
FORMATION PRESERVING NAVIGATION OF AGENT TEAMS IN 3-D
TERRAINS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALİ GALİP BAYRAK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2008

Approval of the thesis:

FORMATION PRESERVING NAVIGATION OF AGENT TEAMS IN
3-D TERRAINS

submitted by ALİ GALİP BAYRAK in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Volkan Atalay
Head of Department, Computer Engineering

Prof. Dr. Faruk Polat
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. İ. Hakkı Toroslu
Computer Engineering Department, METU

Prof. Dr. Faruk Polat
Computer Engineering Department, METU

Prof. Dr. Göktürk Üçoluk
Computer Engineering Department, METU

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering Department, METU

Dr. Çağatay Ündeğer
Computer Engineering Department, Bilkent University

Date: 05.08.2008

I hereby declare that all information in this document has been ob-

tained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct,

I have fully cited and referenced all material and results that are not

original to this work.

Name, Last name : Ali Galip Bayrak

Signature :

iii

ABSTRACT

FORMATION PRESERVING NAVIGATION OF AGENT TEAMS IN 3-D

TERRAINS

Bayrak, Ali Galip

M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Faruk Polat

August 2008, 45 pages

Navigation of a group of autonomous agents that are needed to maintain a formation

is a challenging task which has not been studied much in especially 3-D terrains.

This thesis presents a novel approach to collision free path finding of multiple agents

preserving a predefined formation in a 3-D terrain. The proposed method could

be used in many areas like navigation of semi-automated forces (SAF) at unit level

in military simulations and non player characters (NPC) in computer games. The

proposed path finding algorithm first computes an optimal path from an initial point

to a target point after analyzing the 3-D terrain data from which it constructs a

weighted graph. Then, it employs a real-time path finding algorithm specifically

designed to realize the navigation of the group from one way point to the successive

one on the optimal path generated at the previous stage, preserving the formation

and avoiding collision both. A software was developed to test the methods discussed

here.

Keywords: path finding, formation control, coordination, multi-agent systems

iv

ÖZ

ETMEN TAKIMLARININ 3 BOYUTLU HARİTALARDA FORMASYON

KORUYARAK İLERLEMELERİ

Bayrak, Ali Galip

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Faruk Polat

Ağustos 2008, 45 sayfa

Bir grup etmenin belli bir formasyonu koruyarak ilerlemeleri, özellikle 3 boyutta daha

önce çok fazla çalışılmamış zor bir problemdir. Bu tez, bir grup etmenin 3 boyutlu

arazide öntanımlı bir formasyonu koruyarak çarpışmadan yol bulmalarını sağlayan

yeni bir yaklaşım sunmaktadır. Sunulan metodlar, askeri simulasyonlardaki birlik

seviyesindeki yarı-otonom kuvvetlerin ve bilgisayar oyunlarındaki bilgisayar tarafın-

dan kontrol edilen karakterlerin ilerlemeleri gibi birçok alanda kullanılabilir. Sunulan

yol bulma algoritması, ilk olarak, başlangıç noktasından bitiş noktasına, ağırlıklı bir

çizge oluşturduğu arazi verisini kullanarak optimal bir yol bulur. Daha sonra, aynı

zamanda hem formasyonu koruyarak hem de çarpışmaları engelleyerek, bir önceki aşa-

mada bulunmuş olan optimal yol üzerindeki ardışık noktalardan sırayla her seferinde

bir sonrakine grubun ilerlemesini sağlayan gerçek zamanlı bir yol bulma algoritması

uygulanır. Buradaki metodların test edilmesi için bir yazılım geliştirilmiştir.

Anahtar Kelimeler: yol bulma, formasyon koruma, koordinasyon, çok-etmenli sistem-

ler

v

ACKNOWLEDGEMENTS

I especially would like to thank my advisor, Prof. Dr. Faruk Polat, for his guidance

and cooperation throughout my MSc studies.

I wish to thank Prof. Dr. İ. Hakkı Toroslu and Prof. Dr. Göktürk Üçoluk for

their guidance for my future academic career.

I also would like to thank my friends, for their great support and friendship. Espe-

cially, my previous and new housemates Umut, Olcay, Bulut and Deniz, and friends

from college Okan, Berk, Anıl, Aykut, Can, Deniz, Merve, Çağrı, Görkem, Çağla,

Ebru, Alev, Elvan, İlker, Yunus and Kazım, and many others which is hard to list all

here.

I wish to thank TÜBİTAK for their financial support.

The greatest thanks are to my family, for their support throughout my whole life.

vi

To My Mother..

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

ACKNOWLEDGEMENTS . vi

DEDICATION . vii

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF SYMBOLS . xiii

CHAPTER

1 INTRODUCTION 1

1.1 The Subject . 1

1.2 Scope and Objective . 2

1.3 Outline . 3

2 RELATED WORK 4

3 DESCRIPTION AND REPRESENTATION OF THE ENVIRONMENT 7

3.1 Properties of the Environment . 7

3.2 Representation of the Environment and Construction of the Search

Graph . 8

4 THE PROPOSED FORMATION PRESERVING PATH PLANNING

METHOD 18

4.1 Off-line Path Finding . 18

4.1.1 Formation Representation . 21

viii

4.1.2 Determining Agent Positions at Every Way Point of the Path 22

4.2 On-line Path Finding . 27

4.2.1 Rearrange Formation . 28

5 EXPERIMENTAL RESULTS AND SAMPLE RUN 31

5.1 Experimental Setup . 31

5.2 Performance Evaluation of Off-line Planner 32

5.3 Performance Evaluation of On-line Planner 35

5.4 Sample Runs . 38

6 CONCLUSIONS AND FUTURE WORK 42

REFERENCES . 44

ix

LIST OF FIGURES

FIGURES

Figure1.1 Some Common Formations . 1

Figure3.1 Grid Representation . 8

Figure3.2 Extremum Points . 11

Figure3.3 Sample Environment . 12

Figure3.4 Obstacle Borders . 12

Figure3.5 Preventing alone Points . 13

Figure3.6 Marking Additional Points . 15

Figure3.7 Checking Whether the Formation Can Pass Through a Point . . 16

Figure4.1 Steps of the Proposed Formation Preserving Path Finding Method 19

Figure4.2 Path Smoothing Process . 21

Figure4.3 Formation Representation . 23

Figure4.4 leftPoint, rightPoint and backPoint 23

Figure4.5 Superposing midPointLR and midPointBR 25

Figure4.6 Scaling Bounding Rectangle to Fit into an Area 26

Figure4.7 Shifting Inaccessible Points . 26

Figure4.8 Rearrange Formation . 30

Figure5.1 Sample Terrain 1 . 33

Figure5.2 Sample Terrain 2 . 33

Figure5.3 Sample Terrain 3 . 34

Figure5.4 Team in Line Formation . 39

Figure5.5 Team in Column Formation . 39

x

Figure5.6 Team in Wedge Formation . 40

Figure5.7 Team Passing a Passage - Screenshots 41

Figure5.8 Team Passing a Passage - Paths 41

xi

LIST OF TABLES

TABLES

Table 5.1 Experiment on 2000x2000 Terrains 35

Table 5.2 Experiment on 1000x1000 Terrains 36

Table 5.3 Experiment on 500x500 Terrains 37

Table 5.4 Experiment on Real World Terrain 37

Table 5.5 Results of On-line Planner . 38

xii

LIST OF SYMBOLS

SAF Semi-Automated Forces

NPC Non-Player Characters

2-D 2-Dimensional

3-D 3-Dimensional

xiii

CHAPTER 1

INTRODUCTION

1.1 The Subject

Navigation of a group of mobile agents in coordination is a popular problem studied

in different areas such as robotics, computer games and military simulations. The

problem is to move a team of agents from a given initial location to a given final

location preserving a predefined formation on a 3-D terrain. Formation is the tactical

arrangement of agents in a team, like column, line and wedge (see Figure 1.1), used

especially in military forces.

Figure 1.1: Some Common Formations

Several path finding algorithms were proposed for single and multiple robots [2]

[5] [7] [9] [10]. These algorithms were generally developed for navigation in 2-D

1

environments hence restricted as they can not be used or efficiently adopted to 3-

D terrains. Also, these algorithms mainly focus on the physical capabilities of the

robots, which is not the case in computer simulations, which is our primary interest in

this thesis. In computer games, especially in strategy games, algorithms are designed

for moving a group of soldiers, or vehicles in the simulated battlefields [6] [13] [14]. In

military simulations, there has been growing interest in modelling behaviors at both

individual and unit level to simulate decision making and tactics used in real-life

for simulation based training, analysis and acquisition (OneSAF, TeBAT, ModSAF,

SWARMM). In that respect, navigation of individual soldiers/vehicles and that of a

unit require efficient algorithms to be embedded in Semi-Automated Forces (SAF)

[11]. There are only a few published works for the so-called path finding task in the

areas of military simulations and computer games. Motivated by this, we developed

algorithms for formation preserving navigation task of multiple autonomous agents

in 3-D terrains and tested them on real 3-D maps.

1.2 Scope and Objective

In this thesis, we developed a novel algorithm for finding an efficient path between

two points for a group of agents that are also required to maintain a pre-defined

formation and avoid collisions with each other and with obstacles in 3-D terrains.

We divided the problem into three main parts; constructing a search graph, finding

the path and maintaining the formation while moving [3].

We first construct a directed weighted graph where nodes corresponds to way

points some of which will define the route, edges to the accessibility of way points

connected, weights to the cost between the way points connected, after analysing

and identifying important terrain features. This graph is constructed once at the

beginning of the simulation, before the team actually starts to move.

Then, with the help of an off-line planner, we determine a path for the team on

the constructed search graph. The planner, first, uses an informed search technique,

actually A*, and finds an optimal path (a sequence of way points in the order they

will be visited). Then it uses a smoothing algorithm in order to smooth the found

path, which may be jagged. And finally, the planner determines each agent’s goal

position at each of the way points on the path. Note that, the off-line planner is also

2

done before the agents start to move.

The last step is to move the agents in real-time using on-line planner. The agents,

in parallel, follows the path found by the high-level planner, by using a real-time

algorithm that plans and navigates agents between two successive way points on the

solution path, avoiding collisions and maintaining the formation. Also, team is able

to rearrange the formation, when an agent loses its mobility, which may be faced in

games and military simulations.

1.3 Outline

In Chapter 2, related works are discussed. In Chapter 3, we define the environment

and describe how terrain features are extracted from the 3-D terrain data and how

the search graph is constructed. Chapter 4 contains an overview of our formation

preserving path finding method. In the chapter, first, steps of off-line path planning

phase is given. Then, the on-line path finding algorithm is given. Experimental

results and sample runs are given in Chapter 5. Finally, conclusions and future

research directions are given in Chapter 6.

3

CHAPTER 2

RELATED WORK

There is a growing interest in autonomous agents and multi-agent systems in com-

puter simulations. In most of the games, there are non-player characters that act

autonomously to overcome some real-life problems, either in cooperation with or

against the player. While single-agent decision making mechanism is more popular in

games, in some sort of the games, especially in real-time strategy games, multi-agent

systems are used, e.g. agents can work on a cooperative task in order to beat the

player. Also, in military simulations, soldiers and vehicles, either individually or at

unit level can simulate the decision making and tactics used in real-life.

Since mostly the agents are mobile, the most frequently faced problem in such

simulations is the path finding problem. There have been many works on single agent

path finding problem. However, there is not so much published work on multi-agent

case. Multi-agent formation preserving path finding is used especially in military

simulations and games. In military simulations like OneSAF (One Semi-Automated

Forces) and ModSAF (Modular Semi-Automated Forces) and games like Force21 [14]

units are needed to move on 3-D terrain, preserving formation.

The path finding problem mainly consists of three parts: how to represent the

environment and construct a search graph, how to search and find a path on the

constructed graph and how to realize the found path in real-time.

For representation of environment, there are many approaches. However, most of

them are designed for 2-D and not very efficient in 3-D domains. The representations

generally focus on two important factors. One is the number of vertices it generates

for the search graph and the other is the reliability of the generated graph. The

number of vertices is very important, such that generally the higher the number

4

of vertices, the more time it takes while searching on the graph. Reliability is a key

factor, such that the constructed graph should preserve the connectedness of vertices.

For example, if one point is reachable from the other, then on the search graph it

should be so, and vice versa.

The most popular environment representation is grid representation. The envi-

ronment is divided into equal sized square cells, each of which is either reachable or

not, and these cells are considered as the vertices of graph. The edges of the graph

are between the reachable neighboring cells. This representation can be implemented

in such a way that it preserves reliability, but efficiency is not the main concern of

the representation.

Another popular representation is visibility graph [4]. It considers the environ-

ment as a huge polygon, in which there are small polygons representing the unreach-

able areas. Then, each corner of these polygons are considered as vertices of the graph

and the visibility of a pair to each other determines the edges. This representation is

efficient in 2-D environments.

Delaunay triangulation can also be used for environment representation [4]. It

divides the environment into triangles, using the corners of edges. Centers of these

triangles can be used as vertices and edges are inserted between neighboring ones if

they are accessible. Voronoi diagram is another method, which is dual to Delaunay

triangulation in graph theoretical approach.

The second important phase in path finding is the search on the constructed graph.

Since time efficiency is one of the most important factors real-time applications,

generally informed search techniques, especially A* is used. A* is the most widely-

known form of best-first search [12]. A*, at each step during the search, expands the

node having the lowest f(n) value, where f(n) = g(n) + h(n), g(n) is the path cost

from start node to node n and h(n) is the heuristic function which is the estimated

cost of the cheapest path from node n to goal node. A* is optimal if h(n) is an

admissible heuristic, that is, provided that h(n) never overestimates the cost to reach

the goal.

The last step in path finding is the realization of found path. In single agent

case, this problem is easy to handle. The agent can move on the line between suc-

cessive way points along the path and simple algorithms can be used in order to

5

avoid collisions. However, multi-agent path finding problem brings many additional

constraints compared to single-agent case, especially if run on 3-D terrains. Agents

should consider the mobility, position and velocity of other agents. Representation

of environment is an important factor at this point. Virtual structure, introduced

in [9] by Lewis and Tan, considers the agent group as a rigid body and planning is

done for this body. Most common method is to let each agent decide its own path

according to its relative position with respect to other agents. Desai et al presented a

graph theoretical approach where each agent determines its location according to the

locations of other agents and there is a leader agent who does not follow any other

agent but leads the group [7]. The relation between two agents consists of relative

distance and orientation between them. There are several methods that make use of

priorities among agents to describe a formation in a team [10].

6

CHAPTER 3

DESCRIPTION AND

REPRESENTATION OF THE

ENVIRONMENT

3.1 Properties of the Environment

The environment is a 3-D virtual world made up of a terrain and objects placed on it.

Terrain is represented as a height map. The natural and man-made objects such as

trees and buildings are represented with polygons and they are treated as obstacles.

There are autonomous agents in the environment and they can collaborate to achieve

the task. The environment is considered to be fully observable, but the proposed

methods can also be employed in partially observable environments, with some little

improvements. The problem is discrete-time and continuous-state; percepts and the

actions of agents are handled at discrete time steps and agents can move to a range

of continuous points on the terrain at each time step.

Agents are mobile and holonomic1 and aim to reach to a specified target point

with a predefined average speed. In order to maintain formation and avoid collisions,

agents may tune their speeds. Agents in a team are considered to be physically identi-

cal and they are restricted by their physical capabilities, such as maximum/minimum

slope they can ascend/descend, maximum positive/negative acceleration and maxi-

mal speed they can reach. The communication between agents of the same team is

considered to be perfect.
1A holonomic agent is an agent which can rotate at the same place with a turning radius of zero

[5]

7

3.2 Representation of the Environment and Construction

of the Search Graph

Concerning the representation of the environment, the most common approach is the

grid representation where the environment is divided into a number of square cells of

the same size, where each cell is considered either as obstacle, or not. Search algo-

rithms for finding a path from one cell to another, may consider the set of midpoints

of these cells. The drawback of this method is that cell size should be determined

carefully. Figure 3.1 shows some examples of the grid representation with different

cell sizes. If the size is small, the number of points in the search space will be huge,

as shown in Figure 3.1(b). If the size is big, the homogeneity (obstacle/not) of the

cells will decrease since each cell is considered either obstacle or not, and even it may

result in failure of the search as shown in Figure 3.1(d). The ideal cell size for this

case is shown in Figure 3.1(c).

Figure 3.1: Grid Representation

There are some other methods like triangulation, Voronoi diagrams and visibility

graphs [4]. However, in 3-D terrains having lots of contour lines, these methods

may result in huge number of points to be considered in the search. So, it may be

better to modify the grid representation, that minimizes the number of points and

preserves homogeneity. In [8], Kambhampati and Davis propose a multi-resolution

representation with quad trees. In this thesis, we employ a simpler but successful

method that analyzes the terrain height map to extract useful features from which it

8

identifies way points to be used by the path planner.

Concerning the representation, we consider the terrain as a 3-D mathematical

surface and find its critical and singular points, and construct a search graph using

these points as vertices of the graph. Since the terrain height map data is discrete,

heights of some equidistance points are extracted from this data and interpolation is

used for finding the height of any other point.

First, we divide the map into small square cells and take the center points of

these cells, as in the grid method. The size of a cell should be as small such that

it could be considered as homogeneous. Let sizeOfCell denote the size of a cell.

Then, determine the critical points of the terrain as described in Algorithm 1. The

extremum points of the terrain are considered critical points of it. The basic idea of

the algorithm is as follows. First, mark the points that are local maxima and local

minima according to their height. The mark ing process adds the point as a vertex to

the set which will be used in the search (i.e, search graph). A point can be considered

local maxima if its height is greater than any of its neighbors (4 or 8 neighborhood

can be assumed for simplicity, we take 4 neighborhood for this study but the method

is easily adaptable to 8 neighborhood) and local minima if its height is less than any

of its neighbors. Also, mark the points that are partially extrema. A point can be

considered as partially extrema if it is either maxima, or minima on every opposing

pair and it is not local maxima or local minima. For example, if the height of a point

is greater than the height of its south and north neighbors and less than the height

of its west and east neighbors it is partially extrema. The points that are marked

(local maximum, local minimum and partially extremum points) will form the set of

extremum points. Figure 3.2 shows examples for each of maxima (a), minima (b) and

partially extrema (c) respectively. In the figure, the numbers in the cells represent

the heights and the points in the center cells are the extremum points.

The terrain may be rough and hence there may be some very small hills or cav-

ities. To eliminate such extremum points, the condition in Formula 3.1 is checked

against every marked point p. Note that, nearestMarked(p, z) denotes the marked

point that is nearest to the point p in direction z. The condition checks four nearest

marked points in four neighboring directions and returns whether the height differ-

ences between p and each of these four points are within a threshold. If the condition

9

Algorithm 1 DetermineCriticalPoints(terrainGridData) : SetOfPoints

1: // neighbor(x, dir) : The point that is sizeOfCell unit far from x (i.e. neighbor

of x) in the direction dir. dir is one of the following: NORTH, SOUTH, WEST,

EAST

2: // height(x) : The height of point x

3: S ← ∅ // Let S denote the set of points to be returned

4: for all point p in terrainGridData do

5: if ∀z (z ∈ {NORTH, SOUTH, EAST, WEST} =⇒ height(p) >

height(neighbor(p,z))) then

6: S ← S ∪ {p} // p is local maxima, add it to the set S

7: else if ∀z (z ∈ {NORTH, SOUTH, EAST, WEST} =⇒ height(p) <

height(neighbor(p,z))) then

8: S ← S ∪ {p} // p is local minima, add it to the set S

9: else if ∀z (z ∈ {NORTH, SOUTH} =⇒ height(p) > height(neighbor(p,z))) ∧

∀z (z ∈ {EAST, WEST} =⇒ height(p) < height(neighbor(p,z))) then

10: S ← S ∪ {p} // p is partially extrema, add it to the set S

11: else if ∀z (z ∈ {EAST, WEST} =⇒ height(p) > height(neighbor(p,z))) ∧ ∀z

(z ∈ {NORTH, SOUTH} =⇒ height(p) < height(neighbor(p,z))) then

12: S ← S ∪ {p} // p is partially extrema, add it to the set S

13: end if

14: end for

15: return S

evaluates to true for p, then we unmark p. k can be considered as the height that an

agent can pass over easily.

∀z(z ∈ {NORTH,SOUTH,EAST,WEST} =⇒

|height(p) − height(nearestMarked(p, z))| > k) (3.1)

Up to this point, we finished determining local extremum points. Next step is to

determine and mark the singular points. In mathematics, a point p of a curve c is con-

sidered as singular, if c is not well-behaved in some manner, such as differentiability,

at p. Generally, the term is used for the points where the curve is not differentiable.

10

Figure 3.2: Extremum Points

In our work, we classified a point as singular, if it is not accessible from at least one

of its neighbors. A point is inaccessible from its neighbor if the slope between them

prevents the agent movement (because of agent’s physical capability). Algorithm 2

returns the set of singular points.

Algorithm 2 DetermineSingularPoints(terrainGridData) : SetOfPoints
1: S ← ∅ // Let S denote the set of points to be returned

2: for all point p in terrainGridData do

3: if ∃z (z ∈ {NORTH, SOUTH, EAST, WEST} ∧ inaccesible(p, neighbor(p,z)))

then

4: S ← S ∪ {p} // p is singular, add it to the set S

5: end if

6: end for

7: return S

Figure 3.3 contains a sample terrain where local maxima and minima are shown

with small black circles and singular points are shown with small black squares.

Next step is to mark the borders of the obstacles. If a point is on the border of

at least one obstacle, then it is marked. The borders of obstacles can be determined

by using Bresenham’s line drawing algorithm or any other line drawing algorithm.

Figure 3.4 contains an example where dark squares represent the marked points.

11

Figure 3.3: Sample Environment

Figure 3.4: Obstacle Borders

12

Then, we mark the initial and goal locations of agents.

The points marked up to this point can express the characteristic properties of the

terrain. However, since some of these marked points might be the only marked point

in its row/column, search might fail because of disconnectedness of these points. To

prevent this, we mark some additional points using Algorithm 3. Let’s call a point

alone, if it is the only marked point in its row. The algorithm, starting from the

first row, traverses all the rows and if finds an alone point p on a row, it marks the

point that is on the same column with p and on the same row with the point that

is previous alone point (if p first alone point, then do not mark any point). Figure

3.5.a shows an example of this step. Similar process is done for the alone points in

columns as in Figure 3.5.b.

Figure 3.5: Preventing alone Points

If the agent only considers the points marked so far in determining the path to

its destination, the search will guarantee to find a path if there is one, but the path

realized may not be natural since it only considers critical and singular points. In

order to prevent this and find more natural paths not only considering extremum and

singular points, we mark some additional points as follows. Let’s call two marked

points adjacent if they are in the same row or column and there are no other marked

points or obstacles in between them. For each adjacent point pairs, we draw a line

joining them. We mark such points on this line that, two consecutive recently marked

13

Algorithm 3 AlonePoints(terrainGridData)
1: lastAloneRow ← 0

2: for i=1 to n /*n denotes the number of rows*/ do

3: numberOfMarkedPoints ← 0, lastMarked ← 0

4: for j=1 to m /*m denotes the number of columns*/ do

5: if isMarked(i, j) then

6: numberOfMarkedPoints + +

7: if numberOfMarkedPoints > 1 then

8: break

9: else

10: lastMarked ← j

11: end if

12: end if

13: end for

14: if numberOfMarkedPoints == 1 ∧ lastAloneRow 6= 0 then

15: mark(lastAloneRow, lastMarked)

16: lastAloneRow ← i

17: end if

18: end for

19: lastAloneColumn ← 0

20: for i=1 to m do

21: numberOfMarkedPoints ← 0, lastMarked ← 0

22: for j=1 to n do

23: if isMarked(j, i) then

24: numberOfMarkedPoints + +

25: if numberOfMarkedPoints > 1 then

26: break

27: else

28: lastMarked ← j

29: end if

30: end if

31: end for

32: if numberOfMarkedPoints == 1 ∧ lastAloneColumn 6= 0 then

33: mark(lastAloneColumn, lastMarked)

34: lastAloneColumn ← i

35: end if

36: end for

14

points on the line has height difference greater than or equal to a predefined value

called height difference factor. Two consecutive recently marked points on the line

are considered adjacent from now on. Figure 3.6 contains an example where height

difference factor is 1. The points shown with ’X’ are recently marked.

Figure 3.6: Marking Additional Points

The marked points so far will form the vertices of the graph on which the search

will be performed. Since each of the marking algorithm traverses each point of the

grid at most constant times, the total complexity of the algorithms used so far is

O(N), where N denotes the number of points in the grid. The algorithm decreases

the number of vertices significantly compared to grid method, especially if the terrain

is not very rough.

The edges of the graph are determined as follows. For each marked point (i.e.,

vertex) u, if any adjacent point v is accessible from u, an edge incident from u to v is

created. A point is accessible from another if the slope between them is in the range

that is determined by the physical capability of the agent and there is no obstacle in

between them.

The cost of an edge is calculated as follows. We divide the edge into small pieces

each of which has the length sizeOfCell, and then sum the costs of all these small

pieces. Cost of a small piece is initially assumed to be the Euclidean distance between

the two corners of the piece. Then, we multiply this cost with a function of slope such

that the higher is the slope the higher is the cost. The last factor that affects the cost

of an edge is whether the desired formation can be maintained along it. Note that,

this is just a heuristic for calculating the costs of edges of the search graph and the

calculation is done before the team actually starts to move. Considering the formation

15

as a rectangular box and checking whether this box can move along the edge can be a

solution. However, moving along the whole edge for all edges will be computationally

costly. So, we used a computationally cheap method given in Algorithm 4, which

checks whether this box can pass through the two vertices incident with the edge.

This does not always give the desired result but is a good approximation. Figure

3.7 shows an example for Algorithm 4 to determine whether the formation can pass

through a way point. The algorithm finds two points, leftPoint and rightPoint, on

the line perpendicular to the edge, denoting the left and right boundaries of the

line accessible from the way point and checks whether the formation can fit into the

particular area between them.

Figure 3.7: Checking Whether the Formation Can Pass Through a Point

If this algorithm returns false, we multiply the cost of the edge with a function of

the distance between leftPoint and rightPoint, such that, the smaller is the distance

the higher is the cost. Repeat the same procedure for the end point of the edge. After

this step, construction of the search graph is completed. The algorithmic complexity

16

Algorithm 4 CanFit(formationWidth, edge) : Boolean
1: startPoint ← edge.start

2: lineP ← a line perpendicular to the edge and passing at startPoint

3: leftPoint ← startPoint

4: for i = 1 to formationWidth do

5: if inaccesible(startPoint, leftPoint) then

6: break

7: end if

8: leftPoint← point that is i * sizeOfCell far from startPoint on the line lineP

and to the left of the startPoint

9: end for

10: rightPoint ← startPoint

11: for i = 1 to formationWidth do

12: if inaccesible(startPoint, rightPoint) then

13: break

14: end if

15: rightPoint ← point that is i * sizeOfCell far from startPoint on the line

lineP and to the right of the startPoint

16: end for

17: if EuclideanDistance(leftPoint, rightPoint) ≥ formationWidth then

18: return true

19: end if

20: return false

of edge cost detection using above algorithm is O(E ∗ formationWidth + N), if we

traverse all grid points once in north-south direction and once in east-west direction

and consider at most 2 ∗ formationWidth points for each edge, where E is the

number of edges and N is the number of grid points. Adding up this complexity with

the complexity of vertex determination, total algorithmic complexity of the graph

construction is found as O(E ∗ formationWidth + N).

17

CHAPTER 4

THE PROPOSED FORMATION

PRESERVING PATH PLANNING

METHOD

In this chapter, we will discuss our formation preserving path planning method. An

overview of method is given in Figure 4.1. We first construct the search graph as

described in previous chapter. Then, we use an informed search technique (i.e.,

A*) to find an optimal path in this search graph. If there exists a path, we use a

smoothing algorithm in order to make the found path smooth, which may be jagged

because of the number of neighborhood considered during graph construction. After

that, for each way point along the path, we determine each agents’ position at that

way point, assuming that the team is able to arrive at the way point. All these steps

are executed off-line before the team actually starts to move. At this point, we have

a path (sequence of way points) for each individual agent. Then, in real time, each

agent moves along its own path in coordination with its teammates maintaining the

formation and avoiding collision. During on-line path finding, the group is able to

reorganizes itself in case some agent loses its mobility. When all the team members

reach their goal points, the task is accomplished. In the following sections, we will

describe each of the steps of off-line and on-line path planning in details.

4.1 Off-line Path Finding

The number of points to be considered in the search in a realistic application can be

huge, because of the terrain size. That’s why there is a need for using an informed

18

Figure 4.1: Steps of the Proposed Formation Preserving Path Finding Method

search technique to plan the path. We employ A* algorithm on the constructed

weighted graph to produce an optimal path. Since 4 neighborhood is considered

19

during graph construction phase, Manhattan distance1 is used as heuristic function

(namely h(.)). If 8 neighborhood was considered, Euclidean distance might have

been used. For actual distance traveled from source(namely g(.)), we use the cost

function mentioned in the previous chapter to determine edge costs. The heuristic

function is admissible, since the Manhattan distance between any two points could

never overestimate the actual cost between them.

The path generated by A* may be jagged because of the number of neighborhood

used during graph construction. In order for the path to be more realistic, it should

be smoothed. For path smoothing, we used the method described in [10] given in

Algorithm 5, with some little changes. The basic idea of their algorithm is that we

remove a point from the path if its predecessor is visible to its successor. For visibility

of two points to each other, we can use any Line-of-Sight algorithms. Figure 4.2 shows

an example of the smoothing process.

Algorithm 5 SmoothPath(listOfWayPoints) : SequenceOfWayPoints
1: start ← 1

2: returnList.add(listOfWayPoints[1])

3: for end = 2 to listOfWayPoints.length()− 1 do

4: if invisible(listOfWayPoints[start], listOfWayPoints[end + 1]) then

5: returnList.add(listOfWayPoints[end])

6: start ← end

7: end if

8: end for

9: returnList.add(listOfWayPoints[listOfWayPoints.length()])

10: return returnList

This algorithm is effective in 2-D. Because of the triangle inequality, the cost of

smoothed path can not be larger than the cost of original path. Since the terrain

is 3-D and cost function does not only consider the Euclidean distance, the cost

1Manhattan distance between two points is the sum of the absolute values of differences in each

coordinate axis (i.e., in 2-D, |x1 − x2|+ |y1 − y2|)

20

Figure 4.2: Path Smoothing Process

may sometimes can grow during this smoothing process. In order to make the path

smoother but prevent the cost to grow much, step 4:1. of the algorithm is revised as

follows:

4:1. If the end node is not the goal, check whether cost(start node, end node) ≤

cost(start node, immediate precedent of end node) + cost(immediate precedent of end

node, end node) + ε holds. If it holds, then choose the node successive to the end

node as the new end node. Otherwise, record the immediate precedent of the end

node as a new way point and choose end node as the start node with its successive

as the end node. Go to step 2

4.1.1 Formation Representation

The spatial structure of a formation should be represented precisely. In [9], Lewis

and Tan introduced the concept of virtual structure, considering the agent group as a

rigid body and all the planning is done for this body. Another popular method is to

let each agent decide its own path according to its relative position with respect to

other agents. In [7], Desai et al presented a graph theoretical approach where each

agent determines its location according to the locations of other agents and there is

a leader agent who does not follow any other agent but leads the group. The relation

between two agents consists of relative distance and orientation between them. There

21

are several methods that make use of priorities among agents to describe a formation

in a team [10].

In our work, we defined a formation by specifying relative positions of agents

and their priorities. Agents are given ID’s from 1 to n where n denotes the number

of agents. The agent with lowest ID (i.e., 1) has the highest priority and is called

the leader. The lower the ID, the higher the priority. The priority is mainly used

to determine the order of movement within each discrete time step in on-line path

planning. The leader agent is given an ID of 1 first. An agent’s relative position

is given with respect to that one of the other agents having smaller ID. Relative

position of agent a with respect to agent b is defined with two variables, ∆depth(a,b)

and ∆width(a,b). ∆depth(a,b) is the distance between a and b in the movement

direction of the group. ∆width(a,b) is the distance between a and b in the axis

perpendicular to the movement direction of the group. In addition, the numbering

of agents brings about another constraint that if agent a is closer to the front of

the group in depth compared to agent b, a has lower ID than b’s. Note that, one

can design any formation using our representation and Figure 4.3 shows how some

commonly used formations are represented. In the figure, circles are the agents and

numbers in the circles are ID’s of the agents. A directed edge from agent a to agent

b means that position of a is described with respect to position of b in the formation.

a is called predecessor of b and b is called successor of a.

4.1.2 Determining Agent Positions at Every Way Point of the Path

At any way point of the path found by off-line planner, we use Algorithm 6 to deter-

mine each agent’s position in accordance with the pre-defined formation. The method

described in the algorithm is as follows. First, by using the same method as in Al-

gorithm 4, for a way point, we determine the two points leftPoint and rightPoint,

considering the edge between the way point and its successor. Then, determine the

farthest accessible point to the way point, called backPoint, that is on the line passing

through the way point and its successor and is to the back of the wayPoint consid-

ering facing direction of group as front. Figure 4.4 shows an example of leftPoint,

rightPoint and backPoint.

Then, we determine the midpoint of leftPoint and rightPoint and superpose the

22

Figure 4.3: Formation Representation

Figure 4.4: leftPoint, rightPoint and backPoint

front midpoint of bounding rectangle of the formation on this midpoint. Bounding

rectangle of the formation can be defined as follows. Draw a line passing through

the leader agent which is perpendicular to facing direction of the formation. Then,

23

Algorithm 6 PlaceAgents(formation, wayPoint, nextWayPoint)
1: lineM ← the line passing through wayPoint and nextWayPoint

2: lineP ← the line perpendicular to the lineM and passing at wayPoint

3: Find leftPoint and rightPoint as in Algorithm 4, with these arguments:

CanFit(formation.width, edge(wayPoint, nextWayPoint))

4: backPoint ← wayPoint

5: for i = 1 to formation.depth do

6: if inaccessible(wayPoint, backPoint) then

7: break

8: end if

9: backPoint ← the point that is i * sizeOfCell far from wayPoint on the line lineM and to

the back of the wayPoint considering facing direction as front (see Figure 4.4)

10: end for

11: midPointLR ← midpoint of leftPoint and rightPoint (see Figure 4.5.a)

12: midPointBR ← front midpoint of bounding rectangle of formation (see Figure 4.5.b)

13: Put the bounding rectangle of formation in such a way that midPointLR and midPointBR are

superposed (see Figure 4.5.c)

14: Scale bounding rectangle in left-right direction such that it can fit between leftPoint and

rightPoint (see Figure 4.6.a)

15: Scale bounding rectangle in front-back direction such that it can fit between midPointBR and

backPoint (see Figure 4.6.b)

16: for i = 1 to n /*n denotes the number of agents*/ do

17: pointOfAgent ← the place of agent in the bounding rectangle found above (see Figure 4.7)

18: lineOfAgent ← line parallel to lineP and passing through pointAgent

19: pointOfReference ← the point that is intersection of lineOfAgent and lineM

20: if inaccessible(pointOfReference, pointOfAgent) then

21: update the place of agent in the bounding rectangle as pointOfReference

22: end if

23: end for

draw a parallel line passing through the agent that is farthest from the first line.

Finally, draw two perpendicular lines to these lines passing through the leftmost and

the rightmost agents with respect to the moving direction. These 4 lines will form

the bounding rectangle. This superposing is illustrated by an example in Figure 4.5.

After that, the bounding rectangle is scaled in both left-right and front-back di-

rections in order to fit to the specific area near the way point, if there are inaccessible

points near it. If the distance between leftPoint and rightPoint is not smaller than

24

Figure 4.5: Superposing midPointLR and midPointBR

width of formation, then there is no need to scale in left-right direction. Likewise, if

the distance from backPoint to the front of bounding rectangle is not smaller than

depth of formation, then there is no need to scale in front-back direction, too. Figure

4.6 shows an example of scaling process.

Finally, for each of the agents’ positions in the bounding rectangle formed so far,

a line passing through the position and parallel to the line passing through leftPoint

and rightPoint is drawn and intersection of this line with the line passing through

the way point and successor of the way point is determined. If this intersection point

is inaccessible from the position, the position of agent is shifted to the intersection

point. This is because this intersection point is necessarily accessible from the way

25

Figure 4.6: Scaling Bounding Rectangle to Fit into an Area

point and it is important for each agent’s position to be accessible from the way point,

in order to move in coordination. An example of shifting process is given in Figure

4.7.

Figure 4.7: Shifting Inaccessible Points

Using this algorithm, agent positions at any way point are determined and off-line

path finding step is completed. Next step is to move the agents in real time by using

on-line path planning method given in next section.

26

4.2 On-line Path Finding

Having the positions calculated with the help of Algorithm 6 for each agent in the

team at any way point, each agent navigates between its own way points in real time,

avoiding the collisions. Agents plan their next moves and execute them at discrete

time steps where the time between two successive time steps is very small. At any

time step, agents plan and execute their moves in the order of their priorities (i.e.,

ID’s).

We introduced an online path finder algorithm, low level planner, given in Algo-

rithm 7, that navigates an agent from one way point to another which may take more

than one time step. Note that, at the beginning of each time step, all the agents tune

their speeds in order to maintain formation using Algorithm 8.

The basic idea behind the Algorithm 7 is to move the agent towards the next way

point at each time step and if this can not be accomplished, get closer to the line

from last visited way point to the next way point since it is guaranteed that the next

way point is accessible from the last visited one. The reason why all agents do not

move along this line is to move in formation.

In order to move smoother, the agents can change their direction a few steps be-

fore facing obstacles. This can be done by changing the step 2.1 as follows:

2.1: Determine whether the agent can move with its current speed in the direction

of line, without colliding with any other agent in 1 unit time and without colliding

with any obstacles during the next t unit times (where t determines the lookahead

value, if it is huge the efficiency is affected negatively, if it is very small (i.e., 1) it is

same as main algorithm)

Agents tune their speeds at each time step in order to preserve the formation while

moving by using Algorithm 8. According to the distance between an agent and its

predecessor, it tunes its speed and tells the predecessor to do so when the distance

exceeds a threshold.

If an agent gets more than one contradictory requests, the decelerate request has

higher priority over accelerate request. However, an accelerate request has higher

priority over a normalize (tuning to average speed) request.

27

Algorithm 7 OnlinePathFinder(lastVisitedWayPoint, nextWayPoint)
1: If the current location of the agent is near to the nextWayPoint, finish this pro-

cedure

2: Draw a line from the current location to nextWayPoint and let’s call the direction

of this line as upper direction

1. Determine whether the agent can move without colliding with any other agent

or obstacle with its current speed in upper direction

2. If it can move, then move the agent and go to step 1 for next time step

3. If it will collide with an agent, then wait for it in this time step and repeat

step 2 in next time step

4. Otherwise, apply these steps (i.e., steps 2.1 - 2.3) for upper-left, upper-right,

left and right directions instead of upper direction, respectively

3: If step 2 failed (agent cannot move in mentioned directions), check whether

the agent is on the right side or the left side of the line drawn from

lastV isitedWayPoint to nextWayPoint

1. If the result is right, try the procedure in step 2.1 for upper, upper-left, left,

lower-left directions respectively

2. Else, try that procedure for upper, upper-right, right, lower-right directions

respectively

3. If move is possible, first move to the direction found above (3.1 or 3.2), then

if result is upper, upper-left or upper-right, go to step 1 for next time step; else

repeat this step (i.e., step 3) in next time step

4. Else if it will collide with any other mobile agent, then wait for it in this time

step and repeat step 3 in next time step

5. Otherwise, wait a predefined amount of time (because the path may have been

unavailable for an amount of time), and then go to step 2

4.2.1 Rearrange Formation

In the case of mobility loss of an agent, the remaining agents should rearrange their

role according to the Algorithm 9. The team re-organizes by making each agent get

the role (relative position and ID) of its predecessor. This is only the state change for

28

Algorithm 8 TuneSpeeds(positionsOfAgents, directionOfAgents)

1: // p is a pre-defined threshold (a real number between 0 and 1)

2: // that specifies to what degree the relative position of any agent

3: // wrt its predecessor can be altered.

4: for i = 2 to numberOfAgents do

5: dist← distance in depth between the agent i and agent predecessor(i) accord-

ing to the direction(predecessor(i))

6: if dist < ∆depth(i, predecessor(i)) ∗ (1− p) then

7: decelerate(i)

8: else if dist > ∆depth(i, predecessor(i)) ∗ (1 + 2 ∗ p) then

9: decelerate(predecessor(i))

10: else if dist > ∆depth(i, predecessor(i)) ∗ (1 + p) then

11: decelerate(i)

12: else

13: normalizespeed(i)

14: normalizespeed(predecessor(i))

15: end if

16: end for

29

the team, the formation will be restored in time as the team moves. Figure 4.8 shows

an example, where the team is moving in column formation and the agent with ID 2

has lost its mobility.

Algorithm 9 RearrangeTeam(agent, remainingFormation)
1: current← agent

2: while current has successor in remainingFormation do

3: child ← the lowest numbered successor of the current

4: add child to list L

5: current← child

6: end while

7: current← agent

8: for i = 1 to lengthOfList(L) do

9: replace current with L[i]

10: current← L[i]

11: end for

Figure 4.8: Rearrange Formation

30

CHAPTER 5

EXPERIMENTAL RESULTS AND

SAMPLE RUN

The experimental results of the proposed algorithms are given in this chapter. In the

first section, the testing platform and experimental setup are given. In the second

section, performance of off-line planner is discussed. Section 3 contains experimental

results of on-line planner. Finally, some sample screenshots from software are given

in last section.

5.1 Experimental Setup

All the given algorithms are implemented using C++ programming language. To

visualize the 3-D environment, OGRE (Object-Oriented Graphics Rendering Engine)

API is used. All the codes were written platform independently and software was

both tested in Linux and Windows platforms. Tests were run on a PC, which has

Intel Core2 1.80GHz CPU and 1GB memory.

We randomly generated 9 terrain data and one real world terrain to test the algo-

rithms. Randomly generated data have the size 2000x2000, 1000x1000 and 500x500,

three from each. Real world data is also 2000x2000. Algorithm 10 is used to gener-

ate random heightmaps1, which is converted to 3-D mesh to represent terrain. The

algorithm first creates a height map whose all pixels are initialized to 0. Then, it ran-

domly creates oblate semi-spheroids2 at randomly selected points and having random

1Heightmap is an image used for storing terrain elevation data
2Oblate spheroid is a special type of ellipsoid, formed by rotating an ellipse around its minor axis

31

but bounded major axis and minor axis lengths. Finally, it adds up the elevations of

all these spheroids at each pixel.

Algorithm 10 GenerateHeightMap(terrainSize, numberOfSpheroids, maxMajo-

rAxis, maxMinorAxis) : HeightMap
1: Create a height map H with size terrainSize x terrainSize and initialize all

pixels as 0

2: for i = 1 to numberOfSpheroids do

3: x ← random(terrainSize) // Assume that random(i) generates an integer

between 1 and i

4: y ← random(terrainSize)

5: r ← random(maxMajorAxis)

6: h ← random(min(maxMinorAxis,r))

7: Create an oblate semi-spheroid which is centered at (x,y), with major axis of

length r and minor axis of length h and add the elevation of this spheroid at

each pixel to the corresponding pixels of H

8: end for

9: return H

By increasing the number of spheroids or minor axis/major axis ratio, more rough

terrains can be generated. One of the three randomly created terrains of the same

size is relatively plain, one is relatively rough and the other is very rough. Tested

terrains of size 1000x1000 are given Figure 5.1, Figure 5.2 and Figure 5.3.

5.2 Performance Evaluation of Off-line Planner

In this section, experimental results of off-line planner will be discussed. 9 randomly

generated data and one real world data are used for testing. Results are given in

Table 5.1, Table 5.2, Table 5.3 and Table 5.4. For each terrain, 4 methods are

tested. These are grid method, our proposed method with height difference threshold

2 (HDT=2), 5 (HDT=5) and not using height difference threshold (No HDT). Details

32

Figure 5.1: Sample Terrain 1

Figure 5.2: Sample Terrain 2

of the height difference threshold is given in Chapter 3. For each method, number

of points (i.e, vertices) in the constructed search graph, time consumed for graph

33

Figure 5.3: Sample Terrain 3

construction in seconds, time used for finding a path on constructed graph (time for

A* + time for path smoothing), cost of the path found after running A* and cost

of the path after smoothing are given. In each test data, team’s mission is to find a

path from one corner of terrain to opposing corner.

From these results, first, we can conclude that our method is very effective in time,

especially the method named NoHDT . As can be seen in all terrains, the method

decreases the number of points steeply and as a result, search can finish in a very

short time period compared to grid method. Even if the problem is to find a path

once in a given terrain, the method is very effective since time constructing graph +

time running A* is small compared to grid method. But in real life applications,

e.g. games and military simulations, the search graph is only constructed at the

beginning of the simulation once, which can be used for lots of navigation tasks

throughout the simulation. So, efficiency of the time running A* is the key criteria

in such applications. We can gain up to 100 times better results in this criteria if we

use the method NoHDT .

Second criteria for the search is the cost of path. We can conclude from the results

that, the lengths of the paths found using our proposed methods are approximately

34

Table 5.1: Experiment on 2000x2000 Terrains

Height

Difference

Threshold

Number Of

Points (Ver-

tices)

Time Con-

structing

Graph

Time

running A*

Cost of path

found by A*

Cost of

Smoothed

Path

First Terrain

HDT=2 308047 19.63 5.68 3902 2937

HDT=5 119164 19.4 4.87 3906 2907

No HDT 2837 7.24 0.2 5783 2907

Grid 4000000 16.32 16.5 4035 3309

Second Terrain

HDT=2 608702 29.4 8.36 4091 3353

HDT=5 255044 19.93 4.73 4085 3259

No HDT 30768 19.27 0.95 4172 3500

Grid 4000000 16.23 8.19 4290 3646

Third Terrain

HDT=2 667764 19.05 16.58 4236 3636

HDT=5 306255 19.89 10.54 4259 3607

No HDT 99102 17.15 1.04 4343 4146

Grid 4000000 16.64 16.24 4367 3564

equal to, generally better than the one found using grid method.

5.3 Performance Evaluation of On-line Planner

Experimental results of on-line planner will be discussed in this section. These results

are obtained from the on-line path planner during the team is moving on the path

found by off-line planner using our method (No HDT) on 2000x2000 terrains and the

real world terrain used above. Results can be seen in Table 5.5. On each of the

four terrains, three common formations (column, line, wedge) are tested for a team

of four agents, which use the path found by off-line planner. Formations are defined

as in Figure 4.3 in Chapter 4. As previously mentioned, the formation is specified

35

Table 5.2: Experiment on 1000x1000 Terrains

Height

Difference

Threshold

Number Of

Points (Ver-

tices)

Time Con-

structing

Graph

Time

running A*

Cost of path

found by A*

Cost of

Smoothed

Path

First Terrain

HDT=2 77661 6.89 2.78 1822.38 1336.71

HDT=5 27774 6.73 1.09 1823.71 1336.71

No HDT 1192 1.66 0.03 1878.03 1336.71

Grid 1000000 3.75 3.17 1864.63 1476

Second Terrain

HDT=2 161407 6.98 4.17 1901.5 1513.29

HDT=5 66539 4.74 1.3 1914.43 1504.8

No HDT 7119 3.02 0.07 2157.72 1854.16

Grid 1000000 4.19 3.58 1965.35 1567.92

Third Terrain

HDT=2 172522 4.59 3.43 1987 1590.36

HDT=5 78881 6.92 2.08 2010.55 1600.45

No HDT 31574 4.24 0.29 2087.38 2005.66

Grid 1000000 3.82 18.6 2054.35 1642

by each agent’s relative position with respect to its predecessor. Remember that, the

relative position of a with respect to its predecessor b is defined with two variables

∆depth(a, b) and ∆width(a, b). ∆depth(a, b) is the distance between a and b in the

movement direction of the group and ∆width(a, b) is the distance between a and b

in the axis perpendicular to the movement direction of the group. In on-line planner,

fluctuation of these ∆depth and ∆width values up to 20% are considered in range

and up to 40% are tolerable. The results show the average absolute values of distance

errors in depth and in width. Note that, relative distances in formations are set 10,

so values up to 2 are considered in range and up to 4 are considered tolerable.

Results show that, agents are successful in preserving their relative position with

respect to their predecessor (especially in width), since the errors in both are in

36

Table 5.3: Experiment on 500x500 Terrains

Height

Difference

Threshold

Number Of

Points (Ver-

tices)

Time Con-

structing

Graph

Time

Running A*

Cost of Path

Found by A*

Cost of

Smoothed

Path

First Terrain

HDT=2 16348 1.11 0.22 741.554 540.507

HDT=5 5378 1.05 0.07 746.535 540.507

No HDT 373 0.35 0.02 1093.96 540.507

Grid 250000 0.69 1.24 760.892 540.507

Second Terrain

HDT=2 43812 1.12 0.52 787.862 632.598

HDT=5 18053 1.57 0.32 782.584 608.401

No HDT 2621 0.82 0.02 852.89 703.412

Grid 250000 0.94 1.11 825.305 632.04

Third Terrain

HDT=2 44818 1.11 0.54 796.319 630.541

HDT=5 20370 1.1 0.25 812.369 718.666

No HDT 9804 0.98 0.06 903.353 840.836

Grid 250000 0.7 0.86 842.652 625.592

Table 5.4: Experiment on Real World Terrain

Height

Difference

Threshold

Number Of

Points (Ver-

tices)

Time Con-

structing

Graph

Time

Running A*

Cost of Path

Found by A*

Cost of

Smoothed

Path

HDT=2 199765 19.5 8.3 3942.27 3125.81

HDT=5 95703 19.65 2.73 3953.93 3145.27

No HDT 62933 19.52 1.08 3977.06 3188.32

Grid 4000000 16.3 7.86 4075.39 3147.34

37

Table 5.5: Results of On-line Planner

Average Error in Depth Average Error in Width

Terrain Formation A1 A2 A3 A4 A1 A2 A3 A4

1 Column - 1.78 3.04 3.04 - 0.25 0.21 0.21

Line - 1.79 1.76 1.70 - 1.10 1.01 1.06

Wedge - 2.46 1.10 2.71 - 1.21 0.95 1.37

2 Column - 3.99 3.99 3.93 - 0.28 0.33 0.23

Line - 3.21 2.96 2.94 - 1.02 1.22 1.55

Wedge - 2.59 1.72 3.04 - 1.33 1.09 1.46

3 Column - 3.54 3.26 3.68 - 0.32 0.28 0.45

Line - 3.26 3.12 3.29 - 2.30 1.32 2.41

Wedge - 3.58 3.08 3.63 - 2.09 1.39 2.59

Real Column - 2.52 2.60 2.65 - 0.18 0.20 0.22

Line - 1.44 1.45 1.41 - 1.11 1.22 1.39

Wedge - 2.54 2.48 2.60 - 1.21 1.28 1.38

tolerable range. Because of the terrain features (e.g. roughness), it becomes hard,

sometimes impossible, to preserve the distances and that’s why the errors increase in

2nd and 3rd terrains.

5.4 Sample Runs

Screenshots from sample runs of three common formations, line, column and wedge,

are given in Figure 5.4, Figure 5.5 and Figure 5.6, respectively. In figures, the red

lines show the paths travelled by agents. Each agent forms a red line by putting small

red spheres to its instant position at every time step during simulation.

Also, a sample run in which the team in line formation passing through a passage

is given. In Figure 5.7, four screenshots from the sample run is given. The paths

realized by each agent during the run can be seen in Figure 5.8.

38

Figure 5.4: Team in Line Formation

Figure 5.5: Team in Column Formation

39

Figure 5.6: Team in Wedge Formation

40

(a) At the Beginning (b) Near to the Passage

(c) Passing the Passage (d) After Passing

Figure 5.7: Team Passing a Passage - Screenshots

Figure 5.8: Team Passing a Passage - Paths

41

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this work, we developed an algorithm for planning a path for a group of autonomous

agents that need to move in a specified formation in 3-D terrains. We come up with

a software in order to test the proposed methods and visualize the environment and

behavior of agents in 3-D. Our method can be used especially in computer games and

military simulations.

The proposed method, considering the group as a rigid body, first constructs a

search graph by analyzing and identifying important terrain features from height map.

Then a high level planner that uses A* algorithm determines an optimal path from an

initial location to a target location. Then with the help of a low level on-line planner,

each agent in the team navigates between way points on the solution path, avoiding

collision with each other and with environmental objects. We defined a representation

for group formation on which algorithms were developed to maintain formation while

moving from one way point to another. The proposed method has also ability to

repair formation when an agent or some agents in the team loses mobility, which is

quite possible in real-life applications.

We tested our proposed algorithms both on randomly generated and real-world

terrains. The off-line planner has brought a significant gain in time performance,

which might be the most crucial factor in real-life applications especially in games,

over grid based terrain representation. Results obtained from on-line planner were

also very satisfying. The team maintained the formation through most of the path,

and when it is necessary to break the formation, e.g. a team in line formation passing

through a narrow passage, the team recovered the formation in a very short time

period.

42

The algorithms were implemented and tested on static environments but they

are easily adaptable to dynamic environments. Reconstructing only the changed

part of the search graph and using D*1 like algorithms would be a solution. Also,

it is considered that the environment is known at the beginning of the simulation.

In the same way, by considering the observability of a region as dynamism of the

environment, this problem can also be handled. As a future work, methods will be

adapted to dynamic and partially observable environments.

Another future research is the formation preserving navigation of hierarchical

agent teams. For example, each of the fireteams2 will move in wedge formation, while

the squad3 will move in column formation. By making some changes in formation

representation, our method may also be used for this task.

1D* is a A* like search algorithm especially used in dynamic environments
2Fireteam is the smallest unit in military
3Squad is one level higher unit of fireteam

43

REFERENCES

[1] E. Bahceci, O. Soysal, and E. Sahin. A review: Pattern formation and adaptation

in multi-robot systems. Technical report, Robotics Institute, Carnegie Mellon

University, October 2003.

[2] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot

teams. IEEE Transactions on Robotics and Automation, vol. 14:926–939, De-

cember 1998.

[3] A. G. Bayrak and F. Polat. Formation preserving navigation of agent teams in

3-d terrains. In Proceedings of Industrial Simulation Conference (ISC), pages

148–155, June 2008.

[4] M. D. Berg, M. V. Krefeld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications. Springer, 2000.

[5] H. Chia, H. Hsu, and A. Liu. Multiagent-based multi-team formation control

for mobile robots. Journal of Intelligent and Robotic Systems, vol. 42:337–360,

2005.

[6] C. Dawson, editor. AI Game Programming Wisdom. 2002.

[7] J. P. Desai, V. Kumar, and J. P. Ostrowski. Control of changes in formation for

a team of mobile robots. In Proceedings of IEEE International Conference on

Robotics and Automation, pages 1556–1561, May 1999.

[8] S. Kambhampati and L. Davis. Multiresolution path planning for mobile robots.

IEEE Journal of Robotics and Automation, vol. 2:135–145, September 1986.

44

[9] A. Lewis and K. H. Tan. High precision formation control of mobile robots using

virtual structures. Autonomous Robots, vol. 4:387–403, 1997.

[10] V. T. Ngo, A. D. Nguyen, and Q. P. Ha. Toward a generic architecture for robotic

formations: Planning and control. In Proceedings of the Sixth International

Conference on Intelligent Technologies, 2005.

[11] D. A. Reece. Movement behavior for soldier agents on a virtual battlefield.

Presence, vol. 12:387–410, August 2003.

[12] S. Russell and P. Norvig. Artificial Intelligence A Modern Approach. Prentice

Hall, 2003.

[13] S. L. Tomlinson. The long and short of steering in computer games. International

Journal of Simulation, vol. 1-2:33–46, 2004.

[14] J. V. Verth, V. Brueggemann, J. Owen, and P. McMurry. Formation-based

pathfinding with real-world vehicles. In Proceedings of the Game Developers

Conference, 2000.

45

