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ABSTRACT 

 
VIDEO SHOT BOUNDARY DETECTION BY GRAPH THEORETIC APPROACHES 

 
 
 
 

Aşan, Emrah 
 

M.S, Department of Electrical and Electronics Engineering 
                       Supervisor:  Assoc. Prof. Dr. A. Aydın Alatan 
 
 
 

September 2008, 109 pages 
 
 
 

This thesis aims comparative analysis of the state of the art shot boundary detection 

algorithms. The major methods that have been used for shot boundary detection 

such as pixel intensity based, histogram-based, edge-based, and motion vectors 

based, are implemented and analyzed. A recent method which utilizes “graph 

partition model” together with the support vector machine classifier as a shot 

boundary detection algorithm is also implemented and analyzed. 

Moreover, a novel graph theoretic concept, “dominant sets”, is also successfully 

applied to the shot boundary detection problem as a contribution to the solution 

domain.  

 
 
 
Keywords: Shot Boundary Detection, Graph Partition Model, Dominant Sets.
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ÖZ 

 

ÇİZGE TEMELLİ YAKLAŞIMLAR İLE VİDEO ÇEKİM SINIRI SEZME 
 
 
 
 

Aşan, Emrah 
 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 
                     Tez Yöneticisi:  Doç. Dr. A. Aydın Alatan 
 
 
 

Eylül 2008, 109 sayfa 
 
 
 

Bu tezde gelişmiş çekim sınırı sezme metodlarının karşılaştırmalı bir analizi 

hedeflenmektedir. Başlıca çekim sınırı sezme yöntemlerinden piksel temelli, 

histogram temelli, kenar temelli ve hareket temelli yöntemler gerçekleştirilmiş ve 

analiz edilmiştir. Son dönemde geliştirilmiş olan ve çekim sınırı sezme problemine 

çizge bölütleme modelini destek vectör makinaları sınıflandırıcısı ile birlikte 

uygulayan yöntem de gerçekleştirimiş ve analiz edilmiştir. 

Bunun yanında, yeni bir çizge temelli kavram olan “baskın kümeler” konusu 

çalışılmış ve bu yeni yöntem çekim sınırı sezme problemine başarıyla uygulanmıştır. 

 
 
 
Anahtar Kelimeler: Çekim Sınırı Sezme, Çizge Bölütleme Modeli, Baskın Kümeler.
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CHAPTER 1  

INTRODUCTION 

 

1.1. Motivation 

Recent developments in video compression technology, the widespread use of 

digital cameras, high capacity digital systems, coupled with the significant 

increase in computer performance and the growth of Internet and broadband 

communication, have increased the usage and availability of digital video. 

Applications such as multimedia information systems, distance learning, video-

on-demand produce and use huge amount of video data. This situation created 

a need for tools that can effectively categorize, search and retrieve the relevant 

video material. 

In general, management of such activities over large collections of video 

requires knowledge of the “content” of the video. In particular, digital video data 

can be processed with the objective of extracting the information about the 

content conveyed with this data. The algorithms developed for this purpose, 

referred as “video content analysis” algorithms and serve as the basis for 

developing tools that would enable us to understand the events and objects 

within the scene of a video, or generate summary of large video material or 

even to derive semantically meaningful information from the video [1]. 

The definition of “content” is highly application dependent but there are a 

number of commonalities in the applications of content analysis. Among others, 

shot boundary detection (SBD), also known as temporal video segmentation is 

one of the important aspects.  

Parsing a video into its basic temporal units -shots- is considered as the initial 

step in the process of video content analysis. A shot is a series of video frames 

taken by a single camera, such as, for instance, by zooming into a person or an 

object, or simply by panning along a landscape [1]. The content is similar in 
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shot regions. The regions where the significant content change occurs are, 

therefore, called shot boundaries.  

Since the SBD is a prerequisite step for most of the video applications involving 

the understanding, parsing, indexing, characterization, or categorization of 

video, temporal video segmentation has been an active topic of research in the 

area of content based video analysis. 

1.2. Fundamental Problems of SBD 

Shot boundary detection (SBD) is not a new problem anymore. It has been 

studied more than a decade and resulting algorithms have reached some 

maturity. However, challenges still exist and are summarized in the upcoming 

sections: 

1.2.1. Detection of Gradual Transitions  

During the video production process, first step is capturing the shots by using a 

single camera. Two consecutive shots are then attached together by a shot 

boundary that can either be abrupt or gradual.  

Abrupt shot boundaries are created by simply attaching a shot to another. While 

there is no modification in the consequent shots in an abrupt shot boundary, 

gradual transitions result from editing effects applied to the shots during 

attachment operation. According to the editing effect gradual transitions can be 

further divided into different subtypes. The number of possible transitions due to 

editing effect is quite high but most of the transitions fall into the three main 

categories: dissolve, fades (fade in, fade out), and wipes [2]. Different types of 

transitions are demonstrated in the following figures: 
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Figure 1-1 Dissolve Effect 

 

 

Figure 1-2 Wipe Effect 

 

 

Figure 1-3 Random Bars Wipe Effect 
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Figure 1-4 Dissolve Effect 

 

Detection of abrupt changes has been studied for a long time and not a difficult 

problem anymore [3]. On the other hand, gradual transitions pose a much more 

difficult problem. This situation is mainly due to the amount of available video 

editing effects. The problem gets harder when multiple effects are composed in 

the case of a lot of object or camera motion.  

Another reason is that the gradual transitions spread over time. Each editing 

effect has a different temporal pattern than the others and the temporal duration 

changes from three frames to hundred frames.  

Finally, the temporal patterns, as a result of editing effects to create a gradual 

transition, are very similar to the patterns due to camera/object motion. 

Therefore, gradual transitions remain to be one of the most challenging 

problems in SBD. 
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Figure 1-5 Fade In/Fade Out Effect 

 

1.2.2. Flashlights 

Color is the primary element of video content. Most of the video content 

representations employ color as a feature. Continuity signals based on color 

feature exhibit significant changes under abrupt illumination changes, such as 

flashlights. Such a significant change might be identified as a content change 

(i.e. a shot boundary) by most of the shot boundary detection tools. Several 

algorithms propose using illumination invariant features, but these algorithms 

always face with a trade off between using an illumination invariant feature and 

loosing the most significant feature in characterizing the variation of the visual 

content [4]. Therefore, flashlight detection is one of the major challenges in 

SBD algorithms.  

1.2.3. Object/Camera Motion 

Visual content of the video changes significantly with the extreme 

object/camera motion and screenplay effects (e.g. one turns on the light in a 

dark room) very similar to the typical shot changes. Sometimes, slow motion 

cause content change similar to gradual transitions, whereas extremely fast 

camera/object movements cause content change similar to cuts. Therefore, it is 

difficult to differentiate shot changes from the object/camera motion [2].  
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1.2.4. Thresholding 

Shot boundaries are identified based on the visual content change. Therefore, 

the most critical activity in the SBD process is the selection of the thresholds in 

any shot boundary detection step. The performance of the algorithm mainly 

remains in the thresholding phase. However, using a single threshold can not 

perform equally well for all video sequences. Using a dynamic global threshold 

by extracting the overall sequence characteristic can not solve this problem. 

Dynamic local thresholds are considered as a better alternative but thresholding 

still remains as a major problem in this area [5].  

1.2.5. Complexity of the Detector 

Shot boundary detection is considered as a preprocessing step in most of the 

video content analysis applications. There are high level algorithms which 

perform more complex content analysis. Shot boundary detection results are 

used by these high level analysis algorithms. Since the video content 

applications takes most of the available computational power and time, it is 

necessary to keep the computational complexity of the shot boundary detector 

low. Such a need challenges for algorithms which are sufficiently precise but 

also computationally inexpensive [2]. 

As the shot boundary detection problem evolved, in order to increase the 

performance of the detection, proposed algorithms started to use more than 

one feature for content representation. On the other hand, such a strategy 

brings a computational burden on the detector, since each feature requires a 

separate processing step.  

1.3. Scope of the Thesis 

This thesis aims comparative analysis of the state of the art SBD algorithms. 

The major methods that have been used for SBD such as pixel intensity based, 

histogram based, edge based, and motion vectors based, are analyzed and 

implemented. A recent method, which utilizes “graph partition model” together 

with the support vector machine classifier as a SBD algorithm, is also 
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implemented and analyzed. Finally, a novel graph theoretic concept, namely 

dominant sets, is also successfully applied to the SBD problem as a novel 

contribution to the solution domain.  

1.4. Organization of the Thesis 

This thesis is organized as follows:  

In Chapter 2, fundamental SBD algorithms in the literature are overviewed.  

In Chapter 3, state of the art SBD algorithms are analyzed and experimental 

results are presented.  

In Chapter 4, a novel graph theoretic concept referred as “dominant sets” is 

introduced and application of this concept into the SBD problem is discussed by 

the help of some experimental results.  

In Chapter 5, some concluding remarks and future considerations are stated.  
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CHAPTER 2  

RELATED WORK 

 

Since SBD is an early step for most of the video applications involving the 

understanding, indexing, characterization, or categorization of video, temporal 

video segmentation has been an active topic of research in the area of content 

based video analysis. Such research efforts have resulted in a variety of 

algorithms. In this chapter, we start with a general framework of the SBD 

problem. The framework is based primarily on three steps [4]: the 

representation of visual content, construction of the continuity signal and the 

classification of continuity values. In the second section, we review the work 

related to SBD. The methods discussed in this section are categorized 

according to their roles in the formal frame framework. Finally, TRECVID 

organization, which posses an important role in the development of the SBD 

algorithms, are also briefly introduced.  

2.1. General SBD Framework 

Although SBD research resulted in a great variety of algorithms, very few of 

them studied the formal definition of the SBD problem. A Bayesian formulation 

of the problem was proposed by Vasconcelos et al. [6]. Hanjalic develops a 

theoretical framework for SBD by unraveling the problem and identifying the 

critical factors that need to be considered for robust detection performance [2]. 

In [7] Albanese et al. presents a formal model of the video shot segmentation 

process based on mathematical models. Recently, Yuan et al. has conducted a 

formal study of the SBD problem, which includes the latest developments in the 

area [4].  

The basic assumption in SBD is that the frames within the same shots have 

similar visual content and the visual content changes through the shot 

boundary. Therefore, common idea in the SBD methods is finding the 
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discontinuities of visual content. Based on this commonality, no matter what 

kind of detection technique is used, a SBD process consists of three major 

steps: the representation of visual content, construction of the continuity signal 

and the classification of continuity values [4]. 

2.1.1. Representation of the Visual Content 

The image itself contains various information details about the visual content. 

Alternatively, it is possible to obtain more valuable information by processing 

the image content in order to extract visual features such as histograms, edges, 

motion vectors, etc. Therefore, this step can also be called as feature 

extraction.  

Problem of visual content representation can be considered as a mapping from 

image space, Q  to the feature space, F . Let tV F∈  denote the feature of 

tI Q∈ , where tI  represents the tth frame. The problem is now converted into 

finding the most proper feature for the SBD, and can be formalized as a 

mapping Φ :  

 
:

t t

Q F
I V

Φ →
→

 (1) 

A good feature to be used for SBD should have two characteristics: invariance 

and sensitivity [2]. Firstly, the feature should be stable against the content 

changes within the shot (e.g. rotation or translation of the picture) and should 

change significantly when there is a shot boundary. This is denoted as the 

invariance requirement [2]. 

On the other hand, the feature should sense the visual content changes, which 

is referred as the sensitivity. If a feature is sensitive, it is expected that the 

feature is aware of the details of the visual content.  

By satisfying these two requirements, a proper feature remains stable within a 

shot (invariance) and demonstrates significant changes at shot boundaries 

(sensitivity). 
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2.1.2. Construction of Continuity Signal 

Most common approach to detecting shot boundaries is to search for large 

discontinuities in the visual content flow of a video. In order to achieve this aim, 

a continuity (similarity) signal needs to be calculated for the frame sequence to 

determine the temporal variations of the extracted features. The constructed 

signal provides us with an idea about how similar the images in the video 

sequence are. Obviously, the continuity signal constructed by such a way is 

expected to demonstrate high values within a shot, while drops significantly at 

the transition regions. 

S  denoting the space of continuity values and ts  being the content continuity 

between tV  and 1tV + , continuity signal calculation can be formalized as a 

mapping (Θ ) from the cartesian product of feature space to the continuity value 

space:  

 
2: d

d
t t

F S
A s

×Θ →

→
                                                (2) 

where 1 1( ,..., , ,..., )d
t t d t t t dA V V V V− + + +=  and d  denotes the radius of the involved 

neighborhood when calculating the content continuity between  tV  and 1tV +  [4].  

In the earlier work, d  is usually set to 1, which corresponds to pair-wise 

comparison of the adjacent frames. Unfortunately, the continuity signal obtained 

using pair-wise similarities does not perform well in the presence of 

object/camera motion, abrupt illumination changes, etc. Therefore, a more 

robust way of constructing a continuity signal is considering a neighborhood 

instead of just comparing adjacent frames. Recent studies set 1d > , which 

utilizes the neighborhood for the continuity signal construction. Using such 

contextual information improves the performance against disturbances [4].  
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2.1.3. Classification of Continuity Values 

Final step of the framework is the decision module. All we need to do is to find a 

mapping Ψ  from the continuity signal values to the decision space W . 

Decision space includes the decisions of whether the signal values correspond 

to shot boundaries or not. If w W∈  denotes the decision (shot boundary or not, 

or type of the transition), classification problem can be formulized as: 

 
2 1: r

r
t

S W
B w

× +Ψ →

→
 (3) 

where 1( ,..., , ,..., )r
t t r t t t rB s s s s− + +=  and r  is the radius of the neighboring 

continuity values required by the classifier [4].  

Simple thresholding with a single continuity value (i.e. 0r = ) is the most 

popular classifier being used in the literature. Recent algorithms treat the shot 

boundary detection problem into a pattern classification problem and employ 

machine learning techniques by training the classifiers with the temporal pattern 

of the continuity values.  

In [2], Hanjalic states that in order to reach the optimal SBD performance “prior 

information” should also be used in the decision module. Prior information does 

not contain any information that is obtained from the image content by a kind of 

measurement. Prior information is based on the knowledge of the structure of 

the video. For example, one can intuitively assume that the probability of 

observing a shot boundary immediately after the last detected boundary is 

negligible. The general SBD framework including the “prior information” is 

summarized in the following figure: 
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Figure 2-1 Framework for SBD 

 

2.2. Taxonomy 

SBD is a popular area in the video content analysis and has been studied for a 

long time. Research has resulted in a variety of algorithms. In this section, we 

briefly review the SBD work in the literature. Following the formal framework of 

the SBD problem, we categorize the literature according to their roles in the 

formal framework presented in the previous section.   

2.2.1. Methods of Visual Content Representation 

Feature selection is the crucial step in the SBD process. The algorithms in this 

step can be summarized under two classes: algorithms run on the compressed 

domain and the algorithms run on the uncompressed domain [10].  

2.2.1.1. Uncompressed Domain 

Algorithms in this group directly work on the full pixel domain. The data is 

assumed to be decompressed before SBD, if it is available as an encoded bit-

stream. 

2.2.1.1.1. Pixel Based Methods 
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Pixel based methods are the first and the most simple algorithms in the SBD 

literature. The basic idea behind pixel-based methods is that the intensity 

values of the pixels at the same locations of the sequential frames do not 

change significantly unless there is a shot boundary.  

The initial pixel based algorithms investigates the sum of absolute pixel 

intensity differences and if the difference is above a certain value a shot 

boundary is assigned [8]. Even very small changes in the illumination or very 

small vibration in the camera can result in significant changes in total value of 

the pixel differences. Therefore, later algorithms count only the pixels that have 

changed significantly from one frame to another. If the total number of pixels 

that have changed is above a threshold, it is decided that there is a shot 

boundary between two frames [9] [10].  

Even with this improvement pixel based algorithms are still very sensitive to 

object/camera motion and illumination changes. More robust techniques use 

block based motion compensation and then apply the above algorithms [11].  

Instead of pixel-wise differences, some of the literature proposes using 

statistics of pixel intensities between two frames. An example to this is 

comparing the blocks using a metric called likelihood ratio, which is simply 

based on statistical properties mean and variance [2]. 

Another method proposed by Zhang et al. against disturbances is to smooth the 

images by a 3x3 filter before performing pixel wise comparison [12]. 

Pixel-based methods are simple algorithms and do not require high 

computational power. The problem with pixel-based methods are high 

sensitivity to camera/object motion and disturbances [2]. 

2.2.1.1.2. Histogram Based Methods 

Another example of a feature that is from the full pixel domain is the histogram. 

The reasoning is that the frames within the same shot should have similar color 

histograms, while frames of different shots should have significantly different 
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color histograms. Earlier approaches compare gray level histograms [12] and 

recent methods utilize color histogram information [13].  

Several histogram comparison metrics are proposed in the literature. The most 

common techniques are: histogram difference, histogram intersection, cosine 

measure, Kolmogorov-Smirrov test and Chi-Square test. Research shows that 

histogram intersection formula performs best in the SBD area [2].  

Zhang et al. proposed a method called twin-comparison to detect gradual 

transitions using the color histogram difference [12]. This method requires two 

thresholds. Abrupt transitions are detected using the higher threshold. A lower 

threshold is used on the remaining frames. A frame that differs from the 

previous frame by an amount above this threshold is declared as a potential 

start of a gradual transition. This frame is then compared to the subsequent 

frames to get the accumulated difference. During a gradual transition, this 

accumulated value will gradually increase. The end frame of a gradual 

transition is detected when the difference between consecutive frames drops 

below the lower threshold and the accumulated value has increased to a value 

that exceeds the higher threshold. If the difference between consecutive frames 

drops below the lower threshold before the accumulated difference exceeds the 

higher one, then the starting point is dropped and the search process is applied 

for other gradual transition candidates. Otherwise, a gradual transition is 

assigned [12]. 

As the histograms do not change with the spatial changes within a frame, 

histogram differences are more robust against the object motion with a constant 

background. However, histogram differences are also sensitive to camera 

motion, such as panning, tilting or zooming [2]. 

One can note that two images, which have completely different visual content, 

might still have similar histograms. However, research has shown that the 

probability of such events is low enough [10] [1] [12]. 

Similar to the pixel based methods, block based techniques can be utilized in 

order to improve the performance of the histogram based SBD algorithms [14].  
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Histogram-based algorithms are less sensitive to object motion than the pixel-

based algorithms. Histogram-based algorithms are robust against global 

motion. Histogram calculations require more computational power compared to 

pixel-wise calculations [12]. 

2.2.1.1.3. Edge-Based Methods 

Another feature that is proved to be useful in shot boundary detection is edges. 

Three edge-based features are mostly referred in the literature: Edge Change 

Ratio (ECR), Edge Contrast (EC) and Edge Energy. 

Zabih et al. [15] propose an edge-based technique based on the idea that 

during a shot transition new intensity edges are observed far from the locations 

of the old intensity edges. Similarly, old edges disappear far from the location of 

new edges. Moreover, the patterns in the appearance of new edges and 

disappearance of old edges are different for different types of transitions [15].  

ECR algorithm employs motion compensation techniques prior to edge 

comparison. Therefore, this feature is robust against motion. On the other hand 

literature [16] shows that ECR algorithm does not outperform histogram based 

algorithms in abrupt transition detection. The advantage of the ECR is that it 

can be used for detecting different types of transitions (i.e. cut, dissolve, fade, 

wipe).  

Lienhart [16] proposed the Edge Contrast method as an alternative for 

detecting dissolves. Since during a dissolve, visual content is a composition of 

two shots, the frames within a dissolve loose their contrast and sharpness. EC 

method captures and amplifies the relation between stronger and weaker 

edges.  

Song and Ra, and Petersohn uses Edge Energy in order to find gradual 

transitions [17] [18]. Algorithm is based on the similar observation that Lienhart 

proposed. Image contrast and sharpness decrease during a gradual transition. 

Therefore, it is expected that the edges gets weaker up to some point and than, 

as the second image starts to appear edges get stronger. As a consequence, 
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Edge Energy, which reflects the total number of strong edges, is expected to 

start decreasing during a GT and local minimum appears at the center of GT 

[17]. Petersohn finds the GTs by locating the U-curves in the Edge Energy 

diagram.  

Edge-based methods can be used both for abrupt and gradual transition 

detection. Edge-based methods require significant computational power. 

Methods adopting edges as a feature are relatively more robust against motion 

but in general does not outperform histogram-based or pixel-based algorithms 

[2].  

2.2.1.1.4. Motion-Based Methods 

Motion-based algorithms rely on the observation that while motion within a shot 

is smooth, motion between the frames that are surrounding a shot boundary 

tends to be abrupt. This assumption makes sense, because the motion of the 

objects or camera is generally smooth and continuous within the shot, which 

results in a continuous motion field. In contrast, abrupt changes are expected 

for the motion field at the shot boundary. 

Motion-based algorithms in the uncompressed domain are computationally very 

expensive. Therefore, there are very few SBD algorithms based on motion 

vectors.  

Shahraray [11] uses block matching and motion estimation to detect shot 

boundaries. Recently, Kawai [19] proposes a very effective SBD algorithm 

based on block matching motion estimation which produces very good results 

in TRECVID 2007. For each block a best matching block is found in the 

previous frame. Blocks are compared based on histogram difference. For the 

best matching block, if the histogram difference is above a certain value, it is 

decided that this difference is due to a shot change, not due to motion. If the 

total number of blocks that are marked as such is above a certain percentage of 

the total block number, it is evaluated that there is a shot boundary [19]. 
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Motion-based algorithms are computationally quite expensive algorithms but 

perform well in abrupt transition detection. In general, motion-based algorithms 

can not differentiate illumination changes and motion [20]. 

2.2.1.2. Compressed Domain 

Noting that most of the visual content is stored in a compressed form, 

processing and analysis of such an encoded bit-stream is quite advantageous. 

The features explained for the uncompressed domain are also available for the 

compressed domain. In this section, we will focus on the literature which only 

uses the compressed domain features of the video.  

2.2.1.2.1. DC Images 

In compressed domain, the zero frequency term of the DCT coefficient series is 

known as DC term. DC term is a scaled version of the block’s average value. 

The set of all DC terms in an I-frame (i.e. a frame encoded with no usage of 

prior frames) forms a DC image. Since the DC term is the average of the 

luminance/chrominance of all pixels within the 8x8 block, the DC image can 

also be accepted as a spatially reduced version of the original image [21]. The 

DC image retains most of the information about the original image, and 

therefore, most of the features in the original image can be approximated by its 

corresponding DC image. In case of abrupt shot detection, two frames 

belonging to the same shot should have similar DC images, whereas frames 

from different shots should have significantly different DC images. 

Yeo and Liu uses the DC images directly from the compressed video and then 

employ pixel and histogram differences of DC images as video content 

representation [20]. Song and Ra first obtain the DC images from the MPEG 

compressed videos and then extract the edge images for SBD [17]. 

Fernando et al. [22] use statistical features of the DC images (i.e. mean and 

standard deviation) for SBD. 

DC images can be easily extracted from the compressed video and be utilized 

for SBD. Since the DC images are a kind of spatially reduced versions of the 
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original images, using DC images increases the speed of the algorithms. 

Moreover, DC images are more robust against disturbances and noise.  

2.2.1.2.2. DCT Coefficients 

In I-frames, the DCT coefficients in each 8x8 DCT block are related to the 

luminance/chrominance of 8x8 pixels in spatial domain. Therefore, DCT 

coefficients can be used to detect the difference between the 

luminance/chrominance signal of all pixels within the 8x8 block, and therefore, 

they can be used to detect hard cuts [21]. The main idea behind the algorithms 

based on the DCT coefficients is that the pixel blocks similar to each other 

should have similar DCT coefficients. Similarly, if the blocks are significantly 

different, then they should have significantly different DCT coefficients [21]. 

Arman et al. [23] uses the inner products of the DCT coefficients for cut 

detection. After selecting a subset of the blocks, a subset of coefficients for 

each selected block is chosen. They set up a vector consisting of these 

coefficients and this vector represents the frame. The normalized inner product 

of these representing vectors is used to find the differences between two 

frames. 

Using DCT coefficients, which are readily available in the compressed videos, 

increases the speed of the SBD algorithms.  

2.2.1.2.3. Bit-Rate Information 

Bit-rate information is obtained from the video stream by using the size of the 

block, macro-block or slice of each frame. Frames with similar content should 

have similar bit rates.  

For the I-blocks, if the frame content changes, bit rate changes. This is due to 

the fact that I-frames are independent of the other frames and the bit rate 

required for the I-frame is strictly dependent on the content of this frame. 

Deardorff et al. uses this observation to detect cuts for the videos that contain 

only I-frames [24].  
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Another algorithm, which can be applied to I-frames only, sets up a bit rate 

vector using the available bit rate information from the macro blocks. Using 

these vectors the algorithm compares two frames based on a selected metric, 

and decides whether there is a shot boundary or not [21].  

2.2.1.2.4. Macro Block Information 

In most of the MPEG video compression standards P- and B-frames are 

encoded according to the predicted motion. Consequently, each macro-block in 

the inter-frames (i.e. P- and B-frames) has a motion vector type. In an MPEG 

coded video sequence, P frames have references to previous I/P frames, and B 

frames have references to both previous and following I/P frames. Furthermore, 

the level of referencing depends on the similarity between the referencing frame 

and referenced frame. Therefore, a shot change would cause an abrupt change 

in the referencing pattern of B/P frames [21]. 

The main idea for P and B frames’ motion vector behavior is; if a frame is inside 

of a shot, then the macro blocks should be predicted well from previous or next 

frames. However, when the frames are on the shot boundary, the frames 

cannot be predicted from the related macro blocks, and a high prediction error 

occurs. This causes most of the macro blocks of the P frames to be intra coded 

instead of motion compensated [25].  

The problem with the algorithms that are using motion-compensation 

information is that during the gradual transition the motion-compensation 

information is not reliable [20]. 

2.2.2. Methods of Constructing Continuity Signal 

In this section, instead of focusing on the algorithms constructing the continuity 

signal, we concentrate on the contextual vs. pair-wise comparison methods. It 

should be noted that continuity signal is defined as the set of measurements 

from a sequence frames that denote the similarity between a frame and its 

neighbors. 

2.2.2.1. Pair-wise Comparison Scheme 
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In the previous research, neighborhood is set to 1, which corresponds to pair-

wise comparison of the adjacent frames. The continuity signal is simply consists 

of pair-wise feature differences of the successive frames [9] [8] [15] [19] [17] 

[18]. Most of the algorithms search for the large discontinuity values, especially 

the peaks in the 1D continuity signal. 

2.2.2.2. Contextual Information Scheme 

Unfortunately, the continuity signal obtained by using pair-wise similarities does 

not perform well in the presence of object/camera motion, abrupt illumination 

changes, etc. Therefore, a more robust way of constructing a continuity signal 

is considering a neighborhood, instead of just comparing adjacent frames. 

Recent studies utilize the neighborhood for the continuity signal construction. 

Utilizing such contextual information improves the performance against 

disturbance [1] [4]. 

One of the mostly used techniques is to use the features of all of the frames 

from a temporal window [1]. Easterbrook applies this method as an adaptive 

thresholding scheme [26].  

Recently graph theoretic approaches are getting popular in the SBD area. In 

the graph based segmentation algorithms, all the pair-wise similarities are 

calculated within the neighborhood and a score signal is calculated based on 

these contextual information [14]. 

2.2.3. Classification Methods 

At the decision level we can group the classifiers under two groups, as 

classifiers with simple thresholding and statistical pattern recognition 

techniques; these methods are examined in the upcoming two sections. 

2.2.3.1. Classifiers with Simple Thresholding 

In the basic thresholding scheme, continuity signal at the shot boundary 

candidate position is compared with a constant threshold [2] [8] [9] [15]. Final 

decision depends on whether the output is larger than the threshold or not. 
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Such a constant thresholding method can be successful if the video content is 

stable. 

Various adaptive thresholding methods are proposed in order to deal with the 

changing video content [20] [26]. However, the decision is still based on a 

comparison with a single threshold. 

2.2.3.2. Statistical Machine Learning 

Recent research define SBD problem as a pattern recognition problem and 

applies machine learning methods. Various discriminative approaches, 

including K-means [18] [17], and support vector machines (SVMs) [4] [29] [30] 

[31], have been employed to perform SBD.  

2.3. TRECVID History 

For the purpose of promoting progress in content-based retrieval from digital 

video via open, metrics-based evaluation the TREC Video Retrieval Evaluation 

(TRECVID) meetings are organized by the National Institute of Standards and 

Technology (NIST) since 2003. 

The TRECVID evaluation meetings are on-going series of workshops focusing 

on a list of different information retrieval (IR) research areas in content based 

retrieval of video. It is co-sponsored by the NIST and the Intelligence Advanced 

Projects Activity (IARPA) of the United States Office of the Director of National 

Intelligence (ODNI). The goal of the workshop is to encourage research in 

information retrieval by providing a large test collection, uniform scoring 

procedures, and a forum for organizations interested in comparing their results. 

One of the primary research areas in TRECVID organizations is the SBD 

problem. The SBD results in TRECVID 2007 are summarized in Figure 2-2 and 

Figure 2-3. 

The results are obviously showing that the algorithms are quite acceptable 

levels for practical applications. Especially for abrupt shot boundary detection, 

most of the state-of-the-art algorithms that attend TRECVID perform very well. 
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TRECVID organization stated that “it is time to declare victory for SBD problem” 

and SBD problem will no longer be tested in the TRECVID organization [3]. 

 

 

Figure 2-2 TRECVID 2007 CUT Detection Results [3] 
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Figure 2-3 TRECVID 2007 Gradual Transition Detection Results [3] 
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CHAPTER 3  

STATE OF THE ART SHOT BOUNDARY DETECTION 

 

In this chapter, 6 state-of-the-art SBD algorithms from the literature are 

implemented and analyzed; these are the following algorithms 

− Pixel based algorithm with adaptive thresholding [26], 

− Histogram difference algorithm [2], 

− Zabih’s algorithm based on the edge change ratio [15] [16],  

− Petersohn’s shot boundary detection system, which incorporates 

pixel, edge and histogram difference statistics and employs k-means 

clustering [17] [18],  

− Yuan’s algorithm based on the graph partition model with support 

vector machine as the classifier [4], and, 

− The algorithm by NHK, which utilizes the motion vectors based on 

dual cross search block matching method [19]. 

In the following section, the evaluation criteria and the test data used during the 

experiments are introduced. A brief summary of the algorithms and the 

experimental results are presented in the remainder of this chapter. 

3.1. Test Data and Evaluation Criteria 

TRECVID 2003 SBD test collections are adopted for the experiments. Totally 

there are 8 videos in the data set. The ground truth data for this test data is also 

distributed by TRECVID organization. The test collection includes 3581 

transitions, of which 2488 (%70) are cuts, 749 (%20) are dissolves, and 345 



 

25 

(%10) are other type of transitions. Properties of the test data is summarized in  

Table 3-1. 

In the experiments, the transition types are identified similar to TRECVID 

evaluation criteria: cuts, dissolves and others. 

 
Table 3-1 TRECVID 2003 Test Data 

 
Transition Types 

# Video ID Duration
Total 

Frames 
Total 

Transitions CUT DIS Other
1 19980203_CNN 00:31:32 56717 451 280 124 47 
2 19980222_CNN 00:29:19 52736 411 309 69 33 
3 19980224_ABC 00:28:28 51204 428 296 91 41 
4 19980412_ABC 00:28:50 51877 483 345 93 45 
5 19980425_ABC 00:28:48 51814 476 295 141 40 
6 19980515_CNN 00:27:56 50254 415 283 70 62 
7 19980531_CNN 00:27:58 50275 468 359 71 38 
8 19980619_ABC 00:28:29 51244 449 321 90 38 

Total All 04:01:41 416121 3581 2488 
(%70) 

749 
(%20) 

345 
(%10)

 

 

The performances of the implemented algorithms are evaluated based on the 

recall and precision criteria. Recall is defined as the percentage of desired 

items that are retrieved. Precision is defined as the percentage of retrieved 

items that are desired items [32]: 

 
CorrectRecall

Correct Missed
=

+
 (4) 

 
CorrectPecision

Correct FalsePositive
=

+
 (5) 

 

In order compare the overall performance of the algorithms, 1F  measure, which 

combines recall and precision results with equal weight, is adopted [3]: 
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 1
2( , ) recall precisionF recall precision

recall precision
× ×

=
+

 (6) 

During the experiments, while all the algorithms are tested against abrupt 

changes, only edge change ratio algorithm, Petersohn’s SBD system and the 

algorithm based on graph partition method are tested against gradual 

transitions.  

In the Simulation Results sections, the results are presented in an accumulated 

manner so that we will be able to compare the results of the SBD algorithm 

under test with the results of the previously tested algorithms. 

3.2. Pixel-wise Difference with Adaptive Thresholding 

3.2.1. Algorithm 

Pair-wise comparison evaluates the differences in intensity or color values of 

corresponding pixels in two successive frames. The simplest way is to calculate 

the absolute sum of pixel differences and compare it against a threshold [8]: 

 1
1 1

1( ) ( , ) ( , )
*

X Y

i i
x y

D i f x y f x y
X Y +

= =

= −∑∑  (7) 

where X and Y are the frame width and height respectively, and fi(x,y) denotes 

the intensity value of the pixel at (x,y).  

A simple improvement is to count the number of pixels that change in value 

more than some threshold and compare the total against a second threshold 

[12] [2]. 

 

1 1

1 1

1 ( , ) ( , )
( , , )

0

( , , )
( )

i i

X Y

x y

if P x y P x y T
DP i x y

otherwise

DP i x y
D i
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+
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⎧ − >⎪= ⎨
⎪⎩

=
⋅

∑∑

 (8) 
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If the percentage of changed pixels D(i) is greater than a threshold T2, a cut is 

declared. The algorithm is implemented basically based on the above 

formulation except for instead of simple thresholding, we adopted the adaptive 

thresholding proposed by the BBC research group [26]: 

 
( ) max( ( 2), ( 1), ( ), ( 1), ( 2))

( ) min( ( 2), ( 1), ( ), ( 1), ( 2))
( ) ( ) 0.8( ( ) ( ))

MAX i D i D i D i D i D i
MIN i D i D i D i D i D i
THR i MAX i MAX i MIN i

= − − + +
= − − + +
= + −

 (9) 

The factor of 0.8 has been determined experimentally. In order to detect cuts, 

the difference signal is compared with the average of the threshold values of 

material before and after the current frame: 

 
( 3) ( 3)( ) ( )

2
THR i THR iC i D i + + −

= −  (10) 

Finally, cuts are identified by searching for the peaks of the difference signal in 

(10). 

3.2.2. Simulation Results 

Figure 3-1 shows the continuity signal, D(i), that is computed based on (8) for a 

test video. Spikes caused by cuts at frames 333, 388, 445 and 483 are clearly 

visible, but the cut at frame 189 is easily missed if the threshold cannot be 

selected carefully. Even if the threshold was selected so that we can detect the 

cut at frame 189, then with this threshold the frame at 398 will also be detected 

as a cut, but in fact it is not. The high level of activity in the images around 

frame number 189 produce a larger difference signal than does the cut itself. 

Although the magnitude of the difference signal at frame 189 is not very high, it 

is clearly larger than that of the surrounding frames.  

Figure 3-2 shows the resulting C(i) signal calculated for the D(i) values shown 

in Figure 3-1. In this figure, it is clear that there is no cut at frame 398. The 

signal C(i) is near or below zero, with well defined peaks at cuts. Comparing 
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this signal with a fixed threshold yields cut detection. A threshold value of 3.25 

has been found to be appropriate for a range of picture material.  

 

 

Figure 3-1 Thresholding Problem 

 

 
Figure 3-2 C(i) signal calculated for D(i) 

 

Figure 3-3 shows a false positive detected by the pixel-wise difference 

algorithm. There is a significant brightness change caused by the man moving 

so that the sun behind him appears. Similar false alarms occur when a big 

object right in front of the camera rapidly moves out of the scene and the 

background appears.  
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Figure 3-3 False Positive due to Object Hidden behind Another 

 

The algorithm is tested for detecting only abrupt changes. The simulation 

results for both single threshold and adaptive thresholding are summarized in 

the following table: 

 

Table 3-2 Cut Detection Results for Pixel-wise Difference Algorithm 
 

Pixel-wise Pixel-wise with Adaptive 
Thresholding # 

Recall (R) Precision (P) F1 Recall (R) Precision (P) F1 

1 0.62 0.8 0.7 0.74 0.82 0.83 
2 0.68 0.84 0.75 0.79 0.9 0.86 
3 0.74 0.89 0.81 0.89 0.88 0.92 
4 0.84 0.9 0.87 0.9 0.92 0.92 
5 0.69 0.79 0.74 0.85 0.81 0.88 
6 0.67 0.88 0.76 0.78 0.84 0.85 
7 0.73 0.81 0.77 0.9 0.89 0.92 
8 0.77 0.9 0.83 0.81 0.87 0.95 

Avg 0.72 0.85 0.78 0.83 0.87 0.85 

 

Even with the adaptive thresholding, the algorithm produces false alarms, if the 

shot before/after the shot boundary includes high motion activity.  
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Figure 3-4 High Motion Activity Results in Missed Shot Boundaries 

 

 

Figure 3-5 Top: Pixel Difference Signal,  
Bottom: Signal Produced as a Result of Adaptive Thresholding 
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Figure 3-4 presents a sample frame sequence of this kind. Figure 3-5 shows 

the pixel difference signal and the corresponding C(i) signal after adaptive 

thresholding. High motion activity before the shot boundary produces relatively 

high values in the difference signal. Consequently, the threshold values found 

for the shot boundary frames are high, which results in a small peak value in 

the C(i) signal. Therefore, the algorithm misses the shot boundary. 

3.2.3. Conclusion 

The results indicate that the pixel-wise difference algorithm gives quite 

acceptable results with adaptive thresholding. Simulation results indicate that 

considering the difference between the difference signal values of adjacent 

frames is a worthwhile approach. In practice, we have observed that it is useful 

to reduce the effects of scenes containing a lot of movement by comparing the 

difference signal with a threshold derived from the maximum and minimum 

difference signals over a small aperture. 

Even with the adaptive thresholding, the algorithm produces false alarms, if the 

shot before/after the shot boundary includes high motion activity. The reason 

can be explained as follows: The weakness of the pixel based features is the 

high sensitivity to the video content. It is difficult for this algorithm to understand 

whether the change in the continuity signal is due to shot boundary or due to 

disturbances/motion. In order to enhance the algorithm, we preferred adaptive 

thresholding. However, the high level of activity in the images around shot 

boundary produces a larger difference signal than expected. As a result 

adaptively obtained threshold is larger. A threshold that is larger than expected 

results in missed shot boundary. 

The main disadvantage of this method is its inability to distinguish between a 

large change in a small area and a small change in a large area. We have 

observed that cuts are falsely detected when a small part of the frame 

undergoes a large, rapid change. For the same reason, the algorithm is not 

able to detect most of the flashlights. 
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3.3. Histogram Difference with Adaptive Thresholding 

3.3.1. Algorithm 

While the pixel-wise approach focuses on local intensity (color) comparison 

between individual pixels, this method is interested with the global percentage 

of colors that an image contains. The method works by calculating percentages 

from the bin totals and comparing them with those of the adjacent frame giving 

a difference value. A difference above the threshold value will be classed as a 

shot change [2].  

If one tries to compute the overall number of possible colors, the calculations 

would be unnecessarily hard due to large number of bins (224 bins). Due to the 

limited response of human visual system, we are not able to distinguish the 

whole levels of possible colors (Figure 3-6).  

 

 

Figure 3-6 Difference bw. 24 bits/pixel and 12 bits/pixel Images [13] 

 

A simple solution is considering only the most significant bits of each 

component RGB [13]. In 12-bit histograms, all possible colors are grouped into 

212 different color levels in RGB space (Figure 3-7), which corresponds to 4096 

colors. Similarly in 6-bit histograms 64 color levels are used. 
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Figure 3-7 Only 4 MSB Color Bits are Used for 12 Bit Histograms [13] 

 

In our implementation, we have adopted the 12-bit histograms. The difference 

between the histograms is calculated according to the following formula: 

 1
1

( , 1) ( ) ( )
M

RGB i i
j

D i i H j H j+
=

+ = −∑  (11) 

where Hi(j) is the histogram value for the color level j in the frame i, j is the color 

level value and M is the total number of color levels. Hi(j) is the number of pixels 

from frame i with the color level j. A cut is declared if the absolute sum of 

histogram differences between two successive frames is greater than a 

threshold T.  

3.3.2. Simulation Results 

Typical histogram difference patterns for CUTs are shown in Figure 3-8. 

Despite the fact that during a gradual transition the frame to frame differences 

are usually higher than those within a shot, they are much smaller than the 

differences in the case of a cut and can not be detected with the same 

threshold. On the other hand, the increase in the frame to frame differences 

due to object and camera motions might be larger than the gradual transitions. 

In Figure 3-9, there are three areas in the difference signal that are not cuts, but 

they also have higher difference values than the rest. The first (from frame 70 to 

frame 95) and third (from frame 220 to frame 237) intervals are due to 

dissolves. On the other hand, the second interval is due to large motion. 

Obviously, it is not possible to differentiate the transitions from the 
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disturbances. Therefore, this method is not tested for finding gradual 

transitions. 

 

 

Figure 3-8 Typical Histogram Difference Patterns for CUTs 
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Figure 3-9 Gradual Transitions vs. Camera/Object Motion 

 

Figure 3-10 shows a false detection due to the sliding commercial text. The 

background for the text changes the color histogram values significantly (by 

contributing with large red values), which is considered as a scene change by 

the algorithm. 
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Figure 3-10 False Positive due to Sliding Commercial Text 

 

Figure 3-11 presents a frame sequence in which fast zooming is applied. As a 

result of zooming the frame content significantly changes and the algorithm 

presents another false alarm. 

 

 

Figure 3-11 False Positive due to Fast Zooming 

 

As we expect, most of the missed cuts are due to very similar color content of 

the frames surrounding the shot boundary. A typical example is shown Figure 

3-12. 
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Figure 3-12 Missed Cut due to Similar Color Content 

 

Another type of shot transition that most of the algorithms easily misses is the 

ones with very dark video content (Figure 3-13).  

 

 

Figure 3-13 Frames with Dark Content is Difficult to Detect 

 

Directors sometimes use a video effect which is called video-in-video. The outer 

frame remains constant whereas the central part of the frame includes a 

moving video. Such video effects make the shot boundaries difficult to detect, 

especially for the histogram based algorithms. Since the outer frame, which 

remains constant, decreases the change ratio of the histogram bins 

significantly, histogram based algorithms easily miss such shot boundaries. 
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Figure 3-14 shows an example shot boundary that our implementation missed 

during the experiments.  

 

 

Figure 3-14 Video in Video Effects 

 

Table 3-3 Cut Detection Results for Histogram Difference 
 

Pixel-wise 
(Adaptive Thresh.) 

Histogram 
Difference # 

R P F1 R P F1 

1 0.74 0.82 0.83 0.83 0.83 0.83
2 0.79 0.9 0.86 0.94 0.9 0.92
3 0.89 0.88 0.92 0.96 0.85 0.9 
4 0.9 0.92 0.92 0.95 0.86 0.9 
5 0.85 0.81 0.88 0.91 0.84 0.87
6 0.78 0.84 0.85 0.88 0.86 0.87
7 0.9 0.89 0.92 0.95 0.89 0.92
8 0.81 0.87 0.95 0.94 0.86 0.9 

Avg 0.83 0.87 0.85 0.92 0.86 0.89

 

Table 3-3Error! Reference source not found. summarizes the simulation 

results of the histogram difference method and compares the results with the 

pixel-wise difference with adaptive thresholding algorithm. The results of pixel-
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wise difference algorithm are also provided for comparison. During the 

experiments, we have also observed that as we increase the threshold the 

precision results improve but the recall performance gets worse.  

3.3.3. Conclusion 

Simulation results indicate that histogram difference method obviously performs 

better than the pixel-wise method. Major reason for this is histogram method is 

not sensitive to local motion and local illumination changes. In the case of slight 

illumination changes or small camera/object motion, histogram difference 

method provides robust performance and better results compared to pixel-wise 

difference algorithm. 

On the other hand, we have observed that global changes in the video frames, 

such as large brightness change, zooming or fading effects (especially fast 

zooming), result in false alarms. This is an expected result, since histogram 

feature is sensitive to the overall (or global) content of the video. Therefore, any 

effect resulting in a global change in the video content (e.g. fast zooming, large 

object movement) can be erroneously interpreted by the histogram algorithm. 

Another conclusion from the simulation results is the algorithm cannot detect 

shot boundaries if there is a video-in-video effect. Since the outer frame, which 

remains constant, decreases the change ratio of the histogram bins 

significantly, amount of histogram difference is small. Consequently the 

transition is missed. 

On the other hand, since the dark frames do not provide enough color 

information, histogram method cannot produce good results with dark video 

content as well.  

3.4. Edge Change Ratio 

3.4.1. Algorithm 

During a cut or a dissolve, new edges appear far from the locations of old 

edges. In addition, old edges disappear far from the location of new edges. This 
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observation was applied to digital video segmentation by Zabih et. al. [15] who 

identified two new types of edge pixels: 

• Entering pixel: One that appears far from an existing edge pixel. 

• Exiting pixel: One that disappears far from an existing edge pixel.  

According to Zabih et. al. it is possible to detect CUTs and GTs by counting the 

entering and exiting pixels. A large number of entering pixels ρin should exist 

during a fade in, start of dissolve and during a cut, whereas a large number of 

exiting pixels ρout should occur during a fade out, end of dissolve and during a 

cut [15].   

For the implementation, two consecutive color images are converted to gray-

scale and the edges are detected by using the Canny’s method resulting in two 

binary images E  and 'E . Entering pixels ρin denotes the fraction of edge pixels 

in 'E  which are more than a fixed distance r from the closest edge pixel in E . 

Similarly, exiting pixels ρout  is the fraction of edge pixels in E  which are farther 

than r away from the closest edge pixel in 'E .  

Visual content discontinuity is defined as: 

 max( , )in outρ ρ ρ=  (12) 

This measure is defined as edge change ratio (ECR) and represents the 

fraction of the changed edges; this fraction of the edges have entered or exited. 

Scene breaks can be detected by looking for the peaks in ρ.  

In [15], registration techniques are offered in order to handle global motion. In 

[16], in order to make the algorithm robust against small object motions, edge 

pixels in one image which have edge pixels nearby in the other image (e.g. 

within 7 pixels’ distance) are not regarded as entering or exiting edge pixels.  

In this thesis, motion compensation is achieved by dilating each edge pixel with 

a diamond shape of pixels, and registration techniques are not applied. An un-
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dilated frame is represented by E  and its adjacent frame by 'E , dilated 

adjacent frames are represented by E  and 'E . Edge change ratio (ECR) is 

computed by comparing every pixel in the first un-dilated frame, E , against the 

corresponding pixels in the second dilated frame 'E .  

There are two possibilities for this comparison: 

1. If a pixel is found in location (x,y) in frame E , and a matching pixel is 

found in its dilated area (x+dx,y+dy) in the second frame, 'E , then this 

result implies that no change has occurred, so this pixel is not an 

entering or exiting; 

2. If a pixel is found in the first frame, E , and not in the second frame 'E , 

this implies that a pixel has exited from the first frame, E . 

A repeat of this procedure is carried out, where the second un-dilated frame, 

'E , is compared against the first dilated frame, E , again with two scenarios: 

1. If a pixel is found in location (x,y) in frame 'E , and a matching pixel is 

found in its dilated area (x+dx,y+dy) in the first frame, E , then this 

implies that no change has occurred, so this is not an entering or exiting 

pixel. 

2. If a pixel is found in the second frame, 'E , and not in the first frame E , 

this implies that a pixel has entered the second frame, 'E . 

Taking both scenarios into account, ρin  and ρout  are calculated as follows [15]: 
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The edge change ratio ρ is the maximum value of ρin and ρout in each frame. 

Typical ECR patterns for both CUTs and GTs are shown in Figure 3-15. 

 

 

Figure 3-15 Typical ECR Patterns for CUTs and GTs 

 

Although the cuts appear as a single peak, it is obvious that the gradual 

transition patterns are not in a good shape. In order to obtain a more solid 

pattern, we smooth the ECR signal with a sliding mean value filter with radius 4. 

The resulting signal is shown in Figure 3-16. The gradual transition regions 

appear similar to an upside down ‘U–pattern’. We identify the cut positions from 

the initial signal by looking for single peaks. Gradual transitions are determined 

by searching for the upside down U-shape in the smoothed ECR signal. 
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Figure 3-16 Typical ECR Patterns for CUTs and GTs after Smoothing 

 

3.4.2.  Simulation Results 

Table 3-4 shows the cut detection results of ECR together with the results of 

pixel-wise difference and histogram difference algorithms. Results indicate that 

although the ECR algorithm is more complex and consumes more 

computational power and time, the cut detection performance of the ECR 

algorithm is not better than the simpler histogram difference algorithm. 

However, it is better than the pixel-wise difference algorithm.  

 

Table 3-4 Cut Detection Result for ECR 
 

Pixel-wise 
(Adaptive Thresh.) 

Histogram 
Difference ECR 

# 
R P F1 R P F1 R P F1 

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 
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Quick camera/object motion is the main weakness of this algorithm. Especially 

large objects entering or leaving the scene causes false alarms for both cuts 

and GTs.  

 

 

Figure 3-17 Zoom out Effect with Object Entering the Scene Causes False 
Alarm 

 

Figure 3-17 shows a difficult situation for an edge-based algorithm. As the 

camera zooms out from the scene, arm of a man rapidly enters the scene, 

which results in a false detection. During the zoom out, the edges produced by 

the fence changes the positions. In parallel with this the arm of the men enters 

the scene quickly. The arm introduces lots of strong edges. As a result, the 

algorithm considers the high activity in the edge positions as a shot boundary. 

For the gradual transitions, ECR algorithm often fails, when there is motion in 

both sides of the shot boundary. Especially, if the scenes, that contain strong 

edges, also have significant motion, ECR might produce false alarms.  

Table 3-5 presents the gradual transition results for the ECR algorithm. It is 

obvious that the algorithm detects the gradual transitions but the performance 



 

44 

of the algorithm is not acceptable. False hit rate is quite high resulting in very 

low precision values. 

The frame sequences, which contain motion of objects with significant edges, 

produce false GT alarms. Since significant amount of edge pixels enter or leave 

the scene with the motion of the objects, the algorithm identifies these intervals 

as GTs. Figure 3-18 shows an example of such a case. In this figure, a man in 

the scene moves his hands and arms quickly from the top to the bottom. At the 

end, the hands (especially the fingers) leave the scene which results in a 

significant amount of out going edges. 

 

Table 3-5 Gradual Transition Results for ECR 
 

ECR # 
Recall Precision F1 

1 0.55 0.45 0.50 
2 0.34 0.46 0.39 
3 0.48 0.12 0.19 
4 0.62 0.52 0.57 
5 0.45 0.49 0.47 
6 0.84 0.1 0.18 
7 0.41 0.12 0.19 
8 0.55 0.2 0.29 

Avg 0.53 0.31 0.35 

 

 

Another case that ECR algorithm fails is the long dissolves. As the edges 

appear and disappear very slowly the algorithm can not detect such a shot 

change. Figure 3-19 shows an example of a long dissolve that ECR algorithm 

cannot detect. 
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Figure 3-18 False GT Detection due to Motion of Objects with Significant 
Edges 

 

 

 

Figure 3-19 ECR fails to Detect Long Dissolves   
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3.4.3. Conclusion 

During the experiments, we have observed that if the image sequence has few 

colors and indistinct edges, it is hard for the ECR algorithm to detect shot 

boundaries. The reason for this is closely related to the bright colors. If the 

video content has brighter colors the edges are clear. Therefore, the results are 

better. Especially the cut transitions in the dark scenes result in false alarms.  

The main drawback for this algorithm is its execution time. Calculating the 

edges and the dilation operation consumes significant computing power and in 

parallel takes more time to process the frames. Cut detection results can be 

considered acceptable, if the algorithm could be faster. However, gradual 

transition results are not promising.  

3.5. Petersohn’s Algorithm with 2-Means Clustering 

3.5.1. Algorithm 

In [18], Petersohn proposes a system which uses pixel, edge and histogram 

difference statistics for detecting CUTs and GTs. The system uses the 

luminance information only and down-samples all the frames by a factor of 8 in 

x and y directions before processing.  

For CUT detection, the system utilizes histogram differences and pixel 

differences: 
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where ( , )ip x y  denotes the intensity value of (x,y)th pixel in the ith DC frame, 

and ( )ih k  denotes the kth bin value of normalized histogram of the ith DC frame.  

In order to deal with the previously mentioned weaknesses of the histogram 

and pixel difference features, the system jointly uses these two features and 
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employs 2-means clustering based decision module. In order to use two 

features together they need to be normalized between 0 and 1. Before 

constructing the 2 dimensional feature vector unsharp masking technique [17] 

is applied as a low pass filtering in the following form: 

 
( , 1) ( , 1), ( , 1) ( , 1),( , 1)

0, .f
d i i d i i if d i i d i id i i

otherwise
⎧ − − − − > −

− = ⎨
⎩

� �
 (16) 

The difference signal ( , 1)d i i −  can be either histogram difference signal or the 

pixel difference signal. ( , 1)d i i −�  denotes the median filtered ( , 1)d i i −  signal. 

( , 1)fd i i −  is the unsharp masking output. Sample pixel difference signal and 

the corresponding signal after unsharp masking is shown in the following 

figures: 
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Figure 3-20 Pixel Difference Signal 
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Figure 3-21 Pixel Difference Signal after Unsharp masking 
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Histogram and pixel difference signals obtained as a result of unsharp masking 

are fed to K-Means clustering algorithm, where K=2. A final processing is 

applied in order to eliminate the false alarms due to flashlights. The pixel and 

histogram differences for pairs of frames with different temporal distances 

around the hard cut candidate are examined and if the difference is below a 

certain threshold, then the candidate is marked as false alarm. Cut detection 

algorithm is summarized in Figure 3-22.  

 
Figure 3-22 Petersohn’s Cut Detection Algorithm [17]  

 

GT detection is based on the Edge Energy. Sobel edge operator is used for 

detecting edges. Using the edge images of the frames, Edge Energy is 

calculated as the sum of the intensity values of the pixels which are marked as 

edges.  

During a gradual transition a spectator observes a loss of contrast and 

sharpness of the images. Therefore, it is expected that the edges gets weaker 

up to some point and than, as the second image starts to appear edges get 
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stronger. As a consequence, Edge Energy is expected to start decreasing 

during a GT and local minimum appears at the center of GT [17]. Petersohn 

finds the GTs by locating the U-curves in the Edge Energy diagram. If the 

candidate is already detected as a CUT the system discards it.  

The U-curves are located by calculating the Least Squares estimates of the 

slopes of left (mL) and right (mR) lines at each frame using previous and next 6 

frames. If mL<0, mR>0 and mR -mL>1, the center of the candidate gradual cut is 

located. The start and end frames of the transitions are determined by 

searching the frames where slopes diminishes [33]. 

False-positives are eliminated by analyzing the histogram and edge differences 

for the start and end frames of the GT intervals. For correct GT intervals the 

histogram and edge differences are greater than specific thresholds.  

3.5.2. Simulation Results 

Cut detection results of the algorithm are shown in Table 3-6. The results are 

quite good. Both recall and precision results are successful and better than the 

previous algorithms.  

 

Table 3-6 Cut Detection Results for Petersohn’s SBD System 
 

Pixel-wise 
(Adaptive Thresh.) 

Histogram 
Difference ECR Petersohn 

# 
R P F1 R P F1 R P F1 R P F1 

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90
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Gradual transition detection performance of the algorithm is not as promising as 

the cut detection results (Table 3-7). The recall results are very similar to the 

ECR results. However, the precision results are obviously better compared to 

the ECR. 

 

Table 3-7 Gradual Transition Results for Petersohn’s SBD System 
 

ECR Petersohn # Video ID 
Recall Precision F1 Recall Precision F1 

1 19980203_CNN 0.55 0.45 0.50 0.64 0.55 0.59 
2 19980222_CNN 0.34 0.46 0.39 0.45 0.34 0.39 
3 19980224_ABC 0.48 0.12 0.19 0.57 0.55 0.56 
4 19980412_ABC 0.62 0.52 0.57 0.6 0.45 0.51 
5 19980425_ABC 0.45 0.49 0.47 0.67 0.6 0.63 
6 19980515_CNN 0.84 0.1 0.18 0.64 0.42 0.51 
7 19980531_CNN 0.41 0.12 0.19 0.4 0.37 0.38 
8 19980619_ABC 0.55 0.2 0.29 0.56 0.57 0.56 

Avg All 0.53 0.31 0.35 0.57 0.48 0.52 

 

Since the GT detection algorithm is based on the edge difference, the algorithm 

fails when the scene contains lots of small objects, thereby contains lots of 

edges, in both side of the shot transition: 
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Figure 3-23 Scenes with Lots of Edges is Difficult to Detect 

 

Similar to the ECR algorithm, when rapid object motion occurs, especially when 

an object with significant edges enters to scene or leaves the scene the 

algorithm produces false GT alarms. In Figure 3-24, the camera follows the 

victim of an accident, but at the same time, in the back side, a fireman walks (a 

large object with significant edges) in the opposite direction with the victim. 

Since the camera motion and the object (fireman) motion is in the opposite 

directions, the resulting motion is twice as much and produces great amount of 

re-positioning edges. Consequently the algorithm falsely identifies the situation 

as a shot change. 

Figure 3-25 shows a false alarm due to object motion together with the 

illumination change. The motion of a man produces changes in the position of 

the edges. In parallel with this, as the camera follows the moving man, due to 

the position of the sun, shadows appear and disappear. The edges due to the 

shadows contribute significantly to the change in energy because the edges 

produced by shadows are quite strong.  

We have also observed that zooming (especially fast zooming) results in false 

alarms. 
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Figure 3-24 Camera and Object Motion Together Results in a False GT 
Alarm 

 

 

Figure 3-25 Object Motion and Illumination Change 
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3.5.3. Conclusion 

During the experiments, we have observed that the algorithm is quite fast. Main 

reason behind this improvement in the speed of the shot boundary detection is 

that the system uses the luminance information only and down-samples all the 

frames by a factor of 8 in x and y directions.  

Experiments indicate that although the system utilizes the same features (i.e. 

histogram, edge, pixel values), it is obviously better than all the aforementioned 

algorithms. Our justification for this improvement is again bases on the 

preference of using DC images. Using the down-sampled images (i.e. DC 

images) makes the system more robust to small changes. DC images are less 

sensitive to small camera/object motion. Therefore, algorithm senses only 

significant changes in the video content. In addition to using DC images, the 

algorithm employs pixel and histogram features together. These two together is 

considered as the major factor that Petersohn’s system performs better than 

pixel difference and histogram difference methods.  

In the beginning, one argues that down-sampling an image causes a significant 

amount of content details to be lost. However, simulation results showed that 

for the purpose of SBD, the overall image content is important than the details 

of the image.   

Both ECR and Petersohn use edge information for detecting gradual 

transitions. Although recall results are close to each other, precision results of 

Petersohn are obviously better than ECR algorithm. It is evaluated that the final 

step of the Petersohn’s algorithm for detecting false alarms by comparing the 

pixel and histogram difference of the start and end frames is the reason for this 

difference.  

Dark video content makes the algorithm misses the gradual transitions due to 

the fact that dark image content does not produce significant edges. Similarly, 

rapid movement of large objects results in false gradual transition alarms, since, 

especially, objects with significant edges, changes the ECR and making the 

algorithm produce erroneous results.  
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Illumination change is also a strong factor of changes in the position of the 

edges and therefore, a significant difficulty for gradual transition detection 

based on edges. 

3.6. Graph Partition Model with Support Vector Machine 

3.6.1. Algorithm 

Graph theoretic segmentation algorithms are widely used in the fields of 

computer vision and pattern recognition [51]. Segmentation with graph partition 

model [14] is one of the graph theoretic segmentation algorithms, which offers 

data clustering by using a graph model. Pair-wise similarities between all data 

objects are used to construct a weighted graph as an adjacency matrix (weight 

matrix or similarity matrix) that contains all necessary information for clustering. 

Representing the data set in the form of an edge-weighted graph converts the 

data clustering problem into a graph partitioning problem [14]. In Chapter 4, 

graph theoretic clustering is explained in more detail.  

The graph theoretic SBD algorithm implemented during this study is based on 

the algorithm explained in [4]. 

3.6.1.1. Segmentation with Graph Cuts 

Given a weighted graph G with node set V, edge set E and weight matrix W, 

the problem is to partition the graph into two sub-graphs A and B using an 

objective function. In graph theory, clustering algorithms mainly differ based on 

the selected objective function. There are several objective functions mostly 

used in graph partitioning such as min-max cut [34], normalized cut [35], ratio 

cut [36] [37] and minimum cut [36]. Literature shows that min-max cut algorithm 

performs the best among others [34]. Therefore, in this thesis, min-max cut 

algorithm is adopted for the objective function. 

Min-max cut principle aims to minimize the similarity between clusters and 

maximize the similarity within a cluster. The similarity between nodes i and j is 

denoted by wij ∈  [0,1]. The larger the wij, the stronger the connectivity is 

between the nodes i and j.  
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The cut which divides the graph G into two sub-graphs A and B is defined as 

[34]:  

 
,

( , ) ij
i A j B

cut A B w
∈ ∈

= ∑  (17) 

The association of sub-graph A is defined as [34]: 

 
,

( ) ij
i j A

assoc A w
∈

=∑  (18) 

A graph can be constructed by treating each sample (i.e. each frame in our 

concept) within a data set as a node and linking an edge between each pair of 

the nodes. By defining the weight of the edge as the similarity of the samples, 

clustering can be formulated as a graph partition problem [14]. From the shot 

boundary detection point of view, the objective function Mcut, which tries to 

minimize the association between the two sub-graphs while maximizing the 

association within each sub-graph, can be defined as [34]: 

 
( , ) ( , )( , )

( ) ( )cut
cut A B cut A BM A B
assoc A assoc B

= +  (19) 

3.6.1.2. Temporal Constraints 

The drawback with this objective function is it is not applicable to large data 

sets. For every possible sub-graph, this objective function must be calculated. 

The number of sub-graphs is in the exponential degree. However, in the 

problem domain of shot boundary detection, we can apply temporal constraints 

to the problem and decrease the number of candidate sub-graphs remarkably.  

In a video sequence, a cut can occur at a position between any two adjacent 

nodes (Figure 3-26). Given that there are N nodes in graph G, there are N-1 

possible positions for the cuts. For example, if the graph includes 4 nodes, 

there are 3 possible positions for dividing the graph into two sub-graphs: 
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1. Node 1 ∈  sub-graph A, Node 2,3,4 ∈  sub-graph B. (cut between 

node 1 & 2), 

2. Node 1,2 ∈  sub-graph A, Node 3,4 ∈  sub-graph B. (cut between 

node 2 & 3), 

3. Node 1,2,3 ∈  sub-graph A, Node 4 ∈  sub-graph B. (cut between 

node 3 & 4) 

Therefore, the objective function Mcut must be calculated for all N-1 possible 

positions (instead of 2N) and the minimum value will indicate the optimum 

position of a cut for partitioning the graph. 

 

 
Figure 3-26 Sample Graph with 4 Nodes 

 
 

The continuity signal can be defined as [4]: 

 { } { }( )( ) 1,2,..., , 1, 2,...,cutscore t M t t t N= = + +  (20) 

Since the score values are calculated based on the weights, definition of the wij 

is the most critical part of the algorithm. The weight wij is usually defined as [4]: 
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The weight value between frame i and frame j reflects the likelihood (i.e. 

similarity) that two frames belong to the same shot. Therefore, sim(i,j) in (21) 

denotes the similarity function. In [4] histogram intersection method is adopted 

as the similarity measure: 
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Based on this measure, for more similar frames i and j, wij should be much 

higher. On the other hand, as the distance between frames i and j increases, 

the probability that these two frames belong to the same shot decreases. 

Therefore, σ in (21) and (22) is a factor reflecting the similarity decaying with 

the temporal interval increasing, and, r denotes the maximum range in which 

the frames are considered to influence each other. As a result the calculations 

will be restricted in a r r×  sub-matrix which is called active matrix. 

Consequently, the continuity signal can be redefined as [4]: 

 { } { }( )( ) , 1..., , 1, 2,...,cutscore t M t r t r t t t t r= = − − + + + +  (23) 

3.6.1.3. Cut Detection 

Note the difference between (20) and (23), the continuity signal is now being 

calculated by using the information neither from all of the frames, nor just from 

the consecutive frames, but according to the content variation within an interval 

of range 2 r× . Therefore, over the curve of continuity signal, a valley-shape is 

expected for a cut transition instead of an isolated peak (Figure 3-27). Based on 

this fact the cut positions can be determined by seeking for the sharp valleys in 

the continuity signal.  
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Figure 3-27 Typical Cut Patterns for Scores Signal 

The segmentation algorithm can be summarized as follows [4]: 

1. Given a video file, construct a weighted graph G. Treat each frame 

as a node and link each other by an edge. 

2. Compute wij, the weight of each edge, to obtain the similarity matrix 

W. 

3. Calculate scores of the feasible cuts according to (23).  

4. Find the V-patterns in the scores signal and select the local minima 

as the candidate cut positions. 

5. Declare the candidates whose score values are below a pre-defined 

threshold as cuts. 

3.6.2. GT Detection 

Since the abrupt changes occur between two adjacent frames, the similarity 

matrix exhibits some kind of chessboard pattern for the cuts (Figure 3-28) [4]. 

This behavior makes it possible to identify the cut positions by using a single r 

value in (23). 

On the other hand, GTs spread over an interval and are difficult to find with a 

single r value. The similarity matrix exhibits a blurry pattern at the GT intervals 

as shown in the middle plot in Figure 3-28. In [4] and [14], it is shown that for 
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different values for the length of the GT, there will always be a clear 

“chessboard” pattern at a lower resolution (right figure in Figure 3-28).  

 

 
Figure 3-28 Similarity Matrix Patterns for Cuts and GTs 

 (Left: Cut, Middle: GT, Right: GT pattern at a lower resolution) [4] 

 

In order to detect GTs, the continuity signal can be re-defined as [4]: 

 { } { }( , ) ( ( 1) , , , , , , )cutscore t M t r t t t t rδ δ δ δ δ= − − × − + + ×… …  (24) 

where { }1, 2,δ ∈ …  denoting the sampling rate of frames. Equation (24) means 

that when calculating the continuity signal for a candidate transition position, 

instead of involving all the frames in a neighborhood, the algorithm only 

samples every δ  frames in a broader range. In this manner, it is possible to 

construct multiple temporal resolution graphs, while δ varies.  

3.6.2.1. Support Vector Machine 

Identifying the shot boundaries by thresholding the obtained scores signal does 

not provide satisfactory results. In [4], Yuan et. al. propose employing a Support 

Vector Machine (SVM) with active learning strategy in order to identify the shot 

boundaries according to the shapes of local minima.  

Each shot boundary corresponds to a valley-shaped pattern in the scores 

signal. However, the reverse is not true; not every local minimum is a shot 

boundary. Only using a thresholding method does not help us in classifying 
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between shot  boundaries and non-boundaries. Observation of the typical 

scores signal indicates that the valley patterns corresponding to the boundaries 

are different from the local minima which correspond to non-boundaries. Based 

on this observation, by constructing feature vectors, which characterizes the 

shape of the valleys, and feeding this information to the SVM classifier, it could 

be possible to discriminate the boundaries and non-boundaries.  

Let ts  denote the score value at cut candidate t  and the shape of the valley 

centering at ts  can be characterized by the feature vector r
tB  [4]: 

 1( , , , , , )r
t t r t t t rB s s s s− + += … …  (25) 

where r  is the same as in (24).  

Due to the multi-resolution analysis, the feature vectors for GTs will be different 

than the cuts. Instead of constructing multi-resolution score signal for GTs, 

changing the sampling rate of the scores signal should provide us with the 

similar results. Let δ  denote the sampling rate of the continuity signal, the 

shape of the valley centering at a GT candidate t  can be characterized by the 

feature vector tBδ : 

 ( 1)( , , , , , , )t t r t r t t t rB s s s s sδ
δ δ δ δ− × − − × + + ×= … …  (26) 

Note that the length of the feature vector does not change with δ , but the 

length of the neighborhood changes. 

By concatenating the feature vectors with different resolutions (i.e. with different 

δ ), it is possible to represent a GT candidate with a single feature vector. With 

{ }1,3,5δ ∈  the candidate centering at t  can be described by the following 

multi-resolution representation: 

 1 3 5( , , )t t t tB B B B=  (27) 
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Instead of manually labeling all local minima, an active learning strategy can be 

employed. All the valleys which are under a specified threshold are identified 

and the SVM classifier is trained with the feature vectors in the form of (25) and 

(27) for cuts and GTs respectively. 

3.6.3. Simulation Results 

The television programs from national broadcast and some of the TRECVID 

2002 SBD test videos are used as the training set for the SVM. The SVM code 

from [38] is used during the experiments.  

The training videos include news programs, commercials and movies. Totally 

18114, including 4707 positive and 7880 negative samples are used to train 

SVM of a Gauss kernel function. 11 and 60 dimensional samples are used for 

cuts and GTs respectively. Table 3-8 summarizes the training set. 

 

Table 3-8 Training Set for SVM 
 

CUT DIS 
# Video ID 

Positive Negative Positive Negative 
1 ATV 548 2052 404 1313 
2 Kanalturk 20 217 111 93 
3 NTV2006 512 1183 269 955 
4 NTV2007 726 653 142 1012 
5 SHOWTV 586 585 134 806 
6 STAR 82 417 12 330 
7 TRT1 621 1104 93 1079 
8 USG1 0 340 86 168 
9 USG4 151 201 63 227 
10 LivingSt 0 98 10 60 
11 USG9 0 381 137 133 

Total All 3246 7231 1461 6176 
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Table 3-9 gives the cut detections results of the graph partition method. The 

results show that cut detection performance of the graph partition method is 

very similar by the histogram difference method.  

Gradual transition detection results of graph partition algorithm are summarized 

in Table 3-10. Although cut detection performance of the graph partition 

algorithm does not outperform the others, it is obvious that GT transition 

performance yields the best results so far. The recall results of this algorithm 

are quite close to that of the Petersohn’s SBD system, whereas precision 

results are far better than Petersohn’s. 

The score values of some GTs result in a V-shape, which are very similar to the 

shapes that occur as a result of hard cuts. Such erroneous decisions occur 

generally in two situations. If the dissolve spreads over a long interval so that 

frame differences are small, the resulting similarities between the frames 

belonging to different shots are akin to the ones within the same shot with 

disturbances. Figure 3-29 shows a dissolve sequence which is identified as a 

cut by the algorithm. 

 

 

Figure 3-29 A Dissolve Identified as a Cut (sample 1) 
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Another situation is due to the case where two shots surrounding the dissolve 

area have similar color histograms. Figure 3-30 illustrates this situation. 

 

 

Figure 3-30 A Dissolve Identified as a Cut (sample 2) 
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Table 3-9 Cut Detection Results for Graph Partition with SVM Algorithm 

 
Pixel-wise 

(Adaptive Thresh.) 
Histogram 
Difference ECR Petersohn Graph Partition 

with SVM # 
R P F1 R P F1 R P F1 R P F1 R P F1 

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88 0.67 0.89 0.76
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91 0.91 0.93 0.92
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91 0.9 0.92 0.91
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 0.94 0.94 0.94
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 0.89 0.87 0.88
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88 0.76 0.92 0.83
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 0.92 0.94 0.93
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95 0.88 0.93 0.9 

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90 0.86 0.92 0.88
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Table 3-10 GT Detection Results for Graph Partition with SVM Algorithm 

 

ECR Petersohn Graph Partition with SVM# Video ID 
Recall Precision F1 Recall Precision F1 Recall Precision F1 

1 19980203_CNN 0.55 0.45 0.50 0.64 0.55 0.59 0.66 0.79 0.72 
2 19980222_CNN 0.34 0.46 0.39 0.45 0.34 0.39 0.63 0.83 0.72 
3 19980224_ABC 0.48 0.12 0.19 0.57 0.55 0.56 0.58 0.83 0.68 
4 19980412_ABC 0.62 0.52 0.57 0.6 0.45 0.51 0.62 0.94 0.75 
5 19980425_ABC 0.45 0.49 0.47 0.67 0.6 0.63 0.67 0.86 0.75 
6 19980515_CNN 0.84 0.1 0.18 0.64 0.42 0.51 0.5 0.83 0.62 
7 19980531_CNN 0.41 0.12 0.19 0.4 0.37 0.38 0.61 0.8 0.69 
8 19980619_ABC 0.55 0.2 0.29 0.56 0.57 0.56 0.67 0.78 0.72 

Avg All 0.53 0.31 0.35 0.57 0.48 0.52 0.62 0.83 0.71 
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3.6.4. Conclusion 

The first observation about graph partition algorithm is that it consumes 

significant computing power. Processing the histograms for each frame and 

then constructing the weight matrix (even for the active matrix) is quite 

expensive.  

Graph partition method is the only aforementioned algorithm that shows a good 

performance on detecting the flashlights. This is expected, since continuity 

signal is not calculated by using the information just from the consecutive 

frames, but according to the content variation within an interval of range 2 r× . 

The frames before and after the flashlight position exhibit high similarity. 

Therefore, the flashlights are not identified as transitions during graph 

partitioning. This kind of contextual processing provides a more robust method 

for also against other sources of noises and disturbances.  

One of the remarkable improvements of this algorithm is its high precision 

results. For both cuts and GTs, precision results are significantly better than the 

other algorithms. This property makes this algorithm the most robust and main 

reason for robustness is due to the machine learning algorithm applied at the 

decision module.  

We have observed that some of the dissolves exhibits V-shape patterns very 

similar to the ones that are produced by cuts. As a result the algorithm falsely 

identifies the dissolve center as cut. Long dissolves are the situations that such 

false detections mostly occur.  

The performance of this algorithm depends highly on the performance of the 

SVM. Performance of the SVM increases with the size of the training set with 

good samples. In the early stages of the experiments with only a relatively small 

set of training data, the experimental results were quite poor. As we performed 

the training on a larger training set, it is observed that the performance gets 

significantly better. It is difficult to find training data including enough number of 

GTs. Therefore, it could be concluded that the GT detection performance of the 
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algorithm should be better, if training data is as much as one could find for the 

hard cuts. 

3.7. Motion-Based Algorithm 

3.7.1. Algorithm 

The motion based SBD algorithm proposed by Kawai et al. is one of the best 

cut detection algorithms in TRECVID 2007 [19] [3]. In this thesis, as a motion–

based SBD algorithm, we have adopted this method with slight modifications.  

Similar to the Petersohn’s algorithm, frames are down-sampled by a factor of 2 

in both x- and y-directions. The proposed algorithm further performs a 

preprocessing step for filtering out the obvious non-boundary frames. With this 

achievement, it is allowed to spend more processing power on the areas that 

are likely to be shot boundaries.  

In this early processing step, sum of absolute differences between the R, G and 

B values are calculated for candidate shot boundary frames: 

 1
1( , 1) ( , ) ( , )SAD i i

x y
d i i p x y p x y

X Y −− = −
× ∑∑  (28) 

where ( , )ip x y  denotes the R, G or B value of (x,y)th pixel in the iith down-

sampled frame, whereas X and Y denote the dimensions of the down-sampled 

frame. The difference is calculated for all color spaces and the sum gives the 

SAD value. If the SAD value is below a threshold, we justify that this frame pair 

cannot be a shot boundary and we skip the remainder of the process.  

If the SAD value is above a threshold, a detailed frame difference is calculated 

based on block matching. For the block matching algorithm, one divides the 

frames into 24 blocks (6x4) and for each block in the current frame searches 

the previous frame in order to find the best match with minimum cost: 

 { }1 1( , ) min ( ( ), ( )),
n

n i i HIST i i nv S
f f d f r v f r r Bλ − −∈

= + ∈  (29) 



 

68 

nλ  represents the minimum cost between the nth block of the current frame and 

its best match in the previous frame. ( )if r  represents the pixels of the nth block 

in the current frame. nS  is the search range, while v  is the estimated motion 

vector. 1( )if r v− +  indicates the sliding block in the previous frame searching for 

the best match (Figure 3-31). 

As explained in [19], calculation of the motion vector v  is the part that 

consumes most of the computational power, as well as execution time. In order 

to increase the speed of the algorithm, Dual Cross Search (DCS) algorithm is 

preferred as the block matching algorithm [39]. DCS algorithm improves the 

speed of block matching task by three effective steps: initial search center 

prediction, early search termination and dual cross search pattern.  

 

 

Figure 3-31 Block Matching Scheme 

 

For the cost calculations, instead of sum of absolute pixel differences, we 

adopted the histogram intersection method, since the histogram based methods 

are more proper for SBD detection task: 
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1min( , )i i

k k
HIST i

k k

H Hd
H

−

=∑  (30) 

For each block, if the resulting cost is above a certain threshold, it is evaluated 

that the block is changed more than a regular motion: 

 
11 ( , )

( )
0

n i iif f f T
V n

else
λλ − >⎧

= ⎨
⎩

 (31) 

( )V n  is set to 1, if the calculated cost value for the current block indicates a 

motion while being larger than a specific threshold. Therefore, we sum up such 

blocks in  a particular frame in order to find out the percentage of the blocks 

producing a large motion vector (or a large minimum cost), which is most 

probably resulting from a shot change, not a regular motion: 

 1
1

( , ) ( )
N

bm i i
n

d f f V n−
=

= ∑  (32) 

As a consequence, frame difference is calculated based on the block matching. 

At the end, if the number of blocks that are marked as having extraordinary 

motion is above a certain value, one decides for an abrupt shot transition. 

Therefore, shot boundaries can be identified by comparing the bmd  in (32) by a 

threshold. However, during the intervals of the video with significant motion, this 

method may not present good results. A more robust way of finding the cuts is 

to search for an increase in bmd : 

 1 2 1( , ) ( , )bm i i bm i i CUTd f f d f f T− − −− >  (33) 

Finally, a flashlight detector is also used for the false alarms. The proposed 

method finds the minimum intensity image for the 3 frames neighborhood of the 

current SBD candidate: 

 '
1 2 3( ) min( ( ), ( ), ( ), ( ))i i i i if r f r f r f r f r+ + +=  (34) 
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If the change in bmd  is due to a flashlight at if , then the sum of absolute 

difference between 1if −  and '
if  will be very small. Therefore, if the so-called 

difference is below a threshold we skip the candidate and identify it as a 

flashlight.  

3.7.2. Simulation Results 

Table 3-11 summarizes the cut detection results of the algorithm. The recall 

results are the best with an average value of 0.97, which is quite noteworthy. 

On the other hand, the precision results are not as good as its recall results.  

The flashlight detector of the algorithm does not perform well. Especially, if the 

scene has a strong illumination, or the flashlight spreads to more than one 

frame, the proposed algorithm usually fails (Figure 3-32). 

 

 

Figure 3-32 Flashlight Detector Fails  

 

The examined algorithm also fails to detect shot changes for dark scenes (see 

Figure 3-33). 
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Figure 3-33 A Missed Cut due to Dark Scene  

 

Video-in-video kind of shot boundaries are also difficult to detect by such an 

algorithm. Since the blocks of the outer video frame do not change, the number 

of blocks changed in the center of the video does not produce enough increase 

in the bmd  signal. In addition to this, if the inner frame includes a dark content, it 

gets even more difficult for this algorithm to detect the transition: 

 

 

Figure 3-34 Failure of Detection due to Video Effects 

 

Since this method adopts histogram based block matching algorithm, we 

observe the weaknesses of histogram based methods in this algorithm as well. 

For example, the overall illumination changes cause the algorithm to produce 

false alarms (see Figure 3-35): 
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Figure 3-35 False Alarm due to Overall Illumination Change 
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Table 3-11 Cut Detection Results for Motion Based Algorithm 

 
Pixel-wise 

(Adaptive Thresh.) 
Histogram 
Difference ECR Petersohn Graph Partition 

with SVM 
Motion with Dual 

Cross Search # 
R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88 0.67 0.89 0.76 0.94 0.73 0.82
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91 0.91 0.93 0.92 0.98 0.80 0.88
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91 0.9 0.92 0.91 0.96 0.80 0.87
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 0.94 0.94 0.94 0.99 0.76 0.86
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 0.89 0.87 0.88 0.97 0.68 0.80
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88 0.76 0.92 0.83 0.92 0.73 0.81
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 0.92 0.94 0.93 0.98 0.75 0.85
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95 0.88 0.93 0.90 0.99 0.85 0.91

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90 0.86 0.92 0.89 0.97 0.76 0.85



 

74 

3.7.3. Conclusion 

The algorithm is one of the best cut detection algorithms reported in TRECVID 

2007 [3]. Our experimental results also support this performance with the best 

recall results. However, we are not able to observe a remarkable precision 

result for this algorithm.  

Generally, motion-based algorithms are not preferred in the uncompressed 

domain, since estimation of motion vectors consumes significant computational 

power and time. In contrary, this algorithm is the fastest among the methods 

that have been tested in this thesis. This observation is mainly due to the 

preprocessing step for skipping the frames which have very low probability of 

being a shot boundary. Secondly, utilizing down-sampled images together with 

the fastest block matching algorithm (i.e. Dual Cross Search) increases the 

speed of the algorithm significantly. 

During the experiments, we have observed that motion is the major factor that 

makes the cut detection harder. Therefore, it is expected that a motion based 

SBD algorithm could produce good detection performance. However, precision 

results should be improved.  

3.8. Discussion 

In this thesis, we have implemented six popular state-of-the-art SBD algorithms. 

In order to gain an integral idea about SBD problem, we have selected these 

algorithms adopting different content representation, various continuity signal 

construction and different classifiers. 

We have observed that although pixel-based algorithm is known to be the 

primitive one in the field, with appropriate improvements such as adaptive 

thresholding, it is possible to obtain quite promising cut detection results.  

Experimental results indicated that histogram-based algorithms are very 

applicable to SBD. They provide global information about the video content and 

are less sensitive to local changes. We have also observed that algorithms can 
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be further improved by quantization in the color spaces. The resulting 

algorithms are observed to be faster without any performance degradations.  

We have also observed that the algorithms adopting complex features, such as 

edges, do not outperform the performance of the simpler algorithms using pixel 

or histogram information. Complex features additionally increase the necessity 

for more computational power, which makes them less preferable.  

On the other hand, our simulation results show that for the purpose of SBD, the 

overall image content is important than the details of the image. Therefore, 

down-sampled images can be used to both increase the speed of the algorithm, 

as well as to enhance the robustness against motion and disturbances. 

Increasing the speed of the algorithm let us use more than one feature, which 

further increases the overall performance of an algorithm. 

During the experiments, we have realized that motion is the major factor that 

makes the cut detection precise. The simulation results showed that a good 

motion based SBD algorithm could produce a remarkable detection 

performance.  

Although graph-theoretic approaches with machine learning are 

computationally complex, they are very promising algorithms with very trustable 

results. They perform best flashlight detection and are less sensitive to 

disturbances.  

Gradual transition detection is a very difficult problem due to the fact that there 

are various types of editing effects, while each editing effect has a different 

temporal pattern, which makes it very difficult to detect with a single algorithm. 

Due to similar reasons, in 2007, TRECVID organization decreased the amount 

of gradual transitions in the test videos significantly and completely 

concentrated on cut detection.  
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CHAPTER 4  

DOMINANT SETS 

 

Cluster analysis aims to understand the internal structure within a given 

dataset. In [40] Pavan applies cluster analysis to the domain of computer vision, 

specifically to image segmentation and image database organization problems. 

A framework is developed for image segmentation problem based on a novel 

graph theoretic formulation of clustering, namely dominant sets. In this thesis, 

we have applied this new concept to the SBD problem. The experimental 

results show that this new concept can be used in detecting abrupt scene 

transitions.  

In this chapter, we will start with an introduction of the fundamentals of graph 

theory and its relevant definitions. The novel combinatorial concept, dominant 

sets, is explained based on these definitions. Finally, we propose a SBD 

algorithm based on the dominant sets concept. The performance of the 

proposed algorithm is to be evaluated against the TRECVID 2003 SBD test set.  

4.1. Graph Theoretic Clustering 

Most of the pattern recognition problems are quite difficult that it is not possible 

to guess the optimum classification decision in advance. Therefore, one spends 

most of the time during learning. Learning refers to some form of algorithm for 

reducing the error on a set of training data [41]. Unsupervised learning is a type 

of machine learning, in which manual labels of inputs (i.e. training set) are not 

used. 

Clustering is considered to be major unsupervised learning problem. One can 

define clustering as “the process of organizing objects into groups whose 

members are similar in some way”.  Therefore, the objects within a cluster are 

expected to be similar between them and dissimilar to the objects from other 

clusters [42]. 
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Data representation can be considered as the first step in solving a clustering 

problem. Different data representation types can be employed for different 

clustering problems. Among these two types of representations are widely used 

for clustering problems in computer vision fields, while one of them is called 

geometric representation, in which data items are mapped to some real normed 

vector space (i.e. feature space). The other type, denoted as the graph 

representation, maps the data items to the nodes of a graph [43]. 

Representation of the data in the form of a graph brings the problem into the 

graph theory domain 

4.1.1. Fundamentals of Graph Theory 

Some key terminology, which will help us in understanding the graph theoretic 

clustering, is presented below. 

A graph is a set of objects called nodes or vertices connected by links, namely 

lines or edges. Each edge has a set of one or two vertices associated to it, 

which are denoted as its endpoints. An edge is said to join its endpoints. Edges 

are generally represented by the pair of vertices that they are connecting. 

 

x

w

y

t
v

node x

Edge (x,t)

 

Figure 4-1 A Simple Undirected Graph 
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A node u is adjacent to node v if they are joined by an edge. Two adjacent 

nodes might also be called neighbors. 

In a proper graph, which is by default undirected, a line from point A to point B 

is considered to be the same thing as a line from point B to point A. Formally, 

an undirected graph is one in which no distinction is drawn between edges (a,b) 

and (b,a) [44]. 

A weighted graph is one in which a weight is associated with each edge. 

A clique of a graph G is a subset of nodes V such that all vertices are pair-wise 

adjacent. A maximal clique is a clique that is not contained in any other clique. 

A maximum clique is a maximal clique of maximum size. In Figure 4-2, graph G 

consists of 5 nodes. The sub-graphs S1 and S2 are both cliques of graph G 

because all nodes are pair-wise adjacent. They are both maximal cliques since 

they are not included in any other sub-graph of G. Sub-graph S1 is the 

maximum clique of G because it has more nodes than sub-graph S2. 

 

 

Figure 4-2 Maximal and Maximum Cliques 
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4.1.2. General Clustering Approach 

In graph theory, clustering is considered as dividing the graph into “good 

pieces”, which is called graph partitioning. Firstly, each data element in the data 

set to be clustered is mapped to a node in the graph. The next, and maybe the 

most critical, step is to determine the similarity metric. All the data items in the 

set will be compared in a pair-wise manner with all the other data items 

according to this similarity metric. Whether two nodes are alike and therefore be 

in the same cluster is mostly determined by this similarity metric. In other 

words, the criteria to determine “good pieces” are the similarity metric [45]. 

Following the identification of the similarity metric, a weighted similarity matrix 

(or affinity matrix) is formed by using the pair-wise similarities between all data 

items. There is a row and column for each data item in the similarity matrix. The 

(i,j)th element of the matrix represents the similarity that is calculated for data 

item i and data item j based on the similarity metric [4]. All the elements of the 

similarity matrix is calculated in this manner. The motivation behind graph 

theoretic clustering algorithms is the idea that weighted similarity matrix 

contains all the information necessary for clustering [34].  

In order to achieve the weighted graph representation of the data set, an edge 

is constructed from every data item to every other, and corresponding similarity 

value from the previously formed weighted similarity matrix is assigned to this 

edge as a weight. In general, if two nodes are not similar (i.e. zero similarity) 

the edge between these two nodes is not shown in the graph (Figure 4-3). 

At this point, since the graph representation is ready, we have already 

transferred the data clustering problem into a graph partitioning problem. 

Therefore, the final step is to obtain an appropriate algorithm to cut the graph 

into sub-graphs which have relatively large interior weights.  

Figure 4-4 from [45] summarizes the partitioning process. On the top left, graph 

representation of the problem in the form of an undirected weighted graph is 

given. On the top right is a common visualization of the similarity matrix of this 

graph. Larger similarity values are indicated with lighter color.  
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Figure 4-3 Graph Representation from Similarity Matrix 

 

 

 

Figure 4-4 Graph Partition Example 

 

“By associating the vertices with rows (and columns) in a different order, the 

matrix can be shuffled. The ordering is chosen to show the matrix in a form that 
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emphasizes the fact that it is very largely block-diagonal. The figure on the 

bottom shows a cut of that graph that decomposes the graph into two tightly 

linked components. This cut decomposes the graph’s matrix into the two main 

blocks on the diagonal” [45]. 

4.2. Maximum Clique Problem and Motzkin-Straus Theorem 

There are different approaches for dividing a graph into good pieces. Among 

these methods, a classic approach formulates the clustering problem as 

“maximum clique problem”. The maximum clique problem, which searches for 

the maximum cliques in a graph, is the strictest definition of a cluster [46]. 

Motzkin-Straus theorem is a remarkable contribution to the solution of the 

maximum clique problem by establishing a connection between the maximizer 

of the Lagrangian of a graph and its maximum cliques. The basic idea can be 

summarized as follows [47]: 

A good cluster is one where elements that are strongly associated with the 

cluster also have large values in the similarity matrix. Let vector x (generally 

referred as characteristic vector) represents the association of each node with 

the cluster, and A be the binary similarity matrix. A proper objective function for 

clustering can be [45]: 

 Tf(x) = x A x  (35) 

This notation is a sum of the terms of the form [45]: 

 
{association of element i with cluster}×

{similarity between i and j}×
{association of element j with cluster}

 (36) 

A sub-graph with elements maximizing this objective function gives us a cluster. 

However, the objective function without normalization cannot be used, since 

scaling the associations of the nodes to the cluster changes the results. 



 

82 

Therefore, we can use the normalization =Tx x 1  as a constraint and obtain the 

Lagrangian [45]: 

 
maximize
subject to

T

T

x A x
    x x = 1

 (37) 

In [48], Motzkin-Straus proved that a subset of vertices S is a maximum clique 

of graph G, if and only if its unweighted characteristic vector x is a global 

maximizer of the Motzkin-Straus quadratic program defined in (37). Motzkin-

Straus theorem is an important result from graph theory and has been applied 

to various computer vision and pattern recognition problems [47].  

Unfortunately, while the other graph theoretic clustering algorithms (e.g. 

minimum spanning tree, minimum cut, etc.) work with the weighted similarity 

graph; the concept of maximum clique is defined on unweighted graphs. The 

general approach is not different than the one that is explained in the previous 

section. The unweighted similarity matrix could be derived from the weighted 

similarity matrix with any thresholding operation. If the similarity between two 

nodes is above a certain threshold it is assumed that two nodes are similar and 

the corresponding entry in the binary unweighted similarity graph is set to “1”. 

Otherwise it is set to “0” and the edge between these two nodes is removed 

from the graph [40].  

Although Motzkin-Straus theorem is a remarkably important contribution to the 

maximum clique problem, working with an unweighted similarity matrix is not 

acceptable for most of the computer vision problems. The unweighted similarity 

matrix and unweighted characteristic vector do not provide any discriminative 

information about the participation of the nodes to the cluster. If a node is 

associated with the cluster with the value 0.4 and the other is with 0.9, and if 

the selected threshold is 0.3, both nodes are associated with this cluster. There 

is no clue about the degree of the association (the node with association value 

of 0.9 is obviously more strongly connected to the cluster). Therefore, 

unweighted similarities can be used to generate a hierarchy of clusters that can 

be presented to the user, but it is not useable and feasible in most of the 
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pattern recognition and computer vision problems due to the large number of 

data to be clustered.  

 

 

Figure 4-5 Clustering Problem due to Unweighted Similarities 

 

For example, let’s assume that we have eight data points in the 2D space with 

a feature vector consisting of their position in the x and y coordinates (Figure 

4-5). The similarity measure is the distance between their positions in the 

space. It is obvious that the nodes 1, 2, 3 and 4 form a cluster, and the nodes 5, 

6, 7 and 8 form another one. However, using the unweighted similarities, it is 

not possible to find a threshold value that may be used to separate the nodes 1, 

2, 3 and 4 from the nodes 5, 6, 7, and 8. The algorithm will check the similarity 

(the distance) between node 1 and node 3 and will observe that it is the same 

as the similarity between the node 1 and node 5. As a result, by any kind of 

thresholding, it is not possible for the algorithm to segment these three nodes in 

different clusters. In another way, it is not possible to find a threshold value 

such that the resulting unweighted graph contains exactly two strictly maximal 

cliques corresponding to the two clusters in Figure 4-5. 

Therefore, it is important to generalize the notion of the maximum clique to 

edge weighted graphs, thereby allowing the development of a new partitional 
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(not hierarchical) clustering approach. This is exactly what Pavan and Pelillo 

propose a new method for pair-wise clustering based on the novel cluster 

concept dominant sets [49]. 

4.3. A Novel Graph Theoretic Definition of a Cluster: Dominant Sets 

Pavan and Pelillo has followed the traditional graph theoretic approaches and 

represented the data to be clustered as an undirected weighted graph with no 

self loop [49]. The graph is represented with the weighted similarity matrix 

A ( )ija= , where ija denotes the similarity between node-i and node-j. Due to 

the fact that the graph does not contain any self loops, diagonal entries in the 

corresponding similarity matrix are set to zero.  

One should recall from the previous sections that a good cluster has two 

important features: internal similarity within a cluster should be high and the 

similarities between an element within the cluster and the one from outside 

should be low. In the graph domain, this corresponds to large edge weights 

within a cluster and low weights on the edges connecting the cluster nodes to 

the external ones.  

Pavan and Pelillo [49] starts from the analysis of the intuitive idea that 

assignment of weights to the edges, is one way of assigning weights to the 

nodes of a graph. For example, considering the graph G in Figure 4-6, the 

edges incident on node-1 has the similarity values 3 and 4, which are the 

lowest weights according to the weights on the graph. Similarly, edges incident 

on node-3 has the similarity values 4 and 5, which are the top weights in the 

overall ranking. This example may intuitively tell us about the natural ranking of 

participation of the nodes in the cluster, i.e. the weight of node-3 is larger than 

the weight of node-1. By weight of a node, the degree of the participation is 

being implied [49].  
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Figure 4-6 Sample Weighted Graph 

 

 

In order to analyze this intuitive idea of node weights, some preliminary 

definitions should be stated. The average weighted degree of i with respect to a 

non-empty sub-graph S is defined as follows, where ija denotes the similarity 

between node-i and node-j [49]: 

 
1deg ( )S ij

j S

aw i a
S ∈

= ∑  (38) 

As demonstrated in Figure 4-7, average weighted degree is a relative weight 

calculation with respect to a sub-graph and gives us an idea about the degree 

of participation of a node to the given sub-graph [49]. 

 

 

Figure 4-7 Average Weighted Degree Calculation 
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For j is not an element of S, one can define the following similarity measure 

between nodes i and j [49]: 

 ( , ) deg ( )S ij Si j a aw iφ = −  (39) 

Intuitively, ( , )S i jφ measures the similarity between nodes j and i with respect to 

the average similarity between node-i and its neighbors in S [49]. Note that 

( , )S i jφ  can be either positive or negative.  

One can interpret this definition by the help of Figure 4-8. Let’s assume that we 

are considering enlarging the cluster (i.e. sub-graph S) by including node j to 

this cluster. If ( , )S i jφ  is positive, this means that the similarity (or connectivity) 

between the nodes i and j are stronger than the average similarity of node i to 

the other nodes of the cluster. This derivation intuitively increases the 

probability of including the node-j to the cluster, since its connectivity to the 

node-i is stronger than the others. Therefore, if node-i is in this cluster, node-j 

should be in this cluster as well.  

 

 

Figure 4-8 Similarity wrt. Average Similarity 
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Using these definitions, one can define the node weights, ( )Sw i . Let S be a 

nonempty sub-graph and i S∈ . The weight of i with respect to S is: 

 
{ } { }

{ }
\ \

\

1, 1
( ) ( , ) ( ),S

S i S i
j S i

if S
w i j i w j otherwiseφ

∈

⎧ =
⎪= ⎨
⎪⎩
∑  (40) 

Moreover, the total weight of S is defined to be: 

 ( ) ( )S
i S

W S w i
∈

=∑  (41) 

Intuitively, ( )Sw i  gives us a measure of the overall similarity between node-i 

and the other nodes in \{ }S i  with respect to the overall similarity among the 

nodes in \{ }S i . Let’s interpret this definition as follows: In order to calculate the 

weight of node-i, one should remove the node from the cluster (i.e. from sub-

graph S), and for the rest of the cluster, we compare the connectivity of node-i 

to each node-j’s average connectivity ( \{ }j S i∈ ) to the cluster. Moreover, we 

multiply this comparison with the weight of node-j (i.e. its degree of association 

to cluster), because even if the relative connectivity of node-i may be stronger 

than the average connectivity of node-j, the degree of association of node-j to 

the cluster may be low. Therefore, the weight of node-j must be a weighting 

factor for this comparison.  

Referring back to Figure 4-6, the weights calculated using the definition 

provided above are: { }1,2,3 (1) 10w = , { }1,2,3 (2) 16w = , and { }1,2,3 (3) 18w = . These 

results are in accordance with the intuitive idea that was presented in the 

beginning of this section.  

We are now in a position to define dominant set concept: 

Definition 1: A nonempty subset S of a graph G is said to be dominant if [49]: 
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{ }

1. ( ) 0, ,
2. ( ) 0, ,

S

S i

w i for all i S
w i for all i S∪

> ∈
< ∉  (42) 

One should note that the properties of a dominant set as stated in (42) implicitly 

correspond to the two main properties of a good cluster, which are high internal 

connectivity and low connectivity between the cluster and the external nodes. 

This fact is the main reason behind considering the dominant sets as a new 

definition for a cluster of nodes [49].  

Definition 2: Weighted characteristic vector xS for a non-empty subset S is 

[49]: 

 

( ) ,
( )

0 ,

S
S
i

w i if i S
W Sx

otw

⎧ ∈⎪= ⎨
⎪⎩

 

     
 (43) 

Weighted characteristic vector calculated in this way indicates a subset. If there 

are n data nodes in the graph, the vector is n-dimensional. Each element in the 

vector indicates whether the node corresponding to the element index is 

included in the cluster (i.e. the sub-graph) or not. Moreover, the value of the 

vector element also provides information about the degree of association to the 

cluster for that node. If the value is zero the node is not included in the cluster. 

Remember that the values in the vector are normalized so that all the elements 

in the vector sum up to 1.  

For example, for a graph with 5 nodes, the following characteristic vector is 

given:  

 

0.3
0.4
0
0

0.3

Sx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (44) 
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This weighted characteristic vector indicates to a subset S (a sub-graph) which 

is identified by the non-zero entries of the vector. Hence, the subset S is equal 

to {1, 2, 5}. Moreover, the weighted characteristic vector tell us that while the 

nodes 1 and 5 are connected to this cluster with a degree of 0.3, the 

participation of node 2 to this cluster is 0.4 and stronger than both node 1 and 

node 5.  

Pavan and Pelillo generalize the Motzkin-Straus Theorem to the edge-weighted 

graphs by using the dominant set definition [49]: 

Theorem: If S is a dominant subset of graph G, then its weighted characteristic 

vector xS is a strict local solution of Motzkin-Straus quadratic program with 

weighted similarity matrix. Conversely, if x* is a strict local solution of Motzkin-

Straus quadratic program with weighted similarity matrix, then the subset S 

indicated by x* is a dominant subset of G [49]. 

Following this theorem, Pavan provides a lengthy proof [40] in which the 

definition of dominant set is proven to be equivalent to that of a strictly maximal 

clique (i.e. maximum clique) when applied to unweighted graphs. 

4.4. Finding Dominant Sets by Replicator Dynamics 

The characteristic vector xS indicates a subset S, but it does not provide us with 

the information whether the subset S is a dominant set, thereby a cluster, or 

not. Therefore, in order to find the dominant sets of a graph, we need to solve 

the weighted Motzkin-Straus quadratic program with weighted similarity matrix 

and weighted characteristic vector.  

Solution to this quadratic program can be determined by using the replicator 

dynamics from evolutionary game theory [50]. Pavan uses the following model, 

which corresponds to the discrete-time version of the first order replicator 

equations: 

 
( )( 1) ( )

( ) ( )
i

i i Tx t x t
t t

+ =
Ax

x Ax  (45) 
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where ix  is the ith element of the weighted characteristic vector x, and A is the 

weighted similarity matrix. The solution is iteratively found based on this model. 

The iterations start from an initial point and stops when the new iterations do 

not update the vector. 

At the starting point, since we do not know which nodes are in a cluster, it is 

better to start with a weighted characteristic vector which has equal association 

values for each data node. For example, if the graph has 5 data nodes to be 

clustered, the starting weighted characteristic vector x(t=0) would be: 

 

0.2
0.2
0.2
0.2
0.2

Sx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (46) 

The characteristic vector may also be called as the state vector [40]. The initial 

state vector given above will be updated according to the first order replicator 

equations at each iteration. When there are no updates in the state vector the 

algorithm stops. The entries, which have significant large values in the final 

state vector, represent the dominant set. 

Let’s assume that we have 6 points in the 2D space to be clustered (Figure 

4-9Error! Reference source not found.). The points in the upper left corner 

represents the nodes 1, 2, and 3 of the graph, and the points in the bottom right 

corner represents the nodes 4, 5 and 6 of graph. The similarity metric is the 

distance between the points in space. The starting state vector x(t=0) would be: 

 0

1/ 6
1/ 6
1/ 6
1/ 6
1/ 6
1/ 6

S
tx =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (47) 



 

91 

 

Figure 4-9 Simple Data Set (6 points) [40] 

 

Figure 4-10 shows the evolution of the state vector using the first order discrete 

time replicator model. The x coordinates in the figure show the index values of 

the state vector corresponding to the data items, and the y coordinate indicates 

the values of the state vector entries. Note that the values for the nodes 1, 2 

and 3 get smaller and smaller, while the values for the nodes 4, 5 and 6 get 

larger. Finally the state vector values do not change between iteration 4 and 

iteration 5, and the algorithm stops. Therefore, final state presents us with the 

dominant set consisting of nodes 4, 5 and 6. 
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Figure 4-10 Evolution of the state vector x(t) [40] 

 

 

4.5. SBD Algorithm Based on Dominant Sets 

Graph theoretic segmentation algorithms are getting more popular in the field of 

pattern recognition and computer vision [51]. Dominant sets, which is a very 

novel concept, is a remarkably important contribution to the graph theory 

domain and has already found applications in image segmentation [49]. 
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Furthermore, Sakarya and Telatar applied this novel concept to video scene 

detection problem [52].  

In this thesis, we propose a SBD algorithm for detecting abrupt changes based 

on dominant sets concept. In designing the algorithm, we have used the 

experience that we have acquired during the simulations of the state-of-the-art 

SBD algorithms in Chapter 3. 

First of all, during the experiments, we have observed that graph theoretic 

approaches are computationally complex due to weight matrix calculations and 

contextual information usage. Therefore, we need to design a relatively fast 

algorithm, which compensates the time one looses in graph related 

calculations. Although motion-based algorithm presented a very good recall 

performance, since motion vector calculation is a complex process we decided 

not to use motion information together with a graph theoretic approach.  

Secondly, we have learnt that the algorithms, which use the computationally 

complex features, such as edges, do not outperform the performance of the 

simpler algorithms, which uses pixel or histogram information. These two 

observations together led us utilization of the histogram and pixel-wise 

difference as the similarity metric.  

In order to further increase the speed of the algorithm, we decide to use the DC 

images and the preprocessing step proposed in [19].  

During the experiments, we have noted that one of the main reasons for false 

alarms for all kinds of algorithms is due to video-in-video type of effects or the 

sliding text at the bottom of the video. In addition to this, considering that the 

center of the video includes the more important content, we have adopted a 

Region-of–Interest (RoI) idea proposed in [30] and decided to perform the 

calculations in this region. Figure 4-11 shows a typical RoI for a sample frame. 
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Figure 4-11 Region of Interest (RoI) 

 

The proposed algorithm can be summarized as follows: 

1. Find the cut candidates based on the sum of absolute differences of the 

pixel intensity values over the RoI. If the difference is below a certain 

threshold skip the rest of the algorithm. If the difference is above a 

certain threshold continue with the next step.  

2. For the cut candidates, construct the graph representation by taking 4 

frames before the shot boundary and taking 2 frames after the shot 

boundary. For the sample candidate cut position shown in Figure 4-12, 

graph representation is shown in Figure 4-13. Each node in the graph 

represents the frames in the sequence. 

 

 

Figure 4-12 Candidate Cut Position 
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Figure 4-13 Graph Representation of the Candidate Cut position 

 

3. Select features for video content representation and construct the 

weighted similarity matrix A based on the selected feature(s).   

4. Start with an initial state vector of 0 [1/ 6,1/ 6,1/ 6,1/ 6,1/ 6,1/ 6]S
tx = = , 

and find the dominant set according to the first order replicator equation 

in (46). Iteratively update the state vector until there is no update or the 

iteration number reaches the maximum number of iterations (selected 

as 15). 

5. For the true cut positions, one expects the resulting dominant set to 

include first 4 frames. Therefore, we want the values of first four 

elements of the state vector to be above the starting value (i.e. 1/6) and 

we want the 5th and 6th elements of the state vector to be less than a 

threshold (selected as 0.14).  

4.6. Simulation Results 

During the experiments, we have started with the 1D feature vectors. We have 

tested the algorithm with pixel difference, histogram difference and motion 
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difference separately. Finally, we have tested the algorithm with the 2D feature 

vector including both pixel and histogram difference. Table 4-1 presents the 

results of this experiment. It is obvious that using a 2D feature produces better 

results for both recall and precision values compared to using 1D feature. 

Results for motion based algorithm are slightly better than the one using 2D 

feature vector. However, during the experiments we have observed that using 

motion difference as a feature results in a very slow algorithm.  

During the experiments, we have also tested the algorithm with an alternative 

structure in which we have used 4 frames from one shot and only 1 frame from 

the next shot (Figure 4-14). Simulation results for both cases are presented in 

Table 4-2. 

 

Figure 4-14 Alternative Test Structure 

  

Adopting the 1D motion feature as a similarity measure for graph 

representation, overall algorithm is tested with the TRECVID 2003 SBD test 

videos. Table 4-3 presents the simulation results of the SBD algorithm based 

on dominant set concept together with all the algorithms tested in Chapter 3. 

Results show that the algorithm produces quite good recall results. Precision 

results need to be improved.  

Experiments showed that the types of shot boundaries that this algorithm 

produces wrong results are not different than the pixel-wise difference and 

histogram difference algorithms. Main situations that result in wrong decisions 

are video in video effects, dark scenes and large object movements.  
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Table 4-1 Dominant Sets Results for for Single and Joint Features 
 
Dominant Sets 

Pixel-wise Feature Histogram Feature Motion Feature Histogram & Pixel Feature# Video ID 
R P F1 R P F1 R P F1 R P F1 

1 19980203_CNN 0,80 0,81 0,80 0,78 0,54 0,64 0,87 0,81 0,84 0,87 0,72 0,79 
2 19980222_CNN 0,92 0,87 0,89 0,87 0,64 0,74 0,96 0,84 0,90 0,95 0,83 0,89 
3 19980224_ABC 0,87 0,84 0,85 0,88 0,69 0,77 0,95 0,84 0,89 0,93 0,82 0,87 
4 19980412_ABC 0,94 0,85 0,89 0,88 0,65 0,75 0,99 0,81 0,89 0,97 0,79 0,87 
5 19980425_ABC 0,87 0,82 0,84 0,85 0,53 0,65 0,94 0,72 0,82 0,94 0,71 0,81 
6 19980515_CNN 0,86 0,75 0,80 0,81 0,60 0,69 0,91 0,72 0,80 0,90 0,73 0,81 
7 19980531_CNN 0,91 0,85 0,88 0,89 0,68 0,77 0,97 0,78 0,86 0,97 0,77 0,86 
8 19980619_ABC 0,96 0,90 0,93 0,90 0,76 0,82 0,99 0,87 0,93 0,99 0,83 0,90 

Avg All 0,89 0,84 0,86 0,86 0,64 0,73 0,95 0,80 0,87 0,94 0,78 0,85 
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Table 4-2 Results for 4+1 Structure vs. 4+2 Structure 
 

Histogram & Pixel Feature 
4+1 Structure 4+2 Structure # Video ID 

R P F1 R P F1 
1 19980203_CNN 0,85 0,73 0,79 0,87 0,72 0,79 
2 19980222_CNN 0,94 0,80 0,86 0,95 0,83 0,89 
3 19980224_ABC 0,92 0,80 0,86 0,93 0,82 0,87 
4 19980412_ABC 0,96 0,80 0,87 0,97 0,79 0,87 
5 19980425_ABC 0,93 0,56 0,70 0,94 0,71 0,81 
6 19980515_CNN 0,90 0,70 0,79 0,90 0,73 0,81 
7 19980531_CNN 0,95 0,78 0,86 0,97 0,77 0,86 
8 19980619_ABC 0,98 0,86 0,92 0,99 0,83 0,90 

Avg All 0,93 0,75 0,83 0,94 0,78 0,85 
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Table 4-3 CUT Detection Results for Dominant Sets with Motion as the Similarity Metric 

 
Pixel-wise 

(Adaptive Thresh.) 
Histogram 
Difference ECR Petersohn Graph Partition 

with SVM 
Motion with Dual 

Cross Search Dominant Sets 
# 

R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88 0.67 0.89 0.76 0.94 0.73 0.82 0,87 0,81 0,84 
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91 0.91 0.93 0.92 0.98 0.80 0.88 0,96 0,84 0,90 
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91 0.9 0.92 0.91 0.96 0.80 0.87 0,95 0,84 0,89 
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 0.94 0.94 0.94 0.99 0.76 0.86 0,99 0,81 0,89 
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 0.89 0.87 0.88 0.97 0.68 0.80 0,94 0,72 0,82 
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88 0.76 0.92 0.83 0.92 0.73 0.81 0,91 0,72 0,80 
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 0.92 0.94 0.93 0.98 0.75 0.85 0,97 0,78 0,86 
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95 0.88 0.93 0.90 0.99 0.85 0.91 0,99 0,87 0,93 

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90 0.86 0.92 0.89 0.97 0.76 0.85 0,95 0,80 0,87 
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During the experiments, we have also incorporated this algorithm with the 

aforementioned motion based algorithm as a post processing step. One should 

recall that the motion based algorithm produced quite good recall results during 

the tests in Chapter 3. However, the precision values obtained were not as well 

as recall results. Therefore, we have improved the algorithm by using the 

algorithm based on the dominant set concept as a post processing step on the 

results obtained by motion based algorithm. The proposed algorithm double 

checks the cuts detected by the motion based algorithm by using the dominant 

sets algorithm with 2D feature vector as the similarity measure. The results are 

summarized in Table 4-4. Results show that although the recall values 

decrease a little, precision values increase significantly by applying dominant 

sets as a post processing step. 

Table 4-4 Motion Based Algorithm improved by DS Algorithm 
 

Motion with Dual 
Cross Search Motion with DS 

# Video ID 
R P F1 R P F1 

1 19980203_CNN 0,94 0,73 0,82 0,87 0,82 0,84 
2 19980222_CNN 0,98 0,80 0,88 0,96 0,88 0,92 
3 19980224_ABC 0,96 0,80 0,87 0,94 0,88 0,91 
4 19980412_ABC 0,99 0,76 0,86 0,98 0,85 0,91 
5 19980425_ABC 0,97 0,68 0,80 0,95 0,80 0,87 
6 19980515_CNN 0,92 0,73 0,81 0,91 0,82 0,86 
7 19980531_CNN 0,98 0,75 0,85 0,95 0,83 0,89 
8 19980619_ABC 0,99 0,85 0,91 0,99 0,89 0,94 

Avg All 0,97 0,76 0,85 0,94 0,85 0,89 

 

4.7. Conclusion 

The resulting precision values for the proposed algorithm are not higher than 

some of the aforementioned SBD algorithms. The main reason for this result is 

due to motion and disturbances. If the visual similarity between 6 frames from 

the same shot is somehow not at the same degree, the algorithm chooses the 

frames with the strongest connectivity during the iterations of the state vector. 
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Consequently, an abrupt change in the state vector values appears between 

the 4th and the 5th elements. Therefore, the algorithm produces false alarms.   

This is one of the consequences of the idea that maximal/maximum cliques are 

the strictest definition of a cluster. The algorithms based on the 

maximal/maximum clique definition search for the strongest cluster in a graph. 

Therefore, if due to disturbances or significant motion, the 5th and 6th frames are 

slightly different than the other four, the algorithm leaves the 5th and 6th frames 

out of the dominant set. 

Another observation is that the algorithm is not robust against flashlights, as 

expected. This result is due to the inclusion of only 2 frames from the next shot. 

Therefore, the algorithm does not have enough information to check whether 

the frame next to flashlight is similar to the previous frames or not. We have 

considered taking more frames from the next shot; however, we have observed 

that such an approach, unfortunately, decreases the recall results significantly. 

In order to make use of the concept of dominant sets, we need to allocate as 

much weight as possible to the dominant set. At the final step, we identify the 

dominant set boundary by using a constant threshold. Therefore, in order to 

keep the separation easily detectable by a threshold, we need to keep first 4 

frames from the earlier shot and only a single frame or at most 2 frames from 

the next shot. Otherwise, iterations result in similar values in the state vector 

and we miss significant amount of shot boundaries. 

We have observed that if we adopt 2D feature with pixel and histogram 

differences as the similarity metric, the algorithm is faster than the graph 

partition algorithm with SVM. This result proves that graph theoretic approaches 

can be used in real-time SBD applications with proper enhancements.  

On the other hand, algorithm with motion difference as the similarity metric is 

the slowest one among the algorithms tested during this thesis. This is an 

expected result since the graph based algorithms are computationally 

expensive algorithms due to similarity matrix calculations. For the algorithm that 

we have proposed for dominant sets, for each cut candidate, a 6x6 similarity 
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matrix is calculated. Although the similarity matrix is symmetric and the 

elements on the diagonal are set to 0 (no self loops in the graph), one still 

needs to run the motion based algorithm for 15 cells in the similarity matrix. 

This requirement makes the algorithm 15 times slower than the aforementioned 

motion based algorithm. This observation supports the idea that motion based 

features together with the graph theoretic SBD algorithms requires significantly 

high computational power. 

During the experiments we have observed that dominant sets algorithm can be 

used to improve the precision performance of the motion based algorithms. 

Since both algorithms are computationally expensive, instead of 1D motion 

feature, one should adopt 2D feature vector with pixel and histogram 

differences as a similarity measure, while using dominant sets algorithm with a 

motion based algorithm. 
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CHAPTER 5  

CONCLUSION & FUTURE WORK  

 

5.1. Conclusions 

In this thesis, we have implemented 6 of the well known state-of-the-art 

algorithms from the uncompressed domain. The algorithms are tested against 

TRECVID 2003 test video and compared with the recall, precision and F1 

measures.  

Pixel based algorithm is the simplest tested SBD method. It is very sensitive to 

video content. Therefore, comparing the continuity signal with a constant 

threshold did not produce good results. Following this observation, we have 

reduced the effects of scenes containing a lot of movement by comparing the 

difference signal with a threshold derived from the maximum and minimum 

difference signals over a small aperture. Simulation results showed that, 

although the pixel based method is known to be the most primitive one in the 

literature, it is possible to obtain very good results with such an adaptive 

thresholding scheme. 

Color histograms are the features that are mostly used in SBD task. 

Experiments have shown that histogram-based algorithms are very appropriate 

for SBD. They provide global information about the video content and are less 

sensitive to local changes. We have also observed that algorithms can be 

further improved by quantization in the color spaces. The resulting algorithms 

are observed to be faster without any performance degradations.  

We have also observed that the algorithms adopting complex features, such as 

edges, do not outperform the performance of the simpler algorithms that utilize 

pixel or histogram information. In addition to this fact, complex features 

increase the requirement for more computational power.  
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Examining Petersohn’s SBD system showed us that, by processing down-

sampled images, it is possible to both adopt feature vectors with more than one 

feature and still has a faster shot boundary detection system. Furthermore, we 

have observed that DC images include global information about the video 

content, therefore more robust against motion and disturbances.  

Investigating the error set of the algorithms showed us that motion is the major 

factor that makes the shot boundary detection harder. Motion-based algorithm 

with the highest recall results proved that a good motion based SBD algorithm 

can produce quite good detection performance.  

Although the algorithm based on graph partition model with machine learning is 

computationally complex, the observed high precision results show that they 

are quite promising algorithms with very robust results. They especially perform 

best for flashlight detection and are also less sensitive to disturbances.  

Gradual transition detection is a difficult job. There are various types of editing 

effects and each editing effect has a different temporal pattern, which makes it 

very difficult to detect with a single algorithm. Due to similar reasons, in 2007, 

TRECVID organization decreased the amount of gradual transitions in the test 

videos significantly and completely concentrated on cut detection.  

Although different algorithms have different strong and weak characteristics, we 

have observed that all algorithms have difficulty in detecting the shot 

boundaries under specific circumstances such as dark video content, rapid 

zooming, video in video effects and large motion activity. 

We have also studied the dominant sets concept from graph theory and 

proposed a novel shot boundary detection algorithm based on dominant sets. 

The results are promising and showed us that with proper improvement 

dominant sets can be used in the shot boundary detection area. 

5.2. Future Work 

Recent research approaches the shot boundary problem as a pattern 

recognition problem. As a result machine learning algorithms are being adopted 
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at the decision level. In TRECVID 2007, five out of the fifteen proposed SBD 

algorithms uses SVM as the classifier. Therefore, as a future work, instead of 

finding the dominant set from the final state vector by a simple thresholding 

scheme, SVM can be used. 
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