
SERVICE ORIENTED SYSTEM DESIGN THROUGH PROCESS
DECOMPOSITION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EREN KOÇAK AKBIYIK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2008

Approval of the thesis:

SERVICE ORIENTED SYSTEM DESIGN THROUGH PROCESS
DECOMPOSITION

submitted by EREN KOÇAK AKBIYIK in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen _____________________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay _____________________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali Hikmet Doğru _____________________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Tolga Can _____________________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Hikmet Doğru _____________________
Computer Engineering Dept., METU

Dr. Cevat Şener _____________________
Computer Engineering Dept., METU

Asst. Prof. Dr. Osman Abul _____________________
Computer Engineering Dept., TOBB ETU

Senior Lead Software Design Eng. Bülent Durak _____________________
Software Engineering Dept., Aselsan Inc.

 Date: _____________________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name : Eren Koçak AKBIYIK

 Signature :

 iv

ABSTRACT

SERVICE ORIENTED SYSTEM DESIGN THROUGH PROCESS
DECOMPOSITION

AKBIYIK, Eren Koçak

M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Hikmet DOĞRU

August 2008, 99 pages

Although service oriented architecture has reached a particular maturity level

especially in the technological dimension, there is a lack of common and acceptable

approach to design a software system through composition and integration of web

services. In this thesis, a service oriented system design approach for Service

Oriented Architecture based software development is introduced to fill this gap. This

new methodology basically offers a procedural top-down decomposition of a given

software system allowing several abstraction levels. At the higher levels of the

decomposition, the system is divided into abstract nodes that correspond to process

models in the decomposition tree. Any node is a process and keeps the sequence and

the state information for the possible sub-processes in this decomposition tree. Nodes

which are defined as process models may include some sub-nodes to present details

for the intermediate levels of the model. Eventually at the leaf level, process models

are decomposed into existing web services as the atomic units of system execution.

All processes constructing the system decomposition tree are modeled with BPEL

(Business Process Execution Language) to expose the algorithmic details of the

design. This modeling technique is also supported with a graphical modeling

 v

language referred to as SOSEML (Service Oriented Software Engineering Modeling

Language) that is also newly introduced in this thesis.

Keywords: Service Oriented Architecture, Service Oriented System Design,

Procedural Decomposition, Process Models, Business Process Execution Language,

Service Oriented Software Engineering Modeling Language

 vi

ÖZ

SÜREÇ AYRIŞTIRMA İLE SERVİS YÖNELİMLİ SİSTEM TASARIMI

AKBIYIK, Eren Koçak

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Ali Hikmet DOĞRU

Ağustos 2008, 99 sayfa

Her ne kadar servis yönelimli mimari özellikle teknolojik boyutta dikkate değer bir

olgunluk seviyesine ulaşmış olsa da, bir yazılım sistemini ağ servislerinin bileşimi ve

bütünleşmesi üzerinden tasarlamak için ortak ve kabul edilebilir bir yaklaşımın

eksiliği söz konusudur. Bu tezde, bahsedilen eksikliği gidermek üzere, servis

yönelimli mimari tabanlı yazılım geliştirme için bir servis yönelimli sistem tasarım

yaklaşımı tanıtılmaktadır. Bu yeni yöntem, temel olarak, verilen bir yazılım

sisteminin çeşitli soyutlama düzeyleri ile yukarıdan aşağıya süreçsel ayrıştırılmasını

önermektedir. Çözümlemenin üst düzeylerinde, sistem, her biri çözümleme ağacında

bir süreç modeline karşılık gelen soyut düğümlere bölünür. Her düğüm bir süreçtir ve

çözümleme ağacındaki olası alt süreçler için sıra ve durum bilgilerini tutar. Süreç

modelleri olarak tanımlanan düğümler modelin orta düzeyleri için ayrıntılar sunmak

adına bazı alt düğümler içerebilirler. Sonunda, yaprak düzeyinde, süreç modelleri,

sistem çalışmasının atomik birimleri olarak var olan ağ servislerine çözümlenirler.

Sistem ayrıştırma ağacını oluşturan tüm süreçler, tasarımın algoritmik detayını da

ortaya koymak için BPEL (İş Süreci Yürütme Dili) ile modellenirler. Bu modelleme

tekniği, ayrıca, yine bu tezde tanıtılan ve SOSEML (Servis Yönelimli Yazılım

 vii

Mühendisliği Modelleme Dili) olarak adlandırılan grafiksel bir modelleme dili ile de

desteklenmektedir.

Anahtar Kelimeler: Servis Yönelimli Mimari, Servis Yönelimli Sistem Tasarımı,

Süreçsel Ayrıştırma, Süreç Modelleri, İş Süreci Yürütme Dili, Servis Yönelimli

Yazılım Mühendisliği Modelleme Dili

 viii

ACKNOWLEDGMENTS

First of all, I would like to express my sincere thanks to my supervisor, Assoc. Prof.

Dr. Ali Hikmet DOĞRU for his efforts and guidance throughout this thesis work.

I would like to thank my family for their support and patience.

I would also like to thank my friends Cengiz Toğay, Selma Süloğlu, and all my

friends not named for their support during my M.Sc.

 ix

TABLE OF CONTENTS

ABSTRACT ..iv

ÖZ..vi

ACKNOWLEDGMENTS.. viii

TABLE OF CONTENTS..ix

LIST OF TABLES ..xi

LIST OF FIGURES ...xii

LIST OF ABBREVIATIONS ...xiv

CHAPTERS

1. INTRODUCTION..1

1.1 Design and Modeling of Target Systems..1

1.2 Component and Service Oriented Software Development and Methodologies......2

1.3 Organization of the Thesis...7

2. BACKGROUND ..8

2.1 Web Services ..8

2.2 Service Oriented Architecture..11

2.2.1 SOA Concepts ... 12

2.2.2 SOA and Web Services .. 14

2.3 Business Process Management ..16

2.3.1 Importance of Business Processes .. 17

2.3.2 Business Process Execution Language (BPEL)... 19

2.3.2.1 Features of BPEL ... 19
2.3.2.2 BPEL and Other Languages .. 21
2.3.2.3 Developing Business Processes with BPEL ... 22

3. SYSTEM DESIGN THROUGH PROCESS DECOMPOSITION23

3.1 Basics of SOSEML Philosophy ...23

3.2 Modeling with SOSEML...26

3.2.1 SOSEML Notation... 27

3.2.2 Constructing a Decomposition Tree.. 30

 x

3.2.3 Modeling Processes in Decomposition Tree.. 34

3.2.3.1 Process Modeling Basics... 34
3.2.3.2 Using BPEL for Process Modeling.. 36

4. SOSE MODELING TOOL..42

4.1 Implementation of SOSECASE ...42

4.2 Features of SOSECASE ..43

4.2.1 Menu Operations ... 44

4.2.2 Model Panel Operations and SOSEML Tool Bar .. 46

4.3 BPEL Designer ...50

5. A CASE STUDY: MODELING A MILITARY DEPLOYMENT PLANNING
SYSTEM ..55

5.1 Description of the System Concepts...55

5.2 Description of the Military Deployment Planning Software58

5.3 Modeling the System...60

5.3.1 Decomposing the System into Sub Processes.. 61

5.3.2 Considering the Web Services.. 64

5.3.3 Creating BPEL Models for the Processes.. 70

5.3.3.1 Inventory Procurance Process Model... 71
5.3.3.2 Weapons Deployment Process Model.. 74
5.3.3.3 Sensors Deployment Process Model.. 75
5.3.3.4 Unit Deployment Process Model... 77
5.3.3.5 PTL Decisions Process Model... 78
5.3.3.6 SRS Decisions Process Model... 80
5.3.3.7 Task Orders Decision Process Model .. 81
5.3.3.8 Deployment Decision Support Process Model.. 83
5.3.3.9 Battlefield Geometries Supply Process Model.. 85
5.3.3.10 Map Layers Presentation Process Model.. 87
5.3.3.11 Info Layers Presentation Process Model .. 88
5.3.3.12 Plan Presentation Process Model... 89
5.3.3.13 Military Deployment Planning Process Model ... 90

6. CONCLUSION AND FUTURE WORK...93

REFERENCES ..97

 xi

LIST OF TABLES

Table 1 – Introduced Specifications by Web Services ...10

Table 2 – The Most Important SOA Concepts...12

Table 3 – BPEL Symbols Used in SOSEML...29

Table 4 – Web Services Used by the Processes ...69

 xii

LIST OF FIGURES

Figure 1 – A General Process Model for Component Oriented Development
(Adapted from [3])..4

Figure 2 – Hierarchical Decomposition (Adapted from [5])6

Figure 3 – Architectural View of SOA and Positions of Concepts14

Figure 4 – Choreography, Orchestration and Web Services.....................................16

Figure 5 – Timeline of Business Process Modeling Languages22

Figure 6 – Modeling Emphasis for Different Approaches (Adapted from [3])25

Figure 7 – Graphical Modeling Elements in SOSEML..27

Figure 8 – General Structure of a Decomposition Tree in SOSEML Notation32

Figure 9 – Decomposition and Modeling Approaches ...35

Figure 10 – Partner Link Definitions for LibrarySearchProcess...............................37

Figure 11 – Variable Definitions Used in LibrarySearchProcess38

Figure 12 – Definition of the Flow of LibrarySearchProcess39

Figure 13 – Graphical Representation of LibrarySearchProcess Flow......................40

Figure 14 – General View of SOSECASE Main Window43

Figure 15 – Inner Menu Items of SOSECASE Main Menu......................................44

Figure 16 – Popup Menu for Nodes ..45

Figure 17 – SOSEML Tool Bar...46

Figure 18 – Properties Window for Web Services ...47

Figure 19 – Properties Window for Web Service Interfaces48

Figure 20 – Representation of Processes in Model Panel...49

Figure 21 – Properties Window for a Process without BPEL Model........................49

Figure 22 – Properties Window for a Process with BPEL Model.............................50

Figure 23 – BPEL Process Templates ...51

 xiii

Figure 24 – General View of BPEL Designer..52

Figure 25 – Editing WSDL Files in BPEL Designer..54

Figure 26 – Primary Target Line and Radiation Segments for Weapons and Sensors
...57

Figure 27– Inputs and Output of Military Deployment Planning Software58

Figure 28 – A Sample Deployment Plan ...60

Figure 29 – 1st Level Decomposition of the System..61

Figure 30 – 2nd and 3rd Level Decompositions for Deployment Decision Process ...62

Figure 31 – 2nd Level Decomposition for Plan Presentation Process........................63

Figure 32 – The Entire Decomposition Tree..64

Figure 33 – Web Services Used by Leaf Level Processes I......................................65

Figure 34 – Web Services Used by Leaf Level Processes II66

Figure 35 – Web Services Used by Leaf Level Processes III67

Figure 36 – The Entire Decomposition Tree with Web Services and Interfaces68

Figure 37 – BPEL Model for Inventory Procurance Process....................................72

Figure 38 – BPEL Model for Weapons Deployment Process...................................74

Figure 39 – BPEL Model for Sensors Deployment Process76

Figure 40 – BPEL Model for Unit Deployment Process ..77

Figure 41 – BPEL Model for PTL Decisions Process ..79

Figure 42 – BPEL Model for SRS Decisions Process ..80

Figure 43 – BPEL Model for Task Orders Decision Process82

Figure 44 – BPEL Model for Deployment Decision Support Process84

Figure 45 – BPEL Model for Battlefield Geometries Supply Process86

Figure 46 – BPEL Model for Map Layers Presentation Process87

Figure 47 – BPEL Model for Info Layers Presentation Process88

Figure 48 – BPEL Model for Plan Presentation Process ..90

Figure 49 – BPEL Model for Military Deployment Planning Process......................91

 xiv

LIST OF ABBREVIATIONS

ACID Atomicity, Consistency, Isolation, and Durability

BFG Battlefield Geometries

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language for Web Services

BPM Business Process Management

BPML Business Process Markup Language

BPMN Business Process Modeling Notation

BPSS Business Process Specification Schema

CCM CORBA Component Model

COM Component Object Model

CORBA Common Object Request Broker Architecture

COSE Component Oriented Software Engineering

COSEML Component Oriented Software Engineering Modeling

Language

DCE Distributed Computing Environment

DCOM Distributed Component Object Model

EAI Enterprise Application Integration

EJB Enterprise Java Beans

FTP File Transfer Protocol

GIS Geographical Information Systems

HTTP Hyper Text Transfer Protocol

IT Information Technologies

MIME Multipurpose Internet Mail Extensions

MSMQ Microsoft Message Queue

OASIS Organization for the Advancement of Structured Information

Standards

 xv

ORB Object Request Broker

QoS Quality of Service

PTL Primary Target Line

RMI Remote Method Invocation

RPC Remote Procedure Call

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOSE Service Oriented Software Engineering

SOSECASE Service Oriented Software Engineering Tool

SOSEML Service Oriented Software Engineering Modeling Language

SRS Sensor Radiation Segments

UDDI Universal Description, Discovery and Integration

W3C World Wide Web Consortium

WS Web Service

WSBPEL TC Web Services Business Process Execution Language

Technical Committee

WS-CDL Web Services Choreography Description Language

WSCI Web Services Choreography Interface

WSCL Web Services Conversation Language

WSDL Web Service Description Language

WSFL Web Services Flow Language

XLANG X Language

XML Extended Markup Language

 1

CHAPTER 1

1. INTRODUCTION

1.1 Design and Modeling of Target Systems

Design and modeling of target systems have especially been emphasized to comply

with decomposition approaches [1]. Whatever the problem and solution domains are,

models and designs are needed to analyze and solve the complex systems. In general,

complexity is a common property of the systems that are made of different parts and

that the emergent behavior is hard to characterize. When the subject is to design a

complex system, to find a way of decomposing it into independent or at least

approximately independent parts is one of the most powerful techniques. These parts

which can be thought as components correspond to some functional parts of the

target system. Design and solution of each system part can be done with some degree

of independence of the design of others. The idea behind the independency is that

each component affects others through its final function or behavior. The interaction

and communication between the system parts is done through defined interfaces. So

the internal details of the design of each part are not directly related to whole system

design.

In fact it is possible to see lots of examples of modeling techniques based on

decomposition approach in the history of software development methodologies.

Functional programming, object-oriented programming, rule-based systems and

nearly decomposable systems are such examples [1]. In the earlier days of the

computing, the units subject to decomposition were functions or modules. Structural

programming languages such as Pascal and C created hierarchical structures to avoid

unmanageable complexity of coding with “goto” statements. The next evolution was

object-oriented principles and units subject to decomposition changed to abstract

 2

classes which bundle the state variables and operations into entities called objects

[2]. Later on, the decompositions units are thought as components, web services and

processes which are at more business abstraction level.

Experiences show that, design and modeling of target systems basically aims to

avoid the complexity of real life problems in a way of procedural or structural

decomposition of the system. The design technique that is introduced in this thesis is

also based on the functional decomposition of the system through process models.

1.2 Component and Service Oriented Software
Development and Methodologies

After the introduction of modular design and development notions, reusability has

gained further importance. Software developers noticed that although most of

common sub problems in some specific domains have been resolved, same code

portions have been rewritten by different people every time they were needed. In fact

benefits of reuse (such as in quality, reliability, cost, time and productivity) and other

savings that can be attained by using existing software pieces were obvious [4].

The investigated notion was “building by integration” rather than coding in theory.

But it is certain that the reuse paradigm has experienced a breakthrough with

practical component technologies such as Sun Microsystems’ JavaBeans and

Microsoft DCOM’s ActiveX. Such technologies have been leveraged in the

development of methodologies and engineering approaches [16]. Following a

component oriented philosophy it is assumed that components of a mature domain

are available before a top-down structural decomposition of system will be

conducted. A Component Oriented Software Engineering (COSE) process model has

been proposed by A.H. Dogru and M.M. Tanik in 2003. This philosophy is based on

using available components which are created by exploiting component-based

technologies and already exist in the domain. The fundamental principle of the

process was modeling with integration of components instead of development of new

 3

components [3]. The general process model for component oriented development is

depicted in Figure 1.

 4

Figure 1 – A General Process Model for Component Oriented Development (Adapted

from [3])

 5

COSE process model basically considered a structural decomposition of a given

software system for arriving at existing components for a specific domain. The main

purpose of this modeling activity was to reach a component oriented software model

through an abstract design. The system is tried to recursively partition in levels of

abstractions by setting logical boundaries and separate modules are extracted on the

basis of “how-to” question. These abstract modules which can be thought as sub

packages of the solution are decomposed into components on the basis of “by which

components” question. Components which are regarded as building blocks of the

system construction can contain other components in decomposition tree [3].

The Component Oriented Software Engineering (COSE) philosophy is still maturing.

It is possible to assert that COSE also supports Service Oriented Architecture (SOA).

SOA based software development can be supported through utilizing a modification

of the COSE approach. As mentioned before, from a technological perspective,

components can be compatible to EJB, CORBA, ActiveX or any other protocol. In

SOA, however, the first class entities are web services. Many similarities exist

between component technologies and web services; however basic difference is in

accomplishing the integration and composition [16]. Although service oriented

architecture has reached a particular maturity level especially in the technological

dimension, there is a lack of common and acceptable approach to design through

composition and integration of services. COSE introduces a structural decomposition

process, in which COSE Modeling Language (COSEML) is used to represent

structurally decomposed items and their connections [3].

Another approach based on process integration through hierarchical decomposition

has been introduced by A. Manzer and A.H. Dogru in 2007, also adapting the COSE

philosophy and addressing the business process models for the formation of value

added chains [5].

In this thesis, a similar approach is adapted to the SOA that considers processes and

web services at different levels of the process decomposition as depicted in Figure 2.

 6

The whole system can be modeled as a complex and single process which can be

decomposed into smaller abstract processes. These abstract processes modeled as

more visual logical entities in decomposition tree decomposed into existing web

services at the leaf level. Processes that are closed to leaf level are supposed to be

more real and concrete processes which cover more detailed information about the

sequence and ordering of the system execution. In these processes possible web

service calls are also included to realize a particular business.

Figure 2 – Hierarchical Decomposition (Adapted from [5])

 7

The research in this thesis enhances the ideas of A. Manzer and A.H. Dogru towards

SOA based constructs and tries to present a modeling approach for SOA based

software systems as summarized above.

1.3 Organization of the Thesis

This thesis work includes 6 chapters. In Chapter 2, necessary background on service

oriented architecture and web services, business process management and process

models and basics of the COSE philosophy (that is accepted as the motivation and

source of SOSE philosophy) are included. In Chapter 3, proposed system modeling

approach through process decomposition is defined with the description and

representation of SOSE modeling language. Chapter 4 basically introduces the

developed graphical modeling tool (referred to as SOSECASE) to support SOSE

modeling language. Chapter 5 includes an extensive case study to represent an

example SOSE model. Starting from the given specifications of a SOA based

software system, all steps of a possible modeling activity are depicted in this case

study. Finally Chapter 6 concludes the thesis work and states future work.

 8

CHAPTER 2

2. BACKGROUND

2.1 Web Services

A web service can be defined as an interface that describes a collection of operations

which are network accessible through standardized XML messaging. Each web

service is designed to perform a specific task or a set of tasks. These tasks are

described using formal notations, called service description [6].

Web services are one of the latest distributed technologies for realization of service

oriented architecture. They are commonly used for interoperability and integration of

different applications and information systems. Web services are built on XML and

provide the necessary foundation between applications using different software

platforms, operating systems and programming languages. While XML is the de

facto standard for data level integration, web services are becoming the de facto

standard for service level integration between and within enterprises.

From the technological perspective, web services are a distributed architecture. The

distributed computing paradigm started with DCE (Distributed Computing

Environment), RPC (Remote Procedure Call), and messaging systems, also called

message-oriented middleware (products such as MQ Series, MSMQ, etc.). Then

distributed objects and ORBs (Object Request Brokers), such as CORBA (Common

Object Request Broker Architecture), DCOM (Distributed Component Object

Model), and RMI (Remote Method Invocation), emerged. Based on them component

models, such as EJB (Enterprise Java Beans), COM+ (Component Object Model),

.NET Enterprise Services, and CCM (CORBA Component Model) have been

developed. RPC, ORBs, and component models share similar communication model,

 9

which is based on synchronous operation invocation. Messaging systems are based

on the asynchronous communication model [7].

Although web services are similar to some of their predecessors, this technology

differs from them in several aspects. First of all web services are supported by all

major software vendors. Therefore they are the first technology that fulfills the

promise of universal interoperability between applications running on different

platforms. Web services are based on some fundamental specifications such as

SOAP (Simple Object Access Protocol), WSDL (Web Services Description

Language), and UDDI (Universal Description, Discovery, and Integration). SOAP,

WSDL, and UDDI are XML based, making web services protocol messages and

descriptions human readable.

From the architectural perspective, web services introduce several important changes

compared to earlier distributed architectures [7]:

• Web services support loose coupling through operations that exchange data

only. This differs from component and distributed object models, where

behavior can also be exchanged.

• Operations in web services are based on the exchange of XML formatted

payloads. They are a collection of input, output, and fault messages. The

combination of messages defines the type of operation (one-way,

request/response, solicit response, or notification). This differs from previous

distributed technologies.

• Web services provide support for asynchronous as well as synchronous

interactions.

• Web services are stateless. They do not follow the object paradigm.

 10

• Web services utilize standard Internet protocols such as HTTP (Hyper Text

Transfer Protocol), SMTP (Simple Mail Transfer Protocol), FTP (File

Transfer Protocol), and MIME (Multipurpose Internet Mail Extensions). So,

connectivity through standard internet connections, even those secured with

firewalls is less problematic.

Web services introduces some additional specifications to offer an infrastructure for

quality of service (QoS) features, such as security, transactions, and others which

have been provided by different component models for several years. Table 1

involves the most important specifications offered by web services technologies [7].

Table 1 – Introduced Specifications by Web Services

Specification Description

WS-Security
Addresses authentication and message-level
security, and enables secure communication
with web services.

WS-Coordination
Defines a coordination framework for web
services and is the foundation for WS-Atomic
Transaction and WS-Business Activity.

WS-Atomic Transaction and
WS-Business Activity

Specify support for distributed transactions with
web services. Atomic Transaction specifies short
duration, ACID transactions, and Business
Activity specifies longer running business
transactions, also called compensating
transactions.

WS-Reliable Messaging
Provides support for reliable communication and
message delivery between web services over
various transport protocols.

WS-Addressing Specifies message coordination and routing.

WS-Inspection
Provides support for dynamic introspection of
web service descriptions.

WS-Policy
Specifies how policies are declared and
exchanged between collaborating web services.

 11

Specification Description

WS-Eventing
Defines an event model for asynchronous
notification of interested parties for web
services.

These specifications constitute the web services technology stack and are required (at

least partially) for serious use of web services in enterprise applications.

2.2 Service Oriented Architecture

Information systems need to support business changes quickly and efficiently and

adapt to the fast development of new technologies. The majority of enterprise

information systems are heterogeneous, containing a range of different systems,

applications, technologies and architectures. Integration of these technologies is

crucial.

Enterprises encounter business problems related to changing requirements, fast

technology development and integration. To manage these problems several methods

have been proposed and used over time. Service oriented architecture (SOA) is the

latest architectural approach related to the integration, development and maintenance

of complex enterprise information systems

It is not true to say that SOA is a completely new architecture. SOA can be accepted

as the evolution of well known distributed architectures and integration approaches.

Integration between applications has evolved from early days to well-defined

integration methods and principles. These methods and principles are often referred

to as EAI (Enterprise Application Integration). The initial interest area was

integration of applications within enterprises. Later on, with the increasing need for

integration between companies, the focus of EAI has been extended to inter-EAI.

 12

SOA defines the concepts, architecture and process framework, to enable cost-

efficient development, integration and maintenance of information systems through

reduction of complexity and stimulation of integration and reuse. Let us look at the

definition of SOA, as provided in a paper by Bernhard Borges, Kerrie Holley, and

Ali Arsanjani:

SOA is the architectural style that supports loosely coupled services to enable

business flexibility in an interoperable, technology-agnostic manner. SOA consists of

a composite set of business-aligned services that support a flexible and dynamically

re-configurable end-to-end business processes realization using interface-based

service descriptions [8].

2.2.1 SOA Concepts

Although SOA is most often implemented with web services, it is not directly related

to any technology and more than just a set of technologies. Using web services is not

adequate to build SOA. On the other hand it is obvious that web services are the most

appropriate technology for SOA realization.

Table 2 involves the most important SOA concepts [7].

Table 2 – The Most Important SOA Concepts

Concept Description

Services
Services provide business functionalities. Each
service provides a business value and hides
implementation details.

Self-describing interfaces

Service consumers access the service through its
interface that defines a set of public operation
signatures. Interfaces are the contacts between the
service provider and service consumer.

Exchange of messages
Operations are defined as a set of messages.
Messages specify the data to be exchanged and
describe it in a platform and language independent

 13

Concept Description
way using schemas.

Support for synchronous and asynchronous
communication

Service consumers access the service through the
service bus. Service consumers can use synchronous
or asynchronous communication modes to invoke
operations of service. In synchronous mode, a
service operation returns a response to the service
consumer after the processing is complete. The
service consumer has to wait for the completion. In
asynchronous mode a service operation does not
return a response to the consumer, although it may
return an acknowledgement so that the consumer
knows that the operation has been invoked
successfully.

Loose coupling

Loosely coupled services are services that expose
only the necessary dependencies and reduce all
kinds of artificial dependencies. This is particularly
important when services are subject to frequent
changes.

Service registries

To simplify and automate searching for the
appropriate service, services are maintained in
service registries, which act as directory listings.
Service providers publish services in registries;
service consumers look up the services in the
registries. Lookup can be done by name, service
functionality, or business process properties. UDDI
is an example of a service registry.

Quality of service

Services usually have associated quality-of-service
attributes. Such attributes include security, reliable
messaging, transaction, correlation, management,
policy, and other requirements. The infrastructure
must provide support for these attributes.

Composition of services into business
processes

Services are composed in a particular order and
follow a set of rules to provide support for business
processes. Composition of services allows providing
support for business processes in a flexible and
relatively easy way. It also enables to modify
business processes quickly and therefore provide
support to changed requirements faster and with less
effort.

 14

Figure 3 depicts the architectural view of SOA and positions the concepts defined in

Table 2.

Figure 3 – Architectural View of SOA and Positions of Concepts

2.2.2 SOA and Web Services

As an architectural pattern [9], Service Oriented Architecture sketches a fundamental

structural organization schema constituting services, their descriptions and operations

on them such as selection, discovery and binding. Providers, consumers and brokers

are the basic involved roles [10]. SOA decomposes an application or system into

business centric and loosely coupled independent service components, which offer

transactional functionally to other parts of the system. It offers a flexible

infrastructure in which services are playing a fundamental role for dynamically

adopting changing business expectations [11].

Furthermore, SOA provides service registries for advertising services, service

repositories for storing metadata, service definition languages for defining service

 15

contracts and service platforms for facilitating design and runtime support for service

creation, deployment, and execution. In SOA, the business processes assume a

major role aiming at developing, composing, orchestrating and managing services in

the context of business services to satisfy business goals [12].

Using SOA in web based applications created a new wave for universal

interoperability. W3C has defined Web service as a software system designed to

support interoperable machine-to-machine interaction over a network [13].

Orchestration of web services supports the coordination of different inter-agency

processes [18]. Web services can be described by using Web Service Description

Language (WSDL), advertised, discovered, composed and interacted via Simple

Access Object Protocol (SOAP). Furthermore, discovery of web services can be

realized by the Universal Description, Discovery and Integration (UDDI) facility.

Regarding the composition rules and the sequence of service activations, web

services and composite services form a new composite service. Orchestration and

choreography are two tightly-coupled concepts diverged in the point of using a

central mechanism to activate web services. An orchestration is responsible for

combining and controlling the sequence of web services, whereas collaboration of

each service is defined by choreography in order to achieve a specified target. Figure

4 depicts the view of current orchestration, choreography and web service relations.

 16

Figure 4 – Choreography, Orchestration and Web Services

Orchestrated and choreographed services act as a web service and can take part in

external orchestrations and choreographies, respectively.

2.3 Business Process Management

Bringing processes, people and information together is the key idea of Business

Process Management (BPM). Business processes comprise static definitions and

dynamic parts that are sequence of activities and rules. A workflow enacts the

dynamic infrastructure of the process. Languages and representations such as

Business Process Modeling Language (BPML), Business Process Execution

Language for Web Services (BPEL4WS or BPEL) and Business Process Modeling

 17

Notation (BPMN) exist, representing different perspectives that are functional,

behavioral, organizational and informational. Functional perspective deals with the

question “what” including the process elements and flows of information entities,

whereas behavioral perspective answers the questions “when” and “how” by

representing the sequence of actions. Organizational perspective specifies “where”

and “by whom” and informational perspective represents produced and modified

entities [14].

Business process management and service oriented architecture depict the business

and IT parts respectively. In order to achieve primary, supporting and organizational

business processes effectively [15], SOA proposes a framework from IT perspective

where processes assume a conceptual role and services realize the logical

infrastructure.

2.3.1 Importance of Business Processes

Enterprise applications and information systems are crucial for companies to perform

their business operations. Enterprise information systems can improve the efficiency

of businesses by automating the business processes. The objective of almost every

company is that the applications it uses should provide comprehensive support for

business processes. This means that applications should align with business

processes closely.

Although this requirement does not sound very difficult to fulfill, the real world

situation shows a different picture. In general, business processes are dynamic

structures. Companies have to adapt their business processes to customers. So these

processes have to be improved, optimized and modified methodically. This can be

done only in an agile manner. Every change and improvement in a business process

has to be reflected in the applications that provide support for them. Only companies

where applications can be quickly and efficiently adapted to the changing business

needs can stay competitive on the global market.

 18

It is obvious that changing and modifying applications is a difficult job and requires

time. This means that information systems cannot react instantly to changes in

business processes. They require some time to implement, test, and deploy the

modifications. This time is sometimes referred to as the information systems gap

time [7]. Information systems gap time should be as short as possible. At this point

automation of business processes has importance and for efficient automation of

business processes through IT, there are some necessities.

Providing a standardized way to expose and access the functionality of applications

as services is one of the most important issues. The latest distributed architecture,

which combines both synchronous and asynchronous communications, is Web

Services. Web services are the most suitable distributed architecture for exposing the

functionality of applications as services.

Providing integration architecture between the various services and existing and

newly developed applications used in business processes is the second issue.

Integration between applications is a well known topic. This integration is needed

because enterprise information systems usually consist of several different

applications, which address certain (sometimes isolated) functions and tasks and not

whole business processes. Achieving efficient integration is related to the definition

and realization of sound integration architectures, which are often very complex,

particularly in large companies. Best methods and practices for building integration

architectures are today known as Service Oriented Architectures (SOA) [7].

Finally providing a specialized language for composition of exposed functionalities

of applications into business processes is also needed. The most popular, commonly

accepted, and specialized language for business process definition is Business

Process Execution Language (BPEL). BPEL promises to achieve the holy grail of

enterprise information systems to provide an environment where business processes

can be developed in an easy and efficient manner and quickly adapted to the

changing needs of enterprises without too much effort [7].

 19

2.3.2 Business Process Execution Language (BPEL)

As mentioned in the previous section, one of the main goals of business process

automation solutions is to provide a standard and specialized language for composing

services into business processes. Business Process Execution Language (BPEL) is

such a language and is quickly becoming the dominant standard. The main aim of

BPEL is to standardize the process of automation between web services.

Within enterprises, BPEL is used to standardize application integration and between

enterprises, BPEL enables easier and more effective integration with business

partners. Definitions of business processes described in BPEL do not affect existing

systems. BPEL is the key technology in environments where functionalities already

are or will be exposed via web services. With increases in the use of web service

technology, the importance of BPEL will rise further.

IBM, BEA, and Microsoft developed the first version of BPEL in August 2002.

Since then SAP and Siebel have joined, which has resulted in several modifications

and improvements and adoption of version 1.1 in March 2003. In April 2003, BPEL

was submitted to Organization for the Advancement of Structured Information

Standards (OASIS) for standardization purposes, where the Web Services Business

Process Execution Language Technical Committee (WSBPEL TC) has been formed.

Many vendors have joined the WSBPEL TC. This has led to even broader

acceptance in industry [7].

2.3.2.1 Features of BPEL

Simple and complex business processes can be modeled and developed with BPEL.

In fact BPEL is similar to conventional programming languages and focused on the

definition of business processes. Business processes can be defined in an algorithmic

way by using offered constructs such as loops, conditions, variables, assignments,

etc. BPEL is less complex than traditional programming languages and simplifies

learning.

 20

The most important BPEL constructs (activities) are related to the activation of web

services. Synchronous and asynchronous invoke operations can be done easily.

Operations can be invoked either in sequence or in parallel. Callbacks can be waited

from web services as results of invoke operations. BPEL provides support for long

running process and compensation. Compensation allows undoing partial works that

has not finished successfully.

Listed below are the most important features that BPEL provides [7].

• Describe the logic of business processes through composition of services.

• Compose larger business processes out of smaller processes and services.

• Handle synchronous and asynchronous (often long running) operation

invocations on services, and manage callbacks that occur at later times.

• Invoke service operations in sequence or parallel.

• Selectively compensate completed activities in case of failures.

• Maintain multiple long running transactional activities, which are also

interruptible.

• Resume interrupted or failed activities to minimize work to be redone.

• Route incoming messages to the appropriate processes and activities.

• Correlate requests within and across business processes.

• Schedule activities based on the execution time and define their order of

execution.

 21

• Execute activities in parallel and define how parallel flows merge based on

synchronization conditions.

• Structure business processes into several scopes.

• Handle message related and time related events.

2.3.2.2 BPEL and Other Languages

BPEL is not the only language for business process modeling. Recently several

languages have been proposed, including: [7]

• XLANG and the new version XLANG/s from Microsoft.

• BPML (Business Process Modeling Language) from BPMI.org, the Business

Process Management Initiative.

• WSFL (Web Services Flow Language) from IBM.

• WSCL (Web Services Conversation Language) from HP, submitted to W3C.

• BPSS (Business Process Specification Schema), part of the ebXML

framework.

• WSCI (Web Services Choreography Interface), co-developed by Sun, SAP,

BEA, and Intalio and submitted to W3C.

• WS-CDL (Web Services Choreography Description Language), at the time of

writing a W3C Working Draft.

Figure 5 shows a timeline of the mentioned languages, as they have been developed.

 22

Figure 5 – Timeline of Business Process Modeling Languages

2.3.2.3 Developing Business Processes with BPEL

BPEL uses an XML based vocabulary that allows designers to specify and describe

business processes. Business processes defined with BPEL can be also executed by a

BPEL engines. These kinds of processes are referred to as executable processes.

Executable business processes are processes that compose a set of existing services.

When a business process is described in BPEL, a new web service is actually defined

that is a composition of existing services. The interface of the new BPEL composite

web service uses a set of port types, through which it provides operations like any

other web service. To invoke a business process described in BPEL, the resulting

composite web service must be invoked.

In a typical scenario, the BPEL business process receives a request. To fulfill it, the

process then invokes the involved web services and finally responds to the original

caller. Because the BPEL process communicates with other web services, it relies

heavily on the WSDL description of the web services invoked by the composite web

service.

 23

CHAPTER 3

3. SYSTEM DESIGN THROUGH PROCESS
DECOMPOSITION

3.1 Basics of SOSEML Philosophy

Service Oriented Software Engineering Modeling Language (SOSEML) purposes to

provide a common and acceptable system design approach for SOA based software

development. SOSEML is a graphical modeling language which supports a top down

approach in the engineering of complex business processes. The “divide and

conquer” paradigm is not a new idea to solve complex systems. Both SOSEML and

its ancestor COSEML are based on this idea [16].

When a software system description is given, the proposed methodology aims at

accepting the whole system as a large and complex business process which realizes

the target business goal. From design perspective, it is obvious that modeling a huge

process with all of its details is hard. So, the first step of the modeling activity is

decomposing this complex process (namely the whole system) into high level sub

processes. These high level processes may also be decomposed into different sub

processes too and a decomposition tree is constructed by this way. Processes are

decomposed iteratively until atomic processes are reached. An atomic process is a

process that does not include any sub process. In SOSEML, these are accepted as

existing web services residing at the leaf level of the decomposition tree.

In SOSEML, highest level processes are the most abstract part of the decomposition;

intermediate processes represent the processes which are required by parent

processes and finally, leaf level processes are the web services. Parent process

includes the children processes and coordinates the relationships among the children

that are connected utilizing material flow, resource allocation, and synchronization

 24

kinds of connections. Processes can also store the variables and other execution

parameters (such as some return values from service calls, and parameters to be sent

to other service calls). State management can be maintained at least by managing

local data structures. Processes basically give the ordering information for service

activation. The orchestration of the children processes can be represented using

Business Process Execution Language (BPEL). By using this language, the ordering

of web service activations and saving the intermediate states are achieved. A process

itself can be deployed as a web service; it can serve other processes. A web service

can publish various methods in its interface where some of those methods can be

used in different processes. Therefore, in SOSEML, a web service can have more

than one web service interface too. Web service interfaces specify the methods that

can be called, input and output values may occur in conversations and ordering of

method calls [17].

For all methodologies, the offered models represent the three dimensions of software

systems namely data, function and structure (and sometimes the fourth: control).

Traditional approaches have disjoint graphical models for different cross sections of

the system based on data, function, and structure. In object oriented approaches, the

mentioned dimensions are represented in combination [3].

In traditional methodologies, the units subject to decomposition were functions or

modules. So, a “functional” decomposition of the system was essential. With object

oriented principles the decomposition units changed to abstract classes which bundle

the state variables and operations into entities called objects. In object oriented

methodologies software systems were decomposed with respect to “data”. After the

introduction of modular design and development notions, component based

methodologies used a “structure” oriented decomposition approach. A service

oriented methodology has to be again “procedural” (functional) more than any other

aspect.

 25

Figure 6 – Modeling Emphasis for Different Approaches (Adapted from [3])

Figure 6 depicts the modeling emphasis on different dimensions, for different

approaches. As a service oriented modeling language, for SOSEML, the modeling

emphasis is in the functional (procedural) dimension. In a SOSEML decomposition

tree, the components of the model correspond to abstract processes which can be

defined only in a procedural way. On the other hand in COSEML, the decomposition

was fully structural. The system is decomposed into packages that can be thought of

as building blocks. Each block can contain further sub blocks. This structural

decomposition continues until all sub blocks are decomposed into components. From

this perspective, SOSEML is in a different dimension than its ancestor naturally.

 26

3.2 Modeling with SOSEML

Modeling a service oriented architecture based software system with SOSEML

consists of basically two main steps:

• Constructing a hierarchical decomposition tree

• Creating process models for each process in decomposition tree

In the first step, the whole software system is accepted as a single and large business

process. First level sub processes are determined and the whole system is

decomposed into smaller sub processes. This hierarchical decomposition is done

iteratively for each sub process and eventually web services are determined at the

leaf level of the tree.

When the first step of the modeling activity is completed, the general structure of the

model is produced. Main processes and sub processes which are parts of larger

parent processes are determined and defined. In the second step of the modeling

activity, to obtain a complete and detailed model, all processes in decomposition tree

are modeled with a business process definition language. Leaf level processes use the

existing web services and interactions between these services and the process are

defined in the business flows. Intermediate and top level processes use other sub

processes in decomposition tree. So, business flows for these kinds of processes

include the relations between the sub processes and the main process. For all

processes in decomposition tree, BPEL is used to create complete business process

models.

Following sub sections of this chapter describe the concepts of SOSEML and steps

of modeling activity with SOSEML in detail.

 27

3.2.1 SOSEML Notation

SOSEML is a completely graphical modeling language. In the first step of modeling

activity four basic graphical modeling elements are used in SOSEML to construct a

hierarchical decomposition tree.

Graphical modeling elements in SOSEML are depicted in Figure 7.

Figure 7 – Graphical Modeling Elements in SOSEML

 28

Process, Web Service, Interface and Link symbols (respectively drawn in Figure 7)

are the basic graphical modeling elements in SOSEML.

A process is represented by a yellow package symbol with a small process icon on

the left upper corner. Processes are the main building blocks in a decomposition tree.

The whole system and all sub processes are shown by process symbols in the model.

Web services are represented by orange boxes. The small icon on the right corner of

the box implies that a web service is a remote component. A web service can publish

various methods or operations in its interface where some of those methods can be

used in different processes. Therefore, in SOSEML, a web service can have more

than one web service interface. Names of all interfaces belong to the web service are

also shown in the box symbol.

Web service interfaces are also shown in SOSE models and represented by orange

boxes similar to web service symbols. An interface symbol contains the names of the

operations which can be called by the requesters through this interface.

Processes, web services and web service interfaces are the building blocks in a SOSE

model. On the other hand, links form a skeleton, connecting the set of blocks for

producing the target system. Links are represented by standard black lines in the

model and are used to connect other graphical elements. A link symbol can be used

between a process and another process or between a process and a web service.

Interfaces belong to a web service are also connected to service by using link

symbols.

As mentioned in the previous section, after building a decomposition tree by using

the graphical elements described above, the second step of the modeling activity is

creating process models for each process. To fulfill it, BPEL is used as a process

modeling language.

 29

Although BPEL is completely an XML based language, some graphical editors can

be used to create a complete BPEL process model with correct syntax. In SOSEML,

all process models are also created and designed graphically using the exact BPEL

syntax.

Table 3 involves the basic graphical elements which are used to design BPEL

process models in SOSEML.

Table 3 – BPEL Symbols Used in SOSEML

Name Symbol Description

Invoke
The <invoke> activity is used to invoke the web service
operations provided by partners.

Receive
A <receive> activity is used to receive requests in a BPEL
business process to provide services to its partners.

Reply
A <reply> activity is used to send a response to a request
previously accepted through a <receive> activity.

Assign

The <assign> activity is used to copy data from one
variable to another and construct and insert new data using
expressions and literal values.

Empty
An activity that does nothing is defined by the <empty>
tag.

If The <if> activity expresses a conditional behavior.

Pick

The <pick> activity is used to wait for the occurrence of
one of a set of events and then perform an activity
associated with the event.

While

A <while> activity is used to define an iterative activity.
The iterative activity is performed until the specified
Boolean condition no longer holds true.

For Each
A <For Each> activity is also used to define iterative
activities over a counter value for a group of items.

 30

Name Symbol Description

Repeat Until
A <Repeat Until> activity is also used to define an iterative
activity similar to <while> activity.

Wait
A <wait> activity is used to specify a delay for a certain
period of time or until a certain deadline is reached.

Sequence
A <sequence> activity is used to define activities that need
to be performed in a sequential order.

Scope

A <scope> defines behavior contexts for activities. They
provide fault handlers, event handlers, compensation
handlers, data variables, and correlation sets for activities.

Flow
The <flow> activity provides concurrent execution of
enclosed activities and their synchronization.

Exit
The <exit> activity is used to immediately terminate a
business process instance.

Throw
The <throw> activity is used to explicitly signal internal
faults.

Compensate
The <compensate> activity selectively compensates
activities in case of failures.

3.2.2 Constructing a Decomposition Tree

SOSE modeling activity starts with the top down decomposition of the system. At

the beginning, the whole system is accepted as a complex business process that

receives an input message, starts to operate and finally produces its result as an

output message. In other words, SOSEML tree starts with the system at the root node

[16]. It is obvious that to model a complex business process corresponding to a large

software system with all of its inner details is difficult. SOSE methodology basically

proposes to decompose the main system process into high level sub processes. Sub

processes can also be recursively partitioned by extracting possible sub processes

which compose the larger parent process. As the activity continues towards, more

manageable and obvious process definitions are produced. At an arrival level, where

the process is expected to correspond to a simple composition of existing web

 31

services, the decomposition activity can be stopped. Finally these web services are

also connected to the leaf level process to indicate the uses relationship. If desired,

different service interfaces can also be shown at the bottom of the decomposition

tree.

General structure of a decomposition tree in SOSEML notation is depicted in Figure

8.

 32

Figure 8 – General Structure of a Decomposition Tree in SOSEML Notation

System_Process is decomposed into tree sub processes: Sub_Process_1,

Sub_Process_2 and Sub_Process_3. These three sub processes operate together

either in sequence or in parallel to produce a result for their parent process. In other

words, System_Process consists of three different sub processes to realize its

 33

business goal. Sub_Process_1 is also decomposed into two different processes:

Sub_Process_4 and Sub_Process_5. These two processes are the leaf level processes

in decomposition tree and they do not include any more sub processes.

Sub_Process_5 uses two web services: Web Service1 and Web Service2 to achieve

its business. Web Service1 has two different interfaces used by Sub_Process_5 for

different aims: Interface1 and Interface2. Interface1 includes only one operation and

Interface2 includes two different operations. Probably all of these operations are

called by the Sub_Process_5 during the inner business flow.

Leaf level processes of decomposition tree only use existing web services. In the

process models of these kinds of processes, web service interactions, data flow

mechanisms and variable assignments are defined in an algorithmic way by using

BPEL notations. At this level, the key point of the process models is orchestration of

web services.

On the other hand, the root process (namely the whole system process) and other

intermediate processes are consists of sub processes defined in decomposition tree.

In general case, process models for these high level processes do not directly contain

web service interactions. At these higher levels, process models basically aims to

expose the choreography of sub processes. However, in SOSEML, when a sub

process is completely modeled with BPEL, a new web service (a composite web

service) is created. So, a process itself can be deployed as a web service; it can serve

other processes. From this perspective, for each level of decomposition tree, all

processes can be modeled as BPEL processes.

The following section describes the details of process modeling phase of SOSE

modeling approach.

 34

3.2.3 Modeling Processes in Decomposition Tree

The second step of modeling activity is designing business process models for each

process in decomposition tree. Business process models are used to define the initial

details of the business flow in an algorithmic way. Ordering information for service

and sub process activations, synchronous and asynchronous service calls, required

variable and message definitions, exception handling mechanisms and all other

issues to manage the business flow are defined in detail.

3.2.3.1 Process Modeling Basics

In SOSE methodology, XML based standard BPEL specifications are used to model

business processes. Each BPEL process receives a request (generally in a message

format) to start to operate, then invokes the involved web services and finally

responds to the caller.

In a BPEL process model, operations of a web service can be invoked either

synchronously or asynchronously. For synchronous service operations, sender sends

a request message and waits for the reply. On the other hand, for asynchronous

operations, the sender is not blocked after the request. Result of the operation is sent

back to the caller by usually performing callbacks. Since each modeled business

process is exposed as a new web service, In SOSE methodology, a BPEL process

itself can be synchronous or asynchronous. After decomposing the system into sub

processes, the type of the BPEL processes chosen for modeling these processes is

crucial. Long running processes in decomposition tree should be modeled as

asynchronous BPEL processes. However, there may be processes that execute in a

relatively short time. Besides, in some cases, modeler may want the client (caller) to

wait for completion of a service call or sub process. Such processes are modeled as

synchronous.

As mentioned in the previous sections, decomposition of the software system is done

in a top down manner and all sub processes composing the whole system is exposed

 35

in several abstraction levels. After constructing a decomposition tree, it is also

crucial to decide which process to start from to model the processes in the tree. At

this point SOSE methodology offers to start from leaf level processes and continue

towards the high level processes and finally model the root process.

Leaf level processes interact with only existing web services and they do not contain

any more sub processes. All operations, input parameters and return values for these

web services are defined in the service WSDL files. So, modeling these leaf level

and relatively simple processes at first is a good starting point.

On the other hand, intermediate and high level processes in decomposition tree

comprise other sub processes. Sub processes are used as newly created web services

by parent processes. So, before starting to model a parent process, its child processes

should be modeled. Interactions between different sub processes and parent process

can be achieved only by this way during modeling activity.

Top down decomposition and bottom up process modeling approaches are depicted

in Figure 9.

Figure 9 – Decomposition and Modeling Approaches

 36

3.2.3.2 Using BPEL for Process Modeling

Each BPEL process model consists of steps referred to as activities. Basic activities

are used to model common tasks in a process model, such as listed below [7]:

• <invoke> activity is used to invoke web service operations.

• <receive> activity is used to receive an input message from the client to

initialize the process.

• <reply> activity generates a response to a client for synchronous operations.

• <assign> is used for data variable manipulation.

• <throw> activity is used to indicate faults and exceptions.

• <wait> activity is used to wait for some time.

• <terminate> activity terminates the entire process.

Basic activities can be combined to define complex algorithms that describe the

business flow step by step. To combine basic activities some structured activities are

also supported by BPEL [7]. The most important are:

• <sequence> activity is used to define a set of activities to be executed in an

ordered sequence.

• <flow> activity is used to define a set of activities to be executed in parallel.

• <if> and <switch> activities are used for conditional branching.

• <while>, <foreach> and <repeatuntil> activities are used for defining loops.

 37

• <pick> is used to select one of a number of possible paths.

Apart from the activities listed above, each BPEL process defines partner links by

using <partnerLink> and declares some variables by using <variables>. Partner links

are used to specify relations between several web services in the business process.

Variables are used to store messages exchanged between partners or to hold data that

relates to the state of the process.

To provide an idea how a BPEL process is declared using XML syntax, a simple

asynchronous process definition example is given below. The sample process is

named as LibrarySeacrhProcess and simply uses a single web service for searching a

book in a library.

BPEL process definitions consist of tree main parts: partner link definitions, variable

definitions and sequence of the business flow. Figure 10 depicts the definition of

partner links for LibrarySearchProcess.

Figure 10 – Partner Link Definitions for LibrarySearchProcess

Partner links can be thought as concrete references to services that a BPEL process

interacts with. Partner links to the BPEL process client (called client) and library

 38

search web service are defined using <partnerLink> tag nested within the

<partnerLinks> element as shown above. For each partner link myRole attribute

indicates the role of the BPEL process and partnerRole attribute indicates the role of

the partner. For asynchronous interactions both roles have to be defined. Since

library search web service is used for a synchronous method call, only the

partnerRole attribute is defined. Partner link types declare how two parties interact

and what each party offers. Partner link type definitions are declared in the WSDL

files of BPEL processes.

Figure 11 depicts the definitions of variables used in LibrarySearchProcess.

Figure 11 – Variable Definitions Used in LibrarySearchProcess

inputVariable is defined as a reference to the message passed as input during the

initiation of the process. Similarly outputVariable is the reference to the message that

will be sent back to the requester (client) during callback. request and response

variables are the references to the messages that will be exchanged between the

BPEL process and the library search web service. Message types are also declared in

WSDL files of BPEL processes and the related web services.

Figure 12 depicts the definition of the main flow of LibrarySearchProcess.

 39

Figure 12 – Definition of the Flow of LibrarySearchProcess

Between <sequence> tags, the main body where the actual flow of business process

is defined presents. LibrarySearchProcess is initiated with a request message.

Receive activity at the beginning of the flow is used to receive this message with an

input variable. Then an assign activity is used to copy the contents of input variable

to the request variable that will be sent to the library search web service. Invoke

activity is used to invoke the KeywordSearchRequest operation of the web service.

 40

The return value in response variable is copied to output variable using another

assign activity. Finally another invoke activity is used to produce a result to the

client.

A graphical representation of this flow is also depicted in Figure 13.

Figure 13 – Graphical Representation of LibrarySearchProcess Flow

For this simple business flow, only basic BPEL activities are included such as

<receive>, <invoke> and <assign>. But most real-world processes are much more

complex and more complicated algorithms should be designed to describe the

business. In these cases, designers need to use other BPEL activities too. For detailed

 41

information about the XML syntaxes of other BPEL activities, WS-BPEL 2.0

specification can be seen.

Each modeled BPEL process is also a new web service that can serve other

processes. So, BPEL processes also need WSDL documents too. As mentioned, A

BPEL process is usually started by a client that invokes an operation. Within the

BPEL process files, the interface for this operation is specified. All message types,

operations and port types the process offers to other partners are also defined.

 42

CHAPTER 4

4. SOSE MODELING TOOL

4.1 Implementation of SOSECASE

SOSECASE is a graphical modeling tool for SOA based system design and modeling

and it supports the SOSEML notation described in detail in the previous chapter. In

this thesis study, SOSECASE is coded in java and Eclipse SDK 3.2.0 is used as the

development environment. The tool provides easy-to-use and completely graphical

modeling interfaces to the users for constructing system decomposition trees and

creating exact BPEL process models.

New SOSE models can be created, edited and saved using SOSECASE. Most of the

graphical modeling concepts offered by different commercial tools such as UML

editors are included in the tool. Basic graphical modeling activities such as dragging

and dropping graphical elements, editing features such as cut, copy, paste, delete and

find operations are supported by SOSECASE.

SOSECASE uses the Eclipse’s BPEL Designer plug-in for modeling BPEL

processes graphically. This plug-in is completely an open source product and

externally integrated to the main tool by using Eclipse’s RCP (Rich Client Platform)

architecture. The BPEL editor used in SOSECASE produces pure BPEL 2.0 codes

(files with extensions .bpel and .wsdl which include the whole process model

description). BPEL process models designed in SOSECASE can be used in

anywhere else and by any other editor that supports BPEL 2.0 specifications.

 43

4.2 Features of SOSECASE

For each SOSE model, a system decomposition tree can be constructed and each

process in the tree can be modeled with BPEL by using SOSECASE graphical

modeling tool. Figure 14 depicts the general view of the main window of the tool.

Figure 14 – General View of SOSECASE Main Window

The main window basically consists of four regions; main menu, top tool bar,

SOSEML tool bar (on the left side) and main model panel. Main menu and top tool

bar includes the menu items and buttons for editing the model. SOSEML tool bar

 44

includes the graphical modeling elements that can be dragged over the model panel

and finally, model panel includes the whole decomposition tree that is being

modeled.

Following sub sections describe the usage of these regions.

4.2.1 Menu Operations

Figure 15 depicts the inner menu items of the main menu.

Figure 15 – Inner Menu Items of SOSECASE Main Menu

A new SOSE model can be created by choosing “New” menu item from File menu.

Existing models can be opened, saved, saved with a new name and printed by

choosing “Open”, “Save”, “Save As” and “Print” menu items respectively. When the

“Exit” menu item is chosen, the tool is closed.

From View menu, automatic layout mode or manual layout modes can be selected. In

automatic layout mode, after each operation (such as insertion or deletion of a node),

the balanced structure of the tree in model panel is always saved by adjusting the

 45

positions of the nodes automatically. In manual layout mode, the structure of the tree

and the positions of the nodes are adjusted by the user manually.

Edit menu includes the basic editing operations such as cut, copy, copy sub tree,

paste, delete and find. These operations are defined for the selected node (a process,

a web service or a web service interface) in model panel. Edit operations can also be

reached by right clicking the nodes. Figure 16 depicts the popup menu when a node

is right clicked on the model panel.

Figure 16 – Popup Menu for Nodes

When “Copy Subtree” menu item is chosen, the node is copied with all of its sub

nodes in the tree. When an intermediate node is deleted or cut, it’s all sub nodes are

also deleted or cut.

The top tool bar also contains tool bar buttons corresponding to some menu items in

the main menu for quick access.

 46

4.2.2 Model Panel Operations and SOSEML Tool Bar

In SOSECASE main window, model panel is the main region where the

decomposition tree is drawn with SOSEML notation. SOSEML tool bar includes the

graphical modeling elements that can be used in the model. Figure 17 depicts the

modeling elements of SOSECASE.

Figure 17 – SOSEML Tool Bar

In SOSECASE, graphical modeling elements are processes, web services and web

service interfaces. A SOSE tree can have only one root node and this node must be

always a process which represents the whole system. All graphical elements in

SOSEML tool bar can be added to the model by dragging over the model panel.

Properties of a model element can be displayed by double clicking on the graphical

symbol of the node on model panel. This can be also done by right clicking on the

symbol and choosing “Properties…” menu item.

Figure 18 depicts the properties window belong to a web service.

 47

Figure 18 – Properties Window for Web Services

The name of the web service can be updated and interfaces belong to this service can

be added to the interfaces list. When a new interface name added in properties

window, a new graphical interface element is created with the entered name and

connected to the service in model panel automatically. In an opposite manner, when

a new interface is connected to a web service graphically over the model panel, the

interface name is added to the interfaces list automatically.

Figure 19 depicts the properties window belong to a web service interface.

 48

Figure 19 – Properties Window for Web Service Interfaces

Web service interface name can be updated in properties window. Names of the

operations which can be called through this interface are listed in methods-in list.

SOSECASE does not force the modeler to create the detailed BPEL model for a

newly added process at that moment. Namely, at any moment, in decomposition tree,

a process might have been modeled with BPEL. Besides, there might be processes

whose BPEL processes have not been created yet too. These two kinds of processes

are shown differently in the model panel. Figure 20 depicts the graphical

representations of processes in decomposition tree.

 49

Figure 20 – Representation of Processes in Model Panel

The gray process icon on the left upper corner of the process symbol indicates that

the BPEL model for this process has not been created yet. When this small icon is

drawn as colored, it indicates that a BPEL process model has been created before.

When a process without BPEL model is double clicked on the model panel, the

properties window for the process is displayed as depicted in Figure 21.

Figure 21 – Properties Window for a Process without BPEL Model

The name of the process can be updated in properties window. To create a BPEL

process model, a BPEL process template is chosen and “Create Process Model…”

button is clicked to open the BPEL designer. There are three kinds of BPEL process

 50

templates: synchronous, asynchronous and empty. The meanings of these templates

are described in the following section.

When a process whose BPEL process model has been created before is double

clicked on the model panel, the properties window is displayed as depicted in Figure

22.

Figure 22 – Properties Window for a Process with BPEL Model

In this case, the name of the BPEL process file that has been created before is shown

in properties window. The name of the BPEL file is always as same as the name of

the process. Namely, when a process is renamed, the name of the file is also

renamed. The existing BPEL model can be viewed and updated in BPEL designer by

clicking “Open Process Model…” button.

4.3 BPEL Designer

SOSECASE uses an external BPEL designer to create and edit BPEL process models

for the processes in the constructed decomposition tree.

As mentioned before, a BPEL process template is chosen when a new BPEL process

model is created for a process. A BPEL process model can be created as

 51

synchronous, asynchronous or empty. Figure 23 depicts the structures of these

templates.

Figure 23 – BPEL Process Templates

When a BPEL process model is created with a synchronous template, <receive> and

<reply> activities are automatically included. The process is started with a

synchronous request message and the result of the process is returned with a reply.

For asynchronous templates, an <invoke> activity (callbackClient) is placed instead

of <reply>. The result of the process is notified by calling (invoking) a callback

method from the client. Empty templates do not include any activity initially.

Figure 24 depicts the general view of BPEL designer.

 52

Figure 24 – General View of BPEL Designer

Main window of BPEL designer consists of five functional regions; process model

panel in the middle, a palette for the activities on the left, process contents panel on

the right and activity properties page at the bottom of the window.

Activities which can be added to a BPEL process model are listed in the palette in

three groups. Actions are the basic BPEL activities such as <invoke>, <receive>,

<reply> and <assign> which represent the basic constructs and are used for common

tasks in business flow. Controls are the structured activities such as <if>, <while>,

<scope> and <flow>. These algorithmic activities are used to combine and manage

 53

other basic activities. Finally Faults are the activities used for fault and exception

handling such as <throw>, <compensate> and <exit>.

The panel on the right side of the window lists the existing partner link, variable and

correlation set definitions for the process. New variables or partner links can be

added to the process by clicking the green plus sign on the panel headers.

All activities in the business flow and all variable and partner link definitions are

selectable in BPEL designer. The properties of a selected model element are shown

in the activity properties page at the bottom of the window. This page is also used for

editing the properties of activities. For instance, in Figure 24, <while> activity is

selected in process model panel and the break condition for the while loop is written

in the properties page as an XPath 1.0 expression.

BPEL process model that is edited graphically is saved in an XML based file with

.bpel extension at local disk. All changes done in BPEL designer are directly

transferred to this file when the process model is saved. But it is not possible to edit

the file in XML format using BPEL designer. As mentioned in the previous chapter

each BPEL process also has a WSDL file that includes the variable, message, port

and partner link type definitions for the process. WSDL file can be opened and edited

in XML format using BPEL designer. Figure 25 depicts the view of BPEL designer

displaying the WSDL file content of a sample process.

 54

Figure 25 – Editing WSDL Files in BPEL Designer

 55

CHAPTER 5

5. A CASE STUDY: MODELING A MILITARY
DEPLOYMENT PLANNING SYSTEM

In the last chapter of the thesis report, a SOA based software system is modeled with

SOSEML to demonstrate the basics of the proposed modeling approach. The aim of

this case study is not to develop a completed and running software. It is intended to

analyze the system and create a detailed model with its all algorithmic details to

show the steps of the modeling activity in SOSE modeling technique. Web services

used in the study are not the existing services. They are just supposed to be existed in

the solution domain.

In the following sub sections, SOSE modeling activity is described through an

example software which is named as military deployment planning. First the

requirements of the software are described briefly, and then SOSE model for the

system is created step by step.

5.1 Description of the System Concepts

Military deployment planning is needed to produce military plans for the deployment

of a series of weapons and sensors. Deployment plans are used during the air defense

operations for some critical military regions such as harbors and strategically

important geographical zones.

Air defense activities for a geographical region are basically performed by a set of

sensors, weapons and an operation center. Sensors that may have different working

properties are used as radar units and placed at suitable locations in the region for

tracking the air. The track information belong to air vehicles obtained by different

sensors is sent to operation center. Track identification and classification evaluations

 56

are done by the operation center and suitable weapons positioned in the defense zone

are engaged to the enemy targets when needed.

Before the air defense activities start, a deployment plan should be prepared to be

ready for the operational work. A deployment plan basically includes the placement

information and task orders for the weapon and sensor units and the battlefield

geometries inside the defense region.

Placements of the units in the geographical terrain are crucial. Weapons should be

placed to the correct defense positions according to their operational working

properties such as target prevention and range capabilities. Sensors that may have

different radiation and coverage properties should be placed to the suitable locations

for the best tracking. Some geographical constraints should be also considered for the

placements of sensors. If possible, GIS (Geographical Information Systems) based

analyses may be used for determination of the correct placements such as visibility

and coverage analyses.

Unit task orders for the weapons and sensors should be also assigned before the

operational work. Primary target lines of the weapons and radiation segments for the

sensors are the needed task orders for air defense operations. Primary target line of a

weapon indicates the direction information that the weapon will be rotated to.

Namely, a weapon is responsible for the prevention of enemy attacks that may come

from its primary target line. On the other hand, sensor radiation segments indicate the

sector regions that the sensor is responsible to track. According to the working

properties of a sensor, it may track a full circle region (a 360 degree horizontal

coverage) or several separate sectors. Figure 26 depicts the graphical representations

of primary target line and radiation segments for a weapon and sensor respectively.

 57

Figure 26 – Primary Target Line and Radiation Segments for Weapons and Sensors

Battlefield geometries are also included in a deployment plan in addition to the

placement and task order information of units. Battlefield geometries are the three

dimensional visual geometries which can be defined for air and land area. These

geometries can be defined as a circle, polygon, corridor or a line. Geometries defined

for the air area are generally used for the identification evaluation for the tracks. For

example, when a track passes through a prohibited corridor, it is evaluated as a

probable hostile track. Geometries defined for the land area are used to mark some

critic areas for the operation such as minefields, restricted zones and airfields. These

geometries are valid for some specified time periods and are defined by the air and

land forces continuously.

 58

5.2 Description of the Military Deployment Planning
Software

Military deployment planning software is supposed to be a SOA based decision

support software that produces deployment plans for a given defense region and a

military inventory including weapons and sensors. As mentioned in the previous

section, a deployment plan includes placement and task order information for the

weapons and sensors and battlefield geometries defined in the defense area. The

software basically makes decisions for the placements of the units and assigns the

needed task orders. Finally it adds the battlefield geometries to the plan.

A series of existing web services belong to the army forces and some general-

purpose commercial services are supposed to be used by the software to produce the

intended result.

Figure 27 depicts the inputs and the output of the military deployment planning

software.

Figure 27– Inputs and Output of Military Deployment Planning Software

Air defense activities for a critical defense region are supposed to be done by the

army corps level. Each army corps in the army forces has an inventory that consists

 59

of a group of air defense weapons and sensors. Army corps that will be responsible

for the operation, the defense region and the defense point are the inputs of the

software. Defense point is defined as the most critical central location in the defense

region. The software produces a deployment plan for the army corps. Placement and

task order information belong to the units in the inventory of army corps and all

battlefield geometries inside the defense region are procured by the software and

included in the deployment plan.

Deployment plans are presented graphically including the information and map

layers. Information layers show the position and task order information belong to the

weapons and sensors. Unit types and battlefield geometries are drawn with the

suitable symbols according to the military standards. Primary target lines belong to

the weapons and sensor radiation segments belong to the sensors are also drawn on

information layers. Map layers showing raster, vector and relief maps are used for

geographical information support purposes.

Figure 28 depicts an example deployment plan that may be produced by the

software.

 60

Figure 28 – A Sample Deployment Plan

The inventory used in this sample plan consists of three weapons (drawn as gray

flags) and three sensors (drawn as black triangles). Primary target lines and sensor

radiation segments are shown in the plan. The sensor in the middle of the defense

region has a full circle radiation order. A corridor and polygon shaped battlefield

geometries are also included in plan. A relief map is used as the background to

present the elevation information for the defense region.

5.3 Modeling the System

As described in the previous chapters, SOSE modeling technique proposed in this

thesis work consists of two main modeling steps; first decomposing the system into

sub processes and then creating business models for each process. In the following

 61

sub sections, these steps are described in detail for the modeling of military

deployment planning software.

5.3.1 Decomposing the System into Sub Processes

Military deployment planning software simply has three inputs; army corps that will

perform the air defense operations, the defense region that will be defended and the

main defense point in this region. The output of the software is a deployment plan.

From SOSE modeling perspective, the software can be thought as a single and large

complex business process.

When the description and the requirements of the system are analyzed, the whole

system (process) can be decomposed into three main sub processes at the first level

of the decomposition. Figure 29 depicts the first level decomposition of the system.

Figure 29 – 1st Level Decomposition of the System

Military deployment planning process consists of three sub processes; deployment

decision support process, battlefield geometries supply process and plan presentation

process. Deployment decision support process basically includes the determination

of the inventory belong to the army corps, and decision making businesses for the

 62

placements and task orders of the units. Battlefield geometries supply process is

responsible for obtaining the geometries belong to the air and land forces. Finally,

plan presentation process collects all plan data together and presents it on a GIS

panel.

After the first level decomposition, each sub process described above can be also

decomposed into relatively small sub processes.

Figure 30 depicts the second and the third level decompositions for the deployment

decision support process.

Figure 30 – 2nd and 3rd Level Decompositions for Deployment Decision Process

Deployment decision support process is decomposed into three different sub

processes at the second level and two of these sub processes are also decomposed

into other sub processes at the third level. Inventory procurance sub process procures

the inventory belong to the army corps. Unit deployment process consists of two sub

 63

processes for weapons and sensors and it makes decisions for the placements of these

units inside the defense region. Finally task orders decision process assigns the task

orders of the units. It consists of two more sub processes; PTL (Primary Target Line)

decisions sub process for the weapons and SRS (Sensor Radiation Segments)

decisions sub process for the sensors.

Since the battlefield geometries supply process is a relatively simple and

straightforward process, it is not need to be decomposed into any other sub

processes. Finally plan presentation process can be still decomposed into two sub

processes more. Figure 31 depicts the second level decomposition for the plan

presentation process.

Figure 31 – 2nd Level Decomposition for Plan Presentation Process

Plan presentation process consists of two sub processes for presenting map and

information layers separately.

Figure 32 depicts the entire decomposition tree for the military deployment planning

system.

 64

Figure 32 – The Entire Decomposition Tree

5.3.2 Considering the Web Services

In SOSE modeling approach, intermediate and high level processes use and

coordinate the sub processes in the decomposition tree to perform their intended

business. Leaf level processes do not contain any sub processes and they use

provided web services directly. A SOSE decomposition tree should include these

web services too for the leaf level processes. Leaf level processes for the military

deployment planning software that directly take service from the existing web

services are listed below.

- Inventory procurance process

- Weapons deployment process

- Sensors deployment process

- PTL decisions process

- SRS decisions process

- Battlefield geometries supply process

- Map layers presentation process

- Info layers presentation process

 65

All of these leaf level processes use one or more web services to perform their

business. These using relationships are also shown in the SOSE model.

Figure 33 depicts the web services used by the leaf level processes belong to

deployment decision support process.

Figure 33 – Web Services Used by Leaf Level Processes I

Inventory procurance process uses three different web services;

ArmyCorpsInventoryService for obtaining the inventory belong to the army corps,

WeaponPropertiesService for obtaining the working properties of the weapons and

SensorPropertiesService for obtaining the sensor properties. Weapons deployment

process uses DefenseEmplacementsService to determine the emplacement

information inside the defense region that the weapons will be deployed. Sensor

deployment process uses SersorCoverageService to determine the best deployment

places for the sensors. Finally PTL decisions and SRS decisions processes use two

analyzer web services for assigning the necessary task orders to the weapons and

sensors respectively.

 66

Figure 34 depicts the web services used by battlefield geometries supply process.

Figure 34 – Web Services Used by Leaf Level Processes II

Battlefield geometries supply process uses two web services; AirForcesBFGService

and LandForcesBFGService for obtaining the geometries for the air and land area

inside the defense region.

Figure 35 depicts the web services used by the leaf level processes belong to plan

presentation process.

 67

Figure 35 – Web Services Used by Leaf Level Processes III

Map layer presentation process uses three web services; VectorSheetsService,

RasterSheetsService and ReliefSheetsService for presenting the vector, raster and

relief maps. Info layers presentation process uses MilitarySymbologyService that has

two different interfaces for producing information layer images for the units and

battlefield geometries. Finally plan presentation process uses GISService to present

all information layer images and maps on a GIS panel.

Figure 36 depicts the general view of the decomposition including web services and

interfaces too for the military deployment planning software.

 68

Figure 36 – The Entire Decomposition Tree with Web Services and Interfaces

 69

Table 4 involves all web services used by the processes in the decomposition tree

with their brief descriptions.

Table 4 – Web Services Used by the Processes

Web Service Description

 ArmyCorpsInventoryService

Web service is used to determine the air defense inventory
belongs to an army corps. Each army corps is supposed to has
an inventory including a series of air defense weapons and
sensors. Weapon and sensor types and ids belong to the army
corps are obtained by using this service.

 WeaponPropertiesService

Web service is used to determine the working properties of
weapon types. Each weapon type has some operational working
properties related to its defense capabilities. Weapon properties
which can be obtained by using this service are listed below:

- Number of maximum engagements that can be done at
one time

- Reaction time
- Target pursuit type
- Movement type
- Minimum vertical target prevention capacity
- Maximum vertical target prevention capacity
- Minimum range
- Maximum range
- Effective range
- Night vision ability

 SensorPropertiesService

Web service is used to determine the working properties of
sensor types. Each sensor type has some operational working
properties related to its tracking capabilities. Sensor properties
which can be obtained by using this service are listed below:

- Shading speed
- Track following range
- Minimum elevation angle
- Maximum elevation angle
- Maximum number of sectors
- Radiation range
- Horizontal coverage
- Vertical coverage
- Dimension

 DefenseEmplacementsService
Web service is used to determine the emplacement positions (as
coordinates) inside a region to defend a defense point.
Deployment of the weapons is done by using this service.

 70

Web Service Description

 SensorCoverageService

Web service is used to position the sensors inside a defense
region according to their working properties. The service uses
some analyses to detect the best deployment of the sensors to
cover the entire defense region for tracking.

 PTLAnalyserService

Web service is used to assign the primary target line task orders
for the weapons. It evaluates the range properties of the
weapons and analyses the defense region and defense point to
produce suitable orders.

 SRSAnalyserService

Web service is used to assign the sensor radiation segment
definitions for the sensors. It evaluates the sensor working
properties and does visibility and sensor coverage analyses to
determine the suitable radiation segments.

 AirForcesBFGService
Web service is used to obtain battlefield geometries defined by
the air forces inside the defense region.

 LandForcesBFGService
Web service is used to obtain battlefield geometries defined by
the land forces inside the defense region.

 VectorSheetsService
Web service is used to obtain the vector map sheets belong to
the geographic region defining the defense region.

 RasterSheetsService
Web service is used to obtain the raster map sheets belong to the
geographic region defining the defense region.

 ReliefSheetsService
Web service is used to obtain the relief map sheets belong to the
geographic region defining the defense region.

 GISService
Web service is used to present a group of may and information
layers on a GIS panel.

5.3.3 Creating BPEL Models for the Processes

As described in the previous chapters, the final step of SOSE modeling activity is

creating business models for all processes which are defined abstractly in the

decomposition tree. SOSE approach suggests a bottom up way for creating business

models. For the military deployment planning software, leaf level processes which

directly use existing web services are modeled first. Since each process modeled with

BPEL exposes a new web service, for the intermediate and high level processes, sub

processes are used as new services in their BPEL models.

In this case study, existing web services are supposed to be short running services

which can response to the service calls in a determined time. So, all processes are

 71

modeled as synchronous BPEL processes. Fault and exception handling mechanisms

are not included in the prepared BPEL models for the clarity.

In the following sub sections, all BPEL models designed for the processes of military

deployment planning software are described with their graphical model

representations. For the first BPEL model (that is designed for the inventory

procurance process) all definitions, operations and algorithm of the business flow are

described in detail. Other BPEL models are just included with their input, output and

basic algorithm information.

5.3.3.1 Inventory Procurance Process Model

Inventory procurance process basically determines the existing weapons and sensors

(with their working properties) in the inventory of a given army corps. Figure 37

depicts the BPEL model designed for this process.

 72

Figure 37 – BPEL Model for Inventory Procurance Process

The process is initialized by the client with a synchronous service call. receiveInput

activity is used to take the input parameter for the process. The only input is the army

corps id specifying the army corps that the inventory of which will be determined by

the process. The process uses ArmyCorpsInventorySerice to obtain the type and unit

ids of the weapons and sensors in the air defense inventory of the specified army

corps. Invoke_Inventory_Service is an <invoke> activity indicating the service call

to this web service.

 73

Web service method invocations are done with operation request and response

messages. Request messages are sent to the services as input parameters and

response messages are returned from the services as the outputs of the operation.

Each request and response message contains variables with simple or complex types.

All of these operation, message and type definitions are included in the WSDL files

of web services. Each web service is added to a BPEL model as a partner link with

its WSDL file. Assign_Army_Corps_Id is an <assign> activity and basically copies

the army corps id (which is taken as the input parameter of the process) to the

variable in the request message for the inventory web service call.

After the Invoke_Inventory_Service activity, the result of the service call (weapon

and sensor ids) is obtained as a variable in the request message taken from the

service. This variable is a complex type variable which is in fact an array containing

the weapon and sensor ids.

After the first service call, a <flow> activity is used to define two separate branches

which should be executed in parallel. In one of these two branches, weapon working

properties are obtained one by one by using WeaponPropertiesService and in the

second branch sensor properties are obtained by using SensorPropertiesService.

Since two different web services are used for weapons and sensors, there is no

problem with executing these two branches in parallel.

In each branch, <while> activities are used to construct loops in separate scopes

which are defined with <scope> activities in the model. Assign_Loop_Indexes

activities simply prepare the loop variables and indexes before the loop operations. In

each loop, weapon and sensor ids obtained from the first service call are sent to the

properties services one by one. After the each service call, the properties returned in

the response messages are copied to the output message of the main process by using

<assign> activities.

 74

At the end of the business flow, the process replies to its client with a <reply>

activity. The client that uses the process obtains the result in the response message

form (output variable). The type of this message is declared in the WSDL file of the

process and it is a complex type defining the inventory that includes all unit ids and

unit properties.

5.3.3.2 Weapons Deployment Process Model

Weapons deployment process produces the deployment information for the weapons.

It uses a single web service named as DefenseEmplacementsService. Figure 38

depicts the BPEL model designed for this process.

Figure 38 – BPEL Model for Weapons Deployment Process

 75

Input/Output: Defense region and the defense point that will be defended in this

region are the inputs of the process. The output of the process is an array of

coordinates that the weapons will be deployed.

Algorithm: The process prepares the defense area, defense point and emplacement

count parameters before the service invocation with two <assign> activities. Then the

service is invoked and locations returned from the service call are assigned to the

output parameter.

5.3.3.3 Sensors Deployment Process Model

Sensors deployment process produces the deployment information for the sensors. It

uses a single web service named as SersorCoverageService. Figure 39 depicts the

BPEL model designed for this process.

 76

Figure 39 – BPEL Model for Sensors Deployment Process

Input/Output: The scope that will be covered by the sensors and an array containing

the working properties of all sensors are the inputs. The output of the process is an

array of coordinates that the sensors will be deployed.

Algorithm: The process prepares the scope parameter with the first <assign>

activity. Sensor properties parameter is also prepared inside a loop for each sensor.

Then the service is invoked and locations returned from the service call are assigned

to the output parameter.

 77

5.3.3.4 Unit Deployment Process Model

Unit deployment process produces the deployment information for all units. It uses

weapons deployment and sensors deployment sub processes as web services. Figure

40 depicts the BPEL model designed for this process.

Figure 40 – BPEL Model for Unit Deployment Process

Input/Output: Working scope and the inventory are the inputs. Deployment

information for all weapons and sensors are the output of the process.

 78

Algorithm: The process produces weapons and sensors deployment information in

parallel by using two branches. Input parameters for weapons and sensors

deployment sub processes are prepared before the invocations. Then the sub

processes are invoked and locations returned from the service calls are assigned to

the output parameter at the end of two branches.

5.3.3.5 PTL Decisions Process Model

PTL decisions process produces PTL task orders for the weapons. It uses a single

web service named as PTLAnalyserService . Figure 41 depicts the BPEL model

designed for this process.

 79

Figure 41 – BPEL Model for PTL Decisions Process

Input/Output: The scope and weapons in the inventory are the inputs. The output of

the process is the weapons with PTL orders.

Algorithm: The process prepares the scope parameter with the first <assign>

activity. Weapon range and target prevention properties parameters are also prepared

inside a loop for each weapon. Then the service is invoked and PTL orders returned

from the service call are assigned to the output parameter.

 80

5.3.3.6 SRS Decisions Process Model

SRS decisions process produces SRS task orders for the sensors. It uses a single web

service named as SRSAnalyserService . Figure 42 depicts the BPEL model designed

for this process.

Figure 42 – BPEL Model for SRS Decisions Process

Input/Output: The scope and sensors in the inventory are the inputs. The output of

the process is the sensors with SRS orders.

 81

Algorithm: The process prepares the scope parameter with the first <assign>

activity. Sensor properties parameter is also prepared inside a loop for each sensor.

Then the service is invoked and SRS orders returned from the service call are

assigned to the output parameter.

5.3.3.7 Task Orders Decision Process Model

Task orders decision process produces the PTL orders for the weapons and SRS

orders for the sensors. It uses PTL decisions and SRS decisions sub processes as web

services. Figure 43 depicts the BPEL model designed for this process.

 82

Figure 43 – BPEL Model for Task Orders Decision Process

Input/Output: Working scope and the inventory are the inputs. PTL task orders for

the weapons and SRS task orders for the sensors are the output of the process.

Algorithm: The process produces PTL and SRS orders in parallel by using two

branches. Input parameters for PTL decisions and SRS decisions sub processes are

prepared before the invocations. Then the sub processes are invoked and task orders

returned from the service calls are assigned to the output parameter at the end of two

branches.

 83

5.3.3.8 Deployment Decision Support Process Model

Deployment decisions support process obtains the inventory and makes decisions for

the placements and task orders of the units. It uses inventory procurance, unit

deployment and task orders decisions sub processes as web services. Figure 44

depicts the BPEL model designed for this process.

 84

Figure 44 – BPEL Model for Deployment Decision Support Process

 85

Input/Output: Working scope and the army corps id are the inputs. The inventory

including all weapons and sensors with the placements and task orders information is

the output of the process.

Algorithm: The process uses its three sub processes sequentially. It first invokes the

inventory procurance process (or web service) to obtain the inventory belong the

specified army corps. Then it uses unit deployment sub process to get the placement

information for the units. Finally task orders decision sub process is invoked for

assigning the necessary task orders. Between these three service calls, essential

variable assignment operations are done by using <assign> activities.

5.3.3.9 Battlefield Geometries Supply Process Model

Battlefield geometries supply process obtains the battlefield geometries inside the

defense region. It uses two different web services for the air and land forces

geometries named as AirForcesBFGService and LandForcesBFGService

respectively. Figure 45 depicts the BPEL model designed for this process.

 86

Figure 45 – BPEL Model for Battlefield Geometries Supply Process

Input/Output: Working scope (the defense area) is the only input of the process.

The output of the process is an array of the battlefield geometries obtained from the

air and land forces web services.

Algorithm: The process obtains the battlefield geometries belong to the air and land

forces in parallel by using two branches. Scope parameters are copied to the request

message variables by using <assign> activities before the service invocations. Then

both services are invoked in parallel and battlefield geometries returned from the

service calls are assigned to the output parameter on by one (by using <forEach>

activities) at the end of two branches.

 87

5.3.3.10 Map Layers Presentation Process Model

Map layers presentation process obtains the needed vector, raster and relief map

sheets inside the defense region. It uses three different web services for the vector,

raster and relief maps named as VectorSheetsService, RasterSheetsService and

ReliefSheetsService respectively. Figure 46 depicts the BPEL model designed for

this process.

Figure 46 – BPEL Model for Map Layers Presentation Process

Input/Output: The defense region that the deployment plan will be represented on is

the only input of the process. The output of the process is an array of the sheets

containing vector, raster and relief maps.

Algorithm: The process obtains all types of maps sheets in parallel by using three

branches. Scope parameters are copied to the request message variables by using

 88

<assign> activities before the service invocations. Then the services are invoked in

parallel and map sheets returned from the service calls are assigned to the output

parameter on by one (by using <forEach> activities) at the end of three branches.

5.3.3.11 Info Layers Presentation Process Model

Info layers presentation process produces the images including the military symbols

of the units and battlefield geometries belong to the deployment plan. It uses a single

web service named as MilitarySymbologyService that has two service interfaces for

the units and battlefield geometries respectively. Figure 47 depicts the BPEL model

designed for this process.

Figure 47 – BPEL Model for Info Layers Presentation Process

 89

Input/Output: Inventory, placement and task order information and battlefield

geometries are the inputs of the process. The output of the process is an array of

images showing the units and the geometries according to the military symbology.

Algorithm: The process obtains the images showing the units and the battlefield

geometries sequentially. Weapons, sensors and battlefield geometries are copied to

the request message variables by using <assign> activities before the service

invocations. Images returned from the service calls are assigned to the output

parameter.

5.3.3.12 Plan Presentation Process Model

Plan presentation process combines all the map sheets and info layer images together

and presents the deployment plan on a GIS panel graphically. It uses map layers

presentation and info layers presentation sub processes to produce the necessary

layers and GISService (a web service) to finally present the deployment plan. Figure

48 depicts the BPEL model designed for this process.

 90

Figure 48 – BPEL Model for Plan Presentation Process

Input/Output: The working scope, inventory and battlefield geometries are the

inputs of the process. The output of the process is a GIS panel representing the plan.

Algorithm: The process obtains the info layer images and map sheets from its two

sub processes in parallel. Map sheets and info layer images are then copied to the

request message variables of GISService by using <assign> activities. Finally the

GIS panel returned from the last web service call is assigned to the output parameter.

5.3.3.13 Military Deployment Planning Process Model

Military deployment planning process produces the complete deployment plan for

the air defense operations as the root process of the decomposition tree. It uses

 91

deployment decision support, battlefield geometries supply and plan presentation sub

processes. Figure 49 depicts the BPEL model designed for this process.

Figure 49 – BPEL Model for Military Deployment Planning Process

Input/Output: The army corps id, the defense region and the defense point are the

inputs of the process. The output of the process is a GIS panel representing the

deployment plan.

Algorithm: The process obtains inventory, placements and task orders information

from the deployment decision support sub process. Battlefield geometries are

 92

obtained from the battlefield geometries supply sub process. These two processes are

executed in parallel. Finally all data is collected together and plan presentation sub

process is used to present the deployment plan on a GIS panel.

 93

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

In this thesis study, a service oriented system design approach is introduced for

realizing SOA based software development. The idea behind the purposed

methodology is basically a functional decomposition of the system in several

abstraction levels. The whole software system is accepted as a single and complex

business process which can be decomposed into smaller sub processes. The first step

of the modeling activity is decomposing the system into high level processes which

in fact contain and define other sub processes. Processes are decomposed iteratively

in a top down manner until more real and concrete processes are reached at the leaf

level of the decomposition tree. Finally, web services that will be used by the leaf

level processes are specified to achieve the process goals.

After the construction of the process decomposition tree for the target software,

processes at each level are modeled with a standard business process definition

language. To create the detailed process models which describe the whole process

flow in an algorithmic way, BPEL (Business Process Execution Language) is used.

The BPEL models for the leaf level processes in the decomposition tree define the

interactions between the processes and existing web services. For the intermediate

and higher level processes, sub processes are supposed as newly exposed web

services and interactions between different processes are defined. Thus, the entire

software system is modeled with its all details.

The modeling technique introduced in this thesis is also supported with a modeling

language referred to as SOSEML (Service Oriented Software Engineering Modeling

Language). A supporting tool, SOSECASE is also developed, waiting to be used in

the validation of the approach. The tool is integrated with an open source BPEL

 94

designer interface and it allows the system designers to create SOSE models

including the exact BPEL process models.

During this thesis study, an interesting observation was the emphasis in different

approaches, usually manifesting itself as the main concern in the decomposition of a

system. Function had been the design dimension that was important in the earliest

approaches that yielded to data with the establishment of Object Orientation. Later,

Components moved this emphasis to the structure dimension. Looks like the

approach is back to the functional paradigm, actually to be more specific, the

procedural dimension is the main concern in SOSEML. Highest-level entity is a

process that decomposes into further processes, arriving at web services that could

also be regarded as processes.

Activities done in the different steps of software development processes benefit the

quality of the final business product in various levels. Although analysis, design,

implementation and test phases do not change much for several development

processes, it is known that different approaches, methods and techniques used in the

practice directly affect the quality.

In this thesis study, a design approach with the concept of service oriented software

development processes is proposed. Various historical and experimental facts related

to design paradigms are considered and different approaches used in different

methodologies are evaluated. Finally, it is claimed that SOSE modeling approach is

theoretically acceptable and usable according to the obtained throughputs. To

observe the possible benefits or difficulties of the approach in practice, a well

defined real software system is modeled step by step as offered in this thesis. For this

case study, a comprehensive and detailed sample software system is chosen to get the

more realistic results.

During the case study, it is observed that accepting the whole system as a single

process at the first step, decomposing it into sub processes and constructing a

 95

decomposition tree is a good starting point for modeling a large software system. In

this way, indistinctness and ambiguity at the beginning of the design could be

decreased gradually and the foundations of the design could be produced easier.

After specifying the all processes and constructing a hierarchical decomposition tree,

it is proposed to create business models for all processes in an algorithmic way. At

this point a bottom up fashion is recommended. After creating business models for

the leaf level processes and specifying the inputs and outputs of each leaf level

process, it is observed that modeling the intermediate and high level processes can be

done easier.

A completed SOSE model includes the whole design details of the system at

algorithmic level. Today, BPEL is a process modeling language that is widely used

in industry and the benefits of modeling business processes with BPEL is accepted

after commercial usages. SOSE modeling technique also proposes the usage of

BPEL and this will facilitate the usage of SOSEML in industry in the future.

The basic philosophy of the service oriented software development is based on the

services that will be provided and requested. In other words, the emphasis is on

services and function is the key word. As suitable to this, in SOSE modeling

technique, process decomposition approach strengthens the link between the design

and realization. From this perspective, it is observed that SOSE technique is suitable

to service oriented architecture.

It is not so realistic to claim that any modeling approach is completely successful or

completely inapplicable. But all evaluations, determinations and the case study done

in the scope of this thesis study point out that SOSE modeling approach will produce

successful results during service oriented software development processes. With the

development of new opportunities to put this approach to test, it is hoped to report

success stories.

 96

More experiments and tests on SOSE modeling technique are needed in different

domains. In the scope of this thesis study, a sample software system was modeled

with SOSEML, but its implementation was not included. An implementation of a

modeled system with SOSEML may be very useful to observe the benefits and the

effects of the purposed design technique.

As future work, a new BPEL designer specific to the SOSEML can be developed

instead of using an open source designer and a new SOSEML specific business

process definition language can be defined and used for modeling the processes in a

SOSE decomposition tree.

 97

REFERENCES

[1] Herbert Alexander Simon, “The Science of the Artificial”, 3rd Ed., the MIT
Press, 1996.

[2] Murray Cantor, “The Role of Logical Decomposition in System
Architecture”, http://www.ibm.com/developerworks/rational/library/aug07/cantor,
last accessed 6/23/2008.

[3] Ali Hikmet Dogru, Murat M. Tanik, “A Process Model for Component-
Oriented Software Engineering”, IEEE Software, IEEE Computer Society, Vol. 20,
No. 2, pp. 34-41, April 2003.

[4] Kimberly Jordan, “Software Reuse Term Paper for the MJY Team Software
Risk Management www Site”, http://www.baz.com/kjordan/swse625/htm/tp-kj.htm,
last accessed 5/8/2008.

[5] Ayesha Manzer, Ali Hikmet Dogru, “Process Integration through
Hierarchical Decomposition”, in Enterprise Architecture and Integration: Methods,
Implementation and Technologies, Information Science Reference, New York, 2007.

[6] K. Gottschalk, S. Graham, H. Kreger, J. Snell, “Introduction to Web Services
Architecture”, Gottschalk Et. Al., IBM System Journal, Vol. 41, No. 2, 2002.

[7] Matjaz B. Juric, Benny Mathew, Poornachandra Sarang, “Business Process
Execution Language for Web Services”, 2nd Ed., Packt Publishing, Birmingham,
January 2006.

[8] Ali Arsanjani, Bernhard Borges, Kerrie Holley, “Service-Oriented
Architecture: Components and Modeling Can Make the Difference (SOA vs. CBA)”,
Web Services Journal, September 2004.

 98

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, “Pattern Oriented Software Architecture”, 1st Ed., John Wiley & Sons,
August 1996.

[10] Mike P. Papazoglou, Dimitrios Georgakopoulos, “Service-Oriented
Computing”, Communications of the ACM, Vol. 46, No. 10, pp. 24-28, October
2003.

[11] Harry M. Sneed, “Integrating Legacy Software into a Service Oriented
Architecture”, Proceedings of the Conference on Software Maintenance and
Reengineering, IEEE Computer Society, pp. 3-14, 2006.

[12] Software Technologies Unit Information Society and Media DG European
Commission, “Software, Services and Complexity Research in the IST Programme”,
2006.

[13] W3C, Web Services Architecture Working Group Note,
http://www.w3.org/TR/ws-arch, last accesses 7/10/2008.

[14] Bill Curtis, Marc I. Kellner, Jim Over, “Process Modeling”, Communications
of the ACM, Vol. 35, No. 9, pp. 75-90, September 1992.

[15] O. Tufekci, S. Cetin, I. Altintas, “How to Process [Business] Processes”, The
9th World Conference on Integrated Design and Process Technology, San Diego,
California, 2006.

[16] Eren Kocak Akbiyik, Selma Suloglu, Cengiz Togay, Ali Hikmet Dogru,
“Service Oriented System Design Through Process Decomposition”, Integrated
Design and Process Technology 2008, Taiwan, June 2008.

[17] Dirk Beyer, Arindam Chakrabarti, Thomas A. Henzinger, “Web Service
Interfaces”, Proceedings of the 14th International Conference on World Wide Web,
ACM, pp. 148-159, 2005.

 99

[18] Jeffrey Gortmaker, Marijn Janssen, Rene W. Wagenaar, “The Advantages of
Web Service Orchestration in Perspective”, Proceedings of the 6th International
Conference on Electronic Commerce, ACM, Vol. 60, pp. 506-515, 2004.

