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ABSTRACT 
 

 
A STUDY OF PRECODING SCHEMES FOR OFDM SYSTEMS 

 
 
 

Çakar, F. Selcen 

 

 M.S., Department of Electrical and Electronics Engineering 

 Supervisor: Assist. Prof. Dr. Çağatay Candan  

 Co-Supervisor: Assist. Prof. Dr. Ali Özgür Yılmaz 

 
August 2008,   71 pages 

 
 

  We examine the effect of precoding on OFDM systems. The precoding 

operation, which is also known as constellation rotation, leads to a gain in 

diversity order for fading channels. 

   In this thesis, we examine the effect of precoding for different receivers 

such as Maximum Likelihood (ML), Minimum Mean Squared Error (MMSE), and 

Zero Forcing (ZF) receivers. The diversity gain due to precoding comes at no cost 

of bandwidth expansion or power increase. Therefore it is an attractive and 

practical alternative. We also examine the precoding gain, when some reduction of 

rate is tolerable and compare the performance of rate reduced system with the 

uncoded system with the system which is coded by rateless unitary precoders, and 

with the hard-decision decoded BCH coded coded system. 

   
 
Keywords: Diversity, Rotational codes, Precoding, Fading Channels, OFDM, 

precoded OFDM 
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ÖZ 

 
 

OFDM SİSTEMLERİ İÇİN ÖNKODLAMA YÖNTEMLERİ 
İLE İLGİLİ BİR ÇALIŞMA 

 
 

 
Çakar, F. Selcen 

 
  Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

  Tez Yöneticisi: Y.Doç.Dr. Çağatay Candan 

  Ortak Tez Yöneticisi Y. Doç. Dr. Ali. Özgür Yılmaz 

 
    Ağustos 2008,  71 sayfa  

 
 

Önkodlamanın OFDM sistemler üzerindeki etkisi incelenmiştir. 

Yıldızkümesi dönüşümü olaral da bilinen önkodlama işlemi sönümlü kanallar 

üzerinde bir çeşitleme kazancına yol açmaktadır.  

Bu tezde, ML, MMSE ve ZF alıcıları gibi farklı alıcılar için önkodlamanın 

etkisini araştırdık. Önkodlamadan kaynaklanan çeşitleme kazancı herhangi bir güç 

kaybı ve band genişliği arttırımı olmadan gelmektedir. Bu nedenle ilginç ve pratik 

bir alternatif olarak karşımıza çıkmaktadır. Buna ek olarak, önkodlama kazancı 

hızın azalmasının tolere edilebileceği durumlar için incelenmiştir. Hızı düşürülmüş 

önkodlamalı sistem performansı önkodlamasız sistem performansı ve sıfır-bir 

karar dekodlamalı BCH kod sitem performansı ile karşılaştırılmıştır.  

 
Anahtar Kelimeler: Çeşitleme, Dönüşümsel Kodlar, Ön Kodlama, Sönümlü 

Kanallar, OFDM, Ön-kodlamalı OFDM 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
 

In wireless communication systems the signal travels through multiple 

paths between transmitter and receiver. These paths occur because of the 

reflection, scattering, and diffraction of electromagnetic waves by walls, terrain, 

buildings, and other objects. At the receiver end, delayed and reflected replicas of 

the original signal are superimposed. This effect is termed as frequency selective 

fading. Frequency selective fading results in a distortion on the transmitted signal. 

Many methods are investigated in the literature to overcome the problem of 

multipath fading. Orthogonal frequency division multiplexing (OFDM) is a 

promising modulation technique over such channels. OFDM system converts a 

frequency selective fading channel into a set of parallel flat fading channels. Each 

frequency component of the signal experiences the same magnitude of fading over 

frequency flat subchannels so thus facilitates simpler equalization. When a signal 

sent through a frequency selective fading channel, some subcarriers may 

experience high attenuation whereas others may experience low attenuation. 

Although there are subcarriers with low attenuation and therefore have very few 

errors, the average bit error rate (BER) of an uncoded OFDM system is dominated 

by the subcarriers with the worst BER.  

The effect of the OFDM system over fading channel can be thought as a set 

of frequency nonselective fading parallel channels. In this system each symbol is 

transmitted over a single flat subchannel that may encounter fading. And when 

channel nulls occur on these subchannels it becomes difficult to detect the 

symbols. 

Reliability is an important requirement in communication systems. To achieve 

reliable communication, it is essential to reach low error probabilities. The error 

probability can be decreased by using diversity techniques such as repeating the 

symbols. While OFDM system converts a multipath fading channel into parallel 
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flat fading channels the diversity available in multipath channels is lost. This loss 

of multipath diversity is usually recovered by using coding techniques. Classical 

solution is to apply an error correction code over the parallel channels and also 

over the OFDM symbols. In [1] and [2] different coded OFDM systems that 

improve system performance is reported.  

Using precoder matrices to increase the diversity order and to recover loss 

of multipath diversity over fading channels is a relatively new approach [3], [4]. 

Different matrices are used as precoder matrices. Rotation code is one of these 

codes.  Using rotation codes, the rotated version of the original signal constellation 

is send from the transmitter. This approach can be considered as an uncoded 

system because in this system there is no additional redundancy. Coding gain is 

obtained without spending additional bandwidth or power. In the literature 

different precoder matrices are used and their performance analysis are examined. 

In [5], [6], [7] antipodal paraunitary matrices are used as precoders in OFDM 

systems, the simulation and theoretical results are given. In [8] Vandermonde 

matrices are used as the precoder matrix, the performance and diversity order 

comparisons of the precoded OFDM and BCH coded OFDM are given.  

Finding optimal precoder that minimizes the bit error rate (BER) is an 

important problem to achieve high performance in fading channels.  In [9] the bit 

error rate minimization for OFDM transceivers with orthogonal precoders is 

considered. Increasing diversity order increases the system performance. By using 

precoder matrices the diversity order is increased and this comes with high 

performance. In [4] and [4] the diversity order is increased by using rotated QAM 

constellations.  

Using rotated versions of constellations increase the performance. But the 

decoding stage also has an important effect on the performance. The maximum 

likelihood (ML), minimum mean squared error (MMSE), zero-forcing (ZF) 

receivers are used and their performance analysis have made in the literature. In 

[11], the zero-padding and cyclic prefix minimum BER precoders with zero 

forcing receivers are considered. Using iterative receivers instead of conventional 

MMSE or ZF receiver is another approach to increase the system performance. In 
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[12], the performance of MMSE successive interference cancellation receiver is 

considered. In [13], [14] some novel iterative receivers are proposed. In [15] a 

detection technique that performs a local ML search in the neighborhood of the 

output provided by the MMSE detector is proposed. 

The main problem studied in this thesis is the problem of achieving reliable 

communication in fading channels. To accomplish this, the diversity concept is 

used. A different diversity technique, rotation coding is used for combating 

frequency selective fading. The object is to understand whether the OFDM 

systems that used precoder matrices is more effective than the conventional 

OFDM systems. Rotation coding can also be used with error correction codes for a 

better performance. Investigation of error-correction in addition to preoding  is not 

within the content of this thesis. Another objective is to see the precoder effect on 

the simple receiver structures.  Within this context the thesis consists of three main 

parts. In the first part the concept of rotation code is defined. In this part a brief 

description of diversity concept is given. Using rotation codes as precoder matrices 

increases the diversity order. From this point of view diversity order, signal to 

noise ratio (SNR) relations and the BER performance of the rotation code is 

discussed in this section. In the second part BER performance of precoded OFDM 

system and the BER performance of conventional OFDM system is compared. In 

the third chapter the simple receiver structures are discussed. The BER 

performance of different precoding matrices with zero-forcing (ZF) minimum 

mean squared error (MMSE) and maximum likelihood (ML) receiver are 

calculated.  
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CHAPTER 2 
 
 

DIVERSITY 

 
 
 

The system performance on a fading channel depends on SNR and 

therefore the strength of channel gains of the paths. If the path is not in a deep fade 

then reliable communication can be provided. In this thesis we investigate the 

fading problems in OFDM systems. To overcome fading diversity techniques are 

used with OFDM, the OFDM concept is given in the following chapter. In this 

chapter we first investigate the diversity concept itself.  

The problem of being in a deep fade can be solved by using more than one 

path that fades independently from each other. This technique using many paths 

for signal transmission is called as diversity. There are diversity techniques operate 

over time, frequency or space. In this thesis only the signal space diversity is 

discussed. The other types of diversity are discussed in [16]. We will consider the 

type of Time Diversity and “Signal Space Diversity” or modulation diversity 

defined as in [4]. 

A straightforward way for providing time diversity is repeating the 

transmission symbols for L times. This concept is named as repetition coding. 

Time diversity does not require additional transmit power but by using this 

technique the data rate is decreased. A more sophisticated code that does not 

decrease the data rate is the constellation coding. These codes are considered in 

this chapter. The rate and diversity order comparisons of these two codes are given 

at the end of the chapter.  

 

2.1 REPETITION CODING 

 
Repetition coding is achieved by transmitting the same signal at different 

times. Consider the communication system over fading channel with BPSK 

symbols. In repetition coding, transmission symbol x, will be send for L times. 
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Here L is the number of diversity branches. The first component x1  is send in first 

symbol time, in the second symbol time again the first component  x1  is send and 

this continues same for L symbol times.  So the received vector is, 

 

y = hx1 + n                                                   (2.1) 

 

Here y = y1 , y2 , …, y
L

@ AT
, h = h1 , h2 , ……,h

L

B CT
, n = n1 ,n2 , …,n

L

@ AT
 where   

x
l
= x1 l = 1, ……,L  the transmitted symbols are BPSK symbols, x1 =F a, n is 

AWGN with variance N 0 , and h is the vector of Rayleigh fading channel 

coefficients. The performance of this system is often characterized by the diversity 

order associated with the probability of error.  

We will use signal to noise ratio to find the probability of error. The 

general definition of signal to noise ratio is, [16] 

 

SNR =
average received signal energy per symbol time

noise energy per symbol time

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
 

In this system noise energy per symbol time is N 0  and signal energy is a2 . 

So the SNR is, 

SNR =
a2

N 0

fffffffff
                                    (2.2) 

 

The error probability of detecting x is, 

 

Q
a|h|

N 0 2*qwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwffffffffffffffffffffffffff
h
lj

i
mk= Q 2 |h|

2
SNRqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwd e

                                 (2.3) 

 

The quantity |h|
2
SNR  is the instantaneous received SNR and the Q function is the 

complementary cumulative distribution function of N(0,1) random variable. Q x
` a

  

decays exponentially with  x 2 . 
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     Q x
` a

< e
@ x2

2
ffffffffffffffffffff

, x>0 

 

           Q x
` a

>
1

2πpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwffffffffffffffffx 1@
1

x 2

ffffffff g
e
@ x2

2
ffffffffffffffffff

, x>1                         (2.4) 

 

The computations Q(1)=0.159 and Q(3)=0.00015 in equation (2.4)  shows us how 

the tail of the Q function decays rapidly, [16]. 

Given |h|
2
SNR >> 1, the conditional error probability is very small because, 

for x>1 the tail decays very rapidly and this corresponds to small error probability. 

When |h|
2
SNR  is on the order of 1 or less, probability of error becomes significant. 

So we can define this high error region as the “deep fade” event, |h|
2
<

1
SNR

ffffffffffffff.  
Probability of this event is, 

P |h|
2
SNR<1

B C
= Z

0

1
SNR

ffffffffffffffffff

e@ x dx =
1

SNR

ffffffffffffff
+ O

1

SNR
2

ffffffffffffffffff g
 

 

                 P deep fade
B C

t
1

SNR

ffffffffffffff                                                           (2.5) 

 

 

We average over the random gain h to find the overall error probability. Under 

Rayleigh fading with each gain  h
l   i.i.d  CN 0,1

b c
,                              

                    ||h||
2
=X

l = 1

L

|hl |
2
                                                       (2.6) 

(2.6) is a sum of the squares of 2L independent real Gaussian random variables, 

each term |h
l
|
2
 being the sum of the squares of the real and imaginary parts of 

h
L
.The density is given 

f x
` a

=
1

L@ 1
` a

!
fffffffffffffffffffffffff

x L@ 1 e@ x , x ≥ 0                        (2.7) 
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The average error probability can be computed to be, [16], 

 

                pe = Z
0

1

Q 2xSNRpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwb c
f x
` a

dx  

 

pe =
1@µ

2
ffffffffffffffffff gLX

l = 0

L
L@ 1 + l

l

d e
1 + µ

2
fffffffffffffffff gL

, µ =
SNR

1 + SNR

ffffffffffffffffffffffffffswwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww                   (2.8) 

 

At high SNR, Taylor series expansion yields, 

 

SNR

1 + SNR

ffffffffffffffffffffffffffswwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww= 1@
1

2SNR

ffffffffffffffffff
+ …                                        (2.9) 

 

using equation (2.9), 

 

1 + µ

2
fffffffffffffffff g

= 1@
1

4SNR

ffffffffffffffffff                                                 (2.10) 

 

in high SNR the second term of the right-hand side of equation (2.10) can be 

neglected. So equation (2.10) becomes; 

 

1 + µ

2
fffffffffffffffff g

t 1                                                             (2.11) 

 

1@
µ

2
ffffd e

=
1

4SNR

ffffffffffffffffff                                                     (2.12) 

 

X
l = 0

L@ 1
L@ 1 + l

l

d e
= 2L@ 1

L

d e
                                     (2.13) 

 

using equations (2.11), (2.12) and (2.13) the overall probability of error is, 
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pe = 2L@ 1
L

d e
1

4SNR
` aL
fffffffffffffffffffffffffffh

j
i
k                                       (2.14) 

 

As seen in equation (2.14), probability of error decreases by the Lth order of SNR. 

And in error probability curve this corresponds to a slope of –L in log-log plot as 

shown in Figure 2.1, [16]. 

 

 
Figure 2.1 Error probability for different numbers of diversity branches L. 

 
 
 

 It is seen that the probability of error can be decreased significantly by 

increasing the diversity order.  

The repetition coding is used to understand the effect of diversity. A 

repetition code simply repeats the same symbol over L symbol times. The problem 

with repetition coding is information rate is reduced by L that is 1 symbol is 

transmitted at every L symbol durations, to increase the reliability of the channel. 

We will focus on a scheme which is more sophisticated than repetition code 
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providing the diversity gain at no rate loss. This scheme is called signal space 

diversity,[16]. 

In “Signal Space Diversity” the original signal constellation is mapped to a 

constellation of larger minimum Hamming distance (but at the same Euclidean 

distance). Hamming distance is defined as the number of components of a vector 

that are different from the components of other vector. Minimum Hamming 

distance between any two coordinate vectors of constellation points gives the 

diversity order. In other words diversity order of a multidimensional signal set is 

the minimum number of the distinct components between any two constellation 

points,[4]. 

To achieve signal space diversity a rotation matrix is used and this matrix 

rotates the signal constellation and increases the Hamming distance. This kind of 

matrix is named as constellation coding in [16] or rotation code in, [4]. 

 

2.2 CONSTELLATION CODING 

 

Constellation coding is based on the idea of increasing the maximum 

number of distinct components between two vectors. And to perform this idea 

rotation codes are used as in [16]. 

To understand this coding scheme consider the following codewords, 

 

xA =
a
a

d e
, xB =

a
@ a

d e
, xC =

@ a
@ a

d e
, xD =

@ a
a

d e
                     (2.15) 

 

 

The symbols x
A

and x
B are being transmitted. The components of xA are (a,a) and 

the components of  xB are (a,-a). 

 

 

 

 

 



 10

 

 

 

 

 

 

 

 
 
 
 

Figure 2.2 Codewords of repetition code 
 

 

 
There is only one distinct component between the codewords x

A  and  x
B ,  and this 

is the second component  @ a . It corresponds to the Hamming distance  of 1 and 

the diversity order is 1. Consider the transmission of x
A , if the second component 

of x
A  is lost during the transmission we have  xA = a,unknown

b c
 . In this situation 

making a decision is very difficult because it may be x
A  or x

B . Probability of 

making a wrong decision is very high. If a rotated constellation was used as shown 

in Figure 2.3., the codewords are: 

 

xA = R
a
a

D E
, xB = R

@ a
a

D E
, xC = R

@ a
@ a

D E
, xD = R

a
@ a

D E
          (2.16) 

 

where R is the rotation matrix: 

R = cosθ @ sinθ
sinθ cosθ

D E
                                              (2.17) 

a) 

(a,-a)

(-a,a)

(-a,-a)

(a,a)

(a,-a)

(-a,a)

(-a,-a) (a,-a)

(-a,a)

(-a,-a)

(a,a)
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Figure 2.3 Codewords of rotation code 

 
 
 
In this case none of the components of the codewords are the same. Both 

components in a symbol are distinct from components of another symbol. And this 

corresponds to the diversity order of 2. 

The analysis of this case will be done as in [16]. Consider the 

communication over a fading channel again. The received signal is, 

 

y
l
= h

l
x

l
+ n

l
l = 1,2                                         (2.18) 

 

It is difficult to obtain an explicit expression for the exact error probability, 

so according to the union bound, 

 

pe = P x
A
Q x

B

` a
+ P x

A
Q x

C

` a
+ P x

A
Q x

D

` a
                 (2.19) 

 

Here  p x
A
Q x

B

` a
  is the pairwise error probability of detecting  x

B when  x
A  is 

transmitted. In fading channel there are channel gains so the transmitted symbols 

become as, 

uA =
h1 x

A1

h2 x
A2

H
LJ

I
MK uB =

h1 x
B1

h2 x
B2

H
LJ

I
MK                             (2.20) 

xD

xC

xA

xB

xD

xC

xA

xB

xD

xC

xA

xB
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We are trying to detect transmit vector u, equally likely to be u
A  or  u

B . 

The received vector is, 

y = u + n                                                     (2.21)                  

 

The Maximum Likelihood decision rule is to choose the nearest 

neighboring transmit symbol.  It corresponds to choosing  u
A  when 

 

|| y@u
A

||< || y@u
B

||                                       (2.22) 

 

Suppose u
A  is transmitted so y = uA + n. Then an error occurs when  

||n|| >||n + u
A
@u

B
|| . The error probability is equal to, 

 

P || n||
2
> || n + uA@uB ||

2
b c

= P uA@uB

` aT
n <@

|| uA@uB ||
2

2
ffffffffffffffffffffffffffffffffffffh

j
i
k             (2.23) 

 

Thus the error probability can be written in compact notion as, [16]:  

 

                           P xAQ xB |h1 ,h2

b c
= Q

||uA@uB ||

2 N 0 2*qwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwffffffffffffffffffffffffffffffff
h
lj

i
mk 

  

 

= Q
SNR |h1 |

2
|d1 |

2
+ |h2 |

2
|d2 |

2
b c

2
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

vuut
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwh

lj

i
mk         (2.24)   

where SNR =
a2

N 0

fffffffff. We see that the error probability depends only on the Euclidean 

distance between  u
A  and  u

B. 

                   d : =
1
a

ffff
xA@ xB

` a
= 2cosθ

2sinθ

D E
                                  (2.25) 
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Equation (2.25) is the normalized difference between the codewords. According to 

the upper bound given in equation (2.4) 

 

P x
A
Q x

B
| h1 ,h2

b c
≤ exp

@ SNR |h1 |
2
|d1 |

2
+ |h2 |

2
|d2 |

2
b c

4
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

h
j

i
k

        (2.26) 

 

Averaging with respect to h1  and h2  under the independent Rayleigh fading 

assumption, we get 

 

                           P xAQ xB

` a
≤ E

h1 ,h2
exp

@ SNR |h1 |
2
|d1 |

2
+ |h2 |

2
|d2 |

2
b c

4
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

h
j

i
k

H
LJ

I
MK 

                          

 P xAQ xB

` a
≤

1

1 + SNR |d 1 |
2

4*
ffffffffffffffffffffffffffffffffffffffffffffffffh

j
i
k 1

1 + SNR |d 2 |
2

4*
ffffffffffffffffffffffffffffffffffffffffffffffffh

j
i
k              (2.27) 

 

Here the moment generation function   E esx
P Q

=
1
s

fff for s<1  is used.  Consider 

the case of  d1 = 0 or d2 = 0. In this case the diversity gain of the code is only 1, 

[16]. 

 

d =
d1

d2

h
j

i
k=

1
a

ffff x
A1
@ x

B1

x
A2
@ x

B2

h
j

i
k                                   (2.28) 

 

d1 = 0[ x
A1

= x
B1

or d2 = 0[ x
A2

= x
B2

                 (2.29) 

 

Only one of the components of the codewords is different. If they are both nonzero 

then at high SNR, 

 

P x
A
Q x

B

` a
=

4

SNR |d1 |
2

fffffffffffffffffffffffffffff 4

SNR |d2 |
2

fffffffffffffffffffffffffffff
=

16

|d1 |
2

|d2 |
2

ffffffffffffffffffffffffffff
SNR

@ 2
              (2.30)         
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Call δ
AB

= |d1 d2 |
2
 the squared product distance between x

A  and x
B . The squared 

product distance determines the pairwise error probability between the codewords. 

 

pe ≤ P x
A
Q x

B

` a
+ P x

A
Q x

B

` a
+ P x

A
Q x

C

` a
 

 

            pe ≤ 16
1

δ AB

fffffffffff
+

1
δ AC

fffffffffff
+

1
δ AD

ffffffffffff g
SNR

@ 2
 

 

         pe ≤
48

min
j = B,C,D

δ Aj

ffffffffffffffffffffffffffffff
SNR

@ 2                                                    (2.31) 

 

As long as δ
ij

>0, the diversity gain is 2. The minimum squared product 

distance min
j = B,C,D

δ
Aj

  determines the coding gain. To maximize the coding gain, the 

optimization will be done over  θ , the angle of the rotation matrix components, 

[16]. 

 

δ
AB

= |
1
a

ffff
x

A1
@ x

B1

b c 1
a

ffff
x

A2
@ x

B2

b c
|
2
                          (2.32-a) 

 

δ
AC

= |
1
a

ffff
x

A1
@x

C !

b c 1
a

ffff
x

A2
@ x

C 2

b c
|
2
                             (2.32-b) 

 

δ
AD

= |
1
a

ffff
x

A1
@ x

D !

b c 1
a

ffff
x

A2
@ x

D2

b c
|
2
                           (2.32-c) 

 

δ
AB

= δ
AD

= 4sin
2

2θ δ
AC

= 16cos2 2θ                                 (2.33) 

 

The angle θ  that maximizes the minimum squared product distance makes, 

δ
AB

= δ
AC

and θ =
1
2
ffftan@ 1 2                                                (2.34) 
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So 

minδ
ij

= 4sin
2
2

1
2
ffftan@ 1 2

f g
=

16
5
fffffff                                               (2.35) 

 

Now the bound in equation (2.31) becomes as,  

 

pe ≤
48

4sin
2 2.1

2
ffffffffftan@ 1 2
D Effffffffffffffffffffffffffffffffffffffffffffffffffff

SNR
@ 2

= 15SNR
@ 2  

 

pe ≤ 15 SNR
@ 2

                                                              (2.36) 

 

As a summary, sending the same symbol for L times gives a diversity order 

of L. But repetition coding does not fully exploit the degrees of freedom available 

in the channel effectively. Reliable communication can be achieved by choosing L 

large enough. But the data rate is 1/L bits per symbol time and with increasing L, 

the data rate goes to zero.  

To achieve high diversity order with high data rate different diversity 

technique is used. A suitable technique is the constellation rotation. The idea of 

rotating a constellation increases diversity order on the fading channels by 

spreading the information contained in each component over several components 

of the constellation paths. Rotation code also comes with coding gain. And this 

coding gain is proportional with the minimum product distance. This technique 

can be an alternative to other codes with combating fading because of its rate 

advantage. Because of this rate and diversity advantage of rotation code over 

repetition coding we will use rotation codes as precoders in OFDM system. To 

understand the effect of rotation code, in the next chapter the conventional OFDM 

system and rotation coded OFDM system and their BER comparisons are given. 
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CHAPTER 3 

 
 

OFDM SYSTEM WITH ORTHOGONAL PRECODER 

 
 
 

OFDM system converts the ISI channel into ISI free channels. In a 

multipath fading system, channel gains can be considered as random variables. 

Some OFDM subcarriers may be completely lost in case of deep fades. Although 

most subcarriers may be detected without errors, the overall bit error rate will be 

affected dominantly by the subcarriers that have small channel gains. This loss of 

multipath diversity is usually recovered by Forward Error Correction Coding [10]. 

In this thesis we use a different approach. In previous chapters it has seen that high 

diversity orders can be reached by rotation codes. And the BER can be decreased 

proportional to the diversity order. In the next chapter the rotation code is applied 

to the conventional OFDM system and the performance comparisons are made. 

 

3.1 UNCODED OFDM SYSTEM 

 
The block diagram of the OFDM system is shown in Figure 3.1 Assume 

that the number of subchannels is M. s is the vector of modulation symbols with 

dimension M by 1. Each input vector s is passed through M by M IFFT matrix, 

followed by the insertion of cyclic prefix and the parallel to serial operation. By 

insertion of cyclic prefix it is objected to remove inter-block interference. At the 

receiving end this cyclic prefix is removed. And the samples are blocked into M 

by 1 vector for M point FFT calculation. Typically an OFDM System is used with 

an interleaver. In this thesis, we assume that every parallel channel is 

independently faded. This assumption can be interpreted as in operation with very 

long interleaver or a system operating over very flat fading channel. 
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Figure 3.1 OFDM system block diagram 

          
 
 

OFDM System avoids the inter symbol interference by implementing fast 

Fourier Transform (FFT) at the transmitter and inverse fast Fourier Transform 

(IFFT) at the receiver. This FFT implementation converts the channel with inter 

symbol interference (ISI) to the ISI free channel.  To avoid interblock (IBI) and 

interchannel (ICI) interferences between successive IFFT processed blocks, a 

cyclic prefix (CP) of length greater than or equal to the channel order is inserted 

per block at the transmitter and discarded at the receiver, [17]. The CP converts the 

linear convolution to the cyclic convolution and the application of IDFT and DFT 

diagonalizes the channel matrix. 

In serial transmission the transmitted symbols come to the receiver in the 

form of delayed and scaled replicas but OFDM transfers this multipath diversity to 

the frequency domain in the form of fading frequency response samples. Each 

OFDM subchannel gain is expressed as a linear combination of the dispersive 

channel taps. When the channel has nulls (deep fades) close to or on the FFT grid, 

reliable detection of the symbols carried by these faded subcarriers becomes 

difficult. For combating with this difficulty linear precoding will be used instead 

of classical coding techniques like convolutional codes, trellis-coded modulation 

(TCM) or coset codes, turbo codes, block codes (e.g., Reed–Solomon (RS) or 

Bose–Chaudhuri–Hocquenghem (BCH)). The idea of linear precoding or 

rotational coding is sending different linear combinations of the information 

symbols. 

S/P IFFT CP P/S

H

FFT S/P CR

s

s

n

r

S/P IFFT CP P/S

H

FFT S/P CR

s

s

n

r
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3.2 PRECODED OFDM SYSTEM 

 
In this section the OFDM system with an orthogonal precoder is 

considered. Precoding is used in OFDM system with the assumption of there is no 

bandwidth and power allocation. The channels are Rayleigh fading i.i.d channels. 

In precoded OFDM system instead of sending uncoded symbols (one per 

subcarrier), the idea is to send different linear combinations of the information 

symbols on the subcarriers. This corresponds to signal space diversity as discussed 

in the previous sections. Different orthogonal precoders will be considered and the 

optimum precoder that guarantees the maximum diversity order without an 

essential decrease in transmission rate will be found. By performing pairwise error 

probability analysis, we will upper-bound the diversity order of OFDM 

transmissions over random frequency-selective fading channels. As expected the 

diversity order is directly related to the Hamming distance between coded 

symbols. 

The precoded OFDM system is shown in Figure 3.2. Due to CP-insertion at 

the transmitter and CP-removal at the receiver, the dispersive channel is 

represented as an MxM circulant channel matrix H. Performing IFFT (WH) at the 

transmitter and FFT (W) at the receiver diagonalizes the circulant matrix H. So, 

we obtain the parallel ISI-free model for the OFDM symbol as 

r w = D
H

u + n D
H

=WHW
H

                            (3.1) 

 

In a linearly precoded OFDM system different linear combinations of 

uncoded symbols are transmitted over different subcarriers. If a deep fade occurs 

in the channel, this only affects the linear combination of the transmitted symbols. 

The receiver can still recover the transmitted symbols from the data received on 

the other subcarriers. In order to see precoder effect on OFDM system we consider 

the Hamming distance. As we have discussed before The Hamming distance 

between two vectors x and x.  is defined as the number of nonzero entries in the 

vector xe = x@ x. . 



 19

 

           

            

 

 

 

 

 

 
 

Figure 3.2 OFDM system with precoder 
 

 
 

Consider an OFDM system with 2 parallel channels. And the channel 

coefficients are α1  and α 2 . The transmission symbols are BPSK symbols   

b1 ,b2 =F 1  and the precoder matrix is 1 @ 1
1 1

D E
.  In precoded system we send   

1
1

D E
b1   through the first channel with the coefficient α1  (first component of the 

vector is multiplied by α1) and  similarly through the second channel with the 

coefficient α 2 . So the received vector is, 

r =
α1

α 2

F G
b1 +

α1

@α 2

F G
b2 =

α1 α1

α 2 @α 2

F G b1

b2

H
J
I
K                            (3.2) 

 

A =
α1 α1

α 2 @α 2

F G
 and  b =

b1

b2

H
J
I
K.  We have two channels and the transmitted vectors 

may be,  1
1

D E
,

1
@ 1

D E
,
@ 1

1

D E
,
@ 1
@ 1

D E
. In precoded system these transmitted vectors 

will become into, A
1
1

D E
, A

1
@ 1

D E
, A
@ 1

1

D E
, A
@ 1
@ 1

D E
.  

Consider the case  1
1

D E
  is send and  1

@ 1

D E
  is detected. In this case the error 

vector is 

U WH H

W

s

r
X

n

Ө rw
x=s+e

Transmitting matrix G

Receiving matrix S

U WH H

W

s

r
X

n

Ө rw
x=s+e

Transmitting matrix G

Receiving matrix S
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 e = A
1
1

D E
@

1
@ 1

D Ef g
= A

0
2

D E
 

 

 e =
α1

@α 2

F G
2                                                        (3.3) 

We have defined the Hamming distance as the number of nonzero elements 

in the difference vector. So in the precoded OFDM system the Hamming distance 

of e is 2. It corresponds to the diversity order of 2. 

If we consider the uncoded system because of the cyclic prefix and the FFT 

implementation we have 2x2 diagonal channel matrix as  
α1 0

0 α 2

H
J

I
K. We send the 

transmission symbols through the channels again and have the received vector as 

 

r =
a1 0

0 α 2

H
J

I
K b1

b2

H
J
I
K                                                     (3.4) 

Here A =
α1 0

0 α 2

H
J

I
K and b =

b1

b2

H
J
I
K. And the error of deciding  1

@ 1

D E
  when  1

1

D E
 is 

transmitted is, 

e = A
1
1

D E
@

1
@ 1

D Ef g
= A

0
2

D E
 

   e =
0

α 2

F G
2                                                          (3.5) 

 

The number of nonzero elements in the vector e is 1 and this corresponds to the 

diversity order of 1. Hence the uncoded OFDM system has the diversity order of 1.  

We can see that the rotation code increases the diversity order also in the 

OFDM system. Using this rotation codes the performance of the OFDM system 

can be increased with low complexity.  

The receiver structure is also important in this system. In order to recover 

the precoded OFDM data various detection techniques can be applied. Each of 

these techniques presents different complexity versus BER tradeoffs. The 
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maximum likelihood (ML) detector chooses the nearest codeword to the received 

vector as the  most likely transmitted codeword. So when rotation code is used 

with ML receiver it is able to get both the diversity and coding gain. However its 

computational complexity is exponential in the precoder size. Minimum Mean 

Square Error (MMSE) and Zero forcing (ZF) detectors can decrease this 

computational complexity. In the next chapters we will compare the BER 

performance of these detectors in precoded OFDM system. To understand the 

concept clearly a brief description about these receivers and MSE-BER relations in 

these receivers is given. 
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CHAPTER 4 
 
 

RECEIVER STRUCTURES FOR PRECODED 

OFDM SYSTEM 
 
 
 

The chapter 2 is concentrated on the problem of multipath fading in 

wireless channels. Diversity concept is considered as a solution for this problem. 

In chapter 3 the rotation code which brings diversity gain with high code rate is 

offered to overcome the problem of multipath fading. The rate and diversity order 

comparisons are given for repetition code and rotation code in chapter 3. All of the 

performance analysis considered for the OFDM system. The main problem is how 

this rotation code behaves on simple receiver structures as ML, MMSE and ZF. In 

this chapter, brief descriptions of the ZF and MMSE receivers are given. The BER 

performances of different precoder matrices on different receivers are calculated.   

 

4-1 ZERO FORCING RECEIVERS 

  
Zero forcing receivers are designed for eliminating interference 

completely. If H is the channel matrix and SZF is the Zero-forcing receiver matrix, 

ZF detector chooses SZF as SZFH=I. If the channel matrix is not an invertible 

matrix Moore-Penrose pseudoinverse of H is used. It is given as, 

 

  H
+

= HH H
b c@ 1

HH                                            (4.1) 

 

This kind of receiver cancels all ISI, but may increase the noise. Consider 

the communication over channel H. Then the received signal is; 

                  r = H u + n                                         (4.2) 

Assume the case that H is full rank square matrix. In this case the inverse 

of the channel matrix exists and S
ZF

= H+
. When we multiply both sides of 

equation (4.2) with  S
ZF , we have, 
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                          H
+

r = u + H
+

n                                            (4.3) 

 

The noise is still Gaussian and the received symbol can be decoded by      

finding the closest constellation point of H
@ 1

r . However the variance of noise in 

the  H
+

nmay be more than the power of the original noise n. The covariance 

matrix of the noise can be calculated as, 

 

H
+

Rn H
+

b cH

= N 0 H
+

H
+

b cH

 

                                                  = N 0 H
H

H
b c@ 1

H
H

H H
H

H
b c@ 1

  

                                = N 0 HH
H

b c@ 1

                              (4.4) 

 

The noise variance N 0  is increased by the diagonal elements of HH
H

b c@ 1

. If the 

channel H is sharply attenuated at any frequency within the bandwidth of interest, 

the noise power will be significantly increased. In the next chapters the 

performance of precoding on ZF equalization is considered.  

 
4-2 MINIMUM MEAN SQUARE ERROR (MMSE) RECEIVERS 

 
In MMSE estimation, the object is to minimize average mean square error 

between the estimated and transmitted symbols. MMSE detector can balance the 

noise enhancement and the interference cancellation. Consider the communication 

system above. The MMSE detector minimizes the sum      

  

      MSE = E |S MMSE r@u |
2

R S
                                                                             (4.5) 

      MSE = E S MMSE r@u
b c

S MMSE r@u
b cH

V W
 

         = S
MMSE

R r S MMSE

H
+ I@S

MMSE
H@H

H
S MMSE

H  

         = S MMSE@H
H

R r

@ 1
b c

R r S MMSE@H
H

R r

@ 1
b cH

+ I@H
H

R r

@ 1
H  
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= S MMSE@H
H

R r

@ 1
b c

R r S MMSE@H
H

R r

@ 1
b cH

+ N 0 H
H

H + N 0 I
b c@ 1

     (4.6) 

To achieve the minimum MSE the first term of equation (4.6), 

 

S MMSE@H
H

R
@ 1

b c
R r

@ 1
S MMSE@H

H
R r

@ 1
b cH

                 (4.7) 

 

that contains  S
MMSE term can be made zero. So the MMSE solution is   

 

S
MMSE

= H
H

R r

@ 1
                                                    (4.8) 

 

    R r = E Hu + n
` a

Hu + n
` aH

R S
 

R r = HH
H

+ N 0 I                                                (4.9) 

Using equation (4.8) in (4.7) and taking  R
U    as  I , the MMSE receiver becomes,  

     

                       S MMSE = H
H

HH
H

+ N 0 I
b c@ 1

                                          (4.10) 

 

In the following sections the performance of precoding on MMSE equalization is 

considered. 

 

4-3 ZERO FORCING RECEIVERS WITH ORTHOGONAL 
RECODER 
 

In this part the effect of precoder on zero forcing receiver is considered. 

The communication system uses OFDM modulation and the receiver structure is 

ZF. The system is shown in Figure 4.1.  
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Figure 4.1 Precoded OFDM system with ZF receiver 

 
 
 

In the system shown in Figure 4.1, the precoding matrix, U is unitary with 

U
H

U = I . W is the DFT matrix. Here H is circular convolutionoal matrix and,  

WHW
H

= diag P0 , …A P
M@ 1

b c
= Λ. Here P0, P1,….,PM-1 are the M-point DFT of 

the channel impulse response. The transmitting matrix in the transceiver is 

G =W
H

U .  The input r to the receiver can be represented as 

 

r = HW
H

Us + n 

 

    r = HGs + n                                               (4.11) 

The zero forcing equalizer removes all ISI. The equalizer to accomplish 

this is given by 

S
ZF

= HG
` a@ 1

= HW
H

U
b c@ 1

 

 

     S
ZF

=U
H

W H
@ 1

                                                 (4.12) 

 

S
ZF  exists provided that the inverses in (4.12) exists since U and W are unitary 

matrices, their inverse exist and  H
@ 1

 exists if  Λ  has all non-zero diagonal 
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elements. So in Figure 4.1, X =U
T
. For the communication system shown in 

Figure 4.1 when s is transmitted the decoded vector x is given by; 

 

x = S
ZF

r = S
ZF

HG
` a

s + S
ZF

n 

 

x = s + U
H

Λ
@ 1

W n                                             (4.13) 

 

This is the expression of the received vector in zero-forcing receiver system. To 

find the effect of precoding over performance of the OFDM system, the BER 

criteria is used. To compare the performance of uncoded and precoded OFDM 

systems it is necessary to calculate the bit error rates (BER) of these two systems. 

So analyzing the noise vector is essential.  

The channel noise n is AWGN with variance N 0 . The modulation scheme 

is QPSK and the modulation symbols are  s
k

=F
εs

2
fffffrwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwF j

εs

2
fffffrwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww  with symbol 

energy εs. The receiver output vector is x and the output error vector is e = x@ s  as 

shown in Figure 4.1. 

To analyze the noise vector consider the receiver block diagram in Figure 
4.2, n is the M by 1 vector of the noise process. The elements of  n  are 
uncorrelated Gaussian random variables with variance N 0 . The elements of  

µ = Wn stay uncorrelated Gaussian random variables with variance N 0 , because W 
is a unitary matrix.  

 
 

 

 

                          

 

 

 

 

 
 

 
Figure 4.2 Noise path at a zero forcing receiver. 
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The variance of the kth element of the noise vector q is given by,  

 

σ
qk
2 =

N 0

|P
k

|
2

fffffffffffffff                                                        (4.14) 

 

U = u1 u2 …u
M

@ A
  and the output noise  e =U

H
q  in the vector form. The ith 

component of the error vector is given by  

e
i
= ui

H q = X
k = 0

M@ 1

uk,i
C q

k
                                          (4.15) 

 

u
k,i

 denotes the (k,i)th component of U matrix.  According to equation (4.15), the 

noise variance of this subchannel is 

  

   σ e
i

2 = N 0
X
k = 0

M@ 1 |uk,i |
2

|P
k
|
2

fffffffffffffff
for i = 0, ……AA , M@ 1                       (4.16) 

 

The real and imaginary parts of ei have equal variance. The SNR of the ith 

subchannel is 

 

 SNR
i
=

εs

σ e
i

2

fffffffff                                                         (4.17) 

 

 SNR =
εs

N 0AX
k = 0

M@ 1 |u
k,i

|
2

|P
k

|2
fffffffffffffffffff

fffffffffffffffffffffffffffffffffffffffffff
=

γ

X
k = 0

M@ 1 |u
k,i

|
2

|P
k

|2
fffffffffffffffffff

fffffffffffffffffffffffffffff
where γ =

εs

N 0

fffffffff
                         (4.18) 

 

As the precoder matrix U is unitary,  X
k = 0

M@ 1

|u
k,i

|
2
= X

i = 0

M@ 1

|u
i,k

|
2
= 1  Then the average 

mean square error (MSE) is 

 

                MSEavg =
1
M

ffffffffX
i = 0

M@ 1

σ e
i

2 =
1
M

ffffffffX
i = 0

M@ 1

N 0
X
k = 0

M@ 1 |u
k,i

|
2

|P
k
|
2

fffffffffffffff 
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                =
N 0

M

fffffffffX
i = 0

M@ 1 1

|P
i
|
2

ffffffffffffff                                                  (4.19) 

 

From the equation (4.19) it is clear that the average MSE is independent of 

the precoder matrix U. For performance comparison, consider BER of the ith 

subchannel. For QPSK modulation the BER of the ith subchannel is 
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i
= Q SNR

i
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The average BER is 
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The average BER is proportional to the noise variance of the subchannels. And the 

subchannel noise variance is proportional to the precoder matrix components. So 

selection of the precoding matrix affects the BER performance of the 

communication system. 

We make the analytical BER analysis for two different cases, [18]. In one 

of these cases, the identity matrix is used as precoder and in the other one, DFT 

matrix is used as precoder.  

Consider the selection of U is identity, U=I. This system corresponds to the 

system with no precoder namely the conventional OFDM system. The subchannel 

noise variance for this system is, 

              

 σ e
i

2 =
Ν

0

|P
i
|
2

ffffffffffffff
i = 0, …AΜ @ 1                             (4.22) 

 

SNR for the ith subchannel is given as,  
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The BER of the conventional OFDM system is, 

 

BERavg =
1
M
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Q γ|P
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                                 (4.24) 

 

In the second case the precoder matrix is chosen as U=W (DFT matrix) then the 

transmitting matrix in Figure 4.1 becomes 

  

 G = WHW = I                                                        (4.25) 

 

The unitary matrix UH which is added to the receiver is now WH. The 

resulting system is shown in Figure 4.2. This system can be seen as a single carrier 

communication system with cyclic prefix (SC-CP) is added. [9]. The SC-CP 

system can be thought as a precoded OFDM system with a precoder U=W, [18] 

 
 

 

Figure 4.3 SC-CP System Block Diagram 
 

 
 

Now consider the noise variance in SC-CP system. The noise path is 

shown in Figure 4.3. All the elements in the DFT matrix have the magnitude 

1

Mpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwffffffffffffff. The output noise is, 
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and the noise variance of the SC-CP system is, 

σ e
i

2 =
N 0

M

fffffffffX
k = 0

M@ 1 1

|P
k

|
2

fffffffffffffff
for i = 0,1, ………,M@ 1       (4.27) 

 

From the variance calculation, it is clear that the noise variances for all parallel 

subchannels are the same. The average MSE of the system is, 

 

MSEavg = σ e
i

2                                            (4.28) 

The SNR of the subchannels is, 

SNR
i
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σ e
i

2

fffffffffff                                           (4.29) 

The BER of the SC-CP system can be written as 

 

BER
i
= Q SNR

i
qwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwd e

                                   (4.30) 

The BER performance of the precoded system is determined by subchannel SNRs. 

[18] 

Up to now the analytical results of SNR and BER criteria for two different 

precoder matrices are given. These precoder matrices are used on OFDM system 

with zero forcing equalizer. For different choices of U the noise variances are 

distributed differently and related to these variances SNR and BER performances 

differ.  

To analyze BER performance we can use the function f that is defined as                 

f x
` a

= Q
1
xpwwwwwwwwwwwwwwwwwwwffffffffffff

f g
. Here  f x

` a
 corresponds to SNR value and x is MSE value. [18]. 

(Additional information about the SNR- MSE relations on ZF receiver can be 

found in Appendix B.) The BER performance can be seen from the behavior of f 

function. The convexity analysis of f function which is from [18], can be found in 

Appendix C.  

According to the convexity analysis the f function has two regions. In high 

SNR region the function is convex, and in low SNR region the function is 

concave. The conventional OFDM system (U=I) is the optimal solution for low 
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SNR region because the BER is minimum in this region. On the contrary when all 

the subchannels operate in the convex region i.e., in high SNR region, the OFDM 

system has the largest BER. In this region we need additional precoder as in SC-

CP system. From this result, it can be seen that using precoder in ZF-receiver 

system is not effective for all SNR regions. [18] 

From above calculations it is obvious that selecting optimal precoder 

matrix and receiver structure gives a better BER solution than conventional 

OFDM, at no loss of rate. In the next section the same calculations are given for 

MMSE receiver. Then the BER results are compared. 

 

4-4 MMSE RECEIVER WITH ORTHOGONAL PRECODER 

 
 In this part the OFDM system with an MMSE receiver is considered. The 

BER and SNR analysis of the system are given in this section. According to the 

analysis it is seen that the precoded OFDM system with MMSE receiver has better 

performance than the precoded OFDM system with ZF receiver. 

 

 
 

                                                

 

 

 

 

 

Figure 4.4 Precoded OFDM System with MMSE receiver 
 
 

 
Consider Figure 4.4 again, in this part we have MMSE receiver at the place 

of X. We have called the output of the block W as the y vector: 

y =WHW
H

Us + Wn 

y = ΛUs + w                                                       (4.31) 
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where  Λ is the diagonal matrix with entries  P0 , ……P
M@ 1

R S
 and w is noise 

vector with covariance matrix N 0 I . We would like to find S
MMSE such that  

E ||S MMSE y@ s||
2

R S
 is minimized using (4.8) and (4.9); we can immediately find 

S
MMSE from 4.8 as follows: 
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The decoded vector is 
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Calling the diagonal matrix in the equation (4.33) as D, the diagonal entries are; 
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We get the following error vector,   
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The average MSE is, 
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The SINR of the ith estimation of the coefficient becomes,  

 

SNR
` a

i
=

1
MSE
` a

i
εs
*ffffffffffffffffffffffffffffff
@ 1 =

1

X
k = 0

M@ 1 |u
k,i

|
2

1 + γ |P
k

|
2

fffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffff 

 =

X
k = 0

M@ 1

|u
k,i

|
2 γ|P

k
|
2

1 + γ|P
k

|
2

ffffffffffffffffffffffffffffffff
h
j

i
k

X
k = 0

M@ 1 |u
k,i

|
2

1 + γ|P
k

|
2

ffffffffffffffffffffffffffffffffff
h
j

i
k

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff                 (4.38) 

 

Additional information about this relation, SNR
` a

i
=

1
MSE
` a

i
εs
*ffffffffffffffffffffffffffffff
@ 1, between MSE 

and SINR in MMSE receiver is given in Appendix B.  

The BER calculation depends on the modulation scheme. The modulation 

scheme used in this system is QPSK. So the ith subchannel BER is  
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where  ηMSE
b c

i

=
MSE
` a

i

εs

fffffffffffffffffffffff is the normalized MSE. Using the MSE-SINR relation 

in an MMSE receiver the computation complexity of BER will be decreased. 

Define a function h as, h ηMSE
b c

= Q SNR
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 When the precoder matrix is identity, i.e., U=I, the system becomes the 

conventional OFDM system. In the conventional OFDM system, the subchannel 

SINR is, 

 SINR
i
= γ|P

i
|
2
                                                          (4.41) 

 

and it is the same SNR as in the zero forcing case. The MMSE and the ZF receiver 

gives the same performance in conventional OFDM system. The BER of the 

OFDM system is, 
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When the precoder matrix U is DFT matrix then |u
k,i

| =
1

Mpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwffffffffffffff8k,i and the 

system becomes SC-CP system. The BER is from equations 4.36 and 4.40; 
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To compare the conventional OFDM system with precoded OFDM system 

we will compare the BER results. And we will do this by using the convexity 

property of function h. The convexity analysis of h function from [18] is given in 

Appendix C. From the analysis, it is seen that the h function is convex in all of the 

SNR regions. This convexity shows us the precoded OFDM system always has 

better performance than the uncoded case when the receiver is MMSE. 

In this chapter we have given the analytical calculations for two different 

communication systems. In these systems MMSE and ZF receivers are used. In 

both systems two different cases are investigated. The identity matrix and the DFT 
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matrix are used as precoders in these cases. We have made the SNR and BER 

calculations and compared the MMSE and ZF receiver by these results. Using the 

SNR-BER relations it has seen that precoding is effective for ZF receiver only in 

high SNR regions. In low SNR regions precoding does not bring additional gain in 

ZF receiver, in fact in these regions identity matrix is more effective. On the 

contrary in MMSE receiver, precoding is effective in all of the SNR regions, 

namely using a precoder matrix different from identity matrix always efficient. In 

order to further illustrate these results we present the simulations in Chapter 5.  
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CHAPTER 5 
 
 

NUMERICAL RESULTS 

 
 
 

In this section we present the simulation results in order to understand the 

effects of different precoder matrices and different receiver structures. In 

simulations the channel is the Rayleigh fading channel. Due to FFT-IFFT 

computations and cyclic-prefix insertion in OFDM, we simulate the channel as a 

set of parallel channels represented by a diagonal matrix. The information symbols 

are BPSK modulated to yield F 1
P Q

. The number of subchannels is M and in 

simulation M = 2,4,8
P Q

 are used. We use M by M identity, Hadamard and DFT 

matrices as precoders and ML, MMSE and ZF receivers as decoders. 

We have divided simulation into 4 parts. In the first part we compare the 

BER comparisons for identity, Hadamard, and DFT precoders. In these 

simulations M=8 is used for ZF and MMSE systems. In the second part BER 

performances of ML, MMSE and ZF detectors are compared for the precoded 

system. In this part DFT is used as precoder and the number of subchannels is 8. In 

the third part, we make simulations to see the effect of number of subchannels. We 

use M = 2,4,8
P Q

 subchannels for all of the receiver structures and use DFT matrix. 

At the end we make the rate comparisons for different matrices for MMSE and ZF 

receivers. In this part we use 8 subchannels and send 1 symbol from this 8 

subchannel by spreading it by precoding, then 2, 3…8 symbols are spread over 8 

subchannels and compared.  

 
1-Comparison of Different Precoding Matrices 

 
In Figure 5.1, different precoders are compared when MMSE receivers are 

used. And in Figure 5.2 same comparisons made for ZF receiver. In these 

simulations number of subchannels is 8. From these simulations we can see that 

precoding scheme decreases the BER. From analytical results we know that 
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MMSE gives better result in all the SNR regions and we can verify this claim from 

Figure 5.1. And from Figure 5.1 we can also 

see that the best performance is provided by the DFT matrix. We use this matrix in 

our remaining simulations to reach the best performance. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 Comparisons of different precoders for MMSE receiver 

 
 
 
According to the analytical results in the previous chapters it is seen that 

the precoded system with MMSE receiver has a better performance in all SNR 

regions than ZF receiver. In ZF receiver, in some SNR regions the BER of the 

conventional OFDM system is lower than the BER of the precoded system.  This 

result can be seen in Figure 5.2. In low SNR regions using precoder is not 

effective for ZF receiver. 
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Figure 5.2 Comparison of different precoders for ZF receiver 

 
 
 

2-Comparisons of Different Receivers 

 
The precoding with ML receivers is expected to have much better 

performance than ZF and MMSE receiver. In Figure 5.3 MMSE, ML and ZF 

decoder performance comparisons are given for precoded system in fading 

channels. In this case the precoder matrix is used as DFT matrix. Similar results 

are obtained for other precoding matrices. In all of the cases ML receiver gives the 

best performance. And from the simulations we can see that MMSE receiver gives 

better results than ZF receiver as expected.   

 

 

 

 

 

 

 

10 11 12 13 14 15 16 17 18 19
10

-3

10
-2

10
-1

Eb/No

A
v
e
ra

g
e
 B

E
R

identity-ZF

hadamard-ZF

DFT-ZF



 39

10 11 12 13 14 15 16 17 18 19
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No

A
v
e
ra

g
e
 B

E
R

ML

MMSE

ZF

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3 Performances comparison for ZF, MMSE and ML receivers with DFT 

precoder in fading channel 
 
 
 

3-Comparisons related to number of parallel channels 

 
When we use the same decoder but we change the dimension of the 

precoder matrix, the BER performances changes. Increasing the precoder 

dimension increases the BER performance in fading channels when the decoders 

are ML or MMSE. This can be seen in Figure 5.4, Figure 5.5 and Figure 5.6. It 

should be noted that increasing the precoding matrix dimensions brings very high 

computation load on ML receiver (grows exponentially with the number of 

channels). 
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Figure 5.4 ML receiver performance with DFT precoder in fading channel for 2,4 
and 8 subchannels 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 ZF receiver performance with DFT precoder in fading channel for 2, 4 
and 8 subchannels 
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Figure 5.6 MMSE receiver performance with DFT precoder in fading channel for 
2, 4 and 8 subchannels 

 
 
 
 In Figure 5.7 we compare the performance gain of precoding when ML 

receivers are used. Note that the uncoded system (identity precoder) corresponds 

to uncoded OFDM system performance. It is clear that there is a significant gain 

ove uncoded OFDM.  
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Figure 5.7  ML receiver performance with and without precoder for 2,4,8 channels 
 
 
 
4-Performance on AWGN channel  

 
From the simulation results we have seen that the precoder gives better 

BER results in fading channels. We have repeated the same simulations over an 

AWGN channel and use DFT matrix as precoder. From Figure 5.8 it can be seen 

that the DFT and identity matrices gives the same performances. Precoding does 

not make any performance improvement in AWGN channels, as expected. (As 

explained in previous chapters, precoders does not enlarge the distance between 

transmit symbols in the constellation. Therefore when constellation is not sheared 

by fading, there is no gain that can be realized by precoding.)  
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Figure 5.8 ML-MMSE-ZF receiver performances of precoded and uncoded system 
in AWGN channel 

 
 
 

5-Redundant Precoding Comparisons 

 
Finally we make the simulations to illustrate rate-reliability trade-off. In 

this part 8x8 DFT matrix is used as precoder. At first, 1 symbol is send through 8 

subchannels. In other words the same symbol is repeated over 8 parallel channels, 

we call the transmission rate of such a system as 1/8 symbols per channels.  

The rate of 2/8 corresponds to transmission of 2 symbols over 8 parallel 

channels: 

 s = u1 b1 + u2 b2                                                     (5.1) 

Here the transmit vector s is a linear combination of two vectors  u1  and  u2; the 

received vector is, 

 r = Λs + w                                                               (5.2)                             

where Λ is the diagonal matrix, as before. 

 In the following simulations, we use columns of 8x8 DFT matrix which 

are called as  u1 ,u2 , ……,u
k  as precoding vectors.  
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From the Figures 5.9 and 5.10 we can see that decreasing rate, i.e. 

increasing diversity order provides more reliable communication.  

With precoding, two important results can be achieved about rate. In ZF 

receiver it is clearly seen from figures that 8/8 system has a diversity order of 1. 

Hence every doubling of SNR (3 dB increase) results in 2 fold reduction in BER. 

(At high SNR  Pe ≈
1

SNR

ffffffffffffff ). The 7/8 system has a diversity order of 2. Hence every 

3 dB increase in SNR, results in 4 fold reduction in BER, (At high SNR  

Pe ≈
1

SNR
2

fffffffffffffffff ) As expected, 1/8 system has the diversity order of 8, since it is 

equivalent to repetition coding over 8 parallel channels. 

Diversity order for MMSE receiver cannot determined as simply as ZF 

receiver. We are currently unable to analytically find the diversity order of MMSE 

receivers. Using the fact that MMSE convergence to ZF receivers at sufficiently 

high SNR; it can be argued that the diversity order of MMSE system is equal to ZF 

system at high SNR. But this claim cannot be verified from Figure 5.10. In Figure 

5.10  
E

b

N 0

fffffffff  range is between 10-19 dB. Higher 
E

b

N 0

fffffffff values may be required to verify 

this claim. 
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Figure 5.9 Rate comparisons for ZF receiver with DFT precoder 
    

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10 Rate comparisons for MMSE receiver with DFT precoder 
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6-SINR Distribution for Redundant Precoding Systems with MMSE 

Receivers 

 
In Figure 5.11, the distribution of SINR at different rate values ranging 

from 1/M to M/M is shown. For this simulation, we have calculated the SINR after 

MMSE estimation (MMSE receiver) for a system operating at the rate K/M. Y-

axis of Figure 5.11 corresponds to distribution of SINR values when system 

operates at different rates. This graph explains that mean(SINR) after MMSE 

estimation depreciates from 25 dB (316 in linear scale) to 18 dB (65 in linear 

scale) as rate increases from 1/256 (repetition coding) to 256/256 (rateless 

operation). 

 
 
 

 
Figure 5.11 SINR distribution graph for different data rates 
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7-Sensitivity of MMSE Receiver to the Channel Estimation Errors 

 
 Up to now, we have assumed that the channel information is perfectly 

known at the receiver. Here we change this assumption and assume that the 

channel knowledge is not perfectly known at the receiver and an estimation error 

exists on the channel gains.  

In the following simulation, the precoder performance when CSI is not 

perfectly accurate is investigated. For this simulation 8x8 DFT precoder matrix is 

used. The Rayleigh channel coefficients are independently generated as before and 

MMSE receiver is used. Here we assume that channel gains have some AWGN 

estimation error, that is: 

αck = α k + nα
k
 

where α
k  is true channel gain and  nα

k
 is complex Gaussian noise with a given 

variance. Then the MMSE receiver with noisy αc
k ’s becomes; 

 

S MMSE =Hc H

HcHc H

+ N 0 I

d e@ 1

 

 

where   Hc = diag αc1 , αc2 , …, αc
M@ 1

b c
U , U is the precoder matrix.  

 The channel estimation quality is denoted by channel estimation SNR. 

The Channel estimation  SNR defined as: 

   SNR
ch@ est

=
E α 2
P Q

E nα
2

R Sfffffffffffffffffffff
=

1

E nα
2

R Sffffffffffffffffffff  
 

Here we vary the channel estimation SNR ( SNR
ch@ est

 ) and examine the 

performance degradation. The results are shown in Figure 5.12.  

In Figure 5.13 we examine the performance of ML receiver under the same 

assumption. We vary channel estimation SNR as in the previous simulation. 
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Figure 5.12 Sensitivity of channel information on precoded MMSE receiver 
performance 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Sensitivity of channel information on precoded ML receiver 

performance 
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As a conclusion we can say that decreasing the channel estimation SNR 

decreases the precoded system performance. ML receiver has less sensitivity on 

quality of channel information relative to the MMSE receiver. 

 
8-Sensitivity of MMSE Receiver to the  N 0  Estimation Error 

 
In the next simulation we assume that N0 which is the addition noise of the 

receiver is not perfectly known. We assume N0 estimation has some estimation 

errors. We investigate the effect of N0 estimation error on the precoder 

performance. In this simulation, we use 8x8 DFT matrix as precoder and the 

following MMSE receiver.  

  

S MMSE = H
H

HH
H

+ N 0
d I

b c@ 1

 

 

Here we take N 0
d  as 2,4,10 times of then the true N 0  value. Figure 5.13 shows the 

performance of 8x8 DFT precoder over MMSE receiver when N 0  is not perfectly 

known.  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.14 Sensitivity of   estimation errors on precoded MMSE receiver 
performance 
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 From Figure 5.14, estimation error on N 0  decreases the system 

performance. We can say from the simulations that, sensitivity of N 0  estimation 

errors is not as effective as the sensitivity of channel estimation errors. 

 
9-Comparison of BCH coded OFDM system with precoded MMSE decoded 
systems 

 
In previous simulations we compare the BER performance of the precoding 

technique with the uncoded OFDM system. OFDM systems are typically used 

with error correction coding to improve the BER performance. In this simulation 

we compared the uncoded OFDM system with precoded and BCH coded OFDM 

system.  

In Figure 5.15, we illustrate BER performance of uncoded OFDM, 

precoded OFDM with DFT precoding and coded OFDM with BCH coding. The 

BCH coding system parameters are (n,k)=(15,11). The (15,11) BCH code can 

correct only one error and has minimum Hamming distance of 3. Here we use a 

hard decision based error decoding algorithm (conventional BCH decoders) and 

show the resultant BER. 

The BER and diversity can be improved when a soft decision algorithm is 

used. By design, hard decision algorithms are used for AWGN channels, therefore 

there can be a large performance gap between a hard decision and soft decision 

based error correction systems for fading channels. 

In Figure 5.15 we present the performance comparison to illustrate the gap 

between proposed techniques and a conventional error correction system. 

In Figure 5.16 we make the same comparisons for BCH coded OFDM with 

a rate of 7/15 and the DFT precoded OFDM with a rate of 4/8 with MMSE 

receiver. Here BCH coding parameters are (n,k)=(15,7). The (15,7) BCH code can 

correct 2 errors and has a minimum Hamming distance of 5.  

When Figure 5.15 and 5.16 are compared, we see that (15,7) system has 

much better performance than the (15,11) system. This can be explained by the 

diversity order of each system which is 1 for (15,11) and 2 for (15,7). Therefore at 

high SNR, diversity order significantly affects the overall BER performance as has 
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been claimed in Section 2.2. The diversity of MMSE receiver in Figure 5.15 is 3 at 

high SNR (since MMSE approaches ZF, and ZF plots are given in Figure 5.9) and 

5 at high SNR for Figure 5.16. 

As a conclusion, we can say that precoding with DFT matrix can have a 

better BER performance in comparison with the conventional hard decision based 

error correction techniques. A valuable future work can be a similar comparison 

with the soft decision based decoders. 

 
 
 

 

 
 

 

 

 

 

 

 

 

 

 
Figurte 5.15 Comparison for precoded OFDM and BCH coded OFDM with rate of 

11/15 
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Figure 5.16 Comparison for precoded OFDM and BCH coded OFDM with rate of 
7/15 
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CHAPTER 6 
 
 

CONCLUSION 

 
 
 

In this thesis we have investigated communication over fading channels. 

Achieving reliable communication over these types of channels is difficult because 

of the multipath fading problem. Diversity concept is a way to overcome such 

problems. 

Typically diversity is achieved at the cost of transmission rate. In other 

words the symbol should be repeated over independently fading channels K times 

to achieve K fold diversity. Repetition of the symbol is the simplest method to 

achieve diversity. 

Precoding is a relatively novel idea to achieve diversity. As discussed in 

Chapter 2, precoding can be equivalently considered as constellation rotation. The 

constellation rotation brings diversity gain without reducing rate or increasing 

power. Hence it can be applied without any harm to system resources.  

In this thesis, we have studied different receiver structures to realize 

diversity gain by precoding. Here, we examined the gap between MMSE, ZF 

receivers and ML receiver. It has been noted MMSE receiver provides significant 

gain over uncoded system (without precoding). But the performance gain is still at 

a significant disadvantage in comparison to ML receiver.  

We have studied the case when rate is allowed to be reduced so that K/M 

symbols are transmitted per parallel channel instead of M/M symbols. The MMSE 

and ZF receiver performances at K/M rate are studied using computer simulations. 

The sensitivity of channel information and the sensitivity of N 0  estimation 

errors when MMSE and ML receiver are used are considered. When ML receiver 

is used channel estimation quality is not as critical as it is in MMSE receiver. 

The coded OFDM system with BCH coding is compared with precoded 

OFDM MMSE decoded system. From simulation results it is seen that precoding 

with DFT matrix can have a better BER performance in comparison with the 
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conventional hard decision based error correction techniques. A valuable future 

work can be a similar comparison with the soft decision based decoders. 

 

 

There is a large gap between the BER performances of ML receiver and 

MMSE receiver. Using MMSE receiver is simpler than ML receiver but the 

performance gap between two receivers cannot be neglected. To reach ML 

performance at reduced computation complexity is an important research goal. 

The performance gap can be recovered by iterative decoders. Iterative decoders to 

reach ML performance by MMSE receiver complexity constitutes future research 

for rotational coding technique.  
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APPENDIX A 
 
 

PERFORMANCE MEASUREMENTS IN FADING CHANNELS 

 
 
 
In frequency fading channels the fading coefficients are random, so the 

measurements of the performance of the system are also random. To characterize 

the system performance in such case, the pdf of the measurement should be 

obtained. But characterizing the system with whole pdf is not practical. One of the 

most common ways of characterizing is doing the measurement with the average 

value. In such case the average bit error rate (BER) is a useful measure. We now 

describe the three common measures of the performance of a communication 

system: Mean Square Error (MSE), Signal to Noise Ratio (SNR) and Bit Error 

Rate (BER). 

 
A.1- MSE  

 
The Mean Square Error (MSE) is estimation  x̂  of the transmitted symbol 

x. 

 

MSE = E |x̂ @ x|
2

R S
0<MSE<1                              (A.1) 

The smaller the MSE, the better the system since the estimation matches more 

closely to the desired value. 

 
A.2-SNR 

 
 Signal to noise ratio is the ratio between the signal energy and the noise 

energy. The general definition of signal to noise ratio is, 

 

SNR =
average received signal energy per symbol time

noise energy per symbol time

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff              (A.2) 
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Consider the received vector in a system, 

 

y = Hx + n                                               (A.3) 

 

In this system noise energy per symbol time is  N 0  and signal energy is  a2  

 

SNR =
a2

N 0

fffffffff              0<SNR<1                                (A.4) 

The higher the SNR the better the system, since the desired component signal 

energy is higher than the undesired component noise energy. 

 
A.3- BER 

 
 The performance of a digital communication system is given in terms of 

symbol error probability or bit error probability. The bit error rate is defined as the 

bit error probability. If the noise component of a system is Gaussian distributed the 

symbol error probability  Pe  can be expressed as a function of SNR, 

 

Pe = α Q βSNRqwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwd e
                                 (A.5) 

 

α  and  β  are the constants that depend on the signal constellation. 

BER ≈
Pe

k

ffffffff
k = log

2
M  is the number of bits per symbol and M is the 

constellation size. The lower the BER the better the system, since it means that 

less error is made when estimating the transmitted bits. 
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APPENDIX B 
 
 

MAXIMUM SINR AND MINIMUM MMSE FILTERS 

 
 
 
We examine the relation between max SINR and min MMSE filters in this 

section. Assume that signal of interest is captured by a noisy receiver according to 

the following model: 

 

      r = u0 x + n                                                           (B.1)             

 

Here, x is the scalar that we would like to estimate. It is known that E x
P Q

= 0,  

E x 2
R S

= σ x
2 . r is Nx1 column vector (receive vector). u0  is modulating vector for 

scalar x. n is Nx1 vector representing noise with auto-correlation matrix Rn . 

 
Max SINR with linear combining 

 
Assume an estimate for x is formed as follows, 

 

x̂ = w H r                                                            (B.2) 

 

w is the combining vector to be determined. Then, 

 

x̂ = u H u0

b c
x + w H n = αx + β                                        (B.3) 

 

SINR
` a

after
=

E αx
` a2R S

E β
2

R Sffffffffffffffffffffffffffffff 
 

            = σ x
2

w H u0 u0
H w

b c

w H Rn w
b cffffffffffffffffffffffffffffffffffffffffffff                                 (B.4) 
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we would like to maximize  SINR
` a

after
 by proper selection of w. 

max
w

SINR
` a

after
= max

w

||w H u0 ||
2

w H Rn w

fffffffffffffffffffffffffffff 
 

                                        = max
w

d

|| R
n

@
1
2
fff
wd

d eH

u0 ||
2

R
n

@
1
2
fff
wd

d eH

Rn R
n

@
1
2
fff
wd

d e
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff               (B.5) 

 

Maximizing with respect to  w
d   leads to 

 

                  max
w

d

=
||wd

H R
n

@
1
2
fff
u0 ||

2

wd
H wd

ffffffffffffffffffffffffffffffffffffffffffff                        
 

that is when wd = R
n

@
1
2
fffff

u0 ,  then the optimal  weight vector becomes 

 

w
dopt

= R
n

@
1
2
fffff

w
d  

 

and  

 

wopt = Rn

@ 1
u0                                                  (B.6) 

 

This is another illustration of the optimality of whitened match filter for SINR 

maximization.  

The max SINR after combining is then; 

 

max SINR
` a

after
=

σ x
2 w H u0 u0

H w

w H Rn w

fffffffffffffffffffffffffffffffffffffffffffffff|
w = wopt = Rn

@ 1
u0
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                             = σ x
2

u0
H Rn

@ 1
u0

b c
u0

H Rn

@ 1
uo

b c

u0
H Rn

@ 1
Rn Rn

@ 1
uo

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff 
 

= σ x
2 u0

H Rn

@ 1
u0                                                  (B.7) 

 

min MMSE filter 

  

 Here, we would like to estimate x according to 

 

x̂ = w H r                                                  (B.8) 

 

This time, we would like to form the weights such that  E |x @ x̂|
2

R S
 is minimized. 

 

J = E |x @ x̂ |
2

R S
                                                       (B.9)   

 

∆wC J = E @ 2 x @ x̂
b c

r

T U
= 0 

                              

= E xr@ w H r r H
R S

= 0                                  (B.10) 

 

then  R r w = r xr , wopt = R r

@ 1
r xr , Where R r = E rr H

R S
  and  r xr = E xr

P Q
. The value 

for minimum MSE can be calculated as follows: 

 

J min = E x @ x̂
b c2V W

|
x
^ = wopt

H r
 

                                                            = E x @ x̂
b c

x @ wopt
H r

b cT U
  

                                                              = E x @ x̂
H

b c
x

T U
 

                                                              = E x 2@ wopt
H r

b c
x

T U
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                                                              = σ x
2@ wopt

H r xr  

                                            J min = σ x
2@ rxr

H R r

@ 1
r xr                                   (B.11) 

 

Connection between min MMSE  J min

b c
  and max SINR  max SINR

` a
after

 

In this section, we illustrate the connection between min MMSE  J min

b c
  

value of optimal linear MMSE filter and max SINR filter derived earlier. The 

observation model for both problem is as follows: 

r = u0 x + n                                                      (B.12) 

for min MMSE filter : 

R r = u0 u0
H σ x

2 + Rn                                                 (B.13) 

 

r xr = u0 σ x
2                                                            (B.14) 

 

    wopt = R r

@ 1
r xr                                                        (B.15) 

 

J min = σ x
2 1@u0

H R r

@ 1
u0 σ x

2
b c

                                              (B.16) 

 

 For max SINR filter : 

wopt = αRn

@ 1
u0  where α   is any complex number, 

Remember that maxSINR filter produces following SINR: 

 

max SINR
` a

after
= SINR
` a

max
= u0

H Rn

@ 1
u0                                (B.17) 

 To connect  J min  value to the  SINR
` a

max
 value, we calculate  R r

@ 1
  using 

matrix inversion lemma *, as follows: 

 

                                                 
*Matrix Inversion Lemma:  (A+BCD)-1=A-1-A-1B(C-1+DA-1B)-1DA-1 
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R r

@ 1
= Rn + σ x

2 u0 u0
H

b c@ 1

 

 

= Rn

@ 1
@

Rn

@ 1
u0 u0

H Rn

@ 1

1 + σ x
2 u0

H Rn

@ 1
u0

fffffffffffffffffffffffffffffffffffffffffffffffffffff
σ x

2                                 (B.18) 

  

Inserting  R r

@ 1
, relation from (B.18) to  wopt = R r

@ 1
r xr  , we get 

 

wopt = Rn

@ 1
@

σ x
2 Rn

@ 1
u0 u0

H Rn

@ 1

1 + σ x
2 u0

H Rn

@ 1
u0

ffffffffffffffffffffffffffffffffffffffffffffffffffffffff
h
lj

i
mku0 σ x

2  

 

wopt = Rn

@ 1
u0 1@

σ x
2 u0

H Rn

@ 1
u0

1 + σ x
2 u0

H Rn

@ 1
u0

fffffffffffffffffffffffffffffffffffffffffffffffffffff
h
lj

i
mkσ x

2  

 

 = Rn

@ 1
u0

σ x
2

1 + σx
2 u0

H Rn

@ 1
u0

fffffffffffffffffffffffffffffffffffffffffffffffffffffh
j

i
k                         (B.19) 

 

 By comparing Equation (B.19) with the SINR minimizing filter in (B.6), 

we see that optimal MSE minimizing filter is the scaled version of max-SINR 

filter. Therefore MMSE filter also maximizes SINR. 

 Inserting the equation above into the  J min  relation given in (B.16), we get; 

 

J min = σ x
2 1@σx

2 u0
H Rn

@ 1
u0 +

σx
2 u0

H Rn

@ 1
u0

b c
u0

H Rn

@ 1
u0

b c
σ x

2

1 + σ x
2 u0

H Rn

@ 1
u0

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
h
lj

i
mk                       (B.20)          

                                 = σ x
2 1@ SINR

` a
max

+
SINR
` a

max

B C2

1 + SINR
` a

max

ffffffffffffffffffffffffffffffffffffffff
H
LLJ

I
MMKA                                (B.21) 

and finally, 

J min

σ x
2

ffffffffffff
=

1
1 + SINR
` a

max

ffffffffffffffffffffffffffffffffffffffff                                                 (B.22) 
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calling  
J min

σ x
2

ffffffffffff as normalized MMSE  ε MMSE , then the relation is as 

 

SINR
` a

max
=

1
ε

MMSE

ffffffffffffffffff
@ 1                                                 (B.23) 

 

SINR-MSE Relation for ZF Receiver 

 

In the previous part we examined the relation between max SINR and min 

MMSE. In this part we investigate MSE-SNR relations for a ZF receiver. The 

received vector is as follows: 

                                  r = Hx + n                                            (B.24) 

Under ZF receiver operation, the received vector is operated by pseudo 

inverse of H matrix and we get, 

 x̂ = H
+

r                                                (B.25) 

H
+
 is the pseudo inverse of H for an overdetermined system which is 

 

H
+

= H
H

H
b c@ 1

H
H                                     (B.26) 

then  x̂ becomes, 

 

x̂ = H
H

H
b c@ 1

H
H

Hx + H
H

H
b c@ 1

H n 

 x̂ = x + HH H
b c@ 1

H n{~~~~~~~~~~ }~~~~~~~~~~y
ε

                                                  (B.27) 

 

The error covariance matrix for  ε = x@ x̂ is, 

C ε = E x@ x̂
b c

x@ x̂
b cT U

 

                                                   C ε = E εε H
P Q

  

                = H
H

H
b c@ 1

H Rn H
H

H
H

H
b c@ 1

                    (B.28) 
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When  Rn  is white noise with variance  N 0 ,   Rn = N 0 I ; we get  C ε as follows: 

 

 C ε = H
H

H
b c@ 1

N 0                                             (B.29) 

Finally we write  x̂ as, 

                                                            

x̂ = x + ε                                                           (B.30) 

 

where  ε  is  Ν 0,C ε

b c
.Then the kth component of x̂ which is  x̂

b c
k

, becomes 

 

 x̂
b c

k

= x
` a

k
+ ε
` a

k
                                                 (B.31) 

Then the SINR of x̂
b c

k

is, 

 

SINR
` a

=

E | x
` a

k
|
2

T U

C ε

b c
kk

fffffffffffffffffffffffffffffffffff
=

E | x
` a

k
|
2

T U

N 0 H
H

H
b c@ 1F G

kk

fffffffffffffffffffffffffffffffffffffffffffffffffffffff
=

E | x
` a

k
|
2

T U

MSE
` a

k

fffffffffffffffffffffffffffffffffff                                   (B.32) 

 

Where  C ε

b c
kk

 is (kk)th entry of C ε. When  x̂
b c

k

 is of unit variance then the 

relation between SINR and MSE for ZF receiver is: 

 

             SINR
` a

k
=

1
MSE
` a

k

ffffffffffffffffffffffff                                                                (B.33) 
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APPENDIX C 
 

 
CONVEXITY ANALYSIS OF MMSE AND ZF RECEIVERS 

 
 
 
 We present convexity analysis given in [18] for completeness. For 

understanding 

the effect of precoder we will use the relation between MSE and SNR in ZF 

receivers. This relation is, 

SNR =
1

MSE

ffffffffffffffff                                              (C.1) 

 

Additional information about SNR-BER relations for ZF and MMSE 

receivers is given in Appendix B. According to equation (C.1), 

 

BER = Q SNRpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwb c
= Q

1

MSEpwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwffffffffffffffffffffffff g
                       (C.2)  

 

Convexity Analysis of ZF receiver from [ 19] 

 

To analyze BER performance we can use the function f that is defined as                 

f x
` a

= Q
1
xpwwwwwwwwwwwwwwwwwwwffffffffffff

f g
. Here  f x

` a
 corresponds to SNR value and x is MSE value. The 

BER performance is closely related to the convexity properties of the function f . 

 

BERi = Q
εs

σ2 i
` affffffffffffffffswwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

h
j

i
k= f

1
SNRi

fffffffffffffffff g
                                (C.3) 

 

A set C is convex if the line segment between any two points in C lies in C, 

i.e., if for any x1 ,x22C  and any  θ  with0 ≤ θ ≤ 1, we have 

θx1 + 1@ θ
` a

x22C                                      (C.4) 
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 Convexity of  f x
` a

 : 

 

Let  u x
` a

=
1
xpwwwwwwwwwwwwwwwwwwwffffffffffff for x ≥ 0      then       f x

` a
= Q u x

` ab c
. 

 

First and second derivatives of  f x
` a

 is important for convexity analysis. 
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For x ≤
1
3
fff, f . x

` a
≥ 0 and  f x

` a
 is convex for this region and for  x >

1
3
fff
,  

f . x
` a

< 0 and  f x
` a

  is concave for this region. f
1
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fffffffffffffffff g
 is convex for  

1
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1
3
fff
Q SNRi ≥ 3 the ith subchannel is operating in convex region and  

SNRi ≤ Q 3pwwwwwwwwwwwwwwwwwb c
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 is concave for 

1
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ffffffffffffffff
≥

1
3
fff
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subchannel is operating in the concave region and  SNR
i
>0.0416. 

 

 To find which precoder operates in convex region it is necessary to define 

SNR quantities. 

γ
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, γ
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=
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ffffffffX
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ffffffffffffff               (C.5) 

 

and the SNR regions are: 

ℜlow = γ|γ ≤ γ
0

R S
, ℜmid = γ|γ

0
<γ<γ

1

R S
, ℜhigh = γ|γ

1
≥ γ

R S
        (C.6) 

First consider the SC-CP system: 

When  γ = γ
@  
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and the subchannels of the SC-CP system operating on the boundary. 

 

Case 1: For the SNR region  ℜlow ,γ ≤ γ
0
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i
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0
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SNRofdm,i ≤ 3  for all i.                                                        (C.8) 

 

3 is the boundary point of SNR region. And the graph below this boundary is 

concave. All the subchannels are operating in the concave region of f x
` a

 for any 

precoder U. 

 

Case 2: For the SNR region  ℜhigh , γ ≥ γ
1
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                                    SNRofdm,i ≥ 3                                                                    (C.9) 

 

  The region above the boundary point 3 is convex region. The average BER 

for this region: 
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1
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                                                (C.10) 
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Using the strictly monotone increasing and convexity properties of the region: 
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Applying this property into the result (C.10) , 
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BERavg ≥ BERsc@ cp                                                          (C.11) 
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BERavg ≤ BERavg,ofdm                                                (C.12) 

 

Using (C.11) and (C.12) for the region  γ ≥ γ
1
 , 

 

BERsc@ cp ≤ BER ≤ BERofdm                                        (C.13) 

Similarly for the region  γ ≤ γ
0
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BERofdm ≤ BER ≤ BERsc@ cp                                         (C.14) 

To summarize: 

 

For the concave region γ 2ℜlow : BERofdm ≤ BER ≤ BERsc@ cp  

 

For the convex regionγ 2ℜhigh : BERofdm ≥ BER ≥ BERsc@ cp  

 

Convexity analysis for MMSE Receiver 

 

Define a function h as, h x
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The function  h x
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i.e. 

BERavg,OFDM ≥ BERavg, SCCP                                     (C.19) 


