
VIDEO SHOT BOUNDARY DETECTION BY
GRAPH THEORETIC APPROACHES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
 MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRAH AŞAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
 FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2008

Approval of the thesis:

VIDEO SHOT BOUNDARY DETECTION BY GRAPH THEORETIC APPROACHES

Submitted by EMRAH AŞAN in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen __________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İsmet Erkmen __________
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. A. Aydın Alatan __________
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Gözde Bozdağı Akar __________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. A. Aydın Alatan __________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Cüneyt F. Bazlamaçcı __________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. İlkay Ulusoy __________
Electrical and Electronics Engineering Dept., METU

Ufuk Sakarya (M.S) __________
TÜBİTAK UZAY

Date: 03 September 2008

iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last name :

Signature :

iv

ABSTRACT

VIDEO SHOT BOUNDARY DETECTION BY GRAPH THEORETIC APPROACHES

Aşan, Emrah

M.S, Department of Electrical and Electronics Engineering
 Supervisor: Assoc. Prof. Dr. A. Aydın Alatan

September 2008, 109 pages

This thesis aims comparative analysis of the state of the art shot boundary detection

algorithms. The major methods that have been used for shot boundary detection

such as pixel intensity based, histogram-based, edge-based, and motion vectors

based, are implemented and analyzed. A recent method which utilizes “graph

partition model” together with the support vector machine classifier as a shot

boundary detection algorithm is also implemented and analyzed.

Moreover, a novel graph theoretic concept, “dominant sets”, is also successfully

applied to the shot boundary detection problem as a contribution to the solution

domain.

Keywords: Shot Boundary Detection, Graph Partition Model, Dominant Sets.

v

ÖZ

ÇİZGE TEMELLİ YAKLAŞIMLAR İLE VİDEO ÇEKİM SINIRI SEZME

Aşan, Emrah

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü
 Tez Yöneticisi: Doç. Dr. A. Aydın Alatan

Eylül 2008, 109 sayfa

Bu tezde gelişmiş çekim sınırı sezme metodlarının karşılaştırmalı bir analizi

hedeflenmektedir. Başlıca çekim sınırı sezme yöntemlerinden piksel temelli,

histogram temelli, kenar temelli ve hareket temelli yöntemler gerçekleştirilmiş ve

analiz edilmiştir. Son dönemde geliştirilmiş olan ve çekim sınırı sezme problemine

çizge bölütleme modelini destek vectör makinaları sınıflandırıcısı ile birlikte

uygulayan yöntem de gerçekleştirimiş ve analiz edilmiştir.

Bunun yanında, yeni bir çizge temelli kavram olan “baskın kümeler” konusu

çalışılmış ve bu yeni yöntem çekim sınırı sezme problemine başarıyla uygulanmıştır.

Anahtar Kelimeler: Çekim Sınırı Sezme, Çizge Bölütleme Modeli, Baskın Kümeler.

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. A. Aydın Alatan for his valuable

supervision and insightful comments throughout this thesis. I am grateful to him for

his guidance, encouragement, and support which guided me in the development of

this study.

I would like to express my sincere thanks to my wife Nuran Aşan, my

parents, Nesime Aşan and Türker Aşan and my brother Fırat Aşan for their love,

understanding and supports.

The technical assistance of Ufuk Sakarya is gratefully acknowledged.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGEMENTS.. vi

TABLE OF CONTENTS ... vii

CHAPTER

1. INTRODUCTION...1

1.1. Motivation ..1

1.2. Fundamental Problems of SBD ...2

1.3. Scope of the Thesis ...6

1.4. Organization of the Thesis ...7

2. RELATED WORK..8

2.1. General SBD Framework...8

2.2. Taxonomy ..12

2.3. TRECVID History...21

3. STATE OF THE ART SHOT BOUNDARY DETECTION24

3.1. Test Data and Evaluation Criteria ..24

3.2. Pixel-wise Difference with Adaptive Thresholding26

3.3. Histogram Difference with Adaptive Thresholding32

3.4. Edge Change Ratio ...38

3.5. Petersohn’s Algorithm with 2-Means Clustering46

viii

3.6. Graph Partition Model with Support Vector Machine54

3.7. Motion-Based Algorithm...67

3.8. Discussion ...74

4. DOMINANT SETS..76

4.1. Graph Theoretic Clustering..76

4.2. Maximum Clique Problem and Motzkin-Straus Theorem81

4.3. A Novel Graph Theoretic Definition of a Cluster: Dominant Sets84

4.4. Finding Dominant Sets by Replicator Dynamics..................................89

4.5. SBD Algorithm Based on Dominant Sets...92

4.6. Simulation Results ...95

4.7. Conclusion ...100

5. CONCLUSION & FUTURE WORK ..103

5.1. Conclusions ...103

5.2. Future Work ...104

REFERENCES...106

ix

LIST OF TABLES

TABLES
Table 3-1 TRECVID 2003 Test Data..25

Table 3-2 Cut Detection Results for Pixel-wise Difference Algorithm.......................29

Table 3-3 Cut Detection Results for Histogram Difference.......................................37

Table 3-4 Cut Detection Result for ECR...42

Table 3-5 Gradual Transition Results for ECR...44

Table 3-6 Cut Detection Results for Petersohn’s SBD System................................49

Table 3-7 Gradual Transition Results for Petersohn’s SBD System50

Table 3-8 Training Set for SVM..61

Table 3-9 Cut Detection Results for Graph Partition with SVM Algorithm................64

Table 3-10 GT Detection Results for Graph Partition with SVM Algorithm65

Table 3-11 Cut Detection Results for Motion Based Algorithm73

Table 4-1 Dominant Sets Results for 1D and 2D Feature Vectors...........................97

Table 4-2 Results for 4+1 Structure vs. 4+2 Structure ...98

Table 4-3 CUT Detection Results for Dominant Sets with 2D Feature Vector99

Table 4-4 Motion Based Algorithm improved by DS Algorithm100

x

LIST OF FIGURES

FIGURES

Figure 1-1 Dissolve Effect ..3

Figure 1-2 Wipe Effect..3

Figure 1-3 Random Bars Wipe Effect...3

Figure 1-4 Dissolve Effect ..4

Figure 1-5 Fade In/Fade Out Effect..5

Figure 2-1 Framework for SBD...12

Figure 2-2 TRECVID 2007 CUT Detection Results [3]...22

Figure 2-3 TRECVID 2007 Gradual Transition Detection Results [3].......................23

Figure 3-1 Thresholding Problem...28

Figure 3-2 C(i) signal calculated for D(i)...28

Figure 3-3 False Positive due to Object Hidden behind Another..............................29

Figure 3-4 High Motion Activity Results in Missed Shot Boundaries........................30

Figure 3-5 Top: Pixel Difference Signal,...30

Figure 3-6 Difference bw. 24 bits/pixel and 12 bits/pixel Images32

Figure 3-7 Only 4 MSB Color Bits are Used for 12 Bit Histograms33

Figure 3-8 Typical Histogram Difference Patterns for CUTs34

Figure 3-9 Gradual Transitions vs. Camera/Object Motion34

Figure 3-10 False Positive due to Sliding Commercial Text.....................................35

Figure 3-11 False Positive due to Fast Zooming..35

Figure 3-12 Missed Cut due to Similar Color Content ..36

Figure 3-13 Frames with Dark Content is Difficult to Detect.....................................36

Figure 3-14 Video in Video Effects ...37

Figure 3-15 Typical ECR Patterns for CUTs and GTs..41

Figure 3-16 Typical ECR Patterns for CUTs and GTs after Smoothing42

Figure 3-17 Zoom out Effect with Object Entering the Scene Causes False Alarm.43

Figure 3-18 False GT Detection due to Motion of Objects with Significant Edges ...45

Figure 3-19 ECR fails to Detect Long Dissolves ..45

Figure 3-20 Pixel Difference Signal ..47

Figure 3-21 Pixel Difference Signal after Unsharp masking.....................................47

xi

Figure 3-22 Petersohn’s Cut Detection Algorithm [18] ...48

Figure 3-23 Scenes with Lots of Edges is Difficult to Detect51

Figure 3-24 Camera and Object Motion Together Results in a False GT Alarm......52

Figure 3-25 Object Motion and Illumination Change ..52

Figure 3-26 Sample Graph with 4 Nodes ...56

Figure 3-27 Typical Cut Patterns for Scores Signal ...58

Figure 3-28 Similarity Matrix Patterns for Cuts and GTs ..59

Figure 3-29 A Dissolve Identified as a Cut (sample 1) ...62

Figure 3-30 A Dissolve Identified as a Cut (sample 2) ...63

Figure 3-31 Block Matching Scheme..68

Figure 3-32 Flashlight Detector Fails..70

Figure 3-33 A Missed Cut due to Dark Scene..71

Figure 3-34 Failure of Detection due to Video Effects..71

Figure 3-35 False Alarm due to Overall Illumination Change...................................72

Figure 4-1 A Simple Undirected Graph ..77

Figure 4-2 Maximal and Maximum Cliques ..78

Figure 4-3 Graph Representation from Similarity Matrix ..80

Figure 4-4 Graph Partition Example ...80

Figure 4-5 Clustering Problem due to Unweighted Similarities83

Figure 4-6 Sample Weighted Graph...85

Figure 4-7 Average Weighted Degree Calculation ...85

Figure 4-8 Similarity wrt. Average Similarity...86

Figure 4-9 Simple Data Set (6 points) [40] ...91

Figure 4-10 Evolution of the state vector x(t) [40]...92

Figure 4-11 Region of Interest (RoI)...94

Figure 4-12 Candidate Cut Position ...94

Figure 4-13 Graph Representation of the Candidate Cut position95

Figure 4-14 Alternative Test Structure..96

1

CHAPTER 1

INTRODUCTION

1.1. Motivation

Recent developments in video compression technology, the widespread use of

digital cameras, high capacity digital systems, coupled with the significant

increase in computer performance and the growth of Internet and broadband

communication, have increased the usage and availability of digital video.

Applications such as multimedia information systems, distance learning, video-

on-demand produce and use huge amount of video data. This situation created

a need for tools that can effectively categorize, search and retrieve the relevant

video material.

In general, management of such activities over large collections of video

requires knowledge of the “content” of the video. In particular, digital video data

can be processed with the objective of extracting the information about the

content conveyed with this data. The algorithms developed for this purpose,

referred as “video content analysis” algorithms and serve as the basis for

developing tools that would enable us to understand the events and objects

within the scene of a video, or generate summary of large video material or

even to derive semantically meaningful information from the video [1].

The definition of “content” is highly application dependent but there are a

number of commonalities in the applications of content analysis. Among others,

shot boundary detection (SBD), also known as temporal video segmentation is

one of the important aspects.

Parsing a video into its basic temporal units -shots- is considered as the initial

step in the process of video content analysis. A shot is a series of video frames

taken by a single camera, such as, for instance, by zooming into a person or an

object, or simply by panning along a landscape [1]. The content is similar in

2

shot regions. The regions where the significant content change occurs are,

therefore, called shot boundaries.

Since the SBD is a prerequisite step for most of the video applications involving

the understanding, parsing, indexing, characterization, or categorization of

video, temporal video segmentation has been an active topic of research in the

area of content based video analysis.

1.2. Fundamental Problems of SBD

Shot boundary detection (SBD) is not a new problem anymore. It has been

studied more than a decade and resulting algorithms have reached some

maturity. However, challenges still exist and are summarized in the upcoming

sections:

1.2.1. Detection of Gradual Transitions

During the video production process, first step is capturing the shots by using a

single camera. Two consecutive shots are then attached together by a shot

boundary that can either be abrupt or gradual.

Abrupt shot boundaries are created by simply attaching a shot to another. While

there is no modification in the consequent shots in an abrupt shot boundary,

gradual transitions result from editing effects applied to the shots during

attachment operation. According to the editing effect gradual transitions can be

further divided into different subtypes. The number of possible transitions due to

editing effect is quite high but most of the transitions fall into the three main

categories: dissolve, fades (fade in, fade out), and wipes [2]. Different types of

transitions are demonstrated in the following figures:

3

Figure 1-1 Dissolve Effect

Figure 1-2 Wipe Effect

Figure 1-3 Random Bars Wipe Effect

4

Figure 1-4 Dissolve Effect

Detection of abrupt changes has been studied for a long time and not a difficult

problem anymore [3]. On the other hand, gradual transitions pose a much more

difficult problem. This situation is mainly due to the amount of available video

editing effects. The problem gets harder when multiple effects are composed in

the case of a lot of object or camera motion.

Another reason is that the gradual transitions spread over time. Each editing

effect has a different temporal pattern than the others and the temporal duration

changes from three frames to hundred frames.

Finally, the temporal patterns, as a result of editing effects to create a gradual

transition, are very similar to the patterns due to camera/object motion.

Therefore, gradual transitions remain to be one of the most challenging

problems in SBD.

5

Figure 1-5 Fade In/Fade Out Effect

1.2.2. Flashlights

Color is the primary element of video content. Most of the video content

representations employ color as a feature. Continuity signals based on color

feature exhibit significant changes under abrupt illumination changes, such as

flashlights. Such a significant change might be identified as a content change

(i.e. a shot boundary) by most of the shot boundary detection tools. Several

algorithms propose using illumination invariant features, but these algorithms

always face with a trade off between using an illumination invariant feature and

loosing the most significant feature in characterizing the variation of the visual

content [4]. Therefore, flashlight detection is one of the major challenges in

SBD algorithms.

1.2.3. Object/Camera Motion

Visual content of the video changes significantly with the extreme

object/camera motion and screenplay effects (e.g. one turns on the light in a

dark room) very similar to the typical shot changes. Sometimes, slow motion

cause content change similar to gradual transitions, whereas extremely fast

camera/object movements cause content change similar to cuts. Therefore, it is

difficult to differentiate shot changes from the object/camera motion [2].

6

1.2.4. Thresholding

Shot boundaries are identified based on the visual content change. Therefore,

the most critical activity in the SBD process is the selection of the thresholds in

any shot boundary detection step. The performance of the algorithm mainly

remains in the thresholding phase. However, using a single threshold can not

perform equally well for all video sequences. Using a dynamic global threshold

by extracting the overall sequence characteristic can not solve this problem.

Dynamic local thresholds are considered as a better alternative but thresholding

still remains as a major problem in this area [5].

1.2.5. Complexity of the Detector

Shot boundary detection is considered as a preprocessing step in most of the

video content analysis applications. There are high level algorithms which

perform more complex content analysis. Shot boundary detection results are

used by these high level analysis algorithms. Since the video content

applications takes most of the available computational power and time, it is

necessary to keep the computational complexity of the shot boundary detector

low. Such a need challenges for algorithms which are sufficiently precise but

also computationally inexpensive [2].

As the shot boundary detection problem evolved, in order to increase the

performance of the detection, proposed algorithms started to use more than

one feature for content representation. On the other hand, such a strategy

brings a computational burden on the detector, since each feature requires a

separate processing step.

1.3. Scope of the Thesis

This thesis aims comparative analysis of the state of the art SBD algorithms.

The major methods that have been used for SBD such as pixel intensity based,

histogram based, edge based, and motion vectors based, are analyzed and

implemented. A recent method, which utilizes “graph partition model” together

with the support vector machine classifier as a SBD algorithm, is also

7

implemented and analyzed. Finally, a novel graph theoretic concept, namely

dominant sets, is also successfully applied to the SBD problem as a novel

contribution to the solution domain.

1.4. Organization of the Thesis

This thesis is organized as follows:

In Chapter 2, fundamental SBD algorithms in the literature are overviewed.

In Chapter 3, state of the art SBD algorithms are analyzed and experimental

results are presented.

In Chapter 4, a novel graph theoretic concept referred as “dominant sets” is

introduced and application of this concept into the SBD problem is discussed by

the help of some experimental results.

In Chapter 5, some concluding remarks and future considerations are stated.

8

CHAPTER 2

RELATED WORK

Since SBD is an early step for most of the video applications involving the

understanding, indexing, characterization, or categorization of video, temporal

video segmentation has been an active topic of research in the area of content

based video analysis. Such research efforts have resulted in a variety of

algorithms. In this chapter, we start with a general framework of the SBD

problem. The framework is based primarily on three steps [4]: the

representation of visual content, construction of the continuity signal and the

classification of continuity values. In the second section, we review the work

related to SBD. The methods discussed in this section are categorized

according to their roles in the formal frame framework. Finally, TRECVID

organization, which posses an important role in the development of the SBD

algorithms, are also briefly introduced.

2.1. General SBD Framework

Although SBD research resulted in a great variety of algorithms, very few of

them studied the formal definition of the SBD problem. A Bayesian formulation

of the problem was proposed by Vasconcelos et al. [6]. Hanjalic develops a

theoretical framework for SBD by unraveling the problem and identifying the

critical factors that need to be considered for robust detection performance [2].

In [7] Albanese et al. presents a formal model of the video shot segmentation

process based on mathematical models. Recently, Yuan et al. has conducted a

formal study of the SBD problem, which includes the latest developments in the

area [4].

The basic assumption in SBD is that the frames within the same shots have

similar visual content and the visual content changes through the shot

boundary. Therefore, common idea in the SBD methods is finding the

9

discontinuities of visual content. Based on this commonality, no matter what

kind of detection technique is used, a SBD process consists of three major

steps: the representation of visual content, construction of the continuity signal

and the classification of continuity values [4].

2.1.1. Representation of the Visual Content

The image itself contains various information details about the visual content.

Alternatively, it is possible to obtain more valuable information by processing

the image content in order to extract visual features such as histograms, edges,

motion vectors, etc. Therefore, this step can also be called as feature

extraction.

Problem of visual content representation can be considered as a mapping from

image space, Q to the feature space, F . Let tV F∈ denote the feature of

tI Q∈ , where tI represents the tth frame. The problem is now converted into

finding the most proper feature for the SBD, and can be formalized as a

mapping Φ :

:

t t

Q F
I V

Φ →
→

 (1)

A good feature to be used for SBD should have two characteristics: invariance

and sensitivity [2]. Firstly, the feature should be stable against the content

changes within the shot (e.g. rotation or translation of the picture) and should

change significantly when there is a shot boundary. This is denoted as the

invariance requirement [2].

On the other hand, the feature should sense the visual content changes, which

is referred as the sensitivity. If a feature is sensitive, it is expected that the

feature is aware of the details of the visual content.

By satisfying these two requirements, a proper feature remains stable within a

shot (invariance) and demonstrates significant changes at shot boundaries

(sensitivity).

10

2.1.2. Construction of Continuity Signal

Most common approach to detecting shot boundaries is to search for large

discontinuities in the visual content flow of a video. In order to achieve this aim,

a continuity (similarity) signal needs to be calculated for the frame sequence to

determine the temporal variations of the extracted features. The constructed

signal provides us with an idea about how similar the images in the video

sequence are. Obviously, the continuity signal constructed by such a way is

expected to demonstrate high values within a shot, while drops significantly at

the transition regions.

S denoting the space of continuity values and ts being the content continuity

between tV and 1tV + , continuity signal calculation can be formalized as a

mapping (Θ) from the cartesian product of feature space to the continuity value

space:

2: d

d
t t

F S
A s

×Θ →

→
 (2)

where 1 1(,..., , ,...,)d
t t d t t t dA V V V V− + + += and d denotes the radius of the involved

neighborhood when calculating the content continuity between tV and 1tV + [4].

In the earlier work, d is usually set to 1, which corresponds to pair-wise

comparison of the adjacent frames. Unfortunately, the continuity signal obtained

using pair-wise similarities does not perform well in the presence of

object/camera motion, abrupt illumination changes, etc. Therefore, a more

robust way of constructing a continuity signal is considering a neighborhood

instead of just comparing adjacent frames. Recent studies set 1d > , which

utilizes the neighborhood for the continuity signal construction. Using such

contextual information improves the performance against disturbances [4].

11

2.1.3. Classification of Continuity Values

Final step of the framework is the decision module. All we need to do is to find a

mapping Ψ from the continuity signal values to the decision space W .

Decision space includes the decisions of whether the signal values correspond

to shot boundaries or not. If w W∈ denotes the decision (shot boundary or not,

or type of the transition), classification problem can be formulized as:

2 1: r

r
t

S W
B w

× +Ψ →

→
 (3)

where 1(,..., , ,...,)r
t t r t t t rB s s s s− + += and r is the radius of the neighboring

continuity values required by the classifier [4].

Simple thresholding with a single continuity value (i.e. 0r =) is the most

popular classifier being used in the literature. Recent algorithms treat the shot

boundary detection problem into a pattern classification problem and employ

machine learning techniques by training the classifiers with the temporal pattern

of the continuity values.

In [2], Hanjalic states that in order to reach the optimal SBD performance “prior

information” should also be used in the decision module. Prior information does

not contain any information that is obtained from the image content by a kind of

measurement. Prior information is based on the knowledge of the structure of

the video. For example, one can intuitively assume that the probability of

observing a shot boundary immediately after the last detected boundary is

negligible. The general SBD framework including the “prior information” is

summarized in the following figure:

12

Figure 2-1 Framework for SBD

2.2. Taxonomy

SBD is a popular area in the video content analysis and has been studied for a

long time. Research has resulted in a variety of algorithms. In this section, we

briefly review the SBD work in the literature. Following the formal framework of

the SBD problem, we categorize the literature according to their roles in the

formal framework presented in the previous section.

2.2.1. Methods of Visual Content Representation

Feature selection is the crucial step in the SBD process. The algorithms in this

step can be summarized under two classes: algorithms run on the compressed

domain and the algorithms run on the uncompressed domain [10].

2.2.1.1. Uncompressed Domain

Algorithms in this group directly work on the full pixel domain. The data is

assumed to be decompressed before SBD, if it is available as an encoded bit-

stream.

2.2.1.1.1. Pixel Based Methods

13

Pixel based methods are the first and the most simple algorithms in the SBD

literature. The basic idea behind pixel-based methods is that the intensity

values of the pixels at the same locations of the sequential frames do not

change significantly unless there is a shot boundary.

The initial pixel based algorithms investigates the sum of absolute pixel

intensity differences and if the difference is above a certain value a shot

boundary is assigned [8]. Even very small changes in the illumination or very

small vibration in the camera can result in significant changes in total value of

the pixel differences. Therefore, later algorithms count only the pixels that have

changed significantly from one frame to another. If the total number of pixels

that have changed is above a threshold, it is decided that there is a shot

boundary between two frames [9] [10].

Even with this improvement pixel based algorithms are still very sensitive to

object/camera motion and illumination changes. More robust techniques use

block based motion compensation and then apply the above algorithms [11].

Instead of pixel-wise differences, some of the literature proposes using

statistics of pixel intensities between two frames. An example to this is

comparing the blocks using a metric called likelihood ratio, which is simply

based on statistical properties mean and variance [2].

Another method proposed by Zhang et al. against disturbances is to smooth the

images by a 3x3 filter before performing pixel wise comparison [12].

Pixel-based methods are simple algorithms and do not require high

computational power. The problem with pixel-based methods are high

sensitivity to camera/object motion and disturbances [2].

2.2.1.1.2. Histogram Based Methods

Another example of a feature that is from the full pixel domain is the histogram.

The reasoning is that the frames within the same shot should have similar color

histograms, while frames of different shots should have significantly different

14

color histograms. Earlier approaches compare gray level histograms [12] and

recent methods utilize color histogram information [13].

Several histogram comparison metrics are proposed in the literature. The most

common techniques are: histogram difference, histogram intersection, cosine

measure, Kolmogorov-Smirrov test and Chi-Square test. Research shows that

histogram intersection formula performs best in the SBD area [2].

Zhang et al. proposed a method called twin-comparison to detect gradual

transitions using the color histogram difference [12]. This method requires two

thresholds. Abrupt transitions are detected using the higher threshold. A lower

threshold is used on the remaining frames. A frame that differs from the

previous frame by an amount above this threshold is declared as a potential

start of a gradual transition. This frame is then compared to the subsequent

frames to get the accumulated difference. During a gradual transition, this

accumulated value will gradually increase. The end frame of a gradual

transition is detected when the difference between consecutive frames drops

below the lower threshold and the accumulated value has increased to a value

that exceeds the higher threshold. If the difference between consecutive frames

drops below the lower threshold before the accumulated difference exceeds the

higher one, then the starting point is dropped and the search process is applied

for other gradual transition candidates. Otherwise, a gradual transition is

assigned [12].

As the histograms do not change with the spatial changes within a frame,

histogram differences are more robust against the object motion with a constant

background. However, histogram differences are also sensitive to camera

motion, such as panning, tilting or zooming [2].

One can note that two images, which have completely different visual content,

might still have similar histograms. However, research has shown that the

probability of such events is low enough [10] [1] [12].

Similar to the pixel based methods, block based techniques can be utilized in

order to improve the performance of the histogram based SBD algorithms [14].

15

Histogram-based algorithms are less sensitive to object motion than the pixel-

based algorithms. Histogram-based algorithms are robust against global

motion. Histogram calculations require more computational power compared to

pixel-wise calculations [12].

2.2.1.1.3. Edge-Based Methods

Another feature that is proved to be useful in shot boundary detection is edges.

Three edge-based features are mostly referred in the literature: Edge Change

Ratio (ECR), Edge Contrast (EC) and Edge Energy.

Zabih et al. [15] propose an edge-based technique based on the idea that

during a shot transition new intensity edges are observed far from the locations

of the old intensity edges. Similarly, old edges disappear far from the location of

new edges. Moreover, the patterns in the appearance of new edges and

disappearance of old edges are different for different types of transitions [15].

ECR algorithm employs motion compensation techniques prior to edge

comparison. Therefore, this feature is robust against motion. On the other hand

literature [16] shows that ECR algorithm does not outperform histogram based

algorithms in abrupt transition detection. The advantage of the ECR is that it

can be used for detecting different types of transitions (i.e. cut, dissolve, fade,

wipe).

Lienhart [16] proposed the Edge Contrast method as an alternative for

detecting dissolves. Since during a dissolve, visual content is a composition of

two shots, the frames within a dissolve loose their contrast and sharpness. EC

method captures and amplifies the relation between stronger and weaker

edges.

Song and Ra, and Petersohn uses Edge Energy in order to find gradual

transitions [17] [18]. Algorithm is based on the similar observation that Lienhart

proposed. Image contrast and sharpness decrease during a gradual transition.

Therefore, it is expected that the edges gets weaker up to some point and than,

as the second image starts to appear edges get stronger. As a consequence,

16

Edge Energy, which reflects the total number of strong edges, is expected to

start decreasing during a GT and local minimum appears at the center of GT

[17]. Petersohn finds the GTs by locating the U-curves in the Edge Energy

diagram.

Edge-based methods can be used both for abrupt and gradual transition

detection. Edge-based methods require significant computational power.

Methods adopting edges as a feature are relatively more robust against motion

but in general does not outperform histogram-based or pixel-based algorithms

[2].

2.2.1.1.4. Motion-Based Methods

Motion-based algorithms rely on the observation that while motion within a shot

is smooth, motion between the frames that are surrounding a shot boundary

tends to be abrupt. This assumption makes sense, because the motion of the

objects or camera is generally smooth and continuous within the shot, which

results in a continuous motion field. In contrast, abrupt changes are expected

for the motion field at the shot boundary.

Motion-based algorithms in the uncompressed domain are computationally very

expensive. Therefore, there are very few SBD algorithms based on motion

vectors.

Shahraray [11] uses block matching and motion estimation to detect shot

boundaries. Recently, Kawai [19] proposes a very effective SBD algorithm

based on block matching motion estimation which produces very good results

in TRECVID 2007. For each block a best matching block is found in the

previous frame. Blocks are compared based on histogram difference. For the

best matching block, if the histogram difference is above a certain value, it is

decided that this difference is due to a shot change, not due to motion. If the

total number of blocks that are marked as such is above a certain percentage of

the total block number, it is evaluated that there is a shot boundary [19].

17

Motion-based algorithms are computationally quite expensive algorithms but

perform well in abrupt transition detection. In general, motion-based algorithms

can not differentiate illumination changes and motion [20].

2.2.1.2. Compressed Domain

Noting that most of the visual content is stored in a compressed form,

processing and analysis of such an encoded bit-stream is quite advantageous.

The features explained for the uncompressed domain are also available for the

compressed domain. In this section, we will focus on the literature which only

uses the compressed domain features of the video.

2.2.1.2.1. DC Images

In compressed domain, the zero frequency term of the DCT coefficient series is

known as DC term. DC term is a scaled version of the block’s average value.

The set of all DC terms in an I-frame (i.e. a frame encoded with no usage of

prior frames) forms a DC image. Since the DC term is the average of the

luminance/chrominance of all pixels within the 8x8 block, the DC image can

also be accepted as a spatially reduced version of the original image [21]. The

DC image retains most of the information about the original image, and

therefore, most of the features in the original image can be approximated by its

corresponding DC image. In case of abrupt shot detection, two frames

belonging to the same shot should have similar DC images, whereas frames

from different shots should have significantly different DC images.

Yeo and Liu uses the DC images directly from the compressed video and then

employ pixel and histogram differences of DC images as video content

representation [20]. Song and Ra first obtain the DC images from the MPEG

compressed videos and then extract the edge images for SBD [17].

Fernando et al. [22] use statistical features of the DC images (i.e. mean and

standard deviation) for SBD.

DC images can be easily extracted from the compressed video and be utilized

for SBD. Since the DC images are a kind of spatially reduced versions of the

18

original images, using DC images increases the speed of the algorithms.

Moreover, DC images are more robust against disturbances and noise.

2.2.1.2.2. DCT Coefficients

In I-frames, the DCT coefficients in each 8x8 DCT block are related to the

luminance/chrominance of 8x8 pixels in spatial domain. Therefore, DCT

coefficients can be used to detect the difference between the

luminance/chrominance signal of all pixels within the 8x8 block, and therefore,

they can be used to detect hard cuts [21]. The main idea behind the algorithms

based on the DCT coefficients is that the pixel blocks similar to each other

should have similar DCT coefficients. Similarly, if the blocks are significantly

different, then they should have significantly different DCT coefficients [21].

Arman et al. [23] uses the inner products of the DCT coefficients for cut

detection. After selecting a subset of the blocks, a subset of coefficients for

each selected block is chosen. They set up a vector consisting of these

coefficients and this vector represents the frame. The normalized inner product

of these representing vectors is used to find the differences between two

frames.

Using DCT coefficients, which are readily available in the compressed videos,

increases the speed of the SBD algorithms.

2.2.1.2.3. Bit-Rate Information

Bit-rate information is obtained from the video stream by using the size of the

block, macro-block or slice of each frame. Frames with similar content should

have similar bit rates.

For the I-blocks, if the frame content changes, bit rate changes. This is due to

the fact that I-frames are independent of the other frames and the bit rate

required for the I-frame is strictly dependent on the content of this frame.

Deardorff et al. uses this observation to detect cuts for the videos that contain

only I-frames [24].

19

Another algorithm, which can be applied to I-frames only, sets up a bit rate

vector using the available bit rate information from the macro blocks. Using

these vectors the algorithm compares two frames based on a selected metric,

and decides whether there is a shot boundary or not [21].

2.2.1.2.4. Macro Block Information

In most of the MPEG video compression standards P- and B-frames are

encoded according to the predicted motion. Consequently, each macro-block in

the inter-frames (i.e. P- and B-frames) has a motion vector type. In an MPEG

coded video sequence, P frames have references to previous I/P frames, and B

frames have references to both previous and following I/P frames. Furthermore,

the level of referencing depends on the similarity between the referencing frame

and referenced frame. Therefore, a shot change would cause an abrupt change

in the referencing pattern of B/P frames [21].

The main idea for P and B frames’ motion vector behavior is; if a frame is inside

of a shot, then the macro blocks should be predicted well from previous or next

frames. However, when the frames are on the shot boundary, the frames

cannot be predicted from the related macro blocks, and a high prediction error

occurs. This causes most of the macro blocks of the P frames to be intra coded

instead of motion compensated [25].

The problem with the algorithms that are using motion-compensation

information is that during the gradual transition the motion-compensation

information is not reliable [20].

2.2.2. Methods of Constructing Continuity Signal

In this section, instead of focusing on the algorithms constructing the continuity

signal, we concentrate on the contextual vs. pair-wise comparison methods. It

should be noted that continuity signal is defined as the set of measurements

from a sequence frames that denote the similarity between a frame and its

neighbors.

2.2.2.1. Pair-wise Comparison Scheme

20

In the previous research, neighborhood is set to 1, which corresponds to pair-

wise comparison of the adjacent frames. The continuity signal is simply consists

of pair-wise feature differences of the successive frames [9] [8] [15] [19] [17]

[18]. Most of the algorithms search for the large discontinuity values, especially

the peaks in the 1D continuity signal.

2.2.2.2. Contextual Information Scheme

Unfortunately, the continuity signal obtained by using pair-wise similarities does

not perform well in the presence of object/camera motion, abrupt illumination

changes, etc. Therefore, a more robust way of constructing a continuity signal

is considering a neighborhood, instead of just comparing adjacent frames.

Recent studies utilize the neighborhood for the continuity signal construction.

Utilizing such contextual information improves the performance against

disturbance [1] [4].

One of the mostly used techniques is to use the features of all of the frames

from a temporal window [1]. Easterbrook applies this method as an adaptive

thresholding scheme [26].

Recently graph theoretic approaches are getting popular in the SBD area. In

the graph based segmentation algorithms, all the pair-wise similarities are

calculated within the neighborhood and a score signal is calculated based on

these contextual information [14].

2.2.3. Classification Methods

At the decision level we can group the classifiers under two groups, as

classifiers with simple thresholding and statistical pattern recognition

techniques; these methods are examined in the upcoming two sections.

2.2.3.1. Classifiers with Simple Thresholding

In the basic thresholding scheme, continuity signal at the shot boundary

candidate position is compared with a constant threshold [2] [8] [9] [15]. Final

decision depends on whether the output is larger than the threshold or not.

21

Such a constant thresholding method can be successful if the video content is

stable.

Various adaptive thresholding methods are proposed in order to deal with the

changing video content [20] [26]. However, the decision is still based on a

comparison with a single threshold.

2.2.3.2. Statistical Machine Learning

Recent research define SBD problem as a pattern recognition problem and

applies machine learning methods. Various discriminative approaches,

including K-means [18] [17], and support vector machines (SVMs) [4] [29] [30]

[31], have been employed to perform SBD.

2.3. TRECVID History

For the purpose of promoting progress in content-based retrieval from digital

video via open, metrics-based evaluation the TREC Video Retrieval Evaluation

(TRECVID) meetings are organized by the National Institute of Standards and

Technology (NIST) since 2003.

The TRECVID evaluation meetings are on-going series of workshops focusing

on a list of different information retrieval (IR) research areas in content based

retrieval of video. It is co-sponsored by the NIST and the Intelligence Advanced

Projects Activity (IARPA) of the United States Office of the Director of National

Intelligence (ODNI). The goal of the workshop is to encourage research in

information retrieval by providing a large test collection, uniform scoring

procedures, and a forum for organizations interested in comparing their results.

One of the primary research areas in TRECVID organizations is the SBD

problem. The SBD results in TRECVID 2007 are summarized in Figure 2-2 and

Figure 2-3.

The results are obviously showing that the algorithms are quite acceptable

levels for practical applications. Especially for abrupt shot boundary detection,

most of the state-of-the-art algorithms that attend TRECVID perform very well.

22

TRECVID organization stated that “it is time to declare victory for SBD problem”

and SBD problem will no longer be tested in the TRECVID organization [3].

Figure 2-2 TRECVID 2007 CUT Detection Results [3]

23

Figure 2-3 TRECVID 2007 Gradual Transition Detection Results [3]

24

CHAPTER 3

STATE OF THE ART SHOT BOUNDARY DETECTION

In this chapter, 6 state-of-the-art SBD algorithms from the literature are

implemented and analyzed; these are the following algorithms

− Pixel based algorithm with adaptive thresholding [26],

− Histogram difference algorithm [2],

− Zabih’s algorithm based on the edge change ratio [15] [16],

− Petersohn’s shot boundary detection system, which incorporates

pixel, edge and histogram difference statistics and employs k-means

clustering [17] [18],

− Yuan’s algorithm based on the graph partition model with support

vector machine as the classifier [4], and,

− The algorithm by NHK, which utilizes the motion vectors based on

dual cross search block matching method [19].

In the following section, the evaluation criteria and the test data used during the

experiments are introduced. A brief summary of the algorithms and the

experimental results are presented in the remainder of this chapter.

3.1. Test Data and Evaluation Criteria

TRECVID 2003 SBD test collections are adopted for the experiments. Totally

there are 8 videos in the data set. The ground truth data for this test data is also

distributed by TRECVID organization. The test collection includes 3581

transitions, of which 2488 (%70) are cuts, 749 (%20) are dissolves, and 345

25

(%10) are other type of transitions. Properties of the test data is summarized in

Table 3-1.

In the experiments, the transition types are identified similar to TRECVID

evaluation criteria: cuts, dissolves and others.

Table 3-1 TRECVID 2003 Test Data

Transition Types

Video ID Duration
Total

Frames
Total

Transitions CUT DIS Other
1 19980203_CNN 00:31:32 56717 451 280 124 47
2 19980222_CNN 00:29:19 52736 411 309 69 33
3 19980224_ABC 00:28:28 51204 428 296 91 41
4 19980412_ABC 00:28:50 51877 483 345 93 45
5 19980425_ABC 00:28:48 51814 476 295 141 40
6 19980515_CNN 00:27:56 50254 415 283 70 62
7 19980531_CNN 00:27:58 50275 468 359 71 38
8 19980619_ABC 00:28:29 51244 449 321 90 38

Total All 04:01:41 416121 3581 2488
(%70)

749
(%20)

345
(%10)

The performances of the implemented algorithms are evaluated based on the

recall and precision criteria. Recall is defined as the percentage of desired

items that are retrieved. Precision is defined as the percentage of retrieved

items that are desired items [32]:

CorrectRecall

Correct Missed
=

+
 (4)

CorrectPecision

Correct FalsePositive
=

+
 (5)

In order compare the overall performance of the algorithms, 1F measure, which

combines recall and precision results with equal weight, is adopted [3]:

26

 1
2(,) recall precisionF recall precision

recall precision
× ×

=
+

 (6)

During the experiments, while all the algorithms are tested against abrupt

changes, only edge change ratio algorithm, Petersohn’s SBD system and the

algorithm based on graph partition method are tested against gradual

transitions.

In the Simulation Results sections, the results are presented in an accumulated

manner so that we will be able to compare the results of the SBD algorithm

under test with the results of the previously tested algorithms.

3.2. Pixel-wise Difference with Adaptive Thresholding

3.2.1. Algorithm

Pair-wise comparison evaluates the differences in intensity or color values of

corresponding pixels in two successive frames. The simplest way is to calculate

the absolute sum of pixel differences and compare it against a threshold [8]:

 1
1 1

1() (,) (,)
*

X Y

i i
x y

D i f x y f x y
X Y +

= =

= −∑∑ (7)

where X and Y are the frame width and height respectively, and fi(x,y) denotes

the intensity value of the pixel at (x,y).

A simple improvement is to count the number of pixels that change in value

more than some threshold and compare the total against a second threshold

[12] [2].

1 1

1 1

1 (,) (,)
(, ,)

0

(, ,)
()

i i

X Y

x y

if P x y P x y T
DP i x y

otherwise

DP i x y
D i

X Y

+

= =

⎧ − >⎪= ⎨
⎪⎩

=
⋅

∑∑

 (8)

27

If the percentage of changed pixels D(i) is greater than a threshold T2, a cut is

declared. The algorithm is implemented basically based on the above

formulation except for instead of simple thresholding, we adopted the adaptive

thresholding proposed by the BBC research group [26]:

() max((2), (1), (), (1), (2))

() min((2), (1), (), (1), (2))
() () 0.8(() ())

MAX i D i D i D i D i D i
MIN i D i D i D i D i D i
THR i MAX i MAX i MIN i

= − − + +
= − − + +
= + −

 (9)

The factor of 0.8 has been determined experimentally. In order to detect cuts,

the difference signal is compared with the average of the threshold values of

material before and after the current frame:

(3) (3)() ()

2
THR i THR iC i D i + + −

= − (10)

Finally, cuts are identified by searching for the peaks of the difference signal in

(10).

3.2.2. Simulation Results

Figure 3-1 shows the continuity signal, D(i), that is computed based on (8) for a

test video. Spikes caused by cuts at frames 333, 388, 445 and 483 are clearly

visible, but the cut at frame 189 is easily missed if the threshold cannot be

selected carefully. Even if the threshold was selected so that we can detect the

cut at frame 189, then with this threshold the frame at 398 will also be detected

as a cut, but in fact it is not. The high level of activity in the images around

frame number 189 produce a larger difference signal than does the cut itself.

Although the magnitude of the difference signal at frame 189 is not very high, it

is clearly larger than that of the surrounding frames.

Figure 3-2 shows the resulting C(i) signal calculated for the D(i) values shown

in Figure 3-1. In this figure, it is clear that there is no cut at frame 398. The

signal C(i) is near or below zero, with well defined peaks at cuts. Comparing

28

this signal with a fixed threshold yields cut detection. A threshold value of 3.25

has been found to be appropriate for a range of picture material.

Figure 3-1 Thresholding Problem

Figure 3-2 C(i) signal calculated for D(i)

Figure 3-3 shows a false positive detected by the pixel-wise difference

algorithm. There is a significant brightness change caused by the man moving

so that the sun behind him appears. Similar false alarms occur when a big

object right in front of the camera rapidly moves out of the scene and the

background appears.

29

Figure 3-3 False Positive due to Object Hidden behind Another

The algorithm is tested for detecting only abrupt changes. The simulation

results for both single threshold and adaptive thresholding are summarized in

the following table:

Table 3-2 Cut Detection Results for Pixel-wise Difference Algorithm

Pixel-wise Pixel-wise with Adaptive
Thresholding #

Recall (R) Precision (P) F1 Recall (R) Precision (P) F1

1 0.62 0.8 0.7 0.74 0.82 0.83
2 0.68 0.84 0.75 0.79 0.9 0.86
3 0.74 0.89 0.81 0.89 0.88 0.92
4 0.84 0.9 0.87 0.9 0.92 0.92
5 0.69 0.79 0.74 0.85 0.81 0.88
6 0.67 0.88 0.76 0.78 0.84 0.85
7 0.73 0.81 0.77 0.9 0.89 0.92
8 0.77 0.9 0.83 0.81 0.87 0.95

Avg 0.72 0.85 0.78 0.83 0.87 0.85

Even with the adaptive thresholding, the algorithm produces false alarms, if the

shot before/after the shot boundary includes high motion activity.

30

Figure 3-4 High Motion Activity Results in Missed Shot Boundaries

Figure 3-5 Top: Pixel Difference Signal,
Bottom: Signal Produced as a Result of Adaptive Thresholding

31

Figure 3-4 presents a sample frame sequence of this kind. Figure 3-5 shows

the pixel difference signal and the corresponding C(i) signal after adaptive

thresholding. High motion activity before the shot boundary produces relatively

high values in the difference signal. Consequently, the threshold values found

for the shot boundary frames are high, which results in a small peak value in

the C(i) signal. Therefore, the algorithm misses the shot boundary.

3.2.3. Conclusion

The results indicate that the pixel-wise difference algorithm gives quite

acceptable results with adaptive thresholding. Simulation results indicate that

considering the difference between the difference signal values of adjacent

frames is a worthwhile approach. In practice, we have observed that it is useful

to reduce the effects of scenes containing a lot of movement by comparing the

difference signal with a threshold derived from the maximum and minimum

difference signals over a small aperture.

Even with the adaptive thresholding, the algorithm produces false alarms, if the

shot before/after the shot boundary includes high motion activity. The reason

can be explained as follows: The weakness of the pixel based features is the

high sensitivity to the video content. It is difficult for this algorithm to understand

whether the change in the continuity signal is due to shot boundary or due to

disturbances/motion. In order to enhance the algorithm, we preferred adaptive

thresholding. However, the high level of activity in the images around shot

boundary produces a larger difference signal than expected. As a result

adaptively obtained threshold is larger. A threshold that is larger than expected

results in missed shot boundary.

The main disadvantage of this method is its inability to distinguish between a

large change in a small area and a small change in a large area. We have

observed that cuts are falsely detected when a small part of the frame

undergoes a large, rapid change. For the same reason, the algorithm is not

able to detect most of the flashlights.

32

3.3. Histogram Difference with Adaptive Thresholding

3.3.1. Algorithm

While the pixel-wise approach focuses on local intensity (color) comparison

between individual pixels, this method is interested with the global percentage

of colors that an image contains. The method works by calculating percentages

from the bin totals and comparing them with those of the adjacent frame giving

a difference value. A difference above the threshold value will be classed as a

shot change [2].

If one tries to compute the overall number of possible colors, the calculations

would be unnecessarily hard due to large number of bins (224 bins). Due to the

limited response of human visual system, we are not able to distinguish the

whole levels of possible colors (Figure 3-6).

Figure 3-6 Difference bw. 24 bits/pixel and 12 bits/pixel Images [13]

A simple solution is considering only the most significant bits of each

component RGB [13]. In 12-bit histograms, all possible colors are grouped into

212 different color levels in RGB space (Figure 3-7), which corresponds to 4096

colors. Similarly in 6-bit histograms 64 color levels are used.

33

Figure 3-7 Only 4 MSB Color Bits are Used for 12 Bit Histograms [13]

In our implementation, we have adopted the 12-bit histograms. The difference

between the histograms is calculated according to the following formula:

 1
1

(, 1) () ()
M

RGB i i
j

D i i H j H j+
=

+ = −∑ (11)

where Hi(j) is the histogram value for the color level j in the frame i, j is the color

level value and M is the total number of color levels. Hi(j) is the number of pixels

from frame i with the color level j. A cut is declared if the absolute sum of

histogram differences between two successive frames is greater than a

threshold T.

3.3.2. Simulation Results

Typical histogram difference patterns for CUTs are shown in Figure 3-8.

Despite the fact that during a gradual transition the frame to frame differences

are usually higher than those within a shot, they are much smaller than the

differences in the case of a cut and can not be detected with the same

threshold. On the other hand, the increase in the frame to frame differences

due to object and camera motions might be larger than the gradual transitions.

In Figure 3-9, there are three areas in the difference signal that are not cuts, but

they also have higher difference values than the rest. The first (from frame 70 to

frame 95) and third (from frame 220 to frame 237) intervals are due to

dissolves. On the other hand, the second interval is due to large motion.

Obviously, it is not possible to differentiate the transitions from the

34

disturbances. Therefore, this method is not tested for finding gradual

transitions.

Figure 3-8 Typical Histogram Difference Patterns for CUTs

0

0,00002

0,00004

0,00006

0,00008

0,0001

0,00012

0,00014

0,00016

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352 365 378 391 404 417 430 443 456 469 482 495

Figure 3-9 Gradual Transitions vs. Camera/Object Motion

Figure 3-10 shows a false detection due to the sliding commercial text. The

background for the text changes the color histogram values significantly (by

contributing with large red values), which is considered as a scene change by

the algorithm.

35

Figure 3-10 False Positive due to Sliding Commercial Text

Figure 3-11 presents a frame sequence in which fast zooming is applied. As a

result of zooming the frame content significantly changes and the algorithm

presents another false alarm.

Figure 3-11 False Positive due to Fast Zooming

As we expect, most of the missed cuts are due to very similar color content of

the frames surrounding the shot boundary. A typical example is shown Figure

3-12.

36

Figure 3-12 Missed Cut due to Similar Color Content

Another type of shot transition that most of the algorithms easily misses is the

ones with very dark video content (Figure 3-13).

Figure 3-13 Frames with Dark Content is Difficult to Detect

Directors sometimes use a video effect which is called video-in-video. The outer

frame remains constant whereas the central part of the frame includes a

moving video. Such video effects make the shot boundaries difficult to detect,

especially for the histogram based algorithms. Since the outer frame, which

remains constant, decreases the change ratio of the histogram bins

significantly, histogram based algorithms easily miss such shot boundaries.

37

Figure 3-14 shows an example shot boundary that our implementation missed

during the experiments.

Figure 3-14 Video in Video Effects

Table 3-3 Cut Detection Results for Histogram Difference

Pixel-wise
(Adaptive Thresh.)

Histogram
Difference #

R P F1 R P F1

1 0.74 0.82 0.83 0.83 0.83 0.83
2 0.79 0.9 0.86 0.94 0.9 0.92
3 0.89 0.88 0.92 0.96 0.85 0.9
4 0.9 0.92 0.92 0.95 0.86 0.9
5 0.85 0.81 0.88 0.91 0.84 0.87
6 0.78 0.84 0.85 0.88 0.86 0.87
7 0.9 0.89 0.92 0.95 0.89 0.92
8 0.81 0.87 0.95 0.94 0.86 0.9

Avg 0.83 0.87 0.85 0.92 0.86 0.89

Table 3-3Error! Reference source not found. summarizes the simulation

results of the histogram difference method and compares the results with the

pixel-wise difference with adaptive thresholding algorithm. The results of pixel-

38

wise difference algorithm are also provided for comparison. During the

experiments, we have also observed that as we increase the threshold the

precision results improve but the recall performance gets worse.

3.3.3. Conclusion

Simulation results indicate that histogram difference method obviously performs

better than the pixel-wise method. Major reason for this is histogram method is

not sensitive to local motion and local illumination changes. In the case of slight

illumination changes or small camera/object motion, histogram difference

method provides robust performance and better results compared to pixel-wise

difference algorithm.

On the other hand, we have observed that global changes in the video frames,

such as large brightness change, zooming or fading effects (especially fast

zooming), result in false alarms. This is an expected result, since histogram

feature is sensitive to the overall (or global) content of the video. Therefore, any

effect resulting in a global change in the video content (e.g. fast zooming, large

object movement) can be erroneously interpreted by the histogram algorithm.

Another conclusion from the simulation results is the algorithm cannot detect

shot boundaries if there is a video-in-video effect. Since the outer frame, which

remains constant, decreases the change ratio of the histogram bins

significantly, amount of histogram difference is small. Consequently the

transition is missed.

On the other hand, since the dark frames do not provide enough color

information, histogram method cannot produce good results with dark video

content as well.

3.4. Edge Change Ratio

3.4.1. Algorithm

During a cut or a dissolve, new edges appear far from the locations of old

edges. In addition, old edges disappear far from the location of new edges. This

39

observation was applied to digital video segmentation by Zabih et. al. [15] who

identified two new types of edge pixels:

• Entering pixel: One that appears far from an existing edge pixel.

• Exiting pixel: One that disappears far from an existing edge pixel.

According to Zabih et. al. it is possible to detect CUTs and GTs by counting the

entering and exiting pixels. A large number of entering pixels ρin should exist

during a fade in, start of dissolve and during a cut, whereas a large number of

exiting pixels ρout should occur during a fade out, end of dissolve and during a

cut [15].

For the implementation, two consecutive color images are converted to gray-

scale and the edges are detected by using the Canny’s method resulting in two

binary images E and 'E . Entering pixels ρin denotes the fraction of edge pixels

in 'E which are more than a fixed distance r from the closest edge pixel in E .

Similarly, exiting pixels ρout is the fraction of edge pixels in E which are farther

than r away from the closest edge pixel in 'E .

Visual content discontinuity is defined as:

 max(,)in outρ ρ ρ= (12)

This measure is defined as edge change ratio (ECR) and represents the

fraction of the changed edges; this fraction of the edges have entered or exited.

Scene breaks can be detected by looking for the peaks in ρ.

In [15], registration techniques are offered in order to handle global motion. In

[16], in order to make the algorithm robust against small object motions, edge

pixels in one image which have edge pixels nearby in the other image (e.g.

within 7 pixels’ distance) are not regarded as entering or exiting edge pixels.

In this thesis, motion compensation is achieved by dilating each edge pixel with

a diamond shape of pixels, and registration techniques are not applied. An un-

40

dilated frame is represented by E and its adjacent frame by 'E , dilated

adjacent frames are represented by E and 'E . Edge change ratio (ECR) is

computed by comparing every pixel in the first un-dilated frame, E , against the

corresponding pixels in the second dilated frame 'E .

There are two possibilities for this comparison:

1. If a pixel is found in location (x,y) in frame E , and a matching pixel is

found in its dilated area (x+dx,y+dy) in the second frame, 'E , then this

result implies that no change has occurred, so this pixel is not an

entering or exiting;

2. If a pixel is found in the first frame, E , and not in the second frame 'E ,

this implies that a pixel has exited from the first frame, E .

A repeat of this procedure is carried out, where the second un-dilated frame,

'E , is compared against the first dilated frame, E , again with two scenarios:

1. If a pixel is found in location (x,y) in frame 'E , and a matching pixel is

found in its dilated area (x+dx,y+dy) in the first frame, E , then this

implies that no change has occurred, so this is not an entering or exiting

pixel.

2. If a pixel is found in the second frame, 'E , and not in the first frame E ,

this implies that a pixel has entered the second frame, 'E .

Taking both scenarios into account, ρin and ρout are calculated as follows [15]:

 ,

,

[,] '[,]
1

[,]
x y

in

x y

E x y E x y

E x y
ρ = −

∑
∑

 (13)

41

 ,

,

[,] '[,]
1

[,]
x y

out

x y

E x y E x y

E x y
ρ = −

∑
∑

 (14)

The edge change ratio ρ is the maximum value of ρin and ρout in each frame.

Typical ECR patterns for both CUTs and GTs are shown in Figure 3-15.

Figure 3-15 Typical ECR Patterns for CUTs and GTs

Although the cuts appear as a single peak, it is obvious that the gradual

transition patterns are not in a good shape. In order to obtain a more solid

pattern, we smooth the ECR signal with a sliding mean value filter with radius 4.

The resulting signal is shown in Figure 3-16. The gradual transition regions

appear similar to an upside down ‘U–pattern’. We identify the cut positions from

the initial signal by looking for single peaks. Gradual transitions are determined

by searching for the upside down U-shape in the smoothed ECR signal.

42

Figure 3-16 Typical ECR Patterns for CUTs and GTs after Smoothing

3.4.2. Simulation Results

Table 3-4 shows the cut detection results of ECR together with the results of

pixel-wise difference and histogram difference algorithms. Results indicate that

although the ECR algorithm is more complex and consumes more

computational power and time, the cut detection performance of the ECR

algorithm is not better than the simpler histogram difference algorithm.

However, it is better than the pixel-wise difference algorithm.

Table 3-4 Cut Detection Result for ECR

Pixel-wise
(Adaptive Thresh.)

Histogram
Difference ECR

R P F1 R P F1 R P F1

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87

43

Quick camera/object motion is the main weakness of this algorithm. Especially

large objects entering or leaving the scene causes false alarms for both cuts

and GTs.

Figure 3-17 Zoom out Effect with Object Entering the Scene Causes False
Alarm

Figure 3-17 shows a difficult situation for an edge-based algorithm. As the

camera zooms out from the scene, arm of a man rapidly enters the scene,

which results in a false detection. During the zoom out, the edges produced by

the fence changes the positions. In parallel with this the arm of the men enters

the scene quickly. The arm introduces lots of strong edges. As a result, the

algorithm considers the high activity in the edge positions as a shot boundary.

For the gradual transitions, ECR algorithm often fails, when there is motion in

both sides of the shot boundary. Especially, if the scenes, that contain strong

edges, also have significant motion, ECR might produce false alarms.

Table 3-5 presents the gradual transition results for the ECR algorithm. It is

obvious that the algorithm detects the gradual transitions but the performance

44

of the algorithm is not acceptable. False hit rate is quite high resulting in very

low precision values.

The frame sequences, which contain motion of objects with significant edges,

produce false GT alarms. Since significant amount of edge pixels enter or leave

the scene with the motion of the objects, the algorithm identifies these intervals

as GTs. Figure 3-18 shows an example of such a case. In this figure, a man in

the scene moves his hands and arms quickly from the top to the bottom. At the

end, the hands (especially the fingers) leave the scene which results in a

significant amount of out going edges.

Table 3-5 Gradual Transition Results for ECR

ECR #
Recall Precision F1

1 0.55 0.45 0.50
2 0.34 0.46 0.39
3 0.48 0.12 0.19
4 0.62 0.52 0.57
5 0.45 0.49 0.47
6 0.84 0.1 0.18
7 0.41 0.12 0.19
8 0.55 0.2 0.29

Avg 0.53 0.31 0.35

Another case that ECR algorithm fails is the long dissolves. As the edges

appear and disappear very slowly the algorithm can not detect such a shot

change. Figure 3-19 shows an example of a long dissolve that ECR algorithm

cannot detect.

45

Figure 3-18 False GT Detection due to Motion of Objects with Significant
Edges

Figure 3-19 ECR fails to Detect Long Dissolves

46

3.4.3. Conclusion

During the experiments, we have observed that if the image sequence has few

colors and indistinct edges, it is hard for the ECR algorithm to detect shot

boundaries. The reason for this is closely related to the bright colors. If the

video content has brighter colors the edges are clear. Therefore, the results are

better. Especially the cut transitions in the dark scenes result in false alarms.

The main drawback for this algorithm is its execution time. Calculating the

edges and the dilation operation consumes significant computing power and in

parallel takes more time to process the frames. Cut detection results can be

considered acceptable, if the algorithm could be faster. However, gradual

transition results are not promising.

3.5. Petersohn’s Algorithm with 2-Means Clustering

3.5.1. Algorithm

In [18], Petersohn proposes a system which uses pixel, edge and histogram

difference statistics for detecting CUTs and GTs. The system uses the

luminance information only and down-samples all the frames by a factor of 8 in

x and y directions before processing.

For CUT detection, the system utilizes histogram differences and pixel

differences:

1

1

(, 1) (,) (,)

(, 1) () ()

pix
i i

x y

hist
i i

k

d i i p x y p x y

d i i h k h k

−

−

− = −

− = −

∑∑

∑
 (15)

where (,)ip x y denotes the intensity value of (x,y)th pixel in the ith DC frame,

and ()ih k denotes the kth bin value of normalized histogram of the ith DC frame.

In order to deal with the previously mentioned weaknesses of the histogram

and pixel difference features, the system jointly uses these two features and

47

employs 2-means clustering based decision module. In order to use two

features together they need to be normalized between 0 and 1. Before

constructing the 2 dimensional feature vector unsharp masking technique [17]

is applied as a low pass filtering in the following form:

(, 1) (, 1), (, 1) (, 1),(, 1)

0, .f
d i i d i i if d i i d i id i i

otherwise
⎧ − − − − > −

− = ⎨
⎩

� �
 (16)

The difference signal (, 1)d i i − can be either histogram difference signal or the

pixel difference signal. (, 1)d i i −� denotes the median filtered (, 1)d i i − signal.

(, 1)fd i i − is the unsharp masking output. Sample pixel difference signal and

the corresponding signal after unsharp masking is shown in the following

figures:

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349 361 373 385 397 409 421 433 445 457 469 481 493 505

Frame index i

Pi
xe

l D
iff

er
en

ce

Figure 3-20 Pixel Difference Signal

0

0,1

0,2

0,3

0,4

0,5

0,6

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Frame index i

Fi
lte

re
d

Pi
xe

l D
iff

er
en

ce
 S

ig
na

l

Figure 3-21 Pixel Difference Signal after Unsharp masking

48

Histogram and pixel difference signals obtained as a result of unsharp masking

are fed to K-Means clustering algorithm, where K=2. A final processing is

applied in order to eliminate the false alarms due to flashlights. The pixel and

histogram differences for pairs of frames with different temporal distances

around the hard cut candidate are examined and if the difference is below a

certain threshold, then the candidate is marked as false alarm. Cut detection

algorithm is summarized in Figure 3-22.

Figure 3-22 Petersohn’s Cut Detection Algorithm [17]

GT detection is based on the Edge Energy. Sobel edge operator is used for

detecting edges. Using the edge images of the frames, Edge Energy is

calculated as the sum of the intensity values of the pixels which are marked as

edges.

During a gradual transition a spectator observes a loss of contrast and

sharpness of the images. Therefore, it is expected that the edges gets weaker

up to some point and than, as the second image starts to appear edges get

49

stronger. As a consequence, Edge Energy is expected to start decreasing

during a GT and local minimum appears at the center of GT [17]. Petersohn

finds the GTs by locating the U-curves in the Edge Energy diagram. If the

candidate is already detected as a CUT the system discards it.

The U-curves are located by calculating the Least Squares estimates of the

slopes of left (mL) and right (mR) lines at each frame using previous and next 6

frames. If mL<0, mR>0 and mR -mL>1, the center of the candidate gradual cut is

located. The start and end frames of the transitions are determined by

searching the frames where slopes diminishes [33].

False-positives are eliminated by analyzing the histogram and edge differences

for the start and end frames of the GT intervals. For correct GT intervals the

histogram and edge differences are greater than specific thresholds.

3.5.2. Simulation Results

Cut detection results of the algorithm are shown in Table 3-6. The results are

quite good. Both recall and precision results are successful and better than the

previous algorithms.

Table 3-6 Cut Detection Results for Petersohn’s SBD System

Pixel-wise
(Adaptive Thresh.)

Histogram
Difference ECR Petersohn

R P F1 R P F1 R P F1 R P F1

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90

50

Gradual transition detection performance of the algorithm is not as promising as

the cut detection results (Table 3-7). The recall results are very similar to the

ECR results. However, the precision results are obviously better compared to

the ECR.

Table 3-7 Gradual Transition Results for Petersohn’s SBD System

ECR Petersohn # Video ID
Recall Precision F1 Recall Precision F1

1 19980203_CNN 0.55 0.45 0.50 0.64 0.55 0.59
2 19980222_CNN 0.34 0.46 0.39 0.45 0.34 0.39
3 19980224_ABC 0.48 0.12 0.19 0.57 0.55 0.56
4 19980412_ABC 0.62 0.52 0.57 0.6 0.45 0.51
5 19980425_ABC 0.45 0.49 0.47 0.67 0.6 0.63
6 19980515_CNN 0.84 0.1 0.18 0.64 0.42 0.51
7 19980531_CNN 0.41 0.12 0.19 0.4 0.37 0.38
8 19980619_ABC 0.55 0.2 0.29 0.56 0.57 0.56

Avg All 0.53 0.31 0.35 0.57 0.48 0.52

Since the GT detection algorithm is based on the edge difference, the algorithm

fails when the scene contains lots of small objects, thereby contains lots of

edges, in both side of the shot transition:

51

Figure 3-23 Scenes with Lots of Edges is Difficult to Detect

Similar to the ECR algorithm, when rapid object motion occurs, especially when

an object with significant edges enters to scene or leaves the scene the

algorithm produces false GT alarms. In Figure 3-24, the camera follows the

victim of an accident, but at the same time, in the back side, a fireman walks (a

large object with significant edges) in the opposite direction with the victim.

Since the camera motion and the object (fireman) motion is in the opposite

directions, the resulting motion is twice as much and produces great amount of

re-positioning edges. Consequently the algorithm falsely identifies the situation

as a shot change.

Figure 3-25 shows a false alarm due to object motion together with the

illumination change. The motion of a man produces changes in the position of

the edges. In parallel with this, as the camera follows the moving man, due to

the position of the sun, shadows appear and disappear. The edges due to the

shadows contribute significantly to the change in energy because the edges

produced by shadows are quite strong.

We have also observed that zooming (especially fast zooming) results in false

alarms.

52

Figure 3-24 Camera and Object Motion Together Results in a False GT
Alarm

Figure 3-25 Object Motion and Illumination Change

53

3.5.3. Conclusion

During the experiments, we have observed that the algorithm is quite fast. Main

reason behind this improvement in the speed of the shot boundary detection is

that the system uses the luminance information only and down-samples all the

frames by a factor of 8 in x and y directions.

Experiments indicate that although the system utilizes the same features (i.e.

histogram, edge, pixel values), it is obviously better than all the aforementioned

algorithms. Our justification for this improvement is again bases on the

preference of using DC images. Using the down-sampled images (i.e. DC

images) makes the system more robust to small changes. DC images are less

sensitive to small camera/object motion. Therefore, algorithm senses only

significant changes in the video content. In addition to using DC images, the

algorithm employs pixel and histogram features together. These two together is

considered as the major factor that Petersohn’s system performs better than

pixel difference and histogram difference methods.

In the beginning, one argues that down-sampling an image causes a significant

amount of content details to be lost. However, simulation results showed that

for the purpose of SBD, the overall image content is important than the details

of the image.

Both ECR and Petersohn use edge information for detecting gradual

transitions. Although recall results are close to each other, precision results of

Petersohn are obviously better than ECR algorithm. It is evaluated that the final

step of the Petersohn’s algorithm for detecting false alarms by comparing the

pixel and histogram difference of the start and end frames is the reason for this

difference.

Dark video content makes the algorithm misses the gradual transitions due to

the fact that dark image content does not produce significant edges. Similarly,

rapid movement of large objects results in false gradual transition alarms, since,

especially, objects with significant edges, changes the ECR and making the

algorithm produce erroneous results.

54

Illumination change is also a strong factor of changes in the position of the

edges and therefore, a significant difficulty for gradual transition detection

based on edges.

3.6. Graph Partition Model with Support Vector Machine

3.6.1. Algorithm

Graph theoretic segmentation algorithms are widely used in the fields of

computer vision and pattern recognition [51]. Segmentation with graph partition

model [14] is one of the graph theoretic segmentation algorithms, which offers

data clustering by using a graph model. Pair-wise similarities between all data

objects are used to construct a weighted graph as an adjacency matrix (weight

matrix or similarity matrix) that contains all necessary information for clustering.

Representing the data set in the form of an edge-weighted graph converts the

data clustering problem into a graph partitioning problem [14]. In Chapter 4,

graph theoretic clustering is explained in more detail.

The graph theoretic SBD algorithm implemented during this study is based on

the algorithm explained in [4].

3.6.1.1. Segmentation with Graph Cuts

Given a weighted graph G with node set V, edge set E and weight matrix W,

the problem is to partition the graph into two sub-graphs A and B using an

objective function. In graph theory, clustering algorithms mainly differ based on

the selected objective function. There are several objective functions mostly

used in graph partitioning such as min-max cut [34], normalized cut [35], ratio

cut [36] [37] and minimum cut [36]. Literature shows that min-max cut algorithm

performs the best among others [34]. Therefore, in this thesis, min-max cut

algorithm is adopted for the objective function.

Min-max cut principle aims to minimize the similarity between clusters and

maximize the similarity within a cluster. The similarity between nodes i and j is

denoted by wij ∈ [0,1]. The larger the wij, the stronger the connectivity is

between the nodes i and j.

55

The cut which divides the graph G into two sub-graphs A and B is defined as

[34]:

,

(,) ij
i A j B

cut A B w
∈ ∈

= ∑ (17)

The association of sub-graph A is defined as [34]:

,

() ij
i j A

assoc A w
∈

=∑ (18)

A graph can be constructed by treating each sample (i.e. each frame in our

concept) within a data set as a node and linking an edge between each pair of

the nodes. By defining the weight of the edge as the similarity of the samples,

clustering can be formulated as a graph partition problem [14]. From the shot

boundary detection point of view, the objective function Mcut, which tries to

minimize the association between the two sub-graphs while maximizing the

association within each sub-graph, can be defined as [34]:

(,) (,)(,)

() ()cut
cut A B cut A BM A B
assoc A assoc B

= + (19)

3.6.1.2. Temporal Constraints

The drawback with this objective function is it is not applicable to large data

sets. For every possible sub-graph, this objective function must be calculated.

The number of sub-graphs is in the exponential degree. However, in the

problem domain of shot boundary detection, we can apply temporal constraints

to the problem and decrease the number of candidate sub-graphs remarkably.

In a video sequence, a cut can occur at a position between any two adjacent

nodes (Figure 3-26). Given that there are N nodes in graph G, there are N-1

possible positions for the cuts. For example, if the graph includes 4 nodes,

there are 3 possible positions for dividing the graph into two sub-graphs:

56

1. Node 1 ∈ sub-graph A, Node 2,3,4 ∈ sub-graph B. (cut between

node 1 & 2),

2. Node 1,2 ∈ sub-graph A, Node 3,4 ∈ sub-graph B. (cut between

node 2 & 3),

3. Node 1,2,3 ∈ sub-graph A, Node 4 ∈ sub-graph B. (cut between

node 3 & 4)

Therefore, the objective function Mcut must be calculated for all N-1 possible

positions (instead of 2N) and the minimum value will indicate the optimum

position of a cut for partitioning the graph.

Figure 3-26 Sample Graph with 4 Nodes

The continuity signal can be defined as [4]:

 { } { }()() 1,2,..., , 1, 2,...,cutscore t M t t t N= = + + (20)

Since the score values are calculated based on the weights, definition of the wij

is the most critical part of the algorithm. The weight wij is usually defined as [4]:

57

2

2 ,(,)
0 ,

i j

ij
e if i j rw sim i j

otherwise

σ
− −⎧

⎪ − <= ×⎨
⎪⎩

 (21)

The weight value between frame i and frame j reflects the likelihood (i.e.

similarity) that two frames belong to the same shot. Therefore, sim(i,j) in (21)

denotes the similarity function. In [4] histogram intersection method is adopted

as the similarity measure:

2

2min(,) ,
0 ,

i j
i j
k k

ij i
k k

H H e if i j rw
H otherwise

σ
− −⎧

⎪ − <= ×⎨
⎪⎩

∑ (22)

Based on this measure, for more similar frames i and j, wij should be much

higher. On the other hand, as the distance between frames i and j increases,

the probability that these two frames belong to the same shot decreases.

Therefore, σ in (21) and (22) is a factor reflecting the similarity decaying with

the temporal interval increasing, and, r denotes the maximum range in which

the frames are considered to influence each other. As a result the calculations

will be restricted in a r r× sub-matrix which is called active matrix.

Consequently, the continuity signal can be redefined as [4]:

 { } { }()() , 1..., , 1, 2,...,cutscore t M t r t r t t t t r= = − − + + + + (23)

3.6.1.3. Cut Detection

Note the difference between (20) and (23), the continuity signal is now being

calculated by using the information neither from all of the frames, nor just from

the consecutive frames, but according to the content variation within an interval

of range 2 r× . Therefore, over the curve of continuity signal, a valley-shape is

expected for a cut transition instead of an isolated peak (Figure 3-27). Based on

this fact the cut positions can be determined by seeking for the sharp valleys in

the continuity signal.

58

Figure 3-27 Typical Cut Patterns for Scores Signal

The segmentation algorithm can be summarized as follows [4]:

1. Given a video file, construct a weighted graph G. Treat each frame

as a node and link each other by an edge.

2. Compute wij, the weight of each edge, to obtain the similarity matrix

W.

3. Calculate scores of the feasible cuts according to (23).

4. Find the V-patterns in the scores signal and select the local minima

as the candidate cut positions.

5. Declare the candidates whose score values are below a pre-defined

threshold as cuts.

3.6.2. GT Detection

Since the abrupt changes occur between two adjacent frames, the similarity

matrix exhibits some kind of chessboard pattern for the cuts (Figure 3-28) [4].

This behavior makes it possible to identify the cut positions by using a single r

value in (23).

On the other hand, GTs spread over an interval and are difficult to find with a

single r value. The similarity matrix exhibits a blurry pattern at the GT intervals

as shown in the middle plot in Figure 3-28. In [4] and [14], it is shown that for

59

different values for the length of the GT, there will always be a clear

“chessboard” pattern at a lower resolution (right figure in Figure 3-28).

Figure 3-28 Similarity Matrix Patterns for Cuts and GTs

 (Left: Cut, Middle: GT, Right: GT pattern at a lower resolution) [4]

In order to detect GTs, the continuity signal can be re-defined as [4]:

 { } { }(,) ((1) , , , , , ,)cutscore t M t r t t t t rδ δ δ δ δ= − − × − + + ×… … (24)

where { }1, 2,δ ∈ … denoting the sampling rate of frames. Equation (24) means

that when calculating the continuity signal for a candidate transition position,

instead of involving all the frames in a neighborhood, the algorithm only

samples every δ frames in a broader range. In this manner, it is possible to

construct multiple temporal resolution graphs, while δ varies.

3.6.2.1. Support Vector Machine

Identifying the shot boundaries by thresholding the obtained scores signal does

not provide satisfactory results. In [4], Yuan et. al. propose employing a Support

Vector Machine (SVM) with active learning strategy in order to identify the shot

boundaries according to the shapes of local minima.

Each shot boundary corresponds to a valley-shaped pattern in the scores

signal. However, the reverse is not true; not every local minimum is a shot

boundary. Only using a thresholding method does not help us in classifying

60

between shot boundaries and non-boundaries. Observation of the typical

scores signal indicates that the valley patterns corresponding to the boundaries

are different from the local minima which correspond to non-boundaries. Based

on this observation, by constructing feature vectors, which characterizes the

shape of the valleys, and feeding this information to the SVM classifier, it could

be possible to discriminate the boundaries and non-boundaries.

Let ts denote the score value at cut candidate t and the shape of the valley

centering at ts can be characterized by the feature vector r
tB [4]:

 1(, , , , ,)r
t t r t t t rB s s s s− + += … … (25)

where r is the same as in (24).

Due to the multi-resolution analysis, the feature vectors for GTs will be different

than the cuts. Instead of constructing multi-resolution score signal for GTs,

changing the sampling rate of the scores signal should provide us with the

similar results. Let δ denote the sampling rate of the continuity signal, the

shape of the valley centering at a GT candidate t can be characterized by the

feature vector tBδ :

 (1)(, , , , , ,)t t r t r t t t rB s s s s sδ
δ δ δ δ− × − − × + + ×= … … (26)

Note that the length of the feature vector does not change with δ , but the

length of the neighborhood changes.

By concatenating the feature vectors with different resolutions (i.e. with different

δ), it is possible to represent a GT candidate with a single feature vector. With

{ }1,3,5δ ∈ the candidate centering at t can be described by the following

multi-resolution representation:

 1 3 5(, ,)t t t tB B B B= (27)

61

Instead of manually labeling all local minima, an active learning strategy can be

employed. All the valleys which are under a specified threshold are identified

and the SVM classifier is trained with the feature vectors in the form of (25) and

(27) for cuts and GTs respectively.

3.6.3. Simulation Results

The television programs from national broadcast and some of the TRECVID

2002 SBD test videos are used as the training set for the SVM. The SVM code

from [38] is used during the experiments.

The training videos include news programs, commercials and movies. Totally

18114, including 4707 positive and 7880 negative samples are used to train

SVM of a Gauss kernel function. 11 and 60 dimensional samples are used for

cuts and GTs respectively. Table 3-8 summarizes the training set.

Table 3-8 Training Set for SVM

CUT DIS
Video ID

Positive Negative Positive Negative
1 ATV 548 2052 404 1313
2 Kanalturk 20 217 111 93
3 NTV2006 512 1183 269 955
4 NTV2007 726 653 142 1012
5 SHOWTV 586 585 134 806
6 STAR 82 417 12 330
7 TRT1 621 1104 93 1079
8 USG1 0 340 86 168
9 USG4 151 201 63 227
10 LivingSt 0 98 10 60
11 USG9 0 381 137 133

Total All 3246 7231 1461 6176

62

Table 3-9 gives the cut detections results of the graph partition method. The

results show that cut detection performance of the graph partition method is

very similar by the histogram difference method.

Gradual transition detection results of graph partition algorithm are summarized

in Table 3-10. Although cut detection performance of the graph partition

algorithm does not outperform the others, it is obvious that GT transition

performance yields the best results so far. The recall results of this algorithm

are quite close to that of the Petersohn’s SBD system, whereas precision

results are far better than Petersohn’s.

The score values of some GTs result in a V-shape, which are very similar to the

shapes that occur as a result of hard cuts. Such erroneous decisions occur

generally in two situations. If the dissolve spreads over a long interval so that

frame differences are small, the resulting similarities between the frames

belonging to different shots are akin to the ones within the same shot with

disturbances. Figure 3-29 shows a dissolve sequence which is identified as a

cut by the algorithm.

Figure 3-29 A Dissolve Identified as a Cut (sample 1)

63

Another situation is due to the case where two shots surrounding the dissolve

area have similar color histograms. Figure 3-30 illustrates this situation.

Figure 3-30 A Dissolve Identified as a Cut (sample 2)

64

Table 3-9 Cut Detection Results for Graph Partition with SVM Algorithm

Pixel-wise

(Adaptive Thresh.)
Histogram
Difference ECR Petersohn Graph Partition

with SVM #
R P F1 R P F1 R P F1 R P F1 R P F1

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88 0.67 0.89 0.76
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91 0.91 0.93 0.92
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91 0.9 0.92 0.91
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 0.94 0.94 0.94
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 0.89 0.87 0.88
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88 0.76 0.92 0.83
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 0.92 0.94 0.93
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95 0.88 0.93 0.9

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90 0.86 0.92 0.88

65

Table 3-10 GT Detection Results for Graph Partition with SVM Algorithm

ECR Petersohn Graph Partition with SVM# Video ID
Recall Precision F1 Recall Precision F1 Recall Precision F1

1 19980203_CNN 0.55 0.45 0.50 0.64 0.55 0.59 0.66 0.79 0.72
2 19980222_CNN 0.34 0.46 0.39 0.45 0.34 0.39 0.63 0.83 0.72
3 19980224_ABC 0.48 0.12 0.19 0.57 0.55 0.56 0.58 0.83 0.68
4 19980412_ABC 0.62 0.52 0.57 0.6 0.45 0.51 0.62 0.94 0.75
5 19980425_ABC 0.45 0.49 0.47 0.67 0.6 0.63 0.67 0.86 0.75
6 19980515_CNN 0.84 0.1 0.18 0.64 0.42 0.51 0.5 0.83 0.62
7 19980531_CNN 0.41 0.12 0.19 0.4 0.37 0.38 0.61 0.8 0.69
8 19980619_ABC 0.55 0.2 0.29 0.56 0.57 0.56 0.67 0.78 0.72

Avg All 0.53 0.31 0.35 0.57 0.48 0.52 0.62 0.83 0.71

66

3.6.4. Conclusion

The first observation about graph partition algorithm is that it consumes

significant computing power. Processing the histograms for each frame and

then constructing the weight matrix (even for the active matrix) is quite

expensive.

Graph partition method is the only aforementioned algorithm that shows a good

performance on detecting the flashlights. This is expected, since continuity

signal is not calculated by using the information just from the consecutive

frames, but according to the content variation within an interval of range 2 r× .

The frames before and after the flashlight position exhibit high similarity.

Therefore, the flashlights are not identified as transitions during graph

partitioning. This kind of contextual processing provides a more robust method

for also against other sources of noises and disturbances.

One of the remarkable improvements of this algorithm is its high precision

results. For both cuts and GTs, precision results are significantly better than the

other algorithms. This property makes this algorithm the most robust and main

reason for robustness is due to the machine learning algorithm applied at the

decision module.

We have observed that some of the dissolves exhibits V-shape patterns very

similar to the ones that are produced by cuts. As a result the algorithm falsely

identifies the dissolve center as cut. Long dissolves are the situations that such

false detections mostly occur.

The performance of this algorithm depends highly on the performance of the

SVM. Performance of the SVM increases with the size of the training set with

good samples. In the early stages of the experiments with only a relatively small

set of training data, the experimental results were quite poor. As we performed

the training on a larger training set, it is observed that the performance gets

significantly better. It is difficult to find training data including enough number of

GTs. Therefore, it could be concluded that the GT detection performance of the

67

algorithm should be better, if training data is as much as one could find for the

hard cuts.

3.7. Motion-Based Algorithm

3.7.1. Algorithm

The motion based SBD algorithm proposed by Kawai et al. is one of the best

cut detection algorithms in TRECVID 2007 [19] [3]. In this thesis, as a motion–

based SBD algorithm, we have adopted this method with slight modifications.

Similar to the Petersohn’s algorithm, frames are down-sampled by a factor of 2

in both x- and y-directions. The proposed algorithm further performs a

preprocessing step for filtering out the obvious non-boundary frames. With this

achievement, it is allowed to spend more processing power on the areas that

are likely to be shot boundaries.

In this early processing step, sum of absolute differences between the R, G and

B values are calculated for candidate shot boundary frames:

 1
1(, 1) (,) (,)SAD i i

x y
d i i p x y p x y

X Y −− = −
× ∑∑ (28)

where (,)ip x y denotes the R, G or B value of (x,y)th pixel in the iith down-

sampled frame, whereas X and Y denote the dimensions of the down-sampled

frame. The difference is calculated for all color spaces and the sum gives the

SAD value. If the SAD value is below a threshold, we justify that this frame pair

cannot be a shot boundary and we skip the remainder of the process.

If the SAD value is above a threshold, a detailed frame difference is calculated

based on block matching. For the block matching algorithm, one divides the

frames into 24 blocks (6x4) and for each block in the current frame searches

the previous frame in order to find the best match with minimum cost:

 { }1 1(,) min ((), ()),
n

n i i HIST i i nv S
f f d f r v f r r Bλ − −∈

= + ∈ (29)

68

nλ represents the minimum cost between the nth block of the current frame and

its best match in the previous frame. ()if r represents the pixels of the nth block

in the current frame. nS is the search range, while v is the estimated motion

vector. 1()if r v− + indicates the sliding block in the previous frame searching for

the best match (Figure 3-31).

As explained in [19], calculation of the motion vector v is the part that

consumes most of the computational power, as well as execution time. In order

to increase the speed of the algorithm, Dual Cross Search (DCS) algorithm is

preferred as the block matching algorithm [39]. DCS algorithm improves the

speed of block matching task by three effective steps: initial search center

prediction, early search termination and dual cross search pattern.

Figure 3-31 Block Matching Scheme

For the cost calculations, instead of sum of absolute pixel differences, we

adopted the histogram intersection method, since the histogram based methods

are more proper for SBD detection task:

69

1min(,)i i

k k
HIST i

k k

H Hd
H

−

=∑ (30)

For each block, if the resulting cost is above a certain threshold, it is evaluated

that the block is changed more than a regular motion:

11 (,)

()
0

n i iif f f T
V n

else
λλ − >⎧

= ⎨
⎩

 (31)

()V n is set to 1, if the calculated cost value for the current block indicates a

motion while being larger than a specific threshold. Therefore, we sum up such

blocks in a particular frame in order to find out the percentage of the blocks

producing a large motion vector (or a large minimum cost), which is most

probably resulting from a shot change, not a regular motion:

 1
1

(,) ()
N

bm i i
n

d f f V n−
=

= ∑ (32)

As a consequence, frame difference is calculated based on the block matching.

At the end, if the number of blocks that are marked as having extraordinary

motion is above a certain value, one decides for an abrupt shot transition.

Therefore, shot boundaries can be identified by comparing the bmd in (32) by a

threshold. However, during the intervals of the video with significant motion, this

method may not present good results. A more robust way of finding the cuts is

to search for an increase in bmd :

 1 2 1(,) (,)bm i i bm i i CUTd f f d f f T− − −− > (33)

Finally, a flashlight detector is also used for the false alarms. The proposed

method finds the minimum intensity image for the 3 frames neighborhood of the

current SBD candidate:

 '
1 2 3() min((), (), (), ())i i i i if r f r f r f r f r+ + += (34)

70

If the change in bmd is due to a flashlight at if , then the sum of absolute

difference between 1if − and '
if will be very small. Therefore, if the so-called

difference is below a threshold we skip the candidate and identify it as a

flashlight.

3.7.2. Simulation Results

Table 3-11 summarizes the cut detection results of the algorithm. The recall

results are the best with an average value of 0.97, which is quite noteworthy.

On the other hand, the precision results are not as good as its recall results.

The flashlight detector of the algorithm does not perform well. Especially, if the

scene has a strong illumination, or the flashlight spreads to more than one

frame, the proposed algorithm usually fails (Figure 3-32).

Figure 3-32 Flashlight Detector Fails

The examined algorithm also fails to detect shot changes for dark scenes (see

Figure 3-33).

71

Figure 3-33 A Missed Cut due to Dark Scene

Video-in-video kind of shot boundaries are also difficult to detect by such an

algorithm. Since the blocks of the outer video frame do not change, the number

of blocks changed in the center of the video does not produce enough increase

in the bmd signal. In addition to this, if the inner frame includes a dark content, it

gets even more difficult for this algorithm to detect the transition:

Figure 3-34 Failure of Detection due to Video Effects

Since this method adopts histogram based block matching algorithm, we

observe the weaknesses of histogram based methods in this algorithm as well.

For example, the overall illumination changes cause the algorithm to produce

false alarms (see Figure 3-35):

72

Figure 3-35 False Alarm due to Overall Illumination Change

73

Table 3-11 Cut Detection Results for Motion Based Algorithm

Pixel-wise

(Adaptive Thresh.)
Histogram
Difference ECR Petersohn Graph Partition

with SVM
Motion with Dual

Cross Search #
R P F1 R P F1 R P F1 R P F1 R P F1 R P F1

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88 0.67 0.89 0.76 0.94 0.73 0.82
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91 0.91 0.93 0.92 0.98 0.80 0.88
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91 0.9 0.92 0.91 0.96 0.80 0.87
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 0.94 0.94 0.94 0.99 0.76 0.86
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 0.89 0.87 0.88 0.97 0.68 0.80
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88 0.76 0.92 0.83 0.92 0.73 0.81
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 0.92 0.94 0.93 0.98 0.75 0.85
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95 0.88 0.93 0.90 0.99 0.85 0.91

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90 0.86 0.92 0.89 0.97 0.76 0.85

74

3.7.3. Conclusion

The algorithm is one of the best cut detection algorithms reported in TRECVID

2007 [3]. Our experimental results also support this performance with the best

recall results. However, we are not able to observe a remarkable precision

result for this algorithm.

Generally, motion-based algorithms are not preferred in the uncompressed

domain, since estimation of motion vectors consumes significant computational

power and time. In contrary, this algorithm is the fastest among the methods

that have been tested in this thesis. This observation is mainly due to the

preprocessing step for skipping the frames which have very low probability of

being a shot boundary. Secondly, utilizing down-sampled images together with

the fastest block matching algorithm (i.e. Dual Cross Search) increases the

speed of the algorithm significantly.

During the experiments, we have observed that motion is the major factor that

makes the cut detection harder. Therefore, it is expected that a motion based

SBD algorithm could produce good detection performance. However, precision

results should be improved.

3.8. Discussion

In this thesis, we have implemented six popular state-of-the-art SBD algorithms.

In order to gain an integral idea about SBD problem, we have selected these

algorithms adopting different content representation, various continuity signal

construction and different classifiers.

We have observed that although pixel-based algorithm is known to be the

primitive one in the field, with appropriate improvements such as adaptive

thresholding, it is possible to obtain quite promising cut detection results.

Experimental results indicated that histogram-based algorithms are very

applicable to SBD. They provide global information about the video content and

are less sensitive to local changes. We have also observed that algorithms can

75

be further improved by quantization in the color spaces. The resulting

algorithms are observed to be faster without any performance degradations.

We have also observed that the algorithms adopting complex features, such as

edges, do not outperform the performance of the simpler algorithms using pixel

or histogram information. Complex features additionally increase the necessity

for more computational power, which makes them less preferable.

On the other hand, our simulation results show that for the purpose of SBD, the

overall image content is important than the details of the image. Therefore,

down-sampled images can be used to both increase the speed of the algorithm,

as well as to enhance the robustness against motion and disturbances.

Increasing the speed of the algorithm let us use more than one feature, which

further increases the overall performance of an algorithm.

During the experiments, we have realized that motion is the major factor that

makes the cut detection precise. The simulation results showed that a good

motion based SBD algorithm could produce a remarkable detection

performance.

Although graph-theoretic approaches with machine learning are

computationally complex, they are very promising algorithms with very trustable

results. They perform best flashlight detection and are less sensitive to

disturbances.

Gradual transition detection is a very difficult problem due to the fact that there

are various types of editing effects, while each editing effect has a different

temporal pattern, which makes it very difficult to detect with a single algorithm.

Due to similar reasons, in 2007, TRECVID organization decreased the amount

of gradual transitions in the test videos significantly and completely

concentrated on cut detection.

76

CHAPTER 4

DOMINANT SETS

Cluster analysis aims to understand the internal structure within a given

dataset. In [40] Pavan applies cluster analysis to the domain of computer vision,

specifically to image segmentation and image database organization problems.

A framework is developed for image segmentation problem based on a novel

graph theoretic formulation of clustering, namely dominant sets. In this thesis,

we have applied this new concept to the SBD problem. The experimental

results show that this new concept can be used in detecting abrupt scene

transitions.

In this chapter, we will start with an introduction of the fundamentals of graph

theory and its relevant definitions. The novel combinatorial concept, dominant

sets, is explained based on these definitions. Finally, we propose a SBD

algorithm based on the dominant sets concept. The performance of the

proposed algorithm is to be evaluated against the TRECVID 2003 SBD test set.

4.1. Graph Theoretic Clustering

Most of the pattern recognition problems are quite difficult that it is not possible

to guess the optimum classification decision in advance. Therefore, one spends

most of the time during learning. Learning refers to some form of algorithm for

reducing the error on a set of training data [41]. Unsupervised learning is a type

of machine learning, in which manual labels of inputs (i.e. training set) are not

used.

Clustering is considered to be major unsupervised learning problem. One can

define clustering as “the process of organizing objects into groups whose

members are similar in some way”. Therefore, the objects within a cluster are

expected to be similar between them and dissimilar to the objects from other

clusters [42].

77

Data representation can be considered as the first step in solving a clustering

problem. Different data representation types can be employed for different

clustering problems. Among these two types of representations are widely used

for clustering problems in computer vision fields, while one of them is called

geometric representation, in which data items are mapped to some real normed

vector space (i.e. feature space). The other type, denoted as the graph

representation, maps the data items to the nodes of a graph [43].

Representation of the data in the form of a graph brings the problem into the

graph theory domain

4.1.1. Fundamentals of Graph Theory

Some key terminology, which will help us in understanding the graph theoretic

clustering, is presented below.

A graph is a set of objects called nodes or vertices connected by links, namely

lines or edges. Each edge has a set of one or two vertices associated to it,

which are denoted as its endpoints. An edge is said to join its endpoints. Edges

are generally represented by the pair of vertices that they are connecting.

x

w

y

t
v

node x

Edge (x,t)

Figure 4-1 A Simple Undirected Graph

78

A node u is adjacent to node v if they are joined by an edge. Two adjacent

nodes might also be called neighbors.

In a proper graph, which is by default undirected, a line from point A to point B

is considered to be the same thing as a line from point B to point A. Formally,

an undirected graph is one in which no distinction is drawn between edges (a,b)

and (b,a) [44].

A weighted graph is one in which a weight is associated with each edge.

A clique of a graph G is a subset of nodes V such that all vertices are pair-wise

adjacent. A maximal clique is a clique that is not contained in any other clique.

A maximum clique is a maximal clique of maximum size. In Figure 4-2, graph G

consists of 5 nodes. The sub-graphs S1 and S2 are both cliques of graph G

because all nodes are pair-wise adjacent. They are both maximal cliques since

they are not included in any other sub-graph of G. Sub-graph S1 is the

maximum clique of G because it has more nodes than sub-graph S2.

Figure 4-2 Maximal and Maximum Cliques

79

4.1.2. General Clustering Approach

In graph theory, clustering is considered as dividing the graph into “good

pieces”, which is called graph partitioning. Firstly, each data element in the data

set to be clustered is mapped to a node in the graph. The next, and maybe the

most critical, step is to determine the similarity metric. All the data items in the

set will be compared in a pair-wise manner with all the other data items

according to this similarity metric. Whether two nodes are alike and therefore be

in the same cluster is mostly determined by this similarity metric. In other

words, the criteria to determine “good pieces” are the similarity metric [45].

Following the identification of the similarity metric, a weighted similarity matrix

(or affinity matrix) is formed by using the pair-wise similarities between all data

items. There is a row and column for each data item in the similarity matrix. The

(i,j)th element of the matrix represents the similarity that is calculated for data

item i and data item j based on the similarity metric [4]. All the elements of the

similarity matrix is calculated in this manner. The motivation behind graph

theoretic clustering algorithms is the idea that weighted similarity matrix

contains all the information necessary for clustering [34].

In order to achieve the weighted graph representation of the data set, an edge

is constructed from every data item to every other, and corresponding similarity

value from the previously formed weighted similarity matrix is assigned to this

edge as a weight. In general, if two nodes are not similar (i.e. zero similarity)

the edge between these two nodes is not shown in the graph (Figure 4-3).

At this point, since the graph representation is ready, we have already

transferred the data clustering problem into a graph partitioning problem.

Therefore, the final step is to obtain an appropriate algorithm to cut the graph

into sub-graphs which have relatively large interior weights.

Figure 4-4 from [45] summarizes the partitioning process. On the top left, graph

representation of the problem in the form of an undirected weighted graph is

given. On the top right is a common visualization of the similarity matrix of this

graph. Larger similarity values are indicated with lighter color.

80

Figure 4-3 Graph Representation from Similarity Matrix

Figure 4-4 Graph Partition Example

“By associating the vertices with rows (and columns) in a different order, the

matrix can be shuffled. The ordering is chosen to show the matrix in a form that

81

emphasizes the fact that it is very largely block-diagonal. The figure on the

bottom shows a cut of that graph that decomposes the graph into two tightly

linked components. This cut decomposes the graph’s matrix into the two main

blocks on the diagonal” [45].

4.2. Maximum Clique Problem and Motzkin-Straus Theorem

There are different approaches for dividing a graph into good pieces. Among

these methods, a classic approach formulates the clustering problem as

“maximum clique problem”. The maximum clique problem, which searches for

the maximum cliques in a graph, is the strictest definition of a cluster [46].

Motzkin-Straus theorem is a remarkable contribution to the solution of the

maximum clique problem by establishing a connection between the maximizer

of the Lagrangian of a graph and its maximum cliques. The basic idea can be

summarized as follows [47]:

A good cluster is one where elements that are strongly associated with the

cluster also have large values in the similarity matrix. Let vector x (generally

referred as characteristic vector) represents the association of each node with

the cluster, and A be the binary similarity matrix. A proper objective function for

clustering can be [45]:

 Tf(x) = x A x (35)

This notation is a sum of the terms of the form [45]:

{association of element i with cluster}×

{similarity between i and j}×
{association of element j with cluster}

 (36)

A sub-graph with elements maximizing this objective function gives us a cluster.

However, the objective function without normalization cannot be used, since

scaling the associations of the nodes to the cluster changes the results.

82

Therefore, we can use the normalization =Tx x 1 as a constraint and obtain the

Lagrangian [45]:

maximize
subject to

T

T

x A x
 x x = 1

 (37)

In [48], Motzkin-Straus proved that a subset of vertices S is a maximum clique

of graph G, if and only if its unweighted characteristic vector x is a global

maximizer of the Motzkin-Straus quadratic program defined in (37). Motzkin-

Straus theorem is an important result from graph theory and has been applied

to various computer vision and pattern recognition problems [47].

Unfortunately, while the other graph theoretic clustering algorithms (e.g.

minimum spanning tree, minimum cut, etc.) work with the weighted similarity

graph; the concept of maximum clique is defined on unweighted graphs. The

general approach is not different than the one that is explained in the previous

section. The unweighted similarity matrix could be derived from the weighted

similarity matrix with any thresholding operation. If the similarity between two

nodes is above a certain threshold it is assumed that two nodes are similar and

the corresponding entry in the binary unweighted similarity graph is set to “1”.

Otherwise it is set to “0” and the edge between these two nodes is removed

from the graph [40].

Although Motzkin-Straus theorem is a remarkably important contribution to the

maximum clique problem, working with an unweighted similarity matrix is not

acceptable for most of the computer vision problems. The unweighted similarity

matrix and unweighted characteristic vector do not provide any discriminative

information about the participation of the nodes to the cluster. If a node is

associated with the cluster with the value 0.4 and the other is with 0.9, and if

the selected threshold is 0.3, both nodes are associated with this cluster. There

is no clue about the degree of the association (the node with association value

of 0.9 is obviously more strongly connected to the cluster). Therefore,

unweighted similarities can be used to generate a hierarchy of clusters that can

be presented to the user, but it is not useable and feasible in most of the

83

pattern recognition and computer vision problems due to the large number of

data to be clustered.

Figure 4-5 Clustering Problem due to Unweighted Similarities

For example, let’s assume that we have eight data points in the 2D space with

a feature vector consisting of their position in the x and y coordinates (Figure

4-5). The similarity measure is the distance between their positions in the

space. It is obvious that the nodes 1, 2, 3 and 4 form a cluster, and the nodes 5,

6, 7 and 8 form another one. However, using the unweighted similarities, it is

not possible to find a threshold value that may be used to separate the nodes 1,

2, 3 and 4 from the nodes 5, 6, 7, and 8. The algorithm will check the similarity

(the distance) between node 1 and node 3 and will observe that it is the same

as the similarity between the node 1 and node 5. As a result, by any kind of

thresholding, it is not possible for the algorithm to segment these three nodes in

different clusters. In another way, it is not possible to find a threshold value

such that the resulting unweighted graph contains exactly two strictly maximal

cliques corresponding to the two clusters in Figure 4-5.

Therefore, it is important to generalize the notion of the maximum clique to

edge weighted graphs, thereby allowing the development of a new partitional

84

(not hierarchical) clustering approach. This is exactly what Pavan and Pelillo

propose a new method for pair-wise clustering based on the novel cluster

concept dominant sets [49].

4.3. A Novel Graph Theoretic Definition of a Cluster: Dominant Sets

Pavan and Pelillo has followed the traditional graph theoretic approaches and

represented the data to be clustered as an undirected weighted graph with no

self loop [49]. The graph is represented with the weighted similarity matrix

A ()ija= , where ija denotes the similarity between node-i and node-j. Due to

the fact that the graph does not contain any self loops, diagonal entries in the

corresponding similarity matrix are set to zero.

One should recall from the previous sections that a good cluster has two

important features: internal similarity within a cluster should be high and the

similarities between an element within the cluster and the one from outside

should be low. In the graph domain, this corresponds to large edge weights

within a cluster and low weights on the edges connecting the cluster nodes to

the external ones.

Pavan and Pelillo [49] starts from the analysis of the intuitive idea that

assignment of weights to the edges, is one way of assigning weights to the

nodes of a graph. For example, considering the graph G in Figure 4-6, the

edges incident on node-1 has the similarity values 3 and 4, which are the

lowest weights according to the weights on the graph. Similarly, edges incident

on node-3 has the similarity values 4 and 5, which are the top weights in the

overall ranking. This example may intuitively tell us about the natural ranking of

participation of the nodes in the cluster, i.e. the weight of node-3 is larger than

the weight of node-1. By weight of a node, the degree of the participation is

being implied [49].

85

Figure 4-6 Sample Weighted Graph

In order to analyze this intuitive idea of node weights, some preliminary

definitions should be stated. The average weighted degree of i with respect to a

non-empty sub-graph S is defined as follows, where ija denotes the similarity

between node-i and node-j [49]:

1deg ()S ij

j S

aw i a
S ∈

= ∑ (38)

As demonstrated in Figure 4-7, average weighted degree is a relative weight

calculation with respect to a sub-graph and gives us an idea about the degree

of participation of a node to the given sub-graph [49].

Figure 4-7 Average Weighted Degree Calculation

86

For j is not an element of S, one can define the following similarity measure

between nodes i and j [49]:

 (,) deg ()S ij Si j a aw iφ = − (39)

Intuitively, (,)S i jφ measures the similarity between nodes j and i with respect to

the average similarity between node-i and its neighbors in S [49]. Note that

(,)S i jφ can be either positive or negative.

One can interpret this definition by the help of Figure 4-8. Let’s assume that we

are considering enlarging the cluster (i.e. sub-graph S) by including node j to

this cluster. If (,)S i jφ is positive, this means that the similarity (or connectivity)

between the nodes i and j are stronger than the average similarity of node i to

the other nodes of the cluster. This derivation intuitively increases the

probability of including the node-j to the cluster, since its connectivity to the

node-i is stronger than the others. Therefore, if node-i is in this cluster, node-j

should be in this cluster as well.

Figure 4-8 Similarity wrt. Average Similarity

87

Using these definitions, one can define the node weights, ()Sw i . Let S be a

nonempty sub-graph and i S∈ . The weight of i with respect to S is:

{ } { }

{ }
\ \

\

1, 1
() (,) (),S

S i S i
j S i

if S
w i j i w j otherwiseφ

∈

⎧ =
⎪= ⎨
⎪⎩
∑ (40)

Moreover, the total weight of S is defined to be:

 () ()S
i S

W S w i
∈

=∑ (41)

Intuitively, ()Sw i gives us a measure of the overall similarity between node-i

and the other nodes in \{ }S i with respect to the overall similarity among the

nodes in \{ }S i . Let’s interpret this definition as follows: In order to calculate the

weight of node-i, one should remove the node from the cluster (i.e. from sub-

graph S), and for the rest of the cluster, we compare the connectivity of node-i

to each node-j’s average connectivity (\{ }j S i∈) to the cluster. Moreover, we

multiply this comparison with the weight of node-j (i.e. its degree of association

to cluster), because even if the relative connectivity of node-i may be stronger

than the average connectivity of node-j, the degree of association of node-j to

the cluster may be low. Therefore, the weight of node-j must be a weighting

factor for this comparison.

Referring back to Figure 4-6, the weights calculated using the definition

provided above are: { }1,2,3 (1) 10w = , { }1,2,3 (2) 16w = , and { }1,2,3 (3) 18w = . These

results are in accordance with the intuitive idea that was presented in the

beginning of this section.

We are now in a position to define dominant set concept:

Definition 1: A nonempty subset S of a graph G is said to be dominant if [49]:

88

{ }

1. () 0, ,
2. () 0, ,

S

S i

w i for all i S
w i for all i S∪

> ∈
< ∉ (42)

One should note that the properties of a dominant set as stated in (42) implicitly

correspond to the two main properties of a good cluster, which are high internal

connectivity and low connectivity between the cluster and the external nodes.

This fact is the main reason behind considering the dominant sets as a new

definition for a cluster of nodes [49].

Definition 2: Weighted characteristic vector xS for a non-empty subset S is

[49]:

() ,
()

0 ,

S
S
i

w i if i S
W Sx

otw

⎧ ∈⎪= ⎨
⎪⎩

 (43)

Weighted characteristic vector calculated in this way indicates a subset. If there

are n data nodes in the graph, the vector is n-dimensional. Each element in the

vector indicates whether the node corresponding to the element index is

included in the cluster (i.e. the sub-graph) or not. Moreover, the value of the

vector element also provides information about the degree of association to the

cluster for that node. If the value is zero the node is not included in the cluster.

Remember that the values in the vector are normalized so that all the elements

in the vector sum up to 1.

For example, for a graph with 5 nodes, the following characteristic vector is

given:

0.3
0.4
0
0

0.3

Sx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (44)

89

This weighted characteristic vector indicates to a subset S (a sub-graph) which

is identified by the non-zero entries of the vector. Hence, the subset S is equal

to {1, 2, 5}. Moreover, the weighted characteristic vector tell us that while the

nodes 1 and 5 are connected to this cluster with a degree of 0.3, the

participation of node 2 to this cluster is 0.4 and stronger than both node 1 and

node 5.

Pavan and Pelillo generalize the Motzkin-Straus Theorem to the edge-weighted

graphs by using the dominant set definition [49]:

Theorem: If S is a dominant subset of graph G, then its weighted characteristic

vector xS is a strict local solution of Motzkin-Straus quadratic program with

weighted similarity matrix. Conversely, if x* is a strict local solution of Motzkin-

Straus quadratic program with weighted similarity matrix, then the subset S

indicated by x* is a dominant subset of G [49].

Following this theorem, Pavan provides a lengthy proof [40] in which the

definition of dominant set is proven to be equivalent to that of a strictly maximal

clique (i.e. maximum clique) when applied to unweighted graphs.

4.4. Finding Dominant Sets by Replicator Dynamics

The characteristic vector xS indicates a subset S, but it does not provide us with

the information whether the subset S is a dominant set, thereby a cluster, or

not. Therefore, in order to find the dominant sets of a graph, we need to solve

the weighted Motzkin-Straus quadratic program with weighted similarity matrix

and weighted characteristic vector.

Solution to this quadratic program can be determined by using the replicator

dynamics from evolutionary game theory [50]. Pavan uses the following model,

which corresponds to the discrete-time version of the first order replicator

equations:

()(1) ()

() ()
i

i i Tx t x t
t t

+ =
Ax

x Ax (45)

90

where ix is the ith element of the weighted characteristic vector x, and A is the

weighted similarity matrix. The solution is iteratively found based on this model.

The iterations start from an initial point and stops when the new iterations do

not update the vector.

At the starting point, since we do not know which nodes are in a cluster, it is

better to start with a weighted characteristic vector which has equal association

values for each data node. For example, if the graph has 5 data nodes to be

clustered, the starting weighted characteristic vector x(t=0) would be:

0.2
0.2
0.2
0.2
0.2

Sx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (46)

The characteristic vector may also be called as the state vector [40]. The initial

state vector given above will be updated according to the first order replicator

equations at each iteration. When there are no updates in the state vector the

algorithm stops. The entries, which have significant large values in the final

state vector, represent the dominant set.

Let’s assume that we have 6 points in the 2D space to be clustered (Figure

4-9Error! Reference source not found.). The points in the upper left corner

represents the nodes 1, 2, and 3 of the graph, and the points in the bottom right

corner represents the nodes 4, 5 and 6 of graph. The similarity metric is the

distance between the points in space. The starting state vector x(t=0) would be:

 0

1/ 6
1/ 6
1/ 6
1/ 6
1/ 6
1/ 6

S
tx =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (47)

91

Figure 4-9 Simple Data Set (6 points) [40]

Figure 4-10 shows the evolution of the state vector using the first order discrete

time replicator model. The x coordinates in the figure show the index values of

the state vector corresponding to the data items, and the y coordinate indicates

the values of the state vector entries. Note that the values for the nodes 1, 2

and 3 get smaller and smaller, while the values for the nodes 4, 5 and 6 get

larger. Finally the state vector values do not change between iteration 4 and

iteration 5, and the algorithm stops. Therefore, final state presents us with the

dominant set consisting of nodes 4, 5 and 6.

92

Figure 4-10 Evolution of the state vector x(t) [40]

4.5. SBD Algorithm Based on Dominant Sets

Graph theoretic segmentation algorithms are getting more popular in the field of

pattern recognition and computer vision [51]. Dominant sets, which is a very

novel concept, is a remarkably important contribution to the graph theory

domain and has already found applications in image segmentation [49].

93

Furthermore, Sakarya and Telatar applied this novel concept to video scene

detection problem [52].

In this thesis, we propose a SBD algorithm for detecting abrupt changes based

on dominant sets concept. In designing the algorithm, we have used the

experience that we have acquired during the simulations of the state-of-the-art

SBD algorithms in Chapter 3.

First of all, during the experiments, we have observed that graph theoretic

approaches are computationally complex due to weight matrix calculations and

contextual information usage. Therefore, we need to design a relatively fast

algorithm, which compensates the time one looses in graph related

calculations. Although motion-based algorithm presented a very good recall

performance, since motion vector calculation is a complex process we decided

not to use motion information together with a graph theoretic approach.

Secondly, we have learnt that the algorithms, which use the computationally

complex features, such as edges, do not outperform the performance of the

simpler algorithms, which uses pixel or histogram information. These two

observations together led us utilization of the histogram and pixel-wise

difference as the similarity metric.

In order to further increase the speed of the algorithm, we decide to use the DC

images and the preprocessing step proposed in [19].

During the experiments, we have noted that one of the main reasons for false

alarms for all kinds of algorithms is due to video-in-video type of effects or the

sliding text at the bottom of the video. In addition to this, considering that the

center of the video includes the more important content, we have adopted a

Region-of–Interest (RoI) idea proposed in [30] and decided to perform the

calculations in this region. Figure 4-11 shows a typical RoI for a sample frame.

94

Figure 4-11 Region of Interest (RoI)

The proposed algorithm can be summarized as follows:

1. Find the cut candidates based on the sum of absolute differences of the

pixel intensity values over the RoI. If the difference is below a certain

threshold skip the rest of the algorithm. If the difference is above a

certain threshold continue with the next step.

2. For the cut candidates, construct the graph representation by taking 4

frames before the shot boundary and taking 2 frames after the shot

boundary. For the sample candidate cut position shown in Figure 4-12,

graph representation is shown in Figure 4-13. Each node in the graph

represents the frames in the sequence.

Figure 4-12 Candidate Cut Position

95

Figure 4-13 Graph Representation of the Candidate Cut position

3. Select features for video content representation and construct the

weighted similarity matrix A based on the selected feature(s).

4. Start with an initial state vector of 0 [1/ 6,1/ 6,1/ 6,1/ 6,1/ 6,1/ 6]S
tx = = ,

and find the dominant set according to the first order replicator equation

in (46). Iteratively update the state vector until there is no update or the

iteration number reaches the maximum number of iterations (selected

as 15).

5. For the true cut positions, one expects the resulting dominant set to

include first 4 frames. Therefore, we want the values of first four

elements of the state vector to be above the starting value (i.e. 1/6) and

we want the 5th and 6th elements of the state vector to be less than a

threshold (selected as 0.14).

4.6. Simulation Results

During the experiments, we have started with the 1D feature vectors. We have

tested the algorithm with pixel difference, histogram difference and motion

96

difference separately. Finally, we have tested the algorithm with the 2D feature

vector including both pixel and histogram difference. Table 4-1 presents the

results of this experiment. It is obvious that using a 2D feature produces better

results for both recall and precision values compared to using 1D feature.

Results for motion based algorithm are slightly better than the one using 2D

feature vector. However, during the experiments we have observed that using

motion difference as a feature results in a very slow algorithm.

During the experiments, we have also tested the algorithm with an alternative

structure in which we have used 4 frames from one shot and only 1 frame from

the next shot (Figure 4-14). Simulation results for both cases are presented in

Table 4-2.

Figure 4-14 Alternative Test Structure

Adopting the 1D motion feature as a similarity measure for graph

representation, overall algorithm is tested with the TRECVID 2003 SBD test

videos. Table 4-3 presents the simulation results of the SBD algorithm based

on dominant set concept together with all the algorithms tested in Chapter 3.

Results show that the algorithm produces quite good recall results. Precision

results need to be improved.

Experiments showed that the types of shot boundaries that this algorithm

produces wrong results are not different than the pixel-wise difference and

histogram difference algorithms. Main situations that result in wrong decisions

are video in video effects, dark scenes and large object movements.

97

Table 4-1 Dominant Sets Results for for Single and Joint Features

Dominant Sets

Pixel-wise Feature Histogram Feature Motion Feature Histogram & Pixel Feature# Video ID
R P F1 R P F1 R P F1 R P F1

1 19980203_CNN 0,80 0,81 0,80 0,78 0,54 0,64 0,87 0,81 0,84 0,87 0,72 0,79
2 19980222_CNN 0,92 0,87 0,89 0,87 0,64 0,74 0,96 0,84 0,90 0,95 0,83 0,89
3 19980224_ABC 0,87 0,84 0,85 0,88 0,69 0,77 0,95 0,84 0,89 0,93 0,82 0,87
4 19980412_ABC 0,94 0,85 0,89 0,88 0,65 0,75 0,99 0,81 0,89 0,97 0,79 0,87
5 19980425_ABC 0,87 0,82 0,84 0,85 0,53 0,65 0,94 0,72 0,82 0,94 0,71 0,81
6 19980515_CNN 0,86 0,75 0,80 0,81 0,60 0,69 0,91 0,72 0,80 0,90 0,73 0,81
7 19980531_CNN 0,91 0,85 0,88 0,89 0,68 0,77 0,97 0,78 0,86 0,97 0,77 0,86
8 19980619_ABC 0,96 0,90 0,93 0,90 0,76 0,82 0,99 0,87 0,93 0,99 0,83 0,90

Avg All 0,89 0,84 0,86 0,86 0,64 0,73 0,95 0,80 0,87 0,94 0,78 0,85

98

Table 4-2 Results for 4+1 Structure vs. 4+2 Structure

Histogram & Pixel Feature
4+1 Structure 4+2 Structure # Video ID

R P F1 R P F1
1 19980203_CNN 0,85 0,73 0,79 0,87 0,72 0,79
2 19980222_CNN 0,94 0,80 0,86 0,95 0,83 0,89
3 19980224_ABC 0,92 0,80 0,86 0,93 0,82 0,87
4 19980412_ABC 0,96 0,80 0,87 0,97 0,79 0,87
5 19980425_ABC 0,93 0,56 0,70 0,94 0,71 0,81
6 19980515_CNN 0,90 0,70 0,79 0,90 0,73 0,81
7 19980531_CNN 0,95 0,78 0,86 0,97 0,77 0,86
8 19980619_ABC 0,98 0,86 0,92 0,99 0,83 0,90

Avg All 0,93 0,75 0,83 0,94 0,78 0,85

99

Table 4-3 CUT Detection Results for Dominant Sets with Motion as the Similarity Metric

Pixel-wise

(Adaptive Thresh.)
Histogram
Difference ECR Petersohn Graph Partition

with SVM
Motion with Dual

Cross Search Dominant Sets

R P F1 R P F1 R P F1 R P F1 R P F1 R P F1 R P F1

1 0.74 0.82 0.83 0.83 0.83 0.83 0.82 0.81 0.81 0.91 0.86 0.88 0.67 0.89 0.76 0.94 0.73 0.82 0,87 0,81 0,84
2 0.79 0.9 0.86 0.94 0.9 0.92 0.91 0.88 0.89 0.95 0.87 0.91 0.91 0.93 0.92 0.98 0.80 0.88 0,96 0,84 0,90
3 0.89 0.88 0.92 0.96 0.85 0.9 0.95 0.79 0.86 0.97 0.85 0.91 0.9 0.92 0.91 0.96 0.80 0.87 0,95 0,84 0,89
4 0.9 0.92 0.92 0.95 0.86 0.9 0.94 0.89 0.91 0.99 0.83 0.9 0.94 0.94 0.94 0.99 0.76 0.86 0,99 0,81 0,89
5 0.85 0.81 0.88 0.91 0.84 0.87 0.89 0.84 0.86 0.95 0.85 0.9 0.89 0.87 0.88 0.97 0.68 0.80 0,94 0,72 0,82
6 0.78 0.84 0.85 0.88 0.86 0.87 0.84 0.86 0.85 0.91 0.85 0.88 0.76 0.92 0.83 0.92 0.73 0.81 0,91 0,72 0,80
7 0.9 0.89 0.92 0.95 0.89 0.92 0.91 0.84 0.87 0.97 0.84 0.9 0.92 0.94 0.93 0.98 0.75 0.85 0,97 0,78 0,86
8 0.81 0.87 0.95 0.94 0.86 0.9 0.94 0.85 0.89 0.98 0.93 0.95 0.88 0.93 0.90 0.99 0.85 0.91 0,99 0,87 0,93

Avg 0.83 0.87 0.85 0.92 0.86 0.89 0.90 0.85 0.87 0.95 0.86 0.90 0.86 0.92 0.89 0.97 0.76 0.85 0,95 0,80 0,87

100

During the experiments, we have also incorporated this algorithm with the

aforementioned motion based algorithm as a post processing step. One should

recall that the motion based algorithm produced quite good recall results during

the tests in Chapter 3. However, the precision values obtained were not as well

as recall results. Therefore, we have improved the algorithm by using the

algorithm based on the dominant set concept as a post processing step on the

results obtained by motion based algorithm. The proposed algorithm double

checks the cuts detected by the motion based algorithm by using the dominant

sets algorithm with 2D feature vector as the similarity measure. The results are

summarized in Table 4-4. Results show that although the recall values

decrease a little, precision values increase significantly by applying dominant

sets as a post processing step.

Table 4-4 Motion Based Algorithm improved by DS Algorithm

Motion with Dual
Cross Search Motion with DS

Video ID
R P F1 R P F1

1 19980203_CNN 0,94 0,73 0,82 0,87 0,82 0,84
2 19980222_CNN 0,98 0,80 0,88 0,96 0,88 0,92
3 19980224_ABC 0,96 0,80 0,87 0,94 0,88 0,91
4 19980412_ABC 0,99 0,76 0,86 0,98 0,85 0,91
5 19980425_ABC 0,97 0,68 0,80 0,95 0,80 0,87
6 19980515_CNN 0,92 0,73 0,81 0,91 0,82 0,86
7 19980531_CNN 0,98 0,75 0,85 0,95 0,83 0,89
8 19980619_ABC 0,99 0,85 0,91 0,99 0,89 0,94

Avg All 0,97 0,76 0,85 0,94 0,85 0,89

4.7. Conclusion

The resulting precision values for the proposed algorithm are not higher than

some of the aforementioned SBD algorithms. The main reason for this result is

due to motion and disturbances. If the visual similarity between 6 frames from

the same shot is somehow not at the same degree, the algorithm chooses the

frames with the strongest connectivity during the iterations of the state vector.

101

Consequently, an abrupt change in the state vector values appears between

the 4th and the 5th elements. Therefore, the algorithm produces false alarms.

This is one of the consequences of the idea that maximal/maximum cliques are

the strictest definition of a cluster. The algorithms based on the

maximal/maximum clique definition search for the strongest cluster in a graph.

Therefore, if due to disturbances or significant motion, the 5th and 6th frames are

slightly different than the other four, the algorithm leaves the 5th and 6th frames

out of the dominant set.

Another observation is that the algorithm is not robust against flashlights, as

expected. This result is due to the inclusion of only 2 frames from the next shot.

Therefore, the algorithm does not have enough information to check whether

the frame next to flashlight is similar to the previous frames or not. We have

considered taking more frames from the next shot; however, we have observed

that such an approach, unfortunately, decreases the recall results significantly.

In order to make use of the concept of dominant sets, we need to allocate as

much weight as possible to the dominant set. At the final step, we identify the

dominant set boundary by using a constant threshold. Therefore, in order to

keep the separation easily detectable by a threshold, we need to keep first 4

frames from the earlier shot and only a single frame or at most 2 frames from

the next shot. Otherwise, iterations result in similar values in the state vector

and we miss significant amount of shot boundaries.

We have observed that if we adopt 2D feature with pixel and histogram

differences as the similarity metric, the algorithm is faster than the graph

partition algorithm with SVM. This result proves that graph theoretic approaches

can be used in real-time SBD applications with proper enhancements.

On the other hand, algorithm with motion difference as the similarity metric is

the slowest one among the algorithms tested during this thesis. This is an

expected result since the graph based algorithms are computationally

expensive algorithms due to similarity matrix calculations. For the algorithm that

we have proposed for dominant sets, for each cut candidate, a 6x6 similarity

102

matrix is calculated. Although the similarity matrix is symmetric and the

elements on the diagonal are set to 0 (no self loops in the graph), one still

needs to run the motion based algorithm for 15 cells in the similarity matrix.

This requirement makes the algorithm 15 times slower than the aforementioned

motion based algorithm. This observation supports the idea that motion based

features together with the graph theoretic SBD algorithms requires significantly

high computational power.

During the experiments we have observed that dominant sets algorithm can be

used to improve the precision performance of the motion based algorithms.

Since both algorithms are computationally expensive, instead of 1D motion

feature, one should adopt 2D feature vector with pixel and histogram

differences as a similarity measure, while using dominant sets algorithm with a

motion based algorithm.

103

CHAPTER 5

CONCLUSION & FUTURE WORK

5.1. Conclusions

In this thesis, we have implemented 6 of the well known state-of-the-art

algorithms from the uncompressed domain. The algorithms are tested against

TRECVID 2003 test video and compared with the recall, precision and F1

measures.

Pixel based algorithm is the simplest tested SBD method. It is very sensitive to

video content. Therefore, comparing the continuity signal with a constant

threshold did not produce good results. Following this observation, we have

reduced the effects of scenes containing a lot of movement by comparing the

difference signal with a threshold derived from the maximum and minimum

difference signals over a small aperture. Simulation results showed that,

although the pixel based method is known to be the most primitive one in the

literature, it is possible to obtain very good results with such an adaptive

thresholding scheme.

Color histograms are the features that are mostly used in SBD task.

Experiments have shown that histogram-based algorithms are very appropriate

for SBD. They provide global information about the video content and are less

sensitive to local changes. We have also observed that algorithms can be

further improved by quantization in the color spaces. The resulting algorithms

are observed to be faster without any performance degradations.

We have also observed that the algorithms adopting complex features, such as

edges, do not outperform the performance of the simpler algorithms that utilize

pixel or histogram information. In addition to this fact, complex features

increase the requirement for more computational power.

104

Examining Petersohn’s SBD system showed us that, by processing down-

sampled images, it is possible to both adopt feature vectors with more than one

feature and still has a faster shot boundary detection system. Furthermore, we

have observed that DC images include global information about the video

content, therefore more robust against motion and disturbances.

Investigating the error set of the algorithms showed us that motion is the major

factor that makes the shot boundary detection harder. Motion-based algorithm

with the highest recall results proved that a good motion based SBD algorithm

can produce quite good detection performance.

Although the algorithm based on graph partition model with machine learning is

computationally complex, the observed high precision results show that they

are quite promising algorithms with very robust results. They especially perform

best for flashlight detection and are also less sensitive to disturbances.

Gradual transition detection is a difficult job. There are various types of editing

effects and each editing effect has a different temporal pattern, which makes it

very difficult to detect with a single algorithm. Due to similar reasons, in 2007,

TRECVID organization decreased the amount of gradual transitions in the test

videos significantly and completely concentrated on cut detection.

Although different algorithms have different strong and weak characteristics, we

have observed that all algorithms have difficulty in detecting the shot

boundaries under specific circumstances such as dark video content, rapid

zooming, video in video effects and large motion activity.

We have also studied the dominant sets concept from graph theory and

proposed a novel shot boundary detection algorithm based on dominant sets.

The results are promising and showed us that with proper improvement

dominant sets can be used in the shot boundary detection area.

5.2. Future Work

Recent research approaches the shot boundary problem as a pattern

recognition problem. As a result machine learning algorithms are being adopted

105

at the decision level. In TRECVID 2007, five out of the fifteen proposed SBD

algorithms uses SVM as the classifier. Therefore, as a future work, instead of

finding the dominant set from the final state vector by a simple thresholding

scheme, SVM can be used.

106

REFERENCES

[1] A. Hanjalic, “Shot Boundary Detection: Unraveled and Resolved?,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 12, no.
2, pp. 90-105, February 2002.

[2] A. Hanjalic, Content-based Analysis of Digital Video, Boston: Kluwer
Academic Publishers, 2004.

[3] A. F. Smeaton, W. Kraaij, and P. Over, "TRECVID 2007 - Overview,"
2008, http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html, visited
on 10 May 2008.

[4] J. Yuan, H. Wang, L. Xiao et al., “A Formal Study of Shot Boundary
Detection,” IEEE Transactions on Circuits and Systems for Video
Technology, pp. 168-186, 2007.

[5] H. Koumaras, and G. Gardikis, “Shot Boundary Detection without
Threshold Parameters,” J. Electron. Imaging, vol. 15, no. 020503, 2006.

[6] N. Vasconcelos, and A. Lippman, “Statistical models of video structure
for content analysis and characterization,” IEEE Transactions on Image
Processing, vol. 9, no. 1, pp. 3-19, 2000.

[7] M. Albanese, and V. Moscato, “A Formal Model for Video Shot
Segmentation and its Application via Animate Vision,” Multimedia Tools
and Applications vol. 24, no. 3, pp. 253-272, December 2004.

[8] T. Kikukawa, and S. Kawafuchi, “Development of an automatic
summary editing system for the audio-visual resources,” Transactions
on Electronics and Information J75-A pp. 204-212, 1992.

[9] K. Otsuji, Y. Tonomura, and Y. Ohba, “Video browsing using brightness
data,” in Proc. SPIE VCIP'91, vol. 1606, pp. 980-989, 1991.

[10] I. Koprinska, and S. Carrato, "Temporal Video Segmentation: A Survey,"
Signal Processing: Image Communication, 16, 2001.

[11] B. Shahraray, “Scene change detection and content-based sampling of
video sequences,” Proc. IS&T/SPIE 2419, pp. 2-13, 1995.

[12] H. J. Zhang, A. Kankanhalli, and S. Smoliar, “Automatic Partitioning of
Full-Motion Video,” Multimedia Systems, vol. 1, pp. 10-28, 1993.

[13] J. Mas, and G. Fernandez, "Video Shot Boundary Detection based on
Color Histogram," Notebook Papers TRECVID2003, 2003.

107

[14] J. Yuan, B. Zhang, and F. Lin, “Graph partition model for robust
temporal data segmentation,” Proc. of PAKDD, pp. 539-542, 2005.

[15] R. Zabih, J. Miller, and K. Mai, “A Feature-Based Algorithm for Detecting
and Classifying Scene Breaks,” Proc. ACM Multimedia 95, pp. 189-200,
1995.

[16] R. Lienhart, “Comparison of Automatic Shot Boundary Detection
Algorithms,” Image and Video Processing VII, 1999.

[17] B. C. Song, and J. B. Ra, “Automatic Shot Change Detection Algorithm
Using Multi-stage Clustering for MPEG-Compressed Videos,” Journal of
Visual Communication and Image Representation, vol. 12, no. 3, pp.
364-385, 2002.

[18] C. Petersohn, "Fraunhofer HHI at Trecvid 2004: Shot Boundary
Detection System," TREC Video Retrieval Evaluation Online
Proceedings, 2004.

[19] Y. Kawai, H. Sumiyosi, and N. Yagi, "Shot Boundary Detection at
TRECVID 2007," 2007.

[20] B. L. Yeo, and B. Liu, “Rapid Scene Analysis on Compressed Videos
Dec,” IEEE Trans. Circuits and Systems for Video Technology, vol. 5,
pp. 533-544, December 1995.

[21] B. T. Truong, “Shot Transition Detection and Genre Identification for
Video Indexing and Retrieval,” Honours, School of Computing, Curtin
University of Technology, 1999.

[22] W. A. C. Fernando, C. N. Canagarajah, and D. R. Bull, “A Unified
Approach To Scene Change Detection In Uncompressed And
Compressed Video,” IEEE Transactions on Consumer Electronics, vol.
46, no. 3, pp. 769-779, 2000.

[23] F. Arman, A. Hsu, and M. Y. Chiu, “Image processing on compressed
data for large video databases,” Proc. ACM Multimedia, pp. 267-272,
1993.

[24] E. Deardorff, T. Little, J. Marshall et al., “Video scene decomposition
with the motion picture parser,” IS&T/SPIE, vol. 2187, pp. 44-45, 1994.

[25] I. B. Kayaalp, “Video Segmentation Using Partially Decoded MPEG
Bitstream,” METU, Ankara, 2003.

[26] J. Easterbrook. "A simple cut detector for video sequences,"
http://sourceforge.net/, visited on 24 August 2007.

[27] A. Hanjalic, and R. L. Lagendijk, “Automated high-level movie
segmentation for advanced video-retrieval systems,” IEEE Transaction

108

on Circuits and Systems for Video Technology, vol. 9, no. 4, pp. 580-
588, 1999.

[28] Z. Rasheed, and M. Shah, “A Graph Theoretic Approach for Scene
Detection in Produced Videos,” Multimedia Information Retrieval
Workshop, 2003.

[29] C. Ngo, “A robust dissolve detector by support vector machine,” Proc.
ACM Multimedia, pp. 283-286, 2003.

[30] Z. Liu, E. Zavesky, D. Gibbon et al., “AT&T Research at 2007,” 2008.

[31] S. Wei, Y. Zhao, Z. Zhu et al., "BJTU TRECVID 2007 Video Search,"
Institute of Information Science, Beijing Jiaotong University, 2008.

[32] J. S. Boreczky, and L. A. Rowe, “Comparison of Video Shot Boundary
Detection Techniques,” Storage and Retrieval for Still Image and Video
Databases IV, Proc. SPIE 2664, pp. 170-179, 1996.

[33] E. Esen, and A. Alatan, "The COST292 experimental framework for
TRECVID 2007," http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.
html, visited on 11 June 2008.

[34] C. Ding, X. He, H. Zha et al., “A min-max cut algorithm for graph
partitioning and data clustering,” Proc. IEEE International Conference
on Data Mining, 2001.

[35] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2000.

[36] C.-K. Cheng, and Y. A. Wei, “An improved two-way partitioning
algorithm with stable performance,” IEEE Trans. on Computer Aided
Design, vol. 10, pp. 1502-1511, 1991.

[37] L. Hagen, and A. B. Kahng, “New spectral methods for ratio cut
partitioning and clustering,” IEEE Trans. on Computer Aided Design,
vol. 11, pp. 1074-1085, 1992.

[38] C.-C. C. C.-J. Lin, "LIBSVM: a library for support vector machines,"
http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001, visited on 13 June 2007.

[39] X. Banh, and Y. Tan, “Adaptive Dual-Cross Search Algorithm for Block-
Matching Motion Estimation,” IEEE Trans. Consumer Electronics, vol.
50, no. 2, pp. 766-775, 2004.

[40] M. Pavan, “A New Graph-Theoretic Approach to Clustering, with
Applications to Computer Vision,” Università Ca' Foscari di Venezia,
2004.

109

[41] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Second
ed.: J. Wiley & Sons, 2000.

[42] M. Matteucci. "A tutorial on clustering algorithms,",
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/, visited on 26
August 2008.

[43] Y. Chen, “An unsupervised learning approach to content-based image
retrieval,” IEEE Proc. Inter. Symposium on Signal Processing and Its
Applications vol. 1, pp. 197-200, 2003.

[44] "Graph Theory," ; http://en.wikipedia.org/wiki/Graph_theory, visited on
28 June 2008.

[45] D. A. F. J. Ponce, Computer Vision: A Modern Approach: Prentice Hall,
2002.

[46] J. G. Auguston, and J. Minker, “An analysis of some graph theoretical
clustering techniques,” J. ACM, vol. 17, no. 4, pp. 571-588, 1970.

[47] M. P. M. Pelillo, “Generalizing the Motzkin-Straus theorem to edge-
weighted graphs, with applications to image segmentation,” Lecture
notes in computer science, pp. 485-500, 2003.

[48] T. S. Motzkin, and E. G. Straus, “Maxima for Graphs and a New Proof of
a Theorem of Turán,” Canadian J. Math, vol. 17, pp. 533-540, 1965.

[49] M. Pavan, and M. Pelillo, “Dominant Sets and Pairwise Clustering,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
29, no. 1, pp. 167-172, 2007.

[50] M. P. M. Pelillo, “A New Graph-Theoretic Approach to Clustering and
Segmentation,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 145-152, 2003.

[51] U. Sakarya, Z. Telatar, “Graph partition based scene boundary
detection,” In: M. Petrou, T. Saramäki, A. Erçil, S. Lončarić (Eds.), Proc.
The 5th International Symposium on Image and Signal Processing and
Analysis (ISPA 2007), Istanbul, Turkey, 2007, pp. 544-549.

[52] U. Sakarya, Z. Telatar, “Video sahne sezme için çizge temelli bir
yaklaşım,” in IEEE 16. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı
(SİU 2008), Didim, Aydın, 2008.

	CHAPTER 1
	1.1. Motivation
	1.2. Fundamental Problems of SBD
	1.2.1. Detection of Gradual Transitions
	1.2.2. Flashlights
	1.2.3. Object/Camera Motion
	1.2.4. Thresholding
	1.2.5. Complexity of the Detector

	1.3. Scope of the Thesis
	1.4. Organization of the Thesis
	CHAPTER 2
	2.1. General SBD Framework
	2.1.1. Representation of the Visual Content
	2.1.2. Construction of Continuity Signal
	2.1.3. Classification of Continuity Values

	2.2. Taxonomy
	2.2.1. Methods of Visual Content Representation
	2.2.1.1. Uncompressed Domain
	2.2.1.1.1. Pixel Based Methods
	2.2.1.1.2. Histogram Based Methods
	2.2.1.1.3. Edge-Based Methods
	2.2.1.1.4. Motion-Based Methods

	2.2.1.2. Compressed Domain
	2.2.1.2.1. DC Images
	2.2.1.2.2. DCT Coefficients
	2.2.1.2.3. Bit-Rate Information
	2.2.1.2.4. Macro Block Information

	2.2.2. Methods of Constructing Continuity Signal
	2.2.2.1. Pair-wise Comparison Scheme
	2.2.2.2. Contextual Information Scheme

	2.2.3. Classification Methods
	2.2.3.1. Classifiers with Simple Thresholding
	2.2.3.2. Statistical Machine Learning

	2.3. TRECVID History

	CHAPTER 3
	3.1. Test Data and Evaluation Criteria
	3.2. Pixel-wise Difference with Adaptive Thresholding
	3.2.1. Algorithm
	3.2.2. Simulation Results
	3.2.3. Conclusion

	3.3. Histogram Difference with Adaptive Thresholding
	3.3.1. Algorithm
	3.3.2. Simulation Results
	3.3.3. Conclusion

	3.4. Edge Change Ratio
	3.4.1. Algorithm
	3.4.2. Simulation Results
	3.4.3. Conclusion

	3.5. Petersohn’s Algorithm with 2-Means Clustering
	3.5.1. Algorithm
	3.5.2. Simulation Results
	3.5.3. Conclusion

	3.6. Graph Partition Model with Support Vector Machine
	3.6.1. Algorithm
	3.6.1.1. Segmentation with Graph Cuts
	3.6.1.2. Temporal Constraints
	3.6.1.3. Cut Detection

	3.6.2. GT Detection
	3.6.2.1. Support Vector Machine

	3.6.3. Simulation Results
	3.6.4. Conclusion

	3.7. Motion-Based Algorithm
	3.7.1. Algorithm
	3.7.2. Simulation Results
	3.7.3. Conclusion

	3.8. Discussion

	CHAPTER 4
	4.1. Graph Theoretic Clustering
	4.1.1. Fundamentals of Graph Theory
	4.1.2. General Clustering Approach

	4.2. Maximum Clique Problem and Motzkin-Straus Theorem
	4.3. A Novel Graph Theoretic Definition of a Cluster: Dominant Sets
	4.4. Finding Dominant Sets by Replicator Dynamics
	4.5. SBD Algorithm Based on Dominant Sets
	4.6. Simulation Results
	4.7. Conclusion

	
	CHAPTER 5
	5.1. Conclusions
	5.2. Future Work

