, 270◦ direction in t = 31− 60 s, 90◦ direction in t = 61− 90 s and 270◦

direction in t = 91 − 120 s, in order to demonstrate the transient performance of the

flock in complying with the extreme changes in the preferred direction.

Figure 4.2 presents the time evolutions of the headings of the robots in these runs,

where there are 2, 4, and 7 informed Kobots respectively. The time axis is shown

with radially growing circles, with t = 0 being denoted by the innermost circle, and

t = tf by outermost circle. In all the cases, the flock is able to comply with the

sudden and extreme changes in the preferred direction, although the time needed for

this adjustment varies. It takes approximately 30 seconds of the flock to turn in the

desired direction in the 2 informed robots case, whereas this transient time is reduced

to 15 seconds in the 4 informed robots case and to 5 seconds in the 7 informed robots

case.
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These experiments demonstrates that, even when there is a small number of in-

formed robots, such as 2, the flock can change its direction in response to the changes

in the preferred direction, whereas this adjustment is much more rapid in the pres-

ence of more informed robots. Obviously, there must be a great deal more factors

affecting this performance, such as the relative weights of the behaviors, the size of

the flock, and the amount of noise inherent in the system. In the following section,

we will introduce the metrics to quantify the time evolution and performance of this

control scheme, and in the subsequent section we will present systematic experiments

to analyze it by using these metrics.

Another sample case is shown in Figures 4.3 and 4.4 which present two sample

runs with 100 robots in CoSS, with 10 and 50 informed robots respectively. They are

commanded to go in 90◦ direction in t = 0−120 s, 0◦ direction in t = 121−240 s, 270◦

direction in t = 241 − 360 s and 180◦ direction in t = 361 − 480 s. It is seen that in

both cases the flock can be guided accordingly, although the ratio of informed robots

is as low as 1/10 in the former case. The response to the changes in the preferred

direction is much more rapid in the 50 informed individuals case, as can be expected.

22



t=30s

t=60s

t=90s

(a)

t=30s

t=60s

t=90s

(b)

t=30s

t=60s

t=90s

(c)

Figure 4.2: Sample runs with 7 Kobots among which (a) 2, (b) 4, (c) 7 of them are
informed. Time evolutions of the heading values of the robots are shown. The time
axis is shown with radially growing circles, with t = 0 being denoted by the innermost
circle, and t = tf by outermost circle. The informed robots are commanded to go in
90◦ direction in t = 0−30 s, 270◦ direction in t = 31−60 s, 90◦ direction in t = 61−90
s and 270◦ direction in t = 91−120 s. The time steps at which the preferred direction
has been changed are indicated with bold continuous lines.
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Figure 4.3: The trajectories of 100 robots from a sample run in CoSS, where 10 of the
robots are informed. The informed robots are commanded to go in 90◦ direction in
t = 0 − 120 s, 0◦ direction in t = 121 − 240 s, 270◦ direction in t = 241 − 360 s and
180◦ direction in t = 361 − 480 s.

Figure 4.4: The trajectories of 100 robots from a sample run in CoSS, where 50 of the
robots are informed. The informed robots are commanded to go in 90◦ direction in
t = 0 − 120 s, 0◦ direction in t = 121 − 240 s, 270◦ direction in t = 241 − 360 s and
180◦ direction in t = 361 − 480 s.
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CHAPTER 5

METRICS

In this section, we present two kinds of metrics to quantify the properties of the

proposed scheme: The first is the mutual information metric, used for analyzing the

time evolution of information sharing between the informed and the naive robots.

The second is the measures of performance, which are the accuracy and size of largest

cluster metrics, for evaluating the extent of our control on the flock.

5.1 Mutual Information

With two subgroups of informed and naive robots in the flock, we expect that some

kind of information transfer, no matter how implicit and unacknowledged, must take

place between these two subgroups if the informed robots are to guide the whole flock.

We utilize the tools of Information Theory, introduced by Shannon [31], to quantify

this information transfer, namely the information entropy and mutual information

concepts.

5.1.1 Formal Definition and Applications

Quoting from Feldman [32], mutual information gives “the reduction in uncertainty of

one variable due to knowledge of another. If knowledge of Y reduces our uncertainty of

X, then we say Y carries information about X”. Thus, it can be utilized as a measure of

the information transferred from an informed robot to a naive one during the motion.

The mutual information is defined in terms of information entropy. Adopting the

notation of Feldman[32], and indicating a discrete random variable with the capital

letter X, which can take values x ∈ X , the information entropy is defined as:
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H[X] = −
∑

x∈X

p(X = x). log2 p(X = x)

where p(X = x) is the probability that X will take the value of x. H[X] is also called

the marginal entropy of X, since it depends on only the marginal probability of one

random variable.

The marginal entropy of the random variable X is zero if X always assumes the

same value with p(X = x′) = 1, and maximum if X assumes all possible states with

equal probability.

Having defined the marginal entropy of a single random variable, this definition is

easily extended to the joint entropy of two random variables:

H[XY ] = −
∑

x∈X

∑

y∈Y

p(X = x, Y = y). log2 p(X = x, Y = y)

as well as the conditional entropy of these two random variables:

H[X|Y ] = −
∑

x∈X

∑

y∈Y

p(X = x, Y = y). log2 p(X = x|Y = y)

where p(X = x, Y = y) is the joint probability that X will take the value of x and Y

will take the value of y, and p(X = x|Y = y) is the conditional probability that X will

take the value of x given that Y takes the value of y. Thus, the conditional entropy

is the entropy of X, given that Y is known.

Then, the mutual information MI[X, Y ] is defined as:

MI[X, Y ] = −
∑

x∈X

∑

y∈Y

p(X = x, Y = y). log2

p(X = x).p(Y = y)

p(X = x, Y = y)

or equivalently,

MI[X, Y ] = H[X] + H[Y ] − H[XY ]

= H[X] − H[X|Y ]

= H[Y ] − H[Y |X]

The mutual information has a number of favorable properties that renders its

utilization appropriate. It is obvious that MI[X, Y ] is zero when there is no statistical

dependence between the two variables, in which case H[XY ] = H[X] + H[Y ], and
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which corresponds to the case of no information transfer. Moreover, it is also zero

when the marginal entropies of the two variables H[X] and H[Y ] are zero, when there

is already no uncertainty about either of the variables. It is nonnegative and bounded

by some finite maximum value. It is a symmetric metric (MI[X, Y ] = MI[Y, X]),

agreeing with our intuition that the more information transfer occurs between X and

Y , the more information they should convey about each other. It has the capability of

capturing the nonlinear statistical dependencies, unlike other widely utilized metrics

such as Euclidean distance, Pearson coefficient, or covariance [33, 34]. For instance,

quoting from Steuer et al. [33], “a vanishing mutual information does imply that

two variables are independent, while for the Pearson correlation this does not hold”.

Finally, it can be calculated as a function of time, so it can be used to demonstrate

the time evolution of information transfer in a dynamical system.

The mutual information concept has been widely utilized for various purposes.

Parunak et al. [35] suggested the use of mutual information as a measure of correlation

in multi-agent systems, through which the concepts of coherent, collaborative, cooper-

ative, competitive and coordinated can then be defined. Sperati et al. [34] employed

the mutual information between robots as a fitness function to evolve coordinated

behavior in a robot swarm. They showed that maximizing the mutual information in

task-independent manner as the fitness function results in the emergence of coordina-

tion among the robots. Sporns and Lugarella [36] used information theoretic metrics,

including mutual information, complexity and integration (the latter two metrics due

to [37]) for evolving coordinated behavior in a simulated sensorimotor creature. In

all these works, mutual information has been revealed to be a very effective, task-

independent metric of shared information.

5.1.2 Methodology

The application of the mutual information concept has some aspects that require

certain design choices. First of all is the question of whose mutual information to be

measured. In this study, we will measure the mutual information between a (randomly

chosen) informed and a (randomly chosen) naive robot, with the expectation of seeing

that the information shared between an informed and a naive robot increases in time,

i.e, a naive robot mimics the motion of an informed robot with increasingly more

accuracy. We will also analyze the necessary conditions for this information transfer.
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We will calculate the shared “information” in terms of the two robots ability to

move in the same direction. If the heading of one robot can be deduced from the

knowledge of the heading of another, than we can say that this is because some

transfer of heading information has occurred between these two robots, so that they

have aligned to a more or less common orientation. We expect this information transfer

to occur through the heading alignment behavior, whereas the direction preference

behavior is expected to keep the informed robot in the preferred direction meanwhile.

If the necessary conditions are provided, a sufficient amount of information transfer

occurs between the informed and the naive robots, and the naive robots also start to

move in the preferred direction in due time.

Since the mutual information is calculated as the degree of agreement in the di-

rection of motions of the robots, the random variables X and Y correspond to the

heading values of the informed robot and the naive robot, respectively. Then, the

state space of X and Y are the set of possible heading values they can assume. Since

this state space is infinite, it must be discretized. Parunak and Brueckner [38] point

out to the importance of not dividing an infinite state space into too many states, in

which case the possibility of observing two random variables in the same state would

be “vanishingly small”. Another issue is the concern of statistical significance when

trying to obtain the probability distribution of a random variable from a finite number

of observations. Sperati et al. [34] notes as a general heuristic that three times more

samples than the possible states of a variable must be observed for a faithful estimation

of the probability distribution of the variable. Regarding these concerns, we divide

the unit circle into 8 discrete intervals of π/4 radians, so the number of states that

a robot can be in at any time is 8, and the number of states that an informed-naive

robot pair can be in is 8× 8. We conduct 200 > 3× 8× 8 experiments for estimating

the probability distributions, which provides us with a safe range for estimating the

joint probability distribution.

Another concern is the need to capture the dynamical aspects of the information

transfer. Therefore, we calculate the mutual information as a function of time. For

each time step, we calculate the probability distributions p(X), p(Y ) and p(X, Y )

separately. Our expectation is that X and Y will be independent of each other at

the initial phases of the experiments, and will become correlated as time advances,

provided that the necessary conditions are supplied.
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5.1.3 Finite Size Effects

A final issue about the calculation of the mutual information is the bias introduced due

to the observation of a finite number of samples. It has been discussed by Grassberger

[39], Herzel et al. [40] and Roulston [41] that when the entropy of a random variable

is estimated from the observation of a finite number of samples, the estimation is

“systematically biased downwards”. Moreover, the nature of this bias is “independent

of the underlying probability distribution” of the random variable [33].

Thus, following Steuer et al. [33] and Sperati et al. [34], we remove this systematic

bias from the estimated entropies as follows:

H[X] = H̃[X] +
a − 1

2.b

where H̃[X] is the estimated entropy, a is the number of discretized states of the

random variable X, b is the number of observed samples, and H[X] is the true entropy.

In our calculations, a is 8 for the marginal entropies and 8 × 8 for the joint entropy

(the unit circle is divided into 8 intervals of π/4 radians), and b is 200.

5.2 Accuracy

The mutual information metric discussed above is not a metric of performance, for

it can only measure the degree of alignment between the informed and naive robots.

Since it has no notion of the desired direction, it cannot distinguish whether a com-

monly converged direction is also aligned with the desired direction. Therefore, an-

other measure must be utilized to evaluate the success of the informed robots in

directing the flock’s motion. For this purpose, we utilize the accuracy metric adopted

from Couzin et al. [11], which measures the flock’s degree of alignment with the

desired direction.

5.2.1 Formal Definition and Applications

The accuracy metric depends on the angular deviation of the direction of the flock from

the desired direction. The angular deviation is analogous to the standard deviation

from linear statistics for inherently directional data. It is calculated as follows, as

discussed in [42]:
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Let θ1 . . . θn denote a set of unit vectors whose angular deviation is to be calculated.

Then, their (normalized) mean vector is the vector from (0, 0) to (C̄, S̄), where

C̄ =
1

n

n
∑

i=1

cos θi

S̄ =
1

n

n
∑

i=1

sin θi

Let R̄ =
√

S̄2 + C̄2 be the length of this normalized mean vector and x̄0 be its

angle with the x-axis such that:

C̄ = R̄ cos x̄0

S̄ = R̄ sin x̄0

Then, the angular deviation of these vectors around their normalized mean vector

is given by:

S0 = 1 − R̄

This intuitively means that, the more aligned the vectors are, i.e, the less the

angular deviation is, the longer is the mean vector. On the other hand, if they are

scattered around the unit circle in a random manner, then their vector sum results in

a shorter mean vector, denoting a greater angular deviation from the mean.

The angular deviation around a specific direction can be calculated as an extension

of this formulation:

Let α denote the angle of the desired direction with the x-axis. Then

C̄ ′ = R̄ cos(x̄0 − α)

and

S̄′ = R̄ sin(x̄0 − α)

give the components of the mean vector in the desired direction, and

S′
0 = 1 − C̄ ′

gives the angular deviation around this direction.
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In this study, we utilize the extended formulation for calculating the angular de-

viation around the desired direction of the flock.

The angular deviation metric is successfully utilized in many biological studies for

evaluating the variability in the routes followed by animal flocks, such as [43] and [44].

In this study, we follow Couzin to define the accuracy metric, which measures how

small the angular deviation is:

Accuracy = 1 − S′
0/2

Accuracy is 1 when the angular deviation is minimum, and 0 when the angular

deviation is maximum. We expect it to be as high as possible in a desired scenario.

5.2.2 Methodology

The angular deviation is calculated by measuring the direction of motion of the flock in

all experiments. In the steady state analyses, the direction of motion is defined as the

direction vector between CoMt and CoMtf . In the simulations, this direction vector

is calculated between the positions of the center of mass at t=875 s, and tf=1000

s. Therefore, we do not consider the transient dynamics of the system, and only

consider the converged direction of motion. In the experiments with Kobots, since we

cannot accurately determine the flock center positions, we collect the heading values

of Kobots between t=20 s and tf=60 s, and calculate their ensemble average, which

gives an accurate approximation of the direction of motion of the flock.

On the other hand, in the transient analyses, we calculate the instantaneous av-

erage heading of the robots at all instants, which gives the instantaneous direction of

motion of the flock with respect to time.

Once the direction of motion is calculated for all experiments associated with

one parameter set, we then calculate the angular deviation over these samples, each

of which corresponds to the direction of motion in one experiment. In the steady

state analyses, we then calculate a single accuracy value which measures the overall

performance in all the experiments, whereas in the transient analyses, we plot the

time evolution of the accuracy associated with these experiments. Since the accuracy

metric is already a measure of variance, we do not explicitly show error bars in the

plots.
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5.3 Size of Largest Cluster

The maintenance of the swarm cohesion is an important issue, due to the limited

range of the infrared sensors. Although the VHS has a range of 20 m, which is quite

large, the infrared sensors that are employed in positional adjustments have a range

of approximately 20 cm (Chapter 3). Therefore it is an interesting case when a robot

gets out of the infrared range of the swarm, but still remains in the VHS range, which

is a quite common issue if the swarm cohesion is not properly handled. In such a

case, the robot can still communicate with the other robots via VHS, which allows it

to align itself with the flock, and affect the flock’s heading by broadcasting its own

heading. However, it has no means of finding the flock’s location again, so it cannot

reunite with the flock except due to chance. Since losing more and more of the robots

in the periphery in this manner can be a major problem as time advances, one of the

main concerns is minimizing the number of robots that ever get out of the infrared

range of their neighbors.

Therefore, we need an extra metric together with the accuracy to evaluate the

performance. We employ the size of largest cluster as a measure of cohesiveness,

which indicates how large a swarm can continue together under a certain parameter

set. When clustering the flock, we take into account the infrared range of the sensors.

Although the clustering of robots according to the VHS range is also an interesting

subject, this is a situation that occurs only under extremely inconvenient conditions

due to the VHS range being comparatively quite large.

5.3.1 Formal Definition

There is a quite wide literature on extracting the connected components from a dis-

connected graph, many of which can be easily applied for finding the clusters in a

swarm. There exists breadth-first search or depth-first search graph algorithms, as

well as algebraic methods [45] which depends on the algebraic connectivity concept

proposed by Fiedler [46]. We have utilized the simple algorithm in Algorithm 1 since

our case does not require computational cost related enhancements or further alge-

braic analyses. The algorithm is taken from [47], assuming that each robot is a vertex,

and an edge exists between two robots if they are within the infrared range of each

other.
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Algorithm 1 Clustering Algorithm

1: for each vertex v in V(G) do

2: MAKE SET(v)

3: end for

4: for each edge (u, v) in E(G) do

5: if FIND SET(u) 6= FIND SET(v) then

6: UNION(FIND SET(u), FIND SET(v))

7: end if

8: end for

In the algorithm, G denotes the graph representing the swarm, V(G) is the set of

vertices in the graph, E(G) is the set of edges in the graph, MAKE SET(x) creates a

set whose only element is x, FIND SET(x) finds the set containing x, and UNION(x,

y) combines the sets x and y in one set.

5.3.2 Methodology

In this study, we calculate the size of the largest cluster at time t = tf , that is,

at the end of the experiments. The robots are clustered in terms of infrared range.

Two robots are taken to be in the same cluster if they are in the infrared range of

each other. Clustering is made in terms of metric distance range rather than whether

actual instantaneous infrared sensing takes place at the final time step, because it is

computationally not feasible to check whether infrared sensing takes places, as well

as it being an over-restrictive condition. Rather, we assume that if two robots are in

the infrared sensing range of each other, sooner or later infrared sensing will occur,

although at a certain time step it may not, due to the noise effects or an inconvenient

relative bearing of the robots.
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CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we present the experimental results with physical and simulated

robots. We conduct analyses from two points of views: In the transient analyses,

we demonstrate the time evolution of the system under various conditions. We in-

vestigate the dynamical characteristics of information sharing between the informed

and the naive robots, and the effect of this information sharing on the accuracy of the

system in following the desired direction.

In the second part of this chapter, we proceed to analyze the steady state charac-

teristics of the system, in which we are no longer interested in the dynamics, but only

in the final performance. We investigate the interdependent effects of the size of the

flock in terms of the robots in it, the ratio of informed robots in the flock over the total

flock size, the weight of the direction preference behavior, and the noise in the VHS

mechanism. We demonstrate that, though significant these effects are, their mutual

effects are so dependent on each other, that the system has quite complex dynamics,

and reacts a varying parameter in a quite context-dependent manner.

6.1 Transient Response

In this section, we analyze the dynamics of the system as a time evolution. We present

an analysis over four interesting cases: In the first case, the flock is composed of 100

robots, 10 of which are informed of the desired direction. The informed robots have a

direction preference weight (γ) of 0.5. The second case has also the same conditions,

except that the informed robots have γ = 1. In the third and fourth cases, only

1 robot out of 100 robots is informed. In the third case γ = 1, and in the fourth

case γ = 10. The experiments in this section are conducted on the simulator since
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the transient dynamics are much more visible with a greater number of robots than

physically available, and as well as longer simulations (1000 s) being possible.

These four cases represent four major conditions of information exchange and

flock guidance. First, we analyze the dynamics of the system in an explicit manner

by presenting the time evolutions of the headings in four sample experiments, then we

discuss statistical results about the information exchange as the time advances, and

finally we present the resulting accuracy evolutions.
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Figure 6.1: The time evolutions of headings in four sample experiments. (a) [10
informed robots, γ = 0.5] Initial 200 seconds of the experiment are presented. (b) [10
informed robots, γ = 1] Initial 200 seconds of the experiment are presented. (c) [1
informed robot, γ = 1] The whole course of the experiment is presented. (d) [1
informed robot, γ = 10] The whole course of the experiment is presented. The headings
of the informed robots are plotted with white and the headings of the naive robots
are plotted with black.

Figure 6.1 presents the time evolutions of the headings of the robots in one sam-

ple experiment from each of the four cases. The headings of the informed robots are

shown with white plots, while the headings of the naive robots are shown with black

plots. From the time evolutions of the headings, it is possible to visualize the funda-
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mental differences between the four cases. Figures 6.1(a) and 6.1(b) present the first

200 seconds of the experiments, because the interesting dynamics are visible until a

common alignment is reached. In Figures 6.1(c) and 6.1(d) however, the whole course

of the experiments are shown, which last for 1000 seconds.

In Figure 6.1(a), the time evolution of the [10 informed robots, γ = 0.5] case is

presented. The informed robots are commanded to go in the 90◦ direction. It is seen

that 10 robots are enough to guide a flock of 100 robots to the desired direction. Yet,

since the weight of the direction preference behavior is half of the heading alignment

behavior, they first align themselves with the rest of the flock (at around t = 15 s),

and then slowly converge to the desired direction together with the rest of the flock

(at around t = 75 s). The flock is able to converge to the desired heading in a safe

manner and is stable in this direction thereafter.

In Figure 6.1(b), the time evolution of the [10 informed robots, γ = 1] case is

presented. The informed robots are again commanded to go in the 90◦ direction. In

this case however, the weight of the direction preference behavior is equal to that of

the heading alignment behavior, so it is seen that the informed robots try to turn

to the desired direction more hastily, and it is left to the naive robots to strive for a

common alignment. Until the alignment is finally reached by the naive robots, the

flock continues in an unaligned manner for a while.

In Figure 6.1(c), the time evolution of the [1 informed robot, γ = 1] case is pre-

sented. In this case, it is seen that the information in only 1 robot is not enough for

driving a 100-robot flock in the 90◦ direction. However, since the weight of the pre-

ferred direction is not overwhelmingly higher than the weight of the heading alignment

behavior, it can be seen that the robot spends a short time of alignment with the flock.

Then in time, it turns towards the preferred direction, yet it is unable to manipulate

the common alignment direction of the flock. It continues in its own direction in this

manner for a while, paying equal attention to the heading alignment and direction

preference behaviors (which have an equal weight), thus following a direction that

is the average of the desired direction and the flock’s common alignment direction.

However, since it is moving in a direction that is different from the flock’s direction of

motion, it goes out of the VHS communication range of the flock at about t = 350 s.

From this point on, it cannot get information about the flock’s direction of motion, so

it rapidly turns to its own desired direction, and continues in this direction until the
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end of the experiment.

In Figure 6.1(d), the time evolution of the [1 informed robot, γ = 10] case is

presented. Once more, the information in only 1 robot is not enough for driving the

flock in the 90◦ direction. Yet, now the weight of the preferred direction is ten times

the weight of the heading alignment behavior, so it is seen that the robot quickly turns

to its own preferred direction (even having occasional collisions with the robots that

get into its way). It is seen that until it can get rid of the other robots by getting out of

the flock, its heading varies due to encounters with other robots in its way. However,

as soon as it gets out of the flock, it instantaneously turns into the desired direction,

and continues in this direction until the end of the experiment. Since the weight of

the preferred direction is significantly more than the weight of the heading alignment

behavior, its direction is not affected significantly by the common alignment of the

flock even when it is in the VHS range, unlike the previous case.

6.1.1 Transfer of Information
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Figure 6.2: Time evolution of mutual information for [10 informed robots, γ = 0.5],
[10 informed robots, γ = 1], [1 informed robot, γ = 1] and [1 informed robot, γ = 10]
cases in 200 experiments.

In this section, we present the time evolutions of mutual information in the four

cases. The statistics are obtained from 200 experiments, which provides statistical

significance (See Section 5.1).

Figure 6.2 presents the mutual information change with respect to time. The
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dynamics during the first 500 seconds are presented, since the dynamics do not show

much variance from the point until the end of the experiments. It is seen that, in the

[10 informed robots, γ = 0.5] case, the mutual information increases rapidly due to

the quickly established common alignment between the informed and the naive robots.

In the [10 informed robots, γ = 1] case, however, since the informed robots are more

persistent in following their desired direction, the mutual information increases only

when the naive robots can converge to the same alignment, which needs more time.

In the [1 informed robot, γ = 1] case, it is possible to observe the initial but short

period of the informed robot trying to comply with the common alignment, but as the

time advances it turns into its own direction, and the mutual information decreases

again. In the [1 informed robot, γ = 10] case, the mutual information never increases,

since the informed and naive robots never agree on a common direction of motion.

6.1.2 Accuracy of Direction of Motion
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Figure 6.3: Time evolution of accuracies for [10 informed robots, γ = 0.5], [10 informed
robots, γ = 1], [1 informed robot, γ = 1] and [1 informed robot, γ = 10] cases in 200
experiments.

In this section, we present the time evolutions of accuracy in the four cases. The

accuracy values are obtained from the angular deviation of the instantaneous average

direction of the flock in 200 experiments (See Section 5.2).

Figure 6.3 presents the accuracy results with respect to time. It is seen that, in the

10 informed robots cases, the accuracy increases with time, meaning that an informed
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robot ratio of 10/100 is enough for guiding the flock, and in the 1 informed robot cases

the accuracy stays low, meaning that an informed robot ratio of 1/100 is not enough.

As expected, the accuracy increases quicker when γ is higher.

6.2 Steady-State Response

In this section, we analyze the steady state characteristics of the system. We inves-

tigate the interdependent effects of the size of the flock in terms of the robots in it,

the ratio of informed robots in the flock over the total flock size (ρ), the weight of the

direction preference behavior (γ), and the noise in the VHS mechanism (η).

The experiments are conducted with both physical and simulated robots. 7 Kobots

are used in the physical robot experiments, and 10, 20 and 100 robots are employed

in the simulations. The weight of the proximal control behavior (β) is set to 4, while

odes is set to 3 for kin robots and 0 for obstacles, umax = 7 cm/s and Kp = 0.5.

The experiments are repeated 5 times for physical robots, and 300 or 500 times for

the simulations. The experiments are conducted for 60 s for physical robots, and

1000 s in the simulations. In the experiments, the robots are initialized with random

orientations, and the informed robots are assigned randomly. The magnitude of the

VHS noise is set as η = 1 unless otherwise stated.

6.2.1 Effect of Flock Size

In this set of experiments, we investigate the effect of the size of flock on the accuracy

of motion. We vary the size of the flock (10, 20 and 100 in simulations and 7 for

physical robots) and measure accuracy for different ratios of informed robots (ρ). In

the experiments, γ is set to 0.1 and the results are plotted in Figure 6.4.

It is observed in Figure 6.4 that for a fixed ratio of informed robots, the size of

the flock does not have a significant effect on the performance. A flock of 100 is as

accurate as a flock of 10. It is also observed in the figure that for a fixed system

size, increasing the ratio of informed robots increases the accuracy of motion of the

system asymptotically which settles to approximately 0.9. The results of the Kobot

experiments are less accurate due to the limited test area used for the experiments.

Since the Kobots reach the walls in about 60 seconds, the experiments are much

shorter than the simulations (1000 seconds). Especially in low ratio experiments the
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Figure 6.4: The effect of flock size for varying ratios of informed robots on accuracy.
300 simulations are conducted with 100 robots and 5 experiments are conducted with
7 Kobots.

steady state phase usually cannot be reached within 60 seconds. However, the trends

are the same.

6.2.2 Effect of the Weight of Direction Preference Behavior

In this set of experiments, we investigate the effect of the weight of direction preference

behavior (γ) on the accuracy of flocking motion. We vary γ and measure accuracy for

different ratios of informed robots (ρ). We also measure the size of the largest cluster

for various γ and ρ. The size of the flock is 100 and 7 for simulations and Kobot

experiments, respectively. The results are plotted in Figures 6.5 and 6.6.

It is observed in Figure 6.5 that γ has a significant effect on the accuracy of

motion for moderately low ratios (ρ = 0.1). It has an optimum value, until which the

accuracy increases due to the increasing persistence of the informed robots in following

the desired direction. After this point the accuracy decreases a little due to increasing

number of failing experiments in which all or most of the informed robots get out

of VHS range. This is a situation which occurs more frequently especially before

the transient phase is over, when their weight of the direction preference behavior is

high, and the initial conditions are convenient, such as when all the informed robots

are initially located together towards the preferred direction with respect to the flock

center. For the high ratios, the accuracy stays flat at approximately 1 irrespective of γ.
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Figure 6.5: Accuracy for varying γ for different informed robot ratios. 500 simulations
are conducted with 100 robots and 5 experiments are conducted with 7 Kobots.

Likewise, for very low ratios, the accuracy does not increase with γ. The experiments

with 1 informed Kobot out of 7 Kobots are again slightly less accurate than 100 robot

simulations with 10 informed robots, especially for moderately low values of γ, due to

the limited test area. However, the trends are the same. The final decreasing effect

is not observed in the Kobot experiments, since the informed robot cannot get out of

the range in 60 seconds.

Figure 6.6 shows that for the intermediate ratios of informed robots (ρ = 0.1

and ρ = 0.5), increase in γ decreases the size of the largest cluster and results in

fragmentation of the flock which is not observed in low or high ratios (ρ = 0.01 and

ρ = 0.8).

The reason of this phenomenon is that the more “stubborn” the informed robots

are to move in their preference, the more probable it is that they will be separated

from the flock. This effect is naturally less visible when ρ = 0.01, since the loss of a

single robot does not alter the size of the largest cluster much. On the other hand,

when the ratio is high enough (ρ = 0.8), they are faster in changing the direction

of the whole flock, which reduces the length of the transition phase, and decreases

separations.
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Figure 6.6: Size of the largest cluster at t = tf for varying γ for different ratios of
informed robots. 500 simulations are conducted with 100 robots. 0 informed robots
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and bottom whiskers indicate the largest and smallest non-outlier data, respectively.
The data in between the first and third quartiles lie within the 50% confidence interval,
while the data in between the whiskers lie within the 99.3% confidence interval.

6.2.3 Effect of Noise

In this set of experiments, we investigate the effect of the noise in the VHS for varying

γ values. The experiments are conducted in CoSS with 10 informed robots in a flock

of 100 robots. We vary the magnitude of noise (η) and plot the results in Figure 6.7.

It is seen that the system is quite robust to moderate amounts of noise, since

its response to the η = 1 setting is not significantly worse than the η = 0 setting.

When the noise is increased to extreme amounts, by setting η = 10 and η = 100, it is

observed that the accuracy significantly decreases for especially low values of γ, while

as γ increases, the accuracy also increases and for γ >= 0.7, it reaches the performance

of the low noise cases. The final decreasing effect with increasing γ is not observed in

the high noise cases, because the intermediate values of γ cannot produce as accurate

results as in the low noise cases.
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CHAPTER 7

CONCLUSION

In this study, we investigated the idea of controlling the direction of motion of a mobile

robot swarm by informing some robots within the flock. We proposed an extension

for a self-organized flocking behavior by including a preference for a specific direction

without disturbing the essential self-organization property. Then, for a quantitative

analysis of the system, we suggested using two kinds of metrics:

• The mutual information metric, from the Information Theory, which serves as a

dynamical measure of the information exchange between the informed and the

naive robots

• The accuracy metric, from directional statistics, and the size of the largest clus-

ter, as metrics of performance of the guidance

Using these metrics, we conduct systematic experiments on physical and simulated

robots, and demonstrate that:

• The self-organized flocking motion of a robot swarm can be guided effectively

by informing a minority of the robots about a preferred direction to go.

• Provided that there exists a certain proportion of informed robots, than a rapid

information exchange can be conducted through the heading alignment behavior,

which results in the whole flock turning to the preferred direction.

• This information exchange cannot occur if the number of informed robots is

negligible.

• The success of the system is independent of the flock size, that is, the proposed

behavior is scalable.
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• When the weight of the preferred direction is kept fixed, the accuracy of the

system is positively effected by an increasing ratio of informed individuals.

• For intermediate ratios of informed individuals, increasing the weight of the

preferred direction up to an optimum point has a significant positive effect on

the accuracy. After this point, the performance shows a slightly decreasing trend

due to increased clustering in the system.

• For very low (high) ratios of informed individuals, the accuracy is stable at a

low (high) value, and increasing the weight of the preferred direction does not

have a significant effect.

• The clustering effect is mostly visible for moderately low ratios of informed

individuals and high values of the weight of the preferred direction. At very low

or high ratios of informed individuals, or low values of the weight of the preferred

direction, the clustering effect is negligible.

• The system is quite robust to moderate amounts of noise in the VHS, whereas

the performance degrades in case of extreme noise in the system.

Work that awaits to be done includes the extension of the S-VNM model proposed

in [30], an analytically solvable model for the original form of the flocking behavior,

which captures the physical robot dynamics such as inertia. The model will be ex-

tended to include the direction preference behavior, and will be analyzed for further

predictions.

Further algebraic analyses on the connectivity of the flock may also be conducted

for discriminating the nearly-disconnected parts of the flock prior to fragmentation.

Since the fragmentations are mostly due to the informed robots, an adaptive behavior

may be introduced for them to reduce fragmentations. Furthermore, an analysis of

the importance of spatial location of the informed robots might also be conducted,

to reveal the advantages of choosing the informed individuals wisely with respect to

their positions.

Finally, the behavior of the system when there is more than one subgroups with

different preferred directions must also be investigated. For instance, this may be

the case when not all the informed robots can “hear” the information signal correctly,

and thus there exists some individuals who are “misinformed”, yet as stubborn as the
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correctly informed ones. Therefore, robustness of the system under such circumstances

needs to be investigated.
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