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ABSTRACT

INTEGRATING MULTI-PERIOD QUANTITY FLEXIBILITY CONTRACTS
WITH A CAPACITATED PRODUCTION AND INVENTORY PLANNING

Kayhan, Mehmet

Ph.D., Department of Industrial Engineering

Supervisor : Prof. Dr. Sinan Kayalıgil

Co-Supervisor : Prof. Dr. Nesim Erkip

September 2008, 192 pages

This research introduces a general approach for integrating a probabilistic model of the

changes in the committed orders with an analytical model of production and inventory

planning under multi-period Quantity Flexibility contracts. We study a decentralized

structure where a capacitated manufacturer, capable of subcontracting, serves mul-

tiple contract buyers who actually perform forecasts on a rolling horizon basis. We

model the evolution of buyers’ commitments as a multiplicative forecast evolution

process accommodating contract revision limits. A finite Markovian approximation

to this sophisticated evolution model is introduced for facilitating the associated com-

plex probability modeling. We implement computational dynamic programming and

introduce an effective approach for reducing state-space dimensionality building upon

our forecast evolution structure. Computational investigation demonstrates how the

manufacturer benefits from the existence of order commitments and subcontracting

option by analyzing the interplay of decisions.

Keywords: Quantity Flexibility Contracting, Order Commitment Evolution, Capaci-

tated Production Inventory Planning, Stochastic Dynamic Programming
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ÖZ

ÇOK DÖNEMLİ MİKTAR ESNEKLİĞİ KONTRATLARI İLE BÜTÜNLEŞİK
KAPASİTELİ ÜRETİM VE ENVANTER PLANLAMA

Kayhan, Mehmet

Doktora, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Sinan Kayalıgil

Ortak Tez Yöneticisi : Prof. Dr. Nesim Erkip

Eylül 2008, 192 sayfa

Bu çalışma, çok dönemli Miktar Esnekliği kontratları altındaki üretim-envanter plan-

larının, sipariş taahhüt güncellemelerinin olasılık modeli ile entegrasyonuna genel bir

yaklaşım sunmaktadır. Merkezi olmayan karar yapısı altında, kapasitesi sınırlı aynı

zamanda fason üretimi teslim alabilen bir imalatçının, talep tahminlerini yuvarlanan

ufuk bazlı belirleyen kontratlı alıcılarla çalıştığı bir sistem ele alınmıştır. Sipariş

taahhüt güncellemelerinin zaman içinde nasıl geliştiği martingale talep tahmin evrim

modeli ile modellenmiş ve kontrat revizyon limitleri bu modele dahil edilmiştir. İlgili

karmaşık olasılık modelini kolaylaştırmak amacıyla, bu gelişmiş tahmin evrim mode-

line Markov rassal süreç bazlı yaklaştırma geliştirilmiştir. Rassal dinamik program-

lama çözüm yaklaşımı benimsenmiş ve tahmin evrim modeli temel alınarak, ilgili du-

rum uzayı boyutlarını etkili şekilde azaltan bir yaklaşım sunulmuştur. Hızlı ve verimli

çalışan bu rassal dinamik programlama kullanılarak, imalatçının sipariş taahhütleri ve

fason üretim seçeneği varlığından nasıl fayda sağlayabileceği meselesi, imalatçının ilgili

kararları arasındaki karşılıklı etkileşim analiz edilerek, deneysel olarak incelenmiştir.

Anahtar Kelimeler: Miktar Esnekliği Anlaşması, Sipariş Taahhüt Evrimi, Kapasiteli

Üretim Envanter Planlama, Rassal Dinamik Programlama
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period 1, 2, . . . , N .

Gs(TIs, Is, ds)

the (suboptimal) expected total cost from the beginning of period s to the
end of period N +L, given that the system state is observed as (Is, ds) at
the beginning of period s.

TI∗s
the value of TIs at which the minimal value is attained by Gs(TIs, Is, ds).

Ginh
s (TIs, Is, ds)

the expected total cost from period s through N +L, given that the system
is in state (Is, ds) and only the in-house capacity is used at the beginning
of period s.

TIinh
s

the minimizer of the cost function Ginh
s (TIs, Is, ds).

Gsub
s (TIs, Is, ds)

the expected total cost from period s through N +L, given that the system
is in state (Is, ds) and both in-house and subcontract capacity are engaged
at the beginning of period s.

TIsub
s

the minimizer of the cost function Gsub
s (TIs, Is, ds).

βb
k

the expected order after k updates from buyer b, given by µDb e
(µ

εb
1
+···+µ

εb
k
)
.

It has the same units as Zb
[s,s+L).
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θb
k the proportion of βb

k in the expected aggregate L-period buyer order, given
by βb

k/
∑L

m=1 βb
m. It is dimensionless.

λb
k

the weight factor of k-step commitment update, given by
∑L

m=k θb
m. It is

dimensionless. λb
1 = 1 and it decreases as k increases from 1 to L.

ϑb
L the weighted aggregate L-period commitment update. It denotes a weighted

sum of commitment updates (on the logarithmic scale) to be received from
buyer b over the time interval [s, s + L), given by

∑L
k=1 λb

kε
b
s,k. It has the

units of ln Zb
[s,s+L).

fϑb
L
(·)

the probability function of ϑb
L.

Ds,H
an indicator of weighted effects by an observed order commitments ds,
given by

∑
b

∑H
k=1 θb

k ln db
s−1,s+k−1.

Îs
the modified inventory position before ordering in period s, as a result of
state-space reduction.

V̂s(· )
the modified cost-to-go function which is a function of the modified inven-
tory position Îs and the Ds,H statistic.

T̂ Is
the modified inventory position after ordering in period s.

Ĵs(T̂ Is, Ds,H)

the current-period costs associated with state (Îs, Ds,H) when action T̂ Is

is selected.

N̂Is
the modified net inventory level to be carried over in period s.

CO
correlations of commitment updates across buyers and through time.

CV
coefficient of variation for demand.

FL
the level of flexibility limit per period. We have FL = ωb

k = αb
k, if not

stated otherwise.

∆K
the capacity slack representing the amount of excess capacity over the
expected total of orders to be received from all the buyers per lead-time.

∆c
the cost differential between the in-house production and subcontracting,
cps − cpi.

∆π
the backorder-to-holding cost ratio.
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CI +
H

the manufacturer’s percentage cost saving over the minimal-commitment
base case (H = 1 and FL = ∞).

CI −H
the manufacturer’s percentage cost increase over the minimal-flexibility
base case (H = k and FL = 0.01).

CIK
the manufacturer’s percentage cost improvement over the capacity base
case (∆K = 0).

TIdev
the mean order-up-to deviation denoting average ratio of optimal order-
up-to positions to the mean order per lead-time.

TIins
the order-up-to instability denoting the average absolute deviation between
optimal order-up-to positions, in fraction of the mean order per lead-time,
of consecutive decision periods.

CU
the capacity utilization denoting the extent to which the manufacturer
actually uses his in-house production capacity.

ϕ
the fill rate, as type-2 service level, denoting the expected proportion of
total realized order over all the buyers that is satisfied immediately from
the manufacturer’s finished-goods inventory.

k b(Ab)

the expected loss due to limited flexibility buyer b may suffer when she is
offered the set Ab = {αb

k, k = 1, 2, . . . , H } of flexibility limits.

Θ
the 2× 2 unknown matrix

[
θ11 θ12
θ21 θ22

]
of moving average parameters for the

bivariate ARIMA(0, 1, 1) demand process.

ηs

the 2× 1 random vector
[ η1

s

η2
s

]
of disturbances in period s for the bivariate

ARIMA(0, 1, 1) demand process.

Ση
the covariance matrix of random disturbances ηs. The variance of the
disturbances corresponding to the bth buyer and the covariance between
the disturbances corresponding to the bth and rth buyers are denoted by
σ2

ηb and σηb,ηr , respectively.

F b
s+j

the first-order EWMA forecast for the order quantity to be submitted by
buyer b in period s + j, made after observing the order of period s.

qma
s

the replenishment order placed in period s for delivery in period s + L
under the ARIMA-based inventory management.
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CHAPTER 1

INTRODUCTION

Decentralized decisional structure with demand uncertainty is a reality for supply

chains in many industrial contexts. The entities in such supply chains observe only

the local information structures available under some perceived risks. They pursue

different and possibly adversarial objectives, and maximize their own performance

metrics. It is a traditional practice to use a set of corporate rules which are mainly

based on performance metrics in coordinating the corresponding operational deci-

sions. Although these rules are intended to align the incentives of the entities, they

may not always effectively compensate the entities for the risks that they assume.

Consequently, manufacturing companies may shoulder the largest burden of risk, as

they must invest in capacity and inventory in advance in the face of unreliable demand

information caused especially by distortions. Downstream entities, on the other hand,

may not be the solely responsible for the quality of demand information to be con-

fronted by the manufacturing companies, and hence, they do not assume a position

to reduce the risks on their own. Lee et al. (1997) provide several industrial examples

of these inefficiencies and analyze their potential causes.

Traditionally this situation is mitigated by price and quota adjustments. How-

ever, their success have not proven to be sufficient. For instance, Lariviere and Porteus

(2001) study price-only arrangements and conclude that they alone cannot coordi-

nate a decentralized supply chain due to double marginalization. Gerchak and Wang

(2004), on the other hand, show that wholesale price plus buy-back arrangements

can achieve coordination in an assembly system. The bottom line in this stream of

research is that pricing strategies (and other traditional practices) alone are not suffi-

cient for the efficient operation of the supply chain. More comprehensive schemes for
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coordination among the supply chain entities are also required.

In this context, the way in which the relationships between entities are struc-

tured is a major direction for improvement in better aligning the incentives and more

equitably sharing the risks across a supply chain. With a growing need to survive in

a highly volatile and dynamic business environment, these relationships are becom-

ing more dependent on factors like commitment to cooperate on a common purpose

making each entity better off and flexibility to effectively respond to changing market

conditions, as opposed to traditional relationships based mainly on price discounting

and quota arrangements. This change of focus requires the entities to look beyond

the flexible organization to the flexible supply chain. As a consequence, proactive

means of reducing supply chain uncertainty are becoming an important consideration

in these relationships, instead of simply reactive means of coping with uncertainty.

This necessitates research directed toward a better understanding of the drives and

constraints that the entities face with flexibility capabilities.

In this research, within a general class of mechanisms for structuring the re-

lationships across a supply chain, we are particularly interested in contractual agree-

ments. Contracting in general enables a downstream supply chain entity to purchase

products from an upstream entity for a specified period of time under specific terms

and conditions defining how the contract is implemented. Contractual agreements in

supply chain management range from simple price-only contracts to more sophisti-

cated coordinating contracts possibly with returns policies (see Tsay et al., 1999 for

a review of literature on supply contracts). The use of supply contracts is frequent in

several industries such as consumer electronics, apparel, fast moving consumer goods,

automotive and electronic industrial markets. These sectors are characterized by the

level of competition and relatively large volume demand with variety and rather short

lead-times. Contracts are essentially intended to improve cooperation between the

contract participants, and the generally accepted perspective is becoming to con-

stitute an improved supply chain flexibility and responsiveness. Sánchez and Pérez

(2005), for instance, analyze the relationship between the dimensions of supply chain

flexibility and firm performance in a sample of automotive suppliers.

The type of supply contract to be implemented depends on the operating en-

vironment and the underlying behavioral dynamics. In this research, we particularly

focus on the supply contracts containing terms of quantity commitments and flexi-
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bility. The quantity commitments with flexibility is particularly effective when the

demand environment is highly uncertain and changing. We assume that quantity

commitments are made on periodical orders to be purchased in a number of future

periods. The flexibility, on the other hand, defines the limits on the range of allow-

able changes to these commitments and their frequency. This structure is referred to

as quantity flexibility (QF) contract (see Eppen and Iyer 1997, Anupindi and Bassok

1998, Tsay and Lovejoy 1999, Tsay 1999, Sethi et al. 2004, Wu 2005). We preferred

to study the QF contracts as quantity flexibility is an important concept for providing

a wider insight into flexibility in the supply chain, not just in the first-tier relation-

ships and the manufacturing function. It can provide some level of stability for the

upstream entities and assist the downstream entities in responding to market demand

fluctuations.

The QF structure is essentially intended to make contract participants better

off. It appeals to the downstream entity since it places restrictions on the risk level

she is prepared to bear, passing some portion of the expected cost associated with

demand uncertainty on to upstream entities. The upstream entity, on the other hand,

is interested in this structure either when the marginal cost of his production is low,

but the fixed costs are high or when there are other competitive manufacturers with

uncertainty about which manufacturer the downstream entity will select in the short

run.

The supply chain setting that will be analyzed in this research is as follows.

We consider a decentralized supply chain that consists of a single manufacturer and

multiple buyers. The manufacturer produces and sells a single item to the buyers,

who in turn serve an end market with stochastic market demands. The buyers are

differentiated by their logistical and service requirements. Hence, the manufacturer

offers each buyer separate multi-period QF contracts. There exist some restrictions on

the maximum amount that can be produced internally. But, it is also possible to sub-

contract the production with an outside supplier. Subcontracting arrangements are

more costly than internal production, but with an infinite-supply opportunity. Both

in-house and subcontract replenishment quantities are assumed to arrive only after a

known, constant lead-time. We address a more detailed description of the problem en-

vironment in Chapter 2. Therein, we describe the organizational environment as well

as the buyers’ ordering and manufacturer’s planning operations that provide activi-
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ties serving as the underpinning in managing the aggregate production and inventory

planning under QF contracts.

The problem is characterized by the presence of random commitment evolu-

tion with limited revision flexibility, on the demand side, and production capacity

restrictions with an option of subcontracting, on the supply side (we do not assume

any contractual relation with the subcontractor although this will constitute an in-

teresting issue to study). These are two complementary features that contribute to

the supply chain flexibility. Even though a considerable amount of research has been

devoted to flexibility considerations, most of it has been confined to internal manufac-

turing flexibility. A growing body of literature has begun to recognize the importance

of flexibility capabilities of the entire supply chain. Vickery et al. (1999), for instance,

empirically examine the dimensions of supply chain flexibility and their relationships

with the environmental uncertainty, business performance, and functional interfaces.

Stevenson and Spring (2007) provide a comprehensive review of the related literature.

However, the issue of analyzing flexibility capabilities of the supply chain in the con-

text of QF contracts and its impacts on system performance still offers a valuable

research opportunity.

In this context, we study the interactions of the manufacturer and his contract

buyers from the perspective of aggregate production and inventory planning. We do

not attempt to make an explicit specification of the buyers’ objective function and

constraints. Rather, the focus of our investigation will be on the decision problems

that arise for the manufacturer. We preferred to do this as the manufacturer faces

a more involved and complicated decision. It can be thought as a first step to start

the overall analysis. We think if the manufacturer’s alternatives and consequences are

analyzed well, a centralized scheme can later be studied extensively.

In the aggregate production and inventory planning framework under QF con-

tracts, each buyer submits order commitments to the manufacturer for a number of

future periods once every period. As new information becomes available to the buyers,

they are allowed to update order commitments over time in accordance with the con-

tracts, which eventually (i.e., at the end of update series) become the realized orders.

In turn, the manufacturer delivers finished goods into stock according to forecast-

driven production planning in the face of order commitments with stochasticity in

their updates. This is like the manufacturer having a forecasting engine although it
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is the buyers who actually perform the forecasts.

QF contracting-type relationships represent one structured way of communi-

cating early information on uncertain future demands. This is a form of advance order

information (see Karaesmen et al. 2002 and Gallego and Özer 2001). The value of

learning about buyer orders in advance is considerable in many industries. It improves

the manufacturer’s understanding of buyers’ orders, and in turn enhances supply-side

flexibility capabilities of the supply chain. Advance order information under QF con-

tracts is in the form of periodical quantity commitments on orders to be submitted by

the buyers. The QF contract requires the buyer to commit to purchase a minimum

amount specified for a particular period while the manufacturer guarantees an upside

coverage to the buyer of a certain percentage above her minimum commitment. Previ-

ous quantity commitments are allowed to be updated, as more information is available

to the buyer from one period to the next, and the flexibility limits stipulated in the

contract govern these updates. This requires the manufacturer to strike a balance

between the quality of order information and the costs of production and inventory

processes. Hence, developing methods for an effective use of early order information

in the planning process becomes a major issue.

The related literature has focused primarily on contract design and incentives,

information structures and its implications, methods for coordination and mitigating

system inefficiencies, and the competition issues. However, the issue of integrating

order information updates with planning operations remains as an important research

area. The integrated analysis may assist the manufacturer in making better capac-

ity and materials procurement decisions. It can lessen the effects of order variability

throughout the supply chain. This may in turn lead to production quantities fluctu-

ating less from one period to another and a superior customer service.

The basic motivations behind our research are several in the light of the afore-

mentioned issues. (i) First, we are concerned with how the manufacturer can de-

termine an appropriate scheme of QF contracts to be offered to the buyers. This

necessitates addressing the parameter-setting problem for QF contracts. (ii) Second,

we are interested in how the manufacturer’s capacity investment decision making can

benefit from the presence of order commitments from a certain range in the presence

of a subcontracting option. This is concerned with how effective the level of internal

capacity slack is as compared to the flexibility of QF contracts and the attractiveness
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of the subcontracting option. (iii) The third is how to adjust the manufacturer’s

production and inventory planning according to the buyers’ order commitments with

stochasticity in updates under QF contracts. This necessitates capturing the variation

of commitment updates and the associated correlation structure. (iv) The fourth is

related with how a particular, refined forecast update scheme differs from a more con-

ventional time series approach in representing the underlying stochastic framework.

As a consequence, all these issues require an integrated use of a model of the changes

in the committed orders with an analytical model of the production and inventory

planning. The integration has a system-view (holism rather than reductionism) in-

tent, and the hope is that it can permit more effective management of the production

and inventory system.

A key component in the dynamics of such an integrated use is the way in which

the underlying stochastic framework is represented. Several approaches for modeling

the uncertainty associated with buyers’ orders exist. (i) Distribution-based models

assume that the true mathematical form for the distribution of orders is known with

estimated distribution parameters; see, e.g., Dvoretzky et al. (1952a). The most im-

portant case of the distribution-based models is Markov-modulated approach. In this

approach, the demand process is driven by an underlying Markov chain. Chen and

Song (2001) study multi-echelon inventory system with Markov-modulated demand

where the demand distribution in each period is determined by the current state of an

exogenous discrete-time Markov chain. Sethi and Cheng (1997) exemplify this kind of

demand process for single location inventory literature. (ii) Bayesian models assume

that we have some prior opinion about buyers’ orders, and actual order realization

would resolve some of the uncertainty as time passes and some kind of ’learning’ takes

place. Therein, the order process is assumed to be independent and identically dis-

tributed with an unknown probability distribution function. Dvoretzky et al. (1952b)

first introduces Bayesian models in the inventory literature. Scarf (1959) and Azoury

(1985) later study Bayesian updating mechanisms to learn about future demand from

past history in forecasting/inventory models. (iii) Time-series models assume that the

sequence of order realizations forms an autoregressive moving-average model. Graves

(1999) and Lee et al. (2000) specifically study ARIMA(0, 1, 1) and AR(1) models of

the demand process, respectively. Aviv (2003) provides a structural time-series frame-

work for inventory management that is much more general than the specific cases of
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autoregressive time-series models.

All of the above approaches, however, are not adequate for taking into account

the evolution of order commitments. The essence of evolution is interpreted from

the buyer’s perspective. Every buyer has a forecasting machinery that processes her

observations on the market demand and generates some advance order information

to be submitted to the manufacturer. The buyers commit for their orders a certain

number of periods into the future, and the committed orders evolve over time. The

order commitments are non-stationary by their very nature of periodic updates. The

commitment updates are not insensitive to one another so that there exist correlations

across buyers and through time. Furthermore, due to the flexibility terms of QF con-

tracts, order commitments are updated in relation to the earlier commitments made.

As time passes, additional information in the form of updated order commit-

ments becomes available to the manufacturer. Every time series thus is a series of

updates. This necessitates a forecasting engine whereby the manufacturer generates

and revises his forecasts on buyers’ order information. The manufacturer, in turn, is

concerned with forecasting buyers’ future orders and with the management of discrep-

ancies between his forecast and actual order realizations later. This practice requires

the statistical knowledge of commitment updates to be an important consideration

when applying inventory models. The resultant is an evolution-based inventory man-

agement. It includes a probabilistic model of how order commitments evolve into the

future as an integral part of production and inventory planning. The evolution-based

inventory management fits to today’s supply chain environment more effectively as

compared to conventional distribution-based inventory management. This is because

the success is becoming more dependent on flexibility of the supply chain to react to

evolving business conditions, which contributes to the improvement of proactiveness

and responsiveness.

The above essential aspects should be accommodated in the stochastic frame-

work, as performed in this research, intending to represent the underlying ordering

behavior of the buyers adequately. To be specific, we assume that the manufacturer

models the time series of the buyers’ order commitments and realized orders as a

multiplicative forecast evolution process. As a theoretical framework, we consider the

martingale model of forecast evolution (MMFE) methodology due to Graves et al.

(1986) and Heath and Jackson (1994). This structure can include non-stationary and
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correlated demands. It is quite general and accommodates judgmental forecasting as

well as conventional time-series models (see Güllü 1993). We extend the evolution

model to accommodate the revision limits stipulated in the QF contracts. Several

other studies have adopted the MMFE to investigate production/inventory planning

issues and its impact on inventory cost (Güllü 1996, 1997, Toktay and Wein 2001, Gal-

lego and Özer 2001, Çakanyıldırım and Roundy 2002, Kaminsky and Swaminathan

2004, Kayhan et al. 2005, Iida and Zipkin 2006). Our research differs from these

studies in several ways. These are (i) the use of multiplicative evolution model that is

more effective than an additive form of evolution, (ii) the inclusion of contract revi-

sion limits in the evolution model, and (iii) the order-forecasting role of the evolution

model (it is used in the manufacturer’s forecasting while he has no information on the

market demands faced by the buyers who actually perform forecasts).

Note that the inclusion of revision limits further complicates the probabilistic

framework since the standard techniques of probability and statistics do not apply as

it brings up cut-offs and hence lumpiness in probability mass. We attempt to resolve

this complication by introducing a finite Markov chain approximation to the evolution

model. Chapter 3 addresses these issues in more detail.

Although the stochastic multi-period and multi-dimensional nature of the prob-

lem, we develop an optimization-based approach rather than an experimental analysis

through a simulation model of the production/inventory system. We formulate a

finite-horizon stochastic production and inventory model minimizing the expected to-

tal cost of the manufacturer. The model assumes that buyers’ order commitments

are explicit component of the system state. We then consider dynamic programming

to characterize the structure and properties of optimal replenishment policies of the

manufacturer, as mentioned in Chapter 4.

As our solution procedure will have enumeration underlying in the stochastic

recursions, we consider an efficient application of stochastic dynamic programming.

We suggest an effective state-space reduction technique taking advantage of our fore-

cast evolution structure. Chapter 5 discusses our way of reducing the state space

requirements in more detail.

With this reduced version of the model, we shall perform an extensive compu-

tational investigation directed toward exploring the interplay of decisions. Chapter 6

is devoted to a detailed description of our computational approach. We also consider
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a comparative alternative to the inventory model under the forecast evolution. This

alternative inventory control model builds upon the results from Graves (1999), and

follows time-series approach for modeling the uncertainty associated with buyers’ or-

ders.

We present and discuss the numerical results in Chapter 7. Therein, we empha-

size different perspectives on the manufacturer’s decision problems so as to evaluate

concerns of the manufacturer and his contract buyers. We propose a menu of various

commitment and flexibility arrangements among which a particular buyer may select

an appropriate contract. The buyers’ preferences are evaluated in terms of the rela-

tionship between the cost performance of the manufacturer versus the extent of early

order commitments. We also propose a menu of various capacity levels which differ

in the cost differential between the in-house production and subcontracting and the

backorder-to-holding cost ratio. The manufacturer’s preferences are analyzed based

on the cost improvements and the service level that can be attained by a particular

choice of capacity level. Finally, we demonstrate that the manufacturer benefits sig-

nificantly from using the forecast evolution framework in conjunction with production

and inventory planning.

Finally, Chapter 8 contains a summary of conclusions and discusses various

extensions and further research topics.

This research differs significantly from the related literature in the following

aspects.

(1) We introduce a general approach for integrating a probabilistic model of

the changes in the committed orders with an analytical model of the production and

inventory planning under multi-period QF contracts. This integrated use of refined

commitment update scheme enables the manufacturer to make an enhanced produc-

tion/inventory planning that is informed of how the order commitments evolve from

one period to another. We model the changes in the committed orders through the

modified MMFE framework. The martingale evolution model that we develop is a

sophisticated one, as we model the evolution as a multiplicative process (which is

more complex but in general more useful in practice) and accommodate the revision

limits stipulated in QF contracts. Although there have been other studies using mul-

tiplicative martingale process, our inclusion of revision limits into MMFE is novel. It

is important to note that the associated evolution model has a prior estimation stage

9



(i.e., an MMFE fitting process for some historical data) ignored in our work.

(2) We consider QF contracts in a more general problem environment and

study interfaces between information sharing and physical flow coordination at the

operational level. We facilitate the determination of QF contract terms and condi-

tions through an integrated analysis. The environment is characterized by capacitated

manufacturer with an option of subcontracting, multi-period contract horizon, multi-

ple contract buyers with varying service requirements, non-stationary stochastic buyer

orders with commitment updates, correlations of commitment updates across buyers

and through time, backlogs and positive replenishment lead-time. This problem scope

permits an expanded analysis for the operational aspects of QF contracts. Its features

allow us to shed some light on the supply chain flexibility issues that are becoming

more important in improving responsiveness in today’s supply chain environment.

(3) We introduce a finite Markov chain approximation to the martingale fore-

cast evolution process having some revision limits. The problem of estimating the

transition probabilities of this Markov chain is addressed by a general optimization

model maximizing the goodness-of-fit to observations. The estimation process also

imposes some regularity constraints to accommodate the revision limits and the cor-

relations of commitment updates across buyers and through time. The whole process

facilitates the probability modeling of the stochastic framework for our dynamic de-

cision model under QF contracts. It essentially provides (i) a novel approach to

discretization in stochastic dynamic programming, and (ii) an estimation scheme for

non-stationary stochastic dynamics.

(4) Using this finite stochastic framework, we characterize the structure of op-

timal replenishment policy of the manufacturer under QF contracts. It is found to be

a staircase, state-dependent order-up-to policy, as the manufacturer has two sources of

supply and the order commitments from contract buyers are an explicit component of

the system state. Our commitment evolution structure allows us to develop effective

computational properties to be used in finding optimal order-up-to policies.

(5) We implement computational dynamic programming as a solution tech-

nique for our recurring stochastic decision model. This appears worthwhile as the

computational considerations are often excluded in similar contexts. Or at least; the

stochastic, multi-period and multi-dimensional nature of the problem is found to defy

an optimization-based approach, and a shift to simulation-based research is most likely
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observed. We also introduce an efficient approach for reducing the associated state-

space dimensionality building upon our forecast evolution structure. The approach

unifies the states into commitment clusters to facilitate stochastic dynamic recursions.

States partitioned into the same commitment cluster yield identical replenishment de-

cision. This makes the computation associated with the recurrence relations much

less demanding. The corresponding state space can be searched more efficiently after

the due merger of the relevant states.

(6) Finally, as an effort to benchmark, we make a comparison of the evolution-

based inventory management with an ARIMA-based approach. The evolution-based

inventory management that we suggest incorporates our martingale evolution model of

correlated order commitments under QF contracts. The ARIMA-based approach, on

the other hand, follows time-series approach for modeling the uncertainty associated

with buyers’ orders, and builds upon the results from Graves (1999). The inventory

policy under the commitment evolution results in lower order-up-to positions and

lower expected total costs.
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CHAPTER 2

PROBLEM ENVIRONMENT

This chapter provides a detailed description of the problem environment that will

be studied in this research. We first describe the supply chain structure and discuss

the underlying assumptions. Then, an overview of the forecasting activities and the

production planning and inventory management operations are given.

We consider a decentralized supply chain that consists of a single manufacturer

and multiple buyers, as depicted in Figure 2.1. The manufacturer produces and sells

a single item to the buyers, who in turn serve end markets with stochastic market

demands. In this context, we study the interactions between the manufacturer and

the buyers from the perspective of aggregate production/inventory planning.

Place replenishment orders

Place replenishment orders

Replenishment

order arrivals
with L - period 

lead-time

BUYER b = 1,2MANUFACTURER Multi-period QF contracts

-  Latest order realizations
- Order commitments for the following 

H periods with updating

- Product releases filling latest 
order realizations

BUYERS

-  Varying terms and conditions

Stochastic

market
demands

Internal prod.

with finite supply

Subcontract
prod. with infinite 
but costly supply

Figure 2.1: A schematic representation of the supply chain
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The buyers are the immediate customers of the manufacturer. We assume that

each buyer represents a different sales channel the manufacturer operates to service

end market. Accordingly, they have different logistical and service requirements of

the product, differentiating one buyer from another. The market demands observed

by the buyers are not being directly pushed upstream to the manufacturer. Instead,

the buyers undertake some demand forecasting activity, and place orders to the man-

ufacturer one at a time. We do not require that the manufacturer has a complete

knowledge of the buyers’ forecasting machinery and order policy. The buyers only

provide advance order information (AOI) on orders to be submitted on a range of fu-

ture periods. They are allowed to be updated based on the observed market demands

and in relation to the previous order patterns.

The AOI serves as a valuable input as it may assist the manufacturer in making

better production and inventory decisions (in terms of production quantities fluctuat-

ing less from one period to another, for example). The effectiveness depends on the

flexibility in periodical changes in the order information. Evolving order information,

however, do not necessarily become more steady as they are updated successively;

i.e., it may tend to vary often and widely. The manufacturer that relies on such

AOI struggles to keep up with a basic problem when managing his operations. The

problem is of demand information distortion, whereby much of the market demand

variability is passed along to the manufacturer, especially when the buyers’ updating

the order information is made in an unrestricted way. As a result, operations at the

manufacturer level do not avoid the familiar bullwhip effect, inevitably exacerbating

the manufacturer’s capacity adaptation and production/inventory planning.

The manufacturer gets into contractual agreements in mitigating this prob-

lem. He would like to implement those contracts that entice the buyers to commit

their orders in advance. On the other hand, the buyers prefer the contracts that

would allow them to adjust their orders when necessary. This is usually translated

into commitment and flexibility stipulations in the contractual agreements. The com-

mitment with flexibility ensures a reliable business volume to be committed by the

buyers while providing them with an opportunity of adjusting to changes in market

conditions. The buyers would like to have greater flexibility, allowing them to satisfy

the uncertain market demand at a lower cost. The manufacturer, on the other hand,

demands a lower flexibility with the aim of attaining smoother production schedules
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at high capacity utilization.

In particular, we study quantity flexibility (QF) contracts where the AOI is

in the form of periodical order commitments on future order realizations, which will

evolve eventually into realized orders one at a time. The QF contract operation can be

described briefly as follows. We have two main stages in which the events takes place.

(i) In the first stage, the relatively long-term decisions are made. QF contract terms

and conditions are determined by the manufacturer, offered to the buyers, and agreed

upon. The manufacturer may offer separate menu of multi-period QF contracts to

each buyer. Contract terms and conditions are negotiated, and the rules that cover

the actual implementation of the contract such as product pricing, order approval, and

shipping are agreed upon. The negotiable parameters primarily include the length of

the horizon over which the contracts will be valid, the length of commitment horizon

for which AOI are available to the manufacturer, and flexibility limits that are allowed

for the buyers’ updating. In turn, the manufacturer builds his in-house capacity given

the agreed-upon contracts and his belief about market condition. And, the buyers

develop their forecasting machinery. (ii) Next, given the decisions made in the first

stage, the agreed-upon contracts are executed. The buyers have limited downward

and upward flexibility for updating the series of order commitments in every period.

The manufacturer guarantees to satisfy every realized order up to a certain percentage

above and below the its last commitment. So, the contract buyers are constrained by

the series of their previous order commitments, and hence they are unlikely to arrive

at unreasonable order amounts after a series of updates. The manufacturer makes

replenishment ordering decisions in the face of these stochastic commitment updates

in every period. But, we do not attempt to make an inventory planning of the buyers.

Figure 2.2 helps to clarify the QF contract operation.
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Figure 2.2: Information sharing and physical flow coordination under QF contracts

We assume that the buyers under QF contracts first determine their intended

order commitments as their future self plans. These intended order commitments,

however, are not transferred directly to the manufacturer [cf. Fig. 2.2]. If there were

no contract flexibility limits then the intended order commitments would be directly

transferred to the manufacturer. A commitment update decision intended in a partic-

ular period becomes the formal update decision of that period if it is already within

the contract flexibility limits. The intended order commitments may hit one of the

limits as well. In such a case, the limit value is submitted to the manufacturer.

It is important to see where the non-stationarity comes from in this setting.

We leave market demands to be freely defined as we do not attempt to model the

demand process confronted by the buyers. Rather, we use the order information (for-

mal order commitments and eventual order realizations) submitted by the buyers and

their evolution from one period to another. These are assumed to be non-stationary

(by their very nature of periodic updates). It is the buyer’s forecasting machinery that

processes observations on the market demand and generates these advanced order in-

formation. The market demands however may come from a stable demand process.

The buyers’ forecasting machinery generating these non-stationary order infor-

mation is assumed to be a general one. It is based on several forecasting techniques

including not only statistical forecasts but also expert judgment. In most industrial

contexts especially with dynamic and volatile operating environments, market demand

is often difficult to forecast based only on historical observations. Judgmental fore-
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casting then becomes effective in the sense that it may reflect knowledge of events

that have not been observed in the past but are expected in the future (e.g., planned

price changes, trade promotions, product advertisements, etc.), and knowledge of re-

cent events whose effects have not yet been observed in time series data. It can be

expected, on the other hand, that the judgmental forecasting is much more prone to

prediction errors and the underlying forecast volatility, characterized by the size and

frequency of forecast errors, turns out to be high. This arises the need for gradual

forecasting (evolving forecasts in time), and thus necessitates modeling a forecast up-

dating process getting tuned over time as additional information is available. This

point is also important to justify the presence of correlated commitments.

The order information submitted to the manufacturer are assumed to be corre-

lated across buyers and through time periods. The following correlations are expected

to occur. (i) Lower (resp., higher) than expected market demand in the current period

may result in downward (resp., upward) modification to the order commitments for

the subsequent period’s order realizations. This exemplifies positively correlated order

information from one period to the next. For example, a buyer may think that a price

promotion will spread the word among her customers period after period. (ii) The

buyer may be confident about the total market demand to be observed over a number

of periods in the future, but is uncertain about the exact amounts to be observed in

each period. So, if the market demand in the current period turns out to be lower

(resp., higher) than expected, then the order commitments for the following periods’

order realizations are modified upwards (resp., downwards). This illustrates negatively

correlated order information through time periods. (iii) Sales support activities (e.g.,

promotions) lead to temporary demand lifts for the promoted buyer while depressing

demand for the other buyers. This represents negatively correlated order information

across buyers in the same period.

The manufacturer operates a periodic-review inventory system in the face of

stochastic commitment updates. The manufacturing strategy is that products are

processed and delivered into stock according to a forecast-driven production plan-

ning, and consequently buyers’ order realizations are filled from the finished-goods

inventory. The replenishment lead-time is L periods. Inventory is replenished in an-

ticipation of buyer orders beginning L periods in advance of the fulfillment. Figure 2.3

illustrates the net inventory level and the inventory position (i.e., all outstanding re-

16



plenishment orders less all realized buyer orders) over time from period s to s+L+3.

At the beginning of period s, the replenishment order from L periods ago, qs−L, has

just been received [ 1©]. The manufacturer then reviews the current inventory position

and the latest order information from the buyers [ 2©]. The inventory position in pe-

riod s is restored by a replenishment order of qs [ 3©] to be received at the beginning

of period s+L [ 4©]. Over the period s, both the inventory position and the net inven-

tory level decrease as buyers’ orders are realized, and the item goes into back-order

[ 5©] before the next replenishment order (qs−L+1) is received. Notice that the amount

ordered varies by period and the inventory is not restored to the same level after each

replenishment. Although a replenishment order is placed in s + 1 [ 6©], no replenish-

ment order is placed in period s + 2 [ 7©]. Hence the on-hand inventory receives no

replenishment for period s + L + 2 [ 8©].

time

s s+1 s+2 s+3 s+L s+L+1 s+L+2 s+L+3K

: Inventory position

: Net inventory level

1+s
q

Ls
q −

sq

sq

Figure 2.3: An illustration of inventory position and net inventory level over time

In this context, the manufacturer is concerned with forecasting buyers’ orders

to be realized on a range of future periods. He has a collection of historical order com-

mitments and realized orders that acquired over a sufficiently long period of time. He

models the time series of these order information as a multiplicative forecast evolution

process through the martingale model of forecast evolution (MMFE) technique due
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to Heath and Jackson (1994). The evolution model accommodates flexibility ranges

stipulated in the agreed-upon QF contracts. It is intended to come up with a better

explanation of the buyers’ ordering behavior in the light of the inherent correlation

structure imbedded in the buyer’s machinery. We should also note that the manufac-

turer’s forecasting does not attempt improving accuracy of the order commitments.

Rather, it is a technique for modeling the results of the buyers’ ordering practices and

takes into account the evolution of order information.

The manufacturer uses this martingale forecast evolution model as an integral

part of his production and inventory planning. Martingale is a very basic yet general

stochastic process with convenient properties for inventory modeling. The direction

of a martingale process is completely unpredictable, and the only relevant information

for forecasting the future is today’s observation. For the particular construction we

assume, a multiplicative version of the evolution model is expected to perform better

because of the percent flexibility ranges of QF contracts and the non-stationarity of

buyers’ order commitments. Additive models would not be appropriate since com-

mitment updates are scale dependent such that an update of 10% being independent

of the commitment size is more reasonable. Putting another way, the size of arith-

metic difference between successive order commitments depends on the size of the

commitments. Multiplicative model describes commitment evolution mechanism by a

multiplication operation so that it describes the commitment update made in period

s as the ratio of successive order commitments generated in periods s and s− 1 for a

future order amount. Hausman (1969) and Hausman and Peterson (1972) exemplify

the related literature on multiplicative forecasts. Hausman (1969) treats ratios of suc-

cessive forecasts as independent lognormal variates for a recurring sequential decision

problem with new improved forecasts before each decision stage. He illustrates the

approach via a dynamic programming formulation with the current forecast being the

state variable. Hausman and Peterson (1972) consider a stochastic forecast modifi-

cation process for a capacitated, multi-item production scheduling problem. They

assume that ratios of successive forecasts of total orders for a seasonal product are

independent lognormal variates.

The manufacturer can replenish his inventory from two sources of supply;

namely, the in-house production as well as an outside supplier. The replenishment

cost does not include any fixed cost of ordering, rather the manufacturer incurs vari-
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able costs of the replenishment. This is mainly because ordering is rarely ignored,

and within a replenishment order taking place in every period, fixed costs can be

assumed to be included in the item cost. There exist some restrictions on the max-

imum amount that can be produced internally. The manufacturer somehow has an

idea of the business volume that the buyers intend to develop in the future, and has

built a certain level of in-house production capacity. The outside supplier is a sub-

contractor to whom the manufacturer is able to subcontract part of his business for

capacity reasons. That is, the manufacturer is capable of producing the product,

but he does not have all the production capacity required to produce all the order

amount expected to realize. The subcontract replenishment amounts arrive only after

a lead-time of L periods as well. Subcontracting arrangements are more costly than

internal production but offers an infinite-supply opportunity. Subcontracting allows

for short term capacity adjustments in the face of temporal demand variations, and

hence improves the supply chain agility. It enables the capacitated manufacturer to

make use of smoothing his releases when serving different buyers.

We do not assume any explicitly-set safety stock levels; instead, the safety mar-

gin is attained by the trade-off between the costs of inventory carrying and stock-outs.

We assume that the manufacturer does not suffer lost sales when stock-outs occur so

that the inventory level represents either on-hand inventory or backorders. The man-

ufacturer has a tradeoff between utilizing his capacity in full, ordering large amounts

to the subcontractor, hence carry inventory; versus restricting his supply flexibilities

and experiencing occasional or usual stock-outs. This arises the question of how the

supply-side flexibility through either maintaining excess capacity or resorts to subcon-

tracting help to match supply with demand more effectively.

The manufacturer does not keep track of separate inventory pools for each

buyer. It is assumed that he backlogs any order which is not satisfied immediately

from his finished-goods inventory. He incurs a penalty for any shortfall of his delivery

from the buyers’ orders. Although the manufacturer does not make any inventory

rationing (that is, he does not hold back any inventory for future periods), he differ-

entiates between the buyers in order fulfillment process, allocating the finished-goods

inventory by respecting a given precedence relationship among the buyers. Accord-

ingly, total requirement of the highest-priority buyer is simply filled first. Then the

next highest-priority buyer is satisfied, and so on. The corresponding shipments are
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assumed to arrive at the buyers immediately.

This problem environment has some similarities and dissimilarities to the en-

vironments of the past work in the literature. We mention the most closely related

ones here. Heath and Jackson (1994) contribute for the development of the MMFE

technique as a demand model and they provide motivation and detailed discussions.

They introduce an MMFE for a multi-item production/distribution system with corre-

lated demands across products and time periods. They adapt the MMFE to generate

forecast modifications (in place of an existing time series-based forecasting procedure)

and study the impact of forecast error on cost and customer service. They conduct

a simulation study, and analyze the relationship between safety-stock levels and im-

provement in forecasts.

Toktay and Wein (2001) consider an MMFE demand process for discrete-time

make-to-stock queues. They characterize effective policies under heavy-traffic assump-

tions for a capacitated single server. They define the planning horizon to be the effec-

tive period for which one utilizes the forecast information. They explore the impacts

of dynamically evolving forecasts, demand correlation, and capacity utilization. They

demonstrate that earlier information is more valuable under high capacity utilization

levels, and the marginal value decreases with capacity utilization.

Kaminsky and Swaminathan (2004) model a forecasting process getting refined

over time as new information becomes available. Differently from our research, they

represent forecasts by a series of bands and introduce forecast-band evolution model

based on these bands. Succeeding forecasts have a smaller band and are contained

within the band defined by previous forecasts as time passes. They adapt the pro-

cedure to capacitated production planning environment and develop heuristics which

utilize knowledge of demand forecast evolution. They perform an extensive compu-

tational study in which they employ simulation to explore the efficiency of heuristics

under different settings. This is aimed at understanding the effect of forecast updates,

seasonal fluctuation, and firm capacity.

Kayhan et al. (2005) introduce a general approach for integrating forecast

evolutions and production inventory planning. They conduct a project for a food

products company engaged in high volume production with a capital intensive op-

eration with a highly skilled workforce. The operating environment is a multi-item,

make-to-stock system with correlated stochastic demands without any formal contrac-
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tual agreements, where production is set on a rolling horizon basis to restore inventory

to a planned level. First, they test and model the time series of forecasts and demands

as a multiplicative forecast evolution process through the MMFE. Therefore, they in-

tend to capture interactions through time and across items, and come up with a better

explanation of demand and forecast variability. Second, they integrate the forecast

evolution model into the production-scheduling module of the company’s enterprise

resource planning system, through enhanced rules for determining safety stocks by

taking the variance-covariance matrix of the forecast evolution model into account.

They test the suggested framework by retrospectively simulating the company’s pro-

duction and inventory environment for 24 successive rolling horizons, each consisting

of 12 planning periods. Their tests suggest that the model that they propose can bring

considerable improvement in the inventory investment without a significant compro-

mise in the realized service level.

Gallego and Özer (2001) consider a model of advance demand information for a

single-stage periodic-review inventory system. They characterize the form of optimal

replenishment policies, where the state of the inventory system reflects the knowledge

of advance demand information. There are multiple customers providing different de-

mand lead times, but they do not include the effect of limited capacity. They show

the optimality of a state-dependent (s, S) and base-stock policies for systems with

and without fixed ordering costs, respectively. The demand model that they use can

be viewed as a special case of the MMFE. Their computational study demonstrates

that advance demand information can lead to important cost reductions under the

optimal replenishment policy.

Tsay et al. (1999) provide an extensive survey of model-based research on

the supply chain contracting, and present a classification scheme defined by contract

clauses (quantity flexibility is one of these clauses). They study how the design of

contracts affects supply chain behavior and performance. Tsay and Lovejoy (1999)

provide a detailed analysis of the QF contract in a complicated setting. They have

multiple locations, multiple demand periods, lead times and demand forecast updates

with a rolling production planning horizon; but excludes capacity restrictions and op-

tion of supplementary capacity. They propose a framework for performance analysis

and design of QF supply chains. They provide insights as to where to position flexibil-

ity for the greatest benefit, and how much to pay for it, in particular by analyzing the
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buyer’s willingness to pay for flexibility. They perform an extensive computational

study, and evaluate the impact of demand variance and flexibility parameters on sys-

tem performance. They demonstrate that the presence of flexibility can diminish the

transmission of the variability up to the chain.

Sethi and Zhang (2004) develop a model to analyze a QF contract involving

multiple periods, rolling horizon demand, one demand forecast update in each period

and a spot market. The contract permits an initial order at the beginning of a period,

a forecast revision in the middle of the period, and further purchases on contract and

in the spot market before the demand is realized at the end of the period. The amount

that can be purchased on contract is bounded by a given flexibility limit. They discuss

the impact of the forecast quality and the level of flexibility on the optimal decisions.

Feng et al. (2006) present a periodic review inventory model with multiple

delivery modes. They investigate why the base-stock policy is or is not optimal in

different situations. They demonstrate that the optimality of a base-stock policy is

closely related to the structure of the cost-to-go function. This is because the cost-to-

go function for each period is separable in the inventory positions after ordering (but

only for the first two delivery modes, and higher order delivery modes may not have

a base-stock structure).

Graves (1999) considers an adaptive base-stock policy for a single-item inven-

tory system with deterministic lead-time but subject to a stochastic non-stationary

demand process. Similar to our research, he shows that the demand process for the

upstream stage is not only non-stationary but also more variable than that for the

downstream stage. He makes analytical analysis of the bullwhip effect for a single-

stage and a multi-stage case. The demand model is an integrated moving average

model of order (0, 1, 1). He uses an exponential smoothing procedure to estimate the

periodic demand. The problem assumes complete information since given the current

period demand, the distribution of the next-period demand is fully known through

the assumed ARIMA model. He characterizes the results of his assumed policy while

not asserting its optimality.
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CHAPTER 3

STOCHASTIC FRAMEWORK FOR COMMITTED

ORDERS

In this chapter, we present the stochastic framework for the manufacturer’s decision

problems that will be analyzed in this research. First, we model the time series of the

buyers’ order commitments and realized orders as a multiplicative forecast evolution

process in §3.1. This is intended to provide an enhanced variability representation

capturing the buyers’ forecasting behaviors. Following Heath and Jackson (1994), we

adopt the martingale model of forecast evolution (MMFE) methodology as a specific

evolution modeling. Differently from previous studies, we develop a modified MMFE

as it accommodates revision limits stipulated in the QF contracts. The inclusion

of revision limits further complicates the probabilistic framework as an analytical

expression for probability distribution do not apply, as discussed in §3.2. In the second

part of this chapter, in §3.3 we attempt to resolve this complication by introducing a

finite Markovian representation. The resulting Markov chain facilitates the numerical

estimation of probability function of cumulative commitment updates to be made for

future periods. In §3.4 we then introduce a general optimization model to suggest

the transition probabilities of the Markov chain maximizing the goodness-of-fit to

observations under certain regularity constraints. Finally, an example computational

process is given for a specific industry case with the real data in §3.5.
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3.1 Modeling Probabilistic Evolution of Committed Orders

In this section, we describe the probabilistic model that explains the evolution of the

order commitments submitted to the manufacturer from one period to the next. Buy-

ers commit themselves for the orders over a given number of periods. They let their

earlier commitments evolve as new information becomes available over time. In order

to adequately capture the dynamic nature of the order commitments and the under-

lying forecasting behavior of the buyers, the manufacturer describes this periodical

modification activity by a probabilistic evolution model. The manufacturer forecasts

buyer’s commitments (which eventually convert to the realized order for the imme-

diate period) using this probabilistic evolution model. The manufacturer’s planning

operations rely on these forecasts of commitments.

A good evolution model should have certain features for an adequate treatment

of the buyers’ ordering practices. (i) First, the order commitments that are estimated

by the manufacturer’s assumed evolution model should reflect the historical patterns

in order commitments submitted by the buyer. (ii) Second, the forecast volatility,

measured by the size and frequency of the commitment updates, should be captured.

Order commitments do not necessarily become more accurate as they are successively

updated from one period to the next. The forecast volatility may cause inefficien-

cies if one pays no attention to how the order commitments evolve. (iii) Finally, a

good commitment evolution model should be able to accommodate the correlation

structure inherent in the historical order commitments and reproduce them in the

generated data. The environment that we study assumes correlations among the or-

der commitments from a number of buyers as they cover a number of future periods.

We assume that order commitments on future realizations are available for a

number of periods. In each period these commitments are updated on a rolling horizon

basis. The order commitments for a particular period evolve eventually into the real-

ized order in that period. The realized order is the last updated order commitment.

Let b ∈ {1, 2, . . . , B} be index on different buyers, H be the length of the commitment

horizon. Let ds = [db
s , ∀ b ∈ {1, 2, . . . , B} ] denote the vector of order commitments

submitted to the manufacturer at the beginning of period s, s = 1, 2, . . . , N where

db
s = [db

s−1,s−1, db
s−1,s, . . . , db

s−1,s+H−1, µDb , µDb , . . . ], (3.1)
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where db
s−1,s−1 is the realized order from buyer b in period s − 1 (i.e., past period’s

realized order), and db
s−1,s+k−1 is the flexible order commitment for the amount to be

ordered in period s + k − 1, k = 1, 2, . . . , H. We use the boldface letters for vector

notations and denote db
s by Db

s when it is unknown (i.e., db
s is a realization of random

variable Db
s ). Note that the mean realized order, µDb , implies an implicit early order

information for the periods beyond the commitment horizon H. Figure 3.1 helps to

clarify the evolution from period s− 1 to s.
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Figure 3.1: Commitment evolution from period s− 1 to s

At the beginning of every period, an order realization is observed and all order

commitments are updated with a new element getting appended to the end of the

vector. From period s to period s + 1 (before the commitment arrives) in particular,

db
s will be replaced by Db

s+1 as the best prediction for the future realized orders. Com-

mitments are updated in every period until they finally become a realized order. How

these evolutions are modeled, however, depends on assumptions about whether or not

the magnitude of the updates depends on the magnitude of the order commitments.

For the particular problem environment that we study, the multiplicative evolution

model is expected to perform better due to the non-stationary nature of order in-

formation and the revision limits defined in percentage of order commitments. The

multiplicative model has some advantages over additive in representing the variation.

These will be mentioned in §3.1.1.
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3.1.1 Multiplicative commitment evolution model using the MMFE

Following Heath and Jackson (1994), we assume that the manufacturer models the

time series of order commitments as a martingale model of forecast evolution (MMFE).

The MMFE technique, among other approaches, has preferable properties for quite

general forecasting environments, where forecasts are based on several forecasting tech-

niques including not only analytical methods but also expert judgment. The MMFE

technique imposes a certain structure to the evolution of forecasts, being consistent

with the realities of the most real-life business cases. The assumptions that are re-

quired for the existence of a martingale forecast evolution model are simple however

quite reasonable to assume. Hausman (1969), Graves et al. (1986) and Heath and

Jackson (1994) are the main contributory studies for the development of the MMFE

technique as a demand model and provide detailed discussion and motivation of the

technique.

The MMFE technique follows two specific ways to describe how the available

order commitments db
s in (3.1) evolve into the future: the additive model and the

multiplicative model. We focus on the multiplicative evolution models, which are

more complex but in general expected to be more useful in practice. The additive

process would assume that the variance of commitment updates added to the mean

realized order will remain the same regardless of the value of the mean realized order.

The multiplicative process, on the other hand, assumes that the size of arithmetic

differences between successive order commitments made for the same period might be

related to the size of the commitments. For example, an update of 10% being indepen-

dent of the commitment size is more reasonable in our problem. Thus, the variance

of commitment updates becomes proportional to the mean realized order, resulting in

a coefficient of variation not changing with a decrease/increase in the mean realized

order. In general, the multiplicative models are expected to be more useful in practice

(Hausman 1969). A multiplicative MMFE model can be converted to additive by a

logarithmic transformation of the order commitments and realized orders, where all of

the realized orders and hence also the order commitments are assumed to be strictly

positive. Let εb
s,k be the random variable denoting the multiplicative commitment up-

date effective in period s for the amount to be committed for order in period s+k−1,

k = 1, 2, . . . , H + 1. It is received at the end of period s, and given by
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εb
s,k =





lnDb
s,s−1+k − ln db

s−1,s−1+k, for k = 1, 2, . . . , H,

lnDb
s,s−1+k − lnµDb , for k = H + 1.

(3.2)

Thus, let Es = [ Eb
s , ∀ b ∈ {1, 2, . . . , B} ] be the random vector of multiplicative

updates to be received at the end of period s = 1, 2, . . . , N , where

Eb
s =

[
εb
s,1, εb

s,2, . . . , εb
s,H+1, 0, 0, . . .

]
. (3.3)

We should underline that the random variable εb
s,H+1 corresponds to first time update

made to µDb to become H-period ahead commitment and εb
s,1 is the last update to be

made to the most immediate commitment. This means there are H+1 updates in total.

These specify the form of the evolution from one period to the next. In particular, (3.3)

models the updates to the vector of order commitments going forward from period

s to period s + 1. The multiplicative model in this case defines the changes in the

order commitments as the differences of logarithms. Alternatively, this multiplicative

MMFE model can be represented by using Rs = [ eEb
s , ∀ b ∈ {1, 2, . . . , B} ]. The

exponential is taken componentwise

Rb
s = eEb

s = [Rb
s,1, Rb

s,2, . . . , Rb
s,H+1, 1, 1, . . . ] (3.4)

Then, a component of the vector Rs represents the ratio of order commitments for

each period at or after period s submitted in two successive periods (s− 1 and s).

As in Heath and Jackson (1994), the multiplicative evolution model is governed

by the following structural assumptions.

Assumption 3.1 : The information available to make predictions in any period in-

creases as time passes.

The rationale for this assumption is straightforward. Forecasting systems use

available information to learn the true state space of the environment and make pre-

dictions for future random phenomena. Thus, this type of forecasting process can be

modeled using expectations conditional on information sets. Formally, what is known

at time s is represented in the form of an increasing family Fs ⊂ F of σ-fields, gener-

ated by all observed events up to time s (like order commitments and realized orders).

Hence, Fs is the smallest σ-field with respect to which the order vectors D1, D2, . . . ,

Ds are measurable, and Fs ⊆ Fs+1.
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Assumption 3.2 : The update vector Es = [ Eb
s , ∀ b ∈ {1, 2, . . . , B} ] is uncorre-

lated with the information in set Fs, and hence is uncorrelated with all combinations

of vectors E1, E2, . . . , Es−1. Also, E[Es] = 0.

The reason for making this assumption is to specify an evolution model in

which commitment updates are not predictable using the historical data. This ra-

tionale is meaningful, since if this assumption does not hold (i.e., when there exists

some combination of the available information which is correlated with Es), then this

would result in some other nontrivial value of Es, which is better than the existing

one. Consequently, the existing order commitments can be improved with this new

better value of Es.

One important way of justifying this assumption is closely connected to the

theory of martingales. Unfortunately, martingale theory requires some basic knowl-

edge of abstract measure theory, and a formal treatment is thus outside the scope

of this research (see Williams 1991 for a treatment of measure theory). An informal

description of the martingale concept follows. If it is the case that the prediction of

a future order commitment is its conditional expectation given the available informa-

tion today, then {Db
s,t, s 6 t} for a given t and buyer b; that is, successive order

commitments for a particular future period, form a martingale.

Definition 3.1 : A stochastic process {Db
s,t, s 6 t} for a given t and buyer b is called

a Fs-martingale if the following conditions hold.

(i) For any s, Db
s,t is adapted to Fs.

(ii) For all s, E[ |Db
s,t | ] < ∞.

(iii) For all s and t with s 6 s′ 6 t, E[Db
s′,t | Fs] = Db

s,t.

The conditional expectation plays a central role in this informal definition. The first

condition says that Db
s,t is Fs-measurable for each s (the observed value db

s,t is con-

tained in Fs), and the second condition is just a technical condition for the random

variable Db
s,t being integrable. The important condition is the third one, which says

that a martingale has an unpredictable direction (i.e., no systematic trend). Then,

for a given value of order commitments submitted by the buyer b, db
s , we have

E[Db
s,s+k | Fs] = E[E[Db

s+k,s+k | Fs+1] | Fs]

= E[Db
s+k,s+k | Fs]

= db
s−1,s−1+k,
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for k = 1, 2, . . . , H. This follows from the law of iterated expectations and applying

statement (iii) of Definition 3.1. Thus, it can be shown, using properties of conditional

expectations, that the values of any martingale difference series must be uncorrelated,

and must have the mean equal to 0. Taking expectations of (3.2) conditioned on the

information set Fs results in

E[εb
s,k | Fs] =





E[lnDb
s,s−1+k | Fs] − E[ln db

s−1,s−1+k | Fs], for k = 1, 2, . . . , H,

E[lnDb
s,s−1+k | Fs] − E[lnµDb | Fs], for k = H + 1

=





ln db
s−1,s−1+k − ln db

s−1,s−1+k, for k = 1, 2, . . . , H,

lnµDb − ln µDb , for k = H + 1

= 0,

so that E[εb
s,k] = 0, indicating that the sequence of the logarithmic changes in order

commitments forms a martingale difference.

Assumption 3.3 : The vector sequence {Es, s > 1} form a stationary stochastic

process.

The rationale for this assumption relates to predictability over time. If the

Es = [ Eb
s , ∀ b ∈ {1, 2, . . . , B} ] vectors form a non-stationary process then the degree

of predictability would become relative to the time period considered and it would

then become possible for some t, t > s that E[Es | Fs] 6= 0 while E[Es | Fs] = 0 for

s > t. Therefore, if the vector process Es for all s was non-stationary then the distri-

butional parameters of the commitment updates would not be sufficient to capture all

important characteristics of the evolution model. Hence Es has identical properties

for all s.

Assumption 3.4 : The update vectors Es =
[Eb

s , ∀ b ∈ {1, 2, . . . , B} ]
at all s are

multivariate Normal random vectors.

With these assumptions, the multiplicative form of the MMFE technique pro-

duces a multiplicative evolution model in which commitment update vectors through

time (i.e., Es vectors for different s values) form a stationary and independent sequence

of multivariate Normal random vectors with mean 0. If the MMFE assumptions hold

for the stochastic process {Eb
s , s > 1} then it follows from the properties of Lognormal

distribution (see Law and Kelton 2000) that the vector sequence {Rb
s , s > 1} satisfies

the MMFE assumptions as well. In this case, Rs vectors for different s values form a

stationary and independent sequence of multivariate Lognormal random vectors with
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mean one.

Let fEs
(· ) be the jointly continuous probability density function of Es, and its

cumulative distribution function is denoted by zEs
(· ), which is a B(H + 1)-fold inte-

gral. We define zεb
k
(· ) to be the marginal distribution of εb

s,k, and fεb
k
(· ) its marginal

density. We should note that zεb
k
(· ) = zεb

s,k
(· ) for all s, k since the vector sequence

{Es, s > 1} form a stationary stochastic process due to Assumption 3.3 given above.

The expected value of the kth component of Eb
s is denoted by µεb

k
= E[εb

s,k] such that

µEb = [µεb
k

= 0, ∀ k ∈ {1, 2, . . . , H + 1} ] is the mean vector of Eb
s . The collection

of these subvectors µEb completely determines the partitioned mean vector µE of

commitment update vector Es

µE = [µE1 |µE2 | . . . |µEB ] . (3.5)

The variance of the kth component of Eb
s and the covariance between the kth com-

ponent of Eb
s and the lth component of Er

s are denoted by σ2
εb
k

= Var(εb
s,k) and

σεb
k, εr

l
= Cov(εb

s,k, εr
s,l), respectively. The variance-covariance matrix ΣEb of Eb

s and

the diagonal covariance matrix ΣEb, Er between Eb
s and Er

s are

ΣEb = ΣEb, Er =



σ2
ε1
1

σε1
1, ε1

2
. . . σε1

1, ε1
H+1

σε1
2, ε1

1
σ2

ε2
2

. . . σε1
2, ε1

H+1

...
...

...
...

σε1
H+1, ε1

1
σε1

H+1, ε1
2

. . . σ2
ε1
H+1







σ2
εb
1,εr

1
0 . . . 0

0 σ2
εb
2,εr

2
. . . 0

...
...

...
...

0 0 . . . σ2
εb
H+1,εr

H+1




.

Hence we have the following partitioned B(H + 1) × B(H + 1) variance-covariance

matrix of the random vector Es

ΣE =




ΣE1 ΣE1, E2 . . . ΣE1, EB

ΣE2, E1 ΣE2 . . . ΣE2, EB

...
...

...
...

ΣEB, E1 ΣEB, E2 . . . ΣEB




. (3.6)

It should be noted that we allow correlations among the components of Es

for a fixed period s by the multivariate normal distribution assumption; but not

the components across different s values. More specifically, two types of correlation
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are allowed; (i) correlations among the components of Eb
s for a particular buyer b,

and (ii) correlations between buyers in the same k, k = 1, 2, . . . , H + 1. This im-

plies that using the expression (3.2) we can specify any demand correlation structure

inherent in the system across buyers and in time given all other assumptions (real-

ized demand is eventually formed by the multiplicative updates). Consequently, all

the important characteristics of the evolution model (3.2) can be captured from the

variance-covariance matrix ΣE of the update vectors Es.

Consequently, we require only the variance-covariance matrix ΣE of the com-

mitment updates and the initial state of the sequence {Ds, s > 1} (Ds designated as

the forecast of commitments by the manufacturer in period s) to model the forecasting

behavior of the buyers. This variance-covariance matrix will be estimated as a result

of the MMFE fitting process on the time series of historical order commitments even-

tuating as the realized orders. It is important to note that the efficacy of the MMFE

technique depends on the accuracy of the estimated variance-covariance matrix ΣE of

the update vectors Es. The more accurate the estimated variance-covariance matrix

ΣE , the more reliable the computational work that will be made in this research.

3.1.2 Incorporating revision limits into the multiplicative MMFE model

We now turn to the consideration of certain revision limits that restrict the evolution of

order commitments from one period to the next in the multiplicative evolution model.

Although the revision limits could be put to use in a variety of ways, we chose, in this

research, to exercise them via a supply contract with quantity flexibility. Attention

is then given to how the flexibility characteristics of the system under revision limits

impact the evolution of order commitments.

Quantity flexibility (QF) contract is an arrangement where parties agree upon

the rules that impose certain limits on the range of allowable volumes for their future

businesses. In this research, we consider a multi-period setting with non-stationary

buyer orders, where the manufacturer’s periodical replenishment decisions occur after

the receival of the buyer’s order commitments but before the buyer places her realized

order. We thus assume that the manufacturer has the rolling-horizon QF contracts

which allow order information updates. The contract is based on setting upper and

lower limits on how much flexibility the buyer has in updating db
s going forward in
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time. So, each buyer is constrained by her previous order commitments, and hence

she is unlikely to provide unreasonable prior order commitments. As a result, the

buyer has a limited downward flexibility for updating order commitments while the

manufacturer guarantees to satisfy up to a certain percentage above them (see Tsay

and Lovejoy 1999, Tsay 1999, Anupindi and Bassok 1998).

Let ωb
k and αb

k denote the lower and upper flexibility limit to the modification

of k-step order commitment from buyer b. Hence buyer b is entitled to the set of

downward contract flexibility limits

Wb = {ωb
k, k = 1, 2, . . . , H }, (3.7)

for ωb
k ∈ [0, 1], and the set of upward contract flexibility limits

Ab = {αb
k, k = 1, 2, . . . , H }, (3.8)

for αb
k > 0. Then, buyer b can not revise her k-step order commitment downward by

a fraction of more than ωb
k or upward by more than αb

k each time. Specifically, given

the latest order commitments db
s , the values of the next order commitments Db

s+1 to

be published from buyer b at the end of period s, s = 1, 2, . . . , N are known to lie

within the range

(1− ωb
k) db

s−1,s+k−1 6 Db
s,s+k−1 6 (1 + αb

k) db
s−1,s+k−1, (3.9)

for k = 1, 2, . . . , H. By exercising the flexibility limits on successive commitment

updates, buyer b is required to restrict her realized order quantities to be within the

range
k∏

j=1

(1− ωb
j) db

s−1,s+k−1 6 Db
s+k−1,s+k−1 6

k∏

j=1

(1 + αb
j) db

s−1,s+k−1, (3.10)

for k = 1, 2, . . . , H. This also implies that the commitment updates for the multiplica-

tive evolution model occur within a certain range defined by the contract flexibility

limits,

ln(1− ωb
k) 6 εb

s,k 6 ln(1 + αb
k), (3.11)

for k = 1, 2, . . . , H, and cumulatively,
k∑

j=1

ln(1− ωb
j) 6

k∑

j=1

εb
s+k−j,j 6

k∑

j=1

ln(1 + αb
j). (3.12)

Consequently, the multiplicative evolution model that we discussed in the previous

section needs to be modified under QF contracts.
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3.1.3 Censored distributions as a way of incorporating revision limits

In order to incorporate the contract flexibility limits (3.7) and (3.8) into the multi-

plicative evolution model, we must first address how the statistical analysis of order

commitments should incorporate flexibility limits. The question to be raised at this

point is how we account for the tail probabilities of the distributions of εb
k’s associated

with these limits. We will assume that the existence of the revision limits implies inter-

val censored distributions (see Greene 2000) for commitment updates with censoring

points defined by those revision limits. For our purposes, a censored distribution is

the part of an uncensored distribution that is above and/or below some specified cen-

soring points with spikes. It integrates to one over the allowable range of commitment

updates. Hence, a useful way to view censoring is in terms of the probability that

εb
s,k is less than ln(1 − ωb

k) and larger than ln(1 + αb
k), which we shall call the degree

of censoring. This is an increasing function of ln(1 − ωb
k) and ln(1 + αb

k). As this

probability increases, a greater proportion of the distribution is being transformed

to censoring points. The censored Normal distribution, with µ = 0 and σ = 0.2, is

illustrated for ωb
k = 0.3 and αb

k = 0.4 in Figure 3.2.
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Figure 3.2: Plot of the pdf of a Normal distribution with µ = 0, σ = 0.2, ωb
k = 0.3,

αb
k = 0.4

The following assumption is required in order to achieve a meaningful interpre-

tation of this.
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Assumption 3.5 : The buyer’s forecasting machinery in generating the order com-

mitments is not influenced by the level of revision limits asked from the manufacturer

(i.e., censoring does not impact forecasts to commit later. The buyer naively fore-

casts first, submits commitments next). So, commitment update decisions in different

periods are evaluated independently, and hence previous restrictions on the values of

order commitments and future expectations do not influence commitments submitted.

This assumption is crucial for the theory and methods of martingale inference,

namely for the preservation of the martingale property under the existence of contract

flexibility limits. That is why we have considered the problem setting where each buyer

under QF contract first determines her intended order commitments in each period.

These intended order commitments, however, are not transferred directly to the manu-

facturer. Rather, they can be thought as intended future self plans, being also revised

on a rolling-horizon basis. The contract flexibility limits asked by the manufacturer

are then applied to these self plans. If there were no contract flexibility limits then

the intended order commitments would be directly transferred to the manufacturer.

A commitment update decision intended in a particular period becomes the formal

update decision in that period if it is already within the contract flexibility limits.

The intended order commitments may hit one of the limits as well. In such a case, the

limit value is submitted to the manufacturer. The difference between the transferred

(formal) quantity and the intended order quantity does not influence the next period’s

commitment decision. Thus, we do not, for instance, accommodate the cases where

a buyer compensates an intended higher order than the upper limit. Note that this

is an approximation. Intended quantities usually may contain buffers and hence this

assumption partially is fulfilled.

We recall from Definition 3.1 in the previous section that the conditional ex-

pectation plays a central role in the martingale property (Williams 1991). In a similar

manner, the expectations under contract flexibility limits will be a function of the

degree of censoring both from below and from above. If the degree of censoring

from either side is equal (symmetric flexibility), the time series of successive com-

mitment updates for a fixed k continue to be a martingale difference as we have

E[Db
s,s+k | Fs, Wb, Ab] = db

s−1,s+k. However, if the degree of censoring from below

is higher than that from above then the stochastic process becomes a sub-martingale

since db
s−1,s+k < E[Db

s,s+k | Fs, Wb, Ab]; otherwise, it is a super-martingale since
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E[Db
s,s+k | Fs, Wb, Ab] < db

s−1,s+k.

Definition 3.2 : A stochastic process {Db
s,k, s 6 k} for a buyer b and a given k

satisfying, for all s and t with s > t, the inequality E[Db
t,k | Fs] 6 Db

s,k is called a

super-martingale, and satisfying the inequality E[Db
t,k | Fs] > Db

s,k is called a sub-

martingale, in addition to the first two conditions given in Definition 3.1.

Consequently, with Assumption 3.5 we have ensured that the martingale prop-

erty is preserved and hence the MMFE technique will be valid (for stationarity of

{Eb
s , s > 1}) under contract flexibility limits. The existence of contract flexibility

limits is translated into censored distributions for commitment updates εb
s,k in the

multiplicative evolution model. We will henceforth specify the uncensored counter-

part of a variable by a tilde (˜) above that variable, as need arises. That is, ε̃b
s,k will

denote the k-step intended order commitment update of buyer b in period s. Thus,

εb
s,k should actually be represented by

εb
s,k =





ln(1− ωb
k), for ε̃b

s,k < ln(1− ωb
k)

εb
s,k, for ln(1− ωb

k) 6 ε̃b
s,k 6 ln(1 + αb

k)

ln(1 + αb
k), for ε̃b

s,k > ln(1 + αb
k).

(3.13)

εb
s,k has a mixture of discrete and continuous distributions. Continuous part is the orig-

inal distribution; that is, zε̃b
k
(· ). We assume in our case that any order commitment

greater than the associated upward flexibility limit (resp., lower than the downward

flexibility limit) are censored to the associated upper flexibility limit (resp., to the

lower flexibility limit). Hence each discrete part is represented by a Bernoulli distri-

bution with a probability equivalent to upper or lower-tail mass of the original distri-

bution zε̃b
k
(· ) at the associated censoring points. The order commitments within the

flexibility limits, however, remain unchanged. Censoring leads to distributions condi-

tional on the range defined by the contract flexibility limits. So, let fEs
(· |Wb, Ab) be

the jointly continuous probability density function of Es conditioned on the value of

flexibility limits (Wb, Ab), and its conditional cumulative distribution function is de-

noted by zEs
(· |Wb, Ab), which is a B(H +1)-fold integral. We define zεb

k
(· |ωb

k, αb
k)

to be the marginal distribution of εb
s,k, conditioned on the value of lower and upper

flexibility limits (ωb
k, αb

k), and fεb
k
(· |ωb

k, αb
k) its marginal density. Thus, we have the

following interval censored Normal distribution that applies to εb
s,k, k = 1, 2, . . . , H.

35



Pr{ εb
s,k = ln(1− ωb

k) } = Pr{ ε̃b
s,k < ln(1− ωb

k) } = zε̃b
k
(ln(1− ωb

k)),

P r{ εb
s,k = ln(1 + αb

k) } = Pr{ ε̃b
s,k > ln(1 + αb

k) } = 1−zε̃b
k
(ln(1 + αb

k)), (3.14)

ε̃b
s,k has the same density with εb

s,k for ln(1− ωb
k) 6 ε̃b

s,k 6 ln(1 + αb
k).

Note that the contract flexibility limits do not apply to the furthest period where

k = H + 1 (since this is not an update over a previous commitment), and hence

ε̃b
s,H+1 has exactly the same density with εb

s,H+1 over its entire allowable range.

3.1.4 Parameters of the censored distributions

We now need to specify the mean and the variance-covariance matrix of the interval

censored update vectors, Es
1. Henceforth, we shall use the terms censored mean

and censored variance-covariance to refer to the mean and variance-covariance in the

censored distribution. With both upward and downward contract flexibility limits

(Wb, Ab), each censored distributional parameter is a function of the degree of cen-

soring both from below and from above. Following Rose (1994), the explicit solution

to the first moment of an interval censored Normal distribution of εb
s,k is given by

E[εb
s,k |ωb

k, αb
k] = ln(1− ωb

k)zε̃b
k
(ln(1− ωb

k)) + ln(1 + αb
k) [1−zε̃b

k
(ln(1 + αb

k))]

+ µε̃b
k
[zε̃b

k
(ln(1 + αb

k))−zε̃b
k
(ln(1− ωb

k))]

− σ2
ε̃b
k
[fε̃b

k
(ln(1 + αb

k))− fε̃b
k
(ln(1− ωb

k))]. (3.15)

We derive the variance of an interval censored Normal distribution of εb
s,k to be

Var(εb
s,k |ωb

k, αb
k) =

(ln(1− ωb
k))

2zε̃b
k
(ln(1− ωb

k)) + (ln(1 + αb
k))

2 [1−zε̃b
k
(ln(1 + αb

k))]

+ (µ2
ε̃b
k

+ σ2
ε̃b
k
) [zε̃b

k
(ln(1 + αb

k))−zε̃b
k
(ln(1− ωb

k)) ]

− σ2
ε̃b
k
[ (µε̃b

k
+ ln(1 + αb

k)) fε̃b
k
(ln(1 + αb

k))

− (µε̃b
k

+ ln(1− ωb
k)) fε̃b

k
(ln(1− ωb

k)) ]− E2[εb
s,k |ωb

k, αb
k]. (3.16)

We find the following semi-explicit solution to the covariance between εb
s,k and εr

s,l

1 These two suffice since the only model parameters of the MMFE structure are the variance-
covarince matrix for the distribution of each update vector and the initial forecast state.
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Cov(εb
s,k, εr

s,l |ωb
k, αb

k, ωr
l , αr

l ) =

ln(1− ωb
k)

ln(1−ωb
k)∫

−∞
[

ln(1−ωr
l )∫

−∞
ln(1− ωr

l )df(ε̃b
s,k, ε̃

r
s,l) +

∞∫

ln(1+αr
l )

ln(1 + αr
l )df(ε̃b

s,k, ε̃
r
s,l) ]

+ ln(1 + αb
k)

∞∫

ln(1+αb
k)

[

∞∫

ln(1+αr
l )

ln(1 + αr
l )df(ε̃b

s,k, ε̃
r
s,l) +

ln(1−ωr
l )∫

−∞
ln(1− ωr

l )df(ε̃b
s,k, ε̃

r
s,l) ]

+

ln(1+αb
k)∫

ln(1−ωb
k)

ln(1+αr
l )∫

ln(1−ωr
l )

(µε̃b
k

+ σε̃b
k
ε̃b
s,k)(µε̃r

l
+ σε̃r

l
ε̃r
s,l) df(ε̃b

s,k, ε̃
r
s,l)

− E[εb
s,k |ωb

k, αb
k] E[εr

s,l |ωr
l , αr

l ]. (3.17)

A numerical valuation may help to see how the censoring affects the distribu-

tional parameters. Consider a simple 1-buyer case where k = s + 1 and l = s + 2.

Suppose we have E[ε̃1
s,s+1] = E[ε̃1

s,s+2] = 0, Var(ε̃1
s,s+1) = Var(ε̃1

s,s+2) = 4, and

Cov(ε̃1
s,s+1, ε̃1

s,s+2) = 3.2 corresponding to correlation coefficient of 0.8. When the

contract flexibility limits are taken to be ω1
1 = α1

1 = 0.2 and ω1
2 = α1

2 = 0.4

(i.e., symmetric flexibility up and down), the censored distributional parameters be-

come E[ε1
s,s+1 |ω1

1, α1
1] = −0.0188, E[ε1

s,s+2 |ω1
2, α1

2] = −0.0726, Var(ε1
s,s+1 |ω1

1, α1
1) =

0.6791, Var(ε1
s,s+2 |ω1

2, α1
2) = 1.446, and Cov(ε1

s,s+1, ε1
s,s+2 | ω1

1, α1
1, ω1

2, α1
2) = 0.0479.

For each update variable, the degree of censoring from above is greater than that of

from below because of the logarithmic transformation [cf. Eq. 3.13]. Hence, censored

mean turns out to be smaller than the mean of the original one. This is also caused

by the existence of positive correlation of 0.8 between ε̃1
s,s+1 and ε̃1

s,s+2. The censoring

of ε̃1
s,s+1 pushes the distribution of ε̃1

s,s+2 to the left. In general, the censored mean

is pushed in the opposite direction of the correlation if the degree of censoring from

above is greater than that of from below, and in the opposite direction if otherwise.

Finally, censoring reduces the variance compared with the variance in the uncensored

distribution.

Consequently, we have characterized the implications of the contract flexibility

limits (Wb, Ab) on the multiplicative MMFE model. We represented the censored

mean and the censored variance in terms of the first two moments for the distribution

of intended commitment updates and the flexibility limits (Wb, Ab). These param-

eters will be used as regularity measures in probability modeling of the stochastic
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framework under QF contracts. The following sections will discuss how we calculate

the joint probabilities of unknown distributional form.

3.2 Probability Modeling of the Stochastic Framework under QF

Contracts

Having modeled the probabilistic evolution of order commitments under QF contracts,

we now need to determine the probabilities of possible values that the order commit-

ments and realized orders may assume in the future. These will be necessary to

calculate performance and risk estimates with satisfactory accuracy for the problem

at hand.

The evolution model describes how the available order commitments db
s,s+k

evolve as new information becomes available in time. This implies a conditional rela-

tionship as a necessary result. This conditional relationship says that the manufacturer

can forecast any order quantity to be received in the future in terms of its latest es-

timate and successive random commitment updates (to be made for that particular

quantity). More specifically, given the latest order commitment db
s,s+k, order realiza-

tion to be received from buyer b in period s + k, Db
s+k,s+k, can be forecasted by the

multiplicative evolution model as

Db
s+k,s+k = db

s,s+k e(εb
s+1,k+εb

s+2,k−1+ ... +εb
s+k,1), (3.18)

for k = 1, 2, . . . , H. In (3.18) we call the sum of k successive random commitment

updates, given in the term e(· ), the cumulative commitment update over k periods.

Note that H represents the length of the commitment horizon for which nontrivial

order information are available to the manufacturer. On the other hand, for the

periods beyond the commitment horizon H the mean realized order size serves as an

implicit early order information. Thus, more generally, we can characterize the order

realization in period s + k for k > H as

Db
s+k,s+k = µDb e(εb

s+k−H,H+1+εb
s+k−H+1,H+ ... +εb

s+k,1), (3.19)

where µDb denotes the expected value of the realized orders from buyer b. This repre-

sentation involves random cumulative commitment update over the (H + 1) periods,
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independent of k. The conditional probabilities play a central role in these relation-

ships. Possible values of the random variable Db
s+k,s+k are conditioned on the latest

order commitment db
s,s+k in (3.18) since a buyer operating under a QF contract is

ultimately required to restrict her orders to be within the range defined by contract

flexibility limits.

The trouble with (3.19) is to evaluate the probabilities of Db
s+k,s+k since it is

a function of H + 1 random variables each interval censored and jointly from a mul-

tivariate Normal distribution, namely zEs
(· |Wb, Ab). Figure 3.3 helps to see the

correlation structure inherent in buyer orders through time. It shows how Db
s,s and

Db
s+1,s+1 are correlated as they include commitment updates from the same update

vector (for instance, εb
s,1 and εb

s,2 are from the vector Eb
s the components of which are

known to be correlated). The further out the orders from each other, the smaller the

number of commitment updates from the same update vector (since update coeffi-

cients of further periods occur in less of earlier commitment terms). The commonality

vanishes at lags greater than H. Note that orders are correlated across buyers as well,

as commitment updates submitted from different buyers at the same period are not

independent.

correlated

components

correlated

components

correlated

components

Figure 3.3: Illustration of the correlation structure in buyer orders

It is not straightforward to establish such a multivariate distribution, particularly for

high dimensional problems. A true mathematical form for the multivariate distribu-
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tion zEs
(· |Wb, Ab) is complicated, since it is not clear how censored commitment

updates should be included jointly in a distributional form. The main difficulty is

due to the fact that the additive reproductive property of Normal distribution is not

preserved under censoring, implying that a sum of censored normals does not lead to

a known distributional form.

One immediate but not necessarily accurate solution would be to follow the

central limit theorem for sums of random commitment updates. The central limit

theorem in our case simply would suggest that the realized order Db
s+k,s+k has an

interval censored Lognormal distribution with censoring points being equal to cumu-

lative lower and upper limits, namely
H∏

j=1
(1 − ωb

j) and
H∏

j=1
(1− αb

j). The central limit

theorem has been studied intensively in probability theory. In the literature some

techniques are available for establishing the accuracy of approximation in the central

limit theorem (Greene 2000). They are out of the scope of this research. There,

however, are several observations that should be made. The use of the central limit

theorem provides a close approximation only under certain conditions in our case. (i)

The first condition states that one would achieve a close approximation only if the

degree of censoring for the associated distributions are small. This corresponds to

relatively loose flexibility limits, which is not always the case in practice. (ii) The

second condition requires that the random commitment updates, taken individually,

contribute a nearly equal amount to the variance of the sum. This is closely related

to how total commitment variability resolves as the system evolves from one period to

the next. If most uncertainty is not resolved until a few of periods in advance, then it

is likely that a single commitment update just before the period of order realization

makes a large contribution to the eventual sum. Thus one would not expect to produce

adequate accuracy using the Normal distribution to approximate the distribution of

cumulative commitment updates.

This motivates the interest in empirical methods to get reasonably accurate

approximations to the distribution of cumulative commitment updates. Rather than

fitting a smooth functional distribution form, one can use an empirical distribution.

This may represent a finite set of possible values that a random variable may assume

in the future. The issue, however, is to develop a reasonably accurate approximation

for the unknown distributional form. A good approximation in our case should ac-

commodate three main aspects of the problem that we study. (i) The probabilities
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that are generated by the approximation method should reflect the existence of the

contract flexibility limits. That is, it should preserve the censored nature of the ran-

dom variables. (ii) Since underlying structures for the first and second moments are

known in advance, the approximation method should suggest those probabilities which

best fit this structure. (iii) Finally, a good approximation method should be able to

accommodate the correlation structure inherent in the historical order commitments

across buyers and in time. This requires sufficiently large volume of sample data. If

this had not been the case, then estimating so many probabilities is bound to lead to

inaccuracies, and all conclusions concerning the problem at hand would become less

reliable.

In order to develop an empirical method to approximate the distribution of cu-

mulative commitment updates we suggest a two-step approach. As a first step, we will

develop a new modeling framework for cumulative commitment updates. We consider

Markovian structure with discretized state-space model, which substantially helps in

understanding the problem of interest. Markovian structure in general provides a

well-understood conceptual framework in which many complex stochastic problems

fit. The main attractiveness of Markov models, besides flexibility, lies in analytical

tractability. They are simple enough to allow mathematical analysis, complex enough

to adequately mirror the behavior of the underlying process. Markovian structure is

not only capable of capturing the correlation structure in the evolution, but it is also

scalable to allow analysis using well-known techniques.

In the second step, we will represent the problem of estimating the transition

probabilities of this Markovian structure as an optimization problem. This optimiza-

tion problem suggests the transition probabilities of the Markovian structure, which

maximizes the goodness-of-fit to observations under certain regularity conditions. As a

result, these conditional probabilities will yield the probability function of cumulative

commitment updates.

3.3 Markov Chain Representation of Cumulative Update Process

In this section we take the first step in developing our empirical approach for approxi-

mating the probabilities of cumulative commitment updates, when they are restricted
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to be within the range defined by the contract flexibility limits. Attention is here

given to the MMFE representation of realized orders as in (3.18), which allows use of

random cumulative commitment updates in describing the uncertainty in the order

realizations. Specifically, we are interested in the chance of realizing particular values

for (εb
s+k−H,H+1 + εb

s+k−H+1,H + · · · + εb
s+k,1) in order to approximate the discrete

probabilities for specific Db
s+k,s+k occurrences.

This modeling contribution addresses a stochastic process which accumulates

random commitment updates to be made successively for a given future period. Note

that the manufacturer serves B distinct contract buyers and all buyers make their

commitment updates simultaneously in any period. Thus, we model B dependent

commitment update processes occurring simultaneously in the environment as a mul-

tivariate stochastic process. The resulting process is called the multivariate cumulative

update process.

Suppose we need a cumulative commitment update over k periods into the

future, k = 1, 2, . . . , H + 1. We observe the state of the associated multivariate

cumulative update process at discrete points in time labeled j = 1, 2, . . . , k. Let

(U1
j , U2

j , . . . , UB
j ) denote the state of the process at time j 2. More precisely, for

period s taken as the present, it accumulates the random variables εb
s+1,k, εb

s+2,k−1,

. . . , εb
s+k,1 moving backward over the time interval [s + 1, s + k],

U b
1 = εb

s+k,1 and

U b
j = εb

s+k,1 + εb
s+k−1,2 + · · ·+ εb

s+k−j+1,j

= U b
j−1 + εb

s+k−j+1,j , (3.20)

for j = 2, 3, . . . , k. Figure 3.4 helps in understanding the accumulation of commit-

ment updates to form U b
k.

2 Note that Ub
j does not depend on s, hence we drop the subscript in what follows, since the

vector sequence {Es, s > 1} forms a stationary stochastic process due to Assumption 3.3. This
also constitutes the reason for only one multivariate cumulative update process being sufficient to
approximate the probabilities of Db

s+k,s+k.
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Figure 3.4: Accumulation of commitment updates over a k-period horizon

The equations (3.18) and (3.19) can now be given by Db
s+k,s+k = db

s,s+k eUb
k and

Db
s+k,s+k = µDb eUb

H+1 , respectively. The random variable U b
k represents the sum

of logarithmic changes in successive order commitments submitted by buyer b over

the following k-period time interval. The allowable range of U b
k values, for all k =

1, 2, . . . , H, is given by 3

U b
k ∈




k∑

j=1

ln(1− ωb
j),

k∑

j=1

ln(1 + αb
j)


 , (3.21)

where the interval bounds are defined by the contract flexibility limits and become

looser as k moves from 1 to H.

The multivariate cumulative update process
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}

has the characteristics required by the Markovian property. A Markov process is a

state-space model which allows the next progression to be determined only by the

current state and not by previous states. Assumption 3.3 given in §3.1 implies that

the process
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
has the property that its future evo-

lution is conditionally independent of its past provided that the present is known.

However the process itself consists of states related with correlated transitions. The

probability distribution of the states at successive epochs is dependent on the pre-

ceding steps in the Markovian sense. The multivariate cumulative update process
3 For k = H + 1 we do not have any flexibility limits stipulated in the QF contract since this is

not an update over a previous commitment.
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{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
can be represented as a discrete-time multivariate

Markov process with a joint transition probability matrix.

Every U b
k is a continuous random variable taking values in the interval (3.21).

However, the multivariate Markov process
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
is assumed

to be a discrete state-space model. Discrete state-space representation is expected to

reduce the amount of data while predictive accuracy is at the analyst’s discretion. The

associated probability distribution functions are then defined over a finite number of

possible discretized states. We will approximate every continuous random variable

U b
k, k = 1, 2, . . . , H +1 by discretization. In the overall, we are interested in the pro-

cess of discretizing B(H + 1) jointly continuous variables. Determining the method

of discretization, however, involves a trade-off between speed and accuracy. We thus

make univariate discretization for the sake of efficiency, whereby we discretize one con-

tinuous variable at a time, although it would be more accurate to consider multiple

variables simultaneously.

Suppose this is performed by dividing the range of every U b
k independently into

a specified number of disjoint intervals. We adapt equal-width method where the con-

tinuous range of the variable is evenly divided into disjoint equal-width sub-intervals.

Although equal-width method is simple and easy to implement, its accuracy would

worsen as the distribution of the continuous variable deviates from the uniformity.

Fortunately, since the distributions of U b
k’s are interval censored, we do not observe

the adverse effects of the tail-mass or even the outliers on the resultant accuracy.

The number of disjoint sub-intervals in discretization is arbitrarily specified to

be M since we usually do not know what a proper value M is. The width of these

sub-intervals is a function of M and the range of the continuous variable of interest.

As the discretization becomes finer; that is, as M increases, the evaluations of the

discretized problem converge to those of the continuous problem, but comes with a

serious computational burden. A very low M , on the other hand, may affect predic-

tive accuracy negatively. Then, the ultimate goal is to identify a finer grid of points

that provides adequate predictive accuracy not causing impractical computational re-

quirements. Let ℵb
k denote the set of discrete states corresponding to U b

k, labeled

1, 2, . . . , M . The state space representation is complicated as the range of continuous

variable U b
k becomes wider as k increases from 1 to H +1. States represent continuous

values in wider sub-intervals as k gets larger. Suppose ℵb
k,m is the midpoint value
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of the sub-interval for the state m, with the exception for the first and final states

which represent the lower and upper censoring points, respectively. Figure 3.5 helps

in understanding our discretization.

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

state label

1

2 3 4 M-1

M

Kstate label

1

2 3 4 M-1

M

K

true density

Figure 3.5: Illustration for the discretization of an interval censored random variable

Suppose that at time instant j the multivariate Markov chain
{
(U1

k , . . . , UB
k ),

1 6 k 6 H + 1} is in some state (m1, . . . , mB), mb ∈ ℵb
j . At the next time instant

j + 1, there occurs a transition to another state (n1, . . . , nB), nb ∈ ℵb
j+1 with the

probability

Pr{U1
j+1 = n1, . . . , UB

j+1 = nB | U1
j = m1, . . . , UB

j = mB },

which is the one-step (joint) transition probability for the multivariate Markov chain.

Although the possible transitions are clear, the probability law relating the next pe-

riod’s state to the current state does not remain stationary over time, leading to the

transition probabilities dependent on k. This is due to the following: (1) commitment

update correlations through time instant k = 1, 2, . . . , H +1 exist in the environment

(i.e., correlated transitions among states); and (2) M discrete states in state space

ℵb
j correspond to different state values as j changes. Thus the joint transition prob-

abilities for the multivariate Markov chain should be time-nonhomogeneous. More

generally, we define JTPj,k to be the (k− j)-step joint transition probability matrix.

We can use Chapman-Kolmogorov relations to show that the (k − j)-step transition
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probabilities are obtained by matrix multiplication. When B = 2 one can represent

JTPj,k as follows.

JTPj,k = [ Pr{U1
k = n1, U2

k = n2 | U1
j = m1, U2

j = m2 } ] mb∈ℵb
j , nb∈ℵb

k

(ℵ1
k,1,ℵ2

k,1) . . . (ℵ1
k,1,ℵ2

k,M ) (ℵ1
j,2,ℵ2

j,1) . . . . . . (ℵ1
k,M ,ℵ2

k,M )

(ℵ1
j,1,ℵ2

j,1)

..

.

= (ℵ1
j,1,ℵ2

j,M )

(ℵ1
j,2,ℵ2

j,1)

.

..

..

.

(ℵ1
j,M ,ℵ2

j,M )







.

The size of the joint transition probability matrix is given by MB × MB, in gen-

eral. The model framework of the multivariate Markov chain also requires us to

define Pr{U1
1 = m1, . . . , UB

1 = mB } to be the probability that the chain is in state

(m1, . . . , mB) at time k = 1. We call the 1×MB vector JP1 the initial probability

distribution of the multivariate Markov chain

JP1 = [ Pr{U1
1 = m1, . . . , UB

1 = mB } ] mb∈ℵb
1
.

If we know the initial distribution JP1 and the conditional probabilities JTPj,k

for all j < k, the other joint probabilities JPk is computable in terms of JP1 and

JTPj,k. This is sufficient to describe the multivariate Markov chain model of cumula-

tive commitment updates. These can be used to derive all the important characteris-

tics of this Markov chain. In principle, we do not need the limiting state probabilities.

The target is simply an (k − 1)-step joint transition matrix. Hence a trivial matrix

multiplication yields the desired outcome. That is, we are interested in the the se-

quence of joint transition probability matrices JTP1,2, JTP2,3, . . . , JTPk−1,k and

the final joint probabilities sought are given by

JPk = JP1 JTP1,2 JTP2,3 . . . JTPk−1,k

= JP1 JTP1,k.

A typical problem in the application of Markov models is the estimation of the tran-

sition probabilities. The transition matrices and final joint probabilities for our mul-

tivariate Markov chain are the unknowns. This poses the problem of accommodating
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the distributional characteristics of the problem, since it is not clear how informa-

tion contained in the censored values of the variables should be utilized and how the

underlying correlation structure (across buyers and in time) can be imposed in the es-

timation. In the next section we shall deal with this problem. This will be attacked by

a nonlinear optimization problem that models the transition probabilities of the mul-

tivariate Markov chain to maximize the goodness-of-fit to observations under certain

regularity constraints.

3.4 Estimating the Probabilities of Cumulative Update Process

Having discussed the stochastic process for the cumulative commitment updates and

represented its stochastic behavior as a discrete-time multivariate Markov chain, we

are now ready to estimate parameters of this Markovian representation. This amounts

to determining reasonably accurate approximations to the transition probabilities as

it operates under QF contracts.

A typical problem in the application of Markov models is the estimation of the

transition probabilities between the states. Various methods have been proposed in

the literature for dealing with this estimation problem. A common approach in the lit-

erature is to estimate the transition probabilities from a sampled data while assuming

that this sample of observations follows a known probability distribution. Its perfor-

mance depends on how well the presumed distributional form predicts the population.

The estimation performance is often poor, particularly for high dimensional problems

with limited sampling. The problem becomes even more important for our Markovian

representation. This is because it is not clear how to specify an appropriate mathe-

matical form to be assumed for the multivariate distribution, as the censored nature

of distributions complicates the multivariate structure. Instead, this section will in-

troduce an optimization procedure to estimate the transition probabilities between

the states of the multivariate Markov chain
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
.
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3.4.1 Optimization procedure for estimating transition probabilities

The optimization procedure that we will introduce is a general method of inference

about an unknown probability distribution when there exists a prior sample estimate

of the density and information on some distributional parameters. More specifically,

we formulate our problem of estimating the transition probabilities between the states

of the multivariate Markov chain
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
as a problem of de-

termining the unknown transition probabilities which deviates to a minimal degree (in

the statistically acceptable sense) from the sample frequencies observed in the prob-

lem environment. In addition these will be certain problem-specific constraints derived

from some other sample statistics.

The observations made in the problem environment are the periodical order

commitments and the eventual realized orders from the buyers. Suppose some histor-

ical data for the order commitments, collected over a sufficiently long period of time,

is made available to the manufacturer. A sample of observations on the transitions of

the process
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
can then be recovered from this data, by

applying the MMFE structure. We have restricted attention to the cases where the

state space of the process
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
is discrete. Discretizing

continuous ranges of commitment updates directly is critical for the decision prob-

lems that will be analyzed in this research. The reason for discretization is that our

solution procedure will be enumerative. The probabilistic framework of order com-

mitments can benefit from discretization as the amount of data is reduced through

discretization without sacrificing much of the predictive accuracy. We have introduced

a simple discretization already in the previous section. Therein, we divided the con-

tinuous range of every U b
k into M categories. Each observed sample of commitment

updates is then classified into one of the M categories, and the respective observed

frequencies of these M categories are calculated.

We are now in a situation where we have the observed frequencies of various

categories but the systematic frequencies from a distributional model yielding those

categories are not known. The quantifications (decisions) to be made in our optimiza-

tion procedure to estimate the transition probabilities of the multivariate Markov chain
{
(U1

k , . . . , UB
k ), 1 6 k 6 H + 1

}
will suggest (indirectly) these unknown frequencies.

We define the feasible region to be the set of unknown resulting frequencies (in M
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categories) that satisfy certain regularity constraints. Thus, we must infer whether

the observed frequencies of sampled data in each category differ significantly from the

estimated frequencies. This requires us to pose a goodness-of-fit for any candidate

feasible solution as a measure of performance.

An optimal solution will be a point in the feasible region with the largest

goodness-of-fit. Consequently, there is a need to specify an appropriate measure of

goodness-of-fit statistic to summarize how well the estimated frequencies of M cate-

gories in the feasible region fit the sample values observed in the problem environment.

We consider a log-likelihood-ratio type statistic, namely the G-statistic, to compare

the sample and estimates for the unknown model distributions (see Kendall and Stuart

1979). The G-statistic is closely related to the logarithmic-based information theory

and entropy measures, and the Chi-square statistics provide adequate approximations

of the log-likelihood ratio. The formula for computing the G-statistic value is

G = 2
M∑
m

Om ln(Om/Em), (3.22)

where m = {1, 2, . . . , M} is index on the number of discrete categories, Om is sample

frequency observed in category m, and Em is estimate for frequency from an unknown

distribution for the same category. The G-statistic will indicate the probability that

the observed frequencies in the problem environment result from random sampling

drawn from a distribution with the estimated frequencies. The higher the value, the

lower the probability that the observed and estimated frequencies come from the same

population.

In our optimization procedure, the overall problem is decomposed into smaller

problems, each dealing with numerical estimation of an individual one-period joint

transition matrix. This is because the conditional probabilities of making a transi-

tion to the next period’s state are dependent on the current period, leading to time-

nonhomogeneous conditional probabilities. Thus we will have a sequence of H opti-

mization programs to be solved successively for JTP1,2, JTP2,3, . . . , and JTPH,H+1

(each is referred to as GOFk−1 for a particular k = 2, 3, . . . , H + 1, given an initial

joint probability function JPk−1). Figure 3.6 illustrates the successive nature of our

optimization procedure when B = 1.
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Figure 3.6: Optimization procedure

Initially we have MB discrete states of (ε1
1, . . . , εB

1 ) and their joint probabilities in

the form of JP1 row vector. Each element corresponds to a combination of εb
1’s,

b = 1, 2 . . . , B. We solve GOF1 and for each choice of (ε1
1, . . . , εB

1 ) find discrete

states and probabilities of (U1
2 , . . . , UB

2 ) where U b
2 = εb

1 + εb
2, ∀ b. Then we solve

GOF2 and for each choice of (U1
2 , . . . , UB

2 ) (being obtained as a result of optimizing

GOF1) find discrete states and probabilities of (U1
3 , . . . , UB

3 ), and so on. This proce-

dure is repeated when changing the flexibility limits in the experimental analysis that

will be mentioned in Chapter 7. The generic optimization model GOFk−1, for a partic-

ular transition from k−1 to k, k = 2, 3, . . . , H+1, can then be constructed as follows:

Optimization model GOFk−1:

The input parameters of the model GOFk−1 can be defined as:

• (Wb, Ab), the set of lower and upper flexibility limits for each buyer b, given

by {(ωb
k, αb

k), k = 1, 2, . . . , H},

• M , the number of distinct categories assumed in discretizing the continuous

range of variables such that m ∈ {1, 2, . . . , M},

• ℵb
k, the set of compacted discrete states that the cumulative commitment update

U b
k may take, labeled m ∈ {1, 2, . . . , M}. The set bounds are defined in terms

of the contract flexibility limits (Wb, Ab),

• JPk−1, the joint probability mass function of (U1
k−1, . . . , UB

k−1) in each of MB
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categories. When k − 1 = 1, it represents the initial state of the Markov chain.

Otherwise, it is the output of previous optimization GOFk−2,

• T , the number of periods over which historical observations on time-series of

order commitments ds are available for use in quantifying the observed frequen-

cies,

• JPobs
k , the vector of joint frequencies observed in each of MB categories from a

sample of size T ,

• µobs
E , the 1×B(H + 1) censored mean vector of Es, conditioned on the value of

(Wb, Ab) and estimated from a sample of size T , [cf. §3.1.4]

• Σobs
E , the B(H + 1)×B(H + 1) censored variance-covariance matrix of Es, con-

ditioned on the value of (Wb, Ab) and estimated from a sample of size T , [cf.

§3.1.4]

• (Tµ, Tσ), the set of error tolerances allowed in setting the mean and covariance

values.

The decision variables of the optimization model GOFk−1 can be defined as:

• JTPk−1,k, the one-step joint transition probability matrix from state (U1
k−1, . . . ,

UB
k−1) to state (U1

k , . . . UB
k ).

The resultant variables of the optimization model GOFk−1 are

• JPk, the vector for joint probability mass function of (U1
k , . . . , UB

k ), obtained by

vector-matrix product JPk−1JTPk−1,k,

• fUb
k
(· |Wb, Ab), which is the probabilities of U b

k in each of M categories, given

in terms of JPk,

• µE , which is the 1 × B(H + 1) censored mean vector of Es that is calculated

in terms of model parameters and decision variables within the specified error

tolerance Tµ,
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• ΣE , which is the B(H + 1) × B(H + 1) censored variance-covariance matrix of

Es that is calculated in terms of model parameters and decision variables within

the specified error tolerance Tσ.

The model GOFk−1 (for a particular transition from k− 1 to k, k = 2, 3, . . . , H + 1)

with some constraints expressed in definitional form is defined as follows:

Minimize
∑

m1∈ℵ1
k

. . .
∑

mB∈ℵB
k

JPobs
k (m1, . . . , mB) ln

(
JPobs

k (m1,...,mB)

JPk(m1,...,mB)

)
(3.23)

subject to

row sum of JTPk−1,k = 1 ∀ b and mb ∈ ℵb
k−1 (3.24)

JPk = JPk−1 JTPk−1,k ∀ b and mb ∈ ℵb
k (3.25)

∑
m1∈ℵ1

k

. . .
∑

mB∈ℵB
k

JPk(m1, . . . , mB) = 1 (3.26)

fUb
k
(nb |Wb, Ab) =

∑
m1∈ℵ1

k

. . .
∑

mB∈ℵB
k

JPk(m1, . . . , nb, . . . , mB)

∀ b and nb ∈ ℵb
k (3.27)

JTPk−1,k and JPk > 0 (3.28)

µεb
k

=
∑

m∈ℵb
k

m fεb
k
(m |Wb, Ab) ∀ b (3.29)

σεb
k,εr

l
= a function of JPk ∀ b and r (3.30)

ΣE forms a positive semi-definite matrix (3.31)

| µobs
εb
k

− µεb
k
| ≤ Tµ ∀ b (3.32)

| σobs
εb
k,εr

l

− σεb
k,εr

l
| ≤ Tσ ∀ b and r (3.33)

The objective function (3.23) minimizes the G-statistic and thus strengthens

the significance of the statistical conformance. Such a model fit to observed data

inevitably faces a very ample degrees of freedom. A natural question to be raised at

this point is how we ensure a feasible solution in this model. The model incorporates

two main leverages allowing us to ensure ”tighter” feasibility: (i) the specified error

tolerances used in calculating the distributional parameters and (ii) the regularity

constraints imposed on the parameters. The error tolerances are small being specified

as Tµ = 0.01 and Tσ = 0.001. The regularity constraints in the numerical estimation

process allow us to attain reasonable freedom of adjustment. Especially, we check
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whether the correlation structure inherent in the data set is appropriately modeled by

any feasible solution.

Constrain set (3.24), involving MB individual constraints, ensure that every

row-wise sum of joint transition probability matrix JTPk−1,k will be unity. MB defini-

tional constraints in (3.25) compute the joint probability mass function of (U1
k , . . . , UB

k )

in terms of decision variable JTPk−1,k and input parameter JPk−1. A single con-

straint (3.26) ensures that the sum of probabilities in joint probability mass function

JPk is made equal to 1. Each of MBk constraints (3.27) compute the marginal

probability mass function of U b
k by summing JPk out the other buyers for each of

M categories. Constraints (3.28) are for the nonnegativity of probabilities. B defini-

tional constraints (3.29) compute the censored means of commitment update vectors in

terms of the resultant probabilities fεb
k
(· |Wb, Ab). Nonlinear constraints (3.30) com-

pute the censored variance-covariance matrix of commitment update vectors. Nonlin-

ear constraints (3.31) ensure the positive semi-definiteness of the computed variance-

covariance matrix. Constraints (3.32) to (3.33) ensure that the absolute deviations in

calculating the means and covariances are within the specified error tolerances 4.

3.4.2 Testing goodness-of-fit of the optimal solutions

We use goodness-of-fit tests to summarize how well the optimal solutions to our non-

linear optimization models fit the relevant observations. A test of goodness-of-fit

establishes whether or not an observed frequency distribution differs from a postu-

lated distribution. We consider a log-likelihood-ratio type test, namely the G-test, for

testing the hypothesis

H0 : The observed frequencies in the problem environment result from random sam-

pling from a distribution with the estimated frequencies obtained as a result of

optimizing GOFk−1.

G-test is chosen over the more traditional Chi-square test due to several rea-

sons 5. First, although the Chi-square test is the most widely used of the goodness-

of-fit tests which may be used with discrete data, its use with small sample size is
4 The objective function may also minimize the maximum absolute deviations between the esti-

mated and observed mean and covariance values.
5 There are also other goodness-of-fit tests designed for specific discrete distributions, namely the

multinomial, the discrete Kolmogorov-Smirnov, and Anderson-Darling tests (Law and Kelton 2000).
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disputable. The main problem that we face in using the Chi-square test is the choice

of the value M and the size of the continuous sub-intervals these M categories rep-

resent. This is because the Chi-square test will not be acceptable if the estimated

frequencies are too low (i.e., when more than 10% of the categories have estimated

frequencies below 5) 6. Second, the approximation to the Chi-square distribution

for the G-statistic would be better than for the Chi-square statistic in cases where

the deviation of observed frequencies against estimated frequencies is greater than

the value of estimated frequency in any category m. The G-test statistic is approxi-

mately Chi-square distributed, with the same number of degrees of freedom as in the

corresponding Chi-square test. It has the utility of being fairly close to Chi-square

distributed even at quite restricted sample sizes. In practice, they are only asymp-

totically equivalent. Algebraically, the Chi-square statistic is a second order Taylor

approximation of the G-statistic (see Loukas and Kemp 1986 and Greene 2000).

Since the test is based on the deviation of the estimated model frequencies from

the observed frequencies, it rejects the hypothesis H0 for large values of the objective

function. The objective function value is an approximate statistic value anyway, and

it is the general order of magnitude one should be concerned with, and not a rigorous

test to see if the statistic passes a critical threshold for a certain significance level.

If the goodness-of-fit turns out to be unacceptable for any discretized data interval,

we can modify the discretization specifically for that interval by creating a finer grid.

This resolved model leads to an improved goodness-of-fit. One may continue in this

manner up to a point when the hypothesis is not rejected and it can be concluded

that the estimates are adequate.

3.5 An Example of the Computational Process

We have, so far, discussed the probabilistic framework in somewhat abstract terms.

This section illustrates those ideas with a concrete example for a specific industry case

with real data.

6 A better approximation can be obtained by some corrections which avoid overestimation of
statistical significance for small data.

54



3.5.1 Solving the nonlinear optimization model

The nonlinear constrained optimization problems, given in (3.23)-(3.33) in §3.4, was

coded using the GAMS distribution 22.2 and solved using the CONOPT3 nonlinear

programming algorithm, which seems to be well suited for the type of model at hand.

The algorithm attempts to find a local optimum. Determining the solution algorithm

is of great importance for nonlinear models. CONOPT3 is particularly well suited

for models with a large degree of nonlinearity where one experiences the problem of

maintaining feasibility during the optimization. It has been designed to be efficient

and reliable for large and sparse models where both the number of variables and

equations can be large. CONOPT3 will take advantage of the presence of definitional

constraints in our nonlinear programs where many equations can be solved one by one,

since CONOPT3 has a preprocessing step in which recursive equations and variables

are solved and removed from the model. Some specific issues on the solution of the

nonlinear models GOFk−1 are mentioned in Appendix B.

3.5.2 Numerical results

We use the company data provided in Kayhan et al. (2005) for a fast-moving consumer

goods company. The basic setting that they studied is as follows. The operating

environment is an integrated manufacturer-buyer system with capacity restrictions

and correlated stochastic demands for multiple products. The buyer publishes demand

forecasts for a number of future periods on a rolling horizon basis, for which the

manufacturer plans its production activities. The forecasting environment is a general

one involving both statistical and judgmental forecasting. The production-inventory

system is governed by a set of corporate rules, which can be thought as a simple

preliminary supply contract. These corporate rules require the forecasts to be updated

within the agreed-upon percent revision limits. The company data is a collection of

historical forecasts and demand realizations that acquired over a past T = 125-period

horizon. They are for a particular set of products, which are sold through two main

distribution channels with varying production and marketing requirements. They

model the time series of forecasts and demands as a multiplicative forecast evolution

process through the MMFE technique, intending to come up with a better explanation
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of the demand structure.

In the discussion that follows, we assume the case where B = 2 and H = 2. 7

Buyers in this setting can be thought as different products in Kayhan et al. (2005)

with different distribution channels but being produced on the same production line.

For this particular case, the vector of historical order commitments available at the

beginning of period s = 1, 2, . . . , T = 125 is represented by ds = [db
s , ∀ b ∈ {1, 2, } ]

where

db
s = [db

s−1,s−1, db
s−1,s, db

s−1,s+1, µDb , µDb , . . . ],

where db
s−1,s−1 is the realized order from buyer b in period s − 1, and db

s−1,s+k is

the order commitment for the amount to be ordered in period s + k − 1, k = 1, 2.

The corporate rules require buyer b to update her order commitments subject to the

following lower and upper percent revision limits 8

(Wb, Ab) = {(ωb
k, αb

k), k = 1, 2} = {(0.15, 0.15), (0.30, 0.30)}.

We first provide the MMFE fitting process for the company data and discuss

its implications. The main focus here is in estimating the variance-covariance matrix

of the commitment update vectors Es from this company data. This enables the man-

ufacturer to distill historical data on orders into useful information on the important

characteristics of the information process behind this forecast evolution model, namely

the estimated variance-covariance matrix of commitment updates. In the MMFE fit-

ting process we took the following steps: (1) calculate commitment update vectors;

(2) eliminate forecasting biases; (3) validate the MMFE assumptions; (4) estimate the

variance-covariance matrix of the commitment update vectors. Details of the steps

are given briefly as follows:

Step-1: Calculate commitment update vectors

From the historical data on order commitments covering T = 125 periods, we calcu-

lated the sequence of commitment update vectors Es using the multiplicative evolution

equation (3.2). The vector of historical commitment updates available at the end of
7 We assume a two-period commitment horizon, for expository convenience, although the company

data is available for a longer horizon length.
8 The company data actually accommodates the case that the revision limits are violated in the

case of unexpected demand conditions. So, for the purposes of our research we first modify the data
to conform to censored nature of the distributions.
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period s = 1, 2, . . . , 125 is represented by Es = [Eb
s , ∀ b ∈ {1, 2, } ] where

Eb
s = [εb

s,1, εb
s,2, εb

s,3, 1, 1, . . . ], (3.34)

where εb
s,k is the random variable denoting the multiplicative update for the amount

to be ordered in period s+k−1, k = 1, 2, 3, and εb
s,3 is the update from µDb to db

s,s+2.

By analyzing these vector values we can obtain a general picture of the evolution

characteristics of the underlying forecasting system.

Step-2: Eliminate forecasting biases

Estimation biases inherent in the order commitments, which may be induced by incor-

rect information or some inherent forecasting behavior, are investigated. If forecasts

are unbiased estimates of demand then there is no systematic tendency to either un-

derestimate or overestimate the true value of the demand. We assessed the estimation

biases by statistically testing the expected value of prediction error. We observed

that 2-step ahead order commitments appear to be generally almost 7% higher than

realized orders. This upward bias, hence, was eliminated by adjusting all the histor-

ical order commitment values by the scaling value of (100/107) before being used in

further calculations. Analysis regarding forecasting bias reflects the predictive per-

formance of the forecasting system considered. Analyzing the systematic errors and

making adjustments to obtain unbiased order commitments is critical for the purposes

of estimating a variance-covariance matrix of Es that is based only on random fluc-

tuations. Subsequently, the censored mean of εb
s,k for every b, k, conditioned on the

value of (Wb, Ab), turns out to be

µE =


 µε1

k
, ∀k ∈ {1, 2, 3}

µε2
k
, ∀k ∈ {1, 2, 3}


 =


 −0.10032 −0.10218 −0.11247

−0.15006 −0.15887 −0.16580


 .

Step-3: Validate the MMFE assumptions

The MMFE technique under revision limits produces a model where the commitment

update vectors Es through time form independent, identically distributed multivari-

ate censored Normal vectors with mean zero. This requires {Es, s > 1} to form a

stationary stochastic process.

When data are censored, the standard distributional tests do not apply to test-

ing normality. To check the normality assumption we perform modified Kolmogorov-
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Smirnov (K-S) tests with the significance level of 0.05 (Barr and Davidson 1973). The

K-S tests indicated that in all but one case the data was most likely consistent with

the normality assumption. The degree of violation for that case was not too significant

(p-values for that case is 0.048) and hence they were assumed to be normal. The inde-

pendence assumption in fitting an MMFE is made to specify a model where forecast

updates are not predictable using the past data. To test the independence assumption

we calculated autocorrelation and partial autocorrelation functions for commitment

update variates. The correlation analysis indicated that the independence assumption

was not violated.

Step-4: Estimate the variance-covariance matrix of Es vectors

The censored variance-covariance matrix ΣE for the distribution of commitment up-

dates Es was estimated from the historical data conditioned on the value of (Wb, Ab)

using moment estimators as

ε1
1 ε1

2 ε1
3 ε2

1 ε2
2 ε2

3

ΣE =

ε1
1

ε1
2

ε1
3

ε2
1

ε2
2

ε2
3




0.30011 0.00103 −0.00859 0.19246 0.00012 0.00023

0.00121 −0.00009 0.00032 0.00140 0.00019

0.03028 0.00009 0.00016 0.00832

0.20064 0.00254 0.00017

0.00372 −0.00189

0.02057




,

Dimensionality of the matrix depends on the number of buyers considered, B, and

the length of the commitment horizon used, H. Since the number of historical com-

mitment update vectors available is 125 (= T ), we have a 125× 6 data matrix. As a

result, we have a 6×6(= 2×3) variance-covariance matrix of the 125×6 data matrix.

Note that with more historical data one can estimate the variance-covariance matrix

more accurately. When the dimensionality of the variance-covariance matrix is large

compared to the sample size of the data, it will result in fewer degrees of freedom.

We should note that using the variances for all k ∈ {1, 2, 3} for a particular buyer b

the percentages of total order commitment variability that is resolved as the system

evolves from one period to the next period are calculated. As can be observed from

the variance-covariance matrix, a significant proportion of total order commitment

variability is not resolved until the period of realization. In other words, there exists

a considerable amount of prediction error in the system. This observation reflects
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the performance of the forecasting system (or the accuracy of the order commitments

provided by the buyers) and indicates that the manufacturer will not be able to effec-

tively respond to demand variability without holding significant amount of stock.

The finite Markovian representation of the cumulative update process
{
(U1

k , U2
k ),

1 6 k 6 2} involves two joint transition probability matrices JTP1,2 and JTP2,3 and

hence joint probability mass functions JP2 and JP3 are to be estimated. We assumed

to discretize the continuous range of every commitment update into M = 10 distinct

categories. In the resulting optimization procedure, we have two nonlinear programs to

be solved successively for the two transitions. Given an initial joint probability mass

function JP1 derived from the company data, we first solved the nonlinear model

GOF1 for the transition probabilities JTP1,2 and the joint probability mass function

JP2. Using these probabilities, we then solved the second nonlinear model GOF2,

which is from time instant k = 2 to k = 3 for determining the transition probabilities

JTP2,3 and the joint probability mass function JP3.

The marginal probability mass functions zε1
2
(· |ω1

2, α1
2) and zε1

3
(· |ω1

3, α1
3) that

were determined as a result of optimization corresponding to commitment updates ε1
2

and ε1
3 from buyer b = 1, respectively, are shown in Figure 3.7. These probabilities

are labeled by model in the figure. Figure also includes the frequencies that were

observed in the problem environment (labeled by obs), and found by applying the

MMFE technique to the company data.
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Figure 3.7: Goodness-of-fit of zε1
2
(· |ω1

2, α1
2) and zε1

3
(· |ω1

3, α1
3) for buyer b = 1
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The absolute deviations in setting the means and covariances are within the

error tolerances (Tµ, Tσ) = (0.01, 0.001). We performed goodness-of-fit tests using the

G-test to summarize how well our Markov-modulated approach fits the values observed

in the environment. We have M − 1 = 9 degrees of freedom available. The G-tests

produced the test-statistic χ2
9 values of 5.52491 and 6.05742 for the probability mass

functions zε1
2
(· |ω1

2, α1
2) and zε1

3
(· |ω1

3, α1
3), respectively. The critical values should

be drawn from the Chi-square distribution table with nine degrees of freedom. Let

χ2
α,9 denote the percentage point or value of the Chi-square random variable with nine

degrees of freedom such that the probability that χ2
9 exceeds this value is α. Since

χ2
0.05,9 = 16.919 for α = 0.05, there is no reason to reject the null hypothesis that there

is no significant difference from the observed frequencies. We should note that we may

reiterate the optimization procedure by creating a finer grid for intervals labeled m1

and m7 of zε1
2
(· |ω1

2, α1
2) and m9 of zε1

2
(· |ω1

2, α1
2).

3.6 Summary

In this chapter, we presented the stochastic framework for the decision problems that

will be analyzed in what follows. In the first part, we modeled the time series of the

buyers’ order commitments and realized orders as a multiplicative forecast evolution

process through the MMFE technique. The resulting evolution model is a sophisti-

cated one, as we modeled the evolution as a multiplicative process and accommodated

the revision limits stipulated in QF contracts. In the second part of the chapter, we

introduced a finite Markov chain approximation to the martingale forecast evolution

process having some revision limits. The problem of estimating the transition proba-

bilities of the Markov chain was addressed by a general optimization model maximizing

the goodness-of-fit to observations. This numerical estimation process imposed some

regularity constraints to accommodate the revision limits and the correlations of com-

mitment updates across buyers and through time. At the end, we illustrated these

ideas with a concrete example where a computational process was given for a specific

industry case with the real data.

Consequently, in the subsequent part of the research, we will use this proba-

bilistic model of the commitment evolution in conjunction with an analytical model
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of the production and inventory planning under multi-period QF contracts. This

integrated use will provide an enhanced variability representation which enables the

manufacturer to better capture the underlying forecasting behaviors of the buyers. As

regards the finite Markov chain approximation, it will facilitate the probability mod-

eling of the sequential production/inventory decision model under QF contracts. It

essentially provides an approach to discretization in the associated stochastic dynamic

programming. This will make all the random variables hereinafter discrete.
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CHAPTER 4

MULTI-PERIOD STOCHASTIC

PRODUCTION/INVENTORY DECISION MODEL

In this chapter, we present the manufacturer’s multi-period stochastic production/

inventory decision model, where stochastic elements are described by the probabilistic

framework discussed in the preceding chapter. In §4.1 we first describe the sequence

of events that take place in any period for the execution of the system. We then for-

mulate the manufacturer’s problem as a finite-horizon dynamic production/inventory

model. The problem is characterized by the presence of random forecast evolution

with revision limits, on the demand side, and production capacity restrictions with

an option of subcontracting, on the supply side. Order commitments are stated as

the explicit component of the state space. In §4.2 we characterize the structure and

properties of optimal replenishment policies of the manufacturer. §4.3 discusses a

state space compaction.

4.1 The Model

In each time period, the manufacturer is faced with the problems of (i) determining

whether or not to place a replenishment order and (ii) if an order is placed, how much

to order in satisfying uncertain demand. The condition of the inventory system that

we have already described in §2.2 is to be reviewed in every period. Each time a

replenishment decision is made, the manufacturer must plan ahead for L periods since

replenishment orders arrive only after a lead-time of L periods. After the replenish-

ment decision has been made, the buyer orders are realized throughout the current
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period. If the buyer order realizations exceed the on-hand inventory, then unmet or-

der quantity is backlogged with a penalty cost. Otherwise, for each unit of remaining

inventory at the end of the current period an inventory holding cost is incurred. The

system then progresses to the next time period.

We assume that the manufacturer does not hold back any inventory for future

periods (that is, he does not make any inventory rationing). He differentiates between

the buyers only in order fulfillment process, allocating his on-hand inventory according

to a given precedence relationship among the buyers (that is, total requirement of the

highest-priority buyer is simply filled first, then the next highest-priority buyer is sat-

isfied, and so on). The manufacturer tries to choose those actions that will minimize

the sum of the costs accumulated as the inventory system progresses.

Assume that the manufacturer executes the agreed-upon supply contracts over

a finite time span of length N +L, where the number of replenishment decision points

is N . The sequence of events that take place at any period s = 1, 2, . . . , N for the

execution of the contracts are then as follows. Figure 4.1 depicts the timing and the

decision structure.

… … ……

s-L s s+1 s+Ls-1 s+L+1 L+N+11

Ls
q − decided Ls

q −  received s
q  decided 

s
q  to be received

LsNI +  to be carried

Inventory position sI  and

order commitments 
b

s
d

Initialization Termination

b
ssd

,
’s realized

Updated order 

commitments
b

1sd +

Figure 4.1: The sequence of events

1. At the beginning of period s, the manufacturer receives the replenishment orders

from L periods ago. These have been supplied with in-house production and

subcontractor [cf. Chapter 2].
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2. The manufacturer reviews the state of the system; namely, current inventory

position (i.e., all outstanding replenishment orders less all realized buyer orders)

and the buyers’ order commitments made at the end of period s − 1. These

cover all the periods in the following H-period horizon t ∈ [s, s + H − 1]. If it

is the case that H < L, the mean realized order per period is taken as the best

available order information for the periods beyond the commitment horizon H.

3. The replenishment decision is made in anticipation of receiving buyer orders

during the following L periods. If in-house production capacity is not sufficient

to produce all the amount decided (qs), the manufacturer has an option of

subcontracting as mentioned in §2.2.

4. The expected costs associated with period s are incurred. Replenishment cost

does not include any fixed cost of ordering but rather variable costs of in-house

production and subcontracting. There exist also costs associated with carrying

inventory and backorders. We assume, due to the replenishment lead-time of L

periods, that these costs depend on the expected net inventory level that will

be carried over in period s + L. That is to say, the manufacturer incurs an

expected holding (backorder) cost charged to period s only for the expected

positive (negative) net inventory that will be carried over in period s + L.

5. During period s the order realizations db
s,s are observed from the buyers. These

realized orders (plus outstanding backorders if there is any) are served by the

manufacturer’s on-hand inventory, and any shortages will become backorders.

6. At the end of period s the buyers review and update their available order com-

mitments within the bounds constructed by the agreed-upon quantity flexibility

contracts. Then they submit the updated order commitments for all the periods

in the following H-period horizon t ∈ [s + 1, s + H].

At the end of the planning horizon (i.e., at the end of period N + L), if there is pos-

itive inventory left at the manufacturer, it will be sold at a unit salvage price being

equivalent to unit subcontract procurement cost. Conversely, any inventory shortage

at the end of period N + L will be fulfilled by a final subcontract procurement. The

use of unit cost of subcontracting in the end-of-horizon transactions is reasonable since
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after coming to the end of a contract period only the subcontract capacity would be

available and the price requested by the manufacturer can reasonably be at most the

unit subcontract procurement cost.

Consequently, we have a sequence of L-period rolling horizon problems with one

period re-planning frequency over the (N + L)-period planning horizon. The number

of decision points for the manufacturer thus is N . We shall model this recurring prob-

lem to solve for an ordered set of replenishment decisions to be taken in any system

state so that the total expected cost of replenishment and inventory will be minimized

over the planning horizon. Before giving the description of the model in detail, we

provide the following additional notation that is used throughout the exposition:

Decision variables:

qs : replenishment order placed in period s (in-house production plus

subcontract orders, if any) for delivery in period s + L.

Is : inventory position before ordering in period s.

TIs : inventory position after ordering in period s, TIs > Is. Thus, qs = TIs − Is.

NIs : net inventory level (i.e., on-hand inventory or backorders) to be carried over

in period s.

Parameters:

K : finite per-period capacity for in-house production.

h : unit cost of carrying inventory per period.

πb : unit backorder penalty per period for buyer b. We have π1 > π2, indicating

that b = 1 stands for the highest-priority buyer.

cpi : unit cost of in-house production.

cps : unit cost of subcontracting. We have cps > cpi.

1(As) : indicator function of the event As = {TIs − Is > K}, which is

1(As) =





1, if TIs − Is > K (i.e., subcontracting is made)

0, otherwise.

Additionally, define Zb
[s,s+L) as the random variable denoting total of L order
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occurrences to be received from buyer b over the time interval [s, s + L) such that

Z[s,s+L) =
∑
b

Zb
[s,s+L), where

Zb
[s,s+L) =

L∑

k=1

Db
s+k−1,s+k−1. (4.1)

Its probability distribution function is denoted by fZb
L
(· |ds), conditioned on the value

of order commitment vector ds available at the beginning of period s. Similarly, we

have fZL
(· |ds) for Z[s,s+L). In computing the expected costs of carrying inventory

and backorders we will refer to these conditional probabilities.

The inventory position at the beginning of period s, Is, can be written as

Is = I0 +
s−1∑

i=1

qi −
∑

b

Zb
[1,s), (4.2)

for s = 2, 3, . . . , N + L (where qi = 0 for i > N since we have N replenishment

decisions). It denotes total on order minus total realized order from the buyers before

the manufacturer’s ordering in period s, including outstanding backorders if there is

any. The replenishment decision made in period s will bring the inventory position

to TIs. The costs associated with period s are of several classes. Let PCs(TIs, Is)

denote the replenishment cost to be incurred for an amount qs = TIs − Is,

PCs(TIs, Is) =





cpi(TIs − Is) + (cps − cpi)(TIs − Is −K)1(As), T Is > Is

0, T Is 6 Is,
(4.3)

for s = 1, 2, . . . , N . We assume, due to the L-period replenishment lead-time, that

the costs associated with carrying inventory and backorders depend on the expected

net inventory level that will be carried over in period s + L, NIs+L, which is found to

be

NIs+L =
s∑

i=1

qi −
∑

b

Zb
[1,s+L)

= TIs − Z[s,s+L)

= Is+1 − Z[s+1,s+L), (4.4)

for s = 1, 2, . . . , N + 1 (where qi = 0 for i = N + 1). It denotes total received order

minus total satisfied demand before ordering in period s + L. Let Ls(TIs, ds) denote

the current L-period costs associated with inventory carrying and backorders, given

that the inventory position is set to TIs after the manufacturer’s ordering in period
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s. Its formula depends on the number of buyers involved because of the given priority

scheme among them. It is readily found, when B = 2 (i.e., two contract buyers), to

be

Ls(TIs, ds) =

hE [TIs − z1 − z2 | z1 + z2 < TIs, ds]

+ π1 E [z1 − TIs | z1 > TIs, ds] + π2 E [z2 | z1 > TIs, ds]

+ π2 E [z1 + z2 − TIs | z1 < TIs, ds] (4.5)

for s = 1, 2, . . . , N . Due to our finite Markov approximation introduced in §3.2 to

§3.4, the continuous cost function Ls(TIs, ds) in (4.5) is discretized as

Ls(TIs, ds) =

h

TIs∑

0

TIs−z1∑

0

(TIs − z1 − z2) fZ2
L
(z2|ds) fZ1

L
(z1|ds)

+ π1

∞∑

TIs

(z1 − TIs) fZ1
L
(z1|ds) + π2

∞∑

TIs

∞∑

0

z2 fZ2
L
(z2|ds) fZ1

L
(z1|ds)

+ π2

TIs∑

0

∞∑

TIs−z1

(z2 − (TIs − z1)) fZ2
L
(z2|ds) fZ1

L
(z1|ds), (4.6)

for s = 1, 2, . . . , N . The discounting factor is conjectured to be unity without loss of

generality. Ls(TIs, ds) comprises of three main components. The first term denotes

the expected cost of inventory holding. The second represents the expected backorder

penalty costs for the case that the total requirement for the highest-priority buyer is

greater than or equal to the manufacturer’s availability, which is given by the second

and third terms. The complement of the shortage case is addressed in the last term.

The lower priority buyer will be served from the balance of TIs serving the first

buyer.

Observe that the manufacturer incurs an expected holding (backorder) cost

charged to period s only for the expected positive (negative) net inventory NIs+L

that will be carried over in period s + L. Thus denote Js(TIs, Is, ds) as the current-

period cost associated with period s, which is given by

Js(TIs, Is, ds) = PCs(TIs, Is) + Ls(TIs, ds), (4.7)

for s = 1, 2, . . . , N . We now state an important preliminary result on the current-

period cost function Js(TIs, Is, ds).
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Proposition 4.1 Being a newsvendor-type cost function, Js(TIs, Is, ds) is convex in

TIs for all values of (Is, ds).

Proof: See Appendix A.1.

Let π = {TIs, 1 6 s 6 N} ∈ Π denote a policy specifying an ordered set of

replenishment decisions, there being one decision for each system state (Is, ds) at the

beginning of period s. Hence Π is the set of all possible policies. Let G1(I1, d1, π)

be the total expected cost over a finite time horizon of N + L periods, given that the

policy π is being used and the initial system state is observed as (I1, d1),

G1(I1, d1, π) =

EE1, E2, ..., EN

[
N∑

s=1

Js(TIs, Is, ds) | I1, d1

]
+ JN+1(IN+1, dN+1). (4.8)

EE1, E2, ..., EN [ · | I1, d1] represents the conditional expectation, given the initial inven-

tory position and order commitments. It is taken with respect to commitment update

vectors E1, E2, . . . , EN . This is because the forecast evolution model allows us to

express the uncertainty about the future values of inventory position and order com-

mitments in terms of Es’s, s ∈ [1, N ]. As a linear end-of-horizon condition, we have

JN+1(·, ·) = − cps EEN+1, EN+2, ..., EN+L
[ NIN+L ] to be evaluated at period N (i.e.,

decision epoch N). In other words, at the end of period N + L the manufacturer

salvages the left-over inventory (i.e., positive values of NIN+L) for a unit salvage rev-

enue of cps and satisfies any inventory shortage (i.e., negative values of NIN+L) with

a final subcontract procurement which is equal to cps. As a consequence, the total

expected cost G1(I1, d1, π) depends not only upon the initial system state (I1, d1)

and the series of decisions TI1, TI2, . . . , TIN , but also upon the sequence of random

commitment update vectors E1, E2, . . . , EN+L.

We are interested in minimizing G1(I1, d1, π) over all π ∈ Π. We call the

policy π∗ optimal if

G1(I1, d1, π∗) = inf
π∈Π

G1(I1, d1, π). (4.9)

Due to finiteness and convergence of the sum in (4.8), the infimum in (4.9) can be

replaced by the minimum. Therefore, when the optimal policy π∗ is used, the ex-

pected value of the total cost is minimized over all potential decision sequences. Let
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V1(I1, d1) denote the minimum expected total cost from the beginning of period 1 to

the end of period N + L, given that the system state is observed as (I1,d1) at the

beginning of period 1 and that an optimal decision is made in each period 1, 2, . . . , N .

Consequently, we can derive the optimality equation as

Vs(Is, ds) = min
TIs>Is

{
Js(TIs, Is, ds) + EEs [Vs+1(TIs −

∑

b

Db
s,s, Ds+1)]

}
,

(4.10)

which follows since all the terms inside the expectation in (4.8) are nonnegative, inte-

grable functions, and the vector sequence {Es, 1 6 s 6 N + L} are independent and

identically distributed due to the assumptions of the forecast evolution model, as men-

tioned in §3.1. Using the optimality equation we may recursively solve for Vs(Is, ds).

The main theoretical result is that the policy determined by the (optimality) equation

(4.10) will be optimal.

4.2 Properties of the Optimal Policy

In this section, we obtain structural results about the finite horizon model introduced

in §4.1. The characterization of the optimal policy for the problem under study is com-

plicated as the manufacturer can place two types of orders in each period, in-house

production and subcontracting, depending on its capacity level and the available order

commitments. A replenishment source is characterized by its unit cost of replenish-

ment the manufacturer incurs and the level of capacity it has. As we have already

mentioned in §2.2, the manufacturer has a restriction on the maximum amount that

can be ordered from the in-house production, but he has a more costly subcontracting

option with infinite supply. Orders are assumed to arrive only after a lead-time of L

periods, independent of the replenishment source.

Let Gs(TIs, Is, ds) denote the (suboptimal) expected total cost from the be-

ginning of period s to the end of period N +L, given that the system state is observed

as (Is, ds) at the beginning of period s,

Gs(TIs, Is, ds) = Js(TIs, Is, ds) + EEs [ Vs+1(TIs −
∑

b

Db
s,s, Ds+1) ]. (4.11)

It can be readily derived from Proposition 4.1 that the function Gs(TIs, Is, ds) is

convex in TIs for given values of Is and ds. This will be proved later in this section.
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Since Gs(·) in (4.11) is convex a minimizer exists 1. Define TI∗s to be the optimal

value of TIs at which the minimal value is attained by Gs(TIs, Is, ds); that is,

Gs(TI∗s , Is, ds) = min
TIs

Gs(TIs, Is, ds).

In view of the finite in-house capacity level K, we may define the following two cases

on the value of qs = TIs − Is, replenishment order quantity in period s.

Case1: qs 6 K.

It accounts for the case where the inventory position before ordering, Is, is relatively

higher, and hence only the in-house production source is engaged to satisfy the ex-

pected buyer orders. Let Ginh
s (TIs, Is, ds) be the expected total cost from period

s through N + L, given that the system is in state (Is, ds) and only the in-house

capacity is used at the beginning of period s.

Ginh
s (TIs, Is, ds) =

cpi(TIs − Is) + Ls(TIs, ds) + EEs [Vs+1(TIs −
∑

b

Db
s,s, Ds+1) ], (4.12)

which is convex in TIs for given values of Is (when Is 6 TIs 6 Is +K) and ds. Define

TIinh
s to be the minimizer of Ginh

s (TIs, Is, ds),

Ginh
s (TIinh

s , Is, ds) = min
TIs

Ginh
s (TIs, Is, ds).

If it is the case that qs = 0 or qs = K, then ∂Ginh
s (TIs, Is, ds)/∂TIs vanishes at

TIs = Is and TIs = Is + K, respectively, by the optimality of TIinh
s .

Case2: qs > K.

It is the case where Is is not sufficient to satisfy the expected buyer orders internally,

and hence both in-house production source and subcontract capacity are engaged. Let

Gsub
s (TIs, Is, ds) be the expected total cost from period s through N + L, given that

the system is in state (Is, ds) and both in-house and subcontract capacity are engaged

at the beginning of period s.

Gsub
s (TIs, Is, ds) = Ginh

s (TIs, Is, ds) + (cps − cpi)(TIs − Is −K), (4.13)

1 The minimizer might not be unique as the cost function Ls(·) in (4.5) is discretized by our finite
Markov approximation introduced in §3.2 to §3.4.

70



which is also convex in TIs for given values of Is and ds. Define TIsub
s to be the

minimizer of the cost function Gsub
s (TIs, Is, ds),

Gsub
s (TIsub

s , Is, ds) = min
TIs

Gsub
s (TIs, Is, ds).

Note that TIsub
s > Is + K.

Therefore we have two critical levels, TIinh
s and TIsub

s , associated with two

different replenishment sources, which is due to the separability of the cost function

Gs(TIs, Is, ds) in (4.11) as shown in (4.12) and (4.13). The following result states

the relationship between these critical levels.

Proposition 4.2 We have TIsub
s 6 TIinh

s .

Proof: We have Gsub
s (TIs, Is, ds) > Ginh

s (TIs, Is, ds) and Gsub
s − Ginh

s is increasing

in TIs since (cps−cpi) and (TIs−Is−K) on the right-hand side of (4.13) are nonnega-

tive. Hence the convexity of them implies that their minimizers have TIsub
s 6 TIinh

s .

Karlin (1958) demonstrates that for multi-period problem with backorders and

no fixed production cost, optimal policy is of order-up-to type under a strictly con-

vex cost function. Thus, in view of these results, the following theorem identifies

the structure of the optimal policy that specifies the manufacturer’s replenishment

decisions.

Theorem 4.1 By using Proposition 4.1 and 4.2, for any decision period s = 1, 2, . . . , N

we have

(i) Gs(TIs, Is, ds) is convex in TIs,

(ii) Vs(Is, ds) is convex in Is,

(iii) We have a staircase optimal policy due to the presence of different replenishment

sources with a finite in-house capacity level K. It is of state-dependent order-up-

to type, given a state vector (Is, ds) at the beginning of period s = 1, 2, . . . , N .

Then the optimal order-up-to level, TI∗s (Is, ds), is
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TI∗s (Is, ds) =





TIsub
s (ds) Is 6 TIsub

s (ds)−K

Is + K TIsub
s (ds)−K 6 Is 6 TIinh

s (ds)−K

TIinh
s (ds) TIinh

s (ds)−K 6 Is 6 TIinh
s (ds)

Is TIinh
s (ds) 6 Is,

(4.14)

where TIinh
s (ds) and TIsub

s (ds) depend only on the commitment state ds, inde-

pendent of the inventory state Is, whereas TI∗s (Is, ds) is a function of (Is, ds).

Proof: See Appendix A.2.

Figure 4.2 helps in understanding the staircase structure of the optimal policy.

s
I

inh

sTI

inh

sTI

sub

sTI

∗
sTI

K≥ K

x

x

KTI
inh

s −KTI
sub

s −

Figure 4.2: Staircase structure of the optimal policy with two replenishment sources

Note that we will write TIsub
s , TIinh

s and TIs instead of TIsub
s (ds), TIinh

s (ds)

and TIs(Is, ds), respectively, throughout the study, unless stated otherwise. The

optimal replenishment policy is described in terms of two critical order-up-to levels,
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TIinh
s and TIsub

s , with TIsub
s 6 TIinh

s , corresponding to two replenishment sources.

Bradley (2004), Feng et al. (2006), and Tan and Alp (2008) have shown the optimal-

ity of such a policy type in different problem settings for a number of discrete and

continuous-time inventory models with two replenishment sources. They also base on

the separability of the recursive equations for two sources.

The meaning of (4.14) should be emphasized. The optimal replenishment pol-

icy essentially classifies the state space (which is (BH + 1)-dimensional space) in any

period s into several regions in a two-dimensional space, where each region specifies

its own optimal order-up-to level. Given any period s ∈ [1, N ], the two dimen-

sions are namely, Is and
∑
b

H∑
k=1

db
s−1,s+k−1. The number of allowable regions in this

two-dimensional space depends on the in-house capacity level K relative to the to-

tal of order commitments available at that period. If it is the case that KH <
∑
b

H∑
k=1

db
s−1,s+k−1 (i.e., the in-house capacity falls short), then we have only two allow-

able regions in a two-dimensional space, otherwise four regions are involved. Figure

4.3 depicts possible cases on the value of Is, for a given value of ds, together with the

corresponding optimal ordering decisions.

  values for a given

K

K

Both in-house

and subcontract

Full in-house but

no subcontract

Only partial in-house

Both idle

I

II

III

IV

Region

two allowable 

regions if

Figure 4.3: Cases on the value of Is and the corresponding optimal decisions
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In Figure 4.3, the region I; i.e., (−∞, T Isub
s (ds) − K], corresponds to cases where

both the in-house and subcontract production sources are engaged. In the region II,

the full in-house capacity and no subcontract capacity are used for replenishment. In

the region III, on the other hand, the in-house production source is partially engaged.

Finally, when Is ∈ [TIinh
s (ds), ∞); i.e., in the region IV, neither production sources

are called for. An important point that can also be observed in Figure 4.3 is that we

are imposing the condition that TIinh
s (ds)− TIsub

s (ds) > K.

For illustrative purposes, we consider a restricted problem size. Figure 4.4 gives

the optimal order-up-to levels of period 1, TI∗1 , for an allowable range of values of state

vector (I1, d1). The staircase structure of the optimal policy given in Theorem 4.1 is

apparent in this figure where y-axis is for different values of the sum
∑
b

H∑
k=1

db
0,k.

*

1
TI

1
I ∑∑

=b

H

k

b

kd

1

,0

*

1
TI

1I ∑ ∑
=b

H

k

b

k
d

1

,0

starts of

           plateaux

starts of

           plateaux

Figure 4.4: Optimal order-up-to levels TI∗1 of period 1 for various system state (I1, d1)

The first five plots [ 1©− 5©] correspond to the case when KH >
∑
b

H∑
k=1

db
0,k, and the

last three [ 6©− 8©] when otherwise. In the first group, the optimal order-up-to level is

defined by two critical levels; i.e., TIsub
1 (y) and TIinh

1 (y) with TIsub
1 (y) 6 TIinh

1 (y),
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which depend only on K and d1 (or equivalently, values on axis y). These two groups

of plots are observed since the in-house capacity level K relative to the total order

commitments determines the number of allowable regions in the two-dimensional (I1

and
∑
b

H∑
k=1

db
0,k) domain in Figure 4.4.

We shall now provide some theoretical properties about the behavior of the

optimal order-up-to levels. The following theorem is given to conclude a certain mono-

tonicity result about the optimal policy. More specifically, for a fixed value of order

commitment vector, d, it relates the optimal order-up-to level in period s, TI∗s (x, d)

to the one in period s + 1, TI∗s+1(x, d).

Theorem 4.2 For a given value of order commitment vector, d, we have the following

monotonicity statements for s = 1, 2, . . . , N , where x and y denote inventory position

before ordering and after ordering, respectively.

(i) ∂Vs(x, d)/∂ x > ∂ Vs+1(x, d)/∂ x ∀x

(ii) ∂Gs(y, x,d)/∂y > ∂Gs+1(y, x,d)/∂y ∀y

(iii) TI∗s (x, d) 6 TI∗s+1(x, d)

Proof: See Appendix A.3.

Statements (i) and (ii) of Theorem 4.2 say that the effect of the replenishment decision

y on the cost in the future gets suppressed as time to termination gets close. Hence,

statement (iii) states that the optimal order-up-to level of period s is less than that

of period s + 1, assuming the same value of order commitment vector in period s is

repeated in period s + 1; i.e., ds ≡ ds+1.

The following theorem states another form of monotonicity about the optimal

order-up-to levels. To be specific, it relates the optimal order-up-to levels in period s

to different values of order commitment vectors available in that period.

Theorem 4.3 Suppose two distinct values d̄ and d that the order commitment vector

at the beginning of period s can take, with
∑
b

H∑
k=1

d̄b
s−1,s+k−1 6

∑
b

H∑
k=1

db
s−1,s+k−1. Thus

we have the following regularity statements for s = 1, 2, . . . , N .

(i) ∂Vs(x, d̄)/∂ x > ∂ Vs(x, d)/∂ x ∀x
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(ii) ∂Gs(y, x, d̄)/∂y > ∂Gs(y, x,d)/∂y ∀ y

(iii) TI∗s (x, d̄) 6 TI∗s (x, d)

Proof: See Appendix A.4.

Statements (i) and (ii) of Theorem 4.3 say that the replenishment decision y in period

s affects the costs less for a larger total of order commitments available in that period.

Statement (iii) says that the optimal order-up-to level increases as the total of order

commitments increases as expected.

These results will help to make the computation associated with the dynamic

programming recursions less demanding in the sense that the corresponding state space

can be searched more efficiently. We will elaborate on the use of these properties in

Section 4.3.

4.3 State Space Compaction

As our solution procedure will be enumerative, any bounds on the optimal order-up-

to levels might make the computation associated with the recurrence relations less

demanding.

In deriving bounds on the optimal-order-up-to levels, it appears to be more

effective to develop bounds on the first-order condition function ∂ Gs(y, x, d) / ∂ y.

Then the solutions to these bounding functions provide the bounds for the optimal

order-up-to levels. The following corollary to Theorems 4.2 and 4.3 may be used to

show that a relaxed upper bound exists on the optimal order-up-to levels.

Corollary 4.1 (to Theorems 4.2 and 4.3) For a given order commitment vec-

tor, d, the optimal order-up-to level TI∗N (x, d) of the last decision period is an upper

bound for the optimal order-up-to levels TI∗s (x, d̄) of all other periods s < N for those

values of d̄ such that
∑
b

H∑
k=1

d̄b
s−1,s+k−1 6

∑
b

H∑
k=1

db
N−1,N+k−1.

Corollary 4.1 follows since we have ∂Gs(y, x, d̄)/∂y > ∂Gs(y, x,d)/∂y >

∂GN (y, x,d)/∂y due to Theorems 4.2 and 4.3. This result allows us to set a re-

cursive upper bound in backward progress. To derive the upper bound, we need to
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study the final-period problem covering the L periods extending out from period N .

Consider the first-order condition function of period N , ∂GN (y, x, d)/∂y,

∂ GN (y, x, d) / ∂ y

= ∂JN (y, x, d)/∂ y + ∂ EEN [ VN+1(y −
∑

b

Db
N,N , DN+1) ] / ∂ y

= ∂JN (y, x, d)/∂ y + ∂ EEN [−cps(y −
∑

b

Db
N,N − Z[N+1,N+L−1)) ] / ∂ y

= ∂JN (y, x, d)/∂ y − cps

= cpi + (cps − cpi)1(AN ) + hzZL
(y |d) − π1

[
1−zZ1

L
(y |d)

]

− π2

[
zZ1

L
(y |d) − zZL

(y |d)
]
− cps. (4.15)

Let TI∗N be the solution of the first-order condition ∂GN (y, x, d)/∂y = 0. We may

rearrange ∂ GN (y, x, d)/∂ y in (4.15) to yield ∂ GN (TI?
N , x, d)/∂ TI?

N = 0 as

cpi + (cps − cpi)1(AN ) + hzZL
(TI∗N |d) =

π1

[
1−zZ1

L
(TI∗N |d)

]
+ π2

[
zZ1

L
(TI∗N |d)−zZL

(TI∗N |d)
]

+ cps.

(4.16)

Upper Bounding from the Optimal Terminal Decision

The derivation of the upper bound from the expression (4.16) is not straightforward as

two distinct cumulative probability functions, zZ1
L
( · |d) and zZL

( · |d), are involved

associated with two contract buyers 2. Since we know that zZ1
L
(y |d) > zZL

(y |d)

for any y > 0, we can obtain a relaxed upper bound

TI∗N = z−1
ZL

(
π1 + cps − cpi − (cps − cpi)1(AN )

h + π1
|d

)
(4.17)

by simply assuming that zZ1
L
(y |d) = zZL

(y |d). This envelope, in addition to the

condition that
∑
b

H∑
k=1

d̄b
s−1,s+k−1 6

∑
b

H∑
k=1

db
N−1,N+k−1, leads to an absolute upper

bound for TI∗s (x, d̄) of all s < N . Note that this upper bound can be calculated for

any d̄ value as long as it satisfies the stochastic magnitude relation, hence it may be

employed as an experimental upper bound on the allowable range of the order-up-to

levels in any period.
2 Note that one can readily generalize the first-order condition for more than two buyers.
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We now interpret the expression (4.16). It allows one to see clearly the trade-off

between the marginal cost in the current period and the marginal cost for the future

periods. Target inventory decision is made by the manufacturer such that the marginal

revenue of increasing the target position by one more unit is equal to the marginal

cost. The left-hand side of expression (4.16) denotes the expected marginal cost of

increasing the target position by one more unit, including unit replenishment cost and

unit inventory holding cost incurred in the case that total requirement for all buyers

is less than or equal to the manufacturer’s availability. The right-hand side of expres-

sion (4.16), on the other hand, denotes the expected marginal revenue. It includes

the unit gains that would be obtained in backorder penalty in case a backordering

situation arose (reflected in the first two terms). The last term in the right-hand side

is for the end-of-horizon condition. It accounts for the expected salvage revenue when

one more unit of target position results in left-over inventory or the expected cost of

outstanding backorders at the end of the planning horizon (i.e., at the end of period

N + L).

Tightening the Upper Bounds by Inventory Position Regions

In addition to the bound described by (4.17), we might derive tighter upper bounds

by developing tighter lower bounds (than ∂GN (y, x,d)/∂y) on ∂ Gs(y, Is, d̄s)/∂ y due

to a tighter evaluation of the optimal cost function in s + 1. To derive a tighter lower

bound on ∂ Gs, we study the constituents of the first order condition function

∂ Gs(y, x, d)/∂ y = ∂ Js(y, x, d)/∂ y + EEs

[
∂ Vs+1(y −

∑

b

Db
s,s, d)/∂ y

]
.

Now it is possible to show that ∂ EEs [Vs+1(., .)]/∂ y = EEs [∂ Vs+1(., .)/∂ y]. Let

us consider the decomposition of EEs [∂ Vs+1(., .)/∂ y]. In view of Theorem 4.1, the

∂ Vs+1(y−
∑
b

Db
s,s, d)/∂ y term can take four different forms corresponding to regions

on the value of y −∑
b

Db
s,s (= Is+1 values), with the associated probability of being

in that particular region. Let x = y −∑
b

Db
s,s. Hence, since Vs+1(x, d) is determined

by minimizing Gs+1(TIs+1, x, d) over x 6 TIs+1, we may write

Vs+1(x, d) =





Gs+1(TIsub
s+1, x, d) x 6 TIsub

s+1 −K

Gs+1(x + K, x, d) TIsub
s+1 −K 6 x 6 TIinh

s+1 −K

Gs+1(TIinh
s+1, x, d) TIinh

s+1 −K 6 x 6 TIinh
s+1

Gs+1(x, x, d) TIinh
s+1 6 x,
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where

Gs+1( ·, x, d) = Js+1( ·, x, d) + EEs+1
[Vs+2( · −

∑

b

Db
s+1,s+1, Ds+2) ].

Taking the partial derivative with respect to x,

∂ Vs+1(x, d)/∂ y

=





−cps x 6 TIsub
s+1 −K

∂ Gs+1(x + K, x, d)/∂ y TIsub
s+1 −K 6 x 6 TIinh

s+1 −K

−cpi TIinh
s+1 −K 6 x 6 TIinh

s+1

∂ Gs+1(x, x, d)/∂ y TIinh
s+1 6 x.

(4.18)

We now show that the functions ∂ Gs+1(x+K, x, d)/∂ y and ∂ Gs+1(x, x, d)/∂ y

are higher than ∂GN (y, x,d)/∂y (i.e., tighter lower bounds than ∂GN ). Observe that

∂ Vs+2( · −
∑
b

Db
s+1,s+1, Ds+2)/∂ y vanishes for the first and the third regions. They

account for the cases where the critical order-up-to levels TIsub
s+1 and TIinh

s+1, respec-

tively, are attainable in period s + 1 (i.e., the inventory position before ordering, x, is

no greater than TIsub
s+1 for the first region and than TIinh

s+1 for the second). This means

that the cost of periods s+2 and beyond is insensitive to the decision made in period

s (i.e., y) for those order realizations
∑
b

Db
s,s that make x = y − ∑

b

Db
s,s not larger

than the respective critical order-up-to level, namely TIsub or TIinh.

In the second region, on the other hand, the TIinh
s+1 level in period s + 1 is not

attainable since the use of the full in-house capacity sets inventory position to the

point x + K. Hence the decision made in period s; i.e., y, does affect the cost of

period s+1 and ∂ Gs+1(x+K, x, d)/∂ y denotes the corresponding effect on the cost

in the future periods. We have similar arguments for the fourth region.

Let Ii
s+1 for i = 1, 2, 3, 4 be the event that inventory position before ordering

in period s+1, x, falls in the ith region in (4.18) after the inventory position has been

set to y in period s. We number the regions in an increasing order of the break points,

where the first region, (−∞, T Isub
s+1 − K], is given the number i = 1. By inserting

(4.18) into EEs [∂ Vs+1(y −
∑
b

Db
s,s, d)/∂ y],
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EEs [∂ Vs+1(x, d)/∂ y] = EEs [ − 1(I1
s+1) cps

+ 1(I2
s+1) ∂ Gs+1(x + K, x, d)/∂ y

− 1(I3
s+1) cpi

+ 1(I4
s+1) ∂ Gs+1(x, x, d)/∂ y ], (4.19)

where 1(.) is the indicator function. The structure of (4.19) does not allow any closed-

form solutions to the first-order condition Gs(y, x, ds) = 0.

The occurrence probability of the event that inventory position before ordering

in period s + 1, x = y −∑
b

Db
s,s, falls in the ith region in (4.18), i = 1, 2, 3, 4, after

the inventory position has been set to y in period s is given by

Pr{1(I1
s+1)} = Pr{

∑

b

Db
s,s > y − TIsub

s+1 + K}

= Pr{Z[s,s+1) > y − TIsub
s+1 + K}

=
∫ ∞

y−TIsub
s+1+K

fZ1(· |ds)

Pr{1(I2
s+1)} =

∫ y+K−TIsub
s+1

y+K−TIinh
s+1

fZ1(· |ds)

Pr{1(I3
s+1)} =

∫ y+K−TIinh
s+1

y−TIinh
s+1

fZ1(· |ds)

Pr{1(I4
s+1)} =

∫ y−TIinh
s+1

0
fZ1(· |ds). (4.20)

Likewise, the joint occurrence probability of the events I4
s+1 and I4

s+2, for example,

can be given by

Pr{1(I4
s+1I4

s+2)} = Pr{1(I4
s+2) | 1(I4

s+1)}

= Pr{Z[s,s+2) 6 TIinh
s+2 − y | Z[s,s+1) 6 TIinh

s+1 − y}

=
∫ TIinh

s+1−y

0

∫ TIinh
s+2−y−z1

0
fD(·, · |ds) /

∫ TIinh
s+1−y

0
fZ1(· |ds).

(4.21)

The conditional probabilities for other joint event occurrences can be written similarly.

Joint Occurrence of Events for Inventory Position

In a similar manner, we may further decompose the ∂ Gs+1(x + K, x, d)/∂ y and

80



∂ Gs+1(x, x, d)/∂ y terms. For each of these expressions, we again have four possible

ranges on the value of inventory position before ordering in period s + 2 (i.e., Is+2).

This implies that total enumeration of all possible cases increases with combinations

of ranges from (s+1) and (s+2) for periods s+2 and beyond. Nevertheless, applying

Theorem 4.2 to these terms, we can eliminate some cases from further consideration.

To illustrate, suppose 1(I2
s+1) = 1; that is, the inventory position before order-

ing in period s + 1 (x = y −∑
b

Db
s,s) falls in the second region given the decision y in

period s. Then the conditional probability that the inventory position before ordering

in period s + 2 falls in the first region, given that 1(I2
s+1) = 1, is equal to zero. This

follows from the relative values of K,
∑

b Db
s+1,s+1 and TIsub

s+2 − TIsub
s+1 since the value

of the difference TIsub
s+2 − TIsub

s+1 depends on the value of
∑

b Db
s+1,s+1. We can apply

similar argument to the fourth region. Thus we have

Pr{x + K −
∑

b
Db

s+1,s+1 ∈ (−∞, T Isub
s+2 −K] | 1(I2

s+1) = 1} = 0

Pr{x−
∑

b
Db

s+1,s+1 ∈ (−∞, T Isub
s+2 −K] | 1(I4

s+1) = 1} = 0

Pr{x−
∑

b
Db

s+1,s+1 ∈ [TIsub
s+2 −K, TIinh

s+2 −K] | 1(I4
s+1) = 1} = 0

Pr{x−
∑

b
Db

s+1,s+1 ∈ [TIinh
s+2 −K, TIinh

s+2] | 1(I4
s+1) = 1} = 0,

restricting the potential state variables in stage s + 1. We have non-zero conditional

probabilities for all the other four cases. Consequently, using these results, we may

state (4.19) as

EEs [ ∂Vs+1(y − Z[s,s+1), Ds+1)/∂y ] =

− cps Pr{1(I1
s+1)} − cpi Pr{1(I3

s+1)} − cpi

N−s∑

j=2

Pr{1(I2
s+2 . . . I2

s+j)}

+
N−s∑

j=1

Pr{1(I2
s+1 . . . I2

s+j)} E
[
∂Js+j(y + jK − Z[s,s+j), Is+j , Ds+j)/∂y

]

+
N−s∑

j=1

N−s∑

k=j+1

Pr{1(I2
s+1 . . . I2

s+kI4
s+k+1 . . . I4

s+j)}

E
[
−cps + ∂Js+j(y + kK − Z[s,s+j), Is+j , Ds+j)/∂y

]

+
N−s∑

j=1

Pr{1(I4
s+1 . . . I4

s+j)} E
[
[−cps + ∂Js+j(y − Z[s,s+j), Is+j , Ds+j)/∂y ]

]
,

(4.22)
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where ∂Js+j( · , Is+j , Ds+j)/∂y is given by

∂Js+j( · , Is+j , Ds+j)/∂y =

cpi + (cps − cpi)1(As+j) + h zZL
( · |Ds+j)

− π1

[
1−zZ1

L
( · |Ds+j)

]
− π2

[
zZ1

L
( · |Ds+j)−zZL

( · |Ds+j)
]
, (4.23)

and Pr{1(IaIb . . . Ir)} [cf. Eqs. (4.20) and (4.21)] states the joint occurrence prob-

ability of the events a to r. The probabilities for joint occurrences of the events in

(4.22) can readily be evaluated using the finite Markov chain structure introduced

in §3.2 to §3.4. Thus, it is trivial to conclude that the expression (4.22) results in a

higher bounding function than ∂GN (y, x,d)/∂y can [cf. Eq. (4.15)]. The solution to

(4.22) then gives a tighter upper bound (than the relaxed upper bound in (4.17)) for

the optimal order-up-to level of period s.
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CHAPTER 5

AN EFFICIENT APPLICATION OF STOCHASTIC

DYNAMIC PROGRAMMING

In this chapter, we suggest an efficient application of stochastic dynamic program-

ming to the multi-period stochastic decision model under study. In §5.1, we discuss

the stochastic state transitions and the associated dimensionality problem. In §5.2,

we present how we will quantify the probabilities involved in the stochastic dynamic

recursions. In §5.3, we introduce a reasonably accurate way of reducing state dimen-

sionality, aiming to circumvent the associated computational and storage requirements

encountered in solving the dynamic program. Finally, an example computational pro-

cess is given in §5.4. We also discuss how to validate our way of reducing state

dimensionality.

5.1 Stochastic State Transitions

The multi-period stochastic production/inventory problem under study is a Markov

decision process where the replenishment decision made in any period depends on the

current state of the system, and transitions to next-period state are independent of

all previously-visited states. The problem has the properties needed to be structured

as an equivalent stochastic dynamic programming problem whose optimal solution

provides an optimal replenishment policy for the original problem.

The focal point that one associates with a dynamic programming problem is its

state transition function. We shall now elaborate on state transitions that occur in our

production/inventory system. We have a finite problem horizon involving N decision
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periods where the manufacturer observes the state of the system at the beginning of

period s = 1, 2, . . . , N as (Is, ds) where

• Is is one-dimensional inventory state representing inventory position before the

manufacturer’s replenishment decision in period s. It is one-dimensional since

the manufacturer does not keep track of separate inventory pools for buyers.

• ds =
[
db

s , ∀ b ∈ {1, 2, . . . , B}] is BH-dimensional commitment state (where B

is the number of buyers involved and H is the commitment horizon. H 6 L

where L is the manufacturer’s replenishment lead-time). The vector db
s =[

db
s−1,s, . . . , db

s−1,s+H−1, µDb , µDb , . . .
]

denotes random order commitments from

buyer b available to the manufacturer at the beginning of period s 1. Note that

ds denotes observed values (realizations) of Db
s .

We would like to select an ordered set of replenishment decisions which will minimize

the total cost incurred for each possible initial state (I1, d1). Such a minimum cost

thus can be computed, in principle, using the stochastic dynamic programming, which

has proven to be of great utility in the solution of inventory problems. Consequently,

we have the following recursive functional equations, for s = N, N − 1, . . . , 2, 1,

Vs(Is, ds) = min
TIs>Is

{
Js(TIs, Is,ds) + EEs [Vs+1(TIs −

∑

b

Db
s,s,Ds+1)]

}
,

VN+1(IN+1, dN+1) = − cpsEEN+1, EN+2, ..., EN+L
[ NIN+L ] , (5.1)

where Js(TIs, Is, ds), which is given by (4.7), is the current-period cost associated

with state (Is, ds) when replenishment decision TIs is selected. Vs(Is, ds) is the min-

imum expected cost-to-go from the beginning of period s to the end of period N + L,

assuming that the system is in state (Is, ds) in period s and an optimal replenishment

decision is made in every period s, s + 1, . . . , N .

The dynamic programming recursions in (5.1) consist of stochastic state tran-

sitions in the sense that the current state vector (Is, ds) and a replenishment decision

to result in TIs in period s are not adequate to determine the next-period state with

certainty. Instead, we have a collection of possible next-period states as a random

variable dependent on the choice of TIs, and state transitions from one period to the

next is described by a probability distribution. Thus we have the random next-period
1 Note that for periods beyond the commitment horizon H 6 L order commitment is assumed to

be the mean realized order, which are all identical and given by µDb .
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state denoted by (TIs−
∑
b

Db
s,s, Ds+1), where TIs−

∑
b

Db
s,s is the random next-period

inventory state and Ds+1 is random commitment state vector that will be observed

at the beginning of the next period.

The forecast evolution model that we have adopted enables us to express

the source of randomness here in terms of the random commitment update vector,

Es = [ Eb
s , ∀ b ∈ {1, 2, . . . , B} ] where

Eb
s =

[
εb
s,1, εb

s,2, . . . , εb
s,H+1, 0, 0, . . .

]
,

where εb
s,k is the random variable corresponding to the k-period ahead commitment

update (on the logarithmic scale) from buyer b for the amount to be ordered in period

s + k, k = 1, 2, . . . , H + 1. Thus, the expectation EEs [ · ] in (5.1) is with respect to

all possible realizations of Es and is conditioned on the value of ds.

An illustrative example shown in Figure 5.1 helps to clarify the nature of the as-

sociated computational process. Suppose we will follow value iteration using backward

induction algorithm as a solution technique for the dynamic programming recursions

in (5.1). Consider an (N − s)-period problem extending from the beginning of period

s. Suppose we would like to compute Vs(Is, ds), the minimum expected cost-to-go

from period s for a specific choice (Is, ds) of the current state. Suppose at the begin-

ning of period s a certain replenishment decision aiming at a specific TIs is made. We

first evaluate the current costs associated with period s for this choice of TIs; that

is, Js(TIs, Is, ds), considering all possible realizations (z1
L, . . . , zB

L ) of the random

variables (Z1
[s,s+L), . . . , ZB

[s,s+L)) (sums of L realized orders) [ 1©]. Each of the result-

ing costs Js(TIs, Is, ds | z1
L, . . . , zB

L ) is weighted by the probability Pr{z1
L, . . . , zB

L }
of obtaining that particular realization of (Z1

[s,s+L), . . . , ZB
[s,s+L)). We then make a

certain transition from the state (Is, ds) to a next-period state (TIs −
∑
b

db
s,s, ds+1)

with probabilities Pr{E1
s , . . . , EB

s } [ 2©]. We draw the minimum expected cost-to-

go Vs+1(TIs −
∑
b

db
s,s, ds+1 |E1

s , . . . , EB
s ) associated with this particular next-period

state from the list of Vs+1(Is+1, Ds+1) values, which have been already evaluated by

the previous backward iteration for all possible realizations of the random next-period

state (Is+1, Ds+1) [ 3©]. We can similarly obtain all the remaining minimum expected

cost-to-go values associated with the other transitions to the next-period state. As a

consequence, we continue repeating this entire calculation for every allowable choice

of replenishment decision TIs, and we can then choose the minimum among them,
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which becomes Vs(Is, ds) [ 4©].

Table of optimal cost-to-go in period s

Table of optimal cost-to-go in period s+1

Table of optimal cost-to-go in period s+L

Table of optimal cost-to-go in period s+2

K

M

Figure 5.1: Computing Vs(Is, ds)

A pseudo-code for this application of the dynamic programming is given in

Figure 5.2. We number the lines therein in an increasing order, where the lines at the

same level are assigned the same number. This pseudo-code begins with (B+3) nested

loops; (i) one for decision periods s in the planning horizon [line 1 ], (ii) one for the

set of possible inventory states Is [line 2 ], (iii) B for the sets of possible commitment

state vectors ds across buyers each being H-dimensional [lines 3 to 5 ], and (iv) the

last one for the set of allowable replenishment decisions TIs [line 6 ]. Next, we have

two successive blocks of loops each having B additional nested loops. The first block

[the first loop at line 7 ] is for evaluating the expected costs of carrying inventory and

backorders where the expectations are taken with respect to all possible realizations

of Z[s,s+L), conditioned on the value of ds. The second is for moving to the random

next-period state and taking the future cost out of a list of previously evaluated min-
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imum costs [the second loop at line 7 ]. The lowest level to which the nested loops

extend is 2B + 3 where each commitment state vector has H elements, resulting in

high dimensionality in the state space.

1. For period s backwards from s = N to s = 1

2. For state Is values

3. For state d1
s = [d1

s−1,s, d
1
s−1,s+1, . . . , d

1
s−1,s+L−1] values from buyer 1

4. . . .

5. For state dB
s = [dB

s−1,s, d
B
s−1,s+1, . . . , d

B
s−1,s+L−1] values from buyer B

6. For decision TIs

7. Compute PCs(TIs, Is)

7. For realizations of Z1
[s,s+L) from buyer 1

8. . . .

9. For realizations of ZB
[s,s+L) from buyer B

10. Find probability Pr{z1
L, . . . , zB

L } for these realizations

10. Compute Js(TIs, Is, ds | z1
L, . . . , zB

L )

9. End for

8. . . .

7. End for

7. Compute Js(TIs, Is, ds) over all realizations

7. For state D1
s+1 = [D1

s,s, D
1
s,s+1, . . . , D

1
s,s+L] values from buyer 1

8. . . .

9. For state DB
s+1 = [DB

s,s, D
B
s,s+1, . . . , D

B
s,s+L] values from buyer B

10. Compute TIs −
∑

b
Db

s,s, next-period inventory state

10. Find joint probability Pr{E1
s , . . . , EB

s } for next-period states

10. Get Vs+1(TIs −
∑

b
Db

s,s, Ds+1 | E1
s , . . . , EB

s ) from a list of values

9. End for

8. . . .

7. End for

7. Compute expected cost-to-go EEs [ Vs+1(TIs −
∑

b
Db

s,s, Ds+1) ]

7. Compute total cost Gs(TIs, Is, ds) = Js( ·, ·, ·) + EEs [ Vs+1( ·, ·) ] for TIs

6. End for

6. Find the minimum cost, Vs(Is, ds) over all TIs

5. End for

4. . . .

3. End for

2. End for

1. End for

Figure 5.2: A pseudo-code of dynamic recursions (5.1)
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5.2 Probabilities in the Stochastic Dynamic Programming

The dynamic programming recursive relations in (5.1) involve two types of probability

distributions, one is for the expected L-period costs of carrying inventory and backo-

rders and the other is for stochastic state transitions. This section discusses how we

determine these probabilities.

In the multi-period stochastic decision model under study, the current order

commitment is an explicit component of the state space that evolves from one period

to the next. The random component of the decision making environment should be

described by this evolution. Thus, the probabilities governing the stochastic state

transitions for the system under the forecast evolution model are quantified by the

distribution of commitment updates. This corresponds to the multivariate distribu-

tion fEs
(· |W , A) of the commitment update vector Es =

[Eb
s , ∀ b ∈ {1, 2, . . . , B}]

(on the logarithmic scale), comprising B(H + 1) interval censored random variables,

εb
s,k’s, as mentioned before in §3.1. As true mathematical form for this multivariate

distribution is complicated, we have suggested a finite Markov chain approximation

in §3.2 to §3.4.

The other probability distribution involved in (5.1) should quantify the uncer-

tainty associated with the sum of L realized orders in the future. This necessitates the

distribution fZb
L
(· |ds) of Zb

[s,s+L) =
L∑

k=1

Db
s+k−1,s+k−1, conditioned on the value of ds.

Evaluating the distribution fZb
L
(· |ds) accurately is difficult because of the censored

nature of the underlying random variables and the correlations among Db
s+k−1,s+k−1’s.

The following proposition is fundamental in overcoming this difficulty. It essen-

tially structures fZb
L
(· |ds) into an (approximately) equivalent probability distribution

function, which is readily amenable to being estimated by means of the Markov chain

approximation introduced in §3.2 to §3.4. Note that the proposition assumes, for the

sake of clarity, that L = H without loss of generality. Otherwise, we would need to

decompose Zb
[s,s+L) into two components, one for the interval [s, s + H) and the other

for [s + H, s + L).

Proposition 5.1 For a given value of the order commitment vector ds at the begin-

ning of period s, the probability distribution fZb
L
(· |ds) can be reduced to the following

alternative form.
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fZb
L
(y |ds) = Pr{ Zb

[s,s+L) = y |ds }

' Pr{
L∑

k=1

λb
kε

b
s,k = ln

y
L∑

k=1

βb
k

+
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

}

= fϑb
L
(

ln y
L∑

k=1

βb
k

+
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

), (5.2)

where

(i) βb
k is called the expected order after k updates from buyer b (i.e., single period

order k periods into the commitment horizon),

βb
k = µDb e

(µ
εb
1
+µ

εb
2
+···+µ

εb
k
)
. (5.3)

βb
k has the same units as Zb

[s,s+L). It does not depend on s since µDb is assumed

to be stationary.

(ii) θb
k is called the proportional expected order after k updates. It is the proportion

of βb
k in the expected aggregate L-period buyer order,

θb
k = βb

k/
L∑

m=1

βb
m. (5.4)

θb
k is dimensionless.

(iii) λb
k is called the weight factor of k-step commitment update εb

s,k,

λb
k =

L∑

m=k

θb
m. (5.5)

λb
k ∈ (0, 1] is dimensionless. λb

1 = 1 and it decreases as k goes from 1 to L. Weight

factors increase towards the period of order realization (i.e., as the period moves

to L-periods into the commitment horizon). Note that the sequence of λb
L, λb

L−1,

. . . , λb
1 is independent of s and {Es, s > 1}. Hence each weight is a constant.

(iv) ϑb
L is called the weighted aggregate L-period commitment update. It denotes a

weighted sum of commitment updates (on the logarithmic scale) to be received

from buyer b over the time interval [s, s + L),

ϑb
L =

L∑

k=1

λb
kε

b
s,k. (5.6)
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ϑb
L has the units of ln Zb

[s,s+L) (similar to εb
s,k). Note that ϑb

L does not depend

on s since the vector sequence {Es, s > 1} forms a stationary stochastic process

due to Assumption 3.3 of the forecast evolution structure.

Proof: See Appendix A.5.

Proposition 5.1 transforms the sum of L realized orders over the time interval [s, s+L)

onto a weighted sum of logarithmic commitment updates. If it is the case when L = 1,

the first two lines in (5.2) represent the probabilities of two equivalent events. Loga-

rithmic transformations therein are used to replace difficult operations on the prod-

ucts of censored random variables by easier operations on the weighted sum of their

logarithms. This allows us to operate with a simpler form of fZb
L
(· |ds). The only ap-

proximation in (5.2) applies to the logarithm of a sum of random variables employing

the linear Taylor series expansion.

We are now interested in the chance of realizing particular values for ϑb
L in

order to approximate the discrete probabilities for specific Zb
[s,s+L) occurrences. The

form of ϑb
L permits quantifying its probability function fϑb

L
(· ) by means of the finite

Markov chain approximation introduced in §3.2 to §3.4. This will be a straightforward

extension generalizing the empirical approach to the weighted sums of commitment

updates, since each weight λb
k is a given constant.

The Markovian representation of §3.3 translates into the multivariate process

{(ϑ1
k, . . . , ϑB

k ), 1 6 k 6 L}. Hence, allowable range of commitment updates by the

flexibility limits, their expected values, and covariances all need to be converted to

incorporate this weighting structure. At the end, we will obtain the joint probabil-

ity mass function of (ϑ1
L, . . . , ϑB

L ) and hence the marginal distributions, fϑb
L
(· )’s in

Proposition 5.1.

For the important special case where L = H = 1 (this is a simple model where

each buyer submits one order commitment in every period under the one-period re-

plenishment lead-time), we have Zb
[s,s+1) = Db

s,s and hence ϑb
1 = εb

s,1. The expression

(5.2) then turns out to be
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fZb
1
(y |ds) = Pr{ Zb

[s,s+1) = y |ds }

= Pr{ λb
1ε

b
1 = ln

y

βb
1

+ θb
1 ln

βb
1

db
s−1,s

}

= Pr{ εb
1 = ln y − ln db

s−1,s } since θb
1 = λb

1 = 1

= fεb
1
( ln

y

db
s−1,s

| W , A). (5.7)

It is important to mention that {Zb
[s,s+1) = y |ds} and {εb

1 = ln y − ln db
s−1,s} in

(5.7) are equivalent events, not equivalent quantities. The transformation is exact

in this case, and the probabilities fZb
1
(y |ds) are readily available as the probabilities

fεb
1
(· |W , A) of one-period ahead commitment updates εb

1. Note that the precision

of the approximation in (5.2) decreases as L increases (or as H increases for H < L

with a fixed L).

5.3 An Approach for Reducing the State Dimensionality

A direct application of the dynamic programming to problems for which stochastic

state variable is multidimensional is quite challenging due to the resulting dimension-

ality of the state space. The dynamic programming recursive relations in (5.1) require

BH + 1 state variables at each period, one for inventory state and BH for the order

commitments received from B buyers for the following H periods. This implies that

an application of the dynamic programming will bring about impractical computa-

tional and storage requirements as B and/or H increase. We have approximated the

continuous space by a finite number of possible discrete states that the stochastic

process may realize, as mentioned before in §3.3. The number of disjoint sub-intervals

in discretization was arbitrarily specified as M . The discretization will cause yet an-

other level of combinatorial explosion. Figure 5.3 illustrates a typical enumeration

of possible discrete values that a certain commitment state (out of BH commitment

states) can take over the H-period horizon. Note that MH distinct discrete values are

possible even for a single commitment state.
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Figure 5.3: Enumeration of possible discrete values for a single commitment state

This curse of dimensionality limits the applicability of the dynamic program-

ming methodology. In this section we suggest a method to circumvent the time and

memory requirements by reducing the high dimensionality in the state variables, par-

ticularly in BH-dimensional commitment states. Reducing the number of states cor-

responds to decreasing the number of transitions of order commitments. The main

advantage of the reduced problem will be that it substantially reduces the number of

states necessary to find an optimal solution and, thus, makes it possible to solve much

larger problems.

Define Ds,H to be a statistic computed from a possible realization ds of the

order commitment vector to be available in period s,

Ds,H =
∑

b

H∑

k=1

θb
k ln db

s−1,s+k−1, (5.8)

where θb
k = βb

k/
L∑

m=1
βb

m and βb
k = µDb e

(µ
εb
1
+µ

εb
2
+···+µ

εb
k
)
, as given by (5.4) and (5.3),

respectively. This statistic is an indicator of weighted effects by possible realizations of

order commitments. In the calculation of Ds,H , the formula consists of summing the

logarithms of all the order commitments, each being weighted by a known constant

θb
k. When the mean realized order is stationary over time we have θb

k = 1/L, otherwise

the weights θb
k imply relatively larger weight for higher expected updates. Ds,H relates

to the structure in Proposition 5.1. Both are in logarithm of order units, both are θ
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weighted, both are accumulation over the commitment horizon.

Consider all possible realizations (discrete values) of a random commitment

vector Ds in period s. We first compute Ds,H statistic for each of these discrete vector

values. Those Ds,H values that are sufficiently close to each other (at the analyst’s

discretion) are unified as one value. The corresponding commitment realizations ds

can then be partitioned into clusters. We refer to such clusters as commitment clusters.

This allows us to state the following fundamental theorem, suggesting our way of

reducing high dimensionality in state variables. The theorem says that for a given

value of inventory state Is at the beginning of period s, all possible commitment state

ds realizations partitioned into the same commitment cluster will result in identical

replenishment decision.

Theorem 5.1 Suppose a certain system state (Is, ds) is observed at the beginning of

period s. The following properties hold.

(i) All possible commitment state realizations ds that can be partitioned into the

same commitment cluster, by the statistic Ds,H , yield the same optimal replen-

ishment decision.

(ii) For the purposes of determining optimal replenishment policy of each commit-

ment cluster, the minimum expected cost-to-go from period s, Vs(Is, ds) can be

replaced by the modified cost-to-go V̂s(Îs, Ds,H), where

Îs , Is −
∑

b

[
(1−

L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

)
L∑

k=1

βb
k

]
, (5.9)

Ds,H =
∑

b

H∑

k=1

θb
k ln db

s−1,s+k−1, (5.10)

where βb
k and θb

k are given by (5.3) and (5.4), respectively. (Îs, Ds,H) is called

the modified system state.

Proof: See Appendix A.6.

Theorem 5.1 reveals that, upon observing the system state (Is, ds) at the beginning of

period s, we can eliminate the remaining commitment states in the same commitment

93



cluster with ds from further consideration. In turn, this enables us to consider the

problem in terms of the modified cost-to-go function V̂s(· ), which is a function of the

modified inventory position Îs and the Ds,H statistic. Îs has the same units as Is, and

Ds,H is in logarithm of order units. Thus the state space dimensionality is reduced in

the sense that we have a calculation in only two-dimensional state variable (Îs, Ds,H)

with Theorem 5.1, instead of (BH + 1)-dimensional state variable (Is, ds).

The modified inventory position Îs in (5.9) decreases the observed inventory

state Is by an amount equal to the expected aggregate L-period buyer order,
∑
b

L∑
k=1

βb
k.

As a simple numerical example, consider a 1-buyer case where H = L = 2. Suppose

we have µDb = 30, µεb
m

= 0. This yields θb
k = 0.5, βb

k = 30, and the expected ag-

gregate L-period buyer order of 60. Suppose the system is observed as Is = 80 and

ds = [30, 30] at the beginning of period s. This results in the modified inventory

position Îs of 20. The term in the parentheses in (5.9), on the other hand, is a correc-

tion factor, which further reduces Îs if order commitments are greater than µDb . To

see this, assume two distinct alternative ds = [28, 30] and d̄s = [32, 30] for the order

commitment vectors at the beginning of period s. Continuing with previous example,

the modified inventory position Îs is further reduced to 18.1 when d̄s = [32, 30], and

it becomes 22.1 when ds = [28, 30] .

Consequently, the use of Theorem 5.1 in solving the dynamic programming

recursions of (5.1) enables us to obtain considerable computational savings. It op-

erates by identifying commitment clusters of the state space that leads to identical

replenishment decisions. We treat those clusters by a representative state. Conse-

quently, the policy evaluation in the studied problem is approximate on three counts:

(i) the discretization of the continuous space, (ii) the approximation of the censored

joint probabilities using a finite Markov chain, (iii) the Taylor’s approximation made

in evaluating the logarithm of a sum of random variables in the use of commitment

clusters. An important question that naturally arise is whether these reduction tech-

niques result in a sufficiently accurate representation of the actual problem being

studied. This will be mentioned later in §5.4.

The following corollary to Theorem 5.1 states how stochastic state transitions

under the state-space reduction take place from modified state (Îs, Ds,H) in period s

to the random next-period state in the reduced space, (Îs+1, Ds+1,H).
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Corollary 5.1 (to Theorem 5.1) Suppose a certain replenishment decision T̂ Is

is made when the system is in modified state (Îs, Ds,H) at the beginning of period s.

Then the random next-period state in the reduced space, (Îs+1, Ds+1,H) can be specified

as

Îs+1 = T̂ Is −
∑

b

(
H+1∑

k=1

βb
kε

b
s,k − βb

1 − βb
H+1 ln

βb
H+1

µDb

) , (5.11)

Ds+1,H = Ds,H +
∑

b

(
H+1∑

k=2

βb
kε

b
s,k + βb

H+1 lnµDb − βb
1 ln db

s−1,s) /
H+1∑

k=2

βb
k ,

(5.12)

where εb
s,k is the random variable denoting the k-period ahead commitment update

made in period s.

Proof: See Appendix A.7.

The logic in Corollary 5.1 can be seen by noting the term in the parentheses on

the right-hand side of (5.11). It incorporates the renewed random commitment state

vector Ds+1 to be observed at period s + 1 (through the random variables εb
s,2, εb

s,3,

. . . , εb
s,H+1) and the random one-period commitment update to be made in obtaining

the realized order in period s, Ds,s (through the random variable εb
s,1). Similarly, the

right-hand side of (5.12) contains (εb
s,2, εb

s,3, . . . , εb
s,H+1), random commitment updates

made in period s. Hence (5.11) and (5.12) are for the transitions of the modified states.

As a consequence, the dynamic programming recurrence relation given in (5.1) under

the state-space reduction becomes

V̂s(Îs, Ds,H) = min
T̂ Is>Îs

{
Ĵs(T̂ Is, Îs, Ds,H) + EEs [ V̂s+1(Îs+1, Ds+1,H) ]

}

V̂N+1(ÎN+1, DN+1,H) = − cpsEEN+1, EN+2, ..., EN+L
[ N̂IN+L ] , (5.13)

for s = N, N − 1, . . . , 2, 1. Ĵs(T̂ Is, Ds,H) is the current-period costs associated with

the modified state (Îs, Ds,H) when action T̂ Is is selected, and V̂s+1(Îs+1, Ds+1,H) is

trivially the optimal cost-to-go for later periods.

A pseudo-code involved with evaluating these dynamic recursions is given in

Figure 5.4. It begins with 4 nested loops; (i) one for the decision periods in the plan-

ning horizon [line 1 ], (ii) one for the set of possible modified inventory states Îs [line

2 ], (iii) one for the set of possible modified commitment states Ds,H [line 3 ], and (iv)
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one for the set of allowable replenishment decisions [line 4 ]. Subsequently, we have

two successive blocks of loops each having B additional nested loops. The first block

[the first loop at line 5 ] is for evaluating expected costs of carrying inventory and

backorders where the expectations are taken with respect to all possible realizations

of Es. The second is for moving to the random next-period modified state and getting

the future cost which involves only two state variables [the second loop at line 5 ].

1. For period s backwards from s = N to s = 1

2. For modified state Îs values

3. For modified state Ds,H values

4. For decision T̂ Is

5. Compute PCs(T̂ Is, Îs)

5. For realizations of ϑ1
L for buyer 1

6. . . .

7. For realizations of ϑB
L for buyer B

8. Find probability Pr{v1
L, . . . , vB

L } for these realizations

8. Compute Ĵs(T̂ Is, Îs, Ds,H | v1
L, . . . , vB

L )

7. End for

6. . . .

5. End for

5. Compute Ĵs(T̂ Is, Îs, Ds,H) over all realizations

5. For realizations of (ε1
s,1, . . . , ε1

s,H+1) for buyer 1

6. . . .

7. For realizations of (εB
s,1, . . . , εB

s,H+1) for buyer B

8. Compute Îs+1 and Ds+1,H , next-period modified states

8. Find joint probability Pr{E1
s , . . . , EB

s } for next-period modified states

8. Get V̂s+1(Îs+1, Ds+1,H | E1
s , . . . , EB

s ) from a list of values

7. End for

6. . . .

5. End for

5. Compute expected cost-to-go EEs [ V̂s+1(Îs+1, Ds+1,H) ]

5. Compute total cost Ĝs(T̂ Is, Îs, Ds,H) = Ĵs( ·, ·, ·) + EEs [ V̂s+1( ·, ·) ] for T̂ Is

4. End for

4. Find the minimum cost, V̂s(Îs, Ds,H) over all T̂ Is

3. End for

2. End for

1. End for

Figure 5.4: A pseudo-code of dynamic recursions in (5.13)
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One can see the benefit from using the algorithm in Figure 5.4 if the amount of

calculation required is compared with that of Figure 5.2. By using the algorithm in

Figure 5.4, we have a calculation in only two state variables with B + 4 nested loops

at the lowest level, instead of BH + 1 state variables with 2B + 3 nested loops.

5.4 An Example of the Computational Process

In this section, we discuss loss of accuracy resulted with the state-space reduction

together with the associated gain in the computational requirements.

5.4.1 Solving the stochastic dynamic recursions

In order to solve the stochastic dynamic programming recursions, given by (5.1) and

(5.13), we coded them in Matrix Laboratory (MATLAB) Release 14 with Service Pack

1. MATLAB is a high-performance and a high-level language whose basic data element

is an array that does not require dimensioning. This allowed us to solve our dynamic

programming relations, which requires matrix and vector formulations to store op-

timal costs and order-up-to-levels evaluated by previous backward iterations for all

possible realizations of random system states. Furthermore, MATLAB incorporates

two main functionalities allowing us to solve our dynamic problems conveniently. One

is its family of add-on application-specific solutions called toolboxes, which extends

the MATLAB environment to solve particular classes of problems. The other is its

mathematical function library, which is a comprehensive collection of computational

algorithms ranging from elementary functions to more sophisticated functions.

5.4.2 Validating the state-space reduction

The state-space reduction technique that we have proposed transforms the dynamic

recursions into a simpler one which involves only two state variables. On the other

hand, there arises the question of whether the reduction technique results in an accu-

rate representation of the actual problem being studied.

In this section we now describe how to determine whether the reduction tech-
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nique is valid. The goal of validation is two-fold. (1) First, we try to show that

the optimal replenishment policies under the reduced state space agree with the ones

that are obtained by using the original state space. (2) The second is to demonstrate

whether the state-space reduction is effective in improving the computational and

storage requirements. Thus, the claim is that the reduced model formulation, if it can

be solved efficiently, does what the original formulation asks us to do. A powerful ver-

ification of this claim is to implement both formulations on a set of problem instances.

Hence, the approach taken to validate the state-space reduction is an empirical one

where we solve various problem instances using the stochastic dynamic programming

for both model formulations.

We generate seven problem instances as seen in Table 5.1. They are differenti-

ated by the number of buyers involved (B), the length of the manufacturer’s replen-

ishment lead-time assumed (L), the number of the manufacturer’s decision periods

(N), and the number of discrete values assumed for a continuous variable (M). Note

that larger values of these parameters would amplify computational requirements.

This constitutes the reason for studying these restricted problem sizes. The instance

labelled INS1 is generated to represent those cases where multiple buyers exist, and

INS2 to observe the effect of the replenishment lead-time. The problem instances

INS3 to INS7, on the other hand, are taken into consideration to observe the effects

of expanding grid of discrete points (i.e., increasing the value of M).

Table 5.1: Problem instances used in validating state-space reduction

Parameter INS1 INS2 INS3 to INS7
B 2 1 1

L = H 2 3 3
N 4 6 6
M 5 5 from 6 to 10 by 1 unit steps

All other parameters and settings (including the capacity level, and costs) are kept

the same across all problem instances. Suppose that buyers have the same set of

contract flexibility limits in updating their order commitments. They are given by

{αb
k = ωb

k, k = 1, 2, 3 } = { 0.4, 0.6, 0.8 }. The mean realized orders and the mean
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logarithmic commitment update are taken as [µD1 , µD2 ] = [30, 20 ] and µεb
k

= 0, for

b = 1, 2 and k = 1, 2, 3, respectively. The covariance matrix of Es are assumed to be

correspond to a certain correlation structure. More specifically, it is assumed that (i)

(εb
k, εb

l )’s for the same buyer b but different lags k 6= l have positive correlation of 0.5,

(ii) (εb
k, εr

k)’s for different buyers (b 6= r) but identical lag (k for both) are negatively

correlated with correlation coefficient of −0.3, and (iii) (εb
k, εr

l )’s for different buyers

(b 6= r) and lags (k 6= l) have zero correlation.

For assessing the effects of state-space reduction, we calculate (i) the maximum

percentage deviation in order-up-to levels TIs (maximum taken over N periods), (ii)

the percentage deviation in minimum expected cost-to-go from period 1 (i.e., deviation

in V1(·, ·) values) and (iii) the percentage decrease in run time for the reduced model

formulation as compared to the original formulation. Table 5.2 gives these results.

For problem instance INS2 we have a higher percentage deviation since the precision

of the approximation in (5.2) reduces for larger L.

Table 5.2: Performance measures

Performance Measure INS1 INS2
Maximum percentage deviation in TIs 1.70% 2.30%
Percentage deviation in V1 1.09% 1.63%
Percentage decrease in run time 87.0% 88.15%

Figure 5.5, on the other hand, shows the effects of expanding grid of discrete points.

Even small increases in M result in an increased computational burden for the original

formulation (hence % decrease in run time gets better after state-space reduction),

but the gain in the maximum percentage deviation in order-up-to levels does not look

much.
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Figure 5.5: Effects of increasing M (for problem instances INS3 to INS7)

As a consequence, the empirical validation demonstrate the agreement of the

replenishment decisions, and the effectiveness of stochastic dynamic recursions under

the state-space reduction.
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CHAPTER 6

DESCRIPTION OF THE COMPUTATIONAL STUDY

This chapter is devoted to a detailed description of the computational approach used

for the manufacturer’s multi-period stochastic production/inventory decision problem.

We shall perform optimization experiments, each minimizing the expected total cost of

the manufacturer, directed toward exploring the relationship between the experimental

factors of interest and the measures of performance. §6.1 provides the central research

questions of this dissertation that will be addressed through the experimentation. In

§6.2, we define factors and identify their levels so that various system scenarios can be

experimented. §6.3 describes the base case experiments that are needed as a reference

to compare different conditions in the production/inventory system. We discuss, in

§6.4, the performance measures that are used to evaluate the performance of different

system scenarios. Finally, we consider a comparable alternative to the model under

the forecast evolution in §6.5, where we build upon the results from Graves (1999).

6.1 Objectives of the Computational Study

In this research, we investigate a multi-period stochastic production/inventory prob-

lem under quantity flexibility (QF) supply contracts. The problem involves a ca-

pacitated manufacturer, with an option of subcontracting, who satisfies periodically

updated order commitments from multiple contract buyers having stochastic demands.

This problem environment is a complicated one that has multiple factors affecting it.

In this environment, we would like to make an integrated analysis of the QF contract

parameter setting and the production/inventory planning. It is of great value to un-

derstand the underlying interplay of the decisions. We thus attempt to investigate the
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effects, on the decisions and costs of the manufacturer, of possible action options.

In this research we do not attempt to make a specification of the buyers’ objec-

tive function and constraints, as mentioned in §2.2. The manufacturer makes optimal

decisions based on the minimization of his expected total cost subject to the QF con-

tracts and capacity restrictions. This is accomplished using an efficient enumerative

application based upon an analytical optimization approach rather than an experi-

mental method such as simulation techniques. The associated cost functions (which

are known to be continuous and display differentiability and convexity properties) are

evaluated by using discrete values and their approximate probabilities suggested by

our finite Markov chain approximation introduced in §3.2 to §3.4.

The computational study thus is intended to delineate ways that this model

might be elaborated on to capture various important features of the production and

inventory system. The following are the specific issues to be investigated through the

computational study.

1. How the appropriate scheme of QF contracts to be offered to the buyers can be

determined? What are the effects, on the buyers, of the manufacturer’s decisions

about the QF contracts?

2. How can the manufacturer’s in-house capacity investment decisions benefit from

the presence of early order commitments and subcontracting option? What are

their implications on the manufacturer’s ability to meet the demand?

3. How much can the manufacturer benefit from practicing early order commit-

ments under QF contracts? How much revision flexibility can he tolerate with

regard to changes in the capacity level and cost structure?

4. How much benefit can the manufacturer derive from integrating his produc-

tion/inventory planning with the evolutions of order commitments through the

MMFE structure? How does this respond to changes in the variability of demand

and the correlation structure inherent in the system?

To address these issues, in the following section we first discuss the action

options to be experimented with.
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6.2 Experimental Factors and Factor Levels

In this section, we define the experimental factors to be used in our computational

study. We classify the experimental factors of interest as either environmental settings

or controllable action options. We shall conduct experiments on a variety of system

scenarios by varying combinations of levels of these factors. There are a large num-

ber of parameters to test. However we have limited our research questions. Hence,

there will be two sets of parameters regarding the environments tested. One set of

parameters are set throughout the experimentation, we call it environmental settings.

6.2.1 Environmental settings

Environmental settings are of two classes. The first includes those experimental factors

which may not be possible for the manufacturer to change. Correlations of commit-

ment updates (CO), coefficient of variation for demand (CV ), and the mean demand

from the buyers (µDb) constitute the uncontrollable environmental settings. The sec-

ond class of environmental settings may include those not being immediately relevant

to the research questions under study although they are controllable. The number of

contract buyers (B), the number of decision points for the manufacturer (N), and the

manufacturer’s replenishment lead-time (L) constitute these. For the complete list of

the environmental settings, their levels and level values refer to Table 6.1.

Table 6.1: Environmental settings

Experimental Factor Label Levels
Number of buyers B 2
Number of decision points N 72
Replenishment lead-time L 12
Correlations of commitment updates CO 0, ± 0.8, ± 0.5, ± 0.3
Coefficient of variation for demand CV 0.20, 0.50
Expected value of demands from buyers [µD1 , µD2 ] [30, 20]

As mentioned in §4.1, we have restricted the problem environment to only two
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contract buyers to maintain analytical tractability (B = 2). When more contract

buyers are committing orders earlier, it allows the manufacturer to pool the demands

together to smooth production, depending on the underlying correlation structure

across the buyers. A two-buyer case will suffice to understand the consequences of

this well-known pooling effect, and including more buyers in the analysis would not

provide extra information.

We study a periodic-review inventory system with one-period re-planning fre-

quency over a finite horizon. The number of decision points with replenishment deci-

sions is taken to be N = 72 in our experimental runs. In determining the N value, we

heed the computational efficiency and still allow modeling of a realistic environment.

Although the appropriate choice of N would appear to be extremely model-dependent,

we think that given the replenishment lead-time, L, our choice provides a time span

long enough to reliably capture all the relevant facts.

The replenishment orders placed by the manufacturer require a certain amount

of time until they arrive. The replenishment lead-time is assumed to be L = 12 pe-

riods. The manufacturer makes inventory replenishment decisions in every period for

servicing stochastic orders of the buyers over L periods into the future.

The correlation structure inherent in the system may influence the effectiveness

of the actions to be taken. We assume that there exist correlations among commit-

ment updates for a number of future periods in the same period. This allows us to

model the correlation among the commitments as well as the current realized order

through time and across buyers. The correlations of commitment updates occurring

in the same period of time are of two classes: (i) Correlations within commitment

updates for a particular buyer b ∈ {1, 2} are all assumed to be positive. The further

apart the commitment updates are, the smaller the correlations between them. They

are assumed to range from 0.8 to 0.3. (ii) Correlations across buyers for the com-

mitment updates made for the same future period are all taken to be −0.8. We also

assume that k-period ahead commitment updates from a buyer are uncorrelated with

l-period ahead updates from the other buyer for k 6= l ∈ {1, 2, . . . , L}. It is important

to keep in mind that these correlation values are for the uncensored (intended) com-

mitment updates. The revision limits are incorporated and the associated censored

distributional parameters are obtained by (3.16) and (3.17). We do not consider other

correlation structures although this will constitute an interesting issue to study.
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We vary the coefficient of variation for demand from low (CV = 0.20) to high

(CV = 0.50) for each buyer, although the CV value may depend on the particulars

of the situation. The expected value of demand is assumed to be constant over the

planning horizon and taken to be µD1 = 30 and µD2 = 20 for the first and second

buyers, respectively.

Furthermore, as the results for a terminating experimentation depend on the

state of the system at the beginning of the experimentation horizon, initial conditions

are of vital importance. We initiate an initial inventory position of I0 = L
∑
b

µDb

units. We assume that initially the manufacturer observes a complete set of order

commitments db
1 =

[
db

0,1, db
0,2, . . . , db

0,H

]
, b = 1, 2 initialized to be equivalent to

µDb ’s such that

db
1 = [µDb , µDb , . . . , µDb ] .

Thus the first replenishment decision being made at the beginning of period 1 relies on

the commitment vector db
1 . The corresponding replenishment order q1 will arrive at

the beginning of period L+1, and will constitute the first arrival. Throughout period

1, the realized orders db
1,1 (b = 1, 2) are observed. The manufacturer starts satisfying

realized orders consuming his on-hand inventory from period 1 onwards. Period 2 is

the first time that updated commitments db
1,k+1 are available to the manufacturer.

The key element in the dynamics of computational experiments is the way in

which the order commitments evolve randomly from one period to the next. Given

the forecast evolution model, a theoretical distribution could not be found. We use

an empirical distribution described in §3.3 and §3.4 to approximate the probability

distribution function by a probability function for the chosen points. The number of

discrete points used in approximating any relevant distribution is taken to be M = 5.

6.2.2 Controllable action options

Controllable action options are those experimental factors the manufacturer does have

control over, and their levels are effective for the research questions under study. We

identify five main action options for the system under study. They are the number

of periods (H) of early order commitments, the flexibility limit per period (FL) in

order commitment updates, the manufacturer’s in-house capacity level (K), the cost
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differential between in-house production and subcontracting (∆c = cps− cpi), and the

backorder-to-holding cost ratio (∆π = πb/h). We shall investigate how these factors

react with each other and have an effect on the system performance. For the complete

list of the controllable action options refer to Table 6.2.

Table 6.2: Controllable factors

Experimental Factor Label
Commitment horizon H
Flexibility limit per period FL
In-house capacity level K
Cost differential in production ∆c

Backorder-to-holding cost ratio ∆π

Commitment Horizon (H)

We define the commitment horizon (H) to be the number of periods for which the

contract buyers submit order commitments in each replenishment decision point. The

buyers are committed to purchase from the manufacturer by submitting flexible order

quantities as signals before the actual order realizations. The commitment horizon

is one of the focal points of the QF contracts, affecting the execution of the produc-

tion/inventory system and its performance. Order commitment for a future period

first becomes available H periods in advance and is immediately exploited in deter-

mining the manufacturer’s replenishment decision as a signal for the upcoming order

sizes during the replenishment lead-time.

The commitment horizon does not need to coincide with the L-period replen-

ishment lead-time. If it is the case that H < L, the manufacturer takes the mean

realized order to be the best available order information for the periods beyond the

commitment horizon. Practicing early order commitments are expected to allow the

manufacturer to obtain greater accuracy at an earlier point in time due to the vari-

ance reduction effect of committing. On the contrary, from the buyers’ perspective,

committing an order early on is accompanied by a risk of either underestimating or

overestimating the true value of the future orders. The risk increases in the demand

uncertainty and decreases in the quality of forecasting machinery used. Therefore, it

is valuable to quantify these implications so as to determine whether the manufacturer
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can derive sufficient benefit from exercising early order commitments. Furthermore,

how early should the order commitments be made and which other factors may have

significant impacts on such a decision are questions of interest in the computational

study.

We vary the commitment horizon from H = 1 (minimal demand signal) to

H = L = 12 (maximal demand signal) in the computational investigation. In the

minimal commitment environment, the manufacturer receives order commitments only

for the next period, and no other signal for the lead-time demand. Under maximal

commitment, the manufacturer would have full signal for the lead-time demand, and

completely act on order commitments from the buyers. The factor levels and the

values for these levels can be seen in Table 6.3.

Table 6.3: Commitment horizon levels and level values

Experimental Factor Label Levels Level Values

Commitment Horizon H
minimal commitment 1

k-period partial commitment k ∈ {2, 3, . . . , 11}
maximal commitment L = 12

Flexibility Limit per Period (FL)

We define the flexibility limit per period (FL) to be the percentage revision limit on

how much room buyers will have in updating their order commitments from period

to period. It implies that the buyers are capable of adapting order commitments up

or down on the basis of changing circumstances and their own forecasts in the future.

The QF contracts attach a degree of commitment to the orders by stipulating flexi-

bility constraints on the buyer’s ability to revise them over time. The main role of

flexibility in the QF contracts is to balance risks that could be incurred as a result

of their prediction errors, by the manufacturer’s costs in attaining a wider range of

responses.

Not all supply chain partners benefit equally in terms of this flexibility. Given

the dynamic and uncertain nature of the operating environment, buyers would like

to have a greater flexibility, allowing them to satisfy stochastic market demand at a

lower cost. The greater the flexibility, the greater the likelihood buyers can effectively
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adjust to changes in market conditions.

The manufacturer, on the other hand, demands a lower flexibility level in at-

taining smoother production schedules at high capacity utilization levels. We examine

the implications of order commitments (and hence realized orders) available to the

manufacturer from a certain range defined by contract flexibility limits.

We assume that lower and upper flexibility limits are equal and they do not

vary over time (i.e., ωb
k = αb

k = FL for all k = 1, 2, . . . , H). Hence, a buyer can not

revise k-step order commitment (cumulatively) upward by a fraction of more than

(1 + FL)k or downward by more than (1−FL)k; that is, the uncertainty about order

commitments grows with time periods. The factor levels and the values for these levels

are given in Table 6.4.

Table 6.4: Flexibility limit levels and level values

Experimental Factor Label Levels Level Values

Flexibility limit per period FL

no flexibility 0.01
tight 0.05
loose 0.10

no limit ∞

Capacity Level (K)

We define the capacity level (K) to be the maximum amount that can be produced

internally by the manufacturer in any period for realized delivery after L periods. The

capacity level is a relatively long-term decision, which greatly impacts the manufac-

turer’s ability to match supply with demand. Because of the guaranteed supply up

to a certain percentage update associated with the QF contracts, the manufacturer is

assumed to have an option of subcontracting as a supplementary capacity. We shall

make an integrated analysis of the capacity level in the presence of the QF contracts

and the subcontracting option. It is to the manufacturer’s benefit to understand the

association between his additional capacity costs, contract parameters, and subcon-

tracting.

The terms of QF contracts and the option of subcontracting change the essence

of K in terms of manufacturer’s benefit. Through managing supply contracts with
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quantity flexibility, the manufacturer bears some portion of the buyers’ risks caused

by uncertainty she faces in market demand. The buyer has a certain degree of down-

ward flexibility for updating order commitments while the manufacturer guarantees to

deliver up to a certain percentage above it. This complicates the capacity investment

decisions. The subcontracting option, on the other hand, serves as a means of hedg-

ing due to the buyers’ flexibilities (it is naturally possible that subcontracting occurs

even if the buyers have no revision flexibility). Hence, all these need to be taken into

account at the time of the capacity investment decision.

In the computational investigation, different capacity levels are represented by

varying the level of capacity slack. The capacity slack identifies the amount of ex-

cess capacity over the expected total of orders to be received from all the buyers per

lead-time. A certain level of excess capacity is essential for flexibility if fast reaction

to change is an important operational requirement. Suppose an amount of excess

capacity is measured by a multiple ∆K of the standard deviation of buyers’ orders.

Values of ∆K often depend on how the manufacturer cares about stockout risk. Thus

the in-house capacity level K is denoted by

K = µD + ∆K σD, (6.1)

where µD is the expected total of orders to be received from all the buyers in any

period, and σD is the associated standard deviation. It is important to mention

that σD in (6.1) is calculated by means of our finite Markov chain approximation

introduced in §3.2 to §3.4 (rather than being an experimental or theoretical value),

which takes the non-stationary nature of the order commitments into account. We

will consider a variety of environments, each corresponding to a level of ∆K . The

capacity slack is varied from a ∆K value of 0 (no excess capacity) to that of 2.5 (loose

capacity) in the computational study. We assume that the in-house capacity is not

allowed to be adjusted from period to period during the experimentation horizon N .

The factor levels and the values for these levels are summarized in Table 6.5.
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Table 6.5: Capacity slack levels and level values

Experimental Factor Label Levels Level Values

Capacity slack ∆K

no capacity slack 0
very tight 0.5

tight 1
moderate 1.5

loose 2.5

Cost Structure (∆c, ∆π)

We define the cost structure of the manufacturer to be the relative values of his costs.

It can be identified by means of two classes of cost drivers; structural and executional.

Structural cost drivers of the manufacturer reflect the technology available and the

technical complexity of the production system, and both are assumed to be reflected in

the relative values of unit costs of in-house production (cpi) and subcontracting (cps).

Executional cost drivers, on the other hand, are concerned with the manufacturer’s

attitude to stockout risk, which affects his preference for the levels of backordering

cost (πb) and inventory carrying cost (h). The cost structure identifies the perceived

relationship between the manufacturer’s structural costs and the level of supply and

customer service he can provide.

Two issues arise in determining the relative values of the manufacturer’s costs.

The first is related to the costs of in-house production and subcontracting. How the

manufacturer structures his business operations has a direct impact on his ability to

compete and deliver service to the buyers. The magnitude of cpi indicates the extent

of whether internal business processes are efficiently designed and executed. On the

other hand, the guaranteed supply up to a certain percentage under the QF contracts

may encourage the manufacturer to supplement his limited production capacity in

contingencies. As a form of such supplementary capacity, the manufacturer is as-

sumed to subcontract part of his due shipments to other firms for capacity reasons.

That is, the manufacturer is capable of producing the product, but he does not have

all the production capacity required to produce all the amount ordered. Subcontract-

ing enables the manufacturer to take advantage of smoothing his releases when facing

non-stationary stochastic orders. As a consequence, the magnitude of cost differential

between the manufacturer and subcontractor, ∆c = cps− cpi, plays the key role in the
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manufacturer’s choice.

The second issue is an executional one which arises in the costs of carrying

inventory and backorders. The manufacturer essentially chooses his service level by

selecting the relative values of πb and h. If the manufacturer desires a higher service

level to buyers, hence larger inventories, he can simply select a value of backorder-to-

holding cost ratio that might be higher than what it is used to be. This preference is

reflected through the backorder-to-holding cost ratio ∆π = πb/h.

We shall investigate the attitudes of the manufacturer in various system sce-

narios represented by different (∆c, ∆π) combinations. We interpret the unit cost of

carrying inventory as a base for determining the values of the other costs. The factor

levels and the values for these levels are summarized in Table 6.6. The values of ∆c

and ∆π are relative to cps = 2.5 and h = 1, respectively.

Table 6.6: ∆c and ∆π levels and level values

Experimental Factor Label Levels Values

Cost differential in production ∆c

very low 0.1
low 0.5

medium 1
high 1.5

Backorder-to-holding cost ratio ∆π
low 1
high 5

6.3 Base Case Experiments

The computational investigation that is carried out in this research is fairly compli-

cated, involving a stochastic environment with many experimental factors and possibly

a large number of levels for some factors. Thus, some base case experiments are needed

as a reference to compare typical operating conditions in the production/inventory sys-

tem. We believe that a parametric experimentation with respect to some predefined

base cases is the most appropriate computational approach. The later results are

derived from comparing those of the alternative scenarios to the system performance

associated with the base case. We have three classes of base case experiments.

The first class is intended to evaluate various scenarios for commitment hori-
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zon. It corresponds to a minimal-early-commitment environment where H = 1 and

FL = ∞. We call this base case the minimal-commitment base case. In this base

case, the buyers provide only one-period ahead order commitments. They commit

themselves to the mean order sizes and update freely. There is only one commitment

update possible at the point of order realization and no restriction is imposed on these

updates (imposing no restriction nullifies all the commitment values other than µDb).

So, any value is possible like µDb = 10 and db
1,1 = 1000 with 990 as the update. This

base case offers the buyers utmost opportunity to modify their initial commitments

since they are not required to be accurate. This means that there is virtually no

commitment. Thus, at the time of replenishment decisions, the manufacturer has the

minimal early signal for the order realizations over the following replenishment lead-

time.

We establish the second class of base case experiments to investigate various

scenarios for flexibility arrangements. It corresponds to a situation where FL = 0.01

for a given level H = k of commitment horizon, for k = 1, 2, . . . , L. We call this base

case the minimal-flexibility base case. In this base case, the buyers do provide order

commitments for all the periods in the following k-period commitment horizon. Initial

order commitments are to be updated k times until the period of order realization,

but with a very restrictive flexibility. This base case offers the buyers much less op-

portunity to modify their initial commitments. The maximum upward update would

amount to less than 13% of the initial commitment (where 13% = (1 + 0.01)H+1/100

for the largest horizon of H = 12).

The third class of base case experiments serves as a reference to evaluate vari-

ous system scenarios differing in the capacity level K. We call this the capacity base

case. This base case assumes that the available in-house capacity is constant and

equal to the mean order per lead-time (i.e., the case when there is no excess capacity,

∆K = 0).

All the other environmental settings, controllable action options and initial

system conditions are kept the same across the base case experiments. For these

three base case experiments, the complete list of the values for the factor levels are

summarized in Table 6.7.
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Table 6.7: Base case experiments and factor levels

Minimal Minimal
Commitment Flexibility Capacity

Experimental Factor Label Base Case Base Case Base Case
Correlations of updates CO 0.3, - 0.8 0.3, - 0.8 0.3, - 0.8
Coefficient of variation CV 0.2 0.2 0.2
Number of buyers B 2 2 2
Number of decision points N 72 72 72
Replenishment lead-time L 12 12 12
Commitment horizon H 1 k ∈ {1, 2, . . . , L} 12
Flexibility limit per period FL ∞ 0.01 0.10
Capacity slack ∆K 1 1 0
Cost differential in production ∆c 1.5 1.5 1.5
Backorder-to-holding cost ratio ∆π 5 5 5

6.4 Performance Measures

In this section, measures of system performance that will be used to evaluate different

system scenarios are discussed. We now describe seven performance measures that

are most relevant in our case in Table 6.8.

Table 6.8: Performance measures

Performance Measures Label
Cost improvements CI +

H , CI −H , CIK

Mean order-up-to deviation TIdev

Order-up-to instability TIins

Capacity utilization CU
Fill-rate ϕ

The measures of system performance are computed as an average performance

observed over the N periods on a given experimental run. Since the initial con-

ditions for a terminating experimentation generally affect the desired measures of

performance, we exclude the first L immaterial periods to avoid the effects of initial

inventory chosen in all these measures, and use those periods from L + 1 to N + L.

Figure 6.1 helps explain this setting. Our modeling assumption is that initially the
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system has a positive inventory level due to an initial order of q1−L =
∑
b

µDb to arrive

at the beginning of period 1. The first replenishment decision relying on buyers’ com-

mitments d1 is made at the beginning of period 1 to arrive at the beginning of period

L + 1. And, the manufacturer starts satisfying buyers’ realized orders consuming I1.

1 2 L+2 L+N+1L+1

No cost impacts over [1, L ]

An order from L

periods ago to  build

an initial inventory 

The first replenishment 

arrival
1

qSystem is in state ),( 1 1
dI

K K

Figure 6.1: Illustrating the first L immaterial periods

Cost Improvements (CI +
H , CI −H , CIK)

We define the cost improvement (CI) to be the manufacturer’s percentage cost change

over a certain base case of the considered scenario. The manufacturer’s cost is assumed

to be the minimum expected cost-to-go from the beginning of the planning horizon,

assuming that the system is in state (I1, d1) in period s = 1 and an optimal replen-

ishment decision is made in every period thereon s = 1, 2, . . . , N [cf. Fig. 6.1]. The

formula for CI is

CI = 100
VL+1(base case)− VL+1(scenario)

VL+1(base case)
, (6.2)

where VL+1(base case) is the minimum expected cost-to-go from the beginning of pe-

riod L + 1 to the end of period N + L corresponding to a base case of interest. There

are three types of cost measures.

The first is calculated against the minimal-commitment base case (i.e., when

H = 1 and FL = ∞), and is referred to as percentage cost saving (CI +
H ). The

minimal-commitment base case corresponds to a cost upper bound for other alterna-

tive (H, FL) combinations with H > 1 and FL < ∞. CI +
H thus represents the relative
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percentage cost advantage that the manufacturer could attain if commitment horizon

H is extended and flexibility limit per period FL is restricted. A cost advantage arises

since practicing early order commitments allows the manufacturer to obtain greater

accuracy at an earlier point in time as compared to the minimal-commitment base

case.

The second type of cost measure, which is referred to as percentage cost increase

(CI −H ), is calculated against the minimal-flexibility base case (i.e., when FL = 0.01

for a given level H = k of commitment horizon, k = 1, 2, . . . , L). The minimal-

flexibility base case corresponds to a cost lower bound for other alternative (H, FL)

combinations with H = k and FL > 0.01. CI −H represents the relative percentage cost

disadvantage due to using the optimal replenishment policy which is obtained when

the buyers have larger revision flexibility. A cost disadvantage arises since this is likely

to cause inefficiency and extra costs at the manufacturer because of responding to a

wider range of orders, as compared to the minimal-flexibility case.

The third type of cost measure, which is denoted by CIK , is calculated against

the capacity base case (i.e., when ∆K = 0). The capacity base case corresponds to a

cost upper bound for other alternative ∆K combinations with ∆K > 0. It represents

the relative percentage cost advantage that could be attained if the manufacturer has

a certain amount of excess capacity over the mean order per lead-time. This provides

a sort of capacity flexibility with the manufacturer, in turn he could better match

supply with demand, as compared to the capacity base case.

Mean Order-up-to Deviation (TIdev)

We define the mean order-up-to deviation (TIdev) to be the average ratio of optimal

order-up-to positions to the mean order per lead-time. It is calculated by

TIdev =
1

N − L

N∑

s=L+1

TI∗s
L

∑
b

µDb

, (6.3)

where s is time index over the number of decision points N , TI∗s is the optimal order-

up-to position of period s, and L
∑
b

µDb is the mean order per lead-time.

Optimal order-up-to position over the mean order per lead-time measures how

planned target inventory positions match the mean realized order. The more the man-

ufacturer cares about backorders (by higher backorder penalty), the larger the TIdev.
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Order-up-to Instability (TIins)

We define the order-up-to instability (TIins) to be the average absolute deviation be-

tween optimal order-up-to positions, in fraction of the mean order per lead-time, of

consecutive decision periods on a given experimental run of the system. The formula

for computing the order-up-to instability is

TIins =
1

N − L

N−1∑

s=L+1

|TI∗s − TI∗s+1 |
L

∑
b

µDb

, (6.4)

where TI∗s is the optimal order-up-to position of period s. We first calculate the abso-

lute deviation in optimal order-up-to positions of consecutive decision periods. These

deviations are divided by the respective mean order from all buyers per lead-time, and

averaged over all s except the first L periods.

The stability of order-up-to positions is of interest because the more variable

(less stable) order-up-to levels are expected to require expend more managerial and

physical production resources (since production decisions are highly dependent on

order-up-to positions). This would imply more fluctuating production quantities from

one period to the next, which in turn results in higher penalties associated with

period-to-period production variation and more stringent (hence costly) administra-

tive action/control. A more stable policy, on the other hand, justifies a base-stock

type standard policy (as an approximation).

Capacity Utilization (CU)

We define the capacity utilization (CU) to be the extent to which the manufacturer

actually uses his in-house production capacity on a given experimental run of the

system. It is measured as an average percentage rate

CU =
1

N − L

N∑

s=L+1

min{TI∗s − Is, K}
K

, (6.5)

where K is the maximum amount that can be produced internally, and TI∗s − Is is

the replenishment amount in period s, qs [cf. Section 4.1].

The capacity utilization is of interest because the effective level of customer

service should be interpreted together with the level of capacity utilization. The buy-

ers would like to have greater flexibility, allowing them to satisfy the uncertain market

demand at a lower cost. Whereas, the manufacturer demands a lower flexibility with

116



the aim of attaining smoother production schedules at high capacity utilization. Low

capacity utilization leads to additional manufacturing expenses created by excess ca-

pacity. High capacity utilization, on the other hand, gives rise to higher risk of lost

customers or penalties associated with unsatisfied buyers’ orders. As a middle way

between these two extremes, medium capacity utilization (i.e., a certain amount of

capacity slack) potentially offers more flexibility without much costly administrative

control.

Fill Rate (ϕ)

We define the fill rate, as type-2 service level, to be the expected proportion of total re-

alized order over all the buyers that is satisfied immediately from the manufacturer’s

finished-goods inventory. It is measured as an average proportion observed over a

given experimental run of the system

ϕ =
1

N − L

N∑

s=L+1


1−

E[TI∗s −
∑
b

s+L−1∑
t=s

Db
t,t]

−

∑
b

µDb


 . (6.6)

The expression E[TI∗s −
∑
b

s+L−1∑
t=s

Db
t,t]

− reduces to E[NIs+L]− due to Eq. (4.4). It

gives the expected number of backorders (i.e., current inventory position not capable

to meet) over all buyers that occur at the end of period s + L − 1. Thus, the ratio

E[TI∗s −
∑
b

s+L−1∑
t=s

Db
t,t]

−/
∑
b

µDb gives the fraction of total orders that are expected to

stock out each period.

ϕ in (6.6) is not the traditional fill-rate service level for the buyer since the

allowable range of order realizations are restricted due to the presence of contract

flexibility limits. As we have already mentioned in §2.2, the manufacturer offers

contracts that entice buyers to commit their orders in advance while limiting their

ability to revise order commitments over time. Each contract buyer first determines

her intended order commitments in each period as intended future self plans. The

revision limits requested by the manufacturer are then applied to these self plans.

The intended order commitments may hit one of the limits. In such a case, the limit

value is submitted to the manufacturer. This brings about a loss to the contract buyer

on those intended orders over the upper limit.

There is a clear relationship between the contract buyer’s loss and the extent of
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restrictions on her commitment updates. Any additional restriction could be expected

to have significant effects in terms of further buyer losses. Suppose buyer b can not

revise a k-step order commitment db
s,s+k upward by a fraction of more than αb

k for

k = 1, 2, . . . , H 1. Thus, buyer b is required to restrict her order realizations in period

s + H to be within the range

db
s,s+H 6 Db

s+H,s+H 6
H∏

k=1

(1 + αb
k) db

s,s+H .

This results in the following range for cumulative commitment updates from that

buyer over the H-period commitment horizon

1 6 Rb
s,HRb

s+1,H−1 . . . Rb
s+H−1,1 6

H∏

k=1

(1 + αb
k),

where Rb
s+H−k,k is the random variable denoting the multiplicative update made to

k-step order commitment from buyer b in period s + H − k. Thus, the loss associated

with this restriction is a random variable and depends on the commitment horizon,

the flexibility limits, and the distribution of commitment updates.

There are many ways in which the restrictions on order commitments could be

stipulated in the QF contracts. So, we may need some criterion for choosing among

various flexibility alternatives. This can be accomplished by introducing the concept

of an expected loss. Let k b(Ab) denote the expected loss due to limited flexibility

buyer b may suffer when she is offered the set Ab = {αb
k, k = 1, 2, . . . , H } of

flexibility limits.

Let R̃b
s,k denote the k-step intended commitment update from buyer b in period

s. Note that it corresponds to the uncensored counterpart of Rb
s,k. Thus, we have

the vector R̃b
s = [R̃b

s,1, R̃b
s,2, . . . , R̃b

s,H ]. Since the commitment updates ln R̃b
s,k are

normally distributed, the expected loss may be written as

k b(Ab) = 100
1

E[
H∏

k=1

R̃b
s,k]

∞∑

H∏
k=1

(1+αb
k)

[
H∏

k=1

R̃b
s,k −

H∏

k=1

(1 + αb
k)

]
fR̃b(· ),

(6.7)

1 Note that downward flexibility is assumed to be not restricted (i.e., ωb
k = 1) since losses are mean-

ingful for the right-tail of the distribution. However, it would also be an interesting issue to calculate
overstocking cost of the manufacturer by quantifying the left-tail of the distribution separately.
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where E[
H∏

k=1

R̃b
s,k] is the expected value of the intended cumulative update, and fR̃b(· )

is the multivariate lognormal distribution function of the intended commitment up-

dates from buyer b. As the expected loss function (6.7) does not depend on (targeted

or realized) inventory random variables, the level of expected loss is not affected by

the manufacturer’s inventory policy. k b is a nonnegative and non-increasing function

of flexibility limits,
H∏

k=1

(1 + αb
k).

Clearly, a buyer considering such a contractual agreement needs to evaluate

whether she had a relative advantage in reducing the expected losses. Obviously, a

preferable contract, on the buyer’s side, would be one that minimizes the expected

loss. Hence, the buyers would like to have flexibility as large αb
k’s early on (lower k’s)

as possible.

The central problem in estimating k b is to find the discrete values and proba-

bilities of commitment updates that fall outside the allowable range; that is, the tail

values for the multivariate distribution function fR̃b(· ). We address this problem by

means of our finite Markovian structure, introduced in §3.3 and §3.4. We obtain the

discrete values and probabilities beyond the allowable range by applying the finite

Markovian structure while the revision limits are taken to be very loose (i.e., αb
k = ∞

virtually). As a consequence, the expected loss is an approximate value, and it is

the general order of magnitude the manufacturer and his contract buyers should be

concerned with, not by its precise value.

6.5 A Comparative Alternative to Inventory Model under Forecast

Evolution

In Chapter 4, we have suggested an enhanced production/inventory planning that

knows of the operating rules in the order commitments submitted by contract buyers,

and how they eventually become the order realizations [cf. Eq. (4.14)]. The optimal

replenishment policy is a state-dependent order-up-to type, in which order commit-

ments are explicit component of the state space. It was characterized by formulating

a complicated dynamic program, and referred to as the inventory model under the

forecast evolution (MUFE).

The claim is that the manufacturer benefits significantly from using the MUFE,
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and the value of resultant optimality will be considerable. We believe that this is due

to a better handling of the order uncertainty in deciding on target inventory. That is

attained by taking the variability of commitment updates into account.

As a way of substantiating this claim, this section presents a comparative al-

ternative to MUFE. We build upon the results from Graves (1999) in developing the

alternative inventory control model. Graves (1999) introduces an adaptive base-stock

policy where the demand process is described by an autoregressive integrated moving

average (ARIMA) process of order (0, 1, 1). The policy is adaptive since he adjusts

the base stock as the order forecast changes. The forecast function is a first-order

exponential-weighted moving average (EWMA), which provides the minimum-mean-

squared-error forecast for this demand process. Thus, in developing an alternative to

MUFE, (i) we replace the martingale forecast evolution model with an ARIMA(0, 1, 1)

process in the manufacturer’s forecasting engine, (ii) we develop a novel way of es-

timating unknown parameters of the related ARIMA(0, 1, 1) process, and (iii) we

use the adaptive base-stock policy instead of our staircase state-dependent policy for

replenishment ordering decisions. We call this alternative the inventory model under

the ARIMA process (MUMA).

The practical significance of MUMA is that it serves as a comparable alterna-

tive to our proposal. This is due to the following reasons: (i) The MUMA assumes a

similar operating environment with MUFE. Graves (1999) studies a periodic-review

inventory system, where there exists a fixed and known replenishment lead-time. The

demand process is non-stationary, and any order not satisfied by inventory is backo-

rdered. There is no fixed replenishment ordering cost for the manufacturer, and the

inventory carrying and backorder penalty costs are linear. (ii) There is an analytical

relation between stationary time series models and forecast evolution models. More

specifically, Güllü (1993) shows that every forecast evolution model corresponds to a

series of particular moving average (MA) models and vice versa. He suggests methods

of obtaining one representation given the other one. Since the buyers’ orders are mod-

eled as an ARIMA(0, 1, 1) in MUMA, we can identify a forecast evolution model that

corresponds to the MA representation of orders 2. Güllü (1993) also states that any

suitable stationary time series model (e.g., a class of ARMA(p, q) processes) can be

2 This is due to that an ARIMA model of order (0, 1, 1) is one in which the observations follow
a stationary MA(1) process after they have been differenced.
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approximated by a finite order moving average model, which in turn corresponds to

a forecast evolution model. Thus, ARIMA models are (approximately) special cases

of the forecast evolution models. This analytical correspondence will allow us to es-

timate the unknown parameters of the ARIMA(0, 1, 1) process on the basis of the

covariances between commitment updates of the forecast evolution in §6.5.1.

We should also mention that Graves (1999) differs in several aspects, but these

can be suitably modified for a more comparable treatment. (i) The QF contracts are

not explicitly considered in Graves (1999), and hence no restriction is imposed on the

order quantity submitted by the buyer. However, we will take the forecast error for

the ARIMA process as bounded and solve the inventory model as such. (ii) Graves

(1999) adopts an adaptive base-stock policy where the base stock is adjusted as the

order forecast changes (first-order EWMA forecast being identical over the lead time).

We have, on the other hand, an order-up-to type policy where each period a sufficient

order is placed to restore the inventory position to a target level. The target levels may

vary by period depending on extended advance order commitments. Hence the differ-

ence between the adaptive base-stock policy of Graves (1999) and the policy used in

this research is the way in which order quantities are determined. (iii) Graves (1999)

assumes no capacity restrictions. However, for comparison purposes, MUFE can as-

sume a suitably low value for the cost differential between the in-house production

and subcontracting, ∆c. This will induce an unlimited capacity. (iv) Graves (1999)

assumes a single-item inventory system where the manufacturer satisfies the demand

from a single buyer. So, the corresponding ARIMA process is univariate. However, we

readily extend the results from Graves (1999) to the multivariate ARIMA processes.

In characterizing the demand process for this alternative inventory control

model, we will not follow the usual procedures in the iterative Box-Jenkins model-

ing strategy (Box et al. 1994). This is recommended for constructing an ARIMA

model from a given time series. Rather, the model structure is set forth in advance

(eliminating the model identification stage) and the ARIMA(p, d, q) model is identi-

fied as ARIMA(0, 1, 1). Appendix C describes the related bivariate ARIMA(0, 1, 1)

process and its forecast model in more detail. §6.5.1 is devoted to our way of estimat-

ing unknown parameters of this process. §6.5.2 gives the general ordering of realizing

the comparison. Finally, in §6.5.3 we discuss the policy under the ARIMA model.
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6.5.1 Estimating the parameters of the related ARIMA(0, 1, 1) process

This section introduces how we develop estimators for the unknown moving aver-

age parameters Θ and the unknown disturbance covariances Ση in the bivariate

ARIMA(0, 1, 1) process [cf. Eq. (C.1)]. In the literature various techniques are

available for dealing with this estimation problem (Box et al. 1994). These range

from simple descriptive techniques to complex inferential models combining regres-

sion analysis. Our way of estimating the unknown parameters, however, does not

attempt to fit a regression model maximizing the likelihood of the fitted values given

a set of observed time series data. Rather, it is an optimization technique to suggest

those estimators that provide an adequate description of the correlation structure in

the system. The motivation behind this approach is to produce comparable evolution

results given by the time series pattern studied, maintaining the stationary mean of

the series.

Let ΣD(k) denote the covariance matrix of lag k, k > 0 for the bivariate

ARIMA(0, 1, 1) process [cf. Eq. (C.1)],

ΣD(k) =


 Cov(D1

s+k,s+k, D1
s,s) Cov(D1

s+k,s+k, D2
s,s)

Cov(D2
s+k,s+k, D1

s,s) Cov(D2
s+k,s+k, D2

s,s)


 . (6.8)

The diagonal elements of ΣD(k) are called the kth-order auto-covariances between

the order realizations submitted by the same buyer. The off-diagonal elements are

the kth-order cross-covariances across different buyers. We impose a restriction that

the kth-order cross-covariances for k > 1 are zero (i.e., cross-covariance of only lag 0

is assumed to be nonzero), which is due our major process assumption [cf. Section

3.1.1].

We now derive closed-form expressions that relate the covariance matrix ΣD(k)

to the unknown parameters (i.e., Θ and Ση) in the bivariate ARIMA(0, 1, 1) process

[cf. Eq. (C.1)]. These expressions are called the theoretical covariance functions.

The theoretical auto-covariance function of lag k corresponding to buyer b ∈ {1, 2} is

derived as
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CovΘ
bb(k) = Cov(Db

s+k,s+k, Db
s,s) (6.9)

=





(1 + (1− θbb)2)σ2
ηb + θ2

br σ2
ηr − 2 (1− θbb) θbr σηb,ηr if k = 0

− (1− θbb) σ2
ηb + θbr σηb,ηr if k = 1

0 if k > 2

where the expression for k = 0 corresponds to the variance of Db
s,s. Similarly, the

theoretical cross-covariance function of lag k for buyers b 6= r ∈ {1, 2} can be derived

as

CovΘ
br(k) = Cov(Db

s+k,s+k, Dr
s,s) (6.10)

=





− (1− θbb) θrb σ2
ηb − (1− θrr) θbr σ2

ηr

+ [1 + θbr θrb + (1− θbb) (1− θrr)]σηb,ηr if k = 0

− (1− θbb) σηb,ηr + θbr σ2
ηr if k = 1

0 if k > 2

Note that the theoretical covariance functions display a distinctive feature of vanishing

at lags k > 2. In general, a moving average process with an order of q has non-zero

covariances only up to lag q and zero covariances for lags k > q (Box et al. 1994).

As we have already mentioned in §6.2.1, the correlation structure inherent in

the system is assumed to be characterized by the correlations of intended commitment

updates, Ẽs (that is, uncensored commitment updates). Accordingly, we have a B(H+

1)×B(H+1) covariance matrix ΣẼ of the intended commitment updates for the largest

commitment horizon of H = 12. The covariance matrix ΣD(k) for the bivariate

ARIMA(0, 1, 1) process can then be expressed in terms of the uncensored covariance

matrix ΣẼ . This follows from the forecast evolution equation [cf. Eq. (3.19)] and

Assumption 3.2 of the forecast evolution structure (i.e., independence assumption for

the commitment updates at different points in time). We call these expressions the

target covariance functions.

It is important to note that the uncensored covariance matrix ΣẼ of intended

commitment updates is for a multivariate normal distribution, whereas the vector

Ds,s of order realizations [cf. Eq. (C.1)] is lognormally distributed. Thus, we need the

following definition in deriving the target covariance functions.

Definition 6.1 : Suppose lnX =
[ ln Xi

ln Xj

]
is a random vector with bivariate Normal
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density such that E[X] =
[ µi

µj

]
and Var(Xk) = σ2

k for k = i and j. Then, we have the

following relationship between the covariance terms of the Normal vector lnX and the

respective Lognormal vector X (see Law and Kelton 2000)

Cov(Xi, Xj) = e
µi +µj +(σ2

i +σ2
j )/2 (e

ζ︷ ︸︸ ︷
Cov(ln Xi, ln Xj) − 1). (6.11)

As we have already mentioned in §3.1, note that σ2
ε̃b
k

is the variance of the kth com-

ponent of Ẽs corresponding to bth buyer. σε̃b
k, ε̃r

l
is the covariance between the kth

component of Ẽs corresponding to bth buyer and the lth component of Ẽs corre-

sponding to rth buyer. Thus, the target auto-covariance function of lag k for buyer

b ∈ {1, 2} can be derived as

Cov(lnDb
s+k,s+k, lnDb

s,s | ΣẼ) =

= Cov(lnµDb +
H+1∑

m=1

ε̃b
s+k−m+1,m, ln µDb +

H+1∑

n=1

ε̃b
s−n+1,n)

=





H+1∑
m=1

σ2
ε̃b
m

if k = 0,

H+1−k∑
m=1

σε̃b
m, ε̃b

m+k
if 1 6 k 6 H,

0 if k > H + 1,

, ζ in Eq. (6.11)
by Def. 6.1−−−−−−→ CovẼ

bb(k). (6.12)

Similarly, the target cross-covariance function of lag k for buyers b 6= r ∈ {1, 2} can

be derived as

Cov(lnDb
s+k,s+k, lnDr

s,s | ΣẼ) =

= Cov(lnµDb +
H+1∑

m=1

ε̃b
s+k−m+1,m, lnµDr +

H+1∑

n=1

ε̃r
s−n+1,n)

=





H+1∑
m=1

σε̃b
m, ε̃r

m
for b 6= r and k = 0,

0 for b 6= r and k > 1,

, ζ in Eq. (6.11)
by Def. 6.1−−−−−−→ CovẼ

br(k). (6.13)

Consequently, in estimating the unknown parameters Θ and Ση of the bivariate

ARIMA process, we are looking for the identity

CovẼ
br(k) = CovΘ

br(k)

↗ ↖

from (6.12), (6.13) given ΣẼ from (6.10), (6.11) for Θ, Ση
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where b, r ∈ {1, 2}. Therefore, to create an equivalence between the ARIMA(0, 1, 1)

process and our forecast evolution model, we are interested in minimizing the devi-

ations of CovΘ
br(k) from CovẼ

br(k) for lags k = 0, 1 and buyers b, r ∈ {1, 2}. This

will be addressed by minimizing the sum of squared deviations from the target auto-

and cross-covariances under certain regularity constraints. The optimization model,

referred to as PARΘ,η, can then be constructed as follows:

Optimization model PARΘ,η:

The input parameters of the model are

• CovẼ
br(k), the target auto- and cross-covariance functions of lags k = 0 and 1 for

the buyers b, r ∈ {1, 2}.

The decision variables of the model are

• Θ, the 2× 2 matrix of moving average parameters,

• Ση, the 2 × 2 covariance matrix of normally-distributed random disturbance

vector ηs.

The resultant variables of the model are

• CovΘ
br(k), the theoretical auto- and cross-covariance functions of lags k = 0 and

1 for the buyers b, r ∈ {1, 2},

• ∆br(k), the deviation of CovΘ
br(k) from CovẼ

br(k), of lag k ∈ {0, 1} and buyers

b, r ∈ {1, 2}.

The model PARΘ,η is defined as follows:
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Minimize
1∑

k=0

[
2∑

b=1

∆2
bb(k) +

2∑
b6=r=1

∆2
br(k)

]
(6.14)

subject to

∆bb(k) = CovΘ
bb(k) − CovẼ

bb(k) ∀ b ∈ {1, 2}, k ∈ {0, 1} (6.15)

∆br(k) = CovΘ
br(k) − CovẼ

br(k) ∀ b 6= r ∈ {1, 2}, k ∈ {0, 1} (6.16)

0 < θbb 6 1 ∀ b ∈ {1, 2} (6.17)

−1 6 σηb,ηr/(σηb σηr) 6 1 ∀ b 6= r ∈ {1, 2} (6.18)

σηb > 0 ∀ b ∈ {1, 2} (6.19)

The objective function minimizes the sum of squared deviations between the es-

timated and target auto- and cross-covariances. The estimated ARIMA(0, 1, 1) model

is more parsimonious than the forecast evolution model. Its adequacy is subject to

theoretical limitations of ARIMA models 3. The estimated ARIMA model will match

the target covariance functions, but does not necessarily result in forecasts satisfying a

martingale. It is also important to keep in mind that the estimated covariances Ση are

uncensored, as revision limits are not accommodated in the estimation process (due

to the use of the uncensored covariance matrix ΣẼ of intended commitment updates).

Definitional constraints (6.15) compute the deviation of the estimated auto-

covariances from the target auto-covariances corresponding to buyer b ∈ {1, 2} at

lag k ∈ {0, 1}. Constraints (6.16), on the other hand, compute the deviation of the

estimated cross-covariances from the target cross-covariances corresponding to buy-

ers b 6= r ∈ {1, 2} at lag k ∈ {0, 1}. Constraints (6.17) ensure that the bivariate

ARIMA(0, 1, 1) process is a non-stationary process. Constraint (6.18) ensures that

the covariance matrix Ση of disturbances ηs forms a positive semi-definite matrix.

Constraints (6.19) are nonnegativity constraints corresponding to the variances of ηs.

6.5.2 Realization steps of the comparison

In this section, we give the general ordering of realizing the comparison between the

inventory models MUFE and MUMA.
3 Specifically, the ARIMA(0, 1, 1) induces at most one-period lag correlations, and ignores higher

order correlations inherent in the environment.
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Step-1: The related bivariate ARIMA(0, 1, 1) process and its forecast model

The first-order exponential-weighted moving average (EWMA) forecasting scheme

given in Appendix C corresponds to an environment in which the buyers provide

only one-period ahead order commitments (i.e., H = 1 in our notational convention),

which are their realized order in the previous period. There is only one update possi-

ble at the point of order realization. The basis of the update is the EWMA forecast,

Fs (with an additive update ηs on Fs such that Ds,s = Fs + ηs).

Step-2: Estimating the unknown parameters

For estimating the unknown parameters of the bivariate ARIMA(0, 1, 1) process, we

do not use a least-squares estimation algorithm with an empirical data series. Hence,

the differences between the fitted values and the observed time series values are not of

primary interest. Instead, the parameter estimation is accomplished by an optimiza-

tion technique minimizing the deviations from the correlation structure inherent in

our underlying assumed update system. We are doing so since reflecting the variation

structure and maintaining the mean will suffice to generate the candidate policy. We

do not attempt to initiate the buyer orders, but the response to them.

Step-3: Incorporating the contract flexibility limits

The estimated covariances Ση in (7.1) are uncensored, as revision limits are not accom-

modated in the estimation process. This is due to the use of the uncensored covariance

matrix ΣẼ of intended commitment updates. However, the MUMA corresponds to

an operating environment where the buyers are committing orders one-period ahead

(i.e., H = 1) and the corresponding forecast errors ηs are restricted by some flexibil-

ity limits. Thus, the estimated covariances Ση need to be modified for incorporating

those revision limits. This will result in censored distributional parameters using ex-

pressions (3.16) and (3.17).

Our way of incorporating the restricted revision flexibility in MUMA is as fol-

lows. Suppose MUFE with the commitment horizon of H and the flexibility limit

FL per period. We should ask the question of how to specify MUMA corresponding

to this MUFE. We assume that the forecast errors ηs (= Ds,s − Fs; i.e., error from

immediate EWMA forecast) for the bivariate ARIMA process of MUMA occur within

127



the certain range 4,

ln(1− FL)H 6 ηb
s 6 ln(1 + FL)H , (6.20)

for b = 1, 2 and s = 2, 3, . . . , N + L. The accumulation of FL over the commitment

horizon H in MUFE corresponds to the revision flexibility allowed under MUMA (in

forecast errors ηb
s). The larger the H of MUFE, the wider the range of ηb

s in MUMA.

In this way we assure the comparable quality of the two alternative inventory models.

The revision limits in (6.20) are accommodated by modifying the disturbance covari-

ances Ση estimated as a result of optimizing PARΘ,η, [cf. Eqs. (3.16) and (3.17)].

The probability distributions of random disturbances ηb
s thus become censored.

Step-4: Quantifying the replenishment ordering policy

We use the adaptive base-stock policy of Graves (1999) (assuming no capacity restric-

tions) in generating replenishment orders under MUMA. §6.5.3 discuss this in more

detail. Instead, we would use our staircase state-dependent replenishment policy, and

hence generalize the results for capacitated environments. But, the corresponding

alternative would compare only the manufacturer’s way of generating order forecasts

(comparing MMFE versus ARIMA(0, 1, 1)), and ignore benchmarking our proposal

for replenishment ordering decisions.

Finally, as for the dynamics of computing the costs, we use our finite Markov

chain approximation introduced in §3.2 to §3.4. This facilitates probability modeling

of censored disturbances ηb
s, and the evaluating the associated expectations.

6.5.3 The replenishment policy under the related ARIMA(0, 1, 1) process

Graves (1999) characterizes the replenishment policy of the manufacturer as an adap-

tive base-stock type when the first-order EWMA forecasting scheme [cf. Eq. (C.2)]

is applied to the bivariate ARIMA(0, 1, 1) process [cf. Eq. (C.1)]. Accordingly, the

replenishment order placed in period s for delivery in period s + L is determined by

qma
s =

∑

b

Db
s−1,s−1 +

∑

b

L (F b
s − F b

s−1)

=
∑

b

Db
s−1,s−1 + L (θ11 η1

s−1 + θ12 η2
s−1), (6.21)

4 Logarithms are used since the forecast errors ηs under MUMA are additive.
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for s = 1, 2, . . . , N . This is called the policy under the ARIMA process (PUMA). It

is a myopic policy as qma
s minimizes the expected current-period cost for the L-period

lead-time into the future. It is an adaptive policy since it compensates for anticipated

changes in the inventory position due to the changes in the forecasts. That is; it

adapts Db
s−1,s−1, b = 1, 2 up or down by the most recent shift up or down. The state

of the inventory system under PUMA at the beginning of period s is (Is, Fs).

We assume the same environmental settings as the inventory model under

the forecast evolution. Also, we initiate the same initial inventory position of I0 =

L
∑
b

µDb units at the beginning of the planning horizon. The manufacturer observes

only one-period ahead order commitments from the buyers in each replenishment de-

cision point. Each initial forecast state F b
1 for b ∈ {1, 2} is initialized to be equivalent

to µDb . The first replenishment order qma
1 will arrive at the beginning of period L+1.

During period 1, the realized orders db
1,1 are observed, and the manufacturer starts

satisfying orders from the buyers. Period 2 is the first time that the manufacturer has

updated forecasts F b
2 .

We shall compare effectiveness of the alternative inventory control models on

the basis of the order-up-to positions and the expected total costs. Once the initial

inventory position, I0, has been specified, the order-up-to position of any period s,

TIs = Is + qma
s , can be obtained from the inventory balance equation

Is = I0 +
s−1∑

i=1

qma
i −

s−1∑

i=1

∑

b

db
i,i, (6.22)

for s = 2, 3, . . . , N +L. Due to the L-period replenishment lead-time, the costs asso-

ciated with carrying inventory and backorders depend on the expected net inventory

level that will be carried over in period s + L, NIs+L,

NIs+L =
s∑

i=1

qma
i −

s+L−1∑

i=1

∑

b

db
i,i, (6.23)

for s = 1, 2, . . . , N + 1 (where qma
i = 0 for i = N + 1 since we have N replenishment

decisions). It denotes total received replenishment order minus total satisfied demand

before ordering in period s + L. Thus, qma
s minimizes the following expected current-

period cost

Js(TIs, Fs) = min
qma
s

{
cpi q

ma
s + hE[NIs+L]+ + E[g(NIs+L, π1, π2)]−

}
,(6.24)

where the replenishment cost include only the unit cost of in-house production, cpi, as

the manufacturer is assumed to have no capacity restrictions. The term g(·) in (6.24)
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denotes a function of πb, b ∈ {1, 2}.
Consequently, the minimum expected total cost of the policy PUMA can be

obtained as

V1(I1, F1) =
N+1∑

s=1

Js(TIs, Fs). (6.25)

The key element in the dynamics of computing the costs [cf. Eq. (6.24) and (6.25)]

is the way in which the random disturbances ηs are described. The presence of the

flexibility limits makes the associated probability distribution censored. As before, we

thus use our finite Markov chain approximation introduced in §3.2 to §3.4, and insert

it in finding the expectations, E[NIs+L]+ and E[g(NIs+L, π1, π2)]−.
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CHAPTER 7

ANALYSIS OF COMPUTATIONAL RESULTS

In this chapter, we shall present and discuss the results of an extensive computational

investigation described in the previous chapter. As mentioned in §2.2, the focus of our

inquiry in this research is on the decision problems that arise for the manufacturer.

It has little to do with the buyers, as we do not attempt to make a specification of

the buyers’ objective function and constraints. Nevertheless, we emphasize three per-

spectives on the manufacturer’s decision problems to evaluate differing concerns of the

manufacturer and his contract buyers, as depicted in Figure 7.1. These perspectives

surround our research questions [cf. §6.1] addressed by the computational study.

                                   ANALYST

             -  focus on alternative inventory models

             BUYER

   -  focus on service

   -  commitment

   -  flexibility

    MANUFACTURER

   -  focus on production

   -  capacity

   -  costs

Figure 7.1: Three perspectives on the manufacturer’s decision problems

The buyer perspective primarily focuses on the service level provided by the

manufacturer. Accordingly, it concerns the effects, on the buyers, of the manufac-

turer’s decisions about the QF contracts, relating to our first research question. The

length of commitment horizon and the level of revision flexibility to be offered to buyers
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are taken to be central to this perspective. We propose a menu of various commit-

ment and flexibility arrangements as it may assist the buyers in selecting appropriate

scheme of QF contracts. To understand the implications of the buyers’ preferences,

we also examine the relationship between the cost performance of the manufacturer

versus the extent of early order commitments. §7.1 is devoted to an analysis from the

buyer’s perspective.

The manufacturer perspective represents the production viewpoint, and con-

cerns the second and third research question. The production-focus leads the manu-

facturer to emphasize cost reduction for production and inventory, instead of emphasis

on filling periodical buyer orders. Hence, this perspective is primarily concerned with

capacity investment decisions, possible ways of supplementing it, and their impli-

cations. Central to this perspective is to integrate the capacity decisions with the

operational aspects of the QF contracts. We propose a menu of various capacity level

choices which vary in the cost differential in production and the backorder-to-holding

cost ratio. A menu is a decision aid. It lists possible actions with very close (if

not identical) performance outcomes. This may assist the manufacturer in selecting

appropriate capacity levels being tuned according to the basic approach in his op-

erations. The implications of the manufacturer’s preferences are analyzed based on

the cost changes and the service level that can be attained by a particular choice of

capacity level. It will be the purpose of §7.2 to give insights from the manufacturer’s

perspective.

The analyst perspective represents an aggregated view of the production and

service viewpoints. It centers on the fourth research question. This perspective con-

cerns order information needs of the cooperation between the manufacturer and his

contract buyers. There exists an analyst assuming responsibility to evaluate and

recommend alternative ways of the production/inventory planning. Specifically, we

evaluate the two alternative inventory control models; the model under the forecast

evolution (MUFE) and the model under the ARIMA demand process (MUMA), as

mentioned before in §6.5. §7.3 is devoted to an analysis from the analyst’s perspective.
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7.1 Analysis from the Buyer Perspective

This section aims to develop insights into the impact of the QF contracting on the

buyer’s part in the service collection by our suggested production/inventory planning.

The QF contracts are intended to describe mechanisms that align the incentives of

the buyers with the manufacturer’s costs by way of sharing risks. This is attained by

stipulating some cooperative rules primarily related to the commitment and flexibility

arrangements. The commitment horizon (H) represents the length of time period for

which the buyers submit early order commitments once every period. The flexibility

limit per period (FL) quantifies the amount of flexibility the buyers are allowed in

updating their order commitments from period to period. The main role of these two

contract parameters is to balance buyers’ costs that would be incurred as a result

of their prediction errors, by the manufacturer’s costs in accommodating a range of

responses to the buyer’s service. Consequently, developing a menu of various com-

mitment and flexibility arrangements may provide valuable insights into the buyers’

preferences for the length of commitment horizon and the extent of revision flexibility.

7.1.1 A menu of (H, FL) combinations

Buyers’ making early order commitments ensure a certain amount of order information

is received by the manufacturer once every period. This is a form of advance order

information. Karaesmen et al. (2002) discuss that advance order information can be

communicated to upstream partners in a variety of ways. In this research we exercise

them via series of commitments for consecutive future periods with limited revision

flexibilities.

The commitment horizon H and the flexibility limit per period FL are the

two primary leverages in such contracts. In analyzing the computational results in

what follows, it is important to keep in mind how they interact with each other. The

further out the commitment horizon for a given level of flexibility limit per period

FL, the less accurate the buyers are required to be. This is reflected by the range

[(1 − FL)H , (1 + FL)H ] of allowable order quantities Db
s,s cumulatively at the end

of update series. Hence the manufacturer must respond to wider range of orders

each time period H is extended over. For a given level of cumulative flexibility (i.e.,
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for the same allowable range of order quantities) as the commitment horizon H is

extended, on the other hand, the buyers are required to be more accurate (i.e., they

do not prefer to commit orders in advance). The manufacturer would like to receive

commitments for all the periods in the replenishment lead-time. As a compromise,

the buyers may be offered more rewards or higher flexibility in modifying their order

commitments. Offering more flexibility as an accompaniment to early (but for longer

horizons) commitment is to induce the practice of committing orders in advance by

making it more appealing to the buyers.

Developing a menu of QF contracts may be an appealing approach to leverage

the buyers’ preferences. Under this approach, each buyer is offered a menu of various

(commitment horizon - flexibility limit) combinations, in turn she can choose among

the alternatives. The main incentive for the buyer’s choosing among the alternatives

is to minimize her risk of experiencing a stockout in servicing the market. Hence, she

negotiates for higher flexibility and/or less commitments, passing on some portion of

the cost associated with uncertainty to the manufacturer. Buyers expect their costs

to go down as they take on lower risk. On the other hand, they may take advantage of

rewards (e.g., price discounts, priority etc.) offered by the manufacturer in motivating

them to provide the desired level of extended early commitments (i.e. larger H).

To get insights into these implications, we study eleven different levels of the

commitment horizon (ranging from H = 2 to H = 12 (= L)), and five different levels

of the flexibility limit per period (ranging from FL = 0.02 to FL = 0.10 by increments

0.02). This amounts to 11×5 = 55 alternative combinations to be included in a menu

of QF contracts. Different (H, FL) combinations are evaluated based on the expected

loss due to the restricted flexibility, k b, on the buyers side, and the percentage cost

saving, CI +
H , on the manufacturer side. It is important to note that for the purposes

of measuring the k b values, we assume that only upward order modifications are

restricted and there is no downward flexibility limit (i.e., ωb
k = 1, αb

k = FL for all

b ∈ {1, 2} and k ∈ {1, 2, . . . , H}).
The k b value, given by (6.6), is the expected loss due to the limited flexibility

the buyer b will suffer from when she accepts a particular (H, FL) combination. The

CI +
H value, given by (6.3), on the other hand, represents the relative cost advantage

that could be attained by exercising that particular (H, FL) combination against the

minimal-commitment base case used as a reference.
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Figure 7.2 allows us to see the trade-off between the expected loss of the buyer

b = 1 and the cost saving for the manufacturer for these 55 alternative (H, FL)

combinations. It shows how the (100 − k 1)% (i.e., the fraction of intended orders

being within the cumulative flexibility range) relates to the cost saving as the (H, FL)

combinations to be offered to the buyer vary. Table D.1 in Appendix D gives the

solution details. A similar menu can be readily developed for the other buyer, but

omitted for simplicity.
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Figure 7.2: A menu of (H, FL) combinations to be offered to buyer b = 1

Combinations near the bottom left of the plot have relatively higher expected

loss at a lower cost saving. Those towards the northeast corner offer lower expected

loss accompanied by higher cost savings. Hence combinations to the upper right (e.g.,

A) are preferred to points to their lower left (e.g., B). An efficient frontier exists in

Figure 7.2, which is shown by the points ¨. It represents those (H, FL) combinations

that are considered the most efficient in the sense that they have the greatest relative

cost saving given the same level of expected loss or the lowest expected loss given the

same cost saving. It begins at the left tail with an expected loss of 8.6% Either the

commitment horizon is cut off and/or the flexibility limit is reduced until one reaches

the right tail, which represents a 25.6% expected loss with nondecreasing cost savings.
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It may also be the case where only some subset of these alternative combinations

[cf. Fig. 7.2] is offered to the buyer. For instance, the manufacturer may behave more

customer-oriented in the sense that the menu offers those alternatives which imply

relatively lower expected buyer losses (e.g., subset S1). These alternatives may yield

different cost savings when accepted. Hence, the buyer is rewarded (e.g., by providing

price discounts, priority etc.) in accordance with the potential cost savings. More

reward shall be offered to motivate her to prefer the lowest-cost alternatives (i.e.,

extended advance commitments and/or stricter flexibility) towards the lower right.

This will identify many different but equivalent combinations to be accepted by the

buyer. If the manufacturer behaves more conservative, on the other hand, the menu

offers those alternatives which imply relatively higher cost savings for the manufacturer

(e.g., subset S2). They may lead to higher expected buyer losses. From among them

all, the buyer selects the ones which have the lowest expected losses (i.e., the highest

level from the bottom); e.g., combination C.

7.1.2 Effects of early order commitments and flexibility

In this section, we elaborate further on the effects of various commitment and flexi-

bility arrangements given in Figure 7.2. Specifically, we give more details about how

the production/inventory system performance is affected by varying the commitment

horizon and/or the flexibility limit. This may assist the manufacturer in evaluating

the potential rewards to be offered to the buyers in response to their earlier commit-

ments and/or limited flexibility.

We first examine the relationship between the extent of early order commit-

ments versus the cost performance of the manufacturer from a gain or loss perspective.

We study four levels of the commitment horizon from H = 3 to H = 12 (= L). The

buyers are restricted in updating their order commitments up and down, and the lev-

els of upward and downward flexibility per period are taken to be FL = 0.10 (i.e.,

ωb
k = αb

k = 0.10 for all b ∈ {1, 2} and k ∈ {1, 2, . . . , H}).
The cost advantage of practicing early order commitments is evaluated against

the minimal-commitment base case (i.e., when H = 1 and FL = ∞), and measured by

the percentage cost savings (CI +
H ). The curve above the zero level in Figure 7.3 shows

the percentage cost savings CI +
H corresponding to the four levels of the commitment

136



horizon. Cost savings range from 28.4% to 16.5% with a higher decrease rate as the

horizon length is extended. The solution details are listed in Table D.2 in Appendix

D. This reveals that early order commitments are valuable to the manufacturer, but

earlier commitments result in lower cost saving against the minimal-commitment base

case.

The cost disadvantage of practicing early order commitments for a given level

H = k of the commitment horizon, on the other hand, is evaluated against the cor-

responding minimal-flexibility base case (i.e., when H = k and FL = 0.01), and

measured by the percentage cost increases (CI −H ) (i.e., larger losses). Figure 7.3 plots

the CI −H curve below the zero level corresponding to the four levels of the commitment

horizon. Percentage cost increases (i.e., larger loss) range from − 27.3% to − 35.5%

with a higher decrease rate when moving towards the largest horizon of H = 12 pe-

riods. This indicates the manufacturer’s loss that would be experienced by offering

higher flexibility than 1% per period.
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Figure 7.3: Percentage cost savings and increases, CI +
H and CI −H , by increasing H

Consequently, the cost saving CI +
H and cost increase CI −H curves serve as

upper and lower bound curves, respectively, for alternative (H, FL) combinations to
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be offered to the buyers. For the largest horizon of H = 12 periods and least flexibility

of FL = 0.01, the cost saving against the minimal-commitment base case (i.e., when

H = 1 and FL = ∞) turns out to be CI +
H = 1 − cost(H=12, FL=0.01)

cost(H=1, FL=∞) = 32.1%.

If the level of flexibility per period FL becomes stricter than 0.10, then both the

CI +
H and CI −H curves shift upward (making the gains larger whereas losses smaller),

and they become less steep (making the changes less sensitive and hence indicating

a significant interaction between H and FL). The cost changes are inversely related

to the level of flexibility. At high flexibility levels, the manufacturer obtains almost

no benefit from the buyers’ committing early since he must respond to a wider range

of orders each time period. This reduces the value of practicing extended advance

order commitments. Figure 7.4 illustrates this behavior by plotting the CI +
H curve

for unrestricted revision flexibility (i.e., FL = ∞). It compares the effect of early

order commitments only. The solution details are listed in Table D.2 in Appendix D.
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Figure 7.4: Percentage cost savings, CI +
H , by increasing H under FL = ∞

In addition to the cost performance of the production/inventory system, we

may also be concerned with how much the order realizations are being matched by

the planned target inventory levels. This will give some insights into the buyers’ risks

of experiencing a stockout. Figure 7.5 provides the plots of the mean order-up-to
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deviation (TIdev) for various levels of the commitment horizon, where the level of

flexibility per period is taken to be FL = 0.10. As we have already mentioned in §6.4,

a TIdev value gives optimal order-up-to position, as a fraction of the mean order per

lead-time, averaged on the N decision periods [cf. Eq. (6.3)]. TIdev increases as H

increases (from 1 to 12) but showing a relatively low variation even for FL = 0.10,

ranging from TIdev = 1.21 (when H = 1) to 1.37 (when H = 12). Table D.2 in

Appendix D shows the solution details. The overall level of TIdev is directly related

with how much the manufacturer avoids the backorders. This essentially provides the

manufacturer with some kind of safety being relative to the coefficient of variation for

total orders over the replenishment lead-time. The greater the coefficient of variation,

whether in terms of H and FL 1, the higher the value of TIdev. As TIdev becomes

greater than one and continues to increase for a certain level of FL, the manufacturer

gradually overestimate the buyers’ future orders, so the inventory holding cost becomes

the dominant cost component while the share of the backorder cost diminishes. Thus,

the cost performances of the manufacturer continue to decrease as TIdev increases, [cf.

Fig. 7.3].
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Figure 7.5: Mean order-up-to deviation TIdev by increasing H

1 Varying the values of H and/or FL relates to different levels for the coefficient of variation since
they represent how the discrete values of order realization are dispersed about the mean.
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Figure 7.5 also shows intervals around TIdev values. Each interval represents

the range of optimal order-up-to positions used in calculating that particular TIdev

value. The longer the commitment horizon and/or the less stricter the flexibility,

the wider the range of optimal order-up-to positions, which is due to an increasing

uncertainty by the extended commitment horizon of H = 12.

7.2 Analysis from the Manufacturer Perspective

This section aims to develop insights into the manufacturer’s in-house capacity de-

cision integrated with the operational aspects of the QF contracts. The in-house

capacity investment needs to be decided quite early in the planning horizon. The

decision depends on the terms and conditions of the QF contracts offered by the man-

ufacturer and on the availability of supplementary capacity option. Hence, it is to the

manufacturer’s benefit to understand the association between his additional capacity

costs, QF contract parameters, and subcontracting. We first investigate how various

commitment and flexibility arrangements to be stipulated in the QF contracts affect

the appropriate level of in-house capacity. This leads to a challenging managerial task

when it comes to balance the trade-off between having excess capacity in some periods

and insufficient capacity in others while satisfying stochastic orders from contract buy-

ers. Hence we shall also examine how supply-side flexibility through subcontracting

can help to more effectively match supply with demand. The manufacturer perspec-

tive emphasizes three primary leverages for understanding these associations.

The first is the capacity slack (∆K) identifying the amount of excess capacity

over the mean order per lead-time. The second leverage is related to manufacturing

technology and capability being reflected in the cost differential (∆c = cps − cpi) that

the manufacturer incurs between the in-house production and subcontracting. The

third leverage is concerned with how much the manufacturer avoids backorders. This

is reflected in the ratio (∆π = πb/h) of backordering cost to holding cost. These

may assist the manufacturer in understanding the multifaceted nature of his capacity

investment decision.

Consequently, developing a menu of various capacity levels may help in the ca-

pacity investment decision for improving the manufacturer’s ability to deliver service
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at acceptable cost during the execution of the QF contracts.

7.2.1 A menu of (∆K , ∆c, ∆π) combinations

This section proposes a menu of capacity levels which differ in the cost differential in

production, ∆c, and the backorder-to-holding cost ratio, ∆π. The magnitude of ∆c

gives cost disparities among the manufacturer and subcontractor. The ratio ∆π reflects

how much the manufacturer cares about backorders in executing the QF contracts.

We study (i) five different levels of the capacity slack ranging from ∆K = 0.5 to

∆K = 2.5 by increments 0.5, (ii) four levels of the cost differential from ∆c = 0.1 to

∆c = 1.5, and (iii) two levels of the backorder-to-holding cost ratio ∆π being low and

high. This amounts to 5 × 4 × 2 = 40 alternative combinations to be included in a

menu of capacity levels. Different (∆K , ∆c, ∆π) combinations are evaluated based on

the cost improvement (CIK), on the manufacturer side, and the fill-rate service level

(ϕ), on the buyers side.

The ϕ value, given by (6.6), represents the expected proportion of total realized

order over all the buyers that is satisfied immediately from the manufacturer’s finished-

goods inventory. The cost improvements CIK , given by (6.3), are measured relative to

the capacity base case, where the maximum amount that can be produced internally

is equal to the mean order per lead-time (i.e., with ∆K = 0).

Figure 7.6 plots these 40 alternative (∆K , ∆c, ∆π) combinations based on the

cost improvements CIK and the fill-rate service level ϕ. Several clusters of alternative

combinations can be identified. Combinations for a given level of the backorder-to-

holding cost ratio ∆π form a major cluster. We have two of them as we study two

different levels of ∆π. The fill-rate service levels for low ∆π are significantly smaller

than those associated with high ∆π. Within each ∆π group, four crescent-shaped

clusters exist (denoted I through IV for low ∆π) corresponding to four different levels

of the cost differential ∆c. Crescent-shaped cluster I corresponds to ∆c = 0.1 and

cluster IV to ∆c = 1.5. The capacity slack ∆K increases as one moves from the left

to the right. Combinations near the bottom left have relatively low service level and

poorer cost improvement. Those near the upper right (in northeast direction) offer

higher cost improvements at a higher service level. The solution details are listed in

Table D.3 in Appendix D.

141



75%

80%

85%

90%

95%

100%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Cost Improvement

ϕ

K
CI

π∆low

π∆high

increases

B

A

increases
K

∆

c∆

Figure 7.6: A menu of (∆K , ∆c, ∆π) combinations

The manufacturer generally seeks the lowest-cost operations for a given level

of service (i.e., rightmost combination). This requires a larger in-house capacity.

However, often some organizational constraints exist, and capacity investment can

be restricted such that complete match of the demand may not be feasible or de-

sirable. As we have already mentioned in §6.2, these organizational constraints are

assumed to be indirectly reflected in structural and executional cost drivers (i.e., ∆c

and ∆π, respectively). The attitudes of the manufacturer to these cost drivers affect

his capacity investment decisions, as it identifies the perceived relationship between

his structural costs and the level of supply and customer service he can provide. Thus,

an important methodological feature of this menu approach is that it can determine

the performance of a chosen capacity level by comparing it with those of others under

various cost structures (i.e., organizational restrictions).

As ∆c is somehow reduced (e.g., by cooperating with the subcontractor to help

them achieve lower costs), it is less likely to experience restrictions on the supply

availability. Hence the manufacturer takes advantage of smoothing his releases in the

face of non-stationary stochastic order commitments. This is also the reason for the

narrowing ranges of CIK with decreasing ∆c (e.g., cluster I as compared to IV ). That

is; the lower the level of ∆c, the smaller the cost advantage that can be obtained from

a unit increase in the capacity slack ∆K . The range of service level to be provided is
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essentially chosen by selecting the value of ∆π. It is critical to follow that the menu

contains disjoint sets of ∆π levels. If the manufacturer desires to provide a higher ser-

vice level to buyers, hence larger inventories, then he is allowed to those alternatives

to the upper left.

Of course, more capacity is always better. But, the choice may be a function

of capacity cost. Take two points A and B. We are interested in the marginal cost

of investing in additional capacity when we are currently in A. This marginal cost of

additional capacity should be compared with the benefits (i.e., slightly better service

with a significant cost saving due to backorder savings) that could be obtained. That

is the topic in §7.2.2.

7.2.2 Effects of building capacity slack

In this section, we further elaborate on the menu of alternative (∆K , ∆c, ∆π) com-

binations, Figure 7.6. By focusing more clearly on the production performance, this

elaboration may assist the manufacturer in evaluating the implications of his pref-

erences for the capacity level. The computational investigation in what follows is

collected in two categories.

The first category illustrates the relationship between the capacity slack and

the extent of flexibility limit per period (FL). The non-stationary stochastic nature

of buyers’ order commitments and the guaranteed supply up to a certain percentage

under QF contracts require the manufacturer to build a certain level of excess ca-

pacity. Hence, we study various values of FL to represent different levels of demand

uncertainty (risks in realized orders). A higher FL makes the manufacturer subject

to a higher demand uncertainty through a wider range of orders. This allows us to

explore the effectiveness of capacity slack, as another form (perhaps a complementary

feature) of flexibility, under various levels of demand uncertainty.

The second category illustrates the relationship between the capacity slack and

the cost structure (∆c, ∆π). As we have already discussed in §6.2, the cost structure

identifies the perceived relationship between the manufacturer’s structural costs and

the level of supply and customer service he can provide. The cost differential be-

tween the in-house production and subcontracting, ∆c = cps− cpi, represents a major

structural cost driver of the manufacturer. It reflects the technology available and the
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technical complexity of the production system (where the technical complexity is re-

lated with the efficiency of production processes and the costs of production factors).

The backorder-to-holding cost ratio, ∆π = πb/h, on the other hand, represents exe-

cutional cost drivers. It concerns the manufacturer’s attitude to stockout risk. This

allows us to explore the effectiveness of capacity slack under various cost structures.

Figure 7.7 plots the cost improvements (CIK) that could be attained by build-

ing certain levels of the capacity slack; two series of plots are displayed for different

values of FL and ∆c. The backorder-to-holding cost ratio is assumed to be high. As

before, the CIK values are measured relative to the capacity base case (i.e., when

∆K = 0).

Figure 7.7 (a) shows that the cost improvement is the highest when the in-house

capacity is relatively loose (∆K = 2.5) and the flexibility limit per period is restrictive

(FL = 0.01). CIK increases as ∆K increases from 0.5 to 2.5 but showing a diminish-

ing return. The higher the flexibility limit, the lower the cost improvement over the

capacity base case. These results state that a higher capacity level does decrease the

cost of the manufacturer, irrespective of the extent of flexibility limits stipulated in

the QF contracts, indicating the value of capacity slack. However, the capacity slack

is the most valuable when the buyers are allowed to order from a narrower range (i.e.,

lower FL). Table D.4 in Appendix D lists the solution details.

Looking at it from the other side, we can ask the question ”which one is more

effective; a lower FL or a larger ∆K?”. There arises a tradeoff between FL and ∆K .

To keep the same CIK with a larger FL, ∆K has to go up by smaller additions when

the manufacturer has lower capacity levels (e.g., A), whereas relatively larger addi-

tions are needed under higher capacity levels (e.g., B). Consequently, lower FL (i.e.,

greater information content in advance order information due to smaller order range)

is more effective for the cases when the manufacturer has high capacity levels, as a

unit increase in FL corresponds to a larger ∆K additions for the same cost advantage.

This makes the effect of FL highly dependent on ∆K levels. Gavirneni et al. (1999)

provide similar results for a model where a manufacturer has limited capacity and uses

point of sale data in production decisions. There exists uncertainty about timing and

amount of the orders due to the retailer’s (s, S) ordering policy. They demonstrate

that the benefits of information decrease as capacity becomes tighter.
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Figure 7.7: Cost improvements CIK by increasing ∆K , categorized by FL and ∆c

As shown in Figure 7.7 (b), we found that when ∆π is high and ∆c ' 0, the CIK

values vary slightly with the capacity slack. This means that the benefits that could be

obtained from the capacity flexibility are not so significant, when the manufacturer’s

subcontracting business is subject to serious competition. Nevertheless, even small

gains would be valuable, making the manufacturer operating in such environments

better off. On the other hand, when the cost differential ∆c is relatively larger (e.g.,

∆c = 1.5), the cost improvement does vary greatly with the capacity flexibility. This

phenomenon explains that building capacity flexibility under QF contracts is of value

only when there is a considerable amount of cost differential between the in-house

production and subcontracting. Furthermore, if the backorder-to-holding cost ratio

∆π becomes lower, then the CIK curves shift upward (making the gains larger), and

they become steeper (making the changes more sensitive). Table D.5 in Appendix D

lists the solution details.

Figure 7.8 illustrates the relationship between the instability of optimal order-

up-to positions (TIins) and the capacity slack, categorized by FL and ∆c. Each TIins

value represents an average absolute deviation between optimal order-up-to positions

of consecutive decision periods, in fractions of the mean order per lead-time, (6.4). A

lower capacity slack means that the manufacturer has a tendency of subcontracting

more to satisfy uncertain orders. This leads to higher order-up-to instability as under
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tight capacity it is harder for the manufacturer to smooth out the decisions. As

∆K becomes larger, the manufacturer is expected to require less subcontracting and

hence the TIins value decreases. This implies less cost associated with period-to-

period production variation.

Figure 7.8 (a) shows that TIins is the highest when FL is loose and it decreases

as FL gets stricter. Table D.4 in Appendix D lists the solution details. The decrease

rate of TIins over different ∆K levels is steeper for FL = 0.01 than that for FL = 0.05,

and it is much more steady for FL = 0.10. Similarly, we observed that a longer

commitment horizon (i.e., larger H) leads to a higher order-up-to instability due to the

accumulated variability of buyers’ orders. These results reveal that requesting limited

flexibility through QF contracts is significantly beneficial to production smoothing. A

unit decrease in FL and/or H is more effective for the cases when the manufacturer

has high capacity levels, as it amounts to a larger ∆K reduction (e.g., A compared to

B) for the same level of the order-up-to instability.
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Figure 7.8: Order-up-to instability TIins by increasing ∆K , categorized by FL and
∆c

Figure 7.8 (b) shows that the instability of optimal order-up-to positions is in-

versely related to the cost differential in the in-house production and subcontracting,

∆c. Table D.5 in Appendix D lists the solution details. When the cost differential
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∆c is low, capacity availability is no longer a challenge, and increasing the capacity

slack does not generate a significant difference as the manufacturer is not reluctant

to substitute subcontracting. Obviously, if there is no restriction on the supply avail-

ability then it is less likely to observe successive backorder periods, hence the stability

is not expected to vary greatly. Still there is a certain level of instability because the

manufacturer’s ordering has to be done so much in advance. We should also mention

that extending the commitment horizon (i.e., larger H) yielded a higher order-up-to

instability. TIins is increasing in H, with an increasing rate under a higher cost differ-

ential ∆c. A unit decrease in ∆c is less effective for the cases when the manufacturer

has high capacity levels, as it amounts to a smaller ∆K reduction for the same TIins

level. Moreover, if the backorder-to-holding cost ratio ∆π becomes lower, then the

TIins curves shift downward, and they become less steep.

Finally, we may be concerned with the relationship between capacity utilization

(CU) and commitment horizon for a given level of the capacity slack. CU relates the

actual in-house productions resulting from the optimal policy to the potential amounts

that could be produced with a given in-house capacity investment. Figure 7.9 provides

the CU plots across various values of H, categorized by FL and ∆c. In measuring the

capacity utilization values, we assume that ∆K = 1 (i.e., there is an excess capacity

being one standard deviation over the mean order per lead-time). Observe that the

CU values vary slightly with H. Figure 7.9 (a) shows that CU is higher for a higher

FL, and increases slightly as H increases from 3 to 12. The increase rate of CU

depends on the level of FL more than it does on H, where more restrictive FL has

lower rates. Likewise, Figure 7.9 (b) illustrates the relationship between CU and H,

categorized by ∆c. Tables D.6 and D.7 in Appendix D list the solution details.
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75%

80%

85%

90%

3 6 9 12

Commitment Horizon 

0.10 0.05 0.01FL

H

CU

75%

80%

85%

90%

3 6 9 12

Commitment Horizon

0.1 0.5 1 1.5

CU

H

c∆

Figure 7.9: Capacity utilization CU by increasing H, categorized by FL and ∆c

These results give valuable insights into the effects of changing the capacity

level, and facilitate the choice of appropriate actions being tuned relative to some

internal factors. As a consequence, we can identify some preferable actions. In par-

ticular, the manufacturer may prefer the action that provides a high fill-rate service

level without sacrificing his cost advantage much and keeping the production pretty

smooth. The buyers sacrifice some level of flexibility for that action, but in turn the

manufacturer cares more about the backorders (by higher backorder penalty), and

builds larger supply-side flexibilities (by higher capacity slack and less costly subcon-

tracting option). These underscore the overwhelming role FL plays in the actions of

both parties.

7.3 Analysis from the Analyst Perspective

Differing views of the manufacturer and his contract buyers are usually held by produc-

tion and sales functions within the manufacturer’s business. These may be categorized

mainly as production-focused concerns versus service-focused concerns. This section

aims to develop insights into the value of functional harmony that could be attained

by an aggregated view of the production and sales functions and its information needs.

This harmony is primarily concerned with how well the key information flow from the
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contract buyers, order commitment information, is utilized in the planning process of

the manufacturer. This is articulated by comparatively evaluating the effectiveness of

the ways in which the demand process could be modeled as an integral part of the

production/inventory planning. Specifically, we evaluate the two alternatives: (i) the

inventory model under the forecast evolution (MUFE) and (ii) the inventory model

under the ARIMA process (MUMA), as mentioned before in §6.5.

These comparative alternatives differ in the extent of order commitments and

the quality of the buyers’ forecasting machinery in generating those order commit-

ments. This relates to the worth of extra information, on the manufacturer side, and

the worth of better forecasts (i.e., less variable commitment updates), on the buyers

side. The claim laid by the analyst in using MUFE is that the manufacturer benefits

significantly from using the model under the forecast evolution, hence the value of

associated information gathering from forecast evolution and optimization is consid-

erable. This is conjectured due to a better explanation of the demand uncertainty

that is attained by taking into account the correlation and variability of commitment

updates.

7.3.1 Comparing the two alternative inventory control models

In this section, we first quantify the ARIMA demand process used in developing the

myopic replenishment policy (PUMA) given by (6.21). Then we will investigate how

effective the optimal policy under the forecast evolution is as compared to the myopic

policy for various system scenarios with different levels of order information.

The demand process was identified as a bivariate ARIMA(0, 1, 1) for two time

series being modeled jointly corresponding to two contract buyers, as mentioned in

Appendix C. In this bivariate model, the 2×2 matrix Θ of moving average parameters

and the 2×2 covariance matrix Ση of disturbance vector ηs are unknown. As we have

already mentioned in §6.5.1, to develop estimators for these unknown parameters, we

first calculate the target auto- and cross-covariances of the demand process, [cf. Eqs.

(6.12) and (6.13)].

For the purposes of calculating these target covariances, suppose the correlation

structure inherent in the system has been represented by a 26× 26 covariance matrix
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ΣẼ of intended commitment updates 2. It is better to interpret the covariance matrix

ΣẼ in the form of correlation coefficients. They represent the correlations of intended

commitment updates occurring in the same period of time, and are of two classes.

(i) Correlations for a particular buyer b ∈ {1, 2} are all assumed to be positive. The

further apart the commitment updates are, the smaller the correlations between them.

They are assumed to take values in { 0.8, 0.5, 0.3 }. (ii) Correlations across buyers for

the commitment updates made for the same future period are taken to be negative,

{−0.8, −0.5, −0.3 }. But, we assume that k-period ahead commitment updates from

a buyer are uncorrelated with l-period ahead updates from the other buyer for k 6=
l ∈ {1, 2, . . . , H + 1}. Table D.8 in Appendix D contains the associated 26 × 26

correlation matrix of intended commitment updates. The variance of these intended

commitment updates are taken to be σ2
ε̃1
k

= 4 and σ2
ε̃2
k

= 2 for all k ∈ {1, 2, . . . , H+1}.
Therefore, we used the expressions (6.12) and (6.13), and the resultant target auto-

and cross-correlation functions for the bivariate ARIMA(0, 1, 1) demand process were

calculated as shown in Figure 7.10.
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Figure 7.10: The target auto- and cross-correlation functions

Consequently, given the target correlation functions [cf. Fig. 7.10], we solved

the optimization program PARΘ,η, given by (6.14) - (6.19), for the unknown moving

average parameters Θ and disturbance covariances Ση. The optimization program

suggested a bivariate ARIMA(0, 1, 1) model of the form

2 Note that the dimensionality of the covariance matrix ΣẼ depends on the number of buyers,
B = 2, and the length of the commitment horizon, H = 12 (= L) such that 26 = B × (H + 1).
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Db
1,1 = µDb + ηb

1 for all buyers b ∈ {1, 2}, and

D1
s,s = D1

s−1,s−1 − 0.32 η1
s−1 − 1.07 η2

s−1 + η1
s

D2
s,s = D2

s−1,s−1 + 1.01 η1
s−1 − 0.06 η2

s−1 + η2
s (7.1)

for s = 2, 3, . . . , N + L. We have µD1 = 30 and µD2 = 20. The estimated matrix of

moving average parameters was found to be Θ =
[

0.68 −1.07
1.01 0.94

]
, and the vector of distur-

bances ηs was characterized by the estimated covariance matrix Ση =
[

14.57 −8.39
−8.39 8.11

]
.

Note that the estimated covariances Ση in (7.1) are uncensored [cf. Eq. 6.20],

as revision limits are not accommodated in the estimation process. As we have already

mentioned in §6.5.2, we modify the estimated covariances Ση for incorporating those

revision limits. To illustrate, suppose MUFE with H = 3 and FL = 0.10. Then, the

estimated covariances in (7.1) turn out to be Ση =
[

9.75 −0.05
−0.05 3.61

]
. The replenishment

order quantities under PUMA [cf. Eq. 6.21] are adjusted accordingly.

We now investigate the implications of varying the commitment horizon on

the effectiveness of the MUFE as compared to the MUMA. We study five different

levels of the commitment horizon from H = 1 to H = 12 for the MUFE, where the

level of flexibility limit per period is taken to be FL = 0.10. For the MUMA, on the

other hand, we have variations of the estimated ARIMA process (7.1) corresponding

to these five different levels of the commitment horizon.

We assume the same environmental settings across the alternative inventory

control models. These are summarized in Table 6.1. Also, we initiate the same initial

inventory position, I0. For the purposes of comparability, we assume that the cost dif-

ferential between the in-house production and subcontracting, ∆c, is negligible. This

makes the inventory system uncapacitated as in Graves (1999).

We evaluate alternative models in terms of four performance measures; the

cost improvement (CImodel), the mean order-up-to deviation (TIdev), the order-up-to

instability (TIins), and the fill-rate service level (ϕ). CImodel is the relative cost ben-

efit that could be attained by using the MUFE for a certain flexibility arrangement

as compared to the corresponding myopic policy. TIdev, TIins and ϕ are calculated

for both MUFE and MUMA in exactly the same manner as in (6.3), (6.4) and (6.6),

respectively.

Figure 7.11 plots the cost improvements CImodel for various levels of the com-
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mitment horizon H. CImodel values are calculated for MUFE with H = k and

FL = 0.10 against MUMA with H = 1 and the same allowable range for buyers’

orders (as an accumulation of the flexibility limit per period, FL, over H = k). Step

3 in §6.5.2 discussed this in more detail. MUFE has cost advantages since the forecast

evolution mechanism allows the buyers to update their commitments in a gradual

manner by decomposing total variability. When the total variance is decomposed into

smaller terms, the manufacturer is able to react more efficiently to buyers’ stochastic

orders by adjustments in target inventory in time. This is because he does not have to

rely on costly reactions to last-minute order updates, which would be likely to cause

inefficiency and extra costs. Early indications and restricted distortions due to the

decomposed variance cause this.
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Figure 7.11: Cost improvements CImodel of MUFE against MUMA by increasing H

Figure 7.11 shows that the cost improvement is the lowest when the commit-

ment horizon for MUFE is one-period long (H = 1). Table D.9 in Appendix D lists

the solution details. CImodel values range from 10.1% to 22% as moving towards the

largest horizon of H = 12, but showing a diminishing return. If the level of flexibility

limit per period becomes less stricter than FL = 0.10, then the CImodel curve shifts

upward (making the gains larger), and it becomes more steep (making the changes
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more sensitive). It is also found that the higher the level of flexibility limit per period,

FL, the higher the portion of variability captured by the forecast evolution in ad-

vance. We observe that this makes the difference between the expected total costs of

the optimal and myopic policies larger. These results state that the MUFE definitely

results in lower expected total costs, indicating the value of associated information

gathering from forecast evolution and optimization. As the buyers somehow commit

earlier (i.e., larger H), the difference between the expected total costs gets larger.

The manufacturer often does not have direct control over the environment that

his buyers face. Nevertheless, the performance of the production/inventory system

may be influenced by variation in the operating environment. The most important

uncontrollable but influencing environmental features in our case are the correlation

of demand (CO) across buyers and the coefficient of variation (CV ) for the buyers’

orders. Different levels of them may characterize different industrial contexts in which

the manufacturer and his contract buyers operate. For instance, the phase of the

product life cycle may account for different values of CV (e.g., maturity phase for low

CV and innovation phase for high CV ). The degree of seasonality in demand may

give rise to radically different values of CO (e.g., negative CO for inverse seasonal

demand patterns across buyers).

We experiment with various levels of these environmental factors to under-

stand how the cost improvements CImodel are affected by the commitment horizon. It

is found that a lower CV value results in a lower cost improvement irrespective of the

length of commitment horizon (i.e., a decrease in the benefit from using MUFE). When

the commitment horizon is not long relative to the replenishment lead-time, extending

the commitment horizon has a significant impact on the improvement of the cost (i.e.,

relatively greater benefits are obtained from using MUFE). As H extends further, the

effect on the improvement of cost shows a diminishing return. These results say that

the higher the uncertainty in the operating environment, the more valuable for the

manufacturer to exercise the MUFE. This is mainly because FL’s restrict realized

orders db
s,s to the same region no matter what CV is. The only exception is the first

time db
s,s+H−1 is updated freely from µDb . When buyers somehow commit earlier, the

manufacturer is able to react more efficiently to their non-stationary stochastic order

commitments by using the MUFE. This is because he does not have to rely on costly

reactions to last-minute order updates, which would be likely to cause inefficiency and
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extra costs.

We found that the order-up-to positions under both inventory models increase

when the order commitments from buyers are more positively correlated. This leads

to an increase in the expected total cost for both models, but CImodel has lower values

(i.e., the difference between the MUFE and MUMA gets smaller). When CO decreases

towards − 1, the expected total costs both decrease but the MUFE experience larger

reductions, hence the CImodel plot shifts upward. This is due to the proliferation of

deviations when CO > 0 and the substitution effects when CO < 0. These results

indicate the benefit from integrating the evolution of order commitments with the

manufacturer’s production and inventory planning. The value of committing earlier

increases as orders are more volatile and/or more negatively correlated.

Figure 7.12 (a) and (b) provide the plots of the mean order-up-to deviation,

TIdev, and the order-up-to instability, TIins, respectively, for various levels of the

commitment horizon. Each figure shows two curves corresponding to the two alterna-

tive inventory control models. For the MUMA curves, H = 1 is kept the same in all

trials. For the MUFE curves, on the other hand, H = k is varied in trials. As before,

the allowable ranges of buyers’ orders (i.e., as an accumulation of the flexibility limit

per period, FL) are kept the same across the alternatives given a certain level of the

commitment horizon.
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Figure 7.12: Mean order-up-to deviation TIdev and order-up-to instability TIins by
increasing H, categorized by alternative inventory models
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Both TIdev and TIins are increasing in H (i.e., earlier order commitments).

However, they take higher values with a relatively low variation for MUMA, irrespec-

tive of the length of commitment horizon. In evaluating these results note that the

level of flexibility limit per period is taken to be FL = 0.10. Hence with a higher H,

the manufacturer must respond to wider range of orders each time due to the increased

cumulative revision flexibility. Large TIdev and TIins values for MUMA (i.e., addi-

tional inventory with higher variation) are experienced due to insufficient reactions to

last-minute updates in realized orders causing abrupt changes in the inventory state.

All these results reveal that (i) practicing early order commitments and (ii) modeling

their time series through the forecast evolution mechanism help to smooth out the

manufacturer’s inventory levels.

Figure 7.13 allows us to see the service disparities between the two alternative

inventory control models as the commitment horizon varies. The fill-rate service level

is given for the aggregated demand being a composite of all the buyers. As before,

the allowable ranges of buyers’ orders are kept the same across alternative inventory

models at a certain H. The figure states that a given level of commitment horizon can

result in different levels of customer service under the two inventory models, depend-

ing on how the total demand variability is distributed over the commitment horizon.

The MUFE is less sensitive to an increased uncertainty (caused by wider range of

orders through larger H), whereas the MUMA is not able to respond efficiently to the

changes in the demand variability.
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Figure 7.13: Fill-rate service level ϕ by increasing H, categorized by alternative in-
ventory models

We conclude that the production/inventory planning under the forecast evolu-

tion can bring improvements in the inventory investment, and improves the customer

service slightly. We demonstrate that the myopic policy under the ARIMA process

results in higher order-up-to positions and higher expected total costs.

7.4 Summary

In this chapter we have discussed the computational results and insights to our re-

search questions [cf. §6.1]. This was performed by emphasizing three perspectives [cf.

Fig 7.1] that surround these research questions.

The buyer perspective concerns the parameter-setting problem of QF contracts,

addressing the first research question. We proposed a menu approach in which each

contract buyer is offered various commitment and flexibility arrangements. We demon-

strated that extended advance order commitments for a given level of flexibility per

period results in lower cost savings against the minimal-commitment case and larger

cost increases against the minimal-flexibility case for the manufacturer. This is ac-

companied by a greater mean order-up-to deviation caused by the manufacturer’s
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overestimating the buyers’ future orders in response to a wider range of orders. The

inventory holding cost thus becomes the dominant cost component while the share of

the backorder cost diminishes. This means improved services to the buyers, and in

turn leads to lower risks of the buyers’ experiencing a stockout. We also demonstrated

that the cost performance is inversely related to the level of revision flexibility. At

high flexibility levels, the manufacturer obtains almost no benefit from the buyers’

committing early since he must respond to a wider range of orders each time period.

This reduces the value of practicing extended advance order commitments.

The manufacturer perspective centers on the second and third research ques-

tions. We proposed a menu of various capacity levels which differ in the backorder-

to-holding cost ratio, ∆π, and the cost differential between the in-house production

versus subcontracting, ∆c. We examined the marginal cost of investing in additional

capacity as compared to the benefits that could be obtained. We observed slightly

better service with a significant cost saving due to backorder savings. When ∆π is

lower, the cost advantage that can be obtained from an additional capacity investment

gets larger. The lower the level of cost differential ∆c, on the other hand, the smaller

the cost advantage from an additional capacity investment. This indicates that when

the manufacturer’s subcontracting business is subject to serious competition, the value

of capacity slack gets smaller. We demonstrated that additional capacity is the most

valuable when the buyers are allowed to order from a narrower range. But, there arises

a tradeoff between revision flexibility and capacity slack. We examined production

smoothing and in-house capacity utilization as well. We demonstrated that a unit

decrease in ∆c is less effective for the cases when the manufacturer has high capacity

levels, as it amounts to a smaller capacity reduction for the same level of production

smoothing. We observed that the capacity utilization increases with extended advance

order commitments and larger revision flexibility.

The analyst perspective is related with the fourth research question. As an

effort to benchmark, we evaluated two alternative approaches; the evolution-based

inventory management and the ARIMA-based inventory management. We demon-

strated that the first approach has cost advantages since when the total variance is

decomposed into smaller terms by the forecast evolution mechanism, the manufacturer

is able to get early indications and restricted distortions.
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CHAPTER 8

CONCLUSION

This research has examined the role of early order commitments in providing manufac-

turing companies with incentives for efficient inventory management under quantity

flexibility (QF) contracts. Early order commitments with revision flexibility ensure

systematic order information is received by the manufacturer in every period. This is

a form of advance order information. In this context, we suggested a general approach

for integrating a probabilistic model of the changes in the committed orders with an

analytical model of the production and inventory planning under multi-period QF

contracts. We demonstrated that this integration permit more effective management

of the production and inventory system. Such an integrated use of refined commit-

ment update scheme differs considerably from the literature related to contracting and

inventory management.

We introduced our approach in a general problem environment under a de-

centralized decisional structure. A single capacitated manufacturer with an option of

subcontracting produces and sells a single item to multiple buyers under multi-period

QF contracts. The buyers face stochastic market demands in every period, and submit

unreliable order commitments (caused especially by distortions) to the manufacturer

on a range of future periods. The committed orders evolve over time. The associated

commitment updates are not independent of one another, implying correlations of the

updates across buyers and through time. This constitutes the key information flow in

the planing process of the manufacturer. The problem environment is a complicated

one, but appears worthwhile in the view of the interplay among factors forming the

basis of effective decision making.

In this context, we analyzed interplay of a number of factors regarding the de-
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cisions within the aggregate production/inventory planning framework. We assumed

a multi-period stochastic production/inventory decision model to underlie the anal-

ysis. We adopted a computational approach using an analytical optimization rather

than simulation. The model minimizes the expected total cost of the manufacturer,

directed toward exploring the relationships between the experimental factors of in-

terest and the measures of system performance. The computational study thus was

performed to delineate ways that this model might be elaborated to capture various

important features of the production and inventory system.

The research differs significantly from the related literature in several aspects:

(i) We introduce a refined commitment update scheme as an integral part of the

production and inventory planning under QF contracts. The integration permits an

enhanced production and inventory planning that is informed of how the order com-

mitments evolve from one period to another. The associated decision model also

facilitates determining the QF contract terms and conditions. (ii) We develop a mod-

ified MMFE as it accommodates revision limits stipulated in the QF contracts. We

then introduce a finite Markov chain approximation to this modified martingale fore-

cast evolution process to model the probabilistic framework of our dynamic decision

model. It accommodates contract revision limits and correlation structure in the buy-

ers’ ordering. By this approximation we provide a novel approach to discretization

in stochastic dynamic programming, and an estimation scheme for non-stationary

stochastic dynamics. (iii) We characterize the manufacturer’s optimal replenishment

policy as a staircase, state-dependent order-up-to policy using this finite stochastic

framework. (iv) We implement computational dynamic programming as a solution

technique. We develop an efficient approach for reducing state-space dimensionality

building upon our forecast evolution structure. This makes the computation associ-

ated with the stochastic recurrence relations much less demanding. (v) Finally, as an

effort to benchmark, comparison of the evolution-based inventory management with

an ARIMA-based approach was performed.

We provided results on three perspectives to evaluate concerns of the manu-

facturer and his contract buyers. These perspectives surround the research questions

addressed through the computational study.

First, we investigated the effects, on the buyers, of the manufacturer’s decisions

about the QF contracts. We proposed a menu of various commitment and flexibil-
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ity arrangements. Menus are for the manufacturer’s indifference among combinations

that the buyers are not indifferent. They assist the buyers in selecting appropriate

scheme of QF contracts. The main incentive for the buyer’s choosing among the alter-

natives is to minimize her risk of experiencing a stockout in servicing the market. The

buyers are offered more rewards (e.g., price discounts, priority etc.) or higher revision

flexibility (i.e., passing on some portion of the cost associated with uncertainty to

the manufacturer) in motivating them to provide the desired level of extended early

commitments.

We examined the implications of the buyers’ preferences by means of the man-

ufacturer’s cost performance versus the extent of information content in early order

commitments. We demonstrated that earlier commitments for a given flexibility per

period result in lower cost savings against the minimal-commitment case and larger

cost increases against the minimal-flexibility case. A higher revision flexibility reduces

the value of practicing extended advance order commitments. The inventory holding

cost gets dominance while the share of the backorder cost diminishes caused by the

associated increase in the mean order-up-to deviation. This means improved services

to the buyers, and in turn leads to lower risks of the buyers’ experiencing a stockout.

Second, we are concerned with the manufacturer’s capacity investment deci-

sions, and made an integrated analysis with the operational aspects of the QF con-

tracts. We provided results on how effective the level of capacity slack is as compared

to the flexibility of the QF contracts and the attractiveness of the subcontracting

option. We proposed a menu of various capacity levels which differ in the backorder-

to-holding cost ratio and the cost differential between the in-house production and

subcontracting, ∆c. Such a menu serves as a decision aid, and includes possible ac-

tions with very close (if not identical) performance outcomes.

We examined the implications of the manufacturer’s preferences by means of

the cost improvements and the service level that can be attained by a particular choice

of capacity level. We evaluated the marginal cost of investing in additional capacity as

compared to the benefits that could be obtained, and observed slightly better service

with a significant cost saving due to backorder savings. The manufacturer prefers

the action that provides a high fill-rate service level without sacrificing his cost ad-

vantage much and keeping the production pretty smooth. The buyers sacrifice some

level of flexibility for that action, but in turn the manufacturer cares more about the
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backorders (by higher backorder penalty), and builds larger supply-side flexibilities

(by higher capacity slack and less costly subcontracting option). These underscore

the overwhelming role FL plays in the actions of both parties. We thus examined the

worth of revision flexibility in the face of capacity. The capacity slack is the most valu-

able when the buyers are allowed to order from a narrower range (i.e., lower revision

flexibility). Lower revision flexibility indicates greater information content in advance

order commitments due to smaller order range. Reducing the revision flexibility is

more effective for the cases when the manufacturer has high capacity levels, as a unit

decrease in revision flexibility corresponds to a larger capacity reduction for the same

cost advantage.

We also demonstrated that building capacity flexibility under QF contracts is

of value only when there is a considerable amount of cost differential between the

in-house production and subcontracting. We demonstrated that there is a recipro-

cal relationship between cost differential ∆c and capacity slack ∆K . The lower the

level of ∆c, the smaller the cost advantage that can be obtained from a unit increase

in ∆K . We also provided results on production smoothing and capacity utilization

levels. We showed that requesting limited flexibility through QF contracts improves

production smoothing. The capacity utilization, on the other hand, depends on the

level of revision flexibility more than it does on the extent of order commitments (i.e.,

commitment horizon), where more restrictive flexibility has lower rates.

Third, we tried to benchmark our refined commitment update scheme. This

was articulated by comparatively evaluating two alternative inventory control models;

the model under the forecast evolution and the model under the ARIMA demand

process. These represent different ways of modeling advance order information as

an integral part of production and inventory planning. We demonstrated that the

manufacturer benefits significantly from using the forecast evolution framework. The

inventory model under the ARIMA process resulted in higher order-up-to positions

and higher expected total costs without an improvement in the service level. The

evolution-based model has cost advantages since the forecast evolution mechanism

allows the buyers to update their commitments in a gradual manner by decomposing

the total variability. When the total variance is decomposed into smaller terms, the

manufacturer is able to react more efficiently to buyers’ stochastic orders by adjust-

ments in target inventory in time. Furthermore, the higher the portion of variability
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captured, the greater the benefits of information gathering from forecast evolution and

optimization. This is because the sensitivity to larger variation reduces by spreading

it over periods. The benefits from the decomposed variance show the adjusting role

of the flexibility level coupled with early indications and restricted distortions.

An interesting direction for further research would be the development of a

buyer’s side modeling. This would allow us to perform incentive calculation for the

buyers’ cooperation. We in turn would look for a centralized mechanism for allocating

system benefits among the manufacturer and his contract buyers, and study the im-

plications of the evolution-based inventory management at the system level. Also, it

would be desirable to study contractual relation with the subcontractor. This would

permit more comprehensive treatment of capacity issues. The major difficulty that

lie in these is the representation of stochastic parameters. This may also defy the use

of optimization based-approach.

Another interesting avenue for further research would be to study some type

of inventory rationing policy (instead of using our simple allocation policy where all

order information are handled in the same way). Accordingly, the manufacturer would

hold back inventory for future needs of the highest-priority buyer. This may allow

him to make better use of available order information to allocate inventory to con-

tract buyers. The resultant inventory model would permit to handle different demand

classes, by defining different allocation functions.

As for computational analysis, we would study how much revision flexibility

the manufacturer can tolerate in negotiating with contract buyers for the commitment

horizon. The manufacturer may concern how much increase he can endure in revision

flexibility as the commitment horizon is shortened for a fixed cost improvement. We

would also study how the accumulation of censored commitment updates affects the

computational results as it alters the associated distributional forms (spreading prob-

ability mass in between the two censoring points over allowable range of the associated

random sum).
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APPENDIX A

PROOFS

A.1 Proof of Proposition 4.1

We have for s = 1, 2, . . . , N

Js(TIs, Is, ds) = PCs(TIs, Is) + Ls(TIs, ds)

= cpi(TIs − Is) + (cps − cpi)(TIs − Is −K)1(As)

+ h

TIs∑

z1=0

TIs−z1∑

z2=0

(TIs − z1 − z2) fZ2
L
(z2|ds) fZ1

L
(z1|ds)

+ π1

∞∑

z1=TIs

(z1 − TIs) fZ1
L
(z1|ds) + π2

∞∑

z1=TIs

∞∑

z2=0

z2 fZ2
L
(z2|ds) fZ1

L
(z1|ds)

+ π2

TIs∑

z1=0

∞∑

z2=TIs−z1

(z2 − (TIs − z1)) fZ2
L
(z2|ds) fZ1

L
(z1|ds). (A.1)

Note that Ls(TIs, ds) is known to be continuous [cf. Eq. 4.5] although we apply

our finite Markov approximation introduced in §3.2 to §3.4 for this cost function

[cf. Eq. 4.6]. Differentiating (A.1) and simplifying, we get the partial derivative of

Js(TIs, Is, ds) with respect to TIs,

∂Js(TIs, Is, ds)/∂TIs = cpi + (cps − cpi)1(As)

+ h

TIs∑

z1=0

TIs−z1∑

z2=0

fZ2
L
(z2|ds) fZ1

L
(z1|ds)

− π1

∞∑

z1=TIs

fZ1
L
(z1|ds) − π2

∞∑

z2=0

z2 fZ2
L
(z2|ds) fZ1

L
(TIs|ds)

− π2

TIs∑

z1=0

∞∑

z2=TIs−z1

fZ2
L
(z2|ds) fZ1

L
(z1|ds) + π2

∞∑

z2=0

z2 fZ2
L
(z2|ds) fZ1

L
(TIs|ds).
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And, simplifying we have

∂Js(TIs, Is, ds)/∂TIs = cpi + (cps − cpi)1(As) + h zZL
(TIs|ds)

− π1

[
1−zZ1

L
(TIs|ds)

]
− π2

[
zZ1

L
(TIs|ds)−zZL

(TIs|ds)
]
. (A.2)

The convexity of Js(TIs, Is, ds) is easily shown by recognizing that its partial deriva-

tive of second order taken with respect to TIs is always nonnegative, given by

∂2Js(TIs, Is, ds)/∂TI2
s =

h fZL
(TIs|ds) + [π1 − π2] fZ1

L
(TIs|ds) + π2fZL

(TIs|ds), (A.3)

where fZ1
L
(TIs|ds) and fZL

(TIs|ds) are the corresponding probability functions. The

right-hand side of (A.3) is clearly non-negative since we have π1 > π2.

A.2 Proof of Theorem 4.1

The proof is by induction on s.

Step 1: Verify the base case:

The base case is for period s = N , which is the last decision period for replenishment.

We have

GN (TIN , IN , dN) = JN (TIN , IN , dN) + EEN

[
VN+1(TIN −

∑

b

Db
N,N , DN+1)

]

= JN (TIN , IN , dN)− cpsEEN

[
TIN − Z[N,N+L)

]
.

Since JN (TIN , IN , dN) and cpsEEN

[
TIN − Z[N,N+L)

]
are individually convex in TIN ,

the statement (i) is true. The presence of a finite in-house capacity level K allows us

to write

GN (TIN , IN , dN) =





Gsub
N (TIN , IN , dN) if IN + K 6 TIN

Ginh
N (TIN , IN , dN) if TIN 6 IN + K

(A.4)

where

Ginh
N (TIN , IN , dN) = cpi(TIN − IN ) + LN (TIN , dN)− cpsEEN

[
TIN − Z[N,N+L)

]
,

Gsub
N (TIN , IN , dN) = Ginh

N (TIN , IN , dN) + (cps − cpi)(TIN − IN −K),
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which are convex in TIN . Note that

∂Ginh
N (TIN , IN , dN)/∂TIN = ∂LN (TIN , dN)/∂TIN − (cps − cpi),

∂Gsub
N (TIN , IN , dN)/∂TIN = ∂LN (TIN , dN)/∂TIN .

Hence the solution of the corresponding first-order conditions (TIinh
N and TIsub

N , re-

spectively) has the property that TIsub
N 6 TIinh

N since cps > cpi. Thus, we now need

to consider the following four regions on the value of IN +K, instead of the two given

in (A.4).

Regions of (IN + K) Minimizer
IN + K 6 TIsub

N TIsub
N

TIsub
N 6 IN + K 6 TIinh

N IN + K
TIinh

N 6 IN + K 6 TIinh
N + K TIinh

N

TIinh
N + K 6 IN + K IN

The function GN (TIN , IN , dN) for a given dN value takes different forms in these

regions, with different minimizers. Thus, the statement (iii) is true. For the statement

(ii), since VN (IN , dN) is determined by minimizing GN (TIN , IN , dN) over IN 6 TIN ,

we have

VN (IN , dN) =





GN (TIsub
N , IN , dN) IN 6 TIsub

N −K

GN (IN + K, IN , dN) TIsub
N −K 6 IN 6 TIinh

N −K

GN (TIinh
N , IN , dN) TIinh

N −K ≤ IN 6 TIinh
N

GN (IN , IN , dN) TIinh
N 6 IN .

Hence given the convexity of GN (· , IN , dN) which we have just shown above for the

statement (i), VN (IN , dN) is convex in IN . This proves the statement (ii).

Step 2: Formulate the inductive hypothesis:

As the induction hypothesis, suppose the statements (i)-(iii) are true for a particular

period s + 1, where 2 6 s + 1 < N .

Step 3: Prove the inductive step:

Given the above hypothesis, we shall prove that the statements (i)-(iii) are true for

period s. We have

Gs(TIs, Is, ds) = Js(TIs, Is, ds) + EEs

[
Vs+1(TIs −

∑

b

Db
s,s, Ds+1)

]
,

169



which is convex in TIs since Js(TIs, Is, ds) and EEs [Vs+1(TIs −
∑
b

Db
s,s, Ds+1)] are

convex in TIs due to the induction hypothesis for the statement (ii) and the fact that

the expectation of convex function Vs+1(x, Ds+1), EEs [Vs+1(x, Ds+1)], is convex in

x. This proves the statement (i). For the statement (ii), we have

Vs(Is, ds) =





Gs(TIsub
s , Is, ds) Is 6 TIsub

s −K

Gs(Is + K, Is, ds) TIsub
s −K 6 Is 6 TIinh

s −K

Gs(TIinh
s , Is, ds) TIinh

s −K 6 Is 6 TIinh
s

Gs(Is, Is, ds) TIinh
s 6 Is,

since Vs(Is, ds) is determined by minimizing Gs(TIs, Is, ds) over Is 6 TIs. Due to the

convexity of Gs(· , Is, ds), Vs(Is, ds) is convex in Is as well. This proves the statement

(ii). The statement (iii) follows from statement (i). The function Gs(· , Is, ds) takes

different forms in regions on the value of Is with the following minimizers (as was

shown for GN (· , IN , dN)) in each of these regions

TI?
s (Is, ds) =





TIsub
s Is 6 TIsub

s −K

Is + K TIsub
s −K 6 Is 6 TIinh

s −K

TIinh
s TIinh

s −K 6 Is 6 TIinh
s

Is TIinh
s 6 Is.

Thus, the statement (iii) is true. This completes the proof.

A.3 Proof of Theorem 4.2

The proof is by induction on s.

Step 1: Verify the base case:

The base case is for two consecutive periods s = N and s = N + 1, where period

s = N is the last decision period for replenishment. For the statement (i), we have,

from the end-of-horizon condition and the optimal replenishment policy of period N ,
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VN+1(x, d) = − cps EEN

[
x− Z[N+1,N+L)

]

VN (x, d) =





Gsub
N (TIsub

N , x, d), x 6 TIsub
N −K

Ginh
N (x + K, x, d), T Isub

N −K 6 x 6 TIinh
N −K

Ginh
N (TIinh

N , x, d), T Iinh
N −K 6 x 6 TIinh

N

Ginh
N (x, x, d), T Iinh

N 6 x,

since VN (x, d) is determined by minimizing GN (TIN , x, d) over x 6 TIN . Taking

the partial derivative with respect to x,

∂VN+1(x, d)/∂x = − cps

∂VN (x, d)/∂x =





− cps x 6 TIsub
N −K

∂Ginh
N (x + K, x, d)/∂x TIsub

N −K 6 x 6 TIinh
N −K

− cpi TIinh
N −K 6 x 6 TIinh

N

∂Ginh
N (x, x, d)/∂x TIinh

N 6 x,

where

∂Ginh
N (x + K, x, d)/∂x = h zZL

(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]
− cps.

(A.5)

We conclude that ∂Ginh
N (x + K, x, d)/∂x > −cps. This can be shown as follows. At

x = TIsub
N −K (lower bound of the second region), we have ∂Ginh

N (TIsub
N , x, d)/∂x =

∂Gsub
N (TIsub

N , x, d)/∂x = − cps. This requires the term

h zZL
(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]

(A.6)

in the right-hand side of (A.5) to vanish at x = TIsub
N −K. As x approaches the upper

bound of the second region, the cumulative probabilities zZ1
L
(· |d) and zZL

(· |d) can

not decrease. This will make the term (A.6) non-decreasing as well, and hence it

is always true that ∂Ginh
N (x + K, x, d)/∂x > − cps over the second region. In a

similar manner, we can show that ∂Ginh
N (x, x, d)/∂x > − cps over the fourth region.

For the other two cases, we know that −cpi > −cps. So, we can conclude that
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∂VN (x, d)/∂x > ∂VN+1(x, d)/∂x as given in the statement (i).

For the statement (ii),

∂GN (y, x, d)/∂y = ∂JN (y, x, d)/∂y − cps

∂GN−1(y, x, d)/∂y = ∂JN−1(y, x, d)/∂y + EEN−1
[∂VN (y −

∑

b

Db
N−1,N−1,DN)/∂y].

It was already shown in the above that ∂VN (x, d)/∂x > − cps for all x and d. There-

fore, we have EEN−1
[∂VN (y−∑

b

Db
N−1,N−1,DN)/∂y] > − cps. Also, ∂JN−1(y, x, d)/∂y

is equivalent to ∂JN (y, x, d)/∂y for a given value of d since we have that

∂JN−1(y, x, d)/∂y = ∂JN (y, x, d)/∂y

= cpi + (cps − cpi)1(AN−1) + hzZL
(y|d)

− π1

[
1−zZ1

L
(y|d)

]
− π2

[
zZ1

L
(y|d)−zZL

(y|d)
]
.

Hence ∂GN−1(y, x, d)/∂y > ∂GN (y, x, d)/∂y, which proves the statement (ii). Due

to the convexity of Gs( . , . , .) and statement (ii), statement (iii) is trivial.

Step 2: Formulate the inductive hypothesis:

Suppose statements (i)-(iii) are true for a particular combination of two consecutive

periods s and s + 1, where 2 6 s 6 N .

Step 3: Prove the inductive step:

Given the above hypothesis, we shall prove that the statements (i)-(iii) are true for

two consecutive periods s− 1 and s. Let us examine the cases on the value of x, the

inventory position before ordering. Let Ii
s for i = 1, 2, 3, 4 be the event that inventory

position before ordering in period s, x, falls in the ith region. We number the regions

in an increasing order, where the first case are given the number i = 1.

Label Regions on x Minimizer
I1

s x 6 TIsub
s −K TIsub

s

I2
s TIsub

s −K 6 x 6 TIinh
s −K x + K

I3
s TIinh

s −K 6 x 6 TIinh
s TIinh

s

I4
s TIinh

s 6 x x

For the statement (i), we need to consider the following seven cases on the value
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of x, being possible for the two consecutive periods s − 1 and s. The cases are

determined according to statement (iii) of the induction hypothesis and the condition

that TIinh
s (d) − TIsub

s (d) > K. For the sake of brevity in the following, define δs as

the difference δs = ∂Vs−1(x, d)/∂x − ∂Vs(x, d)/∂x.

• Case 1: 1(I1
s−1I1

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Gsub
s−1(TIsub

s−1, x, d)/∂x = − cps

∂Vs(x, d)/∂x = ∂Gsub
s (TIsub

s , x, d)/∂x = − cps.

Thus, δs = 0 and we conclude that the statement (i) is true for this case.

• Case 2: 1(I2
s−1I1

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Ginh
s−1(x + K, x, d)/∂x

= h zZL
(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]

+ EEs−1

[
∂Vs(x + K −

∑

b

Db
s−1,s−1, Ds)/∂x

]
,

∂Vs(x, d)/∂x = ∂Gsub
s (TIsub

s , x, d)/∂x = − cps.

δs is nonnegative due to the similar reasoning made for (A.6). Thus, we conclude

that the statement (i) is true for this case.

• Case 3: 1(I2
s−1I2

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Ginh
s−1(x + K, x, d)/∂x

= h zZL
(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]

+ EEs−1

[
∂Vs(x + K −

∑

b

Db
s−1,s−1, Ds)/∂x

]
,

∂Vs(x, d)/∂x = ∂Ginh
s (x + K, x, d)/∂x

= h zZL
(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]

+ EEs

[
∂Vs+1(x + K −

∑

b

Db
s,s, Ds+1)/∂x

]
.
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δs is nonnegative since ∂Vs(x + K − ∑
b

Db
s−1,s−1, Ds)/∂x > ∂Vs+1(x + K −

∑
b

Db
s,s, Ds+1)/∂x due to statement (i) of the induction hypothesis. To con-

clude, statement (i) is true.

• Case 4: 1(I3
s−1I1

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Ginh
s−1(TIinh

s−1, x, d)/∂x = − cpi,

∂Vs(x, d)/∂x = ∂Gsub
s (TIsub

s , x, d)/∂x = − cps.

δs = cps − cpi > 0 by definition. Thus, the statement (i) is true.

• Case 5: 1(I3
s−1I2

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Ginh
s−1(TIinh

s−1, x, d)/∂x = − cpi,

∂Vs(x, d)/∂x = ∂Ginh
s (x + K, x, d)/∂x

= h zZL
(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]

+ EEs

[
∂Vs+1(x + K −

∑

b

Db
s,s, Ds+1)/∂x

]
.

δs is nonnegative since x + K 6 TIinh
s for I2

s and Vs(· , ·) is convex and these

make ∂Vs(· , ·)/∂x 6 − cpi.

• Case 6: 1(I3
s−1I3

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Ginh
s−1(TIinh

s−1, x, d)/∂x = − cpi,

∂Vs(x, d)/∂x = ∂Ginh
s (TIinh

s , x, d)/∂x = − cpi.

Thus, δs = 0 and we conclude that the statement (i) is true for this case.

• Case 7: 1(I4
s−1I4

s ) = 1. We have

∂Vs−1(x, d)/∂x = ∂Ginh
s−1(x, x, d)/∂x

= h zZL
(x|d) − π1

[
1−zZ1

L
(x|d)

]

− π2

[
zZ1

L
(x|d)−zZL

(x|d)
]

+ EEs−1

[
∂Vs(x−

∑

b

Db
s−1,s−1, Ds)/∂x

]
,
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∂Vs(x, d)/∂x = ∂Ginh
s (x, x, d)/∂x

= h zZL
(x|d) − π1

[
1−zZ1

L
(x|d)

]

− π2

[
zZ1

L
(x|d)−zZL

(x|d)
]

+ EEs

[
∂Vs+1(x−

∑

b

Db
s,s, Ds+1)/∂x

]
.

δs is nonnegative since ∂Vs(x−
∑
b

Db
s−1,s−1, Ds)/∂x > ∂Vs+1(x−

∑
b

Db
s,s, Ds+1)

/∂x due to the statement (i) of the induction hypothesis. To conclude, the

statement (i) is true.

To conclude, the statement (i) is true for all seven cases. For the statement (ii), on

the other hand, we have

∂Gs−1(y, x, d)/∂y = ∂Js−1(y, x, d)/∂y + EEs−1

[
∂Vs(y −

∑

b

Db
s−1,s−1, Ds)/∂y

]
,

∂Gs(y, x, d)/∂y = ∂Js(y, x, d)/∂y + EEs

[
∂Vs+1(y −

∑

b

Db
s,s, Ds+1)/∂y

]
.

where ∂Js−1(y, x, d)/∂y = ∂Js(y, x, d)/∂y for a given value of y and d due to con-

stant parameters, and ∂Vs(y −
∑
b

Db
s−1,s−1, Ds)/∂y > ∂Vs+1(y −

∑
b

Db
s,s, Ds+1)/∂y

due to statement (i) of the induction hypothesis. Consequently we have ∂Gs−1(y, x, d)/

∂y > ∂Gs(y, x, d)/∂y, which proves that statement (ii) is true. Statement (iii) holds

due to the statement (ii). This completes the proof.

A.4 Proof of Theorem 4.3

The proof is by induction on s.

Step 1: Verify the base case:

The base case is for period s = N , which is the last decision period for replenishment.

We have two distinct values d̄ and d of the order commitment vector available at the

beginning of period s, with
∑
b

L∑
k=1

d̄b
s−1,s−1+k 6

∑
b

L∑
k=1

db
s−1,s−1+k. For statement (i),
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by applying the optimal replenishment policy of period N and then taking the partial

derivative of first order with respect to x, we get

∂VN (x, d)/∂x =





− cps x 6 TIsub
N −K

∂Ginh
N (x + K, x, d)/∂x TIsub

N −K 6 x 6 TIinh
N −K

− cpi TIinh
N −K 6 x 6 TIinh

N

∂Ginh
N (x, x, d)/∂x TIinh

N 6 x,

where

∂Ginh
N (x + K, x, d)/∂x = h zZL

(x + K|d) − π1

[
1−zZ1

L
(x + K|d)

]

− π2

[
zZ1

L
(x + K|d)−zZL

(x + K|d)
]
− cps,

∂Ginh
N (x, x, d)/∂x = h zZL

(x|d) − π1

[
1−zZ1

L
(x|d)

]

− π2

[
zZ1

L
(x|d)−zZL

(x|d)
]
− cps.

∂VN (x, d̄)/∂x for the value of d̄ can be readily written, and hence is omitted for the

sake of brevity. Note that we have zZ1
L
(x + K|d) 6 zZ1

L
(x + K| d̄) and zZL

(x +

K|d) 6 zZL
(x + K| d̄) since d >st d̄ (where >st means that stochastically larger

than). This argument is also valid for zZ1
L
(x| · ) and zZL

(x| · ). Consequently, it is

true that ∂VN (x, d̄)/∂x > ∂VN (x, d)/∂x, which proves the statement (i).

For the statement (ii), we have

∂GN (y, x, d)/∂y = ∂JN (y, x, d)/∂y − cps.

∂GN (y, x, d̄)/∂y > ∂GN (y, x, d)/∂y since ∂JN (y, x, d̄)/∂y > ∂JN (y, x, d)/∂y due

to the stochastic order relations discussed above. This proves the statement (ii) for

period N . The statement (iii) follows from statement (ii).

Step 2: Formulate the inductive hypothesis:

As the induction hypothesis, suppose the statements (i)-(iii) are true for a particular

period s + 1, where 1 6 s + 1 < N .

Step 3: Prove the inductive step:

Given the above hypothesis, we shall prove that the statements (i)-(iii) are true for

period s. For the statement (i), we have, by applying the optimal replenishment policy

of period s for the value of d and then taking the partial derivative of first order with
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respect to x,

∂Vs(x, d)/∂x =





− cps x 6 TIsub
s −K

∂Ginh
s (x + K, x, d)/∂x TIsub

s −K 6 x 6 TIinh
s −K

− cpi TIinh
s −K 6 x 6 TIinh

s

∂Ginh
s (x, x, d)/∂x TIinh

s 6 x,

∂Vs(x, d̄)/∂x for the value of d̄ can be readily written, and hence is omitted for the

sake of brevity. We have

∂Ginh
s (x, x, d̄)/∂x = ∂Js(x, x, d̄)/∂x + EEs

[
∂Vs+1(x−

∑

b

D̄b
s,s, D̄s+1)/∂x

]
,

∂Ginh
s (x, x, d)/∂x = ∂Js(x, x, d)/∂x + EEs

[
∂Vs+1(x−

∑

b

Db
s,s, Ds+1)/∂x

]
,

where ∂Js(x, x, d̄)/∂x > ∂Js(x, x, d)/∂x as discussed above. Since we know that

Ds+1 >st D̄s+1 and that ∂Vs+1(x, d)/∂x is non-decreasing in x due to the convexity of

Vs+1(x, d) in x, we have ∂Vs+1(x−
∑
b

D̄b
s,s, D̄s+1)/∂x > ∂Vs+1(x−

∑
b

Db
s,s, Ds+1)/∂x,

which follows from the statement (i) of the induction hypothesis. Consequently, this

proves the statement (i).

From the discussion above, it is obvious that ∂Gs(y, x, d̄)/∂y > ∂Gs(y, x, d)/

∂y, which proves the statement (ii). The statement (iii) follows from the statement

(ii). This completes the proof.

A.5 Proof of Proposition 5.1

Due to the forecast evolution structure we know that

Zb
[s,s+L) =

L∑

k=1

Db
s+k−1,s+k−1

=
L∑

k=1

db
s−1,s+k−1 e(εb

s+k−1,1+εb
s+k−2,2+···+εb

s,k). (A.7)

Figure A.1 shows the accumulating nature of eεb
s+k−m,m ’s.

177



b

ss
d ,1−

b

ss
d 1,1 +−

b

ss
D ,

b

ss
D 1,1 ++

b

LsLs
D 1,1 −+−+

b

Lss
d 1,1 −+− K

M

K

s-1 s s+1 s+2 s+L-1 s+Ls+L-2

K

b

se 1,
ε

b

se 1,1+ε
b

se 2,
ε

b

Lse 1,1−+ε
b

Lse 2,2−+ε
b

Lse 3,3−+ε
b

Lse 1-,1+ε
b

Lse ,
ε

Figure A.1: Accumulation of eεb
s+k−m,m ’s

Assuming Eb
k = db

s−1,s+k−1 e(εb
s+k−1,1+εb

s+k−2,2+···+εb
s,k) for convenience in what

follows, taking logarithms on both sides of (A.7) and arranging we get

ln Zb
[s,s+L) = ln

L∑

k=1

Eb
k = ln

L∑

k=1

eln Eb
k = g(lnEb),

where Eb is the vector [Eb
1, Eb

2, . . . , Eb
L ] and g(lnEb) is a function of lnEb. As an

approximation to the logarithm of the sum of a series {Eb
k, 1 6 k 6 L}, consider

the first-order Taylor series expansion for g(lnEb) around Eb
k = βb

k, k = 1, 2, . . . , L.

Using the forecast evolution mechanism, we may take βb
k as

βb
k = µDb e

(µ
εb
1
+µ

εb
2
+···+µ

εb
k
)
.

µDb and µεb
m

are known constants. More specifically, µDb is the mean order size of

stationary series and µεb
m

is the mean non-stationary update factor m periods ahead.

Thus βb
k is a known constant, which estimates (s + k− 1)th period’s order realization

from buyer b and does not depend on a given db
s−1,s+k−1 value. The first-order Taylor

series approximation turns out to be
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ln Zb
[s,s+L) = g(lnEb) ' g(lnβb) +

L∑

k=1

∂g(lnEb)
∂ ln Eb

k

∣∣∣∣
Eb=βb

[
ln Eb

k − lnβb
k

]

= ln
L∑

k=1

βb
k +

L∑

k=1

βb
k

L∑
k=1

βb
k

[
ln Eb

k − lnβb
k

]

= ln
L∑

k=1

βb
k +

L∑

k=1

θb
k

[
lnEb

k − ln βb
k

]
, (A.8)

where βb is the vector [βb
1, βb

2, . . . , βb
L ], and θb

k is a dimensionless, known constant

given by

θb
k = βb

k/
L∑

m=1

βb
m.

Note that θb
k denotes the share of βb

k (i.e., the expected order after k updates) in the

total expected realized order from buyer b on the L-period horizon. Continuing with

(A.8) by substituting for Eb
k, we have

ln Zb
[s,s+L) = g(lnEb)

' ln
L∑

k=1

βb
k +

L∑

k=1

θb
k

[
ln db

s−1,s+k−1 +
k∑

m=1

εb
s+k−m,m − ln βb

k

]
. (A.9)

Expanding the only random term
L∑

k=1

θb
k

k∑
m=1

εb
s+k−m,m on the right-hand side of (A.9)

and following the MMFE assumption that commitment update vectors Eb
s form a

stationary and independent sequence through time (Cov(εb
s, εb

k) = 0, s 6= k), we have

L∑

k=1

θb
k

k∑

m=1

εb
s+k−m,m =

θb
1ε

b
s,1 + θb

2

[
εb
s+1,1 + εb

s,2

]
+ . . . + θb

L

[
εb
s+L−1,1 + εb

s+L−2,2 + · · ·+ εb
s,L

]

=
[
θb
1 + θb

2 + · · ·+ θb
L

]
εb
s,1 + . . . +

[
θb
L−1 + θb

L

]
εb
s,L−1 + θb

Lεb
s,L

=
L∑

k=1

λb
k εb

s,k

, ϑb
L.

ϑb
L corresponds to a weighted sum of logarithmic commitment updates to be received

from buyer b over the time interval [s, s + L). This corresponds to the only random

element in the total realized order. We call λb
k =

L∑
m=k

θb
m ∈ (0, 1] the weight cor-

responding to the k-step commitment updates εb
s,k from buyer b. It decreases from
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λb
1 = 1 as period k increases from 1 to L, implying larger weight towards the period

of order realization since update coefficients of earlier periods occur in more of the

commitment terms.

As a consequence, (A.9) may be written as a random term (ϑb
L) plus a series

of constant terms

ln Zb
[s,s+L) ' ϑb

L + ln
L∑

k=1

βb
k +

L∑

k=1

θb
k

[
ln db

s−1,s+k−1 − lnβb
k

]
(A.10)

Applying the approximation (A.10) to the probability distribution zZb
L
(y |ds), we

have

zZb
L
(y |ds) = Pr{Zb

[s,s+L) 6 y |ds}

= Pr{lnZb
[s,s+L) 6 ln y |ds}

' Pr{ϑb
L + ln

L∑

k=1

βb
k +

L∑

k=1

θb
k[ln db

s−1,s+k−1 − lnβb
k] 6 ln y |ds}

= Pr{ϑb
L 6 ln

y
L∑

k=1

βb
k

+
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

}

= zϑb
L
(ln

y
L∑

k=1

βb
k

+
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

),

which completes the proof. Similar proof can be made for zZL
(· |ds).

A.6 Proof of Theorem 5.1

Consider the approximation (A.10) that we introduced in the proof of Proposition 5.1.

ln Zb
[s,s+L) ' ϑb

L + ln
L∑

k=1

βb
k +

L∑

k=1

θb
k

[
ln db

s−1,s+k−1 − lnβb
k

]

Continuing with this approximation, then

ϑb
L ' ln

Zb
[s,s+L)

L∑
k=1

βb
k

+
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

'
Zb

[s,s+L)

L∑
k=1

βb
k

− 1 +
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

, (A.11)
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which follows from the fact that lnx ' x − 1 for small values of x. This holds for

the ratio Zb
[s,s+L)/

L∑
k=1

βb
k in (A.11). It takes small values since

L∑
k=1

βb
k is an estimate

to Zb
[s,s+L) (which makes the ratio around 1) and Zb

[s,s+L) is interval censored (which

prevents the ratio from taking large values towards the left and right extremes).

Consider the current L-period cost of carrying inventory and backorders asso-

ciated with period s.

Ls(TIs, ds) =

h

TIs∑

z1=0

TIs−z1∑

z2=0

(TIs − z1 − z2) fZ2
L
(z2|ds) fZ1

L
(z1|ds)

+ π1

∞∑

z1=TIs

(z1 − TIs) fZ1
L
(z1|ds) + π2

∞∑

z1=TIs

∞∑

z2=0

z2 fZ2
L
(z2|ds) fZ1

L
(z1|ds)

+ π2

TIs∑

z1=0

∞∑

z2=TIs−z1

(z2 − (TIs − z1)) fZ2
L
(z2|ds) fZ1

L
(z1|ds), (A.12)

Using the expression (A.11) to make the substitution Zb
[s,s+L) = ϑb

L

∑L
k=1 βb

k +
∑L

k=1 βb
k − (

∑L
k=1 θb

k ln βb
k

db
s−1,s+k−1

)
∑L

k=1 βb
k, we change the basic variable of the in-

tegrands in (A.12) from (z1, z2) to (v1, v2). This change of variables results in a

transformed integral over a domain in the (ϑ1
L, ϑ2

L)-space.

L̂s(TIs, ds) =

h

T̂ Is∑
v1=−∞

T̂ Is−ζ1v1∑
v2=−∞

(T̂ Is − ζ1v1 − ζ2v2) fϑ2
L
(v2) fϑ1

L
(v1)

+ π1

∞∑

v1=T̂ Is

(ζ1v1 − T̂ Is) fϑ1
L
(v1|ds) + π2

∞∑

v1=T̂ Is

∞∑
v2=−∞

ζ2v2 fϑ2
L
(v2) fϑ1

L
(v1)

+ π2

T̂ Is∑
v1=−∞

∞∑

v2=T̂ Is−ζ1v1

(ζ2v2 − (T̂ Is − ζ1v1)) fϑ2
L
(v2) fϑ1

L
(v1),

where ζb =
L∑

k=1

βb
k, and

T̂ Is , TIs −
∑

b

(1−
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

)
L∑

k=1

βb
k, (A.13)

The dimension of T̂ Is has the same unit with TIs. Since T̂ Is is a linear function in

TIs and Ls(TIs, ds) is convex in TIs, the modified cost function L̂s(TIs, ds) is also

convex in TIs. Its minimum occurs at T̂ I
∗
s, given by

T̂ I
∗
s , TI∗s −

∑

b

(1−
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

)
L∑

k=1

βb
k, (A.14)
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for the minimizer TI∗s of Ls(TIs, ds) for a given system state (Is, ds).

The manufacturer’s replenishment amount can be written as

qs = TIs − Is

= T̂ Is +
∑

b

(1−
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

)
L∑

k=1

βb
k − Is

= T̂ Is − Îs,

where

Îs , Is −
∑

b

(1−
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

)
L∑

k=1

βb
k, (A.15)

which obviously accommodates Ds,H =
∑
b

H∑
k=1

θb
k ln db

s−1,s+k−1 as

Îs = Is −
∑

b

[
(1−

L∑

k=1

θb
k lnβb

k + Ds,H)
L∑

k=1

βb
k

]
.

This completes the proof.

A.7 Proof of Corollary 5.1

Suppose a certain replenishment decision TIs is made upon observing the system

state (Is, ds). Using the expression (A.11), we may state inventory position before

replenishment decision in period s + 1 as

Is+1 = TIs −
∑

b

Db
s,s

' TIs −
∑

b

(
βb

1ε
b
s,1 − βb

1 ln
βb

1

db
s−1,s

+ βb
1

)
, (A.16)

where βb
1 is the expected order after one update from buyer b in any period s (i.e.,

updated s−1 commitment for period s). Then, applying the definition (A.15) to Is+1,

and using the forecast evolution equation, we have
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Îs+1 =

Is+1 −
∑

b

(1−
L+1∑

k=2

θb
k ln

βb
k

Db
s,s+k−1

)
L+1∑

k=2

βb
k

= Is+1 −
∑

b

(1−
L∑

k=2

θb
k ln

βb
k

db
s−1,s+k−1 eεb

s,k

− θb
L+1 ln

βb
L+1

µDb eεb
s,L+1

)
L+1∑

k=2

βb
k

= Is+1 −
∑

b

(1−
L∑

k=2

θb
k ln

βb
k

db
s−1,s+k−1

− θb
L+1 ln

βb
L+1

µDb

+
L+1∑

k=2

θb
kε

b
s,k)

L+1∑

k=2

βb
k.

(A.17)

By substituting (A.16) into (A.17) and rearranging terms, it follows that

Îs+1 =

TIs −
∑

b

βb
1ε

b
s,1 − βb

1 ln
βb

1

db
s−1,s

+ βb
1

−
∑

b

(1−
L∑

k=2

θb
k ln

βb
k

db
s−1,s+k−1

− θb
L+1 ln

βb
L+1

µDb

+
L+1∑

k=2

θb
kε

b
s,k)

L+1∑

k=2

βb
k

= TIs −
∑

b

(1−
L∑

k=1

θb
k ln

βb
k

db
s−1,s+k−1

)
L∑

k=1

βb
k

−
∑

b

βb
1ε

b
s,1 −

L+1∑

k=2

βb
kε

b
s,k + βb

1 + βb
L+1 ln

βb
L+1

µDb

= T̂ Is −
∑

b

(
L+1∑

k=1

βb
kε

b
s,k − βb

1 − βb
L+1 ln

βb
L+1

µDb

)

where εb
s,k is the random variable for the k-period ahead commitment update made

in period s. For Ds+1,H , we have

Ds+1,H =
B∑

b

L+1∑

k=2

θb
k ln Db

s,s+k−1

=
B∑

b

(
L∑

k=2

θb
k ln db

s,s+k−1 +
L+1∑

k=2

θb
k εb

s,k + θb
H+1 ln µDb

)

= Ds,H +
∑

b

(
H+1∑

k=2

βb
kε

b
s,k + βb

H+1 lnµDb − βb
1 ln db

s−1,s) /

H+1∑

k=2

βb
k ,

which completes the proof.
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APPENDIX B

ON THE SOLUTION OF NONLINEAR MODELS GOFk

Solving our highly nonlinear problems, which involve discontinuities and large degrees

of freedom, required some modifications to the programs. First, we reformulated the

nonlinear model, having the discontinuous derivatives due to the absolute functions

in the constraints, as an approximately equivalent smooth nonlinear model. The re-

formulation is necessary since we got termination messages like Convergence too slow

(saying that the solution process is very slow) or No change in objective although

the reduced gradient is greater than the tolerance (saying that there is no progress at

all). These messages say that the solver stops with a feasible solution but unsuccess-

ful termination where the optimality criteria have not been satisfied. The problem

can be caused by discontinuous derivatives of the constraints involving absolute func-

tion, leading to inaccurate approximations to the marginal improvements around the

current point. The reformulation approach taken for the absolute functions is to intro-

duce positive and negative deviations as extra variables. This reformulation enlarges

the feasible space, where it is likely to have multiple local optima depending on the

objective function form.

Second, we modify some of the default tolerances and options in CONOPT3

solver since we have experienced solution difficulties. The approach taken is to ad-

just the algorithmic parameters dynamically as information about the behavior of

the model is collected by experimenting. The main algorithmic parameters that we

modified involve the minimum feasibility tolerance (increased), the maximum number

of stalled iterations (increased), the triangular feasibility tolerance (increased), the

relative accuracy of -one-dimensional search (decreased), the optimality tolerance (in-

creased), and the method for finding the maximal step while searching for a feasible

solution (switched to bending procedure) 1.

1 More information on algorithmic parameters can be found in GAMS Reference Manual for
CONOPT solver.
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APPENDIX C

THE RELATED BIVARIATE ARIMA(0, 1, 1) PROCESS

AND ITS FORECAST MODEL

We assume that the order quantities submitted by contract buyers follow a bivariate

ARIMA(0, 1, 1) process (two time series being modeled jointly corresponding to two

buyers). Since the differencing operator has an order of d = 1, the process models

the differences between consecutive observations on order quantity (rather than the

observed values directly), and is given as follows.

Db
1,1 = µDb + ηb

1 for all buyers b ∈ {1, 2}, and

D1
s,s = D1

s−1,s−1 − (1− θ11) η1
s−1 + θ12 η2

s−1 + η1
s

D2
s,s = D2

s−1,s−1 + θ21 η1
s−1 − (1− θ22) η2

s−1 + η2
s

for s = 2, 3, . . . , N + L. It may be written compactly in matrix form as

D1,1 = µD + η1

Ds,s = Ds−1,s−1 − (I−Θ) ηs−1 + ηs (C.1)

for s = 2, 3, . . . , N + L, where

(i) Ds,s =
[ D1

s,s

D2
s,s

]
is the 2 × 1 vector of order realizations submitted by the buyers

in period s,

(ii) µD =
[ µD1

µD2

]
is the 2× 1 known vector of expected order realizations,

(iii) Θ =
[

θ11 θ12
θ21 θ22

]
is the 2 × 2 unknown matrix of moving average parameters. We

assume that 0 < θbb 6 1, for all b ∈ {1, 2}. This assumption is essential for the

non-stationarity of the demand process. I is the 2× 2 identity matrix such that
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only the diagonal elements of the matrix I −Θ have leading terms which are

unity,

(iv) ηs =
[ η1

s

η2
s

]
is the 2 × 1 random vector of disturbances in period s. We assume

that ηs is independent and identically distributed vector with Normal density

such that E[ηs] = 0 and a covariance matrix given by Ση. This allows the

disturbances at a given point in time to be correlated across the buyers. The

variance of the disturbances corresponding to the bth buyer and the covariance

between the disturbances corresponding to the bth and rth buyers are denoted

by σ2
ηb = Var(ηb

s) and σηb,ηr = Cov(ηb
s, ηr

s) for b 6= r ∈ {1, 2}, respectively.

See Jenkins and Alavi (1981) for some aspects of modeling multivariate time series.

The unknown parameters in this model are the matrix Θ of moving average param-

eters and the covariance matrix Ση of disturbances. We will develop estimators for

them later on in §6.5.1. Note also that the parameters are such that Db
s,s can be

considered to be nonnegative for all practical purposes.

Each component in the demand model (C.1) depends not only on lagged values

of itself but also on lagged values of the component corresponding to the other buyer.

It has flexibility for representing a variety of time series data conveying trends (by

the differencing operator) and correlations (by varying the values of Θ). This will

enable us to investigate the system performance relative to a wide variety of demand

characterizations addressed in our forecast evolution modeling.

This ARIMA model is simpler in its representation of demand uncertainty than

the forecast evolution model. In particular, it does not utilize knowledge of order com-

mitments and their evolution from period to period. It is based only on the previous

observations of the predicted quantities and their errors.

Muth (1960) shows that the minimum-mean-squared-error forecast for this

ARIMA(0, 1, 1) demand process is the first-order exponential-weighted moving av-

erage (EWMA). Let F b
s+j be the forecast for the order quantity to be submitted by

buyer b in period s+j, made after observing the order of period s. Also, Fs+j =
[ F 1

s+j

F 2
s+j

]

denotes the bivariate forecast vector. If s is the last time period in which the buy-

ers’ orders are observed, then the first-order EWMA forecast vector for a future time

period s + j is given by
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F1 = µD

Fs+j = ΘDs,s + (I−Θ)Fs (C.2)

for s = 1, 2, . . . , N + L− 1 and j = 1, 2, . . . , N + L− s. The exponential smoothing

constants are given by the elements of the 2×2 matrix Θ of moving average parameters

in the demand model (C.1). Hence, the first-order EWMA forecast corresponding to

a buyer is a weighted average of the current time series values (i.e., D1
s,s and D2

s,s)

and the forecasts at the previous time period (i.e., F 1
s and F 2

s ).

The right-hand side of the forecast function (C.2) does not depend on j, as it

corresponds to a first-order model and thus Fs+j is used to forecast all future values of

Dt,t, t > s. This points out one disadvantage of the EWMA forecasting (as compared

to the forecast evolution in MUFE). Any anticipated changes in the demand during

the replenishment lead-time are not taken into account in this first-order EWMA

forecasting. This is caused by the ARIMA(0, 1, 1) model assumption.

We can also express these first-order EWMA forecasts in terms of the random

disturbances, ηs,

Fs+j = Fs + Θηs

= Θηs + Θηs−1 + . . . + Θη1 + µD,

for all j > 0, where it can be readily shown that the forecast error is

Ds,s − Fs = ηs,

for s = 1, 2, . . . , N + L. This implies that the first-order EWMA forecasts are unbi-

ased.
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APPENDIX D

TABLES FOR SOLUTION DETAILS

Table D.1: Solution details for Figure 7.2

H FL 100− k 1 (%) CI +
H (%)

2

0.02 88.0 39.1
0.04 83.1 46.5
0.06 79.2 52.3
0.08 76.3 ∗ 59.6
0.10 74.4 ∗ 61.7

3

0.02 90.1 39.1
0.04 85.0 46.5
0.06 80.8 ∗ 52.4
0.08 77.7 ∗ 59.4
0.10 75.6 ∗ 61.5

4

0.02 90.7 ∗ 38.9
0.04 85.3 46.5
0.06 81.1 ∗ 52.4
0.08 77.8 ∗ 59.1
0.10 75.7 61.3

5

0.02 91.4 ∗ 38.7
0.04 85.9 ∗ 46.3
0.06 81.4 ∗ 52.3
0.08 78.0 ∗ 58.7
0.10 75.7 60.9

6

0.02 90.6 38.3
0.04 86.5 ∗ 46.1
0.06 81.8 ∗ 52.1
0.08 78.2 ∗ 58.2
0.10 75.8 60.4

7

0.02 90.5 37.8
0.04 87.4 ∗ 45.6
0.06 82.3 ∗ 51.7
0.08 78.5 ∗ 57.5
0.10 75.8 59.8

8

0.02 90.4 37.0
0.04 88.5 ∗ 45.0
0.06 82.9 ∗ 51.1
0.08 78.8 ∗ 56.6
0.10 75.9 58.9

9

0.02 90.3 36.1
0.04 89.9 ∗ 44.1
0.06 83.7 ∗ 50.3
0.08 79.1 ∗ 55.5
0.10 76.1 57.8
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Table D.1 continued.

H FL 100− k 1 (%) CI +
H (%)

10

0.02 90.2 34.9
0.04 90.3 ∗ 43.1
0.06 84.6 ∗ 49.3
0.08 79.5 ∗ 54.2
0.10 76.2 56.5

11

0.02 90.1 33.3
0.04 90.2 ∗ 41.5
0.06 85.7 ∗ 47.8
0.08 80.1 52.4
0.10 76.4 54.8

12

0.02 90.0 31.1
0.04 90.1 ∗ 39.5
0.06 87.1 ∗ 45.8
0.08 80.7 50.2
0.10 76.5 52.5

The dominated (H, FL) combinations are marked by ∗.

Table D.2: Solution details for Figures 7.3, 7.4 and 7.5

H CI+
H (%) CI−H (%) CI+

H (%) TIdev Downward deviation Upward deviation
for FL = 0.10 for FL = ∞

1 - - - 1.208 0.06 0.09
3 28.4 -27.3 22.3 1.216 0.07 0.10
6 25.7 -29.2 19.4 1.246 0.09 0.13
9 22.1 -31.8 15.4 1.295 0.12 0.17
12 16.5 -35.5 9.6 1.370 0.16 0.22

Table D.3: Solution details for Figure 7.6

low ∆π high ∆π

∆c ∆K ϕ (%) CIK (%) ϕ (%) CIK (%)

0.1

0.5 86.9 22.8 96.3 14.8
1 85.3 19.5 94.7 14.5

1.5 84.3 17.0 93.9 14.0
2 83.7 15.0 93.2 13.0

2.5 83.4 9.9 93.0 8.4

0.5

0.5 86.4 26.5 96.0 17.5
1 84.6 22.8 94.3 16.8

1.5 83.4 19.8 93.1 15.8
2 82.6 17.0 92.4 14.0

2.5 82.1 11.0 91.9 8.5

1

0.5 85.0 32.4 94.8 22.4
1 83.4 29.0 93.3 22.0

1.5 82.0 25.4 91.9 20.4
2 81.0 21.0 90.9 17.0

2.5 80.3 12.5 90.2 9.0

1.5

0.5 84.4 35.0 94.4 24.0
1 81.8 30.2 91.8 22.2

1.5 80.3 27.0 90.4 21.0
2 79.1 22.4 89.1 17.4

2.5 78.1 14.0 88.2 9.5
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Table D.4: Solution details for Figures 7.7 (a) and 7.8 (a)

FL ∆K CIK (%) TIins

0.01

0.5 15.6 0.261
1 30.7 0.183

1.5 36.2 0.157
2 38.2 0.115

2.5 38.9 0.109

0.05

0.5 13.6 0.278
1 27.5 0.215

1.5 33.2 0.195
2 35.4 0.154

2.5 36.1 0.147

0.10

0.5 11.5 0.314
1 22.2 0.277

1.5 27.5 0.265
2 30.1 0.229

2.5 30.5 0.225

Table D.5: Solution details for Figures 7.7 (b) and 7.8 (b)

∆c ∆K CIK (%) TIins

0.1

0.5 4.0 0.09
1 5.0 0.08

1.5 5.6 0.08
2 6.0 0.08

2.5 6.0 0.08

0.5

0.5 7.0 0.16
1 11.0 0.15

1.5 12.4 0.14
2 13.0 0.12

2.5 13.2 0.12

1

0.5 9.0 0.22
1 17.0 0.19

1.5 20.4 0.19
2 22.0 0.17

2.5 22.4 0.16

1.5

0.5 11.0 0.304
1 23.5 0.250

1.5 29.0 0.240
2 31.3 0.200

2.5 31.8 0.195

Table D.6: Solution details for Figure 7.9 (a)

H
CU

FL = 0.01 FL = 0.05 FL = 0.1
3 0.772 0.786 0.819
6 0.773 0.789 0.823
9 0.775 0.793 0.831
12 0.779 0.799 0.847
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Table D.7: Solution details for Figure 7.9 (b)

H
CU

∆c = 0.1 ∆c = 0.5 ∆c = 1 ∆c = 1.5
3 0.781 0.789 0.806 0.819
6 0.786 0.796 0.814 0.823
9 0.792 0.803 0.822 0.831
12 0.793 0.809 0.833 0.847

Table D.8: Correlation matrix used for Figure 7.10

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 0.8 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 -0.8

2 1 0.8 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 -0.8

3 1 0.8 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 -0.8

4 1 0.8 0.5 0.5 0.5 0.5 0.5 0.3 0.3 0.3 -0.5

5 1 0.8 0.5 0.5 0.5 0.5 0.5 0.3 0.3 -0.5

6 1 0.8 0.5 0.5 0.5 0.5 0.5 0.3 -0.5

7 1 0.8 0.5 0.5 0.5 0.5 0.5 -0.5

8 1 0.8 0.5 0.5 0.5 0.5 -0.5

9 1 0.8 0.5 0.5 0.5 -0.3

10 1 0.8 0.5 0.5 -0.3

11 1 0.8 0.5 -0.3

12 1 0.8 -0.3

13 1 -0.3

1 1 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

2 1 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

3 1 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

4 1 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3

5 1 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3

6 1 0.5 0.5 0.3 0.3 0.3 0.3 0.3

7 1 0.5 0.5 0.3 0.3 0.3 0.3

8 1 0.5 0.5 0.3 0.3 0.3

9 1 0.5 0.5 0.3 0.3

10 1 0.5 0.5 0.3

11 1 0.5 0.5

12 1 0.5

13 1

k k

k

k

Table D.9: Solution details for Figures 7.11 to 7.13

H CImodel(%) TIdev TIins ϕ (%)

MUFE vs. MUMA MUFE MUMA MUFE MUMA MUFE MUMA
1 10.1 1.228 1.347 0.160 0.250 93.6 91.8
3 16.0 1.236 1.354 0.171 0.261 92.8 90.8
6 19.1 1.266 1.373 0.188 0.274 91.9 89.1
9 21.1 1.315 1.403 0.218 0.294 91.5 87.2
12 22.0 1.390 1.455 0.260 0.322 91.0 85.3
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