ASPECTS OF URBAN SEISMIC RISKS:
A COMPARISON OF RISK FACTORS IN THE METROPOLITAN CITIES OF TURKEY

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUĞÇE SÖNMEZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
CITY PLANNING
IN
CITY AND REGIONAL PLANNING

ASPECTS OF URBAN SEISMIC RISKS:
 A COMPARISON OF RISK FACTORS IN THE METROPOLITAN CITIES OF TURKEY

submitted by TUĞÇE SÖNMEZ in partial fulfillment of the requirements for the degree of Master of Science in City Planning, City and Regional Planning Department, Middle East Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Melih Ersoy
Head of Department, City and Regional Planning

Prof. Dr. Murat Balamir
Supervisor, City and Regional Planning Dept., METU

Examining Committee Members:

Prof. Dr. Melih Ersoy
City and Regional Planning Dept., METU
Prof. Dr. Murat Balamir
City and Regional Planning Dept., METU
Assoc. Prof. Dr. Baykan Günay
City and Regional Planning Dept., METU
Assoc. Prof. Dr. Çağatay Keskinok
City and Regional Planning Dept., METU
Assoc. Prof. Dr. Tarık Şengül
Political Science and Public Administration Dept., METU

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last name: Tuğçe SÖNMEZ

Signature :

ABSTRACT
ASPECTS OF URBAN SEISMIC RISKS: A COMPARISON OF RISK FACTORS IN THE METROPOLITAN CITIES OF TURKEY
Sönmez, Tuğçe
M.S., in City Planning, Department of City and Regional Planning
Supervisor: Prof. Dr. Murat Balamir

July 2008, 173 pages

Chronic seismic hazards and resulting secondary impacts are due to the geological conditions of Turkey and the nature of current response mechanisms. Local know-how of building and settlement that evolved over centuries eroded with the growth in population, and the introduction of reinforced concrete building economics. This makes cities the most vulnerable geographical and social entities in Turkey.

A basic formal reference of disaster management is the National Seismic Hazard Map indicating zones of hazard probabilities which are directly related to different measures in construction. This is hardly a sufficient disaster policy tool however, as cities may have very different risk profiles independent from the hazard probabilities. City level risk variations are not considered in the Seismic Hazard Map.

This study intends to establish indicators for different risk levels in urban areas other then those implied by the National Seismic Hazard Map.

Apart from local morphological and geological conditions, attributes of building stock, rates of unauthorized buildings and social conditions represent vulnerability indicators and could be effective in the determination of local risk levels.

One specific description of risk levels is available in the obligatory reporting of the local authorities about the "most likely level of disaster losses". This information, as an obligatory task of the governorates represents a local assessment of the most likely disaster losses and it is available from the GDDA. The city-level statistics of building stock on the other hand are available from the Turkish Statistical Institute.

Correlation and Regression analyses are employed to determine what combinations of the independent variables might best denote city-level risks, and these may vary independently from their positions in the Hazard Map.

The research may thus generate information for a more effective disaster policy.

Keywords: Urban Seismic Risk, Disaster Policies, Mitigation Planning, Disaster Risk Management

ÖZ

KENTSEL SİSMİK RİSKLERİN BELİRLENMESİ: TÜRKİYE BÜYÜKŞEHİRLERiNDE RİSK OLUŞTURAN ETKENLERİN KARŞILAŞTIRILMASI

Sönmez, Tuğçe
Yüksek Lisans, Şehir Planlama Bölümü
Tez Yöneticisi: Prof. Dr. Murat Balamir

Temmuz 2008, 173 sayfa

Türkiye, jeolojik konumu ve yetersiz yasal düzenlemeleri nedeniyle kronik sismik tehlikeler ve ağır sonuçları olan afetlerle karşı karşıyadır. Yapı ve yerleşimlerin inşaasında yüzyıllardır süregelen yerel teknikler ise nüfusun hızlı artışı ile yetersiz kalmıştır. Tüm bu bileşenler Türkiye'de şehirleri coğrafi ve sosyal açıdan en hassas ve zarar görebilir duruma getirmiştir.

Afet yönetiminin en temel resmi ölçütü olan ve tehlike bölgelerini içeren Türkiye Deprem Bölgeleri Haritası ise şehirlerin tehlike olasılıklarından bağımsız olarak çok farklı risk profilleri olabileceği gerçeğini dikkate almadan hazırlanmış ve birinci derece tehlike bölgesinde yer alan bir yerleşimin ikinci derece tehlike bölgesinde yer alan bir yerleşimden daha düşük risk seviyesinde olabileceği gerçeğini göz ardı etmiştir. Dolayısıyla sadece şehirlerin tehlike durumlarına göre hazırlanan bu harita hiçbir şekilde risk durumları hakkında bilgi vermemekte ve çok yetersiz kalmaktadır.

Bu çalışmanın amacı, kentsel risklerin farklı risk sektörleri, farklı doku ve yaşam çevreleri açısından incelenmesi ve kentsel riskleri tahmin edebilme yöntemlerinin geliştirilmesidir.

Yerel morfolojik ve jeolojik özelliklerden bağımsız olarak, bina stoku değişkenleri, ruhsatsız yapıların oranı ve bunların yanı sıra farklı kullanıcı gruplarının temsil ettiği sosyal değişkenler yerel risk seviyelerinin belirlenmesinde etkili olacaktır.

Risk seviyelerinin belirlenmesinde, valikler tarafından hazırlanmış olan ve Afet İşleri Genel Müdürlüğü’nde toplanan "İl Afet Planları" içerisinde yer alan deprem senaryoları ile Türkiye İstatistik Enstitüsü’nün konut ve nüfus sayımları gibi yayınlanmış istatistikleri çalışmanın ilk değişkenlerini oluşturacaktır.

Kentsel risklerin hangi bağımsız değişkenlerle en fazla ilişkili olduğu ve hangilerinin Deprem Bölgeleri Haritasından bağımsız olarak değiştiğini belirlemek için Korelasyon ve Regresyon analizleri kullanılacaktır.

Bu çalışma daha etkili bir afet politikasının oluşturulması için bilgi ve katkı sağlamayı amaçlamaktadır.

Anahtar Kelimeler: Kentsel Sismik Risk, Afetler Politikası, Sakınım, Afet Risk Yönetimi

ACKNOWLEDGMENTS

I wish to express my deepest gratitude to my supervisor Prof. Dr. Murat Balamir for his guidance, advice, criticism, encouragements and insight throughout the research.

I would like to thank my jury members; Prof. Dr. Melih Ersoy, Assoc. Prof. Dr. Baykan Günay, Assoc. Prof. Dr Çağatay Keskinok, and Assoc. Prof. Dr. Tarık Şengül for their advice and criticism.

I am specifically grateful to Serhan Saner for his greatest support, motivation and encouragement in all parts of study.

I would also like to thank Dr. Murat Nurlu and Tümer Ariturk for their support.

Finally, I would like to thank my parents, İlgin and Kaya Sönmez, for their endless patience and faith in every stage of my life. I am grateful to them for the feeling of safety they offer.

This study was supported by the World Bank - ProVention Consortium, Research \& Action Grants for Disaster Risk Reduction 2007-2008.

TABLE OF CONTENTS

ABSTRACT iv
ÖZ vi
ACKNOWLEDGMENTS viii
TABLE OF CONTENTS ix
LIST OF TABLES xiii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xviii
CHAPTER

1. INTRODUCTION 1
1.1. Description of the Problem and Its Context 1
1.2. The Aim, Objectives and Scope of the Study 3
1.3. The Approach and Method of the Study 4
2. RISK AND SEISMIC RISK CONCEPTS 7
2.1. The Concept of Risk 7
2.2. The Concept of Seismic Risk and Urban Seismic Risk 11
3. GLOBAL POLICY CHANGE 17
3.1. A Brief History of Global Disaster Management Process, Risk Assessment and Reduction Approaches 17
3.2. The Kobe Conference Framework for the Assessment of the current status of National Disaster Reduction Policies 21
3.2.1. 'Political Commitment and Institutional Aspects' 24
3.2.2. 'Risk identification, assessments, monitoring and early warning' 26
3.2.3. 'Knowledge management' 27
3.2.4. 'Risk Management Applications and Instruments' 30
3.2.5. 'Preparedness and Effective Response' 31
3.2.6. 'Examples of Good Practices' 32
3.2.7. Deficiencies of the National Disaster Policy in Turkey 33
4. RISK ASSESSMENT AND DISASTER RISK REDUCTION APPROACHES IN TURKEY 34
4.1. Natural Disaster Profile of Turkey 34
4.1.1. Earthquakes in Turkey 39
4.2. National Disaster Management System of Turkey 45
4.2.1. Legislative and Institutional Evolution of Disaster Management System 45
4.2.1.1. The Pre-1944 Period: (Post-event Response) 45
4.2.1.2. The 1944-1958 Period: (Feeble Countermeasures) 45
4.2.1.3. The 1959-1999 Period: (Ministry Responsible for Disasters and Reconstruction) 46
4.2.1.4. The Post 1999 Period: (Awakening) 47
4.2.2. Organizational Framework 48
4.2.2.1. Central Level 51
4.2.2.2. Provincial Level 54
4.2.2.3. Other Ministries and State Agencies. 56
4.2.3. Legislative Framework 56
4.2.3.1. The Disaster Law (7269) 57
4.2.3.2. The Development Law (3194) 58
4.2.3.3. Changes Introduced in the Legal System Since 1999 60
4.2.3.4. Seismic Design and Construction Changes 62
5. DETERMINATION OF URBAN SEISMIC RISK VARIABLES IN URBAN AREAS OF TURKEY 64
5.1. Descriptions of the Most Likely Disaster Scenario as Dependent Variables of the Research 65
5.2. Building Stock Attributes as Independent Variables of the Research 75
5.2.1. Rates of Building Stock Changes between 1954 and 2003 75
5.2.2. Rates of "Building Amnesties" between 1984 and 2000 76
5.2.3. Rates of Unauthorized Building Stock. 76
5.2.4. Rates of Stock of 3+ Stories 76
6. EVALUATION OF URBAN SEISMIC RISK VARIABLES IN THE METROPOLITAN CITIES OF TURKEY 87
6.1. Best Subsets Regression Analyses 88
6.2. Regression Analyses 92
6.2.1. Regression Analysis 1 92
6.2.2. Regression Analysis 2 95
6.2.3. Regression Analysis 3 97
6.2.4. Regression Analysis 4 99
6.2.5. Regression Analysis 5 100
6.2.6. Regression Analysis 6 103
6.2.7. Regression Analysis 7 104
7. FINDINGS, RECOMMENDATIONS and FURTHER LINES OF INVESTIGATION 107
7.1. Findings 107
7.2. Recommendations 109
7.3. Further Lines of Investigation 109
REFERENCES 111

APPENDICES

A. PRE-KOBE CONFERENCE QUESTIONS 116
B. INFORMATION REPORT ON DISASTER REDUCTION BY THE REPUBLIC OF TURKEY 122
C. STAKEHOLDERS OF THE STUDY 140
D. BUILDING STOCK CHANGES BETWEEN 1954 AND 2003 146
E. BUILDING AMNESTIES BETWEEN 1984 AND 2000 164

LIST OF TABLES

TABLES
Table 4.1 Summarized Table of Natural Disasters in Turkey from 1903 to 2006 34
Table 4.2 Top 10 Natural Disasters in Turkey (number killed) 37
Table 4.3 Top 10 Natural Disasters in Turkey (economic damage) 37
Table 4.4 Top 10 Natural Disasters in Turkey (number affected) 38
Table 4.5 Dwelling Units Destroyed by Natural Disasters in Turkey 38
Table 4.6 Distribution of Elements at Risk in Turkey 43
Table 4.7 Key events in the evolution of seismic design codes in Turkey 62
Table 5.1 Hazard Zones and Populations of Selected Provincial Centers 66
Table 5.2 Depended Variables on the Assumptions of Earthquake Scenarios 69
Table 5.3 Standardized Assumptions of Earthquake Scenarios 71
Table 5.4 Earthquake Hazard Zones and Loss Assumptions Comparison 72
Table 5.5 Dependent Variables of the Research 74
Table 5.6 Independent variables of the research 77
Table 5.7 First independent variable of the research- X_{1} 78
Table 5.8 Second independent variable of the research- X_{2} 79
Table 5.9 Third independent variable of the research- X_{3} 81
Table 5.10 Fourth independent variable of the research- X_{4} 82
Table 5.11 Fifth independent variable of the research- X_{5} 84
Table 5.12 Sixth independent variable of the research- X_{6} 85
Table 6.1 Best Subsets Regression: Y1a versus x1; x2; x3; x4; x5; x6 88
Table 6.2 Best Subsets Regression: Y1b versus $x 1 ; x 2 ; x 3 ; x 4 ; x 5 ; x 6$ 89
Table 6.3 Best Subsets Regression: Y1c versus x1; x2; x3; x4; x5; x6 90
Table 6.4 Best Subsets Regression: Y2 versus x1; x2; x3; x4; x5; x6 91
Table 6.5 Regression Analysis 1: Y1a versus x1 93
Table 6.6 Regression Analysis 2: Y1a versus X_{5}. 95
Table 6.7 Regression Analysis 3: Y1b versus X_{1} 97
Table 6.8 Regression Analysis 4: Y1b versus X_{6} 99
Table 6.9 Regression Analysis 5: Y1c versus X_{1} 101
Table 6.10 Regression Analysis 6: Y2 versus X_{1} 103
Table 6.11 Regression Analysis 6: Y2 versus X_{4} 105
Table C. 1 Primary Stakeholders 141
Table C. 2 Secondary Stakeholders 143
Table D. 1 Building Stock Changes between 1954 and 2003 in Aksaray 146
Table D. 2 Building Stock Changes between 1954 and 2003 in Antalya 147
Table D. 3 Building Stock Changes between 1954 and 2003 in Ardahan. 148
Table D. 4 Building Stock Changes between 1954 and 2003 in Çanakkale. 149
Table D. 5 Building Stock Changes between 1954 and 2003 in Çanakkale. 150
Table D. 6 Building Stock Changes between 1954 and 2003 in Düzce. 151
Table D. 7 Building Stock Changes between 1954 and 2003 in Elazığ.. 152
Table D. 8 Building Stock Changes between 1954 and 2003 in Erzincan. 153
Table D. 9 Building Stock Changes between 1954 and 2003 in Istanbul 154
Table D. 10 Building Stock Changes between 1954 and 2003 in Izmir 155
Table D. 11 Building Stock Changes between 1954 and 2003 in Karabük 156
Table D. 12 Building Stock Changes between 1954 and 2003 in Kastamonu. 157
Table D. 13 Building Stock Changes between 1954 and 2003 in Kırşehir. 158
Table D. 14 Building Stock Changes between 1954 and 2003 in Kocaeli 159
Table D. 15 Building Stock Changes between 1954 and 2003 in Malatya. 160
Table D. 16 Building Stock Changes between 1954 and 2003 in Niğde 161
Table D. 17 Building Stock Changes between 1954 and 2003 in Yalova 162
Table D. 18 Total Building Stock in Selected Provincial Centers 163
Table E. 1 "Building Amnesties" between 1984 and 2000 in Aksaray 164
Table E. 2 "Building Amnesties" between 1984 and 2000 in Antalya. 165
Table E. 3 "Building Amnesties" between 1984 and 2000 in Ardahan 165
Table E. 4 "Building Amnesties" between 1984 and 2000 in Bursa 166
Table E. 5 "Building Amnesties" between 1984 and 2000 in Çanakkale. 166
Table E. 6 "Building Amnesties" between 1984 and 2000 in Düzce 167
Table E. 7 "Building Amnesties" between 1984 and 2000 in Elazığ 167
Table E. 8 "Building Amnesties" between 1984 and 2000 in Erzincan 168
Table E. 9 "Building Amnesties" between 1984 and 2000 in Istanbul. 168
Table E. 10 "Building Amnesties" between 1984 and 2000 in Izmir 169
Table E. 11 "Building Amnesties" between 1984 and 2000 in Karabük. 169
Table E. 12 "Building Amnesties" between 1984 and 2000 in Kastamonu 170
Table E. 13 "Building Amnesties" between 1984 and 2000 in Kırşehir. 170
Table E. 14 "Building Amnesties" between 1984 and 2000 in Kocaeli 171
Table E. 15 "Building Amnesties" between 1984 and 2000 in Malatya. 171
Table E. 16 "Building Amnesties" between 1984 and 2000 in Niğde. 172
Table E. 17 "Building Amnesties" between 1984 and 2000 in Yalova 172
Table E. 18 Total "Building Amnesties" between 1984 and 2000 173

LIST OF FIGURES

FIGURES

Figure 1.1 Earthquake Hazard Zoning Map of Turkey 2
Figure 1.2 Method of the Study 5
Figure 2.1 Selected Definitions of Risk from Literature 11
Figure 2.2 Elements of a Disaster Preparedness Plan for Caracas Venezuela 15
Figure 3.1 Chronology of International Disaster Management Policy Development Process2
Figure 3.2 Countries that have submitted national reports for the WCDR 23
Figure 3.3 Distribution of national reports by income groups 24
Figure 3.4 Percentage of countries reporting on decrees-laws, national policies, strategies 25
Figure 3.5 Percentage of countries incorporating risk reduction in sustainable development plans 26
Figure 3.6 Good practices provided by countries according to main components 32
Figure 4.1 The ratios of natural disasters according to the number of events. 35
Figure 4.2 The ratios of natural disasters according to the number of deaths 36
Figure 4.3 Number of Occurrences of Earthquake Disasters by Country: 1974-2003 39
Figure 4.4 Relative Vulnerability for Earthquakes, 1980-2000 40
Figure 4.5 Earthquake events in Turkey: 1903-2006 41
Figure 4.6 The Relative Motion between Eurasian, Arabian Plates 42
Figure 4.7 Earthquake Hazard Zones and Urban Population 44
Figure 4.8 The Cascading Responsibilities / Thresholds Model 49
Figure 4.9 The Conventional Model in Turkey 49
Figure 4.10 Bodies Involved In Hazard Policy 50
Figure 4.11 The Central Disaster Coordinating Committee 51
Figure 4.12 Provincial Rescue and Aid Committee 55
Figure 4.13 The Conventional System and New Provisions in Disaster Policy 61
Figure 5.1 Dependent and Independent Variables of the Research 65
Figure 5.2 Selected Provincial Centers 67
Figure 5.3 Dependent variables of the Research on the assumptions of earthquake scenarios 68
Figure 5.4 Estimated Magnitudes of EQ's 71
Figure 5.5 Human Loss Assumptions 72
Figure 5.6 Standardized Assumptions of Earthquake Scenarios 73
Figure 5.7 First independent variable of the research- X_{1} 79
Figure 5.8 Second independent variable of the research- X_{2} 80
Figure 5.9 Third independent variable of the research- X_{3} 82
Figure 5.10 Fourth independent variable of the research- X_{4} 83
Figure 5.11 Fifth independent variable of the research- X_{5} 85
Figure 5.12 Sixth independent variable of the research- X_{6} 86
Figure 6.1 Dependent and Independent Variables of the Research 87
Figure 6.2 Regression Analysis: Y1a versus X_{1} 94
Figure 6.3 Regression Analysis: Y1a versus X_{5} 96
Figure 6.4 Regression Analysis: Y1b versus X_{1} 98
Figure 6.5 Regression Analysis: Y 1 b versus X_{6} 100
Figure 6.6 Regression Analysis: Y1c versus X_{1} 102
Figure 6.7 Regression Analysis: Y2 versus X_{1} 104
Figure 6.8 Regression Analysis: Y2 versus X_{4} 106
Figure C. 1 All Possible Stakeholders 145

LIST OF ABBREVIATIONS

AHP	Analytical Hierarchy Process
CIS	Commonwealth of Independent States
EMPI	Earthquake Master Plan of Istanbul (Istanbul Deprem Master Planı - IDMP)
GDCD	General Directorate of Civil Defense (Sivil Savunma Genel Müdürlüğü - SSGM)
GDDA	General Directorate of Disaster Affairs (Afet İşleri Genel Müdürlüğü - AIGM)
GNP	Gross National Product
HAZUS	Hazards United States
IATF/DR	Inter-Agency Task Force on Disaster Reduction
ICPD	International Conference on Population and Development
IDNDR	International Decade for Natural Disaster Reduction
IFRC	International Federation of Red Cross and Red Crescent Societies
ISDR	International Strategy for Disaster Reduction
JICA	Japan International Cooperation Agency
MDG	Millennium Development Goals
MPWS	Ministry of Public Works and Settlement (Bayındırlık ve İskan Bakanlığı, 1983-...)
MRR	Ministry of Reconstruction and Resettlement (İmar ve İskan Bakanlığı, 1958-1983)
MSK	Medvedev-Sponheuer-Karnik scale
NAF	North Anatolian Fault Line (Kuzey Anadolu Fay Hattı - KAF)
NGO	Non-governmental Organization (Sivil Toplum Örgütleri - STK)

OECD	Organization for Economic Co-Operation and Development
PGA	Peak Ground Acceleration
TCIP	Turkish Catastrophe Insurance Pool (Doğal Afet Sigortalar Kurumu - DASK)
TEMAD	Turkish Emergency Management General Directorate (Türkiye Acil Durum Yönetimi Genel Müdürlüğü - TAY)
TRCS	Turkish Red Crescent Society (Türk Kızılayı)
TURKSTAT	Turkish Statistical Institute (Türkiye İstatistik Kurumu - TÜíK)
UN	United Nations
UN/ISDR	Inter-Agency Secretariat for the ISDR
UNDP	United Nations Development Program
WCDR	Word Conference on Disaster Reduction
WSSD	World Summit for Social Development
WSSD	World Summit on Sustainable Development

CHAPTER 1

INTRODUCTION

1.1. Description of the Problem and Its Context

Report on Disaster Reduction prepared by the Republic of Turkey for the World Conference on Disaster Reduction in Kobe (2005) reveals that the approach in Turkey to risk assessment, risk reduction and risk mapping are deficient and remains limited due to development of regulations that can not be fully implemented (See Appendix A and Appendix B).

Accordingly, hazard maps in Turkey consist of;

1. The Earthquake Hazard Map of Turkey prepared by the General Directorate of Disaster Affairs (GDDA) of the Ministry of Public Works and Settlement,
2. Active Fault Map of Turkey prepared by the Mineral Research Institute,
3. Some regional multi-hazard mapping projects carried out by the GDDA that include landslides, rock falls, floods and snow-avalanches information in special hazard maps.

Official Earthquake Hazard Zoning Map of Turkey based on probabilistic considerations has been commissioned in 1996. The map segments the country into five macro-level regions, as determined by the statistical occurrence of seismic events.

Earthquake Hazard Zoning Map is then referred by a regulation of the 'Disasters Law' for engineering design safety of buildings, with variant design standards imposed in each region. At the micro end, information about natural conditions is once again formally requested at the individual building site as building permissions are issued by municipalities.

Seismic Hazard Map of Turkey is currently used for two purposes only. One of these is concerned with the building design standards.

Secondly, it is used as a basis for calculating insurance costs for the purchasers of obligatory earthquake insurance, the responsibility of managing the Turkish Catastrophe Insurance Pool (TCIP) entrusted with a special organization (DASK).

Both purposes could have been better served if differentiations of locations were made on risk-basis. This demands the identification of relative risk categories of risks in settlements.

Figure 1.1 Earthquake Hazard Zoning Map of Turkey
(Source: GDDA, 1996)

The hazard map only indicates hazard exposure levels of provinces and settlements without providing any information about risk levels. Although both of these two notions represent distinct concepts, such distinction is not made in most policy orientations and hazard is often confused with the notion of risk.

Yet, two communities located in hazard-prone areas with similar physical settings cannot be described as of equal in risk if they differ in their vulnerabilities to the hazard.

Consequently, the official hazard map does not consider primary factors of risk, neither social vulnerabilities nor attributes of the building stock.

As recent international policy emphasis has focused on risks and mitigation, the issue of risk identification and measurement are the primary objectives of the study.

1.2. The Aim, Objectives and Scope of the Study

The World Conference on Disaster Reduction in Kobe provided a unique opportunity to promote a strategic and systematic approach to reducing vulnerabilities and risks to hazards. It is a guiding framework on disaster reduction for the twenty-first century.

The Hyogo Framework for Action 2005-2015: Building the Resilience of Nations and Communities to Disasters determined five priorities for action:

1. Ensure that disaster risk reduction is a national and a local priority,
2. Identify, assess and monitor disaster risks and enhance early warning,
3. Use knowledge, innovation and education to build a culture of safety and resilience at all levels,
4. Reduce the underlying risk factors,
5. Strengthen disaster preparedness for effective response at all levels.

The primary purpose of this research is to evaluate how these priorities are served in Turkey especially; in the identification, assessment and monitoring of disaster risks, and the reduction of the risk factors.

As designated by the Kobe Conference, the key activities listed below, under the related priorities are the main points of this study which aims to contribute to the identification and assessment of disaster risks. These are;
1.Develop, update periodically and widely disseminate risk maps,
2.Develop systems of indicators of disaster risk and vulnerability at national, subnational scales,
3.Record, analyze, summarize, disseminate, compile and standardize statistical information and data on disaster occurrence and disaster risks, impacts and losses,
4.Support the development and improvement of relevant databases,
5.Promote the application of geographic information systems, hazard modeling and prediction,
6.Establish and strengthen the capacity to record, analyze, summarize, disseminate, and exchange statistical information and data on hazards mapping, disaster risks, impacts and losses; support the development of common methodologies for risk assessment and monitoring.

With this point of view;
The aim of this research is to examine the factors that determine urban risks and establish if analysis of seismic risks in cities and living environments could be determined on the basis of a set of attributes of the building stock. The scope is to exhibit and analytically compare such factors in a sample of cities in Turkey.

1.3. The Approach and Method of the Study

In order to examine and compare urban risks in the sample of settlements and metropolitan cities of Turkey, statistical surveys and statistical analyses are used. Quantitative information about a set of attributes of settlements selected is investigated statistically to determine which of the factors contribute most to urban risks described locally.

The archives and official documents of the General Directorate of Disaster Affairs and statistics published by the Turkish Statistical Institute, like census and housing data have a leading contribution to make. These secondary sources of information help to compose the database for a series of comparisons in the risk levels of cities.

Figure 1.2 Method of the Study

In the determination of risk factors, the Earthquake scenarios identified in Province Disaster Plans, prepared by governorships in each settlement and copies of which are collected in General Directorate of Disaster Affairs provides the dependent variables of the research.
$\mathrm{Y}_{1 \mathrm{a}} \mathrm{Y}_{1 \mathrm{~b}}$ and $\mathrm{Y}_{1 \mathrm{c}}$ are dependent variables of the research and composed from the ratio of killed, injured and affected people numbers to the urban population.
$\mathbf{Y}_{\mathbf{1 a}}=$ Killed / Urban Population x 10000
$\mathbf{Y}_{\mathbf{1 b}}=$ Injured / Urban Population x 10000
$\mathbf{Y}_{\mathbf{1}} \mathbf{}=$ Affected $/$ Urban Population $x 10000$

Y2 is the other dependent variable of the research and composed from the ratio of destroyed, units to the building stock.
$\mathbf{Y}_{\mathbf{2}}=$ Destroyed Units / Building Stock x 10000

The independent variables of the research are composed of the building stock changes and rates of unauthorized buildings and related attributes of building stock in each settlement obtained from Turkish Statistical Institute. 'Building Construction Statistics' prepared by Turkish Statistical Institute is the main book that is used within this research.

Information in the Building Construction Statistics is based on the construction and occupancy permits for new buildings by province, municipality and number of dwelling units, structural systems, materials used, and types of investors.

Independent variables of the research are;

```
\(\mathbf{X 1}=(\) Floor area emergency facilities \(/\) floor area of general total) \(\times 100\)
\(\mathbf{X 2}=(\) Floor area of Apartment House / Floor Area of Residential Building) x 100
\(\mathbf{X 3}=(\) Total Buildings subject to Amnesties \(/\) General Total of Building \() \times 100\)
\(\mathbf{X 4}=\) Population Growth Rate (\%o)
\(\mathbf{X 5}=\) Unauthorized Building Stock Rate (\%)
\(\mathbf{X 6}=\) Rates of Stock of 3+ Store's (\%)
```

The study is expected to provide information about the critically vulnerable assets in cities, whether this could be considered as a function of hazard-proneness, and whether or not these attributes are consistently correlated with the hazard maps of Turkey.

Otherwise, interpretations of the most effective attributes that could describe vulnerabilities best and be related to risk information in cities could be explored. Findings of such analysis could provide guiding criteria for mitigation policies in Turkey.

With this point of view, the dissemination and sustainability of findings could be very relevant for official decision-makers or the stakeholders of the research.

A brief explanation of such stakeholders is submitted in Appendix C, as described for the UN grant provided by Provention Consortium.

CHAPTER 2

RISK AND SEISMIC RISK CONCEPTS

2.1. The Concept of Risk

"The concept of risk has been defined in a fragmentary way in many cases, according to each scientific discipline involved in its appraisal. Therefore "Risk" can be defined in a number of ways according to the relevant field, specific application on situational contexts." (Cardona, 2004)
"The word 'risk' derives from the early Italian risicare, which means 'to dare'. In this sense, risk implies a choice rather than a fate. Activities undertaken by individuals, organizations, or governments all involve some degree of risk through choice. All activities expose people to a potential loss or gain of something they value; their health, money, career, social position, the environment, and so on." (Britton, 1998)
"Over recent years our use of the word risk has altered. Risk used to be considered, at least in part, as a conscious relationship. People could choose to "take a risk", implying an active engagement between the human subject and objective reality. Nowadays, many references to risk are prefixed by the word at. We are now increasingly perceived of as being at risk in numerous situations. This reveals and reflects a growing sense of human passivity, disconnection or impotence in the face of what are assumed to be implacable or inevitable external processes." (Furedi, 2002)

According to Wikipedia-The Free Encyclopedia, the literal use of risk can be observed to stand for;

- an unwanted and undesirable event which may or may not occur,
- the cause of an unwanted event which may or may not occur,
- the probability of an unwanted event which may or may not occur,
- the statistical expectation value of unwanted events which may or may not occur,
- the exposition to the chance of injury or loss.

In many ways we have been limited by these definitions of risk as a negative concept and risk is often used synonymously with the probability of a loss in everyday usage.

The Royal Society (1983) defined risk as the probability "...That a particular adverse event occurs during a stated period of time, or results from a particular challenge." They also state that "as a probability in the sense of statistical theory, risk obeys all the formal laws of combining probabilities".

After this definition, in 1984 Hertz \& Thomas have suggested that "... Risk means uncertainty and the result of uncertainty... risk refers to a lack of predictability about problem structure, outcomes or consequences in a decision or planning situation."

Simon Priest (1990) defined risk as "the potential of losing something of value" and in 1999 Smith defined risk as a decision expressed by a range or possible outcomes with attached probabilities. When there are a range of possible outcomes but no assumed probabilities, there is only uncertainty.

From the perspective of Carreno (2006), risk requires a multidisciplinary evaluation that takes into account not only the expected physical damage, the number and type of casualties or economic losses, but also the conditions related to social fragility and lack of resilience conditions, which favor the second order effects (indirect effects) when a hazard event strikes an urban centre.

The different approaches to the risk concept according to the different disciplines or fields mainly take part in finance, insurance, statistics and scenario analysis fields. These are;

- "Financial risk is often defined as the unexpected variability or volatility of returns, and thus includes both potential worse than expected as well as better than expected returns" (Zimmermann, 2005).
- "Insurance industry defines risk as, any uncertainty about a future event that threatens your organization's ability to accomplish its mission" (Curtis, 2002).
- In statistics, risk is often mapped to the probability of some event which is seen as undesirable. Usually the probability of that event and some assessment of its expected harm must be combined into a believable scenario which combines the set of risk, regret and reward probabilities into an expected value for that outcome. (Zimmermann, 2005)
- In scenario analysis risk is distinct from threat. A threat is a very low-probability but serious event - which some analysts may be unable to assign a probability in a risk assessment because it has never occurred, and for which no effective preventive measure is available. The difference is most clearly illustrated by the precautionary principle which seeks to reduce threat by requiring it to be reduced to a set of well-defined risks before an action, project, innovation or experiment is allowed to proceed. (Zimmermann, 2005)

Although all of these definitions are acceptable, the most comprehensive and relevant definition about risk concept for our field of thesis is made by ISDR (International Strategy for Disaster Reduction) in 1994.

According to the ISDR risk is;
"The probability of harmful consequences, or expected losses (deaths, injuries, property, livelihoods, economic activity disrupted or environment damaged) resulting from interactions between natural or human-induced hazards and vulnerable conditions."

Conventionally risk is expressed by the notation;

Risk = Hazard (a probability) x Vulnerability (value of likely losses)

While, Hazard is a potentially damaging physical event, phenomenon or human activity that may cause the loss of life or injury, property damage, social and economic disruption or environmental degradation,

Vulnerability is the conditions determined by physical, social, economic, and environmental factors or processes, which increase the susceptibility of a community to the impact of hazards.

So, risk is the probability that a hazard will turn into a disaster and we can easily say that vulnerability and hazards are not dangerous, taken separately. But if they come together, they become a risk or, in other words, the probability that a disaster will happen. (Greene, 2000)

As is seen above, the risk and hazard concepts are different from each other, while "Hazard" is a property or situation that in particular circumstances could lead to harm, "Risk" is a combination of the probability or frequency of occurrence of a defined hazard and the magnitude of the consequences of the occurrence.

Accordingly, two communities located in hazard-prone areas with similar physical settings cannot be described as equal in risk if they differ in their vulnerabilities to the hazard.

Although each of these two notions represents a distinct concept, this obvious distinction between the risk and hazard concepts are not known properly and hazard is often confused with the notion of risk. This distinction, and misuses between these concepts, consists the starting point of this study

Figure 2.1 Selected Definitions of Risk from Literature
(Source: Kelman, 2003)

2.2. The Concept of Seismic Risk and Urban Seismic Risk

Seismic risk is an assortment of earthquake effects that range from ground shaking, surface faulting, and land sliding to economic loss and casualties. The probability that social or economic consequences of earthquakes will equal or exceed specified values at a site, at several sites, or in an area, during a specified exposure time.

Although the term seismic risk is occasionally used in a general sense to mean the potential for both the occurrence of natural phenomena and the economic and life loss associated with earthquakes, it is useful to differentiate between the concepts of seismic hazard and seismic risk.

Seismic hazard may be defined as any physical phenomena that result either from surface faulting during earthquakes or from the ground shaking resulting from an earthquake and that may produce adverse effects on human activities. Seismic hazard is the study of expected earthquake ground motions at any point on the earth. This is usually described in terms of 'peak ground acceleration' (pga), and secondary impacts like surface faults, liquefaction or landslides.

Urban seismic risk is a special subset of the general term seismic risk. It involves the specific problems of cities when they are subjected to earthquakes.
"Under conventional understanding of disasters, public authorities and some of the professional approaches tend to assume that cities are only agglomerations of individual buildings, and methods to achieve robust buildings would therefore suffice for seismic safety in a city. This is a misconception if not a deliberate distraction for the sake of maintaining a monopoly in mitigation on behalf of specific professional interests" (Balamir, 2007).
"Cities as distinct physical systems have their own complex functional integrity, and are subject to failure should any of the sub-components receive a natural or human-made hazard impact. Cities are vulnerable in very many different ways, and manifest a multitude of risks. Mitigation planning is a most relevant and rewarding effort therefore particularly at the level of settlements. Secondly, cities are usually managed in their totality by an authority explicitly responsible for its functioning and safety. Risk avoidance/ reduction/ sharing as part of such responsibilities are however, a recent awareness, and often an imposed obligation. These may set some of the reasons why seismic risk mitigation should be streamlined into city planning functions and must have a formal basis" (Balamir, 2007).

According to Balamir (2007), recent attempts at clarifying urban risks and methods of coping with them could be grouped in a number approaches:
(a) Urban planning services are usually demanded for the post-disaster reconstruction stages and rehabilitation works, either relocating the settlement or rebuilding it in situ. Methodological know-how is available in this area, based on case experiences and theoretical discourse (Spangle Assoc., 1991, 1997; Schwab, et.al., 1998).
(b) Turning to risk mitigation efforts prior to disasters, one basic approach seems to concentrate at macro assessments of loss. These usually focus at national level policies (Godschalk et. al., 1999). In general, most of pre-disaster management of seismic risks in settlements is either confined to engineering tactics at the individual building level, or to the simulation modeling efforts (as in the case of HAZUS) at system level (Coburn and Spence, 1992; Coburn, 1995). Both approaches rely on expert decision-making and DSS in the monitoring of city systems, rather than community action and local participatory processes (Balamir, 2007).
(c) A third category often implicitly assumes that city-level risks could be identified based on engineering concepts and tools employed in the analysis of risks in building structures. City-level risks are equated to the sum of risks of the urban building stock. The discourse to justify the approach claims that "after all it is the buildings that kill people" (Sucuoğlu, 2006). For this reason it is the robustness of buildings and life-lines in the city (engineering studies) that need be investigated, and mitigation efforts focused in these systems will suffice for the achievement of safety in the city (Scawthorn, et.al. 2006; Cozzi, Menoni, 2006 et.al.; Rosetto, 2006).
(d) Another set of pre-disaster efforts could be identified to fall closer to conventional landuse planning. Burby (1998) considers that land-use planning could provide sufficient means for mitigation by itself. It is most relevant to survey and register geological attributes of land and local geographical features to determine the hazard zones, and then the appropriate zoning of uses and designation of types of buildings for safer city development and functioning. Based on past experience, high hazard zones are avoided for residential purposes, but buildings for storage or animal husbandry could be permitted. Public buildings and emergency facilities must accordingly be allocated to less hazardous zones. Fault lines must have immediate strips of zones for total building ban, restricted zones for specific uses further away, constraints relaxed with distance. Mitigation decisions are confined to land-use impositions in this approach according to estimations of local hazards (Balamir, 2007).
(e) Cases that directly confront the problem of seismic mitigation, and intend to develop methods in comprehensive urban planning, rather than that of land-use planning tools alone, are few and recent.

Two exercises undertaken by the Columbia International Urban Planning Studio of the post-graduate program, in coordination with other research units, have been dedicated to the seismic problems of highly vulnerable cities of Caracas and Istanbul (Columbia University, 2001, 2002).

This approach does not only consider the city systems in their entirety, but develops also a multi-disciplinary framework. Main work modules of the study given in the following box reveal a more comprehensive approach than conventional land-use planning, and define the boundaries of a new form of planning practice (Balamir, 2007).

The Columbia University planning program, following a research format developed in the case of Caracas city, studied the earthquake prone Istanbul in 2002 with the intention of exploring planning and mitigation possibilities. The time and data constraints have largely constrained the Istanbul analyses, and reduced findings to a set of broad recommendations (Balamir, 2007). Yet there are a number of significant elements within the scope of the study:

1. A post-event analysis focused on a prioritization of 'essential facilities': (a) medical, water, transportation, shelter, communication; (b) fuel, fire, hazardous materials, electricity, food; (c) reserved space, sanitary facilities, and identified the priority of urban activities that have greater contributions as: 'management', SAR, 'law enforcement/security’ (Balamir, 2007).
2. Safety implications of various macro-form alternatives were explored. Comparisons were made between centralized metropolitan growth and satellite settlements configurations. The latter was preferred, taking into consideration also the impacts of alternatives on conservation policies (Balamir, 2007).

"Elements of a Disaster Preparedness Plan for Caracas Venezuela"

- Hazard Identification (microzonation)
- Assessment of Critical Assets, Fragilities and Activities at Risk (infrastructure and lifelines, critical facilities, industries)
- Loss Estimation (economic modeling)
- CBA for Optimal Mitigation Strategy
- Risk Reduction Methods (zoning, early hazard warning, improvement of codes, giving incentives, reduction of fragilities, increasing resilience)
- Training Response Teams
- Communication and Education
- Distribution of Risks by Insurance

Figure 2.2 Elements of a Disaster Preparedness Plan for Caracas Venezuela
(Source: Balamir, 2007)
3. A sample of neighborhoods were investigated, followed by recommendations in infrastructure improvements, urban design propositions, social policies, 'resistance action plans', regulation of building densities and restrictions, and disaster response plans (Balamir, 2007).

Even if the attempts were inconclusive in developing a methodology in mitigation planning, the approach of the Columbia University is in the necessary direction. The study is not trapped in a simple understanding of equating city-level risks solely to those of the building stock. It is not either confined to the narrow scope of conventional landuse planning. The approach considers the urban mitigation issue in terms of a multidisciplinary attitude in its determination of hazards, specifying an array of risks, assessments of loss, and in its propositions of policies. The major deficiency in this approach lies in the implicit assumption that mitigation is a one-way technical and administrative project imposed by the local authorities. Participation methods and interactive involvement processes, which should have been the concomitant of each policy proposition, are omitted in the urban mitigation planning. Temporary public awareness-raising programs are obviously no substitutes for generating a total mobilization (Balamir, 2007).
(f) The risk analyses and urban mitigation planning approach envisaged for the Earthquake Master Plan of Istanbul (EMPI, 2003) explained in the following sections is still another alternative perhaps based on a methodology with wider implications (Balamir, 2006a, 2004, 2001a, b, 1999, 2001d).

A survey of recent attempts in city-level mitigation reveals the nature of the gaps in understanding settlement safety, and the need for the development of a systematic response to risks in urban planning (Balamir, 2007).

The city however is not just an aggregate of buildings, but a complex system comprising its own nested sets of 'risk sectors', as well as buildings of various categories to acquire different functions and priorities in the context of urban mitigation planning (Balamir, 2007).

Sectors of risk are distinctly manageable clusters of vulnerabilities at the city-level for which a coordinated action is necessary. Different levels of spatial units (national, regional, city, local) could have entirely different sets of vulnerability and risk definitions, definitely different from risks at the building level (Balamir, 2007).

As cities have their own complex functional integrity, they are vulnerable in very different ways and very different risk sectors. Risk sectors are areas of causal relations on specific risks according to Earthquake Master Plan of Istanbul (EMPI). More than a dozen of citylevel risk-sectors have been identified in Istanbul. Risk-Sectors of EMPI are given below;

- Risks in Macro-Form and Growth Tendencies (settlement configuration alternatives)
- Urban Fabric Risks (building height/proximity, plots, density, roads, car-parks, etc.)
- Incompatible Land-Use Risks (buildings and districts)
- Risks of Productivity Loss (industrial plants)
- Risks in the Building Stock, Infrastructure and Lifelines
- Risks in Emergency Facilities and Lifelines (hospitals, schools, etc.)
- Special Risk Areas/ Special Buildings (landslide, flooding/historic buildings)
- Risks in Hazardous Uses (LPG and petrol stations, etc.)
- Open Space Deficiency Risks

CHAPTER 3

GLOBAL POLICY CHANGE

Over the past 30 years, disaster reduction has become an increasingly important issue on the international agenda and there has been a continuous evolution in the practice of crisis or disaster management. These bodies of practice have been known, variously, as civil defense, emergency assistance, disaster response and relief, humanitarian assistance, emergency management, civil protection, disaster mitigation and prevention, and total disaster risk management.

The risk concept became popular in the academic literature after 1990's, and the rise of risk reduction concept begs our understanding which accompanied a phenomenal quantitative growth in references to risk.

3.1. A Brief History of Global Disaster Management Process, Risk Assessment and

Reduction Approaches

UN Conference on the Human Environment in 1972 in Stockholm, Sweden was the first occasion that attention was drawn to the concept of "Risk" and the need for international cooperation to achieve this. Therefore, the Conference in Stockholm is accepted as the starting point of the International Disaster Management Process within the study.

Subsequent to the Conference in Stockholm, United Nations convened the Habitat I Conference in Vancouver, Canada-1976, Conference on Environment and Development in Rio de Janeiro, Brazil-1992 and International Conference on Population and Development (ICPD) in Cairo, Egypt-1994.

Following this idea, a series of declarations of interest and determination to reduce risks have taken place at the international context (Balamir, 2005).

These are; World Summit for Social Development in Copenhagen, Denmark-1995, Habitat II Conference in Istanbul, Turkey-1996, Millennium Declaration and Development Goals2000, World Summit on Sustainable Development Johannesburg-2002

An increase in human casualties and property damage in the 1980's motivated the UN General Assembly in 1989 to declare the 1990's the International Decade for Natural Disaster Reduction (IDNDR).

During the 1990 's, stimulated by the IDNDR, many researches dealing with risks and disasters were developed around the world. The topic gained importance and it is being increasingly recognized that the terms hazard, vulnerability and risk have had different meanings and implications from both the methodological and practical angles (Cardona, 2004).

In 1999, UN decided to continue the activities on disaster prevention and vulnerability reduction carried out during the IDNDR. It thus established the International Strategy for Disaster Reduction (ISDR), which is supported by the scientific and technical expertise and knowledge accumulated during the IDNDR.

Subsequent to IDNDR, World Conferences on "Risk Reduction" in Yokohoma, Japan-1994, Toronto, Canada-2004 and Kobe, Japan-2005 have extended and sharpened this awareness about natural hazard risks and efforts of risk reduction on global agenda.

The Yokohama Strategy for a Safer World and its Plan of Action was a cornerstone point of reference for disaster reduction, comprising a range of commitments and identifying specific activities that have since served as an international blueprint in the field (Briceno, 2004). The Yokohama Strategy sets guidelines for action on prevention, preparedness and mitigation of disaster risk.

The Yokohama Strategy for a Safer World and its Plan of Action stressed that; "... each country has the sovereign responsibility to protect its citizens from the impact of natural disasters" and adopts the following ten principles;

1. "Risk assessment is a required step for the adoption of adequate and successful disaster reduction policies and measures.
2. Disaster prevention and preparedness are of primary importance in reducing the need for disaster relief.
3. Disaster prevention and preparedness should be considered integral aspects of development policy and planning at national, regional, bilateral, multilateral and international levels.
4. The development and strengthening of capacities to prevent, reduce and mitigate disasters is a top priority area to be addressed so as to provide a strong basis for follow-up activities to the Decade.
5. Early warnings of impending disasters and their effective dissemination are key factors to successful disaster prevention and preparedness.
6. Preventive measures are most effective when they involve participation at all levels from the local community through the national government to the regional and international level.
7. Vulnerability can be reduced by the application of proper design and patterns of development focused on target groups by appropriate education and training of the whole community.
8. The international community accepts the need to share the necessary technology to prevent, reduce and mitigate disaster.
9. Environmental protection as a component of sustainable development consistent with poverty alleviation is imperative in the prevention and mitigation of natural disasters.
10. Each country bears the primary responsibility for protecting its people, infrastructure, and other national assets from the impact of natural disasters" (UNISDR, 1994).

The World Conference on Disaster Reduction (WCDR) in Kobe 2005 presents a milestone opportunity to bring together local, national and international decision-makers active in social and economic development and environmental management; disaster risk managers and practitioners; civil society; and community groups, setting a new international agenda to build disaster-resilient communities (Briceno, 2004).

The WCDR in 2005 has the following five specific objectives;

1- " To conclude and report on the review of the Yokohama Strategy and its Plan of Action, with a view to updating the guiding framework on disaster reduction for the twenty-first century;

2- To identify specific activities aimed at ensuring the implementation of relevant provisions of the Johannesburg Plan of Implementation of the World Summit on Sustainable Development (WSSD) on vulnerability, risk assessment and disaster management;

3- To share good practices and lessons learned to further disaster reduction within the context of attaining sustainable development, and to identify gaps and challenges;

4- To increase awareness of the importance of disaster reduction policies, thereby facilitating and promoting the implementation of those policies;

5- To increase the reliability and availability of appropriate disaster-related information to the public and disaster management agencies in all regions, as set out in relevant provisions of the Johannesburg Plan of Implementation" (UNISDR, 2005).

With this point of view, the examination of the risk and seismic risk concepts with an overview of current understanding and the evolution of the subject from its academic and scientific beginnings to its political implications in the realm of sustainable development of today constitutes one of the most important points of the study.

Figure 3.1 Chronology of International Disaster Management Policy Development Process

3.2. The Kobe Conference Framework for the Assessment of the current status of National Disaster Reduction Policies

The World Conference on Disaster Reduction was convened in Kobe, Japan in 2005. National authorities and platforms on disaster reduction were invited to provide information to identify needs and develop future policy recommendations for consideration at the Conference.

ISDR requested governments to provide a national reporting and information on disaster reduction, which encouraged national authorities and platforms for disaster reduction to provide information, to identify needs and elaborate policy recommendations for the preparatory process of the WCDR.

The guidelines, provided by the secretariat of the ISDR to facilitate the preparation of the national information, described a reporting structure based on the components and priority areas specified in the ISDR / UNDP "Framework for disaster risk reduction for guidance and monitoring".

The following themes serve as a core set of principles to understand, guide and monitor current status of disaster risk reduction and therefore provide a common basis for consolidated observations: (see Appendix A)

1. Political Commitment and Institutional Aspects;
2. Risk Identification;
3. Knowledge Management;
4. Risk Management Applications and Instruments;
5. Preparedness and Contingency Planning (UNISDR, 2005).

This section provides an overall summary of countries' views and activities on disaster risk reduction, followed by more detailed preliminary observations based upon the five main components mentioned above.

The information provided by countries served as one of the main inputs for the "Review of the Yokohama Strategy and Plan of Action for a Safer World. The original national reports submitted by countries are available in the UN/ISDR website under country information. Information Reports on Disaster Reduction prepared by the governments for the WCDR reveals the approaches of 113 countries to risk assessment, risk reduction and risk mapping.

Figure 3.2 Countries that have submitted national reports for the WCDR

According to the distribution by income groups of countries that have submitted national reports for the WCDR; the highest number of participation is from middle income countries with 34% and the lowest number of participation is from high income countries with 16 \%.

Turkey is in group of middle income countries that have the highest number of participation.

Figure 3.3 Distribution of national reports by income groups
(Source: UNISDR, 2005)

The more detailed preliminary observations based on five main components expressed in the ISDR/UNDP policy framework to understand, guide and monitor current status of disaster risk reduction is provided below.

3.2.1. 'Political Commitment and Institutional Aspects'

The role of political commitment as an essential ingredient for sustained risk reduction efforts is recognized by a significant number of countries.

Existing legislation in the form of decrees and laws, national policies or strategies were cited by over three quarters of the countries, although less frequently have these yet related in the context of National Policies (UNISDR, 2005).

Figure 3.4 Percentage of countries reporting on decrees-laws, national policies, strategies (Source: UNISDR, 2005)

National bodies for the realization of multi-sectoral coordination are very much reflected in the high majority of the countries' information. A range of good practices was offered on this issue particularly from Austria, Canada, Israel, Slovenia and Sweden. (UNISDR, 2005)

Disaster reduction and development

Although statistical projections provide an encouraging indication of disaster risk reduction being integrated into development plans, a significant number of countries neither stated nor denied this integration process. (UNISDR, 2005)

Figure 3.5 Percentage of countries incorporating risk reduction in sustainable development plans
(Source: UNISDR, 2005)

People-centered and community-based approaches

Community actions and public participation are recognized as successful factors to advance risk reduction measures. Overall, national responses offered a good variety of success stories and initiatives. Local community involvement has succeeded in providing indispensable support to those needing help. Good examples of this were found in India, Iran, Turkey, Latin America and the Caribbean after the occurrence of earthquakes. (UNISDR, 2005)

The private sector has generally been less involved in the national picture of disaster risk reduction compared to community initiatives. Nonetheless, Japan, among others, provided an example of integration of the private sector. (UNISDR, 2005)

3.2.2. 'Risk identification, assessments, monitoring and early warning’

Hazard mapping, vulnerability assessments and monitoring

Many countries stated that hazard mapping resulted from government collaboration with scientific agencies, academic and research institutions both at central and local levels. Vulnerability and capacity assessments were often mentioned as the result of joint efforts.

Some national information particularly from African countries indicated that annual assessments are undertaken, often jointly by the Governments, United Nations, NGOs and in a fewer cases private sector. (UNISDR, 2005)

Monitoring and risk mapping were a constant factor in countries' reported approaches to disaster risk reduction although different levels of implementation are currently being realized in various countries. In some cases, as in Nicaragua, national monitoring mechanisms are linked to regional ones by the use of sophisticated satellite technology. Some countries indicated the importance of expanded levels of monitoring and risk mapping from a national level to a regional one as a coherent development and improvement of national monitoring and risk mapping. (UNISDR, 2005)

Systematic socio-economic and environment impact and loss analysis

More than half of the countries reported efforts in the creation of socio-economic and environmental impact loss analyses. In many instances though such analyses were reserved mostly for major disasters and adhoc hazards, highlighting the necessity of applying a more systematic approach to the issue. Reports that have highlighted this necessity include those provided by Bangladesh, Brazil, Colombia, Ghana, Macedonia, Romania and Turkey. (UNISDR, 2005)

Early Warning Systems

In such countries as like British Virgin Islands, Ethiopia, Mauritius and some other small island developing states, accomplishments have been expressed regarding more effective early warning systems. Others have specifically referred to the growing need and evident application for early warning systems in relation to technological hazards, in particular CIS countries and Europe. (UNISDR, 2005)

3.2.3. 'Knowledge management'

Information management and academic research as common links to national-local institutions

Some good examples of information databases were indicated as being available at country level and internationally through the web, provided by, among others, Nicaragua, Russia and Switzerland. Although progress with regard to information databases was found to be encouraging in many cases there is no systematic approach to the issue (UNISDR, 2005).

Good examples are provided by, among others, in the CIS countries' Interstate Program of Joint Scientific-Technical Investigations and in the Caribbean Disaster Emergency Response Agency. In some cases information among countries is exchanged on a regular basis particularly in relation to certain hazards. (UNISDR, 2005)

Education Programs and Training

More than half of the countries reported having some form of education program related to disaster risk reduction in the school system. This overall encouraging situation is put into practice by a great variety of educational initiatives, although in many cases they simply express security procedures in the schools' immediate environment. (UNISDR, 2005)

Most of the countries report having some form of schooling informative sections running from elementary school up to high school level. In many occasions, disaster awareness was not specifically categorized as a subject in its own right but rather it was integrated into science subjects. (UNISDR, 2005)

Quite a few countries are reporting currently undergoing an update review process in their educational material. The general perception of the ongoing revisions is that disaster risk reduction might be integrated with the often still predominance of specific emergencyrelated educational material. (UNISDR, 2005)

In a few cases, disaster risk reduction oriented university degrees or a PhD , are available as in Morocco, Sweden and Switzerland. Educational material has been reported in a few cases as joint initiatives between ministries of education and specialized commissions dealing with disaster risk reduction issues. The number of actors involved in the preparation of educational material seems to be varying with the involvement of specific multi-agencies committee in a few cases. (UNISDR, 2005)

In a minority of cases, legislation will specifically address public education strategies on the subject. In New Zealand, for instance, Civil Defense Emergency Management Public Education Strategy and a multi-agency Committee overviews the development of initiatives on the subject. (UNISDR, 2005)

Different types of training programs are reported as being available in the majority of the countries but the information has equally been matched by calls for strengthening training capacities.

The Government and technical staff related to disaster risk reduction benefit from training in the subject both at national and local levels although training is still in need of more systematic approaches. In some cases National Disaster Centers and technical bodies organize training aimed at civilians with the involvement, occasionally, of NGOs and Local Government Unit. Overall it should be highlighted that training is almost exclusively focused on disaster preparedness and response. (UNISDR, 2005)

Traditional indigenous knowledge

The importance of traditional knowledge is visible in the national information, however it is not systematically reflected in the use of traditional mitigation and coping practices as a means of achieving greater community self-reliance in dealing with disaster. (UNISDR, 2005)

Generally, traditional knowledge is widely mentioned by African, Asian and Pacific countries. In High-Income OECD countries, in Europe and in the CIS, traditional knowledge is acquired from training initiatives, consultation processes and the specific collection of information contrary to Africa, Asian and Pacific, circumstances in which traditional knowledge is still passed on routinely between generations. (UNISDR, 2005)

National public awareness initiatives

The vast majority of the countries have reported some form of awareness initiatives relating to disaster risk reduction. Only a few have developed a strategy on communication and awareness specifically addressed to the spread of a prevention culture like in the case of Nicaragua and Venezuela among others. Many national information reports provided some excellent examples and ideas on public awareness. Among others, Algeria, with its "Caravanes" disseminates messages to the most remote parts of the country by theatrical representations, and Finland promotes "Children's Safety Olympics." (UNISDR, 2005)

3.2.4. 'Risk Management Applications and Instruments'

Linking Environmental Management to Disaster Risk Reduction

Examples of the creation of national strategies or legislation are provided, among others, by Bangladesh, Ethiopia, Germany, Namibia and South Korea. Community-based, networking experiences and partnership initiatives were mentioned by Austria, El-Salvador, India, Thailand and Uganda and generally from Latin America and Caribbean countries. (UNISDR, 2005)

Financial Instruments

Financial instruments are increasingly recognized as useful means for reducing risk and selfreliance in recovery. Forms of insurance, calamity funds, catastrophe bonds, and micro finance are overall utilized by more then half of the countries providing information.

The use of insurance as a tool to spread the burden of risks appears to be difficult to implement in low-income countries, particularly in Africa. Cash compensation and distribution of seeds has been adopted as a form of recovery trying to produce a temporary alternative instrument to insurance policies. In some cases insurance programs have been identified as urgent but their implementation is challenged by financial constraints. (UNISDR, 2005)

Technical measures or programs on disaster risk reduction

A large number of countries provided examples of technical measures or programs on disaster risk reduction. Technical measures such as flood control techniques, foreshore projects, soil conservation practices and earthquake resistance are among the most common examples offered. (UNISDR, 2005)

Advanced technologies are found to be in widespread use or, when missing, regarded as a necessary tool to improve risk management. Techniques related to remote sensing, information and communication technologies are mentioned quite often. Although building codes on disaster resistant constructions are recognized and in existence, it is widely known and accepted that, for a variety of reasons, they are often not enforced or adhered to. (UNISDR, 2005)

3.2.5. 'Preparedness and Effective Response'

Disaster contingency plans

The majority of countries' information refers to the existence of disaster contingency plans at both national and local levels. Civil protection seems to play an active role especially in disaster preparedness requiring specialized skills and public mobilization. Community participation in disaster preparedness and response is proved to be recognized while NGOs involvement is more predominant in low-income countries. (UNISDR, 2005)

Government emergency funds and facilities

Some forms of emergency funds or facilities are indicated in almost all the national information received. It is equally evident that low income countries have difficulties providing both emergency funds and facilities, but they express a higher presence of solidarity funds. (UNISDR, 2005)

A wide variety of specifications on the subject have been provided by national information. In a few cases as in some CIS countries, there have been specifications on solidarity funds expressed by a prescribed compulsory part of income from private sector. These funds, maintained on special companies' accounts and other legal subjects are annually transferred to solidarity funds. (UNISDR, 2005)

The previsions of government emergency funds are, in a few cases, explicitly mentioned as overcoming national dimension. Annual allocation for regional emergency management and disaster response appears to be standard practices in a few cases, among others New Zealand for the Pacific region and the Russian Federation for CIS countries. (UNISDR, 2005)

Actors responsible for Coordinating Disaster Response

National information shows a growing recognition that a well-organized disaster management system will be expressed by units representing multiple actors responsible of coordinating disaster response. (UNISDR, 2005)

An encouraging level of decentralization, expressed by local autonomy, has been indicated in many of the reports submitted. (UNISDR, 2005)

3.2.6. 'Examples of Good Practices'

About three quarters of national information provided examples of good practices with a quality that illustrates enriched social, technical, organizational and capacity patterns.

There is an even distribution of good practices conveyed in the five main components of disaster risk reduction.

These comprehensive practices suggest that accomplishments in disaster risk reduction are being pursued throughout the core principals reflecting the Yokohama Strategy and Plan of Action for a Safer World.

A similar balance is reflected in the geographical distribution and income aggregates. (UNISDR, 2005)

Figure 3.6 Good practices provided by countries according to main components (Source: UNISDR, 2005)

3.2.7. Deficiencies of the National Disaster Policy in Turkey

Turkish disaster policy has mainly focused on the post-disaster period. No incentives or legislation existed to encourage risk analysis, risk mitigation or risk spreading approaches.

The conventional legal provisions and organizational habits in Turkey decisively target the post-disaster period. The 'Disasters Law' is a regulatory device primarily for 'healing the wounds' and the Development Law ignores the reality and risks of earthquakes and contains no mechanism or procedure in itself to secure environmental, building and implementation standards for mitigation control. Therefore, a double bias for post-disasters has been the dominant nature of policy in Turkey. (Balamir, 2001)

The disaster information system in Turkey need to concentrate on settlements, and this system be managed by some central authority to maintain the high standards and rigour in upkeep. Settlements under high risks have to revise their development plans according to the micro-zonation information provided, and update them as new information becomes accessible and as new assessments of risks are made based on this set of data. This should necessitate minor amendments in the Law of Organization of the Ministry of Public Works and Settlements, to set up the technical unit entitled to carry out the function. 'Integrated Disasters Maps' need be institutionalized and incorporated in the Development Law, making such maps a prerequisite for all plan preparations and revision activities which in turn need be restructured to allow greater local community participation. (Balamir, 2001)

Consequently, Report on Disaster Reduction prepared by the Republic of Turkey for the World Conference on Disaster Reduction in Kobe (2005) reveals that the approach in Turkey to risk assessment, risk reduction and risk mapping are deficient and remains limited due to development of regulations that can not be fully implemented.

Furthermore, the answers of Turkey to the questions are very optimist and not realistic. Especially the answers of the questions about risk assessment, risk monitoring, risk mapping and risk analyses.

CHAPTER 4

RISK ASSESSMENT AND DISASTER RISK REDUCTION APPROACHES IN TURKEY

4.1. Natural Disaster Profile of Turkey

Turkey is a disaster-prone country and has always been vulnerable to various kinds of natural hazards, because of its geology, topography, and meteorological conditions. These hazards, coupled with high physical and social vulnerability, have caused excessive losses of life, injury, and damage to property. (Jica, 2004)

According to the Summarized Table of Natural Disasters (Table 4.1), 139 natural disaster events occurred in Turkey since 1903 and these disasters can be classified in seven groups as earthquakes, epidemic, extreme temperature, flood, slides, wild fires and wind storms.

Table 4.1 Summarized Table of Natural Disasters in Turkey from 1903 to 2006
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

	Number of Events	Killed	Injured	Homeless	Affected	Total Affected	$\begin{aligned} & \text { Damage US\$ } \\ & (000 \text { 's }) \end{aligned}$
Earthquake	71	88538	92866	1160880	5620850	6874596	16096600
Average per event		1247	1308	16350	79167	96825	226713
Epidemic	8	609	0	0	204847	204847	0
Average per event		76	0	0	25606	25606	0
Ext.Temp.	6	98	150	0	8000	8150	0
Average per event		16	25	0	1333	1358	0
Flood	33	1319	211	99000	1649520	1748731	2193500
Average per event		40	6	3000	49985	52992	66470
Slides	8	591	208	185	1905	2298	0
Average per event		74	26	23	238	287	0
Wild Fires	4	13	0	350	500	850	0
Average per event		3	0	88	125	213	0
Wind Storm	9	100	139	0	13500	13639	2200
Average per event		11	15	0	1500	1515	244

91.268 people lost their lives, 93.574 people injured, 1.260 .415 people become homeless, 7.499.122 people affected as a result of 139 natural disaster events in Turkey from 1903 and 2006 and the total damage of disasters is 18 billion USD.

When we examine these 139 natural disaster events, we can see that earthquakes come in the first place with 51% according to the number of events.

Other ratios of natural disasters are as follows: 23.7% floods, 6.5% wind storms, 5.8% landslides, 5.8% epidemics, 4.3% extreme temperature and 2.9% wild fires events.

Figure 4.1 The ratios of natural disasters according to the number of events (Source: EM-DAT, The OFDA/CRED International Disaster Database)

The ratios of natural disasters according to the number of deaths are as follows: 97% earthquakes, 1.4% floods, 0.7% epidemic, 0.6% slides, 0.1% extreme temperature, 0.1% wild fires, 0.1% wind storms.

Figure 4.2 The ratios of natural disasters according to the number of deaths (Source: EM-DAT, The OFDA/CRED International Disaster Database)

The statistics of number of events, death ratios, injuries and all the other values exposed that earthquakes are far and away in the first place and the biggest portion of the losses is related to the earthquakes. This portion is 51% of events, 97% of deaths, 99% of injuries, 92% of homeless, 75% of affected people and 88% of total damage.

Measured in terms of direct economic losses, natural disasters have, accounted for 1% of gross national product (GNP), with earthquakes accounting for 0.8% of this.

According to the natural disasters "Top 10" lists of Turkey, which is sorted by number of people killed, number of people affected and amount of economic damages, 100% of most deadly natural disasters, 80% of economic damages and affected people caused by earthquakes.

Table 4.2 Top 10 Natural Disasters in Turkey (number killed)
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

Disaster type	Date	Location	Killed
Earthquake	26.12 .1939	Erzincan	32962
Earthquake	17.08 .1999	İzmit, Kocaeli, Yalova	17127
Earthquake	29.04 .1903	Malazgirt	6000
Earthquake	26.11 .1942	Niksar-Erbaa	4000
Earthquake	1.02 .1944	Gerede	3959
Earthquake	24.11 .1976	Muradiye	3840
Earthquake	20.12 .1942	Niksar-Erbaa	3000
Earthquake	26.11 .1943	Ladik	2824
Earthquake	19.08 .1966	Varto	2394
Earthquake	06.09 .1975	Lice	2385

Table 4.3 Top 10 Natural Disasters in Turkey (economic damage)
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

Disaster type	Date	Location	Damage US* (000's)
Earthquake	17.08 .1999	İzmit, Kocaeli, Yalova	20000000
Flood	20.05 .1998	Zonguldak, Karabük	1000000
Earthquake	12.11 .1999	Düzce, Bolu, Kaynaşlı	1000000
Earthquake	13.03 .1992	Erzincan	750000
Earthquake	28.06 .1998	Adana, Ceyhan, Hatay	550000
Flood	27.10 .2006	Cinar, Bismil	317000
Earthquake	01.10 .1995	Dinar-Evciler	205800
Flood	18.06 .1990	Giresun, Gümüşhane	150000
Earthquake	01.05 .2003	Diyarbakı	135000
Earthquake	03.02 .2002	Bolvadin	95000

Table 4.4 Top 10 Natural Disasters in Turkey (number affected)
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

Disaster type	Date	Location	Number of Affected
Earthquake	28.06 .1998	Adana, Ceyhan, Hatay	1589600
Earthquake	17.08 .1999	İzmit, Kocaeli, Yalova	1358953
Flood	20.05 .1998	Zonguldak, Karabük	1240047
Earthquake	30.10 .1983	Horasan, Pasinler	834137
Earthquake	18.09 .1984	Olur-Şenkaya	375038
Earthquake	18.10 .1984	Erzurum-Şenkaya	375035
Earthquake	13.03 .1992	Erzincan	348850
Earthquake	22.07 .1967	Zonguldak, Karabük	326073
Flood	04.11 .1995	Zonguldak, Karabük	306617
Earthquake	01.05 .2003	Diyarbakır	290520

Table 4.5 Dwelling Units Destroyed by Natural Disasters in Turkey (Source: Jica, 2004)

Type of Natural Disaster	Number of Destroyed Units	Percentage of Total
Earthquakes	495000	76
Landslides	63000	10
Floods	61000	9
Rock Falls	26000	4
Avalanches	5154	1
Total	650654	100

The number of dwelling units destroyed by natural disasters in Turkey is 650.654 . The biggest portion of destruction is caused by earthquakes with the number of 495.000 dwelling units and with the ratio of 76%. Landslides and floods follows earthquakes with 63.000 (10\%) and 61.000 (9\%) dwelling units.

Consequently, we can easily say that the disaster history of Turkey is dominated by earthquakes.

Therefore, earthquake is synonym with the disaster in Turkey (Ergunay, 2003).

4.1.1. Earthquakes in Turkey

Turkey is one of the most earthquake-prone countries in the world. There occurs at least one earthquake magnitude of 5 or over almost every 1.1 years in Turkey and the probability of an earthquake which causes damage occurs in a year is 63%.

According to the number of occurrences of earthquake disasters by countries, Turkey is in the high risky position with the earthquake occurrence over 10.

When we examine high risky countries according to the earthquake occurrence numbers; China is the first country with 77 earthquakes, Iran is the second country with 62 earthquakes, Indonesia is the third country with 59 earthquakes and Turkey is the fourth country with 33 earthquakes.

Figure 4.3 Number of Occurrences of Earthquake Disasters by Country: 1974-2003
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

The United Nations Development Program (UNDP) announced Turkey as the third country after Iran and Yemen according to the number of deaths as a result of earthquakes (See Figure 4.4).

Figure 4.4 Relative Vulnerability for Earthquakes, 1980-2000
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

From 1903 till now, the number of major earthquakes occurred in Turkey is 71 (See figure 4.5). 88.538 people lost their lives, 92.866 were injured, more than 495.000 housing units were totally or moderately damaged and 1.160 .880 people lost their homes because of these earthquakes and the economic damage of earthquakes is 16 billion USD.

Figure 4.5 Earthquake events in Turkey: 1903-2006
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

Turkey is located in one of the most seismically active regions of the world. It lies within the Mediterranean sector of the Alpine- Himalayan orogenic system and surrounded by three major: African, Eurasian and Arabian and two minor plates: Aegean and Anatolian (Jica, 2004).

The relative motion between the Eurasian and Arabian plates and westward motion of the Anatolian block under this compressional plate motion are the main causes of earthquake hazard in Turkey.

Figure 4.6 The Relative Motion between Eurasian, Arabian Plates
(Source: EM-DAT, The OFDA/CRED International Disaster Database)

Turkey lies on three active fault lines (North Anatolia, East Anatolia and Aegean Graben lines). The main fault line to cause the most devastating earthquakes in Turkey is the 'North Anatolian fault line (NAF) which is stretching from east to west on the north region, the second is stretching from east to west on the south region and these two merging at the East part of Anatolia, the third one is the extension of NAF, lying through North-east to South west on the west side of the country. (Jica, 2004)

The 1939 Erzincan earthquake is the start of the chain of earthquakes along the NAF. The fault was ruptured 600 kilometers to the west between 1939 and 1944. Afterwards, this movement slowed down and another rupture of 100 kilometers was recorded between 1957 and 1967. The 1999 Marmara and Duzce earthquakes filled the 100-150 kilometers gap of the previous ruptures (Bibbee et al., 2000).

Official Earthquake Hazard Zoning Map of Turkey based on probabilistic considerations has been commissioned in 1996. The map segments the country into five macro-level regions, as determined by the statistical occurrence of seismic events.
66% of the surface area of Turkey is located in the 1 and 2 zones, which are most prone to the effects of seismic hazards and includes active fault lines. This area includes 57 cities and 11 of them are large cities with populations of more than one million. The population which lives in this area constitutes 71% of the total population. 76% of the industrial sites and 69% of the dams are also located in these seismically active areas.

Table 4.6 Distribution of Elements at Risk in Turkey
(Source: GDDA, 1996)

Earthquake Zone	Surface Area \%	Population \%	Industry \%	Dams \%
Zone 1 $(\mathrm{pga}>=0.40 \mathrm{~g})$	42	45	51	46
Zone $2(\mathrm{pga}=0.30-0.39 \mathrm{~g})$	24	26	25	23
Zone 3 $(\mathrm{pga}=0.20-0.29 \mathrm{~g})$	18	14	11	14
Zone $4(\mathrm{pga}=0.10-0.19 \mathrm{~g})$	12	13	11	11
Zone $5(\mathrm{pga}<0.10 \mathrm{~g})$	4	2	2	6
Total	100	100	100	100

Figure 4.7 Earthquake Hazard Zones and Urban Population

4.2. National Disaster Management System of Turkey

4.2.1. Legislative and Institutional Evolution of Disaster Management System

Development of Disaster Management System and National Strategies in Turkey can be divided into four distinct periods according to the "Country Strategy Paper for Natural Disasters in Turkey" prepared by JICA in 2004.

4.2.1.1. The Pre-1944 Period: (Post-event Response)

Since historic times in Turkey, official responses to disasters have been case specific and enacted upon only after the events. Until the early 1940's, post earthquake disaster assistance has been provided by the Turkish Red Crescent Society (TRCS), which was established in 1868. (Jica, 2004)

These responses have taken usually the form of providing relief material in the short term emergency phase. In the long run, the recovery phase, financial assistance using central government sources has been provided for recovery and reconstruction activities. Occasionally, remission of public loans has been put into practice. In a few special cases, building material support, financial grants, deferment of tax payments and tax exemption were implemented for reconstruction of destroyed buildings. (Jica, 2004)

During the period 1939-1944, starting with the 1939 Erzincan earthquake, a sustained sequence of disastrous earthquakes occurred and official disaster response policies started limitedly.

Consequently, we can easily say that there were no effective and systematic policies for mitigation, preparedness, response and recovery activities in this period.

4.2.1.2. The 1944-1958 Period: (Feeble Countermeasures)

As a result of devastating earthquakes, during the period of 1939-1944, Turkey realized the importance and the need for the legal provisions and strategies for mitigation and preparedness activities.

Subsequent to this, the government declared a new law (Law No.4623), which called "Measures to be put into effect prior and after earthquakes", in 1944. This law is the foundation of the disaster management activities in Turkey.

In this period the "Development Law" (Law No.6785) in 1956 and the "Civil Defense Law" (Law No.7126) in 1958 are main improvements of the disaster management system.

In the relation to this law, first earthquake hazard map of Turkey and first mandatory earthquake resistant design regulation were prepared by the Ministry of Public Works and put into force in 1945. An update revision of the earthquake hazard map was made in 1949. Parallel to this new map earthquake resistant design regulation was revised in this period in 1949 and 1953. (Jica, 2004)

In 1958 Ministry of Reconstruction and Resettlement (MRR) was created with Law no: 7116. Duties and responsibilities of the Ministry of Public Works in relation to disaster affairs were transferred to this new Ministry. The Civil Defense Law No: 7126 that went into force in 1958 established the General Directorate of Civil Defense (GDCD) within the Ministry of Interior. GDCD is a response agency and has little mitigation role. (Jica, 2004)

4.2.1.3. The 1959-1999 Period: (Ministry Responsible for Disasters and Reconstruction)

In 1959 a new law, Law No. 7269 entitled "Measures and Assistance to be put into Effect Regarding Natural Disasters Affecting the Life of the General Public" so called "Disaster Law" went into force. This law superseded the 1944 Law No.4623, and created the "Ministry of Reconstruction and Resettlement" which was the main central responsible institution to implement this law.

This ministry which was also responsible for implementation of the "Development Law" was later renamed the Ministry of Public Works and Settlements by Degree No. 180 in 1983.

A feature of Law No. 7269 was the establishment of a 'Disaster Fund' to facilitate the undertaking of all activities required under the law with regard to finance, supplementary to the funds made available from the regular national budget. (Jica, 2004)

The General Directorate of Disaster Affairs (GDDA) was created in line with Law No. 7269 in 1965 and was charged with the execution of all government level activities in relation to natural disasters.

The Earthquake Research Institute (currently Earthquake Research Department) was established in 1971 under the new law. This institute was responsible for the development earthquake related research activities in Turkey in the close cooperation and collaboration with universities and related organizations and agencies. (Jica, 2004)

A new earthquake hazard map of Turkey was prepared, using updated technology in 1972 by this institute. Latest version of the official earthquake hazard map of Turkey was prepared in 1996 using probabilistic concepts, now in force.

After the Erzincan earthquake in 1992, a specific law for the affected region was passed from the Parliament that named "Measures and assistance to Erzincan, Gümüshane and Tunceli earthquake areas" (Law No.3838). After the Dinar earthquake in 1995, this law replaced with a new law (Law No.4123) "The Services to be Performed in Relation to Damage and Disruption Caused by Natural Disasters" to cover entire country. Finally, a new "Crisis Management Regulation" included natural disasters in it, put into force with a Cabinet Decree in 1997 (Jica, 2004)

4.2.1.4. The Post 1999 Period: (Awakening)

The emergency management system of Turkey was sufficient in responding to local and regional disasters before 1999. However, this disaster response system failed in the 1999 Marmara earthquake since significant coordination problems were experienced. Following this large-scale earthquake, the Turkish emergency management system was reviewed. (Özdemir, 2003)

In the aftermath of Kocaeli earthquake in 1999, the General Directorate of Disaster Affairs started initiatives with the objective to mitigate the earthquake risk in Turkey. (GDDA, 2004)

The enormity of the losses from the Kocaeli Earthquake, forced the Government to send an urgent bill to the Parliament. It enabled the Government to pass whatever legal instrument was judged necessary through an instrument known as the "Decree with the Force of Law", to enable the country to recover from such an enormous event. The bill was passed as Law no. 4452 on 27 August 1999, just ten days after the earthquake. (Jica, 2004)

This law authorized the Government to issue decrees in order to be able to solve problems and meet the needs caused by this catastrophe quickly in the affected area.

The period of validity of this law was 3 months, and then was extended for a further period of 4 months. During the period of seven months, the government promulgated seven new Laws and 32 Decree Laws to improve the national disaster management system and to support the needs of the earthquake stricken areas. (Jica, 2004)

It was agreed that there was a need for a new system to ensure adequate coordination among institutions responsible for emergency response. With this purpose, The General Directorate of Emergency Management was established in order to coordinate the pre-disaster and postdisaster activities. It aims at regulating all relations between government, non-government and civil and military organizations, and the Civil Defense on the national level.

Unfortunately, it has not been able to assume a lead role since it was not equipped with the authority and resources required for coordination. The new authority's efforts were also hampered by lack of clear delineation of roles and responsibilities vis-à-vis other institutions. (Özdemir, 2003)

4.2.2. Organizational Framework

Turkey's Disaster Management System can be described as centralized, hierarchical and unifocal. The responsibility of the organizations goes from bottom to top, from local to central, depending on the size of the affect.

In the current structure of disaster management in Turkey, power and responsibility are concentrated at the center and diminish rapidly as one move to the outer peripheries of administrative organization. The declaration of a disaster concentrates all power and resources under the central government and municipalities are deprived of independent action. (Balamir, 2004)

Figure 4.8 The Cascading Responsibilities / Thresholds Model
(Source: Balamir, 2004)

Figure 4.9 The Conventional Model in Turkey
(Source: Balamir, 2004)

The primary actors of the system of development in Turkey are the central and local public authorities (the Ministry of Public Works and Settlement and municipalities), the semiofficial organizations and institutions (professional chambers, cooperatives, consultant firms, supervision firms, etc.), the judicial system, and the market agents (consumer households, property owners, contractors, professional individuals, etc). (GDDA, 2004)

Figure 4.10 Bodies Involved In Hazard Policy
(Source: Balamir, 2004)

4.2.2.1. Central Level

According to the Disaster Law No. 7269 (1959), 'The Central Disaster Coordinating Committee' is the main body consisting of the undersecretaries of the related ministries including a representative from Turkish General Staff and the president of the TRCS. (Jica, 2004)

Figure 4.11 The Central Disaster Coordinating Committee
(Source: Jica, 2004)

In addition to the committee mentioned above, if the Prime Minister decides that the size of disaster needs a more comprehensive approach, a "Crisis Management" situation is declared.

In this case a "Crisis Center" is established in the office of Prime Ministry, and each organization also sets up its own "Crisis Center's" in its headquarters. The governorships of provinces and districts are the first response mechanism to disaster

They also have some other direct responsibilities for disaster management, as participation and implementation of disaster response plans and implementation of training and exercising activities. (Jica, 2004)

Currently, the Turkish Emergency Management General Directorate (TAY), the "General Directorate of Disaster Affairs" (GDDA) and the General Directorates of Civil Defense (GDCD) are in overall responsibilities with respect to Disaster Management duties in Turkey.

- Turkey Emergency Management General Directorate (TAY)

Until the 1999 Earthquake, there was no single effective national coordinating agency for overall disaster management in Turkey. However, the experiences gained both from past disasters and 1999 Earthquake showed that an organization, which will be responsible for overall coordination, was needed. (Jica, 2004)

Although the Law No. 7269 gives the overall coordination duty to the MPWS, in practice there were some difficulties to coordinate the ministries or state organizations in same level, therefore higher authority was necessary to make coordination by using the power of Prime Ministry. For this reason, Turkey Emergency Management General Directorate was established by Decree No. 600 and given some authority and responsibilities especially in terms of coordination of post-disaster activities as well as mitigation efforts. (Jica, 2004)

- General Directorate of Disaster Affairs (GDDA)

The General Directorate of Disaster Affairs (GDDA) was created in 1965 and performs its responsibilities due to Disaster Law Number 7269 with later revisions and additional decrees. The law determines the protective and preventive measures as well as regulating the activities to be undertaken before during and after natural disasters and defines guidelines for terms and conditions of assistance to be provided to affected people.

The main responsibility of the GDDA is to define precautions and restriction for earthquake, landslide, rock fall, snow-avalanche and flood. Before and after disaster occurs, and also maintain their implementation and make cooperative studies with relevant governmental and non-governmental bodies. (Özmen, 2005)

- General Directorate of Civil Defense (GDCD)

The goal and purpose of the Civil Defense Organization is to minimize the life losses and other types of losses during warfare or a natural disaster. Civil Defense in Turkey is the whole of unarmed, protective and rescuer measures and activities. (Jica, 2004)

GDCD organizes, coordinates, disseminates and monitors the civil defense activities all over the country, both at central and local level; takes preventive measurements and plans the emergency search and rescue activities, standardizes the fire fighting activities, organizes and keeps ready the search and rescue teams, provides first aid, search and rescue, feeding and urgent sheltering in time of an emergency, develops early warning systems, promotes the volunteers who has already been trained about emergencies. (Koçak, 2005)

- General Directorate of Technical Research and Implementation (TAU)

The General Directorate of Technical Research and Implementation was established in 1984 in order to carry out mainly the physical planning functions of the central government. Duties and responsibilities of the General Directorate are assigned mainly by the Development Law of 1985. According to this Act, the physical planning and implementation powers at urban level have been delegated to the municipalities, while the preparation of the territorial plans rests within the domain of this General Directorate for those sub-regions which encompasses more than one municipality and display special characteristic in terms of urban development, industrial growth, tourism potential etc.

TAU, searches for the reduction of the losses which earthquakes cause, develops earthquake warning networks and measures for more safe development plans. (Koçak, 2005)

- The Turkish Red Crescent Society (TRCS)

The Turkish Red Crescent Society is an integral and important part of overall disaster management structure in Turkey. It is represented at national, provincial, and district level committees. The TRCS is active in the areas of disaster preparedness and response, bloodtransfusion services, AIDS, and first-aid training. (Jica, 2004)

The TRCS was founded as an association on 11 June 1868 and beginning in 1924 and continuing to the present time, TRCS is mainly involved in disaster related activities such as providing relief materials, tents and sometimes cash beneficiaries. The main function of TRCS is to provide humanitarian assistance to the vulnerable people. (Jica, 2004)

- Turkish Armed Forces

The military has an important role in emergency management with its countrywide organization and human resources. The military is a part of both central and local emergency management system.

During the Marmara Earthquake, the well equipped and educated Military Search and Rescue Teams provided search and rescue services. It acted as an auxiliary to provide stock and distribute the relief items. Just after the earthquake Military established a Civil Military Cooperation Brigade in order to be an active part of the man made or natural disasters consequence management system. (Koçak, 2005)

4.2.2.2. Provincial Level

The governorship of provinces and districts are the first response mechanisms to disasters in Turkey and they have some other direct responsibilities for disaster management. The organizational structure for disaster management at provincial level is under the authorization of the governor (Jica, 2004).

Each of governorship establishes a 'Provincial Rescue and Aid Committee'. There are also nine service droops within this body during disasters to implement effective response and recovery efforts. Districts also established the same structure for their own disaster management activities (Jica, 2004).

Figure 4.12 Provincial Rescue and Aid Committee
(Source: Jica, 2004)

Municipalities and governorships are also responsible for mitigation activities. Municipalities have the main role and responsibility in order to coordinate, arrange and implement the prevention, mitigation and risk reduction activities among which are preparation and implementing the master plans, land use plans, implementation plans, licensing the constructions, conducting community awareness programs, activate the community based organizations, NGOs for this purpose. And Governorships have the main role and responsibility in order to prepare the Province Emergency Plans, implement and monitor the emergency plans in times of disasters. (Koçak, 2005)

The provincial governorships and the municipalities have had an incongruous relationship. Provincial administrations are fully responsible and liable for all activities and losses after a disaster, but have no powers to intervene in the development processes in normal times.

Municipalities ordinarily have all the powers of monitoring, planning and constructional activities, but can ignore technical requirements and are not held accountable. Responsibilities of local authorities have now been extended to be more explicit about disaster preparation and mitigation duties.

4.2.2.3. Other Ministries and State Agencies

Duties and responsibilities of those ministries before and after disasters are described in the regulation concerning 'The Fundamental of Emergency Aid Organizations and Planning Associated with Disasters '. (Jica, 2004)

Other ministries and state agencies responsible from natural disaster management system in Turkey: Prime Minister's Office, State Meteorological General Directorate (DMI), State Planning Organization (DPT), Turkish Statistical Institute (TUIK), Project Implementation Unit (PUB), Ministry Of Interior, Ministry of Energy and Natural Resources, Ministry of Foreign Affairs, Ministry of National Defense, Ministry of National Education, Ministry of Health, Ministry of Transportation, Ministry of Finance, Ministry of Agriculture and Rural Affairs, Ministry of Environment and Forest, Ministry of Justice, General Directorate of State Hydraulic Works(DSI), General Directorate of Highway, General Directorate of Construction Affair, General Staff of Armed Forces, General Command of Mapping.

4.2.3. Legislative Framework

The conventional disaster policy in Turkey has two major components: the 'Disasters Law' (1959) and the 'Development Law' (1985) and their attendant regulations. These laws provide public intervention capacity and improvement in the efficiency of relief operations after disasters, both administered by the Ministry of Public Works and Settlements.

Although there are many potential links between the two bodies of law, it is observed that there is a lack of coherence between the two systems (Balamir, 2001). The Development Law has almost no reference to natural disasters, whereas the main focus of the Disasters Law deals with the post-disaster operations and relief organizations (Balamir, 2001). These two bodies of law are detailed below.

4.2.3.1. The Disaster Law (7269)

The Disaster Law (7269), which dates from 1959, is the chief legal frame of disaster management and it is mainly directed towards post disaster organization of humanitarian help, assessment of the damage and finance, although there are some articles that are devoted to duties and responsibilities related to preparedness.

The Disaster Law provides for, among other topics:

- Emergency relief and operations, and the preparation of a management brief
- Principles in the determination of effects of disasters on social life
- Determination of the rights of victims of disasters
- Discounts to be made in the payment programs of the disaster victims for buildings constructed by public means
- Principles of distribution of the residual buildings and property
- Design principles for buildings in areas subject to disasters
- Principles for the valuation of the remains of damaged property

The main focus of the Disasters Law and related regulations is to provide formal capacity for post-disaster intervention and relief operation organization. The Disasters Law and its regulations fall short of constituting a contemporary disaster management system. It does not differentiate between authorized and unauthorized construction, and in a sense, it rewards the owners of the unauthorized buildings at the expense of the safety of the majority of inhabitants (Balamir, 2001).

The Law provides extraordinary powers for provincial governors. "When disasters occur, the governor has a sole authority with powers of commanding all public and private and even military resources, property and all vehicles" (Balamir, 2001). Therefore, each governor is responsible for drawing an 'action plan' of relief operations to become effective immediately after a disaster (Severn, 1995). These local action plans, as described by the Disasters Law and by the recent mandates of the Ministry of the Interior, are currently prepared with greater attention since 1999 (Balamir, 2001). However, "there is a preparation for 'tents and blankets operations' rather than any form of a risk analysis, estimations of losses and a contingency plan for pre-disaster monitoring of forms of mitigation" (Balamir, 2001).

Of the 68 articles in the main body of the Law, only a few contain provisions for pre-disaster activities and in practice disaster mitigation requirements are hardly fulfilled (Balamir, 2001).

The local administrations only have the role of providing the logistic support to the central organs whereas the disaster risk management responsibilities must lie here. Besides its confinement to post-disaster operations and its content disparate from the Development Law, the Disasters Law and its regulations fall short of constituting a cotemporary disaster management system (Balamir, 2001).

4.2.3.2. The Development Law (3194)

The Development Law (3194), which dates from 1985, governs the terms of regulation and procedures for the preparation of urban master plans and private construction through building permits, use of buildings, and provision of shelters, among others.

The Development Law provides for, among other topics:

- Uniform development of urban areas
- Preparation, enforcement and revision of development plans
- Development of areas where planning is not mandatory
- Land rearrangement procedures
- Authors eligible to prepare urban plans and topographical maps
- Responsibilities and liabilities on the technical personnel other than urban planners, architects and engineers
- Provision of shelters

It is important to note that the Development Law does not specifically address the issues of disaster risk management or mitigation. The most effective and cost-efficient opportunities for earthquake risk reduction arise in the planning, development, design and construction phases. The topic of earthquake safety is now inadequately addressed by a combination of provisions of the Disaster and Development Laws. (GDDA, 2004)

The conventional system of the Development Law does not include disaster mitigation methods in land-use planning and building construction. Avoidance of disaster risks is an obvious omission in such a way that these concerns can not be confined to the construction of buildings alone (Balamir, 2001).

The Law neither has provisions to cope with natural disasters, nor has an interrelation with the Disasters Law (Gulkan, 2002).

Furthermore, it is "deficient in the technical means of control during the construction stage itself, neglects property management approaches, and has a blind eye in the vital need of protection of various categories of (historical, natural, riparian, etc.) environment" (Balamir, 2001).

As clarified in the Law, municipal and provincial administrations are obliged to prepare urban plans. In their urban Master Plan making functions, local authorities are practically free of guidance and inspection. In addition Master Plans for urban areas represent only an intermediate step in the hierarchy of physical plans. The higher and lower level plans and their relation to urban plans are the missing parts of the overall system. In the Law regional strategy plans, environmental plans and contingency plans are almost totally neglected (Balamir, 2001).

The Law assigns full responsibility for the plan making and their ratification to local administrations. However, local administrations lack the financial and technical skills to meet this obligation. The traditional singular authority of the MPWS has been distributed in the mid-1980s. Since then, municipalities and provincial governments have been responsible in themselves, from plan making and development control functions. Dispersion of such prerogatives causes arbitrariness in ensuring environmental standards and quality. The planning system today, with its numerous regulatory mechanisms and actors, is far from a unified body or authority in monitoring physical development (Balamir, 2001).

Since the overall planning control is diffused, it is often difficult to follow the principles of reducing risks. There are almost a dozen of public authorities and ministries other than the MPWS proper. Therefore it is difficult to decide which authority has the ultimate powers at a specific location. This obstructs the possibility of uniformity in the contents and procedures of plan making, particularly for disaster mitigation purposes (Balamir, 2001).

Specially standardized geological and microzonation maps, as well as integrated information related to other disasters are not considered as a prior condition in the development system. Geological evaluation reports for individual buildings as required by some municipalities are piecemeal and can not be impartial because they are prepared by the investing party (Balamir, 2001).

4.2.3.3. Changes Introduced in the Legal System Since 1999

Revitalization in the existing agencies responsible for natural disasters did take place after the 1999 earthquakes. With a reframed approach to disasters and determination not to exclude mitigation measures, the government envisaged the establishment of new and complementary units (GDDA, 2004).

The events gave great impetus to the existing organizations, in the re-evaluation of their own capabilities, and in devising more efficient methods of carrying out their tasks. Besides reviewing the effectiveness of the two existing official institutions directly related with earthquakes (GDDA and GDCD), new organizational steps were taken in several directions. In the first place, responsibilities of the local authorities were extended to cover disaster mitigation efforts by the Decrees of the Board of Ministers and by amendments to the existing Law of Municipalities (1580) and the Civil Defense Law (7126). (GDDA, 2004)

Following the 1999 Marmara Earthquake, three important steps were taken by the government. These are the introduction of institutions of 'obligatory earthquake insurance', 'construction inspection' functions, and provisions for the improvements in 'professional competence' (Keles, 2004; Balamir, 2001).

In organizational terms, several efforts were aimed to accomplish a more comprehensive management system. Apart from extensions made in the responsibilities of the local authorities in disaster mitigation, three complementary organizations were introduced. Ministry of the Interior initiated regional centers for relief and emergency operations, a General Directorate of Emergency Management was established and attached to the Prime Ministry, and an independent National Earthquake Council was formed by a Prime Ministry mandate. (GDDA, 2004)

These new provisions are reviewed in detail below in Figure 4.13.

Figure 4.13 The Conventional System and New Provisions in Disaster Policy
(Source: Balamir, 2001)

4.2.3.4. Seismic Design and Construction Changes

Specification for Construction in Disaster Areas have been changed many times following the developments in engineering seismology, tectonic and seismo-tectonic invention and improved earthquake data collection. (Pampal, 2007)

Major earthquakes in Turkey have led to substantial changes in the practice of seismic design and construction. After the largest earthquake in Turkey in the 20th century, 1939 Erzincan earthquake, M7.9, the Turkish Ministry of Public Works and Settlement formed a committee to prepare a seismic zone map. The formation of this committee was the first step toward developing regulations for the seismic design of buildings in Turkey. Key events in the evolution of seismic codes in Turkey are listed below.

Table 4.7 Key events in the evolution of seismic design codes in Turkey
(Source: PEER, 2000)

Year	Event	Code development
1939	Erzincan earthquake (M7.9)	
1940	Committee formed to develop a seis- mic zonation map for Turkey	First seismic code published
1942		Earthquake zone map prepared; map promulgated in 1945
1943	Tosya earthquake (M7.2)	
1944	Gerede earthquake (M7.2)	Seismic code revised
1947		Seismic code revised
1949		Seismic code revised
1953		Seismic code revised
1958	Ministry of Reconstruction and Resettlement established	Seismic code revised
1961		Earthquake zone map revised
1963		Seismic code revised
1966	Varto earthquake (M7.1)	Seismic code revised; ductile detailing introduced
1967	Adapazari earthquake (M7.1)	
1968		Seismic code revised; ductile detailing required
1975		
1992	Erzincan earthquake (M6.9)	Izmit earthquake (M7.4) Düzce earthquake (M7.2)
1997		
1999		

The first seismic design code for buildings was published in 1940, one year after the destructive Erzincan earthquake and revised 8 times in the years of 1944, 1947, 1949, 1953, 1961, 1968, 1975 and 1997.

One of the basic facts reaffirmed in the 1999 East Marmara earthquakes in Turkey, was the deficiency of the building stock in meeting the earthquake design codes even at project stage, let alone those due to production faults and negligence's. This observation is made for the authorized stock only; leaving aside the clandestine unauthorized other half of the total stock (Balamir, 2001).

As very often stated, it is this fabricated environment that kill people, not the earthquake itself. There is always some indeterminacy in the system, owing to variations in local subterranean conditions, physical designs of buildings, manner the construction work was run, choice of structural materials, methods followed in mechanical services, detailing, etc. Although natural forces are the source of hazards, it is the human intervention in the form of inadequate built-environment that fabricates the risks and disasters. (Balamir, 2001)

In order to evaluate the effects of "seismic code" revisions to building stocks; 1961, 1968, 1975 and 1997 revisions are examined, as the cumulative dataset of building construction statistics is composed between 1954 and 2003.

CHAPTER 5

DETERMINATION OF URBAN SEISMIC RISK VARIABLES IN URBAN AREAS OF TURKEY

The aim of this research is to examine the factors that determine urban risks and establishing analysis of seismic risks in cities and living environments could be determined on the basis of a set of attributes of the building stock. The scope is to exhibit and analytically compare such factors in a sample of cities in Turkey.

In order to examine and compare urban risks in the sample of settlements and metropolitan cities of Turkey, statistical surveys and statistical analyses are used. Quantitative information about a set of attributes of settlements selected is investigated statistically to determine which of the factors contribute most to urban risks described locally.

In the determination of risk factors, the Earthquake scenarios identified in Province Disaster Plans, prepared by governorships in each settlement and copies of which are collected in General Directorate of Disaster Affairs provides the dependent variables of the research.

The independent variables of the research are composed of the building stock changes and rates of unauthorized buildings and related attributes of building stock in each settlement obtained from Turkish Statistical Institute (TSI). "Building Construction Statistics" prepared by Turkish Statistical Institute is the main book that is used within this research.

The study is expected to provide information about the critically vulnerable assets in cities, whether this could be considered as a function of hazard-proneness, and whether or not these attributes are consistently correlated with the hazard maps of Turkey.

The basic question of the research is: "How do hazard levels correlate to independent variables?" and regression analyses are used to examine this question.

Figure 5.1 Dependent and Independent Variables of the Research

5.1. Descriptions of the Most Likely Disaster Scenario as Dependent Variables of the Research

In the determination of risk factors, the Earthquake scenarios identified in Province Disaster Plans, prepared by governorships and collected in General Directorate of Disaster Affairs generates the dependent variables of the research.

A description of how these must be prepared is given in one of the regulations of the 'Disaster Law' (7269). It requires that a 'most likely' scenario with loss estimates should be made for each settlement. A quantitative measure of the most likely loss can be considered as a direct level of risk of the city involved, irrespective of the subjective nature local assessments.

A detailed archive research in the General Directorate of Disaster Affairs about Province Disaster Plans indicated limitations in terms of available cases. These 'plans' have either did not ever arrive to the General Directory, or have negligently been discarded by the same authority.

As a result of this limitation the general framework of the study is extended from the original intention of metropolitan cities of Turkey, to 17 provincial centers. These have prepared Province Disaster Plans adequately to fulfill the legal regulations.

These cities with satisfactory Disaster Plans and consistent assumptions about Earthquake scenarios are; Aksaray, Antalya, Ardahan, Bursa, Çanakkale, Düzce, Elazığ, Erzincan, Istanbul, Izmir, Karabük, Kastamonu, Kırşehir, Kocaeli, Malatya, Niğde, and Yalova. (See Figure 5.2)

Within the provisions of the Information Law (Law No: 4982) an information request mail sent to the all governorships and municipalities allowed access to 4 Disaster Plans and assumptions about Earthquake scenarios. But the Disaster Plans and Earthquake scenarios of these 4 provincial centers (Ardahan, Elazığ, Erzincan and Malatya) are already obtained from GDDA and there isn't any contribution of Information Law to the research.

Table 5.1 Hazard Zones and Populations of Selected Provincial Centers

Selected Provincial Centers	Earthquake Hazard Zone	Urban Population
Aksaray	4	204.808
Antalya	2	1.127 .634
Ardahan	2	35.835
Bursa	1	1.979 .999
Çanakkale	1	247.443
Düzce	1	157.894
Elazığ	2	389.774
Erzincan	1	114.437
Istanbul	1	11.174 .257
Izmir	1	3.175 .133
Karabük	1	164.072
Kastamonu	1	184.685
Kırșehir	1	147.073
Kocaeli	1	894.242
Malatya	2	462.569
Niğde	4	149.696
Yalova	1	122.075

Eleven of the selected cities are in the first hazard zone, four of the selected cities are in the second hazard zone and two of the selected cities are in the fourth hazard zone.

Figure 5.2 Selected Provincial Centers

The dependent variables on the assumptions of earthquake scenarios identified in Province Disaster Plans, prepared by governorships are given below. (See Table 5.2)

- Estimated number of population killed
- Estimated number of population injured
- Estimated number of homeless and affected people
- Estimated number of totally destroyed units
- Estimated number of moderately destroyed units
- Estimated number of lightly destroyed units

The variables are categorized in two groups as human loss and material loss.

Human Loss
Estimated number of population killed Material Loss$\quad\left[\begin{array}{l}\text { Estimated number of population injured } \\ \text { Estimated number of homeless and affected people }\end{array}\right.$
Estimated number of moderately destroyed units Estimated number of lightly destroyed units

Figure 5.3 Dependent variables of the Research on the assumptions of earthquake scenarios

Table 5.2 Depended Variables on the Assumptions of Earthquake Scenarios
(Source: GDDA, 2007)

Provincial Centers	Estimated Magnitude	Estimated Number of Killed/ Injured/ Affected People	Estimated Number of Destroyed Units
Aksaray	6.7	Killed People: 300 Injured People: 500 Homeless and Affected People: 1270	Totally or Moderately Destroyed Units: 145
Antalya	7	Killed People: \%1-\%3 of the population Injured People: $\% 3-\% 9$ of the population Homeless and Affected People: \%7 of the population	Totally or Moderately Destroyed Units: 2100
Ardahan	6.5	Killed People: \%30 of the population Injured People: \%40 of the population Homeless and Affected People: $\% 30$ of the population	Totally Destroyed Units: \%30 of the buildings Moderately Destroyed Units: \%70 of the buildings
Bursa	5.7-7	Killed People: $\% 0.12-\% 0.40$ of the pop. Injured People: \%0.6-\%0.21 of the pop. Homeless and Affected People: \%17-\%34 of the population	Totally Destroyed Units: 85.550 Moderately Destroyed Units: 98.955 Lightly Destroyed Units: 123.966
Çanakkale	7	Killed People: 54-181 Injured People: 162-543 Homeless and Affected People: 5911- 24.598	Totally Destroyed Units: 1802 Moderately Destroyed Units: 5697 Lightly Destroyed Units: 6129
Düzce	7.2		Totally Destroyed Units: 9000 Moderately Destroyed Units: 4200 Lightly Destroyed Units: 4000
Elazığ	7.1	Killed People: \%1 of the population Injured People: $\% 40$ of the population Homeless and Affected People: $\% 50$ of the population	Totally Destroyed Units: 1000 Moderately Destroyed Units: 1500 Lightly Destroyed Units: 2000
Erzincan	6.5	Killed People: 500-1700 Injured People: 1530-2500 Homeless and Affected People: 80.000- 12.000	Totally Destroyed Units: 16.989 Moderately Destroyed Units: 7050 Lightly Destroyed Units: 1405
Istanbul	7.5-7.7	Killed People: 70.000-90.000 Injured People: 520.000 Homeless and Affected People: 500.000- 600.000	$\begin{aligned} & \text { Totally Destroyed Units: } 50.000 \text { - } \\ & 60.000 \end{aligned}$
Izmir	6.5	Killed People: 6946-23.159 Injured People: 20.840-231.159 Homeless and Affected People: 1.748.082	Totally Destroyed Units: 231.583 Moderately Destroyed Units: 267.867 Lightly Destroyed Units: 335.575
Karabük	7.8	Killed People: 226 Injured People: 569 Homeless and Affected People: 5864	Totally Destroyed Units: 870 Moderately Destroyed Units: 478 Lightly Destroyed Units: 599
Kastamonu	7.5	Killed People: 77 Injured People: 194 Homeless and Affected People: 3573	Totally Destroyed Units: 295 Moderately Destroyed Units: 565 Lightly Destroyed Units: 629
Kırşehir	6.8	Affected People: 144.726	Totally or Moderately Destroyed Units: $\% 0.4$ of the buil.
Kocaeli	7-7.5	Killed People: \%0.7 of the population Injured People: \%2 of the population Homeless and Affected People: \%33 of the population	Totally Destroyed Units: 77.848 Moderately Destroyed Units: 36.000 Lightly Destroyed Units: 45.000
Malatya	6.8	Killed People: 2000 Injured People: 10.000	Totally or Moderately Destroyed Units: 27.000
Niğde	7.2	Killed People: 2240 Injured people: 5000	Totally Destroyed Units: 540 Moderately Destroyed Units: 1800
Yalova	7-7.5	Killed People: 1800 Injured People: 5400 Homeless and Affected People: 27.000	Totally Destroyed Units : 13.400 Moderately Destroyed Units: 6200 Lightly Destroyed Units: 7750

These variables will be used in the comparison of the risk factors dependent on the assumptions of the earthquake scenarios. This investigation of assumptions of the earthquake scenarios within the selected cities aims to compare the official assumptions made by governorships with the results of this study, and therefore to survey the consistency of official assumptions.

Table 5.1 is composed from the raw data of dependent variables on the assumptions of earthquake scenarios identified in Province Disaster Plans, prepared by governorships. This raw data shows clearly the inadequacy of the guide in the preparation of Disaster Plans. As a result of this inadequacy, the assumptions and variables in Disaster Plans do not have a general format.

The units of variables are different from each other, while some governorship used percentages to express the estimated number of killed-injured-affected people and destroyed units, the others used real numbers.

Consequently, a standardization process has to be done in order to organize this raw data. Three main assumptions are made within this standardization process. These are;

1. For the assumptions that are given between a minimum and maximum estimation level, the maximum estimations are accepted in order to obtain the worst-case scenarios. These provincial centers that provided maximum estimations are Antalya, Bursa, Çanakkale, Erzincan, Istanbul and Izmir.
2. The provincial centers that used percentages (\% of the population) to express the estimated number of killed, injured and affected people are converted to numbers by using the Population Census (2007) when necessary. These provincial centers that used populations to standardize their assumptions are Antalya, Ardahan, Bursa, Elazığ and Kocaeli.
3. The provincial centers that used percentages (\% of the buildings) to express the estimated number of totally, moderately and lightly destroyed units are converted to numbers by using the Building Census (2000). These provincial centers that used building numbers to standardize their assumptions are Ardahan and Kırşehir.

Table 5.3 Standardized Assumptions of Earthquake Scenarios

Provincial Centers	Magnitude	Killed People	Injured People	Affected People	Totally Destroyed	Moderately Destroyed	Lightly Destroyed
Aksaray	6,7	300	1120	150	145	-	-
Antalya	7	53.679	161.037	125.251	2100	-	-
Ardahan	6,5	33.816	45.088	33.816	2463	5748	-
Bursa	$5,7-7$	9760	19.519	829.558	85.550	98.955	123.966
Çanakkale	7	181	543	24.598	1802	5697	6129
Düzce	7,2	-	-	-	9000	4200	4000
Elazığ	7,1	5413	216.503	270.629	1000	1500	2000
Erzincan	6,5	1700	2500	12.000	16.989	7050	1405
Istanbul	$7,5-7,7$	90.000	520.000	600.000	60.000	-	-
Izmir	6,5	23.159	231.159	1.748 .082	231.583	267.867	335.575
Karabük	7,8	226	569	5864	870	478	599
Kastamonu	7,5	77	194	3573	295	565	629
Kırşehir	6,8	-	-	144.726	146	-	-
Kocaeli	$7-7,5$	10.065	28.759	474.516	77.848	36.000	45.000
Malatya	6,8	2000	10.000	-	27.000	-	-
Niğde	7,2	2240	5000	-	1800	-	-
Yalova	$7-7,5$	1800	5400	27.000	13.400	6200	7750

According to the standardized assumptions of earthquake scenarios;
The biggest magnitude of earthquake is in Karabük with 7, 8 MSK scale, Istanbul is in the second place with 7, 5-7, 7 MSK scale, Kastamonu, Kocaeli and Yalova is in the third place with 7-7, 5 MSK scale.

Figure 5.4 Estimated Magnitudes of EQ's

Table 5.4 Earthquake Hazard Zones and Loss Assumptions Comparison

Provincial Centers	Earthquake Hazard Zone	Population	Human Loss	Human Loss / Population $(\mathbf{x} / \mathbf{1 0 0 0})$	Building Stock	Material Loss	Material Loss / Building Stock $\mathbf{(x / 1 0 0)}$
Aksaray	4	204.808	1570	7,67	55305	145	0,26
Antalya	2	1.127 .634	339967	0,30	233802	2100	0,90
Ardahan	2	35.835	112720	3,15	8148	8211	100,00
Bursa	1	1.979 .999	858837	0,43	270023	308471	100,00
Çanakkale	1	247.443	25322	0,10	64657	13628	21,08
Düzce	1	157.894	0	0,00	19617	17200	87,68
Elazığ	2	389.774	492545	1,26	52354	4500	8,60
Erzincan	1	114.437	16200	0,14	37765	25444	67,37
Istanbul	1	11.174 .257	1210000	0,11	869444	60000	6,90
Izmir	1	3.175 .133	2002400	0,63	522243	835025	100,00
Karabük	1	164.072	6659	0,04	25632	1947	7,60
Kastamonu	1	184.685	3844	0,02	39292	1489	3,79
Kırşehir	1	147.073	144.726	0,98	35704	146	0,41
Kocaeli	1	894.242	513340	0,57	140613	158848	100,00
Malatya	2	462.569	12.000	0,03	84029	27000	32,13
Niğde	4	149.696	7240	0,05	52710	1800	3,41
Yalova	1	122.075	34200	0,28	23269	27350	100,00

When we examine the human loss assumptions according to the earthquake hazard levels, we can see that the highest population loss is in Aksaray which is located in fourth degree earthquake hazard zone. The second and third population loss is in Ardahan and Elazığ, which are located in the second degree earthquake hazard zone.

This ranking shows clearly both the inconsistency of the assumptions and the deficiency of Earthquake Hazard Map of Turkey.

Figure 5.5 Human Loss Assumptions

Figure 5.5 Standardized Assumptions of Earthquake Scenarios

After the standardization process, two dependent variables, Y_{1} and Y_{2} are determined in order to examine the basic question of the research "How do hazard levels correlate to Y_{1} and Y_{2} and other independent variables?"

Table 5.5 Dependent Variables of the Research

	Urban Population	Killed People	Injured People	Affected People	$\mathbf{Y}_{\mathbf{1 a}}$	$\mathbf{Y}_{\mathbf{1 b}}$	$\mathbf{Y}_{\mathbf{1 c}}$	$\mathbf{Y}_{\mathbf{2}}$
Aksaray	204.808	300	1120	150	14,65	54,69	7,32	26,22
Antakya	1.127 .634	53.679	161.037	125.251	476,03	1428,10	1110,74	89,82
Ardahan	35.835	33.816	45.088	33.816	9436,58	12582,11	9436,58	10000
Bursa	1.979 .999	9760	19.519	829.558	49,29	98,58	4189,69	10000
Çanakkale	247.443	181	543	24.598	7,31	21,94	994,09	2107,74
Düzce	157.894	0	0	0	0,00	0,00	0,00	8767,91
Elazığ	389.774	5413	216.503	270.629	138,88	5554,58	6943,23	859,53
Erzincan	114.437	1700	2500	12.000	148,55	218,46	1048,61	6737,46
İstanbul	11.174 .257	90.000	520.000	600.000	80,54	465,36	536,95	690,10
İzmir	3.175 .133	23.159	231.159	1.748 .082	72,94	728,03	5505,54	10000
Karabük	164.072	226	569	5864	13,77	34,68	357,40	759,60
Kastamonu	184.685	77	194	3573	4,17	10,50	193,46	378,96
Kış̧ehir	147.073	0	0	144.726	0,00	0,00	9840,42	40,89
Kocaeli	894.242	10.065	28.759	474.516	112,55	321,60	5306,35	10000
Malatya	462.569	2000	10.000	0	43,24	216,18	0,00	3213,18
Niğde	149.696	2240	5000	0	149,64	334,01	0,00	341,49
Yalova	122.075	1800	5400	27.000	147,45	442,35	2211,76	10000

$Y_{1 a} Y_{1 b}$ and $Y_{1 c}$ are dependent variables of the research and composed from the ratio of killed, injured and affected people numbers to the urban population.

$$
\begin{aligned}
& \mathbf{Y}_{\mathbf{1 a}}=\text { Killed } / \text { Urban Population } \times 10000 \\
& \mathbf{Y}_{\mathbf{1 b}}=\text { Injured } / \text { Urban Population } \times 10000 \\
& \mathbf{Y}_{\mathbf{1} \mathbf{c}}=\text { Affected } / \text { Urban Population } \times 10000
\end{aligned}
$$

Y2 is the other dependent variable of the research and composed from the ratio of destroyed, units to the building stock.
$\mathbf{Y}_{\mathbf{2}}=$ Destroyed Units / Building Stock x 10000

5.2. Building Stock Attributes as Independent Variables of the Research

The independent variables of the research are composed of the building stock changes and rates of unauthorized buildings obtained from Turkish Statistical Institute (TSI).

After the compulsory selection of the case cities, published statistics of census and housing data prepared by the Turkish Statistical Institute is used to examine the building stock. "Building Construction Statistics" and "Building Census" prepared by Turkish Statistical Institute are the main source of data that is used within this research.

Information in the Building Construction Statistics is based on the construction and occupancy permits for new buildings by province, municipality and number of dwelling units, structural systems, materials used, and types of investors.

This publication is used to obtain two datasets about building stocks. The first dataset is about building stock changes between 1954 and 2003 (see Appendix D). The second dataset is about the "building amnesties" between 1984 and 2000 (see Appendix E).

Building Census was conducted at the center of provinces, districts and villages which have municipality organization for determination the number of buildings, use of building, construction year, number of stories, number of residential buildings, structural system and building material, water installation and waste water drainage system of building and floor area of building.

This publication is used to obtain two datasets about building stocks. The first dataset is about the rates of unauthorized building stock and the second dataset is about the rates of stock of 3+ stories.

5.2.1. Rates of Building Stock Changes between 1954 and 2003

Building Construction Statistics is used to have a cumulative dataset from 1954 to 2003, in order to make a comprehensive assessment about building stock changes in a certain time period. The cumulative dataset is composed according to the 17 selected provincial centers. (See Tables D. 1 - D. 18)

5.2.2. Rates of "Building Amnesties" between 1984 and 2000

The second dataset composed from Building Construction Statistics includes given permits by "building amnesties" between 1984 and 2000. This dataset consists of the cumulative number of the dwelling units and the use of buildings as a result of building amnesties.

5.2.3. Rates of Unauthorized Building Stock

Building Construction Statistics that are compiled by licenses propriety building stock records were not obtained due to not determined illegal building (TSI, 2000).

Consequently, Building Census (2000) is used to have the number of unauthorized building stock.

5.2.4. Rates of Stock of 3+ Stories

Building Census (2000) is used to have the rates of building stock of $3+$ stories.

After four datasets about building stocks are obtained, 6 independent variables are composed from these datasets.

These independent variables are;
$\mathbf{X 1}=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$
$\mathbf{X 2}=($ Floor area of Apartment House / Floor Area of Residential Building) x 100
$\mathbf{X 3}=($ Total Buildings subject to Amnesties $/$ General Total of Building $) \times 100$
$\mathbf{X 4}=$ Population Growth Rate (\%o)
$\mathbf{X 5}=$ Unauthorized Building Stock Rate (\%)
$\mathbf{X 6}=$ Rates of Stock of 3+ Store's (\%)

Table 5.6 Independent variables of the research

Provincial Centers	$\mathbf{X}_{\mathbf{1}}$	$\mathbf{X}_{\mathbf{2}}$	$\mathbf{X}_{\mathbf{3}}$	$\mathbf{X}_{\mathbf{4}}$	$\mathbf{X}_{\mathbf{5}}$	$\mathbf{X}_{\mathbf{6}}$
AKSARAY	1,83	82,29	0,93	35,95	81,34	24,68
ANTALYA	1,39	93,63	13,54	46,67	83,70	18,56
ARDAHAN	20,20	77,05	0,00	3,01	97,56	5,57
BURSA	14,07	77,69	34,63	35,86	71,98	41,82
ÇANAKKALE	12,50	80,60	7,28	33,92	83,25	19,95
DÜZCE	3,15	84,98	0,00	$-14,07$	65,83	26,50
ELAZIĞ	2,99	84,46	10,22	26,42	51,93	24,33
ERZINCAN	4,73	74,25	6,47	15,51	72,10	10,36
İSTANBUL	1,39	88,56	30,59	28,35	65,92	59,74
İZMIR	2,09	88,49	11,47	23,83	73,48	27,22
KARABÜK	3,92	83,54	0,00	$-4,49$	58,48	30,23
KASTAMONU	5,21	76,13	10,58	22,55	81,76	27,78
KIRŞEHIR	3,14	78,63	8,37	18,07	77,71	12,19
KOCAELI	2,56	88,81	56,81	2,57	74,59	37,73
MALATYA	1,65	95,01	4,59	34,3	81,69	14,79
NIĞDE	2,41	82,40	21,81	34,98	85,77	11,48
YALOVA	2,21	90,92	0,10	6,32	77,70	36,88

$\mathbf{X}_{\mathbf{1}}$ is the first independent variable of the research and it is composed from the ratio of emergency facilities floor area to general total floor area.
$\mathbf{X}_{\mathbf{2}}$ is the second independent variable of the research and it is composed from the ratio of apartment house floor area to residential buildings floor area.
$\mathbf{X}_{\mathbf{3}}$ is the third independent variable of the research and it is composed from the ratio of building amnesties to general total of buildings.
$\mathbf{X}_{\mathbf{4}}$ is the fourth independent variable of the research and it is composed from the population growth rate of provincial centers.
\mathbf{X}_{5} is the fifth independent variable of the research and it is composed from the unauthorized building stock rate.
\mathbf{X}_{6} is the sixth independent variable of the research and it is composed from the rates of stock of 3+ stories.

Table 5.7 First independent variable of the research- X_{1}

Provincial Centers	Floor Area of Emergency Facilities	Floor Area of General Total	$\mathbf{X}_{\mathbf{1}}$
AKSARAY	122354	6673125	1,83
ANTALYA	557045	39938961	1,39
ARDAHAN	28205	139623	20,20
BURSA	6780411	48175084	14,07
ÇANAKKALE	577914	4624721	12,50
DÜZCE	130628	4150670	3,15
ELAZIĞ	375904	12576303	2,99
ERZINCAN	204381	4320291	4,73
İSTANBUL	3066118	219935918	1,39
IZMIR	1905008	91144358	2,09
KARABÜK	191947	4899558	3,92
KASTAMONU	175384	3365746	5,21
KIRȘEHIR	150239	4778445	3,14
KOCAELI	628243	24578248	2,56
MALATYA	222163	13464631	1,65
NIĞDE	105432	4375888	2,41
YALOVA	91497	4144523	2,21

$\mathbf{X}_{\mathbf{1}}=($ Floor area of emergency facilities / floor area of general total $) \times 100$
\mathbf{X}_{1} is the first independent variable of the research and it is composed from the ratio of emergency facilities floor area to general total floor area.

As emergency facilities are both important from pre-disaster and post-disaster activities, this variable is composed to see the correlation between emergency facilities and dependent variables, Y_{1} (sum of killed-injured-affected people) $-\mathrm{Y}_{2}$ (killed-injured-affected people ratio to urban population).

Figure 5.7 First independent variable of the research- X_{1}

Table 5.8 Second independent variable of the research- X_{2}

Provincial Centers	Floor Area of Apartment	Floor Area of Residential Building	$\mathbf{X 2}_{\mathbf{2}}$
AKSARAY	4508917	5479017	82,29
ANTALYA	29090527	31069118	93,63
ARDAHAN	58696	76181	77,05
BURSA	26813134	34515195	77,69
ÇANAKKALE	2810708	3487330	80,60
DÜZCE	2675378	3148400	84,98
ELAZIĞ	9137063	10818701	84,46
ERZINCAN	2399597	3231837	74,25
ISTANBUL	154418919	174367511	88,56
IZMIR	61042049	68979492	88,49
KARABÜK	3092224	3701352	83,54
KASTAMONU	2060812	2706949	76,13
KIRŞEHIR	3145944	4000896	78,63
KOCAELI	14845415	16715550	88,81
MALATYA	10379241	10924288	95,01
NIĞDE	2974749	3610334	82,40
YALOVA	3061010	3366805	90,92

$\mathbf{X 2}=($ Floor area of Apartment House $/$ Floor Area of Residential Building $) \times 100$
$\mathbf{X}_{\mathbf{2}}$ is the second independent variable of the research and it is composed from the ratio of apartment house floor area to residential buildings floor area.

As it is accepted that apartments increased the risk within the construction conditions in Turkey, the ratio of apartment houses in residential buildings is important for the research and this variable is composed to see the correlation between apartment houses ratio and dependent variables, Y_{1} (sum of killed-injured-affected people) - Y_{2} (killed-injured-affected people ratio to urban population).

Figure 5.8 Second independent variable of the research- X_{2}

Table 5.9 Third independent variable of the research- X_{3}

Provincial Centers	Total Building Amnesties	General Total of Building	$\mathbf{X 3}^{\prime}$
AKSARAY	96	10322	0,93
ANTALYA	5160	38100	13,54
ARDAHAN	0	199	0,00
BURSA	26199	75653	34,63
ÇANAKKALE	788	10829	7,28
DÜZCE	0	6703	0,00
ELAZIĞ	2573	25169	10,22
ERZINCAN	682	10535	6,47
İSTANBUL	90641	296275	30,59
IZMIR	15891	138503	11,47
KARABÜK	0	10643	0,00
KASTAMONU	758	7167	10,58
KIRȘEHIR	666	7960	8,37
KOCAELI	20295	35724	56,81
MALATYA	706	15386	4,59
NIĞDE	1636	7500	21,81
YALOVA	5	5190	0,10

$\mathbf{X}_{\mathbf{3}}=$ (Total Building Amnesties / General Total of Building) $\times 100$
$\mathbf{X}_{\mathbf{3}}$ is the third independent variable of the research and it is composed from the ratio of building amnesties to general total of buildings.

The ratio of unauthorized buildings increased the risk and very important for the research. This variable is composed to see the correlation between unauthorized buildings and dependent variables, Y_{1} (sum of killed-injured-affected people) $-\mathrm{Y}_{2}$ (killed-injured-affected people ratio to urban population).

Figure 5.9 Third independent variable of the research- X_{3}

Table 5.10 Fourth independent variable of the research- X_{4}

Provincial Centers	$\mathbf{X}_{\mathbf{4}}$
AKSARAY	35,95
ANTALYA	46,67
ARDAHAN	3,01
BURSA	35,86
ÇANAKKALE	33,92
DÜZCE	$-14,07$
ELAZIĞ	26,42
ERZINCAN	15,51
İSTANBUL	28,35
İZMIR	23,83
KARABÜK	$-4,49$
KASTAMONU	22,55
KIRSEEHIR	18,07
KOCAELI	2,57
MALATYA	34,3
NIĞDE	34,98
YALOVA	6,32

$\mathbf{X 4}=$ Population Growth Rate (\%o)
$\mathbf{X}_{\mathbf{4}}$ is the fourth independent variable of the research and it is composed from the population growth rate of provincial centers.

As it is accepted that the rise of population raises the building stock, this increased the risk also. This variable is composed to see the correlation between population growth and dependent variables, Y_{1} (sum of killed-injured-affected people) $-\mathrm{Y}_{2}$ (killed-injured-affected people ratio to urban population).

Figure 5.10 Fourth independent variable of the research- X_{4}

Table 5.11 Fifth independent variable of the research- X_{5}

Provincial Centers	Building Stock	Unauthorized Building Stock	$\mathbf{X}_{\mathbf{5}}$
AKSARAY	55305	44983	81,34
ANTALYA	233802	195702	83,70
ARDAHAN	8148	7949	97,56
BURSA	270023	194370	71,98
ÇANAKKALE	64657	53828	83,25
DÜZCE	19617	12914	65,83
ELAZIĞ	52354	27185	51,93
ERZINCAN	37765	27230	72,10
İSTANBUL	522244	573169	65,92
IZMIR	25632	383740	73,48
KARABÜK	39292	14989	58,48
KASTAMONU	35704	32125	81,76
KIRSEBIR	140613	104889	77,71
KOCAELI	84029	68643	74,59
MALATYA	52710	45210	85,69
NIĞDE	23269	18079	77,70
YALOVA			

$\mathbf{X 5}=$ Unauthorized Building Stock Rate (\%)
\mathbf{X}_{5} is the fifth independent variable of the research and it is composed from the unauthorized building stock rate (\%)

Figure 5.11 Fifth independent variable of the research- X_{5}

Table 5.12 Sixth independent variable of the research- X_{6}

Provincial Centers	Building Stock	$\mathbf{3 - +}$	$\mathbf{X}_{\mathbf{6}}$
AKSARAY	55305	13647	24,68
ANTALYA	233802	43385	18,56
ARDAHAN	8148	454	5,57
BURSA	270023	112930	41,82
ÇANAKKALE	64657	12896	19,95
DÜZCE	19617	5199	26,50
ELAZIĞ	52354	12740	24,33
ERZINCAN	37765	3911	10,36
İSTANBUL	869444	519434	59,74
İZMIR	522243	142141	27,22
KARABÜK	25632	7749	30,23
KASTAMONU	39292	10917	27,78
KIRȘEHIR	35704	4352	12,19
KOCAELI	140613	53051	37,73
MALATYA	84029	12430	14,79
NIĞDE	52710	6049	11,48
YALOVA	23269	8582	36,88

$\mathbf{X 6}=$ Rates of Stock of 3+ Store's (\%)
\mathbf{X}_{6} is the sixth independent variable of the research and it is composed from the rates of stock of 3+ stories.

Figure 5.12 Sixth independent variable of the research- X_{6}

After all dependent and independent variables are composed best subsets regression analyses and regression analyses are employed to see the relationship between these variables.

CHAPTER 6

EVALUATION OF URBAN SEISMIC RISK VARIABLES IN THE METROPOLITAN CITIES OF TURKEY

Dependent and independent variables of the research are shown below. Best subsets regression analyses are employed to determine what combinations of the independent variables might best denote city-level risks.

The results of the best subsets analyses should give us the "most appropriate combination" for the regression analyses.

```
            Dependent variables (y)
                            \downarrow
                    Y1a = Killed / Urban Population \times 10000
                    Y1b = Injured / Urban Population }\times1000
                    Y1c = Affected / Urban Population \times 10000
                Y2 = Destroyed Units / Building Stock \times 10000
                    Independent variables (x)
                            \downarrow
x1 = (Floor area emergency facilities / floor area of general total) }\times10
x2 = (Floor area of Apartment House / Floor Area of Residential Building) }\times10
x3 = (Total Buildings subject to Amnesties / General Total of Building) }\times10
x4 = Population Growth Rate (%o)
x5 = Unauthorized Building Stock Rate (%)
x6 = Rates of Stock of 3-8 Stories (%)
```

Figure 6.1 Dependent and Independent Variables of the Research

6.1. Best Subsets Regression Analyses

The first best subsets regression analyses is employed between the first dependent variable Y1a and other independent variables (X1, X2, X3, X4, X5, X6) in order to see which independent variable is more related with Y1a.

Table 6.1 Best Subsets Regression: Y1a versus x1; x2; x3; x4; x5; x6

In best subsets regression analyses the more related variable is the one that have the biggest number of $\mathrm{R}-\mathrm{Sq}(\mathrm{adj})$. Table 6.1 shows us that the biggest $\mathrm{R}-\mathrm{Sq}$ (adj) is 58,6 in the third line and this means that the most related variables with Y1a is X 1 and X 5 .

As a result of this analysis we can say that;
Y1a which is the ratio of killed people to urban population is correlated with X1 and X5.

Accordingly, the first regression analysis is performed with;
Y1a $=$ Killed $/$ Urban Population $\times 10000$ and
$\mathrm{X} 1=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$
X5 = Unauthorized Building Stock Rate (\%)

The second best subsets regression analyses is employed between Y1b and other independent variables ($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6)$ in order to see which independent variable is more related with Y1b.

Table 6.2 Best Subsets Regression: Y1b versus x1; x2; x3; x4; x5; x6

Best Subsets Regression: Y1B versus X1; X2; X3; X4; X5; X6						
Response is Y1B						
			Mallows		X $\mathrm{x} \times \mathrm{x} \times \mathrm{X}$	
Vars	R-Sq	R-Sq(adj)	Cp	S	123456	
1	37,8	33,6	0,1	2597,9	X	
1	12,5	6,7	5,4	3080, 1		X
2	42,6	34,4	1,0	2581, 6	$x \quad x$	x
2	41,3	32,9	1,3	2611, 4	$\mathrm{X} \times$	
3	48,3	36,4	1,8	2542,9	$x \quad x$	X
3	44,7	32, 0	2,6	2629, 3	$\mathrm{X} \times \mathrm{X}$	
4	51,1	34,8	3,3	2573, 8	$x \times \quad x \quad x$	X
4	50,7	34,3	3,3	2584,4	$x \times \quad x \quad x$	
5	52,3	30,7	5,0	2655, 2	$x \times \quad x \times x$	
5	51,2	29, 0	5,2	2686, 4	$x \times x \times x$	x
6	52,3	23,7	7,0	2784,5	$\mathrm{X} \times \mathrm{X} \times \mathrm{X}$	

Table 6.2 shows us that the biggest $\mathrm{R}-\mathrm{Sq}(\mathrm{adj})$ is 36,4 in the third line and this means that the most related variables with Y 1 b is X_{1} and X_{6}.

As a result of this analysis we can say that;
$Y 1 b$ which is the ratio of injured people to urban population is correlated with X_{1} and X_{6}.

Accordingly, the second regression analysis is performed with;
Y1b $=$ Injured / Urban Population x 10000
X1 $=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$
X6 = Rates of Stock of 3+ Stories (\%)

The third best subsets regression analyses is employed between Y1c and other independent variables ($\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5, \mathrm{X} 6$) in order to see which independent variable is more related with Y1c.

Table 6.3 Best Subsets Regression: Y1c versus x1; x2; x3; x4; x5; x6

Best Subsets Regression: Y1C versus X1; X2; X3; X4; X5; X6					
Response is Y1C					
			Mallows		X X X X X X
Vars	R-Sq	R-Sq(adj)	Cp	S	123456
1	15,2	9,6	-0,7	3233, 5	X
1	5,1	0, 0	0, 8	3420, 7	X
2	17,3	5,5	1,0	3305, 5	$x \quad x$
2	17, 3	5,5	1,0	3305, 5	$x \quad x$
3	22,8	5, 0	2,2	3314, 6	$x \quad X \quad X$
3	20, 2	1,8	2,6	3370, 8	X X X
4	28, 0	4,1	3,5	3330, 9	$x \quad x \quad x \quad x$
4	27, 3	3,1	3,6	3348, 2	$x \quad x \quad x \quad x$
5	30, 3	0, 0	5,1	3423, 5	$\mathrm{X} \times \mathrm{X} \times \mathrm{X}$
5	28,9	0, 0	5,3	3458, 6	$\mathrm{X} \times \mathrm{X} \quad \mathrm{X} \times$
6	31, 3	0, 0	7,0	3565, 8	$\mathrm{X} \times \times \times \times \times$

Table 6.3 shows us that the biggest $\mathrm{R}-\mathrm{Sq}(\mathrm{adj})$ is 9,6 in the first line and this means that the most related variables with Y 1 c is X_{1}.

As a result of this analysis we can say that;
Y 1 c which is the ratio of affected people to urban population is correlated with X_{1}.

Accordingly, the second regression analysis is performed with;
Y1c $=$ Affected $/$ Urban Population x 10000
$\mathrm{X} 1=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$

The fourth best subsets regression analyses is employed between Y2 and other independent variables (X1, X2, X3, X4, X5, X6) in order to see which independent variable is more related with Y2.

Table 6.4 Best Subsets Regression: Y2 versus x1; x2; x3; x4; x5; x6

Best Subsets Regression: Y2 versus X1; X2; X3; X4; X5; X6					
Response is Y2					
			Mallows		X X X X X X
Vars	R-Sq	R-Sq(adj)	Cp	S	123456
1	23, 3	18, 2	2,6	4024, 4	X
1	13,5	7,8	4,5	4274, 2	X
2	34,1	24,7	2,4	3862, 8	$X \quad X$
2	30, 2	20, 2	3, 2	3974, 6	X X
3	43, 9	30, 9	2,4	3699, 3	$X \mathrm{X} \quad \mathrm{X}$
3	41, 8	28,4	2,8	3766, 2	X X X
4	50,1	33,5	3,1	3629,5	$X \quad X$
4	45,1	26,8	4,1	3806, 7	$\mathrm{X} \times \quad \mathrm{X} \quad \mathrm{X}$
5	50, 7	28, 3	5,0	3769,4	$\mathrm{X} \times \mathrm{X} \times \mathrm{X}$
5	50, 2	27,5	5,1	3789,3	X X X X X
6	50, 7	21, 1	7,0	3952, 0	X X X X X X

Table 6.4 shows us that the biggest $\mathrm{R}-\mathrm{Sq}(\mathrm{adj})$ is 33,5 in the fourth line and this means that the most related variables with Y 2 is X_{1} and X_{4}.

As a result of this analysis we can say that;
Y 2 which is the ratio of destroyed units to building stock is correlated with X_{1} and X_{4}.

Accordingly, the second regression analysis is performed with;
Y2 $=$ Destroyed Units / Building Stock x 10000
X1 $=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$
$\mathrm{X} 4=$ Population Growth Rate (\%o)

The results of best subsets regression analyses shows us that X1, the ratio of emergency facilities floor area to general total floor area of buildings, is the most effective and important independent variable and X 1 is the only variable that correlates with all dependent variables.

This means that X 1 , the ratio of emergency facilities, is the most important factor between all independent variables and also the most effective factor on dependent variables.

6.2. Regression Analyses

Four regression analyses are performed according to the results of best subsets regression analyses. These are;

1- Regression Analysis: Y1a versus x1
2- Regression Analysis: Y1a versus x5
3- Regression Analysis: Y1b versus x1
4- Regression Analysis: Y1b versus x6
5- Regression Analysis: Y1c versus x1
6- Regression Analysis: Y2 versus x1
7- Regression Analysis: Y2 versus x4

6.2.1. Regression Analysis 1

Regression Analysis 1 is performed with Y1a and x1.

Y1a $=$ Killed $/$ Urban Population x 10000 and
$\mathrm{X} 1=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$

Table 6.5 Regression Analysis 1: Y1a versus x1

```
Regression Analysis: Y1A versus X1
The regression equation is
Y1A = - 894 + 305 X1
lrrrr
S = 1627,11 R-Sq = 51,8% R-Sq(adj)
    48,6%
Analysis of Variance
lrrrrer
Residual Error 15 39712344 2647490
Total }168840721
Unusual Observations
\begin{tabular}{rrrrrrc} 
Obs & X1 & Y1A & Fit & SE Fit & Residual & St Resid \\
3 & 20,2 & 9437 & 5274 & 1219 & 4163 & \(3,86 R X\) \\
4 & 14,1 & 49 & 3402 & 793 & -3353 & \(-2,36 R\)
\end{tabular}
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage
```

In regression analyses in order to say that there is a relation between variables, the $\mathrm{R}-\mathrm{Sq}$ (adj) must be minimum 64%. As shown in the Table 6.3 , the R -Sq (adj) is $48,6 \%$.

Although this ratio is insufficient to verify the relationship between Y 1 a and $\mathrm{X}_{1}, 48,6 \%$ is a strong verification of relation for this type of datasets.

Consequently, we can say that there is a relation between killed people and the ratio of emergency facilities floor area to general total floor area of buildings

Figure 6.2 Regression Analysis: Y1a versus X_{1}

Regression equation of Y 1 a versus X_{1} is;

$$
\begin{aligned}
& \mathrm{Y} 1 \mathrm{a}=-894+305 \mathrm{X} 1 \\
& \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=48,6 \%
\end{aligned}
$$

There is a relation between the regression equations of Y 1 a versus X_{1}

6.2.2. Regression Analysis 2

Regression Analysis 2 is performed with Y1a and X_{5}.

Y1a $=$ Killed $/$ Urban Population $\times 10000$ and
X5 = Unauthorized Building Stock Rate (\%)

Table 6.6 Regression Analysis 2: Y1a versus X_{5}

```
Regression Analysis: Y1A versus X5
The regression equation is
Y1A = - 7646 + 110 X5
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & -7646 & 3489 & \(-2,19\) & 0,045 \\
X5 & 109,65 & 45,72 & 2,40 & 0,030
\end{tabular}
S = 1992,71 R-Sq = 27,7% R-Sq(adj)
22,9%
Analysis of Variance
\begin{tabular}{lrrrrr} 
Source & DF & SS & MS & F & P \\
Regression & 1 & 22844106 & 22844106 & 5,75 & 0,030
\end{tabular}
Residual Error 15 59563108 3970874
Total 16 82407214
Unusual Observations
\begin{tabular}{rrrrrrc} 
Obs & X5 & Y1A & Fit & SE Fit & Residual & St Resid \\
3 & 97,6 & 9437 & 3051 & 1115 & 6385 & \(3,87 \mathrm{R}\) \\
7 & 51,9 & 139 & -1952 & 1184 & 2091 & \(1,30 \mathrm{X}\)
\end{tabular}
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
```

As shown in the Table 6.4, the R-Sq (adj) is $22,9 \%$. Although this ratio isn't sufficient enough to verify the relationship between Y1a and X5, we can say that there is a weak relation between the killed people and unauthorized stock rate.

Figure 6.3 Regression Analysis: Y1a versus X_{5}

Regression equation of Y1a versus X_{5} is;

$$
\begin{aligned}
& \mathrm{Y} 1 \mathrm{~A}=-7646+110 \mathrm{X} 5 \\
& \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=22,9 \%
\end{aligned}
$$

There is a weak relation between the regression equations of Y1a versus X_{5}.

6.2.3. Regression Analysis 3

Regression Analysis 3 is performed with Y1b and X_{1}.
$\mathrm{Y} 1 \mathrm{~b}=$ Injured $/$ Urban Population x 10000
$\mathrm{X} 1=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$

Table 6.7 Regression Analysis 3: Y1b versus X_{1}

```
Regression Analysis: Y1B versus X1
The regression equation is
Y1B = - 516 + 366 X1
\begin{tabular}{lrrrr} 
Predictor & Coef & SE Coef & T & P \\
Constant & \(-516,4\) & 877,0 & \(-0,59\) & 0,565 \\
x1 & 366,2 & 121,4 & 3,02 & 0,009
\end{tabular}
X1 366,2 121,4 3,02 0,009
S = 2597,86 R-Sq = 37,8% R-Sq(adj)
33,6%
Analysis of Variance
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Source} & DF & & SS & MS & F & P \\
\hline \multicolumn{3}{|l|}{Regression} & 1 & 161 & 426491 & 61426491 & 9,10 & 0,009 \\
\hline \multicolumn{3}{|l|}{Residual Error} & 15 & 101 & 233055 & 6748870 & & \\
\hline \multicolumn{3}{|l|}{Total} & 16 & 162 & 559546 & & & \\
\hline \multicolumn{9}{|l|}{Unusual Observations} \\
\hline Obs & x1 & Y1B & & Fit & SE Fit & Residual & St & Resid \\
\hline \multirow[t]{2}{*}{3} & 20,2 & 12582 & & 6881 & 1947 & 5701 & & 3,31RX \\
\hline & 14,1 & 99 & & 4636 & 1266 & -4538 & & -2,00R \\
\hline
\end{tabular}
R denotes an observation with a large standardized residual.
X denotes an observation whose }X\mathrm{ value gives it large leverage
```

As shown in the Table 6.5, the R-Sq (adj) is 33, 6%. Although this ratio isn't sufficient enough to verify the relationship between Y1b and X1, we can say that there is a weak relation between the injured people and the ratio of emergency facilities floor area to general total floor area of buildings.

Figure 6.4 Regression Analysis: Y1b versus X_{1}

Regression equation of $Y 1 b$ versus X_{1} is;

$$
\begin{aligned}
& \mathrm{Y} 1 \mathrm{~B}=-516+366 \mathrm{X} 1 \\
& \mathrm{R}-\mathrm{Sq}(\operatorname{adj})=33,6 \%
\end{aligned}
$$

There is a weak relation between the regression equations of Y 1 b versus X_{1}.

6.2.4. Regression Analysis 4

Regression Analysis 4 is performed with Y 1 b and X_{6}.

Y1b $=$ Injured $/$ Urban Population x 10000
X6 $=$ Rates of Stock of 3+ Stories (\%)

Table 6.8 Regression Analysis 4: Y 1 b versus X_{6}

```
Regression Analysis: Y1B versus X6
The regression equation is
Y1B = 3426 - 83,1 X6
Predictor Coef SE Coef T P
Constant 3426 1618 2,12 0,051
X6 -83,14 56,76 -1,46 0,164
S = 3080,10 R-Sq = 12,5% R-Sq(adj) = 6,7%
Analysis of Variance
```



```
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
```

As shown in the Table 6.6, the R-Sq (adj) is $6,7 \%$. This ratio isn't sufficient enough to verify the relationship between Y1b and X 6 and there is no relation between the injured people and rates of $3+$ stories.

Figure 6.5 Regression Analysis: Y1b versus X_{6}

Regression equation of Y 1 b versus X_{6} is;

$$
\begin{aligned}
& \mathrm{Y} 1 \mathrm{~B}=3426-83,1 \mathrm{X} 6 \\
& \mathrm{R}-\mathrm{Sq}(\mathrm{adj})=6,7 \%
\end{aligned}
$$

There is a no relation between the regression equations of Y 1 b versus X_{6}.

6.2.5. Regression Analysis 5

Regression Analysis 5 is performed with Y 1 c and X_{1}.

Y1c = Affected / Urban Population x 10000
$\mathrm{X} 1=($ Floor area emergency facilities $/$ floor area of general total $) \times 100$

Table 6.9 Regression Analysis 5: Y1c versus X_{1}

```
Regression Analysis: Y1C versus X1
The regression equation is
Y1C = 1558 + 248 X1
lrrrrer
S = 3233,50 R-Sq = 15,2% R-Sq(adj) =9,6%
Analysis of Variance
```



```
Residual Error 15 156833271 10455551
Total 16 185039747
Unusual Observations
\begin{tabular}{rrrrrrc} 
Obs & X1 & Y1C & Fit & SE Fit & Residual & St Resid \\
3 & 20,2 & 9437 & 6571 & 2423 & 2866 & \(1,34 \times\) \\
13 & 3,1 & 9840 & 2337 & 834 & 7504 & \(2,40 \mathrm{X}\)
\end{tabular}
R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.
```

As shown in the Table 6.7, the R-Sq (adj) is 9, 6%. This ratio isn't sufficient enough to verify the relationship between Y1c and X 1 and there is no relation between the affected people and the ratio of emergency facilities floor area to general total floor area of buildings.

Figure 6.6 Regression Analysis: Y1c versus X_{1}

Regression equation of Y1c versus X_{1} is;
$\mathrm{Y} 1 \mathrm{C}=1558+248 \mathrm{X} 1$
$R-S q(a d j)=9,6 \%$

There is a no relation between the regression equations of Y 1 c versus X_{1}.

6.2.6. Regression Analysis 6

Regression Analysis 6 is performed with Y 2 and X_{1}.

Y2 = Destroyed Units / Building Stock x 10000
$\mathrm{X} 1=($ Floor area emergency facilities / floor area of general total $) \times 100$

Table 6.10 Regression Analysis 6: Y2 versus X_{1}

```
Regression Analysis: Y2 versus X1
The regression equation is
Y2 = 2817 + 306 X1
Predictor Coef SE Coef T P
Constant 2817 1443 1,95 0,070
X1 305,8 199,7 1,53 0,147
S = 4274,24 R-Sq = 13,5% R-Sq(adj)
```



```
Analysis of Variance
\begin{tabular}{lrrrrr} 
Source & DF & SS & MS & F & P \\
Regression & 1 & 42832152 & 42832152 & 2,34 & 0,147 \\
Residual Error & 15 & 274037268 & 18269151 & &
\end{tabular}
Unusual Observations
Obs 
X denotes an observation whose X value gives it large leverage.
```

As shown in the Table 6.8, the R-Sq (adj) is 7, 8%. This ratio isn't sufficient enough to verify the relationship between Y2 and X1 and there is no relation between destroyed units and the ratio of emergency facilities floor area to general total floor area of buildings.

Figure 6.7 Regression Analysis: Y2 versus X_{1}

Regression equation of Y 2 versus X_{1} is;
$\mathrm{Y} 2=2817+306 \mathrm{X} 1$
R-Sq $(\operatorname{adj})=7,8 \%$

There is a no relation between the regression equations of Y 2 versus X_{1}.

6.2.7. Regression Analysis 7

Regression Analysis 7 is performed with Y 2 and X_{4}.

Y2 $=$ Destroyed Units / Building Stock x 10000
$\mathrm{X} 4=$ Population Growth Rate (\%o)

Table 6.11 Regression Analysis 6: Y 2 versus X_{4}

```
Regression Analysis: Y2 versus X4
The regression equation is
Y2 = 6982 - 128 X4
lrrrrer
S = 4024,41 R-Sq = 23,3% R-Sq(adj)
18,2%
Analysis of Variance
lrrrerer
Residual Error 15 242938228 16195882
Total 16 316869419
Unusual Observations
Obs 
R denotes an observation with a large standardized residual.
```

As shown in the Table 6.9, the R-Sq (adj) is 18, 2 \%. This ratio isn't sufficient enough to verify the relationship between Y2 and X4 and there is no relation between destroyed units and population growth rate.

Figure 6.8 Regression Analysis: Y2 versus X_{4}

Regression equation of Y 2 versus X_{4} is;
$\mathrm{Y} 2=6982-128 \mathrm{X} 4$
R-Sq $(\operatorname{adj})=18,2 \%$

There is a no relation between the regression equations of Y 2 versus X_{4}.

CHAPTER 7

FINDINGS, RECOMMENDATIONS and FURTHER LINES OF INVESTIGATION

7.1. Findings

The study is expected to provide information about the critically vulnerable assets in cities, whether this could be considered as a function of hazard-proneness, and whether or not these attributes are consistently correlated with the hazard maps of Turkey.

As recent international policy emphasis has focused on risks and mitigation, and there is a big deficiency about the issue of risk identification and measurement in Turkey, the examination of the risk and seismic risk concepts with an overview of current understanding and the evolution of the subject from its academic and scientific beginnings to its political implications in the realm of sustainable development of today constitutes one of the most important points of the study.

As mentioned foregoing chapters, the approach in Turkey to risk assessment, risk reduction and risk mapping are deficient and remains limited due to development of regulations that can not be fully implemented.

Furthermore, only a few articles of these regulations contain pre-disaster activities and most of the articles are about post-disaster activities and the new Disaster Act Draft doesn't include risk management and risk assessment approaches.

On the other hand, the Official Seismic Hazard Map does not consider primary factors of risk, social vulnerabilities and attributes of the building stock and only indicates hazard exposure levels of provinces and settlements without providing any information about risk levels.

Consequently, this study is set out with the aim to examine the factors that determine urban risks and establish if analysis of different risks in cities and living environments could be determined on the basis of a set of attributes of the building stock. The scope is to exhibit and analytically compare such factors in a sample of cities in Turkey.

Regression analyses is performed within this concept and the function of this analysis is; $\mathrm{Y} 1=\mathrm{Fx}(\mathrm{ax} 1, \mathrm{bx} 2, \mathrm{cx} 3, \ldots$) and the basic question of the research is: "How do hazard levels correlate to Y 1 and Y 2 and other independent variables?"

The results of regression analyses shows us that X1, the ratio of emergency facilities floor area to general total floor area of buildings, is the most effective and important independent variable and X 1 is the only variable that correlates with all dependent variables.

This means that X 1 , the ratio of emergency facilities, is the most important factor between all independent variables and also the most effective factor on dependent variables.

As emergency facilities are both important from pre-disaster and post-disaster activities, this variable is composed to see the correlation between emergency facilities and dependent variables.

The strongest relation of X1 is with Y1a, killed people, with the percentage of $\% 48,6$. Although $\% 48,6$ isn't sufficient enough to say that there is a strong relation between these values, $\% 48,6$ is a very high percentage for this type of datasets and this shows the strong relation between the ratio of emergency facilities floor area to general total floor area of buildings (X1) and killed people (Y1a).

The second strong relation of X 1 is with Y 1 b , injured people, with the percentage of $\% 33,6$. This shows the strong relation between the ratio of emergency facilities floor area to general total floor area of buildings (X1) and injured people (Y1a).

Other two relations of X 1 is with Y 1 b , affected people, and Y 2 , rates of stock of 3-8 stories, with the percentages of $\% 9,6$ and $\% 7,8$ respectively. These values aren't sufficient enough to say that there is a relation between $\mathrm{X} 1-\mathrm{Y} 1 \mathrm{~b}$ and $\mathrm{X} 1-\mathrm{Y} 2$ but we can say that there is a weak relation between these variables.

7.2. Recommendations

A detailed archive research in the General Directorate of Disaster Affairs about Province Disaster Plans indicated limitations in terms of available cases and assumptions made in the scenarios. These 'plans' have either did not ever arrived to the General Directory, or have negligently been discarded by the same authority.

The unconcerned approach of GDDA about collection and preservation of Disaster Plans can be accepted as the most important and conspicuous example of the Turkey's official approach to the pre-disaster and mitigation activities.

The inadequacy of a guide in the preparation Disaster Plans can be shown clearly from the assumptions of cities that have prepared Province Disaster Plans adequately to fulfill the legal regulations.

The recommendations about Disaster Plans are as follows:

- The importance of pre-disaster activities and the part of Disaster Plans in these predisaster activities should underline
- The duplication of authorities about preparing Disaster Plans should conclude
- An explanatory guide about preparing, collecting and archiving of Disaster Plans should prepare immediately.

7.3. Further Lines of Investigation

This study is the basic and primary step of a comprehensive research about risk sectors, critically vulnerable assets in cities, whether this could be considered as a function of hazardproneness, and whether or not these attributes are consistently correlated with the hazard maps of Turkey.

Within this thesis only psychical attributes like city development patterns, building stock attributes, rates of unauthorized buildings, that could be effect and correlate with urban risks are considered.

Apart from these psychical attributes as well as social conditions like rates of different tenancy groups, tenant ratios and squatter house ratios that represent vulnerability indicators could be effective in the determination of local risk levels.

This study will develop with the contribution of social values in further lines of investigations, like doctorate thesis work and other comprehensive researches.

REFERENCES

Balamir M., 'Reproducing the Fatalist Society: An Evaluation of the Disasters and Development Laws and Regulations in Turkey', in Urban Settlements and Natural Disasters, ed. E. Komut, UIA and Chamber of Architects of Turkey, 96-107, 1999.

Recent Changes in Turkish Disasters Policy: A Strategic Reorientation, in Kleindorfer, Mitigation and Financing of Seismic Risks: Turkish and International Perspectives, Paul and Sertel (eds.), Dordrecht: Kluwer Academic Publishers, 2001.

Balamir M., Local Administration and Risk Management, The Role of Local Governments in Reducing the Risk of Disasters, Demeter K., Guner A., Erkan N. E. (eds.), Center of Local Government Studies and Training, Marmara University, Istanbul, 2004.

Balamir M., Challenges and Methodology for Preventing Major Urban Risks: Designing a Prevention Policy, EUROPE-MENA Urban Network the Cities Meetings Preventing Major Urban Risks, Amman, 2-4 July, 2005.

Balamir M., Seismic Risks and Urban Mitigation Planning, chapter in the text book entitled Tomorrow at Risk: Disasters in Europe and Greece, edited by Sapountzaki, HUA, TYPOTHETO - George Dardanos, Athens, Greece, 227-283, 2007.

Bibbee A., Gönenç R., Jacobs S., Konvitz J. and Price R., Economic effects of the 1999 Turkish earthquakes: An interim report, OECD Economics Department Working, Papers No. 247, Paris, 2000.

Briceno S., Building disaster resilient communities: The road to the World Conference on Disaster Reduction, 2004.

Britton N.R., Managing Community Risks, Emergency Management Policy and Establishment Unit, Ministry of Civil Defense, Wellington, New Zealand, 1998.

Cardona O.D., The need for rethinking the concepts of vulnerability and risk from a Holistic Perspective: A necessary review and criticism for effective risk management, in Mapping Vulnerability: Disasters, Development and People, London, UK: Earthscan Publishers, 2004.

Carreno M., Cardona O., Barbat A., Urban Seismic Risk Evaluation: A Holistic Approach, Natural Hazards, Volume 40, Number 1, 2006.

Columbia University International Urban Planning Studio Disaster Resistant Caracas, Urban Planning Studio of Graduate School of Architecture, Planning and Preservation, and Lamont-Doherty Earth Observatory, unpublished report, 2001.

Columbia University International Urban Planning Studio Disaster Resistant Istanbul, Urban Planning Studio of Graduate School of Architecture, Planning and Preservation, and Lamont-Doherty Earth Observatory, unpublished report, 2002.

Cozzi, Menoni, 2006 et.al., Natural risk prevention and land-use planning in Italy: Strengths and weaknesses of a system stretched between centralized and decentralized authorities. In: In: Fleischhauer, M., Greiving, S. \& Wanczura, S. (editors). 2006. Natural hazards and planning in Europe, Dortmund, p.97-126, 2006.

Curtis R., The Risk Assessment and Safety Management System, Risk 2002 Conference in New Zealand, 2002.

De La Cruz-Reyna S., "Long-Term Probabilistic Analysis of Future Explosive Eruptions", pp. 599-629, Monitoring and Mitigation of Volcano Hazards, Springer-Verlag Berlin Heidelberg New York, 1996.

EM-DAT, The OFDA/CRED International Disaster Database, is online at: http://www.emdat.be/, last accessed date 26.11.2007.

Ergünay O., Yılmaz R., Karakısa S., JFMO SBTK- Earthquake Group Report, 2003.

Furedi F., Culture of Fear: Risk-Taking and the Morality of Low Expectations, Cassell and Continuum, London, 2002.

General Directorate of Disaster Affairs (GDDA), Seismic Hazard Map of Turkey, 1996.

General Directorate of Disaster Affairs (GDDA), Seismic Microzonation for Municipalities, Exucutive Summary, 2004.

General Directorate of Disaster Affairs (GDDA), Province Disaster Plans, 2007.

Greene A., A Process Approach to Project Risk Management, Doctoral research workshop: Construction Process Research, Loughborough University, 2000.

Granger, K., T. Jones, M. Leiba, and G. Scott, Community Risk in Cairns: A Multi-hazard Risk Assessment, AGSO (Australian Geological Survey Organization) Cities Project, Department of Industry, Science and Resources, Australia, 1999.

Government of Turkey, National report of Turkey on disaster reduction for the World Conference on Disaster Reduction, Kobe, Japan, 2005.

Gulkan P., Setting the Stage for Urban Risk Mitigation: Seismic Risks and Compulsory Insurance Policy Issues in Turkey, Second Annual IIASA-DPRI Meeting Integrated Disaster Risk Management: Megacity Vulnerability and Resilience, Luxemburg, Austria, July 29-31, 2002.

Hertz D.B. and Thomas H., Practical Risk Analysis: and Approach Through Case Histories, John Wiley and Sons, Chichester, UK, 1984.

International Decade for Natural Disaster Reduction, IDNDR, A Safer World in the 21 st Century: Disaster and Risk Reduction, 1999, online at: http://www.unisdr.org/eng/about_isdr/bd-safer-world-eng.htm, last accessed date 28.12.2007.

JICA, Country Strategy Paper for Natural Disasters in Turkey, Final Report, Ankara, 2004.

Keles R., Turkish Government Structure from a Disaster Management Perspective, The Role of Local Governments in Reducing the Risk of Disasters, Demeter K., Guner A., Erkan N. E., (eds.), Center of Local Government Studies and Training, Marmara University, Istanbul, 2004.

Kelman I., Defining Risk, FloodRiskNet Newsletter, 2, Winter, 2003.

Koçak D., Marmara Earthquake \& General Overview of Turkey Disaster Management System, Worldbank Disaster Management On -Line Program Final Project, 2005.

Özdemir A., Emergency Management in Turkey, The Role of Local Governments in Reducing the Risk of Disasters, Istanbul, 2003.

Özmen B., Disaster Management System in Turkey, World Conference on Disaster Reduction, Kobe, Hyogo, Japan, 2005.

Pampal S., Türkiye'nin Deprem Gerçeği, Gazi Üniversitesi Deprem Araştırma ve Uygulama Merkezi, Ankara, 2007.

PEER, (Pasific Earthquake Engineering Research Center), Structural Engineering Reconnaissance of the August 17, 1999 Earthquake: Kocaeli (Izmit), Turkey, University of California, Berkeley, 2000.

Priest S., The adventure experience paradigm. In J.C. Miles, \& S. Priest, Adventure Recreation, State College PA: Venture Publishing, 1990.

Rosetto, T. Construction Design, Building Standards and Land Use Planning, Guidance Note No. 12, 2006.

Scawthorn, C. et.al. Earthquake Risk Reduction, developed for WBI DL, Course by Kyoto University, unpublished report, 2006.

Schmeer K., "Stakeholder Analysis Guidelines" in Policy Toolkit for Strengthening Health Sector Reform, Abt Associates, Inc., Bethesda, MD., 1999.

Schwab, J. et. al. Planning for Post-Disaster Recovery and Reconstruction, FEMA and American Planning Association, Planning Advisory Service Report 483/484, Chicago, 1998.

Severn R.T., Disaster Preparedness in Turkey and Recent Earthquakes, in Erzincan, D. Key ed., Structures to Withstand Disaster, The Institution of Civil Engineers, Thomas Telford, London, 1995.

Smith K., Environmental Hazards: Assessing Risk and Reducing Disaster, Routledge, London, 1996.

Smith N.J., Managing Risk in Construction Projects, Oxford, Blackwell Science Stenchion, "Development and disaster management", The Australian Journal of Emergency Management, vol. 12, no. 3, Spring, 1997.

Spangle Associates, The Recovery and Reconstruction Plan of the City of Los Angeles: Evaluation of Its Use after the Northridge Earthquake, research report, Portola Valley, CA. 1997.

Spangle Associates Rebuilding After Earthquakes: Lessons from Planners, International Symposium on Rebuilding After Earthquakes, Stanford University, Stanford, CA, August 12-15 1990, Spangle and Assoc. Inc., CA., 1991.

The Royal Society, Risk assessment: Report of a Royal Society Study Group, London, 1983.

TURKSTAT, Building Construction Statistics 1954-2003, 2007.

TURKSTAT, Building Census, 2000.

United Nations Development Program, UNDP, Country Evaluation: Assessment of Development Results of Turkey, 2004.

United Nations Inter-Agency Secretariat of the International Strategy for Disaster Reduction, UNISDR, Yokohama Strategy and Plan of Action for a Safer World: Guidelines for Natural Disaster Prevention, Preparedness and Mitigation, Resolution adopted by delegates of the World Conference on Natural disaster Reduction, Yokohama, Japan, 23-27 May, 1994.

United Nations Inter-Agency Secretariat of the International Strategy for Disaster Reduction, UNISDR, Hyogo Declaration, Resolution adopted by delegates of the World Conference on Disaster Reduction, Kobe, Hyogo, Japan, 18-22 January, 2005.

World Health Organization WHO, Transforming Health Priorities into Projects Stakeholder Analysis, 2005.

Zimmermann M.N., Risk Concept, World Conference on Disaster Reduction, Kobe, 2005.

APPENDIX A

PRE-KOBE CONFERENCE QUESTIONS

Component 1 - Political Commitment and Institutional Aspects

Political commitment, strong institutions, and good governance are expected to elevate disaster risk reduction as a policy priority, allocate the necessary resources for it, enforce its implementation and assign accountability for failures, as well as facilitate participation from civil society to private sector. Due to its multi-disciplinary and multi-sectoral nature, disaster reduction falls into the agenda of many diverse institutions which, for effective implementation, requires clear assignment of roles and assumption of responsibilities as well as coordination of activities.
1.1 Are there national policy, strategy and legislation addressing disaster risk reduction? Please describe to what extent current national efforts and main priority, and mechanisms to enforce the implementation of the policy and legislation are applied (and/or attach any relevant documentation)
1.2 Is there a national body for multi-sectoral coordination and collaboration in disaster risk reduction, which includes ministries in charge of water resource management, agriculture/land use and planning, health, environment, education, development planning and finance? If yes, please give detailed information (name, structure and functions). Attach any relevant documentation or indicate source of information.
1.3 Are there sectoral plans or initiatives that incorporate risk reduction concepts into each respective development area (such as water resource management, poverty alleviation, climate change adaptation, education and development planning)? If yes, please indicate some examples and challenges/limitations encountered. If no, does your government have any plans for integrating disaster risk reduction into development sectors? If no, please also specify the major difficulties.
1.4 Is disaster risk reduction incorporated into your national plan for the implementation of the UN Millennium Development Goals (MDGs) Poverty Reduction Strategy Paper (PRSP), National Adaptation Plans of Action, National Environmental Action Plans and WSSD (World Summit on Sustainable Development) Johannesburg Plan of Implementation?
1.5 Does your country have building codes of practice and standards in place, which take into account seismic risk? If yes, since when? Which are the main difficulties in keeping the compliances of the codes?
1.6 Do you have an annual budget for disaster risk reduction? If yes, is this commitment represented as part of the national budget or project based? Through which institution/s? If no, what other financing mechanisms for risk reduction initiatives are available?
1.7 Are the private sector, civil society, NGOs, academia and media participating in disaster risk reduction efforts? If yes, how? Indicate existing coordination or joint programming between government and civil society efforts in disaster risk reduction, or major difficulties or constraints for this to be effective.

Component 2 - Risk Identification

Identification of risks is a relatively well-defined area with a significant knowledge base on methods for disaster impact and hazard and vulnerability assessment. Systematic assessment of losses, social and economic impact of disasters, and particularly mapping of risks are fundamental to understand where to take action. Consideration of disaster risks in environmental impact assessments is still to become routine practice.

Early warning is increasingly defined as a means to inform public and authorities on impending risks, hence essential for timely actions to reduce their impact.
2.1 Has your country carried out hazard mapping/assessment? If yes, please describe for which hazards, when they were updated and for what geographical scale they exist. Do they include characteristics, impacts, historical data, multi-hazards approach? Which institutions are using the results of the hazard assessment? To whom are they available? (attach any relevant documentation)
2.2 Has your country carried out vulnerability and capacity assessments? If yes, please describe the methods used and major social, economic, physical environmental political and cultural factors considered in the assessment (s). Who are the main contacts for these assessments (or attach any relevant documentation or contact information).
2.3 Does your country have any mechanisms for risk monitoring and risk mapping? If yes, who is responsible?
2.4 Is there a systematic socio-economic and environmental impact and loss analysis in your country after each major disaster? If yes, are the results available?
2.5 Are there early warning systems in place? If yes, for what hazards and for what geographical scope. Do you have any example when the system was activated lately? Which are the main institutions Involved? Please indicate any relevant lessons-learnt from the use and public reaction to early warnings issued.

Component 3 - Knowledge Management

Information management and communication, education and training, public awareness and research arc all parts of improving and managing knowledge on disaster risk and their reduction. Inclusion of disaster reduction at all levels of education, effective public awareness and information campaigns, media involvement in advocacy and dissemination, availability of training for communities at risk and professional staff, and targeted research are the ingredients to support the knowledge base for effective disaster reduction.
3.1 Does your country have disaster risk information management systems (governmental and/or non-governmental)? If yes, what kind of information on disaster reduction is available how is it collected, how is the information disseminated and who are the main users? (indicate relevant sources of information, if applicable)
3.2 Are the academic and research communities in the country linked to national or local institutions dealing with disaster reduction? If yes, please describe the mechanisms for information sharing and indicate any example of usefulness and effectiveness. Which are the main research and academic institutions dealing with disaster reduction related issues (please list, if available, and indicate how their research work is related to the country's disaster risk reduction needs.)
3.3 Are there educational programs related to disaster risk reduction in your public school system? If yes, for what age-range? Do you have any educational material developed to support the teachers in this area? (please attach any relevant documentation)
3.4 Are there any training programs available? If yes, please list (if available indicate scope and target audiences of the courses). Do you have any indication on how these courses have been useful to change any practices at local or national scale?
3.5 What kind of traditional indigenous knowledge and wisdom is used in disasterrelated practices or training programs on disaster risk reduction in your country?
3.6 Do you have any national public awareness programs or campaigns on disaster risk reduction? If available, who are the main players for raising public awareness? How are the mass media and schools involved? Who are the targeted groups and how do you evaluate the programs?

Component 4 - Risk Management Applications/Instruments

For effective disaster risk reduction, synergies are needed between sustainable development and disaster risk management practices. Moving from analyzing of and knowing about risk to taking concrete actions to reduce their impacts is a demanding step. Ideas and practices coming from different disciplinary areas will complement what is already practiced in disaster risk management. For example, instruments for risk management have proliferated especially with the recognition of environmental management, poverty reduction and financial management.

Environmental and natural resource management is among the best-known applications to reduce flood risks, control landslides (through reforestation) and control droughts (through ecosystem conservation).

Physical and technical measures, such as flood control techniques, soil conservation practices, retrofitting of buildings or land use planning, are effective in hazard control. Financial instruments in the form of insurance, calamity funds, catastrophe bonds are useful to lessen the impact of disasters.
4.1 Is there any good example of linking environmental management and risk reduction practices in your country (key areas of environmental management may include coastal zone, wetland and watershed management, reforestation and agricultural practices, amongst others)? If yes, please indicate in what areas. (Attach any relevant documentation ore references).
4.2 Are financial instruments utilized in your country as a measure to reduce the impact of disasters (e.g. insurance/reinsurance, calamity funds, catastrophe bonds, microcredit finance, community funds, etc)? If yes, please describe what these instruments are and when they were established, who manages them and who are eligible to them.
4.3 Please identify specific examples of technical measures or programs on disaster risk reduction that have been carried out in your country (case studies).

Component 5 - Preparedness and Contingency Planning

Preparedness and emergency management has been used as a means for reducing life losses from direct and indirect effects of disasters. A well-prepared system is expected to be effectively informed by early warning, endowed with regularly rehearsed national and local contingency and evacuation plans, fitted with communications and coordination systems, as well as adequate logistical infrastructures and emergency funds. Local-level preparedness, particularly at community level, including training, deserves special attention as the most effective way of reducing life and livelihood losses.
5.1 Do you have disaster contingency plans in place? Are they prepared for both national and community levels? If yes, please describe their main components, who is responsible for activating the plan(s) that was or were developed? If yes, what was the result?
5.2 Has your government established emergency funds for disaster response and are there national or community storage facilities for emergency relief items mainly food, medicine, tents/shelters? If yes, please provide some details.
5.3 Who is responsible for the coordination of disaster response preparedness and is the coordination body equipped with enough human and financial resources for the job? Please comment on the effectiveness of the coordination work done so far.

Component 6 - Call for good practices in disaster risk management

Based on the above analysis and information provided, please provide at least two examples of any successful implementation of disaster reduction activities in your country (could be of local, national or regional scale); any project or community based experience, national policy, interaction between sectors, etc., would be welcome. Provide maximum one page on each example, indicating area of work, institutions and actors involved, duration, impact of the activities, lessons-learnt and if the example have been replicated. You may also kindly direct us to relevant web-based information/organization.

Component 7 - Priorities you want addressed at World Conference on Disaster Reduction

What do you think are the priority topics to be agreed upon at the World Conference to enhance and strengthen national policy and practice to reduce risk and vulnerability to natural and technological hazards? Please list any other thematic areas or specific topics of discussion that you consider of importance to increase the effectiveness of disaster risk reduction for your country. Please also indicate any particular experience or project that your country would like to exhibit or present at the Conference.

APPENDIX B

INFORMATION REPORT ON DISASTER REDUCTION BY THE REPUBLIC OF TURKEY

Component 1: Political Commitment and Institutional Aspects

Political commitment, strong institutions, and good governance are expected to elevate disaster risk reduction as a policy priority, allocate the necessary resources for it, enforce its implementation and assign accountability for failures, as well as facilitate participation from civil society to private sector. Due to its multi-disciplinary and multi-sectoral nature, disaster reduction falls into the agenda of many diverse institutions which, for effective implementation, requires clear assignment of roles and assumption of responsibilities as well as coordination of activities.

1. Are there national policy, strategy and legislation addressing disaster risk reduction? If yes, please describe to what extent current national efforts and main priority areas of the policy, and mechanisms to enforce the implementation of the policy and legislation are applied (and/or attach any relevant documentation).

Legal Framework for disaster management on national and local levels:

- Law No. 4373 dated 14 January 1943 concerning Protection Against Flash Floods
- Law No. 7126 dated 09 June 1958 concerning Civil Defense
- Law No. 7269 dated 25 May 1959 concerning Measures and Assistance to Be Put Into Effects Regarding Natural Disasters Affecting the Life of the General Public
- Directions No. 18851 dated 23 August 1985 concerning Principles of the Functioning, Tasks, Training and Controlling of the Fire Brigades Organizations
- Regulations No. 83/9727 dated 07 September 1985 concerning Radiation Safety
- Directions No. 88/12777 dated 08 May 1988 concerning Organization and Planning Principles of Emergency Assistance related Disaster
- Directions No. 88/12777 dated 08.05.1988 concerning Prime Ministry

Emergency Management Center

- Instructions No. 02243 dated 05.10.1998 concerning Prime Ministry Emergency Management Center
- Emergency Management Agency of Turkey has been established, within the body of Prime Ministry, with a "Decree Amending the Decree on the Organizational Structure of the Prime Ministry No: 583", issued in the Official Gazette No: 23884, dated November 22, 1999
- Directions of National Implementation relating Nuclear and Radiological hazards dated 15 January 2000
- Emergency Management Agency of Turkey was transformed to Turkey Emergency Management General Directorate (TEMAD) with a decree no: 600 and issued in the official Gazette No: 24079, dated June 14, 2000.

Turkey Emergency Management General Directorate (TEMAD)

The framework of emergency management in Turkey is determined with the expression below which has been added to the tasks of Prime Ministry.
"To take necessary measures in order to provide an effective emergency management through nationwide in case of earthquakes, landslides, rock falls, fires, accidents, meteorological disasters, accidents caused by nuclear and chemical substances and population movements which are in such a scale that threatens national security and to provide coordination between agencies that are parts of emergency management such as the ones that are active either in precaution before emergencies or in search and rescue operations during emergencies or in recovery and reconstruction activities after emergencies."

Tasks of TEMAD

- To ensure the establishment of emergency management centers at governmental agencies and departments for the purpose of effective emergency management, to determine their working principles and to provide coordination between them,
- To monitor and evaluate the taking of the necessary measures, the preparation of short and long term plans and the establishment of data banks by agencies and departments with a view to prevent events that would require emergency management or mitigating their damage when they occur,
- To conduct the activities of coordination in the utilization of all types of land, sea and air transport vehicles and rescue and relief equipment and materials owned by public and private sectors in cases where emergency management is introduced
- To make arrangements that encourage voluntary organizations and individuals providing relief in emergency situations and to coordinate the receipt and protection of relief supplies and their dispatch to locations where such supplies are needed; and
- To carry out other duties which may be assigned by the Prime Minister

2. Is there a national body for multi-sectoral coordination and collaboration in disaster risk reduction, which includes ministries in charge of water resource management, agriculture/land use and planning, health, environment, education, development planning and finance? If yes, please give detailed information (name, structure and functions). Attach any relevant documentation or indicate source of information.

There are individual efforts on disaster risk reduction studies and there is no national body for multi-sectoral coordination and collaboration in disaster risk reduction.
3. Are there sectoral plans or initiatives that incorporate risk reduction concepts into each respective development area (such as water resource management, poverty alleviation, climate change adaptation, education and development planning)? If yes, please indicate some examples and challenges/imitations encountered. If no, does your government have any plans for integrating disaster risk reduction into development sectors? If no, please also specify the major difficulties.

Within the context of the National Programme of Cooperation for 2001-2005, signed between the Government of the Republic of Turkey and UNICEF, there is a project named as "Preparedness for Disasters and Emergencies" which is being coordinated by the General Directorate of Civil Defense of the Ministry of Interior of the Republic of Turkey.

The aim of this project is to conduct effective studies for the reduction of the disaster affects on women and children. With this general aim, the project targets;

- To encourage and support the strengthening of local/national systems aiming the immediate reaction in case of disasters for reducing the affects of disasters on women and children,
- To create consciousness and environment to support the inclusion of service programmes towards women and children in the plans for disasters preparedness and emergency management,
- To strengthen the disaster preparedness of women and children and to make the services towards women and children sustainable after the disasters, especially in the areas of health, education and psychological guidance.

Within this context, a Project Implementation Committee has been established with the participation of Ministries of Interior, Justice, National Education, Public Works and Settlement, Agriculture and Rural Affairs, Health and also Turkish Red Crescent and UNICEF Representation in Turkey.
4. Is disaster risk reduction incorporated into your national plan for the implementation of the UN Millennium Development Goals (MDGs), Poverty Reduction Strategy Paper (PRSP), National Adaptation Plans of Action, National Environmental Action Plans and WSSD (World Summit on Sustainable Development) Johannesburg Plan of Implementation? If yes to any of these, who are the main contacts for these initiatives.

Turkey attaches importance to the above mentioned global initiatives. In the preparation and implementation phases of the disaster and disaster risk reduction plans, the relevant bodies take into account the said initiatives.
5. Does your country have building codes of practice and standards in place, which takes into account seismic risk? If yes, since when. Which are the main difficulties in keeping with the compliances of the codes.

Since 2 September 1997 with some revisions in 1998, an Earthquake Design Code is in law to maintain earthquake resistant buildings. Deficiency on the control of buildings is a problem especially on rural areas. (A relevant document of the Ministry of Public Works and Settlement is attached herewith)
6. Do you have an annual budget for disaster risk reduction? If yes, is this commitment represented as part of the national budget or project based? Through which institution/s? If no, what other financing mechanisms for risk reduction initiatives are available?

The fund allocated from national budget is being used for disaster risk reduction studies, inservice training, organized education and the awareness of the personnel, voluntaries and population. In addition to those, European Union and World Bank funded projects are aiming the disaster risk reduction studies at different levels.

On the other hand, some special parts of the annual budgets of the Turkish Red Crescent Society, which are not within the context of national budgets, are being used for the preparations made before, during and after the disasters. In this framework, Turkish Red Crescent Society is both preparing special projects with its own resources and also some common projects with the other national organizations and official partners.
7. Are the private sector, civil society, NGOs, academia and media participating in disaster risk reduction efforts? If yes, how? Indicate existing coordination or joint programming between government and civil society efforts in disaster risk reduction, or major difficulties or constraints for this to be effective.

With their disaster management and earthquake research institutes, some of the universities contribute to disaster risk reduction efforts with academic studies. Their fund is supplied whether from international projects or from their own budget allocated for scientific studies. Some NGOs play an important role on civil protection activities. Press also sometimes assist disaster risk reduction activities with public information and education programmers.

Component 2: Risk Identification

Identification of risks is a relatively well-defined area with a significant knowledge base on methods for disaster impact and hazard and vulnerability assessment. Systematic assessment of losses, social and economic impact of disasters, and particularly mapping of risks are fundamental to understand where to take action. Consideration of disaster risks in environmental impact assessments is still to become routine practice.

Early warning is increasingly defined as a means to inform public and authorities on impending risks, hence essential for timely actions to reduce their impact.

1. Has your country carried out hazard mapping/assessment? If yes, please describe for which hazards, when they were updated and for what geographical scale they exist. Do they induce characteristics, impacts, historical data, multihazards approach? Which institutions are using the results of the hazard assessment? To whom are they available? (attach any relevant document)

Some maps are prepared at national level those could be used on hazard mapping assessment both directly and indirectly. Some of them are Earthquake Zoning Map of Turkey prepared by Ministry of Public Works and Settlement, Active Fault Map of Turkey prepared by Mineral Research Institute. In addition to that General Directorate of Disaster Affairs (GDDA) of the Ministry of Public Works and Settlement of the Republic of Turkey is involved at some regional multi-hazard mapping projects which include landslide, rock fall, flood and snow-avalanche hazard maps. Some microzonation maps are being prepared by municipalities which became obligatory for municipalities after 1999 Marmara Region Earthquake.

Those are prepared for the use of land use planning and infrastructure planning organizations like municipalities and related bodies of ministries.

Examples to those studies may be reached via internet from the web pages of different organizations like Earthquake Research Department of Ministry of Public Affairs and Settlement. (Please see the attached document)
2. Has your country carried out vulnerability and capacity assessments? If yes please describe the methods used and major social, economic physical, environmental political and cultural factors considered in the assessment(s). Who are the main contact for these assessments (or attach any relevant documentation of contact information).

There are emergency aid plans for cities and counties which is controlled by Ministry of Public Affairs and Settlement periodically in which there exists all the information regarding the capacity of governorates.

In addition Ministry of Public Affairs and Settlement carries out some regional projects for vulnerability assessments on NW Black Sea Region on different types of disasters and with DRM Project on microzonation.

Also Turkish-Japanese Joint Project called "Earthquake Disaster Prevention Research Project" work on vulnerability assessment of earthquakes at regional level. (Relevant web site: www.deprem.gov.tr See also the attached document)
3. Does your country have any mechanisms for risk monitoring and risk mapping? If yes, who is responsible?

At national level Earthquake Research Department of Ministry of Public Affairs and Settlement has observation network for earthquakes. Also national efforts are being carried out by Ministry of Public Affairs and Settlement on risk mapping studies where other governmental institutions and academic community has some regional small scaled studies on this issue. The Kandilli Observatory of the Boğaziçi University is also working on this aspect.
4. Is there a systematic socio-economic and environmental impact and loss analysis in your country after each major disaster? If yes, are the results available?

Different governmental organizations like National Planning Organization, Ministry of Public Affairs and Settlement, Turkey Emergency Management General Directorate and NGOs like Turkish Red Crescent make some impact and loss analysis after each major disasters. The results of those may be reached from related bodies.
5. Are there early warning systems in place? If yes, for what hazards and for what geographical scope. Do you have any example when the system was activated lately? Which are the main institutions involved? Please indicate any relevant lessons-learnt from the use and public reaction to early warnings issued.

[^0]* General Directorate of Hydraulic Works: Flood early warning system at regional level.
* Istanbul Governorate and Municipality: Earthquake early warning system for Istanbul City that aims to prevent secondary affects of any earthquake like fire by cutting off gas and electricity power lines.

Component 3 Knowledge Management

Information management and communication, education and training, public awareness and research arc all parts of improving and managing knowledge on disaster risk and their reduction. Inclusion of disaster reduction at all levels of education, effective public awareness and information campaigns, media involvement in advocacy and dissemination, availability of training for communities at risk and professional staff, and targeted research are the ingredients to support the knowledge base for effective disaster reduction.

1. Does your country have disaster risk information management systems (governmental and/or non-governmental)? If yes, what kind of information on disaster reduction is available how is it collected, how is the information disseminated and who are the main users? (indicate relevant sources of information, if applicable)

Disaster Information System which will work at Ministry of Public Affairs and Settlement is about to be established. With this system more efficient response to disasters is aimed to be achieved. During a disaster Crisis Management Centers maintain the information cycle with some governmental organizations like TEMAD, Ministry of Public Affairs and Settlement, etc.
2. Are the academic and research communities in the country linked to national or local institutions dealing with disaster reduction? If yes, please describe the mechanisms for information sharing and indicate any example of usefulness and effectiveness. Which are the main research and academic institutions dealing with disaster reduction related issues (please list, if available, and indicate how their research work is related to the country's disaster risk reduction needs.)

The following projects are the ones aiming this linkage:

- Kandilli Observatory in Istanbul (KOERI): Shared use of data
- Middle East Technical University (METU) Disaster Management Implementation and Research Center: Project based
- Istanbul Technical University (ITU) Disaster Management Research Center: Project based.
- Turkish Scientific Research Councils (TUBITAK): Project based
- Atatürk University Earthquake Research Institute Shared use of data

3. Are there educational programmes related to disaster risk reduction in your public school system? If yes, for what age-range? Do you have any educational material developed to support the teachers in this area? (please attach any relevant documentation)

a) There is a Protocol on the Participation in the Training and Civil Defense Services of Scouts between Ministries of Interior and Education.
b) Procedures of Establishment of the Civil Defense Branch in Schools are published in the Bulletin Review of Ministry of Education.
c) There is a unit relating the civil defense and disasters in the National Security Lesson in the first class of high schools. First aid and disaster subjects are given in the biological and healthy lessons.
d) On the other hand, the Ministry of National Education is working on a project in this issue.
4. Are there any training programmes available? If yes, please list (if available indicate scope and target audiences of the courses). Do you have any indication on how these courses have been useful to change any practices at local or national scale?
a) Programs relating in-service training in the Civil Defense College and civil defense search and rescue units.
b) Programs which are prepared in the provinces, districts and institutions according to Procedures of the Guidance relating the Civil Defense Organizations and Population Training published by Ministry of Interior.
c) Civil Defense Bulletin published by General Directorate of Civil Defense "four" times in a year are distributed without fee. In addition, trained posters and brochures also distributed for population.
d) More detailed information can be provided in the Web Site: www.ssgm.gov.tr
e) Also a note on the activities of Turkish Red Crescent Society in this aspect is attached herewith.
5. What kind of traditional indigenous knowledge and wisdom is used in disaster-related practices or training programmes on disaster risk reduction in your country?

- Scenarios such earthquakes, floods, avalanches as suitable for condition of the region are implemented during the exercises held at the end of training of personnel and voluntaries in the provinces and districts by the General Directorate of Civil Defense of the Ministry of Interior. Exercises include search and rescue in NBC accidents, water floods, avalanches.
- On the other hand, especially after the 1999 earthquakes in Turkey, Turkish Armed Forces both formed specialized units and also restructured all the units at the level of brigades with the capacity of performing Disaster Relief Operations. These units are making their own periodical exercises and also participating to the national disaster exercises.
- At the national level, there arc periodic exercises of the Ministry of Interior and National Security Council.

6. Do you have any national public awareness programmes or campaigns on disaster risk reduction? If available, who are the main players for raising public awareness? How are the mass media and schools involved? Who are the targeted groups and how do you evaluate the programmes?

- In general, universities and institutes support the primary and high schools on disaster risk implementation especially on earthquakes. Regular conferences aiming information and awareness of the population on the protective and rescued measures which will be taken are organized in the provinces and districts.

Film and video demonstrations are done in the places such examinations, fairs etc., articles are published via local radios, TV and other means, photos, posters and spots are hung up on the walls and books and brochures are distributed to the population.

- The 1999 earthquakes in Turkey had shown once again the importance of the public awareness. In this framework, the project of forming a uniform education and organization has been given to the Istanbul technical University.
- By the Centers of Strategy and Emergency Management of the Ministry of Interior, an educational project has been started with the aim of training professional emergency managers.

This educational model has been designed to include planning and a model of emergency management for the preparedness of all parts of the society.

- General Directorate of Civil Defense of the Ministry of Interior, which is the only official body that has the legal responsibility of increasing the consciousness of the public against disasters, is making activities in the provinces with this aim.
- Kandilli Observatory of the Boğaziçi University is implementing a project specifically prepared for Istanbul, together with a national non-governmental rescue organization named AKUT.

Component 4 Risk Management Applications/Instruments

For effective disaster risk reduction, synergies are needed between sustainable development and disaster risk management practices. Moving from analyzing of and knowing about risk to taking concrete actions to reduce their impacts is a demanding step. Ideas and practices coming from different disciplinary areas will complement what is already practiced in disaster risk management.

For example, instruments for risk management have proliferated especially with the recognition of environmental management, poverty reduction and financial management.

Environmental and natural resource management is among the best-known applications to reduce flood risks, control landslides (through reforestation) and control droughts (through ecosystem conservation).

Physical and technical measures, such as flood control techniques, soil conservation practices, retrofitting of buildings or land use planning, are effective in hazard control. Financial instruments in the form of insurance, calamity funds, catastrophe bonds are useful to lessen the impact of disasters.

1. Is there any good examples of linking environmental management and risk reduction practices in your country (key areas of environmental management may include coastal zone, wetland and watershed management, reforestation and agricultural practices, amongst others). If yes, please indicate in what areas. (Attach any relevant documentation or references)

Studies of Ministry of Environment and a non-governmental organization TEMA is important in this field.
2. Are financial instruments utilized in your county as a measure to reduce the impact of disasters (e.g. insurance/reinsurance, calamity funds, catastrophe bonds, micro-credit finance, community funds, etc.)? If yes, please describe what those instruments are and when they are established, who manages them and who are eligible to them.

DASK (Natural Disasters Insurance Organization)
Fund allocated to Ministry of Public Affairs and Settlement for disaster related studies.
3. Please identify specific examples of technical measures or programmes on disaster risk reduction that have been carried out in your country (see below, case studies).

Earthquake Resistance of Buildings
Earthquake Resistance of Bridges and Viaducts
Earthquake Resistance of Governmental Buildings like schools and hospitals etc.
Flood Preventions Studies on Major Rivers
Rock fall-Landslide-Snow Avalanche Retaining Structures

Component 5 Preparedness and Contingency Planning

Preparedness and emergency management has been used a means for reducing life lasses from direct and indirect effects of disasters. A well-prepared system is expected to be effectively informed by early warning endowed with regularly rehearsed national and local contingency and evacuation plans, fitted with communications and coordination systems, as well as adequate logistical infrastructures and emergency funds. Local-level preparedness, particularly at community level, including training deserves special attention as the most effective way of reducing life and livelihood losses.

1. Do you have disaster contingency plans in place? Are they prepared for both

 national and community levels? If yes, please describe their main components, who is responsible for activating the plan(s)? Are the plan(s) updated on annual basis? Have you ever used the contingency plan(s) that was or were developed? Of yes, what was the result?- Province and District Disaster Emergency Relief Plans are prepared by the coordination of the General Directorate of Civil Defense of the Ministry of Interior. These are prepared based on different types and magnitudes of the disasters. Province and District Disaster Emergency Relief Plans are approved by the governor and distributed to the Ministry of Public Works and Settlement, Ministry of Interior, Ministry of Health, Ministry of Agricultures and Ministry of Environment and Forest. Plans used for crisis and disaster emergency and exercises are updated continuously.
- Turkish Armed Forces (TAF) has special plans within the context of natural disaster assistance. They have been prepared in coordination with the relevant civilian authorities.

1. 17 Regional Disaster Commandries (RDCs) for the natural disaster assistance interventions have been established by the TAF. On the other hand; RDCs have sub divisions called Secondary Regional Disaster Commandries (SRDCs) which has an authority according to the area of the disaster-struck region. They are formed in provinces/districts and in the level of brigadiers.
2. If the responsible RDC is heavily subject to the disaster, the executive command of the disaster management may be handed-over to the neighbouring RDC. This possibility is coordinated by the neighbouring RDC during the planning of natural disaster assistance intervention.
3. The RDCs consider time/distance/capabilities/assistance elements in their coordinations. The plans are prepared in order to facilitate long-distance troop transfers to and between disaster-hit areas.
4. If all the RDCs are heavily affected by the disaster, the Turkish General Staff determines the responsible commandry which will be in charge of the disaster management.
5. Natural disaster assistance intervention plans are prepared according to the general assumptions listed below. The worst-case scenarios are taken into consideration and the plans are continuously updated. Their validity is examined by joint exercises with the other relevant government bodies. In the planning's, the priority is given to the civilian capabilities; in case of the insufficiency of the civilian capabilities, military assets will also be used.
(a) The possible disaster might be more comprehensive or in a greater scale than the previous disasters. If there's no recorded data on the previous disasters for that specific region, the earthquake and flood risks are also taken into account.
(b) The earthquake might lead to major fires and this might result in explosions in industrial and energy facilities. The risk of chemical gas leakage should also be taken into consideration.
(c) The number of damaged/demolished/flooded buildings may be in great numbers. People might be bound under debris/avalanche/land mass. Housing demands might increase as a result of the disaster.
(d) Transportation network might be damaged, domestic and foreign transportation necessity might be increased, transportation system might partly or totally be collapsed in the early hours of the disaster.
(e) Dams, power centrals, fuel oil tanks and other facilities of strategic importance might be damaged in case of a disaster.
(f) Communication might totally be interrupted.
(g) Electricity and potable water facilities might be damaged.
(h) The disaster might occur at late night hours, under summer or winter conditions.
(i) Food, medicine and heating materials might be insufficient.
(j) Military staff and their families might also be subject to the disaster.
(k) Looting might take place in disaster regions.
(I) Provocations against official authorities might happen.
(m)Civilian authorities might be in effective in the early stages of the disaster.
6. "Natural Disaster Assistance Troops (DAFYAR)" which is formed in the battalion level, is always kept ready for intervention to natural disasters.
7. Has your government established emergency funds for disaster response and are there national or community storage facilities for emergency relief items-mainly food, medicine, tents/shelters? If yes, please provide some details.

- Funds allocated to Ministry of Public Affairs and Settlement for disaster related studies.
- The storage facilities of the Turkish Red Crescent Society are important for this aim. There are also official storage facilities in every province, airport and harbor to be used in case of need.

3. Who is responsible for the coordination of disaster response preparedness and is the coordination body equipped with enough human and financial resources for the job? Please comment on the effectiveness of the coordination work done so far?

After the 1999 earthquakes, General Directorate of Emergency Management has been formed under the Prime Ministry and has the responsibility to coordinate the studies.

Based on the above analysis and information provided, please provide at least two examples of any successful implementation of disaster reduction activities in your country (could be of local national or regional scale) any project or community based experience, national policy, interaction between sectors, etc. would be welcome.

Provide maximum one page on each example indicating area of work, institutions and actors involved, duration, impact of the activities, lessons-learnt and if the example have been replicated. You may also kindly direct us to relevant web-based information/organization.

DETERMINATION OF NATURAL HAZARD AND RISK OF KASTAMONU REGION

 (NW TURKEY)
Project Stages

Hazard and Risk Assessment of Kastamonu Province project is commenced to mitigate effects of natural disaster, after the catastrophic earthquake that stroke Marmara region on August 17th and November 12th 1999 The project had been planned to foundation to TEFER (Turkey Flood and Earthquake Relief) project which was organized by World Bank But TEFER project was interrupted after Marmara Earthquake.

Objectives and Methodology

The project is intended

- to determine hazard and risk level of Kastamonu region on the basis of Geographic Information Systems (GIS)
- to aid planners and decision makers by providing natural hazards information rooted in earth science.
- to build geographic database for data updating, analyzing and transfer

Under the project's framework, earthquake, landslide, rock fall, and snow avalanche potential of region have been studied, Earthquake, landslide and snow avalanche hazard maps have been prepared on regional scale, while rock fall hazard map has been limited to city center. The hazard maps related to various disaster types have also been combined and a multihazard hazard map produced.

Informations Essential for the Emergency Aid Plan

According to the disaster scenario, results prepared Kastamonu City center, following outcomes are suggested to be taken into consideration during planning of emergency aid for the future;

* After an earthquake with magnitude close to the scenario value, a preliminary damage assessment study must be done at Karaçomak Dam.
* The number of collapsed and heavily damaged houses is calculated as 295 according to the scenario earthquake in city center When building/house ratio is considered there might happen 170 points for search and rescue facilities.
* Number of heavily wounded people is estimated to be 48 but this might increase due to casualties from neighboring regions. Transportation of those heavily wounded people to high capacity hospitals at cities must also be considered.
* Earthquake induced land sliding must be accepted between Kastamonu-llgaz, Tosya-llgaz and Kastamonu-Tosya highway. This situation may cause difficulties in transportation and communication.
* Southern parts of Kastamonu Region, Çankırı and Çorum Provinces will be affected from that earthquake. So it will be impossible to maintain assistance from those regions
* Although serious damage on main interconnected systems is not accepted, various damages must be accepted on transformers, electricity transformation poles and also on transmission lines. These problems will cause lack of electrical energy
* Water pipes parallel to Karaçomak River may be broken at various locations so difficulty on water supply of city may arise and this will be vital if earthquake happens especially in summer season
* Due to the fact that earthquake may happen in winter season, fire disasters maybe faced m city center and also on villages In that case efforts to put out the fire will be insufficient and this phenomenon will increase the number of casualties.
* In the case of the break off F / O cables between llgaz-Tosya, telecommunication of Kastamonu will stop with Tosya
* There might be need for language translators for foreign rescue teams.
* Temporary housing will be necessary for more than 861 families. City's own opportunities like government buildings, hotels, student hostels are not enough for accommodation of those victims Tent cities will be necessary for Kastamonu City center
* Number of technical personnel's like architects, civil engineers for damage assessment is not enough.

As a result, this study reveals disaster hazard and risk of Kastamonu Region and put into the facts and also deficiencies of the city.

These are offered for local authorities' and decision makers usage. MINISTRY OF PUBLIC AFFAIRS AND SETTLEMENT plans to extend that kind of studies all around the country.

Component 7 Priorities you want addressed at World Conference on Disaster Reduction

What do you think are the priority topics to be agreed upon at the World Conference to enhance and strengthen national policy and practice to reduce risk and vulnerability to natural and technological hazards? Please list any other thematic areas or specific topics of discussion that you consider of importance to increase the effectiveness of disaster risk reduction for your country.

Please also indicate any particular experience or project that your country would like to exhibit or present at the Conference.

- The General Directorate of Emergency Management of the Prime Ministry would like to make a presentation on the Lessons from the 1999 Earthquakes.
- On the other hand the following issues may be the priorities of the Conference:
- Implementation of regional disaster information systems,
- Earthquake resistance of buildings on rural areas and consciousness of people living on rural areas to the effects of disasters.
- Public Training studies,

APPENDIX C

STAKEHOLDERS OF THE STUDY

The stakeholder analysis is used to identify and assess the importance of key people, organizations and institutions that may significantly influence the development and implementation of the project. (WHO, 2005)

Information generated from stakeholder analysis may serve to provide input for other analyses, to inform the development of action plans, to increase support for a reform policy or to guide a participatory, consensus-building process. (Schmeer, 1999)

Stakeholders have different levels of power to impact disaster risk reduction and different levels of interest. They have different levels of influence both in project and in the implementation of the measures that the project recommends. The most important role of stakeholders within this thesis is to contribute the dissemination and sustainability of the study.

The stakeholders of the study can be grouped into the following categories: Ministries, Local Authorities (Governorships, Municipalities), Universities (Middle East Technical University, METU-Disaster Management Research and Implementation Center) and Non-Governmental Organizations (Turkish Earthquake Foundation, Turkish Red Crescent, Union of Chambers of Turkish Engineers and Architects). These stakeholders can be listed and categorized in various ways. One starting point is to divide the list into primary and secondary stakeholders.

Primary stakeholders are those key people and institutions who have a direct interest in the policy and could affect its implementation and ultimately be affected by the project. This includes direct and intended beneficiaries of greater safety. (WHO, 2005)

Secondary stakeholders are intermediaries in the process of delivering support to primary stakeholders. This includes the people and organizations that can contribute to implementing the solutions that the project recommends for disaster risk reduction. (WHO, 2005)

Although, stakeholders can be listed in two ways according to their participation process to the project as "During the project" and "After/Always".

Table C. 1 Primary Stakeholders

PRIMARY STAKEHOLDERS	PARTICIPATION PROCESS	RELATION TO PROJECT	CONTACT
General Directorate of Disaster Affairs (GDDA)	During the project After/Always	Data research Obtainment and use of variables Application and sustainability of the project Dissemination of the study in the relevant field	Contact Person: Murat NURLU, Chief of Laboratories Section at EQ Research Department Mail: nurlu@deprem.gov.tr, Phone: (90)312- 2873645
Turkish Statistical Institute (TURKSTAT)	During the project	Data research Obtainment of variables	Contact Person: Enver TASTI, Head of Social Statistics Department Mail: bilgi@tuik.gov.tr, Tel : 90 (312) 4170432
Middle East	During the project Technical Aniversity	Data research Dissemination of the study in the academic literature Implementation of the measures that the project recommends	Contact Person: Haluk PAMIR, Dean Mail: pamir@metu.edu.tr, Tel :90 (312) 2102201
Governorships	During the project After/Always	Obtainment and use of variables Dissemination and sustainability of the project Contribute the implementation of the measures that the project recommends Public participation.	

Primary Stakeholders

- General Directorate of Disaster Affairs-GDDA, Earthquake Research Department, Laboratories Section

Earthquake Research Department, Laboratories Section of GDDA is the key institution with a significant role to play in the application and sustainability of the project.

The cooperation of GDDA in order to obtain and use of the earthquake scenarios identified in Province Disaster Plans, prepared by governorships and collected in General Directorate of Disaster Affairs, plays an important role in the development of the research.

- Turkish Statistical Institute - TURKSTAT, Social Statistics Department

TURKSTAT is the key institution with a significant role to play in the data research. Published statistics, like census, housing data of TURKSTAT have an important and leading part in the data research and will be used to examine vulnerabilities in the building stock.

- Middle East Technical University - METU

Middle East Technical University can contribute to the dissemination of the study in the relevant field and academic literature and the implementation of the measures that the project recommends.

- Governorships

The cooperation of governorships in order to obtain and use of the earthquake scenarios identified in Province Disaster Plans plays an important role in the development of the research. Although, governorships plays the most important role in the dissemination and sustainability of the project and can contribute the implementation of the measures that the project recommends and public participation.

Case governorships with satisfactory Disaster Plans and consistent assumptions about Earthquake scenarios are; Governorship of Ardahan, Governorship of Bursa, Governorship of Çanakkale, Governorship of Düzce, Governorship of Erzincan, Governorship of Istanbul Governorship of Izmir, Governorship of Karabük, Governorship of Kastamonu, Governorship of Kocaeli, Governorship of Malatya, Governorship of Niğde, Governorship of Yalova.

Table C. 2 Secondary Stakeholders

$\begin{gathered} \text { SECONDARY } \\ \text { STAKEHOLDERS } \\ \hline \end{gathered}$	$\underset{\text { PROCESS }}{\substack{\text { PARTICIPATION }}}$	RELATION TO PROJECT	CONTACT
General Directorate of Turkey Emergency Administration (TAY)	After/Always	Dissemination and sustainability of the project Implementation of the measures that the project recommends	Contact Person: Hasan IPEK Mail: tay@basbakanlik.gov.tr, Tel: 90 (312) 4251890,
General Directorate of The Bank of Provinces	After/Always	Dissemination and sustainability of the project Implementation of the measures that the project recommends	Mail: ilbank@ilbank.gov.tr, Tel: 90 (312) 5087023
General Directorate of Civil Defense	After/Always	Dissemination and sustainability of the project Implementation of the measures that the project recommends	Mail: sivsav@ssgm.gov.tr, Tel: 90 (312) 4266115
General Directorate for	After/Always	Implementation of the measures that the project recommends	Mail: mahalli.bilgiedinme@icisleri.gov.tr Tel : 90 (312) 4257214
Middle East Technical University Disaster Management Research and Implementation Center	After/Always	Dissemination of the study in the relevant field and academic literature Implementation of the measures that the project recommends	Mail: dmc@metu.edu.tr, Tel :90 (312) 2105410
NonGovernmental Organizations Ngo's	After/Always	Dissemination and sustainability of the project	Turkish Earthquake Foundation Mail :tdv@depremvakfi.org, Tel:90(216) 3219009 Union of Chambers of Turkish Engineers and Architects

Secondary Stakeholders

- General Directorate of Turkey Emergency Administration-TAY

TAY is the key institution with a significant role to play in the dissemination and sustainability of the project. TAY can contribute to the implementation of the measures that the project recommends.

- The Ministry of Public Works and Settlement, General Directorate of The Bank of Provinces

Bank plays an important role in the dissemination and sustainability of the project and can contribute the implementation of the measures that the project recommends.

- The Ministry of Interior, General Directorate of Civil Defense

Civil Defense plays an important role in the dissemination and sustainability of the project and can contribute the implementation of the measures that the project recommends.

- The Ministry of Interior, General Directorate for Local Authorities

Civil Defense plays an important role in the dissemination and sustainability of the project and can contribute the implementation of the measures that the project recommends.

- Municipalities

Municipalities play the most important role with the governorships in the dissemination and sustainability of the project and can contribute the implementation of the measures that the project recommends and public participation.

Case municipalities with satisfactory Disaster Plans and consistent assumptions about Earthquake scenarios are; Ardahan Municipality, Bursa Metropolitan Municipality, Çanakkale Municipality, Düzce Municipality, Erzincan Municipality, Istanbul Metropolitan Municipality, Izmir Metropolitan Municipality, Karabük Municipality, Kastamonu Municipality, Kocaeli Metropolitan Municipality, Malatya Municipality, Niğde Municipality, Yalova Municipality

- Middle East Technical University, Disaster Management Research and Implementation Center

Middle East Technical University, Disaster Management Research and Implementation Center can contribute to the dissemination of the study in the relevant field and academic literature and the implementation of the measures that the project recommends.

Figure C. 1 All Possible Stakeholders

APPENDIX D

BUILDING STOCK CHANGES BETWEEN 1954 AND 2003

Table D． 2 Building Stock Changes between 1954 and 2003 in Antalya
（Source：TURKSTAT，2007）

																									E		
$\frac{1}{3}$											－				＊										8		
																									5		
迷																									a^{2}		
													0^{2}	－	＊	8									8		
喽															4										6		
						－$=$																			\％		
													0		10										${ }^{+}$		
													$=$		B					1					${ }^{\circ}$		
																						＊			88		
	$\\|$	1					$\\|$				峝		7		0						F				＊		
䃻										7				\cdots			7			E					8		
	7										8					罩									${ }^{8}$		
					\％	1		${ }^{2}$				E	B		旺	B					E				\％		
												非	层							非		1			8		
											F		都	＝	F			－							\％		
														，						0					E		
品気是						$=$		源							$8=$										${ }^{*}$		
令				B	E^{2}	O	S	E						O	0	0				$E=$					\％		

Table D. 3 Building Stock Changes between 1954 and 2003 in Ardahan
(Source: TURKSTAT, 2007)
0
Table D． 4 Building Stock Changes between 1954 and 2003 in Bursa
（Source：TURKSTAT，2007）

															10																
\％${ }^{\text {\％}}$																				\times											圆
									$0=\frac{2}{8}$			6				0	$5=$	$=8$		2	8		2				$\frac{1}{6}$				－${ }^{\text {a }}$
\％																															
								$3=$		${ }^{\circ}$		0	1				$\sqrt{7}$	$1 F$			3		0								\％ 6
己畄				$=$																		$=$									\square
		1	81		0	17	10		2										7		国	a									${ }^{6}$
				1								$+$				F					\cdots				0						$\overbrace{}^{\text {a }}$
		8			x_{x}^{x}		x^{3}			28	2	S			x_{0}	等管	0	1		\％	an										－${ }^{3}$
		170													0			$=7$			＝										${ }^{8}$
		\bigcirc			20		3		a		－				5					${ }^{2}$			F	$\frac{8}{7}$							\％${ }^{8}$
諸		7				5	x^{2}					15			7	0		$=$		$=$	$E=$		x			E					${ }^{6}$
									18		－	麦			0			层票		－	0	8			$\frac{8}{6}$						\％
					是边	＊	0		8		5			8	0			年		${ }^{3}$	\％	0		8							约
					$\square^{3}{ }^{-8}$							5			－	＊		5		y^{3}	\square_{7}										明
															3		7			0	3										${ }^{7}$
等的䢒		5						5							3		$\stackrel{\square}{5}$	－		二	\％	司	${ }^{\circ}$		－		\％				\％
品号妾		5			5										$=$	\cdots				20	0	$=$			\％		＊	，			$5{ }^{6}$
售					－		12			6		$E E$		\ldots	0		x_{0}	$\frac{8}{8}$		3	0	Brox	8		E						

Table D. 5 Building Stock Changes between 1954 and 2003 in Çanakkale
(Source: TURKSTAT, 2007)
0
Table D. 6 Building Stock Changes between 1954 and 2003 in Düzce
(Source: TURKSTAT, 2007)
0
Table D. 7 Building Stock Changes between 1954 and 2003 in Elazığ
(Source: TURKSTAT, 2007)
0
Table D. 8 Building Stock Changes between 1954 and 2003 in Erzincan
(Source: TURKSTAT, 2007)

0	0

Table D． 9 Building Stock Changes between 1954 and 2003 in Istanbul
（Source：TURKSTAT，2007）

													0			0												
$\frac{8}{81}$	0			${ }^{7}$								0				8^{8}								18	0			
										7					7									x^{2}	$\frac{2}{2}$			－
${ }^{8}$				7			x_{0}^{x}			8				$=$											\cdots		\square^{+7}	2
										$+$					0											0		$\chi^{2} 8$
																												＊
										\square^{7}		\％		1	0°			$=$							0	8		5
倉部					\|				7																			\cdots
						10	\％			3				，	${ }_{7}$	7		0						固	＊			
㜢晃							$=$		of	0°				\sim										$1=1$	$=$			8
														${ }^{8} 8$				$=7$										5
																									$=$			闯
3	θ^{8}			${ }^{7}$			0^{2}		x^{2}			$x_{0}^{2} 0^{2}$		7														5
	x^{2}				7	7°													10	F								${ }^{6}$
										0																		4
E		0		5			$0^{9}+\frac{7}{3}$						7			${ }^{2}$			8									
												0				\bigcirc												
	8			3														7										
		$3^{\frac{7}{7}}$									$=$			$=$	4	5				，		${ }^{\sim}$						\％
												$=$	${ }^{2}$	10	新合							－			$=$			2
								，	2	8				䢒		）				－		\％			\％			0
				\％					E					1						5		2				\times		8
寿					5	0	2		0	0		z^{2}	1			0		10		x				0	B			

Table D． 10 Building Stock Changes between 1954 and 2003 in Izmir
（Source：TURKSTAT，2007）

									1								72													
$8{ }^{8}$																														
	1									\％																				
8 ${ }^{\text {\％}}$						＊		8						8	$=$				1					\cdots				8		
						0	I	$=$	$\frac{1}{x}$			类																		
										$=$		\|a			0			7					$=$	O						
部碞				0				0°									$=$													
								0	x^{s}	8		禁		\％	${ }^{\circ}$						\sqrt{x}									
教碰									$=$															1						
														\％	＊		10		$\underset{y}{2}$	and				7						
										7																				
	㸚		a^{2}	3		共	Z	\％	z_{0}^{z}			8			屋		0		B	x_{0}^{2}	国		园	0						
			7				$=$	F	2	$0=$		2		$1 F$	1		x^{x}		T		10			"						
	0									8				5	$\frac{2}{2} \frac{1}{2} \frac{1}{2}$		部				1									
$\mathrm{S}^{\text {易 }}$			x^{20}	$=$				7		$3=$	3	2	0	屋			7	7							－					
												5									$\frac{8}{8}$									
															20		－		2					5						
	$\mid=1$													\times	0						－	7		B						
														\cdots			\bigcirc											8		
	${ }^{1}$														－															
											0			0	0				7		－									
飶				2		0						8		0	0					2	0									

Table D. 11 Building Stock Changes between 1954 and 2003 in Karabük
(Source: TURKSTAT, 2007)

0	0

Table D. 12 Building Stock Changes between 1954 and 2003 in Kastamonu
(Source: TURKSTAT, 2007)
0
Table D. 13 Building Stock Changes between 1954 and 2003 in Kırşehir
(Source: TURKSTAT, 2007)
0
Table D. 14 Building Stock Changes between 1954 and 2003 in Kocaeli
(Source: TURKSTAT, 2007)

0	0

Table D． 15 Building Stock Changes between 1954 and 2003 in Malatya
（Source：TURKSTAT，2007）

																			12	E											2
$\mathrm{S}^{\text {b }}$				1		5		5	$\frac{x}{2}$					${ }^{3}$			7	－		－							\％				2
		5		${ }^{7}$	z^{2}									5		5	\％			0	$\frac{8}{8}=1$		$=\frac{1}{z}$				－				\％
8					－	$=2$		\cdots	－			\rightarrow																			${ }^{\circ}$
					${ }^{\circ}$	$=0$				x_{7}^{7}																	4				因
																															${ }^{2}$
								$=$	${ }^{\circ}$							\cdots										$0^{\frac{7}{8}}$					－
部碞								7	E																		$=$				$=818$
	I			$=0$				－	－	0				$=$		${ }^{\circ}-$	\％	${ }^{\circ}$								0^{-1}	\％		8	${ }_{7}$	－${ }^{6}$
						7																									$=8$
				x^{2}			$=$	$5^{\frac{5}{4}}$		0°			$=$			0°						0					2				2^{8}
																											1				${ }^{\circ}$
（\％）					3	5	$=\frac{1}{7}=$					x^{2}		$\frac{2}{7}$						5							\％				$8{ }^{3}$
者碞																															－${ }^{-7}$
								0												1	x^{2}			1			$\left\lvert\, \begin{aligned} & x \\ & x \end{aligned}\right.$				${ }^{\frac{8}{7} 8} 8$
$\mathrm{S}^{\text {明 }}$		3	9						$=$	$7=$			7	7				$=$			$=$		F	0			12				－
																	0			圈						＋	豆				08
		\％		0^{2}														豕		$\begin{array}{r} 7 \\ 3 \\ 3 \end{array}$				${ }^{7}$			8				
				$=0$					$=1$			A			－			8	5				0	0	z^{2}		0				${ }^{2}$
							17									$=$	$=$	$=$	7		－		8	\bigcirc	\＃	${ }^{2}$			∇^{2}		${ }^{2} 8$
					\％	\％				$\frac{z}{2}$	O				等			\％	，		\％	${ }_{8}^{8}$	0	8	8	8					－${ }^{8}$
										$=7$						8					2					$\sqrt{\bar{x}}$					88^{8}
\％			喵	5	0				π	E	12		1	1			B	0					10			$\frac{7}{0}$					

Table D. 16 Building Stock Changes between 1954 and 2003 in Niğde
(Source: TURKSTAT, 2007)
0
Table D. 17 Building Stock Changes between 1954 and 2003 in Yalova
(Source: TURKSTAT, 2007)
0
Table D． 18 Total Building Stock in Selected Provincial Centers

新 ${ }^{\text {b }}$										
							$\frac{3}{3}$		$=y^{2}$	0
\％									$=$	$=$
	3									
						$=$		1	$0^{2}=$	2
	x^{2}									
							8		8	
				$=$			－			
31	x^{2}					，	碞			
	1									
		$F \mid$							8	
		5								
	\mid				目爵					
					2				2	20
					3					

APPENDIX E

BUILDING AMNESTIES BETWEEN 1984 AND 2000

Table E. 1 "Building Amnesties" between 1984 and 2000 in Aksaray
(Source: TURKSTAT, 2007)

AKSARAY	Numb er of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
$1984-1988$	0	0	0	0	0	0	0	0
1990	43	0	0	1	0	0	0	44
1991	24	1	2	0	0	0	0	27
1992	12	0	0	0	0	0	0	12
1993	1	0	0	0	0	0	0	1
1994	7	2	1	0	0	0	0	10
1995	2	0	0	0	0	0	0	2
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
TOTAL	89	3	3	1	0	0	0	96

Table E. 2 "Building Amnesties" between 1984 and 2000 in Antalya
(Source: TURKSTAT, 2007)

ANTALYA	Number of House	Commercial Buildings	Industrial Buildings and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total	
1984	733	78	2	1	1	0	5	820
1985	574	25	10	5	3	2	3	622
1986	1119	50	5	2	0	0	3	1179
1987	1980	132	3	4	0	3	2	2124
1988	214	16	1	0	0	0	0	231
1990	103	3	0	0	0	0	0	106
1991	41	2	0	0	0	0	0	43
1992	20	0	3	0	0	0	0	23
1993	1	0	0	0	0	0	0	0
1994	10	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	1	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
TOTAL	4795	307	24	12	4	5	0	0

Table E. 3 "Building Amnesties" between 1984 and 2000 in Ardahan
(Source: TURKSTAT, 2007)

ARDAHAN	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings
$1984-2000$	0	0	0	0	0	0	0

Table E. 4 "Building Amnesties" between 1984 and 2000 in Bursa
(Source: TURKSTAT, 2007)

BURSA	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	548	20	16	3	1	1	0	589
1985	413	28	22	4	0	0	1	468
1986	2559	158	26	1	0	0	1	2745
1987	15126	354	180	3	4	2	6	15675
1988	5200	187	155	3	0	1	1	5547
1990	567	39	34	0	0	0	0	640
1991	297	27	12	0	0	0	0	336
1992	133	9	6	0	0	0	0	148
1993	3	0	0	0	0	0	0	3
1994	35	1	1	0	0	0	0	0
1995	3	0	0	0	0	0	0	0
1996	6	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	1	0	0	0	0	0	0	0
2000	1	0	0	0	0	0	0	0
	0	0	0	4	0	0	0	0
TOTAL	24892	823	452	14	0	0	0	0

Table E. 5 "Building Amnesties" between 1984 and 2000 in Çanakkale
(Source: TURKSTAT, 2007)

ÇANAKKALE	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	305	0	0	0	0	0	0	305
1985	133	5	2	0	0	0	0	140
1986	31	2	0	0	0	0	0	33
1987	138	5	0	0	0	0	0	143
1988	94	4	1	1	0	0	1	101
1990	29	4	0	0	0	0	0	33
1991	8	0	0	0	0	0	0	8
1992	2	0	0	0	0	0	0	2
1993	2	0	0	0	0	0	0	2
1994	11	0	0	0	0	0	0	11
1995	1	0	0	0	0	0	0	1
1996	1	0	0	0	0	0	0	1
1997	1	0	0	0	0	0	0	1
1998	2	0	0	0	0	0	0	2
1999	0	0	0	0	0	0	0	0
2000	5	0	0	0	0	0	0	5
TOTAL	763	20	3	1	0	0	1	788

Table E. 6 "Building Amnesties" between 1984 and 2000 in Düzce
(Source: TURKSTAT, 2007)

DÜZCE	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings
$1984-2000$	0	0	0	0	0	0	

Table E. 7 "Building Amnesties" between 1984 and 2000 in Elazığ
(Source: TURKSTAT, 2007)

ELAZIĞG	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	575	32	4	1	0	0	0	612
1985	488	31	1	3	0	0	0	523
1986	597	28	5	2	0	0	2	634
1987	676	25	1	0	1	0	0	703
1988	74	6	2	0	0	0	0	0
1990	13	0	0	0	0	0	0	0
1991	3	1	0	0	0	0	0	0
1992	2	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0

Table E. 8 "Building Amnesties" between 1984 and 2000 in Erzincan
(Source: TURKSTAT, 2007)

ERZINCAN	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	112	3	0	0	0	0	0	115
1985	129	6	0	0	1	0	0	137
1986	149	4	0	0	0	0	0	153
1987	171	2	0	0	0	2	0	177
1988	56	3	0	0	2	0	0	63
1990	23	2	0	0	0	0	0	25
1991	4	1	0	0	0	0	0	5
1992	7	5	0	0	0	0	0	12
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
TOTAL	651	26	0	0	3	2	0	687

Table E. 9 "Building Amnesties" between 1984 and 2000 in Istanbul
(Source: TURKSTAT, 2007)

ISTANBUL	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	7342	401	200	7	1	2	3	7956
1985	15778	597	254	11	5	5	7	16657
1986	25985	1553	386	22	26	4	6	27982
1987	27467	2041	564	23	7	65	9	30176
1988	5025	438	279	20	0	0	4	5766
1990	932	123	116	1	0	0	0	1172
1991	295	64	22	0	0	0	0	381
1992	193	28	5	0	0	0	0	226
1993	12	0	0	0	0	0	0	12
1994	128	5	8	0	0	0	0	141
1995	44	5	1	0	0	0	0	50
1996	8	3	0	0	0	0	0	11
1997	25	1	2	0	0	0	0	28
1998	32	4	14	0	0	0	0	50
1999	24	5	1	0	0	0	0	30
2000	3	0	0	0	0	0	0	3
TOTAL	83293	5268	1852	84	39	76	29	90641

Table E. 10 "Building Amnesties" between 1984 and 2000 in Izmir (Source: TURKSTAT, 2007)

IZMIR	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	1340	94	40	1	5	0	0	1480
1985	1648	74	33	0	0	0	2	1757
1986	3242	197	47	3		1	3	3493
1987	2635	172	46	3	3	1	2	2862
1988	999	123	36	1	0	0	3	1162
1990	704	212	26	4	0	1	0	947
1991	2077	269	30	0	0	0	0	2376
1992	496	72	19	0	1	0	1	589
1993	186	29	1	0	0	0	0	216
1994	632	59	8	0	0	0	0	699
1995	51	16	0	0	0	0	0	67
1996	119	14	1	0	0	0	0	134
1997	24	14	1	0	0	0	0	39
1998	27	7	0	0	0	0	0	34
1999	16	4	1	0	0	0	0	21
2000	13	2	0	0	0	0	0	15
TOTAL	14209	1358	289	12	9	3	11	15891

Table E. 11 "Building Amnesties" between 1984 and 2000 in Karabük
(Source: TURKSTAT, 2007)

KARABÜK	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings
$1984-2000$	0	0	0	0	0	0	

Table E. 12 "Building Amnesties" between 1984 and 2000 in Kastamonu
(Source: TURKSTAT, 2007)

KASTAMONU	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	68	6	0	0	0	0	0	74
1985	106	10	3	1	0	0	4	124
1986	96	3	1	0	0	0	0	100
1987	287	18	10	4	2	1	6	328
1988	50	7	0	1	0	0	0	58
1990	21	0	0	0	0	0	0	21
1991	5	0	0	0	0	0	0	5
1992	7	2	1	2	0	0	0	12
1993	9	1	0	0	0	0	0	10
1994	22	2	0	0	0	0	0	24
1995	0	0	0	0	0	0	0	0
1996	2	0	0	0	0	0	0	2
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
TOTAL	673	49	15	8	2	1	10	758

Table E. 13 "Building Amnesties" between 1984 and 2000 in Kırşehir
(Source: TURKSTAT, 2007)

KIRSEHIR	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	289	1	5	0	0	0	0	295
1985	124	1	0	0	0	0	1	126
1986	121	0	0	0	0	0	0	122
1987	94	2	0	0	1	0	0	0
1988	0	0	0	0	0	0	0	0
1990	19	1	0	0	0	0	0	0
1991	5	0	0	0	0	0	0	0
1992	1	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0

Table E. 14 "Building Amnesties" between 1984 and 2000 in Kocaeli
(Source: TURKSTAT, 2007)

KOCAELI	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	2281	55	19	0	1	0	1	2357
1985	4752	92	36	9	3	5	9	4906
1986	5388	103	141	9	0	2	1	5644
1987	4108	197	54	1	1	3		4364
1988	1443	61	38	0	0	3	1	1546
1990	689	32	6	0	0	0	0	727
1991	249	10	11	0	0	0	0	270
1992	347	22	1	1	0	0	0	371
1993	22	1	0	0	0	0	0	23
1994	62	5	1	0	1	0	0	69
1995	4	0	0	0	0	0	0	4
1996	4	1	0	0	0	0	0	5
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	8	1	0	0	0	0	0	9
2000	0	0	0	0	0	0	0	0
TOTAL	19357	580	307	20	6	13	12	20295

Table E. 15 "Building Amnesties" between 1984 and 2000 in Malatya
(Source: TURKSTAT, 2007)

MALATYA	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	64	1	0	0	0	0	0	65
1985	102	26	2	0	0	0	0	130
1986	75	41	2	0	0	0	0	118
1987	273	28	2	0	0	0	0	0
1988	20	12	2	0	0	0	0	0
1990	35	12	0	0	0	0	0	0
1991	4	3	0	0	0	0	0	0
1992	0	2	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Table E. 16 "Building Amnesties" between 1984 and 2000 in Niğde
(Source: TURKSTAT, 2007)

NİĞDE	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	147	12	4	1	1	0	0	165
1985	48	3	2	0	0	0	0	53
1986	216	8	0	1	0	0	0	225
1987	713	4	3	0	1	0	0	721
1988	451	4	1	1	0	0	0	457
1990	8	0	0	0	0	0	0	8
1991	3	0	0	0	0	0	0	3
1992	3	0	0	0	0	0	0	3
1993	0	0	0	0	0	0	0	0
1994	1	0	0	0	0	0	0	1
1995	0	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0	0
1997	0	0	0	0	0	0	0	0
1998	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
TOTAL	1590	31	10	3	2	0	0	1636

Table E. 17 "Building Amnesties" between 1984 and 2000 in Yalova
(Source: TURKSTAT, 2007)

YALOVA	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
1984	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0
1986	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	0
1995	0	0	0	0	0	0	0	0
1996	1	0	0	0	0	0	0	0
1997	1	0	0	0	0	0	0	0
1998	1	0	0	0	0	0	0	0
1999	2	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Table E. 18 Total "Building Amnesties" between 1984 and 2000
(Source: TURKSTAT, 2007)

	Number of House	Commercial Buildings	Industrial Buildings	Medical and Social Buildings	Cultural Buildings	Religious Buildings	Administrative Buildings	General Total
AKSARAY	89	3	3	1	0	0	0	96
ANTALYA	4795	307	24	12	4	5	0	13
ARDAHAN	0	0	0	0	0	5160		
BURSA	24892	823	452	14	5	4	0	0
ÇANAKKALE	763	20	3	1	0	0	9	26199
DÜZCE	0	0	0	0	0	0	1	788
ELAZIG	2428	123	13	6	1	0	0	0
ERZINCAN	651	26	0	0	3	2	2573	
ISTANBUL	83293	5268	1852	84	39	76	0	682
IZMIR	14209	1358	289	12	9	3	90641	
KARABÜK	0	0	0	0	0	0	11	15891
KASTAMONU	673	49	15	8	2	1	0	0
KIRSEHIR	653	5	5	0	1	0	10	758
KOCAELI	19357	580	307	20	6	13	2	666
MALATYA	573	125	8	0	0	0	12	20295
NİĞDE	1590	31	10	3	2	0	0	706
YALOVA	5	0	0	0	0	0	0	1636

[^0]: * State General Directorate of Meteorology: Early Warning System for Meteorological Extremes.

