
IDENTIFYING ARCHITECTURAL CONCERNS FROM NON-FUNCTIONAL
REQUIREMENTS USING SUPPORT VECTOR MACHINE

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN GÖKYER

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2008

Approval of the thesis:

IDENTIFYING ARCHITECTURAL CONCERNS FROM NON-
FUNCTIONAL REQUIREMENTS USING SUPPORT VECTOR MACHINE

submitted by GÖKHAN GÖKYER in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Instr. Dr. Cevat Şener
Supervisor, Computer Engineering Dept., METU

Dr. Semih Çetin
Co-Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğru
Computer Engineering Dept., METU

Instr. Dr. Cevat Şener
Computer Engineering Dept., METU

Instr. Dr. Meltem Turhan Yöndem
Computer Engineering Dept., METU

Instr. Dr. Ayşenur Birtürk
Computer Engineering Dept., METU

Yenal Göğebakan, M.Sc.
General Manager, CYBERSOFT

Date: 28.08.2008

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Last name: Gökhan Gökyer

Signature :

iv

ABSTRACT

IDENTIFYING ARCHITECTURAL CONCERNS FROM NON-FUNCTIONAL
REQUIREMENTS USING SUPPORT VECTOR MACHINE

Gökyer, Gökhan

M.S., Department of Computer Engineering

Supervisor : Instr. Dr. Cevat Şener

Co-Supervisor : Dr. Semih Çetin

August 2008, 86 pages

There has been no commonsense on how to identify problem domain concerns in

architectural modeling of software systems. Even, there is no commonly accepted

method for modeling the Non-Functional Requirements (NFRs) effectively

associated with the architectural aspects in the solution domain. This thesis

introduces the use of a Machine Learning (ML) method based on Support Vector

Machines to relate NFRs to classified "architectural concerns" in an automated way.

This method uses Natural Language Processing techniques to fragment the plain

NFR texts under the supervision of domain experts. The contribution of this

approach lies in continuously applying ML techniques against previously

discovered “NFR - architectural concerns” associations to improve the intelligence

of repositories for requirements engineering. The study illustrates a charted

roadmap and demonstrates the automated requirements engineering toolset for this

roadmap. It also validates the approach and effectiveness of the toolset on the

snapshot of a real-life project.

v

Keywords: Architectural Concerns, Machine Learning, Natural Language

Processing, Non-Functional Requirements, Requirements Engineering, Support

Vector Machine.

vi

ÖZ

DESTEK VEKTÖR MAKİNESİ KULLANARAK İŞLEVSEL OLMAYAN
GEREKSİNİMLERDEN MİMARİ İLGİLERİ TESPİT ETMEK

Gökyer, Gökhan

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Instr. Dr. Cevat Şener

Ortak Tez Yöneticisi : Dr. Semih Çetin

Ağustos 2008, 86 sayfa

Yazılım sistemlerinde mimari modelleme için "Problem Kümesi İlgileri"nin nasıl

ifade edileceği hakkında kesin bir yaklaşım mevcut değildir. Bunun yanı sıra

"Çözüm Kümesi" içindeki mimari ilgi alanlarına yönelik olan "İşlevsel Olmayan

Gereksinimleri" modellemek için de kabul edilmiş bir yöntem yoktur. Bu tez

çalışması; "Destek Vektör Makinesi" tabanlı "Makine Öğrenimi" yöntemini

kullanarak, işlevsel olmayan gereksinimleri mimari ilgi alanlarıyla ilişkilendirme

sürecini otomatikleştiren bir yöntem önermektedir. Bu yöntem; İşlevsel Olmayan

Gereksinim içeren yalın metinleri ayıklamak için alan uzmanlarının denetiminde

"Doğal Dil İşleme" tekniklerini kullanır. Önerilen yaklaşımın değer katan yönü; bu

süreçte Makine Öğrenimi tekniklerinin birbiri ardına kullanılmasıdır. Bu yaklaşım

sayesinde başka problem kümeleri için önceden eğitilmiş olan bilgi depoları;

gereksinim mühendisliği bünyesinde yüksek başarı seviyesine ulaşan "İşlevsel

Olmayan Gereksinim - Mimari İlgi Alanı" eşleşmelerine dönüştürülmektedir. Tez

çalışması; sistematik bir yol haritası ve bu yol haritası üzerine destekleyici bir

"Gereksinim Mühendisliği Araç Seti" sunmaktadır. Ayrıca, tez çalışmasında

önerilen yaklaşım ve geliştirilen araç setinin başarısını ortaya koymak için gerçek

bir proje üzerinde elde edinilen deneyimler de sunulmaktadır.

vii

Anahtar Kelimeler: Destek Vektör Makinesi, Doğal Dil İşleme, Gereksinim

Mühendisliği, İşlevsel Olmayan Gereksinimler, Makine Öğrenimi, Mimari İlgiler.

viii

To My Family

ix

ACKNOWLEDGMENTS

Firstly, I would like to thank to my thesis supervisor Dr. Cevat Şener and co-

supervisor Dr. Semih Çetin for their guidance, support and motivation they

provided throughout my research. I also like to thank to Dr. Meltem Turhan

Yöndem and Umut Eroğul for their guidance about the Natural Language

Processing and Machine Learning parts in my study. I would like to thank to my

mom, my dad and my sister for everything. Thanks to my girlfriend for her

understanding me during my thesis study.

x

TABLE OF CONTENTS

ABSTRACT .. iv
ÖZ .. vi
ACKNOWLEDGMENTS ... ix
TABLE OF CONTENTS ..x
LIST OF FIGURES ... xii
LIST OF TABLES .. xiii
LIST OF ABBREVIATIONS ..xiv

CHAPTERS

1. INTRODUCTION ..1

1.1 Statement of the problem ...1
1.2 Objective of the study ..2
1.3 Organization of the thesis ..2

2. BACKGROUND ..4

2.1 Requirements Engineering ...4
2.1.1 Requirements ...4
2.1.2 Functional Requirements..4
2.1.3 Non-Functional Requirements ..5

2.2 Non-Functional Requirements and Architectural Modeling6
2.3 Natural Language Processing ...7
2.4 Machine Learning and Support Vector Machine 11
2.5 Related Work... 12
2.6 Remarks .. 14

3. THE PROPOSED APPROACH .. 15

3.1 Motivation ... 15
3.2 Definition of Architectural Concerns ... 17
3.3 The Roadmap .. 19
3.4 Remarks .. 31

4. IMPLEMENTATION AND EXPERIMENTATION ... 32

4.1 Implementation .. 32
4.1.1 Environment and Tools .. 32
4.1.2 NFR2AC Toolset ... 32
4.1.3 UML Diagrams .. 39
4.1.4 Database Model ... 46
4.1.5 Usage of Software .. 48

4.2 Experimentation .. 59
4.3 Remarks .. 63

xi

5. CONCLUSION ... 65

5.1 Summary ... 65
5.2 Conclusions ... 66
5.3 Future work ... 67

REFERENCES ... 69

APPENDICES

A. MEDPOST PART-OF-SPEECH TAG SET ... 72

B. SAMPLE FILES .. 73

B.1 An SVM model file ... 73
B.2 An XML export file of NFR2AC test results .. 73
B.3 An XML export file of NFR2AC matrices ... 74

C. SOURCE CODE AND EXPERIMENTATION .. 77

C.1 Thesis CD Content .. 77
C.2 NFRs used in Training Session .. 78
C.3 NFRs used in Testing Session .. 83

xii

LIST OF FIGURES

Figure

 2.1 An example of architectural model ... 8
 2.2 Part-of-Speech tagging process ... 10
 2.3 Maximizing the margin .. 12

 3.1 Architecture modeling approach ... 16
 3.2 Roadmap for NFR2AC approach .. 19
 3.3 Utility Concern Spaces ... 30
 3.4 Architectural Concern Spaces ... 30

 4.1 Domain and Project Selection Tab .. 33
 4.2 Construct Domain Vocabulary Tab ... 33
 4.3 Find Phrase Occurrences Tab ... 34
 4.4 Map NFRs to Architectural Aspects and Quality Attributes Tab 34
 4.5 Classify Architectural Aspects and Quality Attributes from NFRs Tab 35
 4.6 Construct Matrices Tab .. 35
 4.7 Mapping of NFRs to Architectural Aspects and Quality Attributes 36
 4.8 Classifying Architectural Aspects and Quality Attributes 37
 4.9 Constructing the Utility Concern Spaces matrix .. 38
 4.10 Use case diagram of NFR2AC .. 40
 4.11 Activity diagram of NFR2AC ... 41
 4.12 Sequence diagram of Phase1 .. 42
 4.13 Sequence diagram of Phase2 .. 42
 4.14 Sequence diagram of Phase3 .. 43
 4.15 Package diagram of NFR2AC ... 44
 4.16 NFR2AC Database Model .. 46
 4.17 Running the NFR2AC .. 48
 4.18 View Item added for NFR2AC tool .. 59
 4.19 Select domain and project ... 50
 4.20 Construct Domain Vocabulary .. 51
 4.21 Cross-domain occurrence for each phrase ... 52
 4.22 Load NFR plain text for training ... 52
 4.23 Find key phrases for each NFR ... 53
 4.24 Filter key phrases and frequencies for each NFR 54
 4.25 Map Architectural Aspects and Quality Attributes for each NFR 55
 4.26 Load NFR plain text for testing .. 56
 4.27 Testing results for each NFR .. 56
 4.28 Export testing results to an XML file .. 57
 4.29 Construct matrices for Utility Concern Spaces generation 57
 4.30 Cross classify occurrence for each cell .. 58
 4.31 Export matrices to an XML file .. 59
 A.1 MedPost part-of-speech tag set .. 72

xiii

LIST OF TABLES

Table

 3.1 Taxonomy of “Architectural Aspects” .. 17
 3.2 Taxonomy of “Quality Attributes” .. 28
 3.3 Phrase Table Content .. 21
 3.4 NFR Table Content .. 23
 3.5 NFR-Phrase Relation Table Content ... 23
 3.6 Training Data Table Content .. 24
 3.7 Model Data Table Content .. 25
 3.8 Testing Data Table Content .. 27
 3.9 Architectural Aspect/Quality Attribute Occurrence Matrix 28

 4.1 Numbers for Accuracy Analysis of NFRs used in testing session 61
 4.2 UCS matrix (Manual) ... 62
 4.3 UCS matrix (NFR2AC) .. 63
 4.4 Numbers for Accuracy Analysis of UCS matrix (NFR2AC) 63

 C2.1 NFRs used in Training Session .. 78
 C3.1 NFRs used in Testing Session .. 83

xiv

LIST OF ABBREVIATIONS

AA Architectural Aspect

AC Architectural Concern

ACS Architectural Concern Spaces

ADL Architecture Description Language

AORE Aspect-Oriented Requirements Engineering

AT Architectural Tier

AV Architectural View

CLIR Cross Language Information Retrieval

FR Functional Requirement

LEL Language Extended Lexicon

ML Machine Learning

NFR Non-Functional Requirement

NFR2AC Non-Functional Requirements to Architectural Concerns

NLP Natural Language Processing

POS Part-of-Speech

QA Quality Attribute

SVM Support Vector Machine

UCS Utility Concern Spaces

1

CHAPTER 1

INTRODUCTION

1.1 Statement of the problem

Non-Functional Requirements (NFRs) are the needs of a system to carry out its

operations under a set of constraints and quality expectations. That is why they are

more oriented to “how” and “why” questions rather than “what”. Furthermore,

capturing the NFRs and then matching them with architectural concerns are harder

than dealing with functional requirements since users feel more difficulty in

explaining the NFRs definitely at every stage of requirements modeling. All these

put off system designers using more methodical techniques for managing the NFRs

in contradiction to the case that they can use systematic approaches and tools to

model the behavioral aspects of an information system [1].

Difficulties of modeling NFRs motivate researchers to explore new ways and

techniques. Natural Language Processing (NLP), Machine Learning (ML), Aspect-

Oriented Requirements Engineering (AORE), Speech Processing, Domain Specific

Modeling, and Feature-Oriented Modeling are some of the methods to identify and

model NFRs. These techniques can be occasionally harmonized, too. For example,

Baniassad et al. [2] used aspects for modeling the features in terms of base and

crosscutting themes, where NFRs play a significant role. Similarly, Loughran et al.

[3] represented the feature models with aspects for product lines. Others such as

proposed by Rosenhainer [4], combined the NLP with uses case based on domain

modeling for mining the NFRs.

However, none of the previous studies achieved to represent NFRs in a system

architecture model with an automatic transformation from the pure requirements.

Some studies created their own frameworks for NFR representation. Nevertheless,

such studies left as the set of examples for only using the framework in an abstract

2

level (See Chung [24]). Some of the others tried to add NFRs to the UML diagrams

with new attribute insertions (See [9, 25]). But, almost all of these attempts lead to

manual transformation under an expert control without proper level of automation.

1.2 Objective of the study

This thesis proposes an approach for identifying the NFRs from plain text by

Natural Language Processing (NLP) techniques and mapping the identified NFRs to

“architectural aspects” and “quality attributes” in the problem domain by Machine

Learning (ML) techniques. Essentially, this work complements the architectural

modeling approach with symmetric alignment of multiple concern spaces given in

Cetin et al. [5], which proposes an inclusive architectural modeling method once the

NFRs have been identified. This work fills the gap in that sense to guide the NFRs

identification and automatic construction of the Utility Concern Spaces by mapping

such NFRs to architectural aspects and quality attributes, respectively. Putting the

“architectural aspects” and “quality attributes” together is referred to as

“architectural concerns” throughout the thesis.

The contribution of this approach lies in continually applying the cycles of NLP

techniques as part-of-speech tagging, phrase chunking, stemming and ML

techniques as SVM against “NFRs – Architectural Concerns” associations collected

from several business domains. This way of keeping smarter repositories

continually guides the architect for making decisions effectively. Moreover, this

approach provides automated tools for mapping the NFRs to architectural concerns

as well. After briefly giving the related work, proposed approach will be explained

and demonstrated on a real life case problem from the automotive domain.

1.3 Organization of the thesis

The next chapter presents the previous and related work, current standards and

technologies. In Chapter 3, the proposed approach “Non-Functional Requirements

to Architectural Concerns” (NFR2AC) is presented by explaining the roadmap and

accompanied toolset in detail Continually, Chapter 4 defines the implementation

3

details and experimentation details where NFR2AC approach and the developed

toolset have been applied on a case problem from a real-life application in

automative domain. Eventually, Chapter 5 summarizes and concludes the thesis.

4

CHAPTER 2

BACKGROUND

In this chapter, the background information is given for the topics relevant to thesis

study. The major related topics are listed as Requirements Engineering, Non-

Functional Requirements and Architectural Modeling, Natural Language

Processing (NLP), Machine Learning (ML), and Support Vector Machine (SVM).

2.1 Requirements Engineering

Liu et al. [6] defines the requirement engineering as analyzing and understanding

the problem domain effectively, in order to expose all the necessary information

about the client requests, before developers start to implement the software system.

It is also emphasized that the requirements engineering only targets the problem

domain instead of design and implementation details.

2.1.1 Requirements

Robertson et al. [7] identifies the requirements as a set of responsibilities and

qualities that a product must do or have. A requirement may occur in cases when it

has to meet some functionality or some quality in the requested product, or when a

client wants it as a part of that product. Therefore, all requirements must be

specified before designing a product. Otherwise, the product cannot meet all the

expectations defined by the domain, communities and actual users.

Requirements can be classified into two types: namely “Functional Requirements”

and “Non-Functional Requirements”.

2.1.2 Functional Requirements

Functional requirements can be defined as the actions and functionalities that are

supposed to be provided by the product, according to Robertson et al. [7]. They are

5

the functionality specifications and derived from the fundamental goal of the

product, which satisfy the actions like check, calculate, record, retrieve etc. An

example for the functional requirement is:

“The product shall warn if the scheduling date is neither today nor within the next

two days.“

This example informs us about some special case that is the scheduling date can

never be more than two days in advance. For the derivation process of these

requirements, product use cases are employed. Therefore, a scenario is written from

the pieces of use cases and related functional requirements are derived from this

scenario. In order to find new functional requirements, new use cases should be

drawn. Moreover, functional requirements are business requirements and can be

validated by the business people. As stated by Robertson et al. [7], if business

people tell all the requirements for each use case, then enough functionality will be

collected for a running product.

2.1.3 Non-Functional Requirements

Robertson et al. [7] defines the “Non-Functional Requirements (NFRs)” as set of

properties and qualities that a product must contain in order to run fast, reliable,

usable, attractive, that means successfully in short. Extracting more NFRs and

modeling them improves the success and quality of a product. An example NFR can

be:

“The product shell determine ’friend or foe’ in less than 0.25 seconds.”

Functional requirements are the fundamental requirements, which provide product

running. However, NFRs are not required for basic execution but they suggest such

fundamental requirements perform in a certain manner. They anticipate minimum

and maximum conditions for these activities for issues like security, performance

etc. They make these activities running in desired conditions and limitations

according to Robertson et al. [7].

6

For example, video cameras should record all entrances and exits of the building in

a bank security system. This states a functional requirement. However, if someone

says that video camera system must send instantaneous video stream data within at

most two seconds, then this requirement becomes a non-functional requirement.

2.2 Non-Functional Requirements and Architectural Modeling

Liu et al. [6] says that two vital activities in software life cycle are requirements

engineering and software architecting. The requirements engineering aims at

investigation and elicitation of the correct specifications of a system before

developers start implementing. Contrastly, the aim of software architecting is

constructing the architecture of the system due to the shape of the solution space in

order to improve the success rate in development facilities.

Liu et al. [6] also states that there is a gap between mapping requirements to

software architecture. Moreover, the mapping relationship is indirect and not

straightforward in traditional software development strategies; therefore existing

mapping strategies are insufficient for this mapping process.

Similarly, Franch et al. [8] identifies that software systems are combined from both

functional and non-functional elements. However, most of the work has been done

for the functional requirements. In fact, non-functional requirements are important

as much as the functional ones. Cysneiros et al. [9] also claims that although both

are primarily important, NFRs are more expensive and more difficult to deal with

from the beginning of the software development process, and throughout the whole

life cycle.

There are many software projects that fail right after deployment because of paying

less attention to the non-functional requirements. Therefore, this study focuses on

the non-functional requirements and tries to incorporate NFRs into components and

connectors for architectural modeling. In particular, NFR issues such as security,

system performance, data integration, data confidentiality and privacy might result

7

in complications and problems at the later stages of software projects, as Yusop et

al. [10] indicates.

Franch et al. [8] defines the components and connectors as follows: components are

dynamic computational units of a software system. Software modules (classes),

libraries of reusable components, whole systems, clusters of similar system are all

can be counted as examples of software components. Moreover, connectors can be

defined as the units that provide the interaction and bridging process between

components. Method invocation, network connection and data sharing are some of

the examples of connectors. The connection points between components and

connectors are identified as ports.

Relating the architectural model with requirements (especially NFRs) and deriving

the architectural modeling are not straightforward. Moreover, the architectural

model can be represented with more than one standard ways. Use of Architecture

Description Languages (ADLs) and diagrammatic notations vary in the literature.

An architectural model can be represented by using the lexicon first introduced by

Kazman et al. [11] within the context of Software Architecture Analysis Method

(SAAM). Figure 2.1 depicts security framework architecture framework with a

lexicon defined by SAAM and reveals merely the structural representation of an

example architecture formed by the components and the connectors.

2.3 Natural Language Processing

Chowdhury [12] defines the “Natural Language Processing (NLP)” as a research

and application area, which investigates the computer usage in understanding and

manipulating natural language text or speech to obtain some benefits. Moreover, it

is stated that NLP researchers try to find some samples on how human beings use

language and then convert these samples into more proper representations for ease

of computer understanding.

8

Figure 2.1 - An example of architectural model

9

Some fields of studies for NLP applications are sampled as machine translation,

natural language text processing and summarization, user interfaces, multilingual

and Cross Language Information Retrieval (CLIR), speech recognition, artificial

intelligence and expert systems, and so forth. These application areas reveal the

case that NLP is one of the best candidates for requirements engineering process,

especially for capturing the NFRs.

In the related work of Chowdhury [12], it also claimed that every NLP task is built

according to the natural language understanding issue. Here, there are three main

problems for understanding the natural language in computer programs. The first

problem is about the thought process, the second one is the representation and

meaning of the linguistic input, and the third one relates to the world knowledge.

Therefore, from the beginning to the end every NLP system should start studying at

the word, then move on to sentence level, and finally conclude to the context level

on the whole domain level. The reason is, first the morphological structure, nature

(such as part-of-speech, meaning) etc. of the word has to be determined and after

that the word order, grammar, meaning of the entire sentence and in conclusion

domain knowledge, etc. should be resolute. There can be a specific meaning or

connotation for each word and/or sentence in a given context or domain, and may

have relations with many other words and/or sentences in the given context [12].

There are some methods used in NLP applications like Text Segmentation, Part of

Speech Tagging, Stemming, Lemmatization, Phrase Chunking, Syntactic Parsing,

Named Entity Recognition, Term Extraction, Text Summarization, Language

Identification, Statistical Language Modeling, Corpora etc. All these applications

specified in [12], are not used in this study, so only the used ones will be explained.

Part-of-speech (POS) tagging is defined in LingPipe [13] as the process of parsing

each word as a token in each sentence and labeling each token with the most

probable tag label, such as "adjective", "noun", “verb” etc. An example for POS

tagging process is given in Figure 2.2. In this example, output of the POS Tagger is

10

“The/DD students/NNS had/VVB the/DD exam/NN in/II the/DD classroom/NN ./.”

the sentence of “The students had the exam in the classroom.”. In this thesis,

LingPipe is used for the POS Tagging module and inside the LingPipe, MedPost

POS Parser [14] is used and the related tag set is given in Appendix A.

Figure 2.2 - Part-of-Speech tagging process

The thesis study has also used stemming, which is a suffix splitting method and that

retrieves the base form for any given word. “Connect”, “Connecting”, “Connected”,

“Connection” and “Connections” words all have different suffixes and after these

suffixes are removed the root term leaves as “Connect”, as explained by Singh [15].

Another method is the phrase chunking, which is the process of extracting higher-

level structure such as phrases created from pair of words. For example, in the

sentence “Mike Jones will take the courses”, there exists a proper noun phrase

“Mike Jones”, a verb phrase “will take” and a common noun phrase “the courses”

as given by [13].

11

2.4 Machine Learning and Support Vector Machine

Gimenez et al. [16] defines Machine Learning (ML) as a subfield of Artificial

Intelligence that produces various algorithms and methods in order to make

computers “intelligent”. It is also stated that, in addition to using data mining and

statistics, ML also uses computational and statistical methods in order to collect a

variety of information automatically from pure data. Some research areas for ML

applications are exampled as natural language processing, syntactic pattern

recognition, search engines, medical diagnosis, bioinformatics, brain-machine

interfaces and cheminformatics, detecting credit card fraud, stock market analysis,

classifying DNA sequences, speech and handwriting recognition, object recognition

in computer vision, game playing and robot locomotion.

Nakagawa et al. [17] says that in order to handle binary classification, an ML

algorithm can be created on a feature vector space that is called “Support Vector

Machine (SVM)”. Moreover, they also claim that a training data set (2) is separated

into two classes/regions by several hyperplanes (1) according to the equation (3).

w · x + b = 0, w Є R L , b Є R (1)

{(xi, yi) | xi Є RL, yi Є {±1}, 1 ≤ i ≤ l } (2)

yi (w · x + b) ≥ 1 (3)

SVM aims to find the optimal hyperplane, which maximizes the related margin that

is the distance between the hyperplane and the nearest points (See Figure 2.3). This

hyperplane gives the minimum expected test error and becomes a solvable quadratic

programming problem according to Nakagawa et al. [17]. In the related study of

Nakagawa et al. [17], it is also stated that the sign of discriminant function f(x) at

(4) and (5), may give an appropriate label value y for each test example x:

f(x) = w · x + b (4)

y = sgn (f(x)) (5)

12

Figure 2.3 - Maximizing the margin

A dot product process between two vectors may be much expensive. Therefore, a

kernel function may be introduced to avoid this numerical complexity drawback. By

trying different kernel functions, various learning machines can be constructed in

order to solve different problems [18]. Also, the training is not affected because of

any huge or even infinite feature space dimensions [16]. SVM has many benefits for

computational learning theory and it is very open and applicable to theoretical

understanding and analysis according to Joachims [19].

2.5 Related Work

Software architects partition their applications due to several architectural concerns

in a way that they can model, design, develop, test, and even maintain every part

separately and supervise the development easily. Behavioral aspects of an

information system are critical in this partitioning. But, non-functional requirements

are more significant for realizing the problem domain and supervising the design of

solution domain. However, there is no mutual understanding to localize the

architectural concerns in the problem domain and a common roadmap to extract

them from the NFRs list [1].

13

A number of studies have been presented to define precise methods (automated or

semi-automated as well) for identifying the NFRs and achieving early aspects. For

example, Cleland-Huang et al. [20] introduced an information retrieval based

approach where detection and classification of NFRs can be automated, and this

enables system level constraints to be considered and incorporated into early

architectural designs. Steele et al. [21] portrayed an automatic speech recognition

technique for capturing the non-functional requirements spoken by the stakeholders

at open meetings and interviews during the requirements elicitation process.

Extended problem frames, allowing architectural structures, services and artifacts to

be considered as part of the problem domain are introduced by Hall et al. [22]. It is

studied how this extension may enhance the applicability of problem frames in

relating requirements and architectures. Baniassad et al. [23] gave an overview of

how to exploit aspects earlier in software development life cycles, such as during

requirements gathering and elicitation.

According to the aim of bringing NFRs into software architecture, some previous

studies have been carried out. Chung et al. [24] presented their own structure “NFR

Framework” in order to categorize NFRs, then keep them in “Softgoal

Interdependency Graphs” and finally classify them into “Correlation Catalogues”.

Resulting catalogues show the effects of architectural designs on miscellaneous

NFR softgoals. Later, the software architect selects among alternatives by

evaluating the tradeoffs. Nevertheless, this study [24] is only an example for using

the framework in an abstract level.

Another idea is reflecting NFRs in UML Diagrams according to Cysneiros et al. [9,

25]. They used the Chung’s NFR Framework in addition to the tool LEL (Language

Extended Lexicon) in order to pick keywords from plain texts and using these

keywords while constructing NFR graphs. Then, according to these graphs, some

attributes, classes etc are added into the UML diagrams until desired non-

functionality is satisfied.

14

The use of NLP techniques in different phases of software engineering can be found

in the literature. For example, some methods for mapping natural language elements

to object-oriented concepts in requirements elicitation are discussed by Li et al.

[26]. One such approach, namely Early-AIM to identify aspects in requirements is

introduced by Sampaio et al. [27, 28] and evaluated by Chitchyan et al. [29]. This

approach utilizes corpus-based NLP techniques to enable the identification and

modeling of early aspects in a semi-automated way. The proposed technique

describes how unstructured sources of requirements can be automatically mined to

help the requirements engineer in identifying and building a structured aspect-

oriented model of the requirements.

2.6 Remarks

This thesis tries to identify problem domain concerns in architectural modeling of

software systems in an automated manner. On this road, a Support Vector Machines

algorithm is used to relate NFRs to classified "architectural concerns" and Natural

Language Processing techniques as part-of-speech tagging, phrase chunking and

stemming are applied to fragment the plain NFR texts under the supervision of

domain experts. Instead of others the SVM algorithm is used since it is known to

have a good generalization performance. Moreover, SVM can handle a large

number of features and hardly overfit. SVM is also strongly capable for extracting

the relevant discriminatory information from the training data and it can employ

different kernels involving many execution parameters. Hence, this makes finding

the best solution extensive according to Jonsson et al. [30]. For the NLP part,

LingPipe and Stanford libraries are used since they are one of the mostly-known

NLP libraries and both are easy to integrate.

15

CHAPTER 3

THE PROPOSED APPROACH

Linking the requirements engineering process with architectural modeling is not

straightforward. Especially, NFRs are extremely hard to capture and associate with

the components and connectors of an architectural model. This thesis introduces a

systematic approach to identify the NFRs by using NLP techniques as part-of-

speech tagging, phrase chunking and stemming, and to associate the NFRs with

quality attributes and architectural aspects by using ML. The approach is called as

“Non-Functional Requirements to Architectural Concerns (NFR2AC)”, which

empowers the system architects to construct the Utility Concern Spaces (a matrix

for the correlation of Architectural Aspects and Quality Attributes) from the NFRs

expressed in plain text.

3

3.1 Motivation

Software architecture modeling is expected to relate the architectural concerns of

problem domain to the running components and connectors of the solution domain.

However, this mapping is not trivial, and it may surprisingly end up with problem

domain concerns tangled in and scattered through the solution domain. In order to

guide the software architect throughout this mapping, an inclusive architectural

modeling approach has been proposed in [5], which identifies problem domain in

“Utility Concern Spaces” by correlating the "Architectural Aspects" and "Quality

Attributes", and solution domain in "Architectural Concern Spaces" by correlating

the "Architectural Tiers" and "Architectural Views" depicted in Figure 3.1.

The original roadmap given in Figure 3.1 starts with the identification of quality

requirements, which aims at determining the “architectural aspects” and “quality

attributes” from NFRs of an application. In the original work [5], the approach did

not propose a method to identify the architectural concerns from NFRs, but put the

16

way for mapping quality attributes to architectural aspects once they have been

extracted from the NFRs. The proposed approach given for here, which is based on

the research paper [1] attempts to systematize this extraction process using NLP and

ML techniques. Thus, it covers only the parts encircled by the ellipses in Figure 3.1.

Figure 3.1 - Architecture modeling approach

The method proposed here demands on successive application of NLP and ML

techniques for extracting the architectural concerns from NFRs, and training the

mappings of quality attributes to architectural aspects. This way of handling NFRs

in an automated environment refrains the system architects from having in-depth

domain knowledge for architectural modeling of an application [1].

17

3.2 Definition of Architectural Concerns

Architectural Aspects (AA) and Quality Attributes (QA) constitute “architectural

concerns” of the problem domain. In order to facilitate the NFR2AC approach with

automated tool support, an initial taxonomy for AA and QA should be constructed.

The know-how from several Web-based transactional applications at Cybersoft1 has

formed the taxonomy of Architectural Aspects. A limited snapshot of AA taxonomy

is given in Table 3.1.

Table 3.1 - Taxonomy of “Architectural Aspects”
1. PRESENTATION ASPECTS
1.1 Online Help Support
1.2 Adherence to GUI Standards
1.3 Inactivity Auto Logout Support
1.4 User Alerting
1.5 Input Validity Assurance
1.6 Business Terminology Compliance
1.7 Multi Lingual Support
1.8 Reporting Format Support
1.9 HTTP Support

1.10 Browser-Based Use Support
1.11 Screen Layout Design
1.12 Status Bar Support
1.13 Locale Support
1.14 Printer Spool Support
1.15 Login Screen Support
1.16 Context Sensitive Help Support
1.17 Progress Indication

2. DATA ASPECTS
2.1 Data Availability
2.2 Data Integrity
2.3 Data Consistency

2.4 Data Redundancy
2.5 Data Capacity
2.6 Data Uniqueness

3. INTEGRATION & COMMUNICATION ASPECTS
3.1 Large Data Sets Limitation
3.2 Adherence to Secure Integration Policies

3.3 System Integration Infrastructure
3.4 Clustering & Fail Over Support

4. DEVELOPMENT ASPECTS
4.1 Adherence to Framework Use Policies
4.2 Adherence to Coding Standards
4.3 Adherence to Pattern Standards

4.4 Automated Functional Testing Support
4.5 Parametric Strings & Label Support

5. SECURITY ASPECTS
5.1 Data Confidentiality
5.2 Non-Repudiation
5.3 Security Alerting
5.4 Data Security

5.5 Service Level Authorization
5.6 User Authentication
5.7 Integrated Security Support
5.8 Session Management

6. OPERATIONAL ASPECTS
6.1 Data Backup
6.2 System Liability Accordance
6.3 Alerting
6.4 Password Management

6.5 Authorized Service Assignment
6.6 Installation Guide Provision
6.7 Users Guide Provision

7. MAINTENANCE ASPECTS
7.1 Data Restore
7.2 Bug Fix Management

7.3 Rollback Management
7.4 Change Management

8. APPLICATION & COMPUTATIONAL ASPECTS
8.1 Transaction Throughput
8.2 Response Time
8.3 Progress Metering
8.4 Time Management
8.5 System Availability
8.6 Adherence to Business Rule Standards

8.7 Component Reuse
8.8 Platform Independency
8.9 Transaction Management
8.10 Load Balancing
8.11 Unique ID Generation

1 Cybersoft Information Technologies: http://www.cybersoft.com.tr

18

Another classification should be done for QA but, this time, Larsson Quality Model

[31] was adapted. A limited snapshot of QA taxonomy is depicted in Table 3.2.

NFR2AC approach revealed that for each AA and QA almost similar phrases are

used to state the NFRs. So, it is possible to extract corresponding AA and QA from

NFRs automatically. In order to do this, a domain vocabulary has to be constructed.

This approach uses NLP and ML techniques to form a domain vocabulary that

learns the correspondence of NFRs to AA and QA.

Table 3.2 - Taxonomy of “Quality Attributes”
1. USABILITY
1.1 Accessibility
1.2 Administrability
1.3 Understandability

1.4 Generality
1.5 Operability
1.6 Simplicity

2. PORTABILITY
2.1 Mobility
2.2 Nomadicity

2.3 Hardware Independence
2.4 Software Independence

3. PERFORMANCE
3.1 Accuracy
3.2 Footprint
3.3 Responsiveness
3.4 Scalability
3.5 Schedulability
3.6 Timeliness

3.7 CPU Utilization
3.8 Latency
3.9 Transaction Throughput
3.10 Concurrency
3.11 Efficiency

4. MAINTAINABILITY
4.1 Flexibility
4.2 Evolvability
4.3 Extensibility
4.4 Modifiability

4.5 Upgradeability
4.6 Expandability
4.7 Data Consistency
4.8 Version Consistency

5. INTEGRABILITY
5.1 Adaptability
5.2 Composability
5.3 Interoperability
5.4 Openness

5.5 Heterogeneity
5.6 Integrability
5.7 Audibility
5.8 Completeness

6. DESIGN
6.1 Conciseness
6.2 Correctness
6.3 Testability
6.4 Traceability
6.5 Coherence

6.6 Analyzability
6.7 Modularity
6.8 Reusability
6.9 Configurability
6.10 Distributeability

7. DEPLOYABILITY
7.1 Ease of Creation
7.2 Availability

7.3 Confidentiality

8. DEPENDABILITY
8.1 Integrity
8.2 Maintainability
8.3 Reliability
8.4 Safety

8.5 Security
8.6 Cost
8.7 Projected Lifetime

9. BUSINESS ORIENTATION
9.1 Targeted Market
9.2 Time To Market

9.3 Affordability
9.4 Development Time

19

3.3 The Roadmap

The charted roadmap of NFR2AC approach is given in Figure 3.2. NFR2AC has

three phases:

- Phase 1 tries to construct the domain vocabulary.

- Phase 2 trains the knowledge base for mapping the NFRs to architectural

concerns.

- Phase 3 is the “testing phase” for the brand new mappings of NFRs to AA

and QA for the target application.

Figure 3.2 - Roadmap for NFR2AC approach

20

Phase 1 tries to construct the domain vocabulary, which accepts NFRs in plain text

format and searches the “common phrases” using NLP techniques as part-of-speech

tagging, phrase chunking and stemming. Business domain experts may help form a

better domain vocabulary in this phase.

This approach assumes that if the raw NFR text is filtered, some of the less

informative words can be eliminated and consequently only important phrases can

be dealt with. For example, if the NFR is:

“The system will provide reporting facilities in suitable formats that are handled by

normal end user computing equipment and applications. These end user computing

equipment and applications are however, not considered as being part of the

system.”

The text will be inputted to NLP module, which will give the output of words

together with their “Part of Speech” tags like verb, adjective, noun etc. Those words

other than noun, adjectives and verb phrases like “the”, “a”, “can” will all be

eliminated and the remaining ones will appear in root (stem) form with their

frequencies. The formatted text will appear as:

system (2), end user (2), computing equipment (2), application (2), reporting

facility(1), format(1) etc.

After the elimination, commonly used phrases are specified and the phrases with

low frequencies are removed. By this way, the phrases belonging to the list of

“important words of the NFR” are labeled with a unique “Phrase ID” and added to

domain vocabulary. On the other hand, some phrases of an NFR may exist in the

domain vocabulary. In this case, current IDs of the previously added phrases are

found from the domain vocabulary before generating new IDs for new phrases. For

the ID generation, a numerator table exists in NFR2AC database and the last

generated ID is retrieved from this table incrementally. Let’s assume that the last

given ID is 270, and previously added phrases in domain vocabulary are end user –

21

phraseId: 56 and application – phraseId: 103. Then above structure will be as

follows:

system – phraseId: 271

end user – phraseId: 56

computing equipment – phraseId: 272

application – phraseId: 103

reporting facility – phraseId: 273

format – phraseId: 274

After ID retrieval/generation process, first time seen phrases are inserted into the

phrase table in database (See Table 3.3).

Table 3.3 - Phrase Table Content

CODE VALUE

1 user

2 function

3 time

4 business

5 screen

6 end user

7 login

8 access

Domain vocabulary can be extended in two ways: first by repeating this process

with more NFRs and second by the domain expert at any time. Domain expert can

load new plain texts to the system containing the phrases that he/she wants to add to

22

the domain vocabulary. Additionally, domain expert can see the Cross Domain

Occurrence information for each new phrase at this phase. Cross Domain

Occurrence shows the previous occurrences of any phrase existing domains and

previous projects, so this information may help domain expert choose new phrases

to be added to the domain vocabulary.

Using the domain vocabulary constructed in Phase 1, Phase 2 trains the knowledge

base for mapping the NFRs to architectural concerns with ML techniques using

Support Vector Machine. The output of Phase 2 is an “SVM Vector” reflecting the

mappings of NFRs to architectural aspects and quality attributes. Trainings may be

repeated to improve the aptitude of repositories for more effective automated

mappings. In this work, the system is trained with several mappings of NFRs to AA

and QA collected from several Web-based transactional applications implemented

at Cybersoft.

The aim of Phase 2 and Phase 3 (See Figure 3.2), is deducing the AA and QA

corresponding to each NFR using SVM. This phase has two “operation modes”:

“training” and “testing” as all ML methods suggests. Phase 2 is known as the

“training mode” where NFRs with the corresponding architectural aspect(s) and

quality attribute(s) are provided to the training phase. In the beginning of Phase 2,

NFR plain texts are loaded to the system and POS tagging, filtering, frequency

calculation are done in the same way like in Phase 1. The main goal here is finding

the key phrases in NFR sentences, and then constructing the SVM training vector

with their phrase IDs. Domain vocabulary can be also constructed at this time. First

time seen phrases are added to phrase table (See Table 3.3) and then NFRs are

added to the NFR table (See Table 3.4). Finally, the information of “which NFRs

contain which phrases” is put into the relation table (See Table 3.5).

23

Table 3.4 - NFR Table Content

PROJECT NFR ID NFR VALUE

Auto Comp. 1 Training material will be made available to the …

Auto Comp. 2 Due to the nature of the used technology…

Bank ABC 1 The system will provide online access to training…

Bank ABC 2 The operation of the system will require the users…

Table 3.5 - NFR-Phrase Relation Table Content

PROJECT NFR ID PHRASE FREQUENCY

Auto Comp. 1 Training material 1

Auto Comp. 1 available 1

Auto Comp. 2 technology 1

Bank ABC 1 online access 1

Bank ABC 2 operation 1

The NFR sentence(s) are filtered to keep those phrases in the domain vocabulary

and a training vector is constructed with IDs and frequencies of the filtered phrases.

For the same example used in Phase 1, phrase IDs and frequencies are retrieved ib

Phase 2 as:

“system – phraseId: 271 – frequency: 2, end user – phraseId: 56 – frequency: 2,

computing equipment – phraseId: 272 – frequency: 2, application – phraseId: 103 –

frequency: 2, reporting facility – phraseId: 273 – frequency: 1, format – phraseId:

274 – frequency: 1”.

 Then, the training vector becomes:

+1 271:0,2 56:0,2 272:0,2 103:0,2 273:0,1 274:0,1

24

“+1” states the occurrence of corresponding concern, and the rest of the string

represents the “Phrase ID” and the “normalized frequency” for each phrase. This

vector is sorted according to the ID labels in ascending order right before the SVM

training session. This approach constructs a single vector for every provided

architectural concern. SVM creates a model file for each architectural concern and

the domain expert selects related architectural concerns after training vector has

been constructed. The models of these architectural concerns are trained with the

positive vector. Additionally, based on same vector elements a negative vector is

also created and remaining models are trained with this negative training vector

stating the absence of mapping with the other architectural concern. SVM model

files are kept in a file system and one individual model file is created for each

architectural concern. The models are named as (“model_” + (asp/qa) +

Concern_id). Concern_id is given initially by the system due to the tables of

taxonomy introduced before (e.g. Concern_id of Data Redundancy is 2.4). An SVM

model example is given in Appendix B.1. NFR to architectural concerns relation is

also kept in database as shown in Table 3.6.

Table 3.6 - Training Data Table Content

PROJECT NFR ID MAPPING TYPE OID MAPPING

Auto Comp. 1 Architectural Aspect 1.7

Auto Comp. 1 Architectural Aspect 2.4

Auto Comp. 1 Quality Attribute 3.4

Auto Comp. 2 Quality Attribute 4

Bank ABC 1 Quality Attribute 5.6

Bank ABC 1 Architectural Aspect 1.1

Bank ABC 2 Architectural Aspect 2.2

Bank ABC 2 Architectural Aspect 3.1

25

After the positive and negative training vectors are constructed, these vectors are

inserted into model data table given by Table 3.7 in the NFR2AC database.

Table 3.7 - Model Data Table Content

PRJ NFR

ID

MAP.

TYPE

OID

MAPPING

LBL DIMS VALUES

Auto C. 1 AA 1.7 1 1,7,15... 0.2,0.5,0.1,0.7...

Auto C. 1 AA 2.4 -1 1,7,15... 0.2,0.5,0.1,0.7...

Auto C. 1 QA 3.4 1 2,8,34... 0.3,0.1,0.7,0.7...

Auto C. 2 QA 4 1 5,7,75... 0.1,0.4,0.4,0.9...

Bank 1 QA 5.6 1 1,9,55... 0.3,0.5,0.3,0.2...

Bank 1 AA 1.1 -1 1,9,55... 0.3,0.5,0.3,0.2...

Bank 2 AA 2.2 1 2,3,11... 0.9,0.3,0.3,0.2...

Bank 2 AA 3.1 1 4,7,65... 0.6,0.6,0.1,0.5...

In Table 3.6 and 3.7, MAPPING_TYPE column specifies the type of architectural

concern, whether it is an architectural aspect or a quality attribute. Additionally,

OIDMAPPING column specifies which architectural aspect or quality attribute is

having the same value according to the mapping type mentioned before as

“Concern_id”. System initially stores distinctive IDs for each architectural concern.

LABEL, DIMS1-2-3, VALUES1-2-3 columns store the training vector elements

created.

Finally, Phase 3 is for the brand new mappings of NFRs to AA and QA for the

target application. In ML terminology, this phase is known as the “testing phase”

and its output is the Utility Concern Spaces formed by correlating AA and QA [5].

Application architects are free to adjust automated mappings, which can be

26

forwarded back to Phase 2 for further training. Continual training of the knowledge

base from diverse business domains will improve the success of NFR2AC approach

by forming more intelligent repositories.

During the testing phase (Phase 3), as new NFRs appear, each one is filtered similar

to the training phase. Corresponding architectural concerns need to be found with

the help of training vectors provided by Phase 2. Let’s assume that our testing NFR

is:

“The system will be web based and will therefore be accessible to the user using a

standard installed and controlled web browser.”

According to the methods previously introduced, the output of NLP module

becomes:

web – phraseId: 312

standard – phraseId: 564

browser – phraseId: 9

web browser – phraseId: 274

system – phraseId: 181

user – phraseId: 59

accessible – phraseId: 77

After the POS tagging and elimination processes, another elimination method is

executed for the phrases that are not in the current domain vocabulary. Since they

are not in the domain vocabulary, they cannot retrieve a matching phrase ID and

they cannot take part in the SVM testing vector. Also, it is nonsense to test the

knowledge base with a non-trained element. The each remaining one has the

frequency value 1. As a result, an SVM vector for testing is constructed with the

same way a training vector created.

27

For each architectural concern, testing function is called one by one for the

constructed vector. For each architectural concern, also that means for each trained

model file, SVM returns a decision function value for each aspect and quality

attribute according to the given testing vector. In the training mode, label value

becomes “-1” for negative examples, in contrast to the case that the label value

becomes “+1” for positive values. These are the peak values. Therefore, the return

value for SVM decision function is normalized to obtain a probability of the

architectural concerns occurrences. If the value is less than or equal to “0%”, then

the probability of architectural concern occurrence is “%1”. Similar to the minimum

peak value, if the value is greater than or equal to “100%”, then the probability of

architectural concern occurrence is “99%”. For the peak values, NFR2AC approach

avoids to result “%0” and “%100” values, because SVM is not a highly confidential

method for the default execution parameters. A small error possibility is released in

the testing phase

.

Table 3.8 - Testing Data Table Content

PROJECT NFR

ID

MAPPING

TYPE

OID MAPPING VALUE

Auto Comp. 10 AA 1.7 -0.2330

Auto Comp. 10 AA 4.4 0.4430

Auto Comp. 11 QA 1.4 -0.1150

Auto Comp. 21 QA 4.5 0.9980

Bank ABC 14 QA 5 -0.6346

Bank ABC 15 AA 1.1 -0.4550

Bank ABC 22 AA 3.3 0.5630

Bank ABC 28 AA 2.3 0.6650

28

After SVM testing execution, results are saved in a database as the training data.

One reason for this is generating and exposing the “Cross Domain Occurrence”

information from the related database table. This information is necessary for the

parts introduced before. The second reason is leaving a knowledge base for

constructing the problem domain matrices for the UCS generation. Another benefit

of this information might be calculating some other probabilistic values from the

database as a future work. The testing results are inserted into the classified results

table given in Table 3.8. Additionally, this table saves the SVM testing results in

VALUE column in a non-normalized form.

After several training and testing sessions, a highly qualified knowledge base can be

constructed. For the Utility Concern Spaces transformation, the correlation matrix

can be constructed by relating architectural aspects and quality attributes. The cell

values of this correlation matrix will be filled out by the information stored in the

knowledge base (previous mappings learned from the several trainings of diverse

business domains). In order to construct the problem domain matrix, those

architectural aspects and quality attributes with more than 50% probability for any

SVM testing session are selected. Then, these aspects and quality attributes are

supplied to the problem domain matrix and the matrix cells are filled with

correlation figures reflecting the encountered values of related architectural aspect

and quality attribute. In order to calculate this value, a concern occurrence matrix is

constructed according to the relation between each architectural aspect and quality

attribute as follows:

Table 3.9 – Architectural Aspect/Quality Attribute Occurrence Matrix

 QA1 QA2 QA3

AA1 a b c

AA2 d e f

AA3 g h i

29

In the Table 3.9 occurrence numbers of architectural aspects and quality attributes

in same NFRs in testing results are represented as “a, b, c, d, e, f, g, h, i” in a

matrix. The cell value of UCS matrix for each architectural aspect and quality

attribute pair is calculated according to this matrix. For example in UCS matrix, the

cell value of (AA1, QA1) is calculated with the formula:

 Value = ((a / a+b+c) + (a / a+d+g)) / 2 (6)

After this value for each cell is calculated, it is scaled as being “Neutral”, “Strong

(+)” and “Very Strong (++)”according to some peak values. Domain expert can

update each cell after the automatic filling. The formula (6) gives an average

weighting factor for QA and AA correspondence since quality attributes might

crosscut the architectural aspects as well as the architectural aspects might crosscut

the quality attributes.

When the tables get their final state under the domain expert control, resulting

matrices can be exported to an XML file to be used by the other steps of the

architecture modeling approach [5].

In the original work [5], UCS is constructed by correlating the quality attributes and

the architectural aspects in a matrix, where the architectural aspects show the rows

and quality attributes constitute the columns (See Figure 3.3). In the matrix, every

correlation set (the cubes of upper illustration in Figure 3.3) embodies an individual

utility concern space.

Similarly, ACS is constructed by correlating the architectural tiers and the

architectural views in a matrix, where the architectural views show the rows and

architectural tiers constitute the columns (See Figure 3.4). In the matrix, every

correlation set (the cubes of upper illustration in Figure 3.4) embodies an individual

architectural concern space.

30

Figure 3.3 - Utility Concern Spaces

Figure 3.4 - Architectural Concern Spaces

31

The “+” or “-” symbol denotes a positive or negative correlation, and “++” or “--”

symbol shows the stronger correlations. The coefficients play an essential role for

identifying the “sensitivity points” and “tradeoffs” [5].

3.4 Remarks

The proposed approach is explained in this chapter. Taxonomies for architectural

concerns are listed in the beginning of this section and subsequently NFR2AC

Roadmap is introduced step by step. It consists of three main phases. The first step

is constructing a domain vocabulary by selecting key phrases from plain texts.

Then, by using this domain vocabulary, a knowledge base is constructed according

to the NFRs – architectural concerns mappings specified by the domain expert.

After obtaining a well-trained knowledge base, brand new mapping relations are

searched over this knowledge base by loading NFR plain texts. Finally, after getting

successful testing results, problem domain matrices are formed in an automatic

manner in order to finding the Utility Concern Spaces that is the scope of the

original paper [5] which this study aims to improve.

32

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTATION

This chapter explains the implementation and experimentation details.

4

4.1 Implementation

In order to validate the proposed approach, an NFR2AC tool (an Eclipse plug-in) is

developed to demonstrate the proposed steps of the related work.

4.1.1 Environment and Tools

NFR2AC tool uses some libraries for its sub-modules. For the “Domain Vocabulary

Construction with NLP module” of the Phase 1, LingPipe2 and Stanford3 software

are used as part-of-speech tagger, phrase chunker, stemmer utilities. On the other

hand, for the ML module, SVMlight framework4 and JNI Kernel Extension for

SVMlight software5 are used. For the relational database, MySQL6, and for the O2R

mapping, Hibernate API7 is used.

4.1.2 NFR2AC Toolset

NFR2AC toolset consists of six tab pages, each one dealing with dedicated tasks.

All six pages of NFR2AC are shown in the next six figures (See Figures 4.1, 4.2,

4.3, 4.4, 4.5, 4.6).

2 LingPipe NLP API, “Alias-i LingPipe Natural Language Processing Java Libraries”,
 http://alias-i.com/lingpipe/index.html
3 Stanford NLP API, “The Stanford Natural Language Processing Java Libraries”,
 http://nlp.stanford.edu/index.shtml
4 SVMlight, “SVM light, Support Vector Machine framework”, http://svmlight.joachims.org/
5 JNI Kernel Extension for SVM light software,
 http://www.aifb.uni-karlsruhe.de/WBS/sbl/software/jnikernel/
6 MySQL Database, http://www.mysql.com
7 Hibernate Object To Relational Mapping API, http://www.hibernate.org

33

Figure 4.1 - Domain and Project Selection Tab

Figure 4.2 - Construct Domain Vocabulary Tab

34

Figure 4.3 - Find Phrase Occurrences Tab

Figure 4.4 - Map NFRs to Architectural Aspects and Quality Attributes Tab

35

Figure 4.5 - Classify Architectural Aspects and Quality Attributes from NFRs
Tab

Figure 4.6 - Construct Matrices Tab

36

In the first tab, user is expected to select a “business domain” and associated

“project”. Then, s/he uses the second tab and refines the domain vocabulary

according to Phase 1 of the proposed approach. The third tab page (Figure 4.3) is

designed to load the NFRs to the system in plain text form. Both in the second and

third tab pages, phrases are also shown with the “cross-domain occurrence”, which

reveals the occurrence of the related phrase in previous domain-project pairs with

the probability values and the architectural concern relations in detail. This

information guides the architects in choosing “common phrases”.

Figure 4.7 - Mapping of NFRs to Architectural Aspects and Quality Attributes

37

In the fourth tab (Figure 4.4), the domain vocabulary phrases are filtered and shown

as “phrase-frequency list” for every NFR (e.g. Phrase1 (freq1), Phrase2 (freq2),

Phrase3 (freq3), etc.), which forms the upper grid of the screen depicted in Figure

4.7. Then, user is expected to select the NFRs from the upper grid and associate

with the AA and QA in the lower windows of Figure 4.7.

In order to commit the mappings, user presses the Save button, and SVM training

session is completed. The training sessions can be repeated several times with

different mappings of NFRs to architectural aspects and quality attributes, which

improves the aptitude of knowledge base for future mappings of the targeted

application.

Figure 4.8 - Classifying Architectural Aspects and Quality Attributes

38

When SVM models are trained with enough mapping and training sessions, it is

now time to test the SVM models and check whether SVM classification results are

efficient enough. For this purpose, the fifth tab (Figure 4.5) is designed to load new

NFRs to the system. Once the Deduce button is clicked, the system presents the

occurrence probabilities of each architectural concern for every NFR as shown in

Figure 4.8.

If the system has not any trained model for aspects or quality attributes,

classification returns the “N/A (Non Applicable)” value. Finally, when the user

clicks the Save button in the fifth tab page, classification results can be exported to

an XML file.

Figure 4.9 - Constructing the Utility Concern Spaces matrix

39

Once system has enough training and classification sessions, these observations and

experimental results can be provided to the construction of Utility Concern Spaces

matrix of the broader architectural modeling approach given in [5]. The sixth tab

page (Figure 4.6) has been designed to manage this mapping. In this tab page, the

user can construct the problem domain matrix (upper grid) and solution domain

matrix (lower grid) regardless of any business domain and associated project (See

Figure 4.9). Construction of the “Solution Domain” of modeling approach given in

[5] is out of scope for this work, but solution domain matrix can also be generated

similarly.

For the Utility Concern Spaces transformation, the correlation matrix can be

constructed by relating architectural aspects and quality attributes according to the

previous mappings learned from the several trainings of diverse business domains.

Then, these aspects and quality attributes are supplied to the problem domain matrix

and the matrix cells are filled with one of the options from “Neutral”, “Strong (+)”,

“Very Strong (++)” initially. “Strong” and “Very Strong” options can be initialized

for only plus values. Negative values are out of scope and can be declared as a

future work. Domain expert can update each cell after the automatic filling.

4.1.3 UML Diagrams

In this section, the UML diagrams will be given to explain the whole system in

detail.

The first diagram is a use case diagram that can be seen in Figure 4.10. It gives a

full picture summary for the NFR2AC system. There are three kinds of users who

might use the system each are dealing with a different task. First type of user is the

“Business Domain Expert”. This user is responsible for constructing a domain

vocabulary by loading NFR plain texts, selecting key phrases within the

requirements, and adding them into the domain vocabulary. Second type of user is

the “Architectural Domain Expert”. This user deals with constructing a knowledge

base. In order to do that, user loads NFR plain texts to the system, and trains the

40

system with NFR – AC mappings, by using the domain vocabulary. Third user type

is the “Application Architect”. This user tests the knowledge base by loading new

NFR plain texts. Then, if results are efficient, user generates the “Utility Concern

Spaces” from system, by using the knowledge base.

Figure 4.10 - Use case diagram of NFR2AC

The second diagram is the activity diagram (See Figure 4.11). This figure explains

the process in an activity flow, which is shown in a static way in the use case

diagram. In the activity diagram, process starts with refining domain vocabulary

until it seems sufficient for the next step. Otherwise, refining process is repeated.

When it seems that a sufficient domain vocabulary is constructed, with mapping,

training and testing sessions; “Refine Knowledge Base” process is applied. In order

to get sufficient results in this step, the first step can be repeated too. Then, if the

knowledge base is refined sufficiently, UCS generation step has begun. If results are

41

good enough, the system goal is accomplished. Otherwise, all previous steps are

repeated until the system outputs better results.

Figure 4.11 - Activity diagram of NFR2AC

In order to describe the whole process in detail, three sequence diagrams are given

in the following three figures, each are explaining an individual phase of the

system. First sequence diagram (See Figure 4.12) shows the sequential procedure of

Phase 1, which is defined as “Domain Vocabulary Construction with NLP” in the

current roadmap (See Figure 3.2).

42

Figure 4.12 - Sequence diagram of Phase1

“Business Domain Expert” loads an NFR plain text to the system. Then, POS tagger

tags each word and phrase. After that, phrases that are different than verbs,

adjectives and nouns are eliminated. Remaining phrases are sorted by frequency in

descending order. Finally, user selects important phrases from that list and adds

them to the domain vocabulary.

Figure 4.13 - Sequence diagram of Phase2

43

The second sequence diagram, shown in Figure 4.13, describes the second phase of

the system defined as “Training NFR2AC Mappings with ML”. “Architectural

Domain Expert” loads an NFR plain text to the system at the beginning. Then, as in

Phase 1, phrases that are different than verbs, adjectives and nouns are eliminated.

At this moment, user can add new phrases that are not added to the domain

vocabulary before. Then, by getting all phrase IDs from domain vocabulary, SVM

training vector is constructed. After user does mappings, knowledge base is trained

with constructed training vector according to the mapping information.

The third sequence diagram, shown in Figure 4.14, describes the third phase of the

system defined as “Testing NFR2AC Mappings with ML”. “Application Architect”

loads an NFR plain text to the system. Then, as in previous phases, phrases that are

different than verbs, adjectives and nouns are eliminated. Then, by getting all

phrase IDs from domain vocabulary, SVM training vector is constructed due to the

key phrases exist in the NFRs. After knowledge base is tested with constructed

training vector, user can generate UCS matrix due to the sufficient test results.

Figure 4.14 - Sequence diagram of Phase3

44

Figure 4.15 illustrates the package diagram of the NFR2AC toolset.

Figure 4.15 - Package diagram of NFR2AC

• com.ggokyer.master.thesis

This package includes all the other packages.

• com.ggokyer.master.thesis.common

This package includes the factory classes for the screen components.

• com.ggokyer.master.thesis.db

This package includes the database related packages,

45

• com.ggokyer.master.thesis.db.dao

This package includes the data access object classes for the O2R mapping.

• com.ggokyer.master.thesis.db.hibernate

This package includes the Hibernate configuration XML files.

• com.ggokyer.master.thesis.ml.svm

This package includes the Support Vector Machine related classes for Machine

Learning actions.

• com.ggokyer.master.thesis.model

This package includes the data transfer object classes between the screens and the

core classes.

• com.ggokyer.master.thesis.nlp

This package includes the NLP related packages.

• com.ggokyer.master.thesis.nlp.stanford

This package includes the NLP Stanford library classes.

• com.ggokyer.master.thesis.nlp.aliasi

This package includes the NLP Aliasi LingPipe library classes.

• com.ggokyer.master.thesis.util

This package includes main utility classes that the system needs.

• com.ggokyer.master.thesis.views

46

This package includes the plug-in screen classes.

4.1.4 Database Model

In this section, tables in the NFR2AC database will be listed with the detailed

information about the mission for each one.

Figure 4.16 - NFR2AC Database Model

The database model of NFR2AC is shown in Figure 4.16. Tables of NFR2AC are:

47

• domain

This table holds the domain information inserted in the first tab page by user.

• project

This table holds the project information inserted related to a domain in the first tab

page by user.

• phrase

This table holds the phrases according to constructing the domain vocabulary.

• nfr_boundary

This table holds the NFR sentences imported by user in order to train or test the

system.

• nfr_phrase

This table holds the relation of NFR sentences and key phrases within each NFR

sentence.

• train_data

This table holds the training data that is the relation between NFRs and ACs

mapped by user.

• classify_data

This table holds the testing results data that is created due to the NFR sentences

loaded by user.

• svm_model_data

48

This table holds the SVM training vectors (label, dims, and values) that are created

due to the NFR Sentences, in order to train the knowledge base.

• numarator

This table holds the numarator value for the phrase code. Every phrase takes a code

incrementally from this numarator table, just before inserted to the domain

vocabulary.

• parameter

This table holds the parametric values that are user by the system.

4.1.5 Usage of Software

NFR2AC tool is designed as an Eclipse plug-in. Hence, it is opened within the

Eclipse IDE. From the Window menu, “Show View > Other” menu item is pressed

in order to see the installed Eclipse views (See Figure 4.17).

Figure 4.17 - Running the NFR2AC

49

NFR2AC tool is added to the Eclipse views menu with a title “NFR2AC” in the

“NFR Category” view directory (See Figure 4.18). In order to open the tool, this

view item is selected and the “Ok” button is pressed.

As mentioned before NFR2AC tool has six tab pages, each one dealing with

dedicated tasks, and moreover the first tab page “Main” is initially welcomes the

user right after the tool is opened (See Figure 4.19). This tab page requests the user

to select the domain and project that the current running session will be executed.

User can enter and add new domains and projects with “Add” buttons. Also any

selected domain and project can be removed from database with “Delete” buttons if

user confirms the deletion process.

Figure 4.18 - View Item added for NFR2AC tool

50

Figure 4.19 - Select domain and project

After the domain and project selection is finished “Save” button is pressed to

continue the process and the next tab page becomes selected. Domain and project

selection is mandatory for running the other actions of the tool, because all actions

are done due to the selected domain and project. In a violation of this rule, tool

reopens this tab page and forces user to make a selection.

The second tab page is designed for constructing the domain vocabulary (See

Figure 4.20). User selects and loads a plain text requirement file from a file picker.

When the “Load” button is pressed, the content of the file is inserted into the text

area below the button. After that, user presses the “Advise” button and the key

phrases within the loaded text are filtered and listed in the table in a descending

order by frequency.

51

Figure 4.20 - Construct Domain Vocabulary

User also inputs a threshold value before the filtering process. This threshold

information provides initial selection of the listed phrases due to the threshold

probability. Let’s assume that threshold is selected as “70%”. Then, after the

filtering process, 70 percent of phrases in the table become green and ready for

adding to the domain vocabulary with selected “In Vocab” check boxes. Remaining

30 percent of phrases are red painted and initially shown out of domain vocabulary.

However, user can select / deselect each phrase after the initial listing process.

When the table takes its final state, user presses the “Save” button and adds the

selected phrases into the domain vocabulary.

During the phrase selection process, user can also consider the cross-domain

occurrence information of each phrase with pressing “Cross Domain Occ” button

(See Figure 4.21). This panel gives a detailed inventory of occurrences of that

phrase in previous domains and projects. So, user can decide to add or not to add

any phrase after considering this information.

52

Figure 4.21 - Cross-domain occurrence for each phrase

Figure 4.22 - Load NFR plain text for training

53

Figure 4.23 - Find key phrases for each NFR

When an acceptable enough domain vocabulary construction is completed, user can

start training sessions by using this vocabulary. From the “Find Phrase Occ” tab

page, user loads requirement plain texts to the system, with help of a file picker and

a “Load” button like in the previous tab page (See Figure 4.22). Then NFR

sentences are parsed from the plain text due to the new line character, and each

NFR sentence is added to the upper table as a single row including the key phrases

(See Figure 4.23).

After that, user presses the “Advise” button and for each NFR sentence, key phrases

are filtered and listed in the below table with the occurrence information for each

one in the current domain vocabulary. As in the previous tab page, user can reach

the cross-domain occurrence information from this tab page too. When the “Save”

button is pressed, domain vocabulary phrases are moved into the next tab page with

their frequency information (See Figure 4.24).

54

In the tab page “Map NFRs to Aspects and QAs”, domain vocabulary phrases and

frequencies for each NFR sentence are initially loaded to the upper table.

Figure 4.24 - Filter key phrases and frequencies for each NFR

When user double clicks the upper table, current architectural aspects and quality

attributes are loaded to the two lists below for selected NFR sentence. Then, user

marks the AAs and QAs from lists that are related to the selected NFR, finally

“Train” button is pressed and mapping data is trained by the system (See Figure

4.25).

When enough training session is completed, user can start testing sessions by using

constructed knowledge base. In the tab page “Classify Aspects and QAs”, user

loads a plain text to the system, which AAs and QAs will be searched within (See

Figure 4.26). Then, NFR sentences are parsed from the plain text due to the newline

55

character, and each NFR sentence is added to the upper table as a single row. After

that, user presses the “Deduce” button and for each NFR sentence, occurrence

probability for each architectural concern is found by SVM testing and these

probabilities are listed in the below table for each NFR.

Figure 4.25 - Map Architectural Aspects and Quality Attributes for each NFR

When user double clicks the upper table, below table is updated with the testing

results of the selected NFR (See Figure 4.27). If the user presses the “Save” button,

a file dialog is opened and testing results are exported to an XML file (See Figure

4.28).

When enough testing session is completed, user can construct the matrices

introduced in the original paper [5] in order to construct the Utility Concern Spaces

(UCSs) by using constructed knowledge base (See Figure 4.29).

56

Figure 4.26 - Load NFR plain text for testing

Figure 4.27 - Testing results for each NFR

57

Figure 4.28 - Export testing results to an XML file

Figure 4.29 - Construct matrices for Utility Concern Spaces generation

58

Figure 4.30 - Cross classify occurrence for each cell

In the tab page “Construct Matrices”, user selects the domain and project

information. For domain and project combos, “ALL” items can be selected too in

order to construct matrices due to the domains or projects globally. After the

domain-project selection, user presses the “Run” button and for the selected pair,

problem domain matrix is dynamically constructed including the architectural

aspects and quality attributes encountered in related testing sessions due to the

criteria explained in the “Proposed Approach”. Since solution domain is out of

scope for this study, solution domain matrix is initially filled with default “Neutral”

cell values.

User can press the small buttons in the cells of problem domain matrix in order to

view the cross classify occurrences of architectural concerns of the selected cell in

59

previous domains and projects (See Figure 4.30). After the matrices are taken their

final state by user, if the “Save” button is pressed, a file dialog is opened and final

matrices are exported to an XML file (See Figure 4.31).

Figure 4.31 - Export matrices to an XML file

4.2 Experimentation

In order to validate the proposed approach, both of the approach and supporting

toolset have been tested with a real-life project in automotive domain. Several

NFRs are mapped with related ACs. Then, two main experiments have been

realized. First, for the NFR set used in the testing session, the expected architectural

concerns and the found architectural concerns are compared for each NFR. Then,

60

the success rate is calculated for this approach. Second, UCS matrix is constructed

in two ways individually; by using the NFR2AC and not using it. Finally, two

individual UCS matrices are compared for a success analysis. In this section, details

of these processes are given step by step.

There are two NFR sets given in Appendix C2 and C3, where C2 is the list of NFRs

used in training session of experimentation, and C3 is the list of NFRs used in

testing/classifying session of experimentation. These NFR sets also exist under

related directories in Appendix C1, with full experimentation results.

As the first step of the experimentation phase, a comparison is made between the

expected architectural concerns and the found architectural concerns for each NFR

used in the testing session given in Appendix C3. In this table, expected

architectural concerns are given for each NFR and the bold and the italic ones are

the concerns found by the SVM. The Bold concerns have bigger occurrence results

than the italic ones. For getting the success rate, a set of formulas is used as follows:

 (7)

 (8)

 (9)

 (10)

 (11)

61

Therefore, number of true positives, true negatives, false positives and false

negatives are counted for each NFR used in testing session (See Table 4.1).

Table 4.1 – Numbers for Accuracy Analysis of NFRs used in testing session

NFR # TP FP TN FN NFR # TP FP TN FN

1 10 1 129 0 14 7 13 120 0

2 10 12 117 1 15 5 19 116 0

3 7 13 119 1 16 4 2 131 3

4 5 5 128 2 17 6 8 126 0

5 7 1 132 0 18 7 9 124 0

6 9 13 117 1 19 4 4 131 1

7 6 30 102 2 20 7 11 121 1

8 7 18 115 0 21 6 16 115 3

9 12 20 107 1 22 3 8 125 4

10 6 11 123 0 23 3 5 130 2

11 7 16 117 0 24 4 9 125 2

12 4 19 116 1 25 9 25 105 1

13 0 0 134 6 Total 155 288 3027 30

According to the numbers in Table 4.1 and the formula (7), accuracy of this

approach becomes 91%. For the formulas (8) and (9), precision becomes 35% and

recall becomes 84% for this approach. By using the formulas (10) and (11), false

positive rate becomes 9% and false negative rate becomes 7%.

Then, for the UCS matrix comparison experiment, UCS matrix is generated

manually and not using the implemented toolset. Since the mappings and the matrix

generation are done under the expert control, there is no any training session for this

technique. Only a classification process is done for the input NFRs, and the expert

finds the related ACs manually in order to generate the matrix. For the NFRs given

62

in Appendix C3, encountered architectural concerns are also given for each NFR in

the same table.

Due to the architectural concerns encountered, expert creates the UCS matrix, and

then fills the each cell of the matrix with related correlation values. Finally, the

UCS matrix is manually generated and a small snapshot of UCS matrix is in Table

4.2.

Table 4.2 – UCS matrix (Manual)

 Accessibility Understandability Accuracy Efficiency

Online Help Support Neutral Very Strong (++) Neutral Neutral

Browser-Based

Use Support

Very Strong

(++)

Neutral Neutral Very Strong

(++)

Screen Layout Neutral Very Strong (++) Neutral Neutral

Status Bar Support Neutral Strong (+) Neutral Neutral

After getting the final UCS matrix manually, then the same process is repeated with

using the implemented toolset. Initially, domain vocabulary is created with NFRs

given in Appendix C2, where the phrases marked as bold and italic are added to the

domain vocabulary. After that, a knowledge base is constructed by training the

NFR-AC mappings again according to the NFR texts and matching architectural

concerns given in Appendix C2. Finally, testing sessions are completed by loading

the NFRs in Appendix C3, which are also used by the manual fillings.

The NFR2AC toolset results the final UCS matrix automatically, which is given as

an XML export in related directory of Appendix C1. Again, a small snapshot of the

final matrix is given at the end of the process as in Table 4.3.

63

Table 4.3 – UCS matrix (NFR2AC)

 Accessibility Understandability Accuracy Efficiency

Online Help Support Very Strong (++) Very Strong (++) Strong (+) Neutral

Browser-Based

Use Support

Neutral Very Strong (++) Neutral Neutral

Screen Layout Strong (+) Very Strong (++) Neutral Neutral

Status Bar Support Strong (+) Very Strong (++) Neutral Neutral

In order to find the accuracy of the UCS matrix generation, again the accuracy

formula given in (7) is used. According to the numbers in Table 4.4 and the formula

(7), accuracy of this approach becomes 57%. For the formulas (8) and (9), precision

becomes 59% and recall becomes 45% for this approach. By using the formulas

(10) and (11), false positive rate becomes 25% and false negative rate becomes

74%.

Table 4.4 – Numbers for Accuracy Analysis of UCS matrix (NFR2AC)

TP FP TN FN

197 137 302 246

4.3 Remarks

In this chapter, NFR2AC toolset is described and the implementation details have

been given. Used technologies and libraries have been defined shortly. Then,

NFR2AC toolset was introduced in a general way. After that, an overview of the

packages and package details were given. UML diagrams and database diagrams

have been drawn in order to picture the system implementation deeply. At the end

of the implementation section, a user’s guide was appended for explaining the usage

of the toolset.

64

After the implementation details, with the aid of an implemented toolset, the

experimentation details are given, which are done in order to approve the sense of

the idea. Several NFRs are mapped with related ACs. Then, the accuracy of the

system is calculated for finding the expected architectural concerns. As the next

step, UCS matrices are compared. UCS matrix is constructed by using the NFR2AC

and same matrix is constructed by not using the system for the same NFRs. Finally,

constructed two individual UCS matrices are compared and the accuracy is given.

65

CHAPTER 5

CONCLUSION

5.1 Summary

This thesis proposed an approach to automatically extract architectural aspects and

quality attributes from non-functional requirements expressed in plain text. In order

to reach this goal, the approach utilizes NLP and ML techniques extensively for

setting up an automated environment. For the NLP techniques part-of-speech

tagging, phrase chunking and stemming are used. For the ML techniques SVM is

used. Using the NFR2AC toolset, architects construct a domain vocabulary by

filtering and adding key phrases from NFR plain texts. Later on, they map NFRs to

architectural aspects and quality attributes, and train the knowledge base with this

information. Finally, they ask the NFR2AC tool to deduce the occurrence

probabilities of each architectural aspect and quality attribute for every NFR

requested.

At the beginning, the background information has been given about Requirements

Engineering, Non-Functional Requirements, Architectural Modeling, Natural

Language Processing and Machine Learning. Then, the proposed approach was

introduced. After that, implementation details were given and NFR2AC toolset was

explained in detail. Each screen and its functionality were described one by one.

After the implementation details, experimentation section has taken place. In this

section, training and testing steps realized by using the system have been explained.

Then, manual filling by the domain expert and the automatic filling by the system

have been carried out. Finally, results of the two techniques were compared to

measure the effectiveness of the proposed approach and accompanied toolset.

66

5.2 Conclusions

The approach suggests the idea of using a Machine Learning (ML) method based on

Support Vector Machines to relate the NFRs to classified architectural aspects and

quality attributes in an automated manner with the aid of a knowledge base refined

by an expert. This idea created the better results when intelligent knowledge bases

have been formed by means of successive trainings.

In order to empower the architects, NFR2AC toolset has been implemented as an

Eclipse plug-in. Both of the approach and supporting toolset have been tested with a

real-life project in automotive domain. Although the knowledge base has been

originally trained with several applications from diverse business domains, the work

intentionally did not take any previous case from the automotive domain in order to

see the effectiveness of NFR2AC approach with a brand new business domain. The

implementation of the approach by means of the toolset given in this work has

revealed some practical results. Experimentation phase has been done for two steps.

Main goal of this thesis was getting successful results for the first step; second step

was just a trial for showing the way of the matrix generation. First step ended up

with successful results, which validates the idea of this approach with enough

success rates. Moreover, second step ended up with the results that around 60% of

the cells for the generated UCS matrix are exactly the same with that UCS matrix

expected by an individual expert system architect. It is also the fact that the domain

expert has extensive knowledge on architectural modeling of transactional software

systems but not deep know-how in automotive domain. This was also the intention

of the validation approach to see the real effectiveness of the approach for an

unknown business domain. Furthermore, it must be mentioned that manual filling of

UCS matrix is a subjective process. It depends on the comment of domain expert

and matrix differs from expert to expert. Therefore, success rate for the second step

is not a strict result.

In spite of the acceptable success rates, there are still some steps to take for the

improvement of the system. In the implementation phase, JNI Kernel Extension for

67

SVMlight software was used for the integration of Java and SVMlight. However, there

are some bugs encountered in this software. For example, under certain conditions

some exceptions occurred and SVM models had to be trained with the missing

parameters. Thus, it has been concluded that a full system train without any

interface bug might have ended up with better testing results.

Another deficiency might stem from the fact of using a default linear kernel for the

SVM. Any other kernels and also any other ML techniques can provide more

efficient models probably. Also, it has been witnessed that more and more NFRs are

needed for the system to create better knowledge bases. Additionally, domain

expert(s) must pay attention for the key phrase selection. Likewise, non-redundant

phrases should be selected as much as possible.

Last but not least, various domain experts may construct a knowledge base for a

single domain distinctly to improve the aptitude of the knowledge base during the

training session, which is supposed to give much better testing results in that case.

This has also revealed that every domain expert may select different NFR –

architectural concern mappings during the training phase. Hence, the effectiveness

of the proposed approach does not only depend on the toolset implementation but

also depends on the variety and the knowledge level of the domain expert(s).

In spite of all these factors, this study has successfully put an effective roadmap for

the automated architectural modeling approach that starts from NFRs specified in

plain text. The approach has also been validated through the implementation of an

accompanied toolset and an experimentation of a real-life project as well. By

improving the knowledge base with more training, it is expected to end up with

much better results that are very close to the manual fillings of domain experts.

5.3 Future work

The NFR2AC approach has been based on NLP and ML techniques where default

execution methodologies and parameters are used for both of the technologies in the

68

implementation of the approach. Regarding the extension of this study, the work

can be extended to improve the extractions from NFRs expressed in plain text. To

this end, different parsers can be used for NLP, and the outcomes of NLP can be

provided to ML as different SVM features instead of frequencies. Trying the ML

techniques other than SVM may also further enhance the approach.

Another extension of the study can be the incorporation of NFR2AC toolset into the

software product line engineering infrastructures. Also to further validate the idea, a

similar approach can be worked for the solution domain in addition to study the

approach for the problem domain.

Another issue might be separating the screens and the methods of the toolset into

three different applications for each role ‘Business Domain Expert’, ‘Architectural

Domain Expert’ and ‘Application Architect’. Also for the NLP part, speech

recognition techniques can be added to the current approach.

69

REFERENCES

[1] Gokyer, G., Cetin, S., Sener C. and Yondem, M. T., “Non-Functional

Requirements to Architectural Concerns: ML and NLP at Crossroads”, ICSEA
2008, IEEE CSP, 2008, Sliema-Malta.

[2] Baniassad, E. L. A. and Clarke, S., “Finding aspects in requirements with

Theme/Doc”, Early Aspects Workshop, International Conference on AOSD,
2004.

[3] Loughran, N., Sampaio, A. and Rashid, A., "From Requirements Documents to

Feature Models for Aspect Oriented Product Line Implementation", MoDELS
2005 Workshops, LNCS 3844, pp. 262-271, 2005.

[4] Rosenhainer, L., "The DISCERN Method: Dealing Separately with

Crosscutting Concerns", Early Aspects Workshop at OOPSLA-2005, 2005.

[5] Cetin, S., Altintas, N. I. and Sener C., “An Architectural Modeling Approach

with Symmetric Alignment of Multiple Concern Spaces”, ICSEA 2006, IEEE
CSP, 2006, Tahiti – French Polynesia.

[6] Liu D., Mei H., “Mapping requirements to software architecture by feature-

orientation”, STRAW'03 Second International Software Requirements to
Architectures Workshop, Portland, Oregen, 2003.

[7] Robertson S., Robertson J., “Mastering the requirements process”, ACM Press,

1999, ISBN: 0 201 36046 2

[8] Franch X., Botella P., “Putting Non-Functional Requirements into Software

Architecture”, Software Specification and Design, 1998, Proceedings. Ninth
International Workshop, 1998.

[9] Cysneiros L.M., Leite J.C.S.P, “Using UML to Reflect Non-Functional

Requirements”, Proceedings of the 2001 conference of the Centre for
Advanced Studies on Collaborative research, Toronto, Ontario, Canada, 2001.

[10] Yusop N., Zowghi D., Lowe D., “The Impacts of Non-Functional

Requirements In Web System Projects”, Proceedings of EMCIS, 2006.

[11] Kazman R., Bass L., Abowd G. and Webb M., “SAAM: A Method for

Analyzing the Properties of Software Architectures”, Proceedings of ICSE 16,
pp. 81-90.

70

[12] Chowdhury G.G., “Natural Language Processing”, Annual Review of
Information Science and Technology, Vol.37, No. 1, 2003.

[13] Part-of-Speech Tutorial, http://alias-i.com/lingpipe/demos/tutorial/posTags/

read-me.html, Last Access Date: 24/07/2008.

[14] Smith L., Rindflesch T., Wilbur W.J., “MedPost: a part-of-speech tagger for

bioMedical text”, 2004

[15] Singh B.S., “Search Algorithms”, DRTC Workshops, 2003

[16] Gimenez J, Marquez L., “SVM Tool: A general POS tagger generator based on

Support Vector Machines”, 2004

[17] Nakagawa T., Kudoh T., Matsumoto Y., “Unknown Word Guessing and Part-

of-Speech Tagging Using Support Vector Machines”, In Proceedings of the
Sixth Natural Language Processing Pacific Rim Symposium, 2001.

[18] Support Vector Machines, http://www.neural-forecasting.com/support_vector_

machines.htm, Last Access Date: 24/07/2008.

[19] Joachims T., “Text Categorization with Support Vector Machines: Learning

with Many Relevant Features”, Proceedings of ECML, Springer, 1998.

[20] Cleland-Huang, J., Settimi, R., Zou, X. and Solc, P., “The Detection and

Classification of Non-Functional Requirements with Application to Early
Aspects”, Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE'06), 2006.

[21] Steele A., Arnold J. and Cleland-Huang J., “Speech Detection of Stakeholders’

Non-Functional Requirements”, First International Workshop on Multimedia
Requirements Engineering (MERE'06 - RE'06 Workshop), p. 3, 2006.

[22] Hall, J. G., Jackson, M., Laney, R., Nuseibeh, B. and Rapanotti, L., “Relating

Software Requirements and Architectures Using Problem Frames”,
Proceedings of RE’02, Essen, 2002.

[23] Baniassad, E. L. A., Clements, P., Araujo, J., Moreira, A., Rashid, A. and

Tekinerdogan, B., “Discovering Early Aspects”, IEEE Software. Volume 23,
pp. 61-69, 2006.

[24] Chung L., Nixon B., Yu E., Mylopoulos J., “Non-Functional Requirements in

Software Engineering”, The Kluwer international series in software
engineering, 1999, ISBN: 0-7923-8666-3.

71

[25] Cysneiros L.M., Leite J.C.S.P, Neto J.M.S., “A Framework for Integrating
Non-Functional Requirements into Conceptual Models”, Requirements
Engineering Journal – Vol 6, Issue 2 Apr. 2001, pp: 97-115.

[26] Li, K., Dewar, R. G. and Pooley, R. J., “Towards Semi-automation in

Requirements Elicitation: mapping natural language and object-oriented
concepts”, Doctoral Consortium, 13th IEEE International Conference on
Requirements Engineering (RE'05), 2005.

[27] Sampaio, A., Rashid, A., Rayson, P., “Early-AIM: an approach for identifying

aspects in requirements”, poster presentation in Requirements Engineering,
Proceedings of 13th IEEE International Conference on Requirements
Engineering, 2005.

[28] Sampaio, A., Loughran, N., Rashid, A. and Rayson, P., “Mining Aspects in

Requirements”, Workshop on Early Aspects at AOSD-2005, 2005.

[29] Chitchyan R., Sampaio A., Rashid A. and Rayson P., “Evaluating EA-Miner:

Are Early Aspect Mining Techniques Effective?”, Proceedings of First
International Workshop Towards Evaluation of Aspect Mining (TEAM 2006)
co-located with 20th European Conference on Object-Oriented Programming
(ECOOP 2006), Nantes, France, July 4, 2006.

[30] Jonsson K., Kittler J., Li Y.P., Matas J., “Support Vector Machines for Face

Authentication”, Proceedings of the Tenth British Machine Vision Conference,
1999.

[31] Larsson, M., “Predicting quality attributes in component-based software

systems”, Ph.D. Thesis, Department of Computer Science and Engineering,
Malardalen University, http://www.idt.mdh.se/~icc/phd/MagnusLarsson/
magnus%20phd%20FINAL-A4.pdf, 2004.

[32] Hsu, C. W., Chang, C. C., and Lin, C. J., “A practical guide to support vector

classification,” LIBSVM — A library for Support Vector Machines,
http://www.csie.ntu.edu.tw/~cjlin/libsvm, Last Access Date: 24/07/2008.

72

APPENDIX A

MEDPOST PART-OF-SPEECH TAG SET

In this section, MedPost part-of-speech tag set is given.

Figure A.1 - MedPost part-of-speech tag

73

APPENDIX B

SAMPLE FILES

In this section, some sample files are given used or produced in NFR2AC toolset.

B.1 An SVM model file

SVM-light Version V6.01
0 # kernel type
3 # kernel parameter -d
1.0 # kernel parameter -g
1.0 # kernel parameter -s
0.0 # kernel parameter -r
empty# kernel parameter -u
94 # highest feature index
2 # number of training documents
3 # number of support vectors plus 1
0.39165004510296875 # threshold b, each following line is a SV (starting with alpha*y)
-5.367793159775216 1:0.13333334028720856 7:0.13333334028720856 9:0.13333334028720856
11:0.13333334028720856 15:0.13333334028720856 18:0.13333334028720856
23:0.03333333507180214 42:0.03333333507180214 46:0.03333333507180214
57:0.03333333507180214 93:0.03333333507180214 94:0.03333333507180214
5.367793159775216 2:0.4444444477558136 25:0.1111111119389534 55:0.1111111119389534
62:0.1111111119389534 75:0.1111111119389534 76:0.1111111119389534

B.2 An XML export file of NFR2AC test results

<?xml version="1.0" encoding="UTF-8"?>

<Thesis_ggokyer>
 <ClassifyResults>
 <DomainName>Finance</DomainName>
 <ProjectName>Bank ABC</ProjectName>
 <RunId>11b047d0c740237</RunId>
 <NfrBoundary>
 <NfrId>1</NfrId>
 <NfrValue>Training material will be made available to the user community
to assist them in installing and using the functions of the system. It is anticipated that under normal
use and normal operating conditions of the Information System infrastructure the system always
provides a reasonable response time. The system GUI graphical user interface will be designed and
implemented according to the guidelines that exist within TME IS. For known complicated functions
that take a long time to execute, the system should provide indication to the user that a process is
being executed through some visual clue.</NfrValue>
 <NfrPhraseList>
 <NfrPhrase>
 <Code>1</Code>
 <Value>user</Value>
 <Frequency>3</Frequency>
 </NfrPhrase>
 <NfrPhrase>

74

 <Code>3</Code>
 <Value>function</Value>
 <Frequency>2</Frequency>
 </NfrPhrase>
 </NfrPhraseList>
 <AspectList>
 <Aspect>
 <Id>1</Id>
 <Name>Presentation Aspects</Name>
 <Ratio>0.117</Ratio>
 </Aspect>
 <Aspect>
 <Id>1.1</Id>
 <Name>Online Help Support</Name>
 <Ratio>0.148</Ratio>
 </Aspect>
 </AspectList>
 <QualityAttributeList>
 <QualityAttribute>
 <Id>1</Id>
 <Name>Usability</Name>
 <Ratio>-0.084</Ratio>
 </QualityAttribute>
 <QualityAttribute>
 <Id>1.1</Id>
 <Name>Accessibility</Name>
 <Ratio>-0.177</Ratio>
 </QualityAttribute>
 </QualityAttributeList>
 </NfrBoundary>
 </ClassifyResults>
</Thesis_ggokyer>

B.3 An XML export file of NFR2AC matrices

<?xml version="1.0" encoding="UTF-8"?>

<Thesis_ggokyer>
 <ClassifyResults>
 <DomainName>Automative</DomainName>
 <ProjectName>Auto Company</ProjectName>
 <ProblemDomain>
 <Cell>
 <Aspect>Presentation Aspects</Aspect>
 <QualityAttribute>Portability</QualityAttribute>
 <Value>Strong (+)</Value>
 </Cell>
 <Cell>
 <Aspect>Presentation Aspects</Aspect>
 <QualityAttribute>Hardware Independence</QualityAttribute>
 <Value>Neutral</Value>
 </Cell>
 </ProblemDomain>
 <SolutionDomain>
 <Cell>
 <View>Functional View</View>
 <Tier>Presentation Tier</Tier>
 <Value>Neutral</Value>

75

 </Cell>
 <Cell>
 <View>Functional View</View>
 <Tier>Web Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Functional View</View>
 <Tier>Application Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Functional View</View>
 <Tier>Data Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Design View</View>
 <Tier>Presentation Tier</Tier>
 <Value>Very Strong (++)</Value>
 </Cell>
 <Cell>
 <View>Design View</View>
 <Tier>Web Tier</Tier>
 <Value>Strong (-)</Value>
 </Cell>
 <Cell>
 <View>Design View</View>
 <Tier>Application Tier</Tier>
 <Value>Very Strong (++)</Value>
 </Cell>
 <Cell>
 <View>Design View</View>
 <Tier>Data Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Process View</View>
 <Tier>Presentation Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Process View</View>
 <Tier>Web Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Process View</View>
 <Tier>Application Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>Process View</View>
 <Tier>Data Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 <Cell>
 <View>System View</View>
 <Tier>Presentation Tier</Tier>
 <Value>Neutral</Value>

76

 </Cell>
 <Cell>
 <View>System View</View>
 <Tier>Web Tier</Tier>
 <Value>Strong (-)</Value>
 </Cell>
 <Cell>
 <View>System View</View>
 <Tier>Application Tier</Tier>
 <Value>Strong (-)</Value>
 </Cell>
 <Cell>
 <View>System View</View>
 <Tier>Data Tier</Tier>
 <Value>Neutral</Value>
 </Cell>
 </SolutionDomain>
 </ClassifyResults>
</Thesis_ggokyer>

77

APPENDIX C

SOURCE CODE AND EXPERIMENTATION

In this section, content of the Thesis CD is listed and NFR sets are given which are

used in experimentation phase.

C.1 Thesis CD Content

� NFR2AC

� source

� javadoc

� plug-in

� model directory

� Experimentation

� Training files

� Testing files

� Results

78

C.2 NFRs used in Training Session

Table C2.1 - NFRs used in Training Session

Req. # DESCRIPTION Architectural
Aspects*

Quality
Attributes

TR1 A “System Liability Agreement” will
be prepared to accompany the project
implementation that defines the
availability of the system, updates of
erroneous data, and change

management processes for data and / or
reports.

6.2 4.1, 4.3,
4.4, 4.6,
7.2

TR2 Due to the nature of the used
technology, no specific response time

commitments will be made for system
functions. It is anticipated that under
normal use and normal operating
conditions of the Information System
infrastructure the system always
provides a reasonable response time.
For known complicated functions that
take a long time to execute, the system
should provide least latency and also
indication to the user that a process is
being executed through some visual
clue.

1.17, 8.2, 8.3 3.3, 3.6,
3.7, 3.8

TR3 Appropriate limits on data sizes will be
determined that protect the end user
and corporate network from accidental

requests for excessively large datasets
(e.g. an ad hoc query that is going to
return 1 million rows may be deemed to
be too large and will not be executed).

3.1 1.5, 3.8,
3.11

TR4 The system will provide online access
to training manual, FAQ (frequently
asked questions) and support
information.

1.1, 6.3, 6.6,
6.7

1.1, 1.3,
1.5, 1.6

* Architectural Aspects and Quality Attributes in the table are numbered according to the

taxonomies given in Table 3.1 and Table 3.2.

79

Table C2.1 cont’d

TR5 The operation of the system will require
the users to have a TME mainframe
login and password. There can’t be any
access to the system without permission

5.6, 6.4, 6.5,
1.15

7.3, 8.3,
8.4, 8.5

TR6 Access to particular functions in the
system will be restricted depending on
the role that has been allocated to
authorized users. The system should
restrict access to all system functions to
users that have been specifically given
authentication. Where required, levels
of authority should be granted and
respected such that certain users may
carry out restricted roles.

5.5, 6.5 1.1, 7.2,
8.5

TR7 The system’s GUI (graphical user

interface) will be designed and
implemented according to the
guidelines that exist within TME IS.
The system should be intuitive to the
user. This involves using clear and
simple screen design with well-named
navigation and action items such as
menus and buttons.

1.2, 1.11, 1.12 1.3, 1.5,
1.6

TR8 The system should respect the security
of other systems security requirements
and in doing so not breach any existing
security procedures.

5.7, 3.2 5.3, 5.6,
8.4, 8.5

TR9 The system should ensure that any
accidental exposure to security risks
(such as user leaving system
authenticated whilst away from desk)
should be minimized by employing
normal practices such as session

timeouts.

5.8, 1.3 7.3, 8.1,
8.3, 8.5

TR10 The system will be used to support
business hours (generally 6:30 – 19:30
CET) and therefore should be available
100% of the time unless prior
arrangement agreed with the users. The
system is not mission-critical and does
not require 24/7 availability.

2.1, 8.4, 8.5 1.5, 3.1,
7.2, 3.6

80

Table C2.1 cont’d

TR11 The system is intended to support a key
business activity and therefore every
effort should be made to ensure the
output is precise and reliable according
to the definitions provided in the system
business rules document.

8.6, 1.4 6.2, 8.1,
8.3

TR12 The system should behave in a
consistent and repeatable manner (i.e.
same input provides same output).
Where possible, the system should
encourage standard procedures so that
one thing can only be done one way
ensuring that the system will behave in
a standard way each time a function is
used.

8.6, 8.7, 1.5 4.7, 8.1,
8.3

TR13 The system will be designed in such a
way that a function can be rerun in the
event of a system error without
requiring significant special activities.
This will mitigate any risks of data
corruption in the event of a system
error.

8.9, 1.4, 2.2,
5.8

3.1, 3.9,
5.8

TR14 The system should handle the volume
of data equivalent to the normal
business condition and be able to handle
expansion expected for 5 years. Where
possible, redundant data should be
archived or deleted

6.1, 7.1, 2.4,
2.6, 8.4

1.5, 4.1,
4.4, 3.6

TR15 The system will use the terminology
and nomenclature of the target business
domain so that data labels, functions etc
are familiar to the users.

1.6, 4.5 1.3, 1.6,
9.1

TR16 The system will provide reporting
facilities in formats that are handled by
normal end user computing equipment
(Windows PC) and applications, in
particular: MS Word, MS Excel, Adobe
PDF. This end user computing
equipment and applications are
however, not considered as being part
of the system and will therefore not be
part of any SLA related support.

8.8, 1.8, 1.14 1.3, 5.1,
5.3, 5.6

81

Table C2.1 cont’d

TR17 The system will be web based and will
therefore be accessible to the user using
a standard installed and controlled web

browser.

1.9, 1.10 1.6, 7.2

TR18 The system should respect the
performance and requirements of other
system residing in a shared
environment, and not unduly cause any
impact to such systems either in CPU

usage or storage space.

3.3, 8.1, 8.10 3.7, 3.11,
5.3

TR19 The user interface of the system will be
available in the English language.

1.2, 1.10, 1.7 1.3, 1.6

TR20 Single point of failures should be
avoided so that the system can continue
to operate when part of it has failed. In
some cases this will be impossible to
avoid given the environment
restrictions, but should be considered
for all processed within the system.

8.5, 8.10, 2.4,
3.4

1.5, 7.2

TR21 The system must encrypt all external
communications using the RSA
algorithm. This is a security
requirement which specifies that a
specific algorithm must be used in the
product.

5.4 7.3, 8.5

TR22 The development process to be used
must be explicitly defined and must be
conformant with ISO9000 standards.

4.1, 4.2, 4.3 9.4, 6.2,
6.4, 6.9

TR23 Management reports setting out the
effort expended on each identified
system component must be produced
every two weeks.

1.8 1.3

TR24 A disaster recovery plan for the system
development must be specified.

7.1, 7.3 4.8, 8.4

TR25 All system data must be backed up
every 24 hours and the back-up copies
stored in a secure location in encrypted
form which is not in the same building
as the system.

6.1, 7.1, 5.4,
8.4, 3.4

8.4, 8.5,
3.6

82

Table C2.1 cont’d

TR26 The system shall not permit operation
if the external temperature is below 4
degrees Celsius.

6.2, 6.3 8.4, 8.5

TR27 Mailings for customers should be sorted
into the three zip codes that lie within
the city limits in order to get the
reduced postal rate.

1.5, 3.1 1.5, 1.6

TR28 A License Certificate for a new
Business must be mailed within two
days of application approval

8.4, 8.6 3.6

TR29 It must be possible to trace each
license, its renewals, and tax payments
over the last five tax years.

8.4, 7.4 6.4, 3.6

TR30 Component C will be fully operational
for P % of the time over a continuous
measured period of 30 days (equivalent
to 43 minutes downtime)

8.4 3.6

TR31 Component C will support a concurrent
group of U users running pre-defined
acceptance script S simultaneously

8.4, 8.9 3.6, 3.10

TR32 Acceptance script S completes within T
seconds on an unloaded system, and
within T2 seconds on a system running
at maximum capacity

8.4 3.6, 3.7

TR33 Component C will support N1
transactions per second, of type T, on
an unloaded system, and N2
transactions per second, of type T, on a
system loaded.

8.4, 8.1 3.6, 3.9

TR34 To format numbers, the number of
significant digits to which accuracy
should be maintained in all numerical
calculations is 10

1.5, 1.8 1.3, 1.6

83

C.3 NFRs used in Testing Session

Table C3.1 - NFRs used in Testing Session

Req. # DESCRIPTION Architectural
Aspects

Quality
Attributes

TE1 The training manual and FAQ will be
made available to the user community
to assist them in installing and using
the functions of the system.

1.1, 6.6, 6.7 1.1, 1.3, 1.5,
1.6

TE2 In the event of a hardware error, the
system should be able to be started on
a different machine without requiring
data existing on the failed hardware.
Sufficient and timely back-up of data
should be taken to ensure this process
is possible.

6.1, 7.1, 3.4,

5.4

8.4, 8.5

TE3 In case the user enters input data into
the system, which does not adhere to
the business rules, specified for that
data, the system will provide a clear
indication to the user via some form of
error message : .

1.5, 1.2, 1.4 3.9, 4.7

TE4 Each screen inside the system will be
clearly identified by means of a
unique number. This facilitates later
problem solving in case the user
reports an issue with the system.

1.2, 7.2 1.3, 1.5

TE5 The system will present a crumb trail
on every screen at a predefined
location allowing the user to easily
understand what part of the menu
structure he is navigating.

1.2, 1.11 1.3, 1.5, 1.6

TE6 Each screen will display the login
name and user name of the user
currently authorized into the system
together with the role allocated to the
user.

1.2, 1.12, 5.6 1.3, 8.4, 8.5

84

Table C3.1 cont’d

TE7 Where the system required access the
locale data (date, time, time zone) of
the end user computing equipment
(Windows PC) the user is responsible
for making sure that the locale is
correctly configured. Such conditions
will be clearly identified and
highlighted in the training manual.

1.13, 6.6, 6.7 1.3, 1.5

TE8 Any direct printing functionality of the
reports that the system offers will be
performed using the printers that are
normally accessible through the end
user computing environment. The
correct setup of these devices is,
however, outside the scope of the
system. Report formats must be
considered.

1.8, 1.14 7.2, 1.3

TE9 When the user attempts to access an
application page from within the web
browser the system will validate
whether or not the user is already
logged in. If not, the system will
present the login screen and enter the
application in the normal way (as if
the user had selected the login page
directly). In this particular situation
the system will not directly navigate to
the page originally requested by the
user.

1.15, 5.6, 1.9,
1.10

1,6, 7.3, 8.4,

8.5

TE10 If the system performs a lengthy
operation that displays a result to the
user and the user’s session is timed out
before the result page is displayed, the
system will require the user to login
again before displaying the result
page.

1.3, 1.15 8.3, 8.5

85

Table C3.1 cont’d

TE11 The system shall not use hard-coded
strings and labels. Although the
application must be available in
English only, strings and labels should
be organized in a clean properties file
that eventually could be translated in
another language.

1.7, 4.5 1.3, 1,6

TE12 The system shall ensure that data is
protected from unauthorized access.
Only authorized users can enter the
system with secure authentication.

5.5, 5.6 8.5

TE13 The System service X shall have an
availability of 999/1000 or 99%. This
means that out of every 1000 requests
for this service, 999 must be satisfied.

2.1, 8.5 7.2

TE14 The system shall be developed for
Windows PC platform. Reports must
be available for MS Word, MS Excel,
Adobe PDF programs. This is a
portability requirement which affects
the way in which the system may be
designed.

1.8, 8.8 5.3, 5.6

TE15 The access permissions for system
data may only be changed by the
system’s data administrator

5.6 8.4, 8.5

TE16 All external communications between
the system’s data server and clients
must be encrypted

6.2, 5.4 8.4, 8.5

TE17 The system shall not permit operation
unless the operator guard is in place

6.2, 6.3 8.4, 8.5

TE18 Mailings for customers must be
designed to fit in a window envelope.

1.5, 3.1 1.5, 1.6

TE19 A License Certificate for a renewal
must be mailed within seven days of
receipt of the renewal.

8.4, 8.6 3.6

86

Table C3.1 cont’d
TE20 It must be possible to trace the

ownership of a Business over at least
the last five years and at least the last
two owners

8.4, 7.4 6.4, 3.6

TE21 Multiple formats along the lines of
Component C will provide sufficient
capacity for U users each with M Mb
of files. Component C will provide
sufficient capacity for archived reports
for MM calendar months at a report
creation rate of R per calendar month

8.4, 1.8 3.6, 3.7, 1.6

TE22 All errors encountered during events
E1, E2, E3 are to be captured by
component C and reported into the
standard monitoring tool MT

1.8, 1.4 3.9, 1.3

TE23 Component C will support an increase
of factor F in the number of users U
while running acceptance script S and
maintaining latency within P % of the
latency NFR

8.2 3.3, 3.8

TE24 The response time of the system
should always be less than 5 seconds

8.4, 8.2 3.3, 3.6

TE25 Experienced officers should be able to
use all the system functions after a
total training of two hours. After this
training, the average number of errors
made by experienced officers should
not exceed two per day.

8.4, 1.4, 6.7 1.3, 3.9

