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ABSTRACT 

 
 

3D FACE REPRESENTATION AND RECOGNITION USING 

SPHERICAL HARMONICS 
 
 

Tunçer, Fahri 

Ph.D., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Uğur Halıcı 

 
 

August 2008, 134 pages 
 
 

 

In this study, a 3D face representation and recognition method based on spherical 

harmonics expansion is proposed. The input data to the method is range image of 

the face. This data is called 2.5 dimensional. Input faces are manually marked on 

the two eyes, nose and chin points. In two dimensions, using the marker points, 

the human face is modeled as two concentric half ellipses for the selection of 

region of interest. These marker points are also used in three dimensions to 

register the faces so that the nose point tip is at the origin and the line across the 

two eyes lies parallel to the horizontal plane. A PCA based component analysis 

is done to further align the faces vertically. The aligned face is stitched and 

mapped to an ellipsoid and transformed using real spherical harmonics 

expansion. The real harmonics expansion coefficients are labeled and stored into 

a gallery. Using these coefficients as input, several classification algorithms are 

applied and the results are reported. 

 

 
 
Keywords: Face Recognition, 3D Face Recognition, and Spherical Harmonics. 
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ÖZ 
 
 

KÜRESEL HARMONİKLERLE 3 BOYUTLU YÜZ 

MODELLEME VE TANIMA 
 
 

Tunçer, Fahri 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Uğur Halıcı 

 
 

Ağustos 2008, 134 sayfa 
 
 

Bu tez çalışmasında küresel harmonik dönüşümüne dayalı bir 3 boyutlu yüz 

modelleme ve tanıma yöntemi geliştirilmiştir. Bu yönteme girdi olarak yüz 

derinlik bilgisi kullanılmıştır. Bu derinlik verisi 2.5 boyutlu olarak isimlendirilir. 

Girdi yüzlerde manuel olarak, iki göz, burun ve çene noktaları işaretlenmektedir. 

İki boyutta, istenilen yüz bölgesinin seçilmesi için, işaretlenen noktalar 

kullanılarak,  yüz eş merkezli iki yarım elips olarak modellenmiştir. Ayrıca yine 

bu noktalar kullanılarak yüz 3 boyutta burun merkez ve gözleri birleştiren çizgi 

yatay eksene paralel olacak şekilde hizalanmıştır. PCA bazlı bir yöntemle yüz 

dikey eksende de hizalanmıştır. Hizalanan yüzler bir elipsoid üzerine dikilerek 

yerleştirilmiş, ve sonrasında gerçek küresel harmonikler kullanılarak 

dönüştürülmüşlerdir. Dönüşüm parametreleri etiketlenerek bir yüz galerisi 

oluşturulmuştur. Bu dönüşüm parametreleri kullanılarak farklı sınıflandırma 

yöntemleri kullanılmış ve sonuçları karşılaştırmalı olarak raporlanmıştır. 

 
 
Anahtar kelimeler: Yüz Tanıma, 3 Boyutlu Yüz Tanıma, Küresel Harmonikler. 
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CHAPTER 1  
 
 

INTRODUCTION 
 
 
 

1.1 Problem Definition and Motivation 

 

Face recognition is a challenging problem because of the diversity of faces and 

variations caused by expressions, gender, pose, illumination, age and makeup. 

Automatic face recognition has been traditionally associated with the fields of 

computer vision and pattern recognition. Face recognition is considered a widely 

accepted biometric identification method [1], [2]. Even it has the potential of 

becoming the leading biometric technology in near future. Unfortunately, it is 

also one of the most difficult pattern recognition problems. So far, all existing 

solutions provide only partial, and usually unsatisfactory, answers to the 

recognition problem. 

 

When compared to other biometrics one of the advantages of face recognition is 

its non-intrusive nature. To illustrate, fingerprint and iris based recognition 

systems perform better than face recognition systems however these methods 

necessitate the collaboration of the subjects. For a typical face recognition 

system, subjects may not even be aware of the scanner. Moreover in case a face 

recognition system fails to identify a person, security personnel may authorize 

that person for access by examining the individual’s image in the database.  

 

Big majority of the face recognition systems works with 2D images. These 

systems use intensity values of the pixels of the images for extracting features 

and making decisions. The performance of face recognition systems that use two 

dimensional (2D) images is dependent on consistent conditions such as lighting, 

pose and facial expression. While most efforts have been devoted to face 
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recognition from 2D images , a few approaches have utilized depth information 

provided by 2.5D range images. Current 2D face recognition systems can 

achieve good performance in constrained (or controlled) environments, however, 

they still encounter difficulties in handling large amounts of facial variations due 

to head poses, lighting conditions and face expressions. Because the human face 

is a 3D  object whose 2D projection (image) is sensitive to the above changes, 

utilizing 3D face information can improve the face recognition performance. 

Range images captured explicitly by a 3D sensor present face surface shape 

information. 

 

3D face recognition is a relatively recent trend that in some sense breaks the 

long-term tradition of mimicking the human visual recognition system, like the 

2D  methods attempt to do. As evaluations such as the Face Recognition Vendor 

Test (FRVT) demonstrate in an unarguable manner that current state of the art in 

2D face recognition is insufficient for high-demanding biometric applications 

[1], trying to use 3D information has become an emerging research direction in 

hope to make face recognition more accurate and robust. 

 

Before going further, it is valuable to define the term recognition and to 

distinguish between the problem of authentication (verification) and that of 

recognition.  

 

• In the  authentication problem, the “probe” individual requests a privilege 

by claiming the identity of a person whose template is stored in the 

“gallery” database. The data used for a specific recognition task is 

defined as a template. The authentication algorithm needs to retrieve the 

template from the gallery and to compare it with the given face and verify 

their equivalence. Shortly, the authentication problem is a one-to-one 

matching problem. Such a biometric technology can be used to secure 

financial transactions, for example, in an automatic teller machine (ATM) 
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or to secure the entrance into security zones. In the authentication case, it 

is assumed that the user of the system is collaborative. 

• The recognition problem is much more difficult. Recognition means that 

the given probe should be compared with all the templates stored in the 

gallery database. The face recognition algorithm should match a given 

face with one of the templates in the database. Finding a criminal in a 

crowd is one such application. Face recognition problem is one-to-many 

matching problem. It should be mentioned that no collaboration is 

assumed in this case. At current technological level, one-to-many face 

recognition with non-collaborative users is practically unsolvable [3]. 

 

The main goal of this thesis study is to develop a method or algorithm to 

distinguish and recognize human faces using the 2.5 dimensional (2.5D) scans of 

human faces which are acquired by special hardware. Our study will focus on 

2.5D dimensional, or 3D in general, face recognition problem. In our study, we 

will assume that the users are collaborative, i.e. template and probe data are 

acquired in a controlled environment.  

 

The general face recognition problem can be depicted as follows: 
 
 
 

 

Figure 1.1  Face recognition problem 
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The template and probe data consists of 2.5D range images of the human face. 

2.5D face range image is a simplified 3D (x,y,z) surface representation that 

contains at most one depth value (z-direction or away from the camera projection 

plane)  for every point in the (x,y) plane. 2.5D range images are acquired using a 

special hardware.  

1.2 The Data Used 

 
In this study, we used the sample data set provided by Face Recognition Grand 

Challange (FRGC). FRGC human face range image is a 2D image which 

contains a distance value for every x,y pair on the image plane. Fortunately, the 

FRGC dataset also contains a registered texture image for every range scan. A 

sample 2.5D range scan, its corresponding texture and its 3D rendering is shown 

below. The FRGC dataset is acquired with Minolta Vivid 900/910 series sensor 

[4]. 

 
 
 

  

Figure 1.2  Range image and corresponding texture image 
 
 

 

Figure 1.3  3D rendered range data using texture color 
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As seen on the Figure 1.2, the range image and the face texture image can be 

easily distinguished from its background.  The first image is the range scan. 

Darker regions are closer to the camera. The second image is the texture image 

associated with the range image. Figure 1.3 shows the 3D rendered image of the 

range scan colored with the texture image.  

 

The FRGC dataset is obtained in a controlled environment, i.e. location of the 

head with respect to camera, and the lighting is setup appropriately [4]. 

 

Notice that there are gaps in the range image, where the range sensor did not 

work well. For example, there are gaps above the eyes. These gap points are 

points where there is no depth information on the range image. These gap points 

must be handled by the recognition system. And also, there are unwanted regions 

on the range image such as shoulders, or neck. These unwanted regions will be 

cropped by the recognition system. 

1.3 The Proposed Face Recognition System 

 

The overall process workflow of the proposed recognition system can be 

represented with the diagram given in Figure 1.4; 

 
 

 

Figure 1.4  Recognition system 
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There are two main tasks of the proposed system. First, populate the face 

database by introducing new face data to the system. Assuming that the new face 

data is not already in the database, the face data is processed and recorded into 

the database (shown on the right flow in Figure 1.4). Second task is to request for 

the identity for the face data, first by processing it and afterwards by matching it 

one of the faces in the database (shown on the left flow). 

 

The processing module of the system works as follows; 

• Preprocess the 3D face data 

• Crop the face and place it on ellipsoid 

• Transform the spherical face by real Spherical Harmonics Transform 

(SHT) and obtain the coefficients 

The input to the classification module is the real SHT coefficients obtained at the 

processing module. Several algorithms are used in the classification module and 

their performances are compared. These algorithms are; 

• k-Nearest Neighbor (k-NN) with Euclidean distance metric 

• k-Nearest Neighbor (k-NN) with Mahalanobis distance  

• Linear Discriminant Analysis (or Fisher Discriminant Analysis) 

• Support Vector Machines 

 

1.4 Contribution 

 

In this study we propose a 3D face recognition algorithm based on spherical 

harmonics decomposition of the face range image. The novel part of the study is 

to use real spherical harmonics transform for an intra-class classification 

problem.  

 

In literature, there are some studies which use spherical harmonics 

decomposition for 3D shape modeling, matching and retrieval problems [5], [6], 

[7], [8]. However, all these studies concentrated on inter-class classification 

problems, i.e. they proposed systems to distinguish objects from different 
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classes; for example they tried to distinguish an airplane from a vase. And the 

way they model the shapes are completely different than our method. 

 

It is well known that any non-reentrant 3D surface can be accurately modeled 

using simultaneous evaluation of spherical harmonics coefficients [6]. It means 

that the surface or function which will be transformed by spherical harmonics 

must be a spherical function, or in other words it must be a one-to-one function 

in spherical radial direction. Because of this requirement, most of the above 

mentioned studies converted the 3D models into volumetric datasets, and using 

this voxel grid they computed shape descriptors by intersecting the model with 

concentric spheres. Assuming that these intersections are spherical functions, 

they computed the frequency decomposition of each spherical function. 

Fortunately, the human face or more specifically the frontal range scan of the 

human face can be modeled as a spherical function by mapping it onto a sphere.  

 

Spherical harmonics decomposition is not a new topic to the face recognition 

community. [9], [10] used spherical harmonics for face recognition.  

 

Zhanfeng et al. ([10]) used spherical harmonics to overcome the illumination 

problem by encoding the pose information by spherical harmonics. Under the 

assumption of Lambertian reflectance, they modeled the illumination variations 

for a fixed pose. Using only a face image which is semi-frontal and illuminated 

by multiple light sources, they were able to synthesize a different view of the 

face under arbitrary lighting. They utilized the fact that 2D harmonic basis 

images at different poses are related to close-form linear transformations.  

 

Bronstein et al. ([9]) used spherical harmonics transform to compute the 

dissimilarity measure between the spherical canonical images. They compute 

expression-invariant signatures based on isometry-invariant representation of the 

facial surface. They propose to embed the face geometric structure into a 

spherical space, and they call these new invariants as spherical canonical images. 
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Our study is mainly interested in efficient representation of the face range image 

by spherical harmonics. Most computer vision and pattern recognition algorithms 

aim to represent an object with the minimum amount of data and maximum 

possible detail so as to increase the efficiency. Fourier, Fourier related or wavelet 

based transforms can be used for approximations in 2D situations, like an image, 

and can be extended to 3 or more dimensions. However, for our case where the 

3D face points are represented by two angular spatial coordinates and radius 

from some centre point, a more appropriate set of orthogonal basis functions turn 

out to be the spherical harmonics. 

 

Our approach to make the face range image “spherical” assumes an ellipsoidal 

face model. In fact, what we call ‘spherical” is an “ellipsoid” defined with two 

different radiuses. Figure 1.5 and 1.6 show a cropped face and a spherically 

mapped face. Notice that the spherical face is stitched on the ellipsoid in the 

spherically mapped face. 

 

The main reason of stitching the face on an ellipsoid is to model the face shape 

as a complete spherical function, i.e. define it over the whole angular extends. If 

we don’t complete the face shape spherically using an ellipsoid, we’ll end up 

with very high values at higher spatial frequencies because of the discontinuity at 

face boundaries. Since we’re trying to model the face with fever coefficients and 

store these coefficients into template gallery for further comparison with the 

given probe image, high frequency SHT coefficients are not suitable for our 

classification purposes. 
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Figure 1.5  Cropped and aligned face image 
 
 
 

 

Figure 1.6  Cropped and stitched face image 
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1.5 Organization of the Thesis 

 

In Chapter 2, literature review of face recognition, both of 2D and 2.5D/3D 

approaches are summarized. 

 

Chapter 3 will be about spherical harmonic functions and its application in 

computer graphics and face recognition.  

 

In Chapter 4, we will give a detailed description of our face recognition 

algorithm.   

 

In Chapter 5 results and comparison of our algorithm with other methods are 

given. 

 

Chapter 6 is the conclusion chapter. 

 



11 
 

CHAPTER 2   
 
 

LITERATURE REVIEW 
 
 
 

2.1 Biometrics 

 
Many recent events, such as terrorist attacks, showed that there are serious 

weaknesses in most sophisticated security systems. Various government agencies 

are now more motivated to improve security data systems based on body or 

behavioral characteristics, often called biometrics [11].  

 

Perhaps the most common biometrics modalities are fingerprints and iris, but 

many other human characteristics have been studied in last years: finger/palm 

geometry, voice, signature, face. Figure 2.1 shows the spreading of the most 

popular biometrics in the last years from a commercial point of view [1]. 

 

 

 
Figure 2.1  Spreading of biometrics (from [1]) 
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Biometrics have drawbacks. Iris recognition is extremely accurate, but expensive 

to implement and not very accepted by people. Fingerprints are reliable and non-

intrusive, but not suitable for non-collaborative individuals. On the contrary, face 

recognition seems to be a good compromise between reliability and social 

acceptance and balances security and privacy well. 

 

2.2 Face Recognition Methods 

 

Face recognition and verification have been at the top of the research agenda of 

the computer vision community for more than two decade. To date, most of the 

research efforts, as well as commercial developments, have focused on 2D 

approaches. This focus on monocular imaging has partly been motivated by costs 

but to a certain extent also by the need to retrieve faces from existing 2D image 

and video database. Last but not least, it has been inspired by the ability of 

human vision to recognize a face from single photographs where the 3D 

information about the subject is not available and therefore the 3D sensing 

capability of the human perception system cannot be brought to bear on the 

interpretation task. 

 

Since the automatic face recognition problem is still an unsolved problem of the 

computer vision community, there are so many research groups and institutions 

around the world trying to find a first-class solution to the problem. In 

accordance, there are so many face recognition methods developed up to date. 

Several techniques are developed and applied to the problem. All these methods 

can be classified as shown in Figure 2.2. 

 
In the last decade, major advances occurred in face recognition, with many 

systems capable of achieving recognition rates greater than 90% [12]. However 

real-world scenarios remain a challenge, because face acquisition process can 

undergo to a wide range of variations. There are five key factors that can 

significantly affect system face recognition performances:  
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Figure 2.2  Face Recognition Methods 
 
 
 

• Illumination variations due to skin reflectance properties and due to the 

internal camera control. Several 2D methods do well in recognition tasks  

only under moderate illumination variation, while performances 

noticeably drop when both illumination and pose changes occur.  

• Pose changes affect the authentication process, because they introduce 

projective deformations and self-occlusion. Even if methods dealing with 

up to 32 head rotation exist, they do not solve the problem considering 

that security cameras can create viewing angles that are outside of this 

range when positioned. On the contrary, with exception of extreme 

expressions such as scream, the algorithms are relatively robust to facial 

expression. 

• Time delay is another important factor, because the face changes over 

time, in a nonlinear way over long periods. In general this problem is 

harder to solve with respect to the others and not much has been done 

especially for age variations. 

• Occlusions can dramatically affect face recognition performances, in 

particular if they located on the upper-side of the face, such as hair 

occluding the eyes. 
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As can be seen on Figure 2.2, most work on face recognition is carried out using 

2D intensity images. Although these techniques can achieve good performances 

under controlled conditions, their performance can degrade drastically when 

pose, illumination, and scale parameters change.  

 

3D techniques are thought to be advantageous in terms of these factors since the 

3D shape of the face does not change due to these factors [13]. Advances in 

computer vision make it possible to design face recognition systems with lower 

error rates. Also by the recent developments better sensor systems provide 

cheaper and accurate 3D data which increases the availability of 3D data.  

Finally evaluations like FRGC (Face Recognition Grand Challenge) and FRVT 

(Face Recognition Vendor Test) [4] aim to improve face recognition systems by 

encouraging and challenging more researchers into this area. 

 

FRVT 2006 results [14] show that FRGC has reached its aim since the results are 

much better than FRVT 2002 results. Three biometrics were compared in FRVT 

2006: recognition from very-high resolution still face images, 3D face images, 

and single-iris images. Recognition performances were reported to be 

comparable for all three biometrics. Moreover some of the algorithms performed 

better than humans.  

 

2.3 Face Recognition Algorithm Performance Evaluation Metrics 

 
In order to evaluate performances of face recognition systems, some common 

terms are employed [15]. Identification task is the case, when the person to be 

identified is known to be in the database and by comparing this person’s new 

image with all the images in the database, similarity scores are calculated. After 

sorting them, the most similar person in the database is given as output. If the 

system correctly identifies the person, when only the first similar match is 

considered, this is called a “top match”. If the system correctly identifies the 

person within the most similar n number of images from the database, this is 
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called “Rank-n score”. A curve which shows the relation between the rank and 

the number of correct identifications is referred as Cumulative Match 

Characteristic (CMC) curve. This curve gives an idea about how close a system 

is from the correct match. The ideal case would be having 100% top match score. 

However if a good n can be determined by examining the CMC curve, top n 

matches can be given to security personnel to make the final decision. An 

example for a CMC curve is given in Figure 2.3. 

 
 
 

 

Figure 2.3  A CMC curve (from [15]) 
 
 
 

In a verification task, the person makes a claim to be an identity in the database. 

In fact, he may even not have an image in the database. By comparing this 

person’s image with the claimed identity’s image, a similarity score is obtained. 

If this score is above a threshold, the system accepts that the person is who he 

claimed to be. Otherwise, if the similarity score is below than the threshold, the 

system will reject the person. There are two errors that a system can make for a 

verification task. Firstly, the person may make an errant claim to be an identity, 
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and after calculating the similarity score the system may think that the person 

says the truth although he does not. This is called a “false accept.” Secondly, the 

person make appropriate claim regarding his identity, but the calculated 

similarity score is lower than the threshold. The system will reject the person 

although he is saying the truth. This is called a “false reject”. These two errors 

reversely related. If threshold is increased to lower FAR (False Acceptance 

Rate), this will in turn increase FRR (False Rejection Rate) and decrease the 

probability of verification. A plot that related these parameters is called ROC 

(Receiver Operating Characteristic). It is also possible to plot this curve, putting 

the probability of correct verification onto y axis. The probability of correct 

verification can be computed by subtracting FRR from 1. An example ROC 

curve is given in Figure 2.4. 

 
 
 

 

Figure 2.4  A ROC curve (from [15]) 
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2.4 2D Methods for Face Recognition 

 
Zhao et al. [16] have an excellent literature survey about the face recognition 

methods. The website www.face-rec.org [17] also contains valuable information 

about face recognition methods. 

 

2.4.1 Eigenfaces 

 

Principal Component Analysis (PCA), also called Karhunen-Loève transform, is 

one of the most common techniques used in different areas including the field of 

pattern recognition. It was first introduced in the early 1990’s and became very 

popular since then. It was first used in face recognition in [18]. PCA was also 

used many times for representing, detecting, recognizing, and compressing face 

images for decades. 

 

In order to find the vectors which best represent the distribution of the data set, a 

covariance analysis is performed. The eigenvectors of the covariance matrix are 

calculated and the dimension of the data is reduced by eliminating the vectors 

having the smallest eigenvalues. 

 

The reason why this method is called Eigenface method is that when PCA is 

performed over a set of faces, the eigenvectors look like faces.   

 

Eigenface approach can be summarized as follows 

• Get the training images (Γ�, Γ�, … , Γ�). M is the number of faces in the 

training set. 

• Calculate the mean  (Ψ = �� ∑ Γ����� ). n is the number of pixels in an 

image. 

• Subtract it from every image in the training set ( Ψ−Γ=Φ nn ) 

• Calculate the covariance matrix C=AA
T where [ ]MA ΦΦΦ= .....21  
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• Find its eigenvectors, choose first k of them having the largest 

eigenvalues and project every image in the training set to face space and 

calculate the coefficients 

∑
=

⋅Ψ−Γ=
k

i

itest reigenvectoiprojectedweight
1

)(),(       (2.1) 

∑
=
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k

i

iprojected reigenvectoiprojectedweight
1

),(      (2.2) 

• If recognition is to be performed, project the test depth image to face 

space after subtracting mean and by considering the coefficients, find the 

image in the database having the closest coefficients minimizing the 

equation 

2

1

)),(),(( itrainingweightiprojectedweightError
k

i

−=∑
=

    (2.3) 

 

In general C matrix is so large that finding its eigenvectors becomes very 

difficult. In [18] Turk and Pentland propose a way to determine the eigenvectors 

of the covariance matrix C. 

 

Consider a matrix L= A
T
A. The eigenvectors of this matrix will satisfy the 

equation 

iii
T

vv µ=ΑΑ                      (2.4) 

Multiplying both sides by A from left, we obtain iii
T

vv Α=ΑΑΑ µ which means 

ivΑ  are the eigenvectors of C. Therefore firstly the eigenvectors of L is found to 

reduce the calculations. Finding the eigenvectors of C is now simpler by 

multiplying with the inverse of A. 
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Figure 2.5  Sample eigenfaces, corresponding to 8 biggest eigenvalues (from [19]) 
 
 
 

2.4.2 Nonnegative Matrix Factorization  (NMF) 

 

Another 2D method for face recognition is the NMF algorithm. The aim of NMF 

is to find W and H matrices for a given V matrix such that 

V ≈ W * H          (2.5) 

In order to use NMF for face recognition [20], images in the training set are 

placed to columns of V. V has a size of nxm where n is the number of pixels, and 

m is the number of images in the training set. � ∈ ���� , � ∈ ����  and r is 

chosen smaller than n in order to reduce the dimension and compress the data.  

Firstly, PCA is applied to reduce the dimensionality of the data. Before the 

dimension-reduced training set is given as V to NMF algorithm, all the samples 

are added by a constant so that minimum value of V becomes zero since NMF 

requires V, W, and H to be non-negative. Non-negativity constraint enables parts-

based representation since only additive combinations are allowed. 
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In this study, NMF is not implemented; however the work  in [19] implemented 

this method. Since the results of the work in [19] are used for performance 

comparison, a detailed NMF description can be found in Appendix B.  

2.4.3 Fischerface 

Fisherface is based on Linear Discriminant Analysis (LDA). 

2.4.3.1 Linear Discriminant Analysis 

 

LDA is a method used in statistics and machine learning to find the linear 

combination of features which best separate two or more classes of objects or 

events. The resulting combination may be used as a linear classifier, or, more 

commonly, for dimensionality reduction before later classification [36]. 

 

LDA is also closely related to principal component analysis (PCA) and factor 

analysis in that both look for linear combinations of variables which best explain 

the data. LDA explicitly attempts to model the difference between the classes of 

data. PCA on the other hand does not take into account any difference in class, 

and factor analysis builds the feature combinations based on differences rather 

than similarities. Discriminant analysis is also different from factor analysis in 

that it is not an interdependence technique: a distinction between independent 

variables and dependent variables (also called criterion variables) must be made. 

 

For multiclass LDA, suppose that each of C classes has a mean µi and the same 

covariance Σ. Then the between class variability may be defined by the sample 

covariance of the class means: 

 Σ� = �� ∑ ( ! −  )( ! −  )#�!��        (2.6) 

where  µ is the mean of the class means. The class separation in a direction $%%& in 

this case will be given by 

 ' = (%%&)*+(%%&(%%&)*(%%&           (2.7) 
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This means that when $%%&  is an eigenvector of Σ,Σ-�, the separation will be equal 

to the corresponding eigenvalue. Since Σ, is of most rank C-1, then these non-

zero eigenvectors identify a vector subspace containing the variability between 

features. These vectors are primarily used in feature reduction, as in PCA. 

2.4.3.2 Fisherface Method 

 

Fisherface method was first proposed in [21]. The idea is to use class specific 

information to find the projection direction which results in better recognition 

rates. In other words, after the projection the samples belonging to different class 

are separated while samples belonging to same class are clustered.  

Mathematically it is achieved by maximizing the ratio of the between class 

scatter matrix to within class scatter matrix. Between class and within class 

matrices are calculated as follows:  

∑
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where µ is the mean of all the samples, µi is the mean of class Xi and Ni is the 

number of samples in class Xi. Therefore optimal projection Wopt is chosen as 
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W ...

||

||
maxarg 21==     (2.10) 

where {wi | i=1, 2, …,m} is the set of generalized eigenvectors of SB and SW 

corresponding to the m largest generalized eigenvalues {λi | i=1, 2, …,m }, i.e. 

iwiiB wSwS λ=         (2.11) 

However SW has to be nonsingular for the above equations to be valid. If there 

are N number of images and c number of classes in the training set, the rank of 

SW is at most N-c. SW has a size of nxn where n is the number of pixels in an 

image. In general, n > N which means SW will be singular. In order to avoid this 

problem, PCA analysis performed on the training set, vectors belonging to the 
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(N-c) largest eigenvalues are kept and the dimension is reduced to N-c, as 

proposed in [22]. Then Fisher Linear Discriminant (FLD) is performed to reduce 

the dimension further, to c-1. 

 

For the recognition purposes, dimensionality of training images is reduced by 

PCA. Then these reduced vectors are multiplied by eigenvectors of Linear 

Discriminant Analysis (LDA) to obtain weights. In order to find the most similar 

training image, the weights are evaluated by the same method used for Eigenface 

method. 

2.4.4 Independent Component Analysis (ICA) 

 

ICA is an iterative method which is meant to solve the blind source separation 

problem. A sample data, or an observation, is regarded as a linear combination of 

some unknown sources.  

x=As         (2.12) 

where s is the set of sources, A is the mixing matrix and x is the set of 

observations. The aim of ICA is to make sources as independent as possible. In 

order to find the inverse of the mixing matrix, the number of observations should 

be at least equal to the number of sources. The inverse of the mixing matrix is 

found iteratively and then used to obtain weights.  

 

It was introduced for 2D face recognition in [23]. Also some papers have used 

ICA for 3D face recognition purposes [24], [25], [26].  

 

There are two architectures in ICA. In the first one, pixel values are treated as 

observations and face images are treated as variables. The second architecture 

which aims to find statistically independent coefficients is depicted in Figure 2.6. 
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Figure 2.6  Architecture of ICA 
 
 
 
For recognition, as in the previous cases, training images are subjected to PCA to 

reduce dimensionality. ICA is performed to obtain weights and weights are 

considered by cosine similarity metric as in the NMF algorithm. 

2.4.5 Elastic Bunch Graph Matching (EBGM) 

 

EBGM is first introduced in [27]. The main idea behind EBGM is that all human 

faces share a similar topological structure. In EBGM faces are represented as 

graphs, with nodes positioned at fiducial points. (eyes, nose...) and edges labeled 

with 2-D distance vectors. Each node is represented by a set of 40 complex 

Gabor wavelet coefficients at different scales and orientations (phase, 

amplitude). They are called "jets". Recognition is based on labeled graphs. A 

labeled graph is a set of nodes connected by edges, nodes are labeled with jets, 

edges are labeled with distances. 

 

2.4.6 Kernel Methods 

 

The purpose of kernel methods is to extend PCA and Fisher Linear Discriminant 

so that higher order correlations between images are taken into account.  PCA 

and FLD represent faces on second order statistics of the image set, and does not 

address higher order statistical dependencies such as the relationships among 

three or more pixels.  Kernel Eigenface and Kernel Fisherface methods [28], 
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[29], [30] methods use higher order correlations between images, and hence are 

able to extract nonlinear features and thus provide better recognition results. A 

detailed discussion of these kernel methods are given in Appendix C. 

2.4.7 Active Appearance Model 

 

An Active Appearance Model (AAM) is an integrated statistical model which 

combines a model of shape variation with a model of the appearance variations 

in a shape-normalized frame. An AAM contains a statistical model if the shape 

and gray-level appearance of the object of interest which can generalize to 

almost any valid example. Matching to an image involves finding model 

parameters which minimize the difference between the image and a synthesized 

model example projected into the image. It is introduced by Cootes et al. in [31]. 

 

2.4.8 Trace Transform 

 

The Trace transform, a generalization of the Radon transform, is a tool for image 

processing which can be used for recognizing objects under transformations, e.g. 

rotation, translation and scaling. To produce the Trace transform one computes a 

functional along tracing lines of an image. Different Trace transforms can be 

produced from an image using different trace functional  [32], [33]. Srisuk et al. 

in [34] propose a new texture representation of face image using a robust feature 

from the trace transform. The so called masked trace transform (MTT) offers 

“texture” information for face representation which is used to reduce the within-

class variance. They first transform the image space to the trace transform space 

to produce the MTT. Weighted trace transform (WTT) identifies the tracing lines 

of the MTT which produce similar values irrespective of intra-class variations. 

They proposed a new distance measure by incorporating the WTT for measuring 

the dissimilarity between reference and test images. 
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2.4.9 Bayesian Framework 

 

In [35], Moghaddam et al. proposed a similarity measure for direct image 

matching based on a Bayesian analysis of image deformations. They modeled 

two classes of variation in object appearance: intra-object and extra-object. The 

probability density functions for each class are then estimated from training data 

and used to compute a similarity measure based on the posteriori probabilities. 

They further present a novel representation for characterizing image differences 

using a deformable technique for obtaining pixel-wise correspondences. This 

representation, which is based on a deformable 3D mesh in XYI-space, is then 

experimentally compared with two simpler representation: intensity differences 

and optical flow.  

 

2.4.10 Support Vector Machines 

 

Support Vector Machines (SVMs) are a set of related supervised learning 

methods used for classification and regression. Viewing input data as two sets of 

vectors in an n-dimensional space, an SVM will construct a separating 

hyperplane in that space, one which maximizes the margin between the two data 

sets. To calculate the margin, two parallel hyperplanes are constructed, one on 

each side of the separating hyperplane, which are "pushed up against" the two 

data sets. Intuitively, a good separation is achieved by the hyperplane that has the 

largest distance to the neighboring datapoints of both classes, since in general the 

larger the margin the better the generalization error of the classifier [36]. 

 

In Figure 2.7, H3 doesn't separate the 2 classes. H1 does, with a small margin and 

H2 with the maximum margin. The aim of SVM is to find the optimum plane H2. 
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Figure 2.7  Separating hyperplanes 
 
 
 

 

Figure 2.8  Separating hyperplane with maximum margin 
 
 
 
SVMs belong to a family of generalized linear classifiers. A special property is 

that they simultaneously minimize the empirical classification error and 

maximize the geometric margin; hence they are also known as maximum margin 

classifiers. Given data points each belong to one of two classes, and the goal is to 

decide which class a new data point will be in. In the case of support vector 

machines, a data point is viewed as a p-dimensional vector (a list of p numbers), 

and we want to know whether we can separate such points with a p−1-

dimensional hyperplane. This is called a linear classifier. There are many 

hyperplanes that might classify the data. However, we are additionally interested 
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in finding out if we can achieve maximum separation (margin) between the two 

classes. By this we mean that we pick the hyperplane so that the distance from 

the hyperplane to the nearest data point is maximized. That is to say that the 

nearest distance between a point in one separated hyperplane and a point in the 

other separated hyperplane is maximized. Now, if such a hyperplane exists, it is 

clearly of interest and is known as the maximum-margin hyperplane and such a 

linear classifier is known as a maximum margin classifier. 

 

Given some training data, a set of points of the form  

 / = 0(1!, 2!)| 1! ∈ ℝ6, 2! ∈ 0−1,1}}!���     (2.13) 

 where the ci is either 1 or −1, indicating the class to which the point xi belongs. 

Each xi is a p-dimensional real vector. We want to give the maximum-margin 

hyperplane which divides the points having ci=1 from those having ci=−1. Any 

hyperplane can be written as the set of points x satisfying 

 8. : − ; = 0        (2.14) 

The vector w is a normal vector: it is perpendicular to the hyperplane. The 

parameter 
�<(< determines the offset of the hyperplane from the origin along the 

normal vector w. We want to choose the w and b to maximize the margin, or 

distance between the parallel hyperplanes that are as far apart as possible while 

still separating the data. These hyperplanes can be described by the equations 8. : − ; = 1 and  8. : − ; = −1.     (2.15) 

 Note that if the training data are linearly separable, we can select the two 

hyperplanes of the margin in a way that there are no points between them and 

then try to maximize their distance. By using geometry, we find the distance 

between these two hyperplanes is 
�<(<, so we want to minimize <$<. As we also 

have to prevent data points falling into the margin, we add the following 

constraint: for each i either 

 8. := − ; ≥ 1 for xi for the first class or    (2.16) 

 8. := − ; ≤ −1 for xi of the second     (2.17) 

This can be rewritten as: 
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 2!(8. := − ;) ≥ 1 for all 1 ≤ @ ≤ A.     (2.18) 

We can put this together to get the optimization problem: 

  Choose w, b to minimize <$<, 

 Subject to 2!(8. := − ;) ≥ 1 for all 1 ≤ @ ≤ A. 

The original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963 

was a linear classifier. However, in 1992, Bernhard Boser, Isabelle Guyon and 

Vapnik suggested a way to create non-linear classifiers by applying the kernel 

trick to maximum-margin hyperplanes [37, 38, 39, 40, 41]. The resulting 

algorithm is formally similar, except that every dot product is replaced by a non-

linear kernel function. This allows the algorithm to fit the maximum-margin 

hyperplane in the transformed feature space. The transformation may be non-

linear and the transformed space high dimensional; thus though the classifier is a 

hyperplane in the high-dimensional feature space it may be non-linear in the 

original input space. Some common kernels are: 

Polynomial (homogeneous): B(1, 1C) = (1. 1C)D 

Polynomial (inhomogeneous): B(1, 1C) = (1. 1C + 1)D 

Radial basis function: B(1, 1C) = exp (−I<1 − 1′<�) for I > 0 

Gaussian radial basis function: B(1, 1C) = exp (− <�-�C<L
�ML ) 

Sigmoid: B(1, 1C) = tanh(Q1. 1C + 2) for some Q > 0 and 2 < 0. 

SVM models are closely related to neural networks. In fact, a SVM model using 

a sigmoid kernel function is equivalent to a two-layer perceptron neural network. 

Using a kernel function, SVM’s are an alternative training method for 

polynomial, radial basis function and multi-layer perceptron classifiers in which 

the weights of the network are found by solving a quadratic programming 

problem with linear constraints, rather than by solving a non-convex, 

unconstrained minimization problem as in standard neural network training [42]. 

 

In face recognition,  PCA is first used to extract features of face images and then 

discrimination functions between each pair of images are learned by SVMs [43, 

44, 45]. 
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2.5 3D Methods for Face Recognition 

 

The activity to exploit 3D data to improve the accuracy and robustness of face 

recognition system is still weakly addressed. Only a few works on the use of 3D 

data have been reported. These methods can be categorized into four groups: 

 
• Methods based on curvature analysis,  

• Methods by shape representation,  

• Methods by model fitting and image synthesis, and  

• Other methods. 

 

Many of the early studies concentrate on curvature analysis [46]. [47], [48], [49], 

[50]. The work by Gordon et al. [47, 48] presents a template-based recognition 

system using descriptors derived from range image. The sensed surface regions 

are classified as convex, concave and saddle by calculating the minimum and 

maximum principal curvature, and then the locations of nose, eyes, mouth and 

other features are determined, which are used for depth template comparison.  

 

Lee et al.[46] propose a method to detect corresponding regions in two range 

images by graph matching based on Extended Gaussian Image (EGI). 

 

An approach to label the components of human faces is proposed by Yacoob et 

al.[49]. Its preprocessing stage employs a multistage diffusion process to identify 

convexity and concavity points. These points are grouped into components. 

Qualitative reasoning about possible interpretations of the components is 

performed, followed by consistency of hypothesized interpretations.  

 

Tanaka et al. [50] also use the Extended Gaussian Image. For each face, two 

EGIs are constructed from maximum principal curvature and minimum principal 

curvature. The EGI similarity is measured by Fisher’s spherical correlation. 

However, because they are involved in computing curvature, all these techniques 
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require high resolution of the range data; otherwise the computation of curvature 

will be inaccurate and unreliable.  

 

Extended Gaussian Image (EGI) is used to model 3D face shape and curvature  

[50, 51, 52]. EGI computes the distribution of surface normal vectors of the face 

on a unit sphere. EGI normal distribution is usually called an EGI image. A point 

on the EGI image is presented by its position on the unit sphere which represents 

surface orientation and the height of the point represents the surface area of that 

specific orientation. 

 
 

 

Figure 2.9  Extended Gaussian Image of a cube 
 
 
 
The main advantage of EGI is that EGI transformation eliminates position 

information, i.e. the transformation is translation invariant. However, EGI is 

variant under scaling and rotation transformations. And also, EGI transformation 

is not localized, i.e. a point on the EGI image does not involve information about 

the exact point on the face surface. 

 

References [46-50] attempt to use a shape representation to analyze the 3D facial 

data. Chua et al. in [53] describes a technique for 3D face recognition based on 

Point Signature, a representation for free-form surfaces, which is also highly 

dependent on the quality of facial range data. In the method, the rigid parts of the 

face of one person are simply extracted to deal with different facial expressions. 

Their subsequent work in [54] combines Point Signature on 3D range data and 

Gabor filter response on 2D grayscale image for facial feature detection and 
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recognition. Pan et al. [55] presents a novel signature Curgram for pose-invariant 

detection of facial feature from range data. 

 

The third kind of approach is to use model fitting or image synthesis to cope with 

the influence of illumination and pose. For example, Blanz et al. [56, 57] utilize 

a 3D morphable model to fit the input facial image to tackle variation of pose 

and illumination. For this approach, the shape and texture fitting procedure is 

hugely time-consuming.  

 

In Ref. [58], Lee et al. employ an edge model and a color region model to 

analyze face image, and a wireframe model to synthesize the face image in 

virtual view for recognition. And Zhao et al. [59] present a method to synthesize 

the virtual image with shape from shading (SFS)-based 3D shape recovery. For 

this kind of approach, the input is a 2D face image but not 3D data. Because an 

image is essentially the projection from 3D space to 2D space, due to the nature 

of 2D image, there difficulties in accurate recognition across pose and 

illumination.  

 

Other 3D face recognition approaches include those mentioned in Refs. [60, 61]. 

Beumier et al. in [60] propose two 3D comparison methods based on surface and 

profiles matching respectively. In Reference [61], authors do the task of face 

recognition via feature vector that is generated from depth information of the 

area in some contour line. Recently Bronstein et al. propose a novel 3D face 

recognition method in [9]. It converts facial shape and texture to the special 

images by a bending-invariant mapping scheme, and then perform eigenface 

decomposition on the special images to do the recognition task. 

 

A fairly new work published by Iordanis at al. in [62] proposes a geodesic polar 

parameterization of the face surface. With this parameterization, the intrinsic 

surface attributes of the face shape do not change under isometric deformations, 

and therefore, the proposed representation is appropriate for expression-invariant 
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3D face recognition. They even considered the special case of an open mouth 

that violates the isometry assumption and further propose a modified geodesic 

representation that also leads to invariant representation. Based on this 

representation they reduce the problem of 3D face recognition to recognition of 

expression compensated 3D images. While preprocessing the surface face, they 

used Iterative Closest Point (ICP) algorithm to align the surfaces. An overview 

of ICP is given in Appendix A. 

 

In reference [63], Xiaoguang et al. propose a multi-view face recognition method 

based on 3D face mesh which are generated from 2.5D range scans. They 

automatically detects feature points on the 2.5D face scans, and transform 2.5D 

range image coarsely with the full 3D model. Afterwards, they finely register the 

image using ICP.  They used commercial software to generate a Virtual Reality 

Markup Language (VRML) 3D model of the 2.5D scan. They used root-mean-

square distance minimized by the ICP algorithm for primary matching score of 

face scans.  

 

In an M.Sc. thesis study completed in METU Computer Vision and Intelligent 

Systems Research Laboratory, the effect of registration on the 3D face 

recognition algorithms is studied in which ICP (see Appendix A) is used for 

registration. PCA, ICA, NMF and Fisherface are used for dimension reduction 

and classification. The experimental results obtained by applying the mentioned 

methods on the 3D face images in FRGC database. The experiments conveyed in 

this thesis are applied in the same manner as in [19] so that direct comparison of 

the results becomes possible. 

2.6 Distance Metrics 

 

In pattern classification problems, the first step is always the feature extraction 

step. This follows dimension reduction step, where the number of features are 

reduced for further classification. Most of the classification methods require a 
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similarity or distance measure between reduced feature vectors. Several distance 

metrics are defined in the literature. Some of them can be listed as follows; 

• Euclidean distance 

• Manhattan distance (city-block) 

• Minkowski metric 

• Tanimoto metric 

• Tangent distance 

• Mahalanobis distance 

A metric D must have four properties [64]: For all vectors, a, b and c, these 

properties are as follows: 

• Nonnegativity: S(T, U) ≥ 0 

• Reflexivity: S(T, U) = 0 if and only a=b 

• Symmetry: S(T, U) = S(U, T) 

• Triangle inequality: S(T, U) + S(U, V) ≥ S(T, V) 

 

In this study, Euclidean distance and Mahalanobis distances will be used. 

2.6.1 Euclidean Distance 

 

Euclidean distance in d dimensions can be defined as follows: 

S(T, U) = W∑ (XY − ;Y)�DY��       (2.19) 

Although it is simple to compute the Euclidean distance between two vectors, the 

results may or may not be meaningful. For example, if the input vector space is 

transformed by multiplying each coordinate by an arbitrary constant, the 

Euclidean distance relationships in the transformed space can be very different 

from the original distance relationships. Such scale changes can have a major 

impact on nearest neighbor classifiers [64]. 
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2.6.2 Mahalanobis Distance 

 

Formally, the Mahalanobis distance from a group of values with mean Z =( �,  �, … ,  6)# and covariance matrix Σ for a multivariate vector : =
(1�, 1�, … , 16)# is defined as: S(:) = [(: − Z)#Σ-�(: − Z). Mahalanobis 

distance can also be defined as dissimilarity measure between two vectors x and 

y: 

 S(:, \) = [(: − \)#Σ-�(: − \)     (2.20) 

If the covariance matrix is the identity matrix, the Mahalanobis distance reduces 

to the Euclidean distance. If the covariance matrix is diagonal, then the resulting 

distance measure is called the normalized Euclidean distance: 

 S(:, \) = W∑ (�]-^])L
M]L

6!��       (2.21) 

where _!� is the standard deviation of the xi over the sample set. 

Related to the Mahalanobis distance, the whitening transform ensures that the 

feature vector is transformed such that its components are uncorrelated and their 

variances equal to unity. In other words, the covariance matrix of the feature 

vectors equal to identity matrix, i.e. Σ = I. The whitening transform can be 

performed using eigenvalue decomposition (EVD) of the covariance matrix Σ = EDET, where E is the orthogonal matrix of eigenvectors of Σ and D is the 

diagonal matrix of its eigenvalues, D=diag(d1,…,dp). Whitening can now be 

done by 

 :d = eS-�/�e#:g       (2.22) 

where  the matrix S-�/� is computed by a simple component-wise operation as 

S-�/� = h@Xi(h�-
jL, … , h6-

jL). It is easy to check that now Σ = k. 
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CHAPTER 3   
 

 

SPHERICAL HARMONICS EXPANSION 
 

 
 
In this chapter, the theory of spherical harmonics and spherical harmonic 

transform is given. Application of spherical harmonics in computer graphics, 

shape classification and face recognition are also discussed. 

3.1 Spherical Harmonic Functions 

 
In mathematics, the spherical harmonics are the angular portion of an orthogonal 

set of solutions to Laplace's equation represented in a system of spherical 

coordinates. Spherical harmonics are important in many theoretical and practical 

applications, particularly in the computation of atomic electron configurations, 

the representation of the gravitational field, geoid and magnetic field of planetary 

bodies, as well as characterization of the cosmic microwave background 

radiation. In 3D computer graphics, spherical harmonics plays a special role in a 

wide variety of topics including indirect lighting (ambient occlusion, global 

illumination, precomputed radiance transfer etc) and in recognition of 3D shapes 

[36]. 

 

Laplace's equation in spherical coordinates is: 

 ∇�m = ��L nn� op� nqn�r + ��Ls!�t nnt ou@A� nqntr + ��Ls!�Lt nLqnvL = 0    (3.1) 

 

For f(r,θ,φ) = R(r)Θ(θ)Φ(φ), the angular portion of Laplace's equation satisfies 

 

w(v)s!�t DDt ou@A� DxDtr + x(t)s!�Lt DLwDvL + y(y + 1)Θ(�)Φ(�) = 0    (3.2) 

 
Using the technique of separation of variables, two differential equations result: 
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�w(v) DLw(v)DvL = −|�         (3.3) 

y(y + 1)u@A�(�) + }~�(t)x(t) DDt �sin(�) DxDt� = |�     (3.4) 

 
for some m and l. Hence, the angular solutions can be shown to be  products of 

trigonometric functions and associated Legendre functions: 

 

���(�, �) = ��!�v���(2�u�),       (3.5) 

 

where ���(�, �) is called a spherical harmonic function of degree l and order m, ��� is associated Legendre function, N is a normalization constant, and � and � 

represent colatitude and longitude, respectively. In particular, the colatitude θ, or 

polar angle, ranges from 0 ≤ θ ≤ π and the longitude φ, or azimuth, ranges from 0 

≤ φ ≤ 2π. Thus, θ is 0 at the north pole, π/2 at the Equator, and π at the south 

pole. 

 

When Laplace's equation is solved on the surface of the sphere, the periodic 

boundary conditions in φ, as well as regularity conditions at both the north and 

south poles, ensure that the degree l and order m are integers that satisfy l≥ 0 and 

|m| ≤ l. In contrast, if the function f were only to have been defined for θ ≤ θ0, 

then the resulting spherical cap harmonics would have been defined for integer 

order, but non-integer degree. 

 

The general solution to Laplace's equation is a linear combination of the 

spherical harmonic functions multiplied by the solutions of R(r): 

 

m(p, �, �) = � � p-�-�m�����(�, �) +�
��-�

�
��� � � p�m��C���(�, �)�

��-�
�

���  

            (3.6) 
 
where m�� and m��C are constants. The terms in the first summation approach zero 

as r goes to infinity, whereas the terms in the second summation approach zero at 

the origin. 
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Several different normalizations are in common use for the spherical harmonic 

functions. In physics and seismology, these functions are generally defined as 

 

���(�, �) = W(����)�� (�-�)!(���)! ���(2�u�)�!�v      (3.7) 

 
which are orthonormal 
 

 � � ��������∗hΩ = ���� ������v���t��        (3.8) 

 
where ���C and ���C are Kronecker delta and h� = u@A�h�h�. 
 

3.2 Spherical Harmonics Expansion 

 
Basis functions are small pieces of signal that can be scaled and combined to 

produce an approximation to an original function, and the process of working out 

how much of each basis function to sum is called projection. To approximate a 

function using basis functions we must work out a scalar value that represents 

how much the original function f(x) is like the each basis function Bi(x). We do 

this by integrating the product f(x)Bi(x) over the full domain of f. 

 
 
 

 

Figure 3.1 Orthogonal basis expansion 
 
 
 

Using this projection process over all our basis functions returns a vector of 

approximation coefficients. If we scale the corresponding basis function by the 

coefficients 
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Figure 3.2  Orthogonal basis expansion 
 
 
 

and sum the results we obtain our approximated function. 
 
 
 

� 2!�! = 

 
 

Figure 3.3  Orthogonal basis expansion 
 
 
 

Polynomials are mostly used as basis functions in expansions. Legendre 

polynomials, specifically the Associated Legendre Polynomials are used as the 

basis functions in spherical harmonics expansion. Traditionally represented by 

the symbol P, the associated Legendre polynomials have two arguments l and m, 

are defined over the range [–1,1] and return real numbers (as opposed to the 

ordinary Legendre Polynomials which return complex values – be careful not to 

confuse the two). 

 
The two arguments l and m break the family of polynomials into bands of 

functions where the argument l is the band index and takes any positive integer 

value starting from 0, and the argument m takes any integer value in the range 

[0,l]. Inside a band the polynomials are orthogonal w.r.t. a constant term and 

between bands they are orthogonal with a different constant. We can diagram 
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this as a triangular grid of functions per band, giving us a total of n(n+1) 

coefficients for an n band approximation: 

 

P0
0(x) 

P1
0(x), P1

1(x) 

P2
0(x), P2

1(x), P2
2(x) 

P3
0(x), P3

1(x), P3
2(x), P3

3(x) 

… 

 
 

 
 

Figure 3.4  The first 10 associated Legendre polynomials. 
 
 
 
The associated Legendre polynomials are at the heart of the Spherical 

Harmonics, a mathematical system analogous to the Fourier transform but 

defined across the surface of a sphere. The SH functions in general are defined 

on imaginary numbers but in this study only real functions are approximated 
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over the sphere, so only the Real Spherical Harmonics will be used. In this 

study, when a SH function is referred, only the Real Spherical Harmonic 

functions are considered. 

 

The spherical harmonics form a complete set of orthonormal functions and thus 

form a vector space analogous to unit basis vectors. On the unit sphere, any 

square-integrable function can thus be expanded as a linear combination of these 

functions. The process for projecting a spherical function into SH coefficients is 

very simple. To calculate a single coefficient for a specific band you just 

integrate the product of your function f and the SH function y, in effect working 

out how much your function is like the basis function: 

 

m(�, �) = ∑ ∑ m�����(�, �)���-�����        (3.9) 

 

This expansion is exact as long as l goes to infinity. Truncation errors will arise 

when limiting the sum over l to a finite bandwidth L. The expansion coefficients 

can be obtained by multiplying the Equation 3.9 by the complex conjugate of a 

spherical harmonic, integrating over the solid angle Ω, and utilizing the above 

orthogonality relationship. For the case of orthonormal harmonics, this gives: 

 

m�� = � m(�, �)���∗(�, �)hΩ = � h� � h�u@A�m(�, �)���∗(�, �)�
�

��
�Ω  

          (3.10) 
 
An alternative set of spherical harmonics for real functions may be obtained by 

taking the set: 

��� =
��
�
�� ��� @m | = 01√2 (��� + (−1)���-�) = √2�(�,�)���(2�u�)2�u|� @m | > 0

1@√2 (��-� − (−1)����) = √2�(�,�)��-�(2�u�)u@A|� @m | < 0
� 

          (3.11) 



41 
 

where N(l,m) denotes the normalization constant as a function of l and m. These 

functions have the same normalization properties as the complex ones above. In 

this notation, a real square-integrable function can be expressed as an infinite 

sum of real spherical harmonics as: 

 m(�, �) = ∑ ∑ m�����(�, �)���-�����      (3.12) 

 

Using the above spherical harmonics notation, analytic expressions for the first 

few orthonormal spherical harmonics can be written as follows; 

 

���(�, �) = 12 �1� 

��-�(�, �) = 12 � 32� u@A��-!v 

���(�, �) = 12 �3� 2�u� 

���(�, �) = − 12 � 32� u@A��!v 

��-�(�, �) = 14 �152� u@A���-�!v  

��-�(�, �) = 12 �152� u@A�2�u��-!v 

���(�, �) = 14 �5� (32�u�� − 1) 

���(�, �) = − 12 �152� u@A�2�u��!v 

���(�, �) = 14 �152� u@A����!v 
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The above spherical harmonics and some other one will be depicted on the 

following figures. 

 

 
Figure 3.5 ¡���(�, �)¡ 

 
 
 
Notice that, Y0

0 is just a sphere. 
 
 
 

 
Figure 3.6  ¡���(�, �)¡ 
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Figure 3.7  ¡���(�, �)¡ 

 
 

 

 
Figure 3.8  ¡���(�, �)¡ 

 
 

 

 
 

Figure 3.9  ¡���(�, �)¡ 
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Figure 3.10  ¡���(�, �)¡ 
 
 
 
 
 

 
Figure 3.11  ¡�¢�(�, �)¡ 

 
 
 
 

 
Figure 3.12  ¡�¢�(�, �)¡ 
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Figure 3.13  ¡�¢�(�, �)¡ 
 
 
 

 
Figure 3.14 ¡�¢¢(�, �)¡ 

 
 
 
A more explanatory image of the first 5 spherical harmonics band is depicted in 

Figure 3.15. Notice the phase difference between spherical harmonics at the 

same degree with different order signs. 
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Figure 3.15  The first 5 SH bands 
 
 
 
To reconstruct the approximated function (m£), we just take the reverse process 

and sum scaled copies of the corresponding SH functions. It should be noted that 

the true function f could be reconstructed if the infinite series of all SH 

coefficients are used in the summation, therefore every reconstruction in 

practical use will be an approximation to the true function, technically known as 

a band–limited approximation where band–limiting is just the process of 

breaking a signal into its component frequencies and removing frequencies 

higher than some threshold. 

 

m(�, �) ≈ � � m�����(�, �)�
��-�

¥
���  

          (3.13) 

In Figure 3.16., projection of some spherical functions with different 

approximation levels are shown. Notice that, a band-limited approximation is 

similar to low-pass filtering of signals using Fourier transform. 
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Figure 3.16  SH  expansion with increasing orders of approximation ([8]). 

 
 
 

It should be noted that SH projection of a spherical function is rotation 

invariant. In order to make SH projection rotation-invariant, the norm of the 

coefficient at the mth order considered. The Figure 3.17 illustrates this property 

of SH projection. 

 

 

 
 

Figure 3.17  Rotation Invariancy of SH transform 
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Notice that, the norm of the coefficient are the same for the two shapes above. 
 

3.3 Applications of Spherical Harmonics 

 
Spherical harmonics are important in many theoretical and practical applications, 

particularly in the computation of atomic electron configurations, the 

representation of the gravitational field, geoid, and magnetic field of planetary 

bodies, characterization of the cosmic microwave background radiation. In 3D 

computer graphics, spherical harmonics plays a special role in a wide variety of 

topics including indirect lighting (ambient occlusion, global illumination, 

precomputed radiance transfer etc) and in recognition of 3D shapes. 

 

In this study, we will briefly give some detailed about usage of spherical 

harmonics in computer graphics, and 3D shape recognition which are closely 

related to the face recognition problem. 

 

3.3.1 Spherical Harmonic Lighting 

 
Spherical Harmonic lighting (SH lighting) is a technique for calculating the 

lighting on 3D models from area light sources that allows to capture, relight and 

display global illumination style images in real time. It was introduced in a paper 

at ACM-Siggraph 2002 by Sloan, Kautz and Snyder as a technique for ultra 

realistic lighting of models [65]. The details of the SH lighting is given in 

Appendix D. 

3.3.2 Modeling Face Illumination Variation with Spherical Harmonics 

 

Illumination can have a significant impact on the appearance of surfaces, as the 

patterns of shading, specularities and shadows change. For instance, some 

images of a face under different lighting conditions are shown in Figure 3.18. 
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Figure 3.18  Images of a face, lit from a number of different directions. 
 

There are many research papers published by the computer graphics community 

about illumunation modeling of an object under different lighting conditions. 

Ravi et al. Adn Basri et al. ([66], [67]) adapted this research to the face 

recognition problem, in order to overcome the illumunation problem in face 

recognition. Basri et al. [67] propose a method to identify a subject from a test 

image that is acquired under different pose and illumunation condition from only 

one training sample of this subject in the gallery database. This sounds a 

challenging scenario in face recognition. For example, the test image could be 

semifrontal and illuminated by multiple lighting sources while the corresponding 

training image is frontal under a single lighting source. Under the assumption of 

Lambertian reflectance, they used the spherical harmonics representation in 

modeling illumination variations for a fixed pose. In their work, we extend the 

spherical harmonics representation to encode pose information. More 

specifically, they utilized the fact that 2D harmonic basis images at different 

poses are related by close-form linear transformations, and give a more 

convenient transformation matrix to be directly used for basis images. So they 

managed to synthesize a different view of a face under arbitrary lighting 

conditions by changing the coefficients of the spherical harmonics 

representation. They call their method “pose-encoded spherical harmonics”. 

 

The first paper in literature about this subject is published by Zhang et al. ([68]) 

under the title “face recognition under variable lighting using harmonic image 

exemplars”. They demonstrated that the set of images of a convex Lambertian 
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object obtained under a wide variety of lighting conditions can be approximated 

accurately by a low-dimensional linear subspace.  

3.3.3 Spherical Harmonics as 3D Shape Descriptor 

 

Kazhdan et al. in [8] propose a model matching algorithm to find the 

computational representation of a shape for which an index can be built and a 

geometric matching can be performed efficiently. They define the following 

properties for a shape description. It should be (1) computationaly efficient, (2) 

efficient for storage, (3) easy to query and retrieve, (4) invariant under similarity 

transforms, and (5) independent of 3D object representation, tessellation, genus 

or topology.  

 

Their harmonic shape representation can be outlined as follows; 

(1) Given a model, rasterize its polygons into a 64x64x64 voxel grid, 

(assigning a voxel a value of 1 if it was within one voxel of a point on the 

boundary, and a value of 0 otherwise). The model is aligned so that its center of 

mass is at the center of the grid, and so that its bounding sphere has radius 32. 

(2) Treating it as a function defined in three dimensional-space, 

decompose the voxel grid into 32 spherical functions by restricting the voxel grid 

to spheres with radii 1 through 32.  

(3) Decompose each of these functions as a sum of its first 16 harmonic 

components, analogous to a Fourier decomposition into different frequencies.  

(4) Using the fact that rotations do not change the norm of the harmonic 

components, define the signature of each spherical function as a list of these 16 

norms.  

(5) Combine these different signatures to obtain a 32x16 signature for the 

3D model. The resultant rotation invariant signature is a two-dimensional grid 

where the value of the (i; j)-th index is equal to the norm of the j-th order 

component of the spherical function on the sphere of radius i. 
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Figure 3.19  Spherical harmonic shape descriptor (from [8]) 
 
 
 

To compare two harmonic representations, simply compute the Euclidean 

distance between them. Thus, finding the K closest models to a query is 

equivalent to solving the nearest-neighbor problem in a 32x16 dimensional 

space. They compared their matching method’s performance to other five 

existing methods, and they report very promising results (Figure 3.20). 

 

 

 

Figure 3.20  Precision vs recall performance for 3d SH shape descriptor [8] 
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3.3.4 Face Recognition via Spherical Embedding 

 

Bronstein at al. [9] reported that their novel 3D face recognition method can 

overcome expression variancy and even can distinguish between images of 

twins. They modelled the facial expressions as isometries, that is, geodesic 

distances on the facial surface using elliptic geometry. They used the empirical 

fact that geodesic distances on the facial surface are less sensitive to facial 

expressions compared to Euclidean ones. Their system is able to compute 

expression invariant signatures based on isometry-invariant repsentation of the 

facial surface. They embed the geometric structure of the facial surface into a 

spherical space in order to construct isometry invariant representations of the 

facial image. 

 

They modeled a face as a complete compact smooth two-dimensional 

Riemannian manifold (surface) (S,g) with a Riemannian metric g, endowed with 

some property field, the scalar field ¦: ' → [0,1] representing the gray-scale 

albeda of the face. They are using 2.5D range image and the intensity image for 

sampling S and the corresponding reflectance value r at the points.  

 

They define two factors which affect the performance of face recognition 

algorithms, which are external factors influencing the reflectance image such as 

illumination conditions, head orientation, and internal factors such as facial 

expressions. 

 

Under the assumption of the isometric model, they obtained an expression-

invariant (isometry-invariant) representation of the face, which is isolated of its 

extrinsic geometry, that is, the way the surface S is immersed into the ambient 

threedimensional Euclidean space. Their isometry representation is, keeping only 

the intrinsic geometry, that is, the geometry on the surface itself. 
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An obvious isometric invariant of the surface is the set of all the geodesic 

distances between its points. In order to contruct the invariant of the face surface, 

they propose a procedure called isometric embedding, which allows to isolate the 

surface data from its extrinsic geometry. Isometric embedding is a mapping 

between two finite metric spaces, 

 �: (0«�, «�, … , «¥} ⊂ ', S) → (0«′�, «′�, … , «′¥} ⊂ 'C� , S′)  (3.14) 

 

such that for al i, j=1, ..., N, d’ij=dij.. The matrices D=(dij) and D’=(d’ij) denote 

the mutual distances between the points in the original and the embedding 

spaces, respectively. The image of 0«�, «�, … , «¥} under � is called the canonical 

form of (S,g). Notice that the canonical form is an approximate representation of 

the discrete face surface. The canonical form is uniquely defined up to any 

transformation in the embedding space that does not alter the distances (like 

translations, rotations and reflections in an Euclidean embedding space). 

 

They also propose to embed the facial image into a two-dimensional sphere S2 

rather than a plane. And also they use the spherical harmonic transform in order 

to obtain a truly invariant signature of the face. 

 

They used A data-set of 104 faces was used for the experiments. The set 

consisted of four subjects (two of which are identical twins) with extreme facial 

expressions. Each subject was acquired with five instances of neutral expression 

and three instances of smile, anger, surprise, inflated cheeks, deflated cheeks, 

and neutral expression with eyeglasses. The faces were preprocessed, and 

500x500 matrices D of geodesic distances between points on the facial surfaces 

were computed. 

 

They also tested the influence of the embedding sphere radius on the embedding 

error was tested. They report that embedding sphere radius yielding the 
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minimum embedding error ranges from 90 to 100mm. Unfortunately , no 

information is given in [9] on how to the embedding is done. 

3.4 Fast Spherical Harmonics Transform using FFT 

 

Spherical harmonics transform of a face can take long time on a fast desktop 

computer. In order to speed up the execution, Fast Fourier Transform (FFT) can 

be applied. The relation between SHT and FFT can be explained as follows; 

 

The spherical harmonics are the eigen functions of the Laplace operator 

(∇� or ∇) on the surface of unit sphere. The spherical harmonics satisfiy the 

following equation: ∇�¯ = −¯        (3.15) 

Basis functions of the Fourier transform are a set of orthonormal solutions to the 

above equation on ��, Euclidean space. 

 

Basis of the spherical harmonic transform are a set of orthonormal solutions to 

the Equation 3.15 on '�, the surface of the unit sphere. Hence, the spherical 

harmonic transform is just the Fourier transform for the unit sphere. 

3.4.1 Pixelization Assumptions 

A spherical coordinate system for the face geometry representation will be used 

throughout this study. Here first define a coordinate system as (�, �). � is the 

angle down from the north pole (latitude). This angle is in radians and 0 at the 

north pole and � at the south pole. � is the azimuthal angle (longitude). This 

angle is also in radians and goes from 0 to 2�.  

 

It is assumed that the pixels (or surface samples) lays on rows of constant �. 

Pixels on the same row cover equal area on the unit sphere surface, and the 

longitudinal spacing between pixels is fixed for each row. 
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Given the above assumptions, FFT can be used in SHT calculation. As defined in 

Section 3.1, ��,� can be defined as follows; 

 

���(�, �) = W(����)�� (�-�)!(���)! ���(2�u�)�!�v    (3.16) 

Here define  

°�,�(1) = W(�-�)!(���)! ���(1)      (3.17) 

as the scaled associated Legendre polynomials. The following recursion equation 

can be used to compute the scaled associated Legendre polynomials.  

°�,�(1) = W∏ o1 − ��!r�!�� (−1)�(1 − 1�)�/�   (3.18) 

°���,�(1) = 1[(2| + 1)°�.�(1)     (3.19) 

°�,�(1) = (y� − |�)-�/�²1(2y − 1)°�-�,�(1) −�    

�[(y − 1)� − |�°�-�,�(1)�    (3.20) 

 

3.4.2 Forward SHT 

 

Calculate, 

m�� = � m(�, �)���∗(�, �)hΩ = � h� � h�u@A�m(�, �)���∗(�, �)�
�

��
�Ω  

          (3.21) 

Approximate Equation 3.21 with Riemann sum. Assume pixels lie on azimuthal 

rings and that pixels on the same ring have equal area. 

m�� = � � m(�! , �!,³)��,�∗ (�! , �!,³)´!
s]-�
³��

�-�
!��  

          (3.22) 

In order to use the FFT, assume that rows are evenly spaced across � such that 

�!,³ = �!,� + ��s] µ       (3.23) 

Lets define a phase shift constant: 
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Q!,� = �√-��v],¶        (3.24) 

Now write the following expression for m�� 

m�� = �2y + 14� � ´!
�-�
!�� Q!,�∗ °�,�(2�u�!) � m!,³�-√-��³��s]

s]-�
³��  

          (3.25) 

Lets define the function G which can be calculated using FFT. 

·!,� = ∑ m!,³�-√-��³L¹̧]s]-�³��       (3.26) 

finally, 

m�� = �2y + 14� � ´!
�-�
!�� Q!,�∗ °�,�(2�u�!)·!,� 

          (3.27) 

 

3.4.3 The Backward SHT 

 

In order to calculate; 

m(�, �) = ∑ ∑ m�����(�, �)���-�º���      (3.28) 

Substitute and switch sum order;  

m(�, �) = ∑ ∑ W������ °�,�(2�u�!)Q!,�∗ m���-√-��³L¹̧]���-�º���  (3.29) 

Define »: 

»�,! = ∑ W������ °�,�(2�u�!)Q!,�∗ m��º���     (3.30) 

Finally, the following expression can be computed using FFT. 

m(�, �) = � »�,!�-√-��³��s]
º

���  

          (3.31) 
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CHAPTER 4  

 

3D FACE REPRESENTATION AND RECOGNITION 

USING SHT 

 
 
 
Our proposed face recognition algorithm consists of two stages. The first stage is 

feature extraction. The second stage is classification. The feature extraction stage 

is the stage where we compute SHT coefficients for further classification. The 

feature extraction stage is composed of the following steps: 

1. Preprocess the 3D face data 

1.1. Fill the gaps in 3D 

1.2. Remove the spikes and filter 

2. Crop the face and place it on the ellipsoid 

2.1. Using texture image mark the two eye, nose and chin points 

2.2. Crop the image using two co-centric ellipses 

2.3. Offset the face so that the nose is the origin 

2.4. Using the marked points align the face horizontally 

2.5. Align the face vertically using PCA 

2.6. Offset the nose to the predetermined ellipsoid 

2.7. Stitch the face to the ellipsoid (with or without symmetry) 

3.  Transform the spherical face and obtain SHT coefficients 

In classification stage, different algorithms are used to distinguish the faces using 

SHT coefficients. These algorithms are as follow: 

• K-Nearest Neighbor with Euclidean distance 

• Linear Discriminant Analysis 

• Support Vector Machines 
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4.1 Input face data 

 
All references made to the FRGC (Face Recognition Grand Challenge) database 

in this thesis are always related to part v.1 of the database. Faces are scanned 

with a Minolta Vivid 900/910 series 3D laser scanner. This device can produce 

3D shape and color information registered to each other.  

 

The resolution of 2D images is 480 rows by 640 columns pixels. Color 

information provided by these images has 24 bits per pixel to code color in RGB 

(Red-Green-Blue) color space. 

 

3D data has 480x640x4 number of elements. For each pixel position in the 

registered 2D image there are 4 values in corresponding position (i,j) of 3D data: 

x, y, z, and validity flag. x, y and z values show the position of the point in the 

space. Validity flag is a marker which indicates whether there is a valid position 

data at the specified point. If there is no valid position data, then there is no 

information relating to this point and x, y, and z values are assigned as -999999.  

 

There are some problems with the 3D data files. Firstly, the points where the 

laser scanner cannot get any reflections are regarded as invalid. An example is 

given in Figures 4.1, 4.2 and 4.3. Invalid points are black where as white points 

are valid. Some parts on the face especially eyes, eyebrows have gap problems. 

Although these points are not occluded to the range scanner, the scanner sensor 

cannot provide depth information at these points. 
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Figure 4.1  FRGC registered color image 

 

 
Figure 4.2  FRGC range image 

 
 
 
Figure 4.1 shows a sample image from the FRGC database. The image is the 

registered visible-light image of the face. Figure 4.2 is the range image of the 

face on Figure 4.1. The black points on this image are marked as invalid, hence 

have a depth value of -999999. A grayscale color map is used to indicate the 

depth information. Figure 4.3 shows the validity flag map of the image. 
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Figure 4.3  FRGC validity flag map 

 

 

Figure 4.4  Range image shown as a mesh 
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Figure 4.5  Face reconstructed using range and color image 
 
 
 
As can be seen on Figure 4.3, unfortunately not every point on the face image 

has valid x, y, and z values. For example, there are gaps on the eye corners in the 

Figure 4.3. This missing data regions should be filled in the preprocessing step. 

 

All images in the FRGC database are taken from front view with minor in-depth 

pose variations. However, significant translation and scale variations are present 

in the images. In some of the images, small rotation and expression variations are 

also present.  

4.2 Preprocessing of Images 

 
As seen on Figure 4.3, there are missing information on the face surface, and  the 

face image is large, i.e. we need only the face surface, not the shoulders or 

background, and also the range images in FRGC database are not aligned. There 

is a need for preprocessing the range images in order to make them ready for the 

3D face matching algorithm. The preprocessing steps can be listed as follows; 

• Gap filling 

• Noise filtering 
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• Point marking 

• Cropping 

• Registration 

4.2.1 Gap Filling 

 
Since the range images in the FRGC database are acquired by Minolta Vivid 

series of scanners which uses laser range scanning technique, certain areas of the 

scene are not accurate sampled or even not sampled due to surface reflectance 

properties or lighting conditions. So there are holes or undesirable artifacts on 

the face shape. In order to process the face surface further we need to fill the 

gaps on the face. Wang et all [69] proposes an algorithm based on moving least 

squares estimation which interpolates the missing parts of the surface locally 

smooth. Instead of using this complex algorithm, we developed a two pass 

algorithm for gap filling. First a row-wise linear interpolation is done followed 

by a column-wise linear interpolation. More accurate results can be obtained 

using bilinear interpolation by looking at the pixel values at the top and bottom 

edges of the gap as in texture mapping algorithms. 

 
 
 

 

Figure 4.6  Gaps on the face 
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Figure 4.7  Face after filling 
 
 
 

4.2.2 Noise filtering 

 

Although, after the gap filling step the range image looks cleaner, there are still 

some noise on the data as can be noticed in Figure 4.8. The noise is mainly due 

to acquisition characteristics of the device. Almost all the 3D face 

representations suffer from erroneous data points due to current 3D sensor 

technology which makes a noise removal step necessary.  

The noise filtering step has almost two sub steps. First the spikes are removed by 

thresholding. The distance differences of all the pixels with respect to their 

neighbor points are calculated and those having larger distance than a threshold 

value are deleted. So that, impulse-like noises in the image are eliminated by 

noise filtering as in Figure 4.9. 
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Figure 4.8  Noisy artifacts on the face surface 
 
 
 

 

Figure 4.9  Image after spike removal 
 

 
 
After spike removal, a 2x2 distance weighted smoothing filter is applied to the 

range image. The result can be observed in Figure 4.10. 

 

Spikes 
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Figure 4.10  Effect of smoothing filter 
 

 

4.2.3 Marking the Points on the Face 

 

The FRGC face database provides a relational database for the faces which 

includes coordinates of the eye, nose and chin points. The outer eye corners 

rather than eye centers are used as landmark points because the eyeball is an 

artifact-prone region for the range sensor, whereas the eye corners marked on the 

skin are more reliable [84]. These marked points are used for both cropping and 

3D registration. 
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Figure 4.11  Points marked on the face 
 
 
 

4.2.4 Cropping 

 
As can be seen on Figure 4.1, besides the face, the FRGC face image also 

contains the shoulders and a large background area. The proposed 3D face 

matching method requires only the face surface to be defined. So, there is a need 

to detect the position of the face within the image, and outline the face surface 

for further processing. There are many methods available to detect faces in color 

or monochrome images, even in complex backgrounds [70]. Automatic face 

detection and outlining is out of the scope of this study. So we manually marked 

the eyes, chin and nose tip as shown in Figure 4.11.  

We used 3 of the points marked at the previous stage for cropping. Using the two 

eye points we determined the center point. A bottom half ellipse and a top half 

ellipse with the calculated center is used. The two ellipses have a common 

horizontal radius which length is the distance between two eyes. The vertical 

radius for the top-half is a adhoc distance, hence 80 pixels above the center. The 

vertical radius for bottom ellipse is the vertical distance between the center and 

chin point. In Figure 4.12 notice that, the nose point is not used for cropping. 
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Figure 4.12  Elliptical crop region 
 
 
 
2D and 3D  face images after cropping are show on the Figures 4.13 and 4.14. 

 
 
 

 

Figure 4.13  Cropped 2D image 
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Figure 4.14  Cropped 3D image and registration triangle 
 
 
 

4.2.5 Registration 

 
The input to the registration method is the cropped face surface marked at the 

two eye points and the nose. The first step is to offset the surface so that the nose 

point becomes the origin of the surface. We used two different methods for 

further alignment of the face. 

4.2.5.1 ICP Registration 

 

As mentioned in the literature review, most of the 3D face recognition methods 

used Iterative Closest Point (ICP) technique to align face surfaces. In this study, 

we also used the baseline ICP algorithm. This algorithm uses all the points in 

both model and test meshes (no subsampling or rejection is performed), 

computes point-to-point distances between pairs and weights are given uniformly 

to every pair. As the model, a depth image is obtained by averaging all the 941 

faces in the database. 

Firstly, a face model is constructed by averaging all the faces in the database. 

Then, every 3D face image read from FRGC database is registered to the model 
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face and the resulting depth images form new database on which all the matching 

experiments will be performed. In other words, the faces in the database are 

already registered with the average face model. Each test image given to the 

system is registered to average face by ICP before the further steps are 

performed.  

 

By considering all the images in the database, a proper choice is made to 

determine the starting and ending points of the grid (Figure 4.15). 

 

 

 
Figure 4.15  Registered face image centered at nose tip 

 

 

Since the faces are all placed on the same grid, and all nose tips are at the origin 

z values can be used as features. 

 

The drawback of the ICP algorithm is that it is computationally very expensive. 

And also while building up the model face by averaging all faces in the database, 

some more cropping should be performed in order to keep the face within the 
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boundaries of the predetermined grid, and this causes lots of surface information 

be lost. Because of these drawbacks, even though the ICP method is investigated 

and implemented in this study, the next method “geometrical” performed very 

well, and preferred over ICP. 

4.2.5.2 Geometrical Registration 

 

Since we have landmark points on the eye and nose, we can make use of this 

information to align the face surfaces geometrically. We call the triangle defined 

by these points as registration triangle. As seen on Figure 4.16, after offsetting 

the surface to make the nose point the origin, the head of the registration triangle 

is on the z-axis (outward). 

 
 
 

 

Figure 4.16  Face after offsetting on nose point 
 
 
 
In the first step of alignment, the line through the two eyes is aligned with x-axis 

by rigidly rotating the face surface first around z-axis and afterwards around y-

axis (see Figure 4.17) assuming the nose-tip is the origin of the face surface. 

After these alignments, the only alignment we need to perform is the alignment 
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around the x-axis. This can be done geometrically, however it won’t give 

accurate results, because person’s nose sizes differ. As can be seen on Figure 

4.18, for the alignment we could set a predefined angle for the angle α, however 

this would give inaccurate results, because this angle depends on the size of the 

nose. However, rotating the face around x-axis by β angles so that the principal 

component of the face surface becomes aligned with y-axis give more accurate 

results. The principal axis (see Figure 4.18) of the surface can be computed using 

PCA algorithm in 3D Euclidean space. The principal axis will be the axis with 

the largest eigenvalue. 

 

 

 

Figure 4.17  Rotations around z and y-axes 
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Figure 4.18  PCA Alignment 
 
 
 

4.3 Application of Spherical Harmonic Projection  

 
Let M denote a mesh of an object embedded in R3. M is said to be star-shaped if 

there exists a point c ∈ R
3 such that every line segment drawn from c in any 

direction intersects the surface of M at exactly one point. Considering that c is 

the center of the spherical coordinate system, the radial function induced by M 

and c is a well defined spherical function f : S2
→ R

+, where S2 is the unit sphere. 

 
The paragraph above states that the face surface should be  star-shaped, or 

basically a spherical function. It is a fact that the human face is not star shaped, 

and hence not a spherical function. For example, think off the nose, where there 

are holes inside, and makes it obviously a non-spherical surface. However, in 

this study we’re using the face range image which is acquired from front-view 

with a flat sensor, i.e. the range image itself is two-dimensional. A two-

dimensional image can be assumed spherical when mapped on the sphere. 

 

y-axis 

z-axis 

α 

Principal axis 
found using PCA 

Angle β between y-
axis and PCAs 
main axis 



73 
 

So the question how can we make the face surface spherical arises? The obvious 

solution to this problem is to map or cover the face surface on a sphere or 

ellipsoid with a predefined radius. 

 

In this study we applied and compared the performances of 4 different spherical 

mapping methods. These are; 

• Partial mapping 

• Hemi-spherical mapping 

• Full-spherical mapping 

• Full-spherical mapping with symmetry 
 

4.3.1 Partial Mapping Trial 

 

In partial mapping, we map the face surface to the spherical surface patch which 

has the extends where the surface itself is defined. The Figures 4.19 and 4.20 

show how partial mapping is done. The main idea behind partial mapping is that 

the face surface is not defined outside the cropped face surface, so we can 

assume that the surface outsize is zero. 
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Figure 4.19  Partial mapping extent 
 
 
 
The result of partial mapping can be observed on Figure 4.20. Notice that the 

spherical face surface is not defined (or simply zero) outside the extends of the 

cropped face surface. 

 
 

 

Figure 4.20  Partial mapping 
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Notice that in partial mapping, the missing parts outside the cropping region are 

filled with the nearest neighbor’s depth value on the same row (constant 

longitude). This makes the spherical presentation of face surface continuous on 

the edges of the elliptical clipping region. 

 

While forward spherical harmonic transform of the partially mapped surface, we 

integrate only within the extents of the face surface as follows; m�� = � m(�, �)���∗(�, �)hΩΩ        (4.1) 

where Ω is defined for �s¼½�¼ ≤ � ≤ �¾�D and �s¼½�¼ ≤ � ≤ �¾�D. And while 

backward SH transform; we use the same extent for integration. 

 

Since in this study we’ll use the SHT co-efficients just for face classification, 

there is no need to backward transform the SHT coefficients. However, we’ll use 

the backward transformed face surface as a quality metric for face representation. 

We define the face representation error as follows; 

e6 = �¥ ∑ |¿� − ¿À|Ω          (4.2) 

Where e6 is representation error, N is the number of samples defined in the face 

surface extent Ω. ¿� is the depth value on the reconstructed surface, ¿À is the 

depth value on the original face surface. 

 

Figures 4.21, 4.22, 4.23, 4.24 and 4.25 show the reconstructed surface of a 

sample face surface for different spherical harmonics bandwidth Lmax.  
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Figure 4.21  Bandwidth Lmax=1 
 
 
 
Notice that on Figure 4.21, only one spherical harmonic is used to represent the 

surface. In this case, only a partial sphere clipped by the elliptical clipping region 

is displayed. The radius of this one and only sphere is the average pixel distances 

to the origin of the original face surface. We can assume this radius as the 

average or DC (direct current) value of the original face surface.  

 
 
 

 
 

Figure 4.22  Bandwidth Lmax=10 
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In Figure 4.22, the reconstructed surface with Lmax=10 is shown. Notice that the 

reconstructed shape looks like a face. However, it is still far from an exact 

representation. So, we need higher order frequencies for an exact representation 

of the facial surface. 

 
 
 

 
 

Figure 4.23  Bandwidth Lmax=50 
 
 
 
In the figures 4.23, 4.24 and 4.25, the reconstructed surfaces with Lmax=50, 

Lmax=100 and Lmax=300 are shown respectively. 

 
 
 

 
 

Figure 4.24  Bandwidth Lmax=100 
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Figure 4.25  Bandwidth Lmax=300 
 
 
 
In Figure 4.23, notice that even for a bandwidth of 300 there is still a huge 

amount of information loss in the partial face representation. And also notice that 

for a bandwidth of 300, there are Á�½� ∗ (Á�½� + 1) = 300 ∗ 301 = 90300 

coefficients. This large number of coefficients is not suitable for representation 

and also for classification. The main reason for a need for higher order 

frequencies is that the SHT basis functions are not localized, and the SHT 

transform assumes that the spherical face surface is zero outside its defined 

domain. As can be seen clearly in Figure 4.25., the backward SHT tries to pull 

the face surface to the origin (zero) just on the edge of the partial face. These 

high frequency components on the edge occur mainly due to the discontinuity on 

the partial spherical face surface. 

4.3.2 Hemi-spherical Mapping Trial 

 
In hemi-spherical mapping, we first find the extends of the cropped face surface 

as in partial mapping, where �s¼½�¼ ≤ � ≤ �¾�D and �s¼½�¼ ≤ � ≤ �¾�D denote 

the extends of the original surface. This time we do the forward transform 

integration within the hemi-sphere defined as follows; 
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m�� = � m(�, �)���∗(�, �)hΩΩ        (4.3) 

where Ω is defined for 0≤ � ≤ � and − �� ≤ � ≤ ��. The Figure 4.26 shows a 

hemi-spherical mapped face surface. 

 
 
 

 

Figure 4.26  Hemi-spherical  mapped surface from left-viewpoint 
 
 
 
The radius of the hemi-sphere is taken as the average radial distance of all the 

surface pixels. The points inside Ω, but outside the cropping region are 

interpolated to this radius with a weight which depends on the distance of the 

pixel to the center of the clipping region. The reconstructed surface for Lmax=50 

is depicted in the Figure 4.27. Notice that the reconstructed surface is much more 

accurate than the partial mapping one. 

There are two main problems with hemi-spherical mapping. First, using a 

different radius with every face is not suitable. It is a fact that every person’s face 

has a different size, however using different radius for every face causes some 

information lost while SH transform which is not suitable for our classification 

purposes. 

The second problem is that the SH transform again assumes that the spherical 

face surface is zero outside the hemi-sphere. Since the SH basis functions are not 

localized, and defined over the whole sphere, the SH transform tries to pull the 
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surface to the origin outside the defined hemi-sphere. This causes a need for high 

frequency components for a better representation of the face surface. 

 
 
 

 

Figure 4.27  Reconstructed hemi-spherical surface 
 
 
 

4.3.3 Full-Spherical Mapping 

 
After observing high frequency SHT components on the edges of the spherical 

face surface with partial and hemi-spherical mapping, we decided to use a face 

surface which is defined over the whole sphere. And also, to omit distortion on 

the elliptically cropped face surface while mapping on a spherical patch, we 

decided to use ellipsoid instead of a sphere. As seen on the Figure 4.28, an 

ellipsoid with two different predefined radiuses is used for mapping. 
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Figure 4.28  Full spherical mapping 
 
 
 
The radiuses of the ellipsoid are set as 15 cm vertically and 12 cm horizontally. 

These values are adhoc values, or decided after observing face images in the 

database. 

 

While mapping the face to the ellipsoid, first the face surface is translated along 

the z-axis, so that the point at the center of the eyes and nose is exactly located 

on the ellipsoid’s surface. Next step is to stitch the face surface to the ellipsoid so 

that there is no geometric discontinuity (first order) between face and ellipsoid 

surface. In order to stitch the face to the ellipsoid smoothly, a stitching band is 

defined over which the spherical face surface reconstructed by linear 

interpolation of the face surface and ellipsoid’s surface. This stitching method 

can be observed on Figures 4.29 and 4.30. 
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Figure 4.29  Stitching band of the previous face image 
 

 

The stitched face surface can be seen on Figure 4.30. 

 

 

 

Figure 4.30  Stitched face surface 
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Notice that there are some distortions, and hence information lost on the cropped 

face. However these lost is mostly below the chin and above the eyebrows and 

this lost does not affect the classification results. 

Finally, the stitched and full spherically mapped surface and the reconstructed 

surface can be seen on the Figures 4.31 and 4.32. 

 

 

 

Figure 4.31  Full-spherical face surface 
 

 

 

Figure 4.32  The reconstructed surface for Lmax=200  
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4.3.4 Full-Spherical Mapping with Symmetry 

 

In order to make use of spherical harmonics being symmetric functions, it would 

be  a clever method to use symmetry while mapping the face surface. In this 

case, the symmetry of the surface constructed in hemi-spherical one is used. Ω is 

defined for 0≤ � ≤ � and 0≤ � ≤ 2�, and surfaces defined  in 0≤ � ≤ � and  � ≤ � ≤ 2� are symmetries of each other (Figure 4.33). 

 
 
 

 

Figure 4.33  Full-spherical with symmetry face 
 

 

In Figure 4.34, a reconstructed surface with bandwidth Lmax=200 is shown. The 

spherical-symmetry representation of the face surface gives worse results than 

the one without symmetry. So, there is no need for the symmetrical 

representation. Indeed, a quantitative error analysis will be performed to compare 

the representations of with symmetry and without symmetry. 
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Figure 4.34  Reconstructed symmetrical face for Lmax=200 
 

 

4.4 SH Transformation 

 

After the face surface is mapped spherically, the Spherical Harmonics transform 

is applied to the surface in order to obtain the SHT coefficients m��. For SH 

transform we used FFT based Real Spherical Harmonics transform. In Section 

3.2, the real spherical harmonics transform was defined by the set of ��� as given 

in Eq. 3.11,  and the transformation is defined in 3.10. 

The equations 3.10 and 3.11 say that for a degree l there are l positive m 

coefficients and l negative m coefficients and a coefficient for m=0. It means that 

there are 2l+1 coefficients for degree l. The Figure 4.35 shows a 3 dimensional 

mesh display of SHT coefficients for a sample face surface. Notice that 0 ≤ y ≤200  and −y ≤ | ≤ y, and y-axis is log of the coefficient, and also as l increases 

SHT coefficients becomes smaller. 
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Figure 4.35  Spherical Harmonics Coefficients of a sample face 
 
 

4.4.1 Power Spectral Density 

 
The power contained at a specific degree l can be defined as: 

Ã�$�p� = 12y + 1 � (m��)����
��-�  

            (4.4) 

So the power spectral density (PSD) of a surface can be defined as the power 

contained in all degrees of the spherical harmonics spectrum. The PSD of a 

surface gives us information about its shape. In this study, we will used PSD of 

SHT coefficients for classification. The PSD plot for a sample face with full-

spherically mapping without symmetry is depicted on Figure 4.36. Notice that 

the power contained at higher frequencies decreases, means that the surface is 

bandlimited to an Lmax. And also notice that the y-axis is in log scale, hence the 

power at 0th degree is very large compared to the power at higher frequencies. 

This must be compensated in some manner for later classification. 
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Figure 4.36  PSD for a sample face 
 
 
 

4.4.2 Rotation Invariancy 

 

An important property of the PSD is that it is rotation invariant, i.e. the power 

contained in a frequency band does not change with rotation. This can be seen on 

Figures 3.37 and 4.38. 

 

 

 

Figure 4.37  Hemi-spherical face surface (left), the same surface rotated around the nose 
tip (right) 
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Figure 4.38  Rotation invariancy. PSD of the surfaces given in Figure 4.37 
 
 
 
In our study, the nose tip of the face is located along the z-axis of the spherically 

mapped surface, and it is aligned geometrically. In case of an alignment error 

due to rotations of the face, this rotation will be discarded by the rotation 

invariancy of the PSD. 
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4.4.3 Signal to Noise Ratio 

 
In Section 4.3.1, we proposed representation error as follows; 
 

 e6 = �¥ ∑ |¿� − ¿À|Ω          (4.5) 

 

where N is the number of samples defined in the face surface extent Ω. ¿� is the 

depth value on the reconstructed surface, ¿À is the depth value on the original 

face surface. Using the same variables, we defined reconstruction signal to noise 

ratio (SNR) as follow; 

 '�� = 10y�i s!Ä�½� 6À(¾�¾��À� 6À(¾�  h�       (4.6) 

Where 

 u@iAXy Ã�$�p = ∑ |¿À|�¥!��         (4.7) 

And 

 �pp�p Ã�$�p = ∑ |¿� − ¿À|�¥!��        (4.8) 

We used SNR to find a limit Lmax which we will use for SHT transformation. As 

can be seen on Figure 4.39, SNR increases with increasing L, however at some 

point it begins to converge to some limit., hence we have chosen Lmax=200 

throughout this study. 

 

 

 

Figure 4.39  SNR vs bandwidth 
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4.4.4 Effect of Symmetry 

 

As we discussed in Section 4.3, we tried several mapping methods to get a better 

spherical representation of the face surface, and concluded that full-spherical 

mapping without symmetry is more convenient for our purposes. Our conclusion 

was due to fact that SNR plot of symmetrical representation was nearly the same 

as or a bit worse than the one of the non-symmetrical representation. That is why 

we abandoned to use symmetrical representation. The effect of the symmetry on 

the PSD and SNR plot can be seen on the Figures 4.40 and 4.41. Notice that, 

PSD oscillates by two consecutive frequency bands. The SNR is worse than the 

one without symmetry. The reason why symmetrical face’s SNR is worse is that 

the symmetrical face contains more details than the one without symmetry. And 

also with symmetrical mapping, we just use symmetry about the x-axis, however 

spherical harmonics basis are not only symmetric around the x-axis. Their 

symmetrical behavior changes with respect to their degree and order. 

 

 

 

Figure 4.40  PSD of symmetrically mapped face 
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Figure 4.41  SNR for symmetrically mapped surface 

 
 

4.4.5 Effect of a Single Coefficient 

It is known that the spherical harmonics basis functions do not have local 

support, i.e. they are not localized. So it is expected that a change in a single  

 

 

 

Figure 4.42  Effect of a Single Coefficient 
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SHT coefficient will affect the whole surface globally. To prove this expectation  

we performed a test where we reconstructed a face surface by changing a single 

coefficient by multiplying it by 100. The effect can be seen on Figure 4.42. In 

Figure 4.42, the top-left image is the original reconstructed surface. The changed 

coefficient is overlaid on the top of each image. Notice that the effect is global, 

i.e. affecting the whole face surface. 

4.5 Face Classification using SHT Coefficients 

 

The recognition parameter Lmax which specifies the bandwidth for the SHT is the 

key performance factor in the recognition process. Since the SHT is 

computationally very expensive, even when FFT used, we limit Lmax to 200 with 

a compromise between computation time and quality of the representation.  

 

In SHT, there are Lmax*(Lmax+1) coefficients. For Lmax=200 there are 40200 

coefficients. 

For classification of the face SHT coefficients, we’ve used the following 

algorithms: 

• k-Nearest Neighbor with k=1 using Euclidean distances of all SHT 

coefficients 

• k-Nearest Neighbor with k-1 using Euclidean distance of PSD of SHT 

coefficients 

• Mahalanobis Distance of SHT coefficients 

• Mahalanobis Distance of PSD of SHT coefficients 

• Linear Discriminant Analysis (LDA) using SHT coefficients 

• Linear Discriminant Analysis (LDA) using PSD of SHT coefficients 

• Support Vector Machines using SHT coefficients as feature vector 

• Support Vector Machines using PSD of SHT coefficients as feature 

vector 
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4.5.1 k-Nearest Neighbor with k=1 for SHT Coefficients 

 

In this method, we will use the Euclidean distance between the SHT coefficients. 

The distance can be defined as follows; 

 

S!,³ = W∑ ∑ �ÅÆ!(y, |) − Æ³(y, |)Ç� ����-�ºÈÉÊ���      (4.9) 

where Æ!(y, |) and Æ³(y, |) are the SHT coefficients for the i
th and j

th face 

surface.  

In order to test this method, we used 4 sample faces as shown in Figure 4.43. In 

this figure, while the Face 1 and Face 2 images belong to the same person, Face 

3 and Face 4 belong to different persons. 

 
The distance matrix for these face are also given on Table 4.1. 

 

Table 4.1  Distances between faces in terms of SHT coefficients 
 

 Face1 Face2 Face3 Face4 

Face1 0 6.21 8.47 11.62 

Face2 6.21 0 7.74 12.05 

Face3 8.47 7.74 0 10.77 

Face4 11.62 12.05 10.77 0 

 

 
As seen on the table, the intra-personal coefficient distances are smaller 

compared to inter-personal distance, therefore SHT coefficients are promising 

face classification. However, better results can be obtained by analyzing the 

coefficients statistically. 
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                                     Face 1                                                            Face 2 

      

                                   Face 3                                                         Face 4 

Figure 4.43  Test faces 
 
 
 
The first 4 band coefficients for a sample face (Face 1) are given in Table 4.2. 

 

 

Table 4.2  Coefficients for the first 4 bands 

Degree 
(l) 

Order 
(m) 

Coeff. for m > 0 Coeff.for m<0 

0 0 13,1275073554070 0 
1 0 0,0429682906445230 0 
1 1 0,0126484263596761 0,132164932176493 
2 0 0,851525474768107 0 
2 1 0,00615333523172825 0,0667870146795359 
2 2 -0,125784876013191 0,0242323231725326 
3 0 -0,0514422309933368 0 
3 1 -0,00488640391345551 -0,0396765245979460 
3 2 -0,0664134114498508 0,0127169275744366 
3 3 -0,0317670863699876 -0,110301928849857 
4 0 -0,0295548914359871 0 
4 1 -0,00564492539884076 -0,0525142271621880 
4 2 0,0139228782861514 -0,00494385060447562 
4 3 -0,0165711701011474 -0,0542845458666222 
4 4 0,0911563319112260 -0,0342214925809437 
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Notice in Table 4.3 that the coefficient for (l,m)=(0,0) is very large compared to 

the other coefficients. This can be also observed on the PSD plot on Figure 4.36 

where a major part of the power is contained at the first bands. This property of 

the SHT coefficients must be eliminated for classification by transforming the 

coefficients. In [64] and [71], it is proposed to use whitening so that the feature 

vector is transformed such that its components are uncorrelated and their 

variances equal to unity 

 

After whitening transform the distance table in Table 4.1. becomes now; 

 

Table 4.3  Face Distances after whitening transform 

 Face1 Face2 Face3 Face4 

Face1 0 544 614 623 

Face2 544 0 602 637 

Face3 614 602 0 682 

Face4 623 637 682 0 

 
 

 
As can be observed on Table 4.3, we have similar results as in Table 4.2. 

However, this time the differences between distances come more obvious which 

will further improve the classification. 

4.5.2 k-Nearest Neighbor with k=1 for PSD Coefficients 

 
In the previous chapter, we’ve used the Lmax*(Lmax+1) SHT coefficients to 

classify the faces by computing the Euclidean distance between the coefficients. 

This time we’ll use power spectral density of the SHT coefficients to classify the 

faces. And now we have only Lmax power bands, and hence (Lmax+1) coefficients. 

Since Lmax is chosen as 200, it may seem to be that there are not enough 

parameters for a successful face classification. However, analyzing the PSD for 

all the training samples makes it clear that PSD coefficients contain enough 

information for a successful discrimination. Figure 4.44 shows the mean and 

variance of the PSD obtained using the training faces. 
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Figure 4.44  Mean and Variance of PSD 
 

As can be observed on Figure 4.44, there is a large variance in the PSD 

coefficients. However, PSD(l=0) is nearly 1010 times than PSD(l=200) and also 

the variance to mean ratio of PSD(l=0) is about 170 time smaller than the 

variance to mean ratio of PSD(l=200) as can be observed on Table 4.4. 

 

Table 4.4  Mean and Variance of the PSD 
 

Degree 
(l) 

Mean of PSD Variance of PSD Variance/Mean Ratio 

1 171,663308802358 0,717854922017014 0,00418176095419147 
2 0,00759448400416351 0,00849890305109356 1,11908893960857 
3 0,155566383038054 0,00640403133050346 0,0411659074758905 
4 0,00369074399354123 0,00395971727794203 1,07287779506557 
5 0,00210192046425806 0,00197747446795526 0,940794145916115 
6 0,000970339568823109 0,000775902880011981 0,799619952583245 
7 0,000478212175396498 0,000274085213339452 0,573145619122309 
8 0,000319322437525565 0,000164054645009332 0,513758589219706 
9 0,000292003177696955 0,000161184156018881 0,551994527217645 
10 0,000258342362576950 0,000157582917598658 0,609977070840329 
11 0,000192114212749387 0,000118792250329638 0,618341811517105 
12 0,000124830246393072 6,53355300085602e-05 0,523395025616055 
…. … … … 
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99 2,15592622398305e-08 1,31785628417568e-08 0,611271512686994 
100 2,02623696122891e-08 1,21226476950376e-08 0,598283810186015 
101 1,91310258328951e-08 1,12643084449230e-08 0,588797931868053 
102 1,84289106892547e-08 1,09182655559561e-08 0,592453115653881 
103 1,79972287659462e-08 1,07773723699043e-08 0,598835104563259 
104 1,74016902844874e-08 1,03454354037475e-08 0,594507500973618 
105 1,64309900675562e-08 9,46425663841730e-09 0,576000387043320 
106 1,53569679420491e-08 8,50702582414719e-09 0,553952177034505 
107 1,46361807829815e-08 7,99346672499309e-09 0,546144301134051 
108 1,44143897018970e-08 8,08196627084592e-09 0,560687371299687 
109 1,43810160478563e-08 8,39166742867458e-09 0,583523959694452 
110 1,41006561977949e-08 8,38409607361470e-09 0,594589071317536 
111 1,34578610406013e-08 7,86536884432891e-09 0,584444201095530 
112 1,27174884854230e-08 7,17134955957408e-09 0,563896681942667 
… … … … 

141 5,03789373993384e-09 2,92062636912378e-09 0,579731633871686 
142 4,98533646470740e-09 2,95063894184922e-09 0,591863550782904 
143 4,88198543241573e-09 2,93628968724718e-09 0,601454004297230 
144 4,70923041840174e-09 2,82797960136707e-09 0,600518418108506 
145 4,52498284899804e-09 2,71768371108810e-09 0,600595361745929 
146 4,38602118663799e-09 2,65991876717806e-09 0,606453697780007 
147 4,30331859929520e-09 2,64094321140054e-09 0,613699206894203 
148 4,24211971889210e-09 2,64968674461776e-09 0,624613853498166 
149 4,16431819550519e-09 2,63668240887441e-09 0,633160648415470 
150 4,05558852906255e-09 2,58488830252815e-09 0,637364536368694 
151 3,93431654196940e-09 2,50897401290699e-09 0,637715340426337 
…    
…    

189 1,88531736070677e-09 1,32725888257927e-09 0,703997592257733 
190 1,87514504722884e-09 1,33870760028206e-09 0,713922158854033 
191 1,86547150915079e-09 1,34606444567003e-09 0,721567946262976 
192 1,84550557925945e-09 1,33862082142314e-09 0,725340977815030 
193 1,80712803998170e-09 1,30847808788622e-09 0,724064957732309 
194 1,76015325308292e-09 1,26911261901594e-09 0,721023931747467 
195 1,74316036533116e-09 1,27129316962950e-09 0,729303622841372 
196 1,75581909356178e-09 1,31766024837717e-09 0,750453308776943 
197 1,75382151747726e-09 1,32910542397300e-09 0,757833913387502 
198 1,77666355871154e-09 1,32764056723988e-09 0,747266166815908 
199 1,74023377226216e-09 1,29255735519203e-09 0,742749264951810 
200 1,17946138381183e-09 8,55339034677712e-10 0,725194606976780 

 
 

The previous table tells us that a transformation of PSD coefficients is needed, 

because there are bands with a large mean but a low variance. This means that 

while computing the distance between the faces, the impact of those bands on the 

distance computation will be large, although those bands are less discriminative 

because of low variance. As in previous chapter a whitening transform is applied 

to the PSD. 

 

The distance between two faces using PSD is defined as follows; 
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  S!,³ = � ¡�'S!(y) − �'S³(y)¡ºÈÉÊ
���      (4.10) 

A distance table for 4 samples faces similar to the one in the previous chapter is 

given in Table 4.5. 

 

Table 4.5  Face distances using PSD 
 

 Face1 Face2 Face3 Face4 

Face1 0 0.27 1.14 2.18 

Face2 0.27 0 0.87 1.91 

Face3 1.14 0.87 0 1.02 

Face4 2.18 1.91 1.02 0 

 
 

4.5.3 Linear Disriminant Analysis 

 

Linear Discriminant Analysis (LDA) has been a popular method for extracting 

features which preserve class separability. The projection functions of LDA are 

commonly obtained by maximizing the between class covariance and 

simultaneously minimizing the within class covariance. In this study, LDA is 

applied for face classification. Two different feature vectors are used for LDA 

based classification.  

• Use SHT coefficients as feature vector, 

• Use PSD  of SHT coefficients as feature vector.  

The problem with the first approach is that the dimension of the covariance 

matrices is very large. For Lmax=200, the dimension of the feature vector is 

200x201=40200, and hence the covariance matrix would have a dimension of 

40200x40200. The dimension of the feature vector is halved by combining the 

SHT coefficient for a particular order. m and –m, i.e. the definition of the SHT 

coefficient Æ(y, |) is modified as follows;  

 ÆC(y, |)�Ë�ËºÈÉÊ  �Ë�Ë� = |Æ(y, |)| + |Æ(y, −|)|      (4.11) 
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In this case, there are 
(ºÈÉÊ��)(ºÈÉÊ��)�  coefficients. For Á�½� = 200, there are 

20301 coefficients. The dimension of the covariance matrix is still very large. 

The computation of LDA involves dense matrices eigendecomposition which 

can be computationally expensive both in time and memory. Specifically, LDA 

has O(mnt+t
3
) time complexity and requires O(mn + mt + nt) memory, where m 

is the number of samples, n is the number of features and t = min(m, n). When 

both m and n are large, it is infeasible to apply LDA. The method described in 

[85] is applied for large scale discriminant analysis. In [85], it is reported that 

LDA can be computed with O(ms) time and O(ms) memory, where s≤n is the 

average number of non-zero features in each sample. This is a noticeable 

improvement over standard LDA computation method using eigenvalue 

decomposition. After LDA based dimension reduction, multi-class linear 

classifier using perceptron algorithm is applied for further classification. 

 

4.5.4 Support Vector Machines 

 

Another method we applied for face classification is Support Vector Machines. 

Again we will use two different feature vectors as input to the SVM method. We 

will use the whole combined SHT coefficients and PSD coefficients as input 

feature vectors to SVM. 

 

In this study, LIBSVM in [72] is used for SVM based classification. Main 

features of this library are as follows: 

• Different SVM formulations  

• Efficient multi-class classification  

• Cross validation for model selection  

• Probability estimates  

• Weighted SVM for unbalanced data 

• Both C++ and Java sources 
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We’ve used Java sources of this library. The implementation details of this 

library are given in [72].  

SVM requires that the input feature vector is scaled so that it is zero mean and 

unit variance. The main advantage of scaling is to avoid attributes (features) in 

greater numeric ranges dominate those in smaller numeric ranges. Another 

advantage is to avoid numerical difficulties during the calculation. 

 

The documentation for LIBSVM suggests that in general Radial Basis Functions 

(RBF) kernel is a reasonable choice.  The RBF kernel nonlinearly maps samples 

into a higher dimensional space, so it, unlike the linear kernel, can handle the 

case when the relation between class labels and attributes is nonlinear. 

Furthermore, the linear kernel is a special case of RBF as shows that the linear 

kernel with a penalty parameter C has the same performance as the RBF kernel 

with some parameters (C, I). In addition, the sigmoid kernel behaves like RBF 

for certain parameters. The second reason is the number of hyperparameters 

which influences the complexity of model selection. The polynomial kernel has 

more hyperparameters than the RBF kernel. Finally, the RBF kernel has less 

numerical difficulties. 

Like all other linear classifiers, SVM is also a binary classifier which outputs 

only for two-class problems. In order to apply SVM for multi-class problems as 

in the face recognition case, One-Against-All decomposition rule is implemented 

in this study, where there is a separate SVM discriminant function for every class 

in the gallery. 

4.6 Confusion Matrix 

 

A confusion matrix is a visualization tool typically used in supervised learning. 

Each column of the matrix represents the instances in a predicted class, while 

each row represents the instances in an actual class. One benefit of a confusion 

matrix is that it is easy to see if the system is confusing two classes [36]. 
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A sample confusion matrix is given in Table 4.6. This table is calculated 

according to the method described in [86]. As can be seen on this table, a sample 

set of 67 faces is used for verification. In this case a set of 200 faces is used as 

gallery faces. The classification method based on Euclidean distance is used to 

generate the table. Instance scores are calculated as an average of true positives 

to false positives for each class label. Notice that, the table 4.6 corresponds to a 

point on the ROC curve, which will be given in next chapter. 

 

Table 4.6 A sample confusion matrix 
 

 Actual Value  

p N total 

Output 

p’ True 

Positives=6 

False  

Positives=2 
P’=8 

n’ False  

Negatives=1 

True  

Negatives=58 
N’=59 

 total P=7 N=60  

 

 

Using Table 4.6, False Acceptance Rate (False Positive Rate), or probability of 

identification can be calculated as follows; 

 Ì´� = ÍÎ¥ = �Ï� = 0.033 

 Probability of Identification=
#ÎÎ = ÏÐ = 0.857 

In the above confusion experiment, the persons which are confused by the 

classifier are depicted in Figure 4.45. 
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Figure 4.45 Confused subjects 
 

 

The two confused subjects have 8 pictures in the database. The PSD plot of the 

SHT coefficients of the all 8 pictures are given in Figure 4.46. As can be seen on 

the figure, the PSD of the two persons overlap at some regions, and are very 

close to each other and also they have very similar patterns. The reason why the 

Euclidean based classifier can be seen clearly. 

 
 
 

 

Figure 4.46 PSD plot of images of confused subjects 
 
 
 
The classification still can be performed using LDA. For the two confused 

persons, an LDA can be applied for dimension reduction. Since there are only 2-

classes, the reduced dimension will be only 1. The 1-D projection of the SHT 

coefficients can be seen on Figure 4.47. As it can be observed on this figure, a 

simple linear classifier is now able to classify the two persons. 
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Figure 4.47 1-D LDA projection of the faces of confused subjects 
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CHAPTER 5  

 

EXPERIMENTS 

 
 

5.1 Face Database 

 

The FRGC v1 database contains 943 2D images and 943 3D range data 

belonging to 275 different persons. People have different number of images in 

the database. The numbers are given in Table 5.1. 

 

Table 5.1  FRGC Database 
 

# of images  per person # of persons 2D image 3D data 

1 78 78 78 

2 32 64 64 

3 46 138 138 

4 33 132 132 

5 28 140 140 

6 30 180 180 

7 15 105 105 

8 13 104 104 

 
 
Although great majority of 2D-3D data pairs are registered to each other, there 

are two completely unrelated pairs. These pairs are removed from database. 

There are also some badly registered pairs in the database, that is to say, there are 

small translation differences about 10 pixels between the color image and depth 

image. These pairs are also removed from the database. There are also some face 

range images where the eyes have wrong depth values. Even, gap filling and 

noise filtering (spike removal) at the preprocessing step cannot correct these 

wrong values. These faces are also removed from the face. Another problem with 

some of the face images was the distance of the face to the 3D sensor. This 

caused large spherical variations in face data, hence these faces are also 

removed. All the experiments are carried out by the remaining 907 pairs. Notice 
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that, this count is different than the faces used in experiments in [19]. However, 

this deviation is low compared to the number of faces, and can be neglected. 

In order to compare the efficiency of the proposed 3D face matching method, 

four Tn experiments are held where n denotes the number of images per person 

used in the training set (Table 5.2). 

 
 

Table 5.2  Images used in experiments 

 
# of images 
per person 

# of persons (or 
classes) 

# of training 
images 

# of test 
images 

1 197 197 666 

2 165 330 469 

3 119 357 304 

4 86 344 185 

 
 
To illustrate, for T4 experiments, all 86 people having more than 4 images in the 

database are used. The first 4 images from each person are used in the training 

step. In the test set, the rest of all the faces belonging to the persons participated 

in the training step are used. 

All the experiments are performed for the following three methods: 

• k-Nearest Neighbor with k=1 using Euclidean distances of all SHT 

coefficients (labeled as SHT-EUC) 

• k-Nearest Neighbor with k-1 using Euclidean distance of PSD of SHT 

coefficients (labeled as PSD-EUC) 

• Mahalanobis Distance of SHT coefficients (labeled as SHT-MAHA) 

• Mahalanobis Distance of PSD of SHT coefficients (labeled as PSD-

MAHA) 

• Linear Discriminant Analysis (LDA) using SHT coefficients (labeled as 

SHT-LDA) 

• Linear Discriminant Analysis (LDA) using PSD of SHT coefficients 

(labeled as PSD-LDA) 
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• Support Vector Machines using SHT coefficients as feature vector 

(labeled as SHT-SVM) 

• Support Vector Machines using PSD of SHT coefficients as feature 

vector (labeled as PSD-SVM) 

CMC curves of these methods are given in comparison with the results of the 

work in [19]. In [19], the effect of registration process is evaluated for 3D face 

recognition. ICP and some variants of ICP are implemented for 3D face 

registration, which is followed by 4 recognition algorithms, namely, Eigenface, 

Fisherface, Non-negative Matrix Factorization (NMF) and Independent 

Component Analysis (ICA). 

5.2 Results 

5.2.1 T1 Experiments 

 
CMC curve for experiment T1 is given in Figure 5.1. Match scores for 

experiment T1 are given in Table 5.3. 

 

 

 

 
Figure 5.1  CMC curve for experiment T1 
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Figure 5.2  CMC curve for T1 from [19] 

 
 

Table 5.3  Top-10 Rank scores for experiment T1 
 

Rank SHT-
EUC 

PSD-
EUC 

SHT-
MAHA 

PSD-
MAHA 

SHT-
LDA 

PSD-
LDA 

SHT-
SVM 

PSD-
SVM 

1 0,594 0,583 0,594 0,622 n/a n/a 0,792 0,787 
2 0,740 0,681 0,697 0,768 n/a n/a 0,938 0,923 
3 0,748 0,681 0,709 0,783 n/a n/a 0,964 0,957 
4 0,756 0,697 0,717 0,799 n/a n/a 0,964 0,964 
5 0,760 0,713 0,720 0,811 n/a n/a 0,965 0,964 
6 0,768 0,728 0,724 0,827 n/a n/a 0,967 0,964 
7 0,772 0,736 0,724 0,831 n/a n/a 0,969 0,965 
8 0,772 0,744 0,724 0,831 n/a n/a 0,969 0,967 
9 0,780 0,756 0,732 0,839 n/a n/a 0,971 0,967 

10 0,783 0,760 0,736 0,843 n/a n/a 0,971 0,971 

 

5.2.2 T2 Experiments 

 
CMC curve for experiment T2 is given in Figure 5.3. Match scores for 

experiment T2 are given in Table 5.4. 

 
 

 
Figure 5.3  CMC Curve for Experiment T2 
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Figure 5.4  CMC Curve from [19] 

 
 

Table 5.4  Top-10 Rank scores for experiment T2 
 

Rank SHT-
EUC 

PSD-
EUC 

SHT-
MAHA 

PSD-
MAHA 

SHT-
LDA 

PSD-
LDA 

SHT-
SVM 

PSD-
SVM 

1 0,735 0,720 0,811 0,798 0,824 0,801 0,821 0,819 
2 0,918 0,872 0,921 0,928 0,944 0,926 0,949 0,944 
3 0,959 0,918 0,949 0,951 0,959 0,954 0,956 0,954 
4 0,961 0,926 0,949 0,951 0,964 0,954 0,959 0,956 
5 0,961 0,933 0,949 0,951 0,964 0,954 0,959 0,959 
6 0,964 0,938 0,949 0,951 0,969 0,956 0,959 0,959 
7 0,964 0,938 0,954 0,954 0,969 0,956 0,959 0,959 
8 0,966 0,944 0,954 0,956 0,969 0,956 0,961 0,961 
9 0,966 0,944 0,954 0,956 0,972 0,956 0,964 0,964 

10 0,969 0,944 0,959 0,961 0,974 0,956 0,966 0,966 

 

5.2.3 T3 Experiments 

 
CMC curve for experiment T3 is given in Figure 5.5. Match scores for 

experiment T3 are given in Table 5.5. 

 
 

 
Figure 5.5  CMC curve for experiment T3 
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Figure 5.6  CMC curve from [19] 

 
 

Table 5.5  Top-10 Rank scores for experiment T3 
 
 

Rank SHT-
EUC 

PSD-
EUC 

SHT-
MAHA 

PSD-
MAHA 

SHT-
LDA 

PSD-
LDA 

SHT-
SVM 

PSD-
SVM 

1 0,852 0,827 0,840 0,815 0,868 0,848 0,852 0,831 
2 0,926 0,876 0,934 0,930 0,963 0,959 0,979 0,967 
3 0,939 0,913 0,943 0,963 0,981 0,975 0,987 0,987 
4 0,941 0,925 0,963 0,967 0,991 0,975 0,987 0,987 
5 0,953 0,932 0,971 0,967 0,991 0,975 0,991 0,987 
6 0,967 0,940 0,971 0,971 0,999 0,975 0,991 0,987 
7 0,971 0,954 0,981 0,971 0,999 0,975 0,995 0,987 
8 0,978 0,954 0,983 0,971 0,999 0,975 0,995 0,987 
9 0,983 0,954 0,991 0,975 0,999 0,975 0,995 0,991 

10 0,985 0,954 0,991 0,975 0,999 0,975 0,995 0,991 

 

5.2.4 T4 Experiments 

 
CMC curve for experiment T4 is given in Figure 5.7. Top match scores for 

experiment T4 are given in Table 5.6. 

 

 
Figure 5.7  CMC curve for experiment T4 
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Figure 5.8  CMC Curve from [19] 

 
 
 

Table 5.6  Top-10 Rank scores for experiment T4 
 

Rank SHT-
EUC 

PSD-
EUC 

SHT-
MAHA 

PSD-
MAHA 

SHT-
LDA 

PSD-
LDA 

SHT-
SVM 

PSD-
SVM 

1 0,891 0,876 0,920 0,891 0,905 0,898 0,934 0,905 
2 0,956 0,934 0,956 0,963 0,978 0,963 0,985 0,963 
3 0,956 0,956 0,972 0,978 0,978 0,978 0,992 0,963 
4 0,963 0,956 0,987 0,978 0,985 0,978 0,992 0,971 
5 0,971 0,956 0,987 0,985 0,985 0,978 0,992 0,978 
6 0,971 0,963 0,987 0,985 0,985 0,985 0,992 0,985 
7 0,971 0,963 0,991 0,985 0,985 0,985 0,992 0,985 
8 0,971 0,971 0,991 0,985 0,985 0,992 0,992 0,992 
9 0,971 0,978 0,992 0,985 0,985 0,992 0,992 0,992 

10 0,978 0,978 0,992 0,985 0,985 0,992 0,992 0,992 

 

5.3 ROC Analysis 

 
In the case of a verification scenario, the False Acceptance Rate (FAR), False 

Rejection Rate (FRR), and Equal Error Rate are summarized in the ROC curve in 

Figure 5.9. The curve is generated using the method described in [86]. As can be 

seen on the figure, SVM based classification achieves lower EER than the other 

methods. The ROC curves for Euclidean based, LDA based and SVM based 

methods which use SHT coefficients as feature vectors are given in the figure. 
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Figure 5.9 Verification ROC 
 

 

The equal error rate (EER) for SVM based method if about 0.15, for LDA based 

method 0.17 and for Euclidean based method about 0.195. 

 

5.4 Results from Literature for Comparison 

 

There are several published algorithms on face recognition algorithms. A robust 

comparison of the efficiency of these all algorithms should base on a common 

face database. The face database used throughout this study is the version 1 of 

FRGC database [12], [87]. Actually, this database is a subset of the FRGC 

version 2 database. Philips et al. ([87]) has selected a PCA based method as the 

baseline algorithm in order to provide a minimum level of performance. The 

rank-1 score for the baseline algorithm for 1-Gallery, 1-Probe mode is given as 

88.9%, and an EER score of 0.05 is published, 
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CHAPTER 6   
 
 

CONCLUSION 

 
 
 
In this study, a 3D face matching method using face range image data is 

proposed. The proposed method is implemented using Java and MATLAB. The 

efficiency of the proposed method is listed and compared with other methods in 

the previous chapter. As can be seen on the CMC and ROC plots in the previous 

chapter, our method gives very close results to the well established methods, 

such as Eigenface, Fisherface, ICA and LDA, compared to the results given in 

[19]. 

 

It is obvious that the 3D registration method proposed in this study which is 

based on the face geometry is easier to implement than ICP. ICP requires to 

preprocess the whole gallery faces in order to build up a model face by averaging 

the faces. And also ICP tries to register faces to the model face by rigid 

transformation using an iterative approach, which is computational very 

expensive. 

 

Another issue which is worthwhile to mention is that the proposed method is 

open to improvements. For example, a better face to ellipsoid stitching method 

can be developed using higher order surface characteristics. In this study, linear 

interpolation is used to stitch the face surface to the ellipsoid which ensures first 

order (geometric) continuity. However, using a cubic interpolation would make 

the stitched band smoother which would result in better SNR values for SHT. 

And hence classification would improve. 

 

As noted earlier, spherical harmonics based classification is not new to the face 

recognition community. Bronstein et al. [3] and Iordanis et al. [62] used 
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spherical harmonics decomposition of the so called ‘canonical images’ for face 

classification. However, the experiments they conducted in their publications are 

not comparable with the experiments held in this study. For example, Bronstein 

et al. held their experiments with a data-set of 104 faces consisted of 4 subjects. 

So, it is not feasible to compare their method with the one proposed in this study, 

since a quantitative comparison could not be given. 

 

The spherical bandwidth Lmax is another important factor which affects the 

efficiency of the proposed recognition method. In this study, observing the SNR 

vs. bandwidth plot, a bandwidth of 200 is chosen practically. Actually, the 

decision is mostly due to computation time required for the spherical harmonics 

transform. Although FFT is used for fast spherical transformation, it is still 

computationally not feasible to use a higher bandwidth. However, it is obvious 

that higher match scores could be obtained when higher bandwidth was chosen. 

 

The results of the experiments given in the previous chapter make it clear that the 

methods based on LDA and SVM are slightly better than the one based on a 

distance metric. LDA is a powerful tool for dimension reduction where it 

projects the samples onto a lower dimension while it maximizes the probability 

of class separation in lower dimensions. However, it is also a fact that there are 

very few samples per class compared to the dimension of the feature vector. For 

example, for Lmax=200, the dimension of the feature vector is 201x202/2=20301 

which is very high compared to the number of the samples ~900 consisted of ~200 subjects (see Table 5.1). Although it is expected that LDA and SVM based 

methods would give much better results, the abovementioned numbers make it 

practically impossible. 

6.1 Future Study 

 
3D face recognition is considered to be one of the future technologies. There are 

many different types of face recognition systems that use 3D information of the 

face. In this thesis, a new approach is proposed and implemented. 
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In this study, only the 3D range image of the face is used. For better recognition 

performance, the registered texture image should also be fused with the 3D range 

image. This is called multi-modal classification. Bowyer et al. ([13]) listed some 

conjectures about 3D range based and multi-modal classification. These are; 

• The shape channel of one 3D image is more powerful for face recognition 

than one 2D image. 

• Multimodal 2D+3D face recognition performs significantly better than 

using either 3D or 2D alone. 

• Combining results from two or more 2D images using a similar fusion 

scheme as used in multimodal 2D+3D also improves performance over 

using a single 2D image. 

 
As discussed above, the registration algorithm used in this study was a geometric 

one and was computationally more efficient. However, most of the published 3D 

face matching methods in the literature used ICP for registration. ICP seems to 

be a very efficient method for registering two 3D shapes. However convergence 

to global minimum is still cannot be ensured. In terms of face registration, 

instead of using a geometric one variants of ICP can be examined for more 

difficult situations. For instance, faces can be rotated around a single axis or 

multiple axes and for different cases, by examining the behavior of the variants, 

a more robust algorithm for registering face image data can be determined. 

 

In this study, the proposed 3D face recognition method used 2.5D face range 

images from FRGC v1 database. The method relies on stitching and mapping the 

range image to an ellipsoid in order to make the face surface star-shaped which is 

a requirement of spherical harmonics transform. However, instead of range 

images, if full-view 3D face meshes generated by a 3D scanner were used as 

input, better classification results would be obtained, since spherical harmonics 

based 3D shape matching gives very good results as discussed in Chapter 2. 
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Finally, it is expected that a solid face recognition system should be able to 

handle non-rigid deformations of a face such as expressions. In this thesis faces 

are considered as rigid objects. Almost all the faces in the FRGC v1 database 

have neutral expressions. The proposed method cannot handle with facial 

expressions. However, the spherical mapping part of the proposed method can be 

extended to overcome the facial expressions by mapping parts of the faces 

locally. 
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APPENDIX A 

 

ITERATIVE CLOSEST POINT 
 

 

The iterative closest point algorithm (ICP) is designed to fit points in a data set to 

points in a model set. The ultimate goal of the algorithm is to minimize the mean 

square error (MSE) with respect to the closest data points and their 

corresponding model points. It is important that an initial estimate is made 

regarding where the overlay of the two point sets should be. An appropriate 

transformation should be applied based on this initial estimate to align the point 

sets coarsely before ICP is applied. The base component of the algorithm 

calculates the smallest distance between each point in the data set to a point in 

the model set. These calculated points are then used to form a translation and 

rotation matrix that is applied over all points in the data set to adjust them 

towards the model set. This processes is repeated numerous times, thus an 

iterative algorithm, with the end result being a data set with points that are within 

a specified squared error distance of their corresponding points in the model set. 

After the registration is complete, the given data set is in the best alignment with 

the model set with respect to the chosen error metric.  

 

ICP is a rigid transformation applying the same rotation and translation to all 

points of the data set. If the correct correspondences between the data set and the 

model shape are known, the registration parameters can be found easily. (Figure 

A.1) 

 SXÔX�¾Ä!s¼¾�¾D = � ∗ SXÔX�À��¾Ä!s¼¾�¾D + Õ    (A.1) 

where R is the rotation matrix having size of 3x3 and T is the translation matrix 

having size of 1x3.  
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However, finding the correct correspondences is not always trivial. Thus, ICP 

considers the closest points (Figure A.1) and calculates the rotation and 

translation matrices iteratively. The algorithm repeats the following steps, until  

 

 

 

 

 
Figure A.1  ICP 

 

 

the error falls below a preset threshold or the difference between consecutive 

error values fall below a threshold.  

• Compute the closest points on the model set for every point in the data 

set.  

• Compute the registration parameters (R, rotation matrix and T, translation 

matrix) 

• Apply the registration to the data set. 

• Calculate the error between the model and the registered set 

 

The algorithm will result in a good position if two sets, data and model set, are 

close enough. 

 

ICP always converges monotonically to a local minimum [73] but a global 

minimum is not guaranteed. In order to end up in the global minimum, either a 
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good initial estimate should be given to the algorithm or after trying several 

initial conditions the one resulting in the lower error rate would be chosen.  

 

There are also some papers that perform ICP on local regions. This technique has 

two main advantages. Firstly, non-rigid deformations of a face such as 

expressions cannot be expressed by standard ICP. Secondly, matching local 

regions is much faster than matching all the face data [74, 75].  

 

In every loop, the closest point in the model is calculated for each point in the 

data set. After that, registration can be computed by several means. In [76] 4 

registration algorithms are evaluated and Singular Value Decomposition (SVD) 

has found to be better in general. 

 
 As can be seen in Figure A.1(top left), if the correct correspondences are known, 

which is not possible in general, registration can be handled without any 

problems. ICP considers the nearest points in the model (top-right). If starting 

point is good, the registration will give a good result (Figure A.1, bottom image). 
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APPENDIX B 

 

NONNEGATIVE MATRIX FACTORIZATION (NMF) 
 

 

The aim of NMF is to find W and H matrices for a given V matrix such that 

 Ö ≈ � ∗ �          (B.1) 

The matrices W and H are initiated with random values. Reconstruction error 

function is defined as  

2||||),( WHVHWE −=         (B.2) 

Convergence is assured if W and H are updated according to the equations below 

[22]: 

 �½× ← �½× ÅÙ)ÚÇÉÛ(Ù)ÙÜ)ÉÛ where  X = 1, … , p XAh  = 1, … , |    (B.3) 

and 

 �!½ ← �!½ ÅÚÜ)Ç]É(ÙÜÜ))]É where @ = 1, … , A XAh X = 1, … , p     (B.4) 

 

After factorization is finished, the transpose of H matrix is directly used for 

similarity matching.  

V=WH and H=pinv(W)V where pinv symbolizes pseudo-inverse. Columns of H 

can be thought of representation of training images in fewer dimensional space 

and representation of each image is a column of H (Figure B.1). This column is 

used to determine the similarity between a test image and a training image. 
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Figure B.1  NMF factorization 
 

 

Test images are multiplied by eigenvectors of PCA analysis after mean 

correction. The resulting vector is pre-multiplied with pseudo inverse of W 

matrix to get the weights of the test image. Finally cosine similarity is used and 

the test image is compared with all the images in the training set. The one having 

smallest angle is chosen.  

)(:,TrainingHWeight
Training

=  (corresponding column of H)    (B.5) 

)(*)( TestimagePCAWpinvWeightTest =       (B.6) 

||||*||||

),(
),(

TrainingTest

TrainingTest

TrainingTest
WeightWeight

WeightWeightdot
=α

      (B.7)
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APPENDIX C 
 
 

KERNEL PCA 
 

 

Given a set of m centered (zero mean,  unit variance) sample xk, xk=[xk1,…,xkn]
T 

in Rn, PCA aims to find the projection directions that maximize the variance, C, 

which is equivalent to finding the eigenvalues from the covariance matrix  

Cw=λw  for eigenvalues λ>0 and eigenvectors w in Rn. In Kernel PCA, each 

vector x is projected from the input space, R
n, to a high dimensional feature 

space, R
f, by a non-linear mapping function Φ: �� →  �q , m ≫ A. Note that the 

dimensionality of the feature space can be arbitrarily large. In R
f, the 

corresponding eigenvalue problem is 

 Þ8w = Æw8w         (C.1) 

where Æw is a covariance matrix. All solutions 8w with Þ ≠ 0 lie in the span of Φ(x�), … , Φ(xà), and there exist coefficients »! such that 

 $w = ∑ »!Φ(x~)�!��          (C.2) 

Denoting an mxm matrix K by 

 á!³ = BÅ1!, 1³Ç = Φ(1!). ΦÅ1³Ç       (C.3) 

The kernel PCA problem becomes, 

 |ÞÁ» = á�»          (C.4) 

 |Þ» = á»          (C.5) 

Where » denotes a column vector with entries »�, »�, … , »� . The above 

derivations assume that all the projected samples Φ(x) are centered in Rf. 

 

Note that the conventional PCA is a special case of Kernel PCA with polynomial 

kernel of first order. In other words, Kernel PCA is a generalization of 

conventional PCA since different kernels can be utilized for different nonlinear 

projections.  
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We can now project the projects in Rf
 to a lower dimensional space spanned by 

the eigenvectors 8w. Let x be a test sample whose projection is Φ(x) in Rf, then 

the projection of Φ(x) onto the eigenvectors 8w is the nonlinear principal 

components corresponding to Φ: 

 8w. Φ(x) = ∑ α~(Φ(x~). Φ(x)à~�� ) = ∑ α~k(x~, x)à~��      (C.6) 

In other words, the first ä(1 ≤ ä ≤ |) nonlinear principal components are 

extracted using the kernel function with the expensive operation that explicitly 

projects the samples to a high dimensional space Rf. 

 

Similar to Kernel PCA, in Kernel FisherFace, the projected samples Φ(x) are 

centered in Rf. As in FLD, 'Ùw and 'åw are defined as within-class and between-

class scatter matrices. Applying FLD in kernel space, eigenvalues Þ and 

eigenvectors $w are found as follows: 

 Þ'(w$w = 'åw$w         (C.7) 

Which can be obtained by, 

 �æÎ#w = arg |X1èÙé
¡(Ùé))êëéÙé¡¡(Ùé))êìéÙé¡ = [$�w $�w … $�w]     (C.8) 

Where í$!w|@ = 1,2, … , |�î is the set of generalized eigenvectors corresponding 

to the m largest generalized eigenvalues 0Þ!|@ = 1,2, … , |�}. 

 

For given classes t and u and their samples, we define the kernel function by 

 (B�s)¼ï = B(1¼� , 1ïs) = Φ(1¼�)Φ(1ïs) = Φ(1¼�)TΦ(1ïs)    (C.9) 

Let K be a mxm matrix defined by the elements (á¼ï)ï��,…,ð¼��,…,ð  where á¼ï is a 

matrix composed of dot products in the feature space Rf, i.e., 

 (á¼ï)ï��,…,ð¼��,…,ð   where á¼ï = (B�s)s��,…,�ñ���,…,�ò     (C.10) 

Note that á¼ï is a y¼1yï matrix, and K is a mxm symmetric matrix. We also 

define a matrix Z:  

 ó = (ó¼)¼��,…,ð       (C.11) 
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Where ó¼ is a y¼1y¼ matrix with terms equal to 
��ò, i.e. Z is a mxm block diagonal 

matrix. The between-class and within-class scatter matrices in a high 

dimensional feature space Rf are defined as 

 'åw = ∑ y! !w( !w)#ð!��       (C.12) 

 'Ùw = ∑ ∑ Φ(1!³)�]³�� Φ(1!³)#ð!��      (C.13) 

Where  !w is the mean of class i in Rf, li is the number of samples belonging to 

class i. From the theory of reproducing kernels, any solution $w in Rf  must lie 

in the span of all training samples in Rf, i.e.,  

 $w = ∑ ∑ »6ôΦ(16ô)�õô��ð6��       (C.14) 

 

The solution can be obtained by solving; 

 Þáá» = áóá»       (C.15) 

Consequently, 

 �æÎ#w = arg |X1èÙé
öÅÙéÇ)êëéÙéö¡(Ùé))êìéÙé¡     (C.16) 

           = arg |X1èÙé
|÷øùø÷||÷øø÷|  

           = [$�w $�w … $�w] 
 

  



132 
 

APPENDIX D 

 

SPHERICAL HARMONICS LIGHTING 
 

 

In computer graphics, the problem with the rendering equation is that it is 

difficult to compute, and definitely not a real-time friendly operation. It is an 

integral over a hemisphere of directions where L appears on both sides of the 

equation: 

Á(:, $%%&�) = Á¾(:, $%%&�) + � m�(:, $%%&! → $%%&�)Á(:C, $%%&!)·(:, :C)Ö(:, :C)hú!ê
 

where            (D.1) 

 Á(:, $%%&�) = the intensity reflected from position x in direction $%%&� 

 Á¾(:, $%%&�) = the intensity emitted from x by the object itself 

 m�(:, $%%&! → $%%&�) = the Bidirectional Reflectance Distribution Function 

(BRDF) of trhe surface at point x, transforming incoming light $%%&! to reflected 

light $%%&�. The BRDF is a surface property which defines how light is reflected at 

an opaque surface.   

 Á(:C, $%%&!) = light from x’ on another object arriving along $%%&! 
 ·(:, :C) = the geometric relationship between x and x’. 

 Ö(:, :C) = a visibility test, returns 1 if x can see x’ , 0 otherwise 

It is nearly impossible to integrate the above equation in real-time. And also the 

function itself  is not friendly for the state of the art graphics hardware available 

today.  

 

Spherical harmonics expansion is used to aproximate the light transfer function 

at a surface.  The Monte-Carlo integration is used to integrate the above equation 

for mesh surfaces (Figure D.1). 
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Figure D.1  Light transfer function (left), estimated spherical plot(right); 
 

 

The real-time performance of spherical harmonics lighting is very good, and also 

the rendering quality with static shadows is compelling. Figure D.2 shows, a 

static scene rendered with OpenGL using the spherical harmonics lighting 

method. 

 

 

 

 

Figure D.2  Scene lit using shadowed spherical harmonics lighting method in real-time 
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