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ABSTRACT 

 

 

ACTIVE FLUTTER SUPPRESSION OF A SMART FIN 

 

 

Karadal, Fatih Mutlu 

M.S., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Yavuz Yaman 

 

September 2008, 112 pages 

 

 

This study presents the theoretical analysis of an active flutter suppression methodology 

applied to a smart fin. The smart fin consists of a cantilever aluminum plate-like 

structure with surface bonded piezoelectric (PZT, Lead- Zirconate-Titanate) patches. 

 

A thermal analogy method for the purpose of modeling of piezoelectric actuators in 

MSC®/NASTRAN based on the analogy between thermal strains and piezoelectric 

strains was presented. The results obtained by the thermal analogy were compared with 

the reference results and very good agreement was observed. 

 

The unsteady aerodynamic loads acting on the structure were calculated by using a 

linear two-dimensional Doublet-Lattice Method available in MSC®/NASTRAN. These 

aerodynamic loads were approximated as rational functions of the Laplace variable by 

using one of the aerodynamic approximation schemes, Roger’s approximation, with 

least-squares method. These approximated aerodynamic loads together with the 

structural matrices obtained by the finite element method were used to develop the 

aeroelastic equations of motion of the smart fin in state-space form. 



 
v

The H∞ robust controllers were then designed for the state-space aeroelastic model of the 

smart fin by considering both SISO (Single-Input Single-Output) and MIMO (Multi-

Input Multi-Output) system models. The verification studies of the controllers showed 

satisfactory flutter suppression performance around the flutter point and a significant 

improvement in the flutter speed of the smart fin was also observed. 

 

 

Keywords: Flutter suppression, thermal analogy method, unsteady aerodynamic 

modeling, H∞ controller design, smart structures. 
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ÖZ 

 

 

AKILLI BİR FİNİN AKTİF ÇIRPINMA KONTROLÜ 

 

 

Karadal, Fatih Mutlu 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Yavuz Yaman 

 

Eylül 2008, 112 sayfa 

 

 

Bu çalışmada, aktif kontrol ile akıllı bir fin için çırpınmanın bastırılmasının teorik 

incelenmesi sunulmuştur. Akıllı fin, bir ucu tutturulmuş, diğer ucu serbest pasif 

alüminyum fin ve bunun her iki yüzeyine simetrik olarak yapıştırılmış piezoelektrik 

(PZT, Lead-Zirconate-Titanatee) yamalardan oluşmaktadır. 

 

Piezoelektrik uyarıcıları MSC®/NASTRAN’ da modellemek amacıyla, termal 

gerinimlerle piezoelektrik gerinimler arasında benzetim kurmaya dayanan termal 

benzetim yöntemi sunulmuştur. Termal benzetimle elde edilen sonuçlar, referans 

sonuçları ile karşılaştırılmış ve sonuçların birbirleriyle son derece uyumlu olduğu 

gözlemlenmiştir. 

 

Akıllı fin üzerine etkiyen düzensiz aerodinamik yükler, MSC®/NASTRAN programı ile 

doğrusal iki boyutlu Doublet-Lattice metodu kullanılarak hesaplanmıştır. Bu yükler 

Roger yaklaşımı ve en küçük kareler metodu ile Laplace tabanlı fonksiyonlar olarak 

ifade edilmiştir. Yaklaşık düzensiz aerodinamik yükler ve sonlu elemanlar metodu ile 
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elde edilen yapısal matrisler kullanılarak akıllı finin aeroelastik modelinin durum-uzay 

şeklinde ifadesi oluşturulmuştur. 

 

Akıllı finin tek-girdili tek-çıktılı ve çok-girdili çok-çıktılı sistem modelleri için  H∞ tipi 

gürbüz kontrolcüler tasarlanmıştır. Tasarlanan kontrolcüler başarılı bir şekilde 

çırpınmayı bastırmışlar ve çırpınma zarfını önemli ölçüde iyileştirmişlerdir.  

 

 

Anahtar kelimeler: Çırpınmanın bastırılması, termal benzetim metodu, düzensiz 

aerodinamik modellemesi, H∞ denetçi tasarımı, akıllı yapılar. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background to the Study 

 

There have been intensive efforts to understand the aeroelastic behavior of structures 

more accurately in order to avoid catastrophic structural failure due to excessive 

vibrations. Since current aircraft designs move toward lighter structures to improve the 

fuel efficiency and aircraft agility, various aeroelastic problems are likely to occur more 

frequently. In recent years, extensive research has been carried out to develop 

methodologies for controlling the aeroelastic behavior of structures. 

 

Flutter suppression is one of the main objectives of the aeroelastic control. Flutter is a 

self-excited oscillation of a structure caused by the interaction of the aerodynamic, 

inertial and elastic characteristics of the components involved. At speeds below the 

flutter speed, oscillations will be damped. At the flutter speed, oscillations will persist 

with constant amplitude (zero damping). At speeds above the flutter speed, oscillations 

will cause the damage or destruction of the structure.   

 

Active and passive control methods have been developed in the last three decades and 

applied to suppress flutter. Passive solutions such as increasing the structural stiffness, 

mass balancing or modifying geometry resulted in increased weight and cost, and 

decreased performance. Therefore, there is a considerable interest in developing active 

control methods that can be used in place of, or in combination with, the traditional 

passive methods. Active methods are proved to be more robust and can conveniently and 

effectively take uncertainties into account.      
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During the past 30 years, there has been considerable research to develop active flutter 

suppression concepts that use conventional leading and trailing edge aerodynamic 

control surfaces. Flutter is generally of a catastrophic nature; therefore a failure of the 

system could seriously affect flight safety. As a result, system redundancy, reliability, 

and maintainability are critical issues to be addressed. To a lesser extent, the control 

surface authority available to maneuver the aircraft with the simultaneous 

implementation of active flutter suppression is also a concern. To alleviate these 

concerns, alternatives to utilizing the aerodynamic control surfaces for active flutter 

suppression are being studied.   

 

The application of smart structures in conjunction with the advance control techniques is 

one such concept. The smart structure can be defined as the one which can sense the 

external disturbance and respond to that with active control in real time to maintain the 

mission requirements. Smart structures consist of highly distributed active devices called 

smart materials and controller units. The smart materials are used as sensors and/or 

actuators which are either embedded in or attached to an existing passive structure. Such 

materials include piezoelectric materials, shape memory alloys, electro/magneto-strictive 

materials and electro/magneto-rheological fluids.   

 

The most widely used smart materials are piezoelectric materials. Piezoelectricity is a 

property of materials that generate an electrical charge when the materials are subject to 

material strain, and conversely, piezoelectric materials deform when they are subjected 

to an electric field. The development of mechanical strain when subjected to the electric 

field can be utilized to actuate a structure. A local strain is produced in the structure, 

which induces forces and moments. By judicious arrangement of piezoelectric actuators, 

the correct reaction of the structure required to inhibit flutter can be produced. 
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1.2 Scope and Contents of the Study 

 

The purpose of this thesis is to present the theoretical analysis of an active flutter 

suppression methodology applied to a smart fin.  The smart fin consists of a cantilever 

aluminum plate-like structure with surface bonded piezoelectric (PZT, Lead- Zirconate-

Titanate) patches. Since its shape looks like the typical vertical tail of an aircraft, it is 

called smart fin in the study. Fluttering vibrations of the smart fin are attenuated and the 

system is stabilized over a wide range of operating conditions. 

 

Chapter 2 gives a literature survey about the smart structures and active aeroelastic 

control. Recent developments in the field of piezoelectric materials are explained and the 

work done on the structural modeling of smart structures is described. The work on 

unsteady aerodynamic modeling and the applications of smart structures in active 

aeroelastic control are also given. 

 

Chapter 3 is devoted to the structural modeling of smart structures by using finite 

element method. MSC®/PATRAN and MSC®/NASTRAN package programs are used in 

the modeling and analysis. Different finite element based structural modeling techniques 

for smart structures are proposed. To simulate piezoelectric actuation in 

MSC®/NASTRAN, the thermal analogy method, which is based on the analogy between 

piezoelectric strain and thermally induced strain, is described and some validation 

results are presented to demonstrate the accuracy of this method. Finally, the structural 

model of the smart fin is given. 

 

Chapter 4 describes the state-space representation of the aeroelastic model of the smart 

fin. Rational approximation of the unsteady aerodynamic loads in the Laplace domain is 

described. A state-space model for the smart structures under unsteady aerodynamic 

loading is constructed, and the open loop characteristics of the smart fin are investigated. 

 

Chapter 5 is devoted to the design of H∞-synthesized controllers for the active flutter 

suppression of the smart fin. In the design of the controllers, SISO (Single-Input Single-
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Output) and MIMO (Multi-Input Multi-Output) system models are considered. This 

chapter also investigates the performances of the controllers in vibration suppression and 

the enhancement in the flutter boundary of the smart fin.  

 

The general conclusions drawn from the study and the recommendations for the future 

work are given in Chapter 6. 

 

 

1.3 Limitations of the Study 

 

The main limitations of the study can be listed as follows: 

 

- Nonlinear characteristics of piezoelectric actuators and their hysteresis effects are 

neglected. 

- Unsteady aerodynamics are calculated by Doublet Lattice Method in 

MSC®/NASTRAN, and they are approximated by Roger’s method.  

- H∞ controller design method is considered for control applications. 
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

2.1 Introduction 

 

This chapter presents a literature survey on the use of smart structures in active 

aeroelastic control. The survey first details the advances and trends for the smart 

structures with piezoelectric materials. Then the work done on the structural modeling of 

smart structures is described. Finally the recent developments in the field of unsteady 

aerodynamic modeling and active aeroelastic control are explained. 

 

 

2.2 Smart Structures with Piezoelectric Materials 

 

Recent developments in the field of piezoelectric materials have encouraged many 

researchers to work in the field of smart structures. The piezoelectric materials can be 

used as sensors that recognize and measure the intensity of physical quantities such as 

strain in the structure and as such can be used as a structural health monitor to detect the 

possible damage. They can also be used as actuators, where be responding to an applied 

voltage, they strain, and cause the smart structure to deform, or in the dynamic case 

cause it to excite or dampen vibration oscillations [1]. 

 

Piezoelectricity was first demonstrated by Pierre and Jacques Curie in 1880. Their 

experiments led them to elaborate the early theory of piezoelectricity [2]. In 1894 Voigt 

rigorously stated the relationship between the material structure and the piezoelectric 

effects, namely that when a voltage is placed across a piezoelectric material, it generates 
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a geometric change known as a converse piezoelectric effect [1]. Depending on the 

material orientation and the poling direction, the material may elongate or shrink in 

different directions, or an angular distortion. The converse piezoelectric effect has been 

applied in actuators design. Also, with the same material if the material is stressed due to 

a tensile, compressive or shear load, an electrical current results, and this is called the 

direct piezoelectric effect. The direct piezoelectric effect has been widely used in 

transducers design (accelerometers, force and pressure transducers, etc.).  

 

The primary piezoelectric materials in use are piezopolymers (e.g. Polyvinylidene 

Fluoride - PVDF) and piezoceramics (e.g. Lead Zirconate Titanate - PZT). However, 

since PVDF actuators and sensors have very low passive stiffness values and extreme 

sensitivities to environmental conditions such as humidity and temperature, they are not 

attractive for most of the engineering applications [3]. PZTs are widely used as actuator 

and sensor for a wide range of frequencies, including ultrasonic applications and they 

are well suited for high precision applications [2]. 

 

 

2.3 Structural Modeling of Smart Structures 

 

Numerous studies have been completed on the structural modeling of smart structures 

with piezoelectric active devices. Considerable interest was focused on the modeling of 

smart structures using Euler-Bernoulli beam theory and Timoshenko beam theory with 

integrated piezoelectric layers in the past. Aldraihem et al. [4] was developed models for 

laminated beam-like components of smart structures using these two theories. In this 

work, comparison between the models was also presented to show the advantages and 

the limitations of each of the theories. Abramovich [5] was presented analytical 

formulation and closed form solutions of composite beams with piezoelectric actuators, 

which was based on Timoshenko beam theory. He also studied the effects of actuator 

location and number of patches on the actuator’s performance for various configurations 

of the piezoelectric patches and boundary conditions under mechanical and/or electric 

loads. In addition to beam theories, in References [6,7], a scheme to model static and 
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dynamic responses of plates containing distributed piezoelectric elements utilizing the 

Kirchhoff thin plate theory was presented.  

 

Since the early 1970s, many finite element models have been proposed for the analysis 

of piezoelectric structural elements. They were mainly devoted to the design of 

ultrasonic transducers [8,9]. By the late 1980s, interests have been directed towards 

applications in smart materials and smart structures. Tzou and Tseng [10] developed a 

finite element code incorporated with feedback control design to study the vibration 

suppression of a flexible shell structure with piezoelectric sensors and actuators.        Ha 

et al. [11] established a finite element formulation based on an 8-node three-dimensional 

brick element for analyzing fiber reinforced laminated composites containing distributed 

piezoelectric ceramics. A finite-element model based on the classical laminated plate 

theory was developed for the active vibration control of a composite plate containing 

distributed piezoelectric sensors and actuators by Lam et al. [12]. Koko et al. [13] 

presented a 20-node piezoelectric element code, capable of designing independent 

modal-space control and state feedback control. 

 

Due to the increasing interest in the design of complex smart structures with 

piezoelectric actuators and the need for fast and simple implementation of piezoelectric 

control systems, technology developers provide the tools to model smart structures. 

Some piezoelectric elements have become available in the commercial finite element 

programs such as ANSYS® and ABAQUS®. Yaman et al. [14] worked on the 

effectiveness of the finite element code ANSYS in the modeling of the smart structures. 

Hauch [15] investigated using ABAQUS electromechanical coupled finite elements and 

superelement capabilities for modeling structures with piezoelectric actuators.   

 

For modeling piezoceramics, Freed and Babuska [16] described a simple thermal 

analogy approach, in which temperature-induced expansion is used to simulate voltage 

actuation. They also presented the integration of the approach into MSC®/NASTRAN, 

which offers no piezoelectric coupled-field elements. Dong and Meng [17] were 

investigated the dynamic response of a smart beam by using the thermal analogy with 
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MSC/NASTRAN and validated the thermal analogy method by comparing the results to 

the ones observed by experimentally and computed by the finite element method based 

on a piezoelectric formulation.     

 

 

2.4 Unsteady Aerodynamic Modeling 

 

The main difficulty in modeling an aeroelastic system lies in the representation of the 

unsteady aerodynamic loads. An important feature of these forces is the lag associated 

with the circulatory wake, where disturbances shed to the flow by the wing motion 

continue to affect the loads at a later time [18]. Theodorsen [19] employed a lift 

deficiency function in the reduced frequency domain to represent this effect for the 

oscillatory flow over an airfoil. R.T. Jones [20] first considered the aerodynamic forces 

on finite wings of elliptic planform in non-uniform motion in incompressible flow. The 

lift on rectangular and tapered wings for impulsive motion in incompressible flow was 

calculated by W.P. Jones [21]. 

 

Several techniques have been presented in the past for the calculation of unsteady 

aerodynamic loads for simple harmonically oscillating airfoils and lifting surfaces. 

Techniques of treating the singularities of the kernel function and obtaining solutions 

were given by Watkins et al. [22], and have been extended to wings with control 

surfaces by Cunningham [23]. Another calculation process, analogous to the finite 

element method of structures, is the doublet-lattice technique of Albano and Rodden 

[24]. 

 

In order to construct an aeroelastic model in state-space form, the air loads in the 

frequency domain have to be approximated in the Laplace domain using rational 

function approximations. There are several methods in the literature in order to 

approximate the unsteady generalized forces. The most widely used methods are those 

based on the least-squares method of Roger [25], the Matrix Pade method of  Vepa [26] 

and the minimum state method of Karpel [27]. The resulting state-space equations from 



 
9

these techniques include augmented states that represent the aerodynamic lags. The 

number of aerodynamic augmented states resulting from Vepa’s and Roger’s methods is 

equal to the number of the approximating denominator roots, multiplied by the number 

of vibration modes. In the minimum-state method, higher number of denominator roots 

is required and computationally heavier, iterative, nonlinear least-square solutions are 

used. However, the number of augmenting states resulting from this method is equal to 

the number of denominator roots, regardless of the number of modes. Thus, the resulting 

approximation yields a state-space model which has a relatively low number of states.  

 

 

2.4 Active Aeroelastic Control 

 

In recent years, applications of active control to aeroelastic systems have been studied in 

order to favorably modify the flutter, gust, buffet and maneuver load behavior of 

aeroelastic systems. 

 

Control surfaces such as spoilers and flaps have been generally used to generate 

auxiliary aerodynamic lift and moment. The active flexible wing (AFW) program 

demonstrated flutter suppression of a fighter-type scaled model in various maneuver 

modes by utilizing control surfaces and active control technology at NASA Langley 

Research Center [28,29]. Vipperman et al. [30] developed a wind tunnel model of a 

typical section airfoil with a trailing edge flap and applied 2H - and μ –synthesized 

controls for active flutter suppression. They reported that μ –synthesized control 

provided significantly better disturbance rejection than 2H  controller, particularly when 

the aeroelastic pole migration is dominant. Barker et al. [31] introduced a control theory 

based on gain-scheduled Linear Fractional Transformation (LFT) for a wind tunnel wing 

model with a trailing edge flap and upper and lower surface spoilers. The control 

concept was implemented successfully for a wide range of operating conditions to 

achieve vibration attenuation. A comparative study was also made on an optimized 

linear controller with LFT based control scheme and it was seen that the gain-scheduled 

controller outperforms the linear controller throughout the operating region. 
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Recent development of smart structures gives us another alternative for active 

aeroelastic control. The augmentation or replacement of conventional aerodynamic 

control surfaces with strain actuation for aeroelastic control was the focus of an 

analytical investigation of a typical section by Lazarus et al. [32]. They found that strain 

actuation by means of piezoelectric elements may provide a viable and effective 

alternative to articulated control surfaces for controlling aeroelastic response.  

 

As part of the Actively Controlled Response of Buffet-Affected Tails (ACROBAT) 

program at NASA Langley Research Center, Moses [33,34] conducted wind tunnel 

experiments on a 1/6 scale model of the F/A-18 aircraft. The starboard vertical tail was 

equipped with an active rudder and the port vertical tail was equipped with piezoelectric 

actuators. By using single-input-single-output control law, the power spectral density of 

the root strains at the frequency of the first bending mode of the vertical tail was reduced 

by up to 60%. In another study, an active smart material control system, using 

distributed piezoelectric actuators, was presented for buffet alleviation by Sheta et al. 

[35]. In this work, a computational investigation of active control of the vertical tail 

buffeting of full-scale model of the F/A-18 aircraft over wide range of angles of attack 

was conducted and presented. These studies had shown that the actively controlled 

piezoelectric actuators are effective for buffet alleviation. 

 

Suleman et al. [36] proposed the effectiveness of the piezoceramic sensor and actuators 

on the suppression of vibrations on an experimental wing due to the gust loading. They 

showed, experimentally, the feasibility of the application of the smart structures in the 

suppression of vibrations due to the gust loading on the smart wing. Fazelzadeh et al. 

[37] successfully applied an active optimal integral/feedforward control for a supersonic 

panel under gust disturbance effects with piezoelectric actuators. The effectiveness of 

the designed optimal controller for different piezoelectric actuator configurations was 

also demonstrated. 

 

An analytical and experimental investigation of flutter suppression of a fixed wing by 

piezoelectric actuators was performed by Heeg [38] with the corresponding 
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experimental studies performed at NASA Langley Research Center under the 

Piezoceramic Aeroelastic Response Tailoring Investigation (PARTI) program. 

Experimental results indicated significant flutter suppression was achieved. Döngi et al. 

[39] presented a finite element method based on numerical solution for flutter 

suppression of adaptive panel with self-sensing piezoelectric actuators in high 

supersonic flow. A control approach based on output feedback using collocated 

piezoelectric actuators was introduced with a simple analog circuit. 

 

In one of the recent studies, Han et al. [40] presented a numerical and experimental 

investigation on active flutter suppression of a swept-back lifting surface using 

piezoelectric actuation. They constructed the aeroelastic model by using a finite element 

method, a panel aerodynamic method and the minimum state-space realization, and 

grouped the piezoelectric actuators optimally by using genetic algorithms to enhance 

controllability. 2H - and μ –synthesized robust control laws were designed for flutter 

suppression and the performances of the two control methods were compared. They 

reported that μ –synthesized controller showed improved behavior over a wide flow 

speed range. 
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CHAPTER 3 

 

 

STRUCTURAL MODELING OF SMART STRUCTURES 

 

 

3.1 Introduction 
 

This chapter is devoted to the details of the structural modeling of smart structures by 

using finite element method. MSC®/PATRAN and MSC®/NASTRAN package 

programs are used in the modeling and analysis. Firstly, theory of piezoelectricity is 

introduced and governing equations of motion for smart structures are given. Then, in 

order to represent the different finite element based structural modeling techniques for 

smart structures, three finite element models are proposed for a smart beam and the 

influences of different finite element types are investigated.  

 

Since MSC®/NASTRAN offers no piezoelectric coupled-field elements capability to 

model the smart structures directly; the analogy between piezoelectric strain and 

thermally induced strain, called thermal analogy method, is used to allow temperature 

changes to model piezoelectric voltage actuation. An overview of the governing 

equations applied to the thermal analogy and ways to implement it into 

MSC®/NASTRAN are described.  Thereafter, some validation results are presented to 

demonstrate the accuracy of the thermal analogy method and the method is then used to 

predict the static response of the smart beam. Finally, structural model of the smart fin, 

which is the model used for the active flutter suppression in this thesis, is given.   
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3.2 Theory of Piezoelectricity 

 
Inverse piezoelectricity effect is the property exhibited by anisotropic crystals which 

develops mechanical strains proportional to the electrical charges when subjected to an 

external electrical field. Figure 3.1 shows the material and the principal axes (x, y, z) and 

(1, 2, 3), respectively, and also the direction of polarization (z-axis) for a piezoelectric 

material. Actuation voltages applied to inner and outer electrodes of the piezoelectric 

material are represented by iV  and oV , respectively.  

 

 
Figure 3.1 A typical piezoelectric patch 

 

 

The three-dimensional linear piezoelectric equations for the inverse piezoelectric effect 

can be expressed by the following equation [41]:    

 

{ } [ ]{ } [ ] { }Eec TE −= εσ                                             (3.1) 

 

where { }σ  is the 16×  stress vector, { }ε  is the 16×  strain vector, { }E  is the 13×  

electric field vector, [ ]Ec  is the 66×  elastic stiffness coefficient matrix in constant 

electric field and [ ]e  is the 63×  piezoelectric stress constant matrix. The superscript “T” 

denotes the transpose of a matrix. Equation (3.1) characterizes the inverse piezoelectric 

effect that enables piezoelectric materials to function as actuators.  
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Piezoelectric material manufacturers usually provide the strain-charge form of the 63×  

piezoelectric strain matrix [ ]d . This matrix accounts for the piezoelectric effect, i.e., the 

coupling between mechanical and electric field. The relation between [ ]e  and [ ]d  can be 

given as follows: 

 

[ ] [ ][ ]TET dce =                                                              (3.2) 

 

For many piezoelectric material types, the polarization axis is aligned with the z-axis, or 

3-axis. This provides symmetric hexagonal crystallographic structure and the elastic 

stiffness coefficient matrix and the piezoelectric strain coefficient matrix can be written 

as: 
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3.3 Governing Equation of Motion for Smart Structures 

 
The finite element method can effectively be used in the modeling of smart structures. 

By applying the finite element procedure, the governing equation of motion for a smart 

structure subjected to the piezoelectric actuation can be represented as [42,43] 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ })()()()( tuFtxKtxDtxM p=++ &&&                 (3.5) 

 

here, by defining Ndof as the total number of degrees of freedom of the finite element 

model, [ ]M , [ ]D  and [ ]K  denote Ndof×Ndof global mass, damping and stiffness 

matrices, respectively. { })(tx  is the structural displacement vector of size Ndof ×1. 

Defining L as the number of piezoelectric actuators, [ ]
jNdofpF

×
 is the unit piezoelectric 

voltage force transformation matrix from jth (j=1 to L) actuator and { } 1)( ×jtu  is the 

piezoelectric actuation voltage vector associated with the jth piezoelectric actuator. [ ]pF  

specifies the actuation characteristics of PZT actuators and depends on the types of 

actuators, their location on the structure and their electromechanical properties. It should 

be noted that aerodynamic and other disturbance forces are not included in Equation 

(3.5).  

 

 

3.4 Different Finite Element Based Structural Modeling Techniques for Smart 

Structures  

 
This section presents structural modeling techniques for smart structures using finite 

element method with MSC®/PATRAN. Different finite element models of a smart beam 

are proposed and the influences of finite element types are investigated. The smart beam 

considered in this study is composed of an aluminum beam modeled in cantilevered 

configuration with eight surface bonded SensorTech BM500 type [44] piezoelectric 

patches. The smart beam model is given in Figure 3.2.  The material properties of the 
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aluminum beam are: E = 69 GPa, =ν 0.33 and =ρ 2710 kg/m3. The electromechanical 

properties of the BM500 are given in Appendix A. 
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Figure 3.2 The smart beam used in the study 
 

 

 

 

The smart beam is modeled by considering three approaches and natural frequencies of 

the models are examined and compared with the experimental results. 

 
In the first approach, both piezoelectric patches and aluminum beam are modeled by 

CHEXA type solid elements. This model is called ‘solid-solid model’ and shown in 

Figure 3.3. The model consists of 1628 nodes and 808 CHEXA solid elements with 

eight grid points. 
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Figure 3.3 Solid-solid finite element model of the smart beam 

with 1628 nodes and 808 CHEXA elements 

 

 

In order to improve the computational efficiency and alleviate the stiff behavior of 

ordinary three-dimensional solid elements, the plate structures are usually modeled by 

flat-shell elements. For this reason, as a second approach, the piezoelectric patches and 

the part of the aluminum beam between the patches are modeled by 100 eight-node 

CHEXA type solid elements; the remaining part of the beam is modeled by 132 four-

node CQUAD4 type shell elements. This model is denoted by ‘solid-shell’ model and is 

given in Figure 3.4. In this model, solid and shell elements are connected to each other 

by MSC®/NASTRAN multipoint constraint type shell-to-solid element connector, 

RSSCON. RSSCON connects the three translational degrees of freedom and the two 

rotational degrees of freedom of the shell node to the three translational degrees of 

freedom of the upper and lower solid edge nodes [45]. Figure 3.5 shows the detailed 

modeling near the piezoelectric elements. 
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Figure 3.4 Solid-shell finite element model of the smart beam 

with 340 nodes and 132 CQUAD4 and 100 CHEXA elements 

 

 

 

PZT patches

shell element

Al beam

solid element  
 

Figure 3.5 The detailed modeling near the piezoelectric patches for the solid-shell model 

of the smart beam 

 

 

 

In the third approach, both piezoelectric patches and aluminum beam are modeled by 

CQUAD4 type shell elements. The connection between the piezoelectric patches and the 

aluminum beam shell elements is provided by rigid bar elements, RBAR’s. Since 

RBAR’s are connected together, there exist independent and dependent degrees of 
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freedom on nodes connected by RBAR’s. The nodes on the aluminum beam mid-layer 

have the independent degrees of freedom and all the nodes on the piezoelectric layers 

have the dependent degrees of freedom. This model can be called ‘shell-shell model’. 

Finite element model of the smart beam and the detailed modeling near the piezoelectric 

patches can be seen in Figure 3.6 and Figure 3.7, respectively. This modeling technique 

can be used when the passive portion of the smart structure is composite and/or the 

piezoelectric patches are composed of several layers; since composite structures are 

usually modeled by plate-like two dimensional elements in MSC®/NASTRAN. 

 

 

 

 

 

Figure 3.6 Shell-shell finite element model of the smart beam 

with 256 nodes and 202 CQUAD4 and 60 RBAR elements 
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Figure 3.7 The detailed modeling near the piezoelectric patches for the shell-shell model 

of the smart beam 

 

 

For the smart beam models developed, the normal modes analyses of MSC®/NASTRAN 

are performed. The first three natural frequencies for the smart beam models are 

examined and compared with the available experimental results [43]. Table 3.1 gives the 

comparison of the natural frequencies. It can be seen from Table 3.1 that, the natural 

frequency results for the finite element models are close to each other and especially for 

the first mode, are in a very good agreement with the experimental frequency. The 

difference between the theoretical and the experimental results is mainly due to the 

tendency of the finite element analysis to overestimate the natural frequencies and also 

due to the dispersion error caused by discretization at higher modes; usually more 

refined meshes are needed to get good accuracy [46]. 

 

 

Table 3.1 Theoretical and experimental frequencies [Hz] of the smart beam 

Mode 
number 

Solid-solid model 
Natural 

Frequencies  

Solid-shell model 
Natural 

Frequencies  

Shell-shell model 
Natural 

Frequencies  

Experimental 
Resonance 

Frequencies [43] 

1 7.31 7.30 7.33 7.29 

2 43.55 43.44 43.56 40.07 

3 117.12 116.76 116.86 110.62 
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3.5 Thermal Analogy Method 

 

Thermoelastic constitutive equation with the generalized Hooke’s law, taking into 

account the thermal effect, can be written as follows: 

 

{ } [ ]{ } [ ]{ } Tcc Δ−= αεσ                                                     (3.6) 

 

where { }α  is a 16×  thermal expansion coefficient vector and 0TTT −=Δ  is a 

temperature difference, relative to a reference temperature 0T . 

 

Combining piezoelectric equations (3.1) and (3.2) and comparing with equation (3.6), 

the piezoelectric strains and thermal strains relationship can be obtained as follows: 

 

[ ] { } { } TEd T Δ= α                                                         (3.7) 

 

For the extension actuation mechanism of piezoelectric materials, the electric field and 

poling direction are along the piezoelectric layer thickness, hence 1E  and 2E  can be 

taken as zero. Also assuming the variation of electrical potential is to be linear in the 

thickness of a piezoelectric layer (constant electric field), tVE /33 Δ= , equation (3.7) is 

reduced to: 

 

[ ] [ ] T
t
V

ddd TT Δ=
Δ

000000 332211
3

333231 ααα                (3.8) 

 

where 3VΔ  represents the voltage difference between the electrodes and t is the 

thickness of the piezoelectric actuator. 

 

From equation (3.8) the relation between piezoelectric strains and thermal strains is 

obtained as: 
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t
d31

11 =α ,  
t

d32
22 =α ,  

t
d33

33 =α  

 

3VT Δ=Δ                        (3.9) 

 

To simulate the voltage actuation, thermal expansion coefficients are imposed as 

piezoelectric strain coefficients divided by thickness and temperature change is imposed 

equal to the applied voltage. Equation (3.9) indicates that the voltage actuation of a 

piezoelectric actuator can be simulated exactly by using the conventional three-

dimensional elastic elements with the thermal actuation rather than directly utilizing 

piezoelectric elements, which are not currently available in MSC®/NASTRAN.   

     

It should be noted that since the thermal effect is not reciprocal quantity (i.e. temperature 

produces strains but strains do not produce temperature), only the inverse effect of linear 

piezoelectricity can be modeled by the thermal analogy method. It means that the 

piezoelectric element can only act as an actuator but not as a sensor. 

 

 

3.5.1 Implementation of the Thermal Analogy in MSC®/NASTRAN 

 

Modeling the voltage actuation of a piezoceramic based on the thermal analogy method 

can easily be performed in MSC®/NASTRAN via the CHEXA element card and the 

MAT9 material properties card. The MAT9 card describes anisotropic materials for 

solid elements and allows the application of six different thermal expansion coefficients. 

The required thermal expansion coefficients can be calculated from equation (3.9).  

 

The voltage actuation can be performed directly by applying a corresponding 

temperature, as described in the previous section, on the piezoelectric nodes with the 

TEMP cards. TEMP cards identify the locations at which thermal loads (voltage) are 

applied. Moreover, TEMPD card must also be used to set the temperature of non-

piezoelectric nodes to 0 to ensure thermal loads are generated only at the piezoelectric 

actuator locations.   



 
23

3.5.2 Numerical Validation of the Thermal Analogy Modeling Approach 

 

In order to validate the thermal analogy modeling approach in MSC®/NASTRAN, two 

test cases, developed by three-dimensional piezoelectric finite element formulation, are 

selected and the static and dynamic results are compared with the MSC®/NASTRAN 

thermal analogy results. For the purpose of comparing the results under a static loading, 

a composite plate with PZT actuators placed at the top and bottom surfaces of the plate 

from Lim et al. [47] is chosen as the test case. The displacement fields obtained from the 

static analysis by thermal analogy method are compared with this reference model. For 

the dynamic analysis, a piezoelectric actuator bonded to an elastic beam developed by 

Cote et al. [48] is chosen as the test case and the velocity results are compared.   

 

Static Analysis: 

The model on which static analysis performed is a simply supported composite plate 

composed of [0/90/0]sym graphite/epoxy layers with PZT actuators placed at the top and 

bottom surfaces of the plate.  Figure 3.8 represents the model. The poling directions of 

the two PZT wafers are opposite, so that the PZTs can produce a bending moment. 

Initially, 200 N/m2 pressure is prescribed over the plate and an electric field is applied 

such that the plate recovers its original shape. 
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Pressure

b

PZT actuators Graphite/epoxy layers  
 

Figure 3.8 Reference model for static analysis: A simply supported composite plate with 

PZT layers 

 

 

 

The thickness of PZT layers is 0.254 mm and the thickness of each graphite/epoxy layer 

is 0.138 mm. Material properties of the PZT and the graphite/epoxy are summarized in 

Table 3.2.  

 
 

Table 3.2 Material properties of PZT G1195 and graphite/epoxy 

Properties PZT G1195 
Piezoceramic 

T300/976 
Graphite/epoxy 

E11 (GPa) 63 150 

E22 (GPa) 63 9 

12ν  0.3 0.3 

G12 (GPa) 24.2 7.1 

d31 (10-10 m/V) 2.54 - 

d32 (10-10 m/V) 2.54 - 
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Finite element model of the composite plate is constructed by shell-shell modeling 

approach using the package program MSC®/PATRAN. Isotropic material properties are 

assumed for the piezoelectric layers (MAT9 card is not used) and the equivalent thermal 

expansion coefficients are calculated from equation (3.9). Finite element model consists 

of 867 nodes, 768 CQUAD4 plate elements and 578 RBAR rigid elements. PZT 

actuators and the composite plate are modeled by CQUAD4 elements and the bonding 

between PZT layers and the plate is provided by RBAR elements. MSC®/NASTRAN 

linear static solution is performed for 15V and 27V actuations to the PZT layers and 200 

N.m2 pressure over the plate. Voltage actuation is simulated by applying temperature 

differences of  CT o15=Δ  and CT o27=Δ  to the nodes of the piezoelectric layers with 

TEMP cards. TEMPD card is used in order not to generate thermal loads at the non-

piezoelectric nodes.  

 

Figure 3.9 shows the deformed shapes of the plate after applying 200 N/m2 pressure over 

the plate and applying 15 or 27V to the PZT layers. Figure 3.10 shows the displacement 

of the plate along its centerline for 0, 15, and 27V after applying the pressure. In Figure 

3.10, MSC®/NASTRAN thermal analogy results are given with the reference model 

results obtained by three-dimensional piezoelectric finite element formulation consisting 

of 18-node assumed strain piezo-solid elements [47]. It can be seen that the results 

obtained by MSC®/NASTRAN with the thermal analogy are very close to the results 

obtained by three-dimensional piezoelectric finite element formulation. This numerical 

test confirms that the thermal analogy provides satisfactory results. 
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(a) 15 V 

 
(b) 27 V 

 

Figure 3.9 Deformed shape of the composite plate with PZT actuators under 200 N/m2 

pressure and piezoelectric actuation of (a) 15 V and (b) 27 V 
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Figure 3.10 Deflection of the composite plate with PZT actuators along the centerline  

 

 

Dynamic Analysis: 

In order to assess the dynamic results obtained with the thermal analogy implemented in 

MSC®/NASTRAN, a BM500 piezoelectric actuator bonded on an aluminum cantilever 

beam is chosen as the test case.  Figure 3.11 gives the model studied.  

 

Finite element model is constructed by MSC®/PATRAN and is given in Figure 3.12. In 

the modeling of the smart structure, solid-solid modeling technique is used. The beam 

and the piezoceramic are modeled by 171 CHEXA solid elements. The material 

properties of the aluminum beam are: E = 67 GPa, =ν 0.33 and =ρ 2730 kg/m3. The 

electromechanical properties of the BM500 are given in Appendix A. 
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Side view

Top view Aluminum beam (368.3x19.05x3.175) mm

PZT BM500 (76.2x19.05x0.508) mm

76.2 mm 285.75 mm  
 

Figure 3.11 Reference model for dynamic analysis: An aluminum cantilever beam    

with PZT actuator 

 

 

Figure 3.12 Finite element model of the cantilever beam with PZT actuator 

 

 

Frequency response analysis of the beam is performed by MSC®/NASTRAN for a 

constant actuation voltage of VV 2828.0=Δ (i.e. CT o2828.0=Δ  in the TEMP card). 

The frequency response function (FRF) between the voltage applied to the piezoelectric 

actuator and the transverse velocity at 211 mm from the clamped end is used to compare 
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the NASTRAN thermal analogy results with the reference model results obtained by 

three-dimensional piezoelectric finite element formulation [48]. As shown in Figure 

3.13, thermal analogy and reference study results are very close to each other. Therefore, 

as it was also concluded for the static analysis case, the piezoelectric thermal analogy 

can be used to simulate a voltage actuation for dynamic analysis. 
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Figure 3.13 Frequency response function of the cantilever beam with PZT actuator  

 

 
 
3.5.3 Application of the Thermal Analogy Method to the Smart Beam  

 

The thermal analogy method is also applied to determine the static behavior of the smart 

beam models developed in Section 3.3. The three smart beam models are subjected to a 

piezoelectric actuation of 300V via thermal analogy using MSC®/NASTRAN. The 

deformation results of the three different models are shown in Figure 3.14. It can be seen 
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from Figure 3.14 that the tip deflection results are very close to each other, and also 

close to the result of 1.015 mm obtained by ANSYS® using piezoelectric finite elements 

[43].  

 

 

 
 

 

(a) Solid-solid model 

 

 

(b) Solid-shell model 

 

 

(c) Shell-shell model 

Figure 3.14 Deformation of the smart beam models                                                      

for the piezoelectric actuation of 300V 
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3.6 Structural Modeling of the Smart Fin  

 

In this section, the structural model of the smart fin is constructed. The smart fin consists 

of a cantilever aluminum passive plate-like structure with symmetrically surface bonded 

twenty-four piezoelectric actuator patches (25mm x 25mm x 0.5mm, Sensortech BM500 

type). The actual system is shown in Figure 3.15 and the schematic of the smart fin 

showing the placement of the actuators is presented in Figure 3.16. The material 

properties of the aluminum plate are: E = 69 GPa, =ν 0.33 and =ρ 2768 kg/m3 and the 

thickness of the plate is 0.93 mm. The electromechanical properties of the piezoelectric 

patches are given in Appendix A. 

 

 

 

 

Figure 3.15 The smart fin used in the study  
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Figure 3.16 Schematic view of the smart fin (all dimensions in mm) 

 

 

Finite Element Model of the smart fin is constructed with solid-shell modeling approach 

using MSC®/PATRAN. The piezoelectric patches and the part of the aluminum fin 

between the patches are modeled by 156 eight-node CHEXA type solid elements; the 

remaining part of the fin is modeled by 400 quadrilateral CQUAD4 type and 21 

triangular CTRIA3 type shell elements. The solid and shell elements of the fin are 

connected by RSSCON type multipoint constraints. Figure 3.17 shows the finite element 

model of the smart fin.  
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Figure 3.17 Finite element model of the smart fin 

(959 nodes and 156 CHEXA, 400 CQUAD4 and 21 CTRIA3 elements) 

 

 

A normal modes analysis is performed using MSC®/NASTRAN to determine the natural 

frequencies and mode shapes of the smart fin. Besides the finite element analysis, open 

loop experiments are also performed for the determination of the structural 

characteristics of the smart fin. The theoretically determined resonance frequencies of 

the smart fin are compared with the experimentally measured ones in Table 3.3, 

resulting in very good coincidence. Modal critical damping ratios extracted from the 

experimental data are also listed in Table 3.3. Critical damping ratios, ξ  at each mode 

were obtained by the “Half Power Point” method from the following equation:  

 

nf
f

×
Δ

=
2

ξ                  (3.10) 
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where fΔ  is the bandwidth of the response peak at the half-power point (equal to 0.707 

times peak amplitude) and nf  is the resonance frequency. 

 

Figure 3.18 shows the first three mode shapes of the smart fin. It can be seen that the 

first mode can be defined as the first out of plane bending mode, the second mode is 

predominantly torsional and the third mode is the second out of plane bending mode. 

 

 

 

Table 3.3 Theoretically and experimentally obtained natural frequencies and the 

experimentally determined damping ratios of the smart fin 

Frequency (Hz) Mode 
number 

FEM Experimental 

Experimental  
Critical Damping 

Ratio 

1 16.03 15.0 0.0190 

2 47.11 50.75 0.0148 

3 72.60 73.75 0.0091 
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(a) Mode 1 (1st bending) 

 

 
(b) Mode 2 (1st torsional) 

 

 
(c) Mode 3 (2nd bending) 

Figure 3.18 The first three mode shapes of the smart fin 
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3.7 Conclusions  

 

In this chapter, different finite element modeling techniques in MSC®/PATRAN were 

presented for the smart structures and the techniques were verified by using a smart 

beam. It was shown that the solid-solid modeling, in which the passive and active 

portions of the smart structure are modeled by solid elements, can be an approach for the 

simple smart structures, but the increased structural stiffening and computing time limit 

the potential applications of this approach on realistic aerospace structures. In order to 

eliminate these difficulties, solid-shell and shell-shell modeling techniques in which the 

passive portion of the smart structure is modeled by the shell elements, were also 

developed. These modeling techniques can be used effectively to obtain the finite 

element model of the smart structures. In this thesis, the structural model of the smart fin 

is constructed by solid-shell modeling approach.  

 

In order to simulate voltage actuation applied to the piezoelectric actuators of the smart 

structures in MSC®/NASTRAN, a method based on the analogy between thermal strains 

and piezoelectric strains was presented. The application of this method was discussed 

using reference models. The static and dynamic results obtained by the thermal analogy 

were compared with the reference results computed by three-dimensional piezoelectric 

finite element formulation and very good agreement was observed. It is concluded that 

the thermal analogy method can be efficiently used to simulate the voltage actuation in 

the smart structures. This method will be used later chapters, in obtaining the aeroelastic 

state-space representation of the smart fin. 
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CHAPTER 4 

 

 

STATE-SPACE REPRESENTATION OF THE SMART FIN UNDER 

UNSTEADY AERODYNAMIC LOADING 

 

 

4.1 Introduction 

 

This chapter presents a technique for the state-space representation of the aeroelastic 

model of the smart fin. The technique is based on a rational approximation of the 

unsteady aerodynamic loads in the Laplace domain, which yields state-space matrix 

equations of motion with constant coefficients. Figure 4.1 shows the flowchart for the 

numerical modeling procedure used in the thesis. With given geometry and material 

properties of the smart structure, the finite element model is formed and the structural 

matrices and vibration characteristics are obtained by using the finite element analysis.  

The thermal analogy method, mentioned in the previous chapter, is applied in the finite 

element analysis in order to obtain piezoelectric actuation properties. The structural and 

aerodynamic models of the smart structure are connected with splines. This model 

together with the vibration characteristics are used to obtain the unsteady aerodynamics 

in tabular form for various airflow parameters. The Roger’s approximation and least-

square method are applied to convert the unsteady aerodynamics into Laplace domain 

aerodynamics. A state-space system is constructed by integrating structural matrices, 

vibration, actuation and sensing characteristics of the smart structure, and the resulting 

aerodynamics.  This chapter outlines these numerical procedures. Then, the state-space 

approach is verified by performing a flutter analysis of a test case. Finally, the state-

space aeroelastic model of the smart fin is constructed and the open loop characteristics 

are investigated. 
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Figure 4.1 Flowchart to obtain the numerical model of smart structures                         

under unsteady aerodynamic loading 
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4.2 Generalized Aeroelastic Equations of Motion 

 

For a smart structure under aerodynamic loading, the aeroelastic equation of motion can 

be written as [38,49]: 

 

[ ]{ } [ ]{ } [ ]{ } [ ]{ } { }))(()()()( txFuFtxKtxDtxM ap +=++ &&&      (4.1) 

 

where [ ]M , [ ]D  and [ ]K  denote global mass, damping and stiffness matrices, 

respectively. { })(tx  is the structural displacement vector; [ ]pF  is the force matrix due to 

unit electric voltage. { }))(( txFa  represents aerodynamic force induced by the structural 

deformation and is a time function of the structural deformation. 

 

Most of the commercially available unsteady aerodynamic packages assume that the 

structure undergoes harmonic oscillations. Thus, Equation (4.1) can be rewritten in the 

frequency domain as: 

 

[ ] [ ] [ ] { } [ ]{ } { }))(()()( 2 ωωωω ixFuFixKDiM ap +=++−      (4.2) 

 

where ω  is the frequency of the excitation. 

 

Aerodynamic forces are the functions of the flight speed and altitude and their 

calculation heavily relies on the theoretical predictions that require unsteady 

aerodynamic computations. Unsteady aerodynamic forces acting on the structure of a 

linear aeroelastic system can be expressed in the frequency domain as [50]:   

 

{ } [ ]{ })()())(( ωω ixikQqixFa ∞=                  (4.3) 

 

where 2

2
1

∞∞ = Vq ρ  is the dynamic pressure where ρ  is the density of air and ∞V  is the 

free stream velocity. [ ])(ikQ  is the aerodynamic influence coefficient matrix and is 
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complex function of reduced frequency k and flight conditions. The reduced frequency is 

defined as ∞= Vbk 2/ω , where b is a reference chord length, and is a measure of the 

unsteadiness of the flow. A reduced frequency of zero represents the steady case while 

high values of reduced frequency indicate that unsteady effects are significant. [ ])(ikQ  is 

calculated at several reduced frequencies for a given Mach number and air density by 

using aerodynamic theories such as Doublet Lattice Method (DLM) [24].  

 

By substituting Equation (4.3) into (4.2) yields 

 

[ ] [ ] [ ] [ ] { } [ ]{ }uFixikQqKDiM p=−++− ∞ )())(( 2 ωωω          (4.4) 

 

In order to improve computational efficiency, the system size is usually reduced with the 

modal approach. In the modal approach the response of the system is described in terms 

of a linear combination of the lower order natural modes of the system: 

 

{ } [ ]{ })()( ωζφω iix =           (4.5) 

  

where [ ]φ  is the modal matrix and { })( ωζ i  is the modal displacement vector.  

 

Substituting Equation (4.5) into (4.4) and pre-multiplying by the transpose of the modal 

matrix [ ]Tφ  yields 

 

[ ] [ ] [ ] [ ] { } [ ]{ }uFiikQqKDiM p=−++− ∞ )())(( 2 ωζωω     (4.6) 

 

where [ ]M , [ ]D , [ ]K  and [ ])(ikQ   denote the nn×  modal mass, modal damping, modal 

stiffness and aerodynamic influence coefficient matrices respectively. n represents the 

number of modes contributing the response. [ ]pF  is the Ln×  modal force matrix due to 

the unit applied voltage, where L is the number of the PZT actuators. Those matrices can 

be defined as: 
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        (4.7) 

 

Equation (4.6) can also be written in the Laplace domain as: 

 

[ ] [ ] [ ] [ ] { } [ ]{ }uFssQqKDsMs p=−++ ∞ )())(( 2 ζ                 (4.8) 

                   

where ωis =  is the Laplace variable. Equation (4.8) is the generalized aeroelastic 

equations of motion in Laplace Domain.  

 
 

4.3 Unsteady Aerodynamic Force Approximation 

 

A fundamental phenomenon in unsteady subsonic aerodynamics is that the disturbance 

shed into the flow by the moving structure continues to affect the loads at a later time. 

Mathematically, this phenomenon results in nonrational expressions for the aerodynamic 

influence coefficients [ ])(ikQ  [51].  As mentioned in the previous section, [ ])(ikQ  is 

calculated at several discrete reduced frequencies rather than as a continuous function of 

the Laplace variable s. In order to cast the dynamic aeroelastic equation of motion in a 

state-space form, which can be readily utilized in the modern control theories, the 

aerodynamic influence coefficients have to be approximated by rational functions of s 

(namely, fraction of polynomials of s).  

 

There are several methods used in approximating unsteady generalized aerodynamic 

forces using rational functions, such as matrix-Pade approximant technique [26], 
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Roger’s method [25] and the minimum-state method of Karpel [27]. In this thesis the 

Roger’s method is used. 

 

The Roger’s approximation to the unsteady aerodynamics is given by [25]: 

 

[ ] [ ] [ ] [ ] [ ]
∑
= −+

+++=
N

j j

j
app ik

Aik
ikAikAAikQ

3 2

2
210 )(

)(
)()()(

γ
                 (4.9) 

 

where [ ]iA  are real coefficient matrices to be determined such that the assumed matrix 

form approximates the tabulated matrices and 2−jγ  are the aerodynamic lag parameters 

which are usually preselected in the range of reduced frequencies of interest. Equation 

(4.9) includes the noncirculatory static aerodynamic force [ ]0A , the aerodynamic 

damping [ ] )(1 ikA , the apparent aerodynamic mass [ ] 2
2 )(ikA , and the circulatory 

aerodynamic lag terms represented by the summation term.  

 

In order to separate the real and imaginary parts of [ ])(ikQapp , the summation term in 

Equation (4.9) can be written under the following form: 
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    (4.10) 

 

Then the real and imaginary parts of [ ])(ikQapp  can be written as: 
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At each value of the reduced frequency, real and imaginary error functions are 

determined from Equation (4.11) as: 

 

[ ] [ ] [ ]{ }
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                                         (4.12)  
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i refers to a particular reduced frequency ik  at which aerodynamic influence coefficient 

matrix is calculated.         

 

Approximation coefficients [ ] [ ] [ ]NAAA ,...,, 10  can be obtained by least square error 

technique [52]. Defining a complex error function as: 

 

[ ] [ ] [ ]iIiRi EiEE ,, +=                            (4.13) 

 

A least-squares fit can be passed through l data points by setting  
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where [ ]iE ′  is the complex conjugate of [ ]iE . 

 

Solving Equation (4.14) for the coefficients of the fit { }H , one obtains the following: 
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Substituting  ∞= Vbk 2/ω  into Equation (4.9), one obtains the approximated 

aerodynamic forces in the Laplace domain as: 
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Coefficients [ ] [ ] [ ]NAAA ,...,, 10  are determined from Equation (4.15). The values of γ  are 

selected to be in the reduced frequency range of interest. 

 

 

4.4 State-Space Equation of Motion 

 

Substituting approximated aerodynamic forces, Equation (4.16), into the generalized 

aeroelastic equations of motion, Equation (4.8), results in the following equation: 
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Defining aerodynamic lag terms as a new augmented state such that 
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Making use of Equation (4.18) in Equation (4.17) and writing the resulting equation in 

the time domain results in the following time domain constant coefficient equation: 
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where [ ] [ ] [ ]2
2

8
1~ AbMM ρ−=   

[ ] [ ] [ ]14
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2
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Defining the state vector { }x  as { }T
aNa ζζζζ L&

3 , the state-space form of 

Equation (4.19) can now be written as: 
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The state vector { }x  consists of the modal displacement { }ζ , modal velocity { }ζ&  and the 

augmented states { }ajζ . [ ]A  describes the system matrix and [ ]B  gives the input matrix. 

These matrices are real constant matrices. The control input { }u  is the applied voltages 

to the PZT actuators. System matrix [ ]A  includes all aerodynamic effects such as 

apparent mass, aerodynamic damping and stiffness as well as structural mass, damping 

and stiffness. It should be noted that the system matrix [ ]A  is a function of air speed. 

 

Defining R as the number of sensors on the smart structure, the output { }y  of the system 

can be written in modal coordinates as follows: 

 

{ } [ ][ ]{ } [ ][ ]{ }ζφζφ &
vq CCy +=                                            (4.21) 

 

where [ ]qC  and  [ ]vC  give the displacement and velocity output matrices, respectively. 

The displacement and velocity output matrices represent the finite element nodes where 

the response is measured. If no measurement is made on a node in the finite element 

model, its value is set to zero otherwise taken to be unity. In the state-space form 

Equation (4.21) can be given by 

 

{ } [ ]{ }xCy =                       (4.22) 

 

where 

 

[ ] [ ] [ ] [ ] [ ][ ]
nNRvq CCC

×
= 00 L  
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here, [ ]C  defines the output matrix. [ ] [ ][ ]φqq CC =  and [ ] [ ][ ]φvv CC =  are the modal 

displacement and velocity output matrices, respectively. 

 

Equations (4.20) and (4.22) give the state-space representation for smart structures under 

unsteady aerodynamic loading. This state-space form allows the use of control 

algorithms, and facilitates root-locus analysis, which relies on performing a root-loci 

analysis to determine the variation of the roots of the system with airspeed, to obtain 

open loop flutter characteristics of an aeroelastic system.  

 

 

4.5 Numerical Validation of the State-Space Approach: Open Loop Flutter 

Estimation of an Aft-Swept Flat-Plate Wing Model 

 

In order to verify the developed state-space approach, an open loop flutter analysis of a 

test case is performed using root-locus analysis and the results are compared to those 

obtained by MSC®/NASTRAN/Aeroelasticity I [53]. The case is an aft-swept flat-plate 

wing model studied by Dansberry et al. [54]. The planform geometry of the wing is 

illustrated in Figure 4.2. The model is a flat-plate semispan wing cut from 3.175 mm-

thick aluminum sheet (6061-T6). Material properties are E = 69.6 GPa, =ν 0.33 and 

=ρ 2712.6 kg/m3. The wing is cantilevered at the root.  
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Figure 4.2 Planform geometry of the wing model 

 

 

The finite element model of the wing is shown in Figure 4.3. The model has a total of 

231 nodes and consists of 200 quadrilateral CQUAD4 type shell elements. A free 

vibration analysis is performed in order to determine the natural frequencies and the 

mode shapes of the wing. The first four natural frequencies and mode shapes are 

determined by using the Lanczos method of MSC®/NASTRAN. The natural frequencies 

of the analysis are compared with experimentally determined ones in Table 4.1. 

Theoretical and experimental natural frequencies are in very good agreement with each 

other. Figure 4.4 shows the first four mode shapes of the wing. The first mode can be 

defined as the first out of plane bending mode, the second mode is predominantly 

torsional, the third mode is the second out of plane bending mode and the fourth mode is 

the second torsion mode. 
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Figure 4.3 Finite element model of the aft-swept wing 

 

 

Table 4.1 Natural frequencies of the aft-swept flat-plate wing                             

Mode number Finite element analysis (Hz) Experimental (Hz) [54] 

1 4.1 4.4 

2 16.9 16.7 

3 28.3 28.8 

4 40.5 40.0 
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(a) Mode 1  

 

 
(b) Mode 2  

 

 
(c) Mode 3  

 

(d) Mode 4  

Figure 4.4 The first four theoretical mode shapes of the aft-swept wing 

 

 

For unsteady aerodynamic force calculation, the wing is modeled as a flat plate lifting 

surface with 50 aero boxes. The span is divided into 10 and the chord is divided into 5 

elements. Figure 4.5 depicts the aerodynamic model of the wing. Structural and 

aerodynamic models are connected by using finite plate splines (SPLINE4) of 

MSC®/NASTRAN. The spline elements are used to transform the loads calculated on 

the aerodynamic mesh onto the structure and interpolate displacements on the 

aerodynamic mesh using the structural displacements. Figure 4.6 shows both 

aerodynamic and structural models for the wing. Structural model mesh size is smaller 

and presented by grey shading while aerodynamic surface mesh is taken slightly bigger 

with yellow shading. 
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Figure 4.5 Aerodynamic model of the aft-swept wing 

 

 

Figure 4.6 Structural and aerodynamic models for the aft-swept wing 
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The generalized aerodynamic influence coefficient matrices [ ])(ikQ  in modal domain  

are calculated by using the DLM in MSC®/NASTRAN for ten values of reduced 

frequencies (k = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5) and extracted 

utilizing Direct Matrix Abstraction Programme (DMAP) from MSC®/NASTRAN. The 

flight conditions are an air density of 1507.1=ρ  kg/m3 and low subsonic velocity 

regime (Mach number, 2.0=∞M ). The first four modes are selected as generalized 

coordinates. The calculated discrete aerodynamic influence coefficient matrices are then 

approximated by Roger’s approximation and least-squares method with an in-house 

code developed in MATLAB® [55]. Four aerodynamic lag term coefficients were used 

in Roger’s approximation, which effectively means N=6 in Equation (4.9). The chosen 

values of lag term coefficients are 05.01 =γ , 2.02 =γ , 3.03 =γ , 4.04 =γ  which are in 

the reduced frequency range of interest. Figures 4.7 and 4.8 show curve fittings obtained 

by using Roger’s approximation as compared to the tabulated MSC®/NASTRAN DLM 

data for 11Q , 12Q , 21Q  and 22Q  terms of [ ])(ikQ . Both the calculated and fitted values are 

in very good agreement with each other. 
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Figure 4.7 Approximation of 11Q  and 12Q by Roger’s approximation and           

least-squares method for the aft-swept wing ( 2.0=∞M ) 
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Figure 4.8 Approximation of  21Q  and 22Q  by Roger’s approximation and                              

least-squares method for the aft-swept wing ( 2.0=∞M ) 



 
55

Flutter analysis of the wing is then conducted by using the root-locus method. The 

structural modal mass, damping and stiffness matrices are obtained from 

MSC®/NASTRAN using DMAP statements. A structural damping ratio of 0.02 is 

assumed. By using approximated aerodynamic forces along with the structural matrices, 

system matrix [ ]A  of the wing model is built at a given air density of 1507.1=ρ  kg/m3. 

Solving Equation (4.20) for flight velocities ranging from 20 m/sec to 90 m/sec, the 

roots of the aeroelastic system are obtained. Figure 4.9 shows the velocity root-locus 

plot of the wing model. The plot traces the roots of the system as the flight velocity 

changes. The horizontal axis is the real part and the vertical axis is the imaginary part of 

the roots. The imaginary axis represents the point of neutral stability. Flutter is 

represented on the root-locus plot by a pole crossing this axis into the right half plane. It 

can be seen from the figure that the frequencies of the first and second aeroelastic modes 

coalescence as the flow velocity increases and the second mode pole crosses the 

imaginary axis at a speed of 76.11 m/sec and a frequency of 13.51 Hz which represents 

the flutter speed and the flutter frequency of the wing respectively. Experimentally 

determined flutter speed is 78.33 m/sec and the flutter frequency is 13.2 Hz [54], which 

are very close to ones obtained by state-space approach.   

 

Flutter characteristics of the wing are also determined by the pk-method of 

MSC®/NASTRAN. The solution is requested for the first four modes and a series of 

speeds ranging from 20 to 90 m/sec. Figures 4.10 and 4.11 show velocity vs. damping 

(V-g) and velocity vs. frequency (V-f) curves obtained by pk-method for the first two 

aeroelastic modes. In the figures, the corresponding curves obtained by the root-locus 

method are also given. V-g curve for the root-locus method is plotted by utilizing the 

definition of fpg /)Re(2=  where Re(p) is the real part of the system root obtained by 

root-locus analysis and f is the frequency [53]. As it can be seen from Figures 4.9 and 

4.10, the variations of damping and frequency with the speed for both methods are in 

very good agreement and V-g curve and V-f curve obtained by pk-method indicate a 

flutter speed of 76.07 m/sec and a flutter frequency of 13.52 Hz. These flutter speed and 

frequency results are very close to ones obtained by root-locus analysis of the state-

space model. Table 4.2 gives the comparison of the flutter analysis results of state-space 
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approach with MSC®/NASTRAN analysis. The open loop flutter estimation by state-

space approach appears to be reasonable. 
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Figure 4.9 Root-locus of the state-space model of the aft-swept wing as a function of the 

flight speed ( 1507.1=ρ  kg/m3) 
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Figure 4.10 Velocity vs. damping plot of the aft-swept wing ( 1507.1=ρ  kg/m3) 
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Figure 4.11 Velocity vs. frequency plot of the aft-swept wing ( 1507.1=ρ  kg/m3) 
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Table 4.2 Comparison of the flutter analysis results of the state-space approach with 

NASTRAN for the aft-swept wing ( 1507.1=ρ  kg/m3) 

 Flutter velocity 
(m/sec) 

Flutter frequency 
(Hz) 

MSC®/NASTRAN 76.07 13.52 

State-Space Approach 76.11 13.51 

% Deviation from NASTRAN 0.053 0.074 

 

 

4.6 State-Space Representation of the Aeroelastic Model of the Smart Fin 

 

In this section, the state-space model of the smart fin is presented. For several flight 

conditions, the open loop flutter characteristics and the system responses under 

piezoelectric actuation for the smart fin are given.  

 

For unsteady aerodynamics calculation, an aerodynamic model of the fin is formed. The 

span is divided into 14 and the chord is divided into 12 elements and Figure 4.12 

represents the case. The finite plate splines (SPLINE4) of MSC®/NASTRAN are used in 

order to connect structural and aerodynamic models. Figure 4.13 shows both 

aerodynamic and structural models for the smart fin. Structural model mesh size is 

smaller and presented by grey and green shading while aerodynamic surface mesh is 

taken slightly bigger with yellow shading. The structural finite element model of the 

smart fin constructed in Chapter 3 is used as the structural model.  
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Figure 4.12 Aerodynamic model of the smart fin 

 

 

 Figure 4.13 Structural and aerodynamic models for the smart fin  

 



 
60

The aerodynamic forces are calculated at 2.0=∞M  for the reduced frequencies of          

k = 0.01, 0.05, 0.12, 0.15, 0.2, 0.25, 0.3, 0.35, 0.5 by using the DLM in 

MSC®/NASTRAN. The first four elastic modes are used in the calculation. The loads 

are then extracted with DMAP from MSC®/NASTRAN and approximated by Roger’s 

approximation and least-squares method. Figures 4.14 and 4.15 show approximated 

aerodynamic influence coefficient matrices for 11Q , 12Q , 33Q  and 34Q  with the tabulated 

NASTRAN data. The chosen values of lag term coefficients are 05.01 =γ , 2.02 =γ , 

3.03 =γ , 4.04 =γ  which are in the reduced frequency range of interest and provide a 

good curve fitting. 
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Figure 4.14 Approximation of 11Q  and 12Q  by Roger’s approximation and least-squares 

method for the smart fin ( 2.0=∞M ) 
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Figure 4.15 Approximation of 33Q  and 34Q  by Roger’s approximation and least-squares 

method for the smart fin ( 2.0=∞M ) 
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The structural modal mass, damping and stiffness matrices of the smart fin are obtained 

from MSC®/NASTRAN using DMAP statements. By using approximated aerodynamic 

forces along with the structural matrices, system matrix [ ]A  of the smart fin is formed as 

a function of air density and flight speed. At sea level density 225.1=ρ  kg/m3, the 

stability of the system matrix is investigated for several flight velocities: ∞V  as 20, 30, 

40, 50, 60, 70, 75, 80, 84, 85, 88, 90 m/sec speeds. Figure 4.16 displays the root-locus 

plot of the system. The instability is obtained at a speed of 84.10 m/sec and a frequency 

of 35.69 Hz, which gives the flutter characteristics of the smart fin for the air density of 

225.1=ρ  kg/m3.  

 

For the smart fin, flutter boundary is formed by the root-locus analysis of the state-space 

model. For several air densities, the stability of the system is investigated at different 

flight velocities. Figure 4.17 shows the flutter boundary of the smart fin. The lines in the 

figure are constant density ratio lines. The density ratio, m is defined by refm ρρ /=  

where refρ  is the reference air density taken as sea level density: 225.1=refρ  kg/m3. 

Each point on the flutter boundary curve gives the dynamic pressure value 

corresponding to Mach number at which flutter occurs. Unsteady aerodynamic 

calculations by DLM were made for each density ratio at Mach numbers corresponding 

to the flutter speeds. The calculated results are matched points in that the flutter speed is 

consistent with the Mach number for which each individual aerodynamic calculation 

was made.  
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Figure 4.16 Root-locus of the state-space model of the smart fin as a function of the 

flight speed ( 225.1=ρ  kg/m3) 
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Figure 4.17 Flutter boundary of the smart fin 
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By using the state-space approach some open-loop system responses of the smart fin are 

also investigated. The smart fin is excited by using all PZT actuators on one face and the 

displacement responses of an upper corner point at the trailing edge of the fin is obtained 

for freestream speeds of  =∞V 0, 50, 84, 90 m/sec at sea level. The displacement output 

location is shown in Figure 4.18. The unit piezoelectric voltage force vector { }pF  was 

obtained from MSC®/NASTRAN with thermal analogy method by using DMAP. Figure 

4.19 shows the time responses of the smart fin to a step input of 1V. As seen from the 

figure, for the speeds below the flutter speed of 84.10 m/sec the stable behavior is 

observed, and by increasing the speed the system becomes unstable above the flutter 

speed. 

 

 

 

 

Figure 4.18 Displacement output location on the smart fin 
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Figure 4.19 Open loop time responses of the smart fin for different flight velocities 

( 225.1=ρ  kg/m3)                                   

 



 
67

4.7 Conclusions 

 

In this chapter, the mathematical modeling procedure for the smart structures under 

unsteady aerodynamic loading was presented. Utilizing the finite element method and 

panel aerodynamic method, and approximating the aerodynamic loads in the complex 

frequency domain as rational functions, a state-space representation of the aeroelastic 

model of a smart structure was constructed. The state-space approach was used to 

predict the flutter characteristics of a swept wing; the results were compared with those 

obtained from MSC®/NASTRAN/Aeroelasticity solution and a very good agreement 

was observed. This verifies the state-space approach developed in the thesis. 

 

The state-space representation of the aeroelastic model of the smart fin was constructed 

and the open-loop system characteristics were also investigated. This state-space model 

will be used in later chapter, in representing the uncertainties and designing robust 

controllers for the active flutter suppression of the smart fin. 
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CHAPTER 5 

 

 

CONTROLLER DESIGN FOR ACTIVE FLUTTER SUPPRESSION                  

OF THE SMART FIN  

 

 

5.1 Introduction 

 

This chapter deals with the synthesis of H∞ controllers for the active flutter suppression 

of the smart fin. The controllers are designed according to defined performance and 

uncertainty specifications by considering both SISO (Single-Input Single-Output) and 

MIMO (Multi-Input Multi-Output) system models which are obtained from the state-

space approach developed in Chapter 4. The tip deflections of the smart fin are fed back 

to derive the piezoelectric actuators. The performances of the controllers in vibration 

suppression and the enhancement in the flutter boundary of the smart fin are 

investigated.  

 

 

5.2 Control Theory 

 

This section describes H∞ synthesis method and gives the basic definitions and tools 

used for the formulation of the control problem and robustness analysis of the feedback 

system.  
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5.2.1 Basic Definitions and Tools for Control Problem Formulation 

 

Linear Fractional Transformations: Linear fractional transformations (LFTs), as they 

are currently used in the control literature for analysis and design, were introduced by 

Doyle [56] and Redheffer [57]. LFTs are powerful and flexible approach to represent 

uncertainty in matrices and systems. For this reason H∞ synthesis control problems are 

formulated in a linear fractional transformation framework. Considering a matrix P of 

dimension )()( 2121 mmnn +×+  and partitioning it as follows: 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

PP
PP

P        (5.1) 

 

and letting the matrices Δ  and K have dimensions )( 11 nm ×  and )( 22 nm × , respectively 

(compatible with the upper and lower partitions of P, respectively), the lower and upper 

linear fractional transformations can be expressed as: 

 

21
1

221211 )(),( PKPIKPPKPFl
−−+=                  (5.2(a)) 

12
1

112122 )(),( PPIPPPFu
−Δ−Δ+=Δ              (5.2(b)) 

 

where subscript l denotes lower and subscript u denotes upper.  

 

Figure 5.1 shows LFT block diagrams. The lower fractional transformation ),( KPFl  is 

the transfer function resulting from wrapping (positive) feedback K around the lower 

part of P as illustrated in Figure 5.1(a). To see this, the block diagram in Figure 5.1(a) 

may be written as: 

 

uPwPz 1211 += ,  uPwPv 2221 += ,  Kvu =        (5.3) 

 

Eliminating v and u from these equations, it is obtained: 
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wPKPIKPPwKPFz l ))((),( 21
1

221211
−−+==      (5.4) 

 

which implies that the transfer function from w to z can be written as a lower LFT of P 

in terms of K. Similarly, ),( ΔPFu  is the transfer function resulting from wrapping 

(positive) feedback Δ  around the upper part of P (Figure 5.1(b)). 

 

 

P

K

w z

u v

(a)

P

Δ

w z

yΔuΔ

(b)  

Figure 5.1 Linear fractional transformation block diagrams                                       

(a) lower LFT  (b) upper LFT 

 

 

H∞ Norm: The H∞ norm of a stable system G(s) is given as [58]:  

 

))((max)( ωσ
ω

jGsG =
∞

       (5.5) 

 

here σ  defines the largest singular value. H∞ norm is the peak value of the Bode 

magnitude plot of a SISO system. 

 

Uncertainty and Robustness: In any circumstances, the model will only be an 

approximate representation of the physical process. Therefore, there are unavoidable 

differences between the mathematical model and the real system and these are referred 

as model uncertainty. To account for model uncertainty it is necessary to define a set of 

possible models instead of a fixed model.  
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Main sources of uncertainty in the plant model can be listed as follows [58]: 

 

i. There are always parameters in the model which are only known approximately or 

are simply in error.  

ii. The parameters in the linear model may vary due to nonlinearities or changes in the 

operating conditions. 

iii. Measurement devices have imperfections. This may even give rise to uncertainty on 

the manipulated inputs, since the actual input is often measured and adjusted in 

cascade manner. 

iv. At high frequencies even the structure and the model order is unknown, and the 

uncertainty will always exceed 100% at some frequency. 

v. Even when a very detailed model is available, for easiness in the controller design 

and controller implementation, a simpler (low order) system models are preferred. 

So the reduction in the order of the system models brings another uncertainty to a 

nominal system model, which must be accounted for. 

vi. The controller implemented may differ from the one obtained by solving the 

synthesis problem. In this case uncertainty may be included to allow for controller 

order reduction and implementation inaccuracies. 

 

These uncertainties could be introduced to the system with different types of uncertainty 

descriptions, which are presented as follows. 

 

Parametric Uncertainty: Parametric uncertainty is due to parameter variation in the 

coefficients of a state-space model. Parametric uncertainty model which perturbs 

selected entries in the state-space data, namely in the A matrix was presented by Balas et 

al [59]. Consider a nominal state space model defined by 

 

 BuAxx +=&          

DuCxy +=           (5.6) 
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Assuming that the system has n modes and it is in bi-diagonal form, the system matrix is 

given by: 
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We would like to add uncertainty to the kth mode by perturbing the (1,1) element of the 

kth 2×2 block of the A matrix. Defining the perturbation as kk w αδα )1( += , where δ is a 

complex number with 1<δ  and w is a scalar weight, the kth block of the A matrix 

becomes  

 

⎥
⎦

⎤
⎢
⎣

⎡
−
+

=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=
kk

kkk

kk

kk
k

ww
A

αβ
βαδαδ

αβ
βα )1(

00
0

     (5.8) 

 

In order to represent the perturbation in LFT form, the disturbance, d (input to the 

system) and the error, e (output form the system) signals can be defined as follows: 

 

k-th mode

 [ ] { }xwe nk )21(00000 ×= LL α

     
ed δ=            (5.9) 

 

Then the new system with parametric uncertainty is 

 



 
73

ed
Jxe

DuCxy
BuIdAxx

δ=
=

+=
++=&

                  (5.10) 
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A diagram of this standard framework is shown in Figure 5.2.   
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Figure 5.2 Block diagram of state-space parametric uncertainty 
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The uncertainty of the system is formulated in state-space form by first transforming the 

A matrix into a bidiagonal form then perturbing only first element of each 2x2 natural 

frequency block. This perturbation is considered as complex uncertainty, resulting in a 

small change in frequency and a significant change in the damping level of the mode. 

Thus in the controller design for flutter suppression, the migration of the pole pair 

toward the right half-plane as the freestream speed increases can be captured via 

parametric uncertainty [30]. 

 

Additive and Multiplicative Uncertainties: Additive and multiplicative uncertainties 

describe frequency dependent variation, via weighting functions, between the real 

system and the model. Block diagrams of these perturbations used to represent the 

model uncertainty are given in Figure 5.3. Here P is the nominal plant model, W is the 

weighting function which is a stable transfer function and Δ  is a norm bounded complex 

uncertainty satisfying 1<Δ
∞

.  

 

 

 
 

++P

W Δ

++ P

W Δ

++P

W Δ

(a) Additive uncertainty (b) Multiplicative input uncertainty

(c) Multiplicative output uncertainty

Figure 5.3 Block diagrams of additive and multiplicative uncertainties 
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The set of perturbed plants described by additive and multiplicative uncertainties are 

given by 

 

Δ+= WPP~    (Additive uncertainty)              (5.11) 

)(~ Δ+= WIPP    (Multiplicative input uncertainty)                  (5.12) 

PWIP )(~ Δ+=    (Multiplicative output uncertainty)               (5.13) 

 

In general, additive uncertainty is considered to account for unmodeled dynamics and 

multiplicative input/output uncertainty descriptions are used to account for relative 

variations in input/output signals [60].  

 

Stability and Performance Definitions: 

 

Nominal Stability: The nominal plant model has to be stabilized by the controller 

design. This is a minimum requirement. 
 

Nominal Performance: In addition to nominal stability, the nominal closed-loop 

response should satisfy some performance requirements. In the synthesis problem, 

performance is defined in terms of the weighted ∞H  norms for the closed-loop system 

transfer function between the exogenous inputs (disturbances) and errors signals.  
 

Robust Stability: The closed-loop system must remain stable for all possible plants as 

defined by the uncertainty descriptions. 
 

Robust Performance: The closed-loop system must satisfy the performance 

requirements for all possible plants as defined by the uncertainty descriptions. 

 

Up to now, the definitions and the necessary tools to form the H∞ control problem were 

presented. Once the appropriate uncertainty descriptions and performance characteristics 

are chosen, the H∞ control problem can be formed.  
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5.2.2 H∞ Synthesis 

 

The general framework for controller synthesis is shown in Figure 5.4. Interconnection 

of inputs, outputs and commands along with perturbations and a controller can be 

viewed in this diagram. P represents the system interconnection structure, Δ  the 

uncertainties and K the control law. w is a vector of weighted exogenous inputs such as 

disturbances, noise and reference input; z is a vector of weighted exogenous outputs to 

be minimized, v is a vector of sensor measurements and u is a vector of control signals. 
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w z

yΔuΔ

K

vu

 
 

Figure 5.4 General interconnection structure 

 

 

Eliminating Δ  block, the standard closed-loop architecture for H∞ synthesis is obtained, 

as shown in Figure 5.5. The input-output map from [u∆ w]T to [y∆ z]T  is expressed in 

lower linear fractional transformation form, ),( KPFl  as follows: 
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where ))((),( 21
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221211 PKPIKPPKPFl
−−+=  
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The plant P is partitioned according to the dimensions of the control, measurement, 

disturbance and error signals as 

 

⎥
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PP
PP

P                  (5.15) 

 

The objective of the H∞ control problem is to find a stabilizing controller K which 

minimizes 
∞

),( KPFl  [58,61]. 
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Figure 5.5 H∞ synthesis problem 

 

 

5.2.3 Structured Singular Value μ 

 

In H∞ controller design, the uncertainties are considered as unstructured, that is the 

structure of the uncertainty block Δ is not taken into account. Thus, for multiple 

uncertainties at different locations in the plant, an H∞ design is too conservative which 

considers all the uncertainties as one full block. In order to avoid this conservatism in 

analyzing the stability and performance of uncertain systems, structured singular value 

concept was introduced [61,62]. 
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Assuming that Δ  belongs to the set of block diagonal matrices defined by 

 

{ }jj mm
j

c
iFqn

c
nq

c CCIIdiag ×∈Δ∈ΔΔ=Δ ,:),,,,,( 111 δδδ KK              (5.16) 

 

This Δ block representation involves the full blocks jΔ , the repeated real and complex 

scalars c
iδ . The repeated real scalars allow the representation of the parametric 

uncertainties, whereas full complex blocks allow the representation of the additive or 

multiplicative uncertainties. 

 

For a given complex matrix nnCM ×∈ , the structured singular value μ  is defined by 

 

{ }0)det(,:)(min
1)(

=Δ−Δ∈ΔΔ
=Δ MI

M
σ

μ                (5.17) 

 

if no Δ∈Δ  makes )( Δ− MI  singular then 0=Δμ . 

 

The structured singular value μ  is used for the robustness analysis of a linear system 

having structured uncertainty. 

 

 

5.2.4 Robustness Analysis 

 

Robust Stability: The inclusion of the controller into the plant reduces the general 

interconnection structure in Figure 5.4 to that in Figure 5.6, which is the general 

framework for system analysis.  
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Figure 5.6 General framework for system analysis 

 

 

The transfer function from w to z is given by 
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N                 (5.18) 

 

),( ΔNFu  is stable for all perturbations with 1)( ≤Δσ  if and only if 

 

ωωμ ∀<Δ     ,1))(( 11 jN                              (5.19) 

 

This theorem provides a test for the stability of the system shown in Figure 5.6. Equation 

(5.19) reduces to 1))(( 11 <ωσ jN  when Δ  is a full block, unstructured uncertainty. 

Hence the connection with the ∞H  norm. When Δ  has structure, the ∞H  norm provides 

an upper bound which is a more conservative measure of robustness [60]. 

 

However, usually stability is not the only condition that must be satisfied for a feedback 

system. Since in most of the cases, before the onset of instability, the closed-loop 

performance degrades significantly when the nominal plant is perturbed. A robust 

performance test is necessary to indicate the worst case level of performance associated 

with a given level of perturbations. 
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Robust Performance: The robust performance problem can be formulated as a robust 

stability problem by defining a fictitious full block of uncertainty pΔ  with the 

performance inputs and outputs (Figure 5.7). pΔ  is of size number of inputs w by 

number of outputs  z.  
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Figure 5.7 Block diagram for robust performance analysis 

 

 

Theorem for the robust performance states that  ),( ΔNFu  is stable and 1),( <Δ
∞

NFu  

if and only if 

 

ωωμ ∀<Δ    ,1))((ˆ jN                  (5.21) 

 

where μ  is computed with respect to the structure 

 

⎥
⎦

⎤
⎢
⎣

⎡
Δ

Δ
=Δ

p

ˆ                   (5.20) 

 

This theorem implies that performance robustness of a closed-loop system can be 

evaluated by a μ  test across all frequencies.  



 
81

5.3 Control System Design 

 

This section deals with the design of the controllers via H∞ synthesis by using the state-

space model constructed in Chapter 4, for the flutter suppression of the smart fin. In 

designing a control algorithm for flutter suppression, two objectives are important. The 

first is to extend the flutter boundary, i.e., to use feedback control to stabilize the smart 

fin over a larger region of operating conditions. The second is to attenuate vibrations in 

the operating region where the smart fin is open-loop stable. 

 

Figure 5.8 shows the block diagram of the interconnection structure used for controller 

design of the smart fin. In the controller design of the smart fin, both single-input single-

output (SISO) and multi-input multi-output (MIMO) system models are considered and 

controllers are designed based on these models.  
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Figure 5.8 Control design block diagram for the smart fin 
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In Figure 5.8, Plant block represents the SISO or MIMO identified nominal system 

model. perW  symbolizes the performance weight applied to output channels and ask for 

a reduction of the maximum singular values from all inputs (disturbance, uncertainty and 

noise) to the outputs. Additive uncertainty weight addW  and the uncertainty set addΔ  

represent additive uncertainty which is used to account for model variations in the low 

frequencies and unmodeled dynamics at higher frequencies. In addition to the additive 

uncertainty, parametric uncertainty parΔ  is added to the system to account for the 

movement of the pole of the dominant aeroelastic mode from stable to unstable as flight 

speed increases. Additive and parametric uncertainties provide that the closed-loop 

system meets the stability objectives, increasing the flutter boundary above its open-loop 

value while maintaining stability for lower velocities. actW  is the actuator weight which 

defines the actuator limitation. noiseW  represents the signal to noise ratio at each sensor 

measurement and states that the measured system response is affected by noise. 

 

For the controller design, performance criteria and uncertainty characteristics of the 

identified models and the actuator limitations are determined. Inserting the values of 

different weights in the general block diagram, robust H∞ controllers are designed and 

open loop and closed loop frequency responses of the smart fin are analyzed. In the 

frequency response analysis, it is assumed that the smart fin is disturbed from its 

equilibrium position by the disturbance given from PZT actuators. 

 

 

5.3.1 Controller Design for Single-Input Single-Output System Model 

 

In the SISO case, the smart fin is excited by using all the PZT actuators on one face and 

the control input is selected as the displacement of an upper corner point at the trailing 

edge of the fin. The control input is designated as Sensor 1 in Figure 5.9. 
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Figure 5.9 Configuration of the smart fin showing the PZT actuator groups                  

and sensing points 

 

 

 

The nominal plant model for the smart fin is obtained at the flight speed of 83 m/sec, 

which is quite close to the flutter boundary (84.1 m/sec at sea level, 225.1=ρ  kg/m3) 

from the state-space model developed in Chapter 4. The system model has 24-states: 

eight states correspond to the four aeroelastic modes and sixteen states are associated 

with aerodynamic lag terms. For controller synthesis, the order of the nominal plant is 

reduced from 24-state to 8-state to keep the controller order minimum. The states in the 

reduced-order model correspond to the four aeroelastic modes of the smart fin. State-

space equations for full and reduced order models are given in Appendix B. Figure 5.10 

shows the full and reduced order system models at 83=∞V  m/sec and 225.1=ρ  kg/m3. 

Transfer functions of the full and reduced order models at this flight condition are also 

given in Appendix B. From Figure 5.10, it is seen that the smart fin can be well 

represented by a reduced-order model. It can also be stated that the truncation of the 

sixteen states from the model has little effect on the dynamics of the system.  
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Figure 5.10 Full and reduced order models for the smart fin at  83=∞V  m/sec and 

225.1=ρ  kg/m3 (input: actuation of all the PZTs on one face,                                

output: sensor 1 displacement) 

 

 

The selected additive uncertainty weight addW  and the reduced-order plant models for 

the minimum (70 m/sec) and maximum (83 m/sec) speeds at which the smart fin is 

identified are shown in Figure 5.11. The level of the additive uncertainty at low 

frequencies (below the flutter frequency) is selected to cover the differences between the 

nominal model and the open-loop models. At high frequencies, the level of the 

uncertainty is selected to include the high-frequency dynamics and to induce the 

controller to roll off at those frequencies. Additive uncertainty also covers the 

uncertainty introduced by model reduction. Parametric uncertainty is added to the design 

model to account for the variation of the real part of a complex-conjugate pole pair at the 

flutter frequency (35.7 Hz). Since the damping value of the flutter mode (torsion branch) 
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varies significantly without the frequency change near the flutter point, the system 

matrix is transformed into bi-diagonal form and only the damping term is treated as the 

parametric uncertainty, as explained in Section 5.2.1.  
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Figure 5.11 Additive uncertainty weight and the system models for the flight velocities 

of 70 m/sec and 83 m/sec (SISO model) 

 

 

The performance objective is captured by the performance weight perW  shown in Figure 

5.12. The chosen performance weight means that good vibration suppression is required 

only in low-frequency region, especially around the flutter frequency. 
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Figure 5.12 Performance weight (SISO model) 

 

 

The actuator weight 01.0=actW  is chosen to limit the voltage applied on the 

piezoelectric actuators. Sensor noise 1.0=noiseW  is added to the feedback signals to 

corrupt the measurements. 

 

H∞ controller is designed according to defined performance and uncertainty 

specifications by using MATLAB® Robust Control Toolbox [63]. Figure 5.13 gives the 

bode diagram of the resulting H∞ controller.  

 

 

 

 



 
87

10
1

10
2

10
3

10
4

10
-2

10
-1

10
0

10
1

Lo
g 

M
ag

ni
tu

de

Frequency (rad/sec)

10
1

10
2

10
3

10
4

-700

-600

-500

-400

-300

-200

-100

P
ha

se
 (d

eg
re

es
)

Frequency (rad/sec)
 

Figure 5.13 The H∞ controller designed for the SISO model of the smart fin 

 

 

μ -analysis is done for the closed-loop system to test the robustness of the H∞ controller. 

The calculated structured singular values for robust performance, robust stability and 

nominal performance are given in Figure 5.14. μ -analysis results give the structured 

singular values less than unity, thereby indicating that the designed controller is 

admissible according to μ -analysis. 
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Figure 5.14 μ -analysis results of the closed-loop system for the SISO model 

 

 

 

The controller is tested on the full-order (24th) system models for four different flow 

speeds of 70, 75, 80, and 83 m/sec. Figure 5.15 displays the comparison of the open-

loop and closed-loop frequency responses of the smart fin. It can be seen from the 

figures that controller successfully suppress the vibrations at the flutter mode. 

 

In order to determine the enhancement in flutter velocity, the root-locus of the closed-

loop system is plotted for the flight velocities from 83 m/sec to 95 m/sec (Figure 5.16). 

It is seen that the closed-loop system becomes unstable at higher velocities. The system 

looses stability at a speed of 88.6 m/sec. Thus, 5.4% flutter enhancement is obtained. 
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(a) V∞ = 70 m/sec 
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(b) V∞ = 75 m/sec 
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(c) V∞ = 80 m/sec 
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Figure 5.15 Comparison of the open-loop and closed-loop frequency responses of  the 

smart fin for the SISO model for 70, 75, 80, and 83 m/sec  
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Figure 5.16 Root-locus of the closed-loop system for 83, 89 and 95 m/sec 

(SISO model) 

 

 

5.3.2 Controller Design for Multi-Input Multi-Output System Model 

 

In MIMO system model, PZT actuators are grouped into two actuator sets; actuator 

group 1 and group 2 as seen in Figure 5.9. These actuator groups are effective for torsion 

mode actuation of the smart fin, thus better control actuation at the flutter mode is 

achieved. The controller inputs are taken as the displacements of two points at the upper 

two corners of the smart fin given as Sensor 1 and Sensor 2 in Figure 5.9.  

 

2-input 2-output reduced (8th) order system model at 83=∞V  m/sec and 225.1=ρ  

kg/m3 is used as the nominal plant. The magnitude plots of the selected additive and 

performance weighting functions are presented in Figure 5.17. The same scales are used 
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for two channels of weights addW  and perW . In addition to the additive uncertainty, 

parametric uncertainty is added to the system to take into account the movement of the 

dominant pole as flight speed increases. Also the constant actuator weight 

)01.0 ,01.0(diagWact =  and noise weight )05.0, 05.0(diagWnoise =  are chosen.  
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Figure 5.17 Additive and performance weights (MIMO model) 

 

 

H∞ controller is designed according to the defined performance and uncertainty 

specifications, and a 18th-order controller is obtained. A balanced realization of the 

controller is then obtained, and the 9 states are truncated from the system. The resulting 

9-state controller differs in H∞ norm from the full-order controller by less than 1%. 
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Figure 5.18 gives the μ  bounds for robust performance, robust stability and nominal 

stability of the designed controller. Since the structured singular values are less than 

unity, the stability and the performance specifications are satisfied in the presence of the 

uncertainties defined. 
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Figure 5.18 μ -analysis results of the closed-loop system for the MIMO model 

 

 

The comparison of the frequency responses at the flow velocity of 83 m/sec for both 

uncontrolled and controlled cases is given in Figure 5.19. The controller is simulated on 

the full-order (24th order) system model. It can be seen that application of H∞ controller 

is successful in eliminating vibrations at the first two aeroelastic modes, especially at the 

flutter mode. Figure 5.20 shows the open and closed-loop magnitude plots at 70 m/sec, 

which is quite below the flutter speed. The closed-loop system results in a successful 

suppression of the oscillations at a speed lower than the flutter speed, too. 
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Figure 5.19 Comparison of the open-loop and closed-loop frequency responses of the 

smart fin for the MIMO model at the flow velocity of 83 m/sec 
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Figure 5.20 Comparison of the open-loop and closed-loop frequency responses of  the 

smart fin for the MIMO model at the flow velocity of 70 m/sec 
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In order to determine the enhancement in flutter velocity, the root-locus of the closed-

loop system is plotted for the flight velocities from 83 m/sec to 100 m/sec. Figure 5.21 

shows the root-locus plot. The closed-loop system becomes unstable at a speed of 93.7 

m/sec. Thus, the flutter speed can be increased from 84.1 m/sec to 93.7 m/sec (11.4% 

enhancement in the flutter boundary) for the MIMO model by using H∞ controller. 
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Figure 5.21 Root-locus of the closed-loop system for 83, 90 and 100 m/sec 

(MIMO model) 
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5.4 Conclusions 

 

This chapter focused on the design of the H∞ controllers for the flutter suppression of the 

smart fin based on SISO and MIMO system models. 

 

In the controller design, the additive uncertainty was used to cover the differences 

between the system models in the low frequencies and unmodeled dynamics at higher 

frequencies. The parametric uncertainty model was used to take into account the system 

changes with respect to varying airspeed. 

 

The designed H∞ controllers showed improved behavior over a wide flow speed range. 

The controllers provided good suppression of the fluttering vibrations and improved the 

flutter speed of the fin. It was found that the flutter speed could be shifted to 88.6 m/sec 

for SISO model, and shifted to 93.7 m/sec for MIMO model by using the developed H∞ 

controllers. The reason for the lower performance in the SISO model is due to the lack 

of the control force, especially in torsion direction. To give the same control signal to all 

of the PZTs is not very effective. In order to further enhance the control performances, 

more effective torsional actuation mechanisms are requested. 
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CHAPTER 6 

 

 

CONCLUSIONS 

 

 

6.1 General Conclusions 

 

This study aimed to present a numerical approach to develop an active flutter 

suppression methodology for a smart fin. The smart fin was a cantilever aluminum plate-

like structure with surface bonded piezoelectric (PZT, Lead- Zirconate-Titanate) 

patches. The surface bonded PZT patches were used as actuators. 

 

The first part of the study was dedicated to the general structural modeling of smart 

structures. Different finite element based modeling techniques were presented by using 

MSC®/PATRAN, and the effects of different finite element types were investigated. 

Although the modeling of the passive portions of the smart structures by using solid 

elements is known to be a general approach for the simple smart structures; the 

difficulties in the modeling of the irregular geometries by using solid elements and the 

increased computational time limit their potential applications on real aerospace 

structures. In order to eliminate these difficulties, the techniques in which the passive 

portion of the smart structure was modeled by shell elements were also developed, and 

the effectiveness of the multipoint constraints to connect the active and passive portions 

of the smart structures was shown.  

 

A thermal analogy method for the purpose of modeling of piezoelectric actuators in 

MSC®/NASTRAN based on the analogy between thermal strains and piezoelectric 

strains was given. The static and dynamic behavior of some reference models were 

obtained by using this thermal analogy method. The results obtained by the thermal 
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analogy were compared with the reference results computed by piezoelectric finite 

element formulation and very good agreement was observed. It is concluded that the use 

of the thermal analogy method to simulate the static and dynamic behavior of smart 

structures with piezoelectric actuators leads to promising results. This method can assist 

in obtaining the dynamic behavior of piezoelectric structures in the design and 

manufacture of smart structures, as requested for control applications, it can further 

reduce cost, as well as shorten design cycle time for smart structures. 

 

The second part of the study focused on the state-space representation of the aeroelastic 

model of the smart fin. Approximating the unsteady aerodynamic loads in the Laplace 

domain as rational functions by using Roger’s method, a state-space model for the smart 

structures was constructed for unsteady aerodynamic loading. The state-space approach 

was verified by performing an open loop flutter analysis of an aft-swept wing by using 

root-locus analysis. The flutter results were compared to those obtained by 

MSC®/NASTRAN pk-solution, and very good concurrence was observed. It can be 

stated that the developed state-space model can be used in modern control applications 

and also in obtaining the open loop flutter characteristics of an aeroelastic system. 

 

The resulting state-space model from the Roger’s aerodynamic approximation technique 

includes augmented states that represent the aerodynamic lags. The number of 

aerodynamic augmented states increase the order of the aeroelastic system, hence the 

order of the controller. In order to keep the controller order minimum, model reduction 

is needed, or instead of Roger’s method, the minimum-state method which yields 

relatively low number of states can be used in unsteady aerodynamic approximation.  

 

Even though the approximation of aerodynamic loads with Roger’s method yields very 

satisfactory results for the simple structures such as the ones considered in the thesis: the 

aft-swept wing and the smart fin; it should be noted that in Roger’s approximation, 

sometimes, good or even acceptable fits for unsteady aerodynamics may be difficult to 

obtain or, in some cases, non-existent for complex aircraft configurations and mode 

shapes. 
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In the third part of the thesis, H∞ robust controllers were designed for the flutter 

suppression of the smart fin. Flutter control was performed in order to stabilize the 

system over a wide range of operating conditions and to attenuate disturbances 

throughout the operation envelope. The controllers were designed by considering both 

SISO and MIMO system models.  

 

In the controller design, a parametric uncertainty model was used to characterize the 

system changes with respect to varying airspeed. Thus, the migration of the poles of the 

aeroelastic system toward the right half-plane as the freestream speed increases could be 

captured via parametric uncertainty. Also, the differences between the system models at 

low frequencies and the high-frequency unmodeled dynamics were taken into account 

by the additive uncertainty description.  

 

It was shown that the designed H∞ controllers guarantied the robust performance in the 

presence of uncertainties. The controllers successfully suppressed the fluttering 

vibrations and improved the flutter speed of the fin significantly. It was found that the 

closed loop system showed a transition from a stable state to unstable state beyond 88.6 

m/s for SISO model (5.4 % enhancement), and 93.7 m/s for MIMO model (11.4 % 

enhancement). Since in the SISO case the same control signal was given to all of the 

PZTs, and hence no control force was generated in existed torsional direction; as 

expected, less performance was obtained in the SISO model.  
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6.2 Recommendations for Future Work 

 

In this thesis unsteady aerodynamic loads were approximated by using Roger’s 

approximation method. The other approximation methods such as the minimum-state or 

Matrix Pade method can be employed and the effectiveness of these methods can be 

investigated.  

 

The locations of the piezoelectric actuators affect the overall control performance 

significantly. No formal optimization procedure was performed to determine the actuator 

locations on the smart fin for flutter suppression in the study. As a future work, the 

optimal pattern of the actuators can be found by using proper genetic algorithms to 

enhance controllability. 

 

This thesis only numerically showed the effectiveness of the actively controlled 

piezoelectric actuators on the flutter suppression. The wind tunnel applications of the 

designed controllers may be performed for the experimental demonstrations.   
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APPENDIX A 

 

 

ELECTROMECHANICAL AND MATERIAL PROPERTIES OF BM500 TYPE 

PZT PATCHES 

 

 

Piezoelectric Stress Constant Matrix: 
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Density: 
 

7650=ρ  kg/m3 
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APPENDIX B 

 

 

FULL AND REDUCED ORDER MODELS FOR THE SMART FIN 

 

 

Full (24th) Order Model: 
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Equation B.2 gives the transfer function of the 24th order system model for 83=∞V  

m/sec and 225.1=ρ  kg/m3: 

 

(B.2)                               
3.122e053+s5.772e052+s4.774e051 + s 2.354e050 +
2.609e053 + s 4.743e052 + s 3.827e051 + s 1.821e050 +           

s 7.81e048 + s 1.871e047 + s 3.398e045 + s 4.847e043 + s 5.573e041 +
s 5.74e048 + s 1.281e047 + s 2.12e045 + s 2.687e043 +s 2.683e041 +           
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Reduced (8th) Order Model: 
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Equation B.4 gives the transfer function of the 8th order system model for 83=∞V  m/sec 

and 225.1=ρ  kg/m3: 
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