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ABSTRACT 

 

CFAR DETECTION IN K-DISTRIBUTED SEA CLUTTER 

 

 

Çetin, Ayşin  

M. Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Altunkan Hızal 

Co-Supervisor: Assoc. Prof. Dr. Şimşek Demir 
 

September 2008, 119 pages 
 

 

Conventional fixed threshold detectors set a fixed threshold based on the overall 

statistical characteristics of the spatially uniform clutter over all ranges to give a 

specific probability of false alarm and detection. However, in radar applications 

clutter statistics are not known a priori. Constant False Alarm Rate (CFAR) 

techniques provide an adaptive threshold to estimate the clutter statistics and to 

distinguish targets from clutter. In Cell Averaging CFAR (CA-CFAR) the 

threshold is controlled by averaging the fixed size CFAR cells surrounding the cell 

under test.  

In this thesis, radar detection of targets in sea clutter modelled by compound K-

distribution is examined from a statistical detection viewpoint by Monte Carlo 

simulations. The performance of CA-CFAR processors is analysed under varying 

conditions of sea clutter spatial correlation and spikiness for several cases of false 

alarm probability, the length of cell size used in the CFAR processor and the 

number of pulses integrated prior to CA-CFAR processor.  
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The detection performance of CA-CFAR is compared with the performance of 

fixed threshold detection. The performance evaluations are quantified by CFAR 

loss. CFAR loss is defined as the increase in average signal to clutter ratio 

compared to that of fixed threshold, required to achieve a given probability of 

detection and probability of false alarm. Curves for CFAR loss to the spikiness and 

spatial correlation of clutter, number of pulses integrated and the length of cell size 

are presented. 

 

 

Keywords: K-Distribution, CA-CFAR, CFAR Gain, Sea Clutter, Radar Detection
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ÖZ 

 

K-DAĞILIMLI DENİZ KARGAŞASI ORTAMINDA SABİT HATALI ALARM 

SIKLIĞI (SHAS) İLE TESPİT 

 

 

Çetin, Ayşin  

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Altunkan Hızal 

Ortak Tez Danışmanı: Doç. Dr. Şimşek Demir 
 

Eylül 2008, 119 sayfa 
 

 

Geleneksel sabit eşik tespit ediciler, belirli hatalı alarm ve tespit olasılıkları 

sağlayabilmek için çevre kargaşasının tüm menzilde sahip olduğu istatistiksel 

özellikleri kullanarak sabit bir eşik değeri belirler. Ancak radar uygulamalarında 

çevre kargaşasının istatistiksel özellikleri önceden bilinmemektedir. Sabit Hatalı 

Alarm Sıklığı (SHAS) teknikleri çevre kargaşası istatistiklerini kestirebilmek ve 

hedefleri çevre kargaşasından ayırt edebilmek maksadıyla uyarlanabilir bir eşik 

değeri belirler. Hücre Ortalamalı SHAS (HO-SHAS) da ise eşik değeri test edilen 

hücreyi çevreleyen sınırlı sayıdaki hücrenin ortalaması alınarak kontrol edilir. 

Bu tezde, K-dağılımlı deniz kargaşası ortamındaki radar hedeflerinin tespiti 

istatistiksel bir bakış açısıyla Monte Carlo benzetimler kullanılarak 

incelenmektedir. HO-SHAS işlemcinin başarımı deniz kargaşasının değişen 

uzaysal ilintisi ve şekilsel yapısı için farklı hatalı alarm olasılıkları, HO-SHAS 

işlemcinin hücre uzunlukları ve HO-SHAS öncesinde toplanan darbe sayılarına 
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göre incelenmektedir. 

HO-SHAS’ın tespit başarımı sabit eşik tespit edicinin başarımıyla 

karşılaştırılmaktadır. Başarım değerlendirmeleri SHAS kaybı niceliğiyle ifade 

edilmektedir. SHAS kaybı verilen bir hatalı alarm ve tespit olasılığı için ortalama 

sinyal kargaşa oranının sabit eşik tespit edicide elde edilen değere göre artışı ile 

tanımlanmaktadır. SHAS kaybının deniz kargaşasının şekilsel yapısına, deniz 

kargaşasının uzaysal ilintisine, toplanan darbe sayısına ve SHAS hücre uzunluğuna 

göre değişimini gösteren eğriler sunulmaktadır. 

 

 

Anahtar Kelimeler: K-Dağılımı, CA-CFAR, CFAR Kazancı, Deniz Kargaşası, 

Radarlarda Tespit 
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CHAPTER 1  

INTRODUCTION 

1.1. LITERATURE SURVEY 

In radar detection, the usual case is that radar returns from a target are 

accompanied by unwanted returns, or interference, known as clutter. The detection 

of targets is then become a challenging task in the presence of clutter. 

Distinguishing targets has been the subject of research for decades. Understanding 

the statistical behavior of both clutter and targets is the first step in order to be able 

to develop successful detection strategies. 

For detection of targets in clutter, a thresholding mechanism is necessary. Since 

the thresholding operation in any detector will be determined based on the 

distribution of the clutter echoes, the appropriate selection of probability 

distribution of radar clutter is crucial to achieve good performance results.  

Since detection is a decision mechanism which decides whether or not target is 

present in the cell under test (CUT) by thresholding, the threshold needs to be 

decided. If the target signal plus the clutter signal or only the clutter signal exceeds 

the given threshold, detection decision is made, otherwise there will be no 

detection. As shown in Table 1-1 a detection decision may be a result of four 

cases. 
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Table 1-1 Four cases in which detection decision may result 

Target Presence Detection Decision Result 

YES YES Right decision 

YES NO Error - Miss target 

NO YES Error - False alarm 

NO NO Right decision 

 

Radars are often interested in complex man-made objects such as tanks, ships or 

airjets. The amplitude of radar targets depends on the aspect angle and the 

structure of the target. As [1] indicates most radar situations are often too complex 

and a method to assess the effects of fluctuating cross section is to postulate a 

reasonable model for the fluctuations and to analyze it mathematically. Thus, it is 

practical to provide a statistical measure of radar target strength. For radar 

performance analysis the Swerling models are commonly used. There are four 

statistical target models listed in Table 1-2. Each Swerling case corresponds to a 

set of conditions that approximate some real target.  

When all the scatterers characterizing the radar target have approximately equal 

amplitude, the amplitude probability density function (PDF) is Rayleigh or Chi-

square distribution of 2 degrees of freedom. This case is modelled by Swerling 

cases I and II. When a target comprises one dominant scatterer and several smaller 

amplitude scatterers, the amplitude PDF is Chi-square of 4 degrees of freedom. 

This case is modelled by Swerling cases III and IV. The Chi-square distribution of 

degree 2m  that also describes the Swerling fluctuation models is 
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( )
( )

1

exp ,  0
1 !

m

av av av

m m m
f

m

σ σ
σ σ

σ σ σ

−
   

= − >   
−    

 (1.1) 

where 
av

σ  is the average radar cross section (RCS) over all target fluctuations. 
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Table 1-2 Swerling fluctuating target models 

Target 

Model 

Ampltitude 

PDF 

Amplitude 

PDF (Other 

definitions) 

m  Structure 
Fluctuations 

Rate 

Swerling I 

Chi-square 

distribution 

of degree 2 

Exponential, 

Rayleigh-

power 

1 

Large number of 

independent 

scatterers 

Scan to scan 

Swerling II 

Chi-square 

distribution 

of degree 2 

Exponential, 

Rayleigh-

power 

1 

Large number of 

independent 

scatterers 

Pulse to pulse 

Swerling III 

Chi-square 

distribution 

of degree 4 

- 2 

Large dominant 

scatterer + a 

collection of 

small 

independent 

scattrers 

Scan to scan 

Swerling IV 

Chi-square 

distribution 

of degree 4 

- 2 

Large dominant 

scatterer + a 

collection of 

small 

independent 

scattrers 

Pulse to pulse 

 

The assumption used in Swerling cases I and III is that the echo pulses received 

from a target on any one scan are of constant amplitude throughout the entire scan 

but are independent (uncorrelated) from scan to scan. An echo fluctuation of this 

type is referred as scan to scan fluctuation [1]. In Swerling cases II and IV the 

fluctuations are more rapid than in cases I and III and are taken to be independent 
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from pulse to pulse. The steady target which has no fluctuation is called as 

Swerling type 0. 

In this thesis, the main concern is the performance of maritime surveillance radars 

which is inevitably limited by the presence of sea clutter, the unavoidable but 

unwanted radar returns from the sea surface. Realistic modeling of this clutter 

process is thus a prerequiste for any reliable assessment of systems. As [2] 

indicates, under certain conditions the nature of the backscatterer from sea surface 

is well known to depart from the Rayleigh voltage form. Especially when a radar 

has a spatial resolution high enough to resolve structure on the sea surface, the sea 

clutter received by the system is not well modelled by a Gaussian process [3]. A 

number of candidate distributions such as log-normal ( e.g. [4] ) and Weibull ( e.g. 

[5] ) have been shown to describe accurately the amplitude fluctuations observed 

in experimental measurements although they have no physical to the scattering 

process they describe. High resolution sea clutter is represented by compound K-

distribution model first by Ward [6] . The compound K-distribution model for sea 

clutter amplitude statistics has received much attention, and it is now widely 

accepted that this provides a good phenomonelogical desription of sea clutter [6]-

[8]. Some physical justification for this model has also been proposed [7],[9],[10]. 

In [11] it is shown that the compound form of K-distribution provides an excellent 

description for measurements made at S, X and J bands for all the range 

resolutions employed.  

The compound K-distribution representation of sea clutter is based on the 

assumption that sea clutter in a given range bin exhibits Rayleigh voltage 

fluctuations (termed the speckle), the variance of which varies in time and space 

according to a gamma distribution. This compound form of K-distribution has the 

particular advantage of permitting the correlation properties of the clutter to be 

properly modelled, including the effects of radar frequency agility [2]. In [3] it is 

implied that the sea clutter amlitude statistics are best described in terms of the 

compund K-distribution. Hence, the K-distribution provides a much improved 

statistical clutter model and is now incorporated in many radar performance 
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calculations. 

The main task of the radar detection processors is to determine an appropriate 

threshold in order to automatically detect targets against noise and/or clutter 

background. The implications of the K-distribution on detection performance have 

been analysed in some detail for the cases of fixed threshold detection [12] and K-

distributed clutter plus noise [13]. 

In this thesis two main processors are analysed and compared. First one is the 

conventional fixed threshold detector, which sets a fixed threshold based on the 

known overall characteristics of the clutter to give a specific probability of false 

alarm (
fa

P ). 

Second one is the Cell Averaging Constant False Alarm Rate (CA-CFAR)  

detector. If the prior knowledge of clutter statistics is not available which is 

usually the case in radar applications, Constant False Alarm Rate (CFAR) 

techniques are used. In [14], CFAR is defined as a property of threshold control 

devices that maintain an approximately constant rate of false target detections 

when the noise and/or clutter levels, and/or electronic countermeasures into the 

detector are variable. A well known practical method for setting such a threshold is 

the Cell Averaging Constant False Alarm Rate (CA-CFAR) processor [15]. CA-

CFAR is a CFAR technique in which the threshold is controlled by the average of 

received amplitudes in cells surrounding the CUT, as a means of controlling the 

false alarm rate [14]. Hence an adaptive means to control 
fa

P  in non-stationary 

clutter is provided by CA-CFAR detection.  

Radars may increase detection sensitivity by adding returns from successive 

transmissions. This process is called integration. Integration may be accomplished 

in the radar receiver either before or after the detector. Integration after the 

detector is called post detection or noncoherent integration which is used in this 

thesis. The effects of post detection integration of several pulses against K-

distributed background have been adressed by [11], [16]. 
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Since the CA-CFAR processor sets the threshold by estimating the clutter mean 

level within a finite CA-CFAR window, there is an inherent loss of detection 

probability in a CA-CFAR processor compared with the fixed threshold detection 

performance in homogeneous noise and/or clutter background.  The fixed 

threshold detection, on the other hand, sets a fixed threshold under the assumption 

that the clutter statistics are known a priori. This relative performance loss of a 

CA-CFAR processor is called the CFAR loss. There are two different methods that 

may be employed to measure the CFAR loss. First one defines this loss by the 

increase in the mean SCR needed for the CA-CFAR processor scheme achieve a 

certain probability of detection (
d

P ) and 
fa

P  relative to the fixed threshold 

detection. (In the following sections by SCR mean SCR is meant.) This true CFAR 

loss will be a function of the particular CFAR scheme, the target type and 

probability of detection,  
d

P  as well as the clutter statistics and the probability of 

false alarm, 
fa

P  [16]. Alternatively, another method called threshold multiplier 

method uses the CA-CFAR threshold multiplying factor, α  as a measure. α  is 

used in CA-CFAR configurations to set the false alarm rate constant. Threshold 

multiplier method results in approximate CFAR loss values and this approximate 

CFAR loss values are independent of 
d

P , hence the target type. 

If the clutter exhibits significant spatial correlation the CA-CFAR may be able to 

follow the local fluctuations giving an improvement in performance, or CFAR 

gain, compared to so-called ideal fixed threhold.  Examples of this are given in 

[17]. The limit of such improvement is described by the concept of the ideal CFAR 

detector [11]. The quantative measurement of performance of three types of CFAR 

processors including CA-CFAR in different spatially correlated (SC) clutter 

conditions has been adressed for single pulse detection in [2]. A more physical 

analysis based partly on simulation is presented in [18]. In [16] for three different 

data recordings of different autocorrelation functions are used in order to explore 

the performance of CA-CFAR in correlated sea clutter, using the compound K-

distribution clutter model and pulse to pulse integration. 
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1.2. GOAL OF THE THESIS 

In this thesis the performance of CA-CFAR processor is aimed to be explored in 

K-distributed clutter background when Swerling type II (SW-II) target is present in 

CUT, under various conditions of clutter spatial correlation and over a range of 

CA-CFAR processor parameters.  

The behaviour of CA-CFAR processor against sea clutter which exhibit significant 

spatial correlation is attractive, since CA-CFAR may follow the local fluctuations 

and this may give a performance improvement to CA-CFAR processor compared 

to fixed threshold detector. In this thesis, the purpose is to obtain and analyse this 

improvement. To do this, firstly the uncorrelated K-distributed background is to be 

understood well and be analysed in detail. Then when the spatial correlation effect 

is introduced into the background, the performance results may be compared. It is 

also desired to investigate under which CA-CFAR condition the best detection 

performance is achieved. 

In addition to the CA-CFAR parameters, the post detection integration may give 

some improvement to the detection performance. Different number of pulses are  

integrated and the effect of integration is modelled to understand the performance 

achievements against both spatially uncorrelated (SU) and spatially correlated 

(SC) K-disributed sea clutter. 

1.3. THESIS ORGANIZATION 

This thesis is divided into five chapters:  

Chapter 2 presents theoretical background of radar detection in sea clutter. Section 

2.1 defines the sea clutter and gives information about its nature. Section 2.2 

explains the representation of K-distributed sea clutter in detail and presents the 
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method used in the generation of spatially correlated K-distributed clutter samples. 

Afterwards, Section 2.3 mentions the fundamentals of radar detection. This section 

introduces both the detection procedures used in this thesis and the definition of 

CFAR loss which is the measure of the performance analysis. Moreover, the 

formulations and graphs for detection in noise are also given for comparison.  

Chapter 3 covers simulation based radar detection performance analysis. Section 

3.1 describes the assumptions made in analysis. Section 3.2 outlines the simulation 

steps. Section 3.3 explains the methods used for verification of simulation results. 

Section 3.4 and 3.5 present the simulation results for spatially uncorrelated and 

correlated clutter for both single and multiple pulse detection. 

Chapter 4 provides the operational usage of simulation results in practice.  Section 

4.1 briefly defines an estimation method of the shape parameter of K-distribution. 

Section 4.2 gives results and assesses the effects of wrong estimation of the shape 

parameters. 

Finally, Chapter 5 concludes the thesis with some remarks. Section 5.1 presents 

the possible future work in order to enhance this study. 
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CHAPTER 2  

BACKGROUND 

2.1. SEA CLUTTER 

Sea clutter is defined as unavoidable and unwanted radar returns from the sea 

surface which makes the detection of wanted targets difficult. The nature of the 

radar echo from sea depends upon the shape of the sea surface. This shape, or the 

roughness, of the sea depends mainly on the wind. The sea clutter is also affected 

by the contaminants that change the water surface tension and the temperature of 

water relative to the air [1]. 

The sea may consist of two kind of waves; wind waves and swell waves. Generally 

waves result from the action of the wind blowing on the water surface. Such waves 

are called wind waves and cause a random appearing ocean height profile. 

However, swell is any system of water waves which has left the region where they 

were originally excited by the wind. Swell waves have less random structure than 

wind waves and they can travel great distances from the place where they 

originated. 
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2.2. COMPOUND K-DISTRIBUTION CLUTTER MODEL 

2.2.1. K-Distribution of Voltage 

High resolution sea clutter is represented by compound K-distribution model first 

by Ward [6]. In this compund model sea clutter consists of two components which 

specify the amplitude of the envelope of sea clutter returns.  

The first component is a spatially varying mean level, often called the modulation 

process, and can be related to the surface profile of the sea. The mean level results 

from a bunching of scatterers associated with the long sea waves and swell 

structure [19]. This component has a longer correlation time, in other words varies 

only slowly with time and is unaffected by frequency agility [19]. 

The second is called the speckle component which occurs due to the multiple 

scatterer nature of the clutter in any range cell. This decorrelates over a few 

milliseconds due to the relative motion of the scatterers or through the use of 

frequency agility [19], [20]. For fixed frequency operation the speckle component 

of clutter returns will typically only decorrelate over periods of 5-10 ms [20]. 

So the sea clutter’s complex envelope of compound K-distribution model can be 

given as a multiplication by these two components as given in (2.1). 

X Y S= × ��  (2.1) 

In (2.1) X�  is the sea clutter’s and S�  is the speckle component’s complex 

envelope which is composed of in-phase and quadrature complex Gaussian 

random variables with zero mean and 2σ  variance as given in (2.2). 
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2 2~ (0, ) and ~ (0, )

I Q

I Q

S S S

S N S Nσ σ

= +�

 (2.2) 

Local mean level, Y , has a distribution function ( )
Y

f y  modelled by generalised 

Chi distribution.  

( )
2

2 1 2 22
( ) exp  

( )

v
v

Y

b
f y y b y

v

−= −
Γ

 (2.3) 

The amplitude of the sea clutter’s complex envelope is given in (2.4). 

X Y S= × ��  (2.4) 

Speckle component S� ’s amplitude has a Rayleigh amplitude distribution with a 

parameter of σ . The detailed information of how to obtain a Rayleigh amplitude 

distribution from the envelope of two complex Gaussian components is given in 

Appendix A.1. 

The PDF of S�  is given in (2.5). 

2

2 2
( ) exp

2S

s s
f s

σ σ

 
= − 

 
 (2.5) 

s  can be written as given in (2.6). 

x
s

y
=  (2.6) 

If the variables are changed according to the (2.6), then joint probability density 

function, ( | )f x y  , will be as  
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,

2

2 2 2 2

1
( | )

            exp
2

X Y S

x
f x y f

yx

y

x x

y yσ σ

 
=  

∂  
∂

 
= − 

 

 (2.7) 

When the generalised Chi distributed local mean level in (2.3) is substituted into 

compound form, the overall amplitude distribution of K-distributed sea clutter‘s 

envelope ( )
X

f x  is given by; 

( )

,

0

2 2
2 1 2 2

2 2 2 2
0

( ) ( ) ( | )

2
         exp exp

( ) 2

X Y X Y

v
v

f x f y f x y dy

b x x
y b y dy

v y yσ σ

∞

∞
−

=

 
= − − 

Γ  

∫

∫

 (2.8) 

In  (2.8) the speckle component is averaged over all possible values of local mean 

level. 

If 2y  and v  are changed by u  and 1v′ +  in (2.8), then ( )
X

f x  will be written as in 

(2.9). 

2( 1) 2
1 2

2 2
0

( ) exp
( ) 2

v
v

X

b x x
f x u b u du

v uσ σ

∞′+
′−  

= − − 
Γ  

∫  (2.9) 

The integral in (2.9) is solved using (2.10) from [21]. 

( )
2

1

0

exp 2 2

t

t

t
d K

β β
α γα α βγ

α γ

∞
−    

− + =    
    

∫  (2.10) 

Here ( ).t
K  is a modified Bessel or K function. K-distribution name is originated 

from the use of modified Bessel function whose symbol is the letter K.  
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After writing 
2

σ
π

=  and 
2c

b
π

=  in (2.10), K-distribution PDF is obtained and 

given in (2.11). 

( )1

4
( ) ( ) 2    where 

( ) 4
v

X v

c
f x cx K cx c b

v

π
−= =

Γ
 (2.11) 

Here b  and c  are scale parameters and v  is the shape parameter which depends 

on sea conditions and the radar parameters. 

The n th moments of y  are given in (2.12), 

( )
( )

1 2n

n

nv
E y

b v

Γ +
=

Γ
 (2.12) 

while the n th moments of the K-distribution can be found from (2.13). 

( )

( )

0

1

0

x

4
          ( ) 2 x

( )

n n

X

n v

v

E x x f x d

c
x cx K cx d

v

∞

∞

−

=

=
Γ

∫

∫

 (2.13) 

By using the integral equation in (2.14) from [21], the n th moments of the K-

distribution can be calculated easily. 

( ) 1 1

0

1 1
2

2 2
x K x dxµ µ µ

υ

µ υ µ υ
β β

∞
− − − + + + −   

= Γ Γ   
   

∫  (2.14) 

By changing the variables µ , υ  and β  into v n+ , 1v −  and 2c , the n th moments 

of the K-distribution are given in (2.15). 
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( )
( )

1 2 1
2

n

n

nv n
E x

c v

Γ +  
= Γ + 

Γ  
 (2.15) 

The mean clutter level E x  and the mean square clutter level 2
E x  are 

calculated from (2.15) and given in (2.16).  

( )
( )

2

2

1
2

2

v
E x

c v

v
E x

c

π Γ +
=

Γ

=

 (2.16) 

The cumulative distribution probability of the K-distribution is given in (2.17). 

( )

( )

1

4
( ) ( ) 2

( )

2
         2

( )

x

v

X v

v
v

v

c
F x ct K ct dt

v

c
x K cx

v

−

−∞

=
Γ

=
Γ

∫
 (2.17) 

Some plots of the K-distribution PDF of voltage are shown in Figure 2-1 for 

various values of shape parameter v  and with the scale parameter c  set to give 

unity mean square value of the envelope, x . That is, the scale parameter is 

calculated by using (2.16) and given in (2.18). 

c v=  (2.18) 
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Figure 2-1 The K-distribution of voltage for various values of  v  

 

Typically, the value of v  in sea clutter falls in the range 0.1 v≤ ≤ ∞ . When v → ∞  

it reduces to the Rayleigh distribution, while small values of v  , say 1v < , 

correspond to spiky clutter [19]. 

If a second random variable θ  is uniformly distributed over  (0, 2 )π  and 

statistically independent of the K-distributed X  in (2.11), the characteristic 

function denoted by ( );
Y

C u v  of a third random variable ( )cosY X θ=  is written 

as 

( ) ( )( )

( )

,

, 0

; exp cos

             

Y X

X

C u v E jXu

E J Xu

θ

θ

θ=

=
 (2.19) 

where ( )0 .J  is the zeroth order Bessel function and .E  is the expectation 

operator. Using the definition of characteristic function in Appendix B and (2.11), 

the characteristic function can be written as 
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( )
( )

( ) ( )
1

, 0 1 0

0

4
2

v
v

X v

c
E J Xu x K cx J xu dx

v
θ

∞+

−=
Γ ∫  (2.20) 

The equation above can be solved by the help of following equation from [21] 

( ) ( )
( )

( )
1

12 2
0

1
2w w w

w w

w
x J ax K bx dx a b

a b

µ µ µ
µ µ

µ∞
+ + +

+ +

Γ + +
=

+
∫  (2.21) 

Hence using (2.21), (2.20) yields to 

( )
( )

( )

2

2 2

2
; ,

4

v

Y v

c
C u v c

u c
=

+
 (2.22) 

For convenience the shape parameter of the K-distribution v  is set to 22c  and 

(2.22) reduces to 

( ) 2

2
;

2

v

Y

v
C u v

u v

 
=  

+ 
 (2.23) 

In the limiting case when v → ∞ , the characteristic function will be 

( )
2

lim ; exp
2v Y

u
C u v→∞

 
= − 

 
 (2.24) 

For convenience, if the limiting density of X  is denoted as 

( ) ( )lim ; ,
v X X

f x a v f x→∞ ≡  (2.25) 

we have from (2.23) to (2.25), 
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( ) ( ) ( )
2

0 0

0

exp
2X

u
E J Xu f x J Xu dx

∞  
= = − 

 
∫  (2.26) 

Therefore, 

( ) ( )
2

0

0

2

exp
2

         exp
2

X

u
f x x u J Xu du

x
x

∞  
= − 

 

 
= − 

 

∫
 (2.27) 

And so the limiting distribution ( v → ∞ ) of X  is Rayleigh. For sufficiently large 

values of parameter v , the K-distribution density in (2.11) serves as an 

approximation to Rayleigh density. 

2.2.2. K-Distribution of Power 

In Section 2.2.1 the sea clutter’s complex envelope is modelled as compound K-

distribution. In some radar applications the power of the K-distribution’s complex 

envelope is desired since the square law detection is used. Again the power of K-

distribution can be given as a multiplication by the two components, square of 

local mean level and speckle, as given in (2.28). 

22 2
X Y S

W Z R

= ×

= ×

��
 (2.28) 

Local mean level, Y , has a density function ( )
Y

f y  given in (2.3). Using Jacobian 

calculation in Appendix A.2, the PDF of the underlying intensity Z  can be found. 

In (2.29) the PDF of Z  which is gamma distributed is given.  
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( )
2

1 2( ) exp  
( )

v
v

Z

b
f z z b z

v

−= −
Γ

 (2.29) 

Speckle component S� ’s amplitude has a Rayleigh PDF and its square R  has an 

exponential PDF given in (2.30). The details of this conversion is given in 

Appendix A.3.  

2 2

1
( ) exp

2 2
R

r
f r

σ σ

 
= − 

 
 (2.30) 

Similarly, r can be written as follows; 

w
r

z
=  (2.31) 

If the variables are changed according to the (2.31), then joint probility density 

function ( | )f x y  will be as in (2.32). 

2 2

1
( | ) exp

2 2

w
f w z

z zσ σ

 
= − 

 
 (2.32) 

The overall amplitude distribution of K-distributed sea clutter power is ( )
W

f w  and 

is given in (2.33). 

( )

,

0

2
1 2

2 2
0

( ) ( ) ( | )

1
         exp  exp

( ) 2 2

W Z W Z

v
v

f w f z f w z

b w
z b z dz

v z zσ σ

∞

∞
−

=

 
= − − 

Γ  

∫

∫

 (2.33) 

Here if v  is changed by 1v′ + , then ( )
W

f w  can be written as in (2.34). 
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2( 1)
1 2

2 2
0

( ) exp
( )2 2

v
v

W

b x w
f w z b z dz

v zσ σ

∞′+
′−  

= − − 
Γ  

∫  (2.34) 

The integral in (2.34) can be calculated using the equation in (2.10). After writing 

2
σ

π
=  and 

2c
b

π
= , the PDF of K-distributed sea clutter power is obtained as in 

(2.35). 

( )
11

2
1

2
( ) 2    where 

( ) 2

vv

W v

c
f w w K c w c b

v

π−+

−= =
Γ

 (2.35) 

Here b  and c  are scale parameters and v  is the shape parameter. 

The n th moments of the K-distribution of power is calculated from (2.36). 

( )

( )

0

11

2
1

0

2
          2  

( )

n n

W

vv
n

v

E w w f w dw

c
w w K c w dw

v

∞

∞ −+

−

=

=
Γ

∫

∫

 (2.36) 

By using the integral equation in (2.14) the n th moments of the K-distribution of 

power can be calculated. Similar calculations as in Section 2.2.1 yield (2.37). 

( )
( )

( )2

1
1n

n

v n
E w n

c v

Γ +
= Γ +

Γ
 (2.37) 

The mean clutter power level E w  and the mean square clutter power level 

2
E w  are calculated from (2.37) and given in (2.38). 
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( )

2

2

4

4
1

v
E w

c

E w v
c

=

= +

 (2.38) 

Some plots of the K-distribution PDF of power are shown in Figure 2-2 for various 

values of shape parameter v  and with the scale parameter c  set to give unity mean 

value of the envelope, x . That is, the scale parameter is taken as in (2.39). 

c v=  (2.39) 

 

 

Figure 2-2 The K-distribution of power for various values of  v  

 

2.2.3. An Emprical Model For Shape Parameter 

The parametrization of the shape parameter of the K-distribution, v , has been 
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achieved by matching the spread of results to simple functional forms. In this way 

an emprical model has been developed at I-Band (9-10 GHz) for the dependence 

of v  on radar, environmantal and geometric parameters. The model has been 

derived [22] as 

( ) ( ) ( )
( )

10 10 10

cos 22 5
log log log

3 8 3
v L p

θ
ϕ= + − −  (2.40) 

where v  is the estimated value of the shape parameter of the K-distribution, L  is 

the across range resolution in meters 100 800L< < , ϕ  is the grazing angle in 

degrees 0.1 10ϕ< <� � , p  describes the polarisation effects with 1.39p =  for 

vertical and 2.09p =  for horizontal polarization and θ  is the aspect angle with 

respect to the swell direction in radians. This last term can be omitted if there is no 

swell.  

This empirical model does not include the variation of shape parameter with range 

resolution, R∆ . The dependence of range resolution is complex but a good guide 

to performance can be obtained by assuming a dependence of 
5

8R∆ . As [20] 

mentions this approximation is supported by some experimental measurements in 

[11].  

2.2.4. Spatial Correlation in Sea Clutter 

The spatial correlation of sea clutter returns are strongly related to the structure of 

sea wave. This exhibition of significant spatial correlation is often associated with 

the sea swell [18]. As given in [18], the correlation length ρ  of sea surface in the 

range direction is taken to be a length characteristic of wind waves, given in terms 

of wind velocity W  in m/s and g , accelaration due to gravity (~9.81 m/s2). It is 

found that 
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( )
1 223cos 1

2

W

g

π
ρ θ= +  (2.41) 

where θ  is the angle between the line of sight and the wind direction. 

The correlation length ρ  may be written in terms of the radar range resolution 

R∆ . The correlation length R  expressed in range samples is given in (2.42). 

R
R

ρ
=

∆
 (2.42) 

Some values of R  for different sea states are given in Table 2-1 for R∆  is equal to  

2 m and 15 m and 0θ = . In Table 2-1 the term sea state is used in order to 

describe the roughness of the sea as a measure of wave height. 

 

Table 2-1 Spatial correlation lengths of sea clutter, [18]  

Correlation length, R  
Sea state 

Wind speed, 

W  (m/s) 

Correlation 

length, ρ  (m) 
2 mR∆ =  15 mR∆ =  

1 2.5 2.0 1 0 

2 4.5 6.5 3 0 

3 6.0 11.5 5 1 

4 8.5 23.1 11 1 

5 11.0 38.7 18 2 

6 14.0 62.8 30 4 

 

It can be seen that for high resolution radar the correlation length R , has values up 
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to 30 range samples for high sea states, in contrast to low resolution radar. Hence 

in this thesis the maximum spatial correlation length is chosen to be 30. 

2.2.4.1. Generation of Exponentially Correlated Gaussian Random 

Numbers 

Let 
n

g  be a sequence of independent Gausssian deviates with zero mean, 

0
n

E g = ,  and unit variance, 2 1
n

E g = ,  i.e. 

21
( ) exp

22
X n

x
f g x

π

 
= = − 

 
 (2.43) 

Let 0τ >  be a real number and the correlation coefficient γ  is as 

1
expγ

τ

 
− 
 

�  (2.44) 

Now the sequence of numbers 
n

r  is recursively defined via 

2
0 0 1 1;    1

n n n
r g r r gγ γ+ += + −�  (2.45) 

This can be written in a closed expression as 

2
0

1

 1
n

n n i

n i

i

r g gγ γ γ −

=

= + − ∑  (2.46) 

Here the random numbers 
n

r  are also Gaussian deviates with zero mean and unit 

variance since each 
n

r  is the sum of Gaussian deviates, 
n

g . This statement can be 

proved by equations (2.47) and (2.48). Keeping in mind 0r  has a zero mean and 

unit variance, the equation in (2.47) can be obtained by taking the expectation of 

both sides of (2.45)  
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2
1 1 11 0;    0,    0

n n n n n
E r E r E g E r E gγ γ+ + += + − = = =  (2.47) 

Similarly in (2.48) variance of 1n
r +  is calculated. Here the cross term 1n n

E r g +  

vanishes because 
n

r  and 1n
g +  are independent and thus uncorrelated. 

( )2 2 2 2 2 2 2
1 1 11 1;    1,    1

n n n n n
E r E r E g E r E gγ γ+ + += + − = = =  (2.48) 

The correlation coefficient is a normalized measure of the strength of the linear 

relationship between two variables. If the variables are same, it is named as 

autocorrelation coefficient. The autocorrelation coefficient ( );c n m  of the 

sequence 
n

r  shall be defined by 

( )
( ) ( )

1 2 1 22 2
; m n m m m n

m m m n m n

E r r E r E r
c n m

E r E r E r E r

+ +

+ +

−
=

− −

 
(2.49) 

Since 
n

r  has zero mean and unit variance, therefore ( );c n m  reduces to 
m n m

E r r + . 

Then it is simple to calculate 

2

1

2

1

               exp

m n
n m n i

m n m m m i

i m

n

m

E r r E r r g f

n
E r

γ γ

γ
τ

+
+ −

+
= +

 
= + − 

 

 
= = − 

 

∑
 (2.50) 

Here the Gaussian deviates 
i

g  are not correlated with the number 
m

r , since i m> . 

Hence, the autocorrelation coefficient ( );c n m  is independent of m  (i.e. the 

corresponding stochastic process is stationary) and is given by 
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( ) ( ); expn n
c n m c n γ

τ

 
≡ = = − 

 
 (2.51) 

2.2.4.2. Generation of Correlated Gamma Distributed Random 

Numbers 

The simulation of a correlated gamma process takes a correlated Gaussian process 

of zero mean and unit variance as its starting point. This is then mapped on to the 

gamma process by memoryless nonlinear transform (MNLT) generated by the 

solution of the equation in (2.52). Here by equating the cumulative distribution of 

a zero mean unit variance Gaussian process, evaluated at the value r  taken by this 

process, with the cumulative distribution of the required process, thus determining 

the latter’s value z  [23]. So if the PDF of the values z  of the required process is 

( )
DIST

f z , the following expression is set. 

21
( ) exp

22

1
                    erfc

2 2

DIST

z r

r
f z dz dr

r

π

∞ ∞ ′ 
′ ′ ′= − 

 

 
=  

 

∫ ∫
 (2.52) 

Here ( )erfc .  is the complementary error function. The complementary quantile 

function ( )
DIST

Q ζ  of the required distribution is now defined by 

( )

( )
DIST

DIST

Q

f z dz
ζ

ζ
∞

′ ′ =∫  (2.53) 

Using (2.53) the MNLT that takes the input Gaussian random values into the 

corresponding values of the required non-Gaussian random variable is written as 
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( )
1

erfc
2 2

DIST

r
z r Q

  
=   

  
 (2.54) 

As previously stated, the locally Gaussian speckle and its gamma distributed 

randomly varying local power are brought together in the compound K model of 

sea clutter. In many circumstances it is the correlation properties of the more 

slowly varying gamma component of the clutter that affect radar performance [23]. 

Because of this, the generation of gamma distributed random processes with 

prescribed correlation properties is required.  

So, the correlated Gaussian process of zero mean and unit variance is mapped onto 

a gamma distributed process Z  by MNLT.  The PDF of  the gamma variable z , 

( )
Z

f z , is given in (2.29). Therefore, after replacing ( )
DIST

f z′  with the equation of 

( )
Z

f z′  in (2.52), the following equation is obtained. 

( )
2

1 2 1
 exp erfc

( ) 2 2

v
v

z

b r
z b z dz

v

∞
−  

′ ′ ′− =  Γ  
∫  (2.55) 

The solution to (2.55) results in the correlated random gamma distributed variates 

z , having an autocorrelation function (ACF) of the form 

2 expm m n

n
E z z E z

R
+

 
= − 

 
 (2.56) 

if the correlated Gaussian random variates r  are generated using the recurrence in 

(2.46) and have an exponentially decaying ACF related in the following form [18]. 

n

m m n
E r r γ+ =  (2.57) 

As [18] states, it has been found emprically that to generate a gamma random 

variate with an ACF of the form (2.56), the Gaussian random variate must have an 

ACF related in the form 
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( )

0.7

0.7
exp

0.15

v

R v
γ

 
 = −
 + 

 (2.58) 

In other words, a Gaussian process with an exponentially decaying ACF is 

transformed by the MNLT into a gamma process whose ACF also displays a 

seemingly exponential decay over several decades. The following formula has 

been devised to relate the observed characteristics decay times of the Gaussian, 

G
τ , and gamma, γτ , processes and the parametre v  of gamma distribution. [23] 

0.7

0.15
1G

vγ

τ

τ
= +  (2.59) 

Remind that the variable R  in (2.56) and (2.58) is the correlation length expressed 

as radar range samples and given in (2.42). Moreover, R  is the number of samples 

after which the clutter may be said to be significantly decorrelated [18]. 

Examples of correlated gamma data for 5v =  are given in Figure 2-3 and Figure 

2-4, for 1R =  and 30R =  respectively. 
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Figure 2-3 Amplitude variation with range of gamma distributed data for  5v =  and 

spatial correlation length 1R =  

 

 

Figure 2-4 Amplitude variation with range of gamma distributed data for 5v =  and 

spatial correlation length 30R =  
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Figure 2-5 shows the ACF of both the simulated correlated gamma data set and the 

calculated from (2.56) when 30R =  and 5v = .  Here the good agreement is noted. 

 

 

Figure 2-5 ACF of correlated gamma data set 

 

2.2.4.3. Generation of Correlated K-Distributed Clutter 

In order to generate correlated K-distributed clutter of voltage, the following steps 

are taken; 

Correlated gamma random variables are generated by the MNLT approach using 

(2.55). 

Uncorrelated Rayleigh variables are generated using (2.45). 

Finally, the square root of the gamma variables and the Rayleigh variables are 

multiplied. 
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In this sense, if the square root of correlated Gamma variables are located on the 

diagonal of a Y  matrix and uncorrelated Rayleigh variables form an array S , then 

correlated K-distributed random variable array X  will be obtained from matrix 

multiplication *X Y S=  given by 

[ ]

[ ]

1

2

2

1 2 3

[ 1]

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ... 0

0 0 0 0

...    

*

N

N

NN N

z

z

Y Z z

z

S s s s s

X Y S ××

 
 
 
 

= =  
 
 
 
 

′=

=

 

(2.60) 

The simulation scheme for correlated K-distributed random variable generation is 

given in Figure 2-6. 

 

 

Figure 2-6 Simulation scheme 
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The resulting correlated K-distributed random variables have been tested by 

generating a K-distributed data set for 30R =  and 5v = .  Figure 2-7 shows the 

comparison of the histogram of K data set with the PDF of K-distribution given in 

(2.11).  

 

 

Figure 2-7 Normalised histogram of simulated compound K data for shape 

parameter 5v =  and correlation length 30R =  compared with the analytical 

definition of the K distribution PDF 

 

2.3. RADAR DETECTION 

The ability of a radar receiver to detect a weak echo signal is limited by the present 

noise that occupies the same part of the frequency spectrum as the signal. 

Detection of a radar signal is based on establishing a threshold at the output of the 

receiver. If the receiver output at the test cell is large enough to exceed threshold, a 
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target is said to be present. If the receiver output is not of sufficient amplitude to 

cross the threshold, only noise and/or clutter is said to be present. This comparison 

of whether or not the test cell amplitude exceeds the threshold can be defined with 

two hypothesis. Under the null hypotesis, 0H , there is no target in the test cell; 

under the alternative hypothesis, 1H , there is a target present in the test cell since 

the threshold T  is exceeded. 

0

1

   under 

   under 

X T H

X T H

≤

>
 (2.61) 

Here X  is the sample in the test cell. 

If the threshold level is set too low, noise and/or clutter may exceed the threshold 

and be mistaken for a target. This is called a false alarm. The probability that 

clutter returns exceed the threshold is given as probability of false alarm , 
fa

P  and 

defined as 

( )0

0

Pr |

    ( | )

fa

X

T

P X T H

f x H dx

∞

= >

= ∫
 (2.62) 

The solution of (2.62) results in the threshold for a given 
fa

P . The probability of 

detecting the signal, probability of detection (
d

P ), is the probability that the 

envelope of the sample X  will exceed the threshold T  which is set by the need to 

achieve some specied 
fa

P and defined as 

( )1

1

Pr |

    ( | )

d

X

T

P X T H

f x H dx

∞

= >

= ∫
 (2.63) 

If the threshold is set too high, noise and/or clutter may not be large enough to 
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cause false alarms, but weak target echoes may not exceed the threshold and not be 

detected. When this occurs, it is called a missed detection. 

2.3.1. Fixed Threshold Detection 

If a radar has fixed the threshold in order to determine the existance of a target and 

give the required 
fa

P , then it is assumed that the clutter statistics, the overall shape 

and scale of the amplitude distribution, are known a priori. The form of this 

threshold is shown in Figure 2-8 for single pulse K-distributed clutter of 0.5v =  

and 410
fa

P −= . 

 

 

Figure 2-8 K-distributed samples and fixed threshold 

 

It is evident that false alarms concentrate in areas of high clutter as a result of the 

effect of using a fixed threshold. In fixed threshold detection maximum detection 

appears in areas of high clutter where the target plus clutter return is maximum.  
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The fixed threshold, 
fixed

T  is found from (2.64) as a function of clutter and/or noise 

PDF,  ( )
X

f x  and 
fa

P . 

( )
fixed

fa X

T

P f x dx

∞

= ∫  (2.64) 

2.3.1.1. Fixed Threshold Detection in Rayleigh Noise 

The corresponding Rayleigh PDF of the envelope of the noise is expressed once 

again as below 

2

2 2
( ) exp

2R

r r
f r

σ σ

 
= − 

 
 (2.65) 

For a fixed threshold, 
fixed

T , the 
fa

P  is given by 

2

2 2

2

2

( ) exp
2

    exp
2

fixed fixed

fa R

T T

fixed

r r
P f r dr dr

T

σ σ

σ

∞ ∞  
= = − 

 

 
= −  

 

∫ ∫
 (2.66) 

or 
fixed

T  in terms of 
fa

P  

( )12lnfixed faT Pσ −=  (2.67) 

Rayleigh distribution raw moments are calculated from (2.68). 

22 1
2

n
n n n

E r σ
 

= Γ + 
 

 
(2.68) 
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If 1n = , then the mean noise level is obtained from (2.68) and given in (2.69). 

2
E r

π
σ=  (2.69) 

Now since the threshold multiplier α  is defined as fixedT

E r
α = , (2.67) can also 

written as 

( )14
ln

fixed fa
T E r P

π
−=  (2.70) 

For multiple pulse fixed threshold detection, (2.71) is needed to be solved. 

( ) ( )
0

1
( ) exp exp

2
fixed

n

fa R

T

P f r jtr dr jtx dtdx
π

∞ ∞ ∞

−∞

 
= − 

 
∫ ∫ ∫  (2.71) 

where n  represents the number of pulses used in fixed threshold detection. In the 

above equation the characteristic functions of random variables is used in order to 

obtain the PDF of sum of n  Rayleigh distributed random variables. The detailed 

information of characteristic functions is given in Appendix B. It is also assumed 

that non-coherent detector sums envelope of n  pulses.  

(2.71) does not yield in a closed form, hence MC simulations are made in order to 

obtain 
fa

P  for multiple pulse detection. Figure 2-9 shows the simulation results. 

Here the dotted line represents the results of (2.70) for verification purposes. 

Figure 2-9 shows that the closed form values of single pulse detection represented 

by dotted line are in close agreement with the simulation results. Furthermore, as 

N  increases, threshold multiplier, α  reduces for a given 
fa

P . 
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Figure 2-9 10log
fa

P  vs. α  graph for single  and multiple pulse fixed threshold 

detection of Rayleigh noise 

 

2.3.1.2. Fixed Threshold Detection in K-Distributed Clutter 

If the test cell has K-distributed clutter, then the 
fa

P  will be as follows; 

( )1

4
( ) ( ) 2

( )
fixed fixed

v

fa X v

T T

c
P f x dx cx K cx dx

v

∞ ∞

−= =
Γ∫ ∫  (2.72) 

After changing the varibles as 
1

2
c

a
→  and 1v v′− → , (2.73) is obtained as 
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1

1

2
( )

( 1) 2

1
    ( )

2 ( 1)

fixed

fixed

v

fa v

T

v

vv

T

x x
P K dx

a v a a

x x
K dx

a v a a

∞
′+

′

∞
′+

′′

 
=  

Γ +  

 
=  ′Γ +  

∫

∫

 (2.73) 

Noting the relation ( ) ( )u u
K z K z−=  and using the expressions given in (2.74) 

[21], 
fa

P  results as in (2.75). 

( ) ( )1
u u

u u

z

t K t dt z K z

∞
− −

+ =∫  (2.74) 

1

1

1

2 ( 1)

v

fixed fixed

fa vv

T T
P K

v a a

′+

′+′

   
=    

′Γ +    
 (2.75) 

Changing the variables once again as 
1

2
a

c
→  and 1v v′ → − , for fixed threshold 

detection of single pulse returns, the 
fa

P  is given by 

( ) ( )2
2

( )

v

fa fixed v fixed
P T c K cT

v
=

Γ
 (2.76) 

where now 

( )

( )
  2

1
2

fixed

fixed

T

E x

vb
T

v

α

π

=

Γ
=

Γ +

 (2.77) 

The detection threshold 
fixed

T  normalised to the mean clutter level E x  is 

expressed as α . If the clutter is known to be K-distributed and accurate estimates 
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of v  and c  are available, then an appropriate threshold can be set from (2.76). 

Using (2.76), the different curves are shown in Figure 2-10 for the different 

degrees of spikiness, i.e. shape parameter v  (0.2, 0.5, 1.5 and 10) and for single 

pulse detection. 

Curves from Figure 2-11 to Figure 2-14 are given for multiple pulse detection 

(when 3, 10, 20 and 30 pulses integrated non-coherently) of spatially uncorrelated 

(SU) clutter. These curves are obtained by Monte Carlo (MC) simulation. The 

details about the simulation steps are given in Section 3.2. In these multiple pulse 

detection curves, it is assumed that the speckle component of clutter is independent 

from pulse to pulse and the modulation process is completely correlated. 

 

 

Figure 2-10 10log
fa

P  vs. fixed threshold for a single pulse SU K-distributed clutter 
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Figure 2-11 10log
fa

P  vs. fixed threshold for 3 pulse integration of SU K-distributed 

clutter 

 

 

Figure 2-12 10log
fa

P  vs. fixed threshold for 10 pulse integration of SU K-distributed 

clutter 
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Figure 2-13 10log
fa

P  vs. fixed threshold for 20 pulse integration of SU K-distributed 

clutter 

 

 

Figure 2-14 10log
fa

P  vs. fixed threshold for 30 pulse integration of SU K-distributed 

clutter 
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From Figure 2-10 to Figure 2-14, as v  increases, the threshold required for any 

particular 
fa

P  decreases. This means that the spikier clutter tends to obscure 

targets and thus tends to reduce detection performance. Furthermore, the results 

show that the effect of pulse to pulse integration is to make the curves steeper by 

moving them to the left. Hence, as the more pulses integrated 
fa

P  at a given fixed 

threshold value reduces by averaging of the speckle fluctuations. However, as [3] 

also concludes, the spacing of curves remains approximately the same for single 

and multiple pulse detection. Thus, the performance due to spikiness of clutter is 

not affected.  

2.3.2. Cell Averaging CFAR (CA-CFAR) Detection 

In thermal noise or clutter an adaptive estimation of the mean level can be 

achieved by a CA-CFAR. Rather than relying on a knowledge of overall clutter 

statistics as in fixed threshold detection, by using CA-CFAR it should be possible 

to estimate the local variations of the mean clutter level when these are unknown. 

Figure 2-15 shows the operation of a double-sided CA-CFAR system.  
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Figure 2-15 CA-CFAR configuration 

 

The cell under test (CUT) is compared with a threshold 
CFAR

T , which is estimated 

from the mean level of the surrounding range cells, with clutter values xi at either 

side of the CUT. In Figure 2-15, 2
M  cells either side of the CUT are used to 

estimate the mean clutter level. The threshold multiplier, α  is used to scale the 

estimate of the mean level. The appropriate value of α  is chosen to achieve the 

desired value of 
fa

P  in the absence of a target. 

It is clear that in the CA-CFAR processor the threshold varies according to the 

local information about the total clutter level as shown in Figure 2-16 for single 

pulse K-distributed clutter of 0.5v =  and 310
fa

P −= . 
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Figure 2-16 K-distributed samples and CA-CFAR threshold 

 

The statistic µ  in Figure 2-15 is a random variable whose distribution depends 

upon the particular CFAR scheme and the underlying distribution of each of the 

reference range samples. Thus the processor performance is determined by average 

detection and false alarm probabilities [24].  In other words, 
fa

P  is determined in 

general by 

( )0| ,   0
fa

P P X Hαµ µ= > ≥  (2.78) 

which can also be written as 

( ) ( )

( )

0

0

0

|

    |

faP P X H f d

E P X H

µ

µ

αµ µ µ

αµ

∞

= >

= >

∫
 (2.79) 

Similarly the probability of detection 
d

P  is given by 
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( ) ( )

( )

1

0

1

|

    |

dP P X H f d

E P X H

µ

µ

αµ µ µ

αµ

∞

= >

= >

∫
 (2.80) 

The CA-CFAR detection performance analysis in K-distributed clutter is given in 

Chapter 3 in detail. 

There is an inherent loss of detection probability in a CFAR processor compared 

with the fixed threshold detection performance. This is because the CFAR 

processor sets the threshold by estimating the local clutter level within a finite 

reference window. This loss is explained in detail in Section 2.3.3. 

In addition to the standart CA-CFAR, a large number of variants have been 

proposed to mitigate some of specific problems in practical scenerios. Some of the 

more common variants are Greater of CFAR (GO-CFAR), Smaller of CFAR (SO-

CFAR), Order Statistics CFAR (OS-CFAR), Trimmed mean CFAR (TM-CFAR) 

and Censored Mean CFAR (CM-CFAR). The configuration of GO-CFAR uses the 

greater of mean level estimates either side of the test cell. In contrast, SO-CFAR 

uses the smaller of the mean level estimates either side of the CUT. In OS-CFAR 

the range cells in CFAR window is ranked to give ordered samples. The clutter 

power is estimated from the magnitude of the k th largest cell. In TM-CFAR the 

samples are ranked according to magnitude and T1 samples are trimmed from the 

lower end and T2 samples trimmed from upper end. Another approach is CM-

CFAR in which the largest n  samples of the window samples ranked according to 

the magnitude. The remaining M n−  samples are averaged to estimate the clutter 

mean level as the normal CA-CFAR. [19] Thus, the selection of particular CFAR 

technique depends mainly on the structure of background interference.  

2.3.2.1. CA-CFAR Detection in Rayleigh Noise 

For CA-CFAR detection of Rayleigh noise with linear detector, the equations 
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relating 
fa

P  to α  is not easy to calculate for both single and multiple pulse 

detection.  Therefore the results are obtained again by MC simulations. 

Figure 2-17 shows a plot of 10log
fa

P  as a function of threshold multiplier α  for 

various sizes of CA-CFAR window, M . The solid lines are obtained both by MC 

simulation. A closed form expression in (2.81) suggested by [25] is also shown in 

Figure 2-17.  

( ) ( )

2

1
1 exp 1

fa
P

M c c m

α 
= + 

− − − +    
 (2.81) 

where 4c π= . 

 

 

Figure 2-17 10log
fa

P  vs. α  graph of closed form (represented by solid lines) and 

simulated results for single pulse CA-CFAR detection of Rayleigh noise 

 

It can be seen in Figure 2-17 that simulation results show good agreement with the 
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results obtained from (2.81). 

In the following figures from Figure 2-18 to Figure 2-21, 10log
fa

P  is given as a 

function of α  for multiple pulse CA-CFAR detection of Rayleigh noise.  

 

 

Figure 2-18 10log
fa

P  vs. α  for 3 pulse CA-CFAR detection of Rayleigh noise 
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Figure 2-19 10log
fa

P  vs. α  for 10 pulse CA-CFAR detection of Rayleigh noise 

 

 

Figure 2-20 10log
fa

P  vs. α  for 20 pulse CA-CFAR detection of Rayleigh noise 
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Figure 2-21 10log
fa

P  vs. α  for 30 pulse CA-CFAR detection of Rayleigh noise 

 

From Figure 2-18 to Figure 2-21 it is seen that as M  increases, the threshold 

multiplier, α  decreases for any particular 
fa

P . Similarly, the increase in the 

number of pulses integrated, N  reduces α . These conlusions means that the 

longer CA-CFAR window size and the more pulses integrated better detection 

performance is achieved. 

2.3.3. CFAR Loss 

There is an inherent loss of detection probability in a CA-CFAR processor 

compared with the fixed threshold detection performance in homogeneous noise 

and/or clutter background. This is because the CA-CFAR processor sets the 

threshold by estimating the clutter mean level within a finite CA-CFAR window. 

The fixed threshold detection, on the other hand, sets a fixed threshold under the 

assumption that the clutter statistics are known a priori. This relative performance 

loss of a CA-CFAR processor is called the CFAR loss.  
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There are two different methods that may be employed to measure the CFAR loss. 

It is generally quantified by the increase in the SCR needed for the CA-CFAR 

processor scheme to achieve a certain probability of detection and probability of 

false alarm relative to the fixed threshold detection. This true CFAR loss will be a 

function of the particular CFAR scheme, the target type and probability of 

detection,  
d

P  as well as the clutter statistics and the probability of false alarm, 
fa

P  

[16]. 

A 
d

P  versus SCR graph of Swerling type II (SW-II) target including the fixed 

detection threshold curve are given in Figure 2-22 for 410
fa

P −= , 16M =  and 

0.5v = . Here the CFAR loss calculation is also shown for sample values of 
d

P  

(0.5 and 0.9). 

 

 

Figure 2-22  True CFAR loss calculation from 
d

P  vs. SCR of single pulse detection 

for  SU clutter with 0.5v = , SW-II target, 410
fa

P −=  and 16M =  
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Alternatively, another method related to the threshold multiplier, α  may be used. 

This one is based on the fact that the threshold, 
CFAR

T  and 
d

P  are closely related to 

each other. As 
CFAR

T  increases, 
d

P  decreases accordingly and vice versa. The 

increased value of 
CFAR

T  means the increased value of  α  and for a given value of 

fa
P , the increased value of α  implies that a higher value of SCR will be required 

to achieve a given value of 
d

P . Since the CFAR loss is defined as the increase in 

SCR relative to the fixed threshold detection, the increase in α  can also be taken 

as a good guide to the CFAR loss [16]. For 0.5
d

P = , this increase is very close to 

the true CFAR loss calculated from the change in SCR for a given 
fa

P  [18]. This 

establishes a useful technique for measuring the CFAR loss which is independent 

of the detection probability. In this thesis this method is called as threshold 

multiplier method. Figure 2-23 shows this approximate CFAR loss from 10log
fa

P  

versus α  curves of fixed threshold and CA-CFAR detection for 0.5v =  and 

16M = . As [16] implies, in most circumstances the change in α  is a reliable 

guide to relative CFAR performance for 
d

P  values of about 0.5.  
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Figure 2-23  CFAR loss calculation from 10log
fa

P  vs. α  of single pulse detection for 

SU clutter with 0.5v =  and 16M =   

 

A significant difference between the two methods is that the threshold multiplier 

method calculates the CFAR  loss using only the clutter from 10log
fa

P  versus α  

curves, however true CFAR loss calculation takes into account the target type 

since 
d

P  versus SCR curves are used to set the true CFAR loss. As a result, CFAR 

loss results in threshold multiplier method is independent of target type. 

If the clutter exhibits significant spatial correlation the CA-CFAR may be able to 

follow the local fluctuations, giving an improvement in performance or ‘CFAR 

gain’ compared to the fixed threshold [18]. The limit of such improvement is 

described by the concept of ideal CFAR detection. 
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2.3.4. Ideal CFAR Detection 

As explained previously, it is possible to estimate the local mean level by using 

CA-CFAR. In the limiting case, where the threshold follows underlying mean 

level of K-distributed clutter exactly the best performance could be achieved. This 

type of detection is known as ideal CA-CFAR performance. However, as [16] 

mentions it may often not be practical to obtain the ideal CA-CFAR performance. 

In order to achieve a threshold following underlying mean level, independent 

samples of the speckle component should be obtained and the modulation process 

should be assummed to be constant within the CA-CFAR window, but to vary 

widely between CA-CFAR window locations according to the overall generalised 

Chi-square PDF. The clutter is still assumed to be K-distributed, however the 

mean power of the locally Rayleigh clutter being modulated by a square root of 

gamma distributed variable over an extended area. Since the clutter in the CA-

CFAR window is Rayleigh distributed, the CA-CFAR processor will perform as 

expected for Rayleigh noise except an additional source of fluctuation introduced 

by the modulation process.  

Mathematically, the overall 
fa

P  for fixed threshold detection can be also be written 

as 

( )
0

| ( )
fa fa Y

P P x y f y dy

∞

= ∫  (2.82) 

Here ( )
Y

f y  is the PDF of local clutter level of generalised Chi distribution given 

in (2.3) and ( )|
fa

P x y  is the 
fa

P  of Rayleigh distributed speckle component which 

is written for given y  as  
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( ) ,

2

2 2 2 2

2

2 2

| ( | )

              exp
2

              exp
2

fa X Y

T

T

P x y f x y dx

x x
dx

y y

T

y

σ σ

σ

∞

∞

=

 
= − 

 

 
= − 

 

∫

∫  (2.83) 

Here 
2

σ
π

= .  

The threshold is the multiplication of the threshold multiplier α  and the overall 

mean clutter level. However, for ideal CFAR detection it is assumed that the 

threshold adapts exactly to the local mean intensity of the clutter level, y . The 

ideal CFAR threshold, T , is thus: 

T yα=  (2.84) 

When this is substituted into (2.83), ( )|
fa

P x y  now becomes 

( )
2

| exp
4faP x y

πα 
= − 

 
 (2.85) 

Using (2.3) the overall 
fa

P  will be averaged as follows 

( ) ( )

( )

0

2 2
2 1 2 2

0

|

2
    exp exp  

( ) 4

fa fa Y

v
v

P P x y f y dy

b
y b y dy

v

πα

∞

∞
−

=

 
= − − 

Γ  

∫

∫

 (2.86) 

When the equation of the overall 
fa

P  in (2.86) can be solved using the integral 

equation given below from [21] 
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( )
( )

0

1
exp ,   m n m

x x dx
n nγ

γ
β γ

β

∞ Γ +
− = =∫  (2.87) 

Finally the overall 
fa

P  now becomes 

2

exp
4faP

πα 
= − 

 
 (2.88) 

Since ideal CA-CFAR detection curves are useful guides to the bounds of possible 

performance, using the equation in (2.88), the  
d

P  versus SCR graphs are evaluted 

by MC simulation for SW-II target. Figure 2-24 and Figure 2-25 show the 
d

P  

versus SCR curves for various v  and single pulse detection. The curves in Figure 

2-24 is for 310
fa

P −=  and the ones in Figure 2-25 is for 410
fa

P −= . 

 

 

Figure 2-24 
d

P  vs. SCR curves of ideal CFAR detection for SU clutter, SW-II target, 

310
fa

P −=  and 1N =  



56 

 

 

Figure 2-25 
d

P  vs. SCR curves of ideal CFAR detection, for SU clutter, SW-II target,  

410
fa

P −=  and 1N =  

 

As seen from Figure 2-24 and Figure 2-25, as might be expected if lower 
d

P  or 

higher 
fa

P  is to be achieved, the required SCR reduces. Moreover, for ideal CA-

CFAR detection the best performance is achieved in the spikiest clutter. As [19] 

mentions, this is an expected result since as in very spiky clutter the clutter has 

very low local mean level between very large spikes. In these regions a target is 

more easily detected, provided that the threshold adapts appropriately.  

Figure 2-26 shows a comparison for ideal CA-CFAR and fixed threshold detection 

curves. Here again true CFAR gain is represented as the difference in SCR 

between curves for a specific 
d

P . 
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Figure 2-26 Conventional fixed threshold (dashed dotted curves) and ideal CFAR 

performance (solid curves), 
d

P  vs. SCR curves for SU clutter, SW-II target, 

410
fa

P −=  and 1N =   

 

It can be seen that the CFAR gain is very large in spiky clutter, the ideal CFAR 

gain for 0.2v =  with 0.6
d

P =  and 410
fa

P −=  is ~20 dB. Table 2-2 shows the exact 

values of ideal CFAR gains for various shape parameters, 
fa

P  values of 310−  and 

410−  and 
d

P  values of 0.5 and 0.9. Of course this ideal performance is predicated 

on knowing exactly the local mean level of the clutter.   
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Table 2-2 Ideal CFAR gains over fixed threshold detection 

 310
fa

P −=  
410

fa
P −=  

 0.5
d

P =  0.9
d

P =  0.5
d

P =  0.9
d

P =  

0.2v =  20.5167 11.5063 21.5683 12.7382 

0.5v =  11.5072 8.1108 12.3327 8.6940 

1.5v =  5.8186 4.5688 6.5374 5.1549 

10v =  1.3690 1.2281 1.7327 1.2586 

 

It is unlikely that a CA-CFAR would be able to estimate the local mean level 

exactly.  However, where significant correlation is present it may be possible to 

achieve some CFAR gain which is the main concern of this thesis and will be 

discussed with simulation results in the following chapter.  

Before giving the detailed performance evaluations, it may be informative to 

comment on this CFAR gain with the help of Figure 2-27. In this figure 
d

P  versus 

SCR curves for ideal CFAR, CA-CFAR and fixed threshold detection are shown 

for 1.5v =  and 410
fa

P −= . The CA-CFAR window size is taken 16.  
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Figure 2-27 
d

P  vs. SCR curves of ideal CFAR, CA-CFAR and fixed threshold 

detection for clutter with 1.5v =  for correlation lengths 0R =  and 30R = , 

410
fa

P −=  and 16M =  

 

In Figure 2-27 the solid line represents the ideal CFAR detection, by which the 

upper bound of performance achievement relative to the fixed threshold detection 

shown by dashed dotted line is obtained. For uncorrelated clutter ( 0R = ) the CA-

CFAR curve is at the left side of the fixed threshold curve which indicates that 

there is a CFAR loss. However, when clutter is highly correlated ( 30R = ) 

significant imporvement in performance is seen, hence a CFAR gain is obtained. 
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CHAPTER 3  

PERFORMANCE ANALYSIS 

3.1. ASSUMPTIONS MADE 

It is assumed in this thesis that the radar operates in a homogeneous background, 

in other words, no other target interfering the CFAR window and the background 

has the same clutter distribution with the cell under test (CUT). Also the target 

return locates in one single CA-CFAR cell, i.e., target is not extended. Therefore it 

is not necessary to use guard cells for CA-CFAR processing. 

The simulated K-distributed clutter samples are assumed to have unity mean 

square. 

In order to estimate the mean clutter level using CA-CFAR processor the samples 

are taken from the linear detector. In [26] the results of linear detctor is compared 

with those of a square law detector for noise. It is shown there that there is a 

negligible difference between the expected performance of both types of detectors. 

Another similar conclusion that linear and square law CA-CFAR processors 

provide nearly the same detection performance is made for K-distributed clutter in 

[25]. 

The target in CUT has amplitude fluctuation of SW-II, which means the echo 

pulses received from the target fluctuates independently from one pulse to another 
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and the PDF for the radar cross section (RCS) of target is  

( )
1

exp
av av

p
σ

σ
σ σ

 
=  

 
 (3.1) 

where 
av

σ  is the average over all values of target RCS. This exponential PDF 

represents the statistics of the square of a voltage which is decribed by a Rayleigh 

PDF. The details of changing variables from Rayleigh PDF of voltage to 

exponential PDF of power are explained in detail in Appendix A.3. 

The independency of pulse to pulse is obtained by assuming the radar has pulse to 

pulse frequency agility, pulse to pulse change in frequency. 

The signal to clutter ratio (SCR) is obtained using the mean square values for both 

Rayleigh distributed voltage signal of SW-II target, s  and K-distributed clutter 

amplitude signal, c . Since the assumption of unity mean square K-distributed 

clutter is made, (3.2) gives the mean SCR. 

2

2 av

E sS

C E c
σ= =  (3.2) 

In this thesis by SCR, mean SCR is meant. 

Integration of pulses before CA-CFAR processor is assumed to be performed over 

times short enough that target remains within a single cell resorvable by the radar. 

While integrating pulses, it is always assumed that for pulse to pulse integration 

the speckle component of the clutter (equation in (2.7)) is fully decorrelated due to 

the use of frequency agility between pulses, whilst the underlying mean (equation 

in (2.3)) remains constant at a given range over the integration interval, as 

described in [11]. 

In order to obtain desired 
fa

P  versus threshold multiplier graphs ( )100 / min
fa

P  

number of MC simulations are made. This simulation number is high enough to 
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result in accurate 
fa

P ’s since the results are verified with the literature and the 

analytic solution for CA-CFAR detection with K-distributed clutter for 0.5v = . 

The detailed verification results are given in Section 3.3. 

3.2. SIMULATION STEPS 

In this thesis there are two main simulations;  

• First one sets the threshold multiplier, α  for a given fa
P

 and results in fa
P

 

versus α  curves.  

• The other one determines the 
d

P  versus SCR curves using α  obtained in 

the previous simulation. 

In order to obtain desired 
fa

P  versus threshold multiplier, α , curves for every MC 

simulation step the following steps are taken: 

1. For given shape parameter v  , number of pulses integrated, N  and 

correlation length, R  correlated or uncorrelated linearly detected K-

distributed clutter samples are generated and integrated if multi pulse case 

is desired. The method used in generating K-distributed clutter samples is 

the same as given in Section 2.2.4.3. The Matlab 7.0’s randn(.) function is 

used for genereting uncorrelated Gaussian distributed random samples. 

2. CA-CFAR algorithm in Section 2.3.2 runs for the given window size, 

M and zero guard cell size. In this thesis 4, 8, 16, and 32 window sizes are 

simulated. 

3. CA-CFAR threshold is set for given α . 

4. If clutter exceeds CA-CFAR threshold, false alarm number is incremented; 

otherwise not. 
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Then, in order to obtain 
d

P  versus SCR curves for every MC simulation step the 

following steps are taken: 

1. Threshold multiplier is selected from 
fa

P  versus α  curves for the given 

fa
P . 

2. The SW-II target is modelled for the given SCR. The Matlab 7.0’s 

raylrnd(.) function is used for generating target signal. 

3. CA-CFAR algorithm in Section 2.3.2 runs for the given window size, 

M and zero guard cell size.  

4. CA-CFAR threshold is set for given SCR. 

5. If target plus clutter exceeds CA-CFAR threshold, detection number is 

incremented; otherwise not. 

CFAR loss graphs are acquired from both of these two type of curves by also using 

the fixed threshold detection curves. The results related to the CFAR loss is 

explained in the following Sections 3.4 and 3.5 in detail. 

3.3. VERIFICATION OF APPROACHES 

In order to verify the approaches used in this thesis, some verification is made with 

the literature.  

At first in order to obtain high enough MC simulation number the analytic solution 

for CA-CFAR detection with K-distributed clutter of 0.5v =  is compared with the 

simulation results of threshold multiplier. The comparison show that the results are 

close to each other as given in Table 3-1.  
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Table 3-1 Comparison of analytic and simulation results for 0.5v =  

 Threshold multiplier, α  (dB) 

10log
fa

P  Analytic solution result Simulation result 

-1 8.2635 8.2696 

-2 15.3415 15.2925 

-3 19.9588 20.0150 

-4 23.5904 23.6521 

 

The analytic solution exists for 0.5v =  and the equation for 
fa

P  of CA-CFAR 

detection is given in (3.3).  

( ) ( )

( ) ( )

( )
( )

0

1

2 exp 2

2 2 2
exp

fa X T

t

X

M

T

P P x dx P t dt

P x c cx

cM cMt cMt
P t

Mα α α

∞ ∞

−

 
=  

 

= −

   
= −   

Γ    

∫ ∫

 (3.3) 

Here ( )X
P x  is the PDF of the K-distribution of 0.5v = , ( )T

P t  is the PDF of the 

CA-CFAR threshold and is assumed to be the PDF of the sum of M  independent 

K-distributed samples and α  is the threshold multiplier. (3.3) simply becomes the 

(3.4) which is solved by the help of an integral equation solution given in (3.5) 

from [21]. 

( )
1

0

1 2
exp 2 1

M

M

fa

cM M
P t ct dt

M α α

∞
−     

= − +    Γ     
∫  (3.4) 



65 

( ) ( )1

0

exp dς ςλ µλ λ µ ς
∞

− −− = Γ∫  (3.5) 

After changing the variables according to  (3.5),  overall fa
P  yields; 

M

fa

M
P

M α

 
=  

+ 
 (3.6) 

Secondly, the results are compared with the CA-CFAR loss versus ( )10log
fa

P−  

figures for various shape parameters and cell sizes given for single pulse detection 

in linearly detected K-distributed clutter in [18]. It is seen that there is a good 

agreement between the simulation results of this thesis and [18].  

Finally, the results are compared with the ones given in [2]. However, the loss 

curves presented in [2] have illustrated the overall detection loss, 
t

L . To determine 

the CFAR loss, 
CFAR

L , it is necessary to determine the loss that an ideal detector 

would suffer in the same spiky clutter environment and substract this from the 

overall loss. This ideal detector loss is equivalent to  ( )50S v  which is defined by 

the emprical formula in [20]. Thus, 

( )50CFAR t
L L S v= −  (3.7) 

where ( )50S v  is given as 

( )50 10

0

0.4 0.2

log

3.450 ,   5.72

v
S v

v v

n v n

β

β

 
= −  

+ 

= =

 (3.8) 
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3.4. CA-CFAR DETECTION IN SPATIALLY 

UNCORRELATED (SU) K-DISTRIBUTED CLUTTER 

3.4.1. Single Pulse Detection 

In this section single pulse is used for detecting targets in homogeneous K-

distributed clutter.  

Firstly, the detection performance of CA-CFAR processors has been analysed for 

various values of 10log
fa

P , v  (0.2, 0.5, 1.5 and 10) and CA-CFAR window size, 

M  (4, 8, 16 and 32) using threshold multiplier method as explained in Section 

2.3.3. Results are shown in from Figure 3-1 to Figure 3-4, which plots the CFAR 

loss relative to the fixed threshold detection as a function of 10log
fa

P .  

 

 

Figure 3-1 Approximate CFAR loss vs. 10log
fa

P  for SU clutter with 0.2v =  and 

1N =  
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Figure 3-2 Approximate CFAR loss vs. 10log
fa

P  for SU clutter with 0.5v =  and 

1N =  

 

 

Figure 3-3 Approximate CFAR loss vs. 10log
fa

P  for SU clutter with 1.5v =  and 

1N =  
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Figure 3-4 Approximate CFAR loss vs. 10log
fa

P  for SU clutter with 10v =  and 

1N =  

 

It is evident that the CFAR loss is strongly dependent on v  and is also fairly 

strongly dependent on CA-CFAR window size and the desired 
fa

P . For spiky 

clutter (e.g. 0.2v = ) a CFAR loss of about almost 30 dB is possible for small CA-

CFAR window size and low 
fa

P . The smaller the length of window size and the 

lower the desired 
fa

P , the CFAR loss increases and hence as [2] indicates, more 

sensititive the processor becomes to incresing clutter spikiness, i.e. lower values of 

v .  

Also the graphs of CFAR loss versus CA-CFAR window size M  are given in 

Figure 3-5 for various shape parameter values and when 
fa

P  is 410− . The dotted 

line in these figures represents the CFAR loss when Rayleigh distributed noise is 

present. As expected the values of noise are close to ones when K-distributed 

clutter of high shape parameter ( 10v = ).  
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Figure 3-5 Approximate CFAR loss vs. M for SU clutter, 410
fa

P −=  and 1N =  

 

From Figure 3-5 the effect of window size is more evident. The longer the window 

size the less CFAR loss is obtained since better estimates are made with longer 

window size. 

Table 3-2 provides a sample of data, giving the CFAR loss for CA-CFAR 

processor for v  (0.2, 0.5, 1.5 and 10) and M  (4, 8, 16 and 32) for 410
fa

P −= . It 

can be seen from Table 3-2 that a CFAR loss of greater than ~0.6 dB to ~5 dB can 

commonly be expected for decreasing values of M . The advantages of using large 

number of CA-CFAR cells can also be seen. The use of large number of CA-

CFAR cells is more pronounced in spiky clutter. For instance the use of 16 as 

opposed to 32 CA-CFAR cells can introduce additional loss of ~0.6 dB to ~3.2 dB 

under from reasonable conditions and to more extreme, spiky cases. 
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Table 3-2 CFAR loss in dB for sample values of v  and M  when 410
fa

P −=  and 

1N =  

 4M =  8M =  16M =  32M =  

0.2v =  30.3700 12.5171 5.8457 2.6853 

0.5v =  11.8506 5.6881 2.7052 1.3530 

1.5v =  6.4703 3.0705 1.4417 0.7340 

10v =  5.4785 2.6248 1.2085 0.6126 

 

d
P  versus SCR graphs are also obtained using the previous simulation results for 

α . The resulting graphs with various v  are given in from Figure 3-6 to Figure 3-9 

for the  
fa

P  values of 310−  and 410−  and M  values of 16 and 32 for SW-II target.  

 

 

Figure 3-6  
d

P  vs. SCR for SU clutter, 310
fa

P −= , SW-II target, 16M =  and 1N =  
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Figure 3-7 
d

P  vs. SCR for SU clutter, 310
fa

P −= , SW-II target, 32M =  and 1N =  

 

 

Figure 3-8 
d

P  vs. SCR for SU clutter, 410
fa

P −= , SW-II target, 16M =  and 1N =  
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Figure 3-9 
d

P  vs. SCR for SU clutter, 410
fa

P −= , SW-II target, 32M =  and 1N =  

 

As explained in Section 2.3.3 the detection performance of CA-CFAR processors 

compared to fixed threshold detection can also be measured form the 
d

P  versus 

SCR curves. This time, true CFAR loss calculation results are given from Figure 

3-10 to Figure 3-13 for sample values of 
d

P  (0.5 and 0.9), 
fa

P  ( 310−  and 410− ), v  

(0.2, 0.5, 1.5 and 10) and CA-CFAR window size, M  (4, 8, 16 and 32). 
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Figure 3-10  True CFAR loss vs. M  for  SU clutter, SW-II target, 310
fa

P −= , 

0.5
d

P =  and 1N =  

 

 

Figure 3-11  True CFAR loss vs. M  for SU clutter, SW-II target, 310
fa

P −= , 

0.9
d

P =  and 1N =  
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Figure 3-12  True CFAR loss vs. M for SU clutter, SW-II target, 410
fa

P −= , 

0.5
d

P =  and 1N =  

 

 

Figure 3-13  True CFAR loss vs. M for SU clutter, SW-II target, 410
fa

P −= , 

0.9
d

P =  and 1N =  
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Similar conclusions made above for the results of CFAR loss using threshold 

multiplier method are also evident in figures from Figure 3-10 to Figure 3-13. To 

summarize, as the length of the window size increases, true CFAR loss decreases 

and in the figures it is also seen that true CFAR loss is also strongly dependent on 

v  and the desired 
fa

P . Moreover, the above curves gives the information about the 

relationship between the 
d

P  and true CFAR loss. As the desired 
d

P  increases from 

0.5 to 0.9, the resulting true CFAR loss increases as expected. This increase in 

CFAR loss is at most ~3 dB for 0.2v = , 4M =  and 410
fa

P −=  from Figure 3-12 

and Figure 3-13. This difference reduces and becomes less noticeable as clutter 

gets less spiky and also CA-CFAR window size increases.  

As mentioned in Section 2.3.3 there are two methods for measuring CFAR loss. 

One is named here as threshold multiplier method which gives approximate CFAR 

losses. Second method comes from the definition of CFAR loss which is named as 

true CFAR loss in this thesis. The loss curves of both methods are compared in the 

following graphs, Figure 3-14 and Figure 3-15 for 0.5
d

P = , 
fa

P  values of 310−  

and 410−  and various v  values (0.2, 0.5, 1.5 and 10).  In these figures solid lines 

refers to the true CFAR loss calculation and the results represented by the dashed 

dotted lines are obtained by the threshold multiplier method. 
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Figure 3-14  A comparison of CFAR loss methods for SU clutter, SW-II target, 

310
fa

P −= , 0.5
d

P =  and 1N =  

 

 

Figure 3-15 A comparison of CFAR loss methods for SU clutter, SW-II target, 

410
fa

P −= , 0.5
d

P =  and 1N =  
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In Figure 3-14 and Figure 3-15 it is seen that threshold multiplier may be a good 

guide in understanding the general behaviour of CFAR loss. The difference in loss 

between the two methods is not more than ~1 dB. However when 
d

P  is not equal 

to 0.5, the approximate CFAR loss method starts to underestimates the ture CFAR 

loss. A sample case for 0.9
d

P =  and 410
fa

P −=  is given in Figure 3-16. As a 

result, for exact calculation the true CFAR loss method should be preferred. 

 

 

Figure 3-16  A comparison of CFAR loss methods for SU clutter, SW-II target, 

410
fa

P −= , 0.9
d

P =  and 1N =  

 

3.4.2. Multiple Pulse Detection 

This section includes the effects of pulse to pulse integration prior to CA-CFAR 

processor. For this purpose 3, 10, 20 and 30 pulses are integrated non-coherently. 
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The values α  for different 
fa

P  values is first to be determined to set a threshold 

and decide the CFAR loss. In the following Figure 3-17 shows sample 

( )10log
fa

P versus α  curves if the radar integrated N (1, 3 and 10) successive 

pulses. Here v  is chosen to be 1.5 and the window size of CA-CFAR processor is 

32. In Figure 3-17 fixed threshold detection curves are also shown for different 

values of N  by dashed dotted lines. 

 

 

Figure 3-17 10log
fa

P  vs. α  for SU clutter with 1.5v =  and 32M =  

 

The previous figure is given to indicate that as N  increases for a given 
fa

P  lower 

threshold multiplier results are obtained both for CA-CFAR detection curves and 

the fixed threshold detection curves by using which the approximate CFAR loss 

values are calculated. The same behaviour for different values of shape parameter 

and window size is also observed however the figures are not shown for brevity. 

The values of threshold multiplier, α  for different values of 
fa

P  are obtained for 
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various v , M  and N  by MC simulations. Then, as in previous section the 

approximate CFAR loss from threshold multiplier method is calculated. To find 

CFAR loss the fixed threshold curves are also simulated for multiple pulse 

integration. Hence, the CFAR loss versus N  curves are shown in from Figure 

3-18 to Figure 3-21 in order to evaluate performance when multiple pulse is 

integrated in uncorrelated K-distributed sea clutter.  

The true CFAR loss is also calculated in a similar fashion explained in the 

previous section. The resulting true CFAR loss versus N  graphs of various values 

of v  (0.2, 0.5, 1.5 and 10) are also given with dashed dotted lines in from Figure 

3-18 to Figure 3-21. In these figures both CFAR losses are given as a function of 

the number of integrated pulses N  (1, 3, 10, 20 and 30) for various values of v  ( 

0.2, 0.5, 1.5 and 10). Here the results from single pulse detection are also given for 

comparison. The window size of CA-CFAR processor, M  is 16 in Figure 3-18 

and Figure 3-20; 32 in Figure 3-19 and Figure 3-21. The desired 
fa

P  is 310−  in 

Figure 3-18 and Figure 3-19 ; 410−  in Figure 3-20  and Figure 3-21. 

 

 

Figure 3-18 CFAR loss vs. N  for SU clutter, SW-II target, 310
fa

P −=  and 16M =  
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Figure 3-19 CFAR loss vs. N  for  SU clutter, SW-II target, 310
fa

P −=  and 32M =  

 

 

Figure 3-20 CFAR loss vs. N  for SU clutter, SW-II target, 410
fa

P −=  and 16M =  
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Figure 3-21 CFAR loss vs. N  for SU clutter, SW-II target, 410
fa

P −=  and 32M =  

 

The previous figures result in a number of conclusions. First approximate CFAR 

loss values obtained by threshold multiplier method is analysed. The expectation 

for general behaviour of detection performance for increasing N  is met. In other 

words with increasing N , the detection performance is also increases with the 

means of CFAR loss. Even though the pulse integration shows some improvement 

compared to single pulse detection, the improvement between 10, 20 and 30 pulses 

is not significant. For instance, in Figure 3-21 for 0.2v =  the CFAR loss shows a 

slight increase (less than ~0.1 dB) when number of integrated pulses, N  increases 

from 16 to 32 pulses. Similar slight increases is also seen from Figure 3-18 to 

Figure 3-20 and do not exceed 0.15 dB. This is due to the sensitivity of the 

simulation. The difference between CFAR loss values for higher N  becomes 

closer and the simulation is not capable of distinguishing this amount of 

difference. Hence the sensitivity of the simulation is not high enough to get the 

accurate results. However it is still possible to conclude that even though there is 

an obvious improvement in CFAR loss when compared to single pulse detection 
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case, using 10 or 20 or 30 pulses for integration does not make a considerable 

change in the value of CFAR loss.  

Before proceeding to the conclusions of the true CFAR loss curves, 
d

P  versus 

SCR curves for a sample case is analysed. A resulting graph with various N  (1, 3, 

10, 20 and 30) is given in Figure 3-22 for 0.5v = , 310
fa

P −=  and 32M =  for SW-

II target.  

 

 

Figure 3-22 
d

P  vs. SCR curves for SU clutter with 0.5v = , SW-II target, 310
fa

P −=  

and 32M =  

 

It is seen in Figure 3-22 that required SCR reduces with the increasing number of 

pulses integrated in order to reach a certain 
d

P .  

True CFAR loss values, obtained by using 
d

P  versus SCR curves like the ones in 

Figure 3-22, are shown in from Figure 3-18 to Figure 3-21 together with 

approximate CFAR loss values. The true CFAR loss and approximate CFAR loss 
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values are seen to be close to each other. The difference is at most ~0.4 dB. And if 

this amount of loss is negligible for a particular radar performance threshold 

multiplier method might be used to approximate the true CFAR losses. 

More informative curves of SCR versus N  are given in from Figure 3-23 to 

Figure 3-26 for different values of v  (0.2, 0.5, 1.5 and 10) and M  (16 and 32). In 

these figures, 
fa

P  takes the values of 310−  and 410− , 
d

P  takes the values of 0.5  and 

0.9 . 

 

 

Figure 3-23 SCR vs. N  curves for SU clutter , SW-II target, 310
fa

P −=  and 16M =  
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Figure 3-24 SCR vs. N  curves for SU clutter, SW-II target, 310
fa

P −=  and 32M =  

 

 

Figure 3-25 SCR vs.  N  curves for SU clutter, SW-II target, 410
fa

P −=  and 16M =  

 



85 

 

Figure 3-26 SCR vs. N  curves for SU clutter, SW-II target, 410
fa

P −=  and 32M =  

 

As shown in from Figure 3-23 to Figure 3-26 as the number of pulses integrated 

increases the required SCR reduces. However the decrease in SCR slows down as 

the number of integrated pulses increases. For instance when 0.5v = , 410
fa

P −=  

and 32M =  (Figure 3-24) using 10 pulses instead of single pulse decreases the 

required SCR from ~15 dB to ~10.2 dB, whereas using 30 pulses decreases the 

required SCR ~9.6 dB which corresponds to only ~0.6 dB improvement. Similar 

Moreover, the figures also shows as 
d

P  increases from 0.5 to 0.9, significant 

amount of increase appears in the required SCR, as expected. On the other hand, 

the time to spend for detection decision is longer when multiple pulse is integrated 

than single pulse since the detection decision is made after the processing of N  

pulses. 
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3.5. CA-CFAR DETECTION IN SPATIALLY CORRELATED 

(SC) K-DISTRIBUTED CLUTTER 

In the results presented so far, it has been assumed that the CA-CFAR uses 

independent samples of overall clutter distribution to estimate the local mean level. 

If the CUT is correlated with the surrounding data, a better estimate may be aeved 

in some circumstances. Now rather than a CFAR loss, it appears that there is a 

CFAR gain relative to the ‘ideal’ fixed threshold as will be shown later in this 

section. The correlated data samples used are obtained using the method explained 

in Section 2.2.4. 

Figure 3-27 and Figure 3-28 show the approximate CFAR loss in K-distributed 

clutter of 1.5v =  as a function of window size M  for spatial correlation lengths 

5R = , 10R =  and 30R = . In these figures the values of approximate CFAR loss 

for clutter with no spatial correlation ( 0R = ) are also shown for comparison. The 

results in Figure 3-27 are for 310
fa

P −=  and one in Figure 3-28 shows the CFAR 

loss results for 410
fa

P −=  . In both figures single pulse detection ( 1N = ) is shown 

by solid lines and 10 pulse detection is shown by dash-dotted lines. Again pulse 

returns are integrated prior to operation of the CA-CFAR. Here the threshold 

multiplier method is used to give a guide to CFAR loss. 
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Figure 3-27  Approximate CFAR loss vs. M  for SC clutter with 1.5v = , 

1 &  10N =  and 310
fa

P −=  

 

 

Figure 3-28  Approximate CFAR loss vs. M  for SC clutter with 1.5v = , 

1 &  10N =  and 410
fa

P −=  
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When the shape parameter of K-distributed clutter is equal to 10, the CFAR loss 

versus M  graphs are given in the following figures, Figure 3-29 and Figure 3-30. 

Here the 1N =  and 10N =  results are shown on the same plots again. 

 

 

Figure 3-29  Approximate CFAR loss vs. M  for SC clutter with 10v = , 

1 &  10N =  and 310
fa

P −=  
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Figure 3-30  Approximate CFAR loss vs. M  for SC clutter with 10v = , 

1 &  10N =  and 410
fa

P −=  

 

In the figures from Figure 3-27 to Figure 3-30 the effect of correlation is 

remarkable. As the sea clutter becomes more correlated ( R  increases), CFAR loss 

decreases and for higher correlation lengths even CFAR gain is obtained.  

In these figures, it is seen that integration of 10 pulses results in lower CFAR loss 

values for all correlation lengths. Integration gives CFAR gain even though the 

single pulse detection results in CFAR losses.  

When the shape parameter of K-distributed clutter is equal to spikier values 0.2 

and 0.5, the approximate CFAR loss versus M  graphs are given in the following 

figures from Figure 3-31 to Figure 3-34 similarly.  
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Figure 3-31  Approximate CFAR loss vs. M  for SC clutter with 0.5v = , 

1 &  10N = and 310
fa

P −=  

 

 

Figure 3-32  Approximate CFAR loss vs. M  for SC clutter with 0.5v = , 

1 &  10N = and 410
fa

P −=  
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Figure 3-33  Approximate CFAR loss vs. M  for SC clutter with 0.2v = , 

1 &  10N = and 310
fa

P −=  

 

 

Figure 3-34  Approximate CFAR loss vs. M  for SC clutter with 0.2v = , 

1 &  10N = and 410
fa

P −=  
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Figure 3-31 and Figure 3-32 show that higher correlation lengths gives lower 

CFAR loss values and even CFAR gain for both single and 10 pulse detection. The 

higher correlation between the CA-CFAR output and the CUT results in lowest 

CFAR losses for short CA-CFAR window sizes. This significant result gives an 

optimum value of M  where the maximum CFAR gain is achieved, i.e. the highest 

CFAR gain is achieved for a finite value of  M .  For instance, from Figure 3-31 it 

is seen that the optimum value 10M ≈  with 0.5v = , 30R =  and  310
fa

P −= .  

Figure 3-32 also shows another optimum 8M ≈  with 0.5v = , 30R =  and  

410
fa

P −= .  In these figures, 10 pulse integration does not give lower values of 

CFAR loss or higher values of CFAR gain compared to single pulse detection case 

especially for higher CA-CFAR window sizes. Similar behaviour is also reported 

in [16] for emprical sea clutter data. 

Figure 3-33 and Figure 3-34 show the CFAR loss values for spikiest clutter 

example ( 0.2v = ). It is seen once again in these figures that for 30R =  an 

optimum value of CA-CFAR window size is present for single pulse detection. In 

Figure 3-34 correlated clutter of 5R =  and 10R =  gives higher CFAR loss values 

than uncorrelated case. As [16] indicates, short correlation length has the effect of 

reducing the number of independent samples in the CA-CFAR window when 

compared to uncorrelated case but leaving the CA-CFAR output decorrelated from 

CUT. The CFAR loss in this case is then greater than would be expected for totally 

uncorrelated clutter ( 0R = ) in CA-CFAR window. In other words for low values 

of correlation length R  ( 5R =  and 10R =  in this case), the CA-CFAR processor 

perform worse than a fixed threshold when compared to uncorrelated clutter in 

CA-CFAR window. 

In the figures from Figure 3-27 to Figure 3-32 it is seen that as M  becomes large, 

performance tends to the CFAR loss associated with clutter with no spatial 

correlation. It is also concluded in these figures as 
fa

P  decreases from 310−  to 410−  

the values of CFAR loss increases and CFAR gain decreases in general. 
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It has been showed that the highest values of CFAR gain are achieved with short 

CA-CFAR lengths in highly spatially correlated clutter. However such short CA-

CFAR will also produce the highest CFAR loss in uncorrelated clutter. For this 

reason it is clear that a practical radar must be able to adapt its CA-CFAR window 

size according to the conditions if best performance is to be achieved [18]. 

The true CFAR loss graphs are also obtained as a function of M  for single pulse 

detection and SW-II target. They are given in figures from Figure 3-35 to Figure 

3-38 for various values of v  together with aprroximate CFAR loss values from 

threshold multiplier method.  

 

 

Figure 3-35  CFAR loss vs. M  for SC clutter with 0.2v = , SW-II target, 1N = , 

310
fa

P −=  and 0.5
d

P =  
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Figure 3-36  CFAR loss vs. M  for SC clutter with 0.5v = , SW-II target, 1N = , 

310
fa

P −=  and 0.5
d

P =  

 

 

Figure 3-37  CFAR loss vs. M  for SC clutter with 1.5v = , SW-II target, 1N = , 

310
fa

P −=  and 0.5
d

P =  
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Figure 3-38  CFAR loss vs. M  for SC clutter with 10v = , SW-II target, 310
fa

P −= , 

0.5
d

P =  and 1N =  

 

Same trends in CFAR loss versus M  curves are also seen in the previous true 

CFAR loss curves. For low values of the shape parameter ( 0.2v =  and 0.5v = ) 

the best performance is nearly always achieved for a short CA-CFAR window 

size. When there is a little spatial correlation and for high values of the shape 

parameter ( 10v = ) the best peformance will be obtained from a longer CA-CFAR 

window size.  

The difference between aproximate and true CFAR loss values is more apparent 

when correlation effect is included. For spikier clutter and also with higher 

correlation lengths this difference increases. For instance in Figure 3-35 the 

difference is ~5 dB for 0.2v =  and 30R = . 

The following figures from Figure 3-39 to Figure 3-42 show true CFAR loss 

versus M  curves together with approximate CFAR loss curves for 10 pulse 

detection and SW-II target.  



96 

 

Figure 3-39  CFAR loss vs. M  for SC clutter with 0.2v = , SW-II target, 310
fa

P −=  

and 10N =  

 

 

Figure 3-40  CFAR loss vs. M  for SC clutter with 0.5v = , SW-II target and 

310
fa

P −=  and 10N =  
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Figure 3-41  CFAR loss vs. M  for SC clutter with 1.5v = , SW-II target, 310
fa

P −=  

and 10N =  
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Figure 3-42  CFAR loss vs. M  for SC clutter with 10v = , SW-II target, 310
fa

P −=  

and 10N =  

 

The difference between aproximate and true CFAR loss values for 10 pulse 

detection is again more remarkable when correlation effect is included. Similar to 

the single pulse detection, this difference increases with increasing clutter 

spikiness and also with higher correlation lengths. However this time even for low 

clutter spikiness this difference is remarkable. For instance, when 10v = , 30R =  

and 10M = , in Figure 3-38 the difference is ~0.3 dB for single pulse detection 

whereas in Figure 3-42 the difference is ~2 dB  for 10 pulse detection. 
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CHAPTER 4  

PRACTICAL POINT OF VIEW 

Most radars include a number of adaptive features, which are becoming more and 

more extensive and sophisticated [27]. Adaptation is always aimed at improving 

radar performance in some sense. One of the common example of adaptive 

operation of radars is CFAR. Here by introducing the spatial correlation concept, a 

better CA-CFAR performance is shown to be achieved. Moreover, as [19] 

emphasizes, if the effects of sea clutter are not modelled realistically in the design 

process, it is unlikely that a radar system will fully meet its operational 

requirements. 

The results obtained in this thesis can be used to develop practical CA-CFAR 

detection configurations. It may be appropriate to use these CA-CFAR parameters 

or to offer choices of CA-CFAR schemes selectable by the radar operator or to 

adapt automatically according to the sea conditions. 

In a practical radar application the following steps may be taken: 

1. The required operational 
fa

P  and 
d

P  are decided by the radar designers. 

2. During radar operation, the local clutter statistics are to be estimated. These 

are the shape parameter and spatial correlation properties of the K-

distributed clutter. As [28] indicates the best approach in real clutter is to 

estimate local statistics directly and set a threshold accordingly. 



100 

3. Now, choices must be made amongst the many possible configurations. 

Given the required 
fa

P  and 
d

P , by using the CFAR loss versus CA-CFAR 

window size graphs given in Section 3.5 an optimum value for CA-CFAR 

window size is decided. 

4. Then, in order to run the CA-CFAR algorithm the threshold multiplier is to 

be determined. The graphs of 
fa

P  versus threshold multiplier for the right 

sea clutter structure and processor configuration are used to find the 

threshold multiplier. 

4.1. ESTIMATION OF THE K-DISTRIBUTION SHAPE 

PARAMETER 

Estimating the parameters of a statistical distribution from measured sample values 

forms an essential part of radar signal processing tasks. In radar signal processing 

parameter estimation is required to characterize the statistical properties of noise 

and/or clutter background. Hence estimation is neccesary for target detection 

algorithms. 

A good method of estimating v  in the absence of added thermal noise is based on 

the estimates of the mean, µ̂  and the mean of the logarithm of the data, 

( ) ( )
1

1
ln ln

M

i

i

x x
M =

= ∑ . It is found that 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆln ln ln lnv v x N Nψ µ ψ− = − + −  (4.1) 

where ( ).ψ  is the digamma function and v̂  is the estimate of v . The digamma 

function is defined as the logarithmic derivative of the gamma function: 
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( ) ( )
( )
( )
'

ln
xd

x x
dx x

ψ
Γ

= Γ =
Γ

 (4.2) 

The estimate in (4.1) is a close approximation to the maximum likelihood estimate 

and gives better results than matching to the first and second intensity moments 

[16]. As [29] concludes, the best overall performance is provided by this 

estimation scheme that uses the mean of the data and the mean of the log of data.  

4.2. EFFECT OF INCORRECT ESTIMATION OF THE 

SHAPE PARAMETER 

The preceding discussions in Chapter 3 have assumed that the value of the shape 

parameter v  is known exactly. However in practice v  is need to be estimated 

which may result in approximate values of v . If the value of v  is to be changed, 

this affects mainly the value of the threshold multiplier α  needed to achieve a 

specified 
fa

P . Thus, errors made in estimating v  result in an incorrect value of α  

which causes a degradation in detection performance. If the threshold is set too 

high ( v  is estimated too low), the consequence will be increased CFAR loss; if the 

threshold is set too low ( v  is estimated too high), the consequence will be 

increased 
fa

P  [2].  

The approximate magnitude of the loss associated with the incorrect estimation of 

v  is obtained simply from CFAR loss versus v  curves given in Figure 4-1 and 

Figure 4-2 for various values of 
fa

P  ( 210− , 310−  and 410− ) and CA-CFAR window 

size, M  of 16 and 32. The difference between the CFAR loss at the estimated 

value of v  and the true value of v  is the approximate additional loss due to 

incorrect estimation of v . 
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Figure 4-1 Approximate CFAR loss vs. v  for SU clutter, 1N =  and 16M =  

 

 

Figure 4-2 Approximate CFAR loss vs. v  for SU clutter, 1N =  and 32M =  

 

According to [2], the performance degration due to v  being estimated too high 



103 

will be more interest for most operating conditions since it may cause a notable 

increase in 
fa

P . 
fa

P  is now evaluated as a function v  and threshold multiplier α  

in order to examine the severity of this increase in 
fa

P . The resulting graphs are 

given in  Figure 4-3 and Figure 4-4 for different CA-CFAR cell sizes. To 

determine the increase in 
fa

P  due to errors in estimating v , the difference between 

fa
P  at the estimated and true values of v  is taken.  

 

 

Figure 4-3 α  vs.  v  for  SU clutter and 16M =  
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Figure 4-4 α  vs.  v  for  SU clutter and 32M =  

 

The examination of the graphs from Figure 4-1 to Figure 4-4 results in some 

conclusions about the reaction of CA-CFAR processor to incorrect estimation of 

v . The CA-CFAR processor is more sensitive to errors in the estimated value of v  

for small values of the clutter shape parameter than for large values. The effect of 

changing the number of CA-CFAR cells M  does not significantly influnce the 

sensitivity of the CFAR processors to errors in the estimated value of v .  

If the detector are designed for operation in Rayleigh clutter which is a special 

case of K-distribution with v → ∞ , but have to operate in a spiky K-distributed 

clutter, examination of the graphs of Figure 4-3 and Figure 4-4 indicates that α  

will be set too low when compared with the real K-distributed environment. Even 

though this low α  corresponds to higher 
fa

P , much more worse 
fa

P  is possible in 

even less spiky K-distributed clutter. This extreme condition illustrates the 

importance of estimating of correct shape parameter in the design of CA-CFAR 

processor.
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CHAPTER 5  

CONCLUSION 

In this thesis amplitude distribution of sea clutter is modelled by compound K-

distribution and CA-CFAR technique is used to detect SW-II targets. Radar 

detection performance analysis are made by several Monte Carlo (MC) 

simulations. Performance evaluations are quantified by CFAR loss. Performance 

evaluations show that sea clutter characteristics and CA-CFAR configuration can 

affect radar performance. 

Since CFAR loss is used as a measure of performance evaluations, both CA-CFAR 

and fixed threshold detection curves are calculated by simulation. First of all, 

spatially uncorrelated K-distributed clutter is modelled. Then correlation is 

introduced into the sea clutter model. All performance evaluations are made both 

for single pulse and multiple pulse detection. Moreover, detection performance is 

examined for various values of sea clutter spikiness, CA-CFAR window size, 
fa

P  

and 
d

P . There are two different methods that may be employed to measure the 

CFAR loss; one using only CA-CFAR threshold multiplier, named threshold 

multiplier method and gives approximate CFAR loss values; the other one using 

d
P  and gives true CFAR loss values. In this thesis both methods are also modelled, 

analysed and compared.  

The results presented concentrate on two main issues, namely the CFAR loss 

suffered by CA-CFAR processor compared to fixed threshold detector and the 
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effects on CFAR loss of various conditions of spatial correlation of the K-

distributed clutter. 

Detection in uncorrelated sea clutter by CA-CFAR also results in a number of 

conclusions listed below: 

• CFAR loss is strongly dependent on the shape parameter of K-distribution, 

v . As clutter gets more spiky ( v  decreases), CFAR loss increases. 

• CFAR loss is also fairly strongly dependent on the size of CA-CFAR 

window. The use of large window size is required to decrease CFAR loss.  

• CFAR loss increases with decreasing 
fa

P  values for which CFAR loss 

becomes more sensitive to increasing clutter spikiness. 

• As the desired 
d

P  increases, the resulting true CFAR loss increases as 

expected. However this increase becomes less noticeable as clutter gets less 

spiky and also when large window sizes are used. 

• In general as the number of non-coherently integrated pulses, N , increases 

the detection performance is also increases by means of decreasing CFAR 

loss. Even though the simulation is not sensitive enough to distinguish 

small amounts of decrease in CFAR loss for higher number of pulses 

integrated, it is still possible to conclude that there is an obvious 

improvement in CFAR loss when compared to single pulse detection case, 

however using 10 or 20 or 30 pulses for integration does not make a 

considerable change in the value of CFAR loss for higher window sizes. 

• Threshold multiplier method may be a good guide in understanding the 

general behaviour of CFAR loss. However there is still some amount of 

difference in CFAR loss when compared to true CFAR loss values. When 

d
P  is higher than 0.5, the approximate CFAR loss method starts to 

underestimate the true CFAR loss. For more accurate CFAR loss 

calculation true CFAR loss method should be prefered. 
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• As the number of pulses integrated increases, the required SCR reduces. 

However the decrease in SCR slows down as the number of integrated 

pulses increases. Besides, as 
d

P  increases, the required SCR also increases. 

• The time to spend for detection decision is longer when multiple pulse is 

integrated than single pulse since the detection decision is made after the 

processing of N  pulses. 

The spatial variation of clutter characteristics can have a significant effect on the 

performance of radar detection processing. The results presented here showed that 

a remarkable CFAR gain may be achieved under some circumstances as opposed 

to the more conventional expectation of a CFAR loss. The following conclusions 

are made when spatial correlation effect is included: 

• For longer correlation lengths, the CA-CFAR output and CUT are highly 

correlated especially for short CA-CFAR window sizes. The CFAR loss in 

this case gives negative values, hence a CFAR gain is obtained. This means 

that the CA-CFAR performance is better than fixed threshold detection. 

The upper bound of CFAR gain can be achieved by ideal CFAR, where the 

threshold follows underlying mean level of K-distributed clutter exactly. 

• Shorter correlation lengths have the effect of increasing the number of 

independent samples in the CA-CFAR cells but the CA-CFAR output may 

still be left decorrelated from the CUT. The CFAR loss in this case may be 

greater than would be expected for totally uncorrelated clutter samples in 

the CA-CFAR.  

• For all correlation lengths, as the CA-CFAR window size becomes large, 

performance tends to the CFAR loss associated with clutter having no 

spatial correlation.  

• There may be optimum values of M  where the CFAR gain is maximum 

for some sea clutter spikiness.  Increasing CA-CFAR window size beyond 

this value does improve the CFAR gain. 
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• For low values of the shape parameter ( 0.2v =  and 0.5v = ) the best 

performance is nearly always achieved for a short CA-CFAR window size. 

When there is a little spatial correlation and for high values of the shape 

parameter ( 10v = ) the best peformance will be obtained from a longer CA-

CFAR window size. 

• Another drawback of increasing CA-CFAR window size is that the sea 

clutter structure may change in the CA-CFAR window range, since the 

window range is the multiplication of range resolution and window size. 

Thus the CUT may not be representative of the local area. Decreasing 

range resolution may not be an appropriate solution since this may make 

the clutter more spiky.  

• Non-coherent integration of spatially correlated pulses generally reduces 

the CFAR loss. However for spikier sea clutter pulse integration may result 

in higher CFAR losses especially for higher CA-CFAR window sizes. 

• The difference between approximate and true CFAR losses is more 

remarkable when correlation effect is introduced. Moreover, this difference 

increases when pulse integration of correlated clutter is made especially for 

higher values shape parameter of K-distribution. 

CFAR calculations so far are based on the exact calculation of the shape 

parameter. The effects of incorrect estimation of the shape parameter of K-

distributed sea clutter are also investigated by using the curves for CFAR loss to 

the spikiness of clutter. Hence remarkable performance degration may result if a 

wrong estimation is made. The following conclusions are also made when shape 

parameter is wrongly estimated; 

• The CA-CFAR processor is more sensitive to errors in the estimated values 

of v  for small values of the clutter shape parameter than for large values.  

• The effect of changing the number of CA-CFAR cells M  does not 

significantly influnce the sensitivity of the CFAR processors to errors in 
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the estimated value of v .  

Finally, in this thesis it is shown that the performance can vary widely and is a 

function of the CA-CFAR configuration, sea clutter structure, given 
fa

P  and 
d

P .  

Furthermore, the analysis made in this thesis provides the radar system designer an 

understanding of the behaviour of sea clutter in order to develop suitable signal 

processing strategies and predict performance of radar under different clutter 

conditions. 

5.1. FUTURE WORK 

The analysis in this thesis has concentrated on targets of Swerling type II, i.e. 

target fluctuation rate is pulse to pulse and target RCS obeys Rayleigh-power 

distribution law. As mentioned in Chapter 1, there are other Swerling types for 

different RCS statistics and fluctuations rate. The target type is insignificant for 

performance evaluations made in terms of approximate CFAR loss since 
fa

P  

versus threshold multiplier curves are independent of 
d

P . However, the true CFAR 

loss also depends on target fluctuation characteristics via 
d

P . Hence, the 

performance evalutions in terms of true CFAR loss might be extended to other 

Swerling target types. 

The lowest 
fa

P  analysed in this thesis is 410− . This number is limited to the MC 

simulation number. In other words lower 
fa

P  values can be obtained by increasing 

the MC simulation number. As indicated in Sections 3.1 and 3.3, in this thesis 610  

MC simulation is made in order to get realiable PFAs (minimum 410− ). Increasing 

the MC simulation number will result in lower 
fa

P  values however lengthens the 

simulation time spent. As a result, MC simulation number might be increased to 

get performance evaluations for lower 
fa

P  values. 
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APPENDIX A  

CHANGE OF VARIABLES AND 

JACOBIAN CALCULATION 

 

As [26] says, a problem often encountered is the determination of the PDF of a set 

of random variables that are related to an old set (with known density function) by 

one to one mapping. The Jacobian calculation appears when for this 

transformation is necessary. 

Assume a change of variable ( )y xφ=  and it is a differential mapping on the 

interval [ ]T c d=  and T ′  is the interval [ ]a b  with ( )c aφ =  and ( )d bφ = . In 

one dimesion, the explicit statement of the change of variables theorem for f  a 

continous function of y  is 

( )( ) ( )
'T T

d
f x dx f y dy

dx

φ
φ =∫ ∫  (A.1) 

In two dimensions, ( ),x x u v=  and ( ),y y u v=  are assumed. Suppose that the 

region S ′  in the uv -plane is transformed to a region S  in the xy -plane under this 

transformation. Define the Jacobian of the transformation as 
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( ),

x x

u v
J u v

y y

u v

∂ ∂ 
 ∂ ∂

=  
∂ ∂ 
 ∂ ∂ 

 (A.2) 

It turns out that this describes the relationship between the element of area dxdy  

and the corresponding area element dudv . With this definition, the change of 

variable formula becomes 

( ) ( ) ( )( ) ( ), , , , ,
S S

f x y dxdy f x u v y u v J u v dudv
′

=∫∫ ∫∫  (A.3) 

Change of variables theorem and also the Jacobian determinant ( ),J u v , often 

called Jacobian as well, are used in order to change the random variables. 

A.1. Obtaining Rayleigh Distributed Envelope from Two Complex 

Gaussian Component 

If X�  is a complex Gaussian variable with in-phase and quadrature components 
I

x  

and 
Q

x , the envelope of which is given in (A.4). 

2 2
I Q

X s x x= = +�  (A.4) 

The inphase and quadrature components can be changed as 

( )

( )

cos

sin

I

Q

x s

x s

φ

φ

=

=
 (A.5) 

By using the Jacobian calculation ( ), ,
S

f s φΦ  is given by 
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( ) ( ) ( ) ( )( ), ,, , cos , sin
I QS X X

f a J I Q f s sφ φ φΦ =  (A.6) 

In (A.7) the Jacobian ( ),J I Q  is calculated by using (A.2). 

( )

( ) ( )
( ) ( )

,

cos sin
             

sin cos

I I

Q Q

x x

s
J I Q

x x

s

s
s

s

φ

φ

φ φ

φ φ

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂

−
= =

 (A.7) 

Since  
I

x  and 
Q

x  are independent, their joint density function ( ), ,
I QX X I Q

f x x  

becomes 

( )
2 2

, 2 2

1
, exp

2 2I Q

I Q

X X I Q

x x
f x x

πσ σ

 +
= −  

 
 (A.8) 

The resulting compound PDF is given in (A.9) where the individual PDFs are 

given in (A.10). 

( )
2

, 2

1
, exp

2 2S

s s
f s φ

π σΦ

 
= − 

 
 (A.9) 

Finally the envelope of complex Gaussian distributed variables has a Rayleigh 

distributed PDF ( )S
f s  as given in in (A.10). 

( )

( )

2

2 2
exp

2

1

2

S

s s
f s

f

σ σ

φ
πΦ

 
= − 

 

=

 (A.10) 
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A.2. Generalised  Distributed Voltage to Gamma Distributed Power 

The generalised Chi distribution has the form given in (A.11).  

( )
2

2 1 2 22
( ) exp  

( )

v
v

Y

b
f y y b y

v

−= −
Γ

 (A.11) 

If the variable y  is changed by 2
z , the expression of ( )Z

f z  will be as in (A.12) 

by using (A.1). 

( ) ( )1
Z Y

f z f y
z

y

=
∂

∂

 
(A.12) 

After solving (A.12), the resulting PDF ( )R
f r  will be found as in (A.13). 

( )
2

1 2( ) exp  
( )

v
v

Z

b
f z z b z

v

−= −
Γ

 (A.13) 

Finally, ( )z
f z  has the form of gamma distribution. 

A.3. Rayleigh Distributed Voltage to Exponentially Distributed Power 

Rayleigh distributed variable s ’s PDF is as given in (A.14), with parameter σ . 

( )
2

2 2
exp

2S

s s
f s

σ σ

 
= − 

 
 (A.14) 

If the variable r  is represented as 2s , the relationship between the resulting PDFs 

of ( )R
f r  and ( )S

f s  will be as in (A.15) by using (A.1). 
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( ) ( )1
R S

f r f r
r

s

=
∂

∂

 
(A.15) 

After solving (A.15), the resulting PDF ( )R
f r  will be found as in (A.16). 

( ) 2 2

1
exp

2 2
R

r
f r

σ σ

 
= − 

 
 (A.16) 

Here ( )R
f r  has the exponential distribution shape with mean 22σ . 
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APPENDIX B  

CHARACTERISTIC FUNCTIONS OF 

RANDOM VARIABLES 

 

Suppose that κ  is a random variable on sample space Κ  and ( ).fΚ  is the 

probability density function of κ . The characteristic function of Κ , denoted 

( ).CΚ  is defined as in if κ  is a continous random variable, 

( ) ( )

( ) ( )

exp

         exp

C t E jt

jtx f x dx

κΚ

∞

Κ

−∞

= ∫

�

 (B. 1) 

In (B. 1), ( )C tΚ  is seen to be the Fourier transform (with the sign reversed). 

Because of this fact if ( )C tΚ  is known, ( ) f xΚ  can be found from inverse Fourier 

transform [30]. Given the characteristic function of a random variable κ , it can be 

shown that the PDF of κ  can be obtained from the inverse formula 

( ) ( ) ( )
1

 exp
2

f x jtx C t dt
π

∞

Κ Κ

−∞

= −∫  (B. 2) 

.The characteristic function is used in calculating the PDF for the sum of n  
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independent random variables. For instance, suppose that 1 2, ,...,
n

κ κ κ  are n  

independent random variables on a sample space with corresponding PDFs: 

1 2
, ,...,

n
f f fκ κ κ . Further suppose that another random variable on the space, ξ  is 

defined as 

1 2 ...
n

ξ κ κ κ= + + +  (B. 3) 

Given expressions for PDFs: 
1 2
, ,...,

n
f f fκ κ κ , the PDF fξ  can be obtained from 

them by use of characteristic functions. Since, 

( ) ( )

( )( ) ( )

( ) ( ) ( )

1 2

1 2

1 2 , ,..., 1 2 1 2

exp

         ... exp ... , ,..., ...

         ...

n

n

n n n

C t E jt

jt f d d d

C t C t C t

κ κ κ

κ κ κ

κ

κ κ κ κ κ κ κ κ κ

Κ

∞ ∞ ∞

−∞ −∞ −∞

= + + +

=

∫ ∫ ∫

�

(B. 4) 

If the characteristic funtion of each 
i

κ  can be calculated from (B. 1) and (B. 4) is 

applied to obtain expression for Cξ  in terms of the individual characteristic 

functions. Then, the PDF of ξ , fξ  can be obtained from (B. 5). 

( ) ( ) ( )
1

exp
2

f x jtx C t dtξ ξ
π

∞

−∞

= −∫  (B. 5) 

 


